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CHAPTER 1 

 

 

1.1. General Introduction 

 

Explaining how biodiversity is spatially and temporally distributed across our planet has been a 

central topic in biology since the time of Alexander von Humboldt (Hawkins, 2001). Over 200 

years later, understanding biodiversity patterns remains a major topic of investigation in 

biogeography and macroecology (Guisan and Rahbek 2011). 

 

Unfortunately, our current knowledge of biodiversity is very incomplete, we are still uncertain 

about how many species are there on our planet, and for those described, knowledge about their 

ecology and distribution is very scarce. These two phenomena are the major drawbacks in current 

study of biodiversity: known as the Linnean and the Wallacean shortfalls (Brown and Lomolino 

1998). The first refers to the fact that a vast majority of species diversity remains undescribed (e.g. 

from tropical arthropods for example only 30% are described Hamilton et al. 2010), taking into 

account that recent estimates predict about 8.7 millions of species in the world (Mora et al. 2011). 

The second refers to the fact that the geographical distribution of most species is only incompletely, 

if at all, known (Lomolino 2004, Bini et al. 2006). We are in need for these data to be able to 

appreciate and understand the full taxonomical and functional diversity range that currently exist, 

but even more because biodiversity is threatened at the very core; global warming, land use 

changes, among others factors are driving species to extinction at a very alarming speed.   

 

Large-scale analyses both temporal and spatial, trying to capture emergent patterns are part of the 

research agenda of macroecology  as a response to the realization that focusing on local scales and 

or single or few species did not fully explain neither abundance nor distribution of the species 

(Gaston and Blackburn, 2000). These analyses have benefited from the current development of 

sophisticated statistical techniques that have open their way into ecological applications (Heisey et 

al. 2010). Analyses of species distribution and richness patterns have become technically feasible 

with the availability of remotely sensed environmental data, and the development of Geographic 

Information System (GIS) (Brown et al. 1996) and seems the way to disentangle causal and 

collinear driver of the observed biodiversity patterns (i.e. global and/or regional) (Beck et al 2012).  
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These technical developments allowed the possibility to delimit species potential distributions 

based on correlations with environmental parameters at sampled locations across space, to produce 

species range maps. Grid-based analysis overlays range species maps and allow addressing 

questions such as, which environmental factors (e.g. temperature, primary productivity, water and 

energy availability) provide better explanations to the observed patterns of biodiversity at different 

scales and extents (i.e. global, continental, regional) as well as among different taxa (Hawkins et al. 

2003) 

Also spatial models of distributions can be used to analyze similarities and differences between 

species niche, and even design networks of protected areas and forecast what species will be found 

at a given site (Kremen et al. 2008) 

 

However, despite the advances in techniques and methodologies for analyses, there are substantial 

data deficiencies in this field of research. Species distribution, species traits and phylogenetic data 

would be needed to allow more comprehensive analyses (Beck et al. 2012). The majority of the 

large-scale analyses have been biased towards a limited set of relatively well-known taxa (i.e. birds, 

mammals and plants; Rahbek and Graves 2001, Kreft and Jetz 2007, 2010, Tittensor et al. 2010) 

whereas studies on groups like invertebrates, particularly herbivore insects are scarce, despite being 

the most species-rich groups (Beck et al. 2012).  

 

The gap in knowledge on species distributions has prompted an awareness of the potential 

importance of Natural History collections – data that are generally available yet practically not 

accessible without substantial effort. Accordingly, these institutions and interested users have 

promoted endeavours for compiling such data in electronic databases to make them more widely 

available (Graham et al. 2004a). Projects include the Global Biodiversity Information Facility 

(GBIF; http://www.gbif.org/) that was established in 2001 and facilitates the access to biodiversity 

data comprising so far more than 338 million records (accessed October 21, 2012). However a large 

proportion of records are still not electronically available (O’Connell et al. 2004, Newbold 2010; 

Chapter 5 of this thesis), leaving an enormous task to digitize such information.  

 

An innovative computer-based tool that have seen a rapid development in the recent years aiming to 

generate range information of species based on distributional records (Guisan and Thuiller 2005, 

Phillips et al. 2006, Elith et al. 2010), called Species Distribution Modelling (SDMs). It has been 

used for different purposes and to address interesting ecological questions for example in 

conservation management (Thorn et al. 2009),  for predicting past distributions of species (Peterson 

et al. 2004), distributions under future climate or land use scenarios (Araujo et al 2004), or the 
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ecological and geographic differentiation of closely related species (Graham et al. 2004b). 

However, its application to large scales, many species, and to relatively poor and biased 

distributional records is still sparse. Additionally, some methodological issues need to be sorted out 

before reliable range estimates can be retrieved, which is one of the aims of this dissertation and 

will be discussed below.  

 

1.2. Study region 

 

The study has almost a global spatial extent, excluding only the Americas. Reasons for excluding 

these were the need to reduce species richness due to time constraints, and the very low species 

overlap between the Americas and the rest of the world which made this split feasible (see also 

Kawahara et al. 2009). In addition to the Old World (i.e., Europe, Africa and Asia) this study also 

includes Melanesia, Australia and the Pacific. (From 25W° to 180E° and from 89N° to 49S°).  

 

This extensive geographical area includes two complete latitudinal ranges (South Africa to 

Scandinavia; New Zealand to Siberia). Furthermore, the region includes altitudinal gradients 

ranging from coastal lowlands to heterogeneous mountain landscapes including alpine and nival 

landscapes. Very distinct ecosystem types, from deserts to rainforest, occur in spatial replications 

on different continents. It also includes various geographical structures (i.e. isolated islands to 

continents) that vary in size, isolation, geology and geographical history. Such variation facilitates 

correlation analysis that aims to uncover general global patterns and thereby gives hints towards the 

mechanisms causing them. 

 

1.3. Sphingid moths as model taxa  

    

Commonly referred to as hawkmoths, Sphingidae is a family of the Lepidoptera, placed 

phylogenetically within the Bombicoidea superfamily. It is a taxon of moderate species richness 

with <1500 species known globally, of which 982 are recognized within the study area (see Chapter 

5 for detail). Their large body size and great beauty have made them very appealing to both amateur 

and professional collectors for over two centuries. In consequence, this group of moths has been 

sampled relatively well and is well represented in collections worldwide. The abundance of 

specimens and relatively low diversity (for an insect family) has probably contributed to the fact 

that its taxonomy and phylogeny is among the best-known invertebrate taxa (Kitching and Cadiou 

2000), although there are still many details to be resolved. 
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Hawkmoth larvae, referred to as “hornworms”, are folivorous with a low degree of hostplant 

specialization (i.e. specialization below family is rare; for example, the Oleander hawkmoth 

Daphnia nerii feeds mainly on the toxic oleander (Nerium oleander) but also on other plants of the 

family Apocynaceae) (Pittaway 1997-2012 , Mazzei et al 1999-2012). 

 

Most of the adults are nocturnal although there are some diurnal genera (Hemaris, Sataspus, 

Macroglosum, and Hayesiana). Hawkmoths show a great variability in traits, such as life history 

strategies, adult resource use (from non-feeding, flower nectar feeding, bee-nest parasites), egg 

maturation and mobility (Beck et al. 2006). Overall this interesting diversity of species traits makes 

them very suitable for evolutionary ecological studies (Janzen, 1984).  

    

 

1.4. Species distributions: statistical modelling and ecological theory 

 

In recent decades interest in knowing the geographical distribution of biodiversity on Earth 

increased, sparked by the alarming speed of losing biodiversity due to global warming, land use 

changes, and other anthropogenic effects.  

Scientists often use locally collected data to then assess change at different spatial extents: (i.e. 

landscape, regional or global) and often use statistical or simulation models to extrapolate those 

data in space (Peters et al. 2004). A technique that has became popular nowadays using statistics 

models to extrapolate collected data is species distribution modelling (SDM). This technique allows 

characterizing the environmental conditions that are suitable for the species to live and then identify 

where such environmental conditions are distributed in space. To fit models, it links observations of 

the occurrence of the species with environmental conditions at these sites, focusing on variables 

that are thought to influence habitat suitability and therefore the distribution of the species (Pearson 

2007).  These correlative models provide insights on the species’  environmental tolerance and 

preferences, with the potential of being extrapolated in time and space. Figure 1.1. illustrates the 

steps towards an SDM-based distribution map.  
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 Figure. 1.1. Diagram depicting the steps towards producing a distributional map. Species locations 
are linked to the values of environmental predictors at those locations coordinates. A modelling 
algorithm is applied then to describe the relationship between the species’  locations and the 
predictors. Parameters derived from such models are extrapolated to environmental data available 
as grid-based maps to produce a geographical prediction for habitat suitability. After accounting for 
a biogeographical reasonable expectation, and setting a threshold for transforming those continuous 
predictions into a binary presence-absence, we get a predictive distribution map. Adapted from 
(Franklin 2009) 

 

 

 

                             

Predictive distribution map 
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1.4.1. Niche concepts and other theories in environmental and geographical space 

 

SDMs have their grounds in niche theory (Soberon and Peterson 2005). In recent years several 

authors have discussed the relationship between ecological niche concepts and SDMs (Austin 2002, 

Guisan and Thuiller 2005,  Kearney 2006). 

The species niche concept has changed over time and has several interpretations (Chase and 

Leibold 2003). A major distinction is between (a) the functional concept (Elton 1927), i.e. the 

position or functional role of the species in the community; and (b) the ecological concept (Grinnell 

1917), i.e. the set of environmental factors within which the species can survive and reproduce.  

Hutchinson (1957) made a distinction between fundamental and realized niche. The fundamental 

(potential) niche is the space in a n-dimensional hypervolume formed by a set of environmental 

variables where the species can survive and reproduce. However, because of biotic interactions (e.g. 

competition, predation, facilitation etc.) a species can be excluded from some parts of that 

fundamental niche. This reduced hypervolume is called realized (actual) niche (Whittaker et al. 

1972). Species Distribution Models deal with environmental niches and therefore with Grinellian 

rather than Eltonian niches (Peterson et al. 2006). There is discussion within the SDM community 

whether SDMs model fundamental or realized niches (see below). In any case, the variables usually 

available for SDM represent only a subset of all the possible environmental factors that might 

influence the distribution of the species. They mostly represent abiotic factors, often constrained by 

availability at the desired extent and resolution. A majority of SDM approaches is heavily or 

entirely focused on climatic environmental variables (Carpenter et al 1993, Pearson et al 2002). 

Figure 1.2 shows a species’  distribution in environmental as well as in geographical space to 

visualize the concepts defined above.  

 

Apart from abiotic and biotic factors, Pulliam (2000) stressed the importance of including measures 

of fitness when identifying species; niches, and pointed out that source sink dynamics and 

metapopulation dynamics (Hanski 1999) might help to explain the relationship between distribution 

of species and suitable habitat. A species might not occupy a suitable habitat due to local extinction 

resulting from population dynamics or dispersal limitation (i.e. metapopulation theory). Source-sink 

dynamics refers to the situation where an area (“sink”) does not provide suitable conditions to 

support a viable population but is frequently colonized by individuals coming from an area which 

does it (“source” ), so that a species can be recorded in an unsuitable place. This particular 

consideration should be taken into account when applying SDMs since they rely on occurrence 

records of species. Ideally, only occurrences known from breeding populations should be used, but 

practically such information is often unavailable (Beale & Lennon 2012). Furthermore, 
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observations are probably more frequent from “source”  population rather than “sink” , which may 

justify to a certain degree that this problem is usually overlooked (Pearson 2007). 

 

Figure 1.2. Diagram representing the relationship between geographic distribution and environmental niche. 
Geographical space refers to the spatial location that the species occupy whereas environmental space refers 
to what can be considered Hutchinson niche (i.e. hypervolume, represented here only within two 
dimensions).  Black diamonds represent the occurrence of the species. In geographical space green areas 
represent the actual distribution of the species, which in environmental space is the realized niche. Region 1 
in geographical space and region A in environmental space both represent areas where the species has not 
been detected yet.  Region A in geographical space and Region B in environmental space are both within the 
fundamental niche of the species but is not occupied because of some biotic factors such competition or 
dispersal limitation. Region 2 in geographical space depicts that part of the niche that the species could live 
in (i.e. appropriate environmental conditions) but it has not been able to disperse to.  (Diagram extracted 
from Pearson, 2007)  

 

 

1.4.2. Other considerations when model species distributions  

 

As outlined above, SDMs combines occurrence of species with environmental factors in the area of 

interest, and has undergone a rapid development in modelling techniques in recent years (Stockwell 

and Noble 1992, Breiman 2001, Phillips et al. 2006) as well as increased popularity. It has been a 

lot of recent discussion about exactly what component of the niche is used for SDMs. On the one 

hand, some authors argued that due to the absence of variables that involve biotic interactions or 

dispersal limitation the fundamental part of the niche is modeled (Soberon and Peterson 2005, 



CHAPTER 1 - GENERAL INTRODUCTION 

 14 

Soberón 2007, 2010), although some progress has been made in trying to include such variables 

(Warren et al. 2010, Wilson et al. 2010). On the other hand, it can be argues that SDMs identify the 

realized niche of the species even without including biotic interaction variables, as they use actual 

(i.e. realized) distributional data to build the model (Guisan and Zimmermann 2000, Austin 2002, 

2007, Pearson and Dawson 2003). Personally, I consider that SDM is modelling realized niches by 

producing a model that closely resemble realized distributions of species based on observations 

where the species were actually found. Despite of this debate, SDM seems to be able to capture a 

significant amount of the ecological signature even when biotic data is often lacking in the models 

 

1.4.3. SDMs and spatial dependency 

There are multiple factors operating in a hierarchical way at different scales both spatial and 

temporal to shape the distribution of a species and patterns of species richness (Levin 1992). 

However, the extent to which those factors affect the observed pattern of distribution depends on 

the resolution (grain size) and the extent (area) of the study (Elith and Leathwick, 2009).  

Soberon & Peterson (2005) present an interesting framework to analyze this issue. In there, they 

recognized three important factors: (1) Abiotic factors usually determine the size and shape of 

distributions at continental and even regional scales but become less important the smaller the scale 

gets (Hortal et al. 2010). These factors are often responsible for physiological constraints and 

climatic responses. (2) Biotic factors affect fitness in a regulatory way (predation, competition, 

facilitation). These factors show the opposite pattern to the abiotic factors, i.e. they are often less 

important at continental scales but become increasingly important the smaller the scale gets. At 

large scales, biotic factors only will have a determining role for extreme specialists species (e.g. 

butterflies which distribution is strongly linked to that of their host-plant) (Araújo and Luoto 2007). 

(3) Movement related factors are determining the spatial movement of individuals or populations. 

They can be divided into two categories, biogeographic and occupancy factors, and they also have a 

mixed strength of their influence on distributions at different scales. Theoretically, biogeographic 

factors have major effects on distribution patterns at large scales, though they are not easy to 

account for and their effects could be idiosyncratic (i.e. vary from species to species). Progress has 

been made but still there is a lot to do in that field (Wallace, 1869; 1876; Matthew, 1915; 

MacArthur and Wilson, 1967; Kreft and Jetz, 2010; Soberon 2010). Occupancy factors are the 

result of multiple demographic factors coming together. Metapopulation dynamics, short-distance 

dispersal and localized disturbances (Hanski 1999, Pulliam 2000) can have effects on a small scale, 

affecting how individuals or populations aggregate.   

There is compelling evidence for these three factors acting together to shape species distributions 

(Leathwick and Austin 2001, Mackey and Lindenmayer 2001, Heikkinen et al. 2007). However, 
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there is still a lot of work to do to try to incorporate all three factors in SDM despite of the progress 

made.  

 

1.5.  Available species distribution data 

Numerous endeavours have been reported in recent time towards mapping the distribution of 

species for different taxa from occurrence records around the world, i.e. trying to collect, compile 

and make available such data for various purposes (Graham et al., 2004a; Soberon and Peterson, 

2004). Available data typically stemmed from highly non-random observations and surveys both in 

space and time, and a common output of their use is a set of distribution maps. These maps vary 

enormously in three aspects: (1) Data type (i.e., presence-absence data per grid cells, based on 

surveys; model predictions of occurrence; expert-opinion range maps or focal species point 

occurrences), (2) resolution (grain size) and (3) extent. Table 1.1 illustrates examples of large-

extent species distribution data available for biodiversity analysis. It is evident that the amount of 

data is not impressive when compared to global species richness. Furthermore, it is evident the 

biased towards vertebrates (14 out 24 databases are exclusively dedicated to them) and temperate 

regions. Table 1.1 highlights the necessity for providing more large-extent, high-resolution 

distributional data for taxa in the tropics, particularly insects. Similar biases in published 

macroecological studies (Beck et al. 2012) are almost certainly due to this lack of data.   

Despite the increased availability of data in recent years, the greatest demand for data is for 

conservation planning and the global change (climate or land use) analyses that cannot wait until all 

sites have been surveyed and detailed presence-absence data are ready to use. It is here where 

SDMs are valued the most, providing an alternative approach to expand the use of direct 

observation data and helping us to understand patterns in species distributions.      

 

1.6. On this thesis 

This work is the result of a collaborative project that aims at retrieving distributional information 

for a complete family of insects, and some of the first analysis that such a dataset allows. In 

particular, the compilation of raw distributional records, and their processing until they could be 

utilized for SDM, were mostly carried out by I.J. Kitching (Natural History Museum London) and 

J. Beck (Univ. Basel) over a time period of >10 years. My part in this project (i.e., this thesis) was 

restricted to utilize these data for SDM and other analyses, with the particular aim of providing high 

resolution GIS-based range data for all species. Due to the aim of providing chapters for stand-

alone publication in scientific journals, it is necessary to describe and discuss all aspects of this 

work. Therefore I will refer to “we” throughout much of the text.   
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In the following parts of the thesis, Chapter 2 introduces SDMs as a tool for providing species 

distributions and evaluates which algorithm (from the most commonly used), was the most suitable 

for modelling while considering some intrinsic properties of the species and data. In Chapter 3, we 

assess the value of different raw data sources, i.e. by comparing an independent compilation of 

occurrence data and the GBIF database, with special attention to the information on geographical 

distribution and climatic niche that they provide. Chapter 4 reports species diversity patterns based 

on numerical estimators methods in a fraction of our study region (sub-Saharan Africa), in relation 

to their main environmental correlates. We also provide an assessment of inventory completeness 

for that particular region. Chapter 5 contains a detailed documentation of data acquisition, 

processing and modelling procedures. Furthermore, here we present patterns of species diversity for 

the whole family in the complete region and report achievements, challenges and limitations of the 

project. Chapter 6 focuses on one specific application of SDMs, the prediction of the range of an 

invasive species (Agrius cingulata). Chapter 7 provides a general discussion and conclusions, 

including some preview on further studies on this dataset that are likely to be done in the future.  

 

At the time of official submission of this thesis: 

Chapter 2 is a manuscript re-submitted after “Major revision”  to Ecological Modelling 

Chapter 3 was published in 2013 Diversity and Distribution 

 Beck, J., Ballesteros-Mejia, L., Nagel, P., Kitching, I.J. (2013). Online solutions and the 

“Wallacean shortfall” : What does GBIF contribute to our knowledge or species’  ranges?. 

Diversity and Distributions, early view (doi:10.1111/ddi.12083).  

 

Chapter 4 was published in 2013 in Global Ecology and Biogeography  

 Ballesteros-Mejia, L., I. J. Kitching, W. Jetz, P. Nagel, and J. Beck. (2013). Mapping the 

biodiversity of tropical insects: Species richness and inventory completeness of African 

sphingid moths. Global Ecology and Biogeography 22: 586-595. 

Chapter 6 was published in 2011 in the International Journal of Pest Management. 

 Ballesteros-Mejia, L., I. J. Kitching, and J. Beck. 2011. Projecting the potential invasion of 

the Pink Spotted Hawkmoth (Agrius cingulata) across Africa. International Journal of Pest 

Management 57:153 – 159. 
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In addition, associated with this thesis, the following electronic data are submitted at the electronic 

network drive of the university computing centre (\\nlu-jumbo.nlu.p.unibas.ch\nlu-gis$\GIS). 

� Raw model outputs from the random forest (RF) models; RandomForest_Models 

� Raw model outputs from the Maxent models: Maxent Models_raw data 

� Raw model outputs expert-edited for dispersal limitation plus the polygons used for editing.  

� Thresholded maps (in WGS1984 geographical coordinates) 

� Threshold output models (Projected into equal area grid: Mollwide at 5 x 5 km resolution) 

� Threshold output models (Projected into equal area grid: Mollwide at 200 x 200 km 

resolution) 

� Biodiversity maps:  

• Maps at 5 x 5 km resolution of the total species richness as well as for each 

one of the 7 tribes of the family.  

• Maps at 200 x 200 km resolution the total species richness as well as for each 

one of the 7 tribes of the family. 

• Map of beta diversity at 200 x 200 km resolution for the total species. 
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Table 1.1. List of available databases (online or in atlases) compiling information about distribution of organisms.  
 
Data of publication (Year) Description URL Reference 
The Reptile Database. 1995 Data type:  

Resolution: Maps based on 
TDWG standart (but not a precise 
distribution map) 

http://www.reptile-database.org Uetz, P. & Etzold, T. 1996 

EBCC Atlas of European 
Breeding birds. 1997 

Data type: Survey  
Maps for  495 bird species  
Resolution: 50x50 km 

http://s1.sovon.nl/ebcc/eoa/ Huntley et al. 2007 

BirdLife International  Data type: Expert drawn maps 
Resolution:100 – 200 km 

http://www.birdlife.org/datazone/info/spcdownload  

Atlas of amphibians and reptiles 
in Europe. 1983 

Data type: Presence only 
Resolution:50 x 50 km UTM 

 Gasc et al. 1997 

Copenhagen database for African 
Mammals. 2007 

Data type: Presence only and 
expert opinion data 
Resolution:  1 degree  

http://130.225.211.158/subsaharanafrica/subsaharan.htm Galster et al. 2007 

Copenhagen database for African 
Birds. 2007 

Data type: Presence only and 
expert opinion data 
Resolution:  1 degree 

Data type: Presence only and expert opinion data 
Resolution:  1 degree  

Hansen et al. 2007a 

Copenhagen database for African 
Amphibians. 2007 

Data type: Presence only and 
expert opinion data 
Resolution:  1 degree 

http://130.225.211.158/subsaharanafrica/subsaharan.htm Hansen et al. 2007b 

Avian distribution database Data type: Survey data 
Resolution: 1 degree 

www.sciencemag.org/cgi/content/full/297/5586/1548/DC1 Online supplementary material in 
Jetz & Rahbek 2002. 

Plant database 2007 Data type: Inventory data 
Resolution: 1 degree 

 Kreft & Jetz 2007 

Climatic risk Atlas of European 
Butterflies 

Data type: Presence only data 
Resolution: 1 degree 

Collect the data from the project “Mapping European 
Butterflies Project”  (MEB: www.european-butterflies.eu) 

Settele et al. 2008 

The Sphingidae of Southeast-
Asia. 2004-2008 

Data type: Range maps 

 

http://www.sphin-sea.unibas.ch  

Sphingidae of the Western 
Palaearctic 1997-2012 

Data type: Presence only http://tpittaway.tripod.com/sphinx/list.htm Pittaway, A. R. (1997-2012) 
 

Sphingidae of the Eastern 
Palaearctic (including Siberia, the 
Russian Far East, Mongolia, 
China, Taiwan, the Korean 
Peninsula and Japan).  2000-2012 

Data type: Presence only http://tpittaway.tripod.com/china/china.htm Pittaway, A. R., and I. J. 
Kitching. (2000-2012). 

IUCN database for Birds Data type: Expert-drawn maps 
Resolution: 100-200 km 

http://www.iucnredlist.org/technical-documents/spatial-
data 

IUCN, 2012. 
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IUCN database for Reptiles Data type: Expert-drawn maps 
Resolution: 100-200 km 

http://www.iucnredlist.org/technical-documents/spatial-
data 

IUCN, 2012. 

IUCN database for Amphibians Data type: Expert-drawn maps 
Resolution: 100-200 km 

http://www.iucnredlist.org/technical-documents/spatial-
data 

IUCN, 2012. 

IUCN database for Mangroves Data type: Expert-drawn maps 
Resolution: 100-200 km 

http://www.iucnredlist.org/technical-documents/spatial-
data 

IUCN, 2012. 

IUCN database for Corals Data type: Expert-drawn maps 
Resolution: 100-200 km 

http://www.iucnredlist.org/technical-documents/spatial-
data 

IUCN, 2012. 

IUCN database for See grasses Data type: Expert-drawn maps 
Resolution: 100-200 km 

http://www.iucnredlist.org/technical-documents/spatial-
data 

IUCN, 2012. 

IUCN database for Parrotfish  Data type: Expert-drawn maps 
Resolution: 100-200 km 

http://www.iucnredlist.org/technical-documents/spatial-
data 

IUCN, 2012. 

IUCN database for Angelfish  Data type: Expert-drawn maps 
Resolution: 100-200 km 

http://www.iucnredlist.org/technical-documents/spatial-
data 

IUCN, 2012. 

IUCN database for Wrasses  Data type: Expert-drawn maps 
Resolution: 100-200 km 

http://www.iucnredlist.org/technical-documents/spatial-
data 

IUCN, 2012. 

A Pan-European Species- 
directories infrastructure (PESI), 
European taxa 

Data type: Occurrence data and 
expert opinion. 
Resolution: 100 – 200 km 

http://www.eu-nomen.eu/portal/ PESI, 2012. 

The Butterflies of North America: 
A Natural History and Field 
Guide. 1986 

Data type: Expert-drawn maps 
Resolution: 100-200 km 

 Scott, 1986 
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Abstract 
 
Accurately predicting species’  distribution has become a key factor for many aspects in ecology, 

evolution and conservation. Species distribution modelling (SDM), a widely used technique, aims 

to explain observed patterns of occurrence and predict geographic and ecological distributions. 

However, there is still disagreement on what method(s) to use. In particular, it is unclear whether 

different methods simply differ in quality (in which case one should use the best method a priori), 

or whether they perform differently depending on input data and the ecology of the species involved 

(in which case quality-weighted model averaging, for example, may be advisable). We investigated 

the performance of eight commonly applied SDM methods while also considering intrinsic 

characteristics of the species and their distributions (i.e., sample size, range size, climatic zone of 

occurrence and phylogenetic association), using a representative sample of species from the 

lepidopteran family Sphingidae (hawkmoths) and presence-only data. We used three criteria to 

evaluate the accuracy of models: Area under the receiver-operating characteristic (AUC), minimal 

predicted area (MPA), and expert opinion. Our results showed that maximum entropy modelling 

followed by random forest were the best methods. We did not find consistent effects of taxonomic 

association or range properties (climatic zone, range size) on model quality, nor did sample size 

(ranging from 3 to 889) allow good prediction of model performance. Our study is a relevant 

extension to previous modelling techniques comparisons as our test species are representative of a 

higher taxonomic group (i.e., family) regarding major distribution types, phylogeny and range of 

sample sizes, rather than being chosen for data availability. We show that the choice of modelling 

method is highly relevant whereas claims for effects of species or data properties could not be 

confirmed. 

 

 

Keywords:  AUC, BIOMOD, Expert opinion, Lepidoptera, Maxent, Niche modelling 
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2.1.Introduction 

 

Species distribution models (SDMs) are correlative models that use environmental information to 

explain the observed patterns of species occurrence and predict their geographical and ecological 

distributions (Elith and  Leathwick 2009). Accuracy in knowing  species distributions is essential to 

understand emerging patterns of biodiversity and the processes that shape them (Ferrier et al. 2002).   

SDMs are widely used for purposes such as conservation planning (Ferrier 2002), invasive species 

predictions (Peterson & Vieglais 2001; Thuiller et al. 2005; Ballesteros-Mejia et al. 2011), or 

predicting responses to climate change (Yates et al. 2010). They rely on the availability of point 

distributional records, but for a vast majority of species such data are sparse and biased 

taxonomically, ecologically and geographically (Boakes et al. 2010; Jetz et al. 2012; Beale & 

Lennon 2012; Ballesteros-Mejia et al. 2013).  

While presence-absence data as a result of systematic surveys are ideal to use with SDMs, for the 

majority of species only presence records, if any, are available (i.e., true absence and sampling 

deficit cannot be distinguished; Elith and  Leathwick, 2009). Natural history collections and 

faunistic publications are the primary sources of distributional information (Elith and  Leathwick 

2007; Newbold 2010) although for many species great advances have been made recently to 

compile and make such data available online (e.g., Global Biodiversity Information Facility, GBIF). 

However, all these data usually stem from opportunistic sampling, which can affect the quality of 

SDMs (Phillips et al. 2009). 

In a landmark study, Elith et al. (2006) compared the performance of different SDM algorithms 

across a large number of taxa, guiding users on which methods were likely to perform better than 

others, based on their performance using the same databases. One important conclusion was the 

finding that maximum entropy models (MAXENT; Phillips et al. 2006; Phillips and Dudík 2008) 

outperformed other modelling methodologies. In combination with its easy-to-use software, 

MAXENT has since become a very popular method of SDM despite a widespread feeling of a lack 

of transparency of the method and software (Joppa et al. 2013).  

However, some design details of the study by Elith et al. (2006) imply the need for further study. 

Models were fine-tuned to each species with great knowledge and attention to detail regarding the 

properties of each method as well as the ecology of modelled species (e.g., choice of relevant 

environmental variables). While this is obviously the ideal approach to SDM it may not reflect the 

majority of applications. In particular, SDMs are often applied to taxa about which very little is 

known (hence the need to estimate distributions via SDM), and relatively unspecific application to a 

broad range of taxa is required when advocating SDMs to address the ‘Wallacean shortfall’  (i.e., 
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our poor knowledge of geographical distributions of most species; Lomolino 2004) on a broad scale 

(Jetz et al. 2012). Related to that, Elith et al. (2006) used taxa with independently available 

presence-absence data. This represents the “gold standard”  in empirical model testing, but it also 

enforces a non-random selection of species that are relatively well-studied (implying a non-random 

selection of ecological traits, among them abundance). 

It is not only important to understand the properties of these methods under ideal conditions (i.e., 

abundant data, good understanding of species’  ecology, perfectly adjusted implementation of 

methodology, etc.), but we also need to know how robust they are under conditions of non-ideal 

implementation, which may represent the majority of cases. In analogy, risk assessments of new 

products (e.g., cosmetics: Larner 2008) also need to consider the chance and magnitude of damage 

due to likely occasional misuse. We do not want to advocate incorrect use of distribution models, 

but we need to acknowledge that in many cases there simply is not enough data and background 

knowledge available to guarantee perfect application. 

SDM quality and accuracy can also vary between species (Newbold et al. 2009b). How different 

characteristics of studied taxa affect the performance of SDM techniques is a critical topic. Species 

with narrow niches (i.e., better defined climatic and/or habitat requirements) were found to be easier 

to model than those with a wider niche (Pearce et al. 2001; Newbold et al. 2009b), range-restricted 

species better than widespread species (Segurado and Araújo 2004). Model accuracy was also found 

to be influenced by the number of presence records used for model building (Pearce and Ferrier 

2000), and predictions based on few records are often seen as weaker than those based on a larger 

number of samples (Hernandez et al. 2006; Wisz et al. 2008; Mateo et al. 2010b). Only few studies 

have investigated how phylogenetic relationships are linked to the quality of SDMs (Pöyry et al. 

2008) although there is evidence for phylogenetic conservatism among niche parameters (Hof et al. 

2010) and range characteristics (Beck et al. 2006a; Jablonski 2008) of species. Different model 

performance ranking under different conditions of input data would lend support to techniques of 

quality-weighted model averaging (Araujo and New 2007), whereas one should use the single best 

modelling technique if there was little data-driven variation in the performance rank of different 

methods.  

In the present study we investigated the performance of eight commonly applied SDM methods in 

their standard software implementations (see Joppa et al. 2013 for associated problems) while 

considering some intrinsic characteristics of species and their distributions as covariates. Crucially, 

we used a sample of species selected to be representative for the Lepidoptera family Sphingidae 

across the Old World, based on a combination of three different criteria (see Methods), rather than 
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hand-picking taxa with good and abundant data. We hypothesized that species from climatic zones 

with supposedly limiting climatic factors, such as cold temperatures in temperate regions or drought 

in arid regions, will be better modelled in climate-based SDMs than those from humid tropical 

regions (or with mixed distribution). We also hypothesized that larger sample size is beneficial to 

model quality, whereas range size should reduce model quality (after controlling for sample size; 

Segurado and Araújo 2004; Newbold et al. 2009a). We expected differences between phylogenetic 

lineages, which in sphingids imply considerable life history variation with regard to mobility and 

dispersal, resource use, reproductive biology, habitat preference and other ecological traits (Beck et 

al. 2006a, b, c; Beck and Kitching 2007). We evaluated modelling accuracy using three independent 

methods: Area under the receiver-operating characteristic (AUC), minimal predicted area (MPA), 

and expert opinion.
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2.2. Methods 

2.2.1. Species data 

We based our study on occurrence records for the Sphingidae from the Old World + 

Australia/Pacific region. Out of 982 taxa known from the region, we selected taxa (Appendix A) in 

a stratified design according to three criteria: (a) rarity, quantified in three classes of record numbers 

(5-10, 11-50, >50; record numbers are lognormal-distributed), (b) climatic zone of occurrence (four 

classes: humid-tropical, arid, temperate, mixed) and (c) membership in one of seven systematic 

tribes. Tribal placements were based on a recent molecular phylogeny (Kawahara et al. 2009) and 

had been shown to impact distribution in earlier analyses of the family (Beck et al. 2006a). For all 

possible combinations of these criteria (i.e., classes) we randomly selected one species if available. 

This process led to the choice of 64 species that represent family-wide data variability in these 

characteristics. Computational limitation prevented us from including more species into the study.  

Distributional data were compiled from museums and private collections, correspondence with 

collectors, publications (including online databases such as GBIF, www.gbif.org) and own 

fieldwork. All data were carefully checked for reliability of taxonomy (i.e., synonyms, 

misidentification, etc.) and locality information (i.e., coordinates associated with the locality of each 

record). Potentially erroneous records (e.g., highly unlikely localities, likely misidentifications) 

were excluded, and for the purposes of this analysis we also excluded all records that could not be 

reliably georeferenced to at least 1° latitude/longitude (ca. 110 km; most records were 

georeferenced with an estimated error <<0.1° latitude/longitude). A “ record”  is here defined as a 

unique combination of species, locality, year and collector (or source). Record numbers may hence 

contain replicates regarding distribution modelling (in time or space, depending on the modelling 

resolution), and a few occurred at sites outside the environmental data grids used for fitting and 

prediction. We use the term “sample size”  for the number of distributional data that actually entered 

SDMs.  
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2.2.2. Environmental data for distribution modelling 

We compiled sixteen variables for use as predictors in SDMs (Appendix B). Twelve climatic 

variables and altitude were extracted from the WorldClim database (v. 1.4; www.worldclim.org; 

accessed Feb. 2009). This compilation based on interpolations of monthly climate averages from 

1950-2000 is commonly used in SDM. In addition, we used vegetation cover data from MODIS 

continuous fields indicating percent tree, herb and bare ground cover 

(http://glcf.umiacs.umd.edu/data/vcf; accessed Feb. 2009). All layers were used in a spatial 

resolution of 2.5 arc-minutes (ca. 5 x 5 km). 

 

2.2.3. Species distribution modelling 

From the broad variety of currently available modelling techniques we selected eight SDM 

algorithms for our comparison: Generalized Linear Models (GLM), Generalized Additive Models 

(GAM), Generalized Boosting Models (GBM), Classification Tree Analysis (CTA), Artificial 

Neural Network (ANN), Multivariate Adaptive Regression Splines (MARS), Random Forest (RF) 

and Maximum Entropy (MAXENT). Some of these (i.e., MAXENT, GBM) were among the top-

scorers in the comparison of Elith et al. (2006).  

These methods fall into two distinct categories: 1) Regression-type methods (GLM, GAM and 

MARS) and 2) machine-learning methods (ANN, RF, CTA and MAXENT) (Thuiller 2003; Phillips 

et al. 2006; Hastie et al. 2008; Marmion et al. 2009). Note that MARS can also be viewed as a 

simple machine learning method. All methods except MAXENT were calculated within the 

BIOMOD platform, implemented in R (http://www.r-project.org; Thuiller et al. 2009). For 

MAXENT we used software provided by Phillips et al. (2006; version 3.3.3e).  

SDMs usually require presence-absence data for model fitting and testing, but reliable absences 

were not available (as for most SDM applications). A commonly used solution is the generation of 

pseudo-absences (Ferrier et al. 2002; i.e., selected locations are used as absences based on the 
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assumption that the species really does not occur there)t is important to keep in mind that the 

measures to evaluate performance will not represent a distinction between presence and absence but 

rather between presence and random. From the different strategies for generating pseudo-absences 

incorporated in BIOMOD, we chose to generate a random sample of 10000 points across the 

research region (Elith et al. 2006) constrained to not fall within in a radius of 40 km around 

recorded occurrence points (following advice in Mateo et al. 2010a).   

MAXENT fits models by using background points instead of pseudo-absences (background points 

are a random sample across the landscape and may include presence sites). The choice of 

background samples can be refined by using an externally supplied bias distribution. We used a bias 

file based on the “ target-group absences”  approach (Mateo et al. 2010a), i.e. a kernel density 

distribution grid of our sphingid moth database for all Old World species. This accounts for the fact 

that some sites are much better sampled than others, and hence a lack of presence for a given 

species at such sites is much more meaningful than at rarely sampled or entirely unvisited sites. We 

fitted MAXENT models with both methods of background sampling (random and target-group) and 

compared results. Only MAXENT models with target-group sampling were used for across 

algorithm-comparisons. 

Various studies have pointed out that SDMs can be sensitive to the choice of research region 

because it affects background or pseudo-absence selection as well as the predicted area, and an 

informed a priori choice of where the species occurs was advised (VanDerWal et al. 2009; Barve et 

al. 2011). However, if the aim of SDMs is to provide estimates of geographic distributions for 

species with very little ecological information available, this demand becomes circular (i.e., we 

need a SDM to make a good choice), and subsequently decisions are, to a certain degree, arbitrary. 

Furthermore, because we know more about some species than about others, the uncertainty and 

error in the a priori choice of research regions will differ between species, which further 

complicates comparison. Using a rather broad calibration area might be more useful when exploring 

species’  unknown distribution (Giovanelli et al. 2010). Moreover, one of our evaluation criteria 
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(AUC, see below) is sensitive to change in modelling extent (Barve et al. 2011), which would 

introduce additional variability to model comparison. For these reasons and because uncertainty 

regarding such decisions probably reflects the typical state for the majority of organisms (i.e., 

tropical invertebrates) and, by design, all automatized applications of SDM (Guralnick and  Hill 

2009), we based our main comparisons on models fitted and evaluated across the entire research 

region (i.e., Old World + Australia). Hence, we compare models under the somewhat naïve 

approach that we know nothing about the biogeography of species. All final models are averages of 

5 replicate models, using a random selection of 75% of occurrence records for model fitting 

(“ training”), and 25% for testing (see below). 

 

2.2.4. Assessment of model quality 

In absence of independent presence-absence data for modelled species we used three different 

approaches to compare predictions generated by the different models.  

(1) The area under the receiver-operating curve (AUC) is a widely used but also widely criticized 

method (Lobo et al. 2008; Jiménez-Valverde 2011) to estimate predictive accuracy independently 

of threshold (Pearce and Ferrier 2000; Elith et al. 2006). Following standard procedures, we used a 

cross-validation to retrieve “ independent”  AUC (25% test data). The averages of AUC from five 

replicates were used for analysis. AUC ranges between 0 and 1 with 0.5 indicating a random 

prediction (high AUC indicates good models). 

(2) Minimal predicted area size and cut-off threshold (MPA; Engler et al. 2004) is based on the idea 

that a good map should predict a species’  range as small as possible while including most recorded 

occurrences (i.e., 90% of records). MPA does not require absence data and therefore is independent 

of pseudo-absence generation (Engler et al. 2004; Rupprecht et al. 2011). MPA was calculated in 

ArcGIS 10 after transforming data to an equal-area projection by using a specific cut-off threshold 

for every map. Low MPA indicates good models (note that no direct comparison can be made 
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across species with different range extent). MPA was calculated for final, averaged models (see 

above). 

(3) Expert opinion is the basis of many commonly used global-scale distributional data sets 

(BirdLife International 2000; Baillie et al. 2004).The knowledge of experts has also been 

incorporated at different stages of SDM approaches (Seoane et al. 2005; Murray and  Goldizen 

2009). One of us (IJK) is a leading expert on the taxonomy, systematics and distribution of the 

Sphingidae, and we used his opinion as evaluation criterion of the plausibility of SDM range 

predictions. Although we compiled and processed raw data together, he was not involved in SDM 

generation. To further increase the independence of assessments, IJK was usually presented range 

maps anonymously with regard to the SDM algorithm employed. Unlike AUC and MPA, expert 

opinion excluded model predictions that were clearly far outside a biogeographically reasonably 

expectation. Additionally to the presence records used for modelling the expert also considered 

records unknown to the model (e.g. because they were excluded due to low precision of 

georeferencing), ecological traits of the species (e.g., host plant associations), and reliable absences 

from very well sampled localities. Models were graded numerically (1-6, with 6 representing best 

models). Grades were given to final, averaged models (see above). 

 

2.2.5. Evaluating differences in model performance 

We analysed the variation of model quality with generalized linear mixed models (GLMMs), using 

quality metrics (i.e. AUCtest (arcsine-transformed), MPA or grades) as response variables (separate 

GLMM for each quality metric). We fitted as fixed effects model algorithm (8 types), climatic zone 

(4 types), systematic association (7 tribes), sample size and range size (both continuous). We used a 

model-independent estimate of range size, the product of latitudinal and longitudinal extent of 

records (Beck et al. 2006a). Species identity was fitted as random effect (random intercept). In the 

analyses presented below, no interactions were modelled. However, in preliminary analyses we 

included, in various combinations, the most interesting potential interactions (e.g., habitat 
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type*modelling algorithm, sample size*modelling algorithm). These GLMMs did not gain in 

explanatory power if weighted against increased model complexity (higher deviance information 

criterion (DIC), all ∆DIC >>50), hence we did not further consider them.  

Analyses were performed using MCMCglmm package in R (Hadfield 2010), which uses a  Bayesian 

framework with Markov Chain Monte Carlo algorithms. This approach has the advantage of being 

highly flexible and accurate. We specified a non-informative uniform prior for all the parameters, 

which is equivalent to a GLMM fitted with a maximum-likelihood approach (Bolker et al. 2009). 

Comparison between the modelling methods for every model quality metric was summarized after 

160000 iterations (burn-in period of 40000). Results are summarized by the mean of the posterior 

distribution and their 95% confidence intervals, indicating direction, strength and significance of 

effects. 
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2.3. Results 

Of 512 SDMs, 6 did not converge (i.e., no prediction could be derived; 3 for MARS, 2 for CTA and 

1 for GAM; these were not further considered in comparisons). The three metrics of model quality 

did not lead to consistent assessments when we correlated raw data (pairwise linear regressions: n = 

64, all r2 <0.01); however, in a pairwise GLMM analysis with species as a random effect significant 

yet weak correlations between the three were recovered in the expected direction (Table 2.1). Weak 

correlations between these metrics are not unexpected, but they undermine the idea that the 

“quality”  of model can reliably assessed from these metrics.   

 

 

Table 2.1 Correlation between the different quality metrics (normalized and standardized) in pairwise 

GLMMs with species as random effect: Mean in the posterior distribution (slope), pMCMC (*<0.05, 

***<0.01, ***<0.001). Note that good models are indicated by high AUC, high grades, and low MPA. 

 
 AUC MPA Grades 

AUC  -0.164*  0.192**  

MPA -0.087**   -0.240**  

Grades 0.219**  -0.623**   

 
 

2.3.1. Differences between model algorithms 

Results of GLMMs showed that there were significant differences between the algorithms utilized 

(see Figure 2.1 for an example). MAXENT was the best method according to MPA and expert-

assessed grades for plausibility (see Methods; ‘grades’  from here on) followed by RF, while ANN 

was approximately equal with RF and MAXENT according to AUC (Figure 2.2). MARS performed 

worst according to all criteria. Variation across the data set was large (see confidence intervals in 

Figure 2.2), which restricts our major results to MAXENT being judged better than most other 

methods except RF.  
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Figure 2.1 Distribution records (black crosses; upper left map) and range estimates (grey) derived from eight 
SDM techniques, shown exemplarily for the Southeast-Asian species Psilogramma increta. Predicted 
probabilities of occurrence were transformed into a binary presence/absence maps for display, using the 
MPA cut-off value as threshold. (i.e. predicting at least 90% of records correctly; see Methods). 

 

 

 

2.3.2. Effects of distribution region 

Model performance did not vary consistently and significantly with the climatic zones of 

distribution of species (Figure 2.3). Furthermore, the variation contrasted our initial hypotheses of 

better performance in regions with assumed climatic constraints (i.e., arid and temperate). However, 

some interesting patterns emerged when analyzing modelling performance across regions from raw 

data. Regression methods (GLM, GAM and MARS) tended to performed poorer within mixed 

habitats, whereas machine learning methods seem to perform much better there. When modelling 

species from arid zones, however, regression methods, especially MARS, performed consistently 

better than some machine learning methods (CTA, GBM). Contrary, general performance of these 

methods was poor when modelling species with temperate distribution with the exception of 

MAXENT that consistently outperformed the others (Appendix 2.3). 

 

 



CHAPTER 2 - METHODS COMPARISON 

 39 

Figure 2.2 Posterior distributions (±95% confidence intervals) from GLMMs across different modeling 
algorithms for (a) AUC (high value = good model), (b) MPA (low value = good model), (c) expert grades 
(high value = good model). GLM was arbitrarily taken as zero.  
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2.3.3. Differences between taxonomic groups 

Effects of tribal association of species were inconsistent across the three quality assessments and 

largely non-significant. Species belonging to the tribe Acherontiini (many of which are generalists 

in larval feeding and have large ranges), in particular, had worse models according to AUC and 

MPA but not to expert grades (Figure 2.4).  

 

2.3.4. Effects of range and sample size 

We did not observe a significant decline in model quality with increasing range size, only a non-

significant trend for MPA (mean in the posterior distributions: AUC = 0.033, P = 0.405; MPA = 

0.334, P = 0.100; grades = -0.073, P = 0.742). Surprisingly, we did also not find significant effects 

of (log)sample size on any of the metrics of model quality despite a range from 3 to 889 (in total, 

four species had a sample size <5; means of the posterior distributions: AUC = 0.029, P = 0.640; 

MPA = 0.314, P = 0.305; grades = 0.112, P = 0.716). However, when removing one of these 

collinear variables (Appendix D), simplified GLMMs recovered effects for AUC and MPA (models 

did not change assessment for grades, nor did any of the other effects change in any model). When 

removing range size, we found positive effects of sample size on model quality for AUC (posterior 

distribution = 0.069, P = 0.045) but negative ones for MPA (posterior distribution = 0.743, P 

<0.001); when removing sample size, however, we found positive effects of range size on model 

quality for AUC (posterior distribution = 0.049, P = 0.032) but negative ones for MPA (posterior 

distribution = 0.532, P <0.001). Thus, recovered effects were functionally inconsistent and are 

therefore most likely artefacts of collinearity. Plots of raw data indicated wedge-shaped 

relationships of sample size with AUC and MPA, respectively (i.e., large samples are associated 

with good models, while for small samples sizes there were both bad and good models; Appendix 

2.5). However, no such pattern was evident for grades.   

We observed large variability in model quality across the 64 species studied; Appendix 2.1). 

Although some methods occasionally failed badly (i.e., making antithetical predictions) or did not 

converge, MAXENT and RF were quite consistently well-performing.  

.  

2.3.5. Effects of biased absences within MAXENT  

Regarding the issue of whether models should be fitted with random background points or 

alternatively by selecting the background points from an external bias file (see Methods), we 

observed significantly higher AUC with bias file only for training data (t = 3.642, df = 63, P 

<0.001) but not for test data in cross validation (t = 0.746, df = 63, P >0.45).  
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Figure 2.3 Posterior distributions (±95% confidence intervals) from GLMMs for distribution types. “Mixed” 
habitat was arbitrarily taken as zero. 
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Figure 2.4 Posterior distributions (±95% confidence intervals) from GLMMs for phylogenetic associations 
(7 tribes). Smerinthini (the tribe with phylogenetically most basal characteristics) was taken as zero.  
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2.4. Discussion 

 

Our analyses demonstrated major differences in the predictive performance of a range of widely 

used modelling techniques. In particular, MAXENT, and to a lesser degree random forest (Figure 

2.2), outperformed other methods, which is consistent with earlier studies (e.g., Elith et al. 2006; 

Pearson et al. 2007; Cutler et al. 2007; Graham et al. 2008; Philips and Dudik 2008; Giovanelli et 

al. 2010). However, as our comparison does not strictly compare model algorithms but rather their 

implementation in available software, we cannot dissect which aspect of MAXENT causes the good 

performance (as software may also differ in other aspects).  Another well-performing method in 

Elith et al. (2006) was GBM (termed BRT there), which in our analysis had an intermediate 

performance. Regression-type methods were intermediate and quite similar to each other in terms of 

performance. Earlier studies also suggested that methods with non-linear fits (GAM, ANN, GBM) 

are comparable in terms of performance and are usually superior to simple classification trees (like 

CTA; Muñoz and  Felicísimo 2004; Segurado and  Araújo 2004). Contrary to Elith et al. (2006) we 

only used single-species SDM methods in our comparison. 

However, despite high between-species variation (controlled as a random effect in analyses; 

Appendix 2.6) we did not find strong and consistent evidence for the hypothesized effects of 

taxonomic groupings (i.e., tribal association) and climatic zone of occurrence in multivariate 

analysis. Several studies have reported negative correlations of modelling performance and range 

size, proportion of habitat used by the species, area of occupancy or high ecological tolerance 

(Hepinstall et al. 2002; Segurado and Araújo 2004; Newbold et al. 2009b). The species modelled 

here spanned a wide range of distributions from almost cosmopolitan to highly localized, and range 

size was found to correlate with the width of other niche dimensions such as diet breadth in 

sphingids (Beck and Kitching 2007). Nevertheless, we could not observe consistent links between 

range size and model quality. Hence, the variation between species (or data sets) that were “good to 

model”  and those that were not seems quite idiosyncratic.  

Even more surprising was that we did not find clear and strong effects of sample size. More data 

may not necessarily lead to better models, although raw data plots indicated that bad models tend to 

be among those with small sample sizes (Appendix 2.5). Conflicting results (depending on 

inclusion or exclusion of range or sample size from GLMMs) may be due to the collinearity of 

these two variables. However, positive range-abundance relationships (Beck et al. 2006d for 

sphingids) make this collinearity in interspecific comparisons inevitable. While some studies 

suggested that low sample size negatively influence model performance (Hernandez et al. 2006; 

Mateo et al. 2010b), Elith et al.(2006) could not corroborate this either. Possibly geographical 
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sampling bias is more relevant with large sample size, so that the advantages of more information 

are counterbalanced by the disadvantage of containing less representative information (Loiselle et 

al. 2008). 

An important additional finding was that the three methods of evaluation only correlated with each 

other after accounting for species-specific differences, and even then agreement was not particularly 

strong (Table 2.1). Without presence-absence data we have no objective means to know which 

SDM is closest to the true geographic distribution of a species (however, we tend to put most trust 

in expert grades). AUC has been criticized for several undesired properties such as dependence on 

modelling extent and sample size (Barve et al. 2011). AUC calculated on the basis of pseudo-

absences might be additionally problematic (Lobo et al. 2008). Despite this, the main results of our 

study were consistent for all three metrics. The most relevant difference between evaluation criteria 

was that RF and ANN appeared similar in quality with MAXENT when evaluated with AUC, but 

less so with MPA and grades. 

The SDM community is divided over the question of whether it is necessary to choose a “best”  

modelling algorithm or if model averaging (Araujo & New 2007, Thuiller et al. 2009) offers an easy 

way around this decision. With the repeated finding (this study and others) that some methods are 

consistently better than others, model averaging can only be useful if weighted by model quality 

(BIOMOD, e.g., offers averaging weighted by AUC). However, if model quality assessment itself is 

not reliable (i.e., not consistent across criteria) and AUC in particular must be viewed as 

problematic in this respect, we see much potential for getting worse instead of better predictions 

from model averaging, without even realizing it. Given the weak, if any, additional predictability of 

model quality (i.e., no species characteristics effects), our results lead us, at least, to recommend 

restricting model averaging to generally well-performing methods (e.g., RF and MAXENT). 

However, we note that this assessment is based on our results regarding best range prediction. As 

outlined above, regression-type approaches such as GLM may have advantages if the aim is 

defining or testing niche dimensions of species (Austin 2002). Also, we have not considered, in the 

absence of good biological knowledge of the test species, how correct ecologically the modelled 

responses are. Modelling realistic responses are of utmost importance for prediction into new 

regions or climates (Elith et al. 2010; Svenning et al. 2011).  

Choice of spatial scale in SDMs may be confounded by a trade-off of more precise environmental 

data for fine-grained models on the one hand, and less error in georeferencing (particularly for older 

museum data) and higher computing speed in coarser grain on the other hand (for general 

discussion input data-driven uncertainty see Beale and Lennon 2012). A preliminary comparison of 

SDMs based on different grain size (ca. 1 x 1 km vs. 5 x 5 km, using only MAXENT; data not 

shown) indicated no relevant differences (AUC and visual comparison), which tentatively supported 
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coarser-grain modelling to facilitate shorter computing times. We did find, however, support for 

better models with background sample choice constrained by a bias file to account for unequal 

sampling across the region. Hence, we tentatively recommend against random background point 

selection if relevant data are available (Philips et al. 2009). Collector bias in distribution records 

compilations can be high and relevant for observed patterns (Boakes et al. 2010, Ballesteros et al. 

2013 [Chapter 4 in this thesis]), which could considerably weaken SDM quality. 

Our comparison of SDM methods has some unique properties, such as considering a broad 

geographic scale, major distribution types, phylogenetic variation and a wide range of sample sizes 

with a data set that can be considered representative for an entire systematic group. However, it also 

has some drawbacks such as lack of true presence-absence data for model evaluation or the need, 

for the sake of comparability, of modelling across larger regions than would be ideal for some taxa. 

Given these limitations, however, our data set nonetheless represents the majority of species 

distribution data that is becoming available with increasing digitization of records from natural 

history collections. For invertebrates, i.e. the bulk of biodiversity, we often do not have more 

ecological knowledge than a name and some sites of occurrence, yet these taxa are most in need of 

SDMs to get justified and detailed estimates of their geographic distributions. 

 

2.5. Conclusions 

 

With a set of species chosen to be representative for an insect family, we can confirm the superior 

position of the MAXENT method for SDMs (Elith et al. 2006), while we note that the random 

forest method also performed quite well. In light of this and of the finding that model evaluation 

criteria used for weighting seem not very reliable (i.e., lack of congruence among each other) we 

suggest to restrict model averaging, if employed, to algorithms that can a priori be expected to 

provide good SDMs. We have not explicitly tested averaged models against single models, but 

averages of good and bad models must necessarily lead to a weaker performance than that of good 

models alone.  We did not find consistent differences between taxonomic groups (as a proxy of life 

history variation) or range properties (climatic zone, range size) on model quality, nor did sample 

size seem to strongly affect model performance. Rather, idiosyncratic differences between taxa or 

data sets seem to make some species’  ranges easier to approximate by SDMs than others.   
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2.8. Appendix 

Appendix 2.1 Names, systematic classification (tribe), climatic zone of occurrence, number of records in ca. 5 x 5 km grid cell resolution (i.e. sample size for SDMs) of 
the 64 sphingid moth species used in analyses. We also report modelling performance for each species, summarized across methods and for three quality metrics (area 
under the receiver-operator characteristic, AUC; minimal predicted area, MPA; expert grades. Note that our nomenclature results from some as yet unpublished 
taxonomic revisions.  

AUC MPA (km2) GRADES 
Min Mean Max Mean Min Max 

Species name Tribe Climatic 

zone 

Sample 

size 
   

Min 
 

Max 
 

Mean 
 

Agnosia orneus Smerinthini Mixed 3 
0.5 0.6925 0.8801 1.36713E+12 4.51424E+12 7.05E+12 1 3.125 5 

Agrius convolvuli  Acherontiini Tropical 889 
0.78 0.885 0.93 4.87658E+13 1.35167E+14 1.68E+14 1 3.875 6 

Agrius godarti Acherontiini Mixed 9 
0.5 0.593763 0.833 1.4302E+12 3.87033E+12 5.52E+12 1 2.75 5 

Akbesia davidi Ambulycini Arid 33 
0.98 0.985719 0.9957 6.82169E+11 1.97351E+12 2.96E+12 2 3.125 6 

Ambulyx kuangtungensis Ambulycini Mixed 48 
0.61 0.92765 0.997 3.86917E+12 7.33246E+12 1.22E+13 2 3.375 5 

Ambulyx lahora Ambulycini Temperate 5 
0.5 0.8321 0.9988 62397277909 6.74112E+12 1.57E+13 2 4.125 6 

Ambulyx maculifera Ambulycini Temperate 8 
0.8 0.952313 0.998 1.97175E+11 3.58348E+12 1.74E+13 1 4 6 

Ambulyx rudloffi Ambulycini Tropical 6 
0.86 0.945675 0.9964 12950000000 22069214060 2.56E+10 4 5 6 

Ambulyx wildei Ambulycini Tropical 30 
0.94 0.967825 0.9896 9.9743E+11 1.67742E+12 4.66E+12 3 4.5 6 

Amplypterus mansoni Ambulycini Tropical 46 
0.92 0.970313 0.997 9.21325E+11 8.24986E+12 1.77E+13 2 2.625 6 

Apocalipsis velox  Sphingini Temperate 19 
0.9 0.97975 0.995 8.52394E+11 4.34269E+12 1.26E+13 2 3.375 6 

Barbourion lemaii Ambulycini Temperate 17 
0.87 0.9634 0.992 1.99385E+12 6.65659E+12 1.26E+13 1 2.5 6 

Callosphingia circe Acherontiini Arid 15 
0.91 0.964725 0.995 3.80018E+12 4.93458E+12 5.8E+12 1 3 5 

Cephanodes banksi Dilophonotini Tropical 18 
0.86 0.975988 0.998 1.80199E+11 2.4552E+11 3.36E+11 1 5.25 6 

Cephanodes hylas Dilophonotini Mixed 443 
0.82 0.918925 0.998 3.53416E+13 6.76742E+13 1.15E+14 1 3.25 6 

Cephanodes janus Dilophonotini Tropical 9 
0.55 0.98225 0.999 2.3649E+12 6.35521E+13 1.15E+14 1 3 6 

Cephanodes kingii Dilophonotini Mixed 7 
0.88 0.931988 0.988 6.82816E+11 2.18154E+12 7.72E+12 2 5.25 6 

Cephanodes rufescens Dilophonotini Tropical 10 
0.92 0.965663 0.99 2.80975E+11 4.72569E+11 5.59E+11 1 4.125 6 

Coelonia brevis Acherontiini Tropical 18 
0.93 0.979463 0.998 3.5415E+11 6.33008E+13 1.15E+14 5 5.125 6 

Coelonia solani Acherontiini Tropical 22 
0.98 0.986213 0.9927 2.1365E+11 6.32832E+13 1.15E+14 2 5.125 6 

Cypa kitchingi Smerinthini Tropical 3 
0.5 0.797 0.995 31025000000 89787500000 1.33E+11 1 3.625 6 

Cypa latericia Smerinthini Arid 15 
0.7 0.919225 0.996 4.9465E+11 2.67479E+12 3.83E+12 2 2.625 6 

Dolbina grisea  Sphingulini Temperate 29 
0.5 0.988329 0.999 1.83578E+12 8.66015E+12 1.18E+13 1 2.5 6 

Dolbina inexacta Sphingulini Mixed 119 
0.96 0.971688 0.995 3.28228E+12 1.1415E+13 1.86E+13 1 3.125 5 

Dolbina schnitzleri 
Sphingulini Tropical 4 0.99

5 0.99754 0.999 24225000000 99449284030 1.47E+11 3 4.25 6 
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Falcatula svaricki Smerinthini Arid 8 
0.97 0.988538 0.998 1.5706E+12 3.75661E+12 5.07E+12 2 3.5 5 

Hemaris ottonis Dilophonotini Temperate 10 
0.89 0.953325 0.995 3.75155E+13 7.36959E+13 1.15E+14 1 2.875 6 

Hemaris rubra Dilophonotini Temperate 7 
0.5 0.764686 0.9791 88300000000 1.76642E+13 2.13E+13 1 1.75 6 

Hemaris tityus Dilophonotini Temperate 889 
0.94 0.975538 0.999 3.75155E+13 7.03075E+13 1.15E+14 2 2.75 4 

Hippotion scrofa Macroglossini Mixed 18 
0.91 0.961125 0.997 3.02673E+12 6.30987E+12 8.25E+12 1 3.25 6 

Hopliocnema  brachycera Sphingulini Arid 6 
0.75 0.924638 0.999 3.75155E+13 7.21837E+13 1.15E+14 1 3.25 6 

Hyles centralasiae Macroglossini Temperate 28 
0.75 0.83823 0.9786 2.47588E+12 8.17187E+12 1.51E+13 1 2.5 6 

Hyles siehei Macroglossini Arid 8 
0.9 0.981838 0.99 1.50835E+12 8.75443E+12 1.2E+13 1 2 3 

Hyles tithymali  Macroglossini Arid 59 
0.82 0.895763 0.978 5.45728E+12 1.98347E+13 2.65E+13 2 2.625 5 

Kentrochrysalis streckeri Sphingulini Temperate 52 
0.89 0.972588 0.997 3.75155E+13 7.76032E+13 1.15E+14 1 2.875 6 

Leuucophlebia  lineata Smerinthini Mixed 156 
0.9 0.966088 0.998 3.75155E+13 7.03075E+13 1.15E+14 1 3.875 6 

Mapcropoliana gessi Sphingini Mixed 5 
0.5 0.84125 0.998 1.258E+11 3.99941E+12 5.44E+12 1 2.375 6 

Mimas christophi Smerinthini Temperate 45 
0.93 0.978413 0.998 1.63215E+12 4.73953E+12 6.33E+12 2 3.25 6 

Neoogurelca hyas  Macroglossini Mixed 108 
0.9 0.954325 0.998 1.84875E+12 1.48392E+13 4.29E+13 2 3 5 

Nephele joiceyi Macroglossini Tropical 8 
0.92 0.96315 0.9982 2.63325E+11 1.07621E+12 1.23E+12 2 2.625 5 

Nephele lannini Macroglossini Arid 9 
0.74 0.824163 0.9494 1.87613E+12 8.88115E+12 1.05E+13 1 2.5 4 

Oligographa juniperi Sphingini Arid 8 
0.74 0.9525 0.998 1.7065E+11 2.73498E+12 4.41E+12 2 2.5 6 

Pantophaea favillacea Sphingini Arid 49 
0.89 0.973475 0.998 3.75155E+13 7.03075E+13 1.15E+14 3 4.5 6 

Pantophaea jordani  Sphingini Mixed 18 
0.95 0.974225 0.991 9.9088E+12 1.94715E+13 2.51E+13 2 3.375 6 

Panogena lingens Sphingini Tropical 26 
0.79 0.943475 0.9958 1.44875E+11 4.35472E+11 5.62E+11 2 3.75 6 

Platyshinx bouyeri  Smerinthini Arid 7 
0.75 0.8555 0.985 9.03425E+11 6.5283E+12 1.37E+13 2 3.375 6 

Platysphinx_phyllis Smerinthini Mixed 18 
0.75 0.9126 0.996 8.89128E+12 1.29794E+13 1.59E+13 2 2.875 6 

Polyptychus carteri  Smerinthini Tropical 109 
0.75 0.923263 0.971 5.217E+12 1.45242E+13 2.37E+13 2 3.625 6 

Polyptychus  girardi  Smerinthini Tropical 26 
0.9 0.957863 0.98 5.673E+11 1.25733E+13 2.02E+13 2 3.375 6 

Praedora leucophaea Sphingini Arid 9 
0.79 0.892763 0.988 4.67278E+12 7.31052E+12 8.57E+12 1 2.25 5 

Proserpinus proserpina Macroglossini Temperate 229 
0.96 0.981325 0.996 5.73161E+12 7.76954E+12 8.57E+12 2 3.375 5 

Psilograma argos Sphingini Tropical 11 
0.88 0.9335 0.976 9.96204E+11 3.07099E+12 7.51E+12 1 3.625 6 

Psilograma increta  Sphingini Mixed 225 
0.83 0.9463 0.981 8.0873E+12 1.38109E+13 2.49E+13 1 2.75 6 

Psilograma salomonis Sphingini Tropical 16 
0.84 0.926875 0.999 4.16128E+12 7.12136E+12 8.45E+12 2 2.875 6 

Rhodambulyx schnitzleri Smerinthini Temperate 5 
0.93 0.965725 0.998 7.62975E+11 7.49705E+12 1.22E+13 2 2.25 4 

Rhodoprasina winbrechlini  Smerinthini Temperate 8 
0.92 0.9634 0.9882 6.54575E+11 7.12278E+12 1.21E+13 1 2.125 4 

Sphingulus centrosinaria  Sphingini Temperate 7 
0.5 0.947714 0.995 5.6445E+11 6.93437E+12 9.06E+12 1 2.125 4 

Sphingulus maurorum Sphingini Temperate 44 
0.93 0.964575 0.998 4.80725E+11 1.96661E+12 2.94E+12 1 2.25 5 
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Sphingulus mus  Sphingulini Temperate 26 
0.94 0.970725 0.988 8.29925E+11 4.96971E+12 7.45E+12 1 2.125 4 

Temnora_nitida Macroglossini Tropical 8 
0.73 0.84175 0.975 4.075E+11 5.12288E+11 5.66E+11 1 2.75 5 

Tetrachroa edwardsi Sphingulini Arid 8 
0.81 0.96475 0.998 5.73161E+12 7.4432E+12 8.57E+12 1 4 6 

Theretra cajus  Macroglossini Mixed 10 
0.74 0.8955 0.988 4.403E+11 2.14033E+12 3.01E+12 2 2.5 6 

Theretra griseomarginata Macroglossini Temperate 6 
0.94 0.984438 0.998 68100000000 1.32132E+12 2.17E+12 2 2.625 5 

Theretra jugurtha Macroglossini Tropical 78 
0.83 0.950975 0.995 8.9025E+12 1.71266E+13 2.32E+13 1 3.125 5 
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Appendix 2.2 List of predictor variables used in the models.  

Variables Abbreviation Units 

Altitude alti m 

Annual Temperature range  antemr 0.1 °C 

Annual precipitation yprecip mm 

Annual Temperature ytem 0.1 °C 

Bare ground cover bare % 

Herb cover herb % 

Mean Temperature of the coldest quarter mtcq 0.1 °C 

Mean Temperature of the warmest quarter mthq 0.1 °C 

Mean Temperature of the wettest quarter mtwq 0.1 °C 

Mean Temperature of the driest quarter mtdq 0.1 °C 

Precipitation of the coldest quarter pcq mm 

Precipitation of the warmest quarter phq mm 

Precipitation of the wettest quarter pwq mm 

Precipitation of the driest quarter pdq mm 

Precipitation seasonality pseas mm 

Tree cover tree % 
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Appendix 2.3 Univariate comparison of modelling performance across the different habitat distribution, for the eight methods used. Habitat distributions are sorted by 
the mean of each model quality measure i.e. AUC, Grades and MPA across all the species.  As MPA varies with the (true) range of species and therefore also with 
sample size, we used an approximate correction (MPAcorr) by dividing MPA through our range size estimate (latitude x longitude extent). 
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Univariate comparison of modelling performance across the eight different tribe associations, for the eight methods used. Tribes are sorted by the mean of the model 
quality measure across all the species.  
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Appendix 2.4 Relationship between range size (latitudinal x longitudinal extent) and sample size (number of 5 x 5km cells with records) of species used in the model. 
The axes are log-transformed.  
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Appendix 2.5 Variation of AUC, MPA and grades with sample size. As MPA varies with the (true) range of species and therefore also with sample size, we used an 
approximate correction (MPAcorr) by dividing MPA through our range size estimate (latitude x longitude extent). 

       

 

 



CHAPTER 2 - METHODS COMPARISON 

 59 

Appendix 2.6 Random effects in GLMMs: Boxplots (median, quartiles, range) of the variation of the three model quality metrics (AUC, MPA, grades) across all 
species.  
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Abstract 

 

Aim:  To investigate the contribution to range filling, range extent and climatic niche space of 

species of information contained in the largest databank of digitized biodiversity data:  the Global 

Biodiversity Information Facility (GBIF). We compared such information with a compilation of 

independent distributional data from natural history collections and other sources.  

 

 

Location:  Europe. 

 

Methods: We used data for the hawkmoths (Lepidoptera, family Sphingidae) to assess three aspects 

of range information: 1) Observed range filling in 100 x 100 km grid cell squares, 2) observed 

European extent, and 3) observed climatic niche. Range extents were calculated as products of 

latitudinal and longitudinal extents. Areas derived from minimum convex polygons drawn onto a 2-

dimensional niche space representing the two main axis of a principal component analysis (PCA) 

were used to calculate climatic niche space. Additionally, record-based permutation tests for niche 

differences were carried out.  

 

Results: We found that GBIF provided many more distribution records than independent 

compilation efforts, but contributed less information on range filling, range extent, and climatic 

niches of species. 

 

Main conclusions: Although GBIF contributed relevant additional information, it is not yet an 

alternative to manual compilation and databasing of distributional records from collections and 

literature sources, at least in lesser-known taxa such as invertebrates. We discuss possible reasons 

for our findings, which may help shape GBIF strategies for providing more informative data. 

 

 

Keywords: Climatic niche space, Global Biodiversity Information Facility (GBIF), Lepidoptera, 

Natural history collections, Species’  range extent, Sphingidae.  
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3.1. Introduction 

 

Knowledge on species’  distributions is, for most of the organisms on Earth, very scarce - a situation 

that has been dubbed the ‘Wallacean shortfall’  (Lomolino 2004). Furthermore, much of the existing 

distributional data are scattered throughout a multitude of sources, such as taxonomic publications, 

checklists, and natural history collections. As such the problem is part of the wider fragmentation of 

the taxonomic and systematic information knowledge base (Godfray et al. 2007; Scoble et al. 2007; 

Clark et al. 2009). This leads to considerable input in time and effort being necessary to compile 

data comprehensively. With increasing technological development of computing and analytical 

tools to make use of such “presence-only”  distributional information, such as species distribution 

modelling (SDM; Elith & Leathwick 2009), there is a high demand to make such data more easily 

and quickly available (Jetz et al. 2012). Invertebrates, particularly insects, are heavily 

underrepresented in macroecological studies despite their major contribution to global biodiversity 

(Beck et al. 2012), which is almost certainly due to data shortage. Successfully addressing the 

‘Wallacean shortfall’ , therefore, will be, to a large degree, about providing data on insect 

distributions.   

The Global Biodiversity Information Facility (GBIF) provides free access to digitized ecological 

data from different sources (e.g. museum collections, survey programs, etc.) as a result of 

collaborative endeavours between data providers and taxonomists across many institutions. This 

information is collated online into a searchable database. Being the largest initiative of its kind, 

GBIF will certainly play an important role in scientists’  attempts to close the gap in species 

distributional knowledge. On the one hand, accessing GBIF data is comparably fast in comparison 

to compiling data from original sources, making large-scale multi-taxon analyses feasible in 

relatively short timeframes. On the other hand, GBIF content has also been strongly criticized due 

to, for example, data quality issues (Soberon et al. 2002; Graham et al. 2004; Yesson et al. 2007). A 

particular strength of GBIF is its easy combination with SDM, where potential ranges of species are 

calculated from climate-based correlations. An important aspect of GBIF data is therefore how well 

it represents the occurrence of species in climatic niche space. 

In this study, we aim to contribute to the evaluation and improvement of GBIF from the perspective 

of an exemplar insect taxon. We investigate how much distributional data the Initiative provides in 

a “quick and easy”  manner compared to the much more laborious compilation of data from original 

sources. In particular, we investigated contributions to knowledge of range filling, range extent and 

climatic niche space of species.  

We used sphingid moths (Lepidoptera: family Sphingidae) as model taxa for these analyses, as we 

have already compiled distributional data independently from GBIF that allow us to compare these 
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two approaches. Sphingids are among the best-known insect groups, but their distributional data are 

nevertheless much more incomplete than, for example, European vascular plants or birds. Currently, 

data on invertebrates are very scarce in GBIF for non-industrialized countries, so we restricted our 

comparison to Europe.  

 

3.2. Methods 

 

We compiled distributional records from a large number of sources, such as private and public 

natural history collections (see Appendix 3.1. for detail) and faunistic publications. We carefully 

checked data for credibility, taxonomy and nomenclature, and georeferenced locality data using 

atlases, gazetteers and websites such as Google Earth. For brevity, we call this compilation 

independent compilation data because the large majority comprises previously unpublished data 

from collections. In November 2009, we downloaded all available GBIF records for the family 

Sphingidae and processed these data in the same way, i.e. checking nomenclature and 

georeferencing, and excluding records deemed to be erroneous or where missing locality 

information could not be supplemented with reasonable effort. We acknowledge that more data may 

subsequently have become available from GBIF, but quality control is of utmost importance and 

requires considerable time to undertake. Data from both sources covered a time-frame of >170 

years, with GBIF data being on average a bit older (median [lower, upper quartile] = 1984 [1958, 

1995] than collection data (median = 2001 [1965, 2007]). Although this difference is statistically 

significant (no details shown), it is probably not relevant for the topics studied here. For the 

purposes of our analyses, we excluded all data that could not be georeferenced with a precision 

<0.1° latitude/longitude (i.e., ca. 11 km at most), as a coarser resolution may distort SDM attempts 

on such data. This excluded, in particular, coarse-scale data (>1°) provided in monographs such as 

Danner et al. (1998).   

GBIF data for sphingids (as for many other invertebrate groups) make no substantial contribution 

outside the industrialized countries (Newbold 2010), which are currently GBIF’s main data 

providers. To make the comparison between the two data sources as fair as possible, we therefore 

restricted our analyses to Western and Central Europe (excluding Iceland, Cyprus, the Canary 

Islands and the Azores; Fig. 3.1). We considered 32 species of sphingids found in the region (Table 

1) while discarding records of Afrotropical Polyptychus trisecta (Gibraltar: probably transported by 

ship) and Leucophlebia edentata (Merjenje, Slovenia: probably location error). However, some 

species are based on records from the extreme edge of otherwise non-European distributions (e.g., 

African Theretra osiris in Gibraltar), or they are only summer visitors in most of their European 

range (e.g., Agrius convolvuli). We therefore repeated analyses using only the 25 autochthonous 
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European species. The taxonomy of some species is still tentative pending further molecular and 

morphological study (i.e., the Hyles euphorbiae-complex; Hundsdörfer et al. 2009, 2011).  

Figure 3.1. Measurement of range extent (A), range filling (B) and climatic niche (C), exemplified by data for 
Deilephila elpenor. (A) Records from GBIF and independent compilation (Coll.) in Europe, and latitudinal x 
longitudinal extents. Combined extent is indicated by the large white rectangle in the background. (B) Filled 100 x 100 
km cells for both data types. Cells filled by both types of records are drawn in black. (C) Minimum convex polygons in 
2-dimensional climatic niche space based on record types (based on PCA, see Methods). Combined extent is indicated 
by the large white rectangle in the background. 
 
 

 

 

We assessed three aspects of range information (Fig. 3.1): observed range filling, observed 

European extent, and observed climatic niche space. We measured observed range filling as the 

number of 100 x 100 km squares from which records are known. This resolution of analysis was 

chosen for three reasons. (1) Range information based on “expert opinion”  is typically at (implicit) 

resolutions between 100-200 km (Jetz et al. 2012), and (2) many studies publish or analyse such 

data at scales between 50 x 50 and 200 x 200 km (e.g., Danner et al. 1998; Settele et al. 2008; Jetz 

& Fine 2012; Ballesteros et al. 2013). Furthermore (3), our analyses of range modelling based on 

GBIF data (M. Böller, W. Schwanghart & J. Beck, unpublished data) indicated that a higher density 

of records can produce models of lower rather than higher quality due to spatial bias in sampling. 
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Comparisons of datasets with different degrees of spatial auto-correlation are generally scale-

dependent (e.g., Wiens, 1989; Legendre et al. 2002; Schwanghart et al., 2008), and we can expect 

that below a certain grain size comparisons between GBIF and independent compilation data would 

be mainly driven by record numbers, not by the spatial coverage of ranges. We counted the number 

of cells known exclusively from independent compilation or from GBIF data respectively. We 

expressed these figures as a percentage of the total number of European cells known for each 

species (i.e., independent compilation plus GBIF).  

We measured observed extent as the product of longitudinal (X) and latitudinal (Y) range 

(measured in km) within Europe (cf. Beck et al. 2006, for correlation with more detailed range 

metrics). Again, we expressed the observed extent according to independent compilation and GBIF 

as a percentage of the extent observed from both sources. To check how comprehensively these 

point-locality data covered “ true”  range extents, we visually compared the combined range extent 

(GBIF and independent compilation), which we used as reference for true range extent here, with 

available coarser-scale distributional data in Danner et al. (1998) for five widespread European 

species (A. convolvuli, D. nerii, D. elpenor, H. celerio, H. livornica). Our combined GBIF and 

independent compilation data had quite similar range extents as published range data (indicating 

range edges further in the north, whereas those shown in Danner et al. (1998) were further southeast 

for some species). 

To measure observed climatic niche space, we first extracted data for eight climatic variables 

(annual mean temperature; temperature in the hottest month; temperature in the coldest month; 

annual temperature range; annual precipitation; precipitation in the wettest month; precipitation in 

the driest month; precipitation seasonality) from WorldClim (www.worldclim.org) at a 5 x 5 km 

resolution for all of Europe. Climatic means, extremes and variability can be assumed to affect 

species’  distributions. We performed a principle components analysis (PCA; conducted in R 

package ade4, Chessel et al. 2004), the first two axes of which explained two-thirds (39.0% and 

27.6%, respectively) of original data variability. After mapping these two axes across Europe, we 

extracted values for species records and plotted these in two-dimensional niche space for each 

species. We drew minimum convex polygons around these records based on all data, independent 

compilation data only and GBIF data only. We then measured the proportions of polygon areas 

from independent compilation and GBIF data respectively, in comparison to the ‘all data’ -polygons. 

However, while this analysis of climatic niches is intuitive, it is possibly over-simplistic. It ignores 

the density of records in niche space and is driven by most extreme records, which may be affected 

by sample size. We reanalysed niche comparison with a more sophisticated method that utilized 

information on the density of records, expressed as density kernel in PCA-space of climatic 

variables (Broennimann et al. 2011). Randomization tests allowed comparing the equivalence of 
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niches (i.e., independent compilation, respectively GBIF, vs. combined data). If GBIF and 

independent compilation were random samples from the same data pool, we expect no significant 

rejection of niche equivalence. 

We compared differences between independent compilation and GBIF data for these three aspects 

of distribution. Because some data were not normal distributed, we based most analyses on rank 

data. For statistical testing of median differences between independent compilation and GBIF 

contributions across species, we applied Wilcoxon matched pair tests.  

 

3.3. Results 

An overview of the raw data is given in Table 1. For 32 species, we had 3,537 records from 

independent compilation and 23,986 from GBIF. Per species, many more records were available 

from GBIF compared to independent compilation (Fig. 3.2; Wilcoxon test: N = 32, Z = 2.73, p = 

0.006; restricted to European species sensu stricto (see Methods): N = 25, Z = 2.46, p = 0.014). 

However, independent compilation contributed substantially more to the observed range filling 

(higher percentage of 100 x 100 km cells exclusively known from independent compilation; N = 32, 

Z = 2.00, p = 0.046). This result was not significant if data were restricted to European species s.s. 

(N = 25, Z = 1.74, p = 0.083). Independent compilation also led to larger observed European range 

extents (as a fraction of total known European extent for each species; N = 32, Z = 3.49, p <0.001; 

restricted to European species s.s.: N = 25, Z = 2.97, p = 0.003). Lastly, independent compilation 

data make a larger contribution to observed European niche space than GBIF data (N = 31, Z = 

2.63, p = 0.009; restricted to European species: N = 25, Z = 2.33, p = 0.020). 

Niche comparisons based on kernel densities of records are shown in Table 2. As density kernels of 

combined data are strongly affected by the much more numerous GBIF data, it is unsurprising that 

we found, in apparent contrast to niche polygon analyses (above), a higher niche overlap of GBIF 

with combined data, rather than independent compilation with combined data (Wilcoxon test: N = 

22, Z = 2.42, p = 0.016; European species: N = 17, Z = 2.49, p = 0.013). Nevertheless, our previous 

conclusions are supported insofar as niche equivalence of both independent compilation and GBIF 

with combined data was rejected for most species. That is., neither data type resembles combined 

data; for some species they are not more similar than a random draw. Plots of data in niche space 
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(Electronic Supplements) indicated for many species broader observed niches for independent 

compilation despite their lower sample sizes.  

Despite the significantly larger contribution of independent compilation data to most of these 

aspects of known distributions, Fig. 3.2 indicates that GBIF does make considerable contributions 

to range filling and niche space. Only for range extent was independent compilation data close to 

the total known (European) extent of the species (with the exception of a few outliers; see e.g. 

median and quartiles).  
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Table 3.2. Results from density kernel-based analyses of climatic niches. For species with sufficient records, 

independent compilation and GBIF data, respectively, are compared to combined data. The D metric 

measures niche overlap (0 = no overlap, 1 = complete overlap). Two types of null model simulations were 

carried out and tested for significance (*  indicates p <0.05) in 100 replicate runs. Dsim(eq) is the expected 

niche overlap for equivalent niches (significant rejection means data are not equivalent to combined data). 

Dsim(sim) simulates a random draw from niche space, test results indicate whether observed data are 

significantly more similar to combined data than expected from chance. Collection and GBIF data were 

significantly non-equivalent to each other for all tested species (not shown). 
 

 

 Coll. GBIF  

Species Dobs Dsim(eq)  Dsim(sim) Dobs Dsim(eq) Dsim(sim) 

A. atropos 0.495 0.931* 0.103* 0.704 0.929* 0.124* 

A. convolvuli 0.441 0.921* 0.318 0.743 0.926* 0.411* 

D. nerii 0.505 0.841* 0.091* 0.557 0.858* 0.068* 

D. elpenor 0.321 0.928* 0.040* 0.900 0.951* 0.116* 

D. porcellus 0.505 0.921* 0.245 0.935 0.940 0.248* 

H. fuciformis 0.235 0.919* 0.073* 0.885 0.943* 0.147* 

H. tityus 0.475 0.921* 0.128* 0.980 0.949* 0.125* 

H. celerio 0.871 0.857 0.061* 0.335 0.844* 0.221 

H. euphorbiae 0.312 0.919* 0.232 0.770 0.933* 0.061* 

H. gallii 0.270 0.924* 0.269 0.947 0.946 0.254* 

H. hippophaes 0.959 0.837* 0.202* 0.179 0.781* 0.085 

H.  livornica 0.752 0.910* 0.088* 0.428 0.907* 0.091* 

H.  vespertilio 0.587 0.831* 0.189* 0.618 0.845* 0.194* 

L. amurensis 0.410 0.817* 0.047 0.914 0.859* 0.022* 

L. populi 0.349 0.938* 0.150* 0.947 0.961* 0.193* 

M. stellatarum 0.442 0.929* 0.298* 0.812 0.945* 0.266* 

M. quercus 0.838 0.869 0.064* 0.459 0.863* 0.155* 

M. tiliae 0.366 0.922* 0.034* 0.812 0.941* 0.104* 

P. proserpina 0.566 0.892* 0.231 0.756 0.887* 0.186* 

S. ocellata 0.315 0.922* 0.239 0.838 0.944* 0.245* 

S. ligustri 0.365 0.919* 0.213 0.949 0.943 0.325* 

S. pinastri 0.431 0.935* 0.216* 0.947 0.959 0.249* 
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Figure 3.2.  Number of records per species (upper left); proportion of 100 x 100 km cells containing 
exclusively records from independent compilation (Coll.) or GBIF, respectively (upper right); proportion of 
European range extent (longitudinal x latitudinal extent; lower left); proportion of climatic niche 
representation (based on polygon areas in 2-dimenasional niche space; lower right). All differences are 
statistically significant. 
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3.4. Discussion 

 

The geographic range of a species is a basic and important unit of information in biogeography 

(Brown et al. 1996). GBIF can doubtless play a major role in making huge amounts of 

distributional records easily accessible, and it is rightfully seen as an important stepping stone to 

addressing the ‘Wallacean shortfall’  (Jetz et al. 2012). Through our analysis we hope to provide 

some constructive answers as to how GBIF can be made more useful to potential end-users of these 

data, i.e. macroecologists and biogeographers.  

Our study, based on a taxonomic family for which we had relevant data available, was biased 

towards GBIF in two aspects. First, we restricted our analyses to Europe, for which GBIF has a 

much better coverage than for many other regions (e.g., for Africa, GBIF provided 42 sphingid 

records, for Southeast-Asia only 28; see also Yesson et al. 2007). Second, our independently 

assembled database of European records from natural history collections was a rather cursory by-

product of studies focused primarily on collating distribution records of the tropical representatives 

of the family. Many more data could have been included for Europe if we had made it a priority in 

these studies.    

Despite this, and despite the fact that many more records were available from GBIF than from 

independent compilation, we found that independent compilation data contributed more to our total 

knowledge of ranges (filling and extent) as well as covering the climatic niches of species more 

comprehensively. Thus, with the caveat that the situation may be different in other taxonomic 

groups with a much better coverage in GBIF, we conclude that for any detailed biogeographical 

study GBIF data cannot yet be viewed as an alternative to laborious data compilation from primary 

sources, at least for lesser-known taxa such as invertebrates. However, our analysis also showed 

that GBIF contributed significant amounts of information (on range filling and niche space in our 

definitions) - independent compilation data alone did not provide the whole picture. Combined with 

the ease of accessing GBIF data, this highlights its usefulness as a supplement to independent data 

compilations. 

We can only speculate on the reasons for the rather surprising result that GBIF provides more, but 

less informative, data compared to independent compilation. An even spatial representation is 

probably an important feature for the biogeographic relevance of distribution data. GBIF, due to its 

country-based policies of funding and dataset contribution, shows large inequalities in regional data 

availability (Yesson et al. 2007) – for example, species-poor southern Scandinavia is very densely 

sampled, whereas the Balkans (which are rich in endemics for many taxa) are not (see Electronic 

Supplements). As a consequence, in our study taxon, GBIF data has gaps particularly in the rare, 

locally more restricted taxa found in south-eastern Europe (see Electronic Supplements). 
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Furthermore, species observations in local surveys contribute considerable to GBIF (Electronic 

Supplements). Guralnick & Van Cleeve (2005) pointed out that museum collections may over-

represent rare taxa, hence giving more complete information on species richness at lower specimen 

numbers, whereas survey tend to contain a lot of data on common species.  

When compiling our independent distribution data from original sources, we often found it useful to 

shift attention among species and regions depending on data availability, considering that costs (and 

work-time) per specimen are the same but databasing rare species from an undersampled region 

contains more novel information than duplicating records for well-known species and regions. 

Implementing similar strategies for allocating funds is admittedly much more challenging in a huge 

collaborative project like GBIF, but it may be one path towards attaining more comprehensive 

geographical coverage. We also found private collections to be highly valuable sources of 

distribution records for poorly sampled taxa and regions (even more so in the tropics), and we 

recommend incentives be developed for private collectors to publish their data. Finally, 

encouragements to publish faunistic data in databases (instead of on paper only), and web-crawling 

applications that can search for ‘ informal’  data on the internet (e.g., community-run picture-sharing 

sites, specimen sales sites) may be interesting additions to GBIF and/or related data providers.  

Natural history collections and faunistic literature are an enormous storehouse of raw biodiversity 

and distributional data. The internet provides the technological opportunity to make these data 

available for broad-scale biodiversity research (Soberon & Peterson 2004). GBIF is currently the 

leading platform for publishing such information (see Jetz et al. 2012, Beck et al. 2012 for other 

initiatives) but there is still room for improvement. Apart from data quality and its documentation 

(which was not the topic of this study), geographic representation rather than sheer quantity of data 

should be a focus for further data input. 
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Table 3.1. European sphingid species and proper ties of their  known geographic ranges.  Only records with an estimated precision <1° latitude/longitude were 
considered for both Global Biodiversity Information Facility data (GBIF) and those compiled from multiple sources (Coll.). European records for some species are at 
the extreme edge of their distribution (E), and some are mainly found in Europe in non-permanent summer populations (S). X x Y is the product of longitudinal and 
latitudinal European range extent [in 106 km2]. “Cells”  are 100 x 100 km cells, percentages (in italics) refer to the total known from independent compilation and GBIF. 
Note that areas of minimum convex polygons in climatic niche space are dimensionless data based on PCA axes. 
 

SPECIES Records 

Coll. 

Records 

GBIF 

% Cells 

only 

known 

from Coll. 

% Cells 

only known 

from GBIF 

Cells 

Total 

Cells 

only known 

from Coll. 

Cells 

only known 

from GBIF 

%X*Y 

Coll. 

%X*Y 

GBIF 

X*Y 

Coll. 

X*Y 

GBIF  

Total niche 

polygon 

area 

Exclusive 

niche 

polygon 

area Coll. 

Exclusive 

niche 

polygon 

area GBIF 

% niche 

polygon 

Coll. 

% niche 

polygon 

GBIF 

Acherontia atropos S 516 570 51.2 35.9 170 87 61 80.0 75.0 78.4 73.5 58.2 30.5 48.2 52.4 82.9 

Agrius convolvuli S 391 468 48.5 37.1 194 94 72 97.1 85.2 91.8 80.5 77.8 61.3 50.2 78.8 64.5 

Daphnis nerii S 31 66 51.2 43.9 41 21 18 80.0 35.4 50.0 22.1 28.2 17.8 8.2 63.6 29.4 

Deilephila elpenor 128 2240 19.0 71.7 184 35 132 82.8 82.8 62.4 62.4 44.8 22.5 41.5 50.3 92.6 

Deilephila porcellus 168 2054 24.4 62.8 180 44 113 84.7 84.0 57.2 56.7 36.5 24.1 27.0 66.0 74.0 

Dolbina elegans E 3 0 100.0 0.0 1 1 0 100.0 0.0 0.1 0.0 0.00 0.00 0 100 0 

Hemaris croatica 20 0 100.0 0.0 7 7 0 100.0 0.0 4.8 0.0 5.2 5.2 0 100 0 

Hemaris fuciformis 62 1763 19.7 75.8 132 26 100 77.8 66.3 56.7 48.3 35.6 20.0 24.5 56.2 68.7 

Hemaris tityus 81 1752 20.8 67.4 144 30 97 78.6 64.3 57.2 46.8 47.0 28.2 35.1 59.9 74.7 

Hippotion celerio S 82 35 72.6 19.4 62 45 12 80.8 81.0 44.1 44.2 23.3 18.7 6.4 78.0 27.5 

Hippotion osiris E 1 2 50.0 50.0 2 1 1 100.0 100.0 0.1 0.1 NA NA NA NA NA 

Hyles dahlii 21 2 85.7 14.3 7 6 1 100.0 2.9 3.5 0.1 2.4 2.0 0 83.5 0 

Hyles euphorbiae 163 687 63.4 24.1 112 71 27 73.9 90.3 50.4 61.6 31.5 28.1 15.7 89.3 49.7 

Hyles gallii 96 739 24.7 67.9 162 40 110 73.7 60.4 70.2 57.5 46.3 17.5 39.3 37.9 85.0 

Hyles hippophaes 44 5 85.7 9.5 21 18 2 100.0 4.7 44.8 2.1 23.1 23.1 0.8 100 3.3 

Hyles livornica 222 165 71.8 12.9 124 89 16 100.0 59.5 75.6 45.0 37.9 36.0 17.0 95.0 44.9 

Hyles nicaea 21 0 100.0 0.0 11 11 0 100.0 0.0 3.6 0.0 5.1 5.1 0 100 0 

Hyles tithymali 8 0 100.0 0.0 4 4 0 100.0 0.0 3.2 0.0 0.3 0.3 0 100 0 

Hyles vespertilio 42 85 58.8 29.4 34 20 10 100.0 6.0 23.4 1.4 15.1 13.2 6.7 87.2 44.3 

Laothoe amurensis 15 132 31.8 63.6 22 7 14 5.4 100.0 3.6 66.7 0.9 0.3 0.6 33.2 65.7 

Laothoe populi 200 3053 26.0 60.3 219 57 132 93.3 80.9 84.0 72.8 61.5 41.9 41.4 68.0 67.3 

Macroglossum stellatarum S 354 1900 33.6 44.4 232 78 103 100.0 82.6 108.5 89.6 61.5 41.8 49.0 67.9 79.7 
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Marumba quercus 85 61 58.7 34.8 46 27 16 60.0 51.6 27.9 24.0 18.2 11.2 10.4 61.7 56.9 

Mimas tiliae 146 1631 31.2 61.0 141 44 86 79.9 95.7 44.1 52.8 37.3 25.2 31.4 67.5 84.1 

Proserpinus proserpina 146 182 61.3 26.3 80 49 21 100.0 74.0 62.0 45.9 20.5 13.6 12.4 66.6 60.6 

Rethera komarovi 11 0 100.0 0.0 3 3 0 100.0 0.0 0.2 0.0 0.3 0.3 0 100 0 

Smerinthus ocellata 115 1747 28.6 66.9 154 44 103 88.9 76.1 67.2 57.5 38.3 34.6 17.9 90.3 46.6 

Sphingonaepiopsis gorgoniades 16 0 100.0 0.0 8 8 0 100.0 0.0 9.9 0.0 6.1 6.1 0 100 0 

Sphinx ligustri 79 1828 19.1 73.0 141 27 103 69.5 85.7 50.6 62.4 41.1 22.5 29.1 54.8 70.8 

Sphinx maurorum 81 2 96.0 0.0 25 24 0 100.0 0.0 9.0 0.0 13.2 13.2 0 100 0 

Sphinx pinastri 181 2817 28.8 50.3 177 51 89 88.8 96.4 57.2 62.1 51.6 30.6 50.2 59.2 97.2 

Theretra alecto E 8 0 100.0 0.0 7 7 0 100.0 0.0 2.0 0.0 2.7 2.7 0 100 0 
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Appendix 3.1 Sources of GIBF data (search on Sept 16th, 2009) for European sphingid moths. 
Spellings were edited an interpreted as original download from GBIF contained many font errors 
(due to use of characters not contained in the English alphabet). Ca. 52% of records are based on 
observations, 37% on specimen records, and 11 % from unknown sources. 

Data provider (% of records) 
Datasets (sorted by contribution, largest to 
smallest) 

UK National Biodiversity Network (31.2) 

Dorset Environmental Records Centre - 
Dorset Hawkmoths - NBN South West Pilot 
Project Case Studies 

 
Joint Nature Conservation Committee - 
Scarce Macro Moth Review Data (historical) 

 
Highland Biological Recording Group - 
HBRG Lepidoptera dataset 

 
Natural England - Invertebrate Site Register - 
England. 

 

Take a Pride in Fife Environmental 
Information Centre - Records for Fife from 
TAPIF EIC 

 
Scottish Natural Heritage - Invertebrate Site 
Register, Scotland 

 
East Ayrshire Countryside Ranger Service - 
East Ayrshire Species Database 

 
Environment and Heritage Service - EHS 
Species Datasets 

 

Lothian Wildlife Information Centre - Lothian 
Wildlife Information Centre Secret Garden 
Survey 

Biologiezentrum der Oberoesterreichischen 
Landesmuseen (27.0) Biologiezentrum Linz 
GBIF-Sweden (17.2) Bugs (GBIF-SE:Artdatabanken) 
 Lepidoptera (Observations) 
 Lepidoptera (Specimens NRM) 

 
Lund Museum of Zoology - Insect collections 
(MZLU) 

University of Helsinki, Department of 
Applied Biology (5.2) European Moth Nights 
 Lepidoptera collection of Hannu Saarenmaa 
 Lepidopterological Society of Finland 

 
European Lepidoptera Observations by 
Donald Hobern 

Jyvaskyla University Museum - The Section 
of Natural Sciences (4.9) 

Invertebrate collection of Jyvaskyla 
University Museum 

Natural History Museum, University of 
Oslo (4.1) Norwegian Lepidoptera working group 
 Norwegian Lepidoptera collection, Oslo 
 Arthropod collection, Tromsø Museum 
inatura - Erlebnis Naturschau Dornbirn (3.7) inatura - Erlebnis Naturschau Dornbirn                                         
European Environment Agency (3.3) EUNIS 
Banc de dades de biodiversitat de Catalunya 
(0.9) 

Banc de dades de biodiversitat de Catalunya-
ArtroCat 



 

 

 

 

81 

 

NLBIF (0.8) Natural History Museum Rotterdam (NMR) 

GEO-Tag der Artenvielfalt (0.5) 
Artenvielfalt auf der Weide - GEO-
Hauptveranstaltung in Crawinkel 

 Danielsberg (Mölltal, Kärnten) 
 GEO Hauptveranstaltung Tirol (Innsbruck) 
 GEO-Hauptveranstaltung (Insel Vilm) 
 Pilstingermoos 
 Artenfülle um das Schalkenmehrener Maar 

 
4. Tag der Artenvielfalt, Naturschutzgebiet 
Hockenheimer Rheinbogen 

 
Fels- und Weinbergsflächen in 
Hatzenport/Terrassenmosel 

 Gelände des IVL (Zeckern) 

 
GEO-Hauptveranstaltung (NLP Harz / 
Hochharz) 

 Gurgltal (Tarrenz) 
 Neckartalsüdhang (Horb) 

 
Schulhof Goethe-Gymnasium 
(Emmendingen) 

 BUND - Dassower See (Lübeck/Dassow) 
 Erlengraben/Lipp-Tal (├ûstringen) 
 Schlern - (Bozen) 
 B?G 
 Bannwald Burghauser Forst 
 Faberpark (Nürnberg/Stein) 

 

GNOR-Projekt "Halbwilde Weidehaltung 
zwischen Kamp-Bornhofen und Kestert" und 
Umland 

 
Halbwilde Weidehaltung zwischen Kamp-
Bornhofen und Kestert sowie Umland 

 
Laubenheimer Bodenheimer Ried - von 
Stromtalwiesen und Flutrasen 

 Perchtoldsdorfer Heide 
 Streuobstwiese RSG (Cham) 
 Sudeniederung (Amt Neuhaus) 

 
Weinberge und angrenzende Felsflächen 
(Drieschen) in Hatzenport/Terrassenmosel 

 3. Tag der Artenvielfalt Hockenheim 
 5.Tag der Artenvielfalt: Thema Stadtbiotope 

 
Aussenfeuerstelle Königsbol 
(Hartheim/Messstetten) 

 Biologische Station im Kreis Wesel 

 
Biosphärenpark Wienerwald - Wiener 
Steinhofgründe 

 Biosphärenreservat Münsinger Alb 

 
Borstgrasrasen um die Burg Baldenau im 
Oberen Dhrontal 

 Brander Wald (Stolberg) 
 Eppingen und Umgebung 
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Feuchtbiotop,  Wildtier- und 
Artenschutzstation Sachsenhagen, Sielmanns 
Natur-Ranger 

 FFH-Gebiet "Calwer Heckengäu" 
 Flora und Fauna am Mittelrheintal 
GEO-Tag der Artenvielfalt (0.5) (continued) Freiburger Tag der Artenvielfalt 

 
Freigelände Naturschutzscheune Reinheimer 
Teich (Kreis Darmstadt-Dieburg) 

 Gemeinde Sursee 
 Gemeindegebiet Weikendorf (Marchfeld) 
 GEO-Hauptveranstaltung (Duisburg) 

 
GEO-Hauptveranstaltung im Nationalpark 
Bayerischer Wald 

 
Geo-Tag der Artenvielfalt Süssen 
Hornwiesen-Grundschule 

 
Geschützter Landschaftsbestandteil - GLB 
"Troppach" 

 Heinersdorfer Sumpfwiese 
 Hintere Halde 
 Innenstadt Göttingen - Natur Zuhause 
 Kiesbagger (Mittelhausen) 
 Knechtweide (Kohlfurth) 
 LaBoOb02 
 Langes Tannen 
 Lillachtal mit Kalktuffquelle bei Weissenohe 
 Lustadter Wald . 

 
NABU Naturschutzhof Netttetal (Sassenfeld) 
e.V. 

 Natur aus zweiter Hand am Muldestausee 
 Naturschutzgebiet Bausenberg 
 Naturschutzgebiet Sistig-Krekeler-Heide 
 Naturschutzstation Schmidsfelden 

 
NSG Hülenbuch Hörnle 
(Tieringen/Messstetten) 

 NSG Leist bei Ziegenhain 
 Pöhlberg bei Annaberg 
 renaturierter Main (Kemmern bei Bamberg) 
 Riedensee 

 
Rohrmeistereiplateau und angrenzendes 
Gebiet 

 Rund um das LUGY 

 
Rund um den Eichwald, Schulhof Friedrich 
Fröbel Gymnasium- Bad Blankenburg 

 Schule Sulzbach (Oberegg) 
 Schulhof (Bad Waldsee) 

 
Schulhof der Astrid-Lindgren-Schule und 
Umgebung (Elmshorn) 

 Spandau HBO 
 Streuobstwiese Kugelberg (Ulm) 
 Tage der Artenvielfalt rund um die 
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Naturschutzstation Molsberg 
 Teich  Berlin Wuhlheide 
 Trockenhang Greinhartsberg Edelfingen 

 
Umgebung der Gesamtschule Hamburg-
Winterhude 

 
Umgebung des Spalatin Gymnasium 
Altenburg 

 
Verwilderter Hausgarten mit angrenzendem 
Gelände (Laufenburg-Hochsal) 

GEO-Tag der Artenvielfalt (0.5) (continued) Von A(horn) bis Z(ecke) des WWP Chemnitz 

 
Waldränder der Frankenhöhe (Rothenburg ob 
der Tauber) 

 Weinberg Reichersdorf 
 Wiese am Waldrand (Gurtweil) 

 
Zwei Flüsse - eine Stadt  (Villingen-
Schwenningen) 

Finnish Museum of Natural History (0.4) Hatikka Observation Data Gateway 
Service du Patrimoine naturel, Museum 
national d'Histoire naturelle, Paris (0.4) 

Inventaire national du Patrimoine naturel 
(INPN) 

GBIF-Spain (0.1) 

Laboratorio de Entomologia y Control de 
Plagas del Instituto Cavanilles de 
Biodiversidad y Biologia Evolutiva de la 
Universidad de Valencia: ENV 

 
BDBCV BioBlitz in Penyagolosa (Castellon, 
Spain) 

BeBIF Provider (0.1) 
University of Ghent - Zoology Museum - 
Invertebratacollectie 

SysTax (0.1) Lobbecke Museum Dusseldorf 
 SysTax 
Staatliches Museum für Naturkunde 
Stuttgart (0.0) 

EDIT - ATBI in Mercantour/Alpi Marittime 
(France/Italy) 

University of Navarra, Museum of Zoology 
(0.0) Museum of Zoology, University of Navarra 
Institute of Nature Conservation PAS (0.0) National System of Protected Areas 

NatureServe (0.0) 
NatureServe Network Species Occurrence 
Data 
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Appendix 3.2 Primary sources of independent compilation data for European Sphingidae. 
These public or private collections were either databased by one of us or data were communicated 
to us. Collections are listed in declining order of records contribution. The first three collections 
together made up ca. 70% of records. Published literature (not listed in detail) added another ca. 9 
% of total records. 

Natural History Museum, London, UK 
J. Haxaire collection, Laplume, France 
Muséum national d'Histoire naturelle, Paris, France 
R. Brechlin collection, Pasewalk, Germany 
Hungarian Natural History Museum, Budapest, Hungary 
Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA 
Museum für Naturkunde, Leibnitz-Institut für MNHU Evolutions- 
und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, 
Germany 
J. Beck collection, University of Basel, Switzerland (incl. 
observations) 
U. Eitschberger collection, Marktleuthen, Germany 
Institut für Pharmazie und Molekulare Biotechnologie, Heidelberg, 
Germany 
Muséum d'Histoire naturelle de Dijon, Dijon, France 
S.V. Beschkow collection, Sofia, Bulgaria 
A.K. Hundsdörfer research collection, Dresden, Germany 
Museum Thomas Witt, Munich, Germany 
Zoölogisch Museum Amsterdam, Amsterdam, The Netherlands 
Zoologische Staatssammlung des Bayerischen Staates, München, 
Germany 
J. Bury collection, Poland 
Landessammlungen für Naturkunde, Karlsruhe, Germany 
Staatliches Museum für Tierkunde in Dresden, Dresden, Germany 
Y. Estradel collection 
MSc thesis by Hauke Koch (unpublished) 
H. Falkner collection, Karlsruhe, Germany 
Naturhistorisches Museum, Vienna, Austria 
Naturhistoriska Riksmuseet, Stockholm, Sweden 
R. Paul collection, Romania 
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Appendix 3.3 Maps of source and record distributions. Distribution of data sources across 
European nations (upper maps) and relative distributions of record densities (density kernel, 200 
km search radius, mapped in 100 x 100 km cells; lower maps). Overall densities for GBIF are much 
higher (see main text), colour stretch follows equal rules per data set (1 SD). Note that independent 
compilation data (IndCom) covers species-rich south-eastern Europe better than GBIF. 

IndComSources GBIF

Sources
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Appendix 3.4 Records in geographic and climatic niche space.  

Maps of records for all species in analysis (green = GBIF, right side; red = independent compilation 
(IndCom), left side). See main text, Table 1, for some details on species and data. Geographical 
maps are in Mollweide equal area projections.  

For species with sufficient numbers of records we also show record density kernels in 2-
dimensional climatic niche space underneath each corresponding geographical map. The first two 
axes from a principle component analysis (PCA) of climate are shown, dark colour indicate high 
densities of records. 
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Agrius convolvuli 
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Daphnis nerii 
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Deilephila elpenor 
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Deilephila porcellus 

 

 
Dolbina elegans 
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Hemaris croatica 

 
 

Hemaris fuciformis 
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Hemaris tityus 
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Hippotion celerio 

 

 
 

Hippotion osiris 
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Hyles dahlia 

 
Hyles euphorbiae 
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Hyles gallii 
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Hyles hippophaes 
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Hyles livornica 
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Hyles tithymali 

 
Hyles vespertilio 
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Laothoe amurensis 
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Laothoe populi 
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Macroglossum stellatarum 
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Marumba quercus 
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Proserpinus proserpina 
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Sphinx ligustri 
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Abstract 

Aim: Many taxa, especially invertebrates, remain biogeographically highly understudied and even 

baseline assessments are missing, with too limited and heterogeneous sampling as key reasons. 

Here we set out to assess the human geographical and associated environmental factors behind 

inventory completeness for all hawkmoths of Sub-Saharan Africa. In particular we aim to separate 

the potential causes of differential sampling from those affecting gradients of species richness to 

illustrate a potential general avenue for advancing spatial diversity knowledge in understudied 

groups.  

Location: Sub-Saharan Africa 

Methods: Using a database of distributional records of hawkmoths, we computed rarefaction 

curves and estimated total species given sufficient sampling across 200 x 200 km grid cells. We 

fitted multivariate models to identify environmental predictors of species richness and used 

environmental co-kriging to map region-wide diversity patterns. We estimated cell-wide inventory 

completeness from observed and estimated data, and related these to human geographic factors.   

Results: Observed geographic patterns of hawkmoth species richness are strongly determined by 

the number of available records in grid cells. Both show spatially structured distributions. Variables 

describing vegetation type emerge as important predictors of estimated total richness, and variables 

capturing heat, energy availability and topographic heterogeneity all show a strong positive 

relationship. Patterns of interpolated richness identify three centers of highest diversity: Cameroon 

coastal mountains, and the northern and southern East African montane areas. Inventory 

completeness is positively influenced by population density, accessibility, protected areas, and 

colonial history. Species richness is still under-recorded in the western Congo basin and southern 

Tanzania/Mozambique.  

Main conclusions: Sampling effort is highly biased and controlling for it in large-scale 

compilations of presence-only data is critical for drawing inferences from our still limited 

knowledge of invertebrate distributions. Our study shows that a baseline estimate of broad-scale 

diversity patterns in understudied taxa can be derived from combining numerical estimators of 

species richness, models of main environmental effects, and spatial interpolation. Inventory 

completeness can be partly predicted from human geographic features and such models may offer 

fruitful guidance for prioritization of future sampling to further refine and validate estimated 

patterns of species richness.  
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Keywords: Co-kriging interpolation, Hawkmoths, Lepidoptera, sampling effort, spatial pattern, 

Sphingidae. 

4.1. Introduction 

The compilation and mapping of species richness over large spatial extents have, over the past 

decade, considerably advanced our understanding of global gradients of diversity and underlying 

processes (e.g., Jetz & Rahbek, 2002; Currie et al., 2004; Kreft & Jetz, 2007; Field et al. 2008). 

Maps of species richness also offer an important first, if limited (Jetz & Rahbek 2002), guide to 

identifying regions of potential conservation value (Beck et al., 2011 for a tropical insect example). 

However, broad-scale studies of diversity gradients are spatially biased (toward well-studied 

continents such as North America, Europe) and even more so taxonomically, with tropical 

invertebrates in particular receiving much less attention than their contribution to global 

biodiversity would dictate (Godfray et al., 1999; Boakes et al., 2010; Beck et al. 2012). Among 

recent studies on insects on continental to global extents, Jenkins et al. (2011) and Guénard et al. 

(2012) have investigated global ant diversity patterns, Beck et al. (2006a) have investigated 

Southeast-Asian sphingid moths, and several additional taxa have been studied at regional scale in 

the temperate zone (e.g., Hawkins & DeVries, 2009; Kumschick et al., 2009; Kundra et al., 2011; 

Hortal et al., 2011). 

Both geographic and taxonomic biases appear to be a direct function of sampling activity and data 

availability (Boakes et al., 2010; Beck et al., 2012; Jetz et al., 2012), which will depend to some 

degree on (and correlate with) factors of human geography. Incomplete knowledge of the spatial 

occurrence of taxa has thus usually prevented the reliable documentation of species richness 

patterns. Several techniques have been developed to make use of incomplete local inventory data 

(Colwell & Coddington, 1994) and successfully applied to provide estimates of species richness at 

larger extents (Beck & Kitching, 2007; Mora et al., 2008; Tittensor et al., 2010). These approaches 

(and further refinements) combined with increasingly mobilized and integrated distribution 

information (Jetz et al., 2012; Beck et al., 2012) open up new and exciting prospects for the use of 

natural history collections data.  

Hawkmoths (Lepidoptera, family Sphingidae) are among the most well-known insects with regard 

to their taxonomy and distribution (Kitching & Cadiou, 2000), and therefore represent an ideal 

model taxon to study insect macroecology at a global scale. Nevertheless, shortage of distributional 

data for tropical species has so far prevented detailed, grid-based analyses of their broad-scale 

species richness patterns in relation to environmental factors (but see Beck et al., 2006a). Based on 

findings for other taxa (Field et al., 2008), we expect climatic variables and resulting patterns of 
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habitat productivity to explain some variation in species richness. Given the herbivorous lifestyle of 

sphingid caterpillars, we also hypothesize that vegetation type affects their diversity.    

However, inventory completeness (which may also affect observed species richness) is ultimately 

determined by collectors’  decisions on where to engage in field sampling. While geographic 

patterns of sampling intensity will necessarily be partly idiosyncratic (e.g., high record density near 

places of residence of particular collectors), we also expect some generalities to emerge (Reddy & 

Dávalos, 2003; Martin et al., 2012). For example, high human population density and dense 

infrastructure (i.e., traffic accessibility, tourism) should have a positive effect on sampling effort, 

whereas regions of armed conflict have probably been avoided by collectors (Balmford et al., 

2001). Given the impact of European colonialism on Sub-Saharan Africa even after formal political 

independence of countries, we also expect effects of colonial history. This sort of political history 

may explain past sampling activity as well as mobilization and data access to date. 

 

Here, using an extensive, expert-validated data compilation, we provide a first quantitative 

assessment of sphingid moth species richness patterns across Sub-Saharan Africa, using a variety of 

estimators and specifically addressing sampling effort. We use environmental predictors to identify 

and model the main correlates of spatial variation in sphingid richness and combine them with 

spatial interpolation techniques to provide a full sub-continental map of species richness. To assess 

the robustness of these findings, we specifically quantify patterns of survey completeness (see 

Moerman & Estabrook, 2006; Guénard et al., 2012; Zagmajster et al., 2010; for relevance to 

biodiversity research and conservation) and model their potential human geographical determinants. 

Using African hawkmoths as continental study system, we illustrate how separating the causes of 

species richness and its sampling facilitates a more rigorous documentation and understanding of 

the geographic diversity patterns of the many remaining understudied groups.   
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4.2. Methods 

4.2.1. Distr ibution data 

We compiled distribution records for all Sphingidae of Sub-Saharan Africa (south of ca. N17° 

latitude, including Madagascar), based on an extensive search of published literature and the 

internet (e.g., Lepidoptera blogs, specimen trading sites, the Barcode of Life Database (http:// 

www.barcodinglife.org), the Global Biodiversity Information Facility (http://www.gbif.org)), as 

well as correspondence with a large number of professional and amateur collectors, our own field 

sampling, and through databasing several major natural history collections (e.g., museums in 

London, Berlin, Paris, Munich, Tervuren and Pittsburgh). We took the utmost care to exclude or 

correct confirmed or likely errors in locality and species identity. We georeferenced localities as 

precisely as feasible and applied a unified nomenclature of taxa (following Kitching & Cadiou 2000 

and recent, in parts yet unpublished updates; see also Boakes et al., 2010). For the purposes of this 

study, we ignored all locality records that could not be allocated with a precision of at least 1° 

latitude/longitude (~ 110 km). We defined a record as a unique combination of species, locality, 

year and collector. Hence, a record may contain between one and many specimens caught at the 

same time, whereas temporal replicates (e.g., a species being caught repeatedly in different years at 

the same site) would be considered as separate records. While the oldest data originated from the 

late 19th century, the vast majority of data were collected later than 1950 (and most from 1980 

onward). 

We mapped numbers of records (N) and observed species richness (Sobs) in an equal area 

Mollweide projection, aggregated in raster grids with a cell size of 200 x 200 km. Preliminary 

analyses identified this cell size as the best compromise between resolution and number of cells and 

data quality within cells.  

 

4.2.2. Correcting for  incomplete species inventor ies 

We applied three approaches, all based on the distribution of records and species per grid cell, to 

attempt to control for variable sampling effort and ultimately provide an estimate of actual grid cell 

richness values: (1) We calculated rarefaction curves (i.e., randomized accumulation of species with 

records; Srar) for each grid cell, which allows estimation of how many species would have been 

observed in a cell if only a given number of specimens had been sampled (Gotelli & Colwell, 

2001). Thus, rarefaction allows standardization of sampling effort across cells but outputs are not 

estimates of the complete species richness of cells (unlike the following methods). We used 25 

records as a standard to compare estimated Srar. (2) We fitted several asymptotic functions (i.e., 
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Michaelis-Menten, negative exponential, asymptotic, Chapman-Richards, Rational, Weibull; see 

Mora et al. 2008 for details) to the rarefaction curves to derive estimates of the total species richness 

expected with infinitely large sampling effort. Each of these functions was evaluated separately for 

each grid cell using Akaike’s information criterion (AIC) for its fit with the rarefaction curves, and 

AIC-weighted average estimates of species richness (Sasym) were calculated. Asymptotic estimators 

have recently been used by Mora et al. (2008) in a similar context. (3) As an alternative estimator of 

‘ true’  species richness we calculated a non-parametric metric, Chao1 (Chao 1984), that makes use 

of the ratio of species recorded only once, or exactly twice, per cell (SChao). Because this method 

yields results similar to Sasym we only mention important data for SChao in the main text but present 

details in the Appendix section.   

Output from these three approaches varied in quality and reliability between cells, and we applied 

some ‘pruning’  rules to remove highly unreliable cell estimates, at the cost of reducing number of 

cells available for analysis. We present here data for cells where at least 25 records were available, 

and where coefficients of variation (i.e., standard error of estimate / estimate) for species richness 

estimators were <0.2. We also repeated our analyses using more (>50 records per cell) and less 

rigorous (>10, >15 records) pruning rules (i.e., affecting numbers of cells available vs. reliability of 

estimates), but this did not affect the main conclusions.  

 

4.2.3. Environmental effects on species r ichness patterns 

We investigated the effect of some environmental variables that have often been found or assumed 

to affect species richness patterns at large extents and grain sizes on log10-transformed estimates of 

species richness. In particular, we investigated effects of potential evapotranspiration (PET; from 

http://edit.csic.es/Climate.html) as a measure of energy input into the ecosystem (Hawkins et al., 

2003), actual evapotranspiration (AET; from http://edit.csic.es/Climate.html) as a measure of 

primary productivity (Currie et al. 2004), topographic heterogeneity (altitudinal range within cells) 

as proxy of habitat variability and consequent beta diversity (Ruggiero & Hawkins, 2008), and 

vegetation structure (herb and tree cover from MODIS Vegetation Continuous Fields, 

http://glcf.umiacs.umd.edu/data/vcf/, means for 200 km cells). For sphingids, as herbivorous 

insects, we expected functional links with vegetation type although most species are not particularly 

host-specific (i.e., specialization below plant family level is rare; Beck et al., 2006b). MODIS data 

are based on satellite imagery taken in 2000-2001 and hence include aspects of human-induced 

changes to the landscape. Vegetation data are correlated with AET estimates (tree cover: r2= 0.62; 

herb cover: r2= 0.30), which may affect interpretation of results (see below). Coastal raster cells 

may appear to harbour reduced species richness due to smaller area alone. However, in our data set 
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coastal regions often contained well-sampled and species-rich cells, and given this sampling pattern 

the effect of land area on observed richness was weak (Spearman rank correlation, 405 cells: rs = -

0.105). We thus included coastal cells down to 5.0% land area in the analysis to avoid loss of 

critical information. We tested model residuals for spatial autocorrelation (software SAM, v.4; 999 

permutations), finding significant Moran’s I >0.1 for lag-distances up to ca. 500 km. We used 

spatially explicit multivariate generalised least square (GLS) models to account for spatial 

autocorrelation in the data (Beale et al., 2010; spherical variogram structure; software R.2.13.1, 

nlme package).  

For all three response variables (i.e., Srar, Sasym, SChao), we evaluated full models (all listed variables, 

no interactions) and various simplified models using Akaike’s information criterion (AIC); we used 

only the best (lowest AIC) for further analyses. We calculated the pseudo-R2 of models as a 

correlation of predicted vs. observed values. GLS model coefficients were used to extrapolate 

species richness estimates across Sub-Saharan Africa, allowing intuitive evaluation of the 

consistency of patterns derived from the three estimation methods. We also applied co-kriging (i.e., 

spatial interpolation of raw estimates based on their autocorrelation, the autocorrelation of 

environmental model predictions, and the cross-correlation between them) for mapping (Kreft & 

Jetz, 2007). Co-kriging was carried out in ArcGIS 10 software, assuming anisotropic variogram 

structures. Estimates were optimized by cross-validation, and we report final root mean square 

errors (RMSE) of interpolation predictions. 

 

4.2.4. Quantifying and analysing inventory completeness 

Using co-kriging estimates of ‘ true’  species richness (Sasym), we determined cell-wide species 

inventory completeness as Sobs/Sasym and yet unrecorded species richness as Sasym-Sobs. Cells without 

any data consequently had an inventory completeness of zero. In some cells estimates of Sasym were 

lower than Sobs due to imperfect function fitting; for these we defined inventories as complete (i.e., 

Sobs/Sasym = 1) and set the number of unrecorded species to zero (Sasym-Sobs= 0).  

We related the geographic patterns of inventory completeness to human factors such as road and 

tourism infrastructure, habitat encroachment, population density, armed conflict, and colonial 

history (see Appendix 4.1 for details and sources). We hypothesized that each of these factors may 

play a role in affecting collectors’  inclination to be active in a region. Inventory completeness is a 

zero-inflated response variable (i.e., there are many cells without records; Zuur et al. 2010) and we 

used log10(x+1)-transformation to reduce extreme deviations from normality. We first carried out 

AIC-based model selection of ordinary least square (OLS) models to identify important effects of 

these variables on inventory completeness. For the best model (lowest AIC), we found significant 
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positive autocorrelation in residuals for lag-distances up to ca. 870 km. Using the variables in the 

best OLS-model, we re-analysed effects in a spatially explicit GLS model, and we repeated this 

analysis without the zero-cells to avoid spurious conclusions due to zero-inflation.  

 

4.3. Results 

4.3.1. Observed and estimated species r ichness 

A total of 21,194 records provide occurrence data for 322 species over 405 grid cells (of 200 x 200 

km size) covering all of Sub-Saharan Africa (145 additional grid cells had no data available; Figure 

4.1). After applying ‘pruning’  rules of data inclusion for estimating species richness (see Methods), 

146 cells were left for analyses. 

Most occurrence samples (N) come from the coastal parts of western and central Africa, from the 

Great Lakes regions of eastern Africa and from Madagascar. Few records are available for the drier 

parts of southern Africa. This geographically highly uneven availability of occurrence data was 

strongly reflected in the patterns of observed species richness (Sobs). N and Sobs are strongly 

positively correlated (linear correlation of logN ~ logSobs: r = 0.95, n = 405 grid cells), suggesting 

pervasive effects of sampling effort even at this coarse spatial resolution. Restricting the test to the 

146 cells with ≥25 records confirms this relationship (r= 0.90).  

To overcome these sampling effects of richness we calculated rarified species richness (Srar) and 

estimated expected full species richness given sufficient sampling using parametric asymptotic 

(Sasym) and non-parametric (SChao) methods. Sasym showed similar geographic patterns (Figure 4.1C). 

These measures accordingly exhibited much weaker relationships with N (i.e., logN ~ logSasym, r = 

0.65; logN ~ logSChao, r = 0.64) and there was barely an association with rarefied species richness 

(logN ~ logSrar, r=0.45). Relationships with observed species richness were also weak (Sobs ~ Sasym, 

r = 0.78; Sobs ~ SChao, r= 0.70; log10Sobs ~ Srar, r= 0.67). Estimates of full species richness agree with 

each other (i.e., Sasym ~ SChao, r= 0.94) while showing some deviation from rarefied data (Srar ~ 

logSasym, r = 0.88; Srar ~ logSChao, r= 0.84).  
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Figure 4.1 (A) Number of records (N), (B) observed species richness (Sobs), (C) rarefied species richness at 
25 records (Srar), (D) asymptotic estimate of total species richness (Sasym). Note that Sobs and Sasym are shown 
on the same colour scale. Grid cells without data are shown in grey.  

 

 

 

4.3.2. Environmental models and interpolation 

For both rarefied species richness (Srar), and asymptotic estimators (Sasym), the strongest 

environmental models included all predictors according to AIC (see Table 4.1). Notably, 

environment explains considerably more of the variation in Srar (pseudo-R2 = 0.41) than Sasym 

(pseudo-R2 = 0.14), and the models agree only partly in the importance of variables. For both 

models, positive coefficients of similar magnitude were found for tree and herb cover. The model 

for Srar is additionally driven by PET and, more weakly, topographic heterogeneity, whereas that for 

Sasym is mainly affected by AET. Figure 4.2 illustrates these differences by extrapolating the models 
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(note, e.g., different prediction for the Congo Basin, a region of very high AET). The model for 

SChao shows performance similar to that of Sasym (pseudo-R2 = 0.15; Appendix 4.2). 

Environmental models based on different species richness estimates lead to broadly similar 

predicted patterns of diversity (Figure 4.2; Srar ~ log10Sasym, r = 0.97; N=550), and so did co-kriging 

interpolations (Srar ~ log10Sasym, r = 0.95). Estimates of Sasym and SChao (see Appendix 4.3) are 

correlated for the environmental model (r = 0.92) and even stronger for co-kriging (r = 0.97). 

Surprisingly, predictions from environmental models and co-kriging interpolations within the same 

metrics deviate considerably from each other (Srar: r = 0.83; Sasym: r = 0.75; SChao: r = 0.68). 

Deviations are particularly strong in the Ethiopian Highlands and the Horn of Africa (the 

environmental model predicts more species in the former, fewer in the latter, than co-kriging). For 

both estimates of total species richness (Sasym and SChao), environmental models predict more 

species in the Congo Basin and fewer in Tanzania/Mozambique than co-kriging (residual data not 

shown).  

 

Table 4.1 Generalised least squares (GLS) model details for rarefied species richness (Srar) and asymptotic 
estimates of species richness (Sasym). Pseudo-R2 = 0.405 for Srar, 0.138 for Sasym (n = 146 grid cells). 

log10Srar log10Sasym 
Variable Coefficient t P Coefficient t p 
(Intercept) 0.62548 7.307 0.000 0.52334 1.258 0.211 
Topo. Het. 0.00001 1.839 0.068 0.00003 1.348 0.180 
AET 0.00004 1.255 0.212 0.00032 2.273 0.025 
PET 0.00010 2.253 0.026 0.00016 0.760 0.448 
Tree 0.00430 6.074 0.000 0.00544 1.893 0.061 
Herb 0.00404 6.817 0.000 0.00562 2.286 0.024 
 

 

4.3.3. Inventory completeness 

We used the predictions of the best-performing model of total species richness, co-kriging of Sasym, 

to estimate the geographic variation in inventory completeness (Sobs/Sasym) and undetected species 

richness (Sasym-Sobs; Figure 4.3). Model selection based on AIC (see Methods) led to a model 

including population density, railway lines, airports, touristic hotspots, protected areas and colonial 

history as the most important variables for predicting inventory completeness (explaining ca. 21% 

of data variability). Coefficients (Table 4.2) reveal the expected positive effects of infrastructure 

(traffic access, tourism) and of protected areas, but also effects of colonial history (although the 

large majority of data stemmed from the post-colonial era). In particular, the formerly Portuguese 

regions (i.e., Mozambique), but surprisingly also former British regions, were less well-sampled or -
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mobilized than formerly French and Belgian regions. A univariate model (not shown) that does not 

account for differences in infrastructure (which may itself be an outcome of colonial history) 

confirms the effect of past Portuguese occupation but no other effects of colonial history. Models 

with slightly higher AIC (∆AIC <2; data not shown) contain additional positive effects of road 

density and negative effects of pristine regions. A map of residuals from the OLS model (not 

shown) indicates only weak spatial structure, with particularly positive residuals (i.e., better 

sampling than predicted) in Madagascar and Cameroon, and negative residuals in the Sahel, western 

Congo Basin and Zimbabwe.  

Inventory completeness (Figure 4.3, left) is related to (log10(x+1)-transformed) number of records 

(Figure 4.1; r2 = 0.85), and repeating the OLS analysis with records as a response variable (a proxy 

of sampling effort) lead to identical conclusions (not shown). 

When looking at absolute numbers of yet-to-be-recorded species, Mozambique and southern 

Tanzania, as well as the Congo Basin, stand out as containing much unrecorded (at grid cell level, 

not necessarily undescribed) biodiversity (Figure 4.3, right).  

 

Table 4.2 OLS and GLS models explaining estimated inventory completeness (Figure 4.3; log10(x+1)-
transformed) of cells by human geographic factors. Country names refer to colonial powers in 1919 (see 
Appendix 4.1 for details on predictor variables; n = 502 grid cells). Data are zero-inflated, but a GLS model 
without the 145 zero-cells recovered all results except the marginal effect of protected areas (Appendix 4.5).  

 OLS; R2
adj = 0.21 GLS; pseudo-R2 = 0.22 

 Coefficient t p Coefficient t p 
(Intercept) 0.03285 2.356 0.019 0.03286 2.340 0.020 

Britain -0.02825 -2.837 0.005 -0.02828 -2.815 0.005 

Belgium 0.01243 0.838 0.402 0.01190 0.794 0.428 

Portugal -0.06021 -4.015 0.000 -0.06045 -3.997 0.000 

France 0*    0*    

log10(Popul+1) 0.02954 4.427 0.000 0.02980 4.433   0.000 

Airports 0.04446 3.378 0.001 0.04387 3.350 0.001 

Railways 0.00015 3.064 0.002 0.00015 3.050 0.002 

Tourism 0.04163 3.968 0.000 0.04115 3.936 0.000 

Protected 0.01691 1.982 0.048 0.01652 1.942 0.053 

* ) zero by default 
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Figure 4.2 (A) Estimates of species richness based on the environmental model of rarefied species richness 
at 25 records (Srar (environ), upper left), (B) Co-kriging interpolation of rarefied species richness (Srar (co-krig), 
upper right), (C) Environmental model of asymptotic estimate of total species richness (Sasym (environ), lower 
left), (D) Co-kriging interpolation of asymptotic estimate of total species richness (Sasym (co-krig), lower right). 
See Table 4.1 for details on environmental models. RMSEs for co-kriging interpolations are 1.95 for Srar and 
29.05 for Sasym. 
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Figure 4.3 (Left) Cell-wide inventory completeness (based on co-kriging estimate of Sasym; these data were 
used to investigate effects of human geographic factors, Table 4.2). (Right) Estimated number of unrecorded 
species in each grid cell measured as the difference between Sobs and Sasym. 

 

 

4.4. Discussion 

 

4.4.1. Controlling species r ichness for  sampling effor t 

Our analyses demonstrate that for incompletely sampled taxa (i.e., the great majority of taxa in most 

regions), numerical estimates of cell-wide species richness based on the relative distributions of 

records and species can provide data that enables first large-scale mapping and analysis of diversity. 

These sorts of assessments are urgently needed to put global biodiversity research on a broader 

taxonomic basis. As observed data are often heavily affected by sampling effort (e.g., Palmer et al., 

2002; Boakes et al., 2010), such estimates may currently be the only alternative to overlaying 

estimated range maps of individual species (based on expert knowledge or distribution modelling). 

Expert range maps for individual species are, for tropical regions, currently only available for 

vertebrates, and they can have spatial characteristics different from cell-based estimates, with 

consequences for further analysis and inference (McPherson & Jetz, 2007).  

Although estimates of total species richness are easiest to understand and interpret, our data suggest 

that rarefaction may currently be the more reliable method of controlling for sampling effort in 

diversity patterns. We found Srar to be less dependent on record numbers than Sasym or SChao, and the 

environmental model based on Srar explained considerably more variability. This indicates that 

rarefaction introduces less random error than extrapolation. Based on similar arguments, Fiedler & 

Truxa (2012) recently came to the same conclusions for finer-scale data. 
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4.4.2. Environmental effects and spatial interpolation 

We found positive effects of energy-related variables in environmental models, but there was 

inconsistency between models whether links with AET (a proxy of primary productivity) or PET (a 

proxy of solar energy input) are more important. Plausible mechanisms have been postulated for 

both variables (see Evans et al., 2005 for review), and published analyses leave uncertainty similar 

to that revealed here (e.g., Mittelbach et al., 2001; Currie et al., 2004; Buckley & Jetz, 2007). 

Energy availability was found to have a large effect on regional and local richness (Jetz & Fine, 

2012). Additionally temperature was found to be positively associated with ectotherm richness 

whereas primary productivity is correlated with endotherm richness (Buckley et al., 2012).  At a 

much smaller scale temperature was found to be negatively associated with butterfly richness 

(Stefanescu et al., 2004). Possibly the coarse-scale, imprecise measurement of currently available 

AET data prevents clear distinction between these effects. Interesting is the high similarity of 

coefficients for tree and herb cover (i.e., forest vs. savannah) after controlling for energy and 

productivity, suggesting that other differences between those habitat types (such as 3-D structure) 

are not very important at this spatial scale of analysis.  

We found relatively weak correspondence of patterns recovered from the environmental models and 

from co-kriging. Spatial interpolation can yield equal or better estimates than environmental models 

(e.g., Bahn & McGill, 2007; Lin et al., 2008), although they are less informative with regard to the 

causes of patterns. By being closer to observed data patterns, interpolation can also map historical 

effects undetectable by correlation with the current environment. Our co-kriging estimates (Figure 

4.2) clearly identify three areas of high diversity, i.e. the coastal mountains of western Central 

Africa, and the northern and southern mountain ranges of East Africa. Notably, this pattern is not 

explained by topographic heterogeneity (which was included in environmental models). All three 

regions were identified as regions of complex biogeographical history and high endemism in other 

taxa (e.g., Jetz et al., 2004; Linder et al., 2012), suggesting potential effects of geographical history. 

Also, co-kriging interpolations yield patterns of species richness broadly similar to those published 

for birds (Jetz & Rahbek 2002; Lin et al., 2008), amphibians (Buckley & Jetz 2007) and plants 

(Kreft & Jetz 2007). Scale-dependency of species richness hinders quantitative comparison across 

studies (Rahbek 2005, Beever et al. 2006). However, the prediction of high diversity not only in the 

montane areas of southern Tanzania and Mozambique but also in their coastal lowlands appears 

novel; it is unwarranted by actual data (Figure 4.1) and requires further data collection for 

confirmation. 
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4.4.3. Sampling effor t and the large-scale evaluation of biodiversity 

Our data showed clearly that cell-wide inventory completeness was not equally distributed in space 

(Figure 4.3). However, the causality of the relationship between sampling effort (i.e., number of 

records) and observed species richness is not entirely clear. Collectors may be drawn particularly to 

places known or presumed to be high in species diversity (which often also feature high human 

population density; Balmford et al., 2001). Alternatively, more comprehensive sampling may lead 

to finding more species.  

Inventory completeness was substantially related to accessibility and infrastructure. Modelling 

cannot infer causality directly, but it is plausible to conclude that collectors make conscious 

decisions to visit those places that are easy to access. Protected areas had a positive effect on 

inventory completeness, although it cannot be concluded from our data whether this is caused by 

specific conservation interest in surveys or by the infrastructure allowing access to, e.g., National 

Parks. “Pristine”  landscapes, on the other hand, had a (weak) negative effect, which is most likely 

due to lack of access. This (non-significant) effect is somewhat in contradiction to the assumption 

that such places have often a more complete inventory, and also to Guernard et al. (2012), who 

estimated many unrecorded ant genera in regions of high anthropogenic habitat destruction.   

Even though some patterns of model residuals match most Africa-researchers’  preconceived 

expectations on collection intensity (e.g., poor knowledge of the Congo Basin, well-sampled 

Madagascar), we mostly observed only idiosyncratic deviations from model expectations of 

inventory completeness. Some large positive residuals (more complete data than modelled) seemed 

to be associated with single places with large quantities of data collected over a few years, 

suggesting intense activity by a single collector or a particular survey program. Additionally, 

georeferencing issues could also cause such effects. Records saying nothing but “Kivu” , for 

example, were referenced to the same coordinates whereas they could sometimes relate to a much 

wider geographic interpretation, i.e. the Kivu provinces or the entire region around Lake Kivu. 

Furthermore, some well-sampled places did not stand out in the population or traffic network, but 

they may nevertheless have drawn collectors (such as expatriate workers, missionaries) because of 

their administrative (e.g., Yaounde, Cameroon’s capital) or economic importance (e.g., 

Lubumbashi, a mining town in the Congo). We did not include locations of universities (cf. 

Moerman & Estabrook, 2006) in our analyses as very little of our data stemmed from African 

collectors or collections (e.g., databasing the collection of the Natural History Museum of Addis 

Ababa yielded <10% of available records for Ethiopia). Exploratory analysis of inventory 

completeness and human geographic variables, using geographically weighted regression (not 

shown), suggested some spatial patterns that deserve further study, such as increasing predictability 

of inventory completeness from West to East. 
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4.5. Conclusions 

 

Sampling effort is a crucial variable when assessing large-scale species richness patterns and 

ignoring this would probably lead to flawed perceptions of patterns. Numerical estimates based on 

the accumulation of species with records, in combination with environmental models and spatial 

interpolation can help estimating broad-scale richness patterns. However, they necessarily contain 

estimation error, and important patterns should be backed up by future field surveys. Similar to 

what has been found for the much better studied vertebrates, vegetation cover, energy-related 

variables and topographic heterogeneity are important environmental correlates also for sphingid 

moth species richness, while leaving considerable variation unexplained possibly due to historical 

component in the patterns of species richness. Inventory completeness can be predicted to a certain 

degree from human population density, infrastructure and colonial history. Our approach and results 

expose areas of extensive and poor sampling given expected discoverable species richness, thus 

highlighting regions where future efforts of sampling should be directed.  

 

 

4.6. Acknowledgements 

 

We thank all the professional and amateur collectors (too numerous to mention here) who made 

their data available for our project. S.P. Loader, W. Schwanghart and two anonymous reviewers 

provided critical comments on an earlier version of the manuscript. M. Curran, M. Kopp, R. 

Hagmann, S. Widler and S. Lang helped processing the distributional data. The study received 

financial support from the Swiss National Science Foundation (SNF, project 3100AO_119879) and 

the Synthesys program of the EU. 



CHAPTER 4 – MAPPING BIODIVERSITY AND INVENTORY COMPLETENESS 

 124 

4.7. References 

Bahn, V. & McGill, B.J. (2007) Can niche-based distribution models outperform spatial 

interpolation? Global Ecology and Biogeography, 16, 733-742. 

Balmford, A., Moore, J.L., Brooks, T., Burgess, N., Hansen, L. A, Williams, P. & Rahbek, C (2001) 

Conservation conflicts across Africa. Science, 291, 2616-9. 

Beale, C., Lennon, J., Yearsley, J. & Brewer, M. (2010) Regression analysis of spatial data. Ecology 

Letters, 13, 246:264. 

Beck, J. & Kitching, I.J. (2007) Estimating regional species richness of tropical insects from 

museum data: a comparison of a geography-based and sample-based methods. Journal of 

Applied Ecology, 44, 672-681. 

Beck, J., Ballesteros-Mejia, L., Buchmann, C.M., Dengler, J., Fritz, S. a., Gruber, B., Hof, C., 

Jansen, F., Knapp, S., Kreft, H., Schneider, A.-K., Winter, M. & Dormann, C.F. (2012) What’s 

on the horizon for macroecology? Ecography, 35, 673-683. 

Beck, J., Kitching, I.J. & Eduard Linsenmair, K. (2006a) Determinants of regional species richness: 

an empirical analysis of the number of hawkmoth species (Lepidoptera: Sphingidae) on the 

Malesian archipelago. Journal of Biogeography, 33, 694-706. 

Beck, J., Kitching, I.J. & Linsenmair, K.E. (2006b) Diet breadth and host plant relationships of 

Southeast-Asian sphingid caterpillars. Ecotropica, 12, 1–13. 

Beck, J., Schwanghart, W., Chey, V.K. & Holloway, J.D. (2011) Predicting geometrid moth 

diversity in the Heart of Borneo. Insect Conservation and Diversity, 4, 173-183. 

Beever, E.A., Swihart, R.K. & Bestelmeyer, B.T. (2006) Linking the concept of scale to studies of 

biological diversity: evolving approaches and tools. Diversity and Distributions, 12, 229–

235. 

Boakes, E.H., McGowan, P.J.K., Fuller, R.A., Ding, C.Q., Clark, N.E., O’Connor, K. & Mace, 

G.M. (2010) Distorted views of biodiversity: spatial and temporal bias in species occurrence 

data. PLoS biology, 8, e1000385. 

Buckley, L.B., Hurlbert, A.H. & Jetz, W. (2012) Broad-scale ecological implications of ectothermy 

and endothermy in changing environments. Global Ecology and Biogeography, 21, 873–885. 



CHAPTER 4 – MAPPING BIODIVERSITY AND INVENTORY COMPLETENESS 

 125 

Buckley, L.B. & Jetz, W. (2007) Environmental and historical constraints on global patterns of 

amphibian richness. Proceedings of the Royal Society (B), 274, 1167-1173. 

Chao A. (1984). Non-parametric estimation of the number of classes in a population. Scandinavian 

Journal of Statistics 11, 265-270. 

Colwell, R.K. & Coddington, J.A. (1994) Estimating terrestrial biodiversity through extrapolation. 

Philosophical Transactions of the Royal Society (B), 345, 101-18. 

Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guegan, J.-F., Hawkins, B. a., Kaufman, 

D.M., Kerr, J.T., Oberdorff, T., O’Brien, E. & Turner, J. R. G. (2004) Predictions and tests of 

climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 

1121-1134. 

Evans, K.L., Warren, P.H. & Gaston, K.J. (2005) Species–energy relationships at the 

macroecological scale: a review of the mechanisms. Biological Reviews, 80, 1–25. 

 

Fiedler, K. & Truxa, C. (2012) Species richness measures fail in resolving diversity patterns of 

speciose forest moth assemblages. Biodiversity and Conservation, 21, 2499-2508. 

 

Field, R., Hawkins, B.A., Cornell, H.V., Currie, D.J., Diniz-Filho, J.A.F., Guegan, J.-F., Kaufman, 

D. M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O’Brien, E.M. & Turner, J.R.G. (2009) 

Spatial species-richness gradients across scales: a meta-analysis. Journal of Biogeography, 

36, 132-147. 

Godfray, H.C.J., Lewis, O.T. & Memmot, J. (1999) Studying insect diversity in the tropics. 

Philosophical Transaction of the Royal Society (London) B, 354, 1811-1824. 

Gotelli, N. & Colwell, R. (2001) Quantifying biodiversity : procedures and pitfalls in the 

measurement and comparison of species richness. Ecology Letters, 4, 379-391. 

Guénard, B., Weiser, M.D. & Dunn, R.R. (2012) Global models of ant diversity suggest regions 

where new discoveries are most likely are under disproportionate deforestation threat. 

Proceedings of the National Academy of Science, 109, 7368-7373. 

Hawkins, B. a. & DeVries, P.J. (2009) Tropical niche conservatism and the species richness 

gradient of North American butterflies. Journal of Biogeography, 36, 1698-1711. 



CHAPTER 4 – MAPPING BIODIVERSITY AND INVENTORY COMPLETENESS 

 126 

Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.-F., Kaufman, D.M., Kerr, J.T., 

Mittelbach, G.G., Oberdorff, T., O’Brien, E., Porter, E.E. & Turner, John R. G. (2003) Energy, 

water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117. 

Hortal, J., Diniz-Filho, J.A.F., Bini, L.M., Rodriguez, M.A., Baselga, A., Nogues-Bravo, D., 

Rangel, T.F. Hawkins, B.A. & Lobo, J.M. (2011) Ice age climate, evolutionary constraints 

and diversity patterns of European dung beetles. Ecology Letters, 14, 741–748. 

Jenkins, C.N., Sanders, N.J., Andersen, A.N., Arnan, X., Brühl, C. A., Cerda, X., Ellison, A.M., 

Fisher, B.L., Fitzpatrick, M.C., Gotelli, N.J., Gove, A.D., Guénard, B., Lattke, J.E., Lessard, 

J.-P., McGlynn, T.P., Menke, S.B., Parr, C.L., Philpott, S.M., Vasconcelos, H.L., Weiser, 

M.D. & Dunn, R.R. (2011) Global diversity in light of climate change: the case of ants. 

Diversity and Distributions, 17, 652-662. 

Jetz, W. & Fine, P.V. (2012) Global gradients in vertebrate diversity predicted by historical area-

productivity dynamics and contemporary environment. PloS Biology, 10, e1001292,  doi: 

10.1271/journal.pbio.1001292. 

Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. 

Science, 297, 1548-51. 

Jetz, W., Rahbek, C. & Colwell, R.K. (2004) The coincidence of rarity and richness and the 

potential signature of history in centres of endemism. Ecology Letters, 7, 1180–1191. 

Jetz, W., McPherson, J.M. & Guralnick, R.P. (2012) Integrating biodiversity distribution 

knowledge: toward a global map of life. Trends in Ecology & Evolution, 27, 151-159. 

Kitching I.J. & Cadiou J.-M. (2000) Hawkmoths of the world. The Natural History Museum, 

London. Cornell University Press, London. 

Kreft, H. & Jetz, W. (2007) Global patterns and determinants of vascular plant diversity. 

Proceedings of the National Academy of Sciences, 104, 5925-30. 

Kudrna, O., Harpke, A., Lux, K., Pennersdorfer, J., Schweiger, O., Settele, J. & Wiemers, M. 

(2011) Distribution Atlas of Butterflies in Europe. Gesellschaft für Schmetterlingsschutz. 

Halle, Germany. 

 



CHAPTER 4 – MAPPING BIODIVERSITY AND INVENTORY COMPLETENESS 

 127 

Kumschick, S., Schmidt-Entling, M.H., Bacher, S., Hickler, T., Espadaler, X., & Nentwig, W. 

(2009) Determinants of local ant (Hymenoptera: Formicidae) species richness and activity 

density across Europe. Ecological Entomology, 34, 748–754. 

 

Lin, Y.-P., Yeh, M.-S., Deng, D.-P. & Wang, Y.-C. (2007) Geostatistical approaches and optimal 

additional sampling schemes for spatial patterns and future sampling of bird diversity. 

Global Ecology and Biogeography, 17, 175–188. 

 

Linder, H.P., de Klerk, H.M., Born, J, Burgess, N.D., Fjeldsa, J. & Rahbek, C. (2012) The 

partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. 

Journal of Biogeography, 39, 1189–1205. 

 

Martin, L.J., Blossey, B. & Ellis, E. (2012) Mapping where ecologists work: biases in the global 

distribution of terrestrial ecological observations. Frontiers in Ecology and the Environment, 

10, 195–201. 

 

McPherson, J.M. & Jetz, W. (2007) Type and spatial structure of distribution data and the perceived 

determinants of geographical gradients in ecology: the species richness of African birds. 

Global Ecology and Biogeography, 16, 657–667.  

 

Mittelbach, G.G., Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B., Willig, 

M.R., Dodson, S.I. & Gough, L. (2001) What is the observed relationship between species 

richness and productivity? Ecology, 82, 2381–2396. 

Moerman, D.E. & Estabrook, G.F. (2006) The botanist effect: counties with maximal species 

richness tend to be home to universities and botanists. Journal of Biogeography, 33, 1969–

1974. 

Mora, C., Tittensor, D.P. & Myers, R.A. (2008) The completeness of taxonomic inventories for 

describing the global diversity and distribution of marine fishes. Proceedings of the Royal 

Society (B), 275, 149-155. 

Palmer, M.W., Earls, P.G., Hoagland, B.W., White, P.S. & Wohlgemuth, T. (2002) Quantitative 

tools for perfecting species lists. Environmetrics, 13, 121-137. 

Rahbek, C. (2005) The role of spatial scale and the perception of large-scale species-richness 

patterns. Ecology Letters, 8, 224–239. 



CHAPTER 4 – MAPPING BIODIVERSITY AND INVENTORY COMPLETENESS 

 128 

Reddy, S. & Dávalos, L. (2003) Geographical sampling bias and its implications for conservation 

priorities in Africa. Journal of Biogeography, 30, 1719-1727. 

Ruggiero, A. & Hawkins, B.A. (2008) Why do mountains support so many species of birds? 

Ecography, 31, 306-315. 

Stefanescu, C., Herrando, S. & Paramo, F. (2004) Butterfly species richness in the north-west 

Mediterranean Basin: the role of natural and human-induced factors. Journal of Biogeography, 

31, 905-912. 

Tittensor, D.P., Mora, C., Jetz, W., Lotze, H.K., Ricard, D., Berghe, E.V. & Worm, B. (2010) 

Global patterns and predictors of marine biodiversity across taxa. Nature, 466, 1098-1101. 

Zagmajster, M., Culver, D., Christman, M. & Sket, B. (2010) Evaluating the sampling bias in 

pattern of subterranean species richness: combining approaches. Biodiversity and 

Conservation, 19, 3035-3048. 

Zuur, A.F., Ieno, E.N. & Elphick, C.S. (2010). A protocol for data exploration to avoid common 

statistical problems. Methods in Ecology and Evolution, 1, 3-14. 



CHAPTER 4 – MAPPING BIODIVERSITY AND INVENTORY COMPLETENESS 

 129 

Appendix 

Appendix 4.1. Human geographic factors (continuous [cont.], categorical [cat.] or presence-absence [P/A]), 
data sources, and modelled effects on inventory completeness of 200 x 200 km cells. All online sources were 
accessed in May 2010. Tourism hotspots were identified as the “ top ten places”  of each country as listed in 
Lonely Planet guide book series (considered the most authorities source of information by most Africa 
travellers). We coded ‘colonial history’  as presence of absence of Great Britain, France, Belgium and 
Portugal in the main part of each grid cell in 1919 (diplomatic refinements, e.g. colony vs. protectorate, were 
ignored); we excluded the few grid cells with other colonial history or no data for other variables, leaving 
502 grid cells in analysis. 

Var iable  Data source 
Road density [area of 2 km 
buffer, cont.] 

http://www.diva-gis.org/gData 

Railway density [area of 2 km 
buffer, cont.] 

http://www.diva-gis.org/gData 

Airports [P/A] http://goafrica.about.com/ 
Tourism hotpots [P/A] http://www.lonelyplanet.com/africa 
Protected areas [P/A] http://www.wdpa.org/ 
Pristine nature areas [P/A] http://www.ciesin.columbia.edu/wild_areas/ 
Colonial history, in 1919 [cat.]   
Human population, 2005 [cont.] http://gcmd.nasa.gov/records/GCMD_Landscan.html 
Armed conflict since 1945 [P/A] http://www.prio.no/ 
 

Appendix 4.2 GLS model details for Chao1-estimates of species richness (SChao). Note that for SChao the best 
model (lowest AIC) was not the full model, but one without AET. Pseudo-R2 = 0.145 (N = 146 gird cells). 

log10SChao: AIC = -36.0 
Variable Coefficient SE t p 
(Intercept) 0.352494 0.442870 0.796 0.426 
Topo. Het. 0.000044 0.000023 1.902 0.059 
PET 0.000366 0.000224 1.629 0.106 
Tree 0.008514 0.002187 3.894 0.000 
Herb 0.007185 0.002379 3.020 0.003 
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Appendix 4.3 Chao1-estimated species richness. Grey cells denote no data. 

 

Appendix 4.4 Species richness estimates based on SChao. (Left) Extrapolation of environmental model (Table 
A2); Right Co-kriging extrapolation of SChao (RMSE = 35). 
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Appendix 4.5 Spatially explicit model explaining estimated inventory completeness (Figure 4.3; log10(x+1)-
transformed) by human geographic factors, using only cells with at least one species recorded (i.e., no zero-
inventory completeness). 

N = 367 GLS; pseudo-R2 = 0.18 
 Coefficient SE t p 
(Intercept) 0.079839 0.016615 4.805 0.000 
Britain -0.040175 0.011798 -3.405 0.001 
Belgium -0.020264 0.016157 -1.254 0.211 
Portugal -0.074995 0.018758 -3.998 0.000 
France 0*     
log10(Popul+1) 0.025628 0.007868 3.257 0.001 
Airports 0.037299 0.014017 2.661 0.008 
Railways 0.000121 0.000055 2.221 0.027 
Tourism 0.032594 0.011408 2.857 0.005 
Protected 0.011792 0.009702 1.215 0.225 
* ) zero by default 
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ABSTRACT 

 

For the vast majority of the species described today, there is very little knowledge about their distribution 

and ecology, a phenomenon called Wallacean Shortfall. Available distribution data are biased towards very 

few charismatic taxa. For invertebrates, the figures are dramatic and even though they account for the biggest 

part of the species richness in the planet, knowledge is both scarce and scattered. New advances in 

technology (i.e., statistical methods and remote sensing) can contribute to improve this knowledge. Here we 

report our endeavours of assembling a multi-source database of distributional records for all 982 no-

American taxa of the Sphingidae family of Lepidoptera, provide algorithm-based distribution maps, and 

study resulting patterns of biodiversity. We used Maxent, a popular technique of species distribution 

modelling (SDM), in combination with climatic and vegetation data, to estimate the distribution of the 

species at 5 x 5 km resolution across. We then superimposed resulting grids to study patterns of biodiversity 

at two different spatial scales (α-diversity: 5 x 5 km grid cells, and γ-diversity: 200 x 200 km grid cells). We 

also used these data to map β-diversity. We could model the distribution for 789 taxa, whereas we provided 

expert-based range estimates for the remaining 193 taxa. Annual temperature range emerged as the variable 

that contributes most to shape the distribution of species in models, closely followed by variables related to 

precipitation. Vegetation data did not contribute highly to our models. Our maps of α and γ diversity reveal 

the expected gradient towards the tropics of species richness. In contrast, beta diversity did not show a 

latitudinal gradient but a rather altitudinal one, with high β in mountainous regions and along main 

biogeographic boundaries. To the best of our knowledge this is the first distributional data set of a complete 

family of invertebrates at large (i.e., almost global) extent and fine resolution. There were many challenges 

inherent to assembling data, and we discuss which steps of work required particular attention: taxonomic and 

georeferencing errors and spatial bias in data. Our results will contribute to understand and move forward the 

study of insect biodiversity patterns at a macro-scale. We also hope that this study help and encourage others 

to embark on similar tasks.  
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Introduction 

 

Current research questions in biogeography, macroecology and biodiversity research refer to topics 

such as the mechanisms that shape global biodiversity patterns, how species ranges will be affected 

by changing climate and landuse patterns, or how phylogeny, species traits and the environment 

interact to determine what species we find at a given site (Morrone 2009). However, a closer look at 

the published literature reveals that the majority of large-scale analyses have been carried out on a 

limited set of taxa (i.e., vertebrates and vascular plants) that do not represent the actual phylogenetic 

distribution of biodiversity (Beck et al. 2012a). Invertebrates represent the vast majority of taxa, 

and among the known species richness herbivorous insects make a sizable contribution (Godfray et 

al. 1999, Hamilton et al. 2010). Unfortunately, for most species of those groups we only have a 

vague idea of where they occur, while even for well-studied taxa (i.e., vertebrates) geographical 

distribution data is usually at coarse grain compared to other environmental variables (Jetz et al. 

2012).  

The lack of information on species’  geographic ranges (the ‘Wallacean shortfall’ ; Lomolino 2004) 

is only part of a larger data limitation problem. We are in the midst of a proclaimed “biodiversity 

crisis”  (Wilson et al. 2003), yet we have seen and described only a limited part of the species 

diversity on the planet, i.e. an estimated of 23-33% of the total of multicellular species (Hamilton et 

al. 2010; the ‘Linnean shortfall’ ). Only for a minority of these, usable knowledge is available on 

ecological traits, phylogeny, or biological interactions with other species and their relevance for 

ecosystem function (Wilson et al. 2003). Such data would be urgently needed to appreciate and 

understand the full spectrum of taxonomic and functional diversity in an ecological context, which 

in turn would be needed to conserve or manage the functioning of ecosystems. These topics are of 

utmost global societal importance (Diamond 2006), and the fact that we still know so little of life on 

earth (for many reasons that are beyond the scope of this paper) must be considered a severe 

limitation of current science. 

The shortcomings listed above have been recognized and begun to be addressed by increasing 

attempts to utilize information technology approaches to make scatted distribution data more 

accessible and to facilitate synergistic collaborations to close these gaps in knowledge. Here, we 

focus on the Wallacean shortfall, but we recognize close linkage with the other data deficiencies 

and their prospective solutions (e.g., technological advances in taxonomy; Joppa et al. 2011, Bik et 

al. 2012, Deans et al. 2012, Maddison et al. 2012). Technology also plays a major role in addressing 

the knowledge gap for distributions, which is only partly a problem of limited incentive and finance 

for ‘boots-on-the-ground’  field research. Rather, to a large degree it is about storing, processing and 
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distributing information. Much data on species occurrence is already available in the form of natural 

history collections, however only digitizing and making them broadly available will fully facilitate 

their use in biodiversity research (see Jetz et al. 2012, Beck et al. 2012 for overview to current 

initiatives). At the same time, Ecological Niche Modelling or Species Distribution Modelling 

(SDM; Elith and Leathwick 2009) is a fast growing methodology that builds correlative models 

combining distributional records with (mostly) climatic and remotely sensed landcover data to infer 

suitable habitat, i.e. likely regions of occurrence for a taxon. Even though these methods make 

many unwarranted assumptions, have clear limitations and manifold options for wrong 

implementation and erroneous interpretation (Beale and Lennon 2012, Warren 2012) they 

nevertheless appear the best current approach to attain accurate, high-resolution and reproducible 

distribution estimates for many taxa.  

We acknowledge and appreciate the opportunities for efficient workflow and intercontinental 

collaboration provided by the advances in online tools (e.g., Jetz et al. 2012), which seems a 

promising direction of addressing these issues. However, under current habits of scientific 

accreditation in biology and ecology, we are sceptic that this will be achieved by ‘quantum 

contributions’  (sensu Maddison et al. 2012) of a multitude of data contributors that are driven by a 

selfless urge to provide good data. Quality problems in current online databases (e.g., Yesson et al. 

2007, Beck et al. subm Chapter 3 in this thesis) are probably to a large degree due to the fact that 

data providers are not data users.  

 

In recent decades, there have been many endeavours on collecting, compiling and making available 

distributional data on different taxa for various purposes. Typically these data stem from highly 

non-random observations and surveys in space and time. A common output of analyzing such data 

is a set of distribution maps, ideally also available a digital form. Data vary enormously in three 

aspects: (1) Data type (i.e., presence-absence data per grid cells, based on surveys; model 

predictions of occurrence; or expert-drawn range maps), (2) resolution (grain size) and (3) extent. 

Currently, reasonably reliable presence-absence data exist only for conspicuous, charismatic and 

well-studied taxa in well-searched regions (Gibbons et al 1993). Additionally, for some taxonomic 

groups (i.e., birds, mammals, amphibians and some selected plant groups [add references or URLs]) 

expert drawn maps are available. Implicitly, such expert-drawn maps typically have spatial 

resolutions between 100-200 km (Jetz et al. 2012), with a tendency for more accuracy in the 

temperate zones than in the tropics (Hurlbert and Jetz 2007) 

Among the datasets available, there is for plants based on local inventories resulting in a map at 1° 

resolution and is published in (Kreft and Jetz 2007), and a global bird distribution at 1° resolution 
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was used in Jetz and Rahbek (2002). At the same resolution but at the continental scale (i.e. Africa) 

there are databases of distributional data on mammals, amphibians and reptiles held by the 

Zoological Museum at the University of Copenhagen (Galster et al. 2007, Hansen et al. 2007, 

Rasmussen et al. 2007). Additionally, at continental and country extents, but a much coarser 

resolution (10 km and 50 km UTM grid respectively), maps of distribution for amphibians and 

reptiles are provided in the atlases by (Godinho et al. 1999) and (Gasc et al. 1997).   

For invertebrates there is even less comprehensive distribution data available in terms of taxonomic 

scope, extent and resolution. Asher et al. (2001) assembled distribution maps at 10 x 10 km grid 

cells for all butterflies of Britain and Ireland, Settele et al. 2008, compiled the data from the project 

“Mapping European Butterflies Project”  (MEB: www.european-butterflies.eu) providing maps at a 

resolution of 50 x 50 km resolution, Similarly, Scott (1986) provides expert-range maps all for 

butterflies (and skippers) in North America (North of Mexico, Canada, Alaska Greenland, Iceland, 

Bermuda and Hawaii).  

In this paper, we first report in detail of our endeavour to provide detailed distribution and 

biodiversity data for all non-American (i.e., Old World + Australia/Pacific) members of the 

Sphingidae, a family of the Lepidoptera. Sphingid moths are a suitable model taxon for 

macroecological studies on herbivorous insects (see below), and the dataset that we document here 

is the first of its kind (i.e., high resolution, almost global extent distribution data for a higher insect 

taxon). We describe the source data compilation (i.e., specimen records) and the generation of 

distribution estimates, and some baseline properties of input and output data. Our experiences 

gained throughout this work, including errors, hindsight and quantitative data descriptions, may be 

useful for those who attempt similar tasks in other taxonomic groups, and we hope this will 

encourage more researchers to follow through such a task. We will, among other topics, discuss the 

delicate balance between ‘objective’ , algorithm-based SDM and “expert knowledge”, between 

speed and accuracy in processing data, and the problems of obtaining new specimen distribution 

data from places where most diversity is to be found, i.e. tropical countries. In the second part of 

this paper, we present maps for sphingid diversity based upon stacking species-specific distribution 

predictions. In particular, we present species richness at two different scales (5 x 5 km and 200 x 

200 km grid cells) and define these as α-, respectively γ-diversity. From those data, we also 

calculate and map patterns of β-diversity.  

 

Lepidoptera, family Sphingidae 

Sphingidae or ‘hawkmoths’  are relatively large, fast-flying and sometimes extremely dispersive 

members in the bombicoid clade of Macrolepidoptera (Kitching and Cadiou 2000, Regier et al. 
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2009, Mutanen et al. 2010). Most adults are nocturnal, but some day-flying genera occur 

(Macroglossum, Hemaris, Sataspes). Caterpillars (‘hornworms’) are folivorous with a moderate to 

low degree of hostplant specialization (i.e., specialization below plant family is rare; Kitching and 

Cadiou 2000, Robinson et al. 2001, Beck et al. 2006a).  Adults are mostly nectarivorous (with some 

exceptions, such as honey-feeding Acherontia) or do not feed at all (an ancestral trait in the 

bombicoid clade), and this distinction has been shown to be related to phylogeny, manifold life 

history traits (e.g. morphology, sexual dimorphism), habitat preference and distribution (Janzen 

1984, Holloway 1987, Beck et al. 2006b, Beck and Kitching 2007, Kawahara et al. 2009). Globally 

ca. 1470 species are known (Kitching and Cadiou 2000 and recent updates), whereas outside the 

Americas (i.e., our study area) 982 autochtonous taxa are recognized in this study (see below for 

taxonomic treatment). There is almost no overlap with the Americas (only one species, Hyles galli, 

is autochtonous to both regions), which made this geographic split feasible.  

Sphingids are an attractive group to both amateur collectors and taxonomists, and in consequence 

more is known about their distribution, biology (e.g., hostplant associations) and taxonomy than for 

most other invertebrate groups, with the exception of diurnal butterflies (Papilionoidea) for some 

regions. Despite this, however, large gaps in knowledge exist particularly for tropical taxa, and the 

accumulation pattern of known species (Box 5.1) indicates that substantial numbers of yet unknown 

taxa may exist.  
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 Box 5.1 Accumulation of taxonomic richness with time 

Solid lines in the figure show the accumulation of known species of Sphingidae, derived from the year 
of description, for 973 described species in our study region (Old World; see main text for taxonomic 
treatment, candidate species were not considered). Note the steep increase in known numbers around 
the year 1900 due to the efforts of Rothschild and Jordan (1903). The increase in recent years is 
probably caused by a combination of exploration efforts in poorly-sampled regions (tropics, China) as 
well as the utilization of integrative taxonomy (i.e. considering molecular data such DNA barcoding), 
which lead to the recognition of cryptic species diversity.  

 

Broken lines represent averaged randomizations of species accumulation (± 95% confidence intervals) 
based on the frequencies of species encountered in our database (ca. 109’000 occurrence records, 
carried out with EstimateS 8.0; Colwell, 2005). 

The blue line describes what would be expected, on average, if the order of yearly additions of species 
due to new descriptions was random, i.e. if there were no era-specific highs and lows in taxonomic 
activity. One would expect a linear increase, but because there were years without any new species we 
plot the resulting, slightly irregular pattern to allow direct comparison with the real accumulation 
(black solid line). The relevant information from this particular randomization stems from comparing 
confidence intervals with the real data curve (black line). This allows judging if and where real species 
description rates were outside of the expected random variability derived from our data set, and hence 
require further historical explanation (e.g., low rate of new description from ca. 1780 to 1880).  

The broken red line is a species accumulation curve where all specimens had the same chance to be 
picked and described at any given year (individual shuffling in EstimateS). This mimics, i.e., that the 
entire collection of specimens was available, and taxonomists would pick random individuals each 
year and describe them if they were new, without any biases due to geography (i.e., occurrence in 
inaccessible regions) or systematic preference. At the beginning there will be a steep increase of 
species description because all the species would be relatively new, but with years passing by the 
curve levels off because the chances to pick up a specimen of a common species already described 
would be higher. Obviously, the expected pattern is very different from the real one, indicating that (a) 
strong biases prevailed in real species accumulation (i.e., taxonomic description patterns), and (b) 
efforts of estimating numerically the expected total of species from description rates (Scoble et al. 
1995, Costello and Wilson 2011) is complicated by violation of the common assumption of random 
draws in species accumulation in such extrapolation methods.  
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Methods 

Raw data compilation and processing 

Taxonomy and nomenclature 

For the majority of species, we followed the nomenclature given of Kitching and Cadiou (2000) and 

more recent taxonomic publications. However, taxonomic findings can have a considerable time-lag 

until reaching official status according to the International Code of Zoological Nomenclature 

(ICZN 1999), so we allowed deviations for the purposes of this data compilation. In particular, we 

did not consider some recent descriptions where we were quite sure that they were erroneous 

(although they are not yet refuted in publication), whereas we accepted some recent splits and 

revisions based on compelling evidence even if not yet published (including some ‘ in litteris 

species’ ). We adjusted all nomenclature to this system, but in some cases (e.g. Hippotion 

boerhaviae-complex) we did not consider distribution records that could not clearly be associated 

with a currently valid taxon (i.e., specimens inaccessible, no pictures or other backup data). For 

higher-taxon associations we followed the molecular phylogeny of Kawahara et al. (2009), which 

confirmed the monophyly of major traditional systematics units (i.e., subfamilies, tribes) although 

rearranging their topology. 

 

Distribution records 

We extracted distribution records by screening all the published literature and checklists (ca. 1664 

references) (see EA1 submitted with the thesis), and we carried out own field sampling in parts of 

Europe, Africa and Southeast-Asia. Earlier projects have compiled data on geographic distribution 

records of sphingids for larger regions and presented them online (i.e., Pittaway 1997-2012, 

Pittaway and Kitching 2000-2012, Beck and Kitching 2004-2008); these data have been fully 

integrated here. We also downloaded distribution records from online data bases such as the Global 

Biodiversity Information Facility (GBIF; www.gbif.org, Nov. 2009) and Barcode of Life Database 

(BOLD; www.barcodinglife.org, Aug. 2010). 

Furthermore, we visited natural history collections (private and public) on four continents and 

extracted specimen-label data (among them, e.g., complete collections of the Natural History 

Museum, London; Museum National d'Histoire naturelle, Paris; Royal Museum for Central Africa, 

Tervuren; see Appendix 5.1). Additionally, we received data from colleagues (amateur collectors, 

by-catches in other entomological projects, etc.) and from picture-based identification request 

(mostly to IJK). We also actively searched the internet (Lepidoptera blogs, specimen trading sites) 
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for data of interest. Generally, to avoid errors due to misidentifications, difficult taxa were checked 

by IJK (either on the specimen or by photograph) unless data stemmed from a renowned expert on 

sphingid identification.  

We ignored records that could, with high likelihood, be considered erroneous (locality or taxon). 

Furthermore, we ignored records that were known to be single vagrant specimens or where we 

could reasonably infer that single specimens were transported by human traffic far out of their 

autochthonous range. We also excluded two New World species that recently have established 

populations in our study region (Darapsa myron in the Bangkok area, and Agrius cingulata in 

West-Africa; cf. Ballesteros-Mejia et al. 2011; chapter 6 in this thesis).  

A number of relatively common and highly dispersive taxa are known to establish summer 

populations but not surviving the cold season (see Beck et al. subm., Chapter 3 in this thesis). 

However, details on boundaries between permanent (i.e., overwintering) and non-permanent 

populations are only known for Europe. Therefore, we used these data to assign coldest-month 

isotherms as northern boundaries for these species and applied these thresholds across their entire 

range (e.g., East Asia) in order to model permanent ranges. This approach fitted with migrant 

ranges provided in Beck and Kitching (2004-2008). Thus, all models refer to permanent ranges. 

Local migrations may occur in further, non-European taxa as well as in some arid regions, but 

insufficient data prevented us from considering these. 

 

Georeferencing 

Based on locality data associated to specimen labels, we assigned geographic coordinates to 

distribution records. If not given from GPS measurement, we found coordinates of localities in 

online gazettes (e.g., http://www.fallingrain.com/world/ ), GoogleEarth, the Times Atlas of the 

World (2010) and local maps. For difficult localities (e.g., old records with changing names, small 

places, transliterations from non-Latin spellings), we also made use of historical atlases (including 

http://worldmap.harvard.edu/africamap/) and travel itinerates of the collectors in questions. Hints 

towards localities were often found from broad internet searches, such as, traveller blogs or sites on 

Christian missions or military history (e.g. US navy battles in the West-Pacific). Uncertainties arose 

particularly from creative transliterations of Chinese localities, from incomplete data (e.g. place 

name but no information on province or country) and from very common place names. In the latter 

case, we tried to guess the most likely locality based on other records for the species and the ‘home 

range’  or travel route of the collector. 

We generally aimed at georeferencing at a resolution of 0.01° (ca. 1 km) or higher. However, 

sometimes this was not feasible either because we could not find sites precisely enough, or because 
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no detailed locality was given in original sources. We coded estimated spatial precision of records 

in four classes (i.e., ‘0.01° or better’ ; ‘0.1° or better’ ; ‘1° or better’ ; ‘unspecific’  (e.g., “Southern 

India”); Wieczorek et al. 2004) to facilitate filtering our data depending on the resolution required 

for specific analyses. If data could not be localized precisely but altitude information was given, we 

set coordinates to a region of similar altitude (using GoogleEarth, which incorporates a 90 m-

resolution digital elevation model) to minimize environmental deviation from the true site. We 

excluded Hippotion leucocephalus from our dataset (known only from the holotype, locality data: 

“Africa, ?” ).  

Georeferencing was the most work-intensive and error-prone step of work, and we spent great 

lengths to identify errors by mapping data, checking consistency between records processed by 

different people (see Acknowledgements), etc. We also subjected data already containing 

coordinates to this procedure (e.g., collectors’  GPS-data or downloads from GBIF), and found quite 

a lot of errors (often probably due to mistyping). We prioritized efforts of databasing and 

georeferencing towards regions and taxa with relatively few records, hereby adding more 

information per man-hour (Beck et al. subm., Chapter 3 in this thesis).  

 

Distribution modelling 

We based all SDMs on climatic data provided by WorldClim (www.worldclim.org; 30-50 year 

averages) as well as information on vegetation cover from remote sensing (MODIS continuous 

fields, based on 2000-2001 data: percentage of tree, herb and bare ground per pixels; 

http://modis.gsfc.nasa.gov/). We excluded climatic variables that seemed highly redundant or 

insignificant in the light of our knowledge of sphingid ecology. Specifically, we used the following, 

continuous-data variables: Altitude, annual temperature range, annual precipitation, annual 

temperature, mean temperature of the coldest quarter, mean temperature of the driest quarter, 

mean temperature of the warmest quarter, mean temperature of the wettest quarter, precipitation of 

the coldest quarter, precipitation of the driest quarter, precipitation of the warmest quarter, 

precipitation of the wettest quarter, precipitation seasonality, tree cover, herb cover and bare 

ground cover. All modelling was carried out on a spatial resolution of 2.5 arcminutes (≈ 5 km).  

For species with a large number of available records we used only data that were georeferenced 

with high precision (e.g. when more than 50 spatially independent records (at 5 x 5 km grid cell 

resolution) where available for the species, all records with a precision ≥0.1° were excluded), 

whereas we included records up to a resolution of 1° for data-deficient species. Unspecific records 

were not used for modelling, but we considered them when editing for dispersal barriers (see 

below).  
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For species known from less than five spatially independent localities we supplemented SDM data 

(if models could be run at all) with tentative, expert-drawn range estimates. Similarly, we 

supplemented final range areas with expert assessments of likely occurrence if models did not 

converge or in regions without environmental data (i.e., small Pacific islands, see EA2). 

There is a large number of SDM methods available. We used a stratified-random selection of test 

species to evaluate their performance with our data according to three different evaluation criteria 

(Ballesteros–Mejia et al. subm.; Chapter 2 in this thesis, for details). We concluded that maximum 

entropy modelling (Maxent; Phillips et al. 2006) and random forest (RF; Breiman 2001) were the 

best-performing methods (see also Elith et al. 2006), and we used only those for final modelling of 

all species. Our study advised against model averaging approaches (Araujo and New 2004, 

Thuillier et al. 2009), and we did not find obvious links of model performance with species- or 

data-set characteristics. As a consequence, we separately modelled and processed data for these two 

methods. However, due to time constraints results presented here are only based on the Maxent 

modelled maps. Raw outputs of RF models are deposited with this thesis for later processing.  

All modelling of ‘presence-only’  specimen records require the creation of data to compare with, i.e. 

pseudo-absences (assumed absence; Ferrier 2002) or background sample (environment sample 

across the landscape (Phillips et al. 2009)). Different methods exist to create these data, and we 

followed recent advice in the literature on best practices (Mateo et al. 2010). For Maxent, we used 

10’000 background points chosen according to a bias file produced from kernel densities of raw 

records (100 km search radius; Phillips et al. 2009), otherwise default software settings and logistic 

output. For RF, we chose 10’000 pseudo-absences from outside a 40 km-buffer around known 

records (VanDerWal et al. 2009). For both methods, we a priori restricted the modelling region 

according to the known biogeography of species (e.g., excluding Europe and Asia when modelling 

a species restricted to sub-saharan Africa). For that purpose, we divided the study region into seven 

sub-regions (trying to follow established biogeographical regions with some slight variations; see 

Figure. 5.1 for a map): 1) Sub-saharan Africa, 2) Africa +Arab peninsula, 3) Palaearctic, 4) Eastern 

Palaearctic + Oriental region, 5) Oriental region + Australia, 6) Australia + Western Pacific islands 

and 7) Australia. However, if in doubt on the potential spread of species we rather modelled larger 

regions.  

We followed standard procedures of model evaluation by randomly splitting the available data and 

using 75% for model fitting or “ training”  and the remaining 25% for testing. We used a 

crossvalidation procedure to retrieve the area under the receiver-operating characteristic (AUC; 

Hanley and McNeil 1982) based on five replicate model runs, and we used averages from five runs 

as model predictions. Additionally, all models were evaluated by us for plausibility (see below). We 

tried to find and fix sources of error for obviously bad models (input data problems, among them 
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niche misspecifications due to large quantities of spatially biased records from GBIF; Böller, 2012).  

We excluded some species from modelling and provide expert-based range estimates where this did 

not lead to improvement (see EA3, submitted with this thesis for list). 

 

Figure 5.1. Different regions used as a basis to restrict the areas for SDM. They are based on recognized 
biogeographical regions incorporating some slight modifications. Region 1) Subsaharan Africa, 2)  Africa 
plus Arab peninsula , 3) Paleartic , 4)Oriental Region , 5) Oriental Region plus Australia , 6) Australia plus 
Pacific Islands ,7 )Australia.  
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Range estimates: Post-editing, thresholding, and expert estimates 

Current standard SDM methods cannot, by design, account for dispersal limitation when estimating 

distributions (although progress has been made, see Glor and Warren 2011). Rather, output is a 

measure of habitat suitability, irrespectively of whether the species has reached a region or not. We 

applied expert-opinion post-editing of modelled distributions based on known biogeographic 

barriers, such as separations of zoogeographical regions known for sphingids (Beck et al. 2006d) or 

for other taxa (e.g., Wallace 1869, Kreft and Jetz  2010, Linder et al. 2012), sea, deserts or 

mountain ranges, as well as large gaps in suitable habitat inferred from niche model output. We 

assumed that species did not cross such potential dispersal barriers unless we found positive 
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evidence (i.e., records). These edits were reviewed by LBM, JB and IJK, adjusted were necessary, 

and then implemented by clipping the extent of model predictions to the required area. 

For transforming continuous suitability into binary presence-absence predictions we used the 

minimum predicted area rule (Engler et al. 2004), i.e. setting a threshold so that at least 90% of 

recorded presences are predicted correctly. We re-projected all binary predictions into Mollweide 

equal area projection (5 x 5 km resolution) to facilitate measurement of range area and further 

analysis.   

Thus, for all species with SDM-based range maps we have three stages of model outputs for further 

analyses: raw SDM output (i.e., continuous mapping of suitability from 0 to 1), raw SDM output 

expert-edited for dispersal limitation, edited SDM thresholded output (providing binary presence-

absence prediction). Apart from raw output which we have for Maxent and RF, edited outputs are 

currently only available for Maxent.  

For some species we could not provide SDMs (too few data, poor models, regions without 

environmental data). In these cases we created ‘expert-opinion’  range estimates by plotting records 

on maps of altitude, temperature, precipitation and tree cover and drawing estimated extents of 

occurrence (as provided e.g. in Beck and Kitching 2004-2008 for Southeast-Asian taxa). Following 

suggestions by Hurlbert and Jetz (2007) we intersected these with our assessment of habitat 

restrictions and converted them to a grid of the same resolution as SDM-based maps (e.g., for a 

montante species all lowland cells were cut out; specific rules for each species were documented). 

A database allows selecting and comparing these outputs according to species properties, dataset 

and SDM criteria, among them AUC (as tentative measure of model quality), sample size of 

available records, higher-taxon association, region, and comments added during editing. Depositing 

these various stages will facilitate further amendments to the data, e.g. if relevant new records for a 

species have been found. 

 

Mapping and analysing biodiversity 

To provide a first appraisal of biodiversity patterns in a scale-dependent manner, we map species 

richness at local scale (α, defined as 5 x 5 km grid cells) and at regional scale (γ, defined as 200 x 

200 km grid cells; cf. Ballesteros-Mejia et al in press; Chapter 4 in this thesis). We used these data 

to map the regional heterogeneity of communities (i.e., β), applying the multiplicative concept of β-

diversity ( β = γ/average α ; Whittaker 1960, Tuomisto 2010). We carried out calculations and 

analyses of β-diversity only for large islands and the continental part of our region, (i.e. excluding 

small Pacific islands) and also excluding from the alpha diversity map those cells with zero-values.  
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Software 

We stored and processed distribution records and taxonomic data in MS Access. Mapping and other 

geoprocessing, as well as editing and further analysis of model output was carried out in ArcGIS 

9.3 and 10, Geospatial Modelling Environment (http://www.spatialecology.com/gme/) and R. SDM 

was carried out in Maxent software version 3.3.3e (Phillips et al. 2006), while we used BIOMOD (a 

platform for R; Thuiller et al. 2009) for RF models. Computing speed is an issue when working 

with many species in high resolution over large extents. We run trial-models in R on a Linux 

system, whereas we use a computer cluster at the University Computing Centre for final BIOMOD 

runs for all species. Java-based Maxent software cannot easily be sped up, instead we resorted to 

nightly parallel runs on many different computers (i.e., our colleagues’  machines), controlled 

through remote desktop function. Other statistical analyses were carried out in R. We used a data 

backup system of external hard drives as well as memory storage at the University Computing 

Centre to store data. We also used the online system Google Drive for collaborative editing.  

 

Results 

Raw data properties 

In total, we had 109’880 records available for the analysis of 982 species. A record indicates a 

unique combination of locality, year and collector or source, but it may contain one or many 

specimens. Not included in this figure are records that we excluded a priori: 233 records for being 

considered ‘confirmed errors’ , vagrants or human-transported specimens; 571 records where 

insufficient data on species or locality was given, and ca. 4’000 records considered as ‘ low priority’  

for our georeferencing efforts (e.g., common taxa, well-sampled regions, unspecific localities).  

Of the records used, 79.6 % were georeferenced with a precision ≤0.1° latitude/longitude (ca. 11 

km), whereas 2.6 % were considered highly unspecific. 69.4 % of records contained information on 

the year of collection, and most of these (i.e., 83.5 %) stemmed from after 1950 (despite spanning a 

200 year range, from 1811 to 2011). Only 2.6 % of records were from pre-1900, and we observed a 

clear decline in collecting activity during 2nd world war, and strong increase afterwards. 

Interestingly, there was a peak in collecting during the 1990’s (48.0% of records are from 1989 or 

younger), and a decline in the 2000’s. 31.8 % or records had associated altitude data, which 

suggested that sampling activity was quite proportional to available land area up to 5400 m a.s.l. 

(i.e., approximately linear decline of records with altitude on a log-scale plot; not shown). Almost 

50% of data stemmed from data-basing specimen labels in natural history collections, whereas 

online databases (of which GBIF made up by far the largest portion) made the second-largest 
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contribution with >30%. However, Beck et al. (2013; Chapter 3 in this thesis) showed that GBIF 

data were often less informative with regard to species’  niches and their geographic distributions 

than collections data (even for European species). The number of records per species followed 

closely a lognormal distribution, indicating that in the dataset, despite its substantial size, many rare 

and poorly-known taxa persist (Figure 5.2).  

Data availability was highly uneven geographically. Ballesteros-Mejia et al. (2013; Chapter 4 in 

this thesis) have analysed this in detail for sub-Saharan Africa, reporting a very close correlation of 

available records and observed species richness and identifying historical and human-geographic 

determinants of these patterns.  

Notably, 39.2 % of records represent spatial replicates (i.e., the species was already known from the 

same locality yet from a different year or a different collector or source). When considered on the 

grid cell resolution as used for modelling (i.e., ca. 5 x 5 km), the number of spatially unique records 

shrank to 49’418 (i.e., ca. 45% of original records). Replicates can be valuable for confirmation or 

for numerical techniques of species richness estimation (Ballesteros-Mejia et al. 2013; Chapter 4 in 

this thesis) but they do not contribute to SDM.  

Figure 5.2. (A) Contribution of data sources to available records (in red contribution of the Global 
Biodiversity Information Facility, GBIF), “Literature”  refers to scientific publications (paper and books), 
whether in papers or online while “ internet”  denotes informal online sources such as blogs, reports, etc. (B) 
Distribution of records over species. A log normal distribution was fitted.  

 

 

 

SDM output: Model quality and predictor contributions 

We could compute and post-edit SDM range estimates for 789 species, whereas we provide expert 

range estimates for the remaining 193 species. AUC values of test data for Maxent SDMs were 

median = 0.94 (25-75 percentiles = 0.88-0.973; minimum= 0.3598; maximum = 0.997). From 



CHAPTER 5 – ADDRESSING THE WALLACEAN SHORTFALL 

 148 

models, 90% retrieved AUC values > 0.8 (Figure 5.3), which represent good or excellent models 

(Swets 1988), however AUC is also affected by features such as modelling extent, making cross-

species comparisons of model quality difficult (Beale and Lennon 2010). Models that we 

considered highly unrealistic were not included in this data set (see Methods).  

We found that across all species the variable that contributed most to models was annual 

temperature range, although variability between species was large (Figure 5.4).  It is followed by 

precipitation of the warmest, driest and coldest quarters. Vegetation cover data came to contribute 

only in 6th, 7th and 11th place. 

A closer look on the contribution of variables, however, reveals some differences between tribes. 

Annual temperature range is retained as the most prevalent contributor to the models for most 

tribes (Acherontini, Ambulycini, Macroglossini, Sphingulini), while for Dilophonotini and 

Sphinguini the variable that contributes most was Precipitation in the warmest quarter (10% and 

6.17%, respectively). The importance of vegetation cover also varies from tribe to tribe. Bare 

ground cover appeared to be important in the models of Acherontini and Ambulycini, whereas tree 

cover appeared to be important for the species-rich tribes Smerinthini and Macroglossini  (3rd  and 

4th place of importance with 3.48% and 2.41%, respectively; Figure 5.5(E) and 5.5(F)). Field data 

from tropical Southeast Asia suggested that Smerinthini tend to be forest adapted whereas members 

of the Macroglossini tribe are more adapted to open, disturbed landscapes (Beck et al. 2006a, 

2006b, 2006c; Beck and Nässig 2007). Supporting this, response curves for several Smerinthini 

show a positive link between suitability and percentage of tree cover. In contrast, response curves 

for Macroglossini models show negative links with tree cover (see Appendix 5.2 for some 

exemplary curves).      

Figure 5.3. Histogram of AUC values (Area under the receiver-operating characteristic) for the test data (i.e. 
distributional records not used for model fitting) 
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Figure 5.4. Boxplot (median, quartiles, range) of the variation in variable contribution to the model across 
all the species (N=789) 
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Figure 5.5.  Boxplots of the variable contribution to the models showed by tribe. 
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Alpha, Beta and Gamma diversity 

The map of estimated alpha diversity sphingid moths (5 x 5  km cells; Figure 5.6A) reveals areas 

with more that 155 species per cell. There is a strong latitudinal gradient, with species richness 

increasing towards the tropics. These data highlight areas known for harbouring high species 

richness also in other taxa, such as Western African forest, Eastern Arc Mountains in 
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Tanzania/Kenya, the Indo-Burmese region, South-Central China and Sundaland, with estimated 

species richness exceeding 100 species per 5 x 5 km grid cell. Additionally, it warns about the areas 

with high species richness not so conspicuous: Other areas of high species richness are the 

Albertine Rift in Eastern Africa, the north-western part of Tanzania and Congo Basin. The 

mountain region at the border between Mozambique and Tanzania, and the most western part of the 

Himalaya belt stretching up until almost to the Hindu Kush still feature species richness greater 

than 80 species per 5 x 5 km.     

Large-scale diversity (i.e. gamma) in the study region is presented in Figure 5.7A, predicting 

species richness of up to 186 species per 200 x 200 km cell. In broad pattern, it highlights the same 

areas of high species richness as the previous map, yet extends them to include Malawi, the 

northern part of Zambia, Mozambique, all of Thailand, and the Philippines with species richness 

exceeding  90 species per 200 x 200 km grid cell. At both resolutions maps reveal areas of 

intermediate species richness (40-80 species per grid cell) in Angola, South Africa, the Horn of 

Africa, Madagascar, India, Sri Lanka, the Caucasus, and all Southeast Asia east to New Caledonia, 

and the humid-tropical part of Australia.  In general, we see a very similar pattern across the region 

in both Alpha and Gamma diversities, which is confirmed by the positive correlation between them 

(linear correlation, 3003 cells, α ave_200km and γ r= 0.9524795)  

 

Patterns of alpha and gamma diversity vary from tribe to tribe. Macroglosssini and Smerithini are 

the two tribes contributing the most to the species richness pattern of the family, with places with 

species richness up to 87 and 47 for α-diversity) and 103 and 60 (for γ-diversity) respectively 

(Figures 5.6E and 5.6F) and 5.7E and 5.7F)). Four out of seven tribes (Acherontini, Macroglossini, 

Smerinthini and Sphingini; Figures 5.6 and 5.7) exhibit centres of high species richness in both 

tropics (i.e. African tropics and Oriental tropics), Ambulycini’s richness pattern is concentrated in 

the Oriental tropics, whereas Dilophonotini’s pattern is wider across the region (i.e. places with 

high species richness all over Paleartic region, Philippines, and Northern part of Australia).   

Variation of species composition within 200 x 200 km grid cells (i.e., beta diversity) is shown in 

Figure 5.8. It is measured independently of species richness (see Methods). Hardly any study allows 

comparing values of beta diversity, following the same methodology and definitions, across a 

larger, e.g. latitudinal, gradient, hence complicating an assessment of what areas have “very high”  

beta diversity (Beck et al. 2012b). A detailed analysis of the data presented here is pending, but 

tentative observations suggest that many of the high beta-diversity areas are located in mountainous 

landscapes. This has been noticed in other studies (McKnight et al. 2007, Ruggiero and Hawkins 

2008, Jankowski et al. 2009) and for insects in particular (Davis et al. 1999, Brehm et al. 2003). It 
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also highlights regions that may be biogeographic transition zones due to historical or ecological 

effects, i.e. (1) between sub-saharan Africa and Europe, (2) between the western and the eastern 

Palaeartic, along the Reignie line (De Latin 1967) through Tibet to the Indus valley. What seems 

conspicuously absent is a clear latitudinal gradient. 

 

Discussion 

Addressing the shortfall 

Species’  distribution is often one of the key variables in macroecological studies (Gaston, 2003) 

and therefore the Wallacean shortfall is a drawback when analysing broad-scale patterns of 

diversity. This shortfall is present at almost all groups of organisms, but it is even stronger in 

insects despite of their abundance, richness and ecological importance (i.e. as functional group 

within the ecosystem; pollinators; Diniz-Filho et al. 2010). Their study is critical to understand 

ecological and evolutionary processes that drive diversity in terrestrial ecosystems around the world 

(Thomas et al. 2008).  

Here we undertook the task of contributing to its closure. To the best of our knowledge we have 

compiled the most complete database on occurrence localities for a higher invertebrate taxon at 

almost-global scale, which we combined with SDM techniques to produce distributional maps for 

the all species in our research region. Despite the fact that many species are known from single or 

few localities or even single individuals (Figure. 5.2), for the majority of the species we had enough 

data to apply SDMs. We retrieved an AUC value >0.8 (Figure 5.3), which indicates good 

performance of the model (Swets 1988), for 90% of the models.   

 

Environmental effects on species distribution 

Across all species, annual temperature range was usually the most important environmental factor 

to predict the distribution of sphingid moths, followed by precipitation in the warmest, driest and 

coldest quarters (Figure 5.4). Thus, temperature-related variables seem to play a major role in 

shaping distributions, although causality can not be inferred from correlative models. Nevertheless, 

similar patterns have been noted before (Turner et al. 1987, Ballesteros-Mejia et al. 2011, Chapter 6 

in this thesis) and can be attributed to direct effects of temperature on moth physiology, or to 

indirect effects of climate on vegetation structure and plant diversity. Notably, data on vegetation 

structure (MODIS layers) did not contribute a lot to explain distributions, possibly because much of 

their variation is explained by climate themselves. We did not have data on taxonomic composition 

of plants, which may play a role at least for the more host-specific feeders. Many other factors 



CHAPTER 5 – ADDRESSING THE WALLACEAN SHORTFALL 

 154 

could theoretically play a role in determining the distribution of the species (e.g., habitat 

disturbance, competition, predations, meta-population dynamics; Beale and Lennon 2012) yet data 

on such variables are not available at the scale and extent treated here. However, many other studies 

found that species distributions of large scales and large extents are mainly shaped by climatic 

variables (Buckley and Jetz 2007, Hawkins et al. 2008, Field et al. 2009, Keil and Hawkins 2009). 

Other studies show the same predictors found here as important also drive species richness in other 

taxa (i.e., annual temperature, precipitation and altitude; Buckley and Jetz 2007, Terribile et al. 

2009).  

 This discussion is elucidated by considering that species distribution models (SDMs) are based on 

assessments of environmental niches, which have been defined in at least two different concepts. 

Grinnellian niches define a set of environmental conditions within which a species can survive and 

reproduce (Grinell, 1917).  Eltonian niches define the place or role of the species within the 

ecological community (Elton, 1927). SDM’s are based on Grinnellian niches (Soberon, 2010). 

Within the Grinellian niche concept, two aspects can be recognized. The fundamental niche defines 

the set of conditions where a species can survive and reproduce physiologically, while the realized 

niche defines the conditions where species can survive and reproduce in the presence of other 

members of a community, most importantly of their competitors (Hutchinson, 1957).  In recent 

years there has been a debate about whether SDMs model fundamental or realized niches. Several 

authors argued that SDMs aim to identify the realize niche of the species even without including 

biotic interactions variables, because they use actual (i.e., realized) distributional data to build the 

model (Guisan and Zimmermann 2000, Austin 2002, Pearson and Dawson 2003). However, 

Soberon and Peterson (2005) and Soberón (2010) argue that what is modelled here is the 

fundamental part of the niche because it does not explicitly include (unless stated otherwise) any 

variable concerning dispersal limitation of the species or biotic interactions. We tend to think that 

we are modelling realized niches here by producing a model that closely resemble realized 

distributions of species based on observations where the species were actually found.  

Despite this debate, SDM seems to be able to capture a significant amount of the ecological 

signature even when biotic data is often lacking in the models (Elith and Leathwick 2009). The 

environmental factors commonly used in these models determine the size and shape of the species 

distributions at continental or regional scales (Hortal et al. 2010).  

 

Difference between tribes 

Between the tribes explanatory variable contribution is roughly the same, with some differences on 

the strength of the contribution from one to another. Patterns of alpha and gamma diversity differ 
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from tribe to tribe, probably as consequence of different phylogeographic histories of these 

lineagues. 

It is interesting to point out the two possible phylogenetic differences that might that might exist in 

the tribe Sphingini, which exhibits two geographically strongly differentiated, groups (one in Africa 

and one in Oriental region: Figure 5.6G). It would be necessary to have a detailed analysis of the 

phylogenetic effects on range sizes across the tribes (Beck et al 2006e. Probably there is a positive 

relation between geographic range and extinction resistance (Jablonski 2008), depending on the 

selective pressures that act upon them.   

 

Alpha, gamma and beta diversity 

Our maps for alpha and gamma diversity show the expected increment of species richness towards 

the tropics. However, there are some details in the alpha diversity pattern that requires further 

attention. There are some places that seem to have quite high estimates of species richness, Borneo 

for example. Previous studies have reported no more than 60 species even for the most species rich 

places in South-East Asia (Beck et al. 2007), and at Borneo light trapping sites the number of 

species did not exceed 40 even where more than 900 individuals were caught (Beck, unpublished 

data). It can be due to the fact that maps of species richness generated by overlaying continuous 

ranges of species might lead to a systematic over-prediction than those based on local inventories 

(Lennon et al. 2003, Jetz and Fine 2012). In contrast, there are some other places where a much 

lower species richness was predicted (i.e. Temburong District of Brunei) that might be due three 

factors: 1) a technical problem when adding up the maps or 2) a technical problem with the MODIS 

vegetation data (i.e. lack of some cells in certain parts of the map), or 3) to a systematic error in the 

WorldClim data, (i.e. weather stations recording differently in Malaysia and Brunei), something 

that have been observed for the German-French border along the Rhine river due to French weather 

station recording slightly different (Pers. Comm. E. Parlow, University of Basel), .  

Moreover, it is often assumed that beta diversity is higher in the tropics (Novotny and Weiblen 

2005) Tropics offers a set of conditions to promote coexistence of many species; Here (i.e. in the 

tropics), species exhibit narrower physiological tolerances (therefore their range size are smaller) 

plus a lack of overlap in the thermal regimes over tropical altitudinal gradients,  sets conditions for 

reduced dispersal and overlap in species distributions across elevation, consequently, it would lead 

to high rates of allopatric speciation (Ghalambor et al.  2006, Ruggiero and Hawkins 2008).  

Interestingly, our results could not confirm a higher β-diversity in the tropics, but it does show that 

places with higher values correspond to mountainous landscapes which provide conditions of 

habitat heterogeneity and dispersal limitation.  
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In addition to habitat heterogeneity and dispersal limitation, the velocity and magnitude of past 

climatic changes may also have affected species range sizes and therefore probably also β-diversity. 

Species with smaller range (common in the tropics) might be prone to extinction due to climatic 

changes, which as stronger outside the tropics. Species with larger ranges are more resilient and 

would persist (Dynesius and Jansson 2000).        

 

Challenges and limitations 

There were many challenges to overcome during this project. These might provide valuable 

experience for those that set out to undertake similar studies like this one. In the following we list 

some of our main practical insights on how to do things better than we did. 

1) Going to Museum collection is worth it. There are vast amounts of otherwise inaccessible data 

stored (Figure 5.2A), and these data may be more valuable than some other data sources (Beck et al. 

subm, Chapter 3 of this thesis). We generally experienced a lot of support and a positive attitude 

towards our study from museum staff, both regarding administrative access as well as within-

collection support. 

2) When assembling a database of occurrences of this magnitude, errors in taxonomy (i.e., 

misidentification, nomenclature issues) are one of the most common, yet often hidden problems. 

Without the participation of a taxonomic expert in the inspection and determination of original 

specimens when visiting collections or screening published data, it is almost impossible to provide 

high-quality data. Poorly determined collections or databases should be used with extreme care. 

Progress had been made on this issue for plants, where efforts to standardized nomenclature 

resulted in a software-tool designed to solve name-related problems in vegetation databases (Jansen 

and Dengler 2010). 

3) Georeferencing is the bottleneck in working with distribution record data. It is a very time 

consuming process (we stent an estimated >1460 man-hours on this during the first part of the 

project), and it can be a high source of error. It is extremely important to check also those records 

that already have geographical coordinates. Experience but also motivation is crucial factor to 

provide good georeferencing data.  

4) Obtaining field records from the tropics proved very important to fill gaps in data for these often 

undersampled yet species-rich reasons. Furthermore, there in particular, molecular data can help to 

solve taxonomic problems. However, regulations in tropical as well as in developed countries make 

it increasingly difficult to obtain such data (Renner et al. 2012), without apparent benefit to anyone. 

Guidelines for scientific research in tropical countries are often unpractical and naïve to large-extent 
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projects and local conditions, and sometimes entirely absurd (e.g., ban to visit places where DNA is 

found). Currently, data from tropical regions are often obtained from private collectors who in turn 

employ local collectors – a situation that is neither scientifically nor ethically desirable.  

 

Conclusions 

Our analyses have shown that the estimation of species distribution using SDM can be a valuable 

source of information for advancing our understanding of patterns of biodiversity. Although 

challenging and not without its problems it is clear that such they can provide a good approach, 

particularly in areas where sampling is lacking. SDM is not a certainly not replacement of real field 

work but provide an impetus to the discovery and description of new and rare species and improve 

our knowledge from those already known. 

Geographical biases calls for great caution in the interpretation of results in some areas and/or 

approaches that can account for such. The gathering of as much distribution information as possible 

remains a high priority. Museum collections therefore have an important data source that remains to 

be exploited for many taxa and geographical areas, although much progress is been done. In 

undertaking studies outlined in this paper it is important to carefully choose the method that suits 

better your purposes. We have demonstrated that Maxent is a valuable one. Tropics and 

mountainous areas remain places where we can find the higher amount of species of Sphingids and 

analysis of their main drivers are still pending for the whole area.    

For the successful completion of the project after four years was a great advantage to have an 

interdisciplinary team of collaborators (taxonomist, GIS & modeling skilled person, 

macroecologist, biogeographer). Certainly there are countless research topics that can be addressed 

by having this kind of data, but still we need more, so we hope that this project stimulates others to 

carry out also similar projects for other taxa specially insects.    

It is our future plan to make this database publicly available through the website facility The map of 

life (http://www.mappinglife.org/).  
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Figure 5.6.  Sphingid diversity across the Old World total and by tribes. (α-diversity, 5 x 5km cellsize). (A) 
Total sphingid species diversity. (B) Species diversity of the Acherontini tribe.(C) Species diversity of the 
Ambulycini tribe. (D) Species diversity of the Dilophonotini tribe. (E) Species diversity of the Macroglossini 
tribe. (F) Species diversity of the Smerinthini tribe (G) Species diversity of the Sphingini tribe. (H) Species 
diversity of the Sphingulini tribe. 
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Figure 5.6.  Sphingid diversity across the Old World total and by tribes. (γ-diversity, 200 x 200 km cellsize). 
(A) Total sphingid species diversity. (B) Species diversity of the Acherontini tribe.(C) Species diversity of 
the Ambulycini tribe. (D) Species diversity of the Dilophonotini tribe. (E) Species diversity of the 
Macroglossini tribe.  (F) Species diversitz of Smerinthini tribe. (G) Species diversity of the Sphingini tribe. 
(H) Species diversity of the Sphingulini tribe. 
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Figure 5.8. Pattern of sphingid β-diversity (Estimated as as α average / γ; 200 x 200 km cellsize). 
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Appendix 5.1. List of unpublished data sources (i.e., museum and private collections). 
 
ABBREVIATION COLLECTION 
ACMU Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand 
AddisMus Museum Addis Abeba (Arat Kilo), Ethiopia                                                                                              
AES Exhibition Amateur Entomologists' Society 
AMES Allyn Museum of Entomology, Sarasota, Florida, USA 
AMNH American Museum of Natural History, New York, New York, USA 
AMSA Australian Museum, Sydney, Australia 
ANIC Australian National Insect Collection, CSIRO, Canberra, A.C.T., Australia 
ANSP Academy of Natural Science of Philadelphia, Philadelphia, Pennsylvania, USA 
ASCB Czech Academy of Sciences, Ceske Budejovice, Czech Republic 
BAUB Beijing Agricultural University, Beijing, China 
BCMU Department of Biology Insect Collection, Chiang Mai University, Chiang Mai, Thailand 
BDAF Bermuda Department of Agriculture and Fisheries, Bermuda 
BIOG Biodiversity Institute of Ontario, Univeristy of Guelph, Guelph, Ontario, Canada 
BMED Bohart Museum of Entomology, University of California, Davis, California, USA 
BMNH_suppl Natural History Museum, London, UK, supplementary collection 
BMNH Natural History Museum, London, UK 
BPBM B.P. Bishop Museum, Honolulu, Hawaii, USA 
BUMD Bet Ushishkin Museum, Qibbutz Dan, Israel 
CABF A. Bergmann collection, Forst, Germany 
CAIB A. Iorio collection, Bologna, Italy 
CAKM A. Koslov collection, Moscow, Russia 
CAKP A. Knorke collection, Preslau, Germany 
CAKV A. Koutroumpas collection, Volos, Greece 
CALO A. Lévêque collection, Orléans, France 
CAMC A.M. Cotton collection, Chiang Mai, Thailand 
CAMF A. Martínez Fernandez collection, Ares, A Coruña, Spain 
CANR A. Napolov collection, Riga, Latvia 
CAPS A. Pessoa collection, Sobral, Ceará, Brazil 
CARP A.R. Pittaway collection, Cholsey, UK 
CASD A. Schintlmeister collection, Dresden, Germany 
CASF California Academy of Sciences, San Francisco, California, USA 
CASM A. Sochivko collection, Moscow, Russia 
CAVC A.V. Chuvilin collection, Moscow, Russia 
CAZS A. Zwick collection, Schlitz, Germany 
CBDS B. De Sousa collection, Lisbon, Portugal 
CBGA B. Guerrero Aguado collection, Gerona, Spain 
CBSC B.C. Schmidt collection, Canada 
CCCH C.C. Hoffmann collection,  Mexico 
CCCM C. Congdon collection, Mufindi, Tanzania 
CCEM C.E. Meyer collection, Canberra, Australia 
CCGT C.G. Treadaway collection, Frankfurt am Main, Germany 
CCLV C. López Vaamonde collection,  Spain 
CCMC C.G.C. Mielke collection, Curitiba, Paraná, Brazil 
CCST C.-S. Tzen collection, Taipei, Taiwan 
CDAL D.A. Lane collection, Atherton, Australia 
CDEB D.E. Bowman collection, Golden, Colorado, USA 
CDGS D.G. Sevastopulo collection, Mombasa, Kenya 
CDHJ D.H. Janzen ACG voucher collection, Philadelphia, Pennsylvania, USA 
CDRN D. Rolfe collection, Northfleet, UK 
CdlM J. de la Maza collection,  Mexico 
CEIB Coleçâo Entomológica do Insituto Butantan, Sâo Paulo, Brazil 
CENB E.O. Núñez-Bustos collection, Martinez, Buenos Aires, Argentina 
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CESB E.S. Brown collection, Muguga, Kenya (ex Carcasson, 1968) 
CEvS E. van Schayck collection, Bochum, Germany 
CEWD E.W. Diehl collection, Pematang Siantar, Sumatra, Indonesia 
CFBG F. Bénéluz collection, Bélizon, French Guiana 
CFGT F. Gil-T. collection, Granada, Spain 
CFKZ F. Karrer collection, Zofingen, Switzerland 
CFSW F.S. Schmit collection, Warmenhuizen, Netherlands 
CGEK G. Ebert collection, Karlsruhe, Germany [to C_UE?] 
CGRM G. Riedel collection, Munich, Germany 
CHBy H. Byrne collection, USA 
CHFK H. Falkner collection, Karlsruhe[?], Germany 
CHHM H.H. Hacker collection, Munich, Germany 
CHNM Croatian Natural History Mueum, Zagreb, Croatia 
CHHO H. Hjelde collection, Oslo, Norway 
CHSB H.S. Barlow collection, Genting, Malaysia 
CHvM H. van Mastrigt collection, Jayapura, Indonesia 
CICI W. Clark collection, College of Idaho, Caldwell, Idaho, USA 
CIFL Centro de Investigación Forestal de  Lourizán, Pontevedra, Spain 
CJAC J.R. Alvarez Corral collection, Pointe-à-Pitre, France 
CJBP J. Bury collection, Poland 
CJBT J.B. Walsh collection, Tucson, Arizona, USA 
CJBB J. Beck collection, University of Basel, Switzerland (many specimens not collected) 
CJdF J. de Freina collection, Munich, Germany 
CJFL J.F. LeCrom collection, Bogotá, Colombia 
CJFW J. de Freina collection in T. Witt Museum, Munich, Germany 
CJH? J. Hyatt collection,  USA 
CJHL J.H. Lourens collection, Lucena City, Luzon, Philippines 
CJMC J.-M. Cadiou collection, Saint-Cloud, France 
CJPT J.P. Tuttle collection,  Australia 
CJTM J.T. Moss collection, Brisbane, Australia 
CKJK K.-J. Kleiner collection, Idar-Oberstein, Germany 
CKKB K. Kernbach collection, Berlin, Germany 
CKMI K. Martini collection, Ingolstadt, Germany 
CKWB K.W. Brown collection, Uganda Forestry Department, Uganda (ex Carcasson, 1968) 
CLTU Li collection, Tianjin University, Tianjin, China 
CLWC L. Willan collection,  Australia 
CMBB M. Barnes collection, Maya Beach, Belize 
CMcC C. McCleery collection, Lindi, Tanzania (ex Carcasson, 1968) 
CMGA M.G. Allen collection,  UK 
CMNH Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA 
CMRV M.R. Vincent collection, Southampton, UK 
CMSA M.S. Adams collection,  USA 
CMSB M. Singer collection, Bariloche, Argentina 
CMSM M.S. Moulds collection, Sydney, Australia 
CMSW M. Ströhle collection, Weiden, Germany 

Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale "Bosco 
Fontana",  

CNBF Verona, Italy 
CNCO Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Canada 
CNUB Institute of Natural Sciences, Colombian National University, Bogotá, Colombia 
COMC O.H.H. Mielke collection, Curitiba, Paraná, Brazil 
CPAC Brazil 
CPBo P. Boireau collection, France 
CPBT P. Basson collection, Tsumeb, Namibia 
CPEA P. Ek-Amnuay collection, Bangkok, Thailand 
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CPSB P. Smetacek collection, Bhimtal, India 
CPSV P. Schmit collection, Videlles, France 
CQNU College of Life Science, Chongqing Normal University, Chongqing, China 
CRBL R.B. Lachlan collection, Brisbane, Australia 
CRCK R.C. Kendrick collection, Hong Kong, China 
CRDK R.D. Kennett collection, Bangkok, Thailand 
CREL R. Lampe collection, Nürnberg, Germany 
CREW R.E. Wells collection, Jackson, California, USA 
CRJM R.J. Murphy collection, Malawi 
CRLM R. Lichy collection, Maracay, Venezuela 
CRSP R.S. Peigler collection, San Antonio, Texas, USA 
CRVP R. Vinciguerra collection, Palermo, Italy 
CRVY R.V. Yakovlev collection, Barnaul, Russia 
CSAR S.A. Ryabov collection, Tula Exotarium, Oktyabrskaya, Russia 
CSBS S.V. Beschkow collection, Sofia, Bulgaria 
CSGC S. Gorgeev collection, Chita, Russia 
CSHY S.-H. Yen collection, Taipei, Taiwan 
CSKM S. Kovalenko collection, Moscow, Russia 
CSKN S. Kager, Nürnberg, Germany 
CSLB California State University, Long Beach, California, USA 
CSNB S. Naumann collection in MNHU, Berlin, Germany 
CSNF S. Naumann collection in FSFM, Frankfurt am Main, Germany 
CSSB S. Sáfián collection, Budapest, Hungary 
CTKI T. Klemetti collection, Imatra, Finland 
CTMJ T. Mano collection,  Japan 
CTWH T.W. Harman collection, Turville Heath, UK 
CUAT University of Arizona collection, Tucson?, Arizona, USA 
CUBB Université of Brazzaville collection, Brazzaville, Congo Republic 
CUDW R. Perissinotto, University of Durban-Westville, Durban, South Africa [?] 
CUIC Cornell University, Ithaca, New York, USA 
CUPP University of Pennsylvania collection, Philadelphia, Pennsylvania, USA 

CUVG 
Collección de Artrópodos de la Universidad del Valle de Guatemala, Guatemala City, 
Guatemala 

CVGM V.A. Ganson collection, Moscow, Russia 
CVOB V.O. Becker collection, Brasília, Brazil 
CVZU V. Zolotuhin collection, Uljanovsk, Russia 
CWAN W.A. Nässig collection, Mühlheim am Main, Germany 
CYBM Y. Bezverkhov collection, Moscow, Russia 
CYHC Y.-H. Chen collection, Taipei, Taiwan 
CZAP Z. Ahmed collection, Pakistan 
C_?B ?. Belyaev collection, Russia 
C_?R ?. Roberts collection, California, USA 
C_?S ?. Ströhle, Weiden, Germany 
C_AA A. Amarillo collection, Bogotá, Colombia 
C_AB A. BjÝrnstad collection, Norway 
C_AC A. Chaminade collection,  France 
C_AF A. Floriani collection, Milan, Italy 
C_AG A. Geyer collection, Germany 
C_AH A. Hauenstein collection, Untermunkheim-Schonenberg, Germany 
C_AK A. Kingston collection 
C_AL A. Legrain collection 
C_AM A. Miyata collection, Japan 
C_AP A. Pinratana collection, Bangkok, Thailand 
C_AR A. Russell collection, El Roble de Heredia, Costa Rica 
C_AS A. Saldaitis collection, Vilnius, Lithuania 
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C_BS B. Surholt collection,Germany 
C_BT B. Turlin collection, France 
C_BW B. Wenczel collection, Kloten, Switzerland 
C_CC C. Conlan collection, San Diego, California, USA 
C_CD C. Descoins collection, Bailly, France 
C_CH C. Howard collection,  Zimbabwe 
C_CL C. Lemaire collection, Gorde, France 
C_CS C. Schultze collection,  Germany 
C_DB D. Benyamini collection,  Israel 
C_DC D. Camiade collection, Sallespisse, France 
C_DH D. Herbin, Péchabou, France 
C_EF E. Furtado collection, Diamantino, Mato Grosso, Brazil 
C_EH E. Haig collection,  (ex Boorman, 1960) 
C_FB F. Brandt collection, Germany 
C_FK F. Katoh collection,Japan 
C_FM F. Meister collection, Prenslau, Germany 
C_FS F. Salvador collection,  El Salvador 
C_GK G. Köhl, Trier, Germany 
C_GM G. Muller collection, Freising, Germany 
C_GP G. Ping collection, Brunei 
C_GT G. Terral collection, Rosny-sur-Seine, France 
C_HB H. Bänziger collection, Chiang Mai, Thailand 
C_HF H. Fukuda collection, Yotsukaido, Japan 
C_HK H. Käch collection, Tumbaco, Pichincha, Ecuador 
C_HL H. Lehmann collection. 
C_HP H. Politzar collection, France 
C_HS H. Schnitzler collection, Frechen, Germany 
C_IR I. Robertson collection, Ilonga, Tanzania (ex Carcasson, 1968) 
C_JB J. Boorman collection. 
C_JH J. Haxaire collection, Laplume, France 
C_JJ J. Jensen collection, Chile 
C_JK J. Kielland collection, Boroy, Norway 
C_JN J. Noble collection, Annaheim Hills, California, USA 
C_JP J. Poulard collection, Lyon, France 
C_JW J. White collection,  Mexico 
C_KH K. Hories collection, Japan 
C_KK K. Kudo collection, Japan 
C_KN K. Nakao collection, Japan 
C_KW K. Wolfe collection, Escondido, California, USA 
C_LA L. Aarvik collection,  Norway 
C_LB L. Beaudoin collection, Aulnay-sous-Bois, France 
C_LC B. Lalanne-Cassou collection, Paris, France 
C_LK L. Kühne collection, Potsdam-Babelsberg, Germany 
C_LR L. Racheli collection, Rome, Italy 
C_LS L. Schwartz collection. 
C_MB M. Beeke collection, Stemwede, Germany 
C_MD M. Desfontaine collection. 
C_MM M. Moosburg collection, Munich, Germany 
C_MN M. Newport collection 
C_MO M. Ochse collection, Weisenheim am Berg, Germany 
C_MY M. Yamamoto collection, Japan 
C_NI N. Ivshin collection, Moscow, Russia 
C_OI O. di Iorio collection, Buenos Aires, Argentina 
C_OM O. Mooser collection, Mexico D.F., Mexico 
C_PA P. Annoyer collection,  
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C_PB P. Basquin collection, Yvetot-Bocage, France 
C_PD P. Darge collection, Clénay, France 
C_PE P. Eikenboom collection,, The Netherlands 
C_PM P. Moretto collection, 
C_PR P. Régnier collection, France 
C_PS P. Schütz collection,  
C_PU P. Ustjuzhanin collection,  Primorskiy Kray, Russia 
C_RB R. Brechlin collection, Pasewalk, Germany 
C_RG R. Galley collection, 
C_RL Collection Rob Lachlan 
C_RM R. Minetti collection, La Ciotat, France 
C_RP R. Paul collection, Romania 
C_RR R. Rougerie collection, France 
C_RW R. Wemcken collection, Bannewitz, Germany 
C_SH S. Haapala collection, Imatra, Finland 
C_SJ S. Jakl collection,  
C_SK S. Kohll, Kayl, Luxembourg 
C_SL S. Löffler collection, Lichtenstein 
C_SN S. Naumann collection, Berlin, Germany 
C_TB T. Bouyer collection, Chênée, Belgium 
C_TD T. Decaëns collection, Rouen, France 
C_TF T. Frankenbach collection, Lindenburg, Germany 
C_TK T. Klemetti collection, Imatra, Finland 
C_TM T. Melichar collection, Pribram, Czech Republic 
C_TV T. Vaglia collection, Quebec, Canada 
C_UB U. Brosch collection, Hille, Germany 
C_UE U. Eitschberger collection, Marktleuthen, Germany 
CULP U. & L.H. Paukstadt collection, Wilhelmshaven, Germany 
C_UW U. Weritz collection, Braunschweig, Germany 
C_VS V. Sinjaev collection, Moscow, Russia 
C_VV V. Visinskas collection, Vilnius, Lithuania 
C_WH W. Harding collection,  USA 
C_WM W. Mooney collection,USA 
C_WS W. Sieker collection, Madison, WI, USA 
C_YD Yu. Derzhavets collection, Saint Petersburg, Russia 
C_YE Y. Estradel collection 
C_YK Y. Kishida collection, Japan 
DCRS Dodo Creek Research Station, Honiara, Guadalcanal, Solomon Islands 
DEIE Deutsche Entomologisches Institüt, Eberswalde, Germany 
DMNH Denver Museum of Natural History, Denver, Colorado, USA 
DNHP Ditsong National Museum of Natural History, Pretoria, South Africa 
DPIM Department of Primary Industries, Mareeba, Australia 
DPPA Department of Plant Protection, Anhui Agricultural College, Hefei, Anhui, China 
DPPD Department of Primary Production, Darwin, Australia 
EIHU Entomological Institute, Hokkaido University, Sapporo, Japan 
ELUR Entomology Laboratory, College of Agriculture, University of the Ryukyus 
EMEB Essig Museum of Entomology, University of California, Berkeley, California, USA 
EMJU Entomological Museum of the Jilin Agricultural University, China 
EMNH Estonian Museum of Natural History, Tallinn, Estonia 
EMPW EcoMusée du Parc W, Diapaga, Burkina Faso 
ETHZ Eidgenössische Technische Hochschule collection, Zurich, Switzerland 
FAKI Faculty of Agronomy of Karadj, Karadj, Iran 
F_Altermatt Collection Florian Altermatt, Zurich 
FIML Fundación e Instituto Miguel Lillo, Tucumán, Argentina 
FRC Forest Research Centre of Sabah, Sepilok, Malaysia 
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FRIM Forest Research Institute of Malaysia, Kepong 
FSCA Florida State Collection of Arthropods, Gainesville, Florida, USA 
FUUB Entomological Collection, Federal University of Uberlândia, Minas Gerais, Brazil 
GNMT Georgian National Simon Janashia Museum, Tbilisi, Georgia 
HMCM Harvard Museum of Natural History, Cambridge, Massachusetts, USA 
HMHT Houston Museum of Natural History, Houston, Texas, USA 
HMIM Hyke Mirzayans Insect Museum, PPDRI, Tehran, Iran 
HNHM Hungarian Natural History Museum, Budapest, Hungary 
HAUC Institute of Entomology, Hunan Agricultural University, Changsha, Hunan, China 
IBAJ Inst. de Biología de la Altura, Univ. Nac. de Jujuy, San Salvador de Jujuy, Argentina 
ICNM Instituto Colombiano Nacional Museo de Historia Natural, Bogotá, Colombia 
IEPE Institute  of Entomology and Plant Pathology of Evin, Tehran, Iran 
IFAN Institut Fondamental d'Afrique Noire, Dakar, Senegal 
IMBV Instituto Multidisciplinario de Biología Vegetal, Córdoba, Argentina 
IMMC Insectarium de Montréal, Montréal, Canada 
INBC Instituto Nacional de Biodiversidad (INBio), San José, Costa Rica 
INCA INCA Life Science Ltd, Chongqing, China 
Inoue Inoue-collection, housed at Natural History Museum London 
INPA Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil 
IOCR Instituto Ozwaldo Cruz, Rio de Janeiro, Brazil 
IPMB Institut für Pharmazie und Molekulare Biotechnologie, Heidelberg, Germany 
IRSN Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium 
ITZA Instituut voor Taxonomische Zoölogie, Amsterdam, The Netherlands 
JB Collection Jan Beck 
JB_Basel Field Trip Collection Jan Beck 
JB_obs Observation Jan Beck 
Kailash Chandra, 
pers. comm. Collection Kailash Chandra, Jabalpur, India 
KMKK Kitale Museum, Kitale, Kenya 
KRSU Kawanda Research Station collection, Kawanda, Uganda (ex Carcasson, 1968) 
KSFC Kunming Southwest Forestry College, Kunming, Yunnan, China 
KSSK Kasulu Secondary School collection, Kasulu, Tanzania 
KUMB Kasetsart University Main Collection, Bangkok, Thailand 
KUSB Kasetsart University Student Collection, Bangkok, Thailand 
LACM Los Angeles County Museum of Natural History, Los Angeles, California, USA 
LCBM La Ceiba Butterfly/Insect Museum, La Ceiba, Honduras 
LEUR Laboratoire ECODIV, Université de Rouen, Rouen, France 
LI Hou Hun 
(Tianjin Univ.), 
pers. comm. collection Li Hou Hun (Tianjin Univ., China) 
LSNK Landessammlungen für Naturkunde, Karlsruhe, Germany 
MACN Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Buenos Aires, Argentina 
MBGP Mission Biologique au Gabon, Paris, France 

MBUL 
Museu Bocage, Museu Nacional de Historia Natural, Universidade de Lisboa, Lisbon, 
Portugal 
Museu Entomológico Ceslau Biezanko da Universidade Federal de Pelotas, Pelotas,  

MCEB Rio Grande do Sul, Brazil 
MCLB McGuire Center for Lepidoptera and Biodiversity, Gainesville, USA 
M. Curran Collection of Julian and Ray from Malawi, mediated by Micheal Curran, Zurich 
MCZR Museo Civico di Zoologia, Rome, Italy 
MDBB M. De Baar collection, Brisbane, Queensland, Australia 
MECN Museo Ecuatoriano de Ciencias naturales, Quito, Ecuador 
MHLY Muséum d'Histoire de naturelle de Lyon, Lyon, France 
MHND Muséum d'Histoire naturelle de Dijon, Dijon, France 
MNHG Muséum d'Histoire naturelle de Genève, Geneva, Switzerland 
MHNL Museo de Historia Natural "Javier Prado", Lima, Peru 
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MHNM Museo de Historia Natural de la Ciudad de México, Mexico City, Mexico 
MHNT Muséum d'Histoire naturelle de Toulouse, Toulouse, France 
MichaelGeiser Collection by Michael Geiser, Basel 

MIZA 
Museo del Instituto de Zoología Agrícola Francisco Fernández Yépez, Maracay, 
Venezuela 

MNFB Museum für Naturkunde, Freiburg im Breisgau, Germany 
MNHC Museo Nacional de Historia Natural, Santiago, Chile 
MNHN Muséum national d'Histoire naturelle, Paris, France 

Museum für Naturkunde, Leibnitz-Institut für Evolutions- und  
MNHU Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Germany 
MNRJ Museu Nacional do Rio de Janeiro, Rio de Janeiro, Brazil 
MNSD Museo Nacional de Historia Natural, Santo Domingo, Dominican Republic 
MPEG Museu Paraense Emílio Goeldi, Pará, Brazil 
MPMM Milwaukee Public Museum, Milwaukee, Wisconsin, USA 
MRAC Musée Royal de l'Afrique Centrale, Tervuren, Belgium 
MSNG Museo Civico di Storia Naturale, Genoa, Italy 
MSSK Mlole Secondary School collection, Kigoma, Tanzania 
MSUE Michigan State University Museum, East Lansing, USA 
MTWM Museum Thomas Witt, Munich, Germany 
MWTA Makasuto Wildlife Trust, Abuko, The Gambia 
MZBC Museum Zoologicum Bogoriense, Cibinong, Indonesia 
MZHF Zoological Museum, Helsinki, Finland 
NAUY Northwestern Agricultural University, Yangling, Shaanxi, China 
NBIB National Bureau of Agriculturally Important Insects, Bangalore, India 
NHLA Natural History Museum of Los Angeles County, Los Angeles, USA 
NHMC Natural History Museum and Institute, Chiba, Japan 
NHMP Natural History Museum, Prague, Czech Republic 
NHMS Natural History Museum, Santa Cruz, Bolivia 
NHMV Naturhistorisches Museum, Vienna, Austria 
NHRS Naturhistoriska Riksmuseet, Stockholm, Sweden 
NMKN National Museums of Kenya, Nairobi, Kenya 
NMNS National Museum of Natural Sciences, Taichung, Taiwan 
NMZB National Museum of Zimbabwe, Bulawayo, Zimbabwe 
NCBN Netherlands Centre for Biodiversity Naturalis, Leiden, The Netherlands 
NSMT National Science Museum, Tokyo, Japan 
NTMD Northern Territory Museum, Darwin, Australia 
NTUT National Taiwan University, Taiwan 
NYSM New York State Museum, Albany, New York, USA 
OMNZ Otago Museum, Dunedin, New Zealand 
OSUC Oregon State University collection, Corvallis, Oregon, USA 
OUMO Oxford University Museum of Natural History, Oxford, UK 
PDBC Project Directorate of Biological Control, Bangalore, India 
PLAU Insect Coll., PLA University of Agricultural & Animal Sciences, Changchun, Jilin, China 
PMNH Yale Peabody Museum of Natural History, New Haven, Connecticut, USA 
PSUH Prince Of Songkhla University, Hat Yai, Thailand 
QENP Lock collection, Queen Elizabeth National Park, Uganda 
QMBA Queensland Museum, Brisbane, Australia 
RAWR Riyadh Agricultural and Water Research Centre, Riyadh, Saudi Arabia 
RCAH A.K. Hundsdörfer research collection, Dresden, Germany 
Roger Kitching, 
pers. comm. Collection Roger Kitching, Brisbane, Australia 
RMBR Raffles Museum of Biodiversity Research, National University of Singapore, Singapore 
ROMT Royal Ontario Museum, Toronto, Canada 
SabahParksColl Collection of Sabah Parks at Kinabalu Park Headquarter, Sabah, Malaysia 
SAMZ South Africa Museum, Cape Town, South Africa 
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SCAU South China Agricultural University, Guangzhou, China 
SDNH San Diego Natural History Museum, San Diego, California, USA 
SIES Shanghai Institute of Entomology collection, Shanghai, China 
SMFL Forschungsinstitüt Senckenberg, Frankfurt am Main, Germany 
SMNK Staatliches Museum für Naturkunde in Karlsruhe, Karlsruhe, Germany 
SMNS Staatliches Museum für Naturkunde in Stuttgart, Stuttgart, Germany 
SMTD Staatliches Museum für Tierkunde in Dresden, Dresden, Germany 

SMUA 
E.H. Strickland Entomological Museum, University of Alberta, Edmonton, Alberta, 
Canada 

SSUS 
Laboratory of Animal Systematics and Faunistics, Samara State University, Samara, 
Russia 

SZMN Siberian Zoological Museum, Novosibirsk, Russia 
TAMU Dept of Entomology collection, Texas A&M University, College Station, Texas, USA 
TAUI Tel Aviv University, Tel Aviv, Israel 
TFRI Taiwan Forestry Research Institute, Taipei, Taiwan 
TMET Texas Museum of Entomology, Pipe Creek, Texas, USA 
UABC Universidad Autonoma de Baja California Norte, Ensenada, Mexico 
UCIN University College Ibadan collection, Ibadan, Nigeria 
UFPC Padre Jesus Moure collection, Universidade Federal do Paraná, Curitiba, Brazil 
UGAG University of Georgia collection, Athens, Georgia, United States 
UGIC University of Guam Insect Collection, Mangilao, Guam 
UHIM University of Hawaii Insect Museum, Honolulu, Hawaii, USA 
UKMB Universiti Kebangsaan Malaysia, Bangi, Malaysia 
UMCE Inst. de Ent. de la Univ. Metropolitana de Ciencias de la Educación, Santiago, Chile 
UMCP University of Maryland, College Park, Maryland, USA 
UMZC University Museum of Zoology, Cambridge, Cambridge, UK 
UNAM Universidad Nacional Autónoma de México, Mexico D.F., Mexico 
UNSM Museo Historia Natural, Universidad Nacional Mayor de San Marcos, San Marcos, Peru 
UOPO University of Osaka Prefecture, Osaka, Japan 
UOSC Universidad de Oriente collection, Santiago de Cuba, Cuba 
UPJP Dept of Syst. & Ecol., Universidade Federal da Paraíba, Joao Pessoa, Paraíba, Brazil 
USAO Museum of Natural History, University of Science and Arts of Oklahoma 
USCC Zoological Museum, University of San Carlos, Cebu, Philippines 
USNM United States National Museum, Washington, D.C., USA 
UWIT University of the West Indies, Trinidad, Trinidad & Tobago 
WAMP Western Australia Museum, Perth, Australia 
ZFMK Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany 
ZIMH Zoologisches Institut und Zoologisches Museum, Hamburg, Germany 
ZISP Zoological Institute, St Petersburg, Russia 
ZMAN Zoölogisch Museum Amsterdam, Amsterdam, The Netherlands 
ZMKU Zoological Museum of Kiev University, Kiev, Ukraine 
ZMRI Zoological Museum, Rome, Italy 
ZMUC Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark 
ZSBS Zoologische Staatssammlung des Bayerischen Staates, München, Germany 
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 Appendix 5.2. Examplary response curves for a representative of the tribe macroglossini and smerinthini. 
Studies have shown that macroglossini species tend to be   
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Abstract 

 

Agrius cingulata (Lepidoptera, Sphingidae) is widespread in the Americas, but has recently begun 

to spread into Africa. In parts of its native range, the species is a pest on sweet potato, which is also 

an important crop plant in Africa. We used two types of ecological niche models, based on native 

distribution records and climate and vegetation structure data, to estimate which regions of Africa 

are potentially suitable for the species to become established. The results show that, under the 

simplifying assumption that the species will occupy the same ecological niche in Africa as in its 

native range, A. cingulata may find suitable habitat across wide stretches of sub-Saharan Africa. We 

conclude that early monitoring programs of the spread and actual status of the species in Africa may 

be worthwhile. 

 

 

 

Keywords: BIOMOD, Climate niche, Ecological niche model, Ipomoea, Maxent, Species 

distribution, Sphingidae, sweet potato. 
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6.1. Introduction 

 

During the past two centuries, and as a result of human traffic or other activities, many organisms 

have succeeded in crossing biogeographical dispersal barriers. Some of these non-native taxa 

successfully established and became invasive (Didham et al. 2005). Such invasive species have 

become an issue of concern and interest in fields such as evolutionary biology (Cody & Overton 

1996), conservation (Ricciardi 2003; Gurevitch & Padilla 2004), economics (Pimentel 2002) and 

agronomy (Mullin et al. 2000; Jordan et al. 2008). Invaders can impact the ecological community to 

which they have been introduced by altering ecosystem functioning and threatening native 

biodiversity (Strayer et al. 2006) and they can become agricultural pests (Chalfant et al. 1990; for 

recent examples of invading pest insects see Desneux et al. 2010; Haack et al. 2010; Ragsdale et al. 

2011). Becoming an invader or pest is a multi-step process (Colautti &  MacIsaac 2004) that 

requires a number of key factors, among them colonization opportunities and the ecological 

suitability of the new habitat. Successful invaders have also been shown to share certain traits 

(Sutherland 2004), such as high dispersal ability and an opportunistic lifestyle.  

Ecological Niche Models (hereafter ENMs) are a set of very powerful tools that have been used to 

predict the potential spread of species into new areas (Elith & Leathwick 2009). Combining 

geographical and environmental information, ENMs assess one step of the complex process of 

invasion, i.e. the environmental suitability of the to-be invaded landscape (Peterson & Vieglais 

2001; Thuiller et al. 2005). ENMs cannot, in their current standard applications, consider potential 

evolutionary change (i.e., niche shifts; Broennimann et al. 2007; Hortal et al. 2010) or dispersal 

limitations (Bomford et al. 2009), although progress is being made to integrate these aspects into 

ENMs (Dirnböck & Dullinger 2004, Elith et al. 2010).  

The Pink Spotted Hawkmoth, Agrius cingulata [Fabricius, 1775], is a large (9.5-12 cm wingspan) 

member of the lepidopteran family Sphingidae. It is widespread with a native range across the 

Americas (Figure 6.1). It is also known from the Falklands, Galapagos and Hawaii, although clear 

evidence is lacking as to whether these distant archipelagos were colonized naturally or with human 

assistance (D. Rubinoff, pers. comm.). The species performs regular summer migrations to the 

North (e.g., to Canada) and possibly also to the South (Figure 6.1).  

However, thirty years ago, A. cingulata was reported from the Cape Verde Islands, off the west 

coast of Africa (Bauer & Traub 1980), and the species is now firmly established on several of the 

islands, most notably Sao Filipe and Santo Antao. The species might well have been transported 

there by transatlantic trading of its larval host plant. The caterpillars of A. cingulata feed on sweet 

potatoes (Ipomoea batatas), as well as other Convolvulaceae, and in its native range, A. cingulata is 
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regarded a pest of sweet potato (Talekar 1987). Then, in April 2002, a female A. cingulata was 

captured on mainland Africa, in the vicinity of Man, Ivory Coast, and is now in the collection of 

Tomas Melichar (Příbram, Czech Republic). This record may well indicate the start of a 

colonization of the African continent. A single specimen of A. cingulata has also been recorded in 

Portugal (Marabuto 2006), but this is considered to be a non-breeding vagrant and is not considered 

further here. 

Sweet potatoes are an economically important, widely grown crop in Africa (Horton 1988; Woolfe 

1992). The spread of a new herbivore known to be an agricultural pest on the same crop in its native 

range is therefore of major concern, and it will be useful to observe closely its spread and pest status 

in Africa. Towards this aim, we here present ENM analyses of suitable regions for A. cingulata in 

Africa, so as to predict to where the moth may spread, as well as defining the sets of environmental 

conditions that might enhance such an invasion. These predictions may be useful for identifying 

endangered regions and for targeting early field surveys or monitoring programs.  

 

6.2. Methods 

 

To identify suitable habitats for A. cingulata in Africa, we fitted models that successfully predicted 

the native New World range of the species. These models were then projected onto environmental 

data for Africa, assuming the colonizing populations will occupy the same ecological niche as the 

native populations (see Discussion). 

6.2.1. Species records 

We had available 361 presence records (Figure 6.1) of A. cingulata from the collections of the 

Natural History Museum (London), published literature, the Global Biodiversity Information 

Facility database (www.gbif.org; accessed May 2010) and the Barcode of Life Database 

(www.boldsystems.org; accessed May 2010). We only included in the analysis records from 

confirmed or very likely permanent and breeding populations, and excluded summer migrant 

populations and vagrant specimens (Figure 6.1). We georeferenced records to a precision of 0.01° 

latitude/longitude wherever this was possible. Because modelling (see below) was carried out with a 

raster grid resolution of 2.5 arc minutes (≈ 5 x 5 km), only 235 of these records were situated in 

unique grid cells within the native range. Only these entered the models as independent records.  

 

6.2.2. Environmental var iable selection 
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We used climate data from the WorldClim database (version 1.4; www.worldclim.org; accessed 

Feb. 2009). These data are based on average monthly weather conditions recorded from 1950-2000. 

Furthermore, we used MODIS vegetation data (http://glcf.umiacs.umd.edu/data/vcf; accessed Feb. 

2009; three layers, indicating percent coverage of herbs, trees, and bare ground, respectively; see 

Buermann et al. 2008 for use of such data in ENM). In the native, breeding range, A. cingulata 

occurs across a broad environmental gradient (e.g., latitudinal extent 36°S – 42°N).  

For initial selection of relevant environmental variables, we used 14 variables that we considered to 

be of potential importance (see Appendix). To select the best set of environmental variables for 

niche modelling, we ran in total 15 models with different combinations of variables (see Appendix). 

We assessed their quality based on the area under their receiver-operating characteristics of a cross-

validation from repeated runs of the model (AUC, a standard metric of model fit; Marzban 2004) 

and chose the best combination of variables (Table 6.1) for further modelling.    

We carried out this initial modelling with a maximum entropy model (software Maxent 3.3.2, 

Phillips & Dudík 2008). In comparison with other methods, this method has proved to be a very 

effective algorithm for modelling species distribution with presence–only data (Elith & Leathwick 

2009). 

We used several methods to predict the potential distribution of Agrius cingulata. We applied the 

Maxent model (see above), but additionally we also used an ensemble forecasting technique 

(Araújo & New 2007), i.e.  BIOMOD (http://r-forge.r-project.org/projects/biomod/; accessed May 

2010; Thuiller et al. 2009). Ensemble forecasting is based on the idea that by using several 

modelling techniques and calculating a measure of central tendency (mean or median) from the 

whole spectrum, the range of projections can be evaluated and a more reliable prediction can be 

made. BIOMOD applied seven different algorithms as a model ensemble (Thuiller et al. 2009; see 

also caption of Table 6.2), but it did not include Maxent. A consensus map of these methods was 

produced using the median as measure of central tendency. The median is less influenced than the 

mean by extreme output values of the different algorithms, and has therefore been suggested to be 

more reliable (Araújo & New 2007). As in initial variable selection, AUC values were used for 

evaluating model quality. While there are some known problems with this measure (Lobo et al. 

2008), it carried the advantage that it is independent of the choice of a threshold converting 

continuous “probability of occurrence”  model output into a categorical presence-absence prediction 

(Pearce & Ferrier 2000). It is currently still unclear how to make best (i.e., objective and informed) 

choices on such thresholds (e.g. Liu et al. 2005; Jiménez-Valverde & Lobo 2007). We ran two 

repetitions of the BIOMOD models to assess the consistency of results.   
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Figure 6.1. Distribution of presence records for A. cingulata in both its native and invasive range. Only 
native breeding records (black crosses) were used for modelling (see Methods). The record from Portugal 
was considered a non-breeding vagrant.  

 

 

Table 6. 1 Relative contribution of the environmental variables to the best maximum entropy (Maxent) 
model. 

Var iable  % Contr ibution 

Annual temperature (antemp) 42.9 

Mean temperature coldest quarter (mtcq) 15.1 

Herb cover (herb) 9.0 

Mean diurnal range (mdr) 8.2 

Annual precipitation (anprec) 7.9 

Precipitation driest quarter (pdq) 4.3 

Precipitation coldest quarter (pcq) 3.7 

Mean temperature wettest quarter (mtwq) 2.8 

Tree cover (tree) 2.3 

Mean temperature warmer quarter (mthq) 2.2 

Bare ground cover (bare) 0.8 

Mean temperature driest quarter (mtdq) 0.7 
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6.3. Results 

 

The best Maxent model (Figure 6.2) was of very good predictive quality (AUC = 0.930). It 

contained 12 (out of 14 tested) environmental variables (Table 6.1). We used this set of variables 

for further building of the ensemble forecasting models. 

Different variables had widely different relative importance in the different models of the ensemble 

(Table 6.2). Figure 6.3 shows predictions from BIOMOD ensemble forecasting. Some modelling 

methods of the ensemble performed better than others (Table 6.3). The method that performed best 

among the seven model algorithms was Random Forest (RF). Its predictive performance was very 

good in both repetitions (AUC = 0.978 and 0.982, respectively).   

Comparisons of variable contributions to the Maxent-model (Table 6.1) and BIOMOD models 

(Table 6.2) revealed that temperature (either annual or coldest quarter) was the most influential 

variable in most models. Inspection of response curves in the Maxent model revealed a steep rise in 

probability of occurrence once annual mean temperature was higher than ca. 8°C, whereas a 

coldest-quarter temperature of ca. 15°C led to a unimodal peak in modelled probability. However, 

inconsistencies across models with regard to the importance of other variables (Table 6.1 and 6.2) 

complicated conclusions on the biological relevance of other variables. 

In the native range, the models agree with the wide distribution that has been reported for this 

species (Figures 6.2 and 6.3). Occurring throughout the Neotropics and almost all the adjacent 

subtropical regions, it is particularly widespread within Central America and the northern part of 

South America.  

Output of both model approaches (Figures 6.2 and 6.3) consistently predicted that A. cingulata can 

be expected to find suitable. areas (probability of occurrence >0.5) across large parts of southern 

and eastern part of Africa, Madagascar, and along the Mediterranean coast in Northern Africa. The 

rainforested Congo Basin, on the other hand, does not seem to provide prime habitat for the species. 

Disagreement among model approaches, however, was found particularly in the very arid zones 

(i.e., Sahara & Namib deserts), where BIOMOD predicted considerable higher (∆ >0.2) probability 

of occurrence than Maxent, whereas Maxent placed higher probabilities, in comparison to 

BIOMOD, on parts of the Sahel (data not shown in detail). GIS-compatible model outputs are 

available at www.biogeography.unibas.ch/beck. 
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Figure 6.2.  Potential distribution of A. cingulata in its Native American range and in Africa according to the 
maximum entropy model (Maxent). All Ecological Niche Models were based on native (i.e., American) 
distribution records only (see Methods). 
 

 

Figure 6.3.  Median probabilities of occurrence from an ensemble of the seven model used in BIOMOD. 
The colour scheme is identical to that in Figure 6.2. All Ecological Niche Models were based on native (i.e. 
American) distribution records only (see section 6.2). 
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Table 6. 2.  Relative importance of the variables within the different methods used by BIOMOD. See Table 
6.1 for acronyms of variables (first row). Acronyms of model types (first column) are: CTA = Classification 
Tree Analysis, GAM = Generalized Additive Model, GBM = Generalized Boosting Model, GLM = 
Generalized Linear Model, MARS = Multiple Adaptive Regression Splines, RF = Random Forest, SRE = 
Surface Range Envelope.  

 

 

Method mtcq anprec pdq pcq antem mdr  mtwq mtdq herb tree mthq bare 

CTA  0.374 0.120 0.011 0.103 0.456 0.232 0.097 0.142 0.058 0.094 0.319 0.041 

GAM 0.750 0.079 0.039 0.034 0.000 0.110 0.13 0.000 0.000 0.050 0.000 0.025 

GBM 0.317 0.012 0.010 0.005 0.117 0.040 0.010 0.010 0.010 0.040 0.000 0.005 

GLM 0.209 0.110 0.037 0.039 0.133 0.145 0.000 0.000 0.000 0.071 0.000 0.000 

MARS 0.694 0.463 0.180 0.146 0.569 0.179 0.000 1.014 0.000 0.024 0.653 0.000 

RF 0.508 0.040 0.015 0.023 0.128 0.128 0.048 0.017 0.019 0.026 0.042 0.003 

SRE 0.013 0.047 0.017 0.010 0.006 0.023 0.055 0.008 0.010 0.030 0.018 0.019 

 

 

Table 6.3. Performance measure AUC (see Methods) of the modelling methods used in BIOMOD (see Table 
6.2 for acronyms). The column Cross Validation shows the predictive accuracy according to the criteria for 
evaluation. Sensitivity shows the true positive fraction of the model (correct predicted presences) and 
Specificity shows the true negative fraction of the model (correct predicted absences). Two repetitions (Rep. 
1, 2) of BIOMOD runs were carried out (see Methods). There is no AUC-evaluation available for SRE as it 
does not provide probability values but only the presence absence of the species (Busby 1991).  

 

Cross Validation Sensitivity Specificity  

Model Rep1 Rep2 Rep1 Rep2 Rep1 Rep2 

CTA 0.885 0.916 90.00 91.43 91.6 91.6 

GAM 0.932 0.957 88.86 88.86 88.8 88.9 

GBM 0.934 0.944 88.00 88.86 87.8 89.1 

GLM 0.938 0.958 88.57 87.14 88.6 87.0 

MARS 0.939 0.960 88.00 88.86 88.0 88.9 

RF 0.978 0.982 98.29 100.0 98.3 100.0 
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6.4. Discussion 

 

Our data (Figures 6.2 and 6.3) show that there is a considerable potential for A. cingulata to spread 

through large parts of Africa due to the suitability of environmental conditions for the species. One 

of its host plants, sweet potato, is a widely grown crop across Africa, which may additionally 

increase the species’  chances for a rapid and wide spread. Sweet potato is the main source of 

household income (>50%) in many rural communities in East African countries (Kenya, Uganda, 

Tanzania and Rwanda; Low 1997). These regions have been highlighted by our results (Figures 6.2 

and 6.3) as highly suitable climatically for A. cingulata. Hence, we can predict the risk of an 

emergent pest on an important economic crop. 

It may well be possible that the current invasive status of A. cingulata is underestimated by 

recorded data as the species could easily be confused in Africa with congeneric A. convolvuli, a 

widespread paleotropical taxon (Beck & Kitching 2004-2008). The taxa look similar and may often 

have been identified based solely on the sampling locality. A. convolvuli is also regarded as a pest 

of sweet potato foliage, causing great damage especially during the crop season in summer, when 

three generations can occur (Talekar 1987).   

Our range predictions, however, are based entirely on matching native environmental requirements 

with conditions in Africa. Ideally, one would test the fit of the projected invasive range using record 

data from the newly colonized region, and investigate niche evolution or other confounding factors 

by comparing models fitted to native vs. invasive presence records (Randin et al. 2006). 

Unfortunately, in the case of A. cingulata, there are too few African records yet to make this more 

rigorous approach feasible.  

Furthermore, climatic input data were based on 50 year averages from the recent past, while 

climatic conditions can be assumed to change. Range predictions can be derived from applying 

ENM to future climatic scenarios (e.g., Settele et al. 2008), but this would further increase 

uncertainty in predictions, e.g., with regard to the correctness of future climate scenarios, or due to 

novel combination of climatic variables (see Elith et al. 2010 for recent methodological advance).  

Temperature turned out to be the most important predictor of the distribution of A. cingulata, and 

temperature minima, in particular, could be crucial in determining the places where eggs are laid or 

where larval and pupal development could successfully occur. Coldest quarter temperatures have 

been shown to affect overwintering survival in butterflies (Hill et al. 2003). In another sphingid, 

Hyles lineata, caterpillar activity can be temperature–dependent, and investigated specimens ceased 

to move and feed below some threshold (Casey 1976).  
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While the two different modelling approaches employed in this study (Maxent and BIOMOD 

ensemble forecasting) broadly agreed in predicted patterns, we also noticed disagreements in some 

details (see Results). Methods such as generalized additive models or generalized boosting models, 

calculated within BIOMOD, are known to be close-fitting to the data, making them more sensitive 

to the sample peculiarities and therefore more prone to overfitting. 

Discrepancies between realized (affected by biotic interactions) and fundamental niches  may be 

another source of error when projecting invasive ranges (Soberón & Nakamura 2009), as biotic 

interactions may change in new biogeographic regions. Unfortunately, such discrepancies can only 

be tested experimentally and not with an ENM approach. Nevertheless, our results on the native 

range (America) reflected the recorded distribution of the species well, indicating a sufficiently 

good choice of fundamental niche dimensions as predictor variables. In the absence of further 

information, our projections of these models onto Africa are the best estimate for highlighting 

regions at risk. 

 

6.5. Conclusions 

Based on climatic match, we conclude that Agrius cingulata could spread widely across the African 

continent, creating the potential for causing major damage on a widely grown crop (i.e., sweet 

potato). Early, careful surveys and monitoring in regions predicted as suitable would help to assess 

the actual occurrence and status of populations (i.e., migrant/vagrant or breeding). This may be 

advisable as a first step to recognize an emerging pest early enough to take suitable measures 

against its potential agronomic effects. Certainly, records of Agrius hawkmoths from Africa can no 

longer be simply assumed to be the native A. convolvuli. 
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Appendix 

 

Appendix 6.1. 15 preliminary Maxent-Models (M1-M15) with varying predictors analyzed for 
initial selection of input variables. Cell values give percent contribution of each variable to the 
respective models. Models were compared according to the area under the receiver-operating curve 
(AUC). The model with the highest AUC (M11, in bold) was used for final prediction, and the same 
variable combination was utilized for BIOMOD models. See Methods for details. 

 

 

 

Var iable M1 
(AUC 0.67) 

M2  
(AUC 0.85) 

M3  
(AUC 0.87) 

M4  
(AUC 0.67) 

M5  
(AUC 0.87) 

Annual Temperature  - 90.6 66.8  - 62.1 
Annual Precipitation  - 9.4 12.3  - 7.7 
Mean diurnal range  -  -  - 13.6 11.5 
Herb cover 56.2  - 15.2 43.7 14.1 
Tree cover 12.6  - 3.5 11.3 3.4 
Bare ground cover 31.1  - 2.2 31.4 1.1 
Precipitation driest quarter  -  -  -  -  - 
Precipitation coldest quarter  -  -  -  -  - 
Precipitation warmest quarter  -  -  -  -  - 
Precipitation wettest quarter  -  -  -  -  - 
Mean Temperarature wettest quarter  -  -  -  -  - 
Mean Temperature warmer quarter  -  -  -  -  - 
Mean Temperature driest quarter  -  -  -  -  - 
Mean Temperature coldest quarter  -  -  -  -  - 

 

 

 

Var iable M6  
(AUC 0.89) 

M7  
(AUC 0.90) 

M8  
(AUC 0.89) 

M9  
(AUC 0.88) 

M10  
(AUC 0.88) 

Annual Temperature 60.6 60.3 45.8 42.9 39.2 
Annual Precipitation 7.5 6.9 6.0 7.0 7.6 
Mean diurnal range 11.2 9.4 8.6 9.8 9.2 
Herb cover 13.4 15.1 15.1 12.5 12.6 
Tree cover 3.0 1.7 2.0 3.3 1.4 
Bare ground cover 0.8 1.6  -  - 0.6 
Precipitation driest quarter  -  -  -  -  - 
Precipitation coldest quarter  -  -  -  - 3.5 
Precipitation warmest quarter  -  -  -  -  - 
Precipitation wettest quarter  -  -  -  -  - 
Mean Temperarature wettest quarter 3.6  - 1.8 2.6  - 
Mean Temperature warmer quarter  - 2.8 1.5 1.6 1.8 
Mean Temperature driest quarter  -  -  - 1.4 2.5 
Mean Temperature coldest quarter  -  - 17.7 17.9 19.2 
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Var iable M11  
(AUC 0.93) 

M12  
(AUC 0.90) 

M13  
(AUC 0.91) 

M14  
(AUC 0.90) 

M15  
(AUC 0.88) 

Annual Temperature 42.9 38.0 41.1  -  - 
Annual Precipitation 8.2 6.4 2.0  -  - 
Mean diurnal range 7.9 7.9 9.7  -  - 
Herb cover 9.0 12.2 10.3  - 11.4 
Tree cover 2.8 2.5 2.6  - 3.6 
Bare ground cover 0.8 1.1 0.9  - 1.3 
Precipitation driest quarter 4.3 5.2 3.9 4.0 4.1 
Precipitation coldest quarter 3.7 2.6 2.3 5.3 3.3 
Precipitation warmest quarter  - 2.5 2.6 4.2 8.8 
Precipitation wettest quarter  -  - 5.3  -  - 
Mean Temperarature wettest quarter 2.3 1.8 2.3 6.0 4.5 
Mean Temperature warmer quarter 2.2 1.5 1.4 1.5 1.6 
Mean Temperature driest quarter 0.7 1.3 1.4 1.0 2.8 
Mean Temperature coldest quarter 15.1 17.0 14.1 69.7 54.1 
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CHAPTER 7 
 

Synthesis &  Conclusions 

 

7.1. Synthesis   

The work presented in this thesis, represents the first documented almost global database of high-

resolution maps of distributions for a complete family of herbivore insects:  The hawkmoths of the 

Old World (Lepidoptera: Sphingidae). Along the process of producing it, various analyses regarding 

methodology, the worth of the data, biodiversity patterns and particular uses of the methodologies 

were carried out.  

 

Choosing the right method: 

There is a large body of literature that have used species distribution models for successfully 

inferring the current ranges of the species. Despite the wide range of existing algorithms to estimate 

species distributions there is still disagreement on what method to use under what circumstance and 

how accurate they are. The results presented here, support the statement that SDMs can successfully 

predict species distributions. The methods used to build distribution maps can vary greatly from one 

another and in absence (most of the time) of truly independent ways to assess their accuracy we 

should resort to other methods such: AUC, MPA or expert opinion. Our results consistently show 

that relatively new methods like Maxent outperform others, followed by Random Forest, but also 

call for caution in the case of model averaging (see Chapter 2 for details).  

Data set used here includes a relevant extension of properties in terms of geographical scale, 

distribution phylogenetic variability and wide range of sample size compared to other studies (Elith 

et al.  2006 among others), in addition to represent data properties inherent to the majority of 

distribution data available, where the only ecological data known for a vast number of species 

(invertebrates in particular) is a name and a location.    

 

Worth of the data: There is an increased awareness of the value of data from museum collections. 

They represent an important source of information that so far has not been fully exploited.  At the 

same time, platforms such as Global Biodiversity Information Facility (GBIF) which aims to make 

available biodiversity data is not used as often as they should.   An important assumption for SDM’s 

is that the occurrence data included in the models represent the range size and the environmental 

tolerance of the species as complete as possible. Our results suggest that quantity does not 

necessarily imply the best quality (Chapter 3 for details). Collection data provided the most 
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complete information the range of species nevertheless GBIF was a good addition of information, 

but not a replacement.  

 

Species richness, climatic drivers and inventory completeness:   

As rightfully pointed out by various authors, climate is expected to be an important determinant of 

species distribution, and therefore might also determine patterns of species richness. However those 

patterns (i.e. species richness) might be blurred by its strong correlation with sampling effort (see 

Chapter 4). Numerical estimators in combination with models of environmental effects proved to 

set out the baseline to disentangle potential causes of differential sampling from those variables 

driving species richness. It seems to be the avenue to advance the knowledge of understudied 

groups like insects. 

Furthermore, patterns of species richness are also possible to map by overlaying the resultant grids 

distributions of individual species (Chapter 5) providing knowledge about richness in areas that 

might be particularly poorly sampled. 

Inventory completeness could be partially predicted from human geographical factors and it might 

be helpful to prioritize collecting in the future. 

 

Specific uses of SDMs 

Species distribution models have been utilized for many different purposes; however, conservation 

is one of the biggest. Predicting potential distribution of species that could be regarded as pests in 

their own ranges threatening the local biodiversity is of major concern in conservation. Our results 

show that SDMs can help with delimiting zones of potential spread, to initiate early monitoring and 

efforts for control (Chapter 6).  

 

Certainly the potential of data produced here and the methods used throughout the analysis is not 

yet exhausted. There is still pending numerous questions to address and analysis to make. 

Phylogenetic relationships and different life histories between the tribes in the family suggest they 

affect several aspects of their distribution (i.e. habitat and food preferences, range sizes, niche 

breath etc, Beck et al 2006a, 2006b, 2006c). So might be interesting to make a detailed analysis 

about effects of phylogeny on range sizes to test if there is phylogenetic conservatism among them. 

In the same line, we also have the opportunity to study whether relevant traits or regional 

environmental conditions would explain the variation in strength of the phylogeny effect on range 

size. It would be interesting to study range shifts under changing climates, and test whether there is 

a phylogenetic compound in the resilience to those changes.  
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As outlined above, climate is expected to play an important role as driver for α, β, and γ diversity 

patterns. Analysis for testing different hypothesis is still pending;  

1. Whether water energy availability provides good explanations and quantifies how much 

variation different parameters explain.  

2. Whether non-environmental factors provide more explanation for the variation of these 

patterns or cover residual variation from the environmental parameters.  

 

 

7.2. Conclusion 

 

SDM is a powerful tool to provide information about the occurrence of the species. However it is 

important not to forget, that these models are correlative, so no causality can be directly inferred 

from them; if a variable shows good association with the occurrence does not mean necessarily that 

directly determine their distribution. 

Nevertheless, for most of the species (particularly invertebrates), this might be the best (and perhaps 

the only) approach given the limited information that is generally held upon them. This is a first 

step to know more about them. Amidst the recent biodiversity crisis that we are in, SDMs despite of 

their limitations, provide invaluable information to fill the gaps in our knowledge about spatial 

distribution patterns of biodiversity in the world. 
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SUMMARY 
 

The geographic distribution of the species is one of the basic units of information in ecology and 
biogeography, yet for the vast majority of the species in the world is quite unknown. It is a 
phenomenon called the Wallacean shortfall. The knowledge available about the distribution is 
biased to few certain taxa and regions. For insects, in particular, this information is even sparser 
despite being very specious taxa and play an important ecological role. Species Distribution 
Modelling (SDMs) offers a potentially powerful tool that might help to fill those gaps in our 
knowledge especially for those species from which there is very little known about their ecology 
and places where collecting has been very scarce.  In this thesis, I used a database compiled from 
museum and private collections, publications (including online databases) and fieldwork data 
already assembled by my co-authors. 
Such database contains over 109,880 distributional records of the global distribution for all the 982 
non-American taxa of the Sphingidae family of Lepidoptera which then I combined with SDMs 
algorithms to provide high-resolution distribution maps for all the taxa in the family and study 
patterns of biodiversity.  Since the purpose of this document is to provide stand alone manuscripts 
that are at the point of submission are either submitted, in review or published, I will refer to “we”  
throughout much of the text. 
 
As a first step, we compared the performance of 8 commonly used SDM’s algorithms while 
considering some intrinsic properties of the species and data with a representative sample of the 
species in the family (Chapter 2). The algorithm that performed the best was Maxent followed by 
Random Forest, however we could not confirm effects of species traits or data properties 
influencing the modeling performance.   
 
Subsequently, in Chapter 3 we assessed the value of different data sources, by comparing an 
independent compilation of occurrence data vs GBIF database, and its contribution to different 
aspects of the range of the species (i.e. range filling, range extent and climatic niche space). GBIF 
provided more records than other sources though contributed with less information about the range, 
so it is not yet an alternative to manual compilation of distributional data. 
 
Species diversity patterns based on numerical estimators are studied in Chapter 4, in relation with 
their main environmental correlates for a fraction of the study region. We also provided assessment 
of inventory completeness in the same region. Variables describing vegetation emerged as 
important predictors of species richness. Variables capturing heat, energy availability and 
topographic heterogeneity were identified as further parameters influencing species richness. 
Inventory completeness is positively associated with densely populated areas, accessibility, 
protected areas and colonial history. We discussed how this approach sets the baseline to estimate 
diversity patterns in under-studied taxa. 
 
A detailed documentation of data acquisition, processing and modeling is compiled in Chapter 5. 
We applied the modeling technique chosen in Chapter 2 in combination with environmental data 
and vegetation cover data to the whole dataset. We could retrieve models for 789 taxa whereas we 
provided expert drawn range maps for the remaining 193. In general, annual temperature range was 
the factor contributing the most to shape species’  distributions followed by variables related to 
precipitation. Variables related to vegetation did not highly contribute. In a next step, we 
superimposed the resultant grids to study patterns of biodiversity at two spatial scales (α = 5 x 5 km 
and γ = 200 x 200 km) and then used them to calculate β-diversity. The α and γ diversity maps 
exhibited a latitudinal gradient of species richness towards the tropics whereas β-diversity patterns 
revealed rather a altitudinal gradient, higher in mountainous regions and along biogeographical 
boundaries. This set of maps is the result of a collaborative project that to the best of our knowledge 
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compiles the first distributional data set for a complete family of invertebrates at an almost global 
scale.  Achievements, challenges and limitations of the project are also reported and discussed. 
 
A specific application of SDM is shown in Chapter 6. We predicted the potential the range of an 
invasive species (Agrius cingulata), native to the American continent which have recently spread 
and established populations in Africa. We used two types of SDM based on native range records 
and environmental data. Our results showed that Agrius cingulata could find suitable habitat across 
wide stretches across Sub-saharan Africa. Early monitoring programs might be valuable to evaluate 
the status of the invasion. 
 
In Chapter 7, a general discussion of the results plus an outlook to further research with this data is 
presented. All the maps (i.e. from raw data, intermediate steps until the final map) together with 
appendixes containing details of the models, list of species, literature and museum collection 
sources are deposited on the network drive at the University Computing Centre of Basel. It is our 
plan for the future to make this database available throughout the website facility: The map of life 
(http://www.mappinglife.org/). 
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RESUMEN 
 

La distribución geográfica de las especies es una de las unidades básicas de información en estudios 
de  ecología y  biogeografía, sin embargo desafortunadamente dicha información es desconocida 
para la mayoría de las especies del planeta. Este fenómeno es mejor conocido como el déficit de 
Wallace (o el termino en ingles “Wallacean shortfall” ). El conocimiento que existe disponible 
acerca de la distribución de las especies está sesgado hacia ciertos taxa y regiones. Para insectos, en 
particular, esta información es aún más escasa a pesar de ser un taxón muy rico en especies y 
desempeñar un  papel ecológico muy importante. El modelamiento de distribución de especies 
(MDS) ofrece una herramienta poderosa que puede ayudar a llenar esas lagunas, especialmente para 
esas especies de las que muy poco se sabe acerca de su ecología y en aquellos lugares donde el 
muestreo ha sido escaso. En esta tesis, he usado una base de datos recopilada de museos y 
colecciones privadas, publicaciones (incluyendo bases de datos en internet) y datos de trabajo de 
campo llevado a cabo por mis coautores. Dicha base de datos contiene más de 109.880 registros de 
la distribución global para todas las 982 especies no Americanas de la familia Sphingidae de 
lepidópteros. Seguidamente los combine con algoritmos de MDSs para proporcionar mapas de 
distribución con alta resolución de todas las especies en la familia y luego estudie patrones de 
biodiversidad. Ya que este es un proyecto colaborativo y el propósito de este documento como tesis 
es proveer capítulos que puedan leerse sin necesidad de hacer referencia a los otros, me referiré a 
“nosotros”  a lo largo de una gran parte del texto. 
 
Como primer paso, comparamos el rendimiento de 8 algoritmos de (MDS) comúnmente utilizados,  
teniendo en cuenta al mismo tiempo algunas de las propiedades intrínsecas de las especies y de los 
datos. Elegimos un grupo de 64 especies como muestra representativa de las todas las especies de la 
familia (Capítulo 2). El algoritmo que proporciono mejores resultados fue Maxent seguido por  
“Random forest” , sin embargo no fue posible confirmar si ciertos atributos particulares de las 
especies o propiedades de los datos influyen en desempeño de los algoritmos. 
 
Posteriormente, en el Capítulo 3 evaluamos el valor de diferentes fuentes de datos. En particular 
comparamos los datos de  la compilación independiente de datos de ocurrencias  vs la base de datos 
online de GBIF, y su contribución a los diferentes aspectos de los rangos de la especie (es decir: la 
ocupación, la extensión, y el nicho climático observado). GBIF ofrece más registros que otras 
fuentes, sin embargo estos registros contribuyeron con menos información acerca de los diferentes 
aspectos del rango, por lo que todavía no ofrece una alternativa a la recopilación manual de datos de 
distribución. 
 
Patrones de diversidad y riqueza de especies basados en estimadores numéricos se estudiaron en el 
Capítulo 4, en relación con sus principales determinantes ambientales en una fracción de nuestra 
área de estudio. También proporcionamos una evaluación de que tan completo es el inventario de 
especies en la misma región. Variables que describen la estructura de la vegetación surgen como 
importantes predictoras de la riqueza de especies. Asimismo variables relacionadas con captura de 
calor, la energía y heterogeneidad topográfica se identificaron como otros parámetros que influyen 
en la riqueza de especies. Que tan completo es el inventario está asociado positivamente con áreas 
densamente pobladas, accesibilidad de la zona, áreas protegidas y la historia colonial. También 
discutimos cómo este enfoque establece una línea base para estimar patrones de diversidad en 
aquellos taxones menos estudiados. 
 
Una documentación detallada de la adquisición de datos, procesamiento y modelado de especies se 
describió en el Capítulo 5. Se aplicó el algoritmo de modelación elegido en el Capítulo 2, en 
combinación con los datos ambientales y de estructura de vegetación como predictoras. Pudimos 
recuperar modelos para 789 especies, mientras proveemos mapas basados en opinión de expertos 
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para las 193 especies restantes. En general, el rango de temperatura anual se identifico como el 
factor que más contribuyó a la distribución de las especies, seguida por variables relacionadas con 
la precipitación mientras que variables relacionadas con estructura de la vegetación no aportaron 
mucho. Seguidamente, se superponen los mapas producidos en el paso anterior para estudiar 
patrones de biodiversidad en 2 escalas espaciales distintas (α = 5 x 5 km (biodiversidad local) y γ = 
200 x 200 km (biodiversidad regional)) adicionalmente estos datos se utilizaron para calcular β-
diversidad. Los mapas de diversidad α y γ  exhiben un gradiente latitudinal de incremento de la 
riqueza de especies hacia los trópicos, mientras que el mapa de diversidad β revela mas bien un 
patrón de gradiente altitudinal siendo mayor en regiones montañosas y a lo largo de las fronteras 
biogeográficas. Este conjunto de mapas es el resultado de un proyecto colaborativo que según 
nuestro conocimiento compila los primeros datos de distribución establecidos para una familia 
completa de invertebrados en una escala casi global. También reportamos y discutimos logros, 
desafíos y limitaciones del proyecto. 
 
Una aplicación específica de MSD se muestra en el Capítulo 6. La predicción del rango de una 
especies invasiva (Agrius cingulata), cuyo rango nativo es el continente americano sin embargo 
recientemente ha extendido dicho rango  y ha establecido poblaciones en África. Se utilizaron dos 
tipos de MDS basados en los registros de ocurrencia en el rango nativo en combinación con datos 
ambientales. Nuestros análisis reportan que Agrius cingulata podría encontrar un hábitat adecuado a 
través de amplias extensiones de todo el subsahara africano. Programas tempranos de monitoreo 
podrían ser valiosos para evaluar el estado de la invasión. 
 
En el Capítulo 7, se presenta una discusión general de los resultados, además de planes futuros de 
investigación. Todos los mapas (es decir, datos sin procesar, pasos intermedios y el mapa final) 
junto con los anexos que contienen detalles de los modelos, listas de especies, fuentes de literatura y 
listas de los museos de donde recopilamos los datos de ocurrencia, están depositados en unidad de 
red en el Centro de Computación de la Universidad de Basilea. Nuestro plan es hacer disponibles 
estos datos através del proyecto de Internet: The map of life (http://www.mappinglife.org/). 
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