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Summary

Since the achievement of Bose-Einstein condensation (BEC), the progress in matter-
wave physics has been immense. Among the many recent achievements there is
the miniaturization of atom traps, demonstration of the superfluid-Mott insulator
quantum-phase transition in optical lattices and the experimental demonstration of
the BEC-BCS crossover in ultra-cold gases.

Miniaturization of atom traps using micro-structured wires on a chip is one impor-
tant step towards an on-chip cold-atom device. These so-called “atom chips” provide
high control and versatility for trapping and guiding the ultra-cold atomic clouds.
Particularly interesting is the use of these microchips to build mesoscopic devices
for cold atomic clouds as, for instance, in the case of an atom-cloud interferometer.
However, these mesoscopic devices require coherent transport of the atom cloud. A
general method to treat decoherence due to current fluctuations in multi-wire atom-
chip traps is presented in the first part of this thesis. The decoherence rate I' shows a
strong dependence on the distance between the wire and the atom cloud, rq, scaling
as ' ~ ry* for a single atom waveguide. Considering an interferometer device, a
strong dependence of the decoherence rate on the trap geometry is found.

Studying many-body effects in ultra-cold quantum gases is another important
research field. Experiments using ultra-cold quantum gases in optical lattices have
demonstrated the superfluid-Mott insulator quantum phase transition and many-
body entanglement. Optical lattices are based on a periodic modulation of the light
intensity, generated by retro-reflected laser beams. Correlations of the atomic cloud
between different lattice sites of the optical lattice play a central role in these many-
body experiments. The different phases of the superfluid-Mott insulator system can
be characterized by the different behavior of the inter-lattice site correlations. There
are several numerical methods such as Quantum Monte Carlo (QMC) simulations,
Density Matrix Renormalization Group (DMRG) simulations, exact-diagonalization,
or the Gutzwiller ansatz, to investigate the dynamics of an ultra-cold gas in an optical
lattice theoretically. The Gutzwiller method, corresponding to the mean-field solu-
tion, allows for the treatment of large lattice sizes. Mean-field approaches have proven
to be very useful to describe many-body physics. However, difficulties arise in the cor-
rect description of the behavior of the decay of inter-lattice site correlations. Based on
the Gutzwiller approach, we have developed a method which allows the successive in-
clusion of inter-lattice site correlations. Comparing the results for the particle-number
fluctuations and the correlation function obtained from pure Gutzwiller calculations,
to calculations which perturbatively include short-range correlations and calculations
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using “quasi-exact methods”, showed a considerable improvement relative to the pure
Gutzwiller results due to the inclusion of short-range correlations.

Many-body effects do not only arise in periodic potentials, but become increas-
ingly important at ultra-low temperatures. The formation of Bose-Einstein conden-
sates requires an overlap of the atom wavefunctions and, hence, the formation of
a single condensate wavefunction. Another example of a many-body state is the
superfluid-BCS state, commonly used as a description of superconductivity. Here,
fermions in different hyperfine states form Cooper pairs. Experiments with ultra-
cold quantum gases enable a variation of the interparticle interaction, e.g. , by using
a Feshbach resonance. Using Feshbach resonances to tune the interaction strength
has enabled the experimental observation of the crossover from a superfluid-BCS
state to a Bose-Einstein condensate of molecules. A useful way to characterize the
different states of ultra-cold quantum gases is to investigate the particle-number fluc-
tuations. In this thesis we suggest to divide the atomic cloud into bins and consider
the atom-number fluctuations in these bins. We calculate the full counting statistics
for different physical systems of ultra-cold gases (e.g. bosonic gases, fermionic gases,
and spin mixtures). In particular, we consider the BCS-state as a first trial exam-
ple to show that there is a strong variation in the particle-number statistics at the
crossover from a superfluid-BCS state to a Bose-Einstein condensate of molecules.
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Chapter 1

Introduction

“Decoherence and correlations in systems of trapped ultra-cold quantum gases”! —
Scientist not familiar with the term “ultra-cold quantum gases”, which are also called
matter waves, might wonder what is meant by “ultra-cold quantum gases”. Trying to
classify matter-wave physics leads to the realization, that it is neither purely atomic
physics nor is it purely condensed matter physics. The physics of ultra-cold gases
seems to be rather something in between.

On the one hand, atomic physics is interested in the description of single isolated
atoms. Quantum mechanics was developed and intensively expanded, based on these
isolated systems. On the other hand, we are very familiar with the concept of a large
number of atoms tightly packed in a lattice. Condensed matter physics dominates our
everyday life as, for example, in computers, mobile phones and many other electronic
devices. Solids are much more complex systems than isolated atoms and many-body
effects lead to additional physical phenomena. However, what happens if we take a
few atoms and form a cold dilute cloud? Quantum mechanics will play an important
role in these cold-dilute gases. However, in contrast to the isolated atom, ultra-cold
quantum gases will also show many-body effects. In fact, dilute atomic gases give
rise to physical systems, which show phenomena from atomic and solid-state physics.

Trapped ultra-cold quantum gases can be thought of as very dilute many-body
systems. These ultra-cold atom clouds consist in general of about 10° to 107 atoms
which can be fermions, bosons or fermion-boson mixtures. The densities of the ultra-
cold quantum gases vary from 10%cm™ to 10cm™3. Hence, matter waves have
densities which are about eight to ten orders in magnitude smaller than in a solid.
The dilute gases are collected in ultra-high vacuum chambers. Laser-cooling [1-3] and
evaporative-cooling [4] techniques enable the cooling of the dilute-atomic quantum
gases to temperatures of a few microkelvin. In fact, the low densities and the low tem-
peratures achievable by evaporative-cooling made the formation of a Bose-Einstein
condensate (BEC) in a ultra-cold atom clouds possible [5,6]. Creating almost pure
Bose-Einstein condensates is probably the most striking experimental achievement in
matter-wave physics. Dilute fermionic gases can be cooled to a fraction of the Fermi
temperature Tr = €p/kp, where the fermionic atom cloud forms a degenerate Fermi
gas. Particularly interesting are fermionic spin-mixtures. Cooled below the critical
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temperature TS5, one expects the formation of a superfluid BCS state similar to

the many-body state known from conventional superconductivity. The dilute-atomic
clouds are usually trapped in magnetic or optical traps which offer a large variety
of possibilities to manipulate and transport the atomic cloud. The atomic cloud can
be guided along waveguides, rotated or put in a periodic lattice, to name only a few
examples.

Matter waves offer a world of many-body physics from Bose-Einstein condensa-
tion to Cooper pairing combined with the great versatility and control provided by
quantum-optical techniques. Indeed, matter-wave physics has become a field where
atomic physics, quantum optics and condensed matter physics meet. With the input
of these numerous different backgrounds, matter-wave physics quickly developed into
a new innovative field. An array of research ideas were put forward, successfully
combining condensed matter and atomic physics. It is the aim of this chapter to give
a few examples of research done with ultra-cold quantum gases. Each example will
stress a different combination of quantum-optical, atomic and solid-state physics.

1.1 The atom chip

The name “atom chip” already summarizes the idea behind the device very nicely.
Atom chips use the concepts of chip technology to construct traps and guides for
clouds of neutral atoms. The breakthrough of electronic devices came only with the
successful downsizing from large devices like vacuum tubes to what is known today
as chip technology, with transistor sizes of a few hundred nanometers. If applications
using ultra-cold atomic gases, like atomic clocks [7] or ultra-sensitive gyroscopes [8,9],
are to become everyday devices, they need to be sized down to the same dimensions.
Usual atom traps use huge coils to produce the magnetic trapping fields. Downsiz-
ing of the trap can be achieved if the magnetic field is produced by currents in thin
wires. Chip technology provides a tool to microstructure the wires and to reduce
the trap to the size of a chip. Thus, atom chips provide strongly confined traps for
atomic clouds which can be used to guide and manipulate the ultra-cold gases. In
fact, first experiments with atom chips have been very successful (see [10-12] for a
review). Ultra-cold atomic clouds have been transported along waveguides, split into
two clouds at a beam splitter [13] or stored in a ring waveguide [14].

However, atom-chip traps offer far more than simply a miniaturization of known
physics. The huge versatility of the atom waveguides opens the door to a new world
of mesoscopic transport of matter waves. Atom-chip waveguides are expected to be
very good candidates for coherent transport of ultra-cold atomic clouds. This makes
chip traps an interesting means to study quantum phenomena in the transport of
bosonic and fermionic ultra-cold gases or Bose-Einstein condensates.

A further step towards an atom-chip device is the combination of optical elements
with atom-chip traps [9,15]. Integrated optical elements offer a huge toolbox for the
manipulation and control of the atomic cloud. Additionally, optical elements can be
used as interfaces between the atomic cloud and the environment. These elements
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allow the exchange of information between different matter waves or serve as an inter-
face to an outside user. An example would be the interface for a quantum information
processor on an atom chip [16]. The use of on-chip micro cavities can then be used
as single-atom detectors for the readout procedure [17].

1.2 Optical lattices

The name “optical lattice” is again a strong hint to a combination of quantum optics,
atomic and condensed matter physics. Optical lattices are based on a concept which
is very different from the atom chip. This time, the technology known from quantum
optics provides the technical support to trap the dilute atomic cloud. Atoms have
been trapped in laser fields for a long time. The new idea behind optical lattices is
the formation of an array of atom traps, i.e., a lattice. Retro-reflecting a laser beam
leads to a standing wave with intensity maxima and minima, forming an array of
atom traps. Using one, two or three laser beams allows the formation of a one-, two-
or three-dimensional lattice. Trapping ultra-cold atoms in these optical lattices leads
to a physical system reminiscent of a solid body.

In the case of optical lattices, it is the great versatility of the trapping potential for
the matter-wave system that makes experiments particularly attractive. The lattice
spacing and the lattice structure can easily be changed by adjusting frequency, inten-
sity and orientation of the laser beams. Moreover, optical lattices form ideal lattices
without lattice defects like dislocations, grain boundaries or impurities. Noise sources
perturbing the optical lattice remain in fluctuations of the intensity or of the shape
of the laser beam, to name only a few examples. Disorder, in form of irregularities of
the lattice-site trapping potentials, can be added in a controlled way, using two-color
superlattices or speckle patterns [18]. Hence, optical lattices provide also an ideal
testing ground to investigate phenomena in disordered lattices, as for example, the
Bose-glass transition [19]. Changing the laser intensity gives control over the poten-
tial depth of each lattice side. Varying the potential depth corresponds to a variation
in the tunneling barrier between neighboring lattice sites. Hence, the control over
the potential depth provides a tool to tune the dynamical properties of the atomic
gas in the optical lattice. In contrast to their solid-state relatives, optical lattices
offer the possibility to load the periodic potential with bosons, fermions, molecules
or mixtures giving rise to a huge diversity of different systems.

Being something like a copy of a solid-state crystal, optical lattices show all the
phenomena known from their solid state relatives, which have their origin in the
periodicity of potential. Starting from demonstrations of Bloch Oscillations [20], to
direct visualization of the Brillouin zones [21] and Fermi surfaces [22], optical lat-
tices are an ideal testing ground for lattice-induced effects known from condensed
matter physics. Several many-body effects, known from solid-state physics, have also
been observed in optical lattices. The most prominent example is the Mott-insulator
quantum phase transition in optical lattices [23,24]. Being theoretically investigated
for many years, the experimental demonstration and the ability to tune the potential
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shape in optical lattices, rekindled the interest in this field. A further example for the
versatility of experiments with optical lattices is the creation of a Tonks-Girardeau
gas [25]. The realization of strongly interacting Bose gases in one-dimensional optical
lattices [25-27] provides a testing ground to investigate the Tonks-Girardeau regime,
which has been discussed theoretically for a long time [28,29]. The investigation of
a Bose-glass phase in disordered optical lattices or the exploration of a superfluid
state of Cooper pairs, anti-ferromagnetic or d-wave pairing states of fermionic gases
in optical lattices [30] are only a few possible future applications for systems which
are reminiscent of problems in solid-state physics. Furthermore, optical lattice offer
the possibility to study the dynamics of bosons, fermions, boson-fermion mixtures,
spin-mixtures, spin-polarized gases and molecules in lattice potentials . This gives
rise to many new physical systems which have no counterpart in the solid-state world.

Still, the concept of an optical lattice provides far more possibilities. The ideal
lattice and the perfect control over the trapped atoms allows the preparation of a
state consisting of an array of isolated atoms. These atom arrays form the perfect
prerequisite for many-body quantum entanglement [31,32]. In fact, each atom in
the array can be thought of as a two-level quantum system forming a qubit. The
scalability and the good control of the system thus provide a good candidate for a
quantum computer with neutral atoms [33-35].

1.3 Bose-Einstein condensation and the BEC-BCS
crossover

The last example for research done with ultra-cold quantum gases combines atomic
physics and condensed matter physics in yet a different manner. This time, both,
atomic and solid state physics provide systems which allow an investigation of a
similar underlying physical mechanism. Matter waves behave neither as a system
of isolated atoms, nor like a complex solid body. In fact, matter waves provide the
unique possibility to investigate many-body physics in a very dilute environment.
Ultra-cold dilute atom clouds have densities of typically 10¥cm™ — 10%cm ™3 [36]
and have, thus, densities roughly eight to ten orders of magnitude smaller than those
of a solid.

The most famous example of a many-body phenomenom, which finally has been
accessible in a dilute-atomic gas, is Bose-Einstein condensation. Bose-Einstein con-
densates form in bosonic gases at a critical temperature! T2C when the thermal
wavelength reaches the same order of magnitude as the interparticle spacing [37].
Even though Bose-Einstein condensation was intensively studied in superfluid “He
experiments [39], it was not until dilute atomic gases reached sufficiently low tem-
peratures and sufficiently low densities that Bose-Einstein condensates with high
condensate fractions were observed experimentally [5,6]. Since the first experimental

'The critical temperature in an ideal gas is [37): kpTE®C = 27h*/m(Vgs/2(1)/N)?/3, where
gn(2) = 12,2 /1". For a more detailed discussion of the critical temperature, considering finite
size effects or trapping geometries, see Ref. [38].
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observation, there has been an immense increase in research activity, investigating the
physics of Bose-Einstein condensates. The many-body nature of the Bose-Einstein
condensate exhibits a number exciting properties, as for instance, interference ef-
fects [40-43], the formation of solitons [44,45] and vortex formation [46,47].

One other very exciting example which has drawn a lot of recent attention is
the crossover from a state of Bose-Einstein condensed molecules to a superfluid of
Cooper-paired fermions. The ultra-cold gas is prepared in a mixture of fermions
in two different spin states. The advantage of BEC-BCS crossover experiments in
ultra-cold quantum gases lies in the high controllability of the interaction strength
between the particles. The interaction between the fermions in different spin states
can be tuned between a negative scattering length and a positive scattering length
using a Feshbach resonance. On the side of the Feshbach resonance with negative
scattering length, fermions in different spin states perceive an attractive interaction.
Tuning the magnetic field adiabatically from negativ to the positive scattering length
changes the two-fermion scattering state into a bound state. Hence the fermions pair
up and form molecules. Fermions in different spin states which are unpaired perceive
a repulisve interaction due to the positive scattering length. If the temperature is
below TEEC) a molecular Bose-Einstein condensate emerges. Attractive interaction
between the fermions, however, leads to the formation of a superfluid BCS state as
known from conventional superconductivity. Tuning the interaction strength from
repulsive to attractive interactions leads to a crossover from a Bose-Einstein conden-
sate of molecules to a BCS state of Cooper-paired fermions. The BEC-BCS crossover
has been of physical interest for many years. Originally discussed as a theoretical
model in the context of high-temperature superconductivity [48] it was difficult to
investigate the BEC-BCS crossover experimentally. The low densities achievable in
ultra-cold gases finally made the BEC-BCS crossover regime experimentally reach-
able. Thus, matter-wave physics provides a way to experimentally investigate the
interesting many-body physics, occurring at the crossover from a Bose-Einstein con-
densate of molecules to a superfluid BCS state. Even though a high-temperature
superconductor, with its rather complicated lattice structure, is very different from
an ultra-cold atomic gas composed of fermions in two different spin states, the basic
underlying many-body physics remains the same. Both systems are expected to ac-
cess the BEC-BCS crossover region. It is primarily the simplification of the system
and the large number of adjustable parameters which makes the BEC-BCS crossover
experiment in ultra-cold dilute gases so attractive.

1.4 Correlation and coherence

The previous sections have shown that matter-wave physics is a very versatile field
to study quantum effects in a many-body system. The use of tools and techniques
from solid-state physics, atomic physics and quantum optics created a whole range of
new ways to study dilute many-body systems. As in most quantum systems, correla-
tions and coherence between the particles play a key role in matter-wave experiments.
Atom chips are expected to serve as waveguides for coherent transport. Many-body
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effects observed in optical lattices and dilute many-body systems are based on corre-
lations and entanglement between the atoms. It is therefore the issue of decoherence,
correlations and noise in matter-wave systems which will be the central topic of this
thesis.

As we have already introduced some ideas about matter-wave physics in the last
three sections, let us use those same examples to get a better idea of the importance
which coherence and correlations play in matter-wave systems. This section is in-
tended not only to serve as an introduction to the basic principles, but also to give a
taste of what is to come in the following chapters.

Atom chips were previously introduced as waveguides for matter waves. How-
ever, if mesoscopic quantum devices are to be built from atom-chip waveguides, then
sufficiently long coherence times are needed. Hence, guiding matter waves requires
coherent transport. The investigation of possible sources of decoherence are therefore
a key issue for the realization of coherent transport on atom chips. Atom-chip traps
are composed of a microstructured wire layout on a chip put in a vacuum chamber.
Atoms are cooled down to several microkelvin and then trapped by the magnetic fields
formed by the currents flowing through microwires on the chip. The cold atomic cloud
is finally trapped in the close vicinity of the chip surface. As a consequence, there
will be interactions between the substrate and the trapped atomic cloud, and the
cold gas can no longer be considered an isolated system. Figure 1.1 shows a sketch
of the system. Recent experiments reported a fragmentation of cold atomic clouds or
Bose-Einstein condensates in a microwire waveguide [49-55] on reducing the distance
between the wavepackets and the chip surface. The fragmentation of atom clouds,
emerging if the cloud is approached to the chip surface, shows that atomic gases in
wire traps are very sensitive to the environment. Current noise in the wires is an
obvious source of decoherence. As the trap is formed by the current passing through
the wires, any current fluctuation will directly translate into a fluctuation of the
trapping potential and consequently lead to decoherence of the atomic cloud. On the
one hand, there is spatial decoherence along the cloud, as atoms located at different
positions will in general perceive different potential fluctuations. On the other hand,
transitions between different trap states give rise to decoherence. Fluctuations in the
trap potential cause the atoms to jump back and forth from the ground state into
excited states. As the particles undergo different time evolution in the different states
and as the time between jumps is stochastic, atoms start to pick up different phases.
Including the discrete spectrum of the trapping potential gives rise to a decoherence
mechanism with a decoherence rate I' that scales like I' ~ 1/r3 with the distance
ro from the trap minimum to the wire. Loss of particles during transport along the
wire is also caused by the noisy environment. However, these particle losses, due
to spin flips into untrapped states, do not limit the coherence time. The contents
of Chapter 2 will look more closely at the impact of current noise on the coherent
transport in multi-waveguide atom-chip traps.

The second example of matter-wave physics discussed an ultra-cold quantum gas
trapped in a periodic potential. Considering optical lattices, we will focus on the
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Figure 1.1: Left: Sketch of an atomic cloud trapped in the magnetic field of a chip
trap. The red wiggled lines suggest the coupling of the environment to the atomic
cloud. Right: Sketch of the energy spectrum of a trapped atom. Heating, decoherence
and loss processes as a consequence of the coupling to the substrate lead to transitions
into excited states.

importance of correlations between the atoms in different lattice sites. The optical-
lattice traps are formed by standing waves from a set of laser beams. Imperfections
of the lattice and fluctuations in the laser intensities play a very minor role in these
systems. Optical lattices are thus perfect for physical processes which require long co-
herence times, as for example coherent states [56] or the entanglement of atoms [31].
Coherence or correlations between atoms in optical lattices manifest themselves in
a way which is different from the previously discussed decoherence of matter waves
trapped in an atom-chip trap. Instead of simply loosing the phase coherence there
can be a reversible transition from a state with long spatial phase coherence into a
state with short or even zero coherence length. This is the case in the so called Mott-
insulator transition. The Mott-insulator transition is observable in optical lattices if
the number of bosons N is an integer multiple of the number of lattice sites M i.e
N =1 x M. In this situation, bosons, which are trapped in the lowest Bloch band
of an optical lattice, can be found in two different phases: the superfluid phase and
the Mott-insulator phase. The transition is driven by the ratio of the tunneling rate
of the bosons from one lattice site to the next, J, and the on-site repulsion energy
U. 1If the hopping energy dominates, then the bosons are in the superfluid phase.
The atoms form a coherent state which is delocalized and thus correlated over many
lattice sites. The situation, where the on-site repulsion dominates, is very different.
Now, it is favorable for the system to minimize the number of bosons per lattice site.
The bosonic gas forms a Mott-insulator phase. In the Mott-insulator phase, every
lattice site is occupied by exactly the same number of bosons ¢ = N/M. Hence, the
bosons are localized and the state can be described as a product of Fock states. The
Mott-insulator state, however, shows large fluctuations between the phases on differ-
ent lattice sites. Phase correlations between different lattice sites are practically zero.
The correlation length is, however, not strictly zero for the complete parameter range
of the Mott-insulator phase [57-61]. Here, short-range correlations play an important
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role. The impact of short-range correlations on the different physical observables will
be studied in Chapter 3 by extending the mean-field treatment of the Mott-Hubbard
model perturbatively.

The third and last example discussed the new field of dilute many-body systems
which matter waves provide. Bose-Einstein condensation and the superfluid BCS
state are two examples of systems which are accessible in dilute quantum gases. Co-
herence and correlations among the atoms again play a central role in the formation
of these many-body states. Correlations, however, also provide another very differ-
ent aspect. Correlations in noise measurements can be used to extract information
about the state of the system. Recent experimental work [62,63] has confirmed the
applicability of noise measurements as a useful tool to characterize the state of the
matter-wave system. Letting the trapped atomic cloud expand and taking an ab-
sorption picture after a short waiting period can expose information about the initial
state. Correlation measurements in the noise of absorption pictures have been made
using a fermionic spin mixture [62]. In this experiment, density correlations with
point inversion symmetry to the center of the cloud have been found for attractive
interactions between the fermions in different spin states. These correlations are a
strong indication for a state of (k, —k) momentum pairs as expected for a BCS super-
fluid [62,64]. The measurement of density correlations for the BEC-BCS crossover
is particularly interesting [65]. Crossing over from a system of bosonic molecules,
forming a Bose-Einstein condensate, to a superfluid BCS state of fermions, paired in
momentum space, gives rise to a drastic change in the statistical behavior. Measur-
ing the number statistics of a small subsystem allows one to track down the change
from the BEC to the BCS state. The detailed discussion of the statistical behav-
ior of atom-number fluctuations for the BEC-BCS crossover will be the subject of
Chapter 4.

1.5 Outline of this thesis

The thesis is divided into three main chapters. Following the ideas presented in the
introduction, each chapter will discuss an example, which demonstrates the close
connection between quantum optics, atomic physics and condensed matter physics
in matter-wave systems. However, each example will emphasize a different aspect of
the versatility of matter-wave physics.

Each chapter is presented in a closed form and can thus be read separately. As
the examples discussed in this thesis are not based on a common theory, there will be
an introduction to each chapter. Additionally, each chapter starts with an abstract
(written in italics) bringing each example into the common context of the thesis.

The first example, presented in Chapter 2, discusses decoherence in atom-chip
waveguides. A general method for the treatment of an arbitrary multi-wire wave-
guide is presented and applied to the specific example of the single- and double-wire
waveguides. In contrast to earlier work [66], the theory presented in Chapter 2 takes
the excited states of the trapping potential into account. Consequences to the de-
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coherence due to transitions between the transverse levels are discussed. Chapter 3
addresses the Mott-insulator transition in optical lattices. Special focus is placed on
short-range correlations. Short-range correlations are discussed within the scope of
the Gutzwiller approach. A method to successively include short-range correlations
perturbatively is introduced and applied to calculate the expansion pictures. Results
with and without a harmonic trapping potential are presented and compared to dif-
ferent numerical approaches. Finally, Chapter 4 presents a new approach to measure
atom-number correlations in atomic clouds in order to obtain information about the
state of the matter-wave system. The full counting statistics (FCS) for the BEC-BCS
crossover at zero temperature is calculated and discussed as a possible application
of the method. A qualitative discussion of the extension to the finite-temperature
regime is given.
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Chapter 2

Decoherence of ultra-cold atoms in
atom-chip traps

Atom chips provide a nice ezample of the combination of atomic and condensed mat-
ter physics. On the one hand, miniaturization and the possibility for mass production
15 the key to the successful application of atomic devices in the future. On the other
hand, atom chips give rise to a variety of trap configurations enabling the investiga-
tion of mesoscopic transport of matter waves. Yet, this new field of coherent transport
experiments with ultra-cold bosonic, fermionic or Bose-Finstein condensed gases is
reminiscent of mesoscopic transport in condensed matter devices.

Guiding of atomic clouds has been experimentally demonstrated in many experi-
ments [67-70]. In addition, a huge number of experiments have shown the versatility
in atom-chip traps can be used. Atomic clouds have been guided along spirals [71]
and transported from one reservoir to another reservoir using a conveyor belt for
cold atomic gases [72]. Bose-Einstein condensates have been successfully trapped and
guided using atom chips [49, 55, 13-75] (see [11] for a review). Storage rings have
been loaded with atomic clouds which remained in the ring for several cycles before the
atoms were lost [14]. Furthermore, plans to use atom chips for quantum information
processing have been put forward [16]. A first step in this direction would be given
by the successful demonstration of single-atom detection, for instance, by using an
on-chip micro cavity [17]. However, if atom-chip traps are to be used for mesoscopic
quantum experiments or quantum information processing then the atomic clouds must
be coherently transported along the waveguide. Decoherence due to the coupling of the
cloud to its environment is therefore one of the key issues for atom-chip traps.

It is the aim of this chapter to consider the impact of current fluctuations in atom-
chip traps. A general model will be derived, describing the decoherence of atomic
clouds in atom-chip traps, taking the excited states of the trapping potential into
account. Including the discrete spectrum of the trapping potential gives rise to a de-
coherence mechanism with a decoherence rate T that scales like T ~ 1/r§ with the
distance ro from the trap minimum to the wire. Eventually, the model will be applied
to different examples, the single-wire and the double-wire trap. The most important
example will be the double-wire trap which will be considered in the context of an

11
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atomic interferometer. Decoherence in an interferometer is particularly interesting,
as it provides the basic tool to test the coherence of an atomic cloud. Many different
suggestions have been put forward [76-78] and the experimental demonstration of a
beam splitter [13] shows that an experimental realization of such an interferometer
1s very likely in the near future. In fact, in a recent experiment, a Michelson in-
terferometer for Bose-FEinstein condensates was built on an atom chip using on-chip
mirrors [9].

2.1 Atom-chip traps

There are many different approaches for on-chip atomic traps. A first distinction can
be made between permanently magnetized structures and those magnetic-field traps,
which are formed by current carrying wires.

Permanent-magnet traps use common video tape or a floppy disk which is glued
to the chip (see [10] for a review). Choosing an appropriate structure of permanent
magnets allows the guiding of atomic clouds [79-81]. Experiments lately demon-
strated the creation of a Bose-Einstein condensate in a permanent-magnet atom-chip
trap [82]. Furthermore, permanently magnetized traps have been used as magnetic
mirrors for ultra-cold atom clouds [83-85]. Recently, a technique was suggested which
allowed the structuring of the magnetic material using a laser beam [86]. The mag-
netic material was first fully magnetized and then areas with flipped magnetization
were created by heating with a laser beam.

The experimentally most common way to trap atoms on a chip are wire-based
traps. The magnetic field is created by the currents in the wires and by additional
external bias fields'!. The wires are microfabricated on the chip with the techniques
known from chip technology. Even microstructuring using a CNC-milling machine al-
lows small enough structures to trap a Bose-Einstein condensate [55]. There is a large
number of possible wire configurations leading to a wire-based chip trap (see [69] for
a review). However, as the main part of this chapter considers decoherence of atomic
clouds in wire-based atomic chip traps, we will postpone the detailed description of
the setup to the next section.

Finally, it must be mentioned, that magnetic fields are not the only way to trap
neutral atoms. Using the Stark effect, Vg = —a|E|?/2, neutral atoms can be trapped
and manipulated by electrostatic fields [87].

2.1.1 Wire traps

Wire traps are commonly used to trap neutral atoms in a magnetic potential. The
magnetic moment of the atoms couples to the magnetic field. Supposing that the

IThere are trap configurations which allow trapping of neutral atoms without any external mag-
netic bias fields.
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Larmor frequency wy, = ppB/h is much faster than the spatial motion of the atom, the
magnetic moment can be assumed to follow the magnetic trapping field adiabatically.
As the frequency of the trapping potential, characterizing the atomic motion, is in all
relevant cases much smaller than the Larmor frequency, this approximation is well
applicable. Consequently, the magnetic moment of the atom g can be replaced by its
mean value (F, mp|p|F, mg). Here F' denotes the hyperfine spin and mp the magnetic
quantum number. The interaction Hamiltonian for the atom in the magnetic field is

V(x) = —(F,mp|p|F,mpr)B(x) . (2.1)

Depending on the magnetic spin quantum number mp and the applied magnetic field
B(x), the atomic states can be distinguished into two classes [10]: the low-field seek-
ing states and the high-field seeking states. As their names already suggest, atoms
prepared in low-field seeking states favor regions of low magnetic fields in order to
minimize their energy. High-field seeking states lower their energy in high magnetic
field regions, respectively. As magnetic field maxima are not allowed by Maxwell
theory, neutral-atom traps require a magnetic-field minimum, in which atoms in low-
field seeking states are trapped. The exception is given by Keppler waveguides [88],
where atoms orbit around a current-carrying wire. Atoms are trapped in the high-
field seeking state and stabilized due to the conservation of angular momentum.

In the following several special wire-trap configurations are discussed. As the
special focus is on atom-chip traps, it will always be assumed that the wires are
microstructured on a substrate (see [12] for a review of fabrication techniques). Fig-
ures 2.1 and 2.2 show the single-wire and double-wire setup, respectively. The sub-
strate is forming the  — 2 plane and the atomic cloud is assumed to be trapped
in the positive half space above this plane. There are many experiments, however,
which choose to trap the cold-atomic cloud below the wires. This case can be easily
taken into account by simply rotating the previously discussed geometry by 7 about
the z axis. The only difference between the top and bottom configuration is due to
the influence of gravity on the trapping potential. Gravitational forces acting on the
atoms lead to an additional term V; = —mgy in the Hamiltonian. Assuming strong
magnetic confinement of the atomic cloud, the gravitational force will be neglected.
Finally, the wires are assumed to run along the Z direction and to be infinitely long.

Single-wire trap

The single-wire trap is the simplest trapping configuration. There are numerous
experiments demonstrating the successful trapping of cold-atomic clouds in these
single-wire micro traps [67-69,89,90]. The setup of the single-wire atom-chip trap,
consisting of a single wire and a homogeneous-magnetic bias field parallel to the chip
surface, is shown on the right hand side of Fig. 2.1. The bias field Béf;s and the
circular magnetic field, generated by the current through the wire, form a potential
minimum with B = 0 at the point, where the two fields cancel. Atoms, which are
prepared in a low-field seeking hyperfine state, can be trapped in this local field
minimum. The number of spin flips into untrapped states is, however, very large in
zero magnetic field. In order to avoid heavy losses of atoms, a further magnetic-bias
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Figure 2.1: Left: Contour plot of the magnetic field of the single-wire trap for Béf;s =

10G, Bé’f;s = 5G, and I = 0.1A. The upper (right) plot shows a horizontal (vertical)
cut through the potential minimum. The dashed lines in the upper and the right plot
show the harmonic approximation of the trapping field. Right: Setup of the single-
wire trap. Bias fields ngs and Bé’?;s are applied parallel to the substrate surface.
The current carrying wire is running along the 2 axis.

field parallel to the wire, Béf;s, is applied. The longitudinal-magnetic bias field can
be generated by bending the end caps of the wire into a “U” or “Z” shape. The
most common configuration is the “Z” or loffe-Pritchard trap [67,90,91]. The less
common “U”-configuration has the disadvantage, that the magnetic field vanishes in
the center of the trap, as can be seen from symmetry arguments. Finally, assuming

Béﬁs and Béf;s to be constant, the resulting magnetic field is

_ B(?)

I 1 Y bias
Bx)=E- — | & |+ o |. (2.2)

2m % 4y 0 B}(;;)

The minimum of the trapping potential is located above the wire at zo = 0 and
has a wire to trap distance of 7o = yo = pol/ (QWBéfa)s). Figure 2.1 shows in the left
graph the magnetic trapping potential of a single-wire trap. As a further consequence
of the longitudinal bias field Bl(j;s, the trapping potential changes in the close sur-
rounding of the minimum from a linear into a harmonic trap (see Fig. 2.1 on the left).

The main disadvantage of the single-wire trap configuration is immediately obvi-
ous if more complicated structures are considered, as for example, curved wires. The
single-wire trap allows only small deviations from the perpendicular configuration of
the bias field ngs and the wire. The tilting angle is constrained by the require-
ment that the potential depth must always be larger than the thermal energy kg1 of
the atoms. Consequently, the single-wire trap is only convenient for uni-directional
guiding.
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Fi(gure 2.2: Left: Contour plot of the magnetic field in the double-wire geometry for
Bbgs = 10G, Béf;s = 5G, and I = 0.3A. The wires are located at + = £100um and
y = 0. Two potential minima are located roughly above the current-carrying wires.
The upper (right) plot shows a horizontal (vertical) cut through the right potential
minimum. The dashed lines in the upper and the right plot show the harmonic
approximation of the trapping field. Right: Setup of the double-wire trap. Bias fields
BY and BY are applied parallel to the substrate surface. The current-carrying

bias bias
wire is running along the 2 axis.

Double-wire trap

A more sophisticated trap is provided by the double-wire trap. The double-wire trap
has essentially the same setup as the single-wire trap, but with two parallel wires
(Fig. 2.2 right). The magnetic field of the double-wire trap is

(x)
-y Y By;
,LLO[ 1 d 1 d ias
B<X):27r o 5 IL‘+§ +T l‘—§ + 0 s
(r+9) +y 0 (r—9)" +y 0 BY.
(2.3)

where the wires are assumed to be located at £d/2. The magnetic field of the double-
wire trap is shown in Fig. 2.2 on the left.

The main advantages of the double-wire trap lie in its versatility as a single
waveguide and a double waveguide. In general, a double-wire trap has two field
minima. Depending on the applied currents, bias fields and wire separation two dif-
ferent regimes can be distinguished. Let us consider the situation, where the current
in the wires is kept constant and the wire separation d is varied. Defining a crit-
ical wire separation 3o = pol/ (QWBéfgs) we can distinguish two situations. The
first case is d > 2yy, where the trap minima are located on a horizontal line at
:Eg/R = Fy/d?/4 — 32 and yo = Jo. Both potential minima lie above the substrate
and are suitable as atom traps. This configuration is therefore used as a double wave-

guide. The second situation is d < 2iy, where the trap minima are positioned on a
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vertical line at zo = 0 and y5 = %o + /%2 — d?/4. Again, both minima are above
the substrate, but the lower one is very close to the chip surface. The lower potential
minimum is unsuitable as an atom trap as the close vicinity of the substrate leads to
large losses of atoms. Thus, the latter configuration and the special case, d = 2y,
where the minima overlap and form a single minimum, are used as single waveguides.
The versatility as a single and double waveguide makes the double-wire trap an ideal
configuration for beam splitters [13,92] and for interferometers [77,78].

The future analysis of decoherence in the double-wire trap, Sec. 2.4.2, will con-
centrate on the configuration shown on the left of Fig. 2.2. It should be mentioned
that there are further possible double-wire configurations which are suitable as trap-
ping potentials. The most convenient setup is given by two counter-propagating
currents in the wires and a magnetic bias field perpendicular to the substrate. This
configuration enables multi-directional guiding as has been demonstrated in many ex-
periments [70,71,93,94]. However, this field configuration would also need a magnetic
bias field along the waveguide in order to avoid spin flips. Instead of the magnetic bias
field along the waveguide an oscillating magnetic field in the vertical direction is pro-
posed [71]. If the oscillation of the vertical magnetic field is slower than the Larmor
frequency and faster than the trap frequency, the atoms perceive a time-averaged,
non-vanishing potential. This non-vanishing potential avoids the spin flips.

Multi-wire traps

Single- and double-wire configurations are not the only way of creating trapping
potentials for neutral atoms. In fact, there is a huge variety of wire traps based
on three, four or even more parallel wires with and without additional magnetic bias
fields. A set of examples for these multi-wire traps is discussed in references [12,13,93].

2.2 Limiting processes for atom-chip experiments

Microchip traps exploit the huge versatility to design guiding wires on a chip. Con-
sequently, the cold-atomic clouds are guided in the close vicinity of the substrate
and the wires. Distances from a few hundred micrometers down to a few microme-
ters [95] have been achieved in experiments. For distances in this range, the question
of how strongly the substrate and wires couple to the atoms immediately arises.
Current fluctuations, thermal near fields, technical noise and inhomogeneities in the
microstructures impose limitations to the usability of the trapping potentials for cold-
neutral atoms. The main obstacles are heating, decoherence and loss processes, which
will be briefly discussed now.

2.2.1 Heating

Cold-atomic clouds are commonly cooled down to a few microkelvin and below before
they are transfered into the the atom-chip trap. The aim is an atomic cloud, which
is frozen out in its transverse states. The cold-atomic cloud is therefore assumed to
be in the transverse ground state of the trap. However, coupling to the chip surface
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and the wires can heat the atomic cloud. Heating leads either to a broadening of the
momentum distribution or even to excitations into higher transverse states as shown
schematically in Fig. 1.1. The transition rate between different trap states follows
the power law of I' ~ r;? as calculated for an atomic cloud above a metallic half
space [12] or even I' ~ r;* depending on the noise source [96,97].

Heating of the atomic cloud cannot only occur due to the coupling to its envi-
ronment. Non-adiabatic changes in the magnetic trapping potential also excite the
atoms to higher trap states. Particularly for devices like interferometers, the splitting
of the cloud must be done in a suitable i.e. adiabatic way, to avoid the heating of the
atomic cloud [76].

2.2.2 Atom losses

Most of the limiting processes for the trapping of atoms in atom-chip traps are difficult
to investigate in experiments. Measurements of atom losses, however, are experimen-
tally well accessible [51,53,90,95,98]. Taking absorption pictures of the cloud before
and after a certain hold time at a distance h above the chip surface, gives a direct
measure for the number of atoms which got lost from the trap.

From the theoretical point of view, the origin of the losses relies on spin-flip
processes. Current fluctuations, or thermal near fields for instance, lead to spin flips
from the trapped low-field seeking state, |F, m.), to a high-field seeking state | F, m?,).
Consequently, the atom sees after the spin flip no longer a potential minimum in the
trap center, but a potential maximum. Thus, the atom is expelled from the trap (see
Fig. 1.1). Using Fermi’s Golden rule, the spin-flip rate for trapped atoms has been
calculated as [96]

1 i i
Top=oz S0 (Emblual By E mblal B i) Su(e, —w) . (24)
a,fb=z,y,z
where mzf are the initial/final magnetic spin quantum number of the atom and

Sap(r, —wy;) is the noise power at position r and transition frequency wy; between
the two atomic hyperfine states. Effects as current fluctuations in the guiding wire or
evanescent near fields of the metallic surface are acting as noise sources S,3. Near-
field noise above a planar substrate leads in the low-frequency regime [96,99] to
spin-flip rates of

1 o3\ 1
Dypm — (14 —20 ) | 2.5
f ( +zacs(\ww) 25

For wire to atom cloud distances ry much larger than the skin depth ¢ of the metal
surface i.e. 9 > 4, the spin-flip rate scales with the power law 1/r3. In the opposite
limit, ry < 9§, the scaling with the wire to atom-cloud distance is proportional to 1/ry.
Theoretical analysis of the spin-flip rate for different skin depths has shown that the
loss of atoms is maximal at distances ro comparable to the skin depth ¢ [100]. The
spin-flip rate depends also on the layer thickness and can exhibit a different behavior,
depending on the ratio of skin depth, layer thickness and atom-cloud to chip-surface
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distance [101]. Experimental findings are in agreement with the theoretically pre-
dicted loss rates [53,95,98]. Yet, the exact behavior of the loss rate depends very
strongly on the geometry of the setup. Recent experiments [53], using a wire with a
copper core and and an outer layer of aluminum, have measured loss rates which show
a strong dependence on the skin depths and layer thicknesses of both metals. Taking
the specific geometry of this experiment [53] into account, the theoretical prediction
for the loss rates agrees well with the experimental measurements [100].

2.2.3 Inhomogeneous trapping potentials

With the improvement of the atom-chip trapping technique, it was possible to trap
cold-atom clouds closer and closer to the guiding wire. Approaching a thermal-atom
cloud or a Bose-Einstein condensate to the chip surface led to a fragmentation of the
cloud along the wire axis [49,51-55]. Surprisingly, most of the experiments have shown
a fragmentation of the atomic cloud on the same length scale of 200pum —300um. The
fragmentation was only visible if the thermal cloud or Bose-Einstein condensate was
approached close to the substrate. This fragmentation of the condensate has not been
observed in optical traps, even if the condensate was brought close to an atom-chip
surface [50]. The absence of the condensate fragmentation in optical traps is therefore
a strong indication that the fragmentation is due to the currents in the wires.

Inhomogeneities of the wires are assumed to be the source of the condensate frag-
mentation [102]. As the microstructured wires are not perfectly smooth, fluctuations
in the width or the central position lead also to an inhomogeneous-magnetic trapping
field 2. Changes in the center position of the wire lead to currents perpendicular to the
wire axis. These perpendicular currents generate an unwanted additional potential
along the guiding direction. Studies of the potential, generated by a wire with fluctu-
ating width and center position has shown potential fluctuations on the same length
scale as observed in the experiments [49,51-55]. Since the wire-width and wire-center
position fluctuations depend neither on the material nor on the specific geometry of
the trap, similar length scales of the condensate fragmentation have been found in
different experiments [49,51-55]. Recent experimental investigations confirmed the
theory of wire-width and central-position fluctuations [103]. The exact shape of a wire
was obtained by taking a scanning electron microscope picture. From the detailed
knowledge of the wire structure the guiding potential was computed. Comparison of
this result with the potential landscape extracted from the condensate fragmentation
above the wire, has shown good agreement, corroborating the theory.

Additionally to the fluctuating central position of the wires, there are impurities
in the wires. These impurities lead also to a transversal component of the current
and thus lead to a distortion of the trapping potential.

2The model investigated in [102] ascribe the potential fluctuations to the fluctuations of the
central position of the wire. In their model the results were unaffected by fluctuations of the wire
width.



CHAPTER 2. DECOHERENCE IN ATOM-CHIP TRAPS 19

2.2.4 Decoherence

The existence of coherent states is one of the most important peculiarity of quantum
mechanics. However, due to the coupling of the system to its environment, decoher-
ence restricts the lifetime of coherent states considerably. Hence, systems are needed
which are only weakly coupled to their environment. For this reason, trapped neutral
atoms seem to be ideal candidates for coherent transport. The expected long coher-
ence times and the huge versatility of the micro traps suggested the use of cold atoms
on atom chips for quantum information processing [16,17]. A further application
arises from atomic clouds which are prepared in a coherent superposition of two in-
ternal spin states. These atomic ensembles are promising candidates for a miniature
atomic clock on a microchip [7].

The main advantage of neutral atoms is the absence of charge, that eliminates
the strong Coulomb coupling. Any decoherence mechanism can only arise via mag-
netic fields which have a much weaker interaction strength. Moreover, atom chips
provide highly confined trapping potentials which should prevent the decoherence
of the atoms via transverse states (Fig. 1.1). These tight traps are, however, only
obtained in the close vicinity to the current-carrying wires. Theoretical studies show
that, if the atom cloud is approached to the wire, the increase of decoherence due
to the current noise is larger than the decrease of decoherence due to the increase
of the transverse level spacing [97]. In fact, the decoherence rate increases with the
wire to trap distance g as I' ~ 1/r3. However, there is not only decoherence due to
transitions to higher transverse trap states. In addition, decoherence along the trap-
ping axis of the atomic cloud can occur. Theoretical studies for an atom cloud in the
vicinity of a metallic plane [66] has shown that the decoherence length is of the order
of surface to trap distance ry. In this work, the transverse states were assumed to be
frozen out. Thus all atoms were assumed to be confined to the ground state of the
trap. Nevertheless, similar decoherence lengths are obtained if the lowest transversal
states are included [97].

So far only decoherence in non-interacting thermal clouds has been discussed.
Recent theoretical work on decoherence of Bose-Einstein condensation in micro traps
indicates a suppression of decoherence due to the presence of interactions [104]. How-
ever, interacting atomic clouds are not discussed within the scope of this thesis.

Applications for quantum information and metrology requires the coherent su-
perposition between different spin states of the cold atoms. Here, the concern lies in
the maintaince of the coherence within the internal states of each atom. The atoms
do not have to conserve a coherent state in their spatial degrees of freedom. First
experimental results using Ramsey spectroscopy gave decoherence times of a few sec-
onds [7]. Furthermore, the decoherence times were independent of the distance of the
atoms to the surface and to the wire®. In fact, the decoherence times are similar to
those for atoms trapped in macroscopic magnetic traps and an additional decoher-

3Measurement of [7] covered trap-surface and trap-wire distances of 4um - 130ym and 34um -
160pm, respectively.
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ence effect could not be attributed to the presence of the atom chip.

In contrast, coherent transport requires that the atomic cloud conserves its spa-
tial coherence. The successful implementation of an interference experiment would
be essential to measure the coherence properties of the atom-chip waveguides. There
are several suggestions of microchip interferometers based on different approaches.
Present proposals for atom-chip interferometers either suggest to split the atom cloud
in a time-dependent potential [76,77] or split and recombine the matter wave spa-
tially [78].

2.3 Decoherence in multi-wire configurations

Motivated by the promising ways which atom-chip traps offer for transport and ma-
nipulation of coherent matter waves, we will focus on decoherence of thermal-atom
clouds* in microwire atom-chip traps in the following sections. First, a general for-
malism to treat the influence of current fluctuations on the decoherence properties of
the trapped-atom cloud will be developed. The formalism will be designed to take
multi-wire trapping configurations into account. This general approach enables us
not only to consider decoherence in the huge variety of single waveguides, but will
also include multi-waveguide configurations. Hence, the theoretical approach allows
us to examine decoherence effects in particularly interesting multi-waveguide configu-
rations such as the double waveguide. The double waveguide forms the basic building
block for an interference experiment required to demonstrate the coherent transport
of cold-atom clouds.

2.3.1 Current-noise correlation function

Considering atom-chip traps based on current-carrying wires, it is evident to inves-
tigate the impact of current noise as a source of decoherence. Fluctuations of the
magnetic bias fields Bt()gs and ij;s, required to form the trapping potential, will be
neglected. The current noise couples to the atoms through the magnetic field, which
is generated by the current. Thus, the current fluctuations lead to a fluctuating mag-
netic field. The field fluctuations B are linked to the current fluctuations via the
Biot-Savart law .
X — X
B(x) = % /dng(x’) X e —xT (2.6)
where 19 = 0.47 - 107°N/A? is the vacuum permeability. The atoms in turn couple
to the magnetic-field fluctuations through their magnetic moment, Eq. (2.1). Ap-
pendix A shows a detailed derivation of the potential-noise correlator (§V (x)oV (x'))
derived from the current-noise correlations. Current noise, thus, is directly translated
into a potential fluctuation leading to decoherence of the atomic cloud.

4The term “thermal-atom cloud” is used to distinguish a non-condensed atom cloud from an
atom cloud with a finite condensate fraction. The term “thermal” will be neglected in the following
sections.
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Figure 2.3: Sketch of transversal and longitudinal current fluctuations in a wire on
the atom chip. Left: Longitudinal fluctuations. The leads act as reservoirs and hence
no charging effects occur. Right: Transversal fluctuations. Charging effects at the
wire surfaces yield to a counteracting electrical field which suppresses the current
fluctuations.

In the following, the wire, generating the potential fluctuations, is assumed to be
one dimensional. This is a reasonable assumption for wire to trap distances ry which
are much larger than the wire cross section. Typically, wires heights [;, are about 1um
and wire widths are 10um to 50um [12]. Recently, microstructuring techniques were
reported that enable atom-chip trap fabrication with wire widths below 1pm [105].
As a consequence of the restriction to one-dimensional wires, current fluctuations are
assumed to occur only along the wire. Hence, the current density is approximated as

Jjx,t) =1(z,t)6(x)d(y)z , (2.7)

where z is the unit vector in Z-direction. The fluctuations of the current density
are defined by dj(x,t) = j(x,t) — (j(x)). Average currents will be included as a
static potential V;(r ). Transversal current fluctuations lead to surface charging and
thus to an electrical field which points in opposite direction to the current fluctuation
(Fig. 2.3). This surface charging effect will suppress transversal fluctuations which are
slow compared to RC-frequency, wrc = 0A/€l,. Here, o is the conductivity of the
wire, €y the (vacuum) dielectric constant, and A &~ 1A is the screening length of the
metal. This leads to RC-frequencies of wrc ~ 10¥Hz for wire widths of [,, = 10um
and for typical values for the conductivity in a metal. The characteristic time scale
for the atomic motion in the trap is given by the frequency of the trapping potential
w =~ 10*Hz. Thus, considering atom-chip traps with w < wgre the current fluctua-
tions can be taken along z as a direct consequence of the quasi-one dimensionality of
the wire.

Finally, we have to be more specific about the form of the noise correlator. We
assume the current fluctuations to be spatially uncorrelated as they have their origin
in electron-scattering processes. Hence, the correlator (61(z)d1(z')) has the form
[106,107]

(0I(2,t)01(2' 1)) = 4kpTeg(2)0Ad(z — 2")0.(t — ') . (2.8)

Here, kg is the Boltzmann constant. The effective noise temperature is given by
(106, 107]

Tunlz) = / dEf(E, 2)[1 - f(E.2)] (2.9)
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where f(F, z) is the energy- and space-dependent non-equilibrium distribution func-
tion. A finite voltage across the wire induces a change in the velocity distribution of
the electrons and the electrons are thus no longer in thermal equilibrium. Neverthe-
less, the deviation from an equilibrium distribution is small at room temperature due
to the large number of inelastic-scattering processes. The effective temperature Tog
accounts for possible non-equilibrium effects such as shot noise. However, contribu-
tions of non-equilibrium effects to the noise strongly depend on the length L of the
wire compared to the characteristic inelastic scattering lengths. For instance, strong
electron-phonon scattering leads to an energy exchange between the lattice and the
electrons. The non-equilibrium distribution is “cooled” to an equilibrium distribution
at the phonon temperature. Thus, non-equilibrium noise sources, such as shot noise,
are strongly suppressed for wires much longer than the electron-phonon scattering
length [, and the noise in the wire is essentially given by the equilibrium Nyquist
noise [106,108,109]. As the wire lengths used in present experiments are much longer
than le,, we will assume Tog ~ 300K in all our calculations. Finally, the function

1 7
T2+ 712

5u(t) = (2.10)

in Eq. (2.8), is a representation of the delta function. The correlation time 7. is given
by the time scale of the electronic scattering processes.

2.3.2 Equation of motion for the atom cloud

The quantum-dynamical evolution, decay and decoherence of the atom cloud will be
described by a density matrix approach. The system is characterized by its density
matrix p(x,x’,t), which is here a function of the spatial coordinates x, x’ and the
time t. Time evolution of the atomic cloud can be obtained from the von Neumann
equation

o X
h—p=[H. p] . 2.11
ihaep [H, p| (2.11)

The Hamiltonian )
= Qp—m FV(ry) + 6V (x, 1), (2.12)

describes the time evolution of the trapped-atomic cloud. Here, Vi(r,) is the con-
fining potential, which will be assumed to be constant along the trap. Writing r
denotes the coordinate perpendicular to the direction of the current-carrying wire
and the waveguide. Finally, a random fluctuation of the potential JV (x,t) arising
from the current noise, is included in the Hamiltonian. In order to keep the treat-
ment as general as possible, the problem will be formulated for a system of N parallel
quasi-one dimensional magnetic traps generated by a set of M parallel wires on the

chip. In general, the number of traps are not required to coincide with the number
of wires i.e. N # M.

For clarity, the same coordinate system as introduced in Sec 2.1.1 ( see Fig. 2.1
and Fig. 2.2) will be used in all further calculations. The surface of the atom chip is
assumed to lie in the 2-Z plane and the atoms are trapped in the half space, y > 0,
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above the chip. All wires on the atom chip, required to form the trapping field, are
assumed to be aligned in Z-direction.

The aim of the following discussion is a simplification of the von Neumann equa-
tion for the system. To achieve this, the three-dimensional formulation of the equa-
tion of motion will be reduced to an effective one-dimensional problem. Returning
to Eq. (2.11) and inserting the Hamiltonian Eq. (2.12), the equation of motion in
position representation reads

. 8 ’ 2 2 2
ih p(xX, 1) = [_ 2 (;‘7 _ di—> +V(ry) (2.13)

VL) + OV () — VK, 1)] ok, 1)

To derive a quasi-one dimensional expression for Eq. (2.13) we expand the density
matrix in eigenmodes of the transverse potential x,(r,):

P X 1) = 3 X)X ()2 2 ) (2.14)

n,m

Here, the channel index n labels the transverse states of the trapping potential. The
transverse wavefunctions x,(r,) are chosen mutually orthogonal and are eigenfunc-
tions of the transverse part of the Hamiltonian. Thus, the transverse wavefunctions
are eigenfunctions of Eq. (2.12) in the sense that

oV ()| () = Bl 2.15)

In the next step, the decomposition (2.14) in transverse and longitudinal components
of the density matrix is inserted in the von Neumann equation, Eq. (2.11). Making
use of the orthogonality and the completeness of the transverse states x,(r,) we
obtain a one-dimensional equation for the time evolution of the density matrix

. 9 h2 d2 d2
ity + 5 (7~ 7o) — | o2 (210)

= [6Sm(z.t)pur(2, 2, 1) = 68wk (2, ) pia(2, 2/, 1)]

Here, the abbreviation AFE;, = E; — E, was introduced for the difference of the
transverse energy levels, and the fluctuations .5, (z) are defined as

Suk(z,t) = /drl Xn(r )0V (%, t)x5(rL) - (2.17)

The left hand side of the reduced von Neumann equation, Eq. (2.16), describes the
evolution of an atom wavefunction in the non-fluctuating trapping potential. In order
to keep the notation short, this part of the von Neumann equation will hereafter
be abbreviated by (ih0, — ﬁlk) More interesting are the terms on the right hand
side of Eq. (2.16), which contain the influence of the potential fluctuations. The
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fluctuations of the confining potential are described by the matrix elements 6.5,x(z, t),
which imply transitions between different discrete transverse energy levels induced
by the fluctuating potential. In fact, transitions between different transverse levels
also influence the longitudinal motion of the atomic cloud. The coupling of the
fluctuating potential to the longitudinal motion of the atomic cloud is included in
the z dependence of §S,x(z,1).

2.3.3 Noise-averaged equation of motion

For the explicit treatment of the stochastic equation of motion, averaging over the
fluctuations 6.5, is required. It is therefore the goal of this section to derive the
equations of motion for the density matrix (p) averaged over the potential fluctua-
tions [110,111].

Cumulant expansion

In addition to the averaging, the equation of motion will be simplified by a cumu-
lant expansion to the first non-vanishing order. Instead of directly moving on to the
derivation of the equation of motion for the density matrix, a brief recapitulation of
the cumulant expansion is provided. Here, only a short derivation of the cumulant-
expansion method will be given, following the detailed discussion in [111].

To keep the expressions compact, Eq. (2.16) is rewritten as
(ih@t - FI) p=03p . (2.18)

where the spatial coordinates x, x, time ¢ and all indices have been suppressed. The
components of the quantities H and .5 are defined as

Hyiy = Hpdudy; (2.19)
5Slkij = 5Sli(z,t)(5kj—5Sjk(z',t)5ll-. (220)

The product in Eq. (2.18) is an abbreviation for Ap = sz Aijpij. It is, however,
more convenient to think of Eq. (2.18) as a vector equation instead of a matrix equa-
tion. This corresponds to the matrix elements of the density matrix written into a
column vector p. Analogously, all the operators H, 65, etc., are rewritten into ma-
trices. Both notations are obviously equivalent and the vector form of the equation
of motion will be used later in Sec. 2.4.

Returning to Eq. (2.18), the first step is a transformation into the interaction
picture. Following the usual procedure [112,113], the transformation leads to the time
evolution of the density matrix in the interaction-picture representation p; given by

0

pr(t) =T [exp (—% /t d 55(75'))] p1(0) . (2.21)
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where 7 is the time-ordering operator. Next, Eq. (2.21) is averaged over the poten-
tial fluctuations. The averaging and the time ordering commute and the expression
obtained is

(or(0) =7 |t (5 | Lt 55(0)))| ter(0). (222)

The correlation time of the current fluctuations 7, is very short compared to the
time scale of the atomic motion. Hence, all correlators and cumulants vanish unless
the time points, ¢; to t;, lie within a time domain of 7.. Assuming moreover, that
fluctuations 65 are small, a cumulant expansion

1og(<exp< / dt' 65(t ) Z/dtl /dtk k'X : (2.23)

can be applied. The coefficients
Ci = ((05(t1) -+ 85(th))) , (2.24)

are called the cumulants and y is the small expansion parameter which is in the end
taken to xy = 1. Consequently, Eq. (2.22) turns into

(pr(t) = T [exp (gj (—%)k/dtl---/dtk%xk>] (p1(0)) . (2.25)

The contribution of the k-th cumulant is now of the order x*7%71¢ and Eq. (2.25) is
an expansion in powers of y7.. Finally, Eq. (2.25) is approximated to second order,
given by

(pr(0) o (5 [ oSy -5 [t [ e (050055(0) ) (a0

(2.26)
Taking x to 1, the approximated time evolution of the density matrix is the solution
of the differential equation

10 pr(0) = GSW)pi) = 5 [ dta (BSOS ENor0). 27

up to errors of second order. Equation (2.27) is the cumulant approximation for the
equation of motion in the interaction-picture representation.

Averaged equation of motion for the density matrix

Let us return to the stochastic equation (2.18) for the density matrix. Averaging
over the fluctuating potential, using the cumulant expansion [111], the expression
Eq. (2.27) is obtained. Transforming Eq. (2.27) back into the Schrédinger picture
and using the matrix notation again one obtains
) t P 7 ~ B agY,
(i = T) {p(t)) = (G50 (p(1)) — / e (85 () FH S5t — ¢))er ™ (p(1)
0
(2.28)
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The mean value of the potential fluctuation (6V') is zero, since the static potential
is already included in the Hamiltonian on the left hand side of Eq. (2.28). Hence,
the first term on the right hand side of Eq. (2.28) vanishes. The second cumulant
corresponds to the variance, and as (55(t)) = 0, the variance is identical with the
correlator (6S(t)6S(#')). The explicit expression for the reduced-potential correlator,
(0Snm(2,)08;;(2', ")), is derived in Appendix A. The calculation is based on the
connection of the current correlator (§/(z,t)d1(2',t')), to the potential correlator,
(0V(x,t)0V (x/,t')) as discussed in Sec. 2.3.1. Finally, potential and projected poten-
tial fluctuations are connected via Eq. (2.17).

Reinserting the explicit expressions for H and 65, leads to the desired equation

of motion for the density matrix
Z/dT/dZ/dZK zZ,2 =2 t—1)

ijmn {)
X [(650i(z, t)éSim(z, 7-)>5k;j5jn
+(8Sjk (2", t)0.5ni(Z', 7)) 01i0im
—(0S1i(2,t)0Sn; (2, 7)) 0im O (2.29)
—(08jk(2',)0Sim (2, 7))0n0ui] (pmn (2, 2, 7)) -

The kernel K;;(z — Z,2' — ', t) is the Fourier transform of

/ h i
Kij(q,q',t) = exp (—22— (q —q ) ﬁAEijt) ; (2.30)

which can be explicitly evaluated. However, this has no advantage for our further
discussion.

(z’h@t - ﬂlk> {pie(z,2',1))

Equation (2.29) is the most general form of the stochastic equation of motion.
In this form no assumptions have yet been made about the wire configuration which
enter via the projected-potential correlator. It is valid for an arbitrary form of the
transverse confining potential, thus, in particular, for single- and double-wire traps.
Hence, Eq. (2.29) will be the starting point for all further calculations, investigating
specific trapping configurations. However, there is still the kernel Eq. (2.30), which
requires some further simplification.

Markov approximation

The dominating source of the current noise in the wires is due to the scattering of
electrons with phonons, electrons and impurities. These scattering events are corre-
lated on a time scale much shorter than the characteristic time scales of the atomic
system. This separation of time scales allows a simplification of the equation of mo-
tion (2.29), using a Markov approximation [110,111].

As a consequence of Eq. (2.8), the correlation function of the fluctuating potential
will be of the form

(6V (x, )3V (X)) = 8.(t — ') (5V (x)3V (X)) . (2.31)
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Using Eq. (2.17) provides the expression for the projected-potential correlator
(0Sim(2,1)0Sn; (2, 1)) = 0c(t — ') (0.Sim(2)0Sn;(2)) . (2.32)

Replacing all the correlation functions in the equation of motion (2.29) by the expres-
sion (2.32) enables an explicit evaluation of the time integration. The time integration
can be performed using the fact, that the averaged density matrix (p(7)) varies slowly
on the correlation time scale 7.. Thus, (p(7)) can be evaluated at time ¢ and taken
out of the time integral. Finally, taking 7. to zero, the Fourier transform of the kernel
(2.30) leads to a product of delta functions in the spatial coordinates. Performing
the remaining spatial integrations over Z and z’, Eq. (2.29) reduces to
. A 1
(100 = ) (o2, 2,8) = =5 > [(05in(2)0Sm (2)) (o2, 2, 1)) (2:33)
+ (05mk(2)0Sum () (o (2, 2, 1))
= 2(08m(2)88uk (2)) (pmn (2, 2/, 1)) ] -

This formula (2.33) finally allows an explicit calculation of the decoherence rates
for the cold atoms in the microchip trap. Only the wire, or the trapping configuration
has to be further specified. In general, the trapping potential has N minima, i.e.,
the channel index n can be written as n = (a,ny,n,), a = 1,..., N. In all further
considerations, the minima are assumed to be well-separated in Z-y direction, such
that all matrix elements 0.5;; with different trap labels « are negligible.

There are three terms on the right hand side of Eq. (2.33), describing the influence
of the current fluctuations on the atomic cloud. The projected-potential correlators in
the first two terms are spatially auto-correlated. The third term, however, correlates
fluctuations at z and 2’ and is therefore the contribution, which is responsible for the
spatial decoherence of the atomic cloud. Having a closer look at Eq. (2.33) allows an
identification of the terms involved in intra-waveguide and inter-waveguide processes.
Under the assumption of well-separated guiding potentials, the first and second term
on the right hand side of Eq. (2.33) depend only on a single trap label. Hence,
these terms lead only to transitions within transverse states of the same waveguide.
In contrast to the first two terms, the third term may have different trap labels
for 6.5, as compared to 0.5,,. Since current noise in one particular wire generates
fluctuations of the magnetic field in all trapping wells, there will be a correlation
between the fluctuations in different traps. It is, hence, this third term in Eq. (2.33)
which describes the correlation between potential fluctuations in different traps.

2.4 Application to special trapping potentials

After the successful derivation of a general formalism to describe the decoherence
in a multi-waveguide it is now time to study a few simple applications. Starting
with the simplest situation: the single waveguide in Sec. 2.4.1, the dynamics of the
noise-averaged density matrix will be discussed using Eq. (2.33). Subsequently, the
dynamic in the double waveguide will be discussed. As previously mentioned, this
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waveguide configuration is of particular interest. Double waveguides are the key in-
gredient for an atom-cloud interferometer as suggested in [76-78]. Decoherence of
atom clouds, which are in a coherent superposition of the left and right arm of the
interferometer, will be the focus of Sec. 2.4.2.

The brackets denoting the averaging will be suppressed for the remainder of this
chapter to keep the notation short. Thus, from now on, the density matrix p;; denotes
the averaged density matrix (p;;).

2.4.1 Single-wire configuration

The geometric properties of the single waveguide was previously discussed in Sec. 2.1.1.
Forming the minimal setup for a wire atom-chip trap, the single-wire waveguide con-
sist only of a single wire and a homogeneous bias field. The schematic setup is shown
in Fig. 2.1.

Derivation of the projected-potential correlator

All ingredients required to calculate the dynamics of the system were derived in the
previous section. The key equation is the general expression for the averaged equation
of motion Eq. (2.33). The remaining exercise concerns the derivation of an explicit
expression of Eq. (2.33) for the single-wire trap. Hence, it is the main task of this
section to derive the projected-potential correlator, (65, (2)05,;(2’)), for the single-
wire trap geometry. Using Eqgs. (2.17), (2.7), (2.8) and the explicit expression for the
magnetic field of the single-wire atom-chip trap, Eq. (2.2), leads to

(6Sim ()88 ()) = Agunj J (2 — 2) . (2.34)

The transition matrix elements are given by

2
B(@
T z
bias (235)

< / drs xa(r)(y — o) xCa(r) / ar) Xu(E ) — 9oL -

This part describes transitions between the different transverse states of the trap.
Longitudinal dynamics along the trap is contained in the factor

00
_3
2

J(z) = rig / dz [1+ 52]‘% [1+ (z/r0 — 2)°] 2, (2.36)

—00

describing the spatial dependence of the noise correlator along the waveguide. A more
detailed derivation of the correlation function is given in Appendix A. The integration

in Eq. (2.35) can be done explicitly using harmonic-oscillator states for y,(r ). Using
(2)

the harmonic-oscillator states is a good approximation as long as By is of the order

of BY)

bias and the wire to trap distance ry is much larger than the transverse size w of
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the trapped state. Both requirements are usually well satisfied in experiments. The
dashed line in Fig. 2.1 shows the harmonic approximation of the trapping potential.
Using the harmonic approximation, the steepness of the trapping potential can be
characterized by its trap frequencies. It turns out that the two frequencies coincide

2 B(ﬂ_ﬁ)
w= 'uB(gf —biss (2.37)
me?as Yo

i.e., the trap potential can be approximated by an isotropic two-dimensional harmonic
oscillator (2D-HO). After the integration over the transverse coordinates, Eq. (2.35)
reduces to

Aimnj = A0w2 5ixmx8iymy5nxjx5nyjy . (238)

Here,

5iymy =V my + 1 5iy7my+1 + Vv my 5iyvmy*1 ) (239>

and the indices n,, n, denote the energy levels in & and gy direction of the 2D-HO.
The prefactor A is

2
1 B(@
Ay = ~kpTugo A | HOIEHE Zhias ) (2.40)
2 T B
and w = /h/(mw) is the oscillator length of the harmonic potential.

Before moving on to derive the equation of motion for the averaged density ma-
trix, it seems apposite to discuss some consequences of expression (2.38). Inspection
of the coeflicients A;,,; in Eq. (2.38) shows that there is no direct influence on the
longitudinal motion of the atom, since the matrix element A;;;; vanishes. This result
is not unexpected, as the wire is assumed to be strictly one dimensional. Only current
fluctuations along the wire are taken into account, which, consequently, give rise to
fluctuations in the trapping field solely along the transverse directions of the trapping
potential. In fact, only transitions between energy levels of the y-component of the
2D-HO give a non-vanishing contribution. An explanation can be obtained by exam-
ining the change of the trap-minimum position under variation of the current in the
wire. Changing the current by 6/ leaves the trap minimum in z-direction unchanged
at o = 0, but shifts the g-trap minimum by dyg = pedl/ (QWB](DQS). Note, however,
that the non-existence of fluctuations along the z-direction is a consequence of the
very specific choice of the magnetic field direction. The configuration studied here
corresponds to the ideal case of the magnetic bias fields being perfectly aligned with
the substrate. Having a slight misalignment gives rise to transitions among & and 3
states of the 2D-HO. Finally, it is important to note, that even though there is no
direct coupling to the motion along the wire there can still be spatial decoherence in
z-direction. The coupling along the wire requires transitions to neighboring trans-
verse energy levels. This will also be apparent from the final result for p obtained
from Eq. (2.33).
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Solution of the equation of motion

Eventually, the expression for the projected-potential correlator, as given by Eqgs. (2.34),
(2.38) and (2.40), can be inserted into the equation of motion for p. This leads to a
matrix equation for the averaged density-matrix vector

ihdy — H(z,2)| p(z,2,t) = —ihA(z — 2)p(z, 2, 1), (2.41)

where A(z—2') = ‘;—QQAOJ (z—2'). The density-matrix vector is constructed by writing
all the matrix elements in a vector

P = (P0000s s Platyhakys )" (2.42)

Instead of discussing the general equation of motion for p, we will only consider
the case, in which the two lowest energy levels of the transverse motion are taken into
account. The restriction to the lowest energy levels corresponds to the situation of
the atomic cloud being mostly in the ground state of the trap and having negligible
population of higher energy levels. This situation is realistic, if the energy spacing
of the discrete transverse states is large compared to the kinetic energy. Neverthe-
less, the result obtained from the two-level model provides a reasonable estimate for
the decoherence of an atomic cloud, even if many transverse levels are populated.
Equation (2.38) shows that only next-neighbor transitions are allowed. As A;,,; is a
product of two next-neighbor transitions, there can only be contributions of the next
two neighboring energy levels. Higher energy levels contribute only to the decoherence
by successive transitions, which are of higher order in A;,,,,,; and, hence, are negligible.

Reducing Eq. (2.41) to the two-level subspace leads to a four-dimensional matrix

A(0)  —A(C) 0 0
A¢) = _Aég) A(()O) A(()O) B A(() | (2.43)
0 0 —A(¢C-) A0
where (_ = z — 2’ and the reduced density-matrix vector is defined as:
p = (poo, P11, P10, po1) - (2.44)

The indices of the averaged density matrix p;; denote the transverse state | = (I, 1,).
Here, only the [, components of the labels are written, as p;, can only couple to
states with the same Z-state (i.e. as discussed above, only transitions between dif-
ferent g-states of the 2D-HO are allowed). The z-label is [, = 0 for all states under
consideration.

The equations for the diagonal elements, i.e., pgg, p11, and for the off-diagonal
elements, i.e. pg1, p1g decouple. However, the decoupling is a consequence of the
restriction to the two lowest energy levels and is not found in the general case. Yet,
the decoupling allows to find an explicit solution for the time evolution of the diagonal
elements. The matrix equation proves to be diagonal for the linear combinations
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p* = poo £ p11. Introducing the new coordinates (_ = z — 2’ and (. = (2 + 2/), the

general solution
+ + hk ikCy —TE(C_ )t
P (G Crt) = Ry (G- — —t)e™rem k=00, (2.45)

is obtained. The decay function I'F in Eq. (2.45) is described by

t

MHG 0 = A F 1 [ A

0

hk
- —t'). 2.46

) (2.46)
The function R,f is fixed by the initial conditions, i.e. by the density matrix at time
t=0:

e}

RE(G) = [ dere ™ (¢ Gt =0). (2.47)

—00

Note, that 1’% in Eq. (2.46) is a function of the spatial variable (_ and the wavevector
k, and is in general not linear in the time argument ¢. Adding and subtracting the
contributions p* finally leads to the following expressions for the diagonal elements
of the density matrix

T dk

oG- Get) =5 [ GGt (6 et (2.43)

The result for p;; can be obtained from (2.48) by replacing the plus sign between the

terms by a minus sign.

To get a feeling for the spatial correlations, it is convenient to trace out the center
of mass coordinate (,:

ﬁOO(Cfa t) = / dCJr p00<<;7 C+7 t) (249>
1
- 5 6_[A(0)_A(C*)}t [ﬁOO(C—7 0) (1 + 6—214@7)75) + ﬁll(C—a 0) (1 _ 6—214@7)75)} )
Equation (2.49) shows that we can distinguish two decay mechanisms:

Firstly, there is an overall decay of the spatial off-diagonal elements with a rate
FCaee(¢-) = [A(0) — A(C_)]. This decay affects the density matrix only for ¢(_ # 0,
thus, suppressing the spatial coherence. The spatial correlation length of the poten-
tial fluctuations can be read off Fig. 2.4, showing [4ec(¢_). The value found from
Fig. 2.4 gives for the potential fluctuations a correlation length £, of the order of the
trap to chip surface distance &, =~ ry. Note, however, that . is the correlation length
of the potential fluctuations and must not be confused with the coherence length de-
scribing the distance over which the transport of an atom along the trapping well is
coherent. This coherence length is described by the decoherence time and the speed
of the moving wavepacket. The correlation length &. characterizes the distance over
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Figure 2.4: Spatial dependence of the decay rate [ge.(¢_) = A(0) — A(C_) for the
diagonal elements p;;((_,t), Eq. (2.49). The wire to trap distance is 7 = 100um
and the trap frequency is w =~ 27 x 10kHz. The dashed line is the approximation
Eq. (2.51) for A(C-). Inset: Decay rate A(0) as function of ro. The parameters
chosen in the plots correspond to 8"Rb trapped at T.g = 300K in a magnetic trap
with a gold wire of conductivity o, = 4.54-107Q 'm~! and a cross section of
A =2.5um x 5um. The bias fields are BY = 80G and B, = 2G.

bias blas

which the potential fluctuations are correlated.

Secondly, the factors (14e24(€-)) in front of the density matrix elements, p;, de-
scribes the equilibration of the excited state and the ground state. The equilibration
is maximal for the diagonal elements p;(0,t), which gives an upper boundary. The
equilibration for ¢_ = 0 occurs at a rate [pop(0) = 2A(0). Here, equilibration means
that, due to this mechanism, the probability to be in the ground state, i.e. poo(0,t),
tends towards 1/2. Of course, at the same time the probability p11(0,t) to be in the
excited state approaches 1/2 at the same rate. Note, that for the spatial off-diagonal
matrix elements the equilibration rate depends on ¢_.

Now, a Closer look is taken on the quantity A(0) for realistic trap parameters.
Using J(0) = 8 5 and Eq. (2.37), Eq. (2.40) leads to

3
B® 2
3 Ho 2uBgr 1
A(0) = SkpTuqo A Bias ( ) = 2.50
(0) = BLeft? 2h\/m \4m Bl()?;s ra ( )

The inset of Fig. 2.4 plots A(0) over ry for reasonable trap parameters. Equation
(2.50) shows that the decay rate is scaling with the wire to trap distance as 1/rg,
giving a rapid increase of decoherence effects once the atomic cloud is brought close
to the wire.

In order to obtain a better feeling for the dynamics, the time evolution of the
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Figure 2.5: Upper Right: At t = 0 the wavepacket is a Gaussian wavepacket of spatial
extent w, = 20ry. Lower Right: Time evolution of |poo(¢_, (4, 1)| after t = 2/A(0).
The wire-to-trap distance is ryp = 5um and all other parameters correspond to those
used in Fig. 2.4. A(0) ~ 0.5s7! is given by Eq. (2.50). The density matrix shows
damped oscillations which become more pronounced as (. increases. Left: Zoom in
on the lower right graph showing a detail of the density matrix after a time evolution

of t = 2/A(0).

density matrix is studied for an explicit example. Let us suppose, that the system is
prepared in a Gaussian wavepacket in the ground state of the transversal potential.
Figure 2.5 and Fig. 2.6 show the time evolution of the absolute value of the density-
matrix element |poo(C—, (4, t)| for a Gaussian wavepacket of spatial extent w, = 20r
and a wire to trap distance of rq = Hum. Initially, at time ¢ = 0, all elements of
the density matrix are zero except of pgg. The time evolution is calculated for the
reduced subspace, using Eq. (2.45) and Eq. (2.48). For the spatial correlation, the
approximation

NI

is used. The dashed line in Fig. 2.4 shows the approximation compared to the exact
curve (solid line). The time evolution of the Gaussian wavepacket shows a strip of
|C—| < l. =~ ry in which the density matrix decays much slower. This is a consequence
of the (_ dependence of the decay rate shown in Fig. 2.4. The spatial correlation
length of the wavepacket, hence, can be read off Fig. (2.6) as l. = ry. In addi-
tion, a damped oscillation in the relative coordinate (_ arises, which becomes more
pronounced for larger values of (,. Figure 2.6 shows cuts along the (_-direction for
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Figure 2.6: Decay of the absolute value |poo(¢_, (s = 30r¢,t)| and |peo(¢_,(y = 0,1)]
(inset). The wavepacket is a Gaussian of spatial extent w, = 207y at ¢t = 0. The wire
to trap distance is rp = 5um. All other parameters are the same as used in Fig. 2.4.
A(0) ~ 0.5s7! is given by Eq. (2.50). The dashed line (¢t = 2/A(0)) corresponds to
cuts of the left graph of Fig. 2.5 along (_ for (, = 30ry (inset {y = 0). Spatial
correlations of the potential fluctuations are restricted to a narrow band around
(— = 0. The width of this band is on the order of ry. The density matrix shows
damped oscillations which become more pronounced with increasing (... The increase
of |poo(C_, (4 = 30rg, t)| for increasing time ¢ is a consequence of the spreading of the
wavepacket.

different values of (. The origin of the damped oscillations is the k-dependence of the
equilibration and decoherence mechanism, which are described by TZE in Eq. (2.46).
To demonstrate the influence of the k-dependent damping the decay rate is assumed
to be [y = A(0) F[A(C_)+ B(¢_, t)k]. Choosing T linear in k leads to a modulation
of the density matrix by a factor proportional to cosh(iag/3 4 1), describing damped
oscillations. The coefficients ag/; are real functions of (1 and ¢. The oscillations arise
only for non-vanishing . Decay rates which are k-independent do not show oscilla-
tions. The decay described by Ff in Eq. (2.46) is, however, not linear, but includes
higher powers in k. Hence, the simple linear model I'F = A(0) F [A(¢_) + B((_, t)E]
describes the oscillations in Fig. 2.5 and Fig. 2.6 only qualitatively.

2.4.2 Double-wire configuration: interferometer

Having understood the basic features of the decoherence processes in atom-chip traps
by studying the single waveguide in the previous chapter, this second example ap-
plies the theory to the more interesting case of the double waveguide. Testing for
interference effects proved to be an successful experimental method to investigate de-
coherence properties. It is, hence, not surprising that there are various suggestions to
test interference of ultra-cold atomic clouds [76-78]. The necessity of a double wave-
guide potential is a common feature in all three interferometer suggestions. Thus,
the theoretical knowledge of decoherence effects in a double-waveguide potential is a
key issue and will be the topic of this section.
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The geometrical situation is shown in Fig. 2.2. The setup consists of two parallel
wires on the substrate. The current density and the wire distance d are chosen such,
that a double waveguide is formed. In this configuration we have two, horizontally
spaced, but otherwise identical trap minima. Without restricting the general dis-
cussion, the current densities are assumed to be fixed and the distance between the
wires is chosen as a variable parameter. Considering the double-waveguide regime,
distances d > 2y, are required.

Having defined the setup, we are now able to study the dynamics of the system
in the presence of current fluctuations. Starting point of the calculation again is the
general expression Eq. (2.33). The calculation is in analogy to the calculation for the
single waveguide in Sec. 2.4.1.

Derivation of the potential correlator

Firstly, an explicit expression for the correlation function (0.5;,,(2)0S,,(2')) is re-
quired. The derivation of the projected-potential correlator is in analogy to the pre-
vious section. After some lengthy calculations the following expression is obtained

a,.B
/ Tyl /
(0Sim(2)0S,; (7)) = 84 ‘;20 > Tz =) (2.52)
y=L,R
T — xg
X /driXi(ri) [(y—yo) —yo(iaTog X (1)
0 72

X I./ r/ /_ _ (.T >k r/
/d [ X (1)) [(y Yo) yo*(fcgﬂw%)] X (')

The spatial correlation Jgﬁ(z — 2') in the double waveguide is given by

s 2 2
Jlg(z—2) = /d% [(xg —evg) + oy + 2 [(xg —eyg) +y§+(z—z’—2)2]

(2.53)
Here, a € {L, R} is the trap label corresponding to i = («, i, 4,) and m = (o, my, my),
and 5 € {L, R} the trap label corresponding to n and j, of the indices occurring in
(0Sim(2)05,;(2')). The wires are located at = dy/r = Fd/2 and e, is defined as
e, = —1, eg = 1. The result Eq. (2.52) uses the assumption that the extent of the
wavefunction w is much smaller than y, and much smaller than the trap minimum

L/R L L/R . . )

offset |zy’"| from the Z-axis, ie., w < |z, and w < yo. This approximation
breaks down if the wire separation d approaches the critical separation distance 2y
at which the two trap minima merge.

_3 _3
2 2

In analogy to the preceding section, the transversal wavefunctions x,, in Eq. (2.52)
are approximated by 2D-HO states. However, one has to be careful, as this approx-
imation holds only if the two trapping wells are sufficiently separated such that the
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mutual distortion of the magnetic fields are small. If the distance between the two
traps becomes close to the critical value d = 2y,, a double-well structure arises
and the harmonic approximation breaks down. The validity of the approximation
is estimated by calculating the distance d., at which the local potential maximum,
separating the two trapping wells, is of the order of the ground state energy of the
isolated single trap. The trap frequency for the double-wire configuration extracted
from the harmonic approximation is

w0l VPR

= w s
d d
where w is the single-wire trap frequency given in Eq. (2.37). Thus, the ground-state
energy Fy = hw of the single-wire trap corresponds to the limit of infinite separation
d = oo. This energy Fj is the maximum value for the ground-state energy hw, of the
double-wire trap under variation of d. Hence, F is an upper bound for the ground-
state energy of the double well in the case d > yo. Using the procedure described
above leads to the condition d > /8, restricting the region in which the transver-
sal potential can be approximated as two independent 2D-HOs. The dashed line in
the left graph of Fig. 2.2 shows an example for the harmonic approximation of the
trapping potential of the double-wire setup.

wg = 2w

(2.54)

Performing the integration over the transverse coordinates r , using 2D-HO states
for ., leads to the transition matrix elements

a B - -
3Sim(2)0S,,:(2)) = 4A0x03:0 Tz = 2') | w0im, + €W i m, Yo
J 2 apf y lyMy x

v

d I (:1384—67%)_
85 85 Yo
Wy Op, i+ €E4WLE0n, . —F——|
Yy Nyly B J (l‘€+€y%l)_

(2.55)

where the functions d;; have been defined in Eq. (2.39). In order to simplify the
derivation of Eq. (2.55), the current in the left and right wire were chosen to be the
same. The derivation of the Eq. (2.52) and subsequently Eq. (2.55) follows the calcu-
lations outlined in Appendix A for the general case, using the specific magnetic-field
distribution of the double waveguide Eq. (2.3). As the calculation is rather tedious
and does not provide additional insight, a detailed discussion of the derivation will
be skipped. Instead of going into details of the derivation, the different contributions
will be discussed qualitatively. As the system is invariant under mirror imaging at the
y-z-plane, corresponding to an invariance under the interchange of the left (L) trap
and right (R) trap label, only the following three contributions must be distinguished
(see Fig. 2.7):

(a) The influence of current fluctuations in the left wire on an atom in a state which
is localized in the left arm of the trapping potential (Fig. 2.7a).

(b) The influence of current fluctuations in the left wire on an atom which is in a
superposition of a state localized in the left arm and a state localized in the right
arm of the trapping potential (see Fig. 2.7b).
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Figure 2.7: Contributions of the noise in the left wire to the decoherence of p;;(z, 2, ).
The figures show only the coupling of one point on the wire to the atomic state. To
obtain the total contribution to the decoherence, an integration over all wire elements,
coupling to the atomic state, has to be performed.

(¢) The influence of current fluctuations in the left wire on an atom in a state which
is localized in the right arm of the trapping potential (Fig. 2.7c).

All other contributions are obtained by symmetry operations. Looking closer at these
three cases allows the following classification, referring to the type and strength of
the contribution to the decoherence of the atomic cloud.

Case (a): — The current-noise source and the atom wavefunction are on the same
side. Contribution (a) is given by the term proportional to JZ; and is the dominating
decoherence source in the regime d > 2g,. All other contributions (Jfg, J&; shown
in the third and forth column of Table 2.1) are suppressed by orders of go/d.

Case (b): — The contribution in Fig. 2.7b is of particular interest as it describes
the cross-correlations between the noise in the left and right trapping well. The con-
tribution (b) is given by terms proportional to J%; and JE,. Current fluctuations
in one of the wires give rise to magnetic field fluctuations in all the trapping wells.
Magnetic field fluctuations are therefore not uncorrelated. These correlations are
however suppressed for 3y < d as can be seen in Table 2.1.

Case (c): — Contributions of type (c), given by terms proportional to J5g, are the
smallest contributions to the decoherence. They describe the influence of the left wire
current noise on the atomic cloud in the more distant right trap. Terms of type (c)
are thus negligible for wire distances d > 2y, as the magnetic field decreases with
1/r and fluctuations in the trapping field are dominated by the nearest noise source
i.e. contributions of type (a).

Finally, it is instructive to compare the result obtained in Eq. (2.55) for the dou-
ble waveguide with the matrix elements in Eq. (2.38) for the single-wire trap. The
comparison reveals the following differences. First of all, transitions in the double-
wire trap are no longer restricted to the y-components of the 2D-HO. This is a direct
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Table 2.1: Estimate of the contributions to the decoherence. The columns for JE;
JEg, and JEg correspond to contributions (a), (b) and (c) of Fig. 2.7, respectively.
The J;4(C-) are given by Eq. (2.53) as a function of (- = 2 — 2’. The approximation
assumes Yy < d.

consequence of the geometry, as the positions of the trap minima are now sensitive to
current fluctuations in 2- and y-direction. This is in contrast to the single-wire trap,
where the z-position of the trap minimum was independent of the current strength in
the conductor. Secondly, the prefactor of the transition matrix element in Eq. (2.55)
is now a function of the spatial coordinates z{, taking the geometric changes of the
trap minimum position under variation of the wire separation d into account.

Solution of the equation of motion

Having in mind a spatial interferometer as suggested in Ref. [78], the most interest-
ing quantity is the density-matrix element, describing the coherent superposition of
a state in the left arm with a state in the right arm. Figure 2.8 shows the geome-
try of the interferometer. Before starting with the discussion of the decoherence, a
brief description of the basic function of the interferometer device will be provided
(see Ref. [78] for a detailed discussion). A wavepacket is initially prepared on the
left side in a single waveguide. The wavepacket propagates towards the right and is
split into a coherent superposition of a state in the left arm and a state in the right
arm. Finally, applying a small offset between the currents in the left and right wire
gives rise to a phase shift between the two wavepackets. This phase shift results,
after recombination, in a fringe pattern of the longitudinal density. Loss of coherence
between the wavepackets in the left and right arm, due to current fluctuations in the
conductors, will decrease the visibility of the interference pattern. Consequently, the
decay of those components of the density matrix, which are off-diagonal in the trap
index, are the most interesting quantities to study.

Keeping the expressions simple, the trap label (L/R) will be suppressed in the
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Figure 2.8: Schematic setup of an interferometer for cold atoms, using a double-wire
trap. A wavepacket comes in from the left single waveguide which is formed by a
double-wire trap with a wire spacing of d = 2yy. The wavepacket is split into a coher-
ent superposition of states localized in the left and right arm of the double waveguide.
Inducing a potential difference, e.g. by applying a current difference §1 between the
left and right wire, gives rise to a phase shift. Remerging the wavepackets results
into an interference pattern in the atom density. For a more detailed description of
atom interferometers of this type see Ref. [78].

following. However, we will bear in mind that the left (right) index of p will always
denote a state in the left (right) trap. It will be further assumed that the incoming
wavepacket is initially split into a symmetric superposition of the left and right arm.
In addition, the currents in the left and right wire are chosen to be same. Choosing
I;, = I does not restrict the validity of the result for the decoherence effects, but
keeps the equations simple as the full symmetry of the double-wire geometry is still
conserved.

Inserting Eq. (2.55) in Eq. (2.33) leads to a set of equations for the dynamics of
the averaged density matrix. Restricting the system again to the ground state and
first excited state of the 2D-HO gives a reasonable approximation of the system as
was previously argued for the single-wire case. The equation of motion of p(z, 2, t)
leads to a matrix equation in analogy to Eq. (2.41)

[ih@t — H(z, z')] p(z,2 1) = —ihA(z — 2)p(z,2,1),

but with a density-matrix vector

p = (05, 1%, ptt, P35, 87) (2.56)

The upper index denotes the z-state and the lower index the g-state of the 2D-HO.
The left and right pair of indices refer to a state in the left and right well, respectively.
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Figure 2.9: Decay time in the double-wire trap. T}/, is defined as the time it takes
until p%9(z, 2’,t) has decayed to half of its initial value at ¢ = 0. The graph shows its
dependence on the wire separation d if all contributions in Eq. (2.57) are taken into
account (solid line), if the cross-correlations 3; are neglected (dotted line), and in the
limit of d > 7o, Eq. (2.63) (dashed line). The dash-dotted line is the 7} o-time using
the decay rate Eq. (2.50) for the single-wire configuration. Inset: T'(t) = —In(pd))/t
at d = 3yy. The trap to chip-surface distance taken for the plot is gy = 10um and all
other trap parameters correspond to those used in Fig. 2.4.

The matrix A is

- B o1 + a3 0 o Qs

A= ﬁg 0 Q9 + Qy (0% (o733 . (257)
3 Qg Qs a1+ ay 0
B4 Qs o3 0 ag + Qs

The explicit coefficients are given in Appendix B. The matrix elements are di-
vided into two classes. Terms labeled by «; are contributions of the type shown
in Fig. 2.7a plus the corresponding term of type Fig. 2.7c. Terms denoted by [3; are
cross-correlations as described by contributions shown in Fig. 2.7b. Furthermore,
terms abbreviated as « do not depend on the longitudinal coordinate z, 2/, whereas
the cross-correlations 3 are functions of (z — 2/).

In order to obtain an explicit number for the strength of the decoherence, a specific
example will be studied numerically. We assume, that the extent of the wavepacket
w, along the trapping well is w, < d for the time span of interest. As the cross-
correlations (; vary on a length scale of approximately d, §;(z — 2’) in Eq. (2.57) can
be replaced by the constant 3;(0) 5. Furthermore, let us suppose that at ¢ = 0 the
density matrix is prepared in a coherent superposition of the ground states of the left

®Considering the opposite limit w, > d, the matrix elements can be approximated as 3;(z —2’) ~
B:0(z — 2'). The results, compared to those shown in Figure 2.9, are given by T} /2-times between
the solid and dotted curves in of Fig. 2.9.
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and right well. This choice of the initial wavepacket leads to a density matrix vector
of the form

p(t =0) = (pgo(t =0),0,0,0,0) . (2.58)

Solving the equation of motion numerically under the above conditions yields the
results shown in Fig. 2.9 The figure shows the time T/5 it takes until pfg(t = 0)
has decayed to half of its initial amplitude as a function of the wire separation d.
Note, that the average currents in the wires were chosen to be constant and the
wire separation d is varied. Changing the wire separation is closely connected to the
position of the trap minima. The position of the trap minima given by

Yo = Yo ; (2.59)
v =PI (2.60)

moves horizontally to the surface, leading to a wire to trap distance of
1
172
d K
=—|1—-(1—-4= . 2.61
7/.O \/§ [ ( d2 ( )

Let us have a closer look at the results presented in Figure 2.9. The solid line
in Fig. 2.9 shows the T} ,-time obtained from the solution of Eq. (2.41) and using
Eq. (2.57) in the approximation (;(z — 2’) =~ (;(0) for w, < d. Cross-correlation
terms 3; play, however, only a minor role for the T}/-time, as can be seen from
the dotted line in Fig. 2.9. This dotted line shows the case, where the 3; terms are
neglected in Eq. (2.57). The cross-correlation terms, shown in Fig. 2.7b, include con-
tributions describing positive correlations between potential fluctuations, suppressing
the decoherence. However, these cross-correlation terms describe also negative corre-
lations between potential fluctuations which enhance the decoherence. Hence, there
are two antagonistic effects which reduce the overall contribution to the decoherence.
It is thus important to compare the symmetry of the potential fluctuations to the
symmetry of the trapping potential. Fluctuations, which lead to the same change
in both potential wells, left and right, do not give rise to a net phase difference in
the left and right wavefunction. Hence, fluctuations conserving the symmetry do not
lead to decoherence between the two waveguides. In contrast, fluctuations yielding
large differences in the left- and right-waveguide potential give rise to decoherence.
Figure 2.10 shows schematically the potential fluctuations 6V induced by a current
fluctuation 07 in the left wire. The trapping potential posses mirror symmetry with
respect to the Z — ¢ plane. Thus, the antisymmetric shifts in horizontal direction
conserve the symmetry and lead to positive correlations, reducing the decoherence.
The vertical fluctuation of the potential is also antisymmetric, which is in contrast to
the strongly non-symmetric potential (see solid line in Fig. 2.2). Hence, the vertical
fluctuations give rise to decoherence. The inset of Fig. 2.9 shows the change of the de-
cay rates over time. Taking the full matrix Eq. (2.57) into account (solid line), there
is a change of decay rate I',; 3(t) towards a slower decay rate for ¢ > F;}rﬁ(O). If the
cross-correlations are ignored, the decay rate is constant I', ~ I',4+3(0). Inspection
of A, given by Eq. (2.57), shows that neglecting the terms 3; decouples p3) from the
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Figure 2.10: Influence of current fluctuations 67 in the left wire on the potential
of the trapping wells V(z,y) = —(F,mp|p|F,mp)B. The potential fluctuations
oV (x,go) = 6V (—x, o) are reflection symmetric about the y-z-plane for |z —xé/R| <
Yo Hence, the fluctuations in 2-direction are conserving the symmetry of the trapping
potential. This leads to positive correlations in (0.5;,(2)0S,;(2')), suppressing the
decoherence. The potential fluctuations in g-direction, 6V (zf,vy), 6V (zF,y), show
negative correlations giving rise to an increase in the decoherence rate.

excited states. This decoupling leads to an exponential decay with a single decay rate.

Finally, decoherence for large distances d between the wires, i.e., d > g, is
discussed. For d > 9, it is sufficient to take only the influence of §I; (01g) on the
left (right) trap (given by contributions of type Fig. 2.7a) into account. All other
contributions are strongly suppressed by orders of 3y/d (see Table 2.1). Hence, the
matrix Eq. (2.57) decouples p3) from the excited states and the remaining equation
for p) can be solved analytically. The solution is

Pz, 2, t) = e’”e’%mpgg(z, 2, 0), (2.62)

where H is the free Hamiltonian as defined in Section 2.3.2. The decay rate is given
as

3w [ Jows 1
= — w .

om0 Y (|wo| + d)2)%] 7]
In the limit d > 9y, Eq. (2.63) reduces to the decay rate obtained for the single-
wire configuration, Eq.(2.50), shown by the dash-dotted horizontal line in Fig. 2.9.
However, there is no spatial dependence of I' along the longitudinal direction (z —
Z') in the case of widely separated trapping wells. Plotting the T /o-time for the
approximation given by Eq. (2.62) (dashed line in Fig. 2.9), using the decay rate
Eq. (2.63), shows a good agreement of the approximation with the exact solution as
soon as d is of the order of several y,. Comparing all three graphs of Fig. 2.9 one can
conclude, that the increase in 77/, with decreasing separation d is due to geometric

r

(2.63)
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changes of the trap positions. An increase of the wire to trap distance ry due to
a decrease of d, leads to an increase in the T /,-time as the rate of the dominating
decoherence source scales with 1/rg.

2.5 Summary of Chapter 2

In this chapter, a general method to treat decoherence due to current fluctuations
in multi-wire atom-chip traps was developed. Using the density-matrix formalism,
an equation of motion Eq. (2.29) was derived, which describes the consequences of
current fluctuations on a cold atomic cloud. The model allows the description of
decoherence in multiple-wire traps [11,69], as well as more complex guiding systems.
This includes multi-waveguide systems required for the implementation of a beam
splitter [13] or interference experiments [76-78].

The atom-chip trap was modeled as a multi-channel one-dimensional waveguide,
where different channels describe different transverse modes of the waveguide. As-
suming one-dimensional wires on the atom chip, we examined the influence of current
fluctuations along the wire on the coherence of the atom cloud in the waveguide. New
important contributions to the decoherence were found, arising from transitions to
neighboring excited states. Decoherence due to the transitions among transverse
states become increasingly important as the wire to trap distance decreases.

Based on this model, decoherence effects for two specific trapping configurations
were examined. Firstly, the single-wire waveguide was studied and secondly the
double-wire waveguide. In both configurations, decoherence of the ground state was
discussed, taking processes from transitions to the first excited states into account.
The single-wire trap showed for the ground state a decoherence rate I' which scales
with the wire to trap distance ro as 1/ry. The potential fluctuations are correlated
over a length scale of ry. As a consequence, the decoherence rate I is a function of the
relative coordinate z — z’. Using trap parameters based on recent experiments [69]
leads to decoherence rates of the order of I' &~ 0.03s7! for 79 = 10um. Extending
the system to a double-wire waveguide enabled the investigation of decoherence for
atoms in a superposition of a state localized in the left arm and a state localized
in the right arm of the waveguide. This superposition is the basic ingredient for
interference experiments. Approaching the two trapping wells, as required for the
splitting and merging of the wavepackets, showed a decrease in the decoherence rate.
The decrease arises mostly due to geometrical rearrangements of the trap minima in
the system. Cross-correlation effects proved to be of minor importance in our model.
An explicit expression could be derived for the decoherence rate, Eq. (2.63), in the
limit of wire to trap distances ro much smaller than the separation of the two wires d.
This decoherence rate approaches the value for the single-wire waveguide, I' = A(0),
for a decreasing ratio of ry/d.

The decay rates extracted in this model are small for distances realized in present
experiments [69]. However, with the further improvement expected in microstructure
fabrication and trapping techniques [105], the trap-surface distance is expected to
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reach soon length scales at which the decoherence from transitions to transverse
states may have a considerable influence on trapped atomic clouds.



Chapter 3

Short-range correlations in optical
lattices at the Mott-insulator
transition

Lattices play a central role in condensed matter physics. The periodic potential gives
rise to many effects such as Bloch oscillations or phase transitions. Studying dilute
quantum many-body systems such as Bose-FEinstein condensates or ultra-cold Fermi
gases in optical lattices is thus particularly interesting. In addition to the large num-
ber of effects which are present in the world of solid-state crystals, dilute-atom gases
in optical lattices offer new physical systems in which many new possibilities open
up. Ultra-cold gases in optical lattices allow the investigation of fermions, bosons,
fermion-boson mixtures, or spin-polarized gases in a periodic potential. The expected
phase landscape of this system is diverse and still an extremely active research field.

The best-known example showing the power of the optical lattices as an experimen-
tal system is the demonstration of the superfluid-Mott insulator (SF-MI) quantum
phase transition. The essential physics of cold-bosonic atoms in an optical lattice is
captured by a bosonic Mott-Hubbard model [19]. The Mott-Hubbard model describes
the competition between the hopping of atoms to neighboring lattice sites and the on-
site interaction. The Mott-Hubbard model of interacting bosons on a lattice has been
used to describe superfluid-Mott insulator transitions in a variety of solid-state sys-
tems as, for instance, in Josephson arrays [114—116] (see also references within the
review [117]) and granular superconductors [19]. The suggestion to use optical lat-
tices as a tool to investigate the superfluid-Mott insulator transition [23] was quickly
followed by a successful experimental demonstration [24]. Experimental realization in
optical lattices quickly revived interest in the superfluid-Mott insulator transition. Op-
tical lattices provided a versatile tool to investigate the behavior of the quantum phase
transition. In particular, coherence and correlation effects could be studied by exam-
mning and understanding the expansion pictures taken in experiments. The expansion
patterns of the superfluid state and the expansion picture of the Mott-insulator state
look very different. The superfluid state, having long phase coherence over many lat-
tice sites, shows Bragg peaks in the expansion picture. In contrast to the superfluid
phase shows the Mott-insulator phase, with very short phase coherence lengths, a dif-
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fuse featureless absorption picture. These differences in the expansion patterns allow
to characterize the state of the atomic cloud in the optical lattice as one traverses
from the superfluid to the Mott-insulator phase.

The topic of this chapter deals with the importance of short-range correlations in
the superfluid-Mott insulator transition of a Bose-FEinstein condensate trapped in an
optical lattice. Based on a Gutzwiller approach, a method will be presented which
allows the successive inclusion of inter-lattice site correlations. The advantage of
this method s its applicability in the Mott-insulator as well as in the superfluid re-
gion. This is of particular importance if the system is not homogeneous but has
Mott-insulator and superfluid phases coexisting, as is usually the case in experiments.
Applying our perturbative method to analyze the particle-number fluctuations per lat-
tice site shows distinct corrections to the mean-field prediction. The main part of
this chapter deals with the corrections to the short-range behavior of the one-particle
density matriz. The one-particle density matriz is directly relevant to experimen-
tally observed expansion patterns which are used to characterize the state of the sys-
tem. Applying the perturbative method to the one-particle density matriz gives rise
to short-range correlations in the Mott-insulator region, in contrast to the mean-field
result. This result is in agreement with the experimental findings [61], which recently
confirmed the theoretical prediction of short-range correlations in the Mott-insulator
phase [57-60]. The consequences of the inclusion of short-range correlations to the
Gutzwiller ansatz will be discussed for bulk systems and for a harmonic confining
potential. Frequent comparison to several other numerical methods will be made to
test the applicability of our perturbative approach.

3.1 Introduction

Before going into the detailed discussion, a short introduction to the physical system
will be provided. The first subsection briefly describes the basic function of optical
lattices. Subsequently, the main features of the superfluid-Mott insulator phase tran-
sition will be described. Finally, the section will be concluded with a short description
of the expansion patterns which are expected for the Mott-insulator and superfluid
state.

3.1.1 Optical lattices

Optical lattices use the forces acting on atoms in laser fields [118,119]. This effect is
also known as the AC-Stark effect. Let us consider an atom in its ground state |g)
with ground state energy E,, subject to an electrical field

E(r,t) = E(r)e™ + E*(r)e ™", (3.1)

Assuming that the laser field is changing slowly in space with respect to the size of
the atom, the interaction is well described within the dipole approximation

~

Hint — _dg, (32)
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» | o

Figure 3.1: Example for the intensity modulation of a two-dimensional optical lattice
formed by a set of orthogonal counter-propagating laser beams.

where d is the dipole operator of the atom. Performing perturbation theory to second
order in the interaction Hjy leads to the effective potential [119]

1 —

where the overbar denotes an average in time over one oscillation period and « is
the polarizability. Furthermore, we assume that the laser frequency is off-resonant to
the transition between the ground state |g) and the excited state, |€), with detuning
0 = (E.— E;)/h —w. The polarizability is derived from perturbation theory to
second order [119] as

o= 3 2B B Glddlg) )

R 2 _ 2 7
2 (B~ B, — ()

where € is the unit-vector along the polarization direction. The main contribution
arises from the term ¢ = e, as the laser frequency w is almost resonant with the tran-
sition |g) — |e). Thus, considering only the dominant contribution, the polarizability
is approximately given by

. _|{eldég)?

T E.-E,—hw’
All considerations above neglected the finite life time of the ground and excited state
due to spontaneous emission. The spontaneous decay can be included in the model
using complex eigenenergies of the atomic states, where the imaginary part describes
the decay. In this case the polarizability in Eq. 3.3 must be replaced by its real part.

(3.5)

In order to obtain a periodic structure, a set of counter-propagating laser beams
is used for the formation of an optical lattice. The standing waves create a periodic
modulation of the intensity and hence a periodic effective potential. Choosing the
laser beams to be linearly polarized with mutually orthogonal polarization directions
leads to an effective potential of the form [24]

V(x,y,2) = Vousin®(kyx) + Vo, sin®(k,y) + Vo, sin®(k,2) . (3.6)
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Figure 3.2: Phase diagram for the Mott-Hubbard model for a 2D lattice computed
in Gutzwiller approximation. The chemical potential p varies along the vertical axis
and the ratio of hopping to on-site repulsion J/U along the horizontal axis. The dark
lobes show the Mott-insulator regions with n = 1 and n = 2 particles per lattice site

(MI) and the bright area is the superfluid phase (SF).

Thus, a perfect one-, two- or three-dimensional lattice potential can be formed by
choosing appropriate laser intensities, polarizations and wavevectors k;. Finally, a
Bose-Einstein condensate is loaded into the lattice. Additional harmonic confinement,
usually obtained by the shape of the laser beam or a magnetic trap, is required to
avoid the unlimited spreading of the condensate and, consequently, the loss of the
atoms. An example for the intensity modulation of a two-dimensional optical lattice
is sketched in Fig. 3.1.

3.1.2 Mott-insulator transition in optical lattices

The essential physics, describing the dynamics of cold bosonic atoms in an optical
lattice is captured by the Mott-Hubbard model [19]

M M
. U
Hun =) s = 1) + Y (e—mni—>_ Jiala;. (3.7)

Here alT and a; are the creation and annihilation operators for creating and annihilat-
ing a boson on the lattice site ¢ and n; = agai is the number operator. The first term
in Eq. (3.7) describes the repulsive interactions occurring if a lattice site is occupied
by n; bosons. The strength of the repulsion is given by [23]

B Arh2a,

m

U d*x |w(x)|*, (3.8)
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where ag is the scattering length and w(x) are the wavefunctions of the bosons on
a lattice site, usually assumed to be Wannier functions. The second term describes
the chemical potential which consist of a constant term p and a spatially varying
term ¢;. The spatially varying chemical potential is introduced to describe either the
trapping potential or disorder effects in the lattice. Finally, the last term describes
the inter-site hopping of the bosons. Here, the sum runs only over neighboring lattice
sites 7, 7, which is denoted by (i, 7). The hopping constant J is given by [23]
h*v?

Jij = /d3x w*(x — x;) {— o + V(X):| w(x —x;), (3.9)
where ¢ and j are adjacent sites. In the following discussions, the hopping constant is
assumed to be constant i.e. J;; = J. A constant hopping parameter is a reasonable
approximation to the experiments done with optical lattices.

The dynamics of this model is driven by the interplay of the on-site repulsion U
between the bosons and the nearest-neighbor hopping. The system is therefore char-
acterized by the ratio of the hopping to the on-site repulsion J/U. For the remainder
of this chapter we will always consider the properties of the ground state of the system.

Two different phases occur in the bosonic Mott-Hubbard model: the superfluid
phase (SF) and the Mott-insulator phase (MI). The superfluid phase shows a finite
superfluid fraction f,; and a high compressibility . In contrast, the Mott-insulator
phase has f; = 0 and is incompressible as a consequence of the gap in the excitation
spectrum. Let us look at the different phases from the wavefunction point of view.
The superfluid state has a finite fraction of the bosons in a superfluid state, described
by a delocalized wavefunction. The Mott-insulator phase is characterized by local-
ized bosons and, thus, can be described by a Fock state for each lattice site, in the
mean-field picture.

What makes the bosonic Mott-Hubbard model particularly interesting is the phase
transition from a superfluid state to a Mott-insulator state for all integer ratios of
bosons per lattice site [19]. The phase diagram for the Mott-Hubbard model is shown
in Fig. 3.2 for a two-dimensional lattice, computed in Gutzwiller approximation (see
Sec. 3.2). For J/U = 0, there is always a Mott-insulator phase. Special points
are given by the positive integer values of u/U = n, where the state with n and
n + 1 bosons per lattice site are degenerate. Increasing J/U from zero to a critical
value gives rise to a quantum phase transition from the Mott-insulator phase to
the superfluid phase. The phase transitions are in practice only observable for an
integer filling i.e. an integer number of bosons per lattice site. In this case, the phase
transition occurs along a line, which undergoes the phase transition exactly at the tip
of the lobes. Note, that in situations with non-integer filling, there will be no phase
transition into a Mott-insulator phase. It will always be favorable for the atomic gas
to have the non-integer fraction of bosons in a delocalized superfluid state. In the
theoretically considered grand-canonical model, with a fixed chemical potential and a
varying number of particles, there occurs a transition into a Mott-Insulator state for
all values of 11/U between the degenerate points, as can be seen by the Mott-Lobes
in Fig. 3.2.
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3.1.3 Experiments

Although being interesting as a theoretical problem by itself, the research on the
superfluid-Mott insulator transition in optical lattices had its breakthrough with the
experimental demonstration [24] of the phase transition. The experiment comprised
a trapped Bose-Einstein condensate in an three-dimensional optical lattice. Varying
the laser intensity and, thus, the lattice-potential depth enabled the variation of the
parameter J/U. Measurements were done by switching off all traps and letting the
cloud expand before an absorption picture was taken. This technique provides a
direct measurement of the momentum distribution of the system. Atoms, carrying
high momentum are faster than those with low momentum and consequently travel
further away from the original trapping position. Hence, atoms at the origin of the
absorption picture (defined by the trap position before the expansion) correspond to
zero momentum states. Those atoms, which have higher momentum are found further
away from the center. The time scale of the expansion must be chosen appropriately
such that the original size of the cloud is much smaller than the expanded cloud. This
removes any effect on the expansion picture due do the shape of the trapped cloud
before the release. Assuming that the cloud is very dilute and expands reasonably
fast, the cloud can be considered as non-interacting. Hence, the momentum distri-
bution at the time of the release from the trap is mapped out in the absorption picture.

This technique was also used in [24] to investigate the superfluid-Mott insulator
transition in an optical lattice. Optical lattices have, however, an underlying periodic
structure. The expansion pictures are intuitively understood if one imagines that ev-
ery lattice site consists of an independent matter wave. If the system is in a superfluid
state, the matter waves in different lattice site all have a fixed phase difference. The
expansion picture is, hence, very similar to the interference picture of coherent light
scattered from a grating. Bragg peaks appear with a spacing proportional to the
inverse lattice constant. In contrast, if the system is in a Mott-insulator state, then
the phase is highly fluctuating from lattice site to lattice site. There will be no inter-
ference peaks visible in the expansion picture and the momentum distribution will be
smooth. The measured Gaussian-like form of the expansion picture is a consequence
of the envelope of the single lattice site wavefunctions w(x). The experimental results
of [24] for the expansion pictures are shown in Fig. 3.3.

The experiment [24] demonstrated not only that these different interference pat-
terns could be observed, but also demonstrated that a Mott-insulator state was indeed
formed. Pushing the state from the Mott-insulator phase back into the superfluid
phase and finally taking an absorption picture showed the revival of the interference
pattern. The interference pattern revived on a time scale, which is in agreement with
the tunneling time between adjacent lattice sites. Hence, simple decoherence of the
system into an incoherent state could be ruled out. The importance of the expan-
sion pictures will be discussed in more detail in Sec. 3.4.2. As we will focus in the
following on the effect of short-range correlations, another very recent experiment is
particularly interesting. This experiment [61] studied short-range correlations in the
Mott-insulator phase. Investigation of the interference patterns in the Mott-insulator
phase for varying lattice depth confirmed the existence of finite-range correlations as
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Figure 3.3: Sequence of absorption pictures showing the transition from a superfluid
to a Mott-insulator state. The absorption pictures were taken after 15ms time of
flight. (a) Vo =0E,; (b) Vo = 3E;; (C) Vo = TE,; (d) Vo = 10E;; (6) Vo = 13E;; (f)
Vo = 14E,; (g) Vo = 16E,; (h) Vi = 20E,.. E, = h*k*/2m is the recoil energy and Vj
defined in Eq. (3.6). Graph taken from [24]

predicted theoretically [57-60]. Finite interference peaks were even visible deep inside
the Mott-insulator phase. The importance of short-range correlation will be a main
focus in the following sections.

3.2 Gutzwiller ansatz

To date, no analytical solution for the D-dimensional Mott-Hubbard model was
found! for D > 2. Nevertheless, there are many successful approximative meth-
ods based on strong coupling expansions [124, 125], Bogoliubov theory [126] and
mean-field approaches [19,127]. Moreover, there are many numerical methods to
tackle the Mott-Hubbard system. Among the most popular is Density Matrix Renor-
malization Group (DMRG) [128-130], Quantum Monte Carlo (QMC) [58,131-139],
Exact Diagonalization (ED) [59,140] and the Gutzwiller [23,60, 141] method. Re-
cently developed methods like time-dependent DMRG [142] and Time-Evolving Block
Decimation (TEBD) [143], allow the computation of the time evolution of the sys-
tem. Whereas the DMRG, QMC and ED are “quasi-exact” numerical methods, the
Gutzwiller approach implies further assumptions about the system. However, there
is also an advantage in the Gutzwiller method as it requires the least computational
effort and, thus, even large lattices can be treated numerically. As the following sec-
tions will focus on a perturbative approach to go beyond the Gutzwiller results, the

IExact solutions exist for one-dimensional lattices if occupancies of more than two bosons per
lattice site can be neglected [120-123]. In addition, an exact solution of the infinite-range-hopping
Bose-Hubbard model [19] can be found.
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Gutzwiller method will be discussed in more detail now.

In the Gutzwiller approach, the many-body ground state is approximated by a
product of single-lattice-site wavefunctions |¢);:

|Go) = HI@D%,

where the sum runs over all M lattice sites. Rewriting the wavefunction in the
number-state basis for each lattice site, |n);, the Gutzwiller wavefunction reads

Go) =11 (Zf In) ) . (3.10)

i=1 n=0

With this Gutzwiller ansatz for the wavefunction, the ground state of the Mott-
Hubbard model, Eq. (3.7), is found, using the variational principle

§(Go| Hy|Go)
S

We obtain an expression for the coefficients f,(f)

—0. (3.11)

ef) = Snln = DfY — (n—e)nf)
= [V £+ V1

(.4

(3.12)

where € denotes the ground-state energy, and

P, = Zf [ (3.13)

The set of equations (3.12) determine the coefficients fr(f) of the Gutzwiller ground
state, Eq. (3.10). However, the Gutzwiller solution for the Mott-Hubbard Hamil-
tonian is only an approximation. Using the Gutzwiller ansatz corresponds to a re-
striction of the variational solutions to the subset of product states. In fact, the
Gutzwiller solution can be identified as a mean-field solution for the Mott-Hubbard
model [144] with a lattice site dependent mean field V; = (Gg|a;|Go). Thus, finding
the variational wavefunction using the Gutzwiller ansatz corresponds to the ground
state of the mean-field version of the Mott-Hubbard Hamiltonian Eq. (3.7)

M U M
Fae =D milm = 1)+ (i -
i=1 1=1
Iy (aj\pj + U, — \p;‘qu) .

(4,9

(3.14)

Nevertheless, the Gutzwiller solution provides a good approximation in the limit of
J — 0 (i.e. far in the Mott-insulator regime) and in the limit of U — 0 (i.e. far in
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the superfluid regime). Yet, the ansatz fails in the intermediate regime, where the
decay of the inter-lattice site correlations become important. The Gutzwiller ansatz
describes the lattice-site correlation only on a mean-field level. Consequently, the
lattice-site correlations <ajaj) are replaced by the product of the mean fields W}V,
for ¢ # j. Considering the special case of a homogenous lattice, where the mean field is
lattice site independent W = W, the Gutzwiller approximation shows no decay of the
inter-lattice site correlations. The Gutzwiller results drops directly from the particle
number n; on the i-th lattice site, (azai> = n;, down to the constant off-diagonal value
(ala;) = |W[* # n, for i # j. However, inter-lattice site correlations are important for
experimentally measurable observables such as expansion patterns. The consequences
of the inclusion of short-range correlations to the expansion pictures will be discussed
in Sec. 3.4.3. In order to investigate the consequences of the short-range correlations,
we will introduce a perturbative approach to improve the inter-lattice site correlations
of the Gutzwiller solution.

3.3 Beyond Gutzwiller: A perturbative approach

The aim of this section is the development of a method to improve the Gutzwiller
method by including inter-lattice site correlations. Using a perturbative approach, we
will be focusing on the short-range correlations and study the consequences of taking
these correlations into account. In order to study long-range correlations we would
have to calculate the perturbative corrections up to an order comparable to the lattice
size. This requires, however, a considerable effort as the number of contributions rise
quickly with the order of the perturbation theory.

3.3.1 Perturbative inclusion of short-range correlations

As the Gutzwiller wavefunction presents a good approximation far in the Mott-
insulator phase and far in the superfluid phase [57], we will use it as the starting
point of the perturbative expansion. Note, that this approach differs from the pertur-
bative treatments known as strong-coupling expansions [124]. In the strong-coupling
expansion, the hopping J is usually assumed to be the small parameter for the per-
turbative expansion. This corresponds to the perturbative expansion in the kinetic
energy based on the number-state basis of the unperturbed ground state. Hence, this
approach is only suitable for the treatment of the Mott-insulator phase. For a treat-
ment of the superfluid phase a Bogoliubov approach [126] is often used. However,
the Bogoliubov method is only applicable in the superfluid regime. The aim of our
perturbative expansion is the applicability to both phases: the Mott-insulator as well
as the superfluid phase. The applicability of the perturbation theory to both phases
is of particular interest, as the trapping potentials used in experiments are combi-
nations of a periodic potential with a harmonic trapping potential. The harmonic
trapping potential is required to confine the atoms to a finite region of the optical
lattice. However, the combined trap generates an inhomogeneous lattice. Hence, in
most cases there are Mott-insulator and superfluid phases coexisting.
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First, we re-express the Mott-Hubbard Hamiltonian, Eq. (3.7), by adding and
subtracting the mean-field Hamiltonian Eq. (3.14):

Hy :]:IMF+(]:IMH_HMF) =M +V, (3.15)
with
V==J> (af —U})(a; - ;). (3.16)
(i,3)

Hence, we will treat the difference between the mean-field and the full Mott-Hubbard
Hamiltonian V' as a perturbation to the mean-field Hamiltonian. The unperturbed
part is given by Hyr, which uncouples into a sum over single-lattice-site Hamiltonians
(see Eq. (3.14)). Thus, the excitation spectrum of Hyr, required for the perturbative
expansion in V', can be computed for each lattice site separately. The excitations of
Hyr can be written as product states of single-lattice-site excitations,

G = [T lieu) (3.17)

with the excitation spectrum as a sum of excitation energies

M
e =) eliei), (3.18)

=1

Here, i labels the lattice sites and «; is the a-th excitation of the i-th lattice site.
Finally, « = (v, - - - , apr) is introduced as an abbreviation for the set of single-lattice-
site excitations. Having obtained the excitation spectrum for the unperturbed part
of the Hamiltonian Hyp numerically, the Gutzwiller wavefunction can be improved
by Rayleigh-Schrodinger perturbation theory [113]

n=1

(ol — (GIVIGE) = S GG

p— (3.19)
Here, the states with a Greek superscript, |G®), denote the unperturbed states, de-
termined from the mean-field Hamiltonian. States with Latin subscripts describe the
perturbative corrections. In particular, the state |G;) denotes the I-th order correc-
tion to the wavefunction |G) = >, |G}). For computational reasons, the basis formed
by the unperturbed Hamiltonian is used and all quantities are expanded in this basis.
The perturbative corrections, thus, read

Gy =D 1G7) (GG (3.20)
where the expansion coefficients are given by Eq. (3.19).

The perturbative corrections to any observable A can now be calculated by evalu-
ating the expression (G|A|G) to the desired order, using the perturbatively corrected
wavefunction |G). In the following sections, all observables will be computed up to
second order in perturbation theory. The explicit derivation and a diagrammatic
illustration is given in Appendix C.
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3.4 Numerical results

Having developed a perturbative tool to improve the Gutzwiller mean-field solution
of the Mott-Hubbard model, we will discuss the consequences of the perturbative
inclusion of short-range correlations on several observables in the remainder of this
chapter. All calculations are done numerically to second order in the perturbation
scheme. First, the Gutzwiller ground state is computed using a conjugate-gradient
algorithm [145] in combination with an imaginary time propagation routine. The
imaginary time propagation step is frequently performed to check if the minima,
found by the steepest-descend method, is the real ground state. Finally, knowing the
Gutzwiller ground state of the system, the excitation spectrum for every lattice site
is computed by exact diagonalization of the the mean-field Hamiltonian Eq. (3.14).
Now, perturbation theory to second order is performed, based on the equations de-
rived in Appendix C.

3.4.1 Local observables

Local observables are observables composed of operators which act only on a single
lattice site. Hence, they describe local properties. The Gutzwiller mean-field solu-
tion provides in most cases already a good approximation to the mean value of local
observables. However, there are difficulties in reproducing the correct behavior of
fluctuations of local variables, as, for instance, the lattice site-number fluctuations.
Perturbation theory gives for local observables no correction in first order. The first
non vanishing contribution is the second order. Figure 3.4 shows the results for the
order parameter ¥; = (a;), the compressibility x; and the number fluctuations o;.
Here, the ratio J/U has been scaled by the dimension, to keep the same mean-field
phase-transition point. The solid lines in Fig. 3.4 show the results from perturbation
theory, as compared to the Gutzwiller result (shown as the dashed - dotted line). All
three quantities show a vanishing perturbative correction both for small and large
J/U, as the Gutzwiller wavefunction becomes a good approximation in these regimes
(for lattice dimensions D > 1). In general, the strongest deviations from the mean-
field solution are seen in the one-dimensional case. Moreover, the corrections to the
mean-field solutions decrease with increasing dimensionality. This is, however, not
surprising as the mean-field solution is exact in infinite dimensions and therefore de-
viates from the exact solution less and less in higher dimensions.

The inset, Fig. 3.4b, shows the mean value of the order parameter ¥; = (a;). The
perturbative correction leads to a suppression of the order parameter. However, the
suppression is less distinctive in two and three dimensions. This is in agreement with
the discussion of the validity of the mean-field solution in the previous paragraph.
The critical value for the superfluid Mott-insulator transition remains unmodified
(J/U). = 0.086/D. This is a consequence of using the Gutzwiller mean-field solution
as the basis of the perturbation theory. A detailed analysis of the phase boundaries
of the Mott-Hubbard model is shown in [124] based on a strong-coupling expansion.
The second example for a single-lattice-site observable is the local compressibility for
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Figure 3.4: Results from perturbation theory for homogeneous lattices in D = 1

(diamonds), D = 2 (triangles), and D = 3 (squares) dimensions. The dashed-
dotted lines in Fig. 3.4a-c are the Gutzwiller results. (a) Number fluctuations o; =

(n?) — (n;)? calculated for a commensurate filling of one boson per lattice site.
The dashed line shows the result from the exact diagonalization for 7 lattice sites
and N = 7 bosons. (b) Order parameter ¥; = (a;) and (¢) compressibility x; both

computed at a fixed chemical potential p/U = 0.5.

a total number of N bosons in M lattice sites

f%’—mz EI

i=1

depicted in Fig. 3.4c. The results of perturbation theory show a decrease of the com-
pressibility, pointing to an increasing stiffness of the superfluid phase induced by the
short-range interaction.

A very different behavior is seen for the number fluctuations

o =/ (n7) — (n:)?.
Unlike the previous examples, the perturbative contributions to the number fluc-
tuations show a large correction in the Mott-insulator region. In contrast to the
Gutzwiller result, which predicts zero number fluctuations throughout the whole
Mott-insulator phase ( see the dashed-dotted line in Fig. 3.4c¢ ), the perturbative
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approach leads to a non-vanishing contribution. Comparing the perturbative re-
sults in one-dimension with an exact diagonalization for seven lattice sites ( dashed
line in Fig. 3.4c ) shows good agreement in the Mott-insulator region. Based on
the good agreement of our perturbative result with the exact diagonalization for
a large region in the Mott-insulator, we conclude that the number fluctuations are
mainly produced by next-neighbor particle-hole fluctuations which are included in the
perturbative treatment. Significant deviations from the exact-diagonalization result
are seen for higher values of J/U. Again, this misbehavior of the perturbatively-
corrected mean-field results can be attributed to the low dimensionality. Addition-
ally, one has to bear in mind that the small parameter, used for the perturbative
expansion, corresponds to the deviation of the full Hamiltonian Eq. (3.7) from the
mean-field Hamiltonian, Eq. (3.16). This quantity, however, is not expected to be
small at the transition point. Thus, this may explain the strong mismatch of the
exact-diagonalization and the perturbative results, starting from the mean-field crit-
ical value, (J/U). = 0.086, [23,124,127,144] up to values of the order of the critical
values of (J/U). =~ 0.2---0.3 obtained from DMRG [129] and QMC [128,133] calcu-

lations.

3.4.2 The correlation function

The one-particle density matrix, defined as p;; = <ajaj), is of particular importance

in connection with optical-lattice experiments. The one-particle density matrix, often
called correlation function, provides a direct connection to the expansion pictures,
which are commonly measured in experiments.

In contrast to the observables discussed above, the correlation function represents
a non-local quantity. It describes the correlations between the different lattice sites.
Considering the correlation function in Gutzwiller approximation leads to

pij = (alaj)ew = (a))aw(a;)aw = U]V, (3.21)

for ¢ # j and to

Dii = <a1ai)gw =n,. (3.22)
Note, that the average (-)qw is taken with respect to the Gutzwiller wavefunction.
Thus the correlation function drops abruptly from p;; = n; for the diagonal elements
to its off-diagonal values p;; = W;V,. This has particularly distinct consequences for
a homogeneous lattice. In this case, the Gutzwiller approximation predicts for any
arbitrary two lattice sites, ¢ # j, the same correlation p;; = ¥¥;, independent of the
distance over which the lattice sites are separated. Especially in the Mott-insulator
phase, the Gutzwiller result predicts no correlation between lattice sites, as ¥; = 0.
However, finite correlations for the many-body wavefunction are expected even in the
Mott-insulator regime [57-59,61,97]. Therefore, taking short-range correlations into
account improves the shortcomings of the Gutzwiller approximation.

In order to get a feeling for the modifications caused by the inclusion of short-
range correlations , comparison to the exact-diagonalization results of a small one-
dimensional lattice are made in figure 3.5. Applying perturbation theory to the
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Figure 3.5: Short-range behavior of the one-particle density matrix p;; as a function
of site distance |i — j|. Results for a homogeneous lattice of 7 sites with N = 7 bosons
have been obtained from exact diagonalization (ED), from second-order perturbation
theory (PT), and from the Gutzwiller mean-field ansatz (GW). (a) J/U = 0.05
(MI regime), (b) J/U = 0.1, (¢) J/U = 0.2, (d) J/U = 0.5 (deep SF regime).
All calculations use periodic boundary conditions. The mean-field value (J/U).. for
the SF-MI transition in the commensurate case with one boson per lattice site is
(J/U). = 0.086 in 1D (see Fig. 3.4). (The mean-field value differs strongly from
(J/U). = 0.277 derived from QMC calculations [128] or (J/U). = 0.260 for DMRG
calculations [129]).
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Gutzwiller wavefunction improves the structureless Gutzwiller correlation function.
In Fig. 3.5, we have compared the results of Gutzwiller mean-field theory, with per-
turbation theory, and with exact diagonalization (ED). The exact diagonalization
has been carried out for a small one-dimensional lattice, where it is easily feasible.
Although there is no long-range order in the superfluid phase for the one-dimensional
case in which the density matrix exhibits a power-law decay towards zero, it is still
reasonable to compare the short-range correlations. In fact, we find a nice agreement
between the perturbation theory and the exact-diagonalization results, not only for
the Mott-insulator region (see Fig. 3.5a), but also for the short-range behavior in the
superfluid. This good agreement is a consequence of the slow decay of p;; and the
negligible corrections from higher-order contributions in small lattices. An example
for the superfluid case is shown in Fig. 3.5d. Figure 3.5d for the superfluid case,
shows, however, still a considerable difference for p; ;3. This is not surprising as we
do perturbation theory up to second order. Hence, correlations over a distance of
three and more lattice sites are only improved by the global mean-field correction
for the infinite lattice (see Eq. (C.11), Eq. (C.12), and Fig. C.2 in Appendix C). We
expect better agreement for larger lattice sizes as finite-size effects, arising in small
lattices, are still considerable for M = 7 sites, used in our exact-diagonalization cal-
culations.

Finally, for intermediate values of J/U, shown in Fig. 3.5b,c, we observe a faster
drop in the off-diagonal correlations, such that higher-order contributions in the per-
turbation theory become more important. In any dimension, the perturbation V' is
no longer small at the tip of the SF-MI transition lobe (Fig. 3.5¢), and the perturba-
tion theory breaks down. Nevertheless, comparing with exact-diagonalization results,
Fig. 3.5b shows still good agreement, in contrast to Fig. 3.5¢, which shows clear dis-
agreement. Even though the parameter J/U = 0.2, chosen for Fig. 3.5¢, is close to
the SF-MI transition for one-dimensional lattices (as predicted by DMRG [129] and
QMC [128,133] calculations), perturbation theory reproduces the correct slope for
the off-diagonal decay and lacks only the wrong offset from the mean field. Thus,
even for this case, perturbation theory represents a qualitative improvement on the
Gutzwiller result. The results for both approximations, Gutzwiller and perturbation
theory, are expected to become better in higher dimensions (with the perturbative
corrections diminishing in size).

3.4.3 Corrections to the expansion pictures

The experimental observation of the SF-MI transition [24] relies on the different
behavior of the density matrix in the Mott-insulator and superfluid regimes. The
experimental visualization is done by means of absorption pictures of the freely ex-
panding atomic cloud. Assuming that the expansion time is long enough and that the
gas is dilute enough (such that atom-atom interactions can be neglected during the
expansion), the shape of the cloud reflects the initial momentum distribution p(k).
Under these assumptions, the density matrix is directly connected to the expansion
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pictures of the many-body system via a Fourier transform

M
pll) = [w()? 3 piye i) (3.23)

ij=1

Here, w(k) denotes the Fourier transform of the Wannier functions w(r —r;), de-
scribing the wavefunction of a single lattice site. The presence of the factor w(k) in
Eq. (3.23) provides a cutoff at high momenta. Expansion pictures provide therefore
a tool, allowing to draw one’s conclusions about the state of the many-body system.
From Eq. (3.23) we can conclude that a many-body state, having no inter-lattice site
correlations, i.e. p;; = pd;;, leads to a Fourier transform which is a constant. This
situation corresponds to the Gutzwiller prediction for the Mott-insulator. Including
short-range correlations will drastically change the flat, homogenous expansion pat-
tern predicted by the Gutzwiller approximation. Considering the case in which even
distant lattice sites are strongly correlated leads to the superfluid situation. In the
strongly correlated case, p;; can be approximated by a constant in Eq. (3.23) and we
expect to see Bragg peaks in the expansion pattern.

Based on these ideas, Greiner et al. [24] examined the expansion picture, Fig. 3.3,
of a Bose-Einstein condensate in an optical lattice for different values of J/U. Start-
ing with a harmonic trapping potential, Fig. 3.3a shows a sharp single peak, typical
for a Bose-Einstein condensate. In the following sequence of absorption pictures,
Fig. 3.3b — f, the optical lattice and, thus, the parameter J/U was increased. As a
consequence of the increasing optical lattice, the Bragg peaks become more and more
pronounced from Fig. 3.3b to Fig. 3.3c. According to the discussion above, the ex-
pansion patterns Figs. 3.3b-e show the signatures of a strongly correlated many-body
state. Therefore, these expansion patterns were identified in the experiment [24] with
a state in the superfluid phase. Finally, with increasing J/U, the expansion patterns
show an increasing diffuse background, until in Fig. 3.3h there are no peaks visible
anymore. The system has undergone a superfluid-Mott insulator transition and is
now in the Mott-insulator phase with a very large ratio of J/U. Hence, Fig. 3.3h
shows the expected featureless expansion picture of an uncorrelated many-body state.

A closer look at Fig. 3.3 shows further interesting features. Firstly, the expansion
pictures show a Gaussian-like envelope. This is a consequence of the single-lattice-site
wavefunction, and is taken into account by the function w(k) in Eq. (3.23). Secondly,
the experiment used an additional harmonic trapping potential to confine the Bose-
Einstein condensate spatially. Consequently, in most cases of Fig. 3.3 there will be
superfluid and Mott-insulator regions coexisting. The coexistence of both phases
leads to a diffuse background added to superfluid peaks, hence, giving an possible
explanation to the expansion pictures in Fig. 3.3c¢-f. Thirdly, one has to note that our
previous interpretation of the expansion patterns were partly based on the Gutzwiller
results. There is no sharp transition from a Bragg-peaked pattern in the superfluid
phase to the homogenous expansion pattern of the Mott-insulator phase, as will be
shown now by means of the perturbative inclusion of short-range correlations.
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Figure 3.6: The figure shows the correction to p;;+1 in second-order perturbation
theory as a function of p/U and J/U. The order parameter (¥;) vanishes inside the
Mott-insulator lobes. The mean-field phase boundaries are given by the white-dashed
line. Arrows in the (u/U, J/U) phase diagram indicate the parameters used for the
momentum distributions shown in Fig. 3.7. The parameters used are: p/U = 0.75,
J/U = 0.01 for (1), /U = 0.5, J/U = 0.044 for (2), and p/U = 1.5, J/U = 0.0225
for (3).

Bulk situation

Before discussing the full experimental situation, it is instructive to consider the bulk
situation first. Thus, we neglect the harmonic confinement and consider the conse-
quences of the perturbative inclusion of short-range correlations for a homogenous
optical lattice. The perturbative treatment yields considerable contributions to the
correlation function. Figure 3.6 shows an example for the nearest-neighbor correc-
tion p; ;41 to the correlation function. The most pronounced corrections are seen at
the tips of the lobe. These are, however, also the regions where the perturbation se-
ries is expected to show large errors, as the expansion parameter is not small anymore.

As a consequence of the corrections to the correlation function, there are also
drastic changes in the expansion patterns. A few examples are shown in Fig. 3.7
with their parameters indicated by the arrows in the p/U-J/U plane in Fig. 3.6. The
set of momentum distributions p(k)/|w(k)|? in Fig. 3.7 are computed for a homoge-
neous two-dimensional lattice. All upper figures are computed using the Gutzwiller
approximation. For comparison, the lower graphs show the momentum distributions
improved to second order in perturbation theory. These perturbatively improved
expansion pictures (lower graphs), show much finer structures than the mean-field
results (upper graphs).

The parameters in Fig. 3.7(1) and Fig. 3.7(2) are chosen to lie in the Mott-
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Figure 3.7: Plots (1) — (3) display the momentum distribution without the Wannier
form factor, p(k)/|w(k)|?, calculated for a 2D lattice with 25 x 25 lattice sites. The
numbers (1) — (3) refer to the parameters in the (u/U, J/U) phase diagram as indi-
cated by the arrows in Fig. 3.6. The upper plots are the Gutzwiller mean-field results
(GW), and lower plots are calculated using second-order perturbation theory (PT).
The parameters used are: /U = 0.75, J/U = 0.01 for (1), u/U = 1.5, J/U = 0.0225
for (2); and u/U = 0.5, J/U = 0.044 for (3). The gray scales of the plots belonging to
the same parameter set are identical. Expansion patterns (1) and (2) are normalized
to the peak maximum. The expansion patterns (3) are normalized to 1/20 of the
peak maximum.
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Figure 3.8: Cut through one of the peaks in the upper and lower expansion picture of
Fig. 3.7(3). The cut is taken along k,a = 0; dashed line for the Gutzwiller expansion
picture (GW in Fig. 3.7(3)) and solid line for the perturbation-theory result (PT in
Fig. 3.7(3)).
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insulator phase. The previous discussion of perturbative modifications in Sec. 3.4.2
showed quickly decaying correlations with a finite correlation length? for the Mott-
insulator. Hence, perturbation theory predicts broad peaks in the Mott-insulator
regions down to very small values of J/U, Fig. 3.7(1) and Fig. 3.7(2) lower graphs,
whereas the Gutzwiller result without perturbation theory shows a structureless flat
distribution for the whole Mott-insulator region, Fig. 3.7(1) and Fig. 3.7(2) upper
graphs. Naturally, the modifications of p(k)/|w(k)|* are strongest near the phase
transition, Figs. 3.7(2). Going towards larger values J/U into the superfluid phase
(see Fig. 3.6(3) and Fig. 3.7(3)), perturbation theory gives rise to a suppression of
the peaks as shown in Fig. 3.8. This suppression can be larger than 20% of the
original peak height and stems from the corrections to the mean field. Additionally,
Fig. 3.7(3) shows broad peaks induced by the inclusion of short-range correlations.
However, for large lattices, these broad peaks are small compared to the (finite-size
broadened) superfluid §-peaks.

Harmonic confinement

In contrast to what was assumed in the last section, optical lattices used in experi-
ments are not homogeneous. Magnetic or optical trapping potentials are used [24,146]
to confine the atomic gas to a finite volume. The inhomogeneity caused by the trap-
ping potential leads to slowly varying on-site energies, ¢;, in the Mott-Hubbard model
Eq. (3.7). This slowly varying potential can be interpreted as a spatially varying
chemical potential e = 1 — €;. Consequently, the lattice is in general not in a
pure Mott-insulator or superfluid phase, but shows alternating shells of superfluid
and Mott-insulator regions. Examples for different harmonic potentials are shown
in the bar graphs of Fig. 3.9. For instance, the bar graph with the box label shows
a superfluid region surrounded by a Mott-insulator shell. The diamond-labeled and
circle-labeled graphs show the opposite situation i.e. a Mott-insulator surrounded by
a superfluid ring. Moreover, the phases need not necessarily be connected but can be
fragmented, as shown in the example denoted by a circle in Fig. 3.9. Considering the
varying on-site energy as a spatially varying chemical potential gives a qualitative
understanding of the shell structures. The spatial variation of the chemical potential
corresponds to a path parallel to the /U axis in the p/U-J/U diagram (see the
solid lines in the center plot of Fig. 3.9). Starting with the potential minimum in
the trap center and then moving away from the center, decreases the effective local
chemical potential. Thus, we start at the top of the line and move towards smaller
p/U values. Whenever a MI-SF (SF-MI) phase boundary is hit along the path in the
wu/U-J/U diagram, a change from a Mott-insulator to a superfluid shell (superfluid
to Mott-insulator shell) appears. Consider, for instance, the particle-number distri-
bution on the right hand side of Fig. 3.9, labeled by a diamond. Starting in the n =1
Mott-insulator lobe, the particle-number distribution shows a plateau with n = 1
particles in the trap center. Once the phase boundary is hit we have a transition into
the superfluid state, resulting into a superfluid ring in the number distribution. Note,
however, that for a harmonic trap, /U changes quadratically with the distance to
the trap center. This can cause situations as for the number distribution labeled by

2The correlation function is expected to decay exponentially in the Mott-insulator phase [57].
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Figure 3.9: Bar graphs: Occupation number n; on a plane through the trap center
for a 3D lattice with 153 lattice sites. Circle: p/U = 0.4, J/U = 0.005, and o/U =
0.02. Square: p/U = 1.5, J/U = 0.0075, and /U = 0.03. Diamond: u/U = 0.4,
J/U = 0.0075, and a/U = 0.02. Center graph: Phase diagram in the p/U-J/U plane,
showing the variation of the chemical potential due to the harmonic confinement.
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the box symbol in Fig. 3.9. In the box example, the outer most superfluid shell is
missing due to the quadratically fast changing potential and the discretization of the
lattice.

The inclusion of short-range correlations gives also rise to considerable modifica-
tions in the presence of an inhomogeneous trapping potential. Examples, calculated
for a three-dimensional lattice, are shown in Fig. 3.10, where an underlying harmonic
potential

3
6=ay iy, (3.24)
B=1

was chosen. The three expansion patterns considered in Fig. 3.10 correspond to the
three examples of particlee-number distributions shown in Fig. 3.9. Calculating the
expansion patterns for these situations shows that the perturbative corrections, aris-
ing from the short-range correlations, lead to a substantially different behavior in
the different cases. For the almost complete Mott-insulator state we obtain a correc-
tion to all wavevectors k, with a fast drop at values close to the peak center k = 0,
which leads to a peak broadening in the expansion picture (see circles in Fig. 3.10).
Particularly large changes were found for the case of a superfluid island surrounded
by a Mott-insulator phase (squares in Fig. 3.10). Again, corrections arise for all
wavevectors, but, in contrast to the almost homogeneous case, the largest increase
is now found for k& = 0, with changes of about 20% of the peak maximum. Finally,
the reversed situation, a Mott-insulator island surrounded by a superfluid phase (di-
amonds in Fig. 3.10) does not show an increase of its maximum peak height but a
considerable reduction (over 5% of the peak maximum). This is not surprising, as
the majority of the lattice sites are now contributing to the superfluid phase and a
peak reduction was also observed for the bulk-superfluid phase.

Comparison with Quantum Monte Carlo calculations

To conclude this section, the Gutzwiller results and perturbatively improved results
for the expansion patterns are compared to the Quantum Monte Carlo (QMC) cal-
culation of Kashurnikov et al. [58]. Comparing the different numerical methods with
the Quantum Monte Carlo calculations provides information about the shortcomings
of the Gutzwiller method. Moreover, insight about the ability to correct these short-
coming using the perturbative expansion is obtained.

The results from the different numerical approaches, computed for a small three-
dimensional lattice with harmonic confinement, are shown in Fig. 3.11. The upper
graphs always depict the Quantum Monte Carlo results. The lower graphs show
the Gutzwiller (dashed-black line) and the perturbatively corrected result (red-solid
line). There is in general good qualitative agreement in all cases with high superfluid
fraction (compare for example the upper and lower graphs in Fig. 3.11a — ¢). How-
ever, the features of these expansion patterns are already well reproduced using the
Gutzwiller mean-field ansatz alone. In particular, the reproduction of the satellite
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Figure 3.10: Expansion patterns for a 3D lattice with 153-sites in the presence of a
harmonic potential. (a) Momentum distribution without the Wannier form factor,
p(k)/lw(k)[?, calculated along the k, direction. Filled symbols are the perturbation-
theory results and open symbols are the Gutzwiller results. The graphs for the
Mott-insulator surrounded by a superfluid shell (diamonds) are rescaled by a factor
1/25. The results presented here correspond to the occupation distribution shown in
Fig. 3.9 with the corresponding symbols. (b) Difference between perturbation-theory
and Gutzwiller results.
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Figure 3.11: Comparing the momentum distribution obtained with different numer-
ical methods (QMC, Gutzwiller, perturbation theory) computed for a 3D optical
lattice with an harmonic trapping potential. Each box shows in the upper graph
the QMC results, taken from [58] and in the lower graph the Gutzwiller (dashed
line) and perturbation-theory (solid line) results. All expansion patterns are cuts
along k, for a system of 163 lattice sites. Furthermore, all plots are plotted without
the Wannier form factor, p(k)/|w(k)|?> (corresponding to ng/|¢x|? in the notation
of [58]). The insets in the boxes of the lower graphs show the occupation number
n; for a cut along the Z-direction. (a) J/U = 1/24, p = 0.3775, o = 0.00810.
(b) JJU = 1/32, p = —0.0383, a = 0.00610. (¢) J/U = 1/80, p = 0.3125,
a = 0.01221. (d) J/U = 1/80, u = 0.625, a = 0.01288. (e) J/U = 1/80, u = 1,
a = 0.02505. (f) J/U =1/80, p = 1.875, a = 0.022. (Note, however, that the Hamil-
tonian used in [58] differs from Eq. (3.7) and, hence, the parameters used in [58] are
converted to the corresponding quantities used in our definitions.)
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peak, which was discussed as a signature of the MI-SF shell structure in [58]. Cor-
rections arising from perturbation theory show a suppression of the superfluid peak,
as was discussed above. However, there are also considerable discrepancies to the
Quantum Monte Carlo results for situations with a large Mott-insulator fraction, even
after implementing second-order perturbation theory. In these cases (Fig. 3.11d,e),
the influence of the Mott-insulator phase on the expansion picture broadens the peak
and leads to a homogeneous background. The discrepancies to the Quantum Monte
Carlo approach are clearly visible in Fig. 3.11d. Gutzwiller and perturbation theory
show no peak broadening and a satellite peak, in contrast to the Quantum Monte
Carlo results. Including the short-range correlations perturbatively corrects the ex-
pansion pattern in the correct direction, giving rise to a suppression of the superfluid
peak. Considering the expansion pattern with the clearest Mott-insulator features
(Fig 3.11e), the correct peak broadening is obtained from Gutzwiller and the pertur-
bative calculation, but a larger ratio of the Mott-insulator background to superfluid
peak is visible.

In light of these discrepancies, it is necessary to note that the expansion pat-
tern is highly sensitive to the value of the mean field. Even small deviations can
lead to a change in the superfluid-peak height sufficient to mask the flat distri-
bution of the Mott-insulator phase. However, careful checks proved that the ob-
served discrepancy is not due to a lack in accuracy of our numerical calculations.
We therefore believe that the discrepancies between Quantum Monte Carlo and the
Gutzwiller /perturbation-theory results for situations with a large Mott-insulator frac-
tion can be attributed to the insufficiency of the Gutzwiller approach in describing the
long range correlations in this inhomogeneous situation. Situations of the particle-
number distribution, as shown in the inset of Fig. 3.9(circle), inherit the special case of
an unconnected superfluid phase. This fragmentation of the superfluid phase causes
great problems in the Gutzwiller approach. Assuming a local mean field W;, the cor-
relations of two lattice sites situated in different superfluid fragments are given by
pij = WiW,. Thus, the correlation is unaffected by the fact that the two superfluids
are unconnected. Even the perturbative correction to the Gutzwiller result can only
restore the correct correlation between the superfluid fragments, if the perturbation
theory is done to sufficient order i.e higher than the distance between the fragments.
The results presented in Fig. 3.11 are done in second-order perturbation theory, and
therefore not yet sufficient to give the correct long-range correlation function. In ad-
dition, it must be remarked that the lattice, employed in [58], is comparatively small
for the given harmonic confinement potential (with no complete shell of empty sites
at the perimeter, see insets of Fig. 3.11). Hence, the choice of boundary conditions
(periodic in the case of our numerical calculations) may have non-negligible effects
on the outer lattice sites.

3.5 Summary of Chapter 3

In conclusion, this chapter showed that short-range correlations play an impor-
tant role at the Mott-insulator transition in optical lattices. The discussion was
based on the description of the optical lattice using the bosonic Mott-Hubbard
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model [23]. Introducing a new way to perturbatively include correlations to the
mean-field Gutzwiller ansatz allowed the inclusion of short-range correlation. The
perturbation theory presented in this chapter is applicable in the Mott-insulator as
well as in the superfluid state, in contrast to perturbative approaches using strong-
coupling expansions or Bogoliubov theory. Hence, this method is particularly suitable
in inhomogeneous situations where superfluid and Mott-insulator phases are coexis-
tent. However, results close to the phase transition must be interpreted with care as
the perturbative correction is not small in this region.

Corrections to local quantities, as well as to the correlation function and the
expansion patterns were derived. The numerically calculated corrections to the
mean-field results used the perturbative method up to second order, thus includ-
ing correlations between next and next-nearest lattice sites. Modifications to the
particle-number fluctuations o;, arising from the perturbation theory, gave rise to the
expected smooth transition of o; at the superfluid-Mott insulator transition. More-
over, comparing the results obtained by perturbation theory to the results for o; from
exact diagonalization in one-dimensional lattices, showed good agreement for small
values of J/U.

Of particular importance are the corrections to the correlation function, and thus
to the expansion patterns. Comparing the correlation function obtained from per-
turbation theory with calculations obtained from exact diagonalization for small one-
dimensional lattices showed good agreement. Studying the expansion patterns showed
that the inclusion of the short-range correlations to the mean-field ansatz gives rise
to distinct modifications. A broad peak can be seen in the perturbation-theory re-
sults for the Mott-insulator regime. The peaks remain visible even down to small
values of J/U. Comparing perturbation-theory and mean-field expansion patterns
obtained for parameters in the superfluid region displayed a considerable suppression
of the superfluid peak in the perturbative results. Additionally, on approaching the
superfluid-Mott insulator quantum phase transition from the superfluid side, broad
peaks underlying the superfluid peaks were found in the perturbation-theory expan-
sion patterns. Including a harmonic confinement potential leads to situations, where
superfluid and Mott-insulator regions coexist. Hence, the perturbative corrections
to the expansion pattern become more complex. Lattices with different additional
harmonic traps were studied. The examples, in which the periodic lattice was com-
bined with a harmonic potential, gave rise to different constellations of superfluid
and Mott-insulator regions. As a consequence of the inclusion of short-range correla-
tions, modifications of up to 20% of the peak maximum were found in the expansion
patterns .

Finally, the results of the Gutzwiller method and perturbative method were com-
pared with a Quantum Monte Carlo simulation. Expansion pictures for a three-
dimensional lattice of 163-lattice sites were computed for different harmonic confine-
ment potentials. The comparison to the Quantum Monte Carlo results showed, that
for situations with dominating superfluid fraction, the Gutzwiller and perturbation
theory results reproduce the expansion pictures quite well. Considerable differences
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are seen in the cases, in which the expansion picture is dominated by the Mott-
insulator region. The perturbative inclusion corrects the expansion pattern in prin-
ciple towards the correct direction. However, improving the Gutzwiller results by
perturbation theory to second-order was not sufficient to reproduce the Quantum
Monte Carlo results.



Chapter 4

Full counting statistics of the
BEC-BCS crossover

The final chapter presents an example of the new field of dilute many-body systems
accessible in cold atomic gases. Looking at the historical development of the the BEC-
BCS crossover research field makes the connection to condensed matter research ob-
VIOUS.

The crossover from a BEC state of molecules to a BCS state of fermions has
raised the interest of physicists for many years. The BCS wavefunction, developed
for the description of superconductivity [147], was soon recognized [148, 149] also to
be applicable for the description of the crossover to a state of Bose-FEinstein con-
densed molecules. The theory was soon extended to non-zero temperatures [150, 151].
With the discovery of high-temperature superconductivity, the idea that the BEC-BCS
crossover might be relevant for its theoretical description emerged [151-155]. A re-
vival of BEC-BCS' crossover physics was launched by the new possibilities offered in
experiments with ultra-cold gases of Fermi spin mixtures. Fermions were prepared in
an equal number of two different hyperfine spin states and cooled down to a fraction
of the Fermi temperature. Applying a magnetic field allows the preperation of the
atomic cloud close to a Feshbach resonance. If the interaction between fermions in
different spin states is attractive then the gas is expected to form a superfluid BCS
state. Tuning the magnetic field over the Feshbach resonance, the Cooper pairs can
be transformed into molecules. Fermions which are not bound to molecules are scat-
tering with a positive scattering length on this side of the Feshbach resonance. The
great advantage of BEC-BCS crossover experiments in dilute atomic gases is given
by the possibility to tune the interaction strength using Feshbach resonances. The
first experiments demonstrated the conversion of the Fermi spin mixture into a BEC
of molecules [156-159]. Recent experiments have shown a strong indication for the
formation of a superfluid BCS state [158, 160).

This Chapter will concentrate on the statistical aspect of the BEC-BCS crossover.
The BEC-BCS crossover presents the peculiarity of a transition from bosonic molecules
to a state of Cooper-paired Fermions. As a consequence, a drastic change in the
particle-number statistics is expected as one changes from the BEC to the BCS side.

71
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Hence, measuring the atom-number statistics provides a possibility to gain informa-
tion about the state of the system. In this chapter, the measurement of atom-number
fluctuations in a small subsystem of the dilute atomic cloud is suggested as an experi-
mental approach to investigate the atom-number statistics of atomic clouds. Following
this ansatz, number-density correlations are calculated for the BEC-BCS crossover.
Statistical properties are obtained using the method of full counting statistics. The
very different results obtained for the full counting statistics on the BEC and BCS
side of the crossover demonstrate the usage of noise measurement to distinguish these
different states of the many-body system. For instance, the order parameter on the
BCS side can be extracted from the measurement of the variance at zero temperature.
Hence a measurement of the variance provides a way to recognize the formation of
the superfluid state.

4.1 The BEC-BCS crossover in ultra-cold fermionic
gases

Studying the BEC-BCS crossover regime requires good control over the interaction
strength between the particles. Feshbach resonances provide just this control over
the inter-atomic interaction strength in dilute atomic clouds. Hence, using Feshbach
resonances eventually led to a breakthrough in matter-wave experiments investigating
the BEC-BCS crossover. Strong repulsive interactions on one side of the Feshbach
resonance and strong attractive interactions on the other side of the resonance allow
the formation of a BEC and BCS state, respectively. The aim of this section is to
provide a brief overview of the model and the basic mechanism describing ultra-cold
atomic Fermi mixtures close to a Feshbach resonance.

4.1.1 Feshbach resonances

A deeper understanding of Feshbach resonances is not necessary for the discussion
in the following sections. Hence, we will give only a short introduction to the ideas
behind the Feshbach-resonance phenomenon. For the main part of this chapter, the
simple treatment of a Feshbach resonance presented here, will be sufficient. A more
detailed discussion of the topic is given for example in [36,161-163].

Feshbach resonances provide a very useful tool to manipulate the interaction
strength in atomic gases. The basic principle of the Feshbach resonance relies on
the coupling of the two-fermion scattering state to a molecular bound state. Strong
coupling is achieved by bringing the scattering state close to resonance with the
molecular bound state. A schematic sketch of the potentials as a function of the
inter-atomic distance is shown in Fig. 4.1. The molecular bound state presents the
so called “closed channel” in contrast to the “open channel” of the two-fermion scat-
tering state. A scattering process between different atoms can generally be described
by a set of quantum numbers (e.g. the hyperfine states etc.). Following [36], different
sets of quantum numbers will in the following be denoted as a different channels.
Scattering between different channels can thus lead to a difference in the Zeeman and
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Figure 4.1: (a): Sketch of the “open” and “closed” channel potentials involved in
a Feshbach resonance. Atoms, incoming in the open channel with energy ey, are
influenced by the presence of a nearby bound state (closed channel). As the closed
and open channel generally are in different Zeeman or hyperfine states, applying
an external magnetic field allows to shift the potentials with respect to each other.
Hence, the scattering length a can be controlled by the applied external magnetic
field B. (b): Magnetic field dependence of the open and closed channel. The dashed
and solid line correspond to the uncoupled and coupled case, respectively.

hyperfine energies of the incoming and outgoing states. Channels which can not be
accessed due to energy conservation are called “closed channels”.

Let us return to the situation depicted in Fig. 4.1. Here, the incoming scattering
channel with threshold energy e, is in the vicinity of a bound state in a closed
channel. In order to get an idea of the influence of the close by bound state on the
scattering process, it useful to think of a perturbative treatment in the interaction
between the open and closed channel. In first order, the closed channel has no impact
on the scattering process, as a transition into the bound state is forbidden by energy
conservation. However, second-order processes describing the virtual scattering into
the closed channel and finally decaying back into the open channel is allowed. Hence,
in second-order perturbation theory, the scattering length a can be written as [36]

Z ‘ wn|HQP|1/}1n>‘

4 h2 €th — €n

, (4.1)

a = ap

where aypg is the scattering length in absence of the closed channel and the sum runs
over all closed states C. The operator HQ p= QH P is the Hamiltonian of the system,
H multiplied by the projection operator projecting on the open states P from the
right and multiplied by the projector for the closed states @ from the left. Summing
the projection operators yields the unity operator: P+Q =1. Hence, HQ p describes
transitions between the open and the closed channel. Furthermore, |@Z)m) denotes the
incoming wavefunction and |¢,,) the wavefunctions of the bound states in the closed
channel. Suppose, that the energy level of one of the bound states in the closed
channel, |R), is very close to the threshold energy of the incoming scattering state
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€in. Assuming further that the energy levels of the bound states in the closed channel
are well separated, the state |1g) provides the dominating contribution in Eq. (4.1).
Consequently, contributions from all other bound states in the closed channel are
negligible, reducing Eq. (4.1) to

m |(Yr|Hop|t)|? .

4.2
A7h? €ih — €R (4.2)

a = Qpg +

Applying a magnetic field, B, leads to an energy shift of the channel potentials.

As different channels denote in general different Zeeman or hyperfine states, the

potentials of different channels will have different energy shifts. This results into

a relative shift of the closed and open channel potentials, which is controllable by

the strength of an external magnetic field. Let By be the magnetic field for which
€tn = €g. Expanding the channel energies about By

ea(B) = Ea(BO) + :ua(B - BO) ) (4'3)

with p, = (0€a/0B)|p=g,, introduces a magnetic field dependence in the scattering
length

m (V| Hgp|vm)|?

a(B) = apg + . 4.4
(B) = avs Arh? (pon — pr)(B — Bo) #4)
Defining the width of the resonance as
H 2

 dnhPang MR — [

yields the common expression [36,163,164] for the magnetic field dependence of the
scattering length at a Feshbach resonance

AB
a = Gpg (1—3_30) . (46)

The impact of a Feshbach resonance on the scattering length can now be directly seen
from Eq. (4.6). A bound state above the threshold energy of the scattering state,
€r > €, leads to an attraction between the incoming atoms (negative scattering
length). If the bound state is below the threshold energy, ez < €, then the atoms
perceive a repulsive interaction (positive scattering length). The scattering length
diverges at exact resonance. Experimentally, Feshbach resonances have been observed
for bosons, **Na [165], 8Rb [166-168],5"Rb [169], 13*Cs [170], °2Cr [171] as well as for
fermionic spin mixtures, %Li [172], *°K [173].

4.1.2 The single-channel model

The model used in the previous section described the Feshbach resonance in terms
of multiple channels. Finally, in Eq. (4.2), the discussion was reduced to the open
channel and the nearest closed channel. This two channel approximation was based on
the assumption that all other channels have only little influence on the open channel.
In a further step, the two-channel model can be reduced to a model with only a single
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channel. The influence of the closed channel is approximated by a field dependent
interaction. This can in principle be done by using a field dependent scattering
length, as for example, Eq. (4.6). A method to optimize the effective interaction
for the single-channel model, mimicking the more complicated two-channel model, is
described in reference [174]. The detailed form of this effective interaction, however,
will be of no importance for the discussion in the following sections. Instead, the
validity of the single-channel model is briefly outlined now.

Validity of the single-channel model

In general, single-channel models for the BEC-BCS crossover are expected to provide
a good description for broad Feshbach resonances [174-176]. Broad resonances can be
described by a single, energy independent parameter: the scattering length a. The
partial-wave expansion for conventional scattering theory describes the scattering
process in terms of the partial-wave amplitude

1
Jelk) = kcot oy — ik’

(see Appendix D for a brief definition and Ref. [112] for details). For finite-range
potentials and at low energies only the s-wave contribution is important i.e. ¢ = 0.
Higher angular momenta decrease with §, ~ k**1. Following Ref. [112], Eq. (4.7)
can be written for low energies i.e small k as

1
folk) = 1/a+ RK2/2 — ik’

where the small k expansion of kcot dy ~ 1/a + Rk?/2 has been used. The quantity
R is known as the effective range of the potential, which is related to the width AB
of the Feshbach resonance via the relation [177]
h2
R=—"——.
Qmabg,uRAB

(4.7)

(4.8)

(4.9)

The wave amplitude fy(k) is always energy dependent in the close vicinity of the reso-
nance, as a — oo. The term proportional to R ~ 1/AB can be neglected for kR < 1.
Natural length scales for the wavevector are given by the Fermi wavevector kr and the
inverse scattering length 1/a. Hence, the approximation k cot dg =~ 1/a is reasonable
under the conditions kpR < 1 and R/a < 1 [175]. As R ~ 1/AB the resonances
can be classified into narrow Feshbach resonances, which have a strong energy depen-
dence, and broad Feshbach resonances, for which the energy dependent Rk?/2 term
is negligible. Fortunately, many experiments, investigating the BEC-BCS crossover,
use broad Feshbach resonances as found in °Li [158,178-181], and *°K [160]. In order
to describe narrow Feshbach resonances, multi-channel models are required [163,182].

There is a fundamental difference between the single-channel and the multi-
(two-) channel model. Multi-channel models allow for the coexistence of molecules
and fermions. This is often described by a fermion-boson Hamiltonian with an inter-
action term

VFB = Zg(k) (bLCq/27k7qu/2+k’T + hC) (410)
k,q



76 CHAPTER 4. FCS FOR THE BEC-BCS CROSSOVER

transforming bosonic molecules into fermion pairs and vice versa [163,176,182]. Here,
the operators b', b and cf, ¢ describe the boson and fermion creation and annihilation
operators, respectively. The wavefunction is therefore a combination of the closed
and open channel wavefunctions with a certain mixture 0 < z <'1

|y = \/z|closed) + v/1 — z|open) . (4.11)

However, for broad Feshbach resonances, the occupation of the closed channel is quite
small [174]. Broad resonances correspond to a strong coupling between the open and
closed channels. The strong coupling gives rise to short life times and thus to a
low occupation of the closed channel. Consequently, single-channel models provide a
good description of the scattering process for broad resonances.

4.1.3 The BCS wavefunction

The system considered in all future discussions is a mixture of fermions in different
hyperfine states, which will be denoted with quasi-spin up and down. The fermion
gas will be studied in the vicinity of a broad Feshbach resonance. The Feshbach res-
onance is modeled by a single-channel approach. The use of a single-channel model
means that the detailed potential landscape of the scattering process is approximated
by an effective potential. This requires that the wavelength of the incoming particle k
is much larger than the range of the scattering potential R. The scattering potential
is thus replaced by a contact interaction, characterized by a single parameter as, for
example, the s-wave scattering length a. The fermionic cloud is characterized by the
particle density, which is a function of the Fermi wavevector kp. The requirement
for the effective-potential approximation can then be summarized as krR < 1, and
corresponds to the low-energy limit. Combining the two characteristic length scales
of the problem, the scattering length a and the Fermi wavevector kg, leads to the
dimensionless quantity & = 1/kpa. This dimensionless quantity ¢ will be used as a
convenient parameter to characterize the crossover from the BEC to BCS side.

The wavefunction of the fermionic spin mixture will be described by a product of
up and down fermion singlet states. Following the ideas of [148-150] the fermion spin
mixture will be described by a Bardeen-Cooper-Schrieffer (BCS) [147] wavefunction

|\I/BCS> = H (uk + UkCLlcikT> |0> . (412)
k

The BCS wavefunction is a grand-canonical state of (k T, —k |) fermion pairs. The
functions uyx and vy are the free parameters of this variational ansatz. They are
determined by minimizing the energy of the system, described by the “reduced”
Hamiltonian [183]

H=Y &c,o0+ ) Vigelehy oo (4.13)
ko

kj
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Here, & = ex — o denotes the energy measured with respect to the chemical potential.
Using the constraint |uy|* + |vk|? = 1 leads to

1 k 1 €k
2 _ - 2 i _
il = 5 (1+—Ek) S = <1 —Ek) , (4.14)

and the self-consistency equation

1A
A== =V, (4.15)
k

with Fy = /& 4+ A% The gap equation (4.15) and the conservation of the total
particle number !

N=> |ul*, (4.16)
k,o

allow a self-consistent determination of the order parameter A and the chemical po-
tential p.

In conventional BCS theory, the interaction is assumed to be isotropic. Conse-
quently, the order parameter is also isotropic. The gap equation can then be rewritten
as

A==V v, (4.17)
k

using Eq. (4.14). Interactions between the up and down fermions are parameterized
by the scattering length a in three dimensions and the bound-state energy Epz in two
dimensions. The interaction potential in Eq. (4.17) must therefore be rewritten in
terms of the parameters characterizing the scattering process. The connection be-
tween the effective scattering potential and the interaction potential V' of Eq. (4.17) is
achieved by a renormalization of the gap equation [152,184]. Based on this renormal-
ized gap equation the self-consistency equations are obtained. Appendix F discusses
the self-consistency equations for the two-dimensional, quasi-two dimensional and
three-dimensional case. Figure 4.2 shows the results for the order parameter A and
for the chemical potential i calculated from the self-consistency equations in three di-
mensions. All quantities in Figure 4.2 are normalized to Fermi energy e¢x. The insets,
Fig. 4.2b and Fig. 4.2¢, show u/ep and A/ep as function of —(§ — &), respectively.
Here, £ = 1/kpa and & = &(u = 0). Let us have a closer look at the behavior of
the chemical potential p and the order parameter A as a function of —(§ — &p). The
chemical potential approaches the value lime .ot = —Ep/2 = —h? /ma? in the BEC
limit. This corresponds to half the molecular binding energy required to dissociate
the molecule. In the opposite limit, & — —oo, the chemical potential tends towards
the Fermi energy pu/ep = 1, which is the expected value known from conventional
superconductivity. Finally, in Fig. 4.2c, the order parameter shows an increase in the
BEC limit and vanishes exponentially [149] in the BCS limit.

Later, a subsystem of the atomic cloud will be considered and the particle number will be
replaced by the average particle number.
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Figure 4.2: Results from the self-consistency equations (4.17) and (4.16) for A and
in 3D. All quantities are normalized with respect to the Fermi energy ep. (a): A/ep
as a function of p/ep. (b,c): Figures (b) and (c) show p/ep and A/er plotted over
—(& — &), respectively. Here, ¢ = 1/kpa and § = &(u = 0).

The values for A and p, obtained from the self-consistency equations, can be
used now to calculate the variational parameters uy and vg. Figure 4.3 shows the
different behavior of |vk|? in the BCS (1 = ¢p), intermediate (u =~ 0), and BEC
regime (u < —ep). The values for uy and vy allow a characterization of the state
of the system. The parameter |vy|? can be interpreted as the probability of the pair
(k 7,k |) being occupied, whereas |uy|? is the probability that the pair state is unoc-
cupied. The curve for |vi|? corresponding to the BCS regime shows a step function
broadened by A. The curve for the BEC regime shows values of |vi|? which are much
smaller than the BCS results for € < ep. Additionally, |vk|? is decaying much slower
in the BEC case compared to the BCS case.

Finally, let us have a look at the wavefunction in the BEC limit. In the extreme
BEC limit, £ — oo, the BCS wavefunction can be rewritten as a coherent state of
fermion pairs. Rewriting Eq. (4.12) leads to

|[Upcs) = (H uk> exp (Z cklcT kT) 0) . (4.18)

The product over uy can be approximated as

Huk—eXp [Zln( 1= o] )] ~ exp [_%zk:‘vkpl _ N

(4.19)
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Figure 4.3: The variational parameter |v.|? for different values of yi/ex. The value for
A corresponding to each p is obtained from the atom-number conservation. The solid
line shows the BCS limit, u/ep ~ 1. The dash-dotted line shows the intermediate
regime p/ep ~ 0 and the dash-dot-dot line the BEC limit, u/ep < —1.

using the fact, that in the BEC limit |vy| < 1, as can be seen from Fig. 4.3. Defining

the operator
/2 v
T E : k ot ot
bt = N - u_kaJ'C*kT’ (420)

the BCS wavefunction can be rewritten as a coherent state

s N/2 ‘
|Upes) = e Mexp (\/glfr) 0) = e~ NV/4 Z %M) . (4.21)

=0

The operators b' and b fulfill in the extreme BEC limit approximately bosonic com-
mutation relations. The commutator can be approximated by

A~

N
(0,07 ~ 1 — 87rﬁ(na3) : (4.22)

where N = Y ko cfwcka is the number operator and n = N/V is the particle-number
density. Assuming, that the inter-particle distance is much larger than the scattering
length i.e. na® < 1, one can treat the b', b as bosonic creation and annihilation
operators. The requirement na® < 1 is well satisfied in most experiments with dilute
atomic gases. Thus, in the BEC limit, the state can be interpreted as a Bose-Einstein
condensate of molecules. In fact, Bose-Einstein condensation of molecules on the BEC
side of a Feshbach resonance has been demonstrated in several experiments [156-159].
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4.2 Measurement scheme for the particle-number
statistics in cold atomic clouds

In this section, we introduce the idea of noise measurements as a source of informa-
tion. In contrast to the rather bad reputation of noise as a burden which makes the
experimental life hard, fluctuations in the measurement observable actually supply
a great deal of information about the system. This notion has been successfully ap-
plied in quantum optics [185] and in solid state physics [107, 186, 187], for instance,
in investigations of current noise in mesoscopic devices.

Recently, the idea to study correlations in the noise of measurements has been
carried forward to ultra-cold atomic gases [64,65,188]. The authors of Ref. [64] sug-
gest to test the quantum state of the system by measuring correlations in the noise
of expansion pictures. Following their suggestions, first successful experiments were
performed. Thereby, correlations in the Mott-insulator phase in an optical lattice [63]
have been tested. In a different experiment, correlations in the momentum distribu-
tion on the attractive side of a Feshbach resonance provided strong indications for a
superfluid pair state [62].

We will show in the following sections that measurements of atom-density fluc-
tuations provide a tool to characterize the state in the BEC-BCS crossover region.
The characterization of the state of the atomic cloud in the BEC-BCS transition
is more difficult as in experiments with Bose-Einstein condensates. Conventional
expansion-picture methods proved to be problematic, as the interaction strength
changes during the expansion process. This can lead to a reformation of the orig-
inal state during the expansion. Several approaches to determine the state of a
fermionic spin mixture in the BEC-BCS crossover region are under present investi-
gation. Some approaches use light-scattering [189], Bragg spectroscopy [190], or the
measurement of collective modes [180,181,190-192]. Mapping of preformed Cooper
pairs into a molecular Bose-Einstein condensate by rapidly sweeping through the Fes-
hbach resonance provides a strong indication for the existence of a superfluid BCS
state [158,160]. Radio-frequency spectroscopy enabled a direct measurement of the
pairing gap [178]. Studying the statistical properties of number-density fluctuations
provides a further possibility to extract information about the state in the BEC-BCS
crossover region [62,65]. Measuring the atom-density statistics is particularly inter-
esting since the characteristic form of the state changes drastically from the BEC to
BCS side. On the BCS side the system is in a many-body state of fermions. On
the BEC side the system forms a molecular Bose-Einstein condensate. Hence, one
expects a distinct change in the atom-number statistics along the crossing from the
BEC to the BCS side, which allows to characterize the state.

4.2.1 Model and experimental feasibility

In contrast to the measurement of noise correlation of absorption pictures [62—64], we
suggest to study the number-density correlations of the dilute atomic cloud directly.
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Figure 4.4: Sketch of a typical atomic-number density n(x). The measurement ob-
servable is the number of atoms in a bin N;.

Investigating dilute atomic clouds with the usual measurement of expansion pictures
might seriously modify the state during expansion. As the particle density and con-
sequently also the interaction strength changes drastically during expansion of the
cloud, it is very likely that the original state of the system will be destroyed. This
addresses in particular the superfluid BCS state. Measuring the density distribution
of the cloud directly without a free expansion avoids this problem. The disadvantage
of a direct density measurement lies in the required resolution as the cloud is not
expanded anymore. However, a direct measurement of an atomic cloud has been
demonstrated in an recent experiment [179].

We now present a model to substantiate the idea of directly measuring particle-
number statistics. Let us assume a fermion spin mixture with particle-number density
n(zx) as sketched in Fig. 4.4. The atomic cloud is divided into an array of bins. Each
bin forms a subsystem of the atomic cloud. The number of particles per bin is given
by the atom-number density integrated over the bin volume

Ni= [ n(z). (4.23)

Vi

The number of atoms in a single bin will be fluctuating and the number statistics
for such a single bin can be investigated in order to obtain information about the
system. The problem can be summarized in the question: What is the probability
of finding N particles in the bin? However, there are requirements to the bin size.
The bin size must be large enough to sustain a macroscopically large number of
atoms. Furthermore, the size of the bin is assumed to inclose only a small subsystem
compared to the total number of particles in the full system. The majority of the
atoms, surrounding the bin, serve as a particle reservoir. This allows us to treat a
single bin as a grand-canonical system. Experiments usually deal with absorption
pictures which project the three-dimensional cloud into a two-dimensional column
density. As the absorption pictures are commonly taken with a CCD-camera, these
pictures are automatically discretized into an array of pixels. Bins are therefore
naturally defined by the pixel size (or several pixels, if required to fulfill the above
defined requirements for the bin size).
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4.3 Short introduction to full counting statistics

The name “Counting Statistics” suggests the simple notion of counting events or par-
ticles. Hence, from counting events one obtains the spatial or temporal distribution
of a statistical variable. From these data, moments and cumulants can be calculated.
Consequently, full counting statistics (FCS) describes a method to obtain all cumu-
lants of the statistic process by computing a single quantity, called the cumulant
generating function (CGF). The knowledge of the cumulant generating function pro-
vides the possibility to reconstruct the probability distribution. Information about
the probability distribution (e.g. poissonian or gaussian process) can often be directly
read off the cumulant generating function. In this way, insight about the physical
mechanism behind the statistical process (e.g. tunneling or molecule pairing) is ob-
tained directly from the form of the cumulant generating function.

4.3.1 The cumulant generating function

Let us assume a stochastic process with a stochastic variable N. The quantity (N™)
defines the moments and pu,, = ((N — (N))™) the central moments, respectively.
Instead of calculating all moments one by one, it is more convenient to obtain the
characteristic function

e

— ey =Y N (4.24)

m!
—0

Taking the r-th derivative of the characteristic function with respect to y and eval-
uating the result at x = 0 gives the r-th moment

LI s

(N7) = ———€ (4.25)
i Ox =0
Writing down the characteristic function explicitly
e 500 = (£VX) = Z eNXP(N), (4.26)
N

shows that the characteristic function is the Fourier transform of the probability
distribution P(N). The characteristic function exists for any probability distribution
even if the moments for this probability distribution do not [185]. The cumulants
C, of a probability distribution are defined by the power-series expansion of the
logarithm of the characteristic function

500 = ~log (™) = = Y- Ty (4.27)

Taking the r-th derivative with respect to x and evaluation of the result at y = 0
yields the r-th cumulant

10

(4.28)

x=0
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Figure 4.5: Schematic interpretation of the first three cumulants. C; corresponds to
the mean value of the stochastic variable. The variance, describing the fluctuations
about the mean value is given by Cs. Finally, the skewness, C5/ C’S/ ?. characterizes
the deviation of the variance from its symmetric value around the mean value.

The advantage of using cumulants compared to moments lies in their additivity for
statistically independent variables. Expressing the first few cumulants by the central
moments

G = (N)=N=p

Co = ((N—(N))*) =
Cs = ((N—(N))’) = s
Cy = pa—3u3

shows that the first three cumulants correspond to the first three central moments.
The first cumulant, C', is therefore the mean value of the distribution, C5 describes
the variance. Finally, C5/C%? is called the skewness [185] and provides a measure
for the asymmetry of the variance with respect to the mean value. Figure 4.5 gives
a schematic interpretation of the first three cumulants. Higher cumulants C)., with
r > 3, are combinations of the central moments up to p,. The interpretation of
these higher cumulants is increasingly more difficult. The probability distribution
of the stochastic variable can be obtained by a Fourier back-transformation of the
characteristic function. In particular, if the stochastic variable is a sum of independent
variables N = )", N, with the cumulant generating function —S(x) = — >, Sk(x),
then

K d )
Py(M) = / EX =Sk g=iMx (4.29)

L 2m

provides the probability distribution of the k-th stochastic variable?.

So far only classical statistical variables have been discussed. Let us now consider
an operator variable N. In order to caculate the expection value

(f(N)) =D F(N)P(N), (4.30)

2Eq. (4.29) and Eq. (4.26) are derived for discrete stochastic variables.
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the probability distribution P(NN) for the operator is now used, given by the probability-
distribution function

P(N) =Tt {p5(N - N)} = (5(N — N)). (4.31)

Assuming that the operator N takes only discrete eigenvalues N, the expression (4.30)
transforms into3

DNy g) = () F(N)dy ) = (F(V)). (4.32)

Hence, the extension to the quantum mechanical situation, i.e considering an oper-
ator variable, is done by replacing the classical average by an quantum-statistical
average.

In conclusion, the main task in obtaining the FCS for an operator variable lies in
the computation of its cumulant generating function, Eq. (4.27). In the remainder
of this section, explicit calculations of the number-density FCS for free fermions, free
bosons and the BCS state will be given as examples. On the one hand the results for
these examples will form the basis for further calculations, on the other hand they
will be used for comparison with later results.

4.3.2 Full counting statistics of free fermions

The first example discusses the case of non-interacting fermions. The Hamiltonian
for spinless fermions is given by

H=> ecie, (4.33)
k

with an energy dispersion €, = h*k?/2m. Following the ideas of Sec. 4.2.1, we are
interested in the atom-number fluctuations in a bin of the atom cloud. Thence, the
calculation of the cumulant generating function will be done in the grand-canonical
ensemble. Choosing the grand-canonical ensemble is justifiable as long as the atom
number in the bin Ny, is much smaller than the total number of atoms N in the
cloud i.e. 1 < Ny, < N.

The general expression for the cumulant generating function can be computed in
a similar way as the derivation of the grand partition function Z(u). The explicit
calculation of the characteristic function

<€iNX> — Ty {efﬁ(ﬁfp]\?)ei]\?x} — Ty {6*5(1:1*(#+ix/5)]\7)} — Z(u -+ ZX/B) , (434)

leads to the grand partition function with the “complex chemical potential” p+iy /3
with § = 1/kgT. Explicit calculation of the grand partition function for a gas of

3Here, we assume, that f(N) can be expanded in a power series.
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spinless fermions [37] and using Eq. (4.27) gives the final result for the free-fermion
cumulant generating function

S(x) == log [1+ fe(eX =1)] (4.35)

where
1

eBlee—n) 417 <4.36>

f+(€k) =

is the Fermi occupation function. Note, that y-independent terms have been ne-
glected in Eq. (4.35). However, this is of no consequence as we are only interested in
the cumulants, which are obtained from the derivatives with respect to y. In order
to perform the summation over all states in Eq. (4.35), two limiting cases will be
discussed: the degenerate and the non-degenerate limit.

The non-degenerate Fermi gas

The non-degenerate Fermi gas corresponds to the high-temperature or classical limit.
The non-degenerate limit is applicable if the fugacity is small i.e. e®# < 1[193]. This
is the case for high temperatures and a negative chemical potential. The negative sign
for the chemical potential is automatically fulfilled at sufficiently high temperatures
if the average particle number N is kept at a fixed value. Consequently, the Fermi
occupation function can be simplified to

Filer) = [P 4 1}’1 ~ e Ble—i) 1 (4.37)

Using Eq. (4.37), the cumulant generating function in Eq. (4.35) can be approximated
by an expansion of the logarithm for small f,. Truncating the expansion at the first
order leads to

SX)~—(eX = 1) fr=—-N(X-1). (4.38)
k

This is the expected Poissonian statistics for a classical gas with C,, = N for all cumu-
lants. It is the approximation done in Eq. (4.37), where all the fermion characteristic
is lost. An analogous derivation also applies for the cumulant generating function
of the non-degenerate Bose gas. Hence, the same cumulant generating function,
Eq. (4.38), is found. This is not surprising, as the classical limit does not distinguish
between fermionic and bosonic particles.

The degenerate Fermi gas

Considering the degenerate Fermi gas corresponds to the low-temperature limit,
kT < er. Now, the chemical potential is u ~ er > 0 and the fugacity is large
e’ > 1. The Fermi occupation function f, shows a sharp step at the Fermi energy.
This feature can be exploited for the derivation of the cumulant generating func-
tion in the degenerate limit as shown in Appendix E.1. The result for the cumulant
generating function of the degenerate Fermi gas is finally

S(x) = —iNx — (DkpT/4er)NX* . (4.39)
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Here, D = 2,3 is the dimension of the system and x/27 + 1/2 = [x/27 + 1/2],
where [...] denotes the fractional part and ensures the 2r-periodicity of the cumulant
generating function [194]. From Eq. (4.39), it is obvious that all C,, vanish for n > 3.
Thus the statistics is Gaussian. The first cumulant is the usual average particle
number C; = N. More interesting is the variance, Cy ~ kpT/er showing, that the
particle-number fluctuations are suppressed with decreasing temperature. This is in
contrast to the classical case, Eq. (4.38), which gives a temperature independent value
for the variance: Cy = N.

4.3.3 Full counting statistics of free bosons

The free bosonic cloud is the second example to be discussed. A confining potential
is absent and there is no interaction between the bosons. Again, the grand-canonical
ensemble is chosen, as we are interested in the atom-number fluctuations in a small
subsystem of the atomic cloud. Deriving the cumulant generating function for free
bosons is, as in the free fermion case, similar to the derivation of the grand partition
function. The cumulant generating function for the free bosonic gas is

S(x) =D log [1 — f(eX—1)], (4.40)

where
1

(&) = ST (4.41)

denotes the Bose occupation function. Further analysis of Eq. (4.40) will again be
made for different temperature limits.

The first case is the high-temperature limit, corresponding to the non-degenerate
situation discussed in the free fermion gas. The bosonic high-temperature limit can
be treated in exactly the same way as in the fermionic case. In particular, the approx-
imation Eq. (4.37) is also used, which makes the loss of the statistical information
(bosons or fermions) evident. Hence, the same classical result, Eq. (4.38), is found
for the high-temperature limit of the free Bose gas.

The second case, discussing the situation of an ideal Bose-Einstein condensate, is
of much greater interest. Particle-number fluctuations in Bose-Einstein condensates
have attracted a lot of theoretical interest [195-202]. However, in these articles lies
the main interest in the fluctuations of the total number of condensed bosons and
not in the particle-number fluctuation in a bin. Hence, a grand-canonical ansatz is
no longer applicable. The grand-canonical ansatz predicts anomalous fluctuations
Cy ~ N?. Using the appropriate canonical ansatz shows, nevertheless, anomalously
large fluctuations at finite temperatures Co ~ T2N*3. Anomalous fluctuations of
the condensate number are not only found for ideal Bose gases. Theoretical calcu-
lations using Bogoliubov theory [197] showed also anomalous fluctuations for weakly
interacting Bose gases. Finally, anomalous fluctuations have been proven to be a
general feature for Bose-Einstein condensates and, thus, are expected for arbitrary
interactions [198,202]. This is in contrast to the zero-temperature result which shows
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normal fluctuations in the ideal Bose gas and in the interacting Bose gas [197,198].
Returning to the fluctuations of the atom number in a bin, there is no demand for
particle-number conservation. In the following, two different approaches are consid-
ered to calculate the number fluctuations in the bin. Each of them leads to a different
result for the full counting statistics. On the one hand, the result Eq. (4.40) is used,
which describes a mixed state of Fock states. On the other hand, the condensate will
be described as a coherent state. The coherent state ascribes a phase to the conden-
sate. Using a state with a fixed phase is attractive as it simplifies the description of
interference phenomena observed for Bose-Einstein condensates [40-43]. The price
to pay for the definite phase of the coherent state is a fluctuating particle number.
As we have the experimental setup of Sec. 4.2.1 in mind, we are interested in the
atom-number fluctuations in a bin, which is an open system. Thus a non-particle
conserving ansatz, as the coherent state, is fully justified to describe the condensate
in the bin.

Mixed number state

Bose-Einstein condensation is commonly described as the macroscopic occupation of
a quantum state. The transition temperature at which this macroscopic occupation
starts is defined as the critical temperature TBC. For simplicity, we assume a fully
condensed bosonic cloud. In other words, we assume that all bosons occupy the
same level i.e the ground state. This corresponds to the situation of taking the
temperature to zero and at the same time taking the chemical potential towards
the ground state energy, such that the average particle number N = >, f_(e) is
conserved. Considering a fully condensed bosonic gas, particle number conservation
leads to N = f_(ex—o). Hence, the cumulant generating function for the mixed
number state can be directly derived from Eq. (4.40) by taking only the contribution
for £ = 0 into account

S(x) =log [l — N(e*—1)] . (4.42)

This is a negative binomial distribution* [203]. Computing the cumulants from
Eq. (4.42) shows an anomalous behavior for the fluctuations, C,, ~ N™ .

4The negative binomial distribution gives the probability of » — 1 successes and z failures in
r 4+ 2 — 1 trials and success on the (r 4+ x)-th trial. Hence, the probability distribution is given as

r+r—1 r z

Pl = (71T ), (4.43)

where p is the probability for a success. The characteristic function is

: — : 1 1-p .\ "
=S e = (L o) i
=0 p p
and from this expression the CGF is derived by taking the logarithm
1 1-—p .

S(x) = rlog <— — ezx> . 4.45
) Pl (4.45)

Setting r = 1 and identifying p = 1/(N + 1), Eq. (4.42) is obtained. Letting 7 = 1 means that only
the outcome of the last attempt was an success. All previous attempts failed. Hence, the probability
distribution in Eq. (4.42) describes the probability of having x failures until the first success.
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Coherent state

The second approach to describe an ideal Bose-Einstein condensate is a coherent
state

—N/2 — N2 T\n
|\I[Coh> =€ Z T<a0) |0> . (446)
n=0 )

Here, ag creates a boson in the ground state. The coherent state is a pure state, how-

ever, with fluctuations in the particle number. We derive the characteristic function
analogous to the previous cases

B o (Neir)”
(Woonle™X|[Woon) = e Z &

n!

=exp (N(eX —1)). (4.47)

n=0

Taking the logarithm of the characteristic function leads to the final expression for
the cumulant generating function of the coherent state

S(x) = —N(e™x —1). (4.48)

Equation (4.48) is the cumulant generating function for a poissonian stochastic pro-
cess. All cumulants C,, = N are the same, as is obvious by taking the derivatives of
Eq. (4.48) with respect to x. The equity of all cumulants is the typical feature of the
Poisson distribution.

Finally, it is interesting to compare the results for the mixed number state and
coherent state. Inspections of the results for the cumulants shows an immediate con-
tradiction. Whereas the cumulants for the mixed state shows anomalous fluctuations,
the particle-number statistics for the coherent state shows normal fluctuations. This
dilemma shows how sensitive the outcome of the stochastical properties is to the
choice of the condensate state.

4.3.4 Full counting statistics of the BCS state

In the last example, the cumulant generating function for the BCS state will be
discussed. Commonly used to describe conventional superconductivity [147], the
BCS-wavefunction

[Tpes) = [ [ (uk + UkCLlCT_kT> 0, (4.49)
k

is a grand-canonical state and does not conserve the particle number. In order to
find the cumulant generating function for the BCS state, we again use Eq. (4.27).
Before proceeding, it is worth noticing that the BCS state is a product state of
(k |, —k 7)-pairs. It is therefore convenient to rewrite the number operator into

N = Zﬁkl + flkT = Zﬁkl + ’fL,kT , (450)
k k



CHAPTER 4. FCS FOR THE BEC-BCS CROSSOVER 89

where ny, = CLUCkJ- Using the number operator in this ordering splits the character-
istic function into a product

e 50 = (0| H [(Uii + UeCge) Cip )€ e RIX (1 + UkCLlCikT)] 0)
K

= (O] T T [(ui + vewgen) (1 = i + €
k

X (1 — Nk + ﬁ,kTeiX) (u + vkcf(lcT_kT)} |0)
= (O] T (ui + vicowpon) [ (1= fiaey — fre + e fiser)
k

+ X () + i — 20y i) + X (R o) ] (ux + vl el i) 110)
(4.51)

The last expression in Eq. (4.51) used the relation
()’ = e (4.52)

for all positive integer ¢, which can be derived from the anti-commutation relation
for the fermion operators, {ckp,cL o} = Oxk0s0r, and the Pauli principle: cia =

2
(CLU) = 0. Now, the right hand side of Eq. (4.51) can be explicitly evaluated using

(Upcs| e | Uaos) = |uk|?, (4.53)

and
(Uncs| i [Waes) = (Uscs|el el enre|Wpos) = [uf*. (4.54)

Hence, the characteristic function is given by

e 500 = H (Juxl® + [vi?€*™) . (4.55)
K

From expression (4.55) one can immediately read off some typical characteristics of
the BCS state. Using Eq. (4.29), one can see that the probability to find the (k |
, —k 1)-pair state empty is proportional |uy|?. The probability to find the (k |, —k 71)-
pair state occupied is proportional to |vi|?. That only pairs are involved can be seen
from the factor of two in front of the counting field y.

Finally, the expression for the cumulant generating function is obtained by taking
the logarithm of Eq. (4.55)

S(x) == log (lul* + [vx|*e*¥) . (4.56)

The consequences of Eq. (4.56) for the atom-number statistics will be discussed later
in connection with the discussion of the particle-number statistics in the BEC-BCS
Crossover region.
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4.4 Number statistics at the BCS-BEC crossover

In the following, the atom-number statistics for a trapped fermionic spin mixture with
variable two-body interaction will be investigated. The model, applied for the descrip-
tion of the BCS-BEC crossover, is based on the earlier studies of references [148-150].
This model relies on the versatility of the BCS wavefunction as a variational ansatz
not only for weakly interacting fermions, but also for all interactions strengths in the
BEC-BCS crossover regime. However, this ansatz is only an approximative descrip-
tion of the BEC-BCS crossover in cold-atom experiments, as was previously pointed
out in Sec. 4.1.2. Nevertheless, the use of this model is justified, as mean-field ap-
proximations have proven to be very useful for qualitative predictions.

Using the FCS method, introduced in the previous section, the particle-number
correlations for a fermion spin mixture at the BEC-BCS crossover will be computed
now. Firstly, the two-dimensional case will be discussed, for which an analytical
expression is found. The analytical expressions, found for the pure two-dimensional
situation, can be mapped onto the quasi-two dimensional problem. The quasi-two
dimensional case can be understood as a three-dimensionally trapped atom cloud
which is frozen out in one direction. Thus, the system can move only freely in two
dimensions and remains in the transversal ground state of the third direction. In
order to map the two-dimensional situation on the quasi-two dimensional problem,
the chemical potential must be replaced by pop = i1 — €g, where ¢, is the transversal
ground state energy. In addition, the Fermi energy of the pure two-dimensional case,
er, must be replaced by the Fermi energy measured from the transversal ground state
energy ex — €. Secondly, the three-dimensional situation will be considered. No an-
alytical expression could be found for the three-dimensional case. A numerical study
shows, however, that the behavior is similar to that found in the two-dimensional
case.

4.4.1 Cumulant generating function for the BEC-BCS crossover

The starting point is the result for the cumulant generating function of the BCS state
derived in Sec. 4.3.4. The task to accomplish now is the evaluation of the sum over
the momenta. Using the expression Eq. (4.56) and transforming the sum into an
integral over the energy leads to

S(x) =— /000 de Np(e)log (1 + |u|*(€** — 1)) . (4.57)

The function Np(e) denotes the density of states and depends on the dimensionality
of the system. For fermions of only one spin type, the density of states in D = 2 and
D = 3 can be expressed as

mD/2(2€)D/2—1

Np = orD-1pP

(4.58)

where m denotes the fermion mass. The /e behavior of the density of states in
three dimensions makes the explicit evaluation of the integral difficult. The three-
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dimensional case will therefore be treated numerically. In contrast to the three-
dimensional situation allows the energy independent density of states in two dimen-
sions an explicit evaluation of the energy integral. However, the two-dimensional (or
quasi-two dimensional) case can be used to understand the qualitative behavior of
three-dimensional case.

Let us concentrate on the two-dimensional situation. The integral to solve is

S(X) = —277:;2 OOO de IOg <1 + %(e%x — 1) (1 — (ef;)g)_ A2>> . (459)

Using the trick of taking the derivative and re-integrating, foa da' 2, with respect to

oo’
a = (e”X — allows an explicit integration over the ener
Zix —1)/2 all plicit integrat th gy
m @ 5o 1+ 52
Six)=—-A——=5 | dd ds il
27Th 0 0 ]. + (1 + 20/)82
o , (4.60)
m So 2a

= —A arctan (som>] .

M do/
21h? Jo @ {1+2a’+(1+20/)3/2

Here, the substitution s = — <& +4/ (6;—’;)2 + 1 has been made and sg = £ + 1/ g—i +1

is the upper limit of the integral. Further integration over o’ leads to the final result

A 2ep 2 .
S(x) = —N— |cos(x) arctan X i) —arctan [ ZE ) -2 log [1+vg(e™ —1)] .
€F A A
(4.61)
Note, that the density of states was expressed in terms of the average particle number

N(ep) = DN/2¢p. The abbreviation v = (1 + p/ 1? + A2> /2 denotes the BCS

coherence function for k = 0.

4.4.2 Atom-number correlations

From the final result for the cumulant generating function, Eq.(4.61), all cumulants
can be computed. Figure 4.6 shows the second to seventh cumulant for the quasi-two
and three-dimensional case. The curves show the expected smooth crossover from
the BEC, or molecular condensate side & — oo, to the BCS, or Cooper-pair side
¢ — —oo. Comparing the dashed-black curves for the quasi-two dimensional case to
the solid-red curves of the three-dimensional case in Fig. 4.6 shows a qualitatively
similar behavior in both cases. Larger discrepancies are seen, in particular, for higher
cumulants. The quasi-two dimensional case shows much more distinct features. The
generic effect of the /e energy dependence of the density of state in three dimensions
is a smoothening of the features. The extreme limits, £ — 400, show very different
behaviors. In these limits, approximations can be made which lead to simplified
expressions for the cumulant generating function. The approximative expressions
for the cumulant generating function provide a clearer picture about the statistical
properties of the state.
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Figure 4.6: Comparing the cumulants Cy - C7; computed for the quasi-2D case from
Eq. (4.61) (dashed-black line) to the numerically computed 3D results (solid-red line).
The cumulants C, are normalized to C; = N and plotted over & = 1 /kpa where
ksp = kr = (37?n)%3 in 3D and kyp = 7/l in quasi-2D. Here, {, is the inverse of
the ground-state size. The quasi-2D results are calculated for a box-potential. The
dotted line marks the value {(u = 0) = &, as a guidance for the eye.



CHAPTER 4. FCS FOR THE BEC-BCS CROSSOVER 93

BCS limit

The BCS limit corresponds to the situation known from conventional superconduc-
tivity. Interactions between the fermions in different spin states are attractive. Even
though there exist no bound state on this side of the Feshbach resonance, a collec-
tive many-body state is formed. This collective state is reminiscent of the situation
known from superconductivity in solid-state physics. Fermions with opposite mo-
mentum and spin are paired, forming so called Cooper pairs. The Cooper pairs are
delocalized and overlap mutually to a large extend. In the BCS-BEC crossover pic-
ture, the BCS limit corresponds to the situation of a weakly attractive interaction
i.e the limit of £ — —oo. The chemical potential tends in the BCS limit towards the
Fermi energy p =~ e and the order parameter vanishes A < er. Hence, the square

root LA
\/ﬂ2+A2%eF+§—, (4.62)

eF
can be expanded in terms of A/u &~ A/er < 1. Consequently, v7 in Eq. (4.61) is

1 7
lim v2 == [14 ——=| =1, 4.63
£——oc0 0 2( /M2+A2> ( )

neglecting all terms higher than first order in A/ep. The logarithm in Eq. (4.61) is
approximately proportional to the counting field

log (1 + |vg[*(€X — 1)) ~ 02 . (4.64)

Inserting this expansion in the expression for the cumulant generating function and
replacing arctan (2ep/A) ~ 7/2 for ex > A, Eq. (4.61) reduces to

S(x) = —ixN — WND%Q cos(x)|—1). (4.65)

Note, that the absolute value |cos(y)| is required to conserve the m-periodicity of
Eq. (4.61). Equation (4.65) can also be derived directly from Eq. (4.57). The result
for the three-dimensional treatment differs from the two-dimensional result only by
a prefactor of 3/2 for the cumulants C, with n > 2. This is taken into account
in Eq. (4.65) by the factor D, denoting the dimension of the system. Taking the
derivative of Eq. (4.65) with respect x shows that the cumulants can be divided
into two classes. On the one hand, the even cumulants approach a universal value
Con = D NA/4ep as shown in Fig. 4.7. On the other hand, all odd cumulants Cs,, 41
with n > 1 are vanishing. In fact, plotting the cumulants in a logarithmic scale shows
that the decrease is exponential in .

The results for the BCS limit are clearly different from the results of the non-
interacting fermion gas in Eq. (4.39). In the superfluid BCS state is the variance
constant for zero temperature, 7' = 0. This is in contrast to the linearly vanishing
variance for the non-interacting case (see Eq. (4.39)). Thus, an important information
which could be obtained from a noise measurement is the order parameter, which can
be extracted from a measurement of C5 in the BCS limit. The order parameter is
obtained from the variance as A/ep = 4Cy /TN D.
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Figure 4.7: Cumulants Cy to Cy plotted over —(& — &) for the 3D case in units of
NA/ep. Here, £ = 1/kpa and & = &(pu = 0). All odd cumulants Cy,,1 for n > 1
are vanishing in the BCS limit, £ — —oo. The even cumulants approach the value

Con = 3TNA/4ep.

BEC limit

The repulsive side of the Feshbach resonance is clearly different from the BCS side.
The existence of a bound state allows the formation of weakly-bound molecules.
Fermions in opposite spin states pair up and form molecules. These molecules show
bosonic behavior in the BEC limit, £ — oo. The far BEC situation corresponds
to a negative chemical potential, 4 < 0, and an order parameter which is much
smaller than the chemical potential, |A/u| — 0. As the BEC limit is approached,
the cumulant generating function for the crossover, Eq. (4.61), can be expanded in
terms of A/|u|. Taking the limit A/|u| — 0 leads to

2 _
/l)O_

AQ
(1 ST A?) S e (4.66)

DO | =

and for the Fermi energy to

AQ
er = <u+ \/,LLQ—}—AQ) ~ T (4.67)

1
2

Using the expansions: arctan (z) & z, log (1 + z) &~ z and v§ ~ A?/4p? for A/|u| < 1
leads to

o4l [ A A ] o u? A2
S(x)~ —N—— |cos(x)=—eX — — | + 2N———
R R | ez

_ {1 . N
= —2N |:§(612X+1)—1:|+§(622X—1),

(> — 1)
(4.68)
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Figure 4.8: Cumulants Cy to Cg plotted over —(§ — &) for the 3D case. Here,
¢ = 1/kpa and & = &(p = 0). All cumulants are normalized to C,,/2" ' N. In this
normalization all cumulants tend towards unity in the BEC limit, & — oo, hence,
showing Poisson statistics for fermion pairs (molecules).

which can be further simplified to give the cumulant generating function in the BEC
limit

S(x) = —%(eﬁx —1). (4.69)

The result for the cumulant generating function in the BEC limit is a Poisson
statistic. This is the expected result for a coherent state of molecules. Further-
more, the coherent state of molecules is reminiscent of the reformulation of the BCS-
wavefunction in form of a coherent state of fermion pairs given in Eq. (4.21). There
are several distinct features in Eq. (4.69). Firstly, the factor of two in front of the
counting field. This is a clear indicator that the fermions have paired up. Secondly,
the strongly increasing cumulants C,, = 2""'N. Note, however, that Eq. (4.69) de-
scribes the cumulant generating function for the atoms and not for the molecules. The
fluctuations are therefore strongly increased as only pairs of fermions can be detected.
Thirdly, one has to mention, that the same statistics as described by Eq. (4.69) is
expected for the atom-number statistics of a classical gas of N/2 molecules. The
poissonian behavior in the BEC limit is shown in Fig. 4.8, where the cumulants are
normalized by the factor 2""'N. Consequently, all cumulants tend towards unity for
§ — 00.

4.4.3 Finite-temperature behavior

So far, only the zero-temperature case has been considered. However, experiments
are usually not done at zero temperatures. It is therefore desirable to obtain an ex-
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pression for the cumulant generating function also for finite temperatures. A detailed
discussion of the finite-temperature BEC-BCS crossover, with particular interest in
the change of the critical temperature across the transition, is given in Ref. [150,151].
The intention of this section is to give a rough notion of the finite-temperature be-
havior of the full counting statistics in the different regimes.

Starting point is the zero-temperature BCS theory. The self-consistency equations
for the order parameter A and the chemical potential p of Sec. 4.1.3 must be extended
to finite temperatures. Following [183], the gap equation is replaced by

E
Aj = —= — Vijk tanh (T) . (470)
k

Repeating the renormalization procedure leads to the temperature-dependent gap
equation as a function of the scattering parameters. The expression for the three-
dimensional situation, with £ = 1/kpa, is given by

- . (4.71)

1o (1 tanh(84/(E— )2+ A?)
&= /d€62 =
0 €

™

All quantities denoted with a tilde are normalized to the Fermi energy e¢r. The
self-consistency equation for the particle-number conservation, Eq. (4.16), becomes

N = kz (\vk\%anh(%) + f+(e)) : (4.72)

where f, (€) is the fermion occupation function defined in Eq. (4.36).

The temperature-dependent self-consistency equations are, however, not sufficient
to compute the cumulant generating function for finite temperatures. The finite-
temperature wavefunction will no longer correspond to the zero-temperature BCS
wavefunction given in Eq. (4.12). The most difficult part is thus the determination
of the state describing the many-body system at finite temperatures. Using a Bogoli-
ubov transformation [204] provides the excitation spectrum on the BCS side and a
calculation of the cumulant generating function in the finite-temperature BCS limit
is possible. A discussion of this finite-temperature BCS limit is postponed till later.
The situation on the BEC side and in the crossover region is more difficult. Never-
theless, knowing the behavior for the free boson and free fermion gas from Sec. 4.3, a
qualitative picture of the finite-temperature behavior can be outlined. The qualita-
tive behavior of the variance is sketched in Fig. 4.9. The solid line in the lower part of
the graph sketches the temperature behavior on the BCS side. The zero-temperature
result gives a finite value for the second cumulant, C5. The value for the variance
of the superfluid state, derived from Eq. (4.65), is proportional to the order param-
eter, C, = TNDA /4ep. The variance calculated for free fermions vanishes linearly
with temperature (see Eq. (4.39)). Figure 4.9 shows the variance for a free Fermi
gas (dashed-dotted line) as a guide for the eye. The excitations on the BCS side are
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Figure 4.9: Qualitative behavior of the second cumulant C as a function of tempera-
ture. Upper curve: BEC limit, lower curve: BCS limit. The dashed (dashed-dotted)
lines show the the qualitative behavior in the case of non-interacting bosons (fermions)
as derived in Sec. 4.3.2 and Sec. 4.3.3.

fermionic quasiparticles. Increasing the temperature leads to the creation of fermionic
quasi particles and, thus, leads to a decrease of the variance on the BCS side. Finally,
when the temperature reaches TS5 there are no particles left in the superconducting
state. Hence, the curve for Cy in the BCS limit (lower-solid line) merges with the
curve for Cy of the free non-interacting fermion gas (dash-dotted line). The conse-
quence is an increase of the variance for further increasing temperature, until the
variance saturates into the value for a classical gas, Cy = N, at temperatures far
above the Fermi temperature 7' > Tr. The results for the variance on the BEC side
are very different. The system forms a Bose-Einstein condensate of molecules at zero
temperature. Hence, the statistics is Poissonian. Keeping in mind that atoms are
detected and not molecules, we can read off the variance from Eq. (4.69) as Cy = 2N.
Looking at the non-degenerate limit, the variance has to approach the classical limit.
Assuming, that the dissociation temperature is much larger then the Fermi temper-
ature, we obtain again the value Cy = 2NV for the variance. Note, however, that this
time the atom fluctuations have been derived for a classical gas of N /2 molecules®.
Comparison to the free non-interacting cloud of molecules leads to the dashed-upper
curve. The variance of the non-interacting Bose gas shows a strong increase towards
lower temperatures. The fluctuations behave like Cy ~ N? if zero temperature is ap-
proached. The behavior of the variance in the BEC limit for temperatures between
0 < T < Tr is more difficult to obtain and is part of future investigation. Finally, if
the temperature is above the dissociation temperature, the molecules will dissociate
and the variance on the BEC side will drop down to the value C, = N for a classical

5The statistics corresponds to Eq. (4.38), however, with N/2 particles and double the counting
field as we are counting atoms which are always paired as molecules. Thus, the same Poisson
statistics as for the coherent state, Eq. (4.69), is obtained in the classical limit.
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gas of N atoms.

BCS limit

Performing a Bogoliubov transformation provides the energy spectrum of the excita-
tions on the BCS side. The transformation introduces the new quasiparticle creation
and annihilation operators '711 0(1) and vx01). They are connected to the fermion

operators ¢l _, ¢io, via the relations [183]

Ck = U Yko T Uk%i,l ;

Cikl = —UYk0 + Uk'YlJr{,l ) (4.73)
with the parameters uy, and vy as defined in Eq. (4.14). The unitary Bogoliubov
transformation diagonalizes the Hamiltonian. Thus, in the new quasiparticle opera-
tors the Hamiltonian reads

o= Z Bl i (4.74)

k,ie{0,1}

with the quasiparticle energy spectrum Fy = \/ (ex — p)? + A2, In order to derive
the finite-temperature expression for the cumulant generating function on the BCS
side, we have to evaluate the quantity

<6i > ko ﬁkox> — %Tl" {efﬁzk,i Ek'Y]Li'Yk,i eizka ﬁkax} . (475)

Note, that the trace is taken over all quasiparticle states. The quantity ny , = chckJ
is the fermion-number operator. The detailed derivation of the cumulant generating
function in the finite-temperature BCS limit is outlined in Appendix E.2. Instead of
discussing all the tedious steps, an intuitive interpretation of the finite-temperature
result will be given.

Consider an empty pair state (k T,—k |). There are different possibilities to
occupy this pair state with quasiparticles or a Cooper pair. Firstly, there could be
only one quasiparticle occupying the pair state. Hence, the pair state is blocked
for Cooper pairs. Secondly, the pair state can be occupied by two quasiparticles.
Thirdly, a Cooper pair can occupy the pair state. The corresponding terms in the
cumulant generating function are given by the probability of the occupation times the
x-dependent function (e®X —1). The prefactor in the exponent takes the value a = 1
if the state is occupied by a single quasiparticle only and a = 2 for the occupation
by two quasiparticles or a Cooper pair.

Following this scheme we obtain for the single-quasiparticle occupation a term

2f+(B)(1 = fo(Bi))(eX = 1), (4.76)

in the cumulant generating function. Here, f, (Fy) is the Fermi occupation function
given in Eq. (4.36). The factor fi(Fx) is the probability for the occupation with a
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Figure 4.10: Temperature dependence of the variance (second cumulant C5) in the
BCS limit for a 3D cloud and £ = 1/kra = —2. The solid line is the result computed
from Eq. (4.79) for temperatures 7' < T3S, The dashed line shows the free-fermion
case, Eq. (4.35).

quasiparticle and (1 — f; (Fx)) the probability for an empty state. The factor of two
takes the two possibilities to occupy the pair state with a single quasiparticle into
account. The term in the cumulant generating function describing the occupation of
the pair state by a pair of quasiparticles is given by

a2 f 4 (B2 (e = 1). (4.77)

The factor |uyx|? is the probability that the state is not occupied by a Cooper pair.
The last term to the cumulant generating function describes the occupation of the
pair state by a Cooper pair

s *(1 = [ (Eac))* (e — 1) (4.78)

Combining all terms, the cumulant generating function is given by
S() = =D log[ L+ 2/ (B (1 = f+(E)(e™ 1)
k

+ o2 (1 = f(Br)? (€™ = 1) + ug* f (Ba)*(e*X = 1) ] .
(4.79)

The result Eq. (4.79) agrees with the result obtained from the direct calculation of
Eq. (4.75). The explicit calculation is shown in Appendix E.2. Figure 4.10 shows the
temperature dependence of the variance, Cs, for the three-dimensional case. As the
order parameter vanishes for temperatures above TS, Eq. (4.79) transforms into
the cumulant generating function for the free-fermion case, as given in Eq. (4.35).
The free-fermion results are shown in Fig. 4.10 by the dashed line.
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4.5 Summary of Chapter 4

In conclusion, we propose to measure the atom-number fluctuations in ultra-cold
atomic gases to obtain information about the state of system. We suggest to directly
measure the atom-number density in a bin, i.e, a subsystem of the trapped cloud.
This is in contrast to correlation measurements in expansion pictures [62-64]. The
advantage of a direct measurement of the cloud lies in the absence of the expansion.
The expansion of the atomic cloud leads to a drastic change in the atom density and,
thus, to a drastic change in the inter-atomic interaction which can destroy the initial
state as, for example, the superfluid BCS state. A direct measurement avoids the
expansion of the cloud. Recent experiments by Bartenstein et al. [180] showed that a
direct measurement of the atomic density in trapped atomic clouds is experimentally
feasible.

Having this experimental approach in mind, we calculated the full counting statis-
tics for a fermion spin mixture in the BEC-BCS crossover region. Choosing the
single-channel ansatz based on the BCS wavefunction [148,149], we derived an ana-
lytical expression for the cumulant generating function in two and quasi-two dimen-
sions. The cumulants for the three-dimensional situation were calculated numerically.
Comparing the quasi-two and three-dimensional cases showed that the /e behavior
of the three-dimensional density of states leads to a smoothing of the distinct features
obtained for the quasi-two dimensional case. The results in quasi-two, as well as in
three dimensions, showed the expected distinct difference between the statistics on
the BEC and BCS side. On the BEC side we found Poisson statistics for the atom-
number correlations. However, the Poisson statistics corresponds to half the number
of particles N /2. In addition, a prefactor of two is found in front of the counting
field. The prefactor of two is not surprising, as this corresponds to the statistics
of a coherent state of molecules. The BCS side showed a very different statistical
behavior. All odd cumulants, Cs, 1, are vanishing for n > 1. In contrast to the odd
cumulants approach all even cumulants a constant value in the BCS limit. The value
for the even cumulants, Cy, = DmNA /4ep, is proportional to the order parameter
A and the dimension of the system D. Measuring the variance of the atom-number
fluctuations allows a determination of the order parameter. Comparing the even cu-
mulants of the superfluid BCS state to the even cumulants of the non-interacting
Fermi gas showed another very useful difference. The variance of the free-fermionic
gas is vanishing proportional to the temperature, in contrast to the constant value of
the BCS state. Hence, measurements of the atom-number statistics can be used as
an indicator for the existence of a superfluid BCS state.

Finally, in the last section, a brief discussion of the finite-temperature behavior
was given. The results for the zero-temperature BEC-BCS crossover were compared
to the results for free non-interacting fermions and free non-interacting bosons. The
finite-temperature behavior on the BCS side of the transition was calculated using a
Bogoliubov transformation. In future, it would be desirable to get more information
about the finite-temperature statistics in the BEC and crossover region.
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Appendix A

Derivation of the
potential-fluctuation correlator

This appendix gives a derivation for the correlation function (§.5;,,(2)05,,(2')). In
fact, it is sufficient to find a general expression of the potential-fluctuation correlator
(0V(x)6V(x')). The derivation of (95;,(2)dS,;(2')) can then be calculated, using
Eq. (2.17). Finally, the results for the single-wire trap: Egs. (2.34 -2.36), and the
results for the double-wire trap, Eq. (2.52), Eq. (2.53) can be obtained by specifying
the geometries .

In the following, the general expression for the potential-fluctuation correlator
(0V(x)0V (x')) of N parallel traps will be derived. The fluctuations of the trapping
potential 6V are induced by current noise in the wires, which give rise to a fluctuating
field 0B. The trapping potential 6V and the magnetic trapping field 0B are linked
by Eq. (2.1). Hence, (§V(x)6V(x')) can be expressed in terms of magnetic-field
fluctuations:

OV (x)0V(x)) = Y _(S(0)|milS(x))
ij (A1)
X (S S(K)) (O Bi(x)0B; (X)) -

Thus, the first step is to find the expression for (§B;(x)0B;(x')) as a function of the
current noise. At first, 0A and dB are calculated using

0Ai(x) =k [dPxEE (A.2)

The current density in the set of one-dimensional wires is

0i(x) =Y 6L,(2)0(x — dy)d(y)2 , (A4)

where d, denotes the 2-position of the y-th wire. The sum over « reflects the fact,
that the total current density j is a sum of M contributions, arising from the set of
M wires. In the next step, Eq. (A.4) is inserted into Eq. (A.2) and combined with
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Eq. (A.3) to obtain the expression for the magnetic field, induced by the current in
the wire array:

-y

sB(x) = L2 v—d, | [ dz REIC) . A5
e / (o~ ST

+y?2+ (2 —

The correlation function for the current density is now assumed to be of the form
(01,(2)015(2")) = 4kpTogo Ad(z — 2')dup (A.6)

for the reasons discussed before in Section 2.3.1. Using Eq. (A.6) in combination
with equations (A.1) and (A.5) gives the desired relation for the correlation function
of the potential fluctuations

5V (x)6V (x)) 4kBTeffo—A( )2
XZEZ )|l S () (S(x) 1| S (x)) Y7 (%, %) T (3, %)

(A.7)
where the following abbreviations have been introduced
vy —y(z' —d,) 0
Vi(xx)= | ~(@—d)y (z—d)' ~dy) 0 |, (A8)
J1(x,x) = / dz [(x = dy)* +y* + (2 = 2)2}7% (2 —d,)? +y?+ (¢ — 2)2}*%
) (A.9)

Equation (A.9) can be further simplified if the transversal positions z() and y) are
replaced by the position of the trap minimum z{ and y§ where « is the trap label
denoting the trap in which the wavefunction is localized. The replacement of the
transversal coordinates by its trap-minima positions is a good approximation as the
transversal widths w of the trapped atomic clouds are in general much smaller than
the wire to trap distance ro. We have, thus, reduced J7 to a function, which now

only depends on the difference (_ = z — 2’
[ 2 _% 2 —%
Jap(C-) = / a2 [(af = ) 4952+ 27| 7| = a2l -2

(A.10)
where the integration variable was shifted to 2’ = Z — z. Applying the formula to the
single-wire and double-wire configurations leads to the single-wire result, Eq. (2.36)

J(z) = = /dz[ 1+ 273 [ (ofro— 27

To

—00
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and to the double-wire result, Eq. (2.53)

Jog(z—2") = / dz [(xg — 675) +yg + 2

—00

(1[N

d\* .
[(:L’g—&,i) +yo+ (2 — 2 —2)?
respectively.

To obtain (§V (x)dV (x')) using Eq. (A.7), one still has to calculate the mean value
of the atomic-magnetic moment (S(x)|p|S(x)). Let us assume, that the magnetic
moment follows the magnetic trapping field adiabatically, which is reasonable as long
as the Larmor precession w;, = ugB/h is fast compared to the trap frequency w.
Calculating the spinor |S(x)) for an atom having spin F' = 2, either by considering
the small corrections of the transversal magnetic field to Bl(jis perturbatively or by
calculating the rotation of the spinor as the atomic moment follows the trapping field
adiabatically, results in the following expression for the spatial dependence of |S(x))

for small deviations from the trap minimum
Bi(x) +iBy(x)
B(Z)

bias

1S(x)) = 12,2) + 2,1) . (A.11)
The spin states are denoted as |F, mr) and the spin quantization axis is chosen along
the z-axis. Making use of Eq. (A.11) leads to
B(x)
(SGOIRIS () = 2ungr—rs. (A12)
bias
which is an approximation to the mean value of the magnetic moment to first order in
B,/ Bé’f;s. Inserting the expression for the magnetic moment Eq. (A.12) into Eq. (A.7)
and inserting the specific magnetic trapping fields for the single-wire trap, Eq. (2.2), or
the double-wire trap, Eq. (2.3), the results for (§.5;,,(2)85,;(%")), given by Eq. (2.35)
for the single-wire setup

T B(Z)

bias

(=) \
(0Sim(2)05,;(2")) = J(z — 2 )kpTego A (”OQF”B Bbias>

< / drs xa(r)(y — o)X (r) / ar') Xu(E ) — 9oL |

and by Eq. (2.52) for the double-wire setup

a,.B
(08m(2)6Sns(2)) = 8A"00 3" (= — )

d
y=L,R
% / dr () | (9 = yo) — g0 20| yr (1)
(xg""&@)
/ 8
[ () | — o) — o BT ) | ey
/ | Xn (1)) [(y Yo) yo(xg+€y%) J( 1)

are finally obtained.

Njw
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Appendix B

Matrix elements for the
double-wire trap

The matrix A in the equation of motion Eq. (2.41) for the double-wire configuration
is given by

S oo B B3, B B4

. B o1+ as 0 6 Qs

A= B 0 Q9 + ay Qs g ) (B.1)
B3 % Qs a1+ oy 0
B4 Qs Qg 0 Qg + Qs

The matrix elements are obtained by inserting Eq.(2.55) into the equation of motion
(2.33). This leads to the explicit expressions for the matrix elements of Eq. (2.57)
given by

whal)?
o = 4A0% > J00), (B.2)
~e{L,R}
wkal 2 Y2
R IR SN/ () B3
ve{L,R} (2§ + &%)
UJR.I’R 2
ay = 4A0% > The(0), (B.4)
ve{L,R}
wla 2 2
~e{L,R} (5’70 +672)
wiwk (z£)” Yo
a5 = —4140272 > JZL(O)mu (B.6)
~e{L,R} 0 €v3
whwl (af)” Yo
ag = 41— > TR0) (B.7)
+e{L.R} To 6
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1
B = —4A0w§wfx£x§ﬁ Z J a(z =2 (B.9)
~e{L,R}
2
Y0
[y = 4A0wLszL’£:c(If Jip(z—2") -, (B.10)
ye{%} @ red @rad
By = —4A0waLxé;x§ Z J a(z =2 e ioe R (B.11)
~e{L,R} 0 V2
By = 4Agw; U}Rl’éll’é% Z Jlp(z—2") o (B.12)
d? zh +e,4
~e{L,R} 2
(B.13)

The e,-function is defined as ¢, = —1 and eg =1



Appendix C

Derivation of perturbative
corrections to the matrix elements

We use standard stationary perturbation theory [113] to calculate the corrections to
the mean-field results induced by the perturbation

J
V=->"V,= _§Z(cjcj+c;ci), (C.1)
(i.4) (i.4)

where we introduce the new operators
C;, = Q; — <CLZ‘>0 = a; — \I’Z', (02)

The expectation value (-)g is taken with respect to the mean-field wavefunction |Gj).
Defining the operator for the energy denominator as
1 1—-|Gy)(G
— = —| 0)(Gol , (C.3)
A €0 — Hur
the expectation value of an observable (A) including all corrections up to second
order is

(A) (A + (Vg Ao+ (A5 V),
PV VR A+ (V£ ALY, (C.4)
1 1 1
+ <AZVZV>O - <V§V>0<A>o-

The first line in Eq. (C.4) is the mean-field result (A), followed by two contributions
which are the first-order corrections. Lines two and three in Eq. (C.4) are the second-
order corrections to the mean value.

C.1 Density matrix: First-order corrections

As an example we will discuss the corrections to the density matrix p;; = (aja]). The
first-order correction to the density matrix is:

(ala;)r = (clej) + Wi {ej)1 + (e Ty + 070 . (C.5)
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lattice site
7 GS
O QO O
Vv ® Es
O & @ O
C|-"_Ci+1 v
+
O 000 — g
L
Figure C.1: Schematic diagram illustrating the term (cjcj%%j)o appearing in the
first-order correction (cl¢;), of the density matrix, where V;; = %(cj ¢+ c;r»ci) is the

perturbation connecting sites ¢ and j. The diagram shows the lattice sites in the
horizontal direction. The different steps needed to obtain the matrix element are
shown vertically. Open circles denote the ground state (GS) of the given lattice site,
while filled circles are excited states (ES) of this site, for the mean-field Hamiltonian
HMF-

For two different lattice sites i # j, we find

1 1
<CZTCJKQ’>O = <Cj>0<CZTZCi>0 =0, (C.6)

since the Gutzwiller ground state is a product state. As a consequence, the con-
tributions (c}); and (¢;); vanish. The only remaining contributions to (afa;); stem
from 1 1

(clejh = —<VinCZCj>0 - <CZTCJZVU>07 (C.7)

and U7V,

To get a better idea of the character of the terms arising in the perturbative
expansion, we introduce, in Fig. C.1, a graphical representation (for the example of
a 1D-lattice). The graph shows a decomposition of the matrix element, with each
row showing the wavefunction at an intermediate step in the evaluation of the matrix
element. As we deal with product states

&) =] ). (€3)

we represent the wavefunction by a row of circles, where each circle denotes the state
lia,) of a particular lattice site i. Open circles in Fig. C.1 denote a lattice site in its
ground state (GS), filled circles refer to an excited state (ES) of this particular lattice
site, with respect to the local mean-field Hamiltonian. Note that, in general, this can
be an arbitrarily highly excited state (although higher contributions are suppressed
by the energy denominator, and a cutoff is used in practice). Starting with a row
of open circles, denoting the GS, |Gy), each following row corresponds to the state
after the action of V' or c;rcj, as indicated on the left side of the graph. As all matrix
elements in Eq. (C.4) can be expressed in terms of a GS expectation value (-)o and
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Figure C.2: Diagrammatic representation of the contributions from W} (c;), and
<c;r)2‘llj to the second-order correction of the density matrix. (a) Terms representing
contributions of the form Eq. (C.11).(b) contributions of the form Eq. (C.12). All
notations are the same as in Fig. C.1.

a sequence of V' and cjcj operators, the first and last row must always be a line of
open circles.

Let us consider for instance the second term in Eq. (C.7)

1
<CZTCJZVz‘j>o : (C.9)
Reading the graph in Fig. C.1 from top to bottom corresponds to reading the matrix
element from right to left. Starting with the GS, |Gy), the first row consists of open
circles. The second row shows the state after the action of the perturbation V. Acting
with V; to the right onto the GS results in a state

ViilGo) = faplia: js) . (C.10)
a,B

where i and j are neighboring lattice sites and |i,, jg) denotes the state with lattice
site i (7) in the exited state a () and all other sites in their GS. Thus the second row
shows the lattice sites i and i+1 in an excited state (filled circle), as the perturbation,
Eq. (C.1), allows only next neighbor interactions. Finally, the action of cgcj has to
bring the excited states back to the GS, in order to get a non-vanishing contribution.
Therefore, in first order PT, only next neighbor corrections to the correlation func-
tion arise, as the final row must represent the ground state (G| again. The graph
representing the remaining first term in Eq. (C.7) is obtained by rotating the graph
in Fig. C.1 by 7.

C.2 Density matrix: Second-order corrections

Rewriting the second-order corrections to the density matrix, (ajajh, in terms of the

operators ¢ and ¢; gives Eq. (C.5), but with (-); replaced by (-),. In contrast to
T

the first-order corrections, now the terms proportional to (c;)2 and (c])2 also give

non-vanishing contributions. Using Eq. (C.4) we obtain:

(¢)2 = 2 VikxViencido + Y uleix Viex Viro (C.11)
+ 3 (Vikxcix Virdo (C.12)
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Figure C.3: Graphs showing second-order corrections arising from <cjcj>2. Diagrams
(a) and (b) are coming from direct-neighbor contributions as given by Eq. (C.13) and
Eq. (C.14) respectively. Diagrams (c¢) and (d) are next-nearest-neighbor contribu-
tions: (c) corresponds to Eq. (C.16) and Eq. (C.17); (d) corresponds to Eq. (C.18).

Here, the primed sums run over all neighbors £ to site j. The corresponding subset
of graphs for ¥ (c;), and (c > U, are given by Fig. C.2a and Fig. C.2b for Eq. (C.11)
and Eq. (C.12) respectively. Note that all terms of Eq. (C.11) and Eq. (C.12) give a
correction to all matrix elements of the density matrix independent of the distance
between the lattice sites. We can understand these contributions as a modification
to the mean-field value of the density matrix.

For the second-order contribution, (c;rcj)g, we have to distinguish two cases:
(a) Lattice site ¢ and j being direct neighbors. In this case we get

<Cjcj>2 = (Vi AVUA zC]>0 + <C Cj AVU AV )0 (C.13)
+(VijLele;2Vip)o . (C.14)

Corrections for Eq. (C.13) and Eq. (C.14) are shown in Fig. C.3a and Fig. C.3b,
respectively.

(b) Configurations corresponding to two lattice sites ¢ # j connected by two suc-
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cessive hopping steps via site k. This gives rise to six contributions:

(cle)e = (C.15)
1
> (Vi Av;ﬂA clej) 0+Z v,ﬂA JkA fejdo (C.16)
C
1
+Z(CICJZVJ‘1¢ZVM>0 + Z(QCJZVMZVMO (C.17)
C
1 1
+Z<V}'k3 i Cj Asz 0+ Z sz CJZVJK‘>0' (C.18)
C

An example for the contributions arising from Eq. (C.16) and Eq. (C.17) is
shown in Fig. C.3c. The last term, Eq. (C.18), has the representation shown
in Fig. C.3d. Note that for lattices with dimensions D > 1, the sites ,5 and k
need not necessarily form a straight line but can form a chevron.
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Appendix D

Scattering Formalism

This Appendix gives a brief summary of the scattering formalism. The following
sections are meant as an introduction to the notation used in the main text of this
thesis. A detailed discussion of scattering theory is given, for instance, in [112].

D.1 Lippmann-Schwinger Equation
The Hamiltonian of a two-body scattering process is given as
(Ho+V)|¥) = E|¥), (D.1)

where V' is the scattering potential. For elastic scattering, we have energy conser-
vation i.e. the solution of the scattering problem, |¥), has the same energy as the
free-incoming wavepacket: Hy|®) = E|®). The formal solution of Eq. (D.1) is the
Lippmann-Schwinger equation

V)= ——F"—FV|¥) + |D), D.2
¥) = Vi) + [0) 0.2)
Here, the “47-sign stands for an outgoing and “—7-sign for an ingoing wave. Using
the position basis, we obtain for Eq. (D.2)
1
x|U) = (x| P —|—/dX/XA—XI x'|V|¥). D.3
(i) = (xf0) + [ ¢ (e ) V) 0.3)
Defining k = v2mE/h leads to
1 2m 1 kb
My = 2 L (D.4)
E — Hy +ie R 4m |x — x|

Assuming a plane wave for the incoming wavefunction and assuming that the scat-
tering potential depends only on the position operator V(x), gives

1 ) owm 1 eiik\xfx’\
|\ = etkx__ 7 dx' — V(x"U(x'). D.5
() = G h24ﬁu/ X V)V (D.5)
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Furthermore, we assume that the size of the scatterer is much smaller than the
distance to the detector. Defining |x| = r, |x'| = ' and taking the limit r > 7/,

allows us to approximate
6iik|x7x’\ eii(errk’x’)

, (D.6)

|x — x/| ~ r
in Eq. (D.5). The wavevector k’ with |k’| = k, points in the direction of the outgoing
particle. Hence, Eq. (D.6) leads to

1 K 1 et 2rm?\ /2 !
_ kx / —i1K'X / /
U(x) = 7(277_7;03/26 R /dx < - ) e V() (x'), (D.7)

— /(oK)

where we restricted ourselves to the outgoing solution.

D.2 Partial Waves

Instead of using the plane-wave basis set we can use the spherical-wave basis set.
This is particularly convenient, if the scattering potential has spherical symmetry. In
this case, we can expand the scattering amplitude in Legendre polynomials

[e.e]

F,K) = (21 + 1) fi(k) Pi(cos0) (D.8)
1=0
Note, that f(k,k’) = f(6, E) due to energy conservation. Expansion of the plane
wave into spherical waves leads to

o0 o0 i(kr—(im/2)) _ p—ikr—(in/2))

e = E (20+1)i'5;(kr) Py(cos 0) farger (21+1)i 57k Py(cosb),
ikr
1=0 =0

(D.9)
where j;(kr) is the I-th Bessel function and 6 the angle between k and x. Inserting
the expansion of the wave amplitude f(0, F), Eq. (D.8), and the expansion of the
plane wave, Eq. (D.9), into Eq. (D.7) for the wavefunction, yields

0 B(COS 4 ikr efi(krflﬂ)

W(X):W;@HUW) {(1+2ikfl(k))er -S| (Da0)

r

The second term in the square brackets is the incoming term and the first term is
the outgoing term modified by the factor 1 + 2ik f;(k) due to the scattering process.

Finally, we can make use of the particle-number conservation. In simple words:
Any particle going in must come out again. In addition, we have conservation of
the angular momentum as a spherically symmetric scattering potential was assumed.
Therefore, the incoming and outgoing currents must be the same for every single ”1”
term, which leads to the condition!

(14 2ikfi(k))] =1 — (1 + 2ikfi(k)) = eouk) (D.11)

IThe factor 2 in the phase is convention.
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This allows us to rewrite the scattering amplitude as

e sin 6, 1
flk) = — " kcotd — ik

(D.12)

In conclusion, we can say, that (in reasonably large distance to the scatterer) the
effect of the scatterer results only in a phase shift J; for every angular momentum
component in the outgoing radial wave.
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Appendix E

Cumulant generating functions

E.1 Cumulant generating function of the degener-
ate Fermi gas
This appendix gives a short derivation of the cumulant generating function for a free

fermionic gas in the degenerate limit. The starting point is Eq. (4.35) which is given
here once more

S(x) == log [1+ fr(eX = 1)] . (E.1)

The degenerate limit corresponds to the low-temperature case kg1 < €p, for which
the Fermi occupation function

1

f-l—(e) = Bl + 1

shows a sharp step at the Fermi energy i = ep.

The first step is a conversion of the sum in Eq. (E.1) into an integral

S(x) = — /OOO de N(e)log [1+ fi(e)(eX —1)] . (E.2)

Here, N(¢) denotes the density of states. The integral is split up into a part for
energies smaller than e and into a part for energies larger than ex. After a transfor-
mation of variables € — —n +ep and € — 1’ + €p for € < ex and € > €, respectively,
the integral can be rewritten as

S0 == [ dy N+ er)log [1 4+ Fo(—n+ er)(e — ]
0 | (E.3)
- / ' N(n' + ep)log [1+ f(1f' +ep)(eX = 1)].

€r

Using the equality fi(ep —n) =1 — fi(er + n) and rewriting the logarithm of the

119



120 APPENDIX E

first integral gives
€ERF S .
Sx) =— ii/ dn N(=n+€r) — / dn N(—n+ ep)log [1+ fi(er +n) (e —1)]
0 0

_ /OOO dn' N(n' + er) log [1 + filep + 1) (eX — 1)]
(E.4)

where X /27 +1/2 = [x/2m + 1/2], with [.. ] denoting the fractional part. The first
integral corresponds to the average particle number N. Using the identity

X d
F00 = £0) = [ v 00, (E.5)
0 dx
and performing the derivative explicitly leads to
—n 4 ep)e X
S(x) =—1 N+z/ d / —
W= g 1)

N + ep)e™
d d' E.6
/ X/ f+eF+77) (ezx—l) (56}
B . Z'/ N Z-X/
0 0

gﬁn + e—ix ebn + eix

Considering the degenerate limit i.e. kg1 < €p, the arguments of the integrals are
quickly decaying on a energy scale S~ = kgT. Thus, as the density of states is a
slowly varying function on this energy scale, N(£n+ €r) can be replaced by its value
a the Fermi energy N(ep). Furthermore, the upper limit of the first integral, ep,
has been taken to infinity, causing no significant change to the value of the integral.
Further simplifying the remaining integral leads to

~ X €r
S(x) = —i)ZN+iN(eF)/ d)('/
0 0
Finally, the integrals can be explicitly evaluated

S(x) = —ixN + N(ep) /OX dxl% arctan (tan (x'/2)) )

-1
= —Z)ZN + §]€BTN(€F))22 y

isin
T osh fBn+ cos

(E.7)

where the 27-periodicity is again preserved by introducing the quantity x.

E.2 Cumulant generating function in the BCS limit
at finite temperatures

The calculation of the CGF for the finite-temperature BCS limit is based on the

quasiparticle spectrum. The transformation between the fermion operators CLJ, Ck,o

and the quasiparticle operators VLZ., Yk, reads [183]

= U F UL, (E.9)
CT—kl = U0 T Uk’VlT(,l : (E.10)
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The final goal is to find the CGF for the quasiparticle excitations

<ei2k" ﬁkox> — %Tr {e—ﬁzk,iEw}t,ﬂk,i el ko ﬁkax} ) (E.ll)

Note, that the trace is taken over all quasiparticle states. The quantity ny , = CL +Ck.o
is the fermion-number operator. In the next step, the relation

Mo = Mo s (E.12)

valid for all positive integer ¢, is used. The relation can be derived from the anti-
commutation relation for the fermion operators, {ck -, CL, »} = Okk0s07, and the Pauli

principle: cip = CL’: = 0. Hence, the exponential in Eq. (E.11) can be simplified to

give

ko n=0 ko n=0
= H [(1 — nkT) -+ nkTeiX] [(1 — n,kl) + n,klei"] .
k

(E.13)

Inserting Eq. (E.13) into Eq. (E.11) leads to
. . 1 : .
<ezzk" nkgx> — ETI {H e*ﬁzi Ek'“/;i“/k,i [(1 _ nkT) + nkTezx] [(1 _ n—kl) + n—klelx} }
k

— % H Z e BB 0t1ic1)

k vy 0,0k,1€{0,1}
X (V.05 Vi 1| [(1 — nky) + nkTeiX] [(1 —n_x|) + nikleix] |0, Vi1)
(F.14)

where 1y ; are the eigenvalues of the quasiparticle number operator: fylilfyk,i. In order
to evaluate the last expression, we have to transform the fermion-number operators
Nk with the help of Egs. (E.9), (E.10), into quasiparticle operators. Transforming
the number operator into the new basis yields
et = eyt = (o + Vi) (Ui ieo + Vi)
= |uk|2711707k,0 + \Uk\QVk,l%T(,l + VU Y1 V0 + Ukvk“YLo’VlT(J )
iy = o ok = (—0pr—k0 + WY ) (ur o + UEY-k)

= |Uk|27—k,07ik,o + |uk|2'71k,17—k,1 — VU V1,0V —k,1 — Ukvk'YT,kJ’Yik,oa
(E.15)

and thus the total number operator is

ana = an +n_yx|
k,o k

= Z 2Up Vi1 V0 QUkvwk 071( 1t Z ( Juse|* — |Uk|2)’711,z"7k,i + Ivk|2>
1€{0,1}
(E.16)
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Taking the mean value leads to
(ot [t + noi [icovicr) = (lul® = [vi*) (o + 1e1) + 2[oicf . (E.17)

Furthermore, the mean value for the product of two number operators must be found.
Using again the transformation rule Eq. (E.15) for ny , yields to

<Vk,07 Vi 1 |nan7kl|Vk,07 Vk,1>
= (Vk0, Vk,1|(|uk|271i,0'7k,0 + |Uk|27k,1711,1 + VU Yk 1V 0 T ukvk%tp%i,l)
X (o0 + [t 761 — VRt N0 — Wk r k) Mo, Vi)
= [l raco + |oa*(1 = v )] [Jord (1 = vaco) + | *14c1]

— | |ore]* (Ve 05 Vi1 | [—(1 - %1171(,1)(1 - %1071(,0) - 711,071(,0%11%,1] |V,0, V1) 5
(E.18)

and, thus, to the final result

(Vk,o, Vk,1|nan—kl |Vk,07 Vk,1>
= [|uk|21/k,0 + |Uk|2(1 — Vk71)} [|'l}k|2(1 — I/k70) + |Uk|27/k71] <E19>

+ e *[oie]? [(1 = 1) (1 = o) + Vo] -

Finally, combining Eqgs. (E.17), (E.19) into Eq. (E.14) for the CGF gives

. . 1 ) .
(e Bhe ) = — T [(1+ 2o (€ = 1) + o (fod? + ) (e = 1))
k

+2(1 + (Juscl + o) (e — 1)) e
+(1+ 2Ju* (€™ = 1) + ur* (Jurd* + o) (7 — 1)) ]

= %H [(1+ 2ok (e™ = 1) + |vi[* (e — 1)?)

+2(1 + (X —1))e PFx

F(L 4 2w (€™ = 1) + unf* (€™ = 1)?)e 2] |
(E.20)

where the first line is the result for (v, k1) = (0, 0), the second line for (v, 4 1) =
(0,1) and (v, 1) = (1,0), and the third line for (v, 1) = (1,1). Grouping the
terms by powers of y, using (X — 1)? = (e?X — 1) — 2(e™X — 1) leads to

) . 1 )
<€z2k0 nkax> —— H [1 + 26—/3Ek + e—QﬁEk 4 Qe—ﬁEk (ezx _ 1)
Z % (E.21)

+(\vk\2 + |uk|2€_26Ek)(€2iX — 1)} )
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Finally, using Z = 1 + 2e %P« 4 ¢720Fx and f,(Ey) = 1/(e*"x + 1) we obtain

(e MeoX)y = TTH{ 1+ 2f1 (B (1 = f1(B)) (€™ — 1)

k

+ ol (1 = 2/ (B (1 = fi(Bx)) — f+(Ex)*) (e = 1)
+ ] [ (Bi)* (€™ = 1) } (E.22)

= [L{1+27:(B)0 = fr (B (X = 1)
Howe* (1 = fo(Ei)* (€ = 1) + |ux*f1 () * ("X = 1)} .
In Eq. (E.22), the relations

e PBEx e~ 28Ex

f+<Ek>(1_f+(Ek)): 7 f+(Ek)2: 7 (E-23)

and
1

1= 2f (B = f1(Fi) — f+(F* = . (E.24)

were used. This leads to the final result for finite-temperature CGF in the BCS limit
S00 == log[ 1+ 2/ (B)(1 = f+(B))(eX ~ 1)
Kk

+ ol (1= fo(Bi))* (€™ = 1) + Ju* o (Br)* ("X = 1) ] .

(E.25)
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Appendix F

Self-consistency equations

F.1 Self-consistency equations in 2D

The two-dimensional case is particularly interesting, as analytical expressions for the
self-consistency equations, Eq. (4.17)

A= —Vkauk, (Fl)
k

and Eq. (4.16)
N=> |ul?, (F.2)
k,o

can be derived. In the first step, the sums in the self-consistency equation are replaced
by integrals over the energy. The two-dimensional case has a a constant density of
states N(e) = m/2rh?, which will facilitate the calculation of all integrals. Renor-
malizing the coupling constant V' in the gap equation (F.1) and taking the low energy
limit leads to [152]

1 m * 1 1
- d - , F.3
7'0(2E) 47'['712 0 ‘ (E_E_ZT/ (E—M)2+A2> ( )

Equation F.3 represents the gap equation in terms of the two-particle s-wave T-
matrix, 7p, in the low-energy limit. In two dimensions, 7o(FE) is related to the s-wave
scattering phase shift oy by

1 m )
() =0z (—cot (6o(E)) + 1) (F.4)
where )
cot (0p(E)) = - log(E/ER) + O(E/¢€R) (F.5)

is the low-energy s-wave scattering phase shift [152,205]. Here, Ep can be identified
as the energy of the bound state. The energy e is given as ez = h?/2mR?, where
we defined the range of attraction of the scattering potential to be R (assuming
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krR < 1). Using Eq. (F.4) and Eq. (F.5) in the two-dimensional gap equation (F.3),
we obtain

o 1 1
—log(2E/FE +z’7r=/ de — —
g(2E/Ep) o <€—E—“7 (e—u)2+A2>

= —log (=2E) +log (v/1i* + A% — p)
=im —log (2E) + log (v/ i + A? — ).

The gap equation gives, thus, a relation between the bound-state energy Ep and the
parameters g and A

(F.6)

Eg=/p>+ A% —p. (F.7)

Equation (F.7) is the first self-consistency equation. The second equation, required
in order to determine A and pu, is given by the particle-number conservation. The
particle-number density can be computed straight forward from Eq. (F.2)

_ 2 9 m/oo 1 (e — )
n=— "= — de - | 1—
Vo 210" 2( RS ()
m
=57 (\/u2+A2+,u> :

Expressing the average particle-number density in terms of the Fermi energy € leads
to

m [T merp
— [ de =—%,
Th* Jo Th

and we finally obtain the second self-consistency equation

2ep = /P2 + A2+ 4. (F.10)

(F.9)

n =

F.2 Self-consistency equations in 3D

Analogous to the two-dimensional case, we renormalize the gap equation, Eq. (4.17)
and take the low-energy limit. This procedure leads to the analog of Eq. (F.3), but
with the three-dimensional density of states on the right hand side. The difference to
the two-dimensional case, apart from the three-dimensional density of states, enters
in the three-dimensional expression for the T-matrix. In the low-energy limit [163]
7o = 4mah®/m, where a is the s-wave scattering length. Following Leggett [149], we
write the 3D-gap equation in the form

1 [ 1 [ 1 1
g:—/ dee | = - — | . (F.11)
o EERVICEIEEw

where all quantities with a tilde are normalized to €p and £ = 1/kpa. The Fermi
energy can be expressed in terms of the particle-number density, n, using the particle-
number conservation

(2777,)3/2
2m2h3

n =

/ de /e |vg|?, and  kp = (37%n)*3. (F.12)
0
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Figure F.1: Results from the self-consistency equations (F.11) and (F.13) in 3D
( Eq. (F.18) and Eq. (F.21) in quasi-2D ) for A and pu. The dashed-black line
corresponds to the quasi-2D case and the solid-red line corresponds to the 3D case.
The quasi-2D results are calculated for a box potential. All quantities are normalized
with respect to the energy ep, where the subscript D denotes the dimension of the
system. The energy €p is the Fermi energy, taken with respect to the transverse
ground state ep—y = €p — €y in the quasi-2D case and ep_3 = €p in the 3D case. (a):
AJep as a function of up/ep. In 3D is pup—g = p . In quasi-2D is up defined with
respect to the transverse ground state energy: up—o = p—€o. (b,c): Figures (b) and
(c) show pp/er and A/ep plotted over —(& — &), respectively. Here, & = 1/kpa and
& = {(up = 0). Note that kp—3 = kp in three dimensions. In quasi-two dimensions

18 k’D:2 = 7T/£0.

Here, kp is the Fermi wavelength given by ex = h*k%/2m. Thus, the second self-
consistency equation in three dimensions, derived from Eq. (F.12), is given by

4 [* o s (€—n)
= deve|1- : (F.13)
’ /0 (€= p)?+ A2

F.3 Self-consistency equations in quasi-2D

The quasi-two dimensional case (quasi-2D) is based on a three-dimensional system,
however, the system is frozen out in one direction. This can be achieved in a har-
monic trap with very different trapping frequencies: w, > w, = w,. Alternatively, a
box potential with side lengths ¢, < ¢, = ¢, can be chosen.
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In the following, we will assume a box potential. Again, we consider the gap
equation, but this time we go one step back and write the three-dimensional gap
equation (F.11) in terms of a sum over the wavevectors k [149]

1
%hz V > < N +A2> . (F.14)

ko 7ky 7kz

Choosing the 2-dimension to be frozen out, the three-dimensional sum reduces to a
two-dimensional sum. In contrast to the pure two-dimensional situation, the ground-
state energy ¢y has to be taken into account

Hence, rewriting the sum over £, and £, into an integral over energy, the gap equation
becomes

o 1

= 5 dé — = : (F.16)
2rh a T € (E— ﬂ)z + A2

m m

| =

where ¢y = £, is the size of the ground state!. All quantities with a tilde are normal-
ized to (ep — €p). On the one hand, studying a quasi-two dimensional system means
that the kinetic energy in the quasi-free directions (here Z and g) is smaller than
the level spacing of the frozen-out direction (here Z). This leads to the restriction
€rp — €9 K €. On the other hand, ¢ is the lower boundary for ex. In summary, we
have the condition ez = ¢y + § with 0 < §/¢y < 1. Hence, the Fermi wavevector can
be approximated for the box potential as ? kp = \/2meg/h + ks ~ /2mey /I = /L.
Here, the ground-state energy for the box potential ¢, = h?m?/ 2m/l? has been used.
Eventually, defining the quantity

1 1
N —, (F.17)

ma/ly  kra

§op =

the quasi-two dimensional gap equation reads

* 1
7T£2D = / deé + —
0 (6 — i) 4+ A2 (F.18)

= —log (2¢y) + log ((éo — 1) + \/(50 — )+ A?%).

| =

In analogy to the two-dimensional case we find for the number conservation

oo
dG‘Uk‘Q =

1 m

lo wh?

(n) = ( — €0+ /(€0 — )2+ AQ) (F.19)

m
27T€0h

For the harmonic-oscillator potential £y = \/h/mw..

2 Assuming a harmonic-oscillator trapping potential, the expression for €z in terms of wavevectors
is given by krp = @51 + ks ~ Eal, with ¢y = \/h/mw,. This shows that the Fermi wavevector can
be approximated to first order by the inverse of the harmonic-oscillator length.
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Using the relation between the average number density (n) and the Fermi energy

1 m [ 1 m
—(ep — €0) (F.20)

<Tl> = %ﬁ . € = %ﬂ_hQ

leads to the final expression

2er — o) = (1 — o) + V/{eo — )P + A7 (F.21)

Normalizing all energies to the Fermi energy measured from the ground-state energy,
e — €0, Eq. (F.21) transforms into

A=21+ (& —f). (F.22)

Finally, the order parameter A and the chemical potential it can be explicitly ex-
pressed as a function of &p

(i — &) =1—¢e™ A = 2\/¢yemr/? (F.23)

The behavior of A and p for the quasi-two dimensional case is shown in Fig. F.1.
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