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CHAPTER

Introduction

Any piece of matter, be it a small isolated molecule or a large infinite periodic crystal, is
in principle just a collection of nuclei and electrons. The interactions among them and
consequently the properties of matter are governed by the fundamental laws of quan-
tum mechanics. Since the basic equations describing these interactions are known, the
determination of the properties of matter seems to be a simple task at first sight. Meth-
ods that use these laws are called ab-initio methods.

For some very simple examples — the most famous one probably being the hydrogen
atom — the fundamental equations can be solved analytically. Even for slightly more
complicated systems, an analytical solution is not possible any more and one there-
fore has to either use some approximations which allow an analytical solution or to
solve the equations numerically on a computer. However, for most systems of interest,
even the best supercomputers available nowadays are not capable to solve the quan-
tum mechanical problem in its exact form. Consequently one has — even when using a
numerical approach — to search for some simplifications in order to make the equations
solvable while still keeping the quantum mechanical origin of the description.

The first fundamental approximation that is usually adopted is the so-called Born-
Oppenheimer approximation which allows to treat the nuclei as classical particles.
One is therefore left with the task of solving the electronic structure problem in a
quantum-mechanical way. Unfortunately also this problem remains way too compli-
cated in order to be solved exactly even numerically and one therefore has to adopt
turther simplifications.

There exist several such approximations, differing conceptually by how much they
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stick to the fundamental quantum mechanical equations. Thus the accuracy and con-
sequently also the speed of these methods vary a lot and the number of atoms that can
be treated with them ranges from only a few ones to several millions.

One of the most famous approaches to accomplish the task of solving the electronic
structure problem is the framework of Density Functional Theory (DFT). Here the ap-
proximation consists of turning the system of interacting electrons into a system of
non-interacting quasi-electrons. Since its development in the 1960s, DFT has become
one of the most popular electronic structure methods due to its good balance between
accuracy and speed.

Even though DFT can offer a substantial speedup compared to other ab-initio methods,
its usage is still limited to currently a few hundred atoms. The reason is its asymptoti-
cally cubic scaling, which makes calculations for really large system prohibitive.
Fortunately this problem can be circumvented by the introduction of so-called linear
scaling algorithms. Of course these algorithms come again at the cost of some further
approximations, but it can be shown that they are well justified and linear scaling DFT
is consequently still — at least to the extent to which standard DFT is — a fully ab-initio
method. Using these low-complexity algorithms it is possible to carry out DFT calcu-
lations for thousands or even millions of atoms, in this way pushing up the size of the
systems that can be investigated with ab-initio methods.

Nevertheless DFT calculations for large systems remain a very sophisticated task and
are only doable on large supercomputers. Due to the fact that the computational power
of a single core does not increase any further and the overall power of the supercom-
puters nowadays stems from their massive parallelism, it is of utmost importance that
any code that aims to run on such a machine is highly parallelized. Therefore an effi-
cient parallel implementation is as important as using a good physical approach.

This first part of the Thesis describes the implementation of a linear scaling DFT code
within the framework of the already existing BigDFT package. To this end the fun-
damental principles of electronic structure calculations and DFT in particular are pre-
sented first, followed by a brief outline on how the intrinsic cubic scaling of this ap-
proach can be linearized. After a short overview over the wavelet basis set that is
used in BigDFT and which exhibits some very nice properties making it an ideal basis
set for linear scaling calculations, the text focuses on the implementation of the linear
scaling version of BigDFT. In this section the style will be a mixture of theoretical con-
siderations and practical applications, in this way trying to illustrate the problems that
had to be dealt with during the implementation. A strong focus will also be put on
the parallelization of the code. The first part concludes with some benchmark results
demonstrating the capabilities of the linear scaling version of BigDFT.
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It must be noted that the even though the code is capable of giving accurate results at
an almost perfect linear scaling, it is still under development and there are still some
open problems that need to be addressed. An overview of these issues is given towards
the end of this first part.






CHAPTER

Some basics about electronic
structure calculations

2.1 The Born-Oppenheimer approximation

Due to the quantum-mechanical nature of the electrons and the nuclei which are the
constituents of matter, an exact calculation of their interactions is — except for the most
simple cases — not possible. Consequently one has to introduce some approximations
in order to be able to solve the problem.

The range of approximations is very wide, but in general all of them rely on the Born-
Oppenheimer approximation which will be derived in the following [1].

A priori, ab-initio calculations for a system composed of electrons and nuclei require
to treat both of them quantum-mechanically, i.e. the combined electron-nuclei wave
function ¥¢"({R;}, {r;}) has to be calculated, where {R;} stands for the coordinates of
all nuclei in the system and {r;} for those of all electrons. This wave function is an
eigenfunction of the combined electron-nuclei Hamiltonian

HY{R Y A DY ({R} {n}) = E"Y"({Ry}, {r1}), (2.1)
where H" ({R;}, {r;}) is defined as

HY"({Ri} {n}) = T"({Ri}) + H{R}, {xr}) (2.2)
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with

N
T'"({R}) = 2

2, (2.3)

2 i V ZZ’rl_r ii

i=1j=1

H{R} {n}) =

Here M; stands for the mass of the ith nucleus in atomic units, N for the total number
of atoms and # for the total number of electrons. 7"({R;}) is the kinetic energy of the
nuclei, and the terms of H({R;}, {r;}) are the electrostatic repulsion among the nuclei,
the kinetic energy of the electrons, the electrostatic repulsion among the electrons and
the electrostatic attraction between the electrons and the nuclei.

The above operators were written in atomic units which are defined by setting m, =1,
e=1,h=1,1/4mey = 1. This convention will always be used in the following unless
otherwise stated. The other convention which will be used throughout the Thesis is
that only non-complex quantities are considered.

Unfortunately the above eigenvalue equation is way too complicated to be solved di-
rectly. Therefore one has to adopt some approximations.

To this end one introduces the electronic wave functions ®({R;}, {r;}) which are
eigenfunctions of the electronic Hamiltonian,

HU{R L A )P ({Ri} {1}) = et (R )Pk ({Ry }, {11})- (2.4)

Due to the hermiticity of the operator H({R;}, {r;}) its eigenfunction form a complete
set with respect to the space of the electronic coordinates. Therefore the combined
electron-nuclei wave function can be expanded in this basis:

TR} An}) = ;q)k({Rl}r {r ) (R ). (2.5)

Inserting this expansion into Eq. (2.1) yields

- 21;21\/1 V&P ({R} {n D ({R,}) +Z€k {RDO({R}, {1 ) vr ({Ri})
=E") ®({Ri}, {u})yi({Ri}). (26)
2

The next step is to multiply from left with ®;({R;}, {r;}) and to integrate. Using the
orthonormality relation

[arie- [ dra @ (R, {n @R}, {1}) = o @7)
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this yields

LIx [ e [ dr (R}, () Vi @R}, (i) ({R.})
o % 2M; ! n PR ) VRV VT P (AU

+ei({Ripy ({Ri}) = "9/ ({R;}). (2.8)

Applying the product rule for the Laplace operator V? and again using the orthonor-
mality relation one arrives at

il 1 2 n
- i;Z—MivRi% {Ri})

Yy

i=1 k

aag e [ [ (R, () Vi@ ((R ), {1} Vi g ({R:))

+ j({Re}, I} VR De({R}, 1))y (R )]
+&({RDY{RY) = E"9J({R}). (29)

So far no approximation has been used and everything is still exact. However now
the first simplification comes into play. In the so-called adiabatic approximation the
sum that runs over k and in this way couples different electronic eigenstates is com-
pletely discarded and only the electronic ground state ®o({R;}, {1;}), €0({R;}) is used
throughout the entire equation; this will also allow to replace 1/)}7 by ¢g:

-y VR
i-1 2Mi Rt l
N q :
=Ly [ dne [ dn [@o((R} fnh Va@o((Ra, {rh) Vad (Ri})
+@o({Ri}, {1}) Vi Po({Re}, )y ({Ri})]
+e({RDYEIRY) = E"gE({R}). (210)

This approximation is justified by the presence of the factor M%, which causes the non-
adiabatic coupling terms to be small due to the large value of M;. However this holds
only as long as there are no electronic energies ¢€; being nearly degenerate. This can be
seen by rewriting such a non-adiabatic coupling term:

/ dry - - / dr, ®;({R;}, {r}) Ve, ®c({R;}, {1,})

=1 [dn [dn @R, (D HIRY, (1), Ve ORI, (1)), @)

€j—€k




CHAPTER 2. SOME BASICS ABOUT ELECTRONIC STRUCTURE CALCULATIONS
2.2. SOLVING THE ELECTRONIC STRUCTURE PROBLEM 10

Since the result of the commutator is given by
[H({R;}, {ri}), Vr/] Z R |3 (2.12)

and the numerator in (2.11) is thus finite, it follows that these coupling terms become
very large as soon as the energies €; and €, come close together.

However even with this simplification the second term in Eq. (2.10) remains still quite
involved. Therefore, as a second approximation and again justified by the presence of
the factor M%' this term is completely discarded as well, in this way leading to

N
= L g7 VRIBURD) + ol (RS (R = B4 (R, @19

This is the final result of the so-called Born-Oppenheimer approximation [2]. The
nucleonic wave function ¢ ({R;}) is moving in the potential generated by the eigen-
values €y (R;) of the electronic ground state. For this reason the electronic ground state
energy is also called the ground state potential energy surface or ground state Born-
Oppenheimer surface.

Solving Eq. (2.13) gives the nucleonic wave function ¥j(R;) and the energy E" of the
combined system of electrons and nuclei. The combined electron-nuclei wave function
is, according to Eq. (2.5), given by

TR} {n}) = o({Ri}, {r )y ({R}). (2.14)

To conclude, the Born-Oppenheimer approximation states that one first has to solve
for the electronic ground state while keeping the nuclei fixed and then use this result
in order to move the nuclei.

2.2 Solving the electronic structure problem

It has been demonstrated in the previous section that within the Born-Oppenheimer
approximation the electronic ground state has to be determined [1,3] while keeping
the nuclei fixed. The fundamental equation to solve this problem is the many-body
Schrodinger equation

H{R A PR}, {x1}) = e({R })P({R; }, {x1}) (2.15)
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Since electrons are not only characterized by their position r;, but also by their spin s,
the combined variable x; = (r;5;) has been introduced. The Hamiltonian H({R;}, {1;})
is the same as in Eq. (2.3) and is independent of the spin.

The wave function ®({R;}, {x;}) is normalized to one,

/ dry- - / dr, [®({R;}, ()P =1, (2.16)

and is — due to the nature of electrons being fermions and thus obeying the Pauli
exclusion principle [4] — required to be antisymmetric with respect to the exchange of
two electrons:

@({RZ},xl,...x,-,...,xj,...,xn) = —CID({RI},xl,...x]-,...,xi,...,xn). (2.17)

The ground state of the electronic many-body system is given by the variational prin-
ciple,

€0 = min (®({Ry}, {x})[H({Ri}, {ri})[ PR}, {x1})), (2.18)
under the constraints (2.16) and (2.17).

What makes the solution of the electronic structure problem so difficult is its high
dimensionality. A wave function ®({R;}, {x;}) describing a system of n electrons is a
quantity of dimension 47, which makes it impossible to work directly with it.

Instead of writing the energy in terms of the wave function it is also possible to express
it in terms of so-called density matrices. This is a completely equivalent concept and
will be used extensively in the context of the linear scaling algorithm.

The density matrix of a many-electron quantum state which is described by the many-
electron wave function ®({R;}, {x;}) is defined as

(R };x1, o, X XY, X)) = PR L, xq, -, % )RR}, X, - -, XG,). (2.19)

Furthermore it is useful to introduce the so-called reduced density matrices of first and
second order:

T1({R; }; x5 %)) = n/dx?_- . /dxn O({R;},x1, %2, .., xn) PR}, X, x2, .-+, Xn),
Y2 ({Ry}; X1, X2, X7, X5)
=n(n—1) /dX3' . /dxn CID({RZ},xl,xz,X3,...,xn)CID({Rl},xﬁ,xé,x&...,xn).
(2.20)

The spin charge density y(x), which will be of great importance later on, is given by
the diagonal part of the reduced density matrix of first order, i.e.

Y(x) = 71(%6%). (2.21)
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With these definitions all energy contributions appearing in the Hamiltonian of Eq. (2.3)
can be expressed in terms of the reduced density matrices of first and second order:

N i—-1 7.7,
E, = Z Z/dxl- . /dxn SR}, X1, Xn) o D({R; ), X1, . ., Xp)
i=1j=1 IR; — R}
vy A4 (2.22a)
i=1j=1 Ri — Ry

1 n
Ekin = —E Z/dxl- -~/dxn CID({RI},xl,...,xn)Vi,CI)({Rl},xl,...,xn)
i=1

_ —g/dxl---/dxnCID({Rl},xl,...,xn)V‘z'lcb({Rl},xl,...,xn)

1
= _E/dxl V%ln/dxz- --/dxn<1>({R1},x1,...,xn)CID({rl},xl,...,xn)

1
::_E/V%7““%) dxi, (2.22b)
X1 =X}
n i—1 1
Eeo=). Z/dxl. ../dxnCID({Rl},xl,...,xn)h‘ PR )
i=1j=1 i1
nn—1 1
— g/\dxl- . /an ¢({Rl}/x1/'.-[xf’l)i@({Rl},xl,...IXn)
2 1] — 12

:/dxl/dxz 1 nn-1)
1] — 17 2
x /dX3~ --/dxnCI)({Rl},xl,...,xn)CID({Rl},xl,...,xn)

= // #’yz(xl,xz;xl,xz)dxldxz, (2.22¢)
1] — 12
n N Z]'
Ee_n = — Z Z/dxl. .. /dxn q)({Rl},Xl,. . .,Xn)m(b({Rl},Xl,. . .,Xn)
i=1j=1 i Ji

N 7.

_ —nz/dxl---/dxncp({Rl},xl,...,xn)ﬁqx{m},xl,...,xn)
j=1 r, — Ry
N 7.

- —Z/dX1 7]Rn/dx2---/dxncb({Rl},xl,...,xn)CI)({Rl},xl,...,xn)
j=1 |r1_ j|

N Z]'
= ;/7&1 = Rj|7(X1;X1) dxq. (2.22d)

The nuclei-nuclei interaction is given by the classical expression due to the normaliza-
tion condition of Eq. (2.16). For the other terms the symmetry of the wave function —
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see Eq. (2.17) — was employed to get rid of the sum. Furthermore integration by parts
was used in order to shift the Laplace operator in the derivation of the kinetic energy.

One might wonder why the dimensionality problem can not be solved by the intro-
duction of the density matrices, since the energy — which used to be expressed via the
4n-dimensional wave function — is now expressed via the reduced density matrices of
tirst and second order which have only dimension 4 and 8, respectively.

However this is not as simple as it might seem since there is the hidden constraint that
these density matrices can be obtained from a n-electron wave function. This constraint
is known as the n-representability problem. Whereas there is no known criterion which
can ensure that a second order density matrix is n-representable, it can be shown [5, 6]
that for the first oder density matrix the eigenvalues must be in the interval [0, 1].

Due to these difficulties, it is — except for the most simple examples — not possible to
exactly solve the electronic structure problem. Therefore one has to introduce some ad-
ditional approximations. Popular choices for these approximate methods are Hartree-
Fock (HF), Meller-Plesset perturbation theory of various order (MP2, MP3, MP4),
Configuration-Interaction of various accuracy (CISD, CISD(T)) and Coupled Cluster
of various accuracy (CCSD, CCSD(T)) [3]. Hartree-Fock is the fastest, but also the least
accurate of these methods, whereas Coupled Cluster and Configuration Interaction are
the most accurate, but also the most expensive ones. Moller-Plesset perturbation the-
ory lies in between them from the viewpoint of both the accuracy and the cost.

A general problem of all these methods is their bad scaling which ranges from N*
for HF over N°® for MP2, N® for MP3, CISD and CCSD to N’ for MP4, CISD(T) and
CCSD(T), where N is the size of the basis set. Consequently these methods, in partic-
ular the more accurate ones, are only applicable to very small systems.

Even though there exist variants of these wave function methods which exhibit a linear
scaling with respect to the number of atoms [7-9], the bad scaling with respect to the
size of the basis set persists; consequently these approaches can in practice only be
used in connection with a small basis set and are thus limited in accuracy.

An alternative to these methods is Density Functional Theory, which will be presented
in detail in the following.

2.3  Some basics about Density Functional Theory

Density Functional Theory (DFT) [1,10] is a very popular method to solve the elec-
tronic structure problem since it gives reasonable accuracy at moderate computational
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costs. The scaling is proportional to the cube of the system size — this property will
be analyzed in more detail in Sec. 2.4 —, which is better than all other methods that
have briefly been mentioned in the previous section. Still the accuracy one gets with
DEFT is usually better than that of Hartree-Fock, which is the most favorable of these
approaches from the viewpoint of the scaling.

For the remaining part of the discussion spin will be ignored for the sake of simplicity.
Anyway spin can be neglected for the important class of closed shell systems which
contain an even number of electrons; in this case one can get rid of the spin dependency
by an integration over this degree of freedom. As an example, the spinless reduced
density matrix of first order is given by

pr(xith) = [ mi(msirgsr) dsi. (2.23)

Thus the many-body wave function depends only on 3n and the charge density on 3
spatial coordinates.

Also the condition for the first order density matrix to be n-representable is different
for a closed shell system: Instead of lying in the interval [0,1] the eigenvalues must
now be contained in the interval [0, 2].

2.3.1 The Hohenberg-Kohn theorems

The fundamental basis upon which DFT is built is the first Hohenberg-Kohn theo-
rem [11] which states the following: The ground-state density po(r) uniquely determines
the potential, up to an arbitrary constant.

To demonstrate this theorem the electronic Hamiltonian of Eq. (2.3) is first split up into
its various contributions, namely the kinetic energy of the electrons 7, the electron-
electron repulsion Ve, and the external potential represented by the one-body operator

Vext:
H - T+ Vee + Vext,

14 2
T = _E Zvri’
i=1

n i—1
Vee =),

i=1j=1

n
Vext = Z Uext(ri)~
i=1

1 (2.24)
|t — 15|
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If there is no external field present, the external potential is simply given by the po-
N _%
=1 [r;—R;[*
nuclei was removed from the Hamiltonian since it is not relevant for the electronic
structure problem.

The proof of the first Hohenberg-Kohn theorem is done by contradiction. To this end

tential generated by the nuclei, i.e. Vext(r;) = Y The interaction among the

one first assumes that there exist two external potentials Ve(;t) and Ve(iz that differ by
more than a constant and that give rise to the same ground state density. These two
potentials would define two different Hamiltonians # (1) and #H(?) with two different
ground states @) and ®2). Since ®? is not the ground state for (1) it follows from

the variational principle that
(@O + Ve + V@) > (@D T 4 Ve + V) [0D). (2.25)

The strict inequality in this equation is justified by the assumption that the ground
state is non-degenerate. Since both wave functions yield the same charge density it
follows from Eq. (2.22d) that (2.25) simplifies to

(PO|T + Vo |[@P) > (@D T + Vo[ (2.26)

However it is absolutely arbitrary which wave function is called 1 and which 2; there-
fore it is equally valid to write

(PD|T + Ve | @D > (@D T + Vo |0 . (2.27)
Adding Egs. (2.26) and (2.27) yields
(@D 4 DT + Vo[ @V + @) > (@) + &P |T 4 V|0 + P, (228)

which is a contradiction.
Consequently the assumption that there exist two external potentials that still yield the
same density was wrong, thereby proofing the theorem.

This result is quite remarkable. As can be seen from Eq. (2.24) the Hamiltonian is
fully determined by the ground state density (up to a constant shift) due to the first
Hohenberg-Kohn theorem. As a consequence also the many-body wave functions for
the ground state and all excited states are fully determined by the ground state density.
Since the system is completely characterized by these wave functions, it follows that
all its properties are uniquely determined by the ground state density.

In spite of the striking consequences of the first Hohenberg-Kohn theorem it does not
provide a means to determine the ground state density. This issue is addressed by the
second Hohenberg-Kohn theorem.
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To this end the variational principle is considered again, which tells that the ground
state is given by minimizing the energy over all wave functions ®:

E = mqin (DT + Vee + Vext|®) . (2.29)

The minimization over ® can now be split up into an outer loop minimizing over all
densities p and an inner loop minimizing over all wave functions ® yielding the charge
density p [12]:
E = min {min (DT 4+ Vee + Vext|CI>>] . (2.30)
4 d—p
The external potential depends only on the density and can therefore be taken out of
the inner minimization loop, leading to

E = min {min (PT + Vee|P) + /Vext(r)p(r) dr} . (2.31)
4 D—p

From the last equation it becomes clear that for a given density p, the ground state wave

function is the one which minimizes 7 + V., and yields p. Since this minimization does

not depend on the external potential, it has to be a universal result for a given density.

Thus it is possible to define the universal functional

Flo] = min (@[T + Vee| D) (2.32)
d—p
and to write the ground state energy as

E= mpin {F[p] + /Vext(r)p(r) dr} : (2.33)

This demonstrates that the density obeys a variational principle and that the ground
state density is the one which minimizes Eq. (2.33).
These last results are known as the second Hohenberg-Kohn theorem.

If the exact form of the functional F[p] was known, it would be possible to directly use
Eq. (2.33) in order to minimize the energy under the constraint of a fixed number of
particles n = [ p(r)dr, ie. to minimize E[p] — un, where y = 0E/on is the chemical
potential of the system. This would then lead to the Euler-Lagrange equation

OF|p] _
Unfortunately such a functional form for F is not known and as a consequence DFT
calculations are usually done in the framework of Kohn-Sham DFT. Still Eq. (2.34) will

be used later.
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2.3.2 The Kohn-Sham formalism of DFT

In the Kohn-Sham formulation of DFT [13], the system of n interacting electrons is
replaced by a system of n non-interacting quasi-electrons. The Kohn-Sham ansatz is
based on two fundamental assumptions:

1. The exact ground state density emerging from the system of interacting electrons
can be represented by the ground state density of the system of non-interacting
quasi-electrons. This assumption is called “non-interacting-V-representability”.

2. The Kohn-Sham Hamiltonian consists of the kinetic energy operator and an ef-
fective one-body potential operator V.

These n independent quasi-electrons give rise to n orthonormal single-particle orbitals
¢i(r), out of which the many-electron wave function CTD(rl, ...,Ty) can be constructed
as one single Slater determinant [14]:

, ¢1(r1) - ¢u(ry)
O(ry,..., 1) = —=| Co. (2.35)

val ¢r(rn) - Pulrn)

The tilde is used to distinguish between this wave function being constructed from
single-particle orbitals and the true many-body wave functions ®. The ansatz (2.35)
automatically fulfills the normalization of Eq. (2.16) and the antisymmetry condition
of Eq. (2.17).

The single particle density matrix of first order 71 (11, r}), which is defined by Eq. (2.20),
can in this case be directly expressed via the single particle orbitals.

As an example the density matrix for the case of two electrons is explicitly calculated.
For such a system the wave function ®(ry, ;) is given by

B(r1, 1) = % [p1(r1)ga(12) — g1 (r2)pa(x1)] (2.36)

and the reduced density matrix of first order consequently by
Ti(r1y) = 2/q’(r1/f2)q>(f'1/f2)df2
= / [P1(r1)2(r2) — P1(r2)¢p2(r1)] [P1(r])2(r2) — P1(x2)p2(17)] dr2
= /<P1(r1)¢2(rz)¢1(r'1)¢2(rz)drz+/¢1(r2)¢2(r1)¢1(r2)¢2(r'1)drz (2:37)

— [ ere)gar)pr(r2)pa(eh) drz = [ g1(r)pa(ri)gn (£5)ga(ra) dra
= ¢1(r1)¢1(x1) + P2 (r1)Pa(r7),
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where the orthonormality of the single-particle orbitals, | ¢;(r)¢;(r) dr = J;;, was used.
For a system consisting of n electrons the same arguments apply and the density matrix
is thus given by

m(re) =Y i) gi(xh). (2.38)
i=1

It follows from this result that the charge density, which is the diagonal part of the
reduced density matrix of first order, can be calculated according to

n
p(r) = }_I¢i(x)[*. (2.39)
i=1
The next step is to write down an equation determining the single-particle orbitals ¢;
and to find the form of the one-body potential V.
To this end the variational principle for the many-body wave function — i.e. Eq. (2.29)
— is rewritten for the case of the non-interacting electrons:

E=min(®|T + V|d). (2.40)
0]

From this it cannot be concluded — by comparing with (2.29) — that the potential is given
by YV = Ve + Veyt, since there is the constraint that the many-body wave function d
is a Slater determinant constructed out of the single-particle orbitals ¢;; consequently
(®|T|®) is the kinetic energy of the system of non-interacting particles and is not
necessarily identical to the true kinetic energy for the interacting system. This becomes
also visible by explicitly writing the energy in terms of the single-particle orbitals,
which follows by inserting (2.35) into Eq. (2.40) and carrying out the similar steps as
for the derivation of the density matrix in (2.37):

o Yoz Dl
E—{¢fg;gn}lz<¢z(r)! SV Vi) (2.41)

This means that the kinetic energy of the system of non-interacting particles can be ex-
pressed via the single-particle orbitals as Ey;, = Y ; (¢i| — %VZ |¢;). The difference to the
true kinetic energy (®|7 |®) has consequently to be hidden in the potential operator V.

By building the functional derivatives 6E/d¢; under the normalization constraint
(¢pil¢i) = 1 it follows from Eq. (2.41) that the single-particle orbitals ¢; are given by
the solution of the eigenvalue equation

1 .
<—§V2 + V(l‘)) $i(r) = €;¢;(r). (2.42)
Defining the Kohn-Sham Hamiltonian as

Hys(x) = —%vz V) (2.43)
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the eigenvalue problem of (2.42) can thus be written as

Hisi(r) = €pi(x). (2.44)

From now on the single-particle orbitals ¢; and the corresponding eigenvalues ¢€; will
be called Kohn-Sham orbitals and Kohn-Sham eigenvalues, respectively.

What remains is the determination of the potential V. Starting from Eq. (2.40) and
applying the same steps as in the derivation of the second Hohenberg-Kohn theorem
leads to the expression

E= mpin [T[p] + / V(r)o(r) dr} , (2.45)

where the functional T[p] gives the kinetic energy of the non-interacting particles and
is defined as

Tlp] = min (®|T|D). (2.46)
d—p
Put into words, the Kohn-Sham wave function ® for a given density p(r) is conse-
quently that wave function which minimizes the kinetic energy while yielding p(r).
From Eq. (2.45) an Euler-Lagrange equation similar to (2.34) can now readily be derived
and is given by
0T [p]
dp(r)
Keeping this result in mind, the next step is to rewrite the functional for the sys-
tem of interacting electrons — i.e. (2.32) — in terms of the kinetic energy of the system
of non-interacting particles and a remainder which is split up in the Hartree energy

+V=u. (2.47)

Ulp] = % | % drdr’ and the unknown exchange-correlation energy Exc[p]. This
last quantity represents the difference between the true kinetic energy and the one
obtained from the single particle orbitals as well as the non-classical electron-electron
interaction which is not present in the Hartree term. Consequently one can write

Flp] = T[] + U[p] + Exc|p]- (2.48)

Inserting this into Eq. (2.34) and defining the exchange-correlation potential as vxc(r) =

dExclp]
op(r)

yields

gz([f)] + [ 9’2| ar’ + vxc(r) + Veu(r) = 1. (2.49)

By comparing this result with Eq. (2.47) one gets an expression for the potential of the
system of non-interacting particles:

V() = Veul) + [ £ (r/),, dr’ + vxc(r). (2.50)

lr—r
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It has to be noted that the sum of the Kohn-Sham eigenvalues, the so called band-

structure energy
n

n

Eps = Y _ (¢i|Hkslpi) = ) e, (2.51)
i=1 i=1

is not identical to the total energy of the system, which is — according to Egs. (2.33) and

(2.48) — given by

E= —%g / ¢i(r) V2 (r) dr + / Vext (r)p(r) dr + % / / % drdr’ + Exc[o(r)].

r
(2.52)
Comparing this with the Kohn-Sham Hamiltonian Hgs of Eq. (2.43), it follows that the
total energy is related to the band-structure energy via

& 1 p(r)o(r') p
E= ¢i|Hgs|pi) — = ————=drdr' + E r)| — [ vxc(r)o(r)dr. .
;( [ Hks|i) 2// r—r] xclp(r)] / xc(r)p(r) (2.53)

The big unsolved problem of the Kohn-Sham formalism is that the exact form of the
exchange-correlation functional Exc|p] is unknown. Therefore one has to use approxi-
mations to it.

2.3.2.1 Strategies for solving the Kohn-Sham equations

There are two possibilities to determine the Kohn-Sham orbitals. Either one directly
solves the eigenvalue equation (2.44) by diagonalizing the Hamiltonian represented in
a certain basis, or one iteratively minimizes the band-structure energy (2.51).

Both approaches will eventually lead to the same result. However the direct diagonal-
ization is only feasible if the basis set is reasonably small.

Furthermore it must be noted that both approaches need to determine the solution in
a self-consistent way, meaning that the density that one obtains from the final orbitals
according to Eq. (2.39) must be identical to the one used for the construction of the
potential (2.50) — and thus of the Hamiltonian — which has led to this solution.

If the system exhibits a large enough band gap, this condition will eventually be met
if one directly updates the orbitals by minimizing the total energy [15] and straight-
forwardly reuses the new charge density as the input for the construction of a new
potential and thus a new Hamiltonian.

For metallic systems, on the other hand, it is often required to use more orbitals than
electrons (respectively more than half the number of electrons in the case of a closed
shell system) and to smear out the Fermi surface with a finite electronic tempera-
ture [16,17], in this way assigning fractional occupation numbers to the orbitals which
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will then as well enter the calculation of the charge density. In such situations one first
has to perform a few minimization steps for the expression Y} ; (¢;|Hgs|¢;) using a
tixed Hamiltonian, followed by an update of the occupation numbers and a mixing of
the new charge density with the old one. The resulting charge density is then the input
for the evaluation of the new potential and thus the construction of the new Hamilto-
nian. If the size of the basis set is small enough, the few minimization steps at a fixed
potential can be replaced by a diagonalization of the Hamiltonian matrix in this basis.

2.3.3 Exchange-Correlation functionals

The simplest approximation to the unknown functional Exc[p] is the so-called Local
Density approximation (LDA), which gives — in spite of its crudeness — remarkably
good results. This approximation makes the assumption that the system under investi-
gation can reasonably well be described by a homogeneous electron gas with the same
charge density, where the nuclei are replaced by a uniform positively charged back-
ground. The LDA approximation is therefore by construction exact for the uniform
electron gas.

The LDA exchange-correlation energy for a system with the charge density p(r) is
given by

ERA[p(x)] = [ p(r)efi (p()) dr, (254
hom

where € (p(r)) is the exchange-correlation energy density of a homogeneous elec-
tron gas with the same charge density. The value of the exchange correlation functional
is consequently completely local.

eél(‘)g is further split up in an exchange part and a correlation part. Whereas the ex-
change part can be calculated analytically and is given by

1/3
o)) == (o) @55

s

the correlation part cannot be determined exactly. Furthermore there are different
approximations for the case of high [18,19] and low [20,21] electronic densities.

LDA gives accurate results for systems that resemble the homogeneous electron gas, i.e.
systems with charge densities which are only slowly varying, for instance solids. For
systems where this condition is not fulfilled, for instance small molecules or atoms, the
energy calculated with the LDA approximation is typically too high. As a consequence
LDA yields in general a too large binding energies; furthermore bond lengths are
typically underestimated.
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An improvement of the accuracy can be reached by the so-called Generalized-Gradient
Approximation (GGA) functionals. This class takes into account not only the density
at a given point, but also its gradient:

ESE ()] = [ pwexc(o(x), Vo(x)) dr. 2:56)

More explicitly this is often written as

ESGA[p / o(r)ei™ (o(x)) Fxc (o(x), Vo(x)) dr, (2.57)

where €% (p(r)) is again the exchange energy density of the homogeneous electron
gas and Fxc is a dimensionless function. There are several propositions for the form of
Fxc [22-24]; they all have in common that they yield the LDA result in the limit where
the gradient is zero.

A further improvement can be reached by so-called SIC functionals, which stands for
“self-interaction correction” [25,26]. These functionals try to correct the non-physical
interaction of an electron with itself that is present in standard functionals. This self-
interaction stems from the Hartree term and should in principle be exactly canceled by
the exchange-correlation term, but this cancellation is not perfect for most functionals.

Other important classes of functionals are the so-called meta-GGA functionals [27,28],
which depend in addition on the kinetic energy density Y; |V¢;(r)>, and hybrid
functionals [29-31] which mix the exchange-correlation energy from DFT with some
exchange energy from a Hartree-Fock calculation. With hybrid functionals one typi-
cally gets the most accurate results.

2.3.4 Pseudopotentials

In a DFT calculation a priori all electrons of a given atom have to be included in the
description of the system. However it turns out that the electrons which are close
to the core region are chemically inert, meaning that they are not involved in chem-
ical reactions. Therefore it is advantageous to simulate these electrons by a so-called
pseudopotential, i.e. one replaces the atomic nucleus and the core electrons by a pseu-
doatom whose charge is reduced by the number of core electrons.

This approach has several advantages. First of all it makes the calculation much faster
simply due to the fact that the number of electrons is reduced.

Furthermore the orbitals of the core electrons would oscillate very rapidly close to the
nuclei, thus requiring a very high resolution in this region. For an adaptive basis set,
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as it is used in BigDFT, this would in principle be feasible, but it obviously increases
the complexity a lot if many different resolution levels have to be used. For a basis that
requires a uniform grid spacing over the entire simulation box the situation is even
worse; here the high resolution required in the core region would make the calculation
hopelessly slow.

In addition to these benefits one can make a virtue out of necessity and include rela-
tivistic effects into the pseudopotential [32] which would be absent otherwise.

Within the framework of such a pseudopotential calculation the total Kohn-Sham
Hamiltonian is given by

1
His = —EVZ + Vks(o] + Vpsp (2.58)

with the Kohn-Sham potential

Vislel = Veu(r) + | 252t + ol 259

and the pseudopotential term Vpgp. In BigDFT the norm-conserving GTH-HGH pseu-
dopotentials [33-35] are used, which consist of a local and a non-local term, i.e. Vpsp =
Viocal + Vnontocal:

Z; 20,2
Viecal (r) = —2erf < ) 4" e
\/77floc

2 4 6
Ci+G (L) + G (i) +Cy (i) ] ,
Tloc Tloc Tloc

nonlocal Z Z h > < ](l)’ (2.60)

- O\ _
with <r’pi >— r§+(4i—1)/2 r<l+4iT—1> m;lYl,m(Q,CP).

Y; (0, ¢) are the spherical harmonics, 7, is the localization radius of the local part
and r; the localization radius of a given projector.

It has to be noted that the electrostatic potential generated by the nuclei, which has
so far been included in the external potential V,y, is now already contained in the
pseudopotential term. Consequently the term Vey; in Eq. (2.59) now only describes
real external potentials, e.g. an electric field.
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2.4 Scaling of traditional Kohn-Sham DFT

One of the most important characteristic of any electronic structure method is — of
course apart from its accuracy — the scaling with respect to the size of the system. In
Sec. 2.2 it has been mentioned briefly that the scaling of popular wave function meth-
ods ranges from N* to N7, where N is the size of the basis set. However, since only
the scaling is noted without any absolute time, N can in principle be any measure of
the system size which is directly related to the number of basis functions; a popular
choice is the number of atoms.

Due to these large powers of N, calculations for big systems become extremely expen-
sive.

Kohn-Sham DFT, on the other hand, exhibits a more favorable cubic scaling. This prop-
erty will be analyzed in more detail in this section.

As shown in Sec. 2.3.2 the framework of Kohn-Sham DFT requires to solve for the
single-particle orbitals ¢; given by Eq. (2.42). This procedure involves tasks exhibiting
different scalings with respect to the size of the system, so the total time needed to
calculate a system of size N can be written as

tiot(N) = Zci'y,-(N), (2.61)

where the sum runs over all tasks and ¢;;(N) is the time required by task i. 7;(N)
gives the scaling of the task with respect to N and ¢; is its prefactor that determines
the absolute time. Thus for small systems the total time is mainly influenced by the
magnitude of the prefactors, whereas for large systems those parts with the heaviest
scaling dominate.

In the context of Kohn-Sham DFT the part with the worst scaling is related to the
orthogonality that is imposed on the Kohn-Sham orbitals. Such an orthogonalization
step requires to calculate the scalar product among all orbitals of the system, which
is proportional to n? if there are n such orbitals. Since each orbital extends over the
entire system, the cost of calculating one single scalar product is proportional to m,
where m is the size of the basis set used to represent the orbitals. Consequently the
overall scaling is proportional to n?m. Since in general both n and m are proportional
to the size of the system — represented by the number of atoms N — the scaling of the
orthogonalization is proportional to N3, i.e. yormo(N) = N°.

However, as already mentioned, the scaling only tells which part will preponderate for
very large values of N. For smaller systems, it might well be that other parts dominate
due to their larger prefactor.

To illustrate these issues the traditional cubic version of BigDFT was taken as an exam-
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ple. The main tasks of this code can basically be split up in three categories. The cal-
culation of the potential is dominated by the Poisson solver which exhibits an almost-
linear N log N scaling. The next level are the quadratic parts of the convolutions which
are, for instance, required to apply the kinetic energy operator or to calculate the charge
density. Finally there is the linear algebra part — comprising the above mentioned or-
thogonalization — which has a cubic scaling. Together these three categories account
for most of the total computation time; for the test case studied here their sum always
amounts to more than 80% of the total time, independent of the size of the system.

The scaling of these three categories is shown in Fig. 2.1a for the case of alkane chains
of various lengths. The runs were done in parallel such that each MPI task had to
handle one orbital, i.e. the number of MPI tasks was directly proportional to the size
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tial, convolutions and linear algebra with re- gether they always account for more than 80%
spect to the number of atoms in an alkane of the total time. Whereas the potential is only
chain. The time taken by the potential section relevant for small systems and the linear alge-
remains roughly constant, whereas the convo- bra only plays an important role for very large
lutions scale quadratically and the linear alge- systems, the convolutions take a large amount
bra cubically. of time over a wide range.

Figure 2.1: Illustration of the scaling of the cubic version of BigDFT. The test was done for
alkanes of different lengths; the smallest one consisted of 5 atoms, the largest one of 2048
atoms. The runs were executed in parallel such that each MPI task had to handle one orbital.
Only the computation time is shown, i.e. the communication was excluded. The timings are
given for one step in the minimization procedure of the energy.
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of the system. Since only the computation time is plotted, i.e. neglecting the time
taken by the communication, and since BigDFT exhibits a very efficient parallelization,
it is therefore to be expected that the time taken by the potential section should re-
main roughly constant for all system sizes, whereas the time taken by the convolutions
should increase linearly and that taken by the linear algebra quadratically. Since the
timings are shown in a log-log plot, this should result in straight lines with slope 0, 1
and 2, respectively. As can be seen from the figure, this is actually the case as soon as
a given size is reached.

The plot also gives some ideas on the prefactors which are basically given by the time
taken for the smallest system. The prefactor for the potential part is the largest one,
followed by the one for the convolutions, which however still has the same order of
magnitude. The prefactor for the linear algebra, on the other hand, is orders of magni-
tude smaller.

As a consequence the relative importance of these three categories varies a lot as the
size of the system is increased. This is illustrated in Fig. 2.1b, where the relative amount
of time taken by these three sections is shown. As can be seen the time taken for the
calculation of the potential is only relevant for very small system up to roughly 20
atoms. Due to the small prefactor for the linear algebra part there is then a very large
range where the convolutions dominate, and only at around 1000 atoms the influence
of the linear algebra starts to play an important role.



CHAPTER

Linear scaling Density Functional
Theory

3.1 Theoretical background

Whereas the previous chapter has provided some insight into the basics of electronic
structure calculations and the traditional Kohn-Sham ansatz of DFT, this chapter will
focus on the foundations of linear scaling DFT methods.

3.1.1 Locality in DFT

If one wants to develop a method whose computational time scales only linearly with
respect to the size of the system, it is necessary to make at some point the assump-
tion that only quantities which are strictly localized are dealt with. To justify this
assumption, it is in turn required that the properties of the latter ones are only weakly
influenced by what is going on far away. If this condition is fulfilled, the error intro-
duced by strictly localizing these quantities should be acceptable. This procedure is
the key in developing a linear scaling algorithm.

A priori quantum mechanics is a non-local concept [1]. The wave functions that fully
characterize a given system extend in general over the entire volume. An example
that illustrates this non-locality is the antisymmetry of a many-electron wave function
which must be fulfilled for any pair of electrons, no matter whether they are nearby or
far away.
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Fortunately there are however some quantities which do not directly require the de-
termination of the extended wave functions. Examples in the context of Kohn-Sham
DEFT are the energy or the density matrix, which are both integrated quantities being
invariant under unitary transformations among the Kohn-Sham orbitals, and which
are sufficient to determine the ground state of the system. For such quantities the term
“nearsightedness” has been coined by Kohn [36], meaning that their calculation at a
given point r requires only information at points r’ in a localized region around r.
Consequently it should — as long as the quantities employed are well suited for this
purpose — be possible to develop a fully ab-initio method that still scales only linearly
with respect to the size of the system.

This concept of locality is not exploited by the standard Kohn-Sham scheme where all
orbitals may extend over the entire system. One might argue that there exists a set
of maximally localized Wannier orbitals which are related to the standard Kohn-Sham
eigenorbitals via a unitary transformation and reflect in some sense the nearsighted-
ness principle. Once the eigenorbitals 1; — the Kohn Sham orbitals will from now on be
denoted by ¥ and not ¢ as in the previous chapter since ¢ will get a different meaning
— are found, the Wannier functions W; can be generated as

Wi(r) = ZUiﬂ/Jj(l') (3.1)
j

with a unitary matrix U. But since this explicit construction of the Wannier functions
requires first the exact shape of the extended eigenorbitals, it does not help in devel-
oping an algorithm that scales linearly with the size of the system.

Furthermore there is no simple unique prescription how the Wannier functions should
be defined. A method by Marzari and Vanderbilt [37] minimizes the total spread of
the orbitals y;(r*) — (r)? in order to generate them. However one might also think of
other criteria — minimizing the spread is just one possibility —, making the definition
somehow arbitrary.

An alternative description, which is completely equivalent to using the orbitals y;, but
incorporates in a natural way the nearsightedness principle, is given by the use of the
tirst order density matrix which was introduced in Eq. (2.20); from now on it will be
denoted by F(r,r’) instead of 71 ({R;};r;1}). In the independent particle framework
of Kohn-Sham DFT it is — according to Eq. (2.38) — given by

F(r,x') =) fle)gi(r)wi(r), (3.2)

where the Fermi function f(¢;) determines the occupation of the ith orbital and is given

by
1

T 1+ elei—)/ (ksT)

fei) (3.3)
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with the chemical potential y, the Boltzmann constant kg and the temperature T, which
is in general assumed to be zero. For a system with finite gap, the density matrix of a
system containing n electrons at zero temperature will only have n non-zero eigenval-
ues (which then have value one); consequently the density matrix has only rank n and
can be constructed from the occupied states only:

=Y pi(n)yi(r). (3.4)

i=occ

The central quantities of DFT that have been expressed so far in terms of the orbitals
bis )

Ein = —5 L (&) [ 9u(n) Vil dr

i
B = Lf€) [ iV (g dr,
Egs = Egin + Epot = Zf €i /’7”1 (r)¢;(r)dr
=) fle)lyi(r)
1

can — according to Egs. (2.21) and (2.22) — also be expressed in terms of the density
matrix:

(3.5)

Epin = —= [ V?F(x,1) dr/,
r=r’
E :/f} r)F(¢,r)dr,
i = [ PEEE, ) o
Eps = Exin + Epot = /H(f/)F(fr )| dr,
r=r’

p(r) = F(r,x).

In case the above operators are discretized using a finite orthonormal basis set ¢,(r),

ie.
H“lg:/cp,xr%r (r)dr,

vcﬂ—/ ¢u (1) F(r, 1) p(r') drdr’,

the band-structure energy and the total number of electrons n = [ p(r)dr can be
written as traces of these matrices:

(3.7)

EBS = tr(KH),

n = tr(K). (3:8)

It is worth noting that the second order density matrix is — in contrast to the energy
expressions derived in Egs. (2.22) — not required any more; this is a direct consequence
of the independent particle framework.



CHAPTER 3. LINEAR SCALING DENSITY FUNCTIONAL THEORY
3.1. THEORETICAL BACKGROUND 30

3.1.2 Decay properties of the density matrix

It has been demonstrated that for insulators and metals at finite temperature the ma-
trix elements F(r,t’) decay exponentially with the distance |r — r'| [38-44], whereas for
metals at zero temperature they decay algebraically [45].

This property might be surprising at first sight since, according to Eq. (3.2), the den-
sity matrix can be constructed from the Kohn-Sham eigenorbitals, which are extended
quantities. The reason for the decay properties of the density matrix lies in the interfer-
ence among the various eigenfunctions, thereby canceling contributions where r and r/
are far away.

To illustrate the decay properties of the density matrix, the latter one was explicitly con-
structed according to Eq. (3.2) from the Kohn-Sham orbitals that emerged from a tradi-
tional cubically scaling DFT calculation. Since the density matrix is a six-dimensional
quantity, it can not be visualized directly. Therefore it has only been calculated along
the x dimension; two points yy and zp for the y and z direction, respectively, were
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specified by Eq. (3.9). There is obviously an expo- Sham orbital. The plotted isosurface has a
nential decay with respect to the distance |x — x'|; value of 5-107% and is consequently com-
within a distance of a few bohr the values of the parable to the light blue values in Fig. 3.1a.
density matrix decay by several orders of magni- The locality which is present in the density
tude. matrix is completely missing.

Figure 3.1: Illustration of the decay properties of the density matrix and the extended nature
of the Kohn-Sham orbitals. The calculation was carried out for a water droplet consisting of
1500 atoms and a diameter of a bit more than 60 bohr, using the traditional cubic version of
BigDFT.
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chosen and then the density matrix along the x direction was calculated as
F(x,x") =Y f(e)i(x, vo,20)i(x', yo, z0)- (3.9)
i

The origin was chosen to lie in the center of the simulation box and consequently
Yo = zo = 0 was used.

The resulting density matrix is shown in Fig. 3.1a. It is obvious that the values decay
exponentially with the distance |x — x’|. This locality is not at all represented by the
Kohn-Sham orbitals that were used for the construction of the density matrix and
which can be fairly extended. The square of such an extended orbital is shown in
Fig. 3.1b.

This intrinsic sparsity of the density matrix is the key in developing an algorithm that
scales only linearly with the size of the system. Due to the rapid decay of the matrix
elements F(r,r') with respect to the distance |r — r/| it is justified to cut the density
matrix at a given radius in order to enforce a strict sparsity, i.e. to explicitly set

F(r,/Yy=0 for |r—71|>1, (3.10)

where 7 is some system-dependent constant that characterizes the decay behavior. This
strict sparsity can then be exploited further to reach a linear scaling algorithm.

3.2 Strategies for linear scaling DFT

All linear scaling methods exploit in some way the decay properties of the density
kernel or the Wannier functions, meaning that they assume that these quantities are
zero outside of a given localization region and therefore only calculate them within
this subvolume. For simplicity often a sphere is taken and the localization region is
consequently described by a single parameter, namely the cutoff radius.

There are several different approaches to reach linear scaling [46]:

e The Fermi Operator Expansion (FOE) directly calculates the density matrix F as
a function of the Hamiltonian #, i.e. F = f(?). One such representation is
based on a series of Chebyshev polynomials [47,48], another one one a rational
expansion [49]. The Chebyshev expansion will be described in more detail in
Sec. 5.2.3.
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e As mentioned, the zero temperature density matrix of an insulator does not have
full rank and can be constructed from the occupied states only. The Fermi Oper-
ator Projection method [50,51] is similar to the FOE method, but uses the density
matrix as a projection operator onto the occupied subspace, in this way gener-
ating a set of Wannier-like orbitals. In this way one does not have to deal with
unoccupied states as it is the case for the FOE method.

e The idea of the divide-and-conquer method is to divide a large system into sev-
eral smaller subsystems. After solving the problem separately in each of these
subvolumes, the solution for the entire system is then patched together from the
solutions of the subsystems. In its first formulation [52,53] this method was ap-
plied to the calculation of the charge density, in a later version [54] directly to the
construction of the density matrix.

e In the density-matrix minimization approach [55] one determines the density
matrix at zero temperature by minimizing a functional which ensures that the
two essential properties of the density matrix — namely that it is idempotent
and that its eigenvectors with eigenvalue 1 are the occupied eigenvectors of the
Hamiltonian — are simultaneously fulfilled. The functional whose minimization
leads to the desired properties is given by

QO = tr[(3F% — 2F%)(H — ul)], (3.11)

where y is the chemical potential and I the identity. The term in the first paren-
thesis is called the “McWeeny purification” [56] which drives the density matrix
towards idempotency.

e The orbital minimization approach [57-61] does not directly calculate the density
matrix, but expresses it via a set of Wannier functions according to Eq. (3.4). To
obtain the latter ones the following functional has to be minimized:

O=2) Y c'Hjcl =) ) c'Hjcl"y cfcl (3.12)
l

n i,]' n,m 1',]'

Here ¢! is the expansion coefficient of the nth Wannier function with respect
to the ith basis function and H/; the matrix element of the shifted Hamiltonian
‘H — ul with respect to the basis functions.

e The optimal basis density-matrix minimization approach [62,63] is in some sense
a combination of the last two methods. First it generates a set of so-called sup-
port functions ¢, — which can be seen as some set of auxiliary basis functions,
being in turn expressed in terms of an underlying basis set — and then it opti-
mizes the density matrix in the basis of these support functions. In this way the
dimensions of the density matrix are considerably reduced compared to a direct
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representation in terms of the underlying basis set. The density matrix is written
in separable form as

Z% Kappp(r) (3.13)

and the matrix K is given by
K = 3LSL — 2LSLSL (3.14)

with S being the overlap matrix among the support functions. Using this repre-
sentation of the density matrix a minimization of the total energy is carried out
with respect to both the support functions ¢, and the matrix elements L,g.

3.3 Linear scaling in BigDFT

3.3.1 General ansatz — support functions and density kernel

The linear scaling version of BigDFT is based on the same ansatz for the density matrix
as the optimal basis density-matrix minimization approach — an approach that has
also been chosen by other linear scaling codes [64,65]. Consequently it is written in
separable form as

qu )KuppP (). (3.15)

This separable form has the advantage that it is not necessary to work with a quantity
exhibiting in total six dimension (twice a three-dimensional position), but rather with
one that depends only on one single three-dimensional position.

The ¢*(r) are called support functions and the matrix K the density kernel. A priori
the support functions are not specified any further; in particular they are not required
to be orthonormal.

In order to reach linear scaling, one has to make sure that the support functions are
strictly localized and the density kernel is sparse.

The reason for using superscripts for the support functions and subscripts for the den-
sity kernel is not just an aesthetic one. As will be shown later, the support functions are
expanded in terms of an underlying orthogonal basis. Therefore they can be identified
as the coordinate vector with respect to this basis, thus being a contravariant quantity
and consequently being denoted by an upper index. The density kernel, on the other
hand, is a covariant quantity of second order and therefore denoted by two lower in-
dices.
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By defining covariant support functions ¢, (r) which satisfy the relation

/ ¢a(r)¢f (r) dr = 6F, (3.16)

it becomes clear that the density kernel is actually the density matrix in the basis of
these covariant support functions:

Kap = / ¢a (1) F(r,1")pp (1) drdr’. (3.17)

The transformation from contravariant to covariant quantities is done using the metric
tensor ¢,g, which is symmetric, i.e. g45 = gga- This transformation reads

b =Y PP gpa- (3.18)
B

In order to determine the metric tensor Eq. (3.16) can be exploited. Using the short
Bra-ket notation and defining the overlap matrix among the contravariant support
functions by S** = (¢*|¢$P) one gets

5L = (¢7|pa) = Y_ (@7 |¢F) g ZS”ﬁgm, (3.19)
B

from which one concludes that the metric tensor is the inverse of the overlap matrix
among the contravariant support functions, i.e. gg, = (S~1)B*, Therefore it will from
now on be denoted by S, and the relation reads

Spu = (STHP™, (3.20)

This distinction between contravariant and covariant quantities is very important for
the decay properties of the density kernel. It is clear from Eq. (3.17) that this decay
is determined by the localization characteristics of the covariant support functions ¢,.
Unfortunately it is not possible to directly control their decay properties. Even if the
contravariant support functions ¢* — which are the ones that one has control over — are
well localized, this is not necessarily the case for the covariant ones. If the covariant
support functions decay only slowly, this behavior is inherited by the density kernel,
in this way making it difficult to truncate it and finally hindering an efficient linear
scaling implementation.

3.3.2 Physical quantities in terms of the support functions and the
density kernel

The next step is to determine how physical quantities as the total number of electrons
and the band-structure energy are related to the support functions and the density
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kernel [66].
The first thing to note is that with the introduction of contravariant and covariant
support functions the completeness relation becomes

1= 1¢%) (pal = ) I9n) (9] = Zﬂ [¢%) Sup (¢F] = Z/;’ %) (STH* (9P (3.21)

This relation can be used to establish a relation between the density kernel in the basis
of the contravariant support functions, K*#, and the one in the basis of the covariant
ones, Kyp:

K*F = (¢"|F|¢P)
= Y (9"197) Sy (¢°|FI¢°) Sec (¢ |9P)
Y.0,€8
=Y S (¢ |Flg;) S°F (3.22)
7.0
= ZS“”’K%S@.
7.0

However, in order to calculate the physical properties of the system, the density matrix
has to be represented neither in the basis of the contravariant support functions ¢* nor
in the basis of the covariant ones ¢,, but in a set of orthonormal support functions ¢,.
Due to the orthonormality of the latter ones it is not required any more to distinguish
between contravariant and covariant quantities, as follows from Eq. (3.18). Defining
these orthonormal functions by means of a Lowdin orthonormalization,

[Pa) = 3 (82 )apl9F) = Y (S71/2)*P |¢F), (3:23)
B p

one gets for the density kernel in this basis, denoted by K,g, the following expression:

Kap = ($u|Fldp)
= ng (Pal®™) Sys (9°FI6°) Sez (#°1p)
Y0,€,

— Z (8—1/2)0417 <(P17|(P'y> 8755‘5‘K1K8"€S€g <¢€’¢9> (5—1/2)9[5
V,0,€,8,11,0,1,K (3.24)

= Z (5_1/2)06775'77’7(5—1)7(5551[(”(5;(6(S—l)egsge(s—l/Z)elg
7.9,€,8,1,0,1,x

— 2(51/2)“‘K,K(51/2)"/3.
LK

Diagonalizing this matrix K will give the occupation numbers of the Kohn-Sham or-
bitals.
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The physical relevant Hamiltonian matrix H whose diagonalization will yield the
Kohn-Sham eigenvalues can be derived along the same lines. Denoting by H* =
(¢"|H|¢P) the Hamiltonian in the basis of the contravariant support functions one gets

I:Itx,B = <4~)a|H|4~)/3>
= Y (Bal9”) S5 (§°1H19°) Seg (¢°|p)

7.0,6,G

_ Z (8—1/2)0‘77 <(P77|(P,Y> Srr(sH(seSeC <4)€’¢9> (5_1/2)6,8 (3 25)
7,0,€,8,17,0 .

_ Z (5—1/2)0677577"/(S—l)’YJHJe(S—l)E@S@@(5_1/2)9[3
7,5,€,§,77,9

_ Z -1/2 tx(SH(Se S~ 1/2)eﬁ'

These two relations allow to write the total number of electrons and the band-structure
energy, which are — according to Eq. (3.8) — given by n = tr(K) and Eps = tr(KH),
respectively, in terms of the matrices K,g, H* and S%F:

n = tr(K) = tr(S'?2KS"?) = tr(KS),

3.26
Eps = tr(KH) = tr(S'/2KS'/2871/2HS~1/2) = tr(KH). (626
Explicitly written out this reads
n=Y KpS® =Y Kup (¢*]9F),
e w g (3.27)
Egs =) KygH" =Y Kup (¢%|H|9F) .
w,B «,B

Another important physical quantity, namely the total charge density, can readily be
derived from Eq. (3.15) and is given by

p(r) = DP (r)KypP (x). (3.28)

3.3.3 Idempotency of the density kernel

An important characteristic of the density kernel is its idempotency. This property can
be derived from the idempotency of the density matrix which reads

/F 1,1’ ,0)dr” = F(x, 7). (3.29)
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Writing both parts of the above equation in terms of the density kernel and the support
functions gives for the left-hand side

/F(r,r")F(r",r’) dr’ — Z /4)“(r)K,Wc,bV(r”)cpv(r”)KV/Wﬁ(r')dr"

b (3.30)
= Y 9"(1)KuyuS"KypgP(r')
«,B,1,v
and for the right-hand side
F(r,x') = Y ¢ (r)KeppP (). (3.31)
«,B

By comparing Eqs. (3.30) and (3.31) one finds the relation

Kig =) KapuS"Kyp (3.32)
y,v

or in more compact form
K = KSK. (3.33)

Consequently any method that tries to determine the density matrix using the ansatz
(3.15) has to make sure that Eq. (3.33) holds, be it by construction of the method or by
additional constraints in the optimization procedure.

3.3.4 Relation to the traditional Kohn-Sham scheme

The ansatz of writing the density matrix in terms of the support functions and the den-
sity kernel can smoothly be transformed back into the traditional Kohn-Sham formula-
tion. If the support functions were identical to the eigenfunctions of the Hamiltonian,
ie. ¢y = ¢* = P = P* - the contravariant and covariant quantities are identical in
this case due to the orthonormality of the Kohn-Sham orbitals —, the kernel elements
would be the occupation number times a Kronecker delta:

Kilgs) = // Pa()F(r, 1" )ipg(r') drdr’

= flep) [ pamppl) dr (3.34)
- f(eﬁ)étxﬁ-
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In this way one is back at the standard Kohn-Sham formulation:

5 = D H = L f(ep)ugHup = L f(e0)Hua = L flex)en

«,B o o

= Z/;,%(f o wp(r) Z% f(ep)daptpp(r) Zf ea)[pa(M, (335
KS) = ZﬁKD(LI;S)S(Xﬁ = Zﬁf G,B 0613506,3 = Zf €1x .

3.3.5 The Kohn-Sham orbitals in terms of the support functions

An alternative way of thinking is to directly express the Kohn-Sham orbitals ¢; as a
linear combination of the support functions:

1) = ;cmcp“(r). (3.36)
This formulation is completely equivalent to Eq. (3.15) since
= L f(ewitnnitr’) =Y f (e Zcmczﬁqb (') = L 9" (Kup9” (x'),
“ (3.37)

where the density kernel is given by
szﬁ = Zf(ei)ci,xciﬁ. (338)
i

The starting point to determine the expansion coefficients cf is the eigenvalue equation
(2.44) for the Kohn-Sham orbitals, ’Hlp,-(r) = €;;(r). Inserting Eq. (3.36) yields

Zcm’H(]) =g Zcmq) (3.39)
Multiplying from left with ¢P(r) and integrating gives

Zcm/cpﬁ(r)}[(p“(r) dr = eiZcm/cpﬁ(r)qb“(r) dr. (3.40)

Introducing the usual notations HP* = [ ¢P(r)H¢"(r)dr and SP* = [ ¢FP(r)¢*(r) dr
one finally gets

Y HP'cij = ;) SPhcy, (3.41)
14 14

Thus the result is that the expansion coefficients c;, are given by the solution of the
generalized eigenvalue equation
HCi = GiSCl'. (3.42)



CHAPTER 3. LINEAR SCALING DENSITY FUNCTIONAL THEORY
3.3. LINEAR SCALING IN BIGDFT 39

3.3.6 Orthonormal versus non-orthonormal support functions

In order to develop a method that scales only linearly with respect to the size of the
system it is mandatory to use a set of support functions being strictly localized. How-
ever, as already mentioned, the sparsity of the density kernel is governed by the decay
properties of the covariant support functions and not the contravariant ones them-
selves. So it might happen that, even though the contravariant support functions are
well localized, the covariant ones are fairly extended, thus causing the density kernel
to be a rather dense matrix and in this way hindering the development of an efficient
linear scaling code.

A solution to this problem would be to use a set of orthonormal support functions such
that S%% = §*f. Tt is clear from Eq. (3.18) that this implies the equality of contravariant
and covariant support functions, i.e. ¢, = ¢*. This simplifies the equations of the pre-
vious sections considerably since the overlap matrix appearing here and there can be
discarded.

Moreover, it is not required any more to distinguish between contravariant and covari-
ant quantities when considering, for instance, the density kernel. This is in particular
important from the viewpoint of the decay properties and consequently the sparsity of
the matrices. By using an orthonormal set of support functions it is guaranteed that the
sparsity of the density kernel is not artificially reduced due to the covariant support
functions being too extended.

However it is admittedly difficult to construct a set of support functions which is at
the same time strictly localized and orthonormal, since these are in general two con-
tradicting properties that are competing with each other. Actually there is only one
class of functions known which exhibits at the same time the two characteristics of
orthonormality and compact support, namely the Daubechies wavelets, which are the
underlying basis set of BigDFT and will be discussed in more detail in Sec. 4.4.

From these considerations it becomes clear that the support functions are actually re-
quired to exhibit two properties which are not compatible, meaning that it is necessary
to make some compromise for at least one of them. Since a stringent localization of
the support functions must be strictly enforced in order to reach linear scaling, there
will be a slight non-orthonormality of the support functions that has to be accepted.
However, if the localization regions are chosen sufficiently large, the deviations of the
overlap matrix from the identity matrix are fairly small. Therefore it is still justified
to make the assumption that the decay properties of the contravariant and covariant
support functions are identical, and thus also that the sparsity of the density kernel is
not artificially enlarged by the contravariant ones.

Still the general notation using the overlap matrix and the distinction between con-
travariant and covariant quantities is kept for the further discussions.
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3.3.7 Fixed versus optimized support functions

As can be seen from Eq. (3.26) the band-structure energy, which is one of the main
outputs of an electronic structure calculation, depends on the support functions and
the density kernel. Whereas the density kernel is characteristic for each system, this
is a priori not necessarily the case for the support functions. Thus they can basically
be classified in two categories, namely those which are fixed and those which are op-
timized in-situ during the calculation.

So far it has not been specified which category is most suited for the current purposes.

There might be the hope that it would be possible to use a fixed set of support func-
tions and only optimize the density kernel, in this way saving the time needed for the
in-situ optimization of the first ones.

However this approach is in general not suited from the viewpoint of the accuracy.
First of all there is no simple recipe how to generate a good set of support functions
beforehand, making their choice — and thus the final result of the calculation — some-
how arbitrary. In addition it might be that a given set gives good results for one system,
but fails for another one, i.e. the transferability would be completely lost in this way.

Furthermore it is not guaranteed that working with a fixed set of support functions is
actually faster. To overcome the mentioned problems it would be necessary to use a
rather large number of support functions. This large set will blow up the dimensions
of many quantities — e.g. overlap matrix, Hamiltonian matrix, density kernel, etc. —,
which will heavily increase the computation time.

By using, on the other hand, a set of support functions which is optimized in-situ for
each system, it should be possible to work with a much smaller set, resulting in ma-
trices whose dimensions are drastically reduced. Thus it might well happen that the
time spent for the optimization of the support functions is more than compensated.
Furthermore there will always be a natural transferability by construction in this way.

To summarize it seems to be more advantageous to optimize the set of support func-
tions in-situ during the calculation, which will then result in a relatively small number
of support functions still yielding an excellent accuracy.
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Wavelets — an ideal basis set for
linear scaling methods

4.1 Importance of the basis set

In reality most quantities that are dealt with are continuous functions. However, when
working on a computer, these quantities have to be transfered onto a finite grid and ex-
pressed in terms of a set of basis functions. Both the grid as well as the basis functions
which are chosen have a big influence on the accuracy and the speed of the calculation.

The simplest choice for the grid would be a uniform grid that covers the entire simula-
tions box. However this might result in a waste of computational resources if there are
wide regions of space which are empty, meaning that there is nothing that needs to be
expressed in terms of the basis set. A better solution would be to use an adaptive grid
which only covers those regions of space which are of interest.

The choice of the basis set is closely related to the choice of the grid. Obviously an
adaptive grid can only be used in connection with a basis set that allows such an adap-
tive resolution.

For the development of an efficient linear scaling code, the choice of the basis set is
of utmost importance. If one had to specify some properties that the basis set should
exhibit, one would probably list the following: It should have compact support in
order to give the possibility to work with strictly localized quantities; it should be or-
thonormal in order to avoid the tedious work with the overlap matrix that would arise
otherwise; and it should have systematic convergence properties such that one never
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has to worry about the quality of the basis set.
As will be shown in the next section, there indeed exists a basis set which exhibits all
these properties.

4.1.1 Wavelets — the third way

A popular choice for the basis set are plane waves. They have many nice properties
that make them a good candidate for electronic structure calculations: They exhibit
a systematic convergence, meaning that adding more plane waves will systematically
increase the accuracy; many of the important parts can efficiently be done using Fast
Fourier Transforms exhibiting a favorable N log N scaling; they form an orthonormal
basis set; and they are strictly localized in Fourier space.

On the other hand there are also a few properties that are quite disadvantageous in par-
ticular for linear scaling calculations: There is no localization in real space, i.e. empty
regions of space still have to be covered by the basis set; and there is no possibility
to increase the resolution around the nuclei where usually higher accuracy is required
than farther away.

Another popular choice for the basis set are Gaussians. They are in some sense the
opposite of plane waves, meaning that they perform poorly in those fields where the
plane waves are advantageous and vice versa. In more detail, they exhibit no sys-
tematic convergence properties since adding more and more Gaussians might lead to
basis superposition errors; furthermore it is not as obvious as for plane waves how to
generate a good basis set. On the other hand they have a natural localization in real
space and allow for an adaptive resolution around the nuclei. In addition the number
of basis functions that is required to get a certain level of accuracy is usually much
smaller compared to the number of plane waves needed to obtain the same accuracy.

Another interesting possibility for the choice of the basis set is to use wavelets. They
can in some sense combine the advantages of both plane waves and Gaussians. They
are well localized in both Fourier space and real space; they form an orthonormal basis
set; they allow for an adaptive resolution in certain regions of space; and they exhibit
systematic convergence properties.

Comparing these properties with the wish list at the end of the previous section it be-
comes clear that wavelets are an ideal candidate for a basis set to be used in the context
of linear scaling calculations.
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4.2 Basic properties of wavelets

There are many different families of wavelets, each one exhibiting some special charac-
teristics. BigDFT uses the so-called least asymmetric Daubechies of order 16 [67]. However
a much simpler wavelet family will be used in order to demonstrate some basic prop-
erties of wavelets.

4.2.1 An illustrating example — the Haar wavelet family

The conceptually simplest wavelet family is the so-called Haar wavelet family [68],
which is shown in Fig. 4.1. Of course this wavelet family is way too crude to be useful
in any numerical context, but it is well suited to illustrate some basic properties of
wavelets [69].

Each wavelet family consists of a mother scaling function ¢ and a mother wavelet 1.
As can be seen from the figure, the wavelet is varying more rapidly than the scaling
function.
In order to generate a basis set out of these mother functions, one can use scaling and
shifting operations:
k k ;
i (x) o< p(2°x — 1),
k k ;
PH(x) o p(2hx — i),
According to this notation the index k describes the resolution — i.e. higher values of k
represent skinnier functions —, whereas the index i stands for the localization in space.

These scaled and shifted scaling functions and wavelets can now be used to approxi-
mately represent a continuous function, as will be shown in the following.

(4.1)

For simplicity first the case where the basis set consists only of scaling functions is
considered. As an easy example a piecewise function f in the interval [0, 1] which can
exactly be expanded in terms of 16 Haar scaling functions at resolution level 4 will be
used for illustrating purposes. Thus the function f may be written as

)= Ysbght) with sf = F(i/16). @2)
i=0

Figure 4.1: Plot of the Haar wavelet family, which is
conceptually the simplest wavelet family. On the
left side the scaling function ¢ is shown, on the
right side the corresponding wavelet ¢. As can
be seen the wavelet is varying more rapidly than
the scaling function.

o -
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Figure 4.2: Representation of

a piecewise constant function o
using 16 Haar scaling func- |
tions at resolution level 4. 0 1

An illustration of this expansion is shown in Fig. 4.2. For a function which is not piece-
wise constant the expansion in terms of the scaling functions is analogous, just that in
general the equality between the original function and the scaling function representa-
tion is not absolutely exact — this would only hold true in the limit of infinitely skinny
scaling functions.

Another, more interesting possibility is to expand the function f in terms of both scal-
ing functions and wavelets. To this end it is necessary to determine a relation between
scaling functions and wavelets at different resolution levels. As is depicted in Fig. 4.3
a scaling function at resolution level k can be written as a linear combination of a scal-
ing function and a wavelet at resolution level kK — 1. So any linear combination of the
two scaling functions ¢4;(x) and ¢5; ;(x) can be written as a linear combination of the
scaling function (])f.‘_l (x) and the wavelet 1pf.“1 (x).

Consequently the function f from Eq. (4.2) may as well be written as

7 7
flx) =Y 797 (x) + Y dPy? (x). (4.3)
i=0 i=0

The prescription how to get the expansion coefficients at level k — 1 from the coefficients
at level k can be determined in this simple case by looking at Fig. 4.3 and is given by

1 1
k—1 k k
Si 252i 252i+1’

5521‘ - 252i+1-

(4.4)
g1 —

This procedure is called “forward transform” or “wavelet analysis”.

) 0}
1/2 -l - level k-1 1/2 -l -
p [
+1/2 = - levelk-1  -1/2 k=

Figure 4.3: Each skinny scaling function J J i
at resolution level k can be written as
a linear combination of a coarse scaling
function and a coarse wavelet at resolu- ‘g q
tion level k — 1. R level k R O N
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(a) The scaling function part of the function, (b) The wavelet part of the function, which
which is much smoother than the origi- contains obviously the rapidly oscillating
nal one, meaning that it is varying more corrections to the scaling function repre-
slowly. sentation.

Figure 4.4: Representation of the same function as in Fig. 4.2, however this time split up
in scaling functions and wavelets at resolution level 3 according to Eq. (4.3). The original
function is indicated in decent blue.

Eq. (4.4) demonstrates that the scaling function coefficients at the lower resolution
level are given by a weighted sum of the scaling function coefficients at the higher
resolution level, whereas the wavelet coefficients are given by a weighted difference.
Therefore it is intuitively clear that the scaling function part in Eq. (4.3) represents a
smoothened version of the function, whereas the wavelet part represents the rapidly
varying corrections to this smoothened function.

This fact is illustrated in Fig. 4.4. The part which is given by the scaling functions only,
i.e. the sum Y.7_s7¢3(x), is shown in Fig. 4.4a and is clearly much smoother than the
original function — at least to the extent to which a step function can be called smooth.
On the other hand, the wavelet part, i.e. the sum Y7_, d33(x), is varying much faster,
as can be seen from Fig. 4.4b.

Given a data set whose size is a power of 2, this procedure may now be applied
recursively until one finally arrives at

3 7
fx) = sQp (x) +ddd (x) + Zdlw, )+ Y i (x) + Y Bl (x). (45
i=0 i=0

This representation requires exactly the same number of expansion coefficients as the
original one, namely 1 for the scaling function and 15 for the wavelets.

Still this representation is much more interesting than the one using only scaling func-
tions. As depicted in Fig. 4.5 there is a region Where the function f is constant. From
the relations s = f(i/16) and dk 1 %sél 21 +1 (Egs. (4.2) and (4.4)) it is clear that

Figure 4.5: Since the function f is constant in
the region marked in yellow, some wavelet
coefficients will turn out to be zero in this
region. Consequently the function can be
compressed by using a mixed scaling func-

0 1 tion / wavelet expansion.
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some of the wavelet coefficients will turn out to be zero — this fact is also visible in
Fig. 4.4b, where the wavelet part of the function is zero for the region where f is con-
stant — and the function f as given by Eq. (4.5) can be expressed by fewer than the 16
coefficients which are used there.

Thus the conclusion is that a mixed scaling function / wavelet expansion is very well
suited to compress data that is only slowly varying.

Since the two representations (4.2) and (4.5) are completely equivalent, it is also pos-
sible to go back from the mixed scaling function / wavelet representation to an ex-
pansion using only scaling functions. Here the fact that a wavelet family fulfills the
so-called refinement relations can be used, meaning that each scaling function and
wavelet at resolution level k — 1 can be written as a linear combination of scaling func-
tions at resolution level k. This fact is again depicted for the Haar wavelet family in
Fig. 4.6.
In this simple example the prescription how to get the expansion coefficients for the
scaling functions at resolution level k from the scaling function and wavelet coefficients
at resolution level k — 1 can again be determined by looking at the figure and is given
by

sy =i +di Y,

k

. (4.6)
52i+1 = 5;

1 di'(_l'

This procedure is call a “backward transform” or “wavelet synthesis”.

o o
————————————————— - level k el
o o
+ - level k S -

Figure 4.6: Illustration of the refinement

relations for the Haar wavelet family:

Each scaling function and wavelet at

resolution level k — 1 can be written as m

linear combination of scaling functions = . level k-1

at resolution level k.

4.2.2 Basic formulas for wavelets

In this section some basic formulas that are valid for an orthogonal wavelet family are
noted. A more detailed list can be found in an overview by Goedecker [69] and the
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non-trivial proofs in the book by Daubechies [67].

An orthogonal wavelet family can be completely characterized by two filters h and g
of finite length. Even though the functional form of the scaling functions and wavelets
is missing, knowing these filters allows to completely specify the wavelet family.

4.2.2.1 Orthogonality and symmetry of the filters
The filters h and g fulfill the following orthogonality relations

Y _aili_sj = b, (4.7a)
I

Y 8i-2i81-2j = i, (4.7b)
I

Y u2ig1-2j =0, (4.7¢)
I

and the symmetry relation
giv1 = (=1)"1h_;. (4.8)

4.2.2.2 Refinement relations

The refinement relations, which were descriptively shown in Fig. (4.6), are given by

=v2 Y hip(2x—j), (4.9a)
j=—m
m
=V2 Y gip(2x—j), (4.9b)
j=—m
or alternatively written by
=v2 ) h]¢’2‘l++1] (4.10a)
]——m
k
=2 2 8iphi (%), (4.10b)
]*—m

where the notations ¢¥(x) = \/Ek(,b(ka —i) and ¥ (x) = \/Ek(p(ka — i) were used.
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4.2.2.3 Forward and backward transform

The prescription how to calculate the new coefficients in the course of a forward trans-
form — also called wavelet analysis — is given by

m
sih= Y hishia (4.11a)
j=—m
k—1 - k
j=—m

and the one for the backward transform — also called wavelet synthesis — is given

m/2

ssit =Y hysi i+ gods ), (4.12a)
j=—m/2

k+1 2 k k

St = 2 hopnsi+gondl . (4.12b)
j=—m/2

Egs. (4.11) and (4.12) are the generalizations of Egs. (4.4) and (4.6), respectively.

4.2.2.4 Orthogonality of the scaling functions and wavelets

Just as the filters, the scaling functions and wavelets satisfy as well orthogonality rela-
tions:

/ OF (x) ¢ (x) dx = &y, (4.13a)
/ Pi(x)¢](x)dx =0, k>gq, (4.13b)
[ #Ew] () dx = 58 (#130)

4.2.3 \Wavelets in three dimensions

So far only scaling functions and wavelets in one dimension have been considered.
However real applications typically require a three-dimensional basis set. Thus the
one-dimensional scaling functions and wavelets have to be generalized to three dimen-
sions.

The easiest way to construct such a three-dimensional basis set consists in forming
products of one dimensional scaling function and wavelets. This gives rise to one
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three-dimensional scaling function, which is a product of three one-dimensional scal-
ing functions, and seven three-dimensional wavelets, which are products containing at
least one one-dimensional wavelet:

%Lwy,>=¢w Doy — )9z k),
90 2) = plx — )Py — gz — k),
Wx%>=¢u DYy — ez —k),
D y,2) = plx—D)ply — gz — k),
_ (4.14)
lﬂuy,>=¢u Doy — )z — k),
(0 ,2) = plx— DPly — )Pz — k),
P10 00 1,2) = lx — Py — )z — k),
P, 2) = (e — Dy — f)ip(z — k)

The three-dimensional scaling functions and wavelets fulfill as well orthogonality and
refinement relations which are generalizations of the ones for the one-dimensional
case.

Forward and backward transforms are done by first transforming along the x dimen-
sion, then along the y dimension and finally along the z axis, or any other order.

4.3 Calculating derivatives in a wavelet basis

Since the application of the kinetic energy operator —%VZ requires the calculation of
derivatives, it is important that the basis set allows to perform this operation efficiently.
Fortunately this is the case for wavelets.

It turns out that applying the derivative operator of any order , 2 a =, to a scaling func-
tion at position j; and projecting this quantity back onto a scaling function at position
i1 gives rise to a special filter of finite length that is denoted by 4;, _; and only depends
on the difference i; — j;. The filters for the other cases — applying the derivative to a
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wavelet and projecting back onto a scaling function etc. — are defined analogously:

l

Bjy—jy = /<P(x - i1)%¢(x —j1)dx, (4.15a)
al

biy—j, = /lP(x - i1)@</>(x —j1)dx, (4.15b)
al

Cip—jy = /cP(x - i1)@¢(x —j1)dx, (4.15¢)
al

€iy—j; = /lP(x - i1)@¢(x — j1) dx. (4.15d)

The calculation of these filters is shown in more detail in appendix A.1.

Once these filters are determined, the calculation of derivatives in the wavelet basis
is not difficult any more. Given a quantity ¥(x,y,z) that is expanded in a three-
dimensional wavelet basis,

Y(x,y,2) = Y 55555 i¢(x — )¢y — j2)P(z — j3)

sz‘ Y. dssjy ¥ (x — 1)@y — j2)¢(z — j3)
+]‘1’]£3 sdsj, jp, i (X — )Py — j2)¢(z — Ja)
+]‘M£3 ddsj, j, ;0 (x — 1)y — j2)¢(z — Ja)
T ss = 00— PO~ ) (41
+]‘M£3 dsdj, j, (X — 1)y — j2)§(z — Ja)
+]‘M£3 sddj, j, ¢ (x — j1)P(y — j2)§(z — J3)
+:Z:: dddj, i (x = )y — 2)$(z = ja),

where sss, dss etc. are the three-dimensional generalizations of the s and d coefficients
introduced previously, applying the derivative operator is straightforward, as is shown
in more detail in appendix B.1. Denoting by sssfllizli3 the expansion coefficient for
the scaling function ¢(x —i1)¢p(y —i2)¢p(z — i3) after the application of the derivative
operator, then its value is given by

9!

SSS, iy iy = ///<P(x — )¢y —i2)9(z —i3) 57 (x,y, 2) dxdydz

= Zah_ilsssjl’iz’i3 + ijl—ildssjlfl‘z,lé‘
il Ji!

(4.17)
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The coefficients for the three-dimensional wavelets and the other directions can be cal-
culated along the same lines and are given in appendix B.1.

To conclude this means that the calculation of the derivatives requires simply a convo-
lution with a filter of finite length.

4.4 \Wavelets in BigDFT

As already mentioned the wavelet family used in BigDFT is the least asymmetric Daube-
chies of order 16 family, which is an orthogonal family with compact support. The filters
h and g which characterize the family have only non-zero entries in the interval from
-7 to 8, which makes in total 16 elements. Since the extent of the scaling functions and
wavelets is as well determined by the length of this filter, a scaling function or wavelet
centered on a given grid point i does not extend farther than i —7 and i + 8. A plot of
the scaling function and the associated wavelet is given in Fig. 4.7.

T T
scaling function
wavelet

Figure 4.7: Plot of the scaling function and
wavelet of the least asymmetric Daubechies
of order 16 wavelet family. Due to the fil-
ter which has non-zero entries only in the
range from -7 to 8, the Daubechies are only
different from zero in the same interval.
The wavelet is varying more rapidly than
the scaling function, which is in agreement
with the discussion of the Haar wavelet at
the beginning of this chapter.

4.4.1 The various resolution levels

A priori a wavelet basis allows to use as many resolution levels as desired. However
in BigDFT there are only three levels of accuracy:
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e A grid point carries one scaling function and seven wavelets. This is the case for
all grid points that are close to the nuclei and therefore require a high resolution.
Points which belong to this category are said to lie in the “fine region”.

e A grid point carries only one scaling function. This is the case for all grid points
that are farther away from the nuclei. Points which belong to this category are
said to lie in the “coarse region”. The resolution in the coarse region is half that
of the fine region.

e A grid point carries neither scaling function nor wavelet. This is the case for all
grid points that are even farther away from the nuclei than those of the coarse
region. Since these points do not contribute to the representation of a quantity in
the wavelet basis, they can be completely discarded.

It is worth noting that even though the resolution in the fine region is doubled com-
pared to the coarse region, the grid spacing is the same in the entire simulation box.
The resolution enhancement stems only from the additional wavelets in the fine region.

The prescription how to generate the coarse and the fine region is rather simple. The
coarse region is defined as the union of spheres with a given radius which are cen-
tered on each nuclei, and the fine region is analogously defined by a union of spheres
with a smaller radius. The radii of these spheres are given by the product of an atom-
dependent constant and a user-specified factor. The grid which is constructed in this

Figure 4.8:  Visualization of the
coarse and fine regions for cin-
chonidine which has the chemi-
cal formula C;9H»,N,O. The yel-
low points represent the coarse
grid, the light blue points the fine
grid. Points which are neither in
the coarse nor in the fine region é
are not shown. -
The points belonging to the Z
coarse region carry one scaling > e
function, whereas the points be- T
longing to the fine region carry in
addition seven wavelets. It is ob-
vious how the resolution is adap-
tively increased around the nu-
clei in this way.
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way will be referred to as global grid or global region. A visualization of both regions
for the case of a small molecule (cinchonidine, C;4H,,N,0) is given in Fig. 4.8.

4.4.2 The wavelet basis in the traditional cubic version

In the traditional cubic version of BigDFT, the Kohn-Sham orbitals — denoted here by ¥
to avoid any confusion — are directly expanded in the basis of the Daubechies scaling
functions and wavelets:

Ti(r) - Z ]1]2]34)]1]:2]3 + Z Z ]112]31/%1]2]3() (4.18)

Jui23 Jujaja v=
Here s;- i and d;l i correspond to the sss; i ;. etc. coefficients in (4.16), and
®j, jn,js (1) and 1p]1 i, ]3( r) are shorthand notations for ¢(x — j1)p(y — j2)¢(z — j3) etc.
According to the definition in the previous section, a given grid point (ji, jo, j3) will
have both s and d coefficients if it belongs to the fine region, only a s coefficient if it
belongs to the coa