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Summary

High Intensity Focused Ultrasound is an emerging non-invasive technology for the pre-
cise thermal ablation of pathological tissue deep within the body. The fitful, respiratory-
induced motion of abdominal organs, such as of the liver, renders targeting challenging.
The work in hand describes methods for imaging, modelling and managing respiratory-
induced organ motion. The main objective is to enable 3D motion prediction of liver
tumours for the treatment with Magnetic Resonance guided High Intensity Focused Ul-
trasound (MRgHIFU).

To model and predict respiratory motion, the liver motion is initially observed in 3D
space. Fast acquired 2D magnetic resonance images are retrospectively reconstructed
to time-resolved volumes, thus called 4DMRI (3D + time). From these volumes, dense
deformation fields describing the motion from time-step to time-step are extracted using
an intensity-based non-rigid registration algorithm. 4DMRI sequences of 20 subjects,
providing long-term recordings of the variability in liver motion under free breathing,
serve as the basis for this study.

Based on the obtained motion data, three main types of models were investigated and
evaluated in clinically relevant scenarios. In particular, subject-specific motion models,
inter-subject population-based motion models and the combination of both are com-
pared in comprehensive studies. The analysis of the prediction experiments showed that
statistical models based on Principal Component Analysis are well suited to describe
the motion of a single subject as well as of a population of different and unobserved
subjects. In order to enable target prediction, the respiratory state of the respective
organ was tracked in near-real-time and a temporal prediction of its future position is
estimated. The time span provided by the prediction is used to calculate the new tar-
get position and to readjust the treatment focus. In addition, novel methods for faster
acquisition of subject-specific 3D data based on a manifold learner are presented and
compared to the state-of-the art 4ADMRI method.

The developed methods provide motion compensation techniques for the non-invasive
and radiation-free treatment of pathological tissue in moving abdominal organs for
MRgHIFU.
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Zusammenfassung

High Intensity Focused Ultrasound ist eine aufkommende, nicht-invasive Technologie
fiir die prédzise thermische Zerstorung von pathologischem Gewebe im Korper. Die
unregelmissige ateminduzierte Bewegung der Unterleibsorgane, wie z.B. im Fall der
Leber, macht genaues Zielen anspruchsvoll. Die vorliegende Arbeit beschreibt Ver-
fahren zur Bildgebung, Modellierung und zur Regelung ateminduzierter Organbewe-
gung. Das Hauptziel besteht darin, 3D Zielvorhersagen fiir die Behandlung von Leber-
tumoren mittels Magnetic Resonance guided High Intensity Focused Ultrasound
(MRgHIFU) zu ermdoglichen.

Um die Atembewegung modellieren und vorhersagen zu konnen, wird die Bewegung
der Leber zuerst im dreidimensionalen Raum beobachtet. Schnell aufgenommene 2D-
Magnetresonanz-Bilder wurden dabei riickwirkend zu Volumen mit sowohl guter zeit-
licher als auch rdumlicher Auflosung, daher 4DMRI (3D + Zeit) genannt, rekonstruiert.
Aus diesen Volumen werden Deformationsfelder, welche die Bewegung von Zeitschritt
zu Zeitschritt beschreiben, mit einem intensitédtsbasierten, nicht-starren Registrierungsal-
gorithmus extrahiert. 4DMRI-Sequenzen von 20 Probanden, welche Langzeitaufze-
ichungen von der Variabilitit der Leberbewegung beinhalten, dienen als Grundlage fiir
diese Studie.

Basierend auf den gewonnenen Bewegungsdaten wurden drei Arten von Modellen
in klinisch relevanten Szenarien untersucht und evaluiert. Personen-spezifische Bewe-
gungsmodelle, populationsbasierende Bewegungsmodelle und die Kombination beider
wurden in umfassenden Studien verglichen. Die Analyse der Vorhersage-Experimente
zeigte, dass statistische Modelle basierend auf Hauptkomponentenanalyse gut geeignet
sind, um die Bewegung einer einzelnen Person sowie einer Population von unterschied-
lichen und unbeobachteten Personen zu beschreiben. Die Bewegungsvorhersage basiert
auf der Abschitzung der Organposition, welche fast in Echtzeit verfolgt wird. Die durch
die Vorhersage bereitgestellte Zeitspanne wird verwendet, um die neue Zielposition zu
berechnen und den Behandlungsfokus auszurichten. Dariiber hinaus werden neue Meth-
oden zur schnelleren Erfassung patienten-spezifischer 3D-Daten und deren Rekonstruk-
tion vorgestellt und mit der giingigen 4DMRI-Methode verglichen.



Die entwickelten Methoden beschreiben Techniken zur nichtinvasiven und strahlungs-
freien Behandlung von krankhaftem Gewebe in bewegten Unterleibsorganen mittels
MRgHIFU.
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Introduction

Nowadays, minimally-invasive and non-invasive treatment methods are
well established and used in many surgical application. The benefits of
such treatments are less pain, faster recovery and, therefore, less operative
trauma for the patient than equivalent invasive procedures. The application
of non-invasive techniques may result in shorter hospital stays or allows
outpatient treatments. Magnetic Resonance guided High Intensity Focused
Ultrasound, for example, has the unique capability to deposit sharply lo-
calised energy deep within the body, producing thermal ablation without
damaging the surrounding tissue. Precise targeting, however, demands for
exact knowledge of the target position. When treating abdominal organs
such as the liver, the fitful respiratory-induced organ motion renders tar-
geting challenging. This thesis proposes different approaches that allow
the compensation of respiratory-induced organ motion. This chapter intro-
duces the research field as well as the problem statement of the thesis.

Section 1.1 presents an overview of the research topic, the state-of-the-art
methods and the need for research. This leads to the actual problem state-
ment that is formulated in two research questions as presented in Section
1.2. Section 1.3 outlines the research methodology that is employed to in-
vestigate and answer the stated research questions. The chapter concludes
by an overview of the structure of the thesis.



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Cancer is a leading cause of death worldwide, accounting for 7.6 million deaths (around
13% of all deaths) in 2008 [1], whereby liver cancer is the third most common cancer.
Liver cancers are malignant tumours growing inside or on the surface of the liver. The
correct and timely treatment can mean the difference between life and death. Available
treatment methods include surgery, chemotherapy, radiation therapy and hyperthermia.
Currently, research is heading towards non-invasive treatment methods, such as Mag-
netic Resonance guided High Intensity Focused Ultrasound (MRgHIFU). Focused ul-
trasound has the unique capability to deposit sharply localised energy deep within the
body producing thermal ablation without damaging the surrounding tissue as illustrated
in Figure 1.2. The increasing capabilities of more accurate targeting demands for more
exact knowledge of the target position. However, the fitful respiratory-induced motion
of the liver (see Figure 1.1) renders non-invasive treatments challenging.

Figure 1.1: Coronal view of the liver (dotted line) under respiratory-induced motion
moving from exhalation state (/eft) to inhalation state (right).

The work in hand is part of a research project aiming at developing motion compen-
sation techniques for non-invasive and radiation-free ablation of localised cancers in
moving organs using an MRgHIFU device. From a clinical perspective, MRgHIFU
has several advantages compared to traditional surgery. Since no ionising radiation is
applied, the therapy can be repeated as often as necessary. As the intervention is non-
invasive pain is minimal and recovery is faster. MRgHIFU even has the potential for
an out-patient treatment. Besides, the procedure cost is low as compared to traditional
surgical methods. Focusing is achieved by constructive interference of sound waves
emitted from e.g. a 256 element phased array transducer operating at 1 MHz. High
Intensity Focused Ultrasound (HIFU) is a hyperthermia therapy that uses temperature
to treat diseases. At the focal point, the temperature can rise to levels of 65°C to 85°C
, destroying the diseased tissue by coagulation necrosis. Phased-array HIFU devices
of the latest generation reach oblate ellipsoid lesion sizes of around 2 mm width and
4 mm length depending on exposure time, acoustic power and sonication pattern [2].
Beam spot steering ranges up to 70 mm [3] and allows the continuous application of



1.1. MOTIVATION 3

HIFU energy to the mobile target without interruption, which is essential to achieve the
targeted thermal dose required for complete coagulation within typical exposure times
of approximately 20 seconds. Another approach to handle breathing-induced motion is
respiratory gating, with the advantage that neither real-time tracking of the exact target
position nor real-time beam steering capabilities of the HIFU system is required. But
respiratory gating significantly reduces the overall duty cycle for the sonication process,
merely leaving a temporal window of 1-2 s within the respiratory cycle. Moreover, the
high perfusion rate of the liver can lead to a strong heat evacuation which limits a suffi-
cient temperature increase to achieve necrosis in large target volumes [4,5]. Performing
motion compensation, one has to expect target movements with a main component in
superior-inferior (S - I) direction, usually in the range of 5-25 mm for quiet breath-
ing [6,7]. Additional motion in anterior-posterior (A - P) and left-right (L - R) direction
in the range of 1-12 mm and 1-3 mm, respectively, as well as non-rigid deformations of
up to 20 mm as quantified by [7] has to be compensated. Organ deformation, probably
caused by intestinal activity and muscle relaxation occurring over longer time scales,
the so called drift, also have to be taken into account [8].

Besides the flexible steering capabilities, a key benefit of HIFU over many other
forms of focused energy therapy, such as radiation or radio surgery, is, that the passage
of ultrasound energy through intervening tissue has no apparent cumulative effect on
that tissue. To this end, the treatment can be repeated without causing collateral damage
to neighbouring healthy tissue. Magnetic Resonance (MR) Imaging, on the other hand,
offers excellent anatomical tissue contrast allowing to observe, study and plan the tar-
geting of the tumour, thus, allowing for spatial guidance of the therapy. In addition, MR
thermometry provides outstanding capabilities for on-line temperature control during
sonication [9]. This is currently the only available technique for non-invasive tempera-
ture measurement within biological tissue. Temperature maps can be used as an active
feedback control of the HIFU beam in order to quantify the thermal dose delivered to
the target with a typical resolution of 1 mm (spatial), 1 second (temporal) and 1°C in
temperature, respectively.

. 8

Figure 1.2: Principle of HIFU ablation in the liver (Courtesy of
www.bilomaxx—sys.com).
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The drawback of using MR thermometry in MRgHIFU is, though, that the available
scan time is mainly required for the temperature feedback control. Although the patient
is located within the MR system during sonication, there’s only very little scan time left
to track the target. Therefore, a key issue of the procedure is, that extensive 3D target
tracking is not feasible during treatment. Several approaches have been proposed in the
literature to manage respiratory-induced organ motion. The state-of-the-art methods,
such as proposed by [10], gather a 2D motion atlas in an initial learning phase, which is
used during sonication to correct the target position. The main drawback of the method
is, however, that it neglects the out-of-plane motion that can amount to a couple of
millimetres in L-R direction. In [11], a method was proposed whereby an MR navigator
echo enhanced by a Kalman filter is used to robustly track the moving organ. Using only
a one-dimensional navigator, only the rigid translational motion is determined. Again,
both cyclic non-rigid deformation and drift are not detected and compensated.

A real-time tracking method that observes the target on a 2D image plane combined
with a perpendicularly acquired pencil beam navigator, finally obtaining 3D informa-
tion of the targets trajectories, was proposed in [12]. Since no 3D ground truth data was
available, the performance of the method was evaluated by comparing the temperature
distributions obtained after 60s of HIFU application with and without motion com-
pensation, resulting in higher final temperatures in the target area with enabled motion
compensation. This method was tested in vivo with kidneys of ventilated pigs, both fol-
lowing a regular and stable breathing pattern. A review of recent technological advances
in MR-temperature mapping of moving organs, in motion compensation of the HIFU
beam, and in volumetric ablation and feedback control strategies, is given by [4]. It is
noteworthy that none of the state-of-the-art approaches have the capabilities to examine
their proposed approach on real 4D data acquired over long time-scales.

1.2 Problem Statement

Non-MR-based external surrogate markers (e.g. optical tracker, breathing belt) or fast
MR-based 1D navigator pencil beams [12, 13] would be ideal for real-time tracking
of the respiratory-induced organ motion, demanding for none or only a marginal MR
scan-time. In addition, tracking surrogate markers provides low-lag breathing signals
to predict the actual position of the tumour. Since the motion of the target occurs in
3D space, a one-dimensional tracked signal might not be sufficient for the accurate pre-
diction of the target location. Due to the limited possibilities of target tracking caused
by the restricted MR imaging time, the prediction of 3D organ motion has to be based
on the measurement of a 1D signal. The connection between the 1D signal and the 3D
motion of the organ must be given by underlying models. Since there’s no scan time
available during sonication, the model must be acquired prior to the actual treatment.
Such a model can also be based on population statistics, where no subject-specific mo-
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tion data is required. The creation of various models is the specific aim of this thesis.
From the problem statement above, we can derive a general research question:

Research question 1: How accurate can the 3D position of a target be
predicted, given that the respiratory state of the liver can be tracked in
I1D?

The objective to solve is twofold: First, in order to compensate for the system lag, that
i1s composed of the time needed to track the position of the surrogate and for data pro-
cessing to estimate the new target position, one has to estimate the future coarse of the
measured signal. In our application, the 1D signal describes the respiratory state of the
liver that is measured by tracking the height of the diaphragm. Note, that this 1D signal
is only describing the motion of one tracked point located at the diaphragm. Therefore,
having an estimate of the future respiratory state, the second task is then to associate the
motion of the tracked point with the motion of the entire liver. All the motion modelling
approaches described in this thesis builds on the work of Martin v. Siebenthal [14],
who developed the 4DMRI method in the scope of his dissertation. 4DMRI was espe-
cially designed to acquire 4D data over tens of minutes, with the specific aim to study
the long-term intra-subject variability of organ motion of free breathing awake patients,
which is still poorly understood. As the 4DMRI method was developed for long-term
studies, it is not designed for a clinical environment, where short acquisition times and
fast data processing are crucial. This brings us to a second important question:

Research question 2: How much pre-operative data is required to con-
struct models suitable for motion prediction?

To answer these two question, we followed the research methodology presented in the
next section.

1.3 Research Methodology

The research methodology followed in this thesis consists of imaging and observing
the organ motion in an initial learning phase, constructing motion models, employing
the models for prediction and finally, evaluating the prediction based on the available
ground truth motion. An overview is outlined in Figure 1.3. It consists of six major
parts, highlighted by the boxes. The respiratory-induced organ motion is first imaged
by the 4DMRI acquisition sequence similar to the one proposed in [8]. The acquired 2D
slices are then retrospectively reconstructed or stacked to 3D volumes with both a high
temporal and spatial resolution. The obtained stacks contain a variety of respiratory
states, observed during the 4DMRI acquisition. By means of 3D non-rigid registration
[15], vector fields, describing the organ motion from time step to time step are extracted.
These vector fields serve as the basic data to construct the motion models as well as the
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(— GROUND TRUTH l
4DMRI J—> STACKING J—b REGISTR. J—> MODEL J—> RECONSTR.J—> VALIDATIONJ

1D PREDICTOR

Figure 1.3: Schematic flowchart of the overall motion prediction procedure. Based on
4DMRI data, volumes are retrospectively reconstructed, registered, used to construct
motion models and finally, evaluated on ground truth data. The breathing signal is
extracted from the 4DMRI sequence and used for the motion reconstruction.

ground truth to evaluate the prediction performance of the models. The breathing signal
is extracted from the 4DMRI data as well and used for the temporal prediction.

This work suggests possible ways to manage the variability of respiratory-induced
organ motion aiming at a safe and efficient treatment in MRgHIFU. The approaches
proposed in this thesis were developed more and more towards the direction of clinically
applicable treatment techniques.

1.4 Structure of the Thesis

The remainder of the thesis consists of two main parts. The first part introduces the
research area and delivers the required background information for a clear understand-
ing of the following chapters. The second part consists of the conducted studies inte-
grated as separate chapters, comprising the elaborated publications. Below, the contents
of each chapter is briefly discussed. This chapter presented the motivation, problem
statement, research question, research methodology and the structure of the thesis. In
Chapter 2, background information of the employed methods is delivered. Chapters 3,
4, 5 attempt to answer the research questions. The prediction performance of subject-
specific motion models in combination with population-based drift models (in Chapter
3) and pure population-based motion models (in Chapter 4) is investigated. In Chapter
5, our focus shifts towards fast acquisition of pure subject-specific motion models with
the specific aim of being applicable in a clinical environment. Chapter 6 concludes the
thesis and provides directions for future research.
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Background

This chapter provides background information about the preparatory work,
the applied techniques and the database used for the experiments. It should
help the reader to understand the remainder of the thesis.

4DMRI was developed for the long-term study of respiratory-induced or-
gan motion and is therefore well suited to investigate research question 1
as stated in Chapter 2. The fusion of 4DMRI with MRgHIFU to allow
for a clinical applicable treatment demands for shorter 4DMRI acquisi-
tion times and fewer manual user-inputs as compared to the state-of-the-art
4DMRI [8]. In general, the clinical applicability is the central theme of this
thesis. From the initial question of how accurate the liver’s motion can be
predicted, the focus of the study moves towards the question of how much
data is actually needed for accurate prediction.

Sections 2.1 and 2.2 introduce 4DMRI and its limitations for the clinical
use. Section 2.3 presents alternative approaches to retrospectively recon-
struct 3D volumes based on 4DMRI data and Section 2.5 introduces the
applied registration algorithm used to extract the deformation fields. Sec-
tion 2.6 describes the extraction of the breathing signal from the 4DMRI
sequence. The obtained deformation fields provide the basis for both the
motion modelling, as is described in Section 2.7, and the evaluation of the
experiments. Finally, Section 2.8 presents the database used for the exper-
iments and Section 2.9 presents a prototype of an MRgHIFU system.
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2.1 Imaging Respiratory-Induced Organ Motion

Although MR techniques are constantly evolving, it is not possible to capture large
3D volumes of high resolution image data in real-time without suffering from a poor
signal-to-noise ratio (SNR). To obtain 3D volumes of, for example, a stationary organ,
2D slices are acquired consecutively at different slice positions covering the volume
of interest (1 pass = 1dynamic) and are stacked to a smooth 3D volume. But when
imaging moving abdominal organs such as the liver, non-smooth reconstructions would
be obtained by applying simple slice stacking. Due to the respiratory-induced volume
changes of the lung, the abdominal organs and the lung vary in shape and position.
These changes have to be compensated for in order to obtain proper volumes. One
reliable possibility to obtain smooth 3D volume reconstructions over time, thus 4D,
is to retrospectively sort images captured during multiple dynamics applying internal
gating [16]. This method called 4DMRI allows to capture and observe the motion of
moving abdominal organs during free breathing for hours. Hereby, a fast interleaved
imaging sequence consisting of data slices and navigator slices is used (see Chapter
5, Figure 2(a), 2(b)). While the data slices are acquired at different slice positions to
cover the volume of interest, the navigator slices are acquired at a fixed position. Each
data slice is thus embraced by two navigator slices which allows to robustly identify the
respiratory state of the embraced data slice. Based on a similarity measure between the
embracing navigator slices, complete 3D volumes are retrospectively reconstructed. For
more detailed information regarding 4DMRI imaging, we refer the reader to the work
of von Siebenthal et al. [8, 14]. Although the method does not capture the full organ
at once, accurate 3D volumes under free breathing, comparable to breath-hold images,
are achieved. For the first time, insight into the variability of respiratory-induced organ
motion of the liver could be provided. The possibility to observe 3D organ motion over
long time scales opened up the field for a wide range of studies and applications such as
those proposed by [8, 14, 17-20].

Since the goal of this dissertation is to compensate for the liver motion of free-breathing
patients, we first take a look at the variability of the respiratory-induced organ motion
and at the characteristics of the underlying breathing pattern. Depending on the patient,
e.g. his health situation and anatomy, the respiratory pattern and corresponding organ
motion, respectively, can vary drastically in amplitude, cycle duration and regularity.
Figure 2.1(a) shows an example of a regular breathing pattern with a stable amplitude
of about 14 mm and a cycle duration of about 5s. In contrast, Figure 2.1(b) shows an
irregular breathing pattern with changes in amplitude, cycle duration and exhalation po-
sition, ranging from 4-9 mm, 3-5s and 3 mm, respectively. Fitful breathing not only
complicates the prediction of the motion, but also the quality of the reconstructed vol-
umes. 4DMRI follows a retrospective slice stacking approach, which implicates that
every slice position has to be captured at every respiratory state in order to reconstruct
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Figure 2.1: Variability of superior-inferior diaphragm motion of two subjects showing
large differences in the breathing pattern. (a) Regular breathing pattern with an ampli-
tude of approximately 14 mm and breathing period of about 5 s. (b) Irregular breathing
pattern with an amplitude of up to 9 mm, a breathing period of about 3 s and, in addition,
a varying exhalation position.

a complete volume at the respective breathing depth. Let us take, for example, the case
where a volume consisting of 25 slices in the mid-inhalation phase should be imaged.
This implies that in the best case, at least 25 respiratory cycles have to be acquired
in order to reconstruct one complete stack at the respective breathing state. The more
irregular a breathing pattern is, the more unlikely it is that complete volumes for all
occurring breathing depths can be reconstructed. In any case, a certain amount of data
or 4DMRI acquisition time is required to ensure suitable volume reconstructions.

2.2 4DMRI in Clinical Applications

To achieve high quality stacks, such as presented by [8], an immense amount of data
has to be acquired. In a 35 minute scan, the volume of interest is imaged around 200-
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Figure 2.2: Respiratory breathing signal of Subject 1 extracted from 35 minutes of
4DMRI acquisition under free breathing. The breathing pattern shows a stable exha-
lation position with a small upwards drift and a varying inhalation position.

300 times (dynamics), whereby the navigator slice is acquired up to 6000 times. This
procedure might be acceptable for studies of healthy volunteers to investigate the long-
term behaviour of a moving organ, but not for the application in a clinical environment,
treating patients with advanced stage cancer. For the clinical applicability of 4DMRI,
shorter acquisition times of no longer than 10 minutes should be considered. With de-
creasing acquisition time, certain limitations of the 4DMRI approach become notice-
able. Due to the irregularity of breathing, not the entire range of respiratory breathing
depths are equivalently sampled by the 4DMRI scan. The frame rate of data slices is
around 350 ms, while the duration of a respiratory cycle takes around 4 seconds, which
corresponds to a sampling rate of approximately 11 images per respiratory cycle. Fig-
ure 2.2 shows a breathing pattern, extracted by template matching (see Section 2.6),
from a 35 minute 4DMRI acquisition. While the exhalation baseline is typically very
stable, the full inhalation depth is strongly varying. For deep inhalation states, occur-
ring at the beginning of the example sequence, at around 15 minutes and 35 minutes,
it is not possible to reconstruct a complete stack. This issue is best illustrated with an
example. Figure 2.3(a) and Figure 2.3(b) show very typical distributions of the navi-
gator slices and of the corresponding data slices. The figures reveal the counts per bin
for the navigator slices and the bin occupancy for a given slice position and breathing
state, respectively. The white fields indicate unoccupied bins. The distribution typically
shows a global maximum at the exhalation state and a local maximum at the inhalation
state positions. The distribution of the data slices in Figure 2.3(b) and Figure 2.3(d)
shows that not all bins are occupied. Rare and very deep breathing cycles can therefore
not be properly reconstructed. In such a case, the best matching slice which, for deep
inhalation states, means data slices from a shallower breathing state, is taken for the
reconstruction and are, hence, not representative for the deepest breathing state. As a
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Figure 2.3: (a) Distribution of the navigator slices given the inhalation depth and (b) cor-
responding bin occupancy of data slices for given slice positions and inhalation depths
after 35 minutes of 4DMRI acquisition of Subject 1. (c) Percentage of complete stacks
shown for Subjects 1 given the respective acquisition times. (d) Bin occupancy after
7 minutes of 4DMRI data acquisition given for Subject 1.

first rule, one can observe that more data is available in the exhalation state than in the
inhalation state (see Figure 2.3(a)), which results in a better stacking quality for exha-
lation stacks. To illustrate the effect of short acquisition times, Figure 2.3(d) shows the
bin occupancy after a 7 minutes 4DMRI acquisition, where only a few respiratory states
are completely filled. In such cases, the best matching data slices are taken from adja-
cent bins for the reconstruction, leading to less accurate reconstructions. Figure 2.3(c)
shows the bin occupancy for different acquisition lengths calculated for Subject 1. It can
be clearly seen that on average, after 10 minutes acquisition time, around 80 % of the
observed breathing depths are fully captured. The occupancy is not further increasing
with increasing acquisition time. This behaviour can be traced back to both the facts
that new respiratory bins arise while the liver is drifting over time [8] as well as to the
rare occurrence of very deep breathing cycles. As a second rule, one can state, that the
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Figure 2.4: The correspondence of two data slices D acquired at different slice locations
p, q and time points 7, 7 is determined by comparing the embracing navigator slices.
The example navigator slice shows four regions that were considered for image sorting
( Courtesy of Martin von Siebenthal [8]).

longer the acquisition time, the higher the probability that all the observed breathing
depths can be fully reconstructed. In general, one has to take into account that rarely
occurring breathing depths are not reliably captured and reconstructed, even during long
acquisition sessions.

2.3 3D Volume Reconstruction

The key idea of 4DMRI is the interleaved acquisition of data slices and navigator slices,
whereof the navigator slices are dedicated to identify the respiratory state. Data slices
of the same respiratory state are stacked together, resulting in one reconstructed volume
per pair of navigator slices. Figure 2.4 illustrates the slice stacking approach proposed
by [8]. Considering the data slice D, ; at position p and time point ¢, we want to find a
data slice D, ; at an other sagittal position ¢ and time point j, but at the same respiratory
state. Therefore, we compare the embracing navigator slices N;_, and N;;; of D, ; to
all navigator slices N;_, and N, of all possible candidate slices D, ;. The comparison
is based on a frame similarity measure of the embracing navigator slices. The frame
similarity is determined by the cost function C/(¢, j), which is small if the data slices
D, ; and D, ; show the same respiratory state. Given a data slice D, ;, the best matching
data slice D, ;- is thus found by

j =argminC(i,j). (2.1)
j

We will shortly introduce the slice matching criteria and the resulting cost functions that
we used for retrospective slice stacking.
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2.3.1 Stacking based on Template Matching

Figure 2.4 illustrates a similarity measure based on template matching of four manually
selected regions of interest, indicated by four white frames. Although template matching
describes a rigid transformation, it is possible to detect the non-rigid motion among the
templates. Due to the distribution of the templates (see Figure 2.4), organ deformation
occurring during the respiratory cycle and drift occurring over longer time scales are
well detected. As proposed by [8], we assume coordinate axes in anterior-posterior and
inferior-superior direction. The coordinates x¥ and y¥ describe the centre of template &
at time 7, where K is the number of tracked regions. The cost function for the template
matching approach is thus given by

K ok k 2k
Z ( i1 21)_’_( Ao ZH)H ZHAXk +AX
-1 ] Yi—1 j
(2.2)

Yj+1 — yz+1

The K displacements of the preceding X* , and of the subsequent X fl navigator frames
are summed up by vector addition. Vector addition was chosen to enable the detection
of data slices that are actually identical but were acquired during organ movements with
different speeds. The drawback of vector addition is, though, that data slices acquired at
a different breathing phase, i.e. ex- or inhalation, but with similar speed of movements
are matched together. This can happen especially in the case, where only one region is
tracked and used for comparison. While the method is easy to implement, a drawback
is the required manual user input. In particular, it can be difficult to select templates
showing vessels with high contrast that are visible during the entire respiratory cycle.
Moreover, due to out of plane drifts, it can happen that vessels change in shape and size
or even disappear during long acquisition sessions. To ensure a reliable selection of
templates, the template tracking results have to be reviewed and the template selection
has to be repeated in case of problems.

2.3.2 Stacking based on PCA

To avoid manual user input, Principle Component Analysis (PCA) can be applied to the
navigator slices as is described in Chapter 5. After projecting all navigator slices into
the PCA-space, every navigator slice can be described by its PCA coefficient vector c.
The cost function for PCA-stacking is, therefore, defined by the distance between the
respective pairs of navigator slices:

C(i,7) = [l(ci-1 — ¢j-1) + (ciy1 — cj1)|| = [[Ac1 + Acy|] - (2.3)

The coefficient vectors ¢;_; and c¢;; describe the respective navigator slices N;_, and
N1 of data slice D; in the navigator space.
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2.4 Navigator-less 3D Volume Reconstruction

The current state-of-the-art 4DMRI method as described above, is based on the inter-
leaved acquisition of data slices and corresponding navigator slices, which are needed
to identify the respiratory state of the organ for the 3D reconstructions. This approach is
very well suited for the detailed study of long-term organ deformations or drifts. When
short acquisition times are desirable, as is for example the case in clinical applications,
the present 4DMRI sequence can result in an undersampling of data slices as discussed
in Section 2.2. One possibility to improve the present sequence is to avoid the acqui-
sition of the navigator slices. Currently, 50% of all acquired images are only used for
volume stacking, but are of no further interest. The possibility of retrospectively recon-
structing volumes without the need of interleaved navigator slices does not only allow
to half the acquisition time, but also double the amount of acquired data within a given
time period and, hence, double the acquisition speed and frame rate. Navigator-less
stacking is described and evaluated in detail in Chapter 5.

2.5 Volume Registration

After the reconstruction of the stacks, we extract the deformation fields that describe
the motion from one stack to the subsequent stack. This is done by the B-spline based
non-rigid registration algorithm proposed by [15]. The current implementation of the
applied registration algorithm is, however, not able to handle discontinuous motion. As
it occurs at the organ boundaries, where for example the liver slides along the chest
wall. Since we are only interested in the motion inside the liver, a template liver was
manually segmented and registered upon all other volume reconstructions. During reg-
istration, the masked voxels outside the liver were ignored by the algorithm. This results
in deformation fields which are only valid within the liver. Figure 2.5 shows the result of
registering the manually segmented liver template to a complete respiratory cycle. The
resulting deformation fields (white) are overlaid with the reconstructed volume, showing
the liver’s motion in all three spatial directions. The regions covered with deformation
fields indicate the outline of the manually segmented template liver. The deformation
fields are either extracted at an isotropic grid with 15 mm resolution ( Chapter 3 and
Chapter 5) or at an inter-subject corresponding grid (Chapter 4). After the extraction
of the deformation fields, the motion of the organ is described by deformations applied
to the grid points. As discontinuous displacement fields are quite common in the med-
ical field, discontinuity-preserving registration is an important research topic. Novel
methods, such as [21], integrate registration and motion segmentation in a variational
framework to handle discontinuous motion fields.
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Figure 2.5: Exemplary deformation fields extracted using B-spline based non-rigid reg-
istration, representing the liver’s motion during one respiratory cycle.

2.6 Extraction of the Breathing Signal

In order to compensate respiratory-induced organ motion, either the current target po-
sition or surrogate markers resolving the target position have to be tracked. Based on
these measurements, an estimate of the future position has to be formed and the treat-
ment focus adapted to the newly calculated target position. The time lag between target
tracking and repositioning of the treatment focus has to be bridged by a signal prediction
algorithm. Taking a step back and having a look at the flowchart (Figure 1.3) presented
at the beginning in Section 1.3, we see an arrow labelled as “1D PREDICTOR”. This
arrow indicates that the 1D signal prediction is based on information gathered from the
4DMRI sequence, processed and later used for the evaluation of the motion reconstruc-
tion process. As no surrogate marker was deployed and, therefore, no breathing signal
was acquired simultaneously during the acquisition sessions, the breathing signal is ex-
tracted from the 4DMRI sequence. This is done by tracking a manually selected region
placed at the diaphragm of a navigator slice throughout all subsequent navigator slices,
as shown in Figure 2.6(a). We used template matching with cross-correlation as the
similarity criterion for tracking. As the volumes are reconstructed at the time points
between the navigator slices, the extracted breathing signal is linearly interpolated to
obtain the respective respiratory state at the time points of the reconstructions. In all
of the performed experiments, predictions are based on this breathing signal. The re-
spective breath prediction techniques are described in detail in the Chapters 3, 4 and
5. Having an estimate of the future position of the template, the template centre (+) is
assigned to the closest point (e) of the point grid (o), which is used for the registration,
as depicted in Figure 2.6(b). The closest grid point is found by measuring the Euclidean
distance.

So far, an estimate of the future displacement of the tracked template and, therefore,
of the adopted grid point (e) is known. To predict the motion of the entire liver, the rigid
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Figure 2.6: (a) Extraction of the breathing signal from navigator slices with a manually
selected region at the diaphragm used for template matching. (b) Selection of closest
model grid point () with respect to the centre of the selected template (+). (c) Motion
of tracked grid point (white arrow), corresponding rigid correction (]) and non-rigid
motion correction provided by the motion model ().

shift (/) could be assigned to all other grid points. This results in the simple case of the
rigid correction ({) visualised in Figure 2.6(c). Applying the motion models presented
in Chapter 4 and Chapter 5, more exact motion prediction can be achieved. Given the
rigid shift of the tracked template, a non-rigid motion field (| ) is reconstructed and used
for the prediction.

2.7 Motion Models

Different types of motion models are investigated and presented in the Chapters 3, 4
and 5. In particular, three types of motion models are further investigated. In Chapter
3, a patient-specific motion model combined with a population-based statistical drift
model based on PCA is presented. The results of this method are very convincing.
Especially the combination of patient-specific breathing motion data with population-
based drift data makes the method suitable for long-term predictions, as organ drifts
are incorporated. This method, however, involves long acquisition- and data processing
times to create the motion model, which renders the method unsuitable for clinical use.

To overcome this issue, a motion compensation approach based on population statis-
tics is proposed in Chapter 4. Using a population-based statistical model has the advan-
tage that only little patient-specific data, namely a breath-hold scan, has to be acquired.
Aligning the new patient liver and the population-based statistical model is the major
difficulty of the method, though. An alignment is only possible if the treatment of the
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patient occurs in the same pose as for which the model was constructed. This brings
along that even an additional device, such as an ultrasound probe that is pressed into
the abdomen to track the breathing state, can invalidate the model. Such a model is
acquired for a specific organ and is therefore not applicable to other organs. Even if a
motion model for each individual type of organ, such as the lung, kidney and liver, is
available, the question, whether the models cover the motion of the entire population,
remains open. Nevertheless, it is an elegant way to handle respiratory-induced organ
motion.

Based on the issues raised above, a fast and general applicable model to manage
respiratory-induced organ motion would thus be ideal for clinical use. A subject-specific
modelling approach is the only way to consider all the possible treatment scenarios
and individual characteristics of each patient. Therefore, the key is to optimise the
subject-specific approach in terms of speed without sacrificing precision. Chapter 5
proposes such fast acquisition methods and modelling approaches. The chapters follow
the chronological order of publications.

2.8 Database

Figure 2.7 shows the exhalation surfaces of 20 healthy subjects. 4DMRI sequences of
these 20 subjects form the basis of all experiments performed in this thesis. These se-
quences were acquired on a 1.5 T Philips Achieva whole body MR system in the scope
of the dissertation of Martin von Siebenthal. We refer the reader to the respective the-
sis [ 14] for detailed information of the acquisition sequence. For each of the 20 subjects,
the liver was manually segmented. The livers are numbered from 1 to 20, whereby the
datasets of Subjects 1, 2, 3, 4,5, 6,7, 8, 11, 12, 13 and 14 are used in Chapter 3. In
Chapters 4 and 5, the database was extended to all 20 subjects. Figure 2.8 gives an
overview of the average motion we have to deal with within this thesis. The greyscale
values of the liver surface indicate the mean motion shown for each spatial direction.
In the datasets, we observe mean motion of 1.4 mm in A-P direction, 11.7 mm in I-S
direction and 0.3 mm in L-R direction. The mean motion was obtained by averaging
the respective motion components over all available time steps for the given grid points.
The shape of the liver in Figure 2.8 is the average shape of the 20 liver shapes shown
in Figure 2.7. The overall motion is composed of respiratory-induced motion and addi-
tional drifts. Figure 2.9 shows the average motion of the exhalation position, thus the
drift, and helps to understand which kind of motion contributes to the overall motion.
Comparing Figure 2.8(b) and Figure 2.9(b), it is clearly visible that the large motion at
the tip of the liver is caused by the drift.
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Figure 2.7: Surfaces of all 20 liver subjects after manual segmentation. The datasets of
Subjects 1,2, 3,4,5,6,7,8,11, 12, 13 and 14 are used in Chapter 3.
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Figure 2.8: Liver surfaces showing the mean motion for (a) A-P, (b) I-S and (c) L-R
direction with an average motion amplitude of 1.4 mm, 3.9 mm and 1 mm, respectively.
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Figure 2.9: Liver surfaces showing the mean drift shown for (a) A-P, (b) I-S and (c)
L - R direction with an average drift amplitude of 1.4 mm, 2.6 mm and 0.8 mm, respec-
tively.
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2.9 MRgHIFU Setup

(b)

Figure 2.10: (a) Experimental setup: MR scanning system and MR-compatible HIFU
prototype at the University Hospital Geneva (HUG). (b) Example of fast HIFU ablation
(5 ¢cm?/min) of 120 seconds duration in a non-moving target. The image shows a slice
through the sonicated volume of size 2cm x 2.5cm x 2cm ~ 10 cm?.

In the following three chapters, motion compensation techniques to manage respiratory-
induced organ motion are proposed. To outline how the proposed methods could be ap-
plied for motion compensation, a feasible treatment scenario is described in this section.

The patient is first placed into an MR-scanner. Depending on the treatment ap-
proach, a breath-hold volume or 4DMRI data is gathered in an initial step. Based on
this data, the population-based model is adapted to the patient’s liver or a patient-specific
motion model is created. In addition, the pathological tissue is marked as target and re-
lated to the motion model grid points. During sonication, the respiratory state is tracked
by the MR-based 1D pencil beam. Based on these measurements, the future respira-
tory state of the liver is predicted and the position of the target is estimated by means
of the motion model. This results in an interleaved acquisition of 1D pencil beams for
tracking and MR-temperature maps to provide thermal dose feedback. The procedure is
repeated until complete coagulation is guaranteed. Figure 2.10(a) shows the prototype
of a MRgHIFU setup located at the University Hospital Geneva (HUG). The system is
still under development. Figure 2.10(b) shows an example of a fast HIFU ablation of
120 seconds duration in a non-moving target. The white bars on the left and top corre-
spond to 2 cm (1 cm/tick). The image shows a slice through the sonicated volume of size
2cm x 2.5c¢m X 2 cm & 10 cm?®, which corresponds to a ablation rate of ~ 5 cm?®/min.
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3D Organ Motion Prediction for
MRgHIFU

The paper presented in this chapter describes a two-step prediction method
dedicated to motion-compensated MRgHIFU treatments. The proposed
method is a combination of a pattern matching approach using a subject-
specific static motion atlas and a population-based statistical drift model.
In a first step, the subject-specific 3D motion is acquired, processed and
stored in an atlas. Local region tracking on the diaphragm is used to pro-
vide the respiratory signal which is used to index the atlas and to generate
the predicted motion. In a second step, a population-based statistical drift
model is used to compensate for organ deformation occurring over longer
time-scales that have not been captured by the initially acquired atlas. Af-
ter an atlas creation time of around 7-13 minutes, motion prediction exper-
iments were evaluated for the subsequent 7-13 minutes. The application
of the motion atlas alone results in a mean error of 1.6 mm. Combined
with the statistical drift model, the error is reduced by an additional 30 %
to 1.1 mm.

The research problem is introduced and motivated in Section 1. Section
2 presents the database, the creation of the static atlas and the prediction
scheme based on this atlas. Furthermore, the population-based statistical
drift model and its application are described. Section 3 presents the results
of the experiments without and with drift compensation, before the paper
concludes with a discussion and outlook in Section 4.
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Abstract. MR-guided High Intensity Focused Ultrasound is an emerg-
ing non-invasive technique capable of depositing sharply localised en-
ergy deep within the body, without affecting the surrounding tissues.
This, however, implies exact knowledge of the target’s position when
treating mobile organs. In this paper we present an atlas-based predic-
tion technique that trains an atlas from time-resolved 3D volumes using
4DMRI, capturing the full patient specific motion of the organ. Based
on a breathing signal, the respiratory state of the organ is then tracked
and used to predict the target’s future position. To additionally com-
pensate for the non-periodic slower organ drifts, the static motion atlas
is combined with a population-based statistical exhalation drift model.
The proposed method is validated on organ motion data of 12 healthy
volunteers. Experiments estimating the future position of the entire liver
result in an average prediction error of 1.1 mm over time intervals of up
to 13 minutes.

1 Introduction

Respiratory organ motion is a complicating factor in the treatment of patho-
logical tissue with MR~guided High Intensity Focused Ultrasound (MRgHIFU).
Focused ultrasound has the unique capability to deposit sharply localised energy
deep into the tissues, producing thermal ablation. Accurate spatial and rapid
temporal beam spot focusing in the range of millimetres and within millisec-
onds, respectively, is reachable and hence increasing the demand of more exact
knowledge about the organ’s position. Accurate tracking of pathological tissue in
mobile organs would not only increase patient safety, but also reduce the treat-
ment time, as the gating window can be increased without sacrificing precision.
Although the patient is located within the MR system during sonication, the
scan-time is mainly required for the temperature feedback control of the HIFU
system to determine the thermal dose given to a tumour. Non MR-based exter-
nal surrogate markers would thus be ideal for the prediction of the respiratory-
induced organ motion. Several techniques have been proposed in the literature
to handle respiratory organ motion. Existing approaches that ensure compre-
hensive target coverage with minimal damage to the surrounding tissue include
the optimisation of safety margins, voluntary or forced breath-hold, respiratory

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part IT, LNCS 6892, pp. 623-630, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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gating or full tracking of the target. These methods were discussed in depth and
compared in recent publications [1,2]. The holy grail of three-dimensional mo-
tion compensation in free-breathing awake patients is still out-of-reach, though.
On the one hand, this goal could be reached by using ultrasound for real-time
tracking [3]. On the other hand, Ries et al. [4] proposed only recently a real-time
tracking method that observes the target on a 2D image plane combined with a
perpendicular acquired pencil beam navigator, finally obtaining 3D information
of the targets trajectories. The future target position is then estimated by a
3D Kalman filter. The method was tested in phantom experiments on human
kidneys and in vivo with kidneys of ventilated pigs, both following a regular and
stable breathing pattern. The tracking quality is evaluated by comparing tem-
perature distribution obtained after 60s of HIFU application with and without
motion compensation, resulting in higher final temperatures in the target area
with enabled motion compensation.

In this paper, we present a novel atlas-based respiratory motion prediction
method for free breathing patients. In contrast to the state-of-the-art, the slower
modes of non-periodic organ deformation, that occur in addition to the fitful res-
piratory motion and that are not detectable by external sensors, are compensated
by means of a population-based statistical drift model. Although the proposed
generic framework is applicable to any abdominal organ, e.g. the kidney, the
prediction technique is evaluated on real 4DMRI motion data of the liver.

2 Materials and Methods

2.1 Data Acquisition

To learn the patient setup specific breathing characteristics and organ motion,
4DMRI [5] sequences of 12 healthy volunteers (6 female, 6 male, average age 31,
range 17-75) were acquired. During roughly one hour acquisition sessions, 14-
26 minutes of time-resolved motion data was captured. MR volumes consisting
of 25-30 slices covering the right liver lobe with a voxel size of 1.4 x 1.4 x 4 mm?
and with a temporal resolution of 300-400 ms were obtained. The retrospectively
reconstructed stacks cover the entire range of observed breathing depths. The
vector fields describing the motion between the different respiratory states of
the liver were estimated by means of 3D non-rigid registration [5,6] between the
reconstructed volumes. In order to estimate the liver’s future position we need
to keep track of the current respiratory state on the basis of a breathing signal
(surrogate marker). Regardless whether we measure the breathing signal by a
breathing belt, by an optical chest wall tracker or by a pencil beam navigator
placed on the diaphragm, the different respiratory states of the liver can reliable
be tracked over a short period of time, as has been shown in [7]. In this work,
we extracted a pencil beam navigator by tracking a manually defined region
(Fig. 1(a)) on the navigator slice. The inferior-superior motion of the diaphragm
was persistently tracked by template matching the dedicated region with all
subsequent navigator frames throughout the acquisition sequence, providing one
respiratory position per reconstructed volume (Fig. 1(b)).
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Fig.1. (a) Sagittal view of a navigator slice with 4 marked regions used for slice
stacking and drift compensation. The region indicated by the thicker frame is dedicated
to track the diaphragm’s position, providing the respiratory signal (b).

2.2 Atlas Creation

Using the 4D organ motion data of all 12 volunteers, we simulated a realistic
MRgHIFU scenario. In particular, the first 7-13 minutes of 4DMRI scan time
were used to build the motion atlas. This initial training time was long enough
to cover all typical respiratory cycles. The remaining 4D motion data was used as
ground truth to validate our prediction scheme. In order to keep correspondence
between the acquisition of the atlas and the final treatment, the volunteers were
asked not to move over the course of the entire sessions.

For each patient, a specific atlas and ground truth dataset is created, wherein
both the breathing signal and corresponding 3D vector fields are stored pair-wise
for each time step. An example of such an atlas is illustrated on the left side
of Fig. 2 as well as the ground truth data for the validation on the right, both
containing the respiratory signal and the associated organ displacement depicted
by the black arrows between the reconstructed volumes. The breathing signal
and the 3D vector fields describing the motion covering 150-400 breathing cycles
or 1200-2000 time steps, respectively, serve as the atlas’ database.

2.3 Motion Prediction

To readjust the treatment focus, any breathing-controlled tracking method must
be able to estimate the target’s position at some future time. This estimation
must be based on measurements of the past breathing signal. Since our approach
deals with a rather low sample rate, we use the atlas as combined breath and
3D motion look-up-table instead of an on-line learning based algorithm. How-
ever, only realistic, already seen motion patterns are being generated. Let S be
the respiratory signal given as the sequence S = s;|;=1, . m, with the indices
denoting the running time steps t. At a given point in time j, the prediction
provides an estimate s, = s; +a of S and of the corresponding 3D motion vector
field u, = u; 4, describing the future displacement of the organ for a later
time point (Fig. 2). In the following experiments, we predicted A = 1 time
step into the future. One time step corresponds to roughly 300 ms, given by the
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Fig. 2. Schematic illustration of the combined breath and motion atlas. Based on
the signals history length h, the prediction yields the 3D displacement field u, that
estimates the organ’s future position, A time steps ahead.

4DMRI sequence. Note, that although the experiments are performed and vali-
dated on the temporal resolution of 3-4Hz, A can be chosen arbitrary. In that
case, the breathing signals and the vector fields are interpolated, allowing any
predictive time gap and smooth beam re-focusing. For the prediction, we propose
using the last h values of the breathing signals history denoted by the vector
a; = (Sj_p,...,8;). The reference signal S,y basically serving as the atlas is
represented by similar vectors a; for prior time points a; = (s;—p,..., ;). The
prediction of S at the time point j is chosen by finding the best match of the
current breathing signal vector a; within the reference signals from the atlas:

lmin = arg miin|ai —ajl. (1)

The future run of a;,,,, with minimum aberration from the history a; is chosen
to estimate the organ’s prospective respiratory state and corresponding displace-
ment field, A time steps ahead:

Sp = Simin+A and Up = Wi +A - (2)

Finally, the task of predicting the organ’s motion is handled by estimating the
breathing signal’s future evolution, yielding the well adapted displacement fields
for the prediction. Since the algorithm is continuously adjusting to new input
data, it can quickly adapt to the irregularity of the periods and amplitudes of
the respiratory signal of a free breathing person.
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2.4 Drift Compensation

Besides the displacements of the liver caused by respiratory motion, additional
deformation independent of the fitful breathing motion can occur within a few
minutes. Since the proposed prediction method base on collecting the patient-
specific liver motion during the initial training phase of a couple of minutes, these
organ drifts can not be captured during the short acquisition of the atlas. These
drifts can quickly invalidate the applicability of the static atlas with the con-
sequence of increasing systematic prediction errors. However, during sonication
within the MR system, the functionality of the scanner is used for temperature
feedback of the HIFU device and therefore, a scan time intensive 3D drift track-
ing is hard to achieve. On the other side, measuring a one dimensional breathing
signal only, tracking the inferior-superior motion of the diaphragm respectively,
is not sensitive to drifts in the inferior part of the liver (Fig. 3(a)). We propose
to acquire one update-navigator slice after every 60s to capture the exhalation
position of the liver based on the breathing signal. Comparing the displacements
of the tracked regions with the regions on the actually acquired slice provides the
needed information used for the correction of the previously acquired static atlas.
In order to compensate these drifts, we introduce a population-based statisti-
cal drift model describing the inter-subject variations of exhalation positions
in a shared shape-free coordinate system [8]. Shape-free means, that only the
relative differences to the first exhalation position of each subject, the drifts,
respectively, are used for modelling. Thereby, we assume that the drift is in-
dependent of the respiratory motion and is similar for all subjects. From each
subject, 200 exhalation positions (m = 11 x 200) with N = 290 corresponding
points per liver (n = 3N), placed on a 3D regular grid with a 15 mm reso-
lution, are mean-free concatenated in a data matrix X = (x1,X2,...,Xm) €
R™ ™ with x; = vy — Vv and sample mean v = % >, vi. Applying Principal
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Fig. 3. (a)View of a sagittal placed navigator slice before (edges) and 20 minutes later
after an exemplary drift displacement. The position of the diaphragm remains almost
constant while the inferior part of the liver is drifting. (b) Ground truth motion field
(black), prediction with static atlas (light grey) and with updated atlas (dark grey).
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Component Analysis on the data, the vectors x are defined by the coefficients ¢y,
and the eigenvectors s of S = (s1, 82, ...) of the covariance matrix of the data:

X = Z crogsky = S - diag(oy) c. (3)

Hereby, o, are the standard deviations within the data along each eigenvector sy.
As elaborated in [9], the full vector x can be found by an incomplete measurement
r € R!, [ < n that minimises

B(x) =| Lx —r [, (4)

where L represents a subspace mapping L : R” — R such that r = Lx. The
reduced version of S can be written as Q = LS - diag(ox) € R~ yielding
eigenvectors of the form q; = oy Lsy € R'. The most probable organ deformation
v given the incomplete measurements r is then

v =S - diag(ox) c + v, where c = Q™r. (5)

Hereby Q1 is the pseudoinverse of Q. The vector r describes the relative dif-
ferences from a few grid points at the beginning of the data acquisition to the
actual exhalation position. These displacements are captured again by template
matching the defined regions (Fig. 1(a)) with the update-navigator slice, measur-
ing the distinct distances between the matching regions. Tracking 4 individual
regions enables the detection of non-rigid deformations. As the centers of the
templates may rarely coincide with the grid points of the model, the shifts of
the templates have been adopted to the 3 closest points of the grid (12 out of
290 points), used as inputs for the drift model. The prediction from the static
atlas u, (Eq. 2) is updated by the non-rigid correction field (Fig. 3(b)) provided
by Eq. (5):

i, =u, +v. (6)

3 Results

3.1 Motion Prediction without Drift Compensation

In a first approach we evaluated the capability of organ motion compensation by
means of a static atlas without drift compensation. Based on the data mentioned
in Sec. 2.2, motion prediction experiments were performed on 4DMRI datasets
of all 12 volunteers. The parameter h introduced in Sec. 2.3 was optimised and
found to work best for h = 3 time steps (= 1s). The prediction experiments were
evaluated for all subjects, covering 75-200 full respiratory breathing cycles. The
error in prediction for A = 1 time step (~ 300 ms) was calculated point-wise over
all grid points and time steps. The results are plotted in Fig. 4(a), characterised
by the median, 5th and 95th percentiles. The dashed line is set to 2 mm, marking
an acceptable precision limit for HIFU treatments [10]. The impact of the liver’s
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Fig. 4. (a) Resulting deviations between predicted and ground truth liver motions for
12 different subject over time intervals up to 13 minutes. Error bars around the median
show the 5th and 95th percentile deviation. (b) Mean (black) and maximum error
(grey) of motion prediction based on the static atlas for the drifting liver of subject 4.

drift is clearly visible in Fig. 4(b), when monitoring the prediction performance
over several minutes. The average error over all subjects is 1.6 mm.

3.2 Motion Prediction with Drift Compensation

With equal settings as in Sec. 3.1, the same experiments but with drift compen-
sation as elaborated in Sec. 2.4, were realised (Fig. 5(a)). The statistical drift
models were built from 11 of 12 livers in leave-one-out experiments. Although
the residual MR time during HIFU treatment is rather sparse, we allowed the
acquisition of one 2D navigator slice every 60s, capturing the actual exhalation
position. This time interval is based on the maximal observed drifting speed of
0.5 mm/min. Following Eq. (5) and (6), the most probable drift deformation of
the left-out liver is provided by the model and used as a drift-update of the
previously acquired static atlas. Taking the drift into account, the prediction
performance remains constant over time as shown in Fig. 5(b). The error aver-
aged over all subjects improved by 30% to 1.1 mm, with a notable impact for
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Fig.5. (a) Residual error of motion prediction with drift compensation and median
error without any motion compensation (¢). (b) Mean (black) and maximum error
(grey) of the prediction with drift compensation every 60s (black-dotted lines).
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the subjects 4,9 and 12. Without any motion compensation, the mean prediction
error would be 4.7 mm.

4 Discussion and Outlook

Despite frequently occurring organ drifts, our proposed method proved to be
reliable enough for the application in MRgHIFU systems. Using the R software
package (Version 2.11.1), we used the Kolmogorof-Smirnov test to test the mean
errors of both experiments for normality. Assuming a significance level of 0.05,
the t-tests showed that the statistical drift model significantly improved the pre-
diction accuracy (p<0.05). By replacing the pencil beam navigator with a faster
low lag signal, such as the breathing belt or a spirometer, the prediction quality
should further improve, as the time span the system has to predict into the fu-
ture decreases.
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4 Model-Based Respiratory Mo-
tion Compensation in MRgHIFU

Contents  The paper described in this chapter introduces a respiratory motion com-
pensation method consisting of a subject-specific breathing model [18] and
a population-based statistical motion model [19]. A lightweight respiratory
breathing model, capturing the patient-specific breathing characteristics, is
acquired and used to predict future respiratory states of the liver. Based on
this prediction, a population-based motion model is applied to estimate the
displacement of the entire liver. The use of a population-based model has
the advantage that no patient-specific 3D motion data needs to be acquired
and processed. Although no patient-specific motion model was created, a
prediction performance of 1.7 mm was obtained.

Based on  Arnold P, Preiswerk F., Fasel B., Salomir R., Scheffler K., and Cattin, P.
C. (2011). 3D Organ Motion Prediction for MR-Guided High Intensity
Focused Ultrasound. In MICCAI, LNCS 6892, page 623-630.

Preiswerk F., Arnold P., Fasel B., and Cattin, P. C. (2011). A Bayesian
Framework for Estimating Respiratory Liver Motion from Sparse Mea-
surements. Springer LNCS 7029, page 207-214.

Outline After the introduction of the research problem in Section 1, Section 2
presents the database, the temporal prediction as well as the usage of the
statistical motion model for motion prediction. Section 3 presents the re-
sults for both the 1D breath and the motion prediction. Section 4 concludes
with a discussion of the results and an outlook for future work.
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Abstract. Magnetic Resonance guided High Intensity Focused Ultrasound
(MRgHIFU) is an emerging non-invasive technology for the treatment of patho-
logical tissue. The possibility of depositing sharply localised energy deep within
the body without affecting the surrounding tissue requires the exact knowledge
of the target’s position. The cyclic respiratory organ motion renders targeting
challenging, as the treatment focus has to be continuously adapted according to
the current target’s displacement in 3D space. In this paper, a combination of a
patient-specific dynamic breath model and a population-based statistical motion
model is used to compensate for the respiratory induced organ motion. The ap-
plication of a population based statistical motion model replaces the acquisition
of a patient-specific 3D motion model, nevertheless allowing for precise motion
compensation.

1 Introduction

Focused Ultrasound deposits sharply localised energy in the tissue causing thermal ab-
lation. Precise targeting demands for exact knowledge of the target’s position. The com-
pensation of the fitful respiratory organ motion is a challenging task in the treatment of
pathological tissue in abdominal organs. If breathing motion is not compensated, the
exposure of healthy tissue increases and the thermal dose delivered to the tumour is
reduced. Continuous target displacement tracking in 3D space requires accurate spatial
and rapid temporal beam refocusing in the range of millimetres and milliseconds, re-
spectively. Any realisation of a real-time target tracking-based dose delivery must thus
be able to predict the target’s position at some future time in order to compensate for
the finite time delay between the acquisition of the current target’s position and the
mechanical response of the system to change treatment focus.

During sonication the Magnetic Resonance (MR) scan-time is mainly required for
the temperature feedback control of the High Intensity Focused Ultrasound (HIFU) sys-
tem, quantifying the thermal dose given to the tissue in order to guarantee complete co-
agulation of the tumour. Therefore, not enough MR scan-time is left to track the tumour
in 3D. To determine the thermal dose, temperature maps in regular distances around
the tumour are acquired. Similarly as proposed in [1], the navigator (pencil beam) feed-
back information is used to reposition the temperature mapping slice to resolve organ

P. Abolmaesumi et al. (Eds.): IPCAI 2012, LNAI 7330, pp. 54-63, 2012.
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displacements. In this work, we propose to use this 1-dimensional navigator feedback
information not only to track the current respiratory state, but also to predict the organ’s
future displacement, e.g. the position of the tumour.

Several approaches have been proposed to track and predict the motion of abdominal
organs. Ries et al. [1] proposed a real-time tracking method that observes the target
on a 2D image plane combined with a perpendicular acquired pencil beam navigator,
providing quasi-3D information of the target trajectories. The future 3D target position
1s then estimated by a Kalman filter. Underlying a regular and stable breathing pattern,
the method was tested in phantom experiments and in vivo on ventilated pigs. The
accuracy of the approach is not evaluated on ground truth motion data, but by indirectly
comparing the temperature maps obtained after 60 seconds of HIFU sonication with and
without motion compensation, resulting in higher maximal temperatures in the target
area with enabled motion compensation. However, the experiments have neither been
evaluated on ground truth data nor under free breathing conditions.

Ruan and Keall [2] proposed a predictor based on Kernel Density Estimation to ac-
count for system latencies caused by software and hardware processing. They use 3D
motion trajectories of implanted markers to train the predictor in a lower dimensional
feature space using Principal Component Analysis (PCA). The prediction is performed
in this subspace and mapped back into the original space for the evaluation. The draw-
back of the method is that only the position of directly observed internal fiducials can
be predicted and not of the entire organ.

Only recently, a combination of a pattern matching approach using a static subject-
specific model and a population-based statistical drift model for motion-compensated
MRgHIFU treatment was described and evaluated on realistic 4DMRI data [3]. While
the results are convincing, the acquisition of a patient-specific 3D motion atlas takes
several minutes and the processing time is in the range of hours and thus is not accept-
able for clinical use. In particular, the multiple volume-to-volume registrations take up
to several hours, in which the patient is asked not to move in order to stay aligned with
the acquired model.

Preiswerk et al. [4] showed, that the displacement of the entire liver can be spa-
tially predicted by tracking three well distributed markers (implanted fiducials) within
the liver using a population-based statistical motion model. Based on an exhalation
breath-hold scan, accurate prediction is achieved. Dispensing with the need of exten-
sive pretreatment volume imaging and its time consuming 3D non-rigid registration, no
attention is payed to a potential system lag, which is essential for real-time tracking.
Also this method is based on full 3D motion information of implanted markers.

The main contribution of the presented work is the combination of a patient-specific
fast and lightweight respiratory breathing model and a population-based motion model
to a novel, completely non-invasive and clinically feasible 3D motion compensation
method for MRgHIFU treatments. The proposed method addresses certain weaknesses
of the state-of-the-art methods in terms of real-time usage and validation. On the one
hand, the completely MR-based respiratory signal is continuously acquired and used to
predict the organs future respiratory state in order to bridge the system’s time
delay between the tracking and treatment of the target. On the other hand, the
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population-based motion model is applied to estimate the motion of the unobserved
liver, without the need of acquiring a subject-specific 3D motion model.

2 Materials and Methods

For the evaluation of our approach, a realistic MRgHIFU scenario was assumed.
During HIFU sonication, the measured information of the pencil beam navigator, i.e. the
inferior-superior displacement (1D) of the diaphragm, is used as the breathing signal.
Based on this breathing signal a patient-specific respiratory model is created, whereby
a temporal prediction of the diaphragm’s future position is estimated (Sec. 2.2). Hav-
ing an estimate of this displacement, the population-based statistical model is used to
compute the most likely 3D displacement of the entire liver, further referred as to re-
construction (Sec. 2.3).

2.1 Data and Ground Truth

The ground truth data was acquired by 4DMRI, a dynamic 2D MR imaging method
capturing the respiratory motion during free breathing [5]. Thanks to the sagittal slice
orientation and the interleaved acquisition of data slices and a dedicated so-called nav-
igator slice at a fixed position, vascular structures used for the 3D reconstruction of
the volumes are visible during complete breathing cycles and can be tracked with min-
imal out-of-plane motion. 4DMRI sequences of 20 healthy volunteers (mixed sexes,
age range: 17-75) were captured. During acquisition sessions of roughly two hours,
20-45 minutes of time-resolved organ motion data was measured. MR volumes con-
sisting of 25-30 slices (120x 192 pixel) covering the right liver lobe with a voxel size
of 1.4 x 1.4 x 4 mm?® and with a temporal resolution of 300-400 ms were obtained.
The retrospectively reconstructed 3D stacks cover the entire range of observed breath-
ing depths. By means of B-spline-based 3D non-rigid registration [6], dense spatio-
temporal vector fields describing the motion between the different respiratory states of
the liver are extracted. The first manually segmented liver exhalation stack is taken as
reference volume upon which the subsequent 3D stacks are incrementally registered
from time-step to time-step. The vector field from the previous step is taken as an
initial estimation, significantly speeding up the registration time and making the reg-
istration more robust by reducing the chance of getting trapped in a local minima. The
resulting vector fields, describing the liver’s displacements relative to the reference vol-
ume, serve as the basic data for the motion model and its evaluation in cross-validation
experiments.

In order to build a statistical model from this data, inter-subject correspondence had
to be established. For each subject mechanical corresponding points were manually
selected on the reference volume surfaces in order to align the 20 datasets. These points
mark the delineations between the superior surface in contact with lung, the anterior
and the posterior areas, which slide along the abdominal wall, and the inferior surface.
An isotropic grid with 10 mm resolution was placed in the resulting average liver and
then transformed to the shape of each of the subjects. This finally gave a set of 20
topologically equivalent 3D liver volumes as well as vector fields describing the motion
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Fig. 1. Schematic illustration of combined respiratory model and motion model-based prediction.
Based on the respiratory signal ( | ) captured at the marked diaphragm region, the displacement
sp of the diaphragm is predicted and from that the full liver displacement v is reconstructed.

for each of the N = 1261 inter-subject corresponding grid points. For more detailed
information we refer the reader to the article of Preiswerk er al. [4].

In this work, the described breathing signal is generated by simulating a pencil beam
navigator placed on the acquired navigator slices. A manually defined region placed
anywhere at the diaphragm was persistently tracked by template matching ( Normalised
Cross Correlation) throughout the acquisition sequence providing one respiratory posi-
tion and displacement per acquired navigator slice, respectively. The inferior-superior
component of the templates motion is interpreted as the breathing signal as obtained by
a common pencil beam navigator, see Figures 1 and 2(a). The spatial resolution is thus
given by the image’s pixel size of roughly 1.4 x 1.4 mm?.

Since the 3D volumes are reconstructed at the time point between two navigator
slices (see Figure 1, left) we linearly interpolate the breathing signal in order to obtain
the respiratory positions and the 3D volumes at the same time points for the evaluation.
In the following we deal with a linearly interpolated breathing signal with a sample rate
of 6-8 Hz.

2.2 Temporal Prediction

Figure 1 schematically illustrates the prediction scene for the combined patient-specific
and population-based model. As described above, the breathing signal is extracted by
tracking a defined region on all the navigator slices followed by linear interpolation
obtaining the intermediate respiratory states, where the ground truth 3D data is available
for the validation.

The temporal prediction of the breathing signal is necessary in order to compensate
for the system lag, caused by the pencil beam acquisition time, the processing of the
data and the time for refocusing the HIFU beam to the newly calculated target. Any
breathing-controlled tracking method must thus be able to estimate the target’s posi-
tion at some future time. The prediction of the future curve of the breathing signal is
a key part of the prediction pipeline. Faulty predictions lead to wrong assumptions on



58 P. Arnold et al.

the diaphragm’s displacement and thus to wrong spatial reconstructions of the whole
liver displacement. Since the breathing pattern of a free breathing patient is very irreg-
ular over time, e.g. the amplitude and phase are changing nearly unpredictably, we use
a prediction algorithm which can quickly adapt to the new input data. In the proposed
method, however, the tracking of the respiratory state during sonication is based on pen-
cil beams, therefore, one can expect a much lower sampling rate, as for example given
by an optical tracking system. In our simulation we deal with a sampling rate of 6-8 Hz.
Due to the low sampling rate, the learning based algorithms would lead to considerable
prediction errors at each ex- and inhalation position before adapting. Therefore we use
a similar technique as proposed in [3], where a one-dimensional breathing model based
on the measured pencil beam navigators is created. In contrast to the latter approach
where the model is acquired in a training phase and then stays fixed, our respiratory
model steadily grows even during increasing treatment time 7'. Each newly measured
data point (pencil beam position) is added to the model, thus getting more and more
stable over time. As the prediction algorithm prefers the most recent measurements in
the model, the model can be kept small to avoid a system slowdown caused by the in-
creasing model size. All the data stored in the model is observed for the patient-specific
operational setup, therefore only realistic displacements of the liver are predicted. For
anomalous breathing patterns with a deviation from the breath model above a certain
threshold, i.e. no matching pattern is found (e.g. coughing, new pattern), the HIFU beam
can be switched off to ensure patient safety.

The model is best represented by a matrix A, wherein the breathing signal is piece-
wise stored:

S1 S92 ... Sh Sh+A
52 S3 -« Sh41 Sh+1+A
A — : : : : . (1)
Si—h Si—h4+1 --- Si Si+A
ST—h ST—h+1 .. ST ST+A

The temporal prediction is based on the last i values of the current breathing signal
given by the vector a; = (sj_p,...,s;), where the index j denotes the actual time
point. The prediction provides an estimate s, = 5; 4 A describing the future signal
curve for a later time point, A time steps ahead. The best matching pattern of the current
breathing signal vector a; and the column vectors a; of A, is found with:

imin = argmin{a; —a;[, |j = T1}. 2)

The future curve of a;, ,, with minimum aberration from the actual signal’s history a;
is considered as best estimate of the organ’s future respiratory state:

The resulting prediction error €; is then given by:

€1 = |Sj—|—A — Sp‘ . (4)
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The value s, is the predicted shift in inferior-superior direction of the next diaphragm
position. This displacement serves as the input to the motion model that then predicts
the position of the entire liver. As the algorithm is continuously adjusting to new input
data and updated with the new measured signal input, it can quickly adapt to the irregu-
larity of the periods and amplitudes of the respiratory signal of a free breathing person.
Figure 2(b) shows 60 seconds of robust 170 ms ahead prediction performance of an ir-
regular breathing pattern measured by template matching (blue) and the model-based
prediction (green) of subject 4.

Ay

breathing depth [mm]

400 410 420 430 440 450 460

(a) (b) time [s]

Fig. 2. (a) Typical pencil-beam navigator for MR thermometry real-time slice correction acquired
at 10 Hz. (b) Example of 170 ms ahead prediction of a irregular breathing pattern of subject 4.
Blue: tracked breathing signal; Green: robust respiratory model-based prediction.

2.3 Statistical Modelling

So far, the displacement of only one single point at the diaphragm is known from the
prediction. The observed region, the centre of the pencil beam navigator template lo-
cated on the navigator slice, respectively, has to be adopted to the closest grid-point
of the subject’s liver. The predicted shift s, is then rigidly assigned to the correspond-
ing model grid-point and the population-based statistical model is used for the recon-
struction of the entire non-rigid liver displacement. From each of the 20 subjects, the
vector fields of the first 15 breathing cycles are taken to build the model. The liver
displacements are represented by a 3N-dimensional vector v = (Auq, Avy, Awy, ...
, Aun, Avy, Awy)’. Note, that the difference vector v contains no shape informa-
tion, but only the relative displacements with respect to the reference volume. The
vector fields are mean-free concatenated in a data matrix X = (X1,X2,...,X;,) €
R3NX™ with x;, = v — v and sample mean v = 711 > re, V. Applying PCA to
the data, the vectors x are defined by the coefficients c; and the Eigenvectors sy of
S = (s1, 82, ... ) of the covariance matrix of the data:

m—1
X = CkOLSE = S - diag(ak) C. (5)
k=1

Hereby, ok are the standard deviations within the data along each eigenvector s . As
elaborated in [7], the model coefficient ¢ for the full vector x can be found by an
incomplete estimate s, € R!, ! < NN that minimises

E(c) = ||Qc — sp[ + 7+ |le||* (6)



60 P. Arnold et al.

with Q = LS - diag(o},), where L represents a subspace mapping L : RY +— R/ In
the case of a noisy or incorrect assumption s,,, tuning the regularisation factor 7 allows
for reconstructions closer to the average quantified by the Mahalanobis distance ||c||*.
Solving Eq. 6 for ¢ with the singular value decomposition of Q@ = VWV yields:

: Wi, T
c:leag(wi_i_n)V Sp - (7)

Using Eq. 7 the most probable organ displacement under the constraint of the known
one-dimensional point-shift prediction sy, is then given by:

v =S -diag(ox)c+ V. (8)

The elaborated framework allows to associate the rigid 1D shift of 1 point placed at
the diaphragm with the non-rigid 3D motion of the entire liver based on population
statistics.

3 Experiments and Results

To evaluate the prediction performance of the algorithm for clinical relevant motion
compensation, experiments on 20 volunteer subjects were performed. On average, dis-
placements of the diaphragm from 5.5 mm to 15.2 mm in inferior-superior direction
depending on the subject were observed. For simplicity of generating population statis-
tics, the same amount of data from each subject was included for the experiments. For
each experiment 1500 time steps, corresponding to 7-11 minutes, have been predicted.

In a first step, the prediction performance of the respiratory model is tested and eval-
uated on each of the subjects. In a second step, the respiratory model and the motion
model prediction are evaluated in combination with cross-validation experiments. The
predictive scene was evaluated every 300-400 ms, at the time points where the ground
truth 3D data is available. All experiments were performed with a lookahead length of
A =1, i.e. 150-200ms and based on a signal history length of A = 4, corresponding to
roughly 0.7 s.

3.1 Breath Prediction

Theoretically, the algorithm is able to predict after the first A = 4 time steps (= 0.7 s).
But as more breathing cycles are collected in the respiratory model the more robust the
method is predicting. Therefore, we observed the behavior of predictive performance
as a function of time, i.e. with an increasing model size. Figure 3(a) shows the average
error cumulated up to the given time on the axis and error bars showing the standard
deviation. The error in prediction is retrospectively computed according to Eq.(4).

In Figure 3(b) the overall results of breath prediction for all 20 subject are visualised
by error bars, marking the average and standard deviations. The experiments are evalu-
ated after a model acquisition time of 60 seconds. The average error over all subjects is
0.6 mm with an observed average breathing depth of 8.4 mm.
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Fig. 3. (a) Average and standard deviations of the cumulated breath prediction error averaged over
all subjects. The performance stabilises after a few minutes and is acceptable after 60 seconds.
(b) Prediction performance of the respiratory model evaluated for 20 subjects averaged over a
prediction length of 7-11 minutes, whereby the first 60 seconds are used to acquire a minimal
model. The results are presented by error bars, marking the average and standard deviations for
lookahead time of A; ~ 180 ms and signal history length of h; ~ 0.7 s with an overall error of
0.6 mm.

3.2 Motion Model Prediction

The minimum size of population data to create a reliable model is still a unsolved
problem as the exact distribution of the data for the entire population is unknown. The
suitability of statistical models can, however, be shown empirically in cross-validation
experiments. For the evaluation of our motion prediction technique leave-one-out sta-
tistical models of all the 20 subjects were computed. From the left-out data a respiratory
signal was generated and used as test signal. As explained in Section 2.2 and 2.3, the
respiratory motion of the full liver is predicted from one single point at the diaphragm
only. For the reconstruction we took the 9 first principal components ending up with a
model covering 98% of the variance of the original motion data. For each subject the
manual segmentation of a reference volume and establishing correspondence (Sec. 2.1)
1S necessary.

As the predicted shift s;, can not fully be accounted for, the regularisation factor of
Eq. (7) was set to n = 5.5 in order to get more plausible reconstructions. The error
of prediction is determined by the point-wise Euclidean distance from the predicted
liver motion to the ground truth motion of the left-out liver. To give an overview of
the error distribution the results are visualised in Figure 4(a) by the median and error
bars marking the 25th and 75th percentiles. The dashed line is set to 2 mm, marking an
acceptable accuracy limit for HIFU treatments [8]. The average error over all subjects
1s 1.7 mm, in contrast to the average error without any motion compensation of 3.8 mm.
In the case of no motion compensation, the error equals to the mean of the Euclidean
distances to the reference volume over time. The spatial distribution of the averaged
error over all subjects and time steps is shown in Figure 4(b). The root cause of the
error are false predictions in inferior-superior and anterior-posterior direction with a
maximal error of 2mm, 1.1 mm and a minor error in left-right direction of 0.4 mm,
respectively.
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Fig. 4. (a) Resulting deviations between predicted and ground truth liver motions for 20 different
subject over a time interval of 7-11 minutes. Error bars around the median show the 25th and
75th percentile deviation and mean error without any motion compensation (¢). (b) Averaged
liver surface from 20 subjects of the right liver lobe at exhalation in anterior view. The colors
represent the motion prediction error (in mm) averaged over 20 subjects at the liver’s surface.

4 Conclusion

We presented a completely non-invasive and purely MR-based tracking method to pre-
dict the liver’s 3D motion in real-time under free breathing. The method is a combina-
tion of a pattern matching approach to predict the patient-specific breathing pattern and
a population-based statistical motion model based on PCA to reconstruct the respira-
tory induced organ motion. In the presented work, we demonstrate a safe and efficient
technique for MRgHIFU treatment of pathological tissue in moving organs. Although
the prediction technique is evaluated on real 4DMRI motion data of the liver, the pro-
posed generic framework is applicable to any abdominal organ, e.g. the kidney. The
method is evaluated on 4DMRI datasets of 20 healthy volunteers achieving an overall
prediction error of 1.7 mm, where the predictive method is clinically applicable after
60 seconds.

Although the overall prediction error of our novel method is slightly higher than the
state-of-the-art methods, the proposed technique addresses important issues for the non-
invasive real-time application of MRgHIFU treatment in moving abdominal organs.
Preiswerk et al. [4] achieve a prediction error of 1.2 mm by accurately knowing the 3D
displacements of three well distributed points within the liver ( e.g. implanted surrogate
markers). In [3] a prediction error of 1.1 mm is achieved by acquiring 3D information
of the patient specific liver motion.

In this work, however, a non-invasive MR-based tracking method is used, allowing
to measure the 1-dimensional displacement of a single point on the diaphragm only.
We are fully aware of that the second order organ deformation occurring over large
time scales, the so called drifts, are not detectable by measuring a single point at the
diaphragm only. But, since we are predicting over a short period of time, the different
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respiratory states of the liver can reliable be tracked, as has been shown in [9]. Besides
a 3D exhalation breath-hold scan, no patient-specific 3D motion data has to be acquired
and processed in a pretreatment phase.

In future work we will investigate the possibility of better adapting the population-
based motion model to a specific subject. Using a fast MR acquisition sequence, we
plan on better restricting the population-based statistical motion model to a specific
patient.

Acknowledgments. This work has been supported by the research network of the Swiss
National Science Foundation-Project Nr. CR3213 125499.
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Fast Manifold-based 4DMRI for
Patient-Specific Organ Motion
Modelling in MRgHIFU

This chapter’s paper describes the fast acquisition of patient-specific 3D
motion data and the efficient construction of patient-specific motion mod-
els. As the models are acquired immediately before the treatment, the
method is applicable to any organ, patient pose and treatment setup. This
addresses the lack of generality of population-based models, which are
made for a specific organ and treatment setup. To decrease the pre-operative
data acquisition time, the minimal amount of required 4DMRI data for mo-
tion modelling is investigated and novel 3D volume reconstruction tech-
niques based on manifold learners are proposed. The goal of the work is to
acquire patient-specific motion models in a short time without sacrificing
precision.

Section 1 introduces the problem statement by summarising the state-of-
the-art motion modelling approaches. Section 2 presents the database and
describes the tracking of the respiratory motion. Section 3 presents a slight
modification of the state-of-the-art 4DMRI sequence and two novel vol-
ume reconstruction techniques, both based on manifold learners. In ad-
dition, the construction of motion models from well-chosen data and the
motion reconstruction from sparsely measured points is described. A one-
dimensional breathing signal predictor based on kernel density estimation
accomplishes Section 3. The quality of the reconstructions is evaluated by
the prediction performance of the proposed methods and compared to the
atlas-based prediction methods presented in Chapter 3 of this thesis. The
paper closes with the discussion of the results.
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Abstract. MR-guided High Intensity Focused Ultrasound is an emerging non-
invasive technique allowing to deposit sharply localised energy deep within the body,
without affecting the surrounding tissues. This, however, implies exact knowledge of
the target’s position when treating mobile organs during the respiratory cycle. Existing
motion modelling techniques either follow a population-based model approach, with
the limitation that the model is organ, treatment-setup and patient-pose dependent
and therefore not applicable to the variety of possible treatment scenarios. On
the other side, subject-specific model approaches are considered, which can be very
time consuming to acquire. Subject-specific models, in contrast, ensure customised
treatment procedures providing comprehensive application. To address this issues,
the minimal amount of required 3D data for the modelling process as well as novel 3D
reconstruction techniques and minimalist model building approaches are presented. We
conclude that the pre-operative data acquisition and processing time can be drastically
reduced without significantly losing prediction accuracy.

1. Introduction

Respiratory-induced organ motion and its compensation are challenging tasks in the
treatment of pathological tissue in mobile abdominal organs. Regardless of whether the
tissue is treated by radiotherapy or Magnetic Resonance guided High Intensity Focused
Ultrasound (MRgHIFU), accurate knowledge of the targets position is crucial for a
safe and efficient therapy. Focused ultrasound, has the unique capability of depositing
sharply localised energy deep withing the body causing thermal ablation without
damaging the surrounding tissue. Phased-array High Intensity Focused Ultrasound
(HIFU) devices reach oblate ellipsoid lesion sizes of around 2 mm width and 4 mm length
depending on the exposure time, acoustic power and sonication pattern [7]. Beam spot
steering ranges up to 70mm [3] and allow the continuous application of HIFU energy
to the mobile target without interruption, which is essential to achieve the targeted
thermal dose required for complete coagulation within typical exposure times of about
20s. Continuous alignment of the target and the therapy beam is only possible, if the
method is able to predict the target’s position at some future time in order to account for
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the time delay between the acquisition of the current target position (surrogate marker)
and the response of the system to adapt the treatment focus. To this end, the target
has to be tracked in near real-time and an estimate of the targets future position has to
be formed.

During an MRgHIFU treatment the patient is located within the Magnetic
Resonance (MR) scanner enabling a completely non-invasive image-guided intervention.
Although MR imaging provides excellent soft tissue contrast for target tracking, the
MR scan-time is mainly required for the temperature feedback control of the HIFU
system to determine the thermal dose delivered to a tumour. Therefore, extensive
3D or even 2D target tracking is impossible to achieve during treatment. Non MR-
based external surrogate markers (e.g. optical chest wall trackers, breathing belt) or
fast 1D MR navigator pencil beams [11] would thus be ideal for real-time tracking
the respiratory-induced organ motion, demanding only for marginal MR scan-time.
However, respiratory motion of the liver occurs in 3D space, whereby the main
component is a cranio-caudal shift, usually in the range of 0.5-2.5 cm for quiet breathing
[8, 12] and additionally the liver shows motion in anterior-posterior (1-12mm) and left-
right direction (1-3mm) as well as non-rigid deformations (up to 2 cm) as quantified
by [12]. Discarding the multidimensional target tracking demands for a technique to
estimate the 3D target motion from a signal tracked in 1D. This estimation must be
based on an underlying model.

In the literature, we can basically find three main types of such models, namely,
subject-specific motion models [2, 9], population-based motion models [1, 10] and the
combination of both [2]. Whilst the performance in terms of accuracy of subject-
specific models is very high since the subject’s motion itself is observed and learned, the
acquisition and processing of 3D motion data is, still nowadays, very time consuming and
hard to achieve in a clinical environment. Moreover, second order organ deformations
occurring over long time scales, the so called drifts, can quickly invalidate the initially
acquired model as shown in [1]. A short break between data acquisition for the
model and the final treatment, hence, a fast model creation procedure is crucial for
an appropriate usage of such a model. Using a population-based statistical model has
the advantage of dispensing with the need of extensive pre-treatment volume imaging
and data processing. On the other side, sophisticated and expert manual user input is
required to establish correspondence among the patient and the motion model [10]. The
central issue, however, is the limited applicability of population-based models. Possible
variations in the treatment setup, such as additionally added Ultrasound devices to
track the respiratory motion, changes in patient pose or the application to organs in an
advanced stage of the disease, thus, evoking extraordinary shape, elasticity and motion
pattern changes, can quickly invalidate the usage of such a population-based model. To
this end, the creation of a patient-specific model in a clinical acceptable time would not
only enable it’s application to other moving organs, but also to various treatment setups
and multiple treatment sessions since such a model is independent of an organ specific
database and fast to acquire.
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Figure 1. Schematic flowchart of the overall motion prediction procedure. Based
on 4DMRI data, volumes are retrospectively reconstructed, registered and used to
construct motion models given different sizes of datasets are built and evaluated on
the ground truth data.

To address these issues, we propose time-optimised acquisition sequences combined
with novel 3D reconstruction techniques and a minimalist model building approach.
Figure 1 illustrates the overall prediction scheme consisting of data acquisition (4DMRI),
data processing, in particular volume reconstruction and 3D registration, model
building, temporal prediction combined with a spatial motion reconstruction and the
evaluation of the prediction performance. The non-rigid volume to volume registration
is next to the data acquisition the most time consuming step in the pre-operative model
building process. Therefore, reducing the amount of registrations is an important step
to speed up the overall procedure. The goal of this study is, thus, to investigate the
minimal amount of required data to construct reasonable models for temporal as well
as spatial motion prediction. Motivated by [6] and [20], manifold learners are used
to resolve the respiratory state of the liver and to parametrise the breathing cycle.
Based on regular ADMRI data [18], two different stacking approaches are used for model
building and evaluated given different lengths of acquisition times. With the respective
model and an estimate of the temporal prediction, the displacement of the entire liver
is reconstructed and evaluated on the ground truth data.

The organisation of the paper is as follows. In Section 2, the acquisition scheme
and specifications of the clinical data to which the motion models will be applied is
introduced. Section 3 describes the manifold-based 4DMRI approaches, the model
building and motion reconstruction techniques as well as the 1D predictor used for
respiratory signal prediction. Section 4 presents the performance evaluated on clinical
data and Section 5 discusses the paper and summarises the results.

2. Material
2.1. Data Acquisition and Processing
The ground truth data for the experiments was acquired from 20 healthy volunteers in

the coarse of 15-45 minutes acquisition sessions and is based on 4DMRI [18], a dynamic
2D MR imaging method capturing the respiratory motion during free breathing. The
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acquisition results in two slice groups, the data slices covering the volume of interest
consisting of around 30 slice positions covering the liver and a dedicated so-called
navigator slice at a fixed position, both acquired in the sagittal plane with a voxel
size of 1.4 x 1.4 x 4 mm? and a temporal resolution of 300-400 ms. An example of such
an interleaved acquisition sequence with 2 data slices covering the volume of interest is
illustrated in Figure 2(b). One complete volume pass with interleaved navigator slices,
further called a dynamic, consists on an average of 60 slices, corresponding to around
12 seconds of MR acquisition time. All images were first processed using histogram
matching in order to prevent the influence of different intensity values arising from
tissue saturation effects, ensuring a similar distribution of intensity values among all
images. In Sections 3.1 and 3.2, two retrospective stacking methods to reconstruct 3D
volumes (stacks) are presented. Standard 4ADMRI stacking [18], serving as ground truth
and the novel navigator-less ADMRI stacking. From the resulting stacks, dense spatio-
temporal vector fields describing the motion between the different respiratory states of
the liver are extracted. The first exhalation stack is manually segmented and taken as
reference volume upon which the subsequent 3D stacks are incrementally registered from
time-step to time-step by an affine, followed by a B-spline based non-rigid registration
step [14], minimising the chance of getting trapped in local minima. For both, the initial
rigid and the non-rigid registration, cross-correlation was chosen as similarity measure,
whereby a control point resolution of 10 mm was used for the B-spline interpolation. The
resulting vector fields describing the liver’s displacements relative to the reference volume
are extracted at an isotropic grid with 15 mm resolution, corresponding to Ny = 300 -
500 grid points per subject s, depending on the size of the liver. These vector fields
serve as the basic data for the motion models and their evaluation in cross-validation
experiments.

2.2. Tracking of the Respiratory Motion

A key-concept of our approach is to estimate the 3D liver motion from a nearly real-
time tracked 1-dimensional signal. As with any breathing-controlled tracking method, a
system lag caused by target tracking, data processing and the time needed for refocusing
the HIFU beam to the newly calculated target, has to be compensated for. Any signal
correlated with respiration, such as the chest wall motion, could be taken here. In
this research, the respective signal is extracted from the diaphragm motion of the
navigator slices (see Figure 6(a)). Therefore, a manually selected template, located
at the diaphragm, is tracked throughout all navigator slices by template matching
with normalised cross-correlation as similarity measure. The resulting signal is linearly
interpolated to obtain the intermediate respiratory states, where the ground truth 3D
data for the evaluation is available [1]. The sampling rate of the breathing signal is,
hence, 6-8 Hz, yielding look-ahead times of 125-166 ms. This signal is equivalent to the
MR pencil beam navigator, as it is often acquired to obtain feedback information to
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Figure 2. (a) Sagittal slices covering the volume of interest and dedicated navigator
slice N. (b) Interleaved acquisition of data slices and navigator slices used for
volume reconstruction in Standard 4DMRI and (c¢) acquisition scheme of navigator-less
4DMRI.

reposition the temperature mapping slice to resolve organ displacements [11] and used
for the temporal prediction as described in Section 3.6.

3. Methods

In order to produce 3D volumes from the 2D images, data slices of all acquired slice
positions, showing the same respiratory state, have to be found and stacked together,
see Figure 2(a). The standard 4DMRI approach which is a slight modification of the
one proposed in [18], is based on the interleaved acquisition of data slices and navigator
slices N which are acquired immediately before and after the acquisition of the data
slices as shown in Figure 2(b). The key-idea is, that two data slices show the same
respiratory state of the liver, if their embracing navigator slices are similar. The novel
proposed volume reconstruction approach is based on Locally Linear Embedding (LLE)
[13], whereby the volumes are reconstructed without the need of the navigator slices,
thus called navigator-less ADMRI, resulting in the acquisition scheme shown in Figure

2(c).

3.1. Standard 4DMRI

As mentioned above, the standard 4DMRI approach is based on the similarity of the
navigator slices which are acquired immediately before and after the data slices. To
describe the similarity of the embracing slices, an image similarity measure based on
Principal Component Analysis (PCA) [16] is used. In contrast to [18], where template
matching of multiple manually defined regions are used for slice comparison, PCA does
not need any manual user input. With this method, volumes for each subsequent
pair of navigator slices are reconstructed, describing the motion for all observed time
steps. The navigator slices of the standard 4DMRI sequence are given by the vectors
n € R"” where h and w are the height and width of the images, respectively. Let
X = (X1,X2, ..., X;n) € RP"¥*™ be the data matrix containing m mean-free concatenated



Fast Manifold-based JDMRI 6

PC3

Inhalation — Exhalation [PC 1]

PC2 PC1 0 20 40 60

(a) (b) time [s]

Figure 3. (a) Representation of navigator frames in 3D PCA subspace (from
exhalation (e) over inhalation (@) to exhalation (0). (b) Coefficients of the first PC
resolving the respiratory state of the liver captured by the navigator slices.

navigator images X, = ny — i, with sample mean p = % Yo ng. In total, m = 300
images, 100 each from the beginning, the middle and the end of the acquisition are taken
to derive the PCA. With the distributed selection of navigator slices anatomical changes
occurring during the acquisition time are captured while the computational cost to derive
the PCA is kept low due to the limited amount of selected input images. Applying PCA
to X yields the orthonormal matrix of principal components S = (sq, ..., s,,_1) and their
corresponding eigenvalues \q, ..., A\,,_1 that give the standard deviation oj, = v/A; of the
principal components in descending order. The navigator images can be transformed
into its coefficients ¢, and thus mapped into the navigator space, by the simple operation:
c=S8". diag(i) X (1)
Ok
Hence, every navigator image can be described by its multidimensional coefficient vector
c. Figure 3(a) shows the mapping of one respiratory cycle into the navigator space
represented by it’s first three PCA coefficients and Figure 3(b) shows 70s of the first
principal component, nicely resolving the respiratory state of the organ. Based on these
coefficients a complete 3D volume for each pair of embracing navigator slices can be
reconstructed. For the reconstruction of the volumes the first eight principal components
were considered to find the matches, whereof the two best matching slices were averaged
for noise-reduction.

3.2. Navigator-less 4DMRI

The current state-of-the-art and above described standard 4DMRI approach uses the
interleaved navigator slices to detect the respiratory state of the organ in order to
retrospectively reconstruct 3D volumes. This approach is very well suited for long-
time studies, where second order organ deformations, i.e. drifts, are the research
objective [19]. Despite the robust reconstruction quality, the used acquisition scheme,
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LLE 3

Figure 4. LLE slice matching: Representation of 60 data slices in 3D LLE subspace
from inhalation (e) over mid-inhalation (@) to exhalation (o) and corresponding data
slices for two different slice positions of Subject 1. The red line indicates the mid-
inhalation position of the diaphragm at the respective slice position.

however, unavoidably results in the measurement of actually redundant data, namely
the extensive acquisition of the navigator slices. 50% of all acquired images are only used
for retrospective volume stacking, but are actually of no further interest. The possibility
of retrospectively reconstructing volumes without the need of interleaved navigator
slices would not only end in 50% less acquisition time, but also double the frame
acquisition rate. Using a manifold learner, it is possible to detect the given distribution
of respiratory states per acquired slice position on the data slices themselves. Among
many manifold techniques from the “Matlab Toolbox for Dimensionality Reduction”
[17], Locally Linear Embedding (LLE) was found to work best for the purpose, meaning
that LLE detects remarkably well the underlying structure of our data (see Figure 4).
LLE is a non-linear unsupervised learning method that embeds the high dimensional
data into a neighbourhood preserving lower dimensional space [13, 15]. Applying LLE
to each data slice position, allows to compute a low dimensional embedding of our
high dimensional input images (125 x 176 = 4400 pixels) and maps every image into
a lower dimensional space. The dimension of the subspace is chosen to be 3 which
allows to visually examine the slice grouping process. We benefit from the property,
that data slices showing the same respiratory state lie close to each other in the
embedding space and, thus, allow to separate them. LLE is applied to all acquired
slice positions individually yielding a subspace mapping for each slice position. The 3D
representation depicted in Figure 4 nicely shows the ability of the method to reveal the
respiratory motion contained in the images shown for two different slice positions. The
embedded images form trajectories in the LLE-space describing the respiratory cycle
from inhalation (e) over mid-inhalation (e) to the exhalation position (o). The data
slices represent the highlighted points on the trajectories. In order to find similar states
among the different slice locations, the mapped data is parametrised by cubic splines.
For cubic spline fitting, the order of the input data in terms of inhalation depth has to
be known. Sorting by LLE-components is not robust enough to detect the sequence,
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Figure 5. (a) LLE-coeflicients in 3D space after grouping them around different states
along the cubic spline fit. (b) Representation of LLE- and PCA-coefficients computed
from 1000 navigator slices for subject 6 for a central slice position.

therefore template matching with cross-correlation is used to compare the diaphragm
height of all images acquired at one position. This provides the order of the data for
fitting and the number of diaphragm heights, e.g. the number of observed states for
each slice position. The fitted cubic splines are subdivided into the number of observed
respiratory states using arc-length discretisation whereby every data point representing
an input image is assigned to the closest point on the spline. This clusters the data
according their respiratory state and enables to find all acquired images, for example at
the exhalation phase, of all slice positions, as visualised by different colours and markers
in Figure 5(a). The data point, the image with minimal distance to the middle point
of the corresponding spline piece, respectively, is chosen for 3D stacking. Again, the
two best matches were averaged for noise-reduction. This results in one reconstructed
stack per respiratory state which is used for model building. Note, that in contrast to
standard 4DMRI, exhalation and inhalation phase are not distinguished.

3.3. LLE vs. PCA

The reason that PCA and not LLE is applied to the navigator slices in order to
reconstruct the ground truth data is well illustrated by Figure 5. Figure 5(a) shows the
3D representation of 60 images and Figure 5(b) the mapping of 1000 navigator images in
the respective embeddings. While LLE is better suited than PCA to accurately resolve
the respiratory phase for short acquisition times containing up to 60 images as illustrated
in Figure 4 and Figure 5(a), it fails for large sets of images. Due to the non-linearity of
LEE, the mappings are very sensitive to small changes in the images, such as for example
intestinal activities, which can occur over longer time scales, thus having a larger impact
on the LLE-coefficients than the change of the respiratory phase. PCA on the other
hand robustly resolves the respiratory state over long time scales as shown in Figure
5(b) (right). In general, we obtained better navigator-based reconstructions using PCA,
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Figure 6. (a) Selection of best quality stacks @ and exhalation stack A between median
exhalation and median inhalation position (---) used for model building and (b) the
corresponding image distribution after 80 seconds of standard 4DMRI acquisition.

whereas on the other side LLE yielded better reconstructions with the navigator-less
reconstruction technique.

3.4. Construction of Motion Models

To obtain reasonable models built from the least amount of data and thus reduce CPU-
intensive and time-consuming data processing, only a handful of stacks are registered
and used for modelling. Whilst for navigator-less ADMRI only one stack per respiratory
state is reconstructed, the number of stacks have to be reduced in the case of standard
4DMRI, picking out only the most representative stacks of the acquisition. Figure 6(a)
illustrates this selection process for a standard 4DMRI sequence of around 80 seconds
duration. All volumes are reconstructed for each time point (s) and the quality of the
stack is assessed by the sum of squared differences (SSD) between the neighbouring
slices and averaged over the volume. From each respiratory state, the volume with
minimal SSD (e) is taken and registered upon the exhalation stack ( a ). Figure
6(a) shows the corresponding distribution of the data slices of the same scan with
the bars illustrating the number of available data slices (counts) per given slice position
and respiratory state. Obviously, not all bins are equally filled after 80 seconds of
acquisition and not all respiratory states can be fully reconstructed. The maximum
exhalation and inhalation states are determined by the median of all exhalation and
inhalation position, respectively. All the stacks outside this range are assumed to be
not a representative for the respective respiratory state as not all slice positions in
the given state are available for stacking. These stacks are therefore not registered
and used to build the model. This results in typically 7-10 reconstructed stacks per
model, depending on the breathing depth of the respective subject. Deep inhalation
states which are thus not included in the model can nevertheless be estimated by the
prediction capabilities of the statistical model. Given a selection of stacks of one of
the two 4DMRI acquisition methods, the stacks are registered and the resulting motion
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fields are used to build the models. Let V = (vq,va,...,vy) be the data matrix,
where each column represents one of M observations, i.e. the organs displacement at
a specific time point, respectively. The observations are described by a 3p-dimensional
vector, containing the x-,y-,2-displacements of each of the p grid points within the liver:
vk = (Azy, Ayr, Az, ... , Az, Ay,, Az,). Equally, as described in Section 3.1, the
original data is centered by X =V — v with mean motion v = % 224:1 vi. Note, that
X does not contain any shape information, but only the relative displacements with
respect to the manually segmented reference volume. Applying PCA to the data, the
displacements of the organ can be described as linear combinations of the Eigenmotion
vectors si of S = (s, 89, ...) weighted by the coefficients ¢, as given by Equation (1):

M-1 M’
X = E CLOLSEL ~ E CrLOESk . (2)
k=1 k=1

Hereby, oy are the standard deviations within the data along each Eigenmotion sy, sorted
in a descending order. The organ motion can be approximated by a linear combination
of the Eigenmotion corresponding to the largest M’ Eigenvalues, resulting in a model
that covers a certain amount of the data variance.

3.5. Reconstruction of Full Motion From Sparse Measurements

For many motion management applications it is not possible to measure the 3-
dimensional position of the entire organ. Indeed this is the case for our MRgHIFU
scenario, where surrogate markers such as the displacement d of one point in 1D is
measured. From the displacement d, we wish to derive the entire organ displacement v.
In order to estimate this complete displacement, further referred as to reconstruction,
we use the framework of Bayesian estimation elaborated in [4]. The proposed technique
allows reconstructions even though the displacement measure of only one single point in
1D is available. Basically, the most likely model coefficients ¢ for the full vector v given
an incomplete measurement d € R!, 1 < 3p of v has to be found. This can be done by
minimising the following expression:

E(c) = |Qe —d|| +7-lc|* . (3)

with Q = LS - diag(oy), where L represents a subspace mapping L : R*® + R!. In
the case of a noisy or incorrect assumption d, tuning the regularisation factor n allows
for reconstructions closer to the average quantified by the Mahalanobis distance ||c||*.
Solving Eq. 3 for & with the Singular Value Decomposition of Q = VWVT yields:

¢ = Vdiag(—r ) V'd. (4)

wi +
Using Eq. 4, the most probable organ displacement given an incomplete measurement

d is given by:
v =S -diag(o) ¢+ v. (5)
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The resulting reconstructions are compared to the ground truth data for the
respective time step and averaged over the entire volume of the liver:

1 Ns T
E3:—TNSZZ||Vt—VtH . (6)

3.6. Kernel Density Estimation for Respiratory Signal Prediction

For the treatment of mobile targets, such as it is the case for abdominal tumours,
which are strongly affected by the respiratory breathing cycle, the prediction of
respiratory motion is crucial for real-time target tracking. The target’s future position
must be estimated to compensate for system latencies, i.e. the latencies caused by
signal acquisition, its processing and by readjusting the treatment beam to the newly
calculated target.

To this end a Kernel Density Estimation (KDE) based predictor similar to the one
in [5] is applied. Like all other predictors, KDE-prediction is based on training samples
acquired at preceding time steps. The formulation is given for scalar observations
acquired at uniform time intervals and prediction look-ahead times of an integer
multiple of the sampling interval A;. Suppose we are given a discrete signal s;,
acquired prior to the current time instant ¢, we can create the training samples
Xi = [Si—(h-1): Si—(h—2) ---, 8| With a signal history length h and corresponding target
values y; = s;11. Having a newly obtained measurement x;, the prediction ¥, is basically
obtained through a weighted sum of the targets of the training samples:

y= ! szyz (7>

D Wi

The weights w; determine how ’close’ the test sample x is to the training samples y;
qualified by means of the Gaussian Kernel function K:

wi = K (xe, xi) = exp(—a|[xe —xill"), (8)
with the kernel parameter « > 0. The prediction is obtained by calculating the
weights w; based on the training samples and inserting them into Equation 7. We
implemented the moving window training, where only training samples close enough
to the test sample are used for training. The window size should be chosen large
enough to ensure reasonable learning. The parameters signal history length, training
window size and kernel parameter o are optimised with respect to the prediction error
E, = %ZT lly: — ¥¢|| in the training phase of duration 7', that means during the
acquisition of 3D data. Based on the prediction y;, the 1-dimensional displacement d is
derived with respect to the model’s exhalation stack and used for the reconstruction as
described in Section 3.5.

4. Experiments and Results

The performance of the temporal prediction combined with the model-based motion
reconstruction was evaluated on the ground truth data, which is based on all available
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motion data from each of the 20 subjects. On average, displacements of the diaphragm
from 5.5mm to 15.2mm in inferior-superior direction were observed. The proposed
acquisition and stacking techniques are compared to the atlas-based motion prediction
technique proposed by [2]. Figure 7 presents the visual comparison of the reconstruction

Exhalation Mid-Inhalation Inhalation

Standard 4DMRI
190 dynamics
37 minuntes

Standart 4DMRI
40 dynamics
8 minutes

Navigator-less
40 dynamics
4 minutes

Figure 7. 3D reconstructions from exhaltion over mid-inhalation to inhalation based
on all available data, 40 dynamics of standard 4DMRI as well as navigator-less 4ADMRI
corresponding to 37 min, 8 min and 4 min of acquisition time, respectively.

quality of the used stacking approaches. The white boxes frame exemplary vessel
structures used for quality assessment. Overall, the best quality is achieved for the
PCA-based reconstructions, whereby the entire datasets were used and enough data to
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reconstruct all states from inhalation to exhalation was available. The reconstruction
based on shorter acquisition times, i.e. 8 minutes (40 dynamics), are of lower quality
but still preserving the livers shape. Note, that for the LLE-method, theoretically, only
half of the acquisition time (4 minutes) is required to achieve comparable quality. To
find the relation between acquisition time and prediction performance, experiments with
different sizes of training data have been performed. The above described procedure,
1.e. stacking, registration and segmentation, was repeated for training sets of different
lengths, namely 5, 10, 20, 30 and 40 dynamics corresponding to acquisition time ranging
from 30s up to 8min. For the standard 4DMRI sequence, the navigator-less 4ADMRI
and the atlas-based approach [2], a subject-specific model was generated for each of
the training and datasets. The overall results are plotted in Figure 8(a) showing the
prediction error averaged over all subjects depending on the respective acquisition time.
Nawvigator-less ADMRI performs best for short acquisition times below < 100s. For
longer acquisition times, on the other side, standard 4DMRI and atlas-based prediction
yield smaller errors with increasing acquisition time. In particular, the experiments
confirm an average prediction error below 2mm after 60s of standard 4DMRI sequence
and 30 s nawvigator-less ADMRI acquisition, respectively. The intended precision limit is
set to 2mm, thus, corresponding to the typical beam spot size of recent HIFU devices.
As already shown in [2], secondary organ deformation, the so called drift, occurring over

€
E
3t —e— standard 4DMRI 5
—»— navigator-less 4DMRI =
_ --o- atlas o
E | gL =
E2f LTI . e ©
s E
T 3
|3
@
0 ‘ ‘ ‘ 2
50 100 200 300 400 <

(a) Acquisition time [s] (b) Prediction time [min]

Figure 8. (a) Acquisition time versus prediction performance of standard 4DMRI,
navigator-less ADMRI and atlas-based prediction averaged over all 20 subjects.(b)
Cumulative error averaged over all subject showing the impact of the organ’s drift for
model predictions based on 100s of data acquisition.

longer time scales can quickly invalidate the applicability of an initially acquired subject-
specific model. To quantify the drift-related error increase the cumulative average error
over time was calculated over a period of about 6min. Figure 8(b) demonstrates the
impact of drift to prediction error for all evaluated methods, corresponding to an average
growth rate of around 0.03 mm/min.

Table 1 presents the minimum of required acquisition time to achieve a motion
prediction error below 2mm and the involved volume registrations to construct the
respective model. The acquisition time and the number of non-rigid registrations are
the most time consuming parts of the procedure. Therefore, the speedup factor in
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respect to the atlas approach is shown. The time-saving in the case of the number of
volume registrations is the speedup factor times the time per registration. Compared
to the atlas-based prediction, the proposed methods show significant improvement in
terms of speed. With navigator-less 4ADMRI, an error below 2mm is achieved after
30s of data acquisition and motion models constructed from on average only 8 volume
registrations. This corresponds to a speedup factor of 6.6 and 32, respectively.

Table 1. Required acquisition time, number of involved volume registrations and
respective speedup factor to achieve an overall motion prediction error below 2 mm.

Method Acquisition # Registration Error
Time Speedup Volumes Speedup

Atlas [2] 200s 1 250 1 1.94 mm

Standard 100s 2 9.9 26 1.99 mm

Navigator-less 30s 6.6 8.2 32 1.87 mm

5. Discussion

Previous work on motion modelling [2] has shown that subject-specific motion models
based on data acquired at a limited interval are suitable to predict the liver’s motion
for a short time, before the organs drift invalidates the applicability of the model over
time. If no population-based statistics or other prior knowledge about the specific organs
long-term deformation is available to compensate for the occurring anatomical changes
as for example described in [19], one has to account for larger errors with elapsed time.
The time point of acquiring the model and the actual treatment should, thus, lie close
together in order to ensure the models validity.

Within this context, the objective of this study was to investigate the impact of
short acquisition times and minimalist model building techniques in terms of prediction
performance. Subject-specific models have been created from test-sets of different
duration reaching from 30-400s and their prediction capability have been evaluated
against the ground truth data taken from 20 healthy volunteers. In particular, we
could show in this study that accurate and robust tracking and prediction performance
with minimal amount of data acquisition and processing can be achieved. The results
presented in Figure 8(a) suggest to use navigator-less ADMRI for short acquisition times
up to 100s and standard 4DMRI otherwise. Due to the restriction of only taking
data slices of the same respiratory phase for the volume reconstruction in the case of
standard 4DMRI and the atlas-based approach, there is not enough data available to
reconstruct reasonable stacks covering all breathing depths and thus, resulting in higher
prediction errors for short acquisition times. For longer data acquisition times, on the
other side, more exact stacks are obtained. For less than 30 seconds of acquisition, which
corresponds to approximately 6 data slices per slice position, LLE fails to resolve an
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appropriate mapping for all of the subjects. The error development over time shown in
Figure 8(b) illustrates the impact of the organ’s drift, quickly worsening the prediction
accuracy of the models, which coincide with the findings in [2]. The growth rate of
the error averaged over all subjects can be quantified to around 0.03 mm/min, which is
negligible for short treatment times. Table 1 clearly points out a significant reduction
of required volume registrations, yielding 26-32 times less computational cost for the
proposed methods and, therefore relevantly reduces the delay between data acquisition
and model application.

The proposed methods allow the fast acquisition of patient-specific 3D motion
data and the efficient construction of patient-specific motion models applicable to every
organ, target, patient and treatment setup, hence, overcoming the lack of generality of
population-based models without sacrificing precision.
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CHAPTER 5. FAST MOTION MODELLING



Contents

Outline

Discussion and Conlusion

Our investigations in the previous chapters have led to many observations
and new insights. Three approaches to manage respiratory-induced organ
motion have been presented. Each method has its respective advantages
and disadvantages. This chapter discusses the main observations and pro-
vides answers to the two research questions of the thesis as posed in Chap-
ter 1. Finally, directions for future research are presented.

In Section 6.1 , we answer the two research questions based on the ob-
tained results from the former chapters. Directions for future research are
presented in Section 6.2.
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6.1 Answers to the Research Questions

Several approaches to manage respiratory-induced organ motion have been presented in
this thesis. This section addresses the research questions stated in Chapter 1 based on
the observations made in the three previous chapters.

Research question 1: How accurate can the 3D position of a target be

predicted, given that the respiratory state of the liver can be tracked in
1D?

The target prediction methods proposed in this thesis consist of two parts. First, the
temporal prediction of the breathing signal and second, the spatial motion prediction of
the liver based on this breath prediction.

The temporal prediction of the respiratory state was either realised by a simple pat-
tern matching approach as described in Chapters 3 and 4 or by a more sophisticated
predictor based on Kernel Density Estimation (KDE) as described in Chapter 5. Both
approaches are able to robustly predict the future respiratory state of the liver with a pre-
diction error of approximately 0.5 mm. The advantage of the KDE-based predictor is
that it is able to produce continuous predictions. The pattern matching based predictor,
in contrast, can only predict patterns that have been observed before through template
matching.

No matter which temporal predictor is applied, the resulting estimate of the future
respiratory state is used to reconstruct the motion of the entire liver. This reconstruction
is based on an underlying motion model. In order to quantify the 3D motion prediction
accuracy, we investigated the performance of subject-specific models combined with a
population-based drift model in Chapter 3 (atlas + drift), pure population-based motion
models in Chapter 4 and pure subject-specific motion models as presented in Chapter 5.
In Table 6.1 the results of our investigations are summarised. The best results in terms

Table 6.1: Summary of prediction results achieved during this study.

Method Error [mm]

Atlas + Drift Model (Chapter 3) 1.1+ 04
Population-based Model (Chapter 4) 1.74+0.5
Subject-specific Model (Chapter 5) 1.94+0.6

of accuracy are achieved with the combination of a subject-specific motion model and a
population-based drift model (Chapter 3). In this case, the subject-specific motion was
observed up to 13 minutes and stored in an atlas. Based on this atlas, the prediction
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performance was evaluated for the subsequent 13 minutes. It was shown that the drift
can quickly invalidate the initially acquired atlas. Therefore, the prediction performance
could be significantly improved by incorporating population-based drift information.

To avoid extensive patient-specific data acquisition and processing as it was done in
Chapter 3, a pure population-based motion modelling approach was investigated next in
Chapter 4. Although no patient-specific data except the exhalation shape and position
was known, the prediction performance of the model is high and robust. As the exper-
iments were evaluated for a shorter period, i.e. 7-11 minutes, no drift correction was
applied.

Despite the good performance, population-based models are limited in their appli-
cability. Slight changes in the treatment setup, as for example a change in the patient
pose, can quickly invalidate population-based motion models. Therefore, the research
focus moved towards the fast acquisition of subject-specific motion models as presented
in Chapter 5. These models are per se generally applicable since the model is acquired
immediately before the treatment and thus capturing all the setup and patient specific
characteristics.

As the liver can significantly drift over time, initially acquired motion models can
loose accuracy over time as shown in Chapter 3. Therefore, a short time gap between
model acquisition and treatment start is crucial for accurate model-based motion pre-
diction. These thoughts brought us to the second research question:

Research question 2: How much pre-operative data is required to con-
struct models suitable for motion prediction?

In order to answer this question, subject-specific motion models based on different
lengths of 4DMRI datasets were constructed and evaluated. It could be shown that
short 4DMRI acquisition times in the range of 30-200 seconds are sufficient to con-
struct motion models with an average prediction performance below 2 mm. The results
are presented in detail in Chapter 5, Table 1. Although the reconstruction quality suffers
from short 4DMRI acquisition times, the prediction performance of the resulting motion
models is surprisingly good. The ability to perform accurate motion predictions despite
the limited time for data acquisition is an important insight for the clinical relevance of
the proposed methods.

This thesis presents possible motion compensation techniques for the non-invasive and

radiation-free treatment of pathological tissue in moving abdominal organs in MRgHIFU.
We conclude that patient-specific models are best suited to cover the large variety of

possible MRgHIFU treatment scenarios.
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6.2 Future Research

The future research focus should lie on the improvement of the currently developed
techniques. So far, the prediction performance of the proposed methods have been vali-
dated on 4DMRI data through theoretical simulations. The next steps are therefore the
integration of the technique in a real MRgHIFU system and its validation in vivo. To
achieve a realisation of the proposed techniques in a clinical environment, we recom-
mend the following improvements:

e Ensure a 4DMRI acquisition where all respiratory bins are more equally occupied.
One way to achieve this is by using breath coaching. With the patient following a
visual or audio signal, a more regular breathing pattern would be achieved. This
benefits a more consistent data distribution and prevents very deep breaths.

e Alternatively, an adaptive 4DMRI slice acquisition sequence could be applied. In
addition to the 4DMRI sequence, a pencil beam tracking the respiratory state can
be acquired. By means of this pencil beam, a lookup table, containing informa-
tion about the already captured data slices for a given breathing depth, could be
created. In addition, the pencil beam would resolve the current respiratory state.
Based on the lookup table and the measurement of the current state, the missing
slices for the respective breathing depth could be captured.

e In case of empty bins during 3D volume reconstruction, the missing slices can be
obtained through slice interpolation. This, however, can only be done for slices
where both embracing slices are available.

e A short time gap between data acquisition and start of the treatment is crucial
for accurate motion prediction. Therefore, a fast implementation of a non-rigid
registration algorithm would significantly decrease the acquisition time.
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