Aldridge, P. and Jenal, U.. (1999) Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator. Molecular microbiology, Vol. 32, H. 2. pp. 379-391.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/dok/A5258566
Downloads: Statistics Overview
Abstract
The poles of each Caulobacter crescentus cell undergo morphological development as a function of the cell cycle. A single flagellum assembled at one pole during the asymmetric cell division is later ejected and replaced by a newly synthesized stalk when the motile swarmer progeny differentiates into a sessile stalked cell. The removal of the flagellum during the swarmer-to-stalked cell transition coincides with the degradation of the FliF flagellar anchor protein. We report here that the cell cycle-dependent turnover of FliF does not require the structural components of the flagellum itself, arguing that it is the initial event leading to the ejection of the flagellum. Analysis of a polar development mutant, pleD, revealed that the pleD gene was required for efficient removal of FliF and for ejection of the flagellar structure during the swarmer-to-stalked cell transition. The PleD requirement for FliF degradation was also not dependent on the presence of any part of the flagellar structure. In addition, only 25% of the cells were able to synthesize a stalk during cell differentiation when PleD was absent. The pleD gene codes for a member of the response regulator family with a novel C-terminal regulatory domain. Mutational analysis confirmed that a highly conserved motif in the PleD C-terminal domain is essential to promote both FliF degradation and stalk biogenesis during cell differentiation. Signalling through the C-terminal domain of PleD is thus required for C. crescentus polar development. A second gene, fliL, was shown to be required for efficient turnover of FliF, but not for stalk biogenesis. The possible roles of PleD and FliL in C. crescentus polar development are discussed.
Faculties and Departments: | 05 Faculty of Science > Departement Biozentrum > Infection Biology > Molecular Microbiology (Jenal) 05 Faculty of Science > Departement Biozentrum > Growth & Development > Molecular Microbiology (Jenal) |
---|---|
UniBasel Contributors: | Jenal, Urs |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Blackwell |
ISSN: | 0950-382X |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Last Modified: | 22 Mar 2012 14:20 |
Deposited On: | 22 Mar 2012 13:20 |
Repository Staff Only: item control page