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Abstract

Image registration is a powerful tool in medical image analysis and facilitates
the clinical routine in several aspects. It became an indispensable device for
many medical applications including image-guided therapy systems. The
basic goal of image registration is to spatially align two images that show a
similar region of interest. More specifically, a displacement field respectively
a transformation is estimated, that relates the positions of the pixels or
feature points in one image to the corresponding positions in the other one.
The so gained alignment of the images assists the doctor in comparing and
diagnosing them. There exist different kinds of image registration methods,
those which are capable to estimate a rigid transformation or more generally
an affine transformation between the images and those which are able to
capture a more complex motion by estimating a non-rigid transformation.
There are many well established non-rigid registration methods, but those
which are able to preserve discontinuities in the displacement field are rather
rare. These discontinuities appear in particular at organ boundaries during
the breathing induced organ motion.

In this thesis, we make use of the idea to combine motion segmentation
with registration to tackle the problem of preserving the discontinuities in
the resulting displacement field. We introduce a binary function to rep-
resent the motion segmentation and the proposed discontinuity preserving
non-rigid registration method is then formulated in a variational framework.
Thus, an energy functional is defined and its minimisation with respect to
the displacement field and the motion segmentation will lead to the desired
result. In theory, one can prove that for the motion segmentation a global
minimiser of the energy functional can be found, if the displacement field
is given. The overall minimisation problem, however, is non-convex and a
suitable optimisation strategy has to be considered. Furthermore, depending
on whether we use the pure L'-norm or an approximation of it in the formu-
lation of the energy functional, we use different numerical methods to solve
the minimisation problem. More specifically, when using an approximation
of the L'-norm, the minimisation of the energy functional with respect to



the displacement field is performed through Brox et al.’s fixed point itera-
tion scheme, and the minimisation with respect to the motion segmentation
with the dual algorithm of Chambolle. On the other hand, when we make
use of the pure L'-norm in the energy functional, the primal-dual algorithm
of Chambolle and Pock is used for both, the minimisation with respect to
the displacement field and the motion segmentation. This approach is clearly
faster compared to the one using the approximation of the L!'-norm and also
theoretically more appealing. Finally, to support the registration method
during the minimisation process, we incorporate additionally in a later ap-
proach the information of certain landmark positions into the formulation of
the energy functional, that makes use of the pure L'-norm. Similarly as be-
fore, the primal-dual algorithm of Chambolle and Pock is then used for both,
the minimisation with respect to the displacement field and the motion seg-
mentation. All the proposed non-rigid discontinuity preserving registration
methods delivered promising results for experiments with synthetic images
and real MR images of breathing induced liver motion.
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Chapter 1

Introduction

Image registration is an important medical image analysis tool and facili-
tates the clinical routine in several ways. It supports the doctors in compar-
ing medical images of their patients and diagnosing them. Moreover, it is
nowadays an indispensable part in many medical applications, as for example
in image-guided therapy systems [85, 6, 68]. The task of image registration
methods is to spatially align two images that show a similar region of interest
by estimating a displacement field respectively a transformation that relates
the positions of the pixels or feature points in one image to the corresponding
positions in the other one. Once the spatial transformation has been found,
one can draw conclusions about significant differences between the images
and detect in a better way anomalies and pathologies.

Different classes of image registration methods exist, the ones which are
able to estimate rigid or affine transformations and the more powerful ones,
which are able to estimate non-rigid transformations. Whereas rigid image
registration methods are satisfyingly applied to images of bones and brains,
non-rigid image registration methods are crucial to estimate soft-tissue de-
formations between images.

There are many well established non-rigid registration methods, but those
which are able to preserve discontinuities in the displacement field are very
rare. Some examples of discontinuity preserving registration methods can
be found for example in [73, 70]. Common non-rigid registration methods
normally produce most of the registration errors at these discontinuities. Es-
pecially in the medical field the need for accurate image registration methods
is obvious, since inaccurate alignments of the images can lead to crucial mis-
interpretations.

In the human body, discontinuities in the displacement field appear for
example at organ boundaries during breathing induced organ motion. Let
us consider for example the movement of the liver during respiration. A
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schematic illustration is shown in Fig. 1.1. During inspiration the lung is filled
with air and the diaphragm moves downwards, thus pushing the liver down.
Then, during expiration the lung shrinks, the diaphragm moves upwards
and the liver slides back to its initial position. Furthermore, the thoracic
and abdominal wall are moving outwards and inwards during respiration.
The sliding of the liver along the abdominal wall and also the perpendicular
movement of the wall itself to the dominant motion during the breathing
cycle clearly cause a discontinuity in the displacement field.

Lung O e

;\ Liver

* — Diaphragm
-
+

Figure 1.1: The movement of the liver, the thoracic wall and the abdominal
wall during respiration. Blue arrows: Movement during inspiration. Red
arrows: Movement during expiration.

-
-+
.

A common approach to preserve the discontinuities in the displacement
field, is to manually segment the objects of interest and registering them sep-
arately. The final discontinuous displacement field is then achieved, by com-
posing the so obtained results. This semi-automatic approach is, however,
very time consuming because of the need of prior manual segmentations.

A related method, is the one of Schmidt-Richberg et al. [73], where a
direction-dependent regularisation method was proposed to preserve discon-
tinuities in the displacement field. Their approach, however, needs prior
information of the normals at the object boundaries and therefore a good
manual segmentation of the objects of interest has to be provided here too
in advance.

Another discontinuity preserving image registration method was proposed
by Ruan et al. [70], where a regularisation based on the divergence and curl
of the displacement field is introduced to preserve sliding motions. From their
results it is, however, not clear how well this method will perform compared
to other discontinuity preserving image registration methods.
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The aim of this thesis is to develop a new non-rigid image registration
method, that is able to preserve discontinuities in the displacement field
which are caused by breathing induced organ motion. For this we combine
motion segmentation with optical flow based registration in a variational
framework and show how the minimisation of the resulting energy functionals
can be achieved in an efficient way.

In the following, we would like to address the main topics that are im-
portant for the understanding of the proposed methods. In Section 1.1 we
provide an outline of image registration. In Section 1.2 we address a re-
lated field to image registration called optical flow. Then, in Section 1.3 we
discuss motion segmentation approaches. Afterwards, the continuous cuts
framework is introduced in Section 1.4. Finally, we address in Section 1.5
some possibilities for the optimisation and discuss in Section 1.6 the inclusion
of landmark correspondences into the image registration methods.

The last section of this chapter, Section 1.7, gives an outline of this thesis
and summarises the contributions.

1.1 Image Registration

Image registration is an ill-posed inverse problem and therefore a rather dif-
ficult task. To solve the problem, usually additional constraints are required
like adding for example a regularisation term or making prior assumptions
about the sought transformation. Image registration has a wide range of ap-
plications, not only in the medical field but also especially in remote sensing
and computer vision [94]. Introductions to image registration and surveys of
well-known methods can be found for example in [15, 45, 94, 25, 59] and the
references therein.

In this section we would like to briefly address some general and important
points of image registration. This outline is mainly based on the above
mentioned surveys and we refer the interested reader to these works and the
references therein for further reading.

1.1.1 The Principle of Image Registration

The aim of image registration is to estimate a transformation, that relates
the positions of features in one image to the corresponding positions in other
images. With the help of the determined transformation, the images can
then be spatially aligned.

During image registration two images are considered, where one is re-
garded as static and the other one is transformed. There exist many dif-
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ferent terms for these two images (see e.g. Appendix 1 in [25]), which can
cause a confusion when they are not used in a consistent way. In this thesis,
the static image will be always referred to as the reference image R and the
image which is being transformed will be called the template image T

More specifically, we define by Q C R? d € N, the domain of the pixel
positions ¥ = (x1,29,...,24) and then by the functions R : @ — R and
T : 2 — R our reference and template image. After a proper registration of
the two images, the relation

Tod~R, (1.1)

should hold, where ® is the transformation function. The transformation
can also be written as

O(7) =7+ (%), (1.2)
where
W Q— RY, (1.3)

describes the so called displacement field. This will be the intrinsic function
we are focusing on in this thesis.

An illustration to the introduced terms for image registration is shown in
Fig. 1.2.

Tod=~R

Figure 1.2: An illustration of the principle of image registration.

Here, we will work with two-dimensional images (d = 2) and the displace-
ment field w therefore consists then of the two components u, v : Q2 — R with
W(Z) := (u(Z),v()). For convenience we will use later the abbreviations 0,
uw and v for W(Z), u(Z) and v(T).

The estimation of the transformation ®, respectively the displacement w,
can be performed by considering all the pixel positions ¥ € {2 or only a subset
of them. In our proposed variational approaches we will be estimating them
by considering the whole domain (2.
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1.1.2 The Right Choice of an Image Registration
Method

The choice of a suitable image registration method varies from application to
application and depends on different aspects, mainly on the type of images,
the complexity of the assumed motion, the aimed accuracy and the desired
time of computation.

Rigid versus Non-Rigid Registration Methods

Nowadays, there exist plenty of different image registration methods and
one can find many different variants in the literature on how to group them
(see e.g. [15, 94, 59]). Concerning the type of transformation, they can be
subdivided into those methods which are capable to estimate a rigid transfor-
mation or more generally an affine transformation between the images and
those which are able to capture a more complex motion by determining a
non-rigid transformation. In a similar fashion, one can talk about paramet-
ric and non-parametric image registration methods or about feature-based
and intensity-based image registration methods, to just mention a few more
possible classifications. Rigid image registration methods are in general eas-
ier to implement and faster than the non-rigid ones. However, depending
on the kind of apparent motion, one has to be aware of most likely obtain-
ing less accurate results when using rigid registration instead of non-rigid
registration. Especially in the medical field, there is the need for non-rigid
registration methods. For images of bones and often also for images of the
brain rigid registration methods are accurate enough, whereas for the cor-
rect estimation of soft-tissue deformations non-rigid registration methods are
crucial. References to rigid registration methods can be found for example in
the works [89, 33, 45] and some non-rigid methods that became very popular
in the medical field are for example the ones proposed by Thirion [82] and
Rueckert et al. [72].

Similarity Measures

Next, having a look at the modalities of the images one wants to register,
intensity-based image registration methods need to have an appropriate sim-
ilarity measure between the warped template image T o ® and the reference
image R to be able to deliver satisfying registration results. For mono-modal
images, the similarity measure is often chosen as the sum of squared differ-
ences (SSD), the sum of absolute differences (SAD) or the correlation coef-
ficient (CC). On the other hand, for multi-modal images, the use of mutual

5
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information (MI) or normalised mutual information (NMI) is very popular.
We refer the reader to [45] for a more detailed discussion on similarity mea-
sures. In the following chapters, we will make use of similarity measures that
are based on the grey value constancy constraint

R(Z) =T (7 + W),
and the gradient constancy constraint
VR(Z) = VT (Z+ o),

similar as in [16, 4, 5]. The grey value constancy constraint alone cannot
handle slight brightness changes in the images, whereas, similarly to the CC,
the gradient constancy constraint can do so.

Interpolation Methods

Another important component in image registration methods is the inter-
polation method that is used to calculate the warped template image. The
transformation function ® does not necessarily map the pixel positions again
to exact pixel locations. In fact, usually the mapped values fall in between
pixel positions. To be able to estimate the grey values of the template image
T at this positions and finally calculating the warped image T o ®, an in-
terpolation method is needed. Commonly used methods are for example the
nearest neighbour, the bilinear or the bicubic interpolation. During the iter-
ations of intensity-based image registration methods, the current estimate of
the transformation function ® is updated by considering the quality of the
similarity measure, which in turn depends on the warped template image
T o ® and the reference image R. The calculation of the warped image 7o ®
is therefore performed several times during the registration procedure and in-
terpolation artefacts influence the registration result and its accuracy. How-
ever, the computational complexity increases for interpolation methods with
higher accuracy and in the end, one is forced to make a compromise between
accuracy and computational efficiency of the image registration method.

Image Registration as an Optimisation Task

Image registration is an optimisation task and the right choice of an optimi-
sation method can facilitate and speed up the registration process immensely.
However, this choice is mostly not straightforward and becomes somehow an
optimisation problem itself. The optimisation of a cost function for image
registration is almost always a non-linear and non-convex problem, espe-
cially for non-rigid registration methods. The risk of getting stuck in local
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optima during optimisation is therefore very high. Some remedies have to
be found, like for example providing a good initial guess, applying a hierar-
chical approach and so on. A common approach to find a good initial guess
for non-rigid registration methods, is to roughly align the images first by ap-
plying a rigid registration method. Finally, a global optimum is not always
the desired one, as it can provide a physically unreliable transformation. In
this case, additional constraints have to be embedded into the optimisation
problem. In the end, sometimes only a careful inspection of the registration
result can confirm that the correct optimum has been found.

1.1.3 The Validation of Image Registration Methods

The validation of an image registration method consists not only of a qualita-
tive evaluation of the results by visual assessment, but also of a quantification
of the registration accuracy. Especially when an image registration method
is intended for clinical use, where inaccurate registration results could cause
severe consequences, a prior proper validation of the method is indispensable.

Visual Assessment

The first obvious way to validate the registration results is a visual assess-
ment, which is ideally performed by a medical expert and consist for example
of a colour overlay, a difference image, or a chequerboard representation of
the registered template and reference image. This will, however, provide only
a qualitative validation of the image registration method.

Comparison of Similarity Measures

Another way to compare the registered template image to reference image is
to calculate the similarity between them by making use of a similarity mea-
sure, like for example the ones mentioned in Section 1.1.2. For a quantitative
validation, the so gained values can then be compared to the corresponding
values before registration and additionally to the resulting similarity values
of other registration methods. To prevent a biased comparison, one should
use similarity measures that are independent of the considered registration
methods. In the following chapters for example, we will make use of the
mean squared error (MSE) and the normalised mutual information (NMI) to
perform a quantitative comparison. With the definitions from Section 1.1.1
and by denoting the discrete pixel positions as T with k =1,..., N, we can

7
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define the mean squared error by

Furthermore, by considering two images A and B, whose intensity values lie

in the set {0,1,...,255}, the normalised mutual information can be defined
by
H(A)+ H(B)
NMI :=
H(A,B)

where H is the so called entropy measure. The entropy of A is given by

255

H(A):= = pla) log(p(a)),

where p(a) is the probability that image A takes the intensity value a. Simi-
larly, we can define the entropy of image B given by H(B). The probabilities
p(a) respectively p(b) can be deduced from the corresponding intensity his-
tograms of the images A and B. Finally, the joint entropy H (A, B) is defined
by

255 255

H(AvB) = _Zzp(avb) log(p(a, b))

a=0 b=0

where p(a,b) is the joint probability that image A takes the intensity value
a and image B takes value b. For the registered template image and the
reference image, the normalised mutual information can then be calculated by
first transforming the corresponding intensity values to the set {0,1,...,255}
and finally using the formulas given above.

Robustness and Consistency Tests

The robustness of an image registration method can be determined by the
discrepancy of the resulting transformation, when different initialisations for
the algorithm are used [81] or the images are perturbed by for example adding
noise. There exist also various other types of consistency tests for the val-
idation of an image registration method [36, 90, 46]. One can for example
check whether the registration of the template to the reference image results
into the same alignment like when registering the reference to the template
image. However, especially for non-rigid registration methods this is rather

8
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unlikely. To automatically satisfy this one-to-one mapping property and to
guarantee a preservation of the topology, the so called diffeomorphic image
registration methods were introduced and we refer the reader in this context
to the works [7, 83] and the references therein. Another common approach
for consistency checking is to use three images A, B, C, and for a perfect
registration method the composition of the estimated transformations from
Ato B, B to C' and C to A should turn out to be the identity transforma-
tion. In reality, however, the resulting transformation won’t be the identity,
but one can draw conclusions about the registration accuracy of the method
by considering the resulting transformation’s deviation from identity. Since
the individual transformations between the different image pairs of A, B
and C' are not independent from each other, they always have one image in
common, one should keep in mind that the true error of the method can be
underestimated.

Validation by Using Known Landmark Correspondences

Another common validation approach, independently of the used registration
method, consist of the determination of corresponding landmark positions
(the so called target points [33]) or regions in both images. The so gained
correspondences are then compared after registration and the alignment error
calculated. For rigid image registration methods an error analysis based on
fiducial points has been derived by Fitzpatrick et al. in [33] and further
extended in [32]. Such an error analysis can, however, not be performed for
non-rigid image registration methods.

Validation by Using Gold Standards

Test images, for which the transformation is known, can also be used to
validate the image registration method. The transformation that is estimated
by the registration method is then compared to the so called “gold standard”
transformation. Whereas it is easy to create simple synthetic test images with
uncomplicated transformations, the generation of real-world test images with
physically reasonable transformations is, however, not so straightforward.
Schnabel et al. [74] proposed a way to simulate biomechanical deformations
in human breast tissue by using the finite element method. The so gained
simulated transformations were then used as a gold standard for validation.
In [86], a fiducial-based thin-plate spline method was used to calculate a gold
standard transformation for a pair of sequential CT images. The so gained
transformation was then used to create the test images for validation. If
the transformation is, however, unknown, as it is normally the case, another
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image registration method, which is known to perform very well on the given
images, can be used as a gold standard method for validation, as it was for
example done in the comprehensive evaluation project of West et al. [89] for
intermodality rigid-registration methods or in the work of Wang et al. [86]
for a intramodality non-rigid registration method with the help of fiducial
markers.

1.2 Optical Flow

A closely related field from computer vision to image registration is the one
called optical flow. Optical flow is the apparent motion in a sequence of
images and can be defined as the two-dimensional velocity field that describes
the changes in intensity between the images. Surveys and discussions to
optical flow methods can be found for example in [9, 10, 34, 87].

Some of the first methods that were proposed to calculate the optical flow
between images are the global variational method of Horn and Schunck [47]
and the local method of Lucas and Kanade [57], which were both introduced
in 1981. Since then optical flow became an active field of research and several
of the proposed methods were based on these works. Many methods make
for example use of the so called optical flow constraint (OFC) [47], where it is
assumed that the intensity of a point in the image keeps constant during its
movement over time. More precisely, for I(z,y,t) being the intensity value
at the point (z,y) in the image to the time ¢, the OFC is given by

L(z,y,t)u(z,y) + I(z,y,t) v(z,y) + Li(z,y,t) =0,

where (u, v) denotes the optical flow. This constraint is, however, not enough
to estimate both components of the optical flow. This problem is known as
the aperture problem and Horn and Schunck [47] resolved it by introducing
an additional smoothness constraint for the optical flow. In their variational
approach they minimise the energy functional

Ens(u,v) = / (L (s, ) u(, ) + 1 (0, ) v(, ) + Lia, v, £))% da dy
Q
+M/QIVU(I,y)I2+ Vo(z,y)[* dedy,

where 2 C R? is the domain of the points (z,y) and p € RT is a weighting
parameter. The OFC usually only holds for small displacements (u,v) and
therefore it is rather difficult to estimate large motions with its help. To
be able to cope with large displacements it became thus common to apply
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coarse-to-fine strategies in optical flow methods [11, 58, 16]. Furthermore,
slight brightness changes in the images can already cause problems in the
OFC and remedies have to be found, like for example considering the gradient
constancy constraint [16] or introducing an additional function that explicitly
models illumination changes [20].

In contrast to image registration, a lot of research was also done in es-
timating discontinuous optical flow respectively discontinuous displacement
fields. See for example [61, 75, 62, 11, 8, 58, 16, 4, 24, 5, 17, 67, 92]. Mak-
ing use of these investigations in image registration therefore seems likely.
Many of the proposed methods are using for example the total variation of
the displacement fields as a smoothness constraint, that is known to preserve
discontinuities and was first applied in computer vision by Rudin et al. [71]
for image denoising. Other interesting methods use the concept of motion
segmentation to preserve discontinuities in the displacement field.

In the following we would like to recapitulate in Section 1.2.1 the varia-
tional optical flow method of Brox et al. [16], that became popular because of
its robust and accurate optical flow estimation. Our first proposed method in
Chapter 2 incorporates the optical flow method of Brox et al. [16] and in our
following proposed methods in Chapter 3 and Chapter 4 related formulations
are used for the energy functionals.

1.2.1 The Optical Flow Method of Brox

The variational method of Brox et al. [16] is known to produce very accurate
optical flow estimations. To achieve discontinuities in the displacement field,
an approximation of the total variation was used as a smoothness constraint.
The authors worked with image sequences I : Qx [0, te,q] — R, where Q C R?
is the domain of the pixel positions # and t.,q € R™ denotes the point of
time to the last image in the sequence. For later use, we will write down the
proposed energy functional in [16] by assuming that the image sequence [
consist of only two images. By adopting the notations from Section 1.1.1, we
call the first image the reference image R and the second one the template
image T'. Furthermore, we also take over the notations for the displacement
field « with its two components u and v.

Brox et al. [16] incorporated in their energy functional the grey value
constancy constraint

R(Z) =T (& + ),
and the gradient constancy constraint

VR(Z) = VT(Z + ).
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More specifically, their fidelity term f and their smoothness term s are de-
fined by

S ()

s()

flu,v) =0 (|T(F + @) — R@)|* +~|VT (& + @) — VR(Z)|?) and
s(u,v) =W (|Vu|2 + |VU|2) : (1.4)

where v € R{ is a weighting parameter between the grey value constancy
constraint and the gradient constancy constraint and the function ¥(2?) =
V22 + €2, with € € Rt small, results in an approximation of the L!-norm.
Furthermore, ¥ is concave in terms of 22, thus being robust against outliers,
and convex with respect to z, which facilitates the minimisation process of
the total energy functional

Eipron () = / F(@) + ps(@) di. (15)

The regularisation through the smoothness term s is weighted by a parameter
i € RT and results in an approximation of the vectorial total variation of
the displacement field @. Thus, discontinuities in the displacement field are
expected to be preserved.

In the end, the energy functional Eq. (1.5) is minimised in a coarse-to-fine
strategy with the help of a fixed point iteration scheme that is derived from
the corresponding Euler-Lagrange equations.

1.3 Motion Segmentation

Discontinuities in the displacement field mainly appear at the boundaries
of moving objects in the images. Therefore the prior knowledge of motion
boundaries could support the estimation of discontinuous displacement fields
inherently. On the other hand, when having the knowledge of a proper dis-
continuous displacement field, the calculation of the motion segmentation can
be performed without any problems. Thus, we have a chicken-and-egg prob-
lem since in general the proper motion segmentation and the discontinuous
displacement field are unknown in advance.

Many methods were proposed to combine motion segmentation with the
optical flow estimation to achieve discontinuous displacement fields, as it was
for example done in the works [75, 62, 58, 24, 4, 5, 17]. The level set ap-
proaches of Amiaz and Kiryati [4, 5] inspired us to the development of our
proposed discontinuity preserving registration methods, that are presented
in the following chapters. We therefore would like to recapitulate the idea
behind their method, which is based on the optical flow method of Brox et
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al. [16], that was presented in Section 1.2.1, and the level set approach of
Vese and Chan [84] for image segmentation, that tries to solve the Mumford
and Shah segmentation problem. Before explaining the segmentation ap-
proach of Vese and Chan [84] more detailed in Section 1.3.2, we address the
Mumford and Shah segmentation problem in Section 1.3.1. In Section 1.3.3,
we introduce then the motion segmentation approach of Amiaz and Kiryati
[4, 5].

1.3.1 The Mumford and Shah Segmentation Problem

Let Q € R?, d € N, be an open and bounded set and let us denote by the
function g : 0 — R the given image we would like to segment. For the
purpose of illustration we consider only the two-dimensional case d = 2 in
the following, although the domain 2 could be basically of any dimension.
Mumford and Shah [60] described the segmentation problem in computer
vision as the computation of a partition of the domain Q = U;_; Q; UT
such that g varies smoothly within each €2; and discontinuously across the
boundary I' between the different €2;’s. Thus, they proposed to minimise the
following energy functional

Ewns(g,T) :/

Q(é(f)—g(f))2d55+u/ Vg(@)]* dT +v|T|,  (16)

o\r

where |I'| is the length of the boundary T, 1, v € R{ are weighting parameters
and the function g : {2 — R is then a piecewise smooth approximation of g.

The Mumford-Shah problem was studied thoroughly in the last decades
and theoretical results for the existence and regularity of minimisers were
established. In practise it is not easy to minimise the Mumford-Shah energy
functional Eq. (1.6) because of the lower dimensionality of the unknown
boundary I'" and the non-convexity of the minimisation problem. Plenty of
methods were proposed to solve the Mumford-Shah problem, amongst others
for example the Ambrosio and Tortorelli approaches with their I'-convergence
results [2, 3], the level set approaches of Chan and Vese [22, 84] and the
recently proposed approach of Pock et al. [66].

In the following section we would like to focus on the level set approach
of Vese and Chan [84].

1.3.2 The Level Set Approach of Vese and Chan

The level set approaches of Chan and Vese [22, 84] provide an efficient way
to solve the Mumford-Shah segmentation problem by reformulating and ap-
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proximating the Mumford-Shah energy functional Eq. (1.6) for particular
cases.

The key idea behind the level set approaches is to implicitly represent
a boundary set with the zero level set of a function. Osher and Sethian
[64] proposed this representation to track evolving curves and surfaces and
thereby provided the foundation of the so called level set methods. We refer
the reader to [76], [63] for further reading.

Now, let 2 C R? be an open and bounded set and X C € an open subset.
Furthermore, let ¢ : 2 — R be a Lipschitz continuous function such that

o) >0 ifrex,
() <0 fZeQ\Y and
H(F)=0 ifFel =05,

Thus, the boundary I' is implicitly given by the zero level set of the function
¢. See Fig. 1.3 for an illustration. The function ¢ is known as the level set

Q\ % T
b <0 »=0

Figure 1.3: The boundary I" is implicitly represented by the zero level set of
the function ¢.

function and a typical example of it is the signed distance function to the
boundary I'.

For the formulation of the Vese and Chan energy functionals [84], one
also needs the so called Heaviside function H : R — {0, 1} defined by

H() 1 ifz>0,
Z) =
0 ifz<0.

Note, that one can then rewrite the length of the boundary I' as

| = / DH(6(2))| dz .
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See for example [28] and compare also to the Definition 1.3 in Section 1.4.1
for a deeper insight.

First, Chan and Vese proposed in [22] a level set approach to calculate
a piecewise constant approximation g of an image g, where g can take only
two values. Their suggested energy functional for minimisation turns out to
be a special case of the Mumford-Shah functional with a piecewise constant
function ¢ in Eq. (1.6). Later on, Vese and Chan [84] extended their level
set approach to calculate piecewise constant approximations that can take
more than two values and further enhanced their model to calculate piecewise
smooth approximations. Again the proposed energy functionals for minimi-
sation are closely related to the Mumford-Shah functional Eq. (1.6).

The Vese and Chan energy functional for the piecewise smooth case with
one level set function for example (see [84]) is given by

Bve(i i) = / (67(@) — 9(@))* H(6(2)) di

Q

4 / (@) — 9(@)* (1 - H(6(#))) di

+v [ [VH(6(2))] dT, (1.7)

where u, v € R are weighting parameters and

gt e C'(%R) = C'({zr € 2| ¢(7) > 0} R),
g~ € CHQ\SR) = C'({z € Q[ ¢(7) < 01 R).

The final piecewise smooth approximation g : 2 — R of the image g : 2 — R
is then obtained by setting

9(%) = g7 (%) H(6(Z)) + g (F) (1 - H($(F))) forall 7€ Q.

Note, that we used the notation VH (¢(Z)) instead of using the correct weak
derivative formulation DH (¢(Z)) in the last term of Eq. (1.7). For the facili-
tation of the minimisation Chan and Vese proposed in their works [22, 84] to
take into account a regularised version H, as an approximation of the Heav-
iside function H with H. — H as € — 0. Thus, we consider from now on H
to be H, and therefore the notation of the strong derivative to be acceptable.
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As we can see, the Vese-Chan energy functional Eyc in Eq. (1.7) is a
reformulation of the Mumford-Shah energy functional Ejy¢ in Eq. (1.6) by
making use of the level set framework.

Depending on the image g one aims to segment, sometimes one level set
function is not enough to represent the optimal boundary set I'. Therefore,
Vese and Chan showed in [84] how one can formulate an energy functional
for the piecewise smooth case with two level set functions and stated that in
general not more than two level set functions are needed.

Finally, all the proposed energy functionals of Vese and Chan [84] were
minimised in an iterative scheme by deriving explicit solutions where it is
possible or by solving the corresponding Euler-Lagrange equations.

1.3.3 The Approach of Amiaz and Kiryati

The optical flow method of Amiaz and Kiryati [4, 5] is a motion segmentation
approach. Their idea is to embed the optical flow method of Brox et al. [16]
(see Section 1.2.1) into the piecewise smooth segmentation framework of
Vese and Chan [84] (see Section 1.3.2). The so achieved optical flow method
is then able to calculate piecewise smooth displacement fields with sharp
discontinuities.

Let © C R? be an open and bounded set containing the pixel positions
Z. Furthermore, we recall the definitions of the level set function ¢ and the
regularised Heaviside function H from Section 1.3.2. The energy functional
proposed by Amiaz and Kiryati [4, 5] is then given by

vt uT, v

Ear(ut, b

— [ sty mo@n az+ [ o) - ol az
o [ (@) H@) a7+ [ (@) (1= Hol) dz

wv [ V(@) (18)

Eag (0,4, ¢) =

where u,v € R} are again weighting parameters, f and s are defined as in
Eq. (1.4) in Section 1.2.1 and @, @~ : © — R? make up the final displace-
ment field @ : Q — R? by setting

@(7) = 0 (F) H($(F)) + 0 () (1 — H($(F))) for all 7 € Q.

The energy functional Eq. (1.8) was minimised by iteratively solving the
corresponding Euler-Lagrange equations. The Euler-Lagrange equations for
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the displacement fields @ and W~ were solved with a fixed point iteration
scheme, that is related to the one proposed by Brox et al. [16]. For the level
set function ¢, the Euler-Lagrange equation was solved similar as in Vese and
Chan’s work [84] through a gradient descent equation. Amiaz and Kiryati
[4, 5] proposed different ways for the initialisation of the displacement fields
wt, W and the level set function ¢ and showed amongst others improved
results in comparison to Brox et al.’s optical flow method [16]. For further
reading, we refer the reader also to the subsequent motion segmentation
approach of Brox et al. [17] that is related to the ones of Amiaz and Kiryati
[4, 5].

1.4 Continuous Cuts Framework

Inspired by the works of Strang [78, 79], Chan et al. [21] proposed a promising
algorithm that is able to calculate global minimisers of certain non-convex
optimisation problems that appear in the field of image segmentation and
image denoising. The basic idea is to reformulate the original non-convex
problem into a convex one and to show that a global minimiser of the origi-
nal problem can be found by solving its convex reformulation followed by a
thresholding of the so obtained result.

The approach of Chan et al. [21], sometimes also called “continuous cuts”
[37], is a convex relaxation approach and it was further studied and improved
by Bresson et al. in [13]. Convex relaxation approaches became an active
field of research in computer vision during the last few years, since they are
able to easily find solutions that are equal or close to the global minimisers
of non-convex optimisation problems which are in general difficult to solve.
Recently, Brown et al. [14] proposed for example a method to find a global
minimiser of the total Chan-Vese segmentation problem [22] by reformulating
it completely into a convex one. Further interesting papers about convex
relaxation approaches can be found for example in the references of [14].

As in the sections before, let again 2 C R? be an open and bounded set,
¢ the level set function and H the Heaviside function. We consider now a
general energy functional of the form

Ey(p) = / DH(E) H(o(®)) di + / D (%) (1 — H(o())) di
+V/Q\VH(¢>(£))\CZ:E, (1.9)

where v € Ry is a weighting parameter and D+, D~ :  — R are measurable
functions. For the Vese and Chan energy functional Eq. (1.7) in Section 1.3.2
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these functions would be for example
- T 2\ 2 T
DE(F) = (75(F) — 9(#)" + u |V @),

for some fixed g*. Similarly, one gets for the energy functional of Amiaz and
Kiryati Eq. (1.8) in Section 1.3.3

D¥(Z) = f(0*) + ps(@™),

for fixed values of w*.

The energy functional Eq. (1.9) is non-convex with respect to ¢ and there-
fore there is a high risk of getting stuck in a local minimum during the min-
imisation procedure. To leverage this risk, we would like to follow the initial
approach of Chan et al. [21] that supports us in finding a global minimum
for the segmentation.

Before explaining the approach in more detail, we would like to recapit-
ulate in Section 1.4.1 some mathematical definitions and theorems we will
need then later on. In Section 1.4.2, we present then a global minimiser
theorem by following the concepts in [21].

1.4.1 Some Mathematical Definitions and Theorems

In the following we would like to recall some mathematical definitions and
properties, most of them originating from the theory of functions of bounded
variation. Some famous textbooks in this context are [1], [28], [38] and [93].
We will us then these theoretical foundations in the next section to prove a
global minimiser theorem.

First of all, let us recall the layer cake representation theorem, which is
a useful tool in mathematics.

Theorem 1.1 (Layer Cake Representation). Let f : Q C R™ — R{ be a real-

valued, non-negative measurable function. From the formula f(x) = fof(x) 1dt
it easily follows the layer cake representation

f(i(]) = / 1L(f,t)(x) dt Vx e,
0

where 14 is the characteristic function (or indicator function) of a subset

ACR" and L(f,t) = {x € Q| f(x) >t} the upper level set of f.

Remark 1.1. The formula is called layer cake representation because the value
f(z) is represented with the help of the layers L(f,t).
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Remark 1.2. A more general formulation of the layer cake representation and
its proof can be found for example in [55].

Remark 1.3. Instead of using the original layer cake representation in Theo-
rem 1.1 we will use the equivalent formulation

flz) = /0 1 () dt Vi eQ,
where L(f,z) = {t € Rf | f(z) > t}.

Next, we present an essential definition in the theory of functions of bounded
variation, namely the one of the total variation.

Definition 1.1 (Total Variation). Let Q2 C R"™ be an open set. The total

variation of a function u € L, () is defined as

TV (u) = /Q | Dl :zsup{ /Q u(w) div(z) do

o€ CHQRY, ¢l < 1} |

With the help of the total variation one is able to define the space of functions
of bounded variation.

Definition 1.2 (The Space BV). Let @ C R™ be an open set. The Banach
space of functions of bounded variation is defined as

BV(Q) :={ue L'(Q)|TV(u) < oo},
and its norm is given by ||ul|gy = ||u||pr + TV (u).

The following definition of the perimeter of a set will be also of importance
afterwards.

Definition 1.3 (Perimeter). Let 2 C R™ be an open set and E C 2 be a
measurable set. The perimeter of E in €2 is defined as

Per(E,Q) :=TV(1g) :/|D1E|,
Q

where 15 is the characteristic function of E.

A fundamental and very useful result in mathematics is the so-called coarea
formula. It is known to be a helpful tool in many mathematical proofs and
in the following we state the first established coarea formula.
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Theorem 1.2 (Coarea Formula of Federer). Let @ C R™ be an open set and
u:Q— R with 1 < k <n, a Lipschitz function. For a function g € L*()
the coarea formula is given by

o gumas= [ ([ o) a,

where Ju(x) is the Jacobian of u at x and H"* is the (n — k)-dimensional
Hausdorff measure.

Remark 1.4. The Jacobian of u at x, also known as the functional determi-
nant, is given by Ju(z) := /det(J, ()T - J,(x)), where J, () is the Jacobian

matrix of v at z.

Remark 1.5. With £ =1 and g = 1 we get

/Q|Vu(:c)\ dr = /_Z </u1(y) 1d7—["1(:c)) dy = /_Z H  (u " (y)) dy .

Remark 1.6. The coarea formula in Theorem 1.2 was first established by
Federer and can be found for example in [29] or [30].

Note, that this coarea formula holds only for Lipschitz functions u. Since
we would like to work with more general functions later on, we indicate in
the following also a coarea formula that holds for functions v of bounded
variation.

Theorem 1.3 (Coarea Formula of Fleming and Rishel). Let Q@ C R™ be an
open set and u € BV (Q). Then

TV (u) = /Q|Du\ = /_00 Per({z € Q|u(z) > t},Q)dt.

o0

Remark 1.7. An analogue formula holds also for the perimeter of the lower
level sets {x € Q]u(x) < n}.

Remark 1.8. The formula in Theorem 1.3 was introduced by Fleming and
Rishel [35]. It is an extension of the coarea formula of Federer in Theorem 1.2
for k =1 and g = 1 (¢f Remark 1.5) to functions of bounded variation
u € BV (Q).
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1.4.2 Global Minimiser

In this section we would like to show how we can make use of Chan et al.’s
approach [21] to achieve a global minimiser for the segmentation.
First, note that we can write the energy functional Eq. (1.9) also as

Ex(X) = / DY (%) dx + D™ (Z) dZ + v Per(%,Q), (1.10)
b o\%

by using the definitions of the level set function ¢ and the Heaviside function

H in Section 1.3.2. Thus, ¥ C Q C R? is the open subset over which the

function ¢ is positive. Additionally, we also made use of Definition 1.3 in

Section 1.4.1 for the perimeter, which represents in our case the length of the
boundary I' (see again Section 1.3.2).

To follow Chan et al.’s work [21], let us introduce now a binary function

a.{R2—>{0,1}

T '&(f) = 12(,@’),

and we can write 3 = {7 € Q| u(Z) = 1}. The function @ can also be called
the characteristic function or the indicator function of the set X. With its
help we can reformulate then the energy functional Eq. (1.9) respectively
Eq. (1.10) as

Fail) :/Qzﬁ(f)~<f)df+/QD—<f)<1—a<f))df
+V/Q|V€L(f)]df. (1.11)

Chan and Vese [22] mentioned also the possibility of this reformulation for
their energy functional. For simplicity and to be consistent to the work of
Chan et al. [21], we used the notation Vu(Z) instead of mathematically
correctly using Du(Z).

We would like to point out again, that the energy functionals £, Eq. (1.9),
Eys, Eq. (1.10) and E; Eq. (1.11) are just different ways of formulations for
the same energy.

Similar as in [21] we finally arrive at the theorem below that enables us to
find a global minimum for the segmentation. The minimisation of the convex
energy functional E; over the non-convex set of binary functions @ is turned
into a convex problem by allowing the feasible functions for u to take values
between 0 and 1. The final binary function is then achieved by thresholding
the optimal solution for this convexified problem. This thresholding can be

interpreted as a cut and therefore this approach is also known as “continuous
cuts” [37].
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Theorem 1.4. For any given functions DY, D~ : Q — R that are measur-
able, a global minimiser for Ex(-) can be found by solving the convex problem

min Fj(u)

0<u<l1

and finally setting
Y =X(n) ={7 € Q|u(Z) > n} for almost every n with n € [0,1].

Proof. The proof can be carried out similarly to the one in [21].
With the help of the layer cake representation in Theorem 1.1 respectively
the subsequent Remark 1.3 in Section 1.4.1 we can write

1
a(:f):/ Linep.)|a@)=ny (1) dn
0

1
= /0 Lo.ae(n) dn.

We get then

[ @@ ai- [ D@ / 1o.ae (n) dn d
Q 0
1
- | [ 0@ s anaz
Fublm/ /D+ ( ) di dn
_ / / D*(F) di dy
0 Jon{Z|a(z)=n}
1
_ / D*(7) dF dy,
0 JE(n)
with X(n) := {¥ € Q| a(Z) > n}. Similarly we obtain
/D‘(f)(l—ﬂ(f))df:/D_(f)df—/D‘(a?)ﬂ(f)da?
Q
/ /D r) dZ dn — / D~ (Z)dZ dn
=(n)
/ / Z)dz dn.
Q\X(n)
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With the help of the coarea formula in Theorem 1.3 in Section 1.4.1 and the
fact that @ takes its values in [0, 1] we can furthermore write

/\vu / Per({7 € Q| (%) > n}, Q) dy
/0 Per(3(n), Q) dn.

After putting then all together, we get the following relation between E; and

Es.
/ / DY (Z dxd77+/ / Z) dz dn
Oy

/ Per(S(n), ) dn

0

1
~ [ Es(=t)dn (1.12)
0
Let now @ be a minimiser of the convex problem

22 Pt
Since the problem is convex, @ is a global minimiser and from Eq. (1.12) it
follows that for almost every n € [0, 1] the set 3(n) will be a global minimiser
of the energy functional Fyx(-). O

We will make use of this general theorem in the following chapters. Our
energy functionals there will, however, also be dependent on the displace-
ment fields and therefore the overall minimisation problem will remain a
non-convex one despite using Theorem 1.4. Nevertheless, with the above
theorem we are able to say that a global minimiser for the segmentation can
be found for fized displacement fields.

In their work [21], Chan et al. applied the continuous cuts framework
amongst others to the level set approach of Chan and Vese [22] for a piecewise
constant approximation of an image, where the approximation can take only
two values ¢ and cp. Similarly as we did before, they argued with the help of
a theorem that a global minimiser for the segmentation can be found for fized
values of ¢; and ¢,. In Fig. 1.4 we show the results we obtained for this case.
Similarly, we show in Fig. 1.5 the results we obtained when we applied the
continuous cuts framework [21] to the level set approach of Vese and Chan [84]
for a piecewise smooth approximation of an image with the help of one level
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set function (see Eq. 1.7 in Section 1.3.2). To solve the in the continuous cuts
framework reformulated problems numerically, we used a different approach
than the one described in [21]. More specifically, we introduced an auxiliary
variable © and made use of the fast numerical method of Chambolle [19],
similar as it was done in [67, 92] (see also Chapter 2 later). As we can see
in Fig. 1.4 and Fig. 1.5, the resulting segmentation function u gets close to
a binary function although the minimisation is performed over non-binary
functions. This phenomenon was also pointed out by Chan et al. [21] and
we will see a similar behaviour for our motion segmentation approaches in
the following chapters.

o o1 02 03 04 05 06 07 08 09 1

Figure 1.4: Application of the continuous cuts framework for a piecewise
constant approximation of an image by two values. Here, (a) shows the input
image, (b) the piecewise constant approximation and (c) the corresponding
segmentation function @ with its histogram (d).
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600

00

(d)

Figure 1.5: Application of the continuous cuts framework for a piecewise
smooth approximation of an image. We show in (a) the input image, in (b)
the piecewise smooth approximation and in (c) the corresponding segmenta-
tion function @ with its histogram in (d).

1.5 Optimisation

Variational approaches are known to perform very well because they are for-
mulated in a continuous framework and can achieve like this even subpixel
accuracy. This is a big advantage compared to Markov random field ap-
proaches, which are based on discrete graph representations as for example
in [43, 12]. We therefore formulate our proposed image registration methods
in a variational framework. The first step in variational approaches is to de-
fine a suitable energy functional, which incorporates the desired constraints
in the fidelity term and is regularised by a smoothness term. The minimisa-
tion of this energy functional should then lead to the optimal displacement
field.

A common attempt for the minimisation of the energy functional is to de-
rive the corresponding Euler-Lagrange equations and to finally solve them.
However, since especially for image registration methods the energy func-
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tional is normally non-convex, the Kuler-Lagrange equations are in gen-
eral not easy to solve. Frequently, the gradient descent method is applied
(22, 84, 4, 5, 17] or a linearisation of the non-linear terms is performed
(16, 4, 5, 17, 67, 92] to solve the equations. Brox et al. [16] for example
developed a fixed point iteration scheme by linearising the resulting Euler-
Lagrange equations. A similar scheme was then also used in the subsequent
works [4, 5, 17].

For non-convex minimisation problems the risk of getting stuck in a local
minimum is very high, despite linearisation. In image registration especially
for large displacements, a coarse-to-fine strategy can be a remedy for this
risk [11, 58, 16]. The idea is to built image pyramids by filtering and down-
sampling the original images and to start the method at the coarsest level
of these pyramids and successively evolving the intermediate results towards
the finest level. See Fig. 1.6 for an illustration.

coarse A coarse

level 1
v
fine
T R
Tod~ R

Figure 1.6: An illustration of the coarse-to-fine strategy.

Convex relaxation approaches became very popular in computer vision
during the last few years [21, 13, 14]. Their aim is to reformulate the non-
convex minimisation problem into a partly or fully convex one. The min-
imisation of this convexified problem leads then to a solution that is equal
or close to the global minimiser of the original non-convex problem. In the
following chapters we will make use of the convex relaxation approach of
Chan et al. [21] (see Section 1.4) for the convex formulation of our energy
functionals with respect to the motion segmentation function. Because of
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the non-convexity of our energy functionals with respect to the displacement
fields, our overall minimisation problems will remain, however, non-convex
and are solved therefore in a coarse-to-fine strategy.

The minimisation of energy functionals that use the total variation (see
Definition 1.1) for regularisation cannot be performed directly, because the
total variation is not differentiable everywhere. Various approaches have
been proposed to circumvent this difficulty. A widely used way is to use an
approximation of the total variation [16, 4, 5] so that the Euler-Lagrange
equations can be derived without any problems and solved appropriately. In
Chapter 2 we will also use an approximation of the total variation for the
displacement field and solve the resulting Euler-Lagrange equations similar as
in [16, 4, 5] with the help of a fixed point iteration scheme. Another possibility
to solve total variation based minimisation problems is to use the fast and
easily implementable algorithm of Chambolle [19] as it was for example done
in [67, 92]. We will use this method in Chapter 2 to minimise our energy
functional there with respect to the motion segmentation function. The Split
Bregman method, that was proposed by Goldstein and Osher [40], became
also very popular for solving total variation based minimisation problems.
Recently, Chambolle and Pock [20] proposed a primal-dual method to solve
a certain class of minimisation problems, where most of them make use of
the total variation. This method is closely related to the primal-dual method
proposed by Esser et al. [27]. In their experiments, Chambolle and Pock [20]
showed that they achieved faster convergence with their proposed method
compared to other sophisticated methods, amongst others the Split Bregman
method [40]. We will therefore use this promising primal-dual method in
Chapters 3 and 4 to solve our minimisation problems there.

1.6 Landmarks

Landmark positions define the location of certain features in an image, as
for example anatomically outstanding structures in medical images. One
differs between the so called “hard” and “soft” landmarks [59], where hard
landmarks are fiducial markers which are placed at certain positions on the
patient before the image acquisition and soft landmarks are specified on the
images themselves by a medical expert or sophisticated automatic detec-
tion tools. As mentioned in Section 1.1.3, landmark correspondences can be
used for the validation of an image registration method and for rigid image
registration methods there exists an error analysis based on fiducial points
(33, 32].

Landmark correspondences in the images can also act as additional clues
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for the estimation of the displacement field and prevent the image registration
method to get stuck in a local minima during the optimisation procedure.
Many image registration and optical flow methods exist that integrate the in-
formation of landmark correspondences to achieve a better estimation of the
displacement field, as for example the works [42, 48, 53, 65, 18]. The recent
work of Brox and Malik [18] explains how descriptor matchings, respectively
landmark correspondences, can easily be included into a variational frame-
work. We will make use of this idea in Chapter 4 to extend our work in
Chapter 3. Instead of using a dense correspondence field, as it was done in
[18], we use the landmarks extracted by the Affine Scale Invariant Feature
Transform (A-SIFT) method [91]. This is a recently developed algorithm
that extends the well known SIFT method [56] and allows landmark match-
ing under affine deformations. Thus, it usually finds a lot more matches than
the SIFT method. To get rid of possible false matches, the so obtained puta-
tive matches are then filtered by fitting a homography to the matches using
RANSAC [31]. For a comparison, we visualise in Fig. 1.7 the landmark cor-
respondences in MR images of the liver that were found by the SIFT method
[56], the A-SIFT method [91] and the remaining A-SIFT matches after the
filtering with RANSAC [31].

1.7 Outline and Contribution

In this thesis we propose different variational approaches for non-rigid image
registration, which are able to preserve discontinuities in the displacement
field through motion segmentation with the continuous cuts framework de-
scribed in Section 1.4.

In Chapter 2, we propose a method that is based on the approach of
Amiaz and Kiryati [4, 5] which was sketched in Section 1.3.3 before. Instead
of using the level set representation for the motion segmentation we make
use of the continuous cuts framework and are able to introduce a proposition
that enables us to find a global minimiser for the motion segmentation for
fixed displacement fields. Since the overall minimisation problem remains
non-convex, we perform the minimisation procedure in a coarse-to-fine strat-
egy. In contrast to the work of Amiaz and Kiryati [4, 5], we are able to use
simple initialisation for the displacement fields and the motion segmentation
without the need of any additional methods. Furthermore, the minimisation
with respect to the displacement fields is performed similar as in [4, 5] respec-
tively [16] through a fixed point iteration scheme and the one with respect
to the motion segmentation through the fast dual method of Chambolle [19].
Experimental results are then shown for synthetic and real MR images of
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breathing induced liver motion.

In Chapter 3, the pure L'-norm is used for the total variation of the
displacement fields instead of using an approximation of it, as it was done
in Chapter 2 before. Furthermore, the previous fidelity term is replaced by
the sum of the absolute values of the similarity constraints. Like this, we
fully remove the approximation function ¥ of the L'-norm, which was used
in Chapter 2 and usually leads to a slow convergence for a small € and to
blurred results for large values of € [67]. We show how this new complex
minimisation problem can be solved by using the fast primal-dual method of
Chambolle and Pock [20] to estimate both, the motion segmentation function
and the displacement fields. We propose two variants on how to apply the
primal-dual method for the minimisation of the energy functional with re-
spect to the displacement fields. Finally, experimental results are shown for
synthetic images and MR images with apparent breathing induced liver mo-
tion. Furthermore, we are able show an improvement in the computational
time compared to the previously proposed method in Chapter 2.

To support the image registration process to capture large displacements
and to avoid unreliable estimations for the motion fields and the motion seg-
mentation the inclusion of landmark correspondences is performed in Chap-
ter 4. The landmark correspondences are established by using the Affine Scale
Invariant Feature Transform (A-SIFT) method [91] followed by a RANSAC
filtering [31]. The incorporation of the so gained landmark correspondences
into the energy functional, that was proposed in Chapter 3, is then achieved
similar as in the work of Brox and Malik [18]. Finally, we applied again the
fast primal-dual method of Chambolle and Pock [20] for the minimisation of
the energy functional with respect to both, the displacement fields and the
motion segmentation as it was done in Chapter 3. For the minimisation of
the displacement fields we used the proposed first variant in Chapter 3 to ap-
ply the primal-dual method. However, we could have also used the proposed
second variant to apply the primal-dual method. Experimental results for
MR images of breathing induced liver motion show that more reliable motion
segmentation results can be found with the incorporation of the landmarks
correspondences.

Finally, we discuss in Chapter 5 the results of this thesis and mention
some interesting possibilities for future research.
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(¢) A-SIFT with RANSAC: 645 matches

Figure 1.7: The landmark correspondences found by SIFT (a), A-SIFT (b)
and the remaining A-SIFT matches after applying RANSAC (c).
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Chapter 2

Discontinuity Preserving
Registration through Motion
Segmentation with Continuous
Cuts

The content of this chapter has been published in [49].

Discontinuous displacement fields are quite common in the medical field, in
particular at organ boundaries with breathing induced organ motion. The
sliding motion of the liver along the abdominal wall clearly causes a dis-
continuous displacement field. Today’s common medical image registration
methods, however, cannot properly deal with this kind of motion as their
regularisation term enforces a smooth displacement field. Since these motion
discontinuities appear at organ boundaries, motion segmentation could play
an important guiding role during registration.

In this chapter we propose a novel method that integrates registration
and globally optimal motion segmentation in a variational framework. The
energy functional is formulated such that the segmentation, via continuous
cuts [21], supports the computation of discontinuous displacement fields. The
proposed energy functional is then minimised in a coarse-to-fine strategy by
using a fast dual method for motion segmentation and a fixed point iteration
scheme for motion estimation. Experimental results are shown for synthetic
and real MR images of breathing induced liver motion.
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2.1 Introduction

Image registration is an essential tool for many medical applications. Regis-
tration is a yet powerful but also very challenging task as it is generally an
ill-posed problem. A good survey on the state-of-the-art in image registra-
tion can be found in [94]. Although today’s image registration methods can
handle rigid and non-rigid motion nicely, they have difficulties dealing with
discontinuous motion fields. These discontinuities occur for example when
organs, such as the liver, are sliding along the abdominal wall during the
breathing cycle. Whereas the organs are moving mainly in superior-inferior
direction, the abdominal wall is moving anterior-posteriorly. The regularisa-
tion constraints of the state-of-the-art registration methods, however, enforce
a smooth displacement field along these discontinuities yielding inaccurate
motion information.

Although the problem of discontinuities has been a topic of research in
image segmentation and classical optical flow for some decades, its influence
on medical image registration was neglected. Mumford and Shah for example
introduced in their pioneering work [60] from 1989 a functional, that avoids
spatial smoothing on a certain set of the image and therefore preserves the
discontinuities there. Several methods were proposed to solve the Mumford
and Shah minimisation problem. One such approach is the widely used
method proposed by Vese and Chan [84]. They reformulated the Mumford-
Shah functional in a level set framework to perform piecewise constant and
piecewise smooth segmentation of an image. Another seminal approach,
which is known to preserve discontinuities and is based on the total variation
(TV), was proposed by Rudin et al. [71] for image denoising. The beneficial
behaviour of the TV was also exploited in image registration and optical flow,
see e.g. [67] and [16].

Recently, Schmidt-Richberg et al. [73] introduced a direction-dependent
regularisation method to preserve discontinuities in the displacement field.
This regularisation method, however, depends on the calculation of the nor-
mals at the object boundaries and therefore a rather good manual segmen-
tation has to be provided in advance.

Since motion discontinuities appear in particular at object boundaries,
motion segmentation can influence the registration process positively. More
specifically, it is a chicken-and-egg problem. By providing a good motion
segmentation, a proper discontinuous displacement field can be estimated
and vice versa. In fact, motion estimation and motion segmentation can
benefit from each other. One method that combines optical flow computation
with motion segmentation was proposed by Amiaz and Kiryati [5]. They
embedded the optical flow method of Brox et al. [16] into the level set
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framework of Vese and Chan [84]. A drawback of the level set formulation is,
that it is non-convex and therefore is fraught with the risk of getting stuck
in local minima during optimisation of the energy functional.

In this chapter we propose a variational elastic registration approach able
to properly handle discontinuities. To guarantee a globally optimal motion
segmentation, we will make use of the approach of Chan et al. [21], also called
“continuous cuts” in [37]. Instead of formulating a level set function, we de-
fine a binary function and extend it to a continuous function. The resulting
minimisation problem then becomes convex with respect to this continuous
function and the globally optimal motion segmentation is gained by a thresh-
old, which can be interpreted as a cut. Although motion segmentation turns
into a convex problem, motion estimation still remains a non-convex opti-
misation task and will be solved similar to [16] and [5] through fixed point
iterations.

2.2 Method

In this section we describe the proposed registration method which integrates
the accurate optical flow estimation of Brox et al. [16] into the convex seg-
mentation method of Chan et al. [21], in order to find smooth displacement
fields whilst preserving the discontinuities. The generalisation of the method
from 2D to higher dimensional images is straightforward.

2.2.1 Registration and Motion Segmentation Frame-
work

Optical Flow-based Registration

Let Q C R? be the domain of the pixel positions ¥ = (x1,23). We then
define by the functions R : 2 — R and 7" : € — R our reference and
template image. The aim of image registration is to find a transformation
O () := ¥ + w(Z) such that the relation 7" o & ~ R holds. The function

L Q= R?
w — —/ = — —
T = w(T) = (u(Z),v(T)) ,
with u,v : @ — R, describes the displacement field and will be the intrinsic
function we investigate. For convenience we will use the abbreviations w, u

and v for @J(¥), u(Z) and v(Z).
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To solve a non-rigid registration problem with expected discontinuities in
the displacement field, we adopt the method proposed by Brox et al. [16],
that has been proven to be highly accurate for optical flow estimation. They
define the energy functional as

Eippon (@) = / F(@) + () d (2.1)

where 1 € RT is a weighting parameter, f and s are the fidelity term and
the smoothness term, respectively, which are defined as

flu,v) =0 (|T(ZF + @) — R@)|* +~|VT (& + @) — VR(Z)|?) and
s(u,v) =W (|Vu|2 + |Vv|2) :

The function ¥(z?) = /22 + €2, with € € RT small, results in an approxi-
mation of the L'-norm and it is robust against outliers. The fidelity term f
incorporates the gradient constancy constraint to complement the grey value
constancy constraint, which is weighted by a parameter v € Ry .

f ()

s()

Motion Segmentation

Now we would like to integrate the optical flow estimation into the convex
segmentation model of Chan et al. in [21]. Instead of using the level set func-
tion ¢ : Q@ — R and the Heaviside function H : R — {0, 1} to differentiate
the displacement field « into @ and @~ as proposed by Amiaz and Kiryati
[5], we choose a binary function

_ | rR*—={o0,1}
Yz a@ =10,
where ¥ C Q C R? with ¥ := {# € Q|u(Z) = 1}. By defining D(w) :=
f(W) + ps(w) as a data term, we formulate our energy functional as
E(w* o, a) = / D) a() d7 + / D(w™) (1 —a()) dz
Q Q
+V/|Vﬂ(f)|df;, (2.2)
Q

where the last term of the above energy is a regularisation defined by the
TV, and v € R is a weighting parameter to control the weighting of the
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fidelity and smoothness term in D with respect to the TV of 4. As pointed
out by Chan et al. in [21], Eq. (2.2) is strongly related to the Mumford-Shah
functional [60] and can be written as

E(w+,w—,z)=/p(w+)df+ D(@) dF + v Per(S,Q),  (2.3)
> oz

where Per(X,2) denotes the perimeter of the set ¥ C Q. In order to find a
global minimiser 3,,;, of E(w, @™, "), we arrive at the proposition below.

Proposition 2.1. For any fized w", @~ : Q — R2, a global minimiser for
E(Wt, @™, ) can be found by solving the convex problem

: -t
Orgnl%glE(w LW, )

and finally setting
Y =X(n) ={7 € Q|ua(¥) > n} for almost every n with n € [0,1].

Proof. The proof can be carried out similarly to the one in [21] with the help
of the layer cake representation and the coarea formula. (See also the proof
of Theorem 1.4 in Section 1.4.2.) O

Note, that the set of functions, over which minimisation is performed, is
not restricted to binary functions @ anymore. To achieve a convex problem
the feasible set allows for functions that take values between 0 and 1. We
refer the reader to [21] for further exploration. To this end, by having the
globally optimal motion segmentation we obtain the final displacement field
Wi=wt a4 d (1 —a).

To illustrate our method we show a synthetic example in Fig. 2.1. The
motion segmentation function @ splits the displacement field @ into the parts
wt and w~. The function @ is close to a binary function, although we perform
minimisation over non-binary functions. This property was also pointed out

in [21].

2.2.2 Minimisation

To minimise our energy functional in Eq. (2.2) with respect to @ in a fast
and efficient way, we follow an approach similar to Pock et al. in [67], which
allows us to exploit the powerful work of Chambolle [19]. We introduce a
new variable v and consider the energy functional
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a(%)=1 Wt (Z)

(c) (d)

Figure 2.1: The template image (a), the reference image (b), the motion
segmentation function @ (c) and the displacement field @ (d).

&)
g
Lt
i

) = V/Q|Vﬂ(f)| 07 + % [ (@)~ o6 az

+/§2D(w+)@(f)df+/ﬂD(w_)(l—6(3?))df. (2.4)

For a small # € R* the minimisation of Eq. (2.4) with respect to @ and v leads
to @ ~ ¥ and therefore approximates the energy functional E in Eq. (2.2).
We propose the following iterative scheme to minimise the energy functional
E with respect to W™, @™, @ and o:
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1. For fixed v, solve
1
min / V@) dF + — [ (@) - 9@)2dEb . (25)
u Q 29V Q
2. For fixed v, solve
Hli+n{ / D(@+) 5(2) df} | (2.6)
w Q
3. For fixed v, solve
min {/ D(w™) (1 — o(7)) d:i"} . (2.7)
o= Ja
4. For fixed @, W~ and w, solve

il
min — [ (
0€[0,1]

o (Z) — 0(%))* dit
Q
+/QD(u7+)f;(f) d:i’+/QD(w‘)(1—ﬁ(aE’))df}. (2.8)

g}

The minimisation problem Eq. (2.5) is basically the denoising problem of
the Rudin, Osher and Fatemi (ROF) model [71], and can be solved by the
fast dual method of Chambolle [19]. The resulting Euler-Lagrange equations
for Eq. (2.6) and Eq. (2.7) are similar to the ones in [5], and can be solved
by the fixed point iteration scheme as described there. For the minimisation
problem Eq. (2.8), the explicit solution can be derived from the corresponding
Euler-Lagrange equation and is given by

() = min {max {a(Z) — 0 (D(&") — D(w")),0},1} . (2.9)

2.2.3 Implementation

Although, we have a convex minimisation problem with respect to the func-
tions @ and v, the ones with respect to the displacement fields w™ and w™ are
still non-convex. To avoid the risk of getting stuck in a local minimum during
the optimisation of the displacement fields, we wrap the iterative minimisa-
tion procedure in a coarse-to-fine framework. By choosing a minimal size n,,;,
of the images at the coarsest level, we calculate the number of levels with
the help of a certain scaling factor £. In our experiments we set n,,;, = 32
and & = 0.9. The coarse-to-fine strategy has also the advantage, that we
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can use trivial initialisations for the displacement fields. In contrary, Amiaz
and Kiryati [5] had to use additional methods to initialise the displacement
fields. At the coarsest level we therefore initialise the displacement fields @™
and @~ with 0.

Because of Proposition 2.1 the choice of the initialisation for the function
@ should be irrelevant for fixed @™ and w~. Whatever initialisation we
choose, a global minimiser will be obtained when @' and @~ are fixed.
Although we are updating the displacement fields @ and @~ regularly during
the optimisation procedure, a similar property has been also exploited during
the experiments by choosing a random initialisation for w. Again, this is
a great advantage of our method in contrast to the one in [5], where the
initialisation for the level set function ¢ was also dependent on additional
methods.

Our final iteration scheme consist of two loops. The outer loop iterates
over the pyramid levels. In each level an inner loop updates the values for u,
wt, W™ and 0, following steps I - / in Section 2.2.2. Thus, in each iteration
of this inner loop one step of Chambolle’s method [19] is performed to update
@. To achieve a better convergence of & we update W+t and @~ only each 10th
iteration by executing one step of the inner fixed point iteration as described
in [16] and [5]. To obtain the motion segmentation ¥ we choose n = 0.5
and set ¥ = X(n) := {& € Q|a(Z) > n} (see Proposition 2.1). Finally, v is
updated according to the explicit solution given in Eq. (2.9).

As soon as the finest level is reached, the inner loop is executed until a
certain tolerance or the maximum number of iterations is reached. The final
displacement field is then obtained by setting

5(7) = wt(z) ifrex,
(@) fZeQ\X,

and we use bicubic interpolation to calculate the images T'(Z + w*) during
the iterations and to obtain the final registered image T'(Z + ).

2.3 Results

In this section we give a qualitative and quantitative evaluation of the pro-
posed method on MR images of the liver, where the liver is sliding along the
chest wall. In particular we compare our method to the demon algorithm
with anisotropic diffusion filtering [26] and the registration algorithm of Brox
et al. [16], which are known to preserve discontinuities in the displacement
field.
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CONTINUOUS CUTS

In Fig. 2.2 a qualitative result is given comparing the various methods.
One can clearly see, that a discontinuous motion field is achieved by our
method and compared to the demon algorithm with anisotropic diffusion

filtering and the registration algorithm of Brox et al. these discontinuities

are more defined. The proposed approach managed to nicely separate the

motion of the abdominal wall and the motion of the internal organs.
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Figure 2.2: The template image (a), the reference image (b) and the difference
image (c). The displacement field for the demon algorithm with anisotropic
diffusion filtering is shown in (d), the one for the registration algorithm of

Brox et al. in (e) and finally the one of our method in (f).

In Fig. 2.3 a quantitative evaluation is shown for 22 different liver image
pairs. We chose the parameters for all the three methods by optimising them
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with respect to these image pairs. The parameters of our method were set to
v=04, p=0.05v=20,60=0.2and e = 0.00001. For the demon algorithm
with anisotropic diffusion filtering we could use the suggested parameters and
for Brox et al.’s method we used v = 5, @ = 80 and 0 = 0.9. The registration
results were compared by calculating the mean squared error (MSE) and the
normalised mutual information (NMI), where the grey values were scaled
from 0 to 1. For all examples the proposed method performed better than
the demon algorithm with anisotropic diffusion filtering. Compared to the
method of Brox et al., our approach provided better results except for the
mean squared error in example 15.

Using the R software package (Version 2.10.1), we used the Kolmogorov-
Smirnov test to check the normal distribution of the results. Assuming a
significance level of 0.05, the t-tests showed that the proposed method per-
formed significantly better than the demon algorithm with anisotropic dif-
fusion filtering and the method of Brox et al. for MSE and NMI with both
p < 0.05.

2.4 Conclusion

In this chapter we presented a novel discontinuity preserving non-rigid regis-
tration method, which uses the advantage of the continuous cuts framework.
We introduced a Proposition, which shows that a globally optimal motion
segmentation can be found for fixed displacement fields W+ and @w~. During
motion estimation the so gained motion segmentation plays an aiding role.
The minimisation of the energy functional is implemented in a coarse-to-fine
strategy and exploits the rapidity of the dual method of Chambolle [19] and
the accuracy of Brox et al.’s optical low method. Our experimental results
demonstrated desirable performance of the proposed method in comparison
with those of the demon algorithm with anisotropic diffusion filtering and
the registration algorithm of Brox et al.

Currently, we are working on a fast primal-dual method [20] based on
the pure L'-norm to improve the efficiency and accuracy of the method. We
also plan to investigate the use of multi-label functions « in order to capture
more complex piecewise smooth displacement fields.
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Figure 2.3: Quantitative evaluation for 22 pairs of liver images with a dis-
continuous displacement field. Comparison of the MSE (a) and NMI (b).
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Chapter 3

A Primal-Dual Approach for
Discontinuity Preserving
Registration through Motion
Segmentation with Continuous
Cuts

The content of this chapter has been submitted to a journal [50]. A
preliminary version has been published in [52].

Image registration is a powerful tool in medical image analysis and facilitates
the clinical routine in several aspects. There are many well established elastic
registration methods, but none of them can so far preserve discontinuities in
the displacement field. These discontinuities appear in particular at organ
boundaries during the breathing induced organ motion.

In this chapter we exploit again the fact, that motion segmentation could
play a guiding role during discontinuity preserving registration. The mo-
tion segmentation is embedded like before in a continuous cut framework
[21]. This time the pure L'-norm is used for the smoothness term and the
fidelity term is replaced by the sum of the absolute values of the similarity
constraints. We show that a primal-dual method can be used to estimate
a solution to this challenging variational problem and that like this an im-
provement in the computational time can be achieved. Experimental results
are presented for artificial as well as MR Images with apparent breathing
induced sliding motion of the liver along the abdominal wall.
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3.1 Introduction

Image registration became an indispensable tool for many medical applica-
tions including the image-guided therapy systems. Today’s image registra-
tion methods [94] are powerful at handling rigid as well as non-rigid motion
on mono- and multi-modal images. With the introduction of imaging tech-
nologies capable of capturing 4D organ motion, such as 4D-MRI [85], 4D-CT
or 4D-Ultrasound, imagery of sliding organs became a significant focus of
research. Most of the state-of-the-art image registration methods cannot yet
properly deal with these data sets, as their regularisations cause continuous
motion fields over the organ boundaries.

In recent publications, the concept of the direction-dependent regularisa-
tion of the displacement field, has been introduced e.g. [73]. The drawback
of these methods is the necessity of providing a good manual segmentation of
the boundaries. Approaches that don’t rely on prior manual segmentations
have been a topic of research for some decades in classical computer vision
such as optical flow. Transfer of these research results into the medical field
was, however, scarce. Already in 1989, Mumford and Shah [60] proposed
in their pioneering work a functional for image segmentation that avoids
spatial smoothing in certain locations of the image, thus preserving disconti-
nuities. Some years later, Weickert and Schnorr [88] proposed an extension
of non-quadratic variational regularisation for discontinuities preserving opti-
cal flow that uses spatio-temporal regularisers instead of flow-driven spatial
smoothness. The resulting convex function guaranteed global convergence
that could be solved with standard gradient based optimisation schemes.
Vese and Chan [84] then introduced a level set framework based approach to
efficiently solve the Mumford and Shah minimisation problem for segmenta-
tion. Another influential approach based on the total variation (TV), known
to preserve discontinuities, was proposed by Rudin, Osher and Fatemi [71],
the ROF-model. The beneficial behaviour of the TV was also exploited in
recent registration and optical flow methods, as for example by [16] and [67].

Motion segmentation has been a topic of research for quite some time. In
1993, Nesi [62] proposed a variational optical flow approach that incorporates
a variable for the presence of discontinuities and leads to a piecewise smooth
motion estimation. Cremers and Schnorr introduced in [23] a variational ap-
proach seamlessly integrating motion segmentation and shape regularisation
into one single energy functional. In [24] the authors formulated the mo-
tion segmentation problem in a Bayesian inference framework. Whereas the
motion discontinuity could be represented either as an explicit spline func-
tion or by an implicit level set formulation allowing for an arbitrary number
of objects to segment. As motion discontinuities mainly appear at object
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boundaries, it seems natural to combine motion segmentation and registra-
tion. Given a good motion segmentation, a proper discontinuous motion field
can be estimated and vice versa. Amiaz and Kiryati [5] tried to leverage this
property by combining motion segmentation with the optical flow method
of Brox et al. [16] in a level set framework. They showed that motion seg-
mentation lead to better discontinuities in the motion field. However, their
approach highly depends on the initialisation for the motion segmentation
and displacement field. Furthermore, the level set approach is prone to local
minima and a rather good initialisation has to be provided in advance.

In this chapter we propose an elastic registration approach that handles
discontinuities in the motion field by combining motion segmentation and
registration in a variational scheme. For motion segmentation we make use
of the so called “continuous cuts” [21, 37] scheme that guarantees a globally
optimal solution for a fixed motion field. In contrast to our previous work
[49], which was outlined in Chapter 2, the proposed energy functional is this
time TV-L! regularised for both the motion segmentation and the displace-
ment field and the fidelity term is formulated as a sum of absolute values of
the constraints. Minimising the TV-L! regularised functionals is, however,
inherently difficult due to the non-smoothness of the TV. This is an active
field of research, such as [20, 40, 54, 77] and the references therein, which
are mainly based on operator splitting methods in convex analysis that split
energy functionals into the non-linear and linear terms. In this chapter we
show how to solve the proposed complex energy functional with the primal-
dual method of Chambolle and Pock [20], which is very efficient for a wide
class of non-smooth problems.

3.2 Registration and Motion Segmentation
Framework

In this section we describe the proposed registration method which integrates
the displacement field estimation into the convex segmentation method of
Chan et al. [21], in order to find smooth displacement fields whilst preserving
the discontinuities.

3.2.1 Registration

Let Q C R? be the domain of the pixel positions & = (x1,22). We then
define by the functions R : & — R and T : @ — R our reference and
template image. The aim of image registration is to find a transformation

45



CHAPTER 3. A PRIMAL-DUAL APPROACH FOR DISCONTINUITY PRESERVING REGISTRATION THROUGH
MOTION SEGMENTATION WITH CONTINUOUS CUTS
3.2. REGISTRATION AND MOTION SEGMENTATION
FRAMEWORK

O () := & + w(Z) such that the relation 7o ® ~ R holds. The function

o { Q- R2
) e d(@) = (@), v())

with u,v :  — R, describes the displacement field and will be the intrinsic
function we investigate. For convenience we will use the abbreviations w, u
and v for @J(¥), u(Z) and v(Z).

To solve a non-rigid registration problem with expected discontinuities
in the displacement field, we want to follow a variational approach and we
therefore first consider the energy functional

Bru(i) = [ 1)+ us() d. (3.1

where 1 € RT is a weighting parameter, f and s are the fidelity term and
the smoothness term, respectively, which are defined as

f(W) = f(u,v) == |T(Z + W) — R(Z)|

+ 72| 0p, T(F + @) — 0,y R(T)]
and
s(@) = s(u,v) == \/|Vu|* + |Vo|* = |Va]. (3.3)

The fidelity term f incorporates the constraints for the grey value constancy
and the gradient constancy and the corresponding weighting parameters are
given by 71,72 € Rd. The smoothness term s results in the L'-norm respec-
tively the vectorial TV of .

The energy functional Fy, is motivated by the energy functional proposed
by Brox et al. [16]. Instead of using the approximation function ¥ for the
L'-norm, here the pure L'-norm is used for the smoothness term s and for
the fidelity term f the sum of the absolute grey value difference and the
componentwise absolute gradient differences is taken.

3.2.2 Motion Segmentation

Now we would like to integrate the formulation of the energy functional above
into the convex segmentation model of Chan et al. [21]. To differentiate the
displacement field @ into @™ and @™, we therefore choose a binary function

a'{Rzﬁ{O,l}

> fb(f) = ]-E(f) ,
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where ¥ C Q C R? with ¥ := {# € Q|u(Z) = 1}. By defining D(w) :=
f(W) + ps(w) as a data term, we formulate our energy functional as

B, -, ) :/QD(wﬂa(f) df+/QD(w—)(1—a(f))df

+v /Q \Va(7)| di, (3.4)

where the last term of the above energy is a regularisation defined by the
TV, and v € R" is a constant parameter.

The energy functional E Eq. (3.4) is very much related to the energy
functional proposed by Amiaz and Kiryati [5]. Instead of applying the Heav-
iside function to a level set function, the binary function @ is used here.
Furthermore the approximation function ¥ for the L'-norm, which was used
in [5], is omitted here. Instead the pure L'-norm is used for the smoothness
terms s(w*) Eq. (3.3) and the fidelity terms f(w*) are replaced by a sum of
absolute values of the constraints Eq. (3.2).

As pointed out by Chan et al. in [21], Eq. (3.4) is strongly related to the
Mumford-Shah functional [60] and can be written as

E(w+,w—,2):/p(w+)df+ D) dF + v Per(3.Q),  (35)
s os

where Per(3, Q) denotes the perimeter of the set ¥ C €.

Remark 3.1. One can show, that a global minimiser ¥,,;, of E(tﬁ*,u‘i‘, )
can be found by solving the convexified problem ming<z<; E(wW™, @™, u) and
finally setting ¥ = X(n) = {¥ € Q|a(¥) > n} for almost every n with
n € [0,1]. (See also Proposition 1 in [49] respectively Proposition 2.1 in
Chapter 2 and Theorem 1.4 in Section 1.4.2.) In fact, this holds for any data
terms D(w™*) and D(w™) that are measurable.

Finally, we obtain the aimed displacement field by setting w := wta +
W (1 —a).

At this point, we would like to refer again to Fig. 2.1 in Chapter 2, were
the principle of the motion segmentation is illustrated by an example.
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3.3 Minimisation

3.3.1 Iterative Scheme

To facilitate the minimisation procedure we replace the fidelity term f in
Eq. (3.2) by its partly linearised version

F(@) = o1 (@)] + 72| 057 ()| + 72| o8 ()], (3.6)

pr(@) = p1(T, Wy, 0) := T(T + o) + VT (T + 10ip) " (@ — 0lp) — R(Z), (3.7)

_ - T
i= 0, T( 4 Wo) + <8““T(§»+ 130)) (@ — W) — By, R(Z), (3.8)

aﬁvleT( + ’LU())
and
P () = p57 (&, iy, D)

=0T i)+ (T T ) (0 ) - 0L R@), (39

with 0, fixed.
The minimisation of the energy functional E Eq. (3.4) with respect to
wt, W and @ is then performed by the following iterative scheme:

1. For fixed wt and W, solve

mm{/D*+ d:r+/D _ (@) di
u€[0,1]

+1//\Vu ]dx} (3.10)

mln{/ D(i@ } . (3.11)
rgin{/ﬂD(w) (1 —a(:f;))df} . (3.12)

2. For fixed u, solve

3. For fixed u, solve
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Although problem Eq. (3.10) is convex, it is important to note that the
overall minimisation of the energy functional E Eq. (3.4) is a non-convex
optimisation problem. For the minimisation of non-convex energy functionals
there exist convex relaxation methods, which are able to provide solutions
close to a global minimum. Recently, Strekalovskiy et al. [80] proposed such
a method for non-convex vector-valued labeling problems. In this chapter,
however, we won’t make use of these kind of methods.

Note that compared to our previous work [49] (see Chapter 2), this time
we do not introduce an auxiliary v in the energy functional. Therefore our
iterative scheme consist of only 3 steps instead of 4. The reason for this
change is, that we intend to use a different numerical approach to solve our
problem. More precisely, to solve the subproblems Eq. (3.10), Eq. (3.11) and
Eq. (3.12) in a fast and efficient way, we follow a primal-dual approach as
described by Chambolle and Pock in [20]. We therefore recapitulate in the
next section the basic notations and formulations.

3.3.2 Basic Framework for the Primal-Dual
Approach of Chambolle and Pock

First, we define by X and Y two finite-dimensional real vector spaces. Their
inner products are denoted by (-,-) respectively (-,-), and their induced

norms are given by [|-|| y = /-, ) x respectively ||-||y- = 1/(:,-)y-- The general

non-linear primal problem we consider is of the form

min F(Kz) + G(x), (3.13)

zeX

where F': Y — [0,400) and G : X — [0, +00) are proper, convex and lower
semi-continuous and the map K : X — Y is a continuous linear operator.
The corresponding primal-dual formulation of Eq. (3.13) is the saddle-point
problem

minmax (Kz,y)y + G(z) - F7(y), (3.14)

with F* : Y — RU{+00} being the convex conjugate of F'. We assume that
the problems above have at least one solution (Z,7) € X x Y and therefore
it holds

K& € OF*(9),
—(K"j) € 0G(%),

where OF*(9) and OG(&) are the subdifferentials of the convex functions F™*
at y and G at . Furthermore we assume that F' and G are “simple”, i.e.
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that the resolvent operators (I + cdF*)~! and (I + 70G)~ !, with 0,7 € R
small enough, are easy to compute. For a convex function f the resolvent of
the operator 70f at & can be calculated in our case by

<112
v =(I+70f)" (&) = argmin{@%—f(m)}. (3.15)
In this chapter we will only make use of Algorithm 1 in [20] with the ex-
trapolation parameter § = 1. Although interesting, the usage of the other
proposed algorithms is left for the moment for later research.

To apply Algorithm 1 in [20] to the minimisation problems Eq. (3.10),
Eq. (3.11) and Eq. (3.12), we first need to rewrite them in their discretised
version, then identify the functions F' and G and finally derive the resolvent
operators (I + cdF*)~! and (I + 70G)™ .

For the discrete setting we therefore define by

fi,j = (xli,j7x2i,j> = (Zh,jh), 5, = 1,...,M, j = 1,...,N,

the pixel positions in the image domain with A being the spatial step size.
For the calculations of the finite differences, the discrete divergence operator,
the discretised inner products and further details we refer the reader to [20]
and the references therein.

In the following section we will derive the resolvent operators for the three
given minimisation problems Eq. (3.10), Eq. (3.11) and Eq. (3.12).

3.4 Derivation of the Resolvent Operators

3.4.1 Resolvent Operators for Problem Eq. (3.10)

Let us consider the continuous problem Eq. (3.10). As mentioned already
before, we need to rewrite the problem in its discretised version to be able
to apply a primal-dual approach for the minimisation. We use the spaces
X =RMYN and Y = X x X and their inner products

<S,t>X = Z Si.j t@ja S,t e X and (316)

i,J
1 1 2 2
(P, )y = sz(,j) qz(,j) +p£jj) qi(,j) ’
1,
p=E" %), 4= (4", ¢?) Y. (317
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Using the rectangle rule we can rewrite problem Eq. (3.10) in the discretised
version

emuMN

min {V||Vu||1+z< ) iis; + D, )(1—ai7j))}, (3.18)

where the factor h? can be neglected, since it has no influence on the op-
timal solution. The semi-norm ||Vs||,, with s € X, is defined by ||Vs||, =

5 l(Vs)iy (Vs)igl = (F9)) + (V)2

Comparing Eq. (3. 18) to Eq. (3.13), we see that K =V, F(Va) = v ||Val|,
and G(a) = 3°, . D(@;) 4 ;+ D () (1—1;;). The solution of the resolvent
operator with respect to F* can be derlved as

Pij

p=(+0dF ) (p)=>pi; =v max{z, i}
s |P,7

and the one with respect to G as

= (I+70G)""(4) = 4;; =min{max{d; ;—7 (D(wf;,)—D(w);;)) 0} ,1} .
Remark 3.2. The primal-dual formulation of problem Eq. (3.18) is a special
case of the general problem considered in Pock et al.’s work [66] and the
resulting primal-dual algorithm is then the same as described there. Namely,
the dual variable p is projected onto the convex set, a disc with radius v,
and with a truncation of the primal variable @ the projection on the feasible
convex set [0, 1] is achieved.

Remark 3.3. The observant readers probably noticed, that we slightly mis-
used the mathematical notation to make the formulas more pleasing to the
eye. More precisely, instead of writing D (w0 J) we should have been using
D(w#)|;;, since discretisation is performed after the function D is applied.
In the followm% we will also make use of this sloppy notation for the functions
01, ,02 and p2 given in Eq. (3.7), Eq. (3.8) and Eq. (3.9).

3.4.2 Resolvent Operators for Problem Eq. (3.11)

Now we consider the continuous problem Eq. (3.11). If we have a closer
look at this minimisation problem, we see that we only receive information
about W' on the domain ¥ where @ will be set to 1. Although theoretically
reasonable, for the numerical calculations the implementation gets facilitated
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by having a smooth extension of W' to the domain '\ X. We therefore
consider instead the problem

min {/ F) a(F) + ps(@ )df} | (3.19)

Comparing Eq. (3.11) to Eq. (3.19) the only difference is, that the factor @
is not applied to the smoothness term s anymore.

For the primal-dual approach we will consider two different variants, in
the following referred to as Variant I and Variant II. We will use the
spaces X = RMN x RMN and Y =Y; = X x X (for Variant I) respectively
Y =Y, = Yy x RMN x RMN = (RMN)® (for Variant IT). The inner product
of X is the same as in Eq. (3.17) and the one for Y; and Y5 are defined by

3 4) (4
Zpu qw +pw qz(a) +pl(J) ql(J) +p1(¥j) qgvj)’

p= (W, p? p® pW) g = (¢, ¢? ¢ ¢Y) ey, (3.20)
respectively

1 1 3 3 4 6 6
Z P )+ ¢ + P g+ i 0l + ) 0+ P )

1) H2) HB) HA) H(5)

,pp® p® pO)
q=(q",¢?,¢%,¢",¢® ¢ ev,. (3.21)

p=(p ©),

After the discretisation of problem Eq. (3.19) we obtain

min {u||vw+u1+2 (salos (@)

2¥)

ol T+l ) ) s 22

where this time ||Vs||,, with s=(s1, s2) € X, is given by ||Vs||, = Zi’j|(Vs)m~|
. 2 2
with |(Vs)i] = \/(<v31)§}}) H((Vs)E) (V) 5 ((Vs2)2) %

In the following we want to have a look at the two different variants on how
to solve Eq. (3.22) with the primal-dual approach, namely Variant I and
Variant II, separately. We therefore split the following derivations into two
sections named accordingly.
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Variant I

In this section we want to describe a first variant on how to solve Eq. (3.22)
with the primal-dual approach.

When we compare Eq. (3.22) to Eq. (3.13), we see that we can choose
the corresponding functions as K =V, F(Vw") = p|[|[Vwt|], and

G@*) = (mlor ()] + 72l (@) + 1alos” (@H)]) iy . (3.23)

7]

We want to point out again, that in this variant we will use the space ¥ =Y}
defined at the beginning of Section 3.4.2. From the resolvent operator with
respect to F* we obtain then

* gi,j
q=(I + cOF — g = — 3.24
( )7H(9) T ] (3.24)

The derivation of the resolvent operator with respect to GG is not that straight-
forward and more effort has to be put in to find a suitable solution. It is
common that the resolvent operators of functions, that are sums of quadratic
and absolute norms, lead to so called thresholding schemes [19, 92]. This will
be also the case here. Having a closer look at the definition of G Eq. (3.23)
and equation Eq. (3.15), we see that we have to solve

wt = (I +70G) " (@)

=+ —4 2
= arg min {w + G(w+)}

wteX

= argmin {% > ( (s = ugig)* + (0 = ”0+i,j)2> (3.25)
j

wt=(utvt)eX
+ 3 (nlpr (@) + 2l ()] + 20 o2 ”)I)ﬂi,j}'
,J

For @;; = 0 we can conclude from Eq. (3.25) that ;; = ; ;. On the other
hand, for 4, ; = 1 we have to distinguish the cases

paz)(2)o. (2o, )

which turn out to be 27 in total. The chosen numbering for the different
cases is shown in Table 3.1.

)o, (3.26)

AV
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Table 3.1: This table indicates the numbering of the 27 cases (see Eq. (3.26)).

Case No. | py(wf;) 00 | o (@) 00 | pP () 00
1 > > =
2 < > =
3 = > >
4 > < >
5 < < >
6 = < >
7 > > <
8 < > <
9 = > <
10 > < <
11 < < <
12 = < <
13 > = >
14 < = >
15 = = >
16 > = B
17 < = <
18 = = <
19 > = =
20 < = =
21 = = =
22 > > =
23 < > =
24 = > =
25 > < =
26 < < =
27 = < =
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e Geometric Interpretation of Problem Eq. (3.25) with 4, ; =1

Before explaining the derivation of the explicit solutions and the needed
reformulation of the conditions for the different cases in Eq. (3.26) in more
detail, we want to give a deeper insight of the geometric interpretation of
problem Eq. (3.25) with @, ; = 1. To facilitate the notation in the following,
we introduce the terms

Q5 = VT(ZI?—F IU+)| .

Oy, T'(T ))
b, ; = 1 3.27
g (amﬂ ) (3.27)
7/7] axQZEQT(f _’(—)i_)
and
Tij =TV G, Yij = TY2bij, Zij = TY2Cij - (3.28)

Using the definitions in Eq. (3.7), Eq (3.8) and Eq. (3.9) and the notation

in Eq. (3.27), we can rewrite py (), PSP (@ w;;) and péQ)(ZU:j) as
pl( :j):pl( 0+j) z](flﬁ:rj_warz)a
1 1 —. —.
o (a5) = (@ )b (1 = ). and (3.29)
2 —.
Py (@) = pi7 (i, ) + el (0 — i)
Note, that with pi(@;) = 0 a line [, is deﬁned with its normal vector
being parallel to the vector a; ;. Similarly, p M (@ w;;) = 0 defines a line I, ,
and p$ (10 w;;) =0 aline I, .

Now we can argue similar to Zach et al. in [92] for the geometric in-
terpretation. The mathematical structure of their minimisation problem for
which they derive the thresholding scheme is very similar to the one we have
in Eq. (3.25) with @;; = 1. The first term in Eq. (3.25), (u], uar”)2 +

(v;y — varz j) is the squared distance of w;; to gy, ;, and the terms |p1(5)],

\pg ()]s | p(Q) (@;;)| define the unS.lgned dlstances to the lines Iy, ;, Iy, ;, l%.,
respectlvely ConS.ldermg now all oy ,; with a fixed distance o to wy, iy We
see that problem Eq. (3.25) with 4;; = 1 is minimised for the wj, ; closest
to the three lines Iy, ;, Iy, ; and [, ;. See Fig. 3.1 for an illustration.

95



CHAPTER 3. A PRIMAL-DUAL APPROACH FOR DISCONTINUITY PRESERVING REGISTRATION THROUGH
MOTION SEGMENTATION WITH CONTINUOUS CUTS
3.4. DERIVATION OF THE RESOLVENT OPERATORS

Figure 3.1: The geometric interpretation of minimisation problem Eq. (3.25)

e Derivation of the Explicit Solutions for Problem Eq. (3.25) with
ﬂ@j =1

We are ready now to derive for each of the cases an explicit solution by using
Eq. (3.25). We show the derivation of the solutions only for four different

cases. The explicit solutions for the remaining cases can be calculated in a
similar fashion as the presented ones.

Case 1 and Similar Ones. Let us consider the first case in Table 3.1, i.e.

p1( _"Jr‘) = P1(@J¢j) + a‘T‘ (@D?LJ - wow) >0,
P8 () = pé”(iUOzJ)‘+-bT (i — g ;) > 0, (3.30)
o5 = o2 (5,) + L (7, — ) > 0.
Solving problem Eq. (3.25) for this case leads to the equation
1 | =
2T2( wozj)%—%a”%—vgb”%—vzc”:0

and by using the notation in Eq. (3.28) the explicit solution can then be
written as

b ot
W, =W, ; = Tij — Yij — Zij - (3.31)

The derivation of the explicit solutions for the cases 2, 4, 5, 7, 8, 10 and 11 in
Table 3.1 is performed similarly. There are, however, other cases left which
need another treatment, as for example case number 3.
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Case 3 and Similar Ones. The condition for case 3 in Table 3.1 is given

by
pl(w;’,_j):pl(w(—)i_ZJ)_’—a ( j_]_wg_iJ)_Oy
1 —- 1 — —. —
P (@) = p3) () + b (0 — a0 ;) > 0,
2)/ — 2) /ot
PP (wih) = ps) () + ¢ (@ +—wo”>>o

Here we have to distinguish the two situations a; ; # 0 and a;; = 0.

o [f Q; 4 7& 6
From p;(w;) = 0 we see, that the solution ; has to lie on the line
lo, ; and of course the distance of it to the other hnes ly, ; and [, ; should
be minimal. Therefore we can assume that the solutlon is of the form

U7+ = U_);()t"j + oy Qg 5 + /BOpp n(li,j ) (332)

Y]

where n,, ; is the normal to a; ;. Geometrically this means, that Wy, i s
first orthogonally projected to the line [,, ; and afterwards moved along
the line such that it minimises the distance to [y, ; and I, ;.

The unknown aq is determined by replacing the term (117+] Wy ;) in
the equation p; (w;;) = 0 using Eq. (3.32), which leads to
ot
wA ..
ap = _LO;J) (3.33)
i

Solving problem Eq. (3.25) for the current case and replacing again the
term (w;; — iy, ;) using Eq. (3.32) leads after some simple calculations

to the second parameter

ng. . (—
50]917 = —

o Ifa,; = 0:
Since a; ; vanishes, there is also no line [,, ; we have to consider and we
can directly derive the solution w 5 by just solving Eq. (3.25), similar
to the first case in Table 3.1, and We get the solution
W = Uiy~ Yig ~ 2

Finally, we can derive the explicit solution for the cases 6, 9, 12, 13, 14, 16,
17, 22, 23, 25 and 26 in Table 3.1 similar to the case 3 above.

27



CHAPTER 3. A PRIMAL-DUAL APPROACH FOR DISCONTINUITY PRESERVING REGISTRATION THROUGH
MOTION SEGMENTATION WITH CONTINUOUS CUTS
3.4. DERIVATION OF THE RESOLVENT OPERATORS

Case 15 and Similar Ones. Let us now consider case number 15, which
was not covered so far. The condition is this time give by

p1(W5) = pr(dg, ;) + ai; (0 — iy, ;) = 0,

P (05) = o3 (w3, >+bT (@ = 5;5) = 0.

P8 (05) = p87 (i) + i (6l — i) > 0,
and we see that we have now two equal signs, namely for p;(;;) and
pgl)( ; ]). This time we have to distinguish the situations a;; # 0, a

0 VAN bi,j 7é 6 and Qi = 6/\ bi,j = 6

o If Q5 # 6
From py () = 0 and p2 ( w;;) = 0 we see, that the solution u; has
to lie on the lines [y, ; and Iy, ; and should have a minimal distance to
the line [, ;. Thus, we assurne that the explicit solution is of the form

u_ﬁ,_] = szy + a1 a; 5 + Boop Ng, ; - (3.34)

Similar to the last paragraph, replacing the term (th i wg, ;;) in the
equation pi (w;;) = 0 by making use of Eq. (3.34) leads to the same o,

as in Eq. (3.33). For the parameter Sy, we get

(1) T
—P3 (wo i, )—o b, ai; T
bTJTLa. . : lf b naz % 0 3 35
— 1,5 %, .
Poop ng, - (=zij) ( )

4,5 T
o T it b, jMa;; =0

The case where b}; nq,; # 0 in Eq. (3.35), which is equivalent to a; ; }
b; j, indicates that the lines [,, y and [y, ; are not parallel and that they
therefore intersect each other in one pomt The solution w*- we look

for will be at this intersection and the corresponding Sy, is calculated

by replacing the term (u; + — W, j) in the equation p( ) (w0, ]) = 0 using

Eq. (3.34). For the case Where b} ;na,; = 0 in Eq. (3.35), which is
equivalent to a;; || b;;, we conclude that the lines [,,; and [, , are
parallel. This means, that if the solution wj ; lies on the line [,, ; it
necessarily also lies on the line [, ;. and the parameter Sy, is calculated
by solving problem Eq. (3.25) for the current case and replacing the
term (@, — @y, ;) using Eq. (3.34).
o If ;5 = 6/\ bi’j # 62
Since a;; vanishes, there is no need to consider the line /,, , and we
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focus instead on the line [, ; on which the solution wjj has to lie on
too. We therefore assume the solution has the form

w::j = wa_i,j + (0% bi,j + BOOp nbi,j . (336)
Replacing this time the term («;" —w&j) in the equation p§” (u W) =0
with the help of Eq. (3.36) results in
(1) (=t
W
gy = _LOZU) (3.37)
[bi.51
After solving problem Eq. (3.25) and replacing the term (;; — i, ;)

using Eq. (3.36) we get

. (—2i5)

|70, ;1

600]9

e Ifa,;=0Ab, =0:
This time both, a; ; and b; ; vanish and the corresponding lines [, ; and
I, ; play not a role in the derivation of the solution u_)’;L ; anymore. We
can directly solve problem Eq. (3.25) without any prior assumption,

similar as done before in other cases, and we get

T =
Wi ;= Wy — Zig-

The derivation of the explicit solutions for the cases 18, 19, 20, 24 and 27 in
Table 3.1 is done similarly to the case 15 explained above.

Case 21. There is now one case left, which was not discussed so far. The
corresponding condition from Table 3.1 is

1 1 —. — —

p§>< ,]>:p;><w3 >+bT (@, — g, ;) =0,
2 2 —. —.

p () = pP (i, ) + o (0 —adig,,) =0,

This time we have three equal signs and we have to distinguish the situations
Q5 5 7é 0, ;5 = 0A b@j 7£ O, ;5 = 0A b@j =0A Ci,j 75 0 and ;5 = 0A bi,j =
0A Cij = 0.
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o [f a; j %6
Since pi (;;) = 0, pS) (@ w;;) = 0 and P3P (i w;;) = 0, we see that the

solution w ; has to lie this time on all three lines [, ;, ly, ; and [, ;. For
a;; # 0 we assume that the explicit solution is of the form

Ivj:j = U_ja_i,j + oy Q; 5 + 6000 nam. . (338)
Like in the paragraphs before, replacing the term (w;; — ;) in

p1(w;;) = 0 by making use of Eq. (3.38) leads to a a; being equal
to the one in Eq. (3.33). To determine fSyo in Eq. (3.38), we argue as
follows:

¥ If b ng,, # 0, which is equivalent to a;; Jf b; ;, we use Eq. (3.38)

in pg)( w;;) = 0 and get

6000 -

* Ibe i Nay; =0 and ¢}, iNa;; 7 0, that is a;; || bij and a;; Jf ¢; 5, we

use Eq. (3.38) in pg)( w;;) =0 and get

*If bT iMa;; = 0 and et ;Ma;; = 0, this means that a;; || b;; and
a;; H ¢;j- Thus all the three lines la, ;> Ip,, and I, ; are parallel

and by solving problem Eq. (3.25) and using Eq. (3.38) we get
Booo = 0.

o [f Aij = 6/\ bi,j 7é 61
Similar as in the discussion of Eq. (3.36) in case 15, we assume the
solution is of the form

Wiy = Wo;; + o2 by + Booo M, - (3.39)

Replacing the term (w; — g, ;) in PSP (w w;;) = 0 by making use of
Eq. (3.39) leads to a ay being equal to the one in Eq. (3.37). For Sy

in Eq. (3.39), we argue as follows:
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OIf c ;mp,; 7 0, which is equivalent to b;; ff ¢;j, we make use of
Eq. (3.39) in pg )( w;;) = 0 and get

(2) =+ T
P2 (wom) —Q2C bi;j
Booo = T
Cij Wi ;

* If ¢y my, ; = 0, which means b;; || ¢;;, we get by solving Eq. (3.25)
and using Eq. (3.39)

5000 =0.

o If Qg5 = 6/\ b@j = 6/\01‘0' 7A 62
Here, a; ; and b; ] vanish and we focus therefore on the line /., ; on which
the solution w ; has to lie. We assume the explicit solutlon is of the

form

W = gy +ascig, (3.40)
where a3 is calculated by using equation Eq. (3.40) to replace (w;fj -
w&,j) in ,05 )( ”) = 0 and is given by

o (i)

g = ———"—.
|ci4l?

o [f Qi 5 = 6/\ bm‘ = 6/\01',]' = 61
In this situation we do not have to consider the lines l,, ;, Iy, ; and [,
at all and solving Eq. (3.25) results into

e Reformulation of the Conditions for Problem Eq. (3.25) with
ﬂi,j =1

Since ;; is unknown but @, ; in Eq. (3.7), Eq. (3.8) and Eq. (3.9) known,
we have to rewrite the conditions for the 27 cases, which are defined by
Eq. (3.26), in terms of py(u, ), ,oé )(wOZ]) and p(2)(w0”) This can be
done by incorporating the derived explicit solutions and ﬁndlng a proper
partitioning of the space spanned by p; (wmj) pé )(wmj) and p2 (wom) (see
Fig. 3.2). A similar approach was used in the work of Zach et al. [92] to

reformulate the conditions for their proposed thresholding scheme.
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2 —
S (Wo3.5)

pl(TﬂOi,j)

1 —
s (@o1,5)

Figure 3.2: The space spanned by p; (1, ;), pgl)(zﬁari7j) and p{” (g.5)-

As one can see in Fig. 3.2, we indicated a cube in the coordinate system,
that will facilitate us the problem of finding a proper partitioning of the
considered space. The edge length of the cube is chosen in such a way, that
the critical values of the reformulated conditions are covered. The reader
will understand the meaning of this sentence afterwards in a better way. For
later need, we number the faces of the cube as shown in Fig. 3.3.

Figure 3.3: The numbering of the faces of the cube indicated in Fig. 3.2.

The orientation of the face numbers in Fig. 3.3 indicates from which direction
we will look at the faces.

In the following we want to show how we can rewrite the conditions for
the different cases. The same four groups of cases which were discussed in
Section 3.4.2 are considered here too and for each of them the reformulation
of the conditions can be achieved in a similar fashion.

Case 1 and Similar Ones. We start again with the first case in Table 3.1,
which belongs to the group of cases that can be handled in the easiest way
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compared to the other ones. The condition for this case is given in Eq. (3.30)

and by using Eq. (3.31) to replace the term (wf] — wgi,j) in the condition we
get

pr(0) = pr (W5, 5) + aiy (—wij — vy — 2i5) >0,

1 —. 1 —.

P (@) = p (g ) + 0L (—wig — yig — 2iy) > 0,
2 . 2)/ —

PP () = p& () + e (—wiy — yig — 2i5) > 0,

,L?]

or rewritten

pl(wa_i,j) > —a;r,j (=g — Yij — 2ij)
1 -
P () > —bL (~wiy — Yig — 2iy) (3.41)

2 =
P )(w&,j) > =l (=i — Yij — 2ij) -

One of the critical values we mentioned before concerning the edge length of
the cube shown in Fig. 3.2 can be determined now for case number 1, namely
by the values on the right-hand side in Eq. (3.41).

The reformulation of the conditions for the cases 2, 4, 5, 7, 8, 10 and
11 in Table 3.1 is achieved similarly to this case and the remaining seven
critical values, which are necessary to define the edge length of the cube, are
determined in the same way as above.

Remark 3.4. Before jumping to the next group of cases, we want to explain
why the cube in Fig. 3.2 will help us in finding a proper partitioning of the
space spanned by p; (g ;), pgl)(w&j) and p’) (Wg;,)- Our aim is to divide
the space into 27 parts, each one defining a region for which exactly one of
the 27 cases may apply with their already derived explicit solutions. This
partitioning should not be done just arbitrarily and has to be meaningful
and be conform to the already set up formulations. Before we mentioned
once, that we want the eight critical values from the paragraph before to be
covered by the cube. The reason for this is, that like this it is possible to
reduce the partitioning problem of the whole space to a partitioning problem
of the cube. The uniquely defined regions of the cube are the ones from the
corresponding eight cases discussed in the paragraph above and they define
the corners of it. In Fig. 3.4 we show the location of the regions for different
case numbers. For simplicity we drew all the regions with the same size,
although they can and most likely will have different sizes. Note, that the
region for case number 21 is not visible in the figure, because it fully lies in
the interior of the cube.

Let us focus now on one face of the cube. We know the values for the
boundaries of the corner regions from the critical values we got from the
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5. |6 |4
14. | 15. 13.
2. |3 |1

26. 120, | 23.|23. 24, | 22.|22. | 19. ! 25. | 25. | 27. | 26.

11.|17. | 8. | 8 | 9. | 7. | 7. |16.|10.]10.|12. | 11.

8 |9 |7
17. /18, ] 16.
11. | 12. | 10.

Figure 3.4: The net of the cube indicated in Fig. 3.2 with the corresponding
case numbers for the different regions. The face numbers from Fig. 3.3 are
visible in the background.

previous paragraph. They are fixed and we introduce for them the names
Ay, An, By, By, C,, Cy, D, and D), as shown in Fig.3.5.

For face number 6 for example the values D, and D, will be the boundary
values to region 1 (see Fig. 3.4) and after having a look at Eq. (3.41), we can
conclude that D, = —a; (=2 ;=9 — 2;) and Dy = =b}; (=2 j =y — 2i5)-
For each face it always holds that

A’USB’UJ C’USDU7 BhSDhy AhSCh.

For example, to see that C, < D, we consider the reformulation of the
condition for case number 2

pr(W; ;) < —ai; (4T — yij — zij)
1 .
PSS ) > —bF (Fay — yig — 215) (3.42)

2 —.
oS )(w&,j) > —cl; (+Tij — Yij — 2ij) »
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Figure 3.5: One face of the cube with the depicted corner regions and the
labelling of the boundary values. The arrows indicate the direction of in-
creasement.

which can be derived, as mentioned before, similarly to case number 1. For
face number 6 we see in the same manner as before by having a look at
Fig. 3.4 and Eq. (3.42) that C, = —a; (+;; — yij — 2i;). Since a;x;; =
791 |aij|* > 0 (see Eq. (3.28)), we can conclude that C, < D,.

Let us consider again an arbitrary face of the cube. Although we have bound-
aries for the corner regions the ones for the regions in between are not fully
defined. Since a rectangular division of the face seems to be adequate, we
investigate the problem on how to achieve such a one. In Fig. 3.6 a face
is depicted with its corner regions and two ways of possible divisions into
9 rectangles are shown, which we call the “clockwise” and “anti-clockwise”
division method.

t

$ O" O

Figure 3.6: A face with its depicted corner regions (left) and the clockwise
(middle) respectively anti-clockwise (right) division method.

65



CHAPTER 3. A PRIMAL-DUAL APPROACH FOR DISCONTINUITY PRESERVING REGISTRATION THROUGH
MOTION SEGMENTATION WITH CONTINUOUS CUTS
3.4. DERIVATION OF THE RESOLVENT OPERATORS

Depending on the values for A,, Ax, B,, By, C,, Cy, D, and Dj, some-
times both, the clockwise and the anti-clockwise division method work, as
for example in Fig. 3.6. Depending on the situation, however, there can be
also values for which only the clockwise or the anti-clockwise or even none of
the both methods will work, where in the latter situation another adequate
division method has to be defined.

In Table 3.2 we list the different possible situations for the values A,, A,
By, By, C,, Cy, D, and Dy,

Furthermore, we split the last situation S9 into its parts for later use and
introduce the corresponding labelling in Table 3.3.

In the following, we go through the different situations given in Table 3.2
and Table 3.3 and decide which kind of method can be used to achieve a
division of the face into 9 rectangular regions.

e Situation S1 in Table 3.2 is illustrated in Fig. 3.7 for face number 6
and the corresponding region numbers. For this situation, neither the
clockwise nor the anti-clockwise division method will work, since the
corner regions 1 and 5 overlap. An adapted division method, which is
depicted in Fig. 3.7 will be used instead for this situation. Note, that

13.

15.

14.

Figure 3.7: The division method used for situation S1 in Table 3.2. For the
illustration we used face number 6 and the corresponding region numbers.

in this situation certain corner regions, which were defined through the
reformulation of the conditions for the group of cases similar to case
1, have to be adapted by removing from them the region where they
overlap.

e For the situations S2, S3, S5, S6 in Table 3.2 and S9.1, S9.2, S9.3, S9.4,
S9.5 in Table 3.3 we can use the clockwise division method illustrated
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Table 3.2: Different possible situations for the values A,, A, B,, By, C,,
Cy, D, and Dy,

No. | A, oD, | B,oC, | Ayo Dy | ByoCy,
s > > > <

2| > > - (5)
s| > | > | < | (®
S4 | = (2) > <

s - @ - ©
s6 | = | (2) | < (E)
a| < | @] > | <

« < @] -6
o -] -0
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Table 3.3: Splitting of the situation S9 in Table 3.2 into its parts.

No. AUODU BUOCU AhODh BhOCh
S9.1 < > < >
S9.2 < > < =
S9.3 < > < <
S9.4 < = < >
S9.5 < = < =
S9.6 < = < <
S9.7 < < < >
S9.8 < < < =
S9.9 < < < <

in Fig. 3.6. We define the set of situations for which the clockwise
division method can be applied by

S, == {S2,53,55,56,59.1,59.2,59.3,59.4, S9.5} . (3.43)

e Situation S9.7 in Table 3.3 needs again a special treatment to achieve a
meaningful division, since neither the clockwise nor the anti-clockwise
division method can be applied because of the overlapping of the corner
regions 2 and 4, if we consider face number 6 for example. The adapted
division method, which will be used instead, is shown in Fig. 3.8 for face
number 6 and the corresponding region numbers. Note again, that also

14.

15.

13.

Figure 3.8: The division method used for situation S9.7 in Table 3.3. For
the illustration we used again face number 6 and the corresponding region
numbers.
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in this situation certain corner regions have to be adapted by removing
from them the region where they overlap.

e Finally, for the situations S4, S7, S8 in Table 3.2 and S9.6, S9.8, S9.9
in Table 3.3 we can use this time the anti-clockwise division method
illustrated in Fig. 3.6. The set of situations for which the anti-clockwise
division method can be applied is then given by

Sae 1= {S4,57,98,59.6,59.8,59.9} . (3.44)

We are now able to give an idea on how to reformulate the conditions for the
remaining group of cases.

Case 3 and Similar Ones. The reformulation of the cases in this group
with the same approach as for case number 1 will not lead to a proper parti-
tioning of the space shown in Fig. 3.2. Instead we will use a more geometri-
cally based approach which depends on the different situations the boundary
values can take.

First we can derive for sure, independently which approach we use, that

o1 (W, ) + a5 (—wiy — 2i5)| < alj @iy

This can be seen by considering Fig. 3.4, from which we can deduce that
region 3 has to lie between the regions 1 and 2. By using the critical val-
ues of this adjacent regions, which can be determined from Eq. (3.41) and
Eq. (3.42), we arrive at the inequality above.

For the reformulation of the condition with respect to pgl) (g :.), we consider
the different situations in which the boundary values of the corner regions

can be for face number 6.

e If the boundary values are in situation S1 given in Table 3.2, the refor-
mulation is given by

1 —.
ﬂé )(w&,j) + b;l:j (+zij +vij — 25) > 0.

e If the boundary values are in one of the situations in the set S, defined
in Eq. (3.43) or in situation S9.7 in Table 3.3, we get

1 —
Pé )(w&,j) + sz (=2ij — Yij — 215) > 0.
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e If the boundary values are in one of the situations in S,. Eq. (3.44),
the reformulation is

1 .
P (03, ;) + by (+wig — yiy — 2i5) > 0.

For the reformulation of the condition with respect to p§2>(w0+ i

this time the different situations belonging to face number 4.

), we consider

e [f the boundary values are in situation S1, the reformulation is given
by

2 -
PP (g ) + ¢ (—wig — yig + 2iy) = 0.

e [f the situation of the boundary values is in the set S, or corresponds
to the situation S9.7, we get

2 =
P )(wgi,j) ol (Fwig — yig — 2i5) > 0.

e Finally, if the situation of the boundary values is in S,., the reformu-
lation is
2 —-.
PP (g ) + e (—wig — yig — 2iy) > 0.

Finally, the reformulation of the conditions for the cases 6, 9, 12, 13, 14, 16,
17, 22, 23, 25 and 26 in Table 3.1 is achieved similarly to this case.

Case 15 and Similar Ones. For this group of cases we will again make
use of the different situations of the boundary values, but this time only for
face number 6.

For the reformulation of the condition with respect to pi (i, ;), we get the
following list.

e [f the boundary values are in situation S1
|1 (@55 ;) + a; (—zi5)] < —al; (Fxij + yig) -

e [f the situation of the boundary values is in the set S,

o1 (T, ;) + ai s (—2i5)| < —ai; (=) + vig) -

70



CHAPTER 3. A PRIMAL-DUAL APPROACH FOR DISCONTINUITY PRESERVING REGISTRATION THROUGH
MOTION SEGMENTATION WITH CONTINUOUS CUTS
3.4. DERIVATION OF THE RESOLVENT OPERATORS

e If the boundary values are in situation S9.7
|o1(@5; ) + ai; (=2i5)] < —ai; (Fij = yig) -
e [f the situation of the boundary values is in the set S,.
Ipl(w&,j) + a;r,j (—zij)] < —a;F,j (=ij — Yij) -
For the reformulation of the condition with respect to pél)(zﬁg :7), we get the
following list.
e If the boundary values are in situation S1
|P(1)(wo”) + b5 (—zig)| < =b; (Fxig +vig) -
e If the situation of the boundary values is in the set S,
oS (@) + b (—2i)| < =L (—2ij — wig) -
e [f the boundary values are in situation S9.7
1037 (i, ) + b (=2i)| < =0 (=i + wig)
e If the situation of the boundary values is in the set S,.

105 (@ W)+ 0L (=2 < =bl (4w — yiy) -

Finally, we obtain for the reformulation of the condition with respect to

% )(wm ;) the following list.

e [f the boundary values are in situation S1

2 . .
P2 (g, ) + min {c]; (—2ij — yig — 2ig),

C;I:j (—HBZ'J‘ + Yij — Zm')} > 0.
e If the situation of the boundary values is in the set S, or S,

(2)

py (g ;) +min { e (=i5 = yij — 2i5),
C;f,j (+ij — Yiy — 2ij),
C;'I:j (=2ij + Yij — 2ij),
el (Fwij +yig — 2i5)} >0
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e [f the boundary values are in situation S9.7

2 — .
P )(w&-,j) +min {¢; (+xi; — yi; — 2i5),

Czj (—l‘iﬂ‘ + Yij — Z,‘J‘)} > 0.

The reformulation of the conditions for the cases 18, 19, 20, 24 and 27 in
Table 3.1 is done then similarly to the case 15 explained above.

Case 21. The last case which is left is case number 21. The corresponding
region contains the part of the cube which was not covered so far with the
corresponding regions of the other cases. Additionally, since it is unfortu-
nately also possible that there are overlappings for some of the regions which
appear at different faces, as for example the possible overlapping of region
1 with region 11, these overlappings are also assigned to case number 21 to
finally achieve a proper partitioning.

One could get the impression that this handling of the overlappings is
mathematically rather grubby, but to legitimate this we recall that an optimal
solution of problem Eq. (3.25) will result in rather small values for p; (),
pgl)(w;rj) and péQ)(sz’ ;) and therefore should be ideally close to case 21 in
Table 3.1. Extending therefore the region for case number 21 should not be
harmful. Furthermore, for small values of py (), pgl)(w’: ») and Pt () a
reformulation of the condition can lead more likely to overlappings of certain
region parts. Therefore it seems to be adequate to assign these overlappings
to region 21.

It is possible to define the region 21 in mathematical terms, but since
we explained the content of this region already above this will be rather
uninspiring and for the implementation an explicit formulation of the region
is also not needed, since it can easily be depicted with the help of the other

regions.

This concludes Variant I on how to solve Eq. (3.22) with the primal-dual
approach.

Variant I1

Now we describe a second variant on how to solve Eq. (3.22) with the primal-
dual approach. First, note that similar as in Eq. (3.29), by using the defi-
nitions in Eq. (3.7), Eq. (3.8) and Eq. (3.9) and the notation in Eq. (3.27),
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: q 1), 2
one can write py (), oS )(wifj) and p§ )(wi’j

U) as
pl(wi,j) = Qj; Wy 5+ Kl with K15 = p1 (wom) ;5 Wog g5
D+t _ pT =t : _ (Dt T =+
P2 (wi,j) = bi,j Wy + K2dj with  Ka;; = ps (wow) - bi,j Wygj (3.45)
2=+ T =t : _ @t T =+
P2 (wi,j) = Ci; Wi T K3, with  K3;; = ps (wom) — G j Wo;

Making use of Eq. (3.45) in Eq. (3.22) and comparing to Eq. (3.13), we see
that we can choose the corresponding functions as

X =Y
Wt e K(i) = (Yt g(b, @), gle, dit))
with g(s,@")|;; = s}:jtb';j fors,wt e X,i=1,....M,j=1,...,N,
F(Vwt, vlat, ¢t
- ~ 1)/ - ~ 2)/ =
= VT + D e i |0y (@) + D ety |08 ()]
ij ¥
= wlIVatly + > oty (b8 @ + kil + > et el @ + Rl
ij ij

and

G@™) =y |p ()] (3.46)
12
Recall, that this time we will use the space Y = Y5, that was defined at the

beginning of Section 3.4.2. For the purpose of simpler notation we define the
variable

(1)’ 2 ,3) (4))

a = (¢",¢",¢",q

9

where ¢ = (¢V,¢@,¢®, ¢, ¢ ¢9) € Yy, (3.47)

The convex conjugate of F'is given by

— (5) _ (6) "
F*(q) = F*(qu, ¢, ¢9) = (Ko, @) pren — (K3, @) g it g e 0.
e ifqg¢Q,

where

Q={a=(q1,4".¢9) €Yo | lq1s| < 1, |QZ(5J)| < Y2ty ’qz(i)| < Yol
Vi=1,...,M,j=1,...,N},
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From the resolvent operator with respect to F* we obtain then
q1i,j
max{y, [Giij]}

q=I+ UaF*)fl(@ = quij =M

0 lf Y2 ﬂm- = 0 >

q(5) == Y2 Ui (q(S) +0K2i,5)
m - Z’{(5) - if v, 'ai,j 7é 0,

max{y2 %;,j,|G; ; +0 k2i,5(}
and

if Y2 ﬂ@j =0 s

q(6) == Y2 Ui ; (q(ﬁ) +0K3i,5)
bl 2d 2T > if Y2 ai,j 7é 0.

max{7y2 ﬁi,j:‘@§g)+an3i,j|}
For the derivation of the resolvent operator with respect to G we look at the
definition of G Eq. (3.46) and equation Eq. (3.15) and see that we have to
solve

Wt = (I +70G) " (wy)

=+ —+ 2
= argmin {M + G(w"+)}

wTex 27

— argmin {iz((u;j_ugm)h(U;j_v;iﬁjf) (3.48)

T — 27
wt=(ut,vt)eX i

+ Z’Yl ﬂz’,j|ﬂ1(ﬂ7¢+,j)’} -
i.j
.

Finally, for @, ; = 0 we can conclude again from Eq. (3.48) that u_fjj = Wy, ;-
On the other hand, for @; ; = 1 the resolvent operator with respect to G leads
again to a thresholding scheme similar as in [19, 92]. More precisely, when
making use of the notations in Eq. (3.27), Eq. (3.28) and Eq. (3.33), we get

[ If ai,j 7£ 6:

: =t T
—xiy  if po(Wy; ) > a; T,

. —)J’-
zig i py(d

T
Oi,j) < Q5 T,

o ai,j if |p1(1f)’o+w)| S CL;I;j ZCZ'J .

This concludes now Variant IT on how to solve Eq. (3.22) with the
primal-dual approach.
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3.4.3 Resolvent Operators for Problem Eq. (3.12)

This section is very similar to Section 3.4.2 and we mainly have to just replace
wt by @~ and @ by 1—a. To achieve a smooth extension of @~ to the domain
Y., we consider now instead of problem Eq. (3.12) the following problem

min {/Q F) (1 = @(@)) + ps(i) df} | (3.49)

The spaces X and Y =Y (for Variant I) respectively Y = Y5 (for Variant
IT) and their inner products are defined in the same way as in Section 3.4.2
and the discretisation of Eq. (3.49) is performed in the same manner as
before. For Variant I the resolvent operator with respect to F™* is identical to
Eq. (3.24) and for Variant IT only slight changes appear. Finally, compared
to the section before, there are also only very slight changes of the resolvent
operator with respect to G for both, Variant I and Variant II.

3.5 Implementation

Although we have a convex minimisation problem with respect to the motion
segmentation function % in Eq. (3.10) and partly linearised the fidelity term
fin Eq. (3.6), we should keep in mind that the overall minimisation problem
remains non-convex and that we have to update Wy and w, regularly. There-
fore a coarse-to-fine strategy is applied to avoid the risk of getting stuck in a
local minimum during the optimisation. The minimal size of the images at
the coarsest level is set to n,,;,, = 32 and the scaling factor for the pyramid
to £ = 0.9. At the coarsest level we initialise the displacement fields @t and
@ trivially with 0.

Because of the Remark in Section 3.2.2 one would expect, that the choice
of the initialisation for the function @ can be arbitrary. Indeed, whatever
initialisation we choose, a global minimiser for the motion segmentation can
be found for fized W and w~. But in our case the values for @/* and w~
are updated regularly during optimisation. Still a similar property has been
observed during the experiments, by choosing different initialisations for .
See for example Fig. 3.11.

The final iteration scheme consists of two loops. The outer loop iterates
over the pyramid levels. In each level an inner loop updates the values
for 4, W and w™, following steps I - 8 in Section 3.3.1. Thus, in each
iteration of this inner loop one step of the primal-dual Algorithm 1 from
[20] is performed with the appropriate resolvent operators from the previous
sections to update @, W' and @w~. To achieve a better convergence of 4 we
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update @t and W~ only every 50th iteration. The motion segmentation X
is obtained by choosing n = 0.5 and setting ¥ = X(n) := {7 € Q| a(Z) > n}
(see Remark in Section 3.2.2).

As soon as the finest level is reached, the inner loop is executed until a
certain tolerance or the maximum number of iterations is reached. The final
displacement field is then obtained by setting

s - [TT@ Hies,
w\r) =
O (7) HTeQ\.

Bicubic interpolation is used to calculate the images T(Z + w*) during the
iterations and to obtain the final registered image T'(Z + ).

3.6 Results

In order to show the performance of the proposed method, we show qualita-
tive and quantitative results.

For the results shown in Fig. 3.9, Fig. 3.10, Fig. 3.11, Fig. 3.12 and
Fig. 3.13 we used Variant I of our method. Both variants of our method
were used in the quantitative evaluation (Fig. 3.14) and the running time
comparison (Table 3.4).

In Fig. 3.9, we show the registration result of a synthetic example, where
a textured circle is moving down diagonally. We illustrate in Fig. 3.10 the
evolution of the motion segmentation u with the corresponding histograms.
Starting from the initial value, in this case we used the reference image, the
final result becomes close to binary, as expected.

Although our energy functional is convex with respect to the motion seg-
mentation function @, the overall minimisation task remains a non-convex
problem. To decrease the influence of the non-convexity during the minimi-
sation procedure, certain terms are linearised and a coarse-to-fine strategy is
applied. Experiments for the synthetic example in Fig. 3.9 show, that due to
this workaround different initialisation for % could be used to achieve similar
results, as shown in Fig. 3.11.

In order to show the effect of the smoothness parameter v for the TV of
1, we show in Fig. 3.12 that we can obtain smoother results as v increases.

Since we are interested in the discontinuities of the displacement field,
we compare the proposed method to methods that are able to preserve dis-
continuities in the displacement field, in this case, the demon algorithm with
anisotropic diffusion filtering [26], the registration algorithm of Brox et al.
[16] and our previous work [49].
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(a) (b) (c)

Figure 3.9: The template (a) and the reference (b) images superimposed with
the motion segmentation (green curves), and the displacement field @ (c).
The parameter values used for this example are v; =4, v =4, u = 0.5, and
v =0.3.

We show the qualitative comparison in Fig. 3.13. As clearly seen, the
proposed method can achieve more crisp discontinuities in the displacement
field compared to the demon algorithm with anisotropic diffusion filtering
and the registration algorithm of Brox et al. Furthermore, the proposed
method managed nicely to separate the motion of the abdominal wall and
the one of the organs.

In Fig. 3.14 a quantitative evaluation is shown for 22 different liver image
pairs. We chose the parameters for all the methods by optimising them
with respect to these image pairs. The parameters of our method were set
toyy =4, % =1, p = 0.2 and v = 0.1 for Variant I and Variant II.
For the demon algorithm with anisotropic diffusion filtering we could use
the suggested parameters, for Brox et al.’s method we used v = 5, a = 80
and ¢ = 0.9 and finally for our previous method we used the parameters
suggested there, namely v = 0.4, u = 0.05, v = 20, § = 0.2 and € = 0.00001.

To quantitatively asses the performance of the methods, we calculated the
mean squared error (MSE) and the normalised mutual information (NMI),
with the grey values scaled from 0 to 1. For all our examples the proposed
method performed better than the demon algorithm with anisotropic diffu-
sion and the registration algorithm of Brox et al. We used the Kolmogorov-
Smirnov test to check for normality of the results using the R Software pack-
age (Version 2.10.1). We considered a significance level of 5% as significant.
The t-test showed that the proposed method delivered significantly better
results than the demon algorithm with anisotropic diffusion filtering and the
method of Brox et al. with both p < 0.05. The proposed method produced
more satisfying results compared to our previous method [49] for the MSE
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Figure 3.10: From left to right: The evolution of the motion segmentation
function @ (top row) with the corresponding histograms (bottom row) for the
example and parameters in Fig. 3.9. Note that the reference image is used
for the initialisation of .

and NMI.

In a next step we compared the running times of the proposed method
(Variant I and Variant II) to the ones of our previous work [49] for the
22 liver image pairs. Both methods were implemented in MATLAB and
the experiments were performed on a 64-bit Linux system with 1.2 GHz.
We used again the parameters v; = 4, v = 1, p = 0.2 and v = 0.1 for
both of the variants of the proposed method and for our previous work the
parameters v = 0.4, p = 0.05, v = 20, § = 0.2 and € = 0.00001. In [49]
the displacement fields @™ and @~ were updated each 10th iteration. To
provide a fair comparison, we therefore used the same update frequency for
the proposed new method. Furthermore, the maximum number of iterations
in the finest level is set to 30000 for both methods. The timing results for
the 22 liver image pairs are shown in Table 3.4 together with the mean and
standard deviation. The running times of both methods are comparable. By
using Variant I, the proposed new method performed with around 100 s
slightly faster than the old method. Here, we want to mention that the old
method makes use of some optimized in-built MATLAB routines, whereas
for the proposed method there is still a high potential to optimise the code.
Despite this, when using Variant II, the proposed new method got even
about three times faster than the old method.
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3.7 Conclusion

In this chapter we presented a primal-dual method for discontinuity preserv-
ing non-rigid registration, that makes use of the continuous cuts framework.
The so gained motion segmentation influences the motion estimation posi-
tively by sharpening the discontinuities in the displacement field. The min-
imisation of the energy functional is implemented in a coarse-to-fine strategy
and exploits the rapidity of the primal-dual algorithm studied in [20]. The
experimental results demonstrated desirable performance of the proposed
method in comparison with those of the demon algorithm with anisotropic
diffusion filtering [26] and the registration algorithm of Brox et al. [16].

Large displacements of deforming organs can cause misregistrations even
when using a coarse-to-fine approach. Brox and Malik proposed in a very re-
cent publication [18] to include point correspondences from descriptor match-
ing into the variational optical flow formulation. In future work we plan on
similarly including known corresponding landmarks into the functional as
hard constraints. However, we plan on using our Tracking the Invisible ap-
proach [41] for locating the matching point correspondences.
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Figure 3.11: The motion segmentation results @ (middle column) and the
corresponding displacement field results @ (right column) obtained when us-
ing different initialisations for @ (left column) for the example and parameters
in Fig. 3.9. For the results in Fig. 3.9 itself the reference image was used for
initialisation.
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Figure 3.12: From top to down: The effect of the smoothness parameter
v when v = 0.01,0.05,0.2. Here we show the reference image superimposed
with the contour of thresholded motion segmentation @ (left column), 4 (mid-
dle column) and the corresponding displacement field @ (right column) for
the example in Fig. 3.9. The other parameters are again v; = 4, 75 = 4 and
w=0.5.
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segmentation result (c¢). The displacement field for the demon algorithm with

anisotropic diffusion filtering is shown in (d), the one for the registration

Figure 3.13: The template image (a), the reference image (b) and the motion
algorithm of Brox et al. in (e) and finally the one of our method in (f).
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Figure 3.14: Quantitative evaluation for 22 pairs of liver images with a dis-
continuous displacement field. Comparison of the MSE (a) and NMI (b).
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Table 3.4: Comparison of the running times of the proposed method
(Variant I and Variant II) to the ones of our previous work [49] for 22
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liver image pairs. The times are given in seconds.

. Proposed New Proposed New
Ex. No. Prev1ou29Method 11\)/Iethod 11\)/Ieth0d
[49] (Variant I) (Variant IT)

1 1055.13 959.33 325.69
2 1053.55 951.41 328.68
3 1060.33 948.92 327.09
4 1059.57 996.78 323.51
5 1052.58 951.85 323.14
6 1064.84 955.43 330.34
7 1070.07 990.57 327.49
8 1060.53 944.11 323.82
9 1082.90 949.47 326.78
10 1079.99 949.23 324.44
11 1073.25 954.15 324.34
12 1048.56 961.26 324.29
13 1059.35 956.23 328.40
14 1061.09 949.74 323.45
15 1065.24 952.35 329.92
16 1072.26 949.80 330.28
17 1075.99 980.85 328.35
18 1068.88 951.10 326.22
19 1071.08 985.62 329.86
20 1064.42 949.60 329.71
21 1057.28 946.05 327.17
22 1060.19 979.33 331.26
mean 1064.41 959.69 327.01
std 9.03 15.76 2.62
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Chapter 4

A Landmark-Based
Primal-Dual Approach for
Discontinuity Preserving
Registration through Motion
Segmentation with Continuous

Cuts

The content of this chapter has been published in [51]. It is an extension of
the work presented in [50] (see Chapter 3) for Variant I. The extension for
Variant IT works similarly.

Discontinuous motion is quite common in the medical field as for example in
the case of breathing induced organ motion. Registration methods that are
able to preserve discontinuities are therefore of special interest. To achieve
this goal we developed in our previous work a framework that combines
motion segmentation and registration. To avoid unreliable motion fields the
incorporation of landmark correspondences can be a remedy. We therefore
describe in this chapter how we integrate the landmarks into our variational
approach and how to solve the minimisation problem with a primal-dual
algorithm. Qualitative and quantitative results are shown for real MR images
of breathing induced liver motion.
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4.1 Introduction

Nowadays, image registration is an indispensable tool for many medical ap-
plications and a great variety of well established methods have been pro-
posed. Although image registration has been a topic of high interest in the
last decades, methods that can handle discontinuous motion fields have only
drawn little attention until recently. This despite its importance when for
example registering abdominal organs that undergo breathing induced mo-
tion.

More attention to discontinuity preserving methods is being paid in the
related research field of optical flow. Important theoretical contributions also
originate from image segmentation and image denoising methods. Mumford
and Shah for example proposed in their pioneering work [60] a functional
for image segmentation that avoids spatial smoothing in certain locations of
the image, thus preserving discontinuities. Vese and Chan [84] introduced
a level set framework based approach to efficiently solve the Mumford and
Shah minimisation problem for segmentation. Another influential approach
based on the total variation (TV), known to preserve discontinuities, was
proposed by Rudin et al. [71] for image denoising. The beneficial behaviour
of the TV was also exploited in image segmentation, image registration and
optical flow methods, as for example in [21], [67] and [16].

A recent registration approach that tries to handle discontinuities in the
displacement field of medical images has been proposed by Schmidt-Richberg
et al. [73], which considers a direction-dependent regularisation method of
the displacement field. This method relies on the calculation of the normals
at the object boundaries and therefore a rather good manual segmentation
has to be provided in advance.

As shown in the work of Amiaz and Kiryati [5], where the optical flow
method of Brox et al. [16] was embedded into the segmentation framework of
Vese and Chan [84], the so achieved motion segmentation can influence the
registration process positively. Instead of using the level set formulation, we
used in our previous works [49, 50] (see Chapter 2 and 3) the segmentation
framework of Chan et al. [21] that guarantees a globally optimal motion
segmentation result for a fixed motion field. A preliminary short version
of the work in [50] can be found in [52]. Following the work of Chambolle
and Pock [20] we solved then the registration problem with a primal-dual
approach.

To avoid unreliable motion fields, we incorporate in this chapter the in-
formation of landmarks into our previous work [50]. There exist many image
registration methods which integrate the information of landmark correspon-
dences, as for example [42, 48, 53, 65, 18]. Here, we will make use of the re-

86



CHAPTER 4. A LANDMARK-BASED PRIMAL-DUAL APPROACH FOR DISCONTINUITY PRESERVING
REGISTRATION THROUGH MOTION SEGMENTATION WITH CONTINUOUS CUTS
4.2. METHOD

cent work of Brox and Malik [18], which contains the idea on how to include
descriptor matchings, respectively landmark correspondences, easily into a
variational framework.

4.2 Method

In the following we want to describe the proposed method. First, we shortly
recapitulate the registration and motion segmentation framework we used
already before in [50] (see Chapter 3) and in a second part we discuss the
incorporation of the landmarks into the energy functional.

4.2.1 Registration and Motion Segmentation Frame-
work

We define by  C R? the domain of the pixel positions Z = (z1,z3) and by
the functions R : 2 — R and T : €2 — R our reference and template image.
The aim of image registration is to find a transformation ®(Z) := ¥ + (%)
such that the relation To® ~ R holds and the displacement field @ : Q — R?,
where @(Z) := (u(Z), v(Z)) with u,v : Q@ — R, will be the function we focus
at. For convenience we will use the abbreviations «f, u and v for (%), u(¥)
and v(¥).

The proposed registration method integrates the displacement field esti-
mation into the convex segmentation method of Chan et al. [21] to preserve
the discontinuities in the displacement field. The energy functional for this

variational approach is given by

B+, -, ) :/Qp(m)a(f) df+/QD(w‘)(1—a(f))di;’

+ /Q Vi(7)| dF . (4.1)

Here, the function D represents the data term and is of the general form
D(W) := f(w)+ ps(w), where f and s are the fidelity term and the smooth-
ness term with 1 € RT being a weighting parameter. We choose a fidelity
term f that incorporates the constraints for the grey value constancy and the
gradient constancy with their corresponding weights 71,7, € Ry . Therefore
we define
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The smoothness term s results in the L!'-norm respectively the vectorial TV
of w and is given by

s(@) = s(u,v) == \/|Vul]> + |Vo|* = |V . (4.3)

Furthermore, to incorporate Chan et al.’s work [21], a binary function @ :
R? — {0,1}, @(Z) := 15(¥), where ¥ C Q C R? with ¥ := {# € Q|u(Z) =
1}, is used in Eq. (4.1) to differentiate the displacement field « into @+ and
w~. Finally, the last term in the above energy Eq. (4.1) is a regularisation
defined by the TV and weighted by a parameter v € R*.

The registration problem is solved by minimising energy E in Eq. (4.1)
with respect to @, @~ and @ and we finally obtain the aimed displacement
field by setting o := Wt a4+ W~ (1 — a).

As pointed out by Chan et al. in [21], Eq. (4.1) is strongly related to the
Mumford-Shah functional [60] and one can show that a global minimiser of
the set ¥ can be found by minimising energy F in Eq. (4.1) with respect
to @ over a convex set and finally thresholding the so obtained result. (See
Theorem 1.4 in Section 1.4.2.)

4.2.2 Incorporation of the Landmarks

To exploit the information of the landmarks in the proposed variational
registration method we make use of Brox and Malik’s approach [18]. The
landmark point correspondences, which are defined by the vectors Wy, =
(upa,vra ), should act as a prior to the displacement field @ and we therefore
seek to additionally minimise an energy of the form

ot () = / L6(2) |6(&) — @0 (7)2 d7,

where S is the set of the landmark positions in the reference image R. More
specifically, incorporating energy Ep; into our registration and motion seg-
mentation framework defined by the energy functional E in Eq. (4.1) results
in a modified fidelity term f in Eq. (4.2), namely

f@) = n|T (@ + W) — R(@)| + 72|10, T(Z + &) — 0y, R(Z)]

S, o o, L Ny (e
+ 72000, T (T + @) = 00, R(T)| + S A Ls(7) [0(F) — Wrar (B3, (4.4)

where A € R is a weighting parameter. Instead of using a dense correspon-
dence field [18], we use the landmarks extracted by the Affine Scale Invariant
Feature Transform (A-SIFT) method [91], a recently developed algorithm
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that extends the well known SIFT method [56] and allows landmark match-
ing under affine deformations, hence usually finding a lot more matches than
the SIF'T method. The putative matches found are then filtered by fitting a
homography to the matches using RANSAC [31] yielding the set S of land-
mark positions.

4.3 Minimisation

4.3.1 TIterative Scheme

To facilitate the minimisation procedure we replace the fidelity term f in
Eq. (4.4) by its partly linearised version

F@) = 71|p1()] + 2005” (18)| + 2] 02 () |
1 | oy L
+ A Ls(@) [6(@) — @ (D)3 (4.5)
where

p1 (W) := T(Z + o) + VT(Z + )" (& — W) — R(Z), (4.6)

Oy, T'(T + W)

T
O T(T + w0)> (@ — o) = 0 R(T), (4.7)

PSP (@) 1= 0, T(& + ) + (
and
— — T
@), = . L Oy 2, T(Z + W) oo .
ps (W) = 0, T (T + W) + (8x2m2T(f+ ) (W — W) — 0, R(Z) . (4.8)

The minimisation of the energy functional E with respect to w/*, @/~ and @
is then performed by the following iterative scheme:

1. For fixed W' and w™, solve
min {/D(u?*) i(#) df+/D(u7‘)(1—&(f))df
u€(0,1] Q Q
+ V/]V&(fﬂdf} (4.9)
Q
2. For fixed u, solve

min { /Q D(@*) () df} . (4.10)
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3. For fixed u, solve

qn{/ﬂD(w‘)(l —a(f))df}. (4.11)

To solve the subproblems Eq. (4.9), Eq. (4.10) and Eq. (4.11) in a fast and
efficient way, we follow a primal-dual approach as described by Chambolle
and Pock in [20]. We therefore recapitulate in the next section the basic
notations and formulations.

4.3.2 The Primal-Dual Approach of Chambolle and
Pock

First, we define by X and Y two finite-dimensional real vector spaces. Their
inner products are denoted by (-, ) respectively (-,), and their induced

norms are given by |||y = /-, ) x respectively ||-||y; = v/ (-, -)y- The general

non-linear primal problem we have is of the form

F(K

min F(Kz) + G (),

where F': Y — [0,400) and G : X — [0, +00) are proper, convex and lower
semi-continuous and the map K : X — Y is a continuous linear operator.
The corresponding primal-dual formulation is the saddle-point problem

minmax (Kz,y)y + Glz) — F7(y),

with F* : Y — RU{+o0} being the convex conjugate of F'. We assume that
the problems above have at least one solution (z,7) € X x Y and therefore
it holds Kz € 0F*(y) and —(K*y) € 0G(z), where 0F*(y) and 0G(z) are
the subdifferentials of the convex functions F* at ¢ and G at 2. Furthermore
we assume that F' and G are “simple”, 7.e. that the resolvent operators
(I +00F*)~! and (I + 70G)™!, with 0,7 € R" small enough, are easy to
compute. For a convex function f the resolvent of the operator 70f at Z can
be calculated in our case by

= (I +70f)' (&) = argmin {M + f(x)} . (4.12)

" 2T
We will only make use of Algorithm 1 in [20] with the extrapolation parameter

6 = 1. The usage of the other proposed algorithms is left for the moment for
later research.
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To apply Algorithm 1 in [20] to the minimisation problems Eq. (4.9),
Eq. (4.10) and Eq. (4.11), we first need to rewrite them in their discretised
version, then identify the functions F' and G and finally derive the resolvent
operators (I + cdF*)~' and (I + 70G)™",

For the discrete setting we therefore define by Z;; = (21,;,22,;) =
(ih,jh), i = 1,...,M, 57 = 1,..., N, the pixel positions in the image do-
main with h being the spatial step size. For the calculations of the finite
differences, the discrete divergence operator, the discretised inner products
and further details we refer the reader to [20] and the references therein.

In the following sections we will discuss the resolvent operators for the
three given minimisation problems Eq. (4.9), Eq. (4.10) and Eq. (4.11). The
formulation of the resolvent operators does not change much with respect to
our previous work in [50]. We nevertheless recapitulate them in the following
sections and point out the certain changes which appear.

4.3.3 Resolvent Operators for Problem Eq. (4.9)

Let us consider the continuous problem Eq. (4.9). After its discretisation
and some calculations we get

Dij

P = [+0'8F* 71}5 :>pi,':l/—~7
( ) () =Y e o}

as a solution of the resolvent operator with respect to £*. This is the same
result we got in [50] and the calculations are performed in the same way as
there. The resolvent operator with respect to G is also derived similar as in
[50] and is given by

i = (I+70G)" (i) = 1;; =min{max{a; ;—7 (D(&;;) —D(w;;)) ,0} ,1} .
Note that the data term D, or more specifically the fidelity term f that ap-
pears in D, is not the same as in our previous work. This time it additionally
incorporates the information of the landmarks.

4.3.4 Resolvent Operators for Problem Eq. (4.10)

Now we consider the continuous problem Eq. (4.10). The numerical calcula-
tions in the implementation get facilitated by having a smooth extension of
W' to the domain Q \ X. We therefore consider instead the problem

min { /Q P (@) + ps(ah) df} | (4.13)
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Comparing Eq. (4.10) to Eq. (4.13) the only difference is, that the factor @
is not applied to the smoothness term s anymore.
From the resolvent operator with respect to F'* we obtain this time

1/~ i j
= +0dF*) ™)) = qij=p——F 2= (4.14)
T max{p, |Gigl}
This is again the same result as in [50] but more changes appear instead in
the solution for resolvent operator with respect to G. This time the function
G incorporates the information of the landmarks and is given by

5 - 1)/ - 2)/ -
() = 3 (nlpn (@) + 2lp (@) + 72l ()]

4,3
1 . -
+ 5/\ 1S(xi,j) ((UZZ - uLMi,j>2 + (Uifj - ULMi,j>2) ) Uy, j - (415)

The derivation of the resolvent operator with respect to G is again not that
straightforward and more effort has to be put in to find a suitable solution.
This can be done similar as in [50] and therefore, having a closer look at the
definition of G Eq. (4.15) and equation Eq. (4.12), we see that we have to
solve

o )
|t — @y ||
2T

wteX

wh = (I +70G) " (W) = arg min { + G(?ﬂﬂ}

T — 2T
wt=(utvt)eXx i

= argmin {i Z ((u;rj — u&.’j)z + (v:rj — Usri7j)2> (4.16)

. 1)/ - 2)/ -
+ 37 (nlor (@)1 + 7o (5] + 72108 (@)
]

1 . -
+ 5)\ 15(%‘,;‘) ((UjJ - ULMi,j)2 + (U;rj - ULMz‘,j)2) ) u”} .

Similar to the work in [50] for @; ; = 0 we can conclude from Eq. (4.16) that
W, ; = Wy, ;- On the other hand, for @;; = 1 we have again to distinguish the
cases
—. > 1)/ - > 2)/ = >

(2o, Ww (2o an(Zo. @
which turn out to be 27 in total. The additional term of the landmarks
will cause slight changes in the resolvent operator with respect to G that
we used to have before in [50]. Nevertheless, the idea of the derivation of
the explicit solutions for u?j ; and the reformulations of the conditions in
Eq. (4.17) remains the same.
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4.3.5 Resolvent Operators for Problem Eq. (4.11)

This section is very similar to Section 4.3.4 and we mainly have to just replace
wt by @ and @ by 1—a. To achieve a smooth extension of @~ to the domain
Y., we consider now instead of problem Eq. (4.11) the following problem

min {/Q F@) (1 — () + ps(@™) d:i:‘} . (4.18)

The resolvent operator with respect to F™* is identical to Eq. (4.14) and
compared to the section before only very slight changes of the resolvent
operator with respect to G have to be done.

4.4 Results

The minimisation problems for the displacement fields w* and w~ remain
non-convex, although we have a convex minimisation problem with respect to
the motion segmentation function @. To facilitate the minimisation procedure
of this overall non-convex problem, the fidelity term f was partly linearised
in Eq. (4.5). Nevertheless we should remember that we have to update
and w, regularly. To avoid the risk of getting stuck in a local minimum
during the optimisation we therefore apply a coarse-to-fine strategy in the
same manner as in our previous work [50]. The final displacement field is then
achieved by setting (7)) = (7)) if Z € ¥ and W(Z) = @ (Z) if T € Q\ X.
To calculate the images T'(Z + @) during the iterations and to obtain the
final registered image T'(Z + ) bicubic interpolation is used.

For the experiments we used real MR images of the abdomen, which were
taken during the breathing cycle and show the sliding motion of the liver. A
qualitative example is shown in Fig. 4.1. The inclusion of the landmarks lead
to a more reliable motion segmentation result, since the in fact static part
of the background is not assigned to the area with bigger motion anymore.
In Fig. 4.2 a quantitative evaluation is shown for 22 different liver image
pairs. In average, the A-SIFT method [91] delivered around 1173 matches
for these image pairs and after applying RANSAC [31] around 1001 were left.
Since we are interested in the discontinuities of the displacement field, we
compare the proposed method to the methods that preserve discontinuities
in the displacement field, in this case, the demon algorithm with anisotropic
diffusion filtering [26], the registration algorithm of Brox et al. [16] and
our previous work [50]. The parameters for all the methods were chosen by
optimising them with respect to the 22 image pairs. For our methods they
were set to 11 = 4, o = 1, p = 0.2, v = 0.1 and for the weighting of the
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landmark term we used A = 0.3. For the demon algorithm with anisotropic
diffusion filtering we could use the suggested parameters and for Brox et al.’s
method we used v = 5, « = 80 and o = 0.9. Both of our methods showed
an improvement compared to the demon algorithm with anisotropic diffusion
filtering and the registration algorithm of Brox et al.

4.5 Conclusion

In this chapter we presented a primal-dual method for discontinuity preserv-
ing non-rigid registration, that makes use of the segmentation framework of
Chan et al. [21] and includes the information of landmarks. The so gained
motion segmentation influences the motion estimation positively by sharp-
ening the discontinuities in the displacement field. The minimisation of the
energy functional is implemented in a coarse-to-fine strategy and exploits
the rapidity of the primal-dual algorithm studied in [20]. The experimental
results demonstrated desirable performance of the proposed method in com-
parison with those of the demon algorithm with anisotropic diffusion filtering
[26] and the registration algorithm of Brox et al. [16].
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Figure 4.1: Qualitative example for a pair of liver images with a discontinuous
displacement field. Motion segmentation @ without landmarks (a) and with
(d), reference image R overlaid with the motion segmentation without (b)
and with landmarks (e) and the displacement field @ without (¢) and with
landmarks (f).
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Figure 4.2: Quantitative evaluation for 22 pairs of liver images with a dis-
continuous displacement field. Comparison of the MSE (above) and NMI

(below).
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Conclusion

In this thesis we proposed three different non-rigid registration methods that
are able to preserve discontinuities in the displacement field that appear
for example at organ boundaries during the breathing induced sliding organ
motion. Our approaches achieved sharp discontinuities in the displacement
field by combining motion segmentation with registration in a variational
framework. Furthermore, the continuous cuts framework [21] was exploited
to guarantee a global minimiser for the motion segmentation function when
the displacement field is given. Our overall minimisation problems were
however non-convex and we applied a coarse-to-fine strategy to avoid getting
stuck in a local minimum during the optimisation procedure. At each level
of this coarse-to-fine strategy the minimisation of the energy functional with
respect to the motion segmentation function and the displacement field was
performed in an alternating scheme by exploiting state-of-the-art methods.
Experimental results showed for the MSE and the NMI of the registered
images a desirable performance of the proposed methods compared to other
discontinuity preserving methods, like the demon algorithm with anisotropic
diffusion filtering [26] and the optical flow method of Brox et al. [16].
Inspired by the motion segmentation approach of Amiaz and Kiryati [4, 5],
our first proposed method in Chapter 2 embedded the optical flow method of
Brox et al. into the continuous cuts framework of Chan et al. [21]. In contrast
to the work of Amiaz and Kiryati [4, 5], simple initialisation could be used for
the displacement fields and the motion segmentation without the need of any
additional methods. To simplify the minimisation of the energy functional
an auxiliary variable was introduced similar as in [67, 92]. The minimisation
of the energy functional with respect to the motion segmentation function
was then performed by making use of the fast algorithm of Chambolle [19],
and the one with respect to the displacement field with a fixed point iteration
scheme similar as in [16, 4, 5]. For the minimisation of the energy functional
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with respect to the auxiliary variable an explicit solution could be derived.

Instead of using an approximation of the L'-norm like in Chapter 2, which
usually leads to a slow convergence and blurred results [67], in Chapter 3 we
used the pure L'-norm in the smoothness term and the sum of the abso-
lute values of the constraints in the fidelity term. Furthermore, we partly
linearised the fidelity term to facilitate the minimisation procedure. The
minimisation of the energy functional was then performed by making use
of the fast primal-dual algorithm of Chambolle and Pock [20] for both, the
minimisation with respect to the motion segmentation function and the one
with respect to the displacement field. For the minimisation of the energy
functional with respect to the displacement field we proposed two variants
on how to apply the primal-dual algorithm. With this new approach, an
improvement in the computational time could be achieved in comparison to
the previously proposed method in Chapter 3.

In Chapter 4 we incorporated the information of landmark correspon-
dences into the energy functional that was proposed in Chapter 3 and used
the first variant to apply the primal-dual algorithm. Similarly, we could
have had also used the second variant to apply the primal-dual algorithm.
By providing the prior information of point correspondences to the image
registration method, large displacements can be captured and the risk of
getting stuck in a local minimum during the optimisation procedure is fur-
ther dumped [18]. Experimental results showed that with the inclusion of the
landmark correspondences more reliable motion segmentation results could
be achieved for MR images of breathing induced liver motion.

Although our quantitative evaluation of the proposed methods showed an
improvement for the MSE and NMI of the registered images compared to the
demon algorithm with anisotropic diffusion filtering and the method of Brox
et al., there was no significant difference of the MSE and NMI values among
the three proposed methods. It might be that the MSE and NMI are not
sufficient measures for a thorough validation and other ways for validation
should be considered. For instance, the inclusion of the landmarks as done
in Chapter 4 did not lead to a significant improvement of the MSE and NMI
compared to the same method without landmarks. An explanation for this
occurence could also be that there were still false matches in the landmark
correspondences found by the A-SIFT method [91], that had then a bad in-
fluence on the registration method. However, a further careful validation
is necessary in future research and in general it would be preferable to use
manually selected landmark correspondences by a medical expert. Another
interesting point for future research would be a deeper comparison of the
two variants of the method proposed in Chapter 3. The comparison of the
computational time showed that the second variant performed much faster
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than the first variant of the method. It would be, however, interesting to
compare the two variants in terms of accuracy by considering here too other
validation methods than the comparison of the MSE and NMI. Especially
for the clinical use a thorough validation of the registration methods is in-
dispensable and this will be therefore for sure an important point for future
research.

There is still a high potential for the improvement of the proposed reg-
istration methods. One could for example use multi-label functions for the
motion segmentation function in order to capture more complex piecewise
smooth displacement fields. Also interesting would be a full convex refor-
mulation of the proposed energy functional, similarly as it was done in the
convex relaxation approach of Goldstein et al. [39]. Furthermore, to make
the proposed approaches capable for multi-modal image registration, for ex-
ample mutual information could be considered as a similarity measure and
embedded into the variational framework by making use of the works [44, 69].

In summary, we proposed in this thesis three non-rigid registration meth-
ods that are able to preserve discontinuities in the displacement field and
we achieved satisfying results for synthetic images and real MR images of
breathing induced liver motion.
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