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ON MOMENT INDETERMINACY OF THE BENINI INCOME DISTRIBUTION

Christian Kleiber

The Benini distribution is a lognormal-like distribution generalizing

the Pareto distribution. Like the Pareto and the lognormal distributions

it was originally proposed for modeling economic size distributions, no-

tably the size distribution of personal income. This paper explores a

probabilistic property of the Benini distribution, showing that it is not

determined by the sequence of its moments although all the moments

are finite. It also provides explicit examples of distributions possessing

the same set of moments. Related distributions are briefly explored.

Keywords: Benini distribution, characterization of distributions, in-

come distribution, moment problem, statistical distributions, Stieltjes
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1. INTRODUCTION

In the late 19th century, the eminent Italian economist Vilfredo Pareto observed that

empirical income distributions are well described by a straight line on a doubly logarith-

mic plot (Pareto, 1895, 1896, 1897). Specifically, with F = 1 − F denoting the survival

function of an income distribution with c.d.f. F , Pareto observed that, to a good degree of

approximation,

lnF (x) = a0 − a1 lnx. (1.1)

The distribution implied by this equation is called the Pareto distribution.

Not much later, the Italian statistician and demographer Rodolfo Benini found that a

second-order polynomial

lnF (x) = a0 − a1 lnx− a2(lnx)2 (1.2)

sometimes provides a markedly better fit (Benini, 1905, 1906). The distribution implied by

this equation is called the Benini distribution.

The present paper is concerned with a probabilistic property of the Benini distribution,

namely whether it is possible to characterize this distribution in terms of its moments. The

Version: April 29, 2013. Correspondence to: Christian Kleiber, Faculty of Business and Economics,

Universität Basel, Peter Merian-Weg 6, 4002 Basel, Switzerland. christian.kleiber@unibas.ch

1

mailto:christian.kleiber@unibas.ch


2 C. KLEIBER

moment problem asks, for a given distribution F with finite moments µk ≡ E[Xk] =∫∞
−∞ x

kdF (x) of all orders k = 1, 2, . . . , whether or not F is uniquely determined by the

sequence of its moments. See, for example, Shohat and Tamarkin (1950) for analytical or

Stoyanov (2013, Sec. 11) for probabilistic aspects of the moment problem. If a distribution

is uniquely determined by the sequence of its moments it is called moment-determinate,

otherwise it is called moment-indeterminate. Cases where the support of the distribution is

the positive half-axis R+ = [0,∞) or an unbounded subset thereof are called Stieltjes-type

moment problems. The Benini distribution thus poses a Stieltjes-type moment problem. It

is shown below that the Benini moment problem is indeterminate. Drawing on a classical

example going back to Stieltjes (1894/1895) explicit examples of distributions possessing

the same set of moments are constructed. Certain generalizations of the Benini distribution

are briefly explored, all of which are moment-indeterminate.

2. THE BENINI DISTRIBUTION

Pareto’s observation (1.1) leads to a distribution of the form

F (x) = 1−
(x
σ

)−α
, x ≥ σ > 0,

where α > 0. Benini’s observation (1.2) leads to a distribution of the form

F (x) = 1− exp

{
−α ln

x

σ
− β

(
ln
x

σ

)2}
, x ≥ σ > 0, (2.1)

where α, β ≥ 0, with (α, β) 6= (0, 0). Setting β = 0 gives the Pareto distribution.

For parsimony, Benini (1905) often worked with the special case where α = 0, i.e. with

F (x) = 1− exp

{
−β
(

ln
x

σ

)2}
(2.2)

= 1−
(x
σ

)−β(lnx−lnσ)
, x ≥ σ > 0.

Here σ > 0 is a scale and β > 0 is a shape parameter. This distribution will be denoted as

Ben(β, σ). For the purposes of the present paper the scale parameter σ is immaterial. The

object under study is, therefore, the Ben(β, 1) ≡ Ben(β) distribution with

F (x) = 1− exp{−β(lnx)2}, x ≥ 1. (2.3)

It may be worth noting that the Benini distributions are stochastically ordered w.r.t. β.

Specifically, it follows directly from (2.3) that

F (x; β1) ≤ F (x; β2) for all x ≥ 1 ⇐⇒ β1 ≤ β2, (2.4)
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hence F (x; β1) is larger than F (x; β2) under this condition in the sense of the usual stochas-

tic order, often called first-order stochastic dominance in economics.

Noting further that the c.d.f. of a Weibull distribution is F (x) = 1 − exp(−xa), x > 0,

a > 0, it follows that eq. (2.3) describes a log-Weibull distribution with a = 2. The Weibull

distribution with a = 2 is also known (up to scale) as the Rayleigh distribution, especially

in physics, and so the Benini distribution may be seen as the log-Rayleigh distribution. It

may also be seen as a log-chi distribution with two degrees of freedom (again up to scale);

i.e., the logarithm of a Benini random variable follows the distribution of the square root

of a chi-square random variable with two degrees of freedom.

The density implied by (2.3) is

f(x) =
2β lnx

x
exp

{
−β(lnx)2

}
, x ≥ 1, (2.5)

and hence is similar to the density of the more familiar lognormal distribution. The log-

normal distribution is perhaps the most widely known example of a distribution that is

not determined by its moments, although all its moments are finite (Heyde, 1963). The

similarity of the lognormal and the Benini densities now suggests that the Benini distribu-

tion might also possess this somewhat pathological property. The remainder of the present

paper explores this issue.

Figure 1 depicts some two-parameter Benini densities, showing that distributions with

smaller values of β are associated with heavier tails, as indicated by (2.4).

From a modeling point of view, the significance of the Benini distribution lies in the

fact that it generalizes the Pareto distribution while itself being ‘lognormal-like’. It thus

enables to discriminate between these two widely used distributions, at least approximately.

Further details on the Benini distribution, including an independent rediscovery in actuarial

science motivated by failure rate considerations (Shpilberg, 1977), may be found in Kleiber

and Kotz (2003, Ch. 7.1). The appendix of Kleiber and Kotz (2003) also provides a brief

biography of Rodolfo Benini.

3. THE BENINI DISTRIBUTION AND THE MOMENT PROBLEM

The following proposition provides two basic properties of the Benini distribution that

are relevant in the context of the moment problem.

Proposition 1 (a) The moments µk, k ∈ N, of the Benini distribution Ben(β) are

given by

µk ≡ E[Xk] = 1 + k (2β)−(1/2) ek
2/(8β) D−1

(
−k√
2β

)
(3.1)

= 1 +
k
√
π

2
√
β
ek

2/(4β)

{
1 + erf

(
k

2
√
β

)}
. (3.2)
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Figure 1.— Some Benini densities; β = 2, 1, 0.5 (from left to right).

Here, D−1 is a parabolic cylinder function and erf denotes the error function.

(b) The moment generating function (m.g.f.) of the Benini distribution does not exist.

Proof. (a) We have

µk ≡ E[Xk] = k

∫ ∞
0

xk−1F (x) dx

= 1 + k

∫ ∞
1

xk−1 exp{−β(lnx)2} dx

= 1 + k

∫ ∞
0

ekx−βx
2

dx

= 1 + k (2β)−(1/2) ek
2/(8β) D−1

(
−k√
2β

)
,

using Gradshteyn and Ryzhik (2007), no. 3.462, eq. 1. This proves (3.1). The alternative

representation (3.2) is established via the relation (Olver et al., 2010, § 12.7.5)
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D−1(x) =

√
π

2
ex

2/4 erfc

(
x√
2

)
,

where erfc(·) is the complementary error function, together with erfc(x) = 1 − erf(x) and

erf(−x) = −erf(x).

(b) The defining integral is

E[etX ] =

∫ ∞
1

etx
2β lnx

x
exp

{
−β(lnx)2

}
dx =:

∫ ∞
1

h(x) dx.

Now the leading term in

lnh(x) = tx+ ln(2β lnx)− lnx− β(lnx)2

is the linear term, hence E[etX ] =∞ for all t > 0. �

The representation (3.2) can also be obtained using Mathematica (Wolfram Research,

Inc., 2013), version 9.0.1.0.

As an illustration, Table I provides the first four moments of selected Benini distributions,

namely those from Figure 1. These moments are rather large, especially for small values of

β.

TABLE I

Lower-order moments of Benini distributions.

E[X] E[X2] E[X3] E[X4]

β = 2 1.98 4.48 11.81 37.20

β = 1 2.73 9.88 50.59 387.19

β = 0.5 4.48 37.20 677.00 29888.67

Proposition 1 showed that the Benini distribution has moments of all orders, but no

m.g.f. Distributions possessing these properties are candidates for moment indeterminacy,

although these facts alone are not conclusive. Unfortunately, no tractable necessary and

sufficient condition for moment indeterminacy is currently known.

For exploring determinacy, the Carleman criterion (e.g. Stoyanov, 2013, Sec. 11) some-

times provides an answer. In a Stieltjes-type problem, the condition

CS :=
∞∑
k=1

µ
− 1

2k
k = ∞
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implies that the underlying distribution is characterized by its moments.

However, Proposition 1 indicates that the moments of the Benini distribution grow rather

rapidly. In view of erf(x) ≥ 0, for x ≥ 0, it follows from (3.2) that

E[Xk] ≥ k
√
π

2
√
β
ek

2/(4β).

Using the ratio test this further implies that

CS =
∞∑
k=1

µ
− 1

2k
k ≤

∞∑
k=1

(
2
√
β

k
√
π

)2k

e−k/(8β) <∞. (3.3)

So the Carleman condition cannot establish determinacy here.

This suggests to explore indeterminacy instead. Indeed, Theorem 2 shows that all Benini

distributions are moment-indeterminate. Two proofs are given, one utilizing a converse

to the Carleman criterion due to Pakes (2001) and the other utilizing the Krein criterion

(Stoyanov, 2000, 2013).

Theorem 2 The Benini distribution Ben(β) is moment-indeterminate for any β > 0.

Proof 1. Pakes (2001, Th. 3) showed that if there exists x0 ≥ 0 such that 0 < f(x) <∞
for x > x0, the condition CS < ∞ together with the convexity of the function ψ(x) :=

− ln f(ex) on the interval (lnx0,∞) implies moment indeterminacy. CS <∞ was shown in

(3.3). For the Benini distribution, the function

ψ(x) = − ln f(ex) = − ln(2βx) + x+ βx2

is easily seen to be convex on the interval (0,∞) in view of β > 0. �

Proof 2. In the case of a Stieltjes-type moment problem, the Krein criterion requires, for

a strictly positive density f and some c > 0, that the logarithmic integral

KS[f ] =

∫ ∞
c

− ln f(x2)

1 + x2
dx (3.4)

is finite. For the Benini distribution this integral is, choosing c = e,

KS[f ] = −
∫ ∞
e

ln(2β lnx2)− lnx2 − β(lnx2)2

1 + x2
dx.

This quantity is finite for all β > 0. �
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4. A STIELTJES CLASS FOR THE BENINI DISTRIBUTION

The methods used in the proof of Theorem 2 only establish existence of further distri-

butions possessing the same set of moments as the Benini distribution. It is known from

Berg and Christensen (1981) that if a distribution is moment-indeterminate, then there

exist infinitely many continuous and also infinitely many discrete distributions possessing

the same moments. It is, therefore, of interest to find explicit examples of such objects.

A Stieltjes class (Stoyanov, 2004) corresponding to a moment-indeterminate distribution

with density f is a set

S(f, p) = {fε(x) | fε(x) := f(x)[1 + ε p(x)], x ∈ supp(f)},

where p is a perturbation function satisfying E[Xkp(X)] = 0 for all k = 0, 1, 2, . . . . If −1 ≤
p(x) ≤ 1 and ε ∈ [−1, 1], then S(f, p) is called a two-sided Stieltjes class. Counterexamples

to moment determinacy in the literature are typically of this type. It is also possible to have

one-sided Stieltjes classes, for which p only needs to be bounded from below, and ε ≥ 0.

The following Theorem provides a one-sided Stieltjes class for the Benini distribution.

Theorem 3 The distributions with densities fε, 0 ≤ ε ≤ 1,

fε(x) = f(x)

{
1 + ε

x exp{−(x− 1)1/4 + β(lnx)2} sin{(x− 1)1/4}
2C β lnx

}
, x ≥ 1,

all have the same moments as the Benini distribution Ben(β) with density f . Here C > 0

is a normalizing constant defined in the proof.

Proof. Consider the (unscaled) perturbation

p̃(x) =
x exp{−(x− 1)1/4 + β(lnx)2} sin{(x− 1)1/4}

2 β lnx
, x ≥ 1.

This perturbation has the following properties:

(P1). limx→1+ p̃(x) = ∞.

(P2). Basic properties of the sine function imply that p̃(x) ≥ 0 on the interval (1, 2].

(P3). On the interval [2,∞), the function p̃ is continuous, with p̃(2) <∞ and limx→∞ p̃(x)

= 0. Hence p̃(x) is bounded there.

Let C = supx∈[2,∞) |p̃(x)| and set p(x) = p̃(x)/C. It follows from (P1)–(P3) that p is

unbounded from above and bounded from below, specifically−1 ≤ p ≤ ∞. By construction,
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fε ≥ 0. The moments of the corresponding random variable Xε with density fε, 0 ≤ ε ≤ 1,

are further given by

E[Xk
ε ] =

∫ ∞
1

xkfε(x) dx

=

∫ ∞
1

xkf(x) {1 + ε p(x)} dx

=

∫ ∞
1

xkf(x) dx+
ε

C

∫ ∞
1

xk exp{−(x− 1)1/4} sin{(x− 1)1/4} dx

=: E[Xk] + J.

It remains to show that J = 0. Now∫ ∞
1

xk exp{−(x− 1)1/4} sin{(x− 1)1/4} dx

=

∫ ∞
0

(x+ 1)k exp{−x1/4} sin{x1/4} dx

=
k∑
j=0

(
k

j

)∫ ∞
0

xk−j exp{−x1/4} sin{x1/4} dx

= 0

in view of∫ ∞
0

xn exp{−x1/4} sin{x1/4} dx = 0 (4.1)

for all n ∈ N0. In particular,
∫∞
0
fε(x) dx = 1. �

Note that Theorem 3 provides a further proof of the moment indeterminacy of the Benini

distribution.

Apart from the shifted argument, the perturbation employed here draws on the pioneering

work of Stieltjes (1894/1895). In modern terminology, Stieltjes showed that the relation

(4.1) leads to a family of distributions whose moments coincide with those of a certain

generalized gamma distribution, implying that the latter is moment-indeterminate.

Stieltjes (1894/1895) has a further, and more widely known, example of a distribution

that is not determined by its moments, the lognormal distribution. The counterexample he

provides for that distribution employs the perturbation

p(x) = sin(2π lnx), x > 0, (4.2)

which was further developed by Heyde (1963). It can also lead to a Stieltjes class for the

Benini distribution. However, note that in view of the exponential term common to both
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the lognormal and the Benini densities, the perturbation based on (4.2) only works for

small values of β, otherwise the resulting ratio diverges for x → ∞. Methods outlined by

Stoyanov and Tolmatz (2005) may help to construct Stieltjes classes based on (4.2) and

the lognormal density that cover the entire range of the shape parameter β, at the price of

somewhat greater analytical complexity.

5. RELATED DISTRIBUTIONS

It is natural to augment Pareto’s equation (1.1) by higher-order terms going beyond the

second-order term proposed by Benini (1905). Not surprisingly, curves of the form

lnF (x) = a0 − a1 lnx− a2(lnx)2 − . . .− ak(lnx)k (5.1)

soon began to appear in the subsequent Italian-language literature on economic statistics;

see, e.g., Bresciani Turroni (1914) and Mortara (1917) for some early contributions. Some-

what later, the Austrian statistician Winkler (1950) independently also experimented with

polynomials in lnx. Specifically, he fitted a quadratic—i.e., the three-parameter Benini

distribution (2.1)—to the U.S. income distribution of 1919.

Dropping a scale parameter, i.e. setting a0 = 0, eq. (5.1) gives the c.d.f.

F (x) = 1− exp

{
−

k∑
j=1

aj (lnx)j
}
, x ≥ 1, (5.2)

where a1, . . . , ak ≥ 0, with corresponding density

f(x) = exp

{
−

k∑
j=1

aj (lnx)j
}{

k∑
j=1

jaj (lnx)j−1
}

1

x
, x ≥ 1. (5.3)

Using the Krein criterion it is not difficult to see that these generalized Benini distri-

butions are moment-indeterminate, provided (a2, . . . , ak) 6= (0, . . . , 0) as otherwise not all

moments exist.

A further generalization of the Benini distribution proceeds along different lines. In sec-

tion 2 it was noted that the Benini distribution may be seen as the log-Rayleigh distribution,

up to scale. It is then natural to consider the log-Weibull family, with c.d.f.

F (x) = 1− exp{−(lnx)a}, x ≥ 1,

where a > 0, and corresponding density

f(x) =
a(lnx)a−1

x
exp{−(lnx)a}, x ≥ 1.
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Indeed, Benini (1905, p. 231) briefly discusses this model and reports that, for his data,

when a = 2.15 the fit is superior to the one using model (2.3). Again, the Krein criterion

may be used to show that the log-Weibull distributions are moment-indeterminate for any

a > 0.
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