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Why not use SDF- rather than Beta Models in Performance Measurement?

1. Introduction

Performance measurement of actively managed portfolios has remained a topic of overwhelm-
ing interest in both research and practice over the past decades. While in the asset manage-
ment industry, regression based “beta-pricing models” and their associated “alphas” (Jensen
alphas) are still predominately used to measure performance, much theoretical progress driven
by the advances in asset pricing theory was achieved over the past decade, which widened the
gap between the models used in academic research and those implemented in practice. A strik-
ing observation is that performance measurement based on stochastic discount functions (SDF)*
is almost inexistent in practical applications, although its merits vis-a-vis the beta pricing models
are well documented in the literature?; see Ferson (2012) for an extensive summary and discus-

sion.

In the beta-pricing framework, the performance of an active manager is measured in
terms of excess portfolio returns with respect to excess returns measured on one or several
“benchmark” portfolios which are often used to control for the investment “style” of an inves-
tor. Typical beta-pricing models are the CAPM or multifactor-pricing models with excess returns
on style sorted portfolios. Given the popularity of these models, it is not surprising that the as-
sociated performance measures (Jensen alphas) enjoy widespread application as well. However,
Ferson (2012) and Ferson and Lin (2012) discuss several methodological limitations of this ap-
proach compared to the SDF models. First, the sign of alphas has in general an ambiguous rela-

tionship to the marginal expected utility from adding or eliminating the assets from a portfolio.’

!Stochastic discount factor models have been used in performance measurement by Chen and Knez (1996), Dahlquist and
Soderlind (1999), and Ferson et al. (2006).

2 In order to avoid confusion, excess performance based on beta models is called ,alpha“ in this paper, while excess perfor-
mance based on SDF-models is called “SDF-alpha” or SDF pricing error.

® The relationship is unambiguous only at the margin, i.e., for infinitesimal portfolio changes (Dybvig and Ross, 1985). However,
as shown by Gibbons et al. (1989), in Table 7, an asset with a positive (Jensen) alpha can exhibit a negative weight in the optimal
orthogonal portfolio (OOP). [The OOP is a portfolio allocated to a set of mispriced assets, which portfolio weights proportional
to the (Jensen) alphas computed with respect to a (possibly inefficient) benchmark portfolio. The OOP can be regarded as the
“optimal” orthogonal complement of the benchmark portfolio which, with appropriate weights, can be combined to an efficient
portfolio; see Jobson and Korkie (1982) or MacKinlay (1995) for applications to active management and asset pricing.] Ferson
(2010) concludes from this observation: “So, even if a positive alpha is attractive at the margin to a mean variance investor, it



The appropriate specification of an SDF eliminates this problem. Second, alphas lose their intui-
tive interpretation in the presence of conditioning information. And third, typical benchmark
portfolios used in practice exhibit statistical properties which provide biased results; in the ter-
minology of Aragon and Ferson (2006) they do not qualify as “appropriate benchmarks”. A
benchmark is appropriate if it has the same covariance (betas) with the SDF as the evaluated
fund(s). As the authors show, in a mean-variance setting, this only holds under very restrictive

assumptions, e.g., quadratic utility.

Therefore, from a theoretical point of view, traditional alphas are unreliable indicators of
effective superior performance and do not unambiguously reveal whether a mispriced asset
should be bought or sold. Given these limitations, it is surprising that the SDF methodology is
not more widely used in empirical studies and practical applications. This may be due to the
estimation framework which differs slightly from the beta models, and an alleged lack of intui-
tion. However, the methodology has the same practical flair as the beta-pricing models: While
the alphas derived from beta models are solely based on the idea that the risk exposures of a
manager’s portfolio can be (statically or dynamically) replicated by a benchmark portfolio and
excess returns being compared, the alphas of SDF models are derived from the notion that a set
of given assets (called “primitive assets”) is assumed to be correctly® priced on a risk-adjusted
basis. From a practitioner’s perspective, this set of assets would eventually correspond to the
“core” holdings in a core-satellite portfolio approach, or simply to the benchmark or passive
assets. Unfortunately, the asset pricing restrictions imposed by the SDF approach differs from
the standard beta-models, in particular in a conditional setting and depending on the specifica-
tion of the primitive assets. The SDF approach goes at no substantial costs; while the traditional
alpha is invalidated, other measures such as the widely used Sharpe ratio preserves its applica-

bility (Ferson and Lin, 2012).

Aside from these methodological considerations, the question arises to what extent the
aforementioned limitations are empirically relevant in practical applications. This is the major

focus of this paper. We address this question using a sample of Swiss equity mutual funds which

might not imply buying a positive alpha fund given a realistic discrete response.” In contrast, the sign of the SDF-alpha is unam-
biguous with respect to the marginal expected utility from discrete changes in assets’ weights.

4 Respectively, with minimum pricing error.



has not yet been analyzed in the literature. There are relatively few empirical studies which al-
low a direct comparison of SDF- and beta-based performance measures in a conditional and
unconditional setting. Bessler et al. (2009) perform a comparative study with German mutual
funds and find substantial differences between SDF pricing errors and alphas. The paper does
not, however, address the nature of these differences. We show in this paper that a meaningful
comparison of performance tests derived from beta and SDF models requires a consistent speci-
fication of the asset universe underlying the SDF and beta models. Specifically, our results reveal
that the key for a “fair” comparison between SDF and beta models is the consistent specifica-
tion of the set of primitive assets used to calibrate the SDF function. Once this is established, the
size of (absolute) performance differences considerably decreases between the two model

families.

The paper does not contribute to the literature that addresses estimation issues related
to the SDF and beta models, which are of course directly relevant for performance measure-
ment, but which are not yet directly related to this topic. The early studies find that the general-
ity of the SDF approach does not come at the cost of efficiency in parameter estimates or power
in specification tests’, but more recent tests investigating the small sample properties of the
test statistics (Garrett et al., 2011) suggest that the SDF approach is more likely to be less effi-
cient but more robust than beta models. Overall, the findings suggest that the SDF approach
where the stochastic deflator is specified by a single or multifactor model does not perform

worse in small samples than standard beta models.

The rest of the paper is structured as follows: In Section 2, the empirical methodology of
the two models, beta and SDF, is shortly presented. Section 3 describes the data used in this
study. Section 4 contains the empirical results of the paper, and Section 5 summarizes our find-

ings.

® See: Jagannathan and Wang (2002), and Kan and Zhou (2002).



2. Empirical models: Beta vs. SDF

The empirical models used in this paper are described in the Appendix. The estimated beta
models have the general structure given by (3b), where ap are the conditional alphas being es-
timated. The alpha represents the average deviation between the manager’s excess return and
the excess return of a dynamic benchmark strategy which replicates the time-varying risk expo-
sures of the manager’s portfolio. In the empirical part, we implement three types of beta mod-

els:

- A CAPM-type single-beta model with excess returns on a broad market index:

CAPM(SPI);

- The Fama-French multi-beta (three-factor) model with excess returns on the market in-

dex, a size-related spread portfolio and a value-growth spread portfolio: FF;

- A multi-beta model with excess returns on nine sector portfolios covering the same asset

universe as the broad market index: 9SPI.

The SDF model has the general structure given by (4b), and the implied SDF-alphas are displayed
in (5). The alphas are zero if the fund can be replicated by a portfolio (at no cost) of a set of N
primitive assets using public information as reflected in Z;, and the SDF prices the primitive as-
sets correctly, respectively, with minimum error. Performance measurement with SDF involves

three steps:

i)  Model specification: The estimated SDF-alphas depend on the specification of the SDF
which is not unique unless the market is complete. Thus, different SDF models are likely
to produce different SDF-alphas. In the empirical part, we use three SDF model specifi-
cations: linear factor model SDFs, primitive-efficient SDFs, and the Bakshi-Chen SDFs.
The models are described in Section A.2.2 of the Appendix. In the empirical part of the

paper, we estimate two linear factor specifications of the SDF:
- Asingle factor model using gross market returns (SDF_CAPM);

- A three-factor Fama-French type model with gross returns on the market, a size-

related spread portfolio and a value-growth spread portfolio as factors (SDF_FF).



These specifications make it possible to directly compare the results to the beta models
(CAPM(SPI), FF, 9SPI1), where the excess returns on the benchmark portfolios are de-
fined analogously. Notice that the risk-free rate is always included in the set of primi-

tive assets.

ii)  Model calibration, i.e., estimating the model parameters. This requires the specification
of a set of primitive (or benchmark) assets which are assumed to be correctly priced. In
the empirical part, a set of nine sector indices (plus the risk-free security) is used. To
make the performance results of the CAPM directly comparable with the corresponding
estimates in the beta framework, we moreover add a CAPM-calibration where only the
SPI market index (plus the risk-free security) is used as primitive asset; this model is de-
noted by SDF_CAPM(SPI) in contrast to SDF_CAPM(9SPI) which relies on the standard

specification of the primitive assets (SPI sectors).

iii) Performance estimation, i.e., fitting the SDF-alphas based on (i) and (ii). Given our
model specifications and calibration, we get a total of five SDF models in our perfor-
mance tests:

- SDF_CAPM(9SPI);

- SDF_FF;

- SDF_primitive-efficient;
- SDF_Bakshi-Chen;

- SDF_CAPM(SPI).

3. Data

The empirical part of the paper is based on 46 Swiss mutual funds over the period from January
2000 to August 2011 (140 months). The sample contains 37 equity funds and nine mixed funds.
To keep the sample homogenous, we exclude mixed funds that invest less than one third in eg-
uities. In order to avoid issues related to currency risk, we furthermore restrict our sample to
funds that are traded in CHF and invest primarily in the Swiss stock market. Moreover, the funds

can be divided into general mutual funds and small- and mid-cap funds. According to the fund



classification of Morningstar, our sample contains 37 general mutual funds and nine small- and

mid-cap funds.

We collect monthly fund returns on a total return basis. Fund returns are net of man-
agement fees and expenses. Because the sample only contains surviving funds, survivorship bias
is a potential problem. Adapting the procedure proposed by Malkiel (1995), we estimate the
survivorship bias based on a sample of 112 (surviving and nonsurviving) Swiss mutual funds
which existed during the 2000-2011 sample period. The sample contains 70 funds still active at
the end of the observation interval, whereas the remaining 42 did not survive. The equally
weighted average annual return of the 70 surviving funds is 1.078%, in contrast to 0.447% for
the entire sample of 112 funds, which implies a survivorship bias of 63 basis points per year.
This is slightly more than the bias of 45 and 40 basis points, respectively, reported by Bessler et

al. (2009) and Griese and Kempf (2003) for comparable German mutual funds.

Benchmark returns: We use the Swiss Performance Total Return Index, SPI TR, as
benchmark index. It contains all 221 listed Swiss stocks and therefore captures the total invest-
ment opportunity set available to fund managers. For comparison, we also use the MSCI Swit-
zerland TR Index for several tests. To estimate the Fama and French (1993) three-factor model,
we use spread returns on size and value-growth style portfolios, denoted by SMB and HML, as
additional factors. The construction of spread returns is based on the formulas published on
Kenneth French’s website, using raw returns on four MSCI Switzerland TR Style Indices (Small

Cap, Large Cap, Value, Growth).

Primitive assets: In an SDF framework, a set of primitive assets must be specified to cali-
brate the “benchmark” model; the parameters are estimated from a system of equations such
that the sum of squared, weighted SDF pricing errors of the primitive assets is minimized. Theo-
retically, the set of primitive assets should reflect the major building blocks of the investment
universe available to a fund manager. As stated above, the SPI family optimally represents our
investment universe, and we therefore use its disaggregated nine (of its ten) sector indices as
primitive assets in addition to the risk-free security. The tenth sector is not included because its
data are not available before 2006. The data are collected from Thomson Reuters Datastream,

and summary statistics are shown in Exhibit 1. For direct comparison of the empirical results



between the SDF and beta models, we use the same sector return data as in multi-beta model
(9SPI). To make the CAPM-based performance results more directly comparable with those of
the corresponding beta model (CAPM(SPI)), we use the broad SPI market index (plus the risk-

free security) as primitive asset in this specific test.
[Insert exhibit 1]

Information variables (instruments): Conditional performance evaluation requires the
specification of a subset of measurable proxies for the public information on which investment
decisions are based. We include three instruments which have performed well in predicting
stock returns and risk in earlier studies: (i) the lagged log dividend yield from the Datastream
Swiss TR Index, calculated as the log of the total value of dividends paid of all constituent parts
of the index at time t minus the log of the total market value of the index at time t:° (ii) the
lagged 1-month interest rate (Swiss interbank rate); and (iii) the lagged term spread, computed
as the difference between the 10-year interest rate on the Datastream Swiss Benchmark Bond

Index and the Swiss 3-month LIBOR.

The predictive power of the instruments is tested by regressing market (SPI) excess re-
turns on the lagged instruments, individually and simultaneously. The results (which are not
displayed) reveal that only the short-term interest rate and the term spread have predictive
power with significant t-statistics of -2.42 and 2.46, respectively. In contrast, but similar to the
findings of Bessler et al. (2009) for German mutual funds, the dividend yield is insignificant with
a t-statistic of -0.2. For the simultaneous test of all three instruments we apply Hansen’s (1982)
GMM using a heteroskedasticity and autocorrelation consistent covariance weighting matrix.
The estimation results reveal that the single-predictor results are not robust in the multivariate
case. The t-statistics are insignificant for all three information variables. Nevertheless, a Wald
test shows that the null hypothesis, that all three information variables are jointly equal to zero,
can be rejected at the 5% significance level. We therefore use the three instruments in our sub-

sequent tests.’

®The logarithmic yield is computed because of superior time series properties (Lewellen, 2004).
7 The results are not different if the MSCI Switzerland TR market returns are used.



4. Empirical Results

In this section, the empirical results for the beta- and SDF-based performance tests are present-
ed in two separate sub-sections, followed by a detailed comparison and discussion of the results

in sub-section 4.3.

4.1 Performance estimates using beta models

4.1.1 Regression results

Exhibit 2 shows the unconditional and conditional estimation results of the performance tests
using a single-beta CAPM(SPI) representation and two multi-beta representations of returns:
the Fama and French (FF) three-factor model, and a multi-beta model with nine SPI-sector re-

turns as benchmarks (9SPI).
[Insert exhibit 2]

In the unconditional CAPM(SPI), the mean abnormal performance is -0.082% per month, or
about -98 basis points per year. The small- and mid-cap funds clearly outperform the general
funds. The three-factor FF model considerably deteriorates the mean abnormal performance to
-0.203% per month, or about -241 basis points per year. The inclusion of the SMB style portfolio
makes the difference between small-/mid-cap and large-cap funds less pronounced, which is
also reflected in a relatively high R-squared value. The results of the multi-beta 9SPI-model
shows that disaggregating the broad market index into nine sectors decreases the performance

to -0.150% per month, or about -179 basis points per year.

Augmenting the tests for conditioning information has mixed effects: Performance is
positively affected for the CAPM(SPI) and the FF three-factor model, where the conditional al-
phas are -0.026% and -0.139% per month, or -31 and -166 basis points per year, respectively.
This finding is consistent with the results reported in Ferson and Schadt (1996) for U.S. mutual
funds and Silva et al. (2003) for European bond funds, but they are in contrast to the results in
Dahlquist et al. (2000) for Swedish funds and Bessler et al. (2009) for German mutual funds. A
possible interpretation of this finding is provided by Ferson and Schadt (1996), based on their

observation that the term Bp Cov{zt J‘B,t+1} is negative for the average fund. We compute a



value of -0.0005572 for the CAPM(SPI), implying that fund managers decrease their market beta
when expected market returns are high conditional on public information, and vice versa. Fer-
son and Schadt’s explanation relies on the cyclicality of funds’ inflows and outflows. If favorable
business conditions drive expected market returns up, more new money flows into the funds. If
fund managers need time to allocate this money, the funds temporarily increase their cash

holdings, implying lower fund betas.

In contrast, the 9SPI sector model exhibits a moderate decrease of average performance
after conditioning for public information: the conditional alpha is -0.160% per month, or -190
basis points per year. Thus, conditioning information does not unambiguously make fund per-
formance look better, as suggested by the body of empirical literature. It moreover illustrates
the well-known fact that performance measures are not immune with respect to the repackag-
ing of the assets in the benchmark universe (here, SPI stocks), which is a particularly important

point to recognize in a conditional setting.

The last column of Exhibit 2 reports the average p-values of the Wald F-tests for the null
hypothesis that all interaction terms, i.e., the coefficients of the products of the factors and the
predetermined information variables, are jointly equal to zero. The figures in brackets show the
number of funds for which the null hypothesis is rejected at the 10% significance level. For ex-
ample, for the CAPM(SPI) the null hypothesis is rejected for 21 funds, i.e., almost half of the

sample.®

The returns of our fund sample are net of costs, i.e., all management fees are deducted
from the returns. In order to evaluate the manager’s performance before fees, we have to add
back the total expense ratio to our alphas; the average across all funds in our sample is 1.492%
per year. Taking the conditional annualized alpha of the CAPM(SPI) model of -0.312%, the nega-
tive performance turns into an overperformance of 1.180% before fees. In sharp contrast to our

results, Bessler et al. (2009) find an underperformance before fees of roughly 32 basis points

8 As a robustness test, we substitute the SPI by the MSCI Switzerland TR Index as benchmark portfolio in the CAPM and FF mod-
el. The results are very similar. The Spearman rank correlation coefficients between the alphas are 0.9842 and 0.9981 for the
unconditional and conditional models, respectively.
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per year for their sample of German mutual funds. However, based on the three-factor FF mod-

el, the performance remains negative before fees.
4.1.2 Cross-sectional distribution of mutual fund alphas

Exhibit 3 shows the cross-sectional distribution of t-statistics of the alphas estimated from the
beta models discussed before. Following Ferson and Qian (2004), we display the distribution
across intervals separated by quantiles of the standard normal distribution. Accordingly, column
(1) shows the distribution of t-statistics that would be expected under the null hypothesis. Ex-
hibit 3 also presents the maximum and minimum t-statistics that are, in addition, used to calcu-
late the Bonferroni p-values to test the null hypothesis that all alphas are jointly equal to zero
against the alternative of at least one positive (Bonferroni p-value (+)) or negative (Bonferroni p-
value (-)) alpha. To compute the Bonferroni p-value, one simply has to multiply the maximum or
minimum one-tailed p-value from the distribution of t-statistics across all funds by the number

of funds.
[Insert exhibit 3]

Exhibit 3 shows that the distribution of t-statistics is skewed to the left compared to the distri-
bution under the null hypothesis. This finding is more pronounced compared to previous stud-
ies. For each model, we find at least five highly significant negative alphas with t-statistics below
-2.326. The classical beta models (CAPM(SPI), FF) generate more extreme negative values com-
pared to the 9SPI sector model. In contrast, for positive alphas, the Bonferroni p-value never
rejects the null hypothesis that all alphas are zero against the alternative that at least one alpha
is positive. The impact of conditioning information is equivalent to the results reported in the
section before. The distribution of the alphas from the classical beta models (CAPM(SPI), FF)
makes the performance of the funds look better, the number of negative alphas which are sig-
nificant has decreased, and the conditional CAPM(SPI) even produces four positive alphas with
significant t-statistics. Again, for the 9SPI sector model, conditioning information does not seem

to shift the distribution of alphas in the same way.
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4.2 Performance estimates using SDF models

4.2.1 Calibration and performance of SDF models

In a first step, we calibrate the SDF models based on the discount factor specifications discussed
in Section 2.2.2: a single-factor CAPM, a three-factor FF model, plus the primitive efficient and
Bakshi-Chen specifications. The returns of 9 SPI sectors (plus the risk-free rate) are used as prim-
itive asset returns to calibrate the models. To make the performance results of the CAPM direct-
ly comparable with the corresponding estimates in the beta framework, we moreover add a
CAPM-calibration where only the SPI market index (plus the risk-free security) is used as primi-
tive asset; this model is denoted by SDF_CAPM(SPI) in contrast to SDF_CAPM(9SPI) which relies

on the standard specification of the primitive assets (SPI sectors).

Exhibit 4 shows the results of the specification tests. The first row displays the results us-
ing a constant discount factor which can be motivated by risk-neutrality. Furthermore, the dis-
count factor is equal to the inverse of the sample mean of the Swiss 3-month LIBOR which is
0.1157% per month over the sample period. Accordingly, the inverse is 0.9988
(=1/(1+0.001157)), which is very close to the value of 0.9971 reported in the first line of Exhibit
4. Panel A and B present the results of the unconditional and conditional models, respectively.
In addition to the monthly mean of the SDF, the table also displays the monthly standard devia-
tion, the first-order autocorrelation and the corresponding p-value, the minimum and maximum
value of the SDF, the number of negative monthly SDFs, and the results from two different
methods to measure the unconditional and conditional Hansen and Jagannathan (1997) dis-

tance (HJD).
[Insert exhibit 4]

The means of the SDFs are below 1.00 in all models, as implied by a positive interest rate, indi-
cating a minimum reliability of the SDF estimates. Nevertheless, minimum and maximum values
reveal that the intervals are large across all models, except for the unconditional CAPM. To illus-
trate this more in detail, Exhibit 5 shows the time-variation of the fitted values from each mod-
el, except for the SDF_CAPM(SPI) which is nearly identical to the SDF_CAPM(9SPI) and is there-
fore skipped. Similar to Farnsworth et al. (2002) and Bessler et al. (2009), we find that the

standard deviation increases with the complexity of the models, i.e., by adding factors or by
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moving from unconditional to conditional models. This is consistent with Hansen and Jaganna-
than (1991) who show that the minimum variance of an SDF increases, i.e., the HJ bound be-
comes more tight if the number of underlying assets increases (in absolute terms, or due to
scaled factors or returns). Note that the value of a highly volatile SDF is ambiguous. While a
more volatile SDF is necessary to explain the historical equity premium (Mehra and Prescott,

1985), a larger variance of an SDF also implies lower power to detect abnormal performance.
[Insert exhibit 5]

The last four columns of Exhibit 4 present the results of two different methods to estimate the
Hansen and Jagannathan (1997) distance. The HJ-distance (HJD) is a useful diagnostic to test
model adequacy and can be interpreted as the average pricing error across a group of primitive
assets for a given (“candidate”) SDF specification. It measures the distance between the candi-
date SDF and the true SDF which would correctly price the primitive assets. We report both the

unconditional and conditional measure for each method.

Model diagnostics based on HID. Following Lewellen et al. (2010), we first derive the tra-
ditional HJ-distance labeled as HJun and Hlcon in Exhibit 4. Again, the pricing errors are defined
asul =E(m-R—1)% wheremis a candidate SDF and R denotes a N X 1 vector of gross
returns of the primitive assets including the risk-free security. Hansen and Jagannathan (1997)
show that the distance between a candidate SDF, m, and the corresponding true SDF, m*, can
be written as D = min,,E{(m* —m)?}. Term D is equivalent to ul’H 'ul, where H =
E(RR") denotes the second moment matrix of gross returns of the primitive assets. To estimate
the conditional measure of the HJ-distance, we follow Farnsworth et al. (2002) and define
r=R ® {Z./E(Z)}, where "./" denotes element by element division. Finally, replacing R by r
in ul’H 'ul yields the following population value of the traditional HJ-distance in quadratic
form: E(mr — 1)’ {E(rr’)~'} E(mr — 1). Exhibit 4 reports the corresponding sample mo-
ments under HJun and Hlcon. If the vector of information variables, Z, is reduced to a constant,

we simply estimate the unconditional measure.

The reported Hlun estimates reveal that all unconditional models, except for the

SDF_CAPM(9SPI), have smaller pricing errors compared to the model with a constant discount

°To simplify notation, we skip time indices in this section.
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factor. However, the pricing error in the SDF_CAPM(9SPI) model is also only slightly higher. The
pricing errors of the primitive-efficient and the Bakshi-Chen models are zero by construction.
Thus, models with a time-varying SDF alleviate resulting pricing errors. Generally, conditional
models exhibit larger unconditional HJ-distances compared to their unconditional counterparts.
This difference arises due to the fact that conditional models price dynamic strategies implied
by the lagged information variables, and thereby sacrifice some accuracy on the returns of prim-
itive assets. However, because conditional models are estimated to price both the primitive as-
sets and the dynamic strategies, they should produce smaller pricing errors according to the
HJcon measure. This is the case for the SDF_CAPM(9SPI) single-factor and the SDF_FF three-
factor model. Interestingly, we also find that, according to the Hicon measure, the conditional
three-factor model performs better than the conditional SDF_CAPM(9SPI) and the unconditional
three-factor model. Therefore, unlike in previous studies (e.g., Ferson and Harvey, 1999; Farns-
worth et al., 2002), the Fama and French three-factor model seems to do a good job pricing dy-

namic strategies.

Model diagnostics based on the modified HID. For comparative purposes, we also esti-
mate a modified HJ-distance, denoted by “KRun” and “KRcon” in Exhibit 4, as proposed by Kan
and Robotti (2008). This measure relies on excess returns instead of gross returns when the
candidate SDF is specified. Kan and Robotti show that the traditional SDF representation (8) is
problematic in this setting, because the pricing errors as well as the relative rankings between
competing models are sensitive to affine transformations of the factors. The authors show that

setting the constant equal to one and using de-meaned factors in the SDF specification
mef; =1+ b'(Feyq — E{F14}) (15)

results in robust misspecification measures that are invariant to affine transformations. They
moreover show that this specification implies a modification in computing the HID, namely, that
the inverse variance-covariance matrix of (scaled) excess returns V=1 must be used as weighting

matrix in u1’V~"'ul in place of the second moment matrix H.

Equipped with excess returns, de-meaned factors, and the variance-covariance matrix as
weighting matrix, we are able to estimate the modified HJ-distance as an unconditional and

conditional measure. Although there is a simple analytical relation to the original HID via the
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riskless rate, it is interesting to see how close the measures are when empirically implemented
in small samples. We estimate the modified HID for the linear single factor SDF_CAPM(9SPI),
the FF three-factor model, and the primitive-efficient SDFs model augmented by a constant.
Obviously, the alternative HID cannot be applied to the Bakshi-Chen model where the SDF is a
function of logarithmic factor returns which have now zero mean. The SDF_CAPM (SPI) is not
estimated as well because it prices only the benchmark portfolio and the risk-free security, and

the latter drops out in the modified setting.

Addressing the traditional HID first, the empirical results in Exhibit 4 indicate that un-
conditional models perform better according to the unconditional measure HJun (0.381 vs.
0.236, 0.362 vs. 0.222), and conditional models perform better according to the conditional
measure Hlcon (0.380 vs. 0.407, 0.362 vs. 0.396). However, the absolute size of the pricing er-
rors of the conditional SDF models is virtually identical under the conditional and unconditional

measures (0.380 vs. 0.381, 0.362 vs. 0.362).%°

The results derived from the modified HID (denoted by KRuc and KRcon) are very similar
and do not lead to different conclusions. Comparing KRun with HJun (Panel A) reveals that the
unconditional measures are almost identical to the classical HID (0.240 vs. 0.236, 0.216 vs.
0.222). However, when pricing dynamic strategies (Panel B) there is a clear discrepancy be-
tween the two models; the modified HID produces smaller pricing errors for the conditional

measure KRcon (0.320 vs. 0.380, 0.284 vs. 0.362) as well as for the unconditional measure KRuc.

Model diagnostics based on dynamic performance. The Hl-distance from above summa-
rizes the relative fit of a specific SDF model to the cross-section of primitive assets. However,
the HJ-distance provides no information about the economic magnitude of pricing errors in the
underlying primitive assets. Therefore, following Farnsworth et al. (2002), we also investigate
the dynamic performance of the different SDF models in Exhibit 6, in their ability to price the
underlying primitive assets. Recall that an SDF model implies that the term m;,; R;, should not
be predictable using public information, Z;, even though R;,; might be predictable based on Z;.
To check this, we compute the pricing errors, ul = m;,1R;y; — 1, of individual primitive assets

and regress these errors on the vector of lagged instruments, Z;. Using the “correct” m;, im-

10 Remember that the conditional SDF refers to the scaling of risk factors, while the un/conditional HID refers to the scaling of
primitive returns.
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plies that these predicted pricing errors should be close to zero. Accordingly, the reported
standard deviations of these fitted values of the regressions should be small if the model cap-
tures the predictable variation in expected returns (e.g., Ferson and Harvey, 1993; Ferson and
Korajczyk, 1995). In contrast to the HID, the standard deviations from Exhibit 6 do not penalize a
model that gets the average return wrong. Thus, the standard deviation can be interpreted as a

pure measure of the ability of a model to explain the variation of expected returns.
[Insert exhibit 6]

The first row in Exhibit 6 shows the standard deviations of the fitted pricing errors when assum-
ing a constant discount factor. This serves as a benchmark case because of its inability to explain
any of the predictability, which can be shown, according to Farnsworth et al. (2002), by the fol-
lowing example using the returns of sector 1. As reported in the first line of Exhibit 6, the
monthly standard deviation of the fitted pricing error for sector 1 is 0.990%. In contrast, Exhibit
1 shows that the standard deviation of the monthly raw return on sector 1 is 4.984%. Because
the R-square measures the percentage of variance explained, we obtain an R-square of roughly
0.0395 [=(0.00990/0.04984)*] when we regress the returns on sector 1 upon the vector of
lagged information variables. The value of 0.0395 is nearly identical to the unadjusted R-square

reported in Exhibit 1. The same can be shown for the remaining primitive assets.

Panel A in Exhibit 6 shows the results of unconditional SDF models. In contrast to the re-
sults of Farnsworth et al. (2002) and Bessler et al. (2009), we find that the unconditional
SDF_CAPM(9SPI) model performs slightly better, on average across all primitive assets, than the
constant discount factor model. Also, the three-factor SDF_FF model exhibits relatively small
standard deviations and, therefore, performs well in explaining the predictable variation in re-
turns. The remaining two comparable models, i.e., the primitive-efficient model and the Bakshi-
Chen model, do poorly in capturing the time-variation of expected returns. The standard devia-
tions of the fitted pricing errors are large, in many cases even larger than the standard deviation
of the sectors’ raw returns, implying that the product m;,;R;,; — 1 produces larger regression

coefficients on Z; than R, ; does.

Panel B in Exhibit 6 presents the results of conditional models. We observe that they per-

form better on average compared to their unconditional counterparts. The primitive-efficient
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model and the Bakshi-Chen model now perform extremely well producing standard deviations
of the fitted pricing errors close to zero. This is not surprising because conditional models are
constructed to make the expected product of the pricing errors and the lagged information var-
iables equal to zero. However, the SDF_CAPM(9SPI) and three-factor SDF_FF model perform
worse in a conditional setting — with the SDF_FF model performing only slighty worse than in
the unconditional setting, which confirms our results from the HJD measures. Therefore, the
Fama-French SDF-specification does not deteriorate substantially in the conditional version,
implying a good performance in pricing dynamic strategies; this finding is in contrast to previous

studies, e.g., Ferson and Harvey (1999) and Farnsworth et al. (2002).
4.2.2 Mutual fund performance: SDF models

Based on the different specifications of the discount factor, Exhibit 7 presents some cross-
sectional characteristics of the estimated SDF-alphas: the mean and median, and the mean of
the top and bottom 3, respectively 10, funds. It also shows the Bonferroni p-values for the null
hypothesis that all alphas are jointly equal to zero against the alternative of at least one positive

(Bonferroni p-value (+)) or one negative (Bonferroni p-value (-)) alpha.
[Insert exhibit 7]

The unconditional results in Panel A reveal that the average performance based on the
SDF_CAPM(9SPI) model is -0.190% per month, or -226 basis points per year. The total expense
ratio on average of all funds is 1.492% from 2000 to 2011, indicating that the average fund
clearly underperforms even before fees. This observation is even more pronounced when the
SDF_FF three-factor model is estimated, whereas it is less pronounced using the primitive-
efficient model and the Bakshi-Chen model. In contrast to the results from Farnsworth et al.
(2002) and Bessler et al. (2009), we generally find a positively skewed distribution of individual

fund alphas, except for the three-factor model.

The results of the conditional models are presented in Panel B. The average and median
SDF-alphas estimated from the SDF_CAPM(9SPI) model are substantially lower than in the un-
conditional setting: the mean of -0.258% per month implies an underperformance of 305 basis
points per year. Interestingly, the deterioration of average performance is not reflected in the

top and bottom performing funds. The SDF_FF three-factor model, the primitive-efficient mod-
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el, and the Bakshi-Chen model imply that introducing information variables has almost no effect
on the performance of the average fund. The corresponding distributions of SDF-alphas shift
only slightly to the left. Interestingly, the single-factor SDF_CAPM(SPI) exhibits a positive effect
from conditioning information, confirming our findings from the CAPM(SPI) in the beta frame-
work. The next sub-section addresses this comparison in more detail. Again, the distribution of
fund alphas is in general positively skewed with the Bakshi-Chen model as the only exception.
Finally, the Bonferroni p-values clearly suggest that the extreme performing fund is more likely
to have a negative than a positive SDF-alpha. Both in the unconditional and conditional setup
and independent of the applied model, the null hypothesis that all alphas are jointly equal to
zero can always be rejected against the alternative that there is at least one significantly nega-
tive alpha. On the other hand, we cannot reject the null hypothesis against the alternative that

at least one significantly positive alpha exists.

Overall, and in contrast to the beta framework, conditioning information seems to make
the performance of funds look less favorably in the SDF framework. Chen and Knez (1996) sug-
gest that this strongly negative effect of conditioning information arises through “tougher” per-
formance yardsticks when dynamic strategies based on information variables are used. Scaling
factors or returns is equivalent to augmenting the asset space by dynamic strategies (with con-
ditional weights linearly related to the instruments). Based on Hansen and Jagannathan (1991),
adding assets implies an upward shifting SDF minimum volatility bound and equivalently a max-
imum higher Sharpe ratio of the scaled benchmark universe, which entails stronger pricing re-

strictions lowering the funds’ performance.

We also compute rank correlations between the SDF-alphas of all five models. The re-
sults are not shown here. We find that the relative performance of individual funds is quite ro-
bust against different specifications of the SDF. In the unconditional version, the rank correla-
tions range between 0.999 and 0.944. However, the range is between 0.967 and 0.741 for the
conditional models. The rank correlations between the unconditional and conditional version of
each model vary between 0.971 for the SDF_CAPM(9SPI) and 0.835 for the Bakshi-Chen model.
Compared to the findings of Bessler et al. (2009), we find even larger rank correlations in our
sample of funds, indicating that the relative performance is reasonably correlated across differ-

ent model specifications.
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4.3 Comparison of CAPM-based performance results

In this section we compare the performance results from the beta framework with those from
the SDF framework, and rely on the CAPM specifications in doing this. While, in the beta frame-
work, the specification of the CAPM model is unambiguous once the relevant market index
(benchmark portfolio) is defined, the SDF framework furthermore requires the specification of a
set of primitive or benchmark assets. Interestingly, none of the previous studies addresses the
impact of this choice on empirical performance measures. In our empirical tests displayed in
Exhibits 4, 6, and 7, we have selected a common set of nine SPI sectors as primitive assets for all
analyzed models. By comparing the SDF-alphas from the so-calibrated SDF_CAPM(9SPI) model
with the alphas from the standard single-beta CAPM(SPI), we observe much worse performance
results in the SDF setting than in the beta-pricing setup; this is particularly the case when condi-
tioning information is introduced. The CAPM(SPI) alpha yields an average monthly performance
of -0.082%, respectively -0.026%, in the unconditional and conditional case. In contrast, the av-
erage monthly performance from the SDF_CAPM(9SPI) model is -0.190%, respectively -0.258%,
in the unconditional and conditional setting. Thus, we find quite large performance discrepan-
cies between the beta and SDF frameworks." It is doubtful whether the discrepancy is of statis-
tical nature, since Jagannathan and Wang (2002) show that the SDF methodology is asymptoti-
cally as efficient as the beta method. Also, specification tests of asset pricing models based on

the two frameworks are equally powerful.

We argue that the just conducted way in comparing the performances from SDF and be-
ta models is not appropriate; the amount of information used to calibrate the SDF model - the
set of primitive assets - is superior to the information reflected in the benchmark (market) re-
turns in the beta model. Or in statistical terms: the wider range of primitive assets which is of-
ten used to calibrate the SDF model imposes additional pricing restrictions which implies a
“tougher benchmark” compared to the simple traditional CAPM relying on a single benchmark
(market) portfolio. The implications for performance measurement are straightforward: A “fair”

comparison requires that either

" However, these performance discrepancies strongly depend on the applied model, i.e., the performance differences are much
less pronounced when we use, for example, the Fama and French three-factor model.
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e the traditional alphas from the CAPM(SPI) model being compared to a single-factor
SDF where the nine sectors are replaced by the SPI index as the only primitive asset
(in addition to the risk-free security), i.e., SDF_CAPM(SPI). The results - which are
not reported here - confirm that the relative performance of the individual fund is
virtually identical; the rank correlations are 1.000 and 0.956 in the unconditional and
conditional setting, respectively. Moreover, the performance differences are ex-
tremely small in both cases and, hence, the models perform similarly;

e or that the SDF_CAPM(9SPI) performance measures being compared to alphas esti-
mated from a multi-beta model where the market (SPI) excess returns are replaced

by those on the nine sectors, i.e., 9SPI.

Exhibit 8 displays the unconditional and conditional alphas for 3 models (two beta- and one SDF-

model) across our cross-section of 46 funds:

(i) the alpha from the 9SPI beta model;
(ii) the SDF-alpha from SDF_CAPM(9SPI); and
(iii) the standard alpha from the CAPM(SPI) beta model.

Our main focus is on the “fair” comparison between (i) and (ii). The unconditional results in
Panel A reveal that the individual funds perform similarly in the SDF and beta frameworks. The
average fund in the 9SPI model (i) outperforms the average fund in the SDF_CAPM(9SPI) model
(ii), with an average alpha of -0.150% compared to -0.190% per month, which is about half a
percentage on an annual basis. As expected from a visual inspection of the results, the rank cor-

relation is a high 0.985, implying that a small level shift explains the performance discrepancies.

Panel B shows the comparison in the conditional setting. The performance differences
are apparently quite large. The average fund in the beta setup, 9SPI, clearly outperforms the
average fund in the SDF setup, SDF_CAPM(9SPI), with average alphas of -0.160% and -0.258%
per month, respectively. The rank correlation is 0.937; hence, there is a notable level shift when
we switch from the beta to the SDF framework. Interestingly, a closer look at the data (see Ex-
hibit 8) reveals that the level shift in favor of the beta setup tends to occur primarily in bad
months, i.e., when the performance of a fund is clearly negative. On the other hand, funds ex-

hibiting a positive alpha seem to perform better in the SDF framework.
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Second, the “inappropriate” comparison of the two dotted lines, i.e., the CAPM(SPI) and
the SDF_CAPM(9SPI), reveals again that the performance strongly deteriorates when we switch
from the beta to the SDF setup. Interestingly, the relative performance of the individual funds is
stable, which is confirmed by the high rank correlations of 0.973 and 0.972 in the unconditional

and conditional setup, respectively.
[Insert exhibit 8]

Overall, we find that the results from the SDF methodology and the beta-pricing setup are close-
ly related if compared appropriately. Nevertheless, our findings suggest that the performance
discrepancies depend on the model specification. Estimating the simplest CAPM version in the
SDF framework, where the SDF is only required to price two primitive assets, SDF_CAPM(SPI),
leads to almost identical results in both unconditional and conditional versions. In contrast,
when a broader range of primitive assets is used, such as the nine SPI sectors (plus the risk-free
security), we find relatively large performance discrepancies and, hence, an economically non-
negligible shift in the level of alphas. As a consequence, performance differences arise through
the selected set primitive assets in the SDF framework. A larger set of primitive assets increases
the number of equations in the system, thereby imposing additional moment restrictions that
affect the parameter estimates (Bekaert and Liu, 2004). Therefore, our findings suggest that,
despite that the nine sectors merely represent a finer segmentation of the broad SPI index, the
additional restrictions caused by adding primitive assets in the SDF setup imply a tougher

benchmark and thereby lower fund performance.
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5. Conclusion

This paper analyzes performance measurement based on stochastic discount factors, compared
to beta models traditionally used in computing funds’ (Jensen) alphas. From a theoretical point
of view, standard alphas suffer from several limitations which are particularly relevant in a con-
ditional setting (e.g., Ferson, 2012; Ferson and Lin, 2012). These deficits can be avoided in an
SDF setting, fortunately, without scarifying the intuition which might explain the popularity of
the standard alphas. While the alphas derived from beta models are based on the idea that the
risk exposures of a manager’s portfolio can be (statically or dynamically) replicated by a bench-
mark portfolio and excess returns being compared, the alphas of SDF models are derived from
the notion that a set of given assets — practitioners would eventually associate it with “core”
portfolio holdings — is correctly priced. Unfortunately, the asset pricing restrictions imposed by
the two approaches are different, in particular in a conditional setting. But how much do they

differ?

Our paper addresses this issue from an empirical, and rather pragmatic, point of view.
For illustrative purposes, we use monthly returns of a representative sample of Swiss mutual
funds from 2000 to 2011. Our results reveal that the key for a “fair” comparison between SDF
and beta models is the specification of the set of primitive assets used to calibrate the SDF func-
tion. Once this is established, the size of (absolute) performance differences considerably de-
creases between the two model families. However, there are sizeable performance deviations in
the cross-section of funds if conditioning information is incorporated in the tests, up to some 20
basis points per month, or about 2.3% per year. In almost all cases, the SDF-alphas are lower

than the standard (Jensen) alphas.

In absolute terms, the annualized average (median) performance of the sample of
funds®?is -2.3% (-2.6%) on an unconditional basis, dropping to -3.1% (-4.0%) if conditioning in-
formation is used. The figures include management fees; however, the underperformance is
much larger than the average annual expense ratio (TER) reported by the funds. Therefore,
evaluated as a group, the funds were unable to “beat” the benchmark in an SDF based frame-

work. The conclusion would be less pessimistic in the traditional setting using beta models.

12 The subsequent figures are based on the SDF_CAPM(9SPI) specification.
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Appendix: Empirical models

A.1 Performance evaluation with beta-pricing models

The unconditional alpha, ap, of a managed portfolio or fund P is estimated by a simple linear regression
equation,

Tpir1 = Ap + Bip Tgrs1 + Eprsr) (1)

whererp.y; and 141 are excess returns of the managed portfolio and the excess return of the
benchmark portfolio, respectively. The Swiss 3-month LIBOR is used as the riskless asset. 5; p denotes
the unconditional beta, and &p 1 is the regression error. The intercept in equation (1) was originally
proposed by Jensen (1968) as measure of abnormal performance, using a proxy for the market portfolio
as benchmark. However, the model can also easily be extended to a multiple-factor model, such as the
Fama and French (1993) three-factor model, in which f; p and 7 144 can be reinterpreted as vectors.

Equation (1) is miss-specified if expected returns and mangers’ betas are correlated and change
over time. Accordingly, to measure conditional performance, Ferson and Schadt (1996) propose a modi-
fication of the traditional Jensen’s alpha in equation (1), and assume that the information which is pub-
licly available can be represented by a set of information variables (subsequently called “instruments”)
summarized by a vector Z; with dimension L X 1, where L corresponds to the number of instruments.
They assume a linear structure for the time-varying conditional beta of managed portfolios,

B1p(Z,) = 8pg + 8pz, (2a)

where z; = Z; — E(Z) is the vector of innovations of the instruments. & is a vector of sensitivities with
dimension equal to the dimension of Z;, whereas the coefficient §p( is an “average beta”. Replacing f5; p
in equation (1) by its conditional counterpart from (2a) leads to an augmented regression equation for
the conditional alpha, ap:

Tpt+1 = p + B1p Toes1 + Bop (2t Tors1) + Eprsa (3a)

with 1 p = 6pg and B, p = 8p. The product of the benchmark returns and lagged instruments, also
known as “scaled” or “actively managed” returns, captures the covariance between the conditional beta
and the conditional expected market return, given z;. These interaction terms are used to control for
common movements in a fund’s conditional beta and the conditionally expected benchmark returns. As
in the unconditional setup, the conditional model can be easily extended to a multiple-factor model by
rewriting equation (2a) as

Pip(Z,) = 8pg + Apzy, (2b)

where the vector 8p is replaced by an L X K matrix Ap summarizing the sensitivities of the K factor
betas to the L instruments. The augmented regression equation is then

Tpi+1 = Ap+ B1p Tprs1 + ﬂ’z,P(zt X rB,t+1) + Ept+1s (3b)

where B, p = 8pg and B, p = vec(Ap) which is the vectorized matrix of sensitivities; @ denotes the
Kronecker product between the instruments and benchmark returns, the multifactor extension of scaled
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benchmark returns. Hence, with L instruments and K factors the number of parameters to be estimated
equals (L + 1)K + 1 (including the constants).

A.2 Performance evaluation with SDF models

The stochastic discount factor (SDF), m; 4, is a random variable which relates the future value of securi-
ties to their current value or price. Standardized by the current price, the basic valuation equation in a
conditional setting is

E(Mmeyq  Reyal Zp) = 1, (4a)

where R;,4 are gross returns (the end-of period value divided by the current price). It is assumed that
the deflator prices a pre-specified set of N basis (or primitive) assets without error,

E(meyq - Repr —11Z) =0, (4b)

where R, is the vector of gross returns of the N primitive assets including the risk-free security™; 1
and 0 are the unit and zero vectors with dimension N. The cross-products m;, - R;,1 may be viewed as
risk-adjusted gross returns on the benchmark assets. Z,; denotes the vector of instruments including a
constant. The unconditional setting is a special case where the vector of instruments collapses to a con-
stant.

A.2.1 Performance Measures
Following Chen and Knez (1996), who first introduced performance evaluation using SDF models, a

fund’s conditional SDF-alpha, ap ¢, is defined by

apy = E(mt+1 “Rp i1 | Zt) -1 (5)

where Rp ;14 is the gross return of a managed fund at time t+1. Thus, ap measures the deviation be-
tween the expected risk-adjusted gross return of a fund and its fair value, which is 1 by definition. As
shown by Farnsworth et al. (2002), ap; is zero if the fund forms a portfolio (at no cost) of the primitive
assets using public information as reflected in Z;, and the SDF prices a set of N primitive assets correctly.
Under these assumptions we have Rp;.; = X(Z;)'R¢;1, where x(Z;) is a vector of portfolio weights
depending on the set of instruments. As a consequence, equation (5) implies that:

ape ={E(M¢p1 - xX(Z)'Rep1 1 Z)} -1
=x(Z){E(M¢yq " Resq | Z)} -1
=x(Z)'1-1=0. (6)

The portfolio of an uninformed manager therefore yields a performance of zero.

 Notice that E(me,q) = 1/E(Rf’t+1), where R¢4 is the gross return on the risk-free security. Including the risk-free asset in
the set of primitive assets is suggested by Dahlquist and Soderlind (1999) and Farnsworth et al. (2002). They show that the
incorporation of the risk-free security in the set of primitive assets helps to correctly identify the conditional mean of the SDF.

14 general, the alphas from the beta model and the alphas from the SDF model in (5) differ in the unconditional as well as in

the conditional setting. The issue is discussed in detail in S6derlind (1999). We denote both alphas by ap to keep notation sim-
ple.



24

The inferences of an estimated SDF-alpha in equation (5) only hold if the pricing equation (4b)
holds for a candidate SDF using a set of N primitive assets. Following Farnsworth et al. (2002), the follow-
ing system of equations is specified to simultaneously estimate the parameters of a candidate SDF and a
fund’s SDF-alpha using Hansen’s (1982) Generalized Method of Moments (GMM):

ul, =My Ry — 1) ®Z,
u2y =ap —Meyq Rpeia +1, (7)

where ul; is the vector of pricing errors relating to the set of N primitive assets, and u2; denotes the
fund specific pricing error. R.; and Rp ;4 denote the gross returns of the primitive assets and the
funds, respectively. Thus, the first N equations define a set of orthogonality conditions involving pricing
errors and instruments, and the final equation estimates the parameter ap which is the mean of the
conditional SDF-alpha defined in equation (5) and should be equal to zero under the null hypothesis of
no abnormal fund performance. The sample moment condition is defined as g = T™1 ¥, (ul} ,u2})’ and
allows to simultaneously estimate the system of equations (7) using Hansen’s (1982) GMM." The mo-
ment conditions are constructed such that the expectation at their true values is zero. Accordingly, GMM
minimizes the sample moment condition g such that the difference between the estimated parameters
and the true values, i.e., the implied pricing error, is minimized. This implies that the value of an estimat-
ed candidate SDF comes as close as possible to the true value of the SDF.

A.2.2 Model specification
We compute performance based on three SDF model specifications:
Linear factor models: In linear factor models, e.g., the CAPM and Fama and French (1993) three-
factor model, m; 4 is defined as

méfl = a(Zt) + b(zt)’Ft+1, (8)

where F,,; denotes the vector of factors gross returns'® at time t+1, and b(Z,) represents a vector of
the respective sensitivities of the SDF. In the unconditional case, Z; collapses to a constant and the pa-
rameters a and b are constant over time. For example, the SDF for the unconditional CAPM is

mily = a+ bRg 4y, (9)

where Rg (1 denotes the gross market return, or for the unconditional Fama and French three-factor
model the SDF is

mgly = a+biRgyq + b SMByyq + bsHML, 4, (10)

where SMB;,, and HML, ., denote the gross returns on the small minus big and the high minus low
book-to-market style portfolios, respectively.

Ba potential problem of the simultaneous GMM procedure is that the number of moment conditions grows substantially with
the number of funds to be evaluated. Thus, we estimate the system (7) separately for each fund. Nevertheless, Farnsworth et al.
(2002) prove that separate estimation is not restrictive as the estimated fund’s alpha and its standard error are invariant to the
number of funds in the system. Estimating the system for one fund at a time is therefore equivalent to estimating the system
with all funds in the sample simultaneously.

% we only specify models where factors are returns or excess returns on traded assets (spread portfolios, mimicking portfolios).
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Conditional factor pricing models can be most easily implemented by using scaled factor returns
(Cochrane, 1996, 2001) by assuming linearity of a(Z;) and b(Z,) in Z,. In the simplest setting of one
factor and one instrument, the following specification results

mel, =a(Z) +b(Z) Feeq
=ag+a;Z; + (b + by'Z)Fyiq
=ag+ a1Z; + boFyyq + b1 (ZeFpiq) (11a)

which is a three-factor model (Z;, F;,1, and Z;F;, 1) with fixed coefficients. In the general case of K fac-
tors and L instruments, with a(Z,) = ay + a,'Z; and b(Z;) = by + B,'Z;, the SDF specification be-
comes

mify =ag+a,'Zy + by'Fpyy + by'(Z, @ Fryy) (11b)

where b, = vec(B;) is the vectorized matrix of B;-coefficients. Equation (11b) implies that the general-
ized model requires the estimation of L X (K + 1) parameters (including a constant). To identify the
parameters, we need a minimum number of N > K + 1 primitive assets.

Primitive-efficient SDFs: Hansen and Jagannathan (1991) show that the projection of the SDF,
m;,1, on the space of primitive gross asset returns, R4, is given by

mit; =1 E(Ryy 1Ry | Z¢ )" Resq (12)

and exhibits the same pricing properties as the “true” SFD which prices the primitive assets correctly. In
our context, the projection is called “primitive-efficient”, mtpfl, because the first two terms, M(Z,) =
1" E(R.1R.+1 | Z, )1, define a vector of conditionally efficient portfolio weights. Following Chen and
Knez (1996), Dahlquist and Soéderlind (1999), and Farnsworth et al. (2002), we assume that the weights
are a linear function of the instruments, M(Z,) = Z,'M, which implies:

mffl =ZiMR;, =m'(Z; Q Rey1), (13)

where M isan L X N matrix and m = vec(M). Apparently, this specification also implies a scaled return
model which can be estimated unconditionally, with an expanded asset universe, using GMM. With N
primitive assets and L instruments (including a constant), there are N X L orthogonality conditions and
parameters to be estimated, implying that the system of equations is exactly identified.

Bakshi-Chen SDFs: Bakshi and Chen (1998) propose an exponential model that defines a strictly
positive SDF, as implied by no-arbitrage. The SDF is specified as follows:

mef, = exp {Z; CIn(Ry41)}, (14)

where C (similar to M above) is an L X N matrix that denotes the parameters of the model. Again, using
N primitive assets and L instruments (including a constant), the system of equations is exactly identified.
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Exhibit 1: Summary statistics of SPI and primitive assets

SPI Sector1 Sector2 Sector3 Sector4 Sector5 Sector6 Sector7 Sector8 Sector9
Summary statistics:
Mean 0.0018 0.0045 0.0046 0.0091 0.0011 0.0048 0.0024 0.0104 -0.0003 0.0004
Median 0.0096 0.0130 0.0147 0.0126 0.0007 0.0117 0.0033 0.0100 0.0058 -0.0034
Maximum 0.1182 0.1192 0.2674 0.2975 0.1348 0.2278 0.1989 0.2995 0.2236 0.5058
Minimum -0.1393 -0.1365 -0.2648 -0.1713 -0.1686 -0.2542 -0.1422 -0.1748 -0.2039 -0.4486
Std. dev. 0.0443 0.0498 0.0847 0.0659 0.0405 0.0786 0.0500 0.0555 0.0725 0.1369
Skewness -0.6233 -0.5750 -0.4469 0.1598 -0.2596 -0.3541 0.3244 0.7538 0.0219 0.4192
Kurtosis 3.6429 3.0818 4.3125 5.3093 4.8517  4.0098 4.9645 8.2420 3.7225 4.9996
JB test statistic 11.4764 7.7525 14.7088 31.7054 21.5748 8.8741 24.9678 173.5494 3.0561 27.4243
(p-value) 0.0032 0.0207 0.0006 0.0000 0.0000 0.0118 0.0000 0.0000 0.2170 0.0000
Predictive regressions:
Log DY -0.0200 -0.0285 -0.0498 -0.0238 -0.0018 -0.0210 0.0021 -0.0674 -0.0290 -0.0742
Short-term -0.9086 -1.4681 -2.9357 -0.6836 0.1408 -2.0632 -0.3029 -0.9906 -1.3621 -3.3954
Term spread 0.0431 -0.7853 -1.0920 0.5736 0.9353 -0.2650 0.0490 -0.6441 -0.1035 -0.3095
R’ 0.0527 0.0397 0.0703 0.0287 0.0202 0.0600 0.0059 0.0672 0.0320 0.0550
ad;j. R’ 0.0318 0.0185 0.0498 0.0073 -0.0014 0.0393 -0.0160 0.0467 0.0107 0.0342

This table reports summary statistics of the SPI and the primitive assets that are used to estimate the parameters of the different SDF models.
In addition to the risk-free security, we use the nine sector indices (on a total return basis) according to the Datastream classification as our set
of primitive assets. The table also shows the coefficients of predictive regressions of the SPI and the sector returns on lagged values of the
information variables (log dividend yield, short-term interest rate, and term spread). The R? denotes the explanatory power of these regres-
sions. The sample period is from January 2000 to August 2011 (140 monthly observations).
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Exhibit 2: Beta models

unconditional models:

conditional models:

2

2

ap t(a) R ap t(at,) R p-val(F)
Panel A: CAPM(SPI)
Mean values of individual fund regressions
All funds -0.082%  -1.105 0.759 -0.026% -0.861 0.765 0.211 (21)
Small- and mid-cap 0.291% 0.906 0.633 0.430% 1.349 0.647 0.088 (5)
Large-cap -0.173%  -1.595 0.790 -0.137% -1.399 0.794 0.241 (16)
Median values of individual fund regressions
All funds -0.134%  -1.489 0.748 -0.130% -1.137 0.760 0.108
Small- and mid-cap 0.358% 1.136 0.622 0.534% 1.621 0.630 0.103
Large-cap -0.157%  -1.625 0.833 -0.138% -1.376  0.837 0.125
Panel B: FF
Mean values of individual fund regressions
All funds -0.203% -1.609 0.818 -0.139% -1.195 0.823 0.243 (19)
Small- and mid-cap -0.094%  -0.504 0.869 -0.038% -0.225 0.877 0.096 (5)
Large-cap -0.230% -1.878 0.805 -0.163% -1.431 0.810 0.279 (14)
Median values of individual fund regressions
All funds -0.134%  -1.772 0.850 -0.120% -1.217 0.860 0.193
Small- and mid-cap -0.072%  -0.403 0.891 -0.024% -0.145 0.893 0.017
Large-cap -0.171%  -2.065 0.837 -0.127% -1.403 0.850 0.262
Panel C: 9SPI
Mean values of individual fund regressions
All funds -0.150% -1.173 0.810 -0.160% -1.144 0.842 0.017 (43)
Small- and mid-cap 0.084% 0.193 0.815 0.011% -0.142  0.858 0.002 (9)
Large-cap -0.207%  -1.505 0.808 -0.201% -1.388 0.838 0.021 (34)
Median values of individual fund regressions
All funds -0.139%  -1.348 0.818 -0.150% -1.294 0.857 0.000
Small- and mid-cap 0.172% 0.731 0.816 0.054% 0.226 0.860 0.000
Large-cap -0.171% -1.766 0.819 -0.170% -1.597 0.855 0.001




The unconditional regression equation for the CAPM(SPI) is specified as follows:
Fpts1 = Op + Bplete1 + Ep i1,

where rp4,; is the excess return of a fund and rg4,; is the excess return on the benchmark portfolio. The benchmark
index for all funds in the sample is the SPI on a total return basis. In the Fama and French (FF) three-factor model we
use the style portfolios SMB (Small Minus Big) and HML (High Minus Low) as our two additional factors. In the 9SPI
model the SPI benchmark portfolio is replaced with nine SPI sectors as model factors. The conditional regression equa-
tion, where all predetermined information variables are used simultaneously, for the CAPM(SPI) is specified as follows:

Tptr1 = Qp + Baplpeer + Bop' (2475, t41) + Ep 41,
where the vector z; is added to the model as a set of predetermined (lagged) information variables. These include the
lagged log dividend yield, the lagged short-term interest rate, and the lagged term spread. As in the unconditional case,
the model can easily be extended to multi-factor models like the FF three-factor model and the 9SPI model. R? are the
adjusted R-squares of the regression, and p-val(F) denotes the probability value of the Wald F-test for the null hypothe-
sis that all coefficients on the interaction terms including the information variables are simultaneously equal to zero.
The figures in brackets denote the number of funds where the null hypothesis is rejected to the 10% significance level.
All t-statistics are corrected for the effects of heteroskedasticity using the White (1980) methodology. Data run from
January 2000 to August 2011 with monthly frequency (140 observations).
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Exhibit 3: Cross-sectional distribution of t-statistics of the alphas

CAPM(SPI) FF 9SP|
(1) (2) (3) (4) (5) (6) (7)
Null uncond. cond. uncond. cond. uncond. cond.
Minimum t-statistic -4.108 -4.078 -4.078 -3.872 -3.257 -3.056
Bonferroni p-value (-) 0.000 0.000 0.000 0.005 0.051 0.106
t < -2.326 0.23 7 5 10 5 10 8
-2.326 < t < -1.960 0.92 6 5 9 3 4 4
-1.960 < t < -1.645 1.15 5 5 5 4 6 6
-1.645 < t < 0.000 20.70 17 20 18 28 15 19
0.000 < t < 1.645 20.70 11 7 4 6 11 9
1.645 < t < 1.960 1.15 0 3 0 0 0 0
1960 < t < 2.326 0.92 0 1 0 0 0 0
2326 < t 0.23 0 0 0 0 0 0
Bonferroni p-value (+) 4.692 1.610 25.967 18.055 7.420 6.205
Maximum t-statistic 1.636 2.110 0.576 0.855 1.401 1.495

This table shows the cross-sectional distribution of t-statistics of the estimated alphas using different model specifica-
tions. The individual t-statistics are divided into different fractions according to the standard critical values of the normal
distribution. Column (1) shows the distribution that would be expected under the null hypothesis. For the CAPM(SPI) in
column (2), the unconditional alphas are the intercepts in regressions of fund excess returns on the excess returns of the
SPI Total Return Index. The conditional alphas in column (3) are estimated in regressions of fund excess returns on the
excess returns of the benchmark index and the product of the benchmark index and the vector of information variables.
In case of the Fama and French (FF) three-factor model in columns (4) and (5), we implement the style portfolios SMB and
HML as two additional factors in the regressions. In columns (6) and (7) we estimate the alphas using nine sectors of the
SPl index as our model-factors instead of the SPI itself. The Bonferroni p-value is the maximum or minimum one-tailed p-
value from the distribution of t-statistics across all funds multiplied by the number of funds. The entries in the middle-
block of the table denote the number of funds for which the t-statistics for alpha falls within the range of critical values of
a standard normal distribution. In the conditional models, we use the log dividend yield, the short-term interest rate, and
the term spread as predetermined (lagged) information variables. Data run from January 2000 to August 2011 (140
monthly observations).
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Exhibit 4: SDF models

E(m) SD(m)  pi(m) (p-val) min(m) max(m) #(m<0) Hun Hlcon KRun KRcon

constant discount factor 0.9971 - - - 0.9971 0.9971 0 0.2354 0.4025 - -

Panel A: unconditional SDF models

SDF_CAPM(9SPI) 0.9981 0.0080 0.204 (0.015) 0.9770 1.0237 0 0.2364 0.4072 0.2400 0.3884
SDF_FF 0.9977 0.1584 0.199 (0.017) 0.5285 1.4377 0 0.2216 0.3964 0.2159 0.3954
SDF_primitive-efficient 0.9989 0.2679 0.020 (0.811) -0.2231 1.6701 1 0.0000 0.0000 0.0000 0.0000
SDF_Bakshi-Chen 0.9988 0.2813 0.131 (0.118) 0.2585 1.8697 0 0.0000 0.0000 - -
SDF_CAPM(SPI) 0.9988 0.0135 0.204 (0.015) 0.9634 1.0418 0 0.0000 0.0000 - -
Panel B: conditional SDF models

SDF_CAPM(9SPI) 0.9901 0.2535 0.167 (0.046) -0.1485 1.6394 1 0.3812 0.3796 0.3082 0.3197
SDF_FF 0.9914 0.3786 0.187 (0.025) -0.3143 2.0284 1 0.3620 0.3621 0.2758 0.2844
SDF_primitive-efficient 0.9988 0.6791 0.263 (0.002) -1.1811 2.9165 8 0.0000 0.0000 0.0000 0.0000
SDF_Bakshi-Chen 0.9988 0.7667 0.209 (0.013) 0.0071 3.8656 0 0.0000 0.0000 - -
SDF_CAPM(SPI) 0.9988 0.2534 0.129 (0.123) -0.0675 1.6932 1 0.0000 0.0000 - -

This table shows the results from specification tests for different SDF models using the following system of equations:
uli= (MR -1) ® Z,,

where ul, is the vector of pricing errors relating to the gross returns, R.,, of the N primitive assets. m.,; denotes the SDF, and Z, is the vector of pre-
determined information variables. The parameters of the SDFs are estimated using Hansen's (1982) GMM, minimizing a quadratic form of the pricing
errors. We correct the standard errors for the effects of heteroskedasticity using the White (1980) methodology. E(m) is the sample mean, and SD(m)
is the sample standard deviation. p;(m) and p-val(Q) show the first-order autocorrelation of the estimated SDF and the corresponding p-value of the
Q-statistics, respectively. Hiun and Hicon denote the classical Hansen and Jagannathan (1997) distances (HJD) as a measure of misspecification. KRun
and KRcon denote the so-called modified HID measures of misspecification following the procedure of Kan and Robotti (2008). HJun and KRun are
the unconditional measures, and HJcon and KRcon are the conditional measures, which use the lagged information variables in addition to the re-
turns. As primitive assets, we use the nine sectors of the SPI index according to the Datastream classification along with the risk-free security. In case
of the SDF_CAPM(SPI), only the SPI index and the risk-free security are used as primitive assets. In linear SDF models (SDF_CAPM(9SPI), SDF_FF, and
SDF_CAPM(SPI)) the SPI index on a Total Return Basis is applied as benchmark portfolio. The set of predetermined information variables contains the
log dividend yield, the short-term interest rate, and the term spread. The sample period is from January 2000 to August 2011 (140 monthly observa-
tions).
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Exhibit 5: Time-variation of unconditional and conditional SDFs

Panel A: unconditional SDFs
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Panel B: conditional SDFs
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This exhibit compares the time-variation of the fitted values of each SDF using all models, except for the CAPM(SPI). The
sample period is from January 2000 to August 2011 (140 monthly observations).
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Exhibit 6: Dynamic performance of SDF models

Sector 1 Sector 2 Sector3 Sector4 Sector5 Sector6 Sector?7 Sector8 Sector9 Risk-free SPI
constant discount factor 0.990% 2.240% 1.112% 0.574% 1.919% 0.384% 1.436% 1.295% 3.201% 0.093% -
Panel A: unconditional SDF models
SDF_CAPM(9SPI) 0.830% 2.089% 0.947% 0.441% 1.765% 0.272% 1.373% 1.131% 3.047% 0.256% -
SDF_FF 1.967% 0.664% 1.792% 2.540% 1.069% 2.911% 2.471% 1.676% 0.690% 3.159% -
SDF_primitive-efficient 5.837% 6.608% 6.100% 5.849% 6.596% 6.170% 4.367% 6.278% 6.503% 5.768% -
SDF_Bakshi-Chen 6.477% 6.133% 6.522% 6.975% 6.316% 7.225% 5.510% 6.743% 5.527% 7.249% -
SDF_CAPM(SPI) - - - - - - - - - 0.370% 0.662%
Panel B: conditional SDF models
SDF_CAPM(9SPI) 2.521% 2.418% 2.481% 2.353% 2.440% 2.505% 2.641% 2.353% 1.870% 2.585% -
SDF_FF 2.275% 2.256% 2.632% 2.301% 2.384% 2.417% 2.261% 2.405% 2.411% 2.483% -
SDF_primitive-efficient 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% -
SDF_Bakshi-Chen 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% -
SDF_CAPM(SPI) - - - - - - - - - 0.000% 0.000%

This table shows the standard deviations of the fitted pricing errors from the following system of equations:

uli=(MyRu1-1) ® Z,,

where ul, denotes the vector of pricing errors relating to the gross returns, R.,, of the N primitive assets. The fitted pricing errors are the fitted values of
regressions from ul; on Z; using different SDF models. The table shows the corresponding standard deviations for all primitive assets. Hansen's (1982)
GMM is used to estimate the parameters of the model, minimizing a quadratic form of the pricing errors. The primitive assets are the nine SPI sectors
according to the Datastream classification and the risk-free security. In case of the CAPM(SPI), only the SPI index and the risk-free security are used as
primitive assets. In linear SDF models (SDF_CAPM(9SPI), SDF_FF, and SDF_CAPM(SPI)) the SPI index on a Total Return Basis is applied as benchmark port-
folio. The set of predetermined information variables contains the log dividend yield, the short-term interest rate, and the term spread. The sample peri-
od is from January 2000 to August 2011 (140 monthly observations).



Exhibit 7: Performance of funds using SDF models

Bonferroni Bottom 3 Bottom 10 Mean Median Top 10 Top3 Bonferroni

p-value (-) p-value (+)
Panel A: unconditional SDF models
SDF_CAPM(9SPI) 0.005 -0.586%  -0.497% -0.190% -0.214% 0.163% 0.298% 11.022
SDF_FF 0.000 -0.648%  -0.536% -0.234% -0.215% 0.038% 0.145% 25.438
SDF_primitive-efficient 0.014 -0.558%  -0.476% -0.150% -0.139% 0.187% 0.330% 8.864
SDF_Bakshi-Chen 0.014 -0.568%  -0.481% -0.159% -0.145% 0.163% 0.315% 10.115
SDF_CAPM(SPI) 0.000 -0.433%  -0.366% -0.082% -0.134% 0.353% 0.482% 9.499
Panel B: conditional SDF models
SDF_CAPM(9SPI) 0.000 -0.574%  -0.513% -0.258% -0.329% 0.180% 0.335% 0.423
SDF_FF 0.000 -0.543%  -0.472% -0.237% -0.227% 0.024% 0.176% 7.986
SDF_primitive-efficient 0.023 -0.481%  -0.425% -0.155% -0.136% 0.096% 0.268% 7.811
SDF_Bakshi-Chen 0.000 -0.589%  -0.505% -0.166% -0.168% 0.109% 0.224% 0.506
SDF_CAPM(SPI) 0.000 -0.356%  -0.283% -0.013% -0.115% 0.520% 0.663% 1.030

This table shows the distribution of mutual fund SDF-alphas for different SDF models using the following system of equations:
uli=(MyRu1-1) ® Z,,
U2;=0p - MRp sy + 1,

where ul; denotes the vector of pricing errors relating to the gross returns, R4, of the N primitive assets. m,; denotes the SDF, and
Z. is the vector of predetermined information variables. o, is the SDF-alpha and depends on the model specification. Hansen's (1982)
GMM is used to estimate the parameters of the model, minimizing a quadratic form of the pricing errors. We correct the standard
errors for the effects of heteroskedasticity using the White (1980) methodology. The primitive assets are the nine SPI sectors accord-
ing to the Datastream classification and the risk-free security. In case of the CAPM(SPI), only the SPI index and the risk-free security
are used as primitive assets. In linear SDF models (SDF_CAPM(9SPI), SDF_FF, and SDF_CAPM(SPI)) the SPI index on a Total Return
Basis is applied as benchmark portfolio. The set of predetermined information variables contains the log dividend yield, the short-
term interest rate, and the term spread. The Bonferroni p-value is the maximum or minimum one-tailed p-value from the distribu-
tion of t-statistics across all funds multiplied by the number of funds. The sample period is from January 2000 to August 2011 (140

monthly observations).
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Exhibit 8: Performance of Beta-pricing models (Jensen Alphas) versus SDF models (SDF-alphas)

Panel A: unconditional performance measures
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Panel B: conditional performance measures
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This exhibit shows the comparison of performance measures using two beta models (9SPI and CAPM(SPI)) and the
SDF_CAPM(9SPI) from the SDF framework. We contrast each fund's alpha in the SDF_CAPM(9SPI) with its direct counterpart
in the beta setup, i.e., the 9SPI model. For comparative purposes, we also show the classical Jensen’s alpha estimated with
the CAPM(SPI) in the beta framework. The sample period is from January 2000 to August 2011 (140 monthly observations).
The units are in percentages per month.

38



