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1
Introduction

Any piece of matter, be it a small isolated molecule or a large infinite periodic crystal, is
in principle just a collection of nuclei and electrons. The interactions among them and
consequently the properties of matter are governed by the fundamental laws of quan-
tum mechanics. Since the basic equations describing these interactions are known, the
determination of the properties of matter seems to be a simple task at first sight. Meth-
ods that use these laws are called ab-initio methods.

For some very simple examples – the most famous one probably being the hydrogen
atom – the fundamental equations can be solved analytically. Even for slightly more
complicated systems, an analytical solution is not possible any more and one there-
fore has to either use some approximations which allow an analytical solution or to
solve the equations numerically on a computer. However, for most systems of interest,
even the best supercomputers available nowadays are not capable to solve the quan-
tum mechanical problem in its exact form. Consequently one has – even when using a
numerical approach – to search for some simplifications in order to make the equations
solvable while still keeping the quantum mechanical origin of the description.

The first fundamental approximation that is usually adopted is the so-called Born-
Oppenheimer approximation which allows to treat the nuclei as classical particles.
One is therefore left with the task of solving the electronic structure problem in a
quantum-mechanical way. Unfortunately also this problem remains way too compli-
cated in order to be solved exactly even numerically and one therefore has to adopt
further simplifications.

There exist several such approximations, differing conceptually by how much they
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stick to the fundamental quantum mechanical equations. Thus the accuracy and con-
sequently also the speed of these methods vary a lot and the number of atoms that can
be treated with them ranges from only a few ones to several millions.

One of the most famous approaches to accomplish the task of solving the electronic
structure problem is the framework of Density Functional Theory (DFT). Here the ap-
proximation consists of turning the system of interacting electrons into a system of
non-interacting quasi-electrons. Since its development in the 1960s, DFT has become
one of the most popular electronic structure methods due to its good balance between
accuracy and speed.

Even though DFT can offer a substantial speedup compared to other ab-initio methods,
its usage is still limited to currently a few hundred atoms. The reason is its asymptoti-
cally cubic scaling, which makes calculations for really large system prohibitive.
Fortunately this problem can be circumvented by the introduction of so-called linear
scaling algorithms. Of course these algorithms come again at the cost of some further
approximations, but it can be shown that they are well justified and linear scaling DFT
is consequently still – at least to the extent to which standard DFT is – a fully ab-initio
method. Using these low-complexity algorithms it is possible to carry out DFT calcu-
lations for thousands or even millions of atoms, in this way pushing up the size of the
systems that can be investigated with ab-initio methods.

Nevertheless DFT calculations for large systems remain a very sophisticated task and
are only doable on large supercomputers. Due to the fact that the computational power
of a single core does not increase any further and the overall power of the supercom-
puters nowadays stems from their massive parallelism, it is of utmost importance that
any code that aims to run on such a machine is highly parallelized. Therefore an effi-
cient parallel implementation is as important as using a good physical approach.

This first part of the Thesis describes the implementation of a linear scaling DFT code
within the framework of the already existing BigDFT package. To this end the fun-
damental principles of electronic structure calculations and DFT in particular are pre-
sented first, followed by a brief outline on how the intrinsic cubic scaling of this ap-
proach can be linearized. After a short overview over the wavelet basis set that is
used in BigDFT and which exhibits some very nice properties making it an ideal basis
set for linear scaling calculations, the text focuses on the implementation of the linear
scaling version of BigDFT. In this section the style will be a mixture of theoretical con-
siderations and practical applications, in this way trying to illustrate the problems that
had to be dealt with during the implementation. A strong focus will also be put on
the parallelization of the code. The first part concludes with some benchmark results
demonstrating the capabilities of the linear scaling version of BigDFT.
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It must be noted that the even though the code is capable of giving accurate results at
an almost perfect linear scaling, it is still under development and there are still some
open problems that need to be addressed. An overview of these issues is given towards
the end of this first part.
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2
Some basics about electronic

structure calculations

2.1 The Born-Oppenheimer approximation

Due to the quantum-mechanical nature of the electrons and the nuclei which are the
constituents of matter, an exact calculation of their interactions is – except for the most
simple cases – not possible. Consequently one has to introduce some approximations
in order to be able to solve the problem.
The range of approximations is very wide, but in general all of them rely on the Born-
Oppenheimer approximation which will be derived in the following [1].

A priori, ab-initio calculations for a system composed of electrons and nuclei require
to treat both of them quantum-mechanically, i.e. the combined electron-nuclei wave
function Ψen({Rl}, {rl}) has to be calculated, where {Rl} stands for the coordinates of
all nuclei in the system and {rl} for those of all electrons. This wave function is an
eigenfunction of the combined electron-nuclei Hamiltonian

Hen({Rl}, {rl})Ψen({Rl}, {rl}) = EenΨen({Rl}, {rl}), (2.1)

where Hen({Rl}, {rl}) is defined as

Hen({Rl}, {rl}) = T n({Rl}) +H({Rl}, {rl}) (2.2)
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with

T n({Rl}) = −
N

∑
i=1

1
2Mi

∇2
Ri
,

H({Rl}, {rl}) =
N

∑
i=1

i−1

∑
j=1

ZiZj

|Ri −Rj|
−

n

∑
i=1

1
2
∇2

ri
+

n

∑
i=1

i−1

∑
j=1

1
|ri − rj|

−
n

∑
i=1

N

∑
j=1

Zj

|ri −Rj|
.

(2.3)

Here Mi stands for the mass of the ith nucleus in atomic units, N for the total number
of atoms and n for the total number of electrons. T n({Rl}) is the kinetic energy of the
nuclei, and the terms of H({Rl}, {rl}) are the electrostatic repulsion among the nuclei,
the kinetic energy of the electrons, the electrostatic repulsion among the electrons and
the electrostatic attraction between the electrons and the nuclei.
The above operators were written in atomic units which are defined by setting me = 1,
e = 1, h̄ = 1, 1/4πǫ0 = 1. This convention will always be used in the following unless
otherwise stated. The other convention which will be used throughout the Thesis is
that only non-complex quantities are considered.

Unfortunately the above eigenvalue equation is way too complicated to be solved di-
rectly. Therefore one has to adopt some approximations.
To this end one introduces the electronic wave functions Φk({Rl}, {rl}) which are
eigenfunctions of the electronic Hamiltonian,

H({Rl}, {rl})Φk({Rl}, {rl}) = ǫk({Rl})Φk({Rl}, {rl}). (2.4)

Due to the hermiticity of the operator H({Rl}, {rl}) its eigenfunction form a complete
set with respect to the space of the electronic coordinates. Therefore the combined
electron-nuclei wave function can be expanded in this basis:

Ψen({Rl}, {rl}) = ∑
k

Φk({Rl}, {rl})ψn
k ({Rl}). (2.5)

Inserting this expansion into Eq. (2.1) yields

−
N

∑
i=1

∑
k

1
2Mi

∇2
Ri

Φk({Rl}, {rl})ψn
k ({Rl}) + ∑

k

ǫk({Rl})Φk({Rl}, {rl})ψn
k ({Rl})

= Een ∑
k

Φk({Rl}, {rl})ψn
k ({Rl}). (2.6)

The next step is to multiply from left with Φj({Rl}, {rl}) and to integrate. Using the
orthonormality relation

∫

dr1· · ·
∫

drn Φj({Rl}, {rl})Φk({Rl}, {rl}) = δjk (2.7)
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this yields

−
N

∑
i=1

∑
k

1
2Mi

∫

dr1· · ·
∫

drn Φj({Rl}, {rl})∇2
Ri

Φk({Rl}, {rl})ψn
k ({Rl})

+ ǫj({Rl})ψn
j ({Rl}) = Eenψn

j ({Rl}). (2.8)

Applying the product rule for the Laplace operator ∇2 and again using the orthonor-
mality relation one arrives at

−
N

∑
i=1

1
2Mi

∇2
Ri

ψn
j ({Rl})

−
N

∑
i=1

∑
k

1
2Mi

∫

dr1· · ·
∫

drn
[

Φj({Rl}, {rl})∇Ri
Φk({Rl}, {rl})∇Ri

ψn
k ({Rl})

+ Φj({Rl}, {rl})∇2
Ri

Φk({Rl}, {rl})ψn
k ({Rl})

]

+ ǫj({Rl})ψn
j ({Rl}) = Eenψn

j ({Rl}). (2.9)

So far no approximation has been used and everything is still exact. However now
the first simplification comes into play. In the so-called adiabatic approximation the
sum that runs over k and in this way couples different electronic eigenstates is com-
pletely discarded and only the electronic ground state Φ0({Rl}, {rl}), ǫ0({Rl}) is used
throughout the entire equation; this will also allow to replace ψn

j by ψn
0 :

−
N

∑
i=1

1
2Mi

∇2
Ri

ψn
0 ({Rl})

−
N

∑
i=1

1
2Mi

∫

dr1· · ·
∫

drn
[

Φ0({Rl}, {rl})∇Ri
Φ0({Rl}, {rl})∇Ri

ψn
0 ({Rl})

+ Φ0({Rl}, {rl})∇2
Ri

Φ0({Rl}, {rl})ψn
0 ({Rl})

]

+ ǫ0({Rl})ψn
0 ({Rl}) = Eenψn

0 ({Rl}). (2.10)

This approximation is justified by the presence of the factor 1
Mi

, which causes the non-
adiabatic coupling terms to be small due to the large value of Mi. However this holds
only as long as there are no electronic energies ǫi being nearly degenerate. This can be
seen by rewriting such a non-adiabatic coupling term:

∫

dr1· · ·
∫

drn Φj({Rl}, {rl})∇Ri
Φk({Rl}, {rl})

=
1

ǫj − ǫk

∫

dr1· · ·
∫

drn Φj({Rl}, {rl})[H({Rl}, {rl}),∇Ri
]Φk({Rl}, {rl}). (2.11)
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Since the result of the commutator is given by

[H({Rl}, {rl}),∇Ri
] = Zi

n

∑
j=1

rj − Ri

|rj −Ri|3
(2.12)

and the numerator in (2.11) is thus finite, it follows that these coupling terms become
very large as soon as the energies ǫj and ǫk come close together.

However even with this simplification the second term in Eq. (2.10) remains still quite
involved. Therefore, as a second approximation and again justified by the presence of
the factor 1

Mi
, this term is completely discarded as well, in this way leading to

−
N

∑
i=1

1
2Mi

∇2
Ri

ψn
0 ({Rl}) + ǫ0({Rl})ψn

0 ({Rl}) = Eenψn
0 ({Rl}). (2.13)

This is the final result of the so-called Born-Oppenheimer approximation [2]. The
nucleonic wave function ψn

0 ({Rl}) is moving in the potential generated by the eigen-
values ǫ0(Ri) of the electronic ground state. For this reason the electronic ground state
energy is also called the ground state potential energy surface or ground state Born-
Oppenheimer surface.

Solving Eq. (2.13) gives the nucleonic wave function ψn
0 (Ri) and the energy Een of the

combined system of electrons and nuclei. The combined electron-nuclei wave function
is, according to Eq. (2.5), given by

Ψen({Rl}, {rl}) = Φ0({Rl}, {rl})ψn
0 ({Rl}). (2.14)

To conclude, the Born-Oppenheimer approximation states that one first has to solve
for the electronic ground state while keeping the nuclei fixed and then use this result
in order to move the nuclei.

2.2 Solving the electronic structure problem

It has been demonstrated in the previous section that within the Born-Oppenheimer
approximation the electronic ground state has to be determined [1, 3] while keeping
the nuclei fixed. The fundamental equation to solve this problem is the many-body
Schrödinger equation

H({Rl}, {rl})Φ({Rl}, {xl}) = ǫ({Rl})Φ({Rl}, {xl}). (2.15)
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Since electrons are not only characterized by their position rl, but also by their spin sl,
the combined variable xl = (rlsl) has been introduced. The Hamiltonian H({Rl}, {rl})
is the same as in Eq. (2.3) and is independent of the spin.

The wave function Φ({Rl}, {xl}) is normalized to one,
∫

dr1· · ·
∫

drn |Φ({Rl}, {xl})|2 = 1, (2.16)

and is – due to the nature of electrons being fermions and thus obeying the Pauli
exclusion principle [4] – required to be antisymmetric with respect to the exchange of
two electrons:

Φ({Rl}, x1, . . . xi, . . . , xj, . . . , xn) = −Φ({Rl}, x1, . . . xj, . . . , xi, . . . , xn). (2.17)

The ground state of the electronic many-body system is given by the variational prin-
ciple,

ǫ0 = min
Φ

〈Φ({Rl}, {xl})|H({Rl}, {rl})|Φ({Rl}, {xl})〉 , (2.18)

under the constraints (2.16) and (2.17).

What makes the solution of the electronic structure problem so difficult is its high
dimensionality. A wave function Φ({Rl}, {xl}) describing a system of n electrons is a
quantity of dimension 4n, which makes it impossible to work directly with it.

Instead of writing the energy in terms of the wave function it is also possible to express
it in terms of so-called density matrices. This is a completely equivalent concept and
will be used extensively in the context of the linear scaling algorithm.
The density matrix of a many-electron quantum state which is described by the many-
electron wave function Φ({Rl}, {xl}) is defined as

γn({Rl}; x1, . . . , xn; x′1, . . . , x′n) = Φ({Rl}, x1, . . . , xn)Φ({Rl}, x′1, . . . , x′n). (2.19)

Furthermore it is useful to introduce the so-called reduced density matrices of first and
second order:

γ1({Rl}; x1; x′1) = n
∫

dx2· · ·
∫

dxn Φ({Rl}, x1, x2, . . . , xn)Φ({Rl}, x′1, x2, . . . , xn),

γ2({Rl}; x1, x2; x′1, x′2)

= n(n− 1)
∫

dx3· · ·
∫

dxn Φ({Rl}, x1, x2, x3, . . . , xn)Φ({Rl}, x′1, x′2, x3, . . . , xn).
(2.20)

The spin charge density γ(x), which will be of great importance later on, is given by
the diagonal part of the reduced density matrix of first order, i.e.

γ(x) = γ1(x; x). (2.21)
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With these definitions all energy contributions appearing in the Hamiltonian of Eq. (2.3)
can be expressed in terms of the reduced density matrices of first and second order:

En−n =
N

∑
i=1

i−1

∑
j=1

∫

dx1· · ·
∫

dxn Φ({Rl}, x1, . . . , xn)
ZiZj

|Ri − Rj|
Φ({Rl}, x1, . . . , xn)

=
N

∑
i=1

i−1

∑
j=1

ZiZj

|Ri − Rj|
, (2.22a)

Ekin = −1
2

n

∑
i=1

∫

dx1· · ·
∫

dxn Φ({Rl}, x1, . . . , xn)∇2
ri

Φ({Rl}, x1, . . . , xn)

= −n

2

∫

dx1· · ·
∫

dxn Φ({Rl}, x1, . . . , xn)∇2
r1

Φ({Rl}, x1, . . . , xn)

= −1
2

∫

dx1∇2
r1
n
∫

dx2· · ·
∫

dxn Φ({Rl}, x1, . . . , xn)Φ({rl}, x1, . . . , xn)

= −1
2

∫

∇r1γ(x1; x
′
1)

∣

∣

∣

∣

x1=x′1

dx1, (2.22b)

Ee−e =
n

∑
i=1

i−1

∑
j=1

∫

dx1· · ·
∫

dxn Φ({Rl}, x1, . . . , xn)
1

|ri − rj|
Φ({Rl}, x1, . . . , xn)

=
n(n− 1)

2

∫

dx1· · ·
∫

dxn Φ({Rl}, x1, . . . , xn)
1

|r1 − r2|
Φ({Rl}, x1, . . . , xn)

=
∫

dx1
∫

dx2
1

|r1 − r2|
n(n− 1)

2

×
∫

dx3· · ·
∫

dxn Φ({Rl}, x1, . . . , xn)Φ({Rl}, x1, . . . , xn)

=
∫∫ 1

|r1 − r2|
γ2(x1, x2; x1, x2)dx1dx2, (2.22c)

Ee−n = −
n

∑
i=1

N

∑
j=1

∫

dx1· · ·
∫

dxn Φ({Rl}, x1, . . . , xn)
Zj

|ri −Rj|
Φ({Rl}, x1, . . . , xn)

= −n
N

∑
j=1

∫

dx1· · ·
∫

dxn Φ({Rl}, x1, . . . , xn)
Zj

|r1 − Rj|
Φ({Rl}, x1, . . . , xn)

= −
N

∑
j=1

∫

dx1
Zj

|r1 −Rj|
n
∫

dx2· · ·
∫

dxn Φ({Rl}, x1, . . . , xn)Φ({Rl}, x1, . . . , xn)

= −
N

∑
j=1

∫ Zj

|r1 − Rj|
γ(x1; x1)dx1. (2.22d)

The nuclei-nuclei interaction is given by the classical expression due to the normaliza-
tion condition of Eq. (2.16). For the other terms the symmetry of the wave function –
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see Eq. (2.17) – was employed to get rid of the sum. Furthermore integration by parts
was used in order to shift the Laplace operator in the derivation of the kinetic energy.

One might wonder why the dimensionality problem can not be solved by the intro-
duction of the density matrices, since the energy – which used to be expressed via the
4n-dimensional wave function – is now expressed via the reduced density matrices of
first and second order which have only dimension 4 and 8, respectively.
However this is not as simple as it might seem since there is the hidden constraint that
these density matrices can be obtained from a n-electron wave function. This constraint
is known as the n-representability problem. Whereas there is no known criterion which
can ensure that a second order density matrix is n-representable, it can be shown [5,6]
that for the first oder density matrix the eigenvalues must be in the interval [0, 1].

Due to these difficulties, it is – except for the most simple examples – not possible to
exactly solve the electronic structure problem. Therefore one has to introduce some ad-
ditional approximations. Popular choices for these approximate methods are Hartree-
Fock (HF), Møller-Plesset perturbation theory of various order (MP2, MP3, MP4),
Configuration-Interaction of various accuracy (CISD, CISD(T)) and Coupled Cluster
of various accuracy (CCSD, CCSD(T)) [3]. Hartree-Fock is the fastest, but also the least
accurate of these methods, whereas Coupled Cluster and Configuration Interaction are
the most accurate, but also the most expensive ones. Møller-Plesset perturbation the-
ory lies in between them from the viewpoint of both the accuracy and the cost.

A general problem of all these methods is their bad scaling which ranges from N4

for HF over N5 for MP2, N6 for MP3, CISD and CCSD to N7 for MP4, CISD(T) and
CCSD(T), where N is the size of the basis set. Consequently these methods, in partic-
ular the more accurate ones, are only applicable to very small systems.
Even though there exist variants of these wave function methods which exhibit a linear
scaling with respect to the number of atoms [7–9], the bad scaling with respect to the
size of the basis set persists; consequently these approaches can in practice only be
used in connection with a small basis set and are thus limited in accuracy.

An alternative to these methods is Density Functional Theory, which will be presented
in detail in the following.

2.3 Some basics about Density Functional Theory

Density Functional Theory (DFT) [1, 10] is a very popular method to solve the elec-
tronic structure problem since it gives reasonable accuracy at moderate computational
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costs. The scaling is proportional to the cube of the system size – this property will
be analyzed in more detail in Sec. 2.4 –, which is better than all other methods that
have briefly been mentioned in the previous section. Still the accuracy one gets with
DFT is usually better than that of Hartree-Fock, which is the most favorable of these
approaches from the viewpoint of the scaling.

For the remaining part of the discussion spin will be ignored for the sake of simplicity.
Anyway spin can be neglected for the important class of closed shell systems which
contain an even number of electrons; in this case one can get rid of the spin dependency
by an integration over this degree of freedom. As an example, the spinless reduced
density matrix of first order is given by

ρ1(r1; r′1) =
∫

γ1(r1s1; r′1s1)ds1. (2.23)

Thus the many-body wave function depends only on 3n and the charge density on 3
spatial coordinates.
Also the condition for the first order density matrix to be n-representable is different
for a closed shell system: Instead of lying in the interval [0, 1] the eigenvalues must
now be contained in the interval [0, 2].

2.3.1 The Hohenberg-Kohn theorems

The fundamental basis upon which DFT is built is the first Hohenberg-Kohn theo-
rem [11] which states the following: The ground-state density ρ0(r) uniquely determines

the potential, up to an arbitrary constant.

To demonstrate this theorem the electronic Hamiltonian of Eq. (2.3) is first split up into
its various contributions, namely the kinetic energy of the electrons T , the electron-
electron repulsion Vee and the external potential represented by the one-body operator
Vext:

H = T + Vee + Vext,

T = −1
2

n

∑
i=1

∇2
ri
,

Vee =
n

∑
i=1

i−1

∑
j=1

1
|ri − rj|

,

Vext =
n

∑
i=1

vext(ri).

(2.24)
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If there is no external field present, the external potential is simply given by the po-
tential generated by the nuclei, i.e. vext(ri) = ∑

N
j=1

Zj

|ri−Rj| . The interaction among the
nuclei was removed from the Hamiltonian since it is not relevant for the electronic
structure problem.
The proof of the first Hohenberg-Kohn theorem is done by contradiction. To this end
one first assumes that there exist two external potentials V (1)

ext and V (2)
ext that differ by

more than a constant and that give rise to the same ground state density. These two
potentials would define two different Hamiltonians H(1) and H(2) with two different
ground states Φ(1) and Φ(2). Since Φ(2) is not the ground state for H(1) it follows from
the variational principle that

〈Φ(2)|T + Vee + V (1)
ext |Φ(2)〉 > 〈Φ(1)|T + Vee + V (1)

ext |Φ(1)〉 . (2.25)

The strict inequality in this equation is justified by the assumption that the ground
state is non-degenerate. Since both wave functions yield the same charge density it
follows from Eq. (2.22d) that (2.25) simplifies to

〈Φ(2)|T + Vee|Φ(2)〉 > 〈Φ(1)|T + Vee|Φ(1)〉 . (2.26)

However it is absolutely arbitrary which wave function is called 1 and which 2; there-
fore it is equally valid to write

〈Φ(1)|T + Vee|Φ(1)〉 > 〈Φ(2)|T + Vee|Φ(2)〉 . (2.27)

Adding Eqs. (2.26) and (2.27) yields

〈Φ(1) + Φ(2)|T + Vee|Φ(1) + Φ(2)〉 > 〈Φ(1) + Φ(2)|T + Vee|Φ(1) + Φ(2)〉 , (2.28)

which is a contradiction.
Consequently the assumption that there exist two external potentials that still yield the
same density was wrong, thereby proofing the theorem.

This result is quite remarkable. As can be seen from Eq. (2.24) the Hamiltonian is
fully determined by the ground state density (up to a constant shift) due to the first
Hohenberg-Kohn theorem. As a consequence also the many-body wave functions for
the ground state and all excited states are fully determined by the ground state density.
Since the system is completely characterized by these wave functions, it follows that
all its properties are uniquely determined by the ground state density.

In spite of the striking consequences of the first Hohenberg-Kohn theorem it does not
provide a means to determine the ground state density. This issue is addressed by the
second Hohenberg-Kohn theorem.
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To this end the variational principle is considered again, which tells that the ground
state is given by minimizing the energy over all wave functions Φ:

E = min
Φ

〈Φ|T + Vee + Vext|Φ〉 . (2.29)

The minimization over Φ can now be split up into an outer loop minimizing over all
densities ρ and an inner loop minimizing over all wave functions Φ yielding the charge
density ρ [12]:

E = min
ρ

[

min
Φ→ρ

〈Φ|T + Vee + Vext|Φ〉
]

. (2.30)

The external potential depends only on the density and can therefore be taken out of
the inner minimization loop, leading to

E = min
ρ

[

min
Φ→ρ

〈Φ|T + Vee|Φ〉+
∫

Vext(r)ρ(r)dr
]

. (2.31)

From the last equation it becomes clear that for a given density ρ, the ground state wave
function is the one which minimizes T +Vee and yields ρ. Since this minimization does
not depend on the external potential, it has to be a universal result for a given density.
Thus it is possible to define the universal functional

F[ρ] = min
Φ→ρ

〈Φ|T + Vee|Φ〉 (2.32)

and to write the ground state energy as

E = min
ρ

[

F[ρ] +
∫

Vext(r)ρ(r)dr
]

. (2.33)

This demonstrates that the density obeys a variational principle and that the ground
state density is the one which minimizes Eq. (2.33).
These last results are known as the second Hohenberg-Kohn theorem.

If the exact form of the functional F[ρ] was known, it would be possible to directly use
Eq. (2.33) in order to minimize the energy under the constraint of a fixed number of
particles n =

∫

ρ(r)dr, i.e. to minimize E[ρ] − µn, where µ = ∂E/∂n is the chemical
potential of the system. This would then lead to the Euler-Lagrange equation

δF[ρ]

δρ(r)
+ Vext(r) = µ. (2.34)

Unfortunately such a functional form for F is not known and as a consequence DFT
calculations are usually done in the framework of Kohn-Sham DFT. Still Eq. (2.34) will
be used later.
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2.3.2 The Kohn-Sham formalism of DFT

In the Kohn-Sham formulation of DFT [13], the system of n interacting electrons is
replaced by a system of n non-interacting quasi-electrons. The Kohn-Sham ansatz is
based on two fundamental assumptions:

1. The exact ground state density emerging from the system of interacting electrons
can be represented by the ground state density of the system of non-interacting
quasi-electrons. This assumption is called “non-interacting-V-representability”.

2. The Kohn-Sham Hamiltonian consists of the kinetic energy operator and an ef-
fective one-body potential operator Ṽ .

These n independent quasi-electrons give rise to n orthonormal single-particle orbitals
φi(r), out of which the many-electron wave function Φ̃(r1, . . . , rn) can be constructed
as one single Slater determinant [14]:

Φ̃(r1, . . . , rn) =
1√
n!

∣

∣

∣

∣

∣

∣

∣

φ1(r1) · · · φn(r1)
... . . . ...

φ1(rn) · · · φn(rn)

∣

∣

∣

∣

∣

∣

∣

. (2.35)

The tilde is used to distinguish between this wave function being constructed from
single-particle orbitals and the true many-body wave functions Φ. The ansatz (2.35)
automatically fulfills the normalization of Eq. (2.16) and the antisymmetry condition
of Eq. (2.17).

The single particle density matrix of first order γ1(r1, r′1), which is defined by Eq. (2.20),
can in this case be directly expressed via the single particle orbitals.
As an example the density matrix for the case of two electrons is explicitly calculated.
For such a system the wave function Φ̃(r1, r2) is given by

Φ̃(r1, r2) =
1√
2

[

φ1(r1)φ2(r2)− φ1(r2)φ2(r1)
]

(2.36)

and the reduced density matrix of first order consequently by

γ1(r1; r′1) = 2
∫

Φ(r1, r2)Φ(r′1, r2)dr2

=
∫

[

φ1(r1)φ2(r2)− φ1(r2)φ2(r1)
][

φ1(r
′
1)φ2(r2)− φ1(r2)φ2(r

′
1)
]

dr2

=
∫

φ1(r1)φ2(r2)φ1(r
′
1)φ2(r2)dr2 +

∫

φ1(r2)φ2(r1)φ1(r2)φ2(r
′
1)dr2

−
∫

φ1(r1)φ2(r2)φ1(r2)φ2(r
′
1)dr2 −

∫

φ1(r2)φ2(r1)φ1(r
′
1)φ2(r2)dr2

= φ1(r1)φ1(r
′
1) + φ2(r1)φ2(r

′
1),

(2.37)
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where the orthonormality of the single-particle orbitals,
∫

φi(r)φj(r)dr = δij, was used.
For a system consisting of n electrons the same arguments apply and the density matrix
is thus given by

γ1(r1; r′1) =
n

∑
i=1

φi(r1)φi(r
′
1). (2.38)

It follows from this result that the charge density, which is the diagonal part of the
reduced density matrix of first order, can be calculated according to

ρ(r) =
n

∑
i=1

|φi(r)|2. (2.39)

The next step is to write down an equation determining the single-particle orbitals φi

and to find the form of the one-body potential Ṽ .
To this end the variational principle for the many-body wave function – i.e. Eq. (2.29)
– is rewritten for the case of the non-interacting electrons:

E = min
Φ̃

〈Φ̃|T + Ṽ |Φ̃〉 . (2.40)

From this it cannot be concluded – by comparing with (2.29) – that the potential is given
by Ṽ = Vee + Vext, since there is the constraint that the many-body wave function Φ̃

is a Slater determinant constructed out of the single-particle orbitals φi; consequently
〈Φ̃|T |Φ̃〉 is the kinetic energy of the system of non-interacting particles and is not
necessarily identical to the true kinetic energy for the interacting system. This becomes
also visible by explicitly writing the energy in terms of the single-particle orbitals,
which follows by inserting (2.35) into Eq. (2.40) and carrying out the similar steps as
for the derivation of the density matrix in (2.37):

E = min
{φ1,...,φn}

∑
i

〈φi(r)| −
1
2
∇2 + Ṽ |φi(r)〉 . (2.41)

This means that the kinetic energy of the system of non-interacting particles can be ex-
pressed via the single-particle orbitals as Ekin = ∑i 〈φi| − 1

2∇2|φi〉. The difference to the
true kinetic energy 〈Φ|T |Φ〉 has consequently to be hidden in the potential operator Ṽ .

By building the functional derivatives δE/δφi under the normalization constraint
〈φi|φi〉 = 1 it follows from Eq. (2.41) that the single-particle orbitals φi are given by
the solution of the eigenvalue equation

(

−1
2
∇2 + Ṽ(r)

)

φi(r) = ǫiφi(r). (2.42)

Defining the Kohn-Sham Hamiltonian as

HKS(r) = −1
2
∇2 + Ṽ(r) (2.43)
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the eigenvalue problem of (2.42) can thus be written as

HKSφi(r) = ǫiφi(r). (2.44)

From now on the single-particle orbitals φi and the corresponding eigenvalues ǫi will
be called Kohn-Sham orbitals and Kohn-Sham eigenvalues, respectively.

What remains is the determination of the potential Ṽ . Starting from Eq. (2.40) and
applying the same steps as in the derivation of the second Hohenberg-Kohn theorem
leads to the expression

E = min
ρ

[

T̃[ρ] +
∫

Ṽ(r)ρ(r)dr
]

, (2.45)

where the functional T̃[ρ] gives the kinetic energy of the non-interacting particles and
is defined as

T̃[ρ] = min
Φ̃→ρ

〈Φ̃|T |Φ̃〉 . (2.46)

Put into words, the Kohn-Sham wave function Φ̃ for a given density ρ(r) is conse-
quently that wave function which minimizes the kinetic energy while yielding ρ(r).
From Eq. (2.45) an Euler-Lagrange equation similar to (2.34) can now readily be derived
and is given by

δT̃[ρ]

δρ(r)
+ Ṽ = µ. (2.47)

Keeping this result in mind, the next step is to rewrite the functional for the sys-
tem of interacting electrons – i.e. (2.32) – in terms of the kinetic energy of the system
of non-interacting particles and a remainder which is split up in the Hartree energy
U[ρ] = 1

2

∫ ρ(r)ρ(r′)
|r−r′| drdr′ and the unknown exchange-correlation energy EXC[ρ]. This

last quantity represents the difference between the true kinetic energy and the one
obtained from the single particle orbitals as well as the non-classical electron-electron
interaction which is not present in the Hartree term. Consequently one can write

F[ρ] = T̃[ρ] +U[ρ] + EXC[ρ]. (2.48)

Inserting this into Eq. (2.34) and defining the exchange-correlation potential as vXC(r) =
δEXC[ρ]

δρ(r)
yields

δT̃[ρ]

δρ(r)
+

∫

ρ(r′)
|r− r′| dr

′ + vXC(r) + Vext(r) = µ. (2.49)

By comparing this result with Eq. (2.47) one gets an expression for the potential of the
system of non-interacting particles:

Ṽ(r) = Vext(r) +
∫

ρ(r′)
|r− r′| dr

′ + vXC(r). (2.50)
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It has to be noted that the sum of the Kohn-Sham eigenvalues, the so called band-
structure energy

EBS =
n

∑
i=1

〈φi|HKS|φi〉 =
n

∑
i=1

ǫi, (2.51)

is not identical to the total energy of the system, which is – according to Eqs. (2.33) and
(2.48) – given by

E = −1
2

n

∑
i=1

∫

φi(r)∇2φi(r)dr+
∫

Vext(r)ρ(r)dr +
1
2

∫∫

ρ(r)ρ(r′)
|r− r′| drdr′ + EXC[ρ(r)].

(2.52)
Comparing this with the Kohn-Sham Hamiltonian HKS of Eq. (2.43), it follows that the
total energy is related to the band-structure energy via

E =
n

∑
i=1

〈φi|HKS|φi〉 −
1
2

∫∫

ρ(r)ρ(r′)
|r− r′| drdr′ + EXC[ρ(r)] −

∫

vXC(r)ρ(r)dr. (2.53)

The big unsolved problem of the Kohn-Sham formalism is that the exact form of the
exchange-correlation functional EXC[ρ] is unknown. Therefore one has to use approxi-
mations to it.

2.3.2.1 Strategies for solving the Kohn-Sham equations

There are two possibilities to determine the Kohn-Sham orbitals. Either one directly
solves the eigenvalue equation (2.44) by diagonalizing the Hamiltonian represented in
a certain basis, or one iteratively minimizes the band-structure energy (2.51).
Both approaches will eventually lead to the same result. However the direct diagonal-
ization is only feasible if the basis set is reasonably small.

Furthermore it must be noted that both approaches need to determine the solution in
a self-consistent way, meaning that the density that one obtains from the final orbitals
according to Eq. (2.39) must be identical to the one used for the construction of the
potential (2.50) – and thus of the Hamiltonian – which has led to this solution.

If the system exhibits a large enough band gap, this condition will eventually be met
if one directly updates the orbitals by minimizing the total energy [15] and straight-
forwardly reuses the new charge density as the input for the construction of a new
potential and thus a new Hamiltonian.
For metallic systems, on the other hand, it is often required to use more orbitals than
electrons (respectively more than half the number of electrons in the case of a closed
shell system) and to smear out the Fermi surface with a finite electronic tempera-
ture [16, 17], in this way assigning fractional occupation numbers to the orbitals which
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will then as well enter the calculation of the charge density. In such situations one first
has to perform a few minimization steps for the expression ∑

n
i=1 〈φi|HKS|φi〉 using a

fixed Hamiltonian, followed by an update of the occupation numbers and a mixing of
the new charge density with the old one. The resulting charge density is then the input
for the evaluation of the new potential and thus the construction of the new Hamilto-
nian. If the size of the basis set is small enough, the few minimization steps at a fixed
potential can be replaced by a diagonalization of the Hamiltonian matrix in this basis.

2.3.3 Exchange-Correlation functionals

The simplest approximation to the unknown functional EXC[ρ] is the so-called Local
Density approximation (LDA), which gives – in spite of its crudeness – remarkably
good results. This approximation makes the assumption that the system under investi-
gation can reasonably well be described by a homogeneous electron gas with the same
charge density, where the nuclei are replaced by a uniform positively charged back-
ground. The LDA approximation is therefore by construction exact for the uniform
electron gas.

The LDA exchange-correlation energy for a system with the charge density ρ(r) is
given by

ELDA
XC [ρ(r)] =

∫

ρ(r)ǫhomXC (ρ(r))dr, (2.54)

where ǫhomXC (ρ(r)) is the exchange-correlation energy density of a homogeneous elec-
tron gas with the same charge density. The value of the exchange correlation functional
is consequently completely local.
ǫhomXC is further split up in an exchange part and a correlation part. Whereas the ex-
change part can be calculated analytically and is given by

ǫhomX (ρ(r)) = −3
4

(

3
π

ρ(r)

)1/3

, (2.55)

the correlation part cannot be determined exactly. Furthermore there are different
approximations for the case of high [18, 19] and low [20, 21] electronic densities.

LDA gives accurate results for systems that resemble the homogeneous electron gas, i.e.
systems with charge densities which are only slowly varying, for instance solids. For
systems where this condition is not fulfilled, for instance small molecules or atoms, the
energy calculated with the LDA approximation is typically too high. As a consequence
LDA yields in general a too large binding energies; furthermore bond lengths are
typically underestimated.
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An improvement of the accuracy can be reached by the so-called Generalized-Gradient
Approximation (GGA) functionals. This class takes into account not only the density
at a given point, but also its gradient:

EGGA
XC [ρ(r)] =

∫

ρ(r)ǫXC(ρ(r),∇ρ(r))dr. (2.56)

More explicitly this is often written as

EGGA
XC [ρ(r)] =

∫

ρ(r)ǫhomX (ρ(r))FXC(ρ(r),∇ρ(r))dr, (2.57)

where ǫhomX (ρ(r)) is again the exchange energy density of the homogeneous electron
gas and FXC is a dimensionless function. There are several propositions for the form of
FXC [22–24]; they all have in common that they yield the LDA result in the limit where
the gradient is zero.

A further improvement can be reached by so-called SIC functionals, which stands for
“self-interaction correction” [25, 26]. These functionals try to correct the non-physical
interaction of an electron with itself that is present in standard functionals. This self-
interaction stems from the Hartree term and should in principle be exactly canceled by
the exchange-correlation term, but this cancellation is not perfect for most functionals.

Other important classes of functionals are the so-called meta-GGA functionals [27,28],
which depend in addition on the kinetic energy density ∑i

1
2 |∇φi(r)|2, and hybrid

functionals [29–31] which mix the exchange-correlation energy from DFT with some
exchange energy from a Hartree-Fock calculation. With hybrid functionals one typi-
cally gets the most accurate results.

2.3.4 Pseudopotentials

In a DFT calculation a priori all electrons of a given atom have to be included in the
description of the system. However it turns out that the electrons which are close
to the core region are chemically inert, meaning that they are not involved in chem-
ical reactions. Therefore it is advantageous to simulate these electrons by a so-called
pseudopotential, i.e. one replaces the atomic nucleus and the core electrons by a pseu-
doatom whose charge is reduced by the number of core electrons.

This approach has several advantages. First of all it makes the calculation much faster
simply due to the fact that the number of electrons is reduced.
Furthermore the orbitals of the core electrons would oscillate very rapidly close to the
nuclei, thus requiring a very high resolution in this region. For an adaptive basis set,
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as it is used in BigDFT, this would in principle be feasible, but it obviously increases
the complexity a lot if many different resolution levels have to be used. For a basis that
requires a uniform grid spacing over the entire simulation box the situation is even
worse; here the high resolution required in the core region would make the calculation
hopelessly slow.
In addition to these benefits one can make a virtue out of necessity and include rela-
tivistic effects into the pseudopotential [32] which would be absent otherwise.

Within the framework of such a pseudopotential calculation the total Kohn-Sham
Hamiltonian is given by

HKS = −1
2
∇2 + VKS[ρ] + VPSP (2.58)

with the Kohn-Sham potential

VKS[ρ] = Vext(r) +
∫

ρ(r′)
|r− r′| dr

′ + vXC(r) (2.59)

and the pseudopotential term VPSP. In BigDFT the norm-conserving GTH-HGH pseu-
dopotentials [33–35] are used, which consist of a local and a non-local term, i.e. VPSP =
Vlocal + Vnonlocal:

Vlocal(r) =
Zion

r
erf

(

r√
2rloc

)

+ e−r2/2r2loc

×
[

C1 + C2

(

r

rloc

)2

+ C3

(

r

rloc

)4

+ C4

(

r

rloc

)6
]

,

Vnonlocal(r) = ∑
l

3

∑
i,j=1

h
(l)
ij

∣

∣

∣
p
(l)
i

〉 〈

p
(l)
j

∣

∣

∣

with
〈

r
∣

∣

∣
p
(l)
i

〉

=

√
2rl+2(i−1) exp

[

− 1
2

(

r
rl

)2
]

r
l+(4i−1)/2
l

√

Γ
(

l + 4i−1
2

)

l

∑
m=−l

Yl,m(θ, φ).

(2.60)

Yl,m(θ, φ) are the spherical harmonics, rloc is the localization radius of the local part
and rl the localization radius of a given projector.

It has to be noted that the electrostatic potential generated by the nuclei, which has
so far been included in the external potential Vext, is now already contained in the
pseudopotential term. Consequently the term Vext in Eq. (2.59) now only describes
real external potentials, e.g. an electric field.
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2.4 Scaling of traditional Kohn-Sham DFT

One of the most important characteristic of any electronic structure method is – of
course apart from its accuracy – the scaling with respect to the size of the system. In
Sec. 2.2 it has been mentioned briefly that the scaling of popular wave function meth-
ods ranges from N4 to N7, where N is the size of the basis set. However, since only
the scaling is noted without any absolute time, N can in principle be any measure of
the system size which is directly related to the number of basis functions; a popular
choice is the number of atoms.
Due to these large powers of N, calculations for big systems become extremely expen-
sive.

Kohn-Sham DFT, on the other hand, exhibits a more favorable cubic scaling. This prop-
erty will be analyzed in more detail in this section.

As shown in Sec. 2.3.2 the framework of Kohn-Sham DFT requires to solve for the
single-particle orbitals φi given by Eq. (2.42). This procedure involves tasks exhibiting
different scalings with respect to the size of the system, so the total time needed to
calculate a system of size N can be written as

ttot(N) = ∑
i

ciγi(N), (2.61)

where the sum runs over all tasks and ciγi(N) is the time required by task i. γi(N)
gives the scaling of the task with respect to N and ci is its prefactor that determines
the absolute time. Thus for small systems the total time is mainly influenced by the
magnitude of the prefactors, whereas for large systems those parts with the heaviest
scaling dominate.

In the context of Kohn-Sham DFT the part with the worst scaling is related to the
orthogonality that is imposed on the Kohn-Sham orbitals. Such an orthogonalization
step requires to calculate the scalar product among all orbitals of the system, which
is proportional to n2 if there are n such orbitals. Since each orbital extends over the
entire system, the cost of calculating one single scalar product is proportional to m,
where m is the size of the basis set used to represent the orbitals. Consequently the
overall scaling is proportional to n2m. Since in general both n and m are proportional
to the size of the system – represented by the number of atoms N – the scaling of the
orthogonalization is proportional to N3, i.e. γortho(N) = N3.

However, as already mentioned, the scaling only tells which part will preponderate for
very large values of N. For smaller systems, it might well be that other parts dominate
due to their larger prefactor.
To illustrate these issues the traditional cubic version of BigDFT was taken as an exam-
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ple. The main tasks of this code can basically be split up in three categories. The cal-
culation of the potential is dominated by the Poisson solver which exhibits an almost-
linear N logN scaling. The next level are the quadratic parts of the convolutions which
are, for instance, required to apply the kinetic energy operator or to calculate the charge
density. Finally there is the linear algebra part – comprising the above mentioned or-
thogonalization – which has a cubic scaling. Together these three categories account
for most of the total computation time; for the test case studied here their sum always
amounts to more than 80% of the total time, independent of the size of the system.

The scaling of these three categories is shown in Fig. 2.1a for the case of alkane chains
of various lengths. The runs were done in parallel such that each MPI task had to
handle one orbital, i.e. the number of MPI tasks was directly proportional to the size
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Figure 2.1: Illustration of the scaling of the cubic version of BigDFT. The test was done for
alkanes of different lengths; the smallest one consisted of 5 atoms, the largest one of 2048
atoms. The runs were executed in parallel such that each MPI task had to handle one orbital.
Only the computation time is shown, i.e. the communication was excluded. The timings are
given for one step in the minimization procedure of the energy.
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of the system. Since only the computation time is plotted, i.e. neglecting the time
taken by the communication, and since BigDFT exhibits a very efficient parallelization,
it is therefore to be expected that the time taken by the potential section should re-
main roughly constant for all system sizes, whereas the time taken by the convolutions
should increase linearly and that taken by the linear algebra quadratically. Since the
timings are shown in a log-log plot, this should result in straight lines with slope 0, 1
and 2, respectively. As can be seen from the figure, this is actually the case as soon as
a given size is reached.

The plot also gives some ideas on the prefactors which are basically given by the time
taken for the smallest system. The prefactor for the potential part is the largest one,
followed by the one for the convolutions, which however still has the same order of
magnitude. The prefactor for the linear algebra, on the other hand, is orders of magni-
tude smaller.

As a consequence the relative importance of these three categories varies a lot as the
size of the system is increased. This is illustrated in Fig. 2.1b, where the relative amount
of time taken by these three sections is shown. As can be seen the time taken for the
calculation of the potential is only relevant for very small system up to roughly 20
atoms. Due to the small prefactor for the linear algebra part there is then a very large
range where the convolutions dominate, and only at around 1000 atoms the influence
of the linear algebra starts to play an important role.
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Linear scaling Density Functional

Theory

3.1 Theoretical background

Whereas the previous chapter has provided some insight into the basics of electronic
structure calculations and the traditional Kohn-Sham ansatz of DFT, this chapter will
focus on the foundations of linear scaling DFT methods.

3.1.1 Locality in DFT

If one wants to develop a method whose computational time scales only linearly with
respect to the size of the system, it is necessary to make at some point the assump-
tion that only quantities which are strictly localized are dealt with. To justify this
assumption, it is in turn required that the properties of the latter ones are only weakly
influenced by what is going on far away. If this condition is fulfilled, the error intro-
duced by strictly localizing these quantities should be acceptable. This procedure is
the key in developing a linear scaling algorithm.

A priori quantum mechanics is a non-local concept [1]. The wave functions that fully
characterize a given system extend in general over the entire volume. An example
that illustrates this non-locality is the antisymmetry of a many-electron wave function
which must be fulfilled for any pair of electrons, no matter whether they are nearby or
far away.
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Fortunately there are however some quantities which do not directly require the de-
termination of the extended wave functions. Examples in the context of Kohn-Sham
DFT are the energy or the density matrix, which are both integrated quantities being
invariant under unitary transformations among the Kohn-Sham orbitals, and which
are sufficient to determine the ground state of the system. For such quantities the term
“nearsightedness” has been coined by Kohn [36], meaning that their calculation at a
given point r requires only information at points r′ in a localized region around r.
Consequently it should – as long as the quantities employed are well suited for this
purpose – be possible to develop a fully ab-initio method that still scales only linearly
with respect to the size of the system.

This concept of locality is not exploited by the standard Kohn-Sham scheme where all
orbitals may extend over the entire system. One might argue that there exists a set
of maximally localized Wannier orbitals which are related to the standard Kohn-Sham
eigenorbitals via a unitary transformation and reflect in some sense the nearsighted-
ness principle. Once the eigenorbitals ψi – the Kohn Sham orbitals will from now on be
denoted by ψ and not φ as in the previous chapter since φ will get a different meaning
– are found, the Wannier functions Wi can be generated as

Wi(r) = ∑
j

Uijψj(r) (3.1)

with a unitary matrix U. But since this explicit construction of the Wannier functions
requires first the exact shape of the extended eigenorbitals, it does not help in devel-
oping an algorithm that scales linearly with the size of the system.
Furthermore there is no simple unique prescription how the Wannier functions should
be defined. A method by Marzari and Vanderbilt [37] minimizes the total spread of
the orbitals ∑i〈r2〉 − 〈r〉2i in order to generate them. However one might also think of
other criteria – minimizing the spread is just one possibility –, making the definition
somehow arbitrary.

An alternative description, which is completely equivalent to using the orbitals ψi, but
incorporates in a natural way the nearsightedness principle, is given by the use of the
first order density matrix which was introduced in Eq. (2.20); from now on it will be
denoted by F(r, r′) instead of γ1({Ri}; r1; r′1). In the independent particle framework
of Kohn-Sham DFT it is – according to Eq. (2.38) – given by

F(r, r′) = ∑
i

f (ǫi)ψi(r)ψi(r
′), (3.2)

where the Fermi function f (ǫi) determines the occupation of the ith orbital and is given
by

f (ǫi) =
1

1+ e(ǫi−µ)/(kBT)
(3.3)
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with the chemical potential µ, the Boltzmann constant kB and the temperature T, which
is in general assumed to be zero. For a system with finite gap, the density matrix of a
system containing n electrons at zero temperature will only have n non-zero eigenval-
ues (which then have value one); consequently the density matrix has only rank n and
can be constructed from the occupied states only:

F(r, r′) = ∑
i=occ

ψi(r)ψi(r
′). (3.4)

The central quantities of DFT that have been expressed so far in terms of the orbitals
ψi,

Ekin = −1
2 ∑

i

f (ǫi)
∫

ψi(r)∇2ψi(r)dr,

Epot = ∑
i

f (ǫi)
∫

ψi(r)Ṽ (r)ψ(r)dr,

EBS = Ekin + Epot = ∑
i

f (ǫi)
∫

ψi(r)H(r)ψi(r)dr,

ρ(r) = ∑
i

f (ǫi)|ψi(r)|2,

(3.5)

can – according to Eqs. (2.21) and (2.22) – also be expressed in terms of the density
matrix:

Ekin = −1
2

∫

∇2F(r, r′)
∣

∣

∣

∣

r=r′
dr′,

Epot =
∫

Ṽ(r′)F(r′ , r′)dr′,

EBS = Ekin + Epot =
∫

H(r′)F(r, r′)
∣

∣

∣

∣

r=r′
dr′,

ρ(r) = F(r, r).

(3.6)

In case the above operators are discretized using a finite orthonormal basis set φα(r),
i.e.

Hαβ =
∫

φα(r)H(r)φβ(r)dr,

Kαβ =
∫∫

φα(r)F(r, r′)φβ(r
′)drdr′,

(3.7)

the band-structure energy and the total number of electrons n =
∫

ρ(r)dr can be
written as traces of these matrices:

EBS = tr(KH),
n = tr(K).

(3.8)

It is worth noting that the second order density matrix is – in contrast to the energy
expressions derived in Eqs. (2.22) – not required any more; this is a direct consequence
of the independent particle framework.
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3.1.2 Decay properties of the density matrix

It has been demonstrated that for insulators and metals at finite temperature the ma-
trix elements F(r, r′) decay exponentially with the distance |r− r′| [38–44], whereas for
metals at zero temperature they decay algebraically [45].
This property might be surprising at first sight since, according to Eq. (3.2), the den-
sity matrix can be constructed from the Kohn-Sham eigenorbitals, which are extended
quantities. The reason for the decay properties of the density matrix lies in the interfer-
ence among the various eigenfunctions, thereby canceling contributions where r and r′

are far away.

To illustrate the decay properties of the density matrix, the latter one was explicitly con-
structed according to Eq. (3.2) from the Kohn-Sham orbitals that emerged from a tradi-
tional cubically scaling DFT calculation. Since the density matrix is a six-dimensional
quantity, it can not be visualized directly. Therefore it has only been calculated along
the x dimension; two points y0 and z0 for the y and z direction, respectively, were
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(a) The density matrix with respect to x and x′, as
specified by Eq. (3.9). There is obviously an expo-
nential decay with respect to the distance |x − x′|;
within a distance of a few bohr the values of the
density matrix decay by several orders of magni-
tude.

(b) The isosurface of the square of a Kohn-
Sham orbital. The plotted isosurface has a
value of 5 · 10−8 and is consequently com-
parable to the light blue values in Fig. 3.1a.
The locality which is present in the density
matrix is completely missing.

Figure 3.1: Illustration of the decay properties of the density matrix and the extended nature
of the Kohn-Sham orbitals. The calculation was carried out for a water droplet consisting of
1500 atoms and a diameter of a bit more than 60 bohr, using the traditional cubic version of
BigDFT.
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chosen and then the density matrix along the x direction was calculated as

F(x, x′) = ∑
i

f (ǫi)ψi(x, y0, z0)ψi(x
′, y0, z0). (3.9)

The origin was chosen to lie in the center of the simulation box and consequently
y0 = z0 = 0 was used.
The resulting density matrix is shown in Fig. 3.1a. It is obvious that the values decay
exponentially with the distance |x − x′|. This locality is not at all represented by the
Kohn-Sham orbitals that were used for the construction of the density matrix and
which can be fairly extended. The square of such an extended orbital is shown in
Fig. 3.1b.

This intrinsic sparsity of the density matrix is the key in developing an algorithm that
scales only linearly with the size of the system. Due to the rapid decay of the matrix
elements F(r, r′) with respect to the distance |r − r′| it is justified to cut the density
matrix at a given radius in order to enforce a strict sparsity, i.e. to explicitly set

F(r, r′) = 0 for |r− r′| > γ, (3.10)

where γ is some system-dependent constant that characterizes the decay behavior. This
strict sparsity can then be exploited further to reach a linear scaling algorithm.

3.2 Strategies for linear scaling DFT

All linear scaling methods exploit in some way the decay properties of the density
kernel or the Wannier functions, meaning that they assume that these quantities are
zero outside of a given localization region and therefore only calculate them within
this subvolume. For simplicity often a sphere is taken and the localization region is
consequently described by a single parameter, namely the cutoff radius.

There are several different approaches to reach linear scaling [46]:

• The Fermi Operator Expansion (FOE) directly calculates the density matrix F as
a function of the Hamiltonian H, i.e. F = f (H). One such representation is
based on a series of Chebyshev polynomials [47, 48], another one one a rational
expansion [49]. The Chebyshev expansion will be described in more detail in
Sec. 5.2.3.
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• As mentioned, the zero temperature density matrix of an insulator does not have
full rank and can be constructed from the occupied states only. The Fermi Oper-
ator Projection method [50,51] is similar to the FOE method, but uses the density
matrix as a projection operator onto the occupied subspace, in this way gener-
ating a set of Wannier-like orbitals. In this way one does not have to deal with
unoccupied states as it is the case for the FOE method.

• The idea of the divide-and-conquer method is to divide a large system into sev-
eral smaller subsystems. After solving the problem separately in each of these
subvolumes, the solution for the entire system is then patched together from the
solutions of the subsystems. In its first formulation [52, 53] this method was ap-
plied to the calculation of the charge density, in a later version [54] directly to the
construction of the density matrix.

• In the density-matrix minimization approach [55] one determines the density
matrix at zero temperature by minimizing a functional which ensures that the
two essential properties of the density matrix – namely that it is idempotent
and that its eigenvectors with eigenvalue 1 are the occupied eigenvectors of the
Hamiltonian – are simultaneously fulfilled. The functional whose minimization
leads to the desired properties is given by

Ω = tr[(3F2 − 2F3)(H− µI)], (3.11)

where µ is the chemical potential and I the identity. The term in the first paren-
thesis is called the “McWeeny purification” [56] which drives the density matrix
towards idempotency.

• The orbital minimization approach [57–61] does not directly calculate the density
matrix, but expresses it via a set of Wannier functions according to Eq. (3.4). To
obtain the latter ones the following functional has to be minimized:

Ω = 2∑
n

∑
i,j

cni H
′
ijc

n
j − ∑

n,m
∑
i,j

cni H
′
ijc

m
j ∑

l

cnl c
m
l . (3.12)

Here cni is the expansion coefficient of the nth Wannier function with respect
to the ith basis function and H′

ij the matrix element of the shifted Hamiltonian
H− µI with respect to the basis functions.

• The optimal basis density-matrix minimization approach [62,63] is in some sense
a combination of the last two methods. First it generates a set of so-called sup-
port functions φα – which can be seen as some set of auxiliary basis functions,
being in turn expressed in terms of an underlying basis set – and then it opti-
mizes the density matrix in the basis of these support functions. In this way the
dimensions of the density matrix are considerably reduced compared to a direct
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representation in terms of the underlying basis set. The density matrix is written
in separable form as

F(r, r′) = ∑
α,β

φα(r)Kαβφβ(r
′) (3.13)

and the matrix K is given by

K = 3LSL− 2LSLSL (3.14)

with S being the overlap matrix among the support functions. Using this repre-
sentation of the density matrix a minimization of the total energy is carried out
with respect to both the support functions φα and the matrix elements Lαβ.

3.3 Linear scaling in BigDFT

3.3.1 General ansatz – support functions and density kernel

The linear scaling version of BigDFT is based on the same ansatz for the density matrix
as the optimal basis density-matrix minimization approach – an approach that has
also been chosen by other linear scaling codes [64, 65]. Consequently it is written in
separable form as

F(r, r′) = ∑
α,β

φα(r)Kαβφβ(r′). (3.15)

This separable form has the advantage that it is not necessary to work with a quantity
exhibiting in total six dimension (twice a three-dimensional position), but rather with
one that depends only on one single three-dimensional position.
The φα(r) are called support functions and the matrix K the density kernel. A priori
the support functions are not specified any further; in particular they are not required
to be orthonormal.
In order to reach linear scaling, one has to make sure that the support functions are
strictly localized and the density kernel is sparse.

The reason for using superscripts for the support functions and subscripts for the den-
sity kernel is not just an aesthetic one. As will be shown later, the support functions are
expanded in terms of an underlying orthogonal basis. Therefore they can be identified
as the coordinate vector with respect to this basis, thus being a contravariant quantity
and consequently being denoted by an upper index. The density kernel, on the other
hand, is a covariant quantity of second order and therefore denoted by two lower in-
dices.



3.3. LINEAR SCALING IN BIGDFT

CHAPTER 3. LINEAR SCALING DENSITY FUNCTIONAL THEORY

34

By defining covariant support functions φα(r) which satisfy the relation
∫

φα(r)φ
β(r)dr = δ

β
α , (3.16)

it becomes clear that the density kernel is actually the density matrix in the basis of
these covariant support functions:

Kαβ =
∫∫

φα(r)F(r, r′)φβ(r
′)drdr′. (3.17)

The transformation from contravariant to covariant quantities is done using the metric
tensor gαβ, which is symmetric, i.e. gαβ = gβα. This transformation reads

φα = ∑
β

φβgβα. (3.18)

In order to determine the metric tensor Eq. (3.16) can be exploited. Using the short
Bra-ket notation and defining the overlap matrix among the contravariant support
functions by Sαβ = 〈φα|φβ〉 one gets

δ
γ
α = 〈φγ|φα〉 = ∑

β

〈φγ|φβ〉 gβα = ∑
β

Sγβgβα, (3.19)

from which one concludes that the metric tensor is the inverse of the overlap matrix
among the contravariant support functions, i.e. gβα = (S−1)βα. Therefore it will from
now on be denoted by Sαβ and the relation reads

Sβα = (S−1)βα. (3.20)

This distinction between contravariant and covariant quantities is very important for
the decay properties of the density kernel. It is clear from Eq. (3.17) that this decay
is determined by the localization characteristics of the covariant support functions φα.
Unfortunately it is not possible to directly control their decay properties. Even if the
contravariant support functions φα – which are the ones that one has control over – are
well localized, this is not necessarily the case for the covariant ones. If the covariant
support functions decay only slowly, this behavior is inherited by the density kernel,
in this way making it difficult to truncate it and finally hindering an efficient linear
scaling implementation.

3.3.2 Physical quantities in terms of the support functions and the

density kernel

The next step is to determine how physical quantities as the total number of electrons
and the band-structure energy are related to the support functions and the density
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kernel [66].
The first thing to note is that with the introduction of contravariant and covariant
support functions the completeness relation becomes

1 = ∑
α

|φα〉 〈φα| = ∑
α

|φα〉 〈φα| = ∑
α,β

|φα〉 Sαβ 〈φβ| = ∑
α,β

|φα〉 (S−1)αβ 〈φβ| . (3.21)

This relation can be used to establish a relation between the density kernel in the basis
of the contravariant support functions, Kαβ, and the one in the basis of the covariant
ones, Kαβ:

Kαβ = 〈φα|F|φβ〉
= ∑

γ,δ,ǫ,ζ
〈φα|φγ〉 Sγδ 〈φδ|F|φǫ〉 Sǫζ 〈φζ |φβ〉

= ∑
γ,ζ

Sαγ 〈φγ|F|φζ〉 Sζβ

= ∑
γ,ζ

SαγKγζS
ζβ.

(3.22)

However, in order to calculate the physical properties of the system, the density matrix
has to be represented neither in the basis of the contravariant support functions φα nor
in the basis of the covariant ones φα, but in a set of orthonormal support functions φ̃α.
Due to the orthonormality of the latter ones it is not required any more to distinguish
between contravariant and covariant quantities, as follows from Eq. (3.18). Defining
these orthonormal functions by means of a Löwdin orthonormalization,

|φ̃α〉 = ∑
β

(S1/2)αβ |φβ〉 = ∑
β

(S−1/2)αβ |φβ〉 , (3.23)

one gets for the density kernel in this basis, denoted by K̃αβ, the following expression:

K̃αβ = 〈φ̃α|F|φ̃β〉
= ∑

γ,δ,ǫ,ζ
〈φ̃α|φγ〉 Sγδ 〈φδ|F|φǫ〉 Sǫζ 〈φζ |φ̃β〉

= ∑
γ,δ,ǫ,ζ,η,θ,ι,κ

(S−1/2)αη 〈φη |φγ〉 SγδS
διKικS

κǫSǫζ 〈φζ |φθ〉 (S−1/2)θβ

= ∑
γ,δ,ǫ,ζ,η,θ,ι,κ

(S−1/2)αηSηγ(S−1)γδSδιKικS
κǫ(S−1)ǫζSζθ(S−1/2)θβ

= ∑
ι,κ
(S1/2)αιKικ(S

1/2)κβ.

(3.24)

Diagonalizing this matrix K̃ will give the occupation numbers of the Kohn-Sham or-
bitals.
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The physical relevant Hamiltonian matrix H̃ whose diagonalization will yield the
Kohn-Sham eigenvalues can be derived along the same lines. Denoting by Hαβ =
〈φα|H|φβ〉 the Hamiltonian in the basis of the contravariant support functions one gets

H̃αβ = 〈φ̃α|H|φ̃β〉
= ∑

γ,δ,ǫ,ζ
〈φ̃α|φγ〉 Sγδ 〈φδ|H|φǫ〉 Sǫζ 〈φζ |φ̃β〉

= ∑
γ,δ,ǫ,ζ,η,θ

(S−1/2)αη 〈φη |φγ〉 SγδH
δǫSǫζ 〈φζ |φθ〉 (S−1/2)θβ

= ∑
γ,δ,ǫ,ζ,η,θ

(S−1/2)αηSηγ(S−1)γδHδǫ(S−1)ǫζSζθ(S−1/2)θβ

= ∑
δ,ǫ
(S−1/2)αδHδǫ(S−1/2)ǫβ.

(3.25)

These two relations allow to write the total number of electrons and the band-structure
energy, which are – according to Eq. (3.8) – given by n = tr(K̃) and EBS = tr(K̃H̃),
respectively, in terms of the matrices Kαβ, Hαβ and Sαβ:

n = tr(K̃) = tr(S1/2KS1/2) = tr(KS),

EBS = tr(K̃H̃) = tr(S1/2KS1/2S−1/2HS−1/2) = tr(KH).
(3.26)

Explicitly written out this reads

n = ∑
α,β

KαβS
αβ = ∑

α,β
Kαβ 〈φα|φβ〉 ,

EBS = ∑
α,β

KαβH
αβ = ∑

α,β
Kαβ 〈φα|H|φβ〉 .

(3.27)

Another important physical quantity, namely the total charge density, can readily be
derived from Eq. (3.15) and is given by

ρ(r) = F(r, r) = ∑
α,β

φα(r)Kαβφβ(r). (3.28)

3.3.3 Idempotency of the density kernel

An important characteristic of the density kernel is its idempotency. This property can
be derived from the idempotency of the density matrix which reads

∫

F(r, r′′)F(r′′ , r′)dr′′ = F(r, r′). (3.29)
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Writing both parts of the above equation in terms of the density kernel and the support
functions gives for the left-hand side

∫

F(r, r′′)F(r′′ , r′)dr′′ = ∑
α,β,µ,ν

∫

φα(r)Kαµφµ(r′′)φν(r′′)Kνβφβ(r′)dr′′

= ∑
α,β,µ,ν

φα(r)KαµS
µνKνβφβ(r′)

(3.30)

and for the right-hand side

F(r, r′) = ∑
α,β

φα(r)Kαβφβ(r′). (3.31)

By comparing Eqs. (3.30) and (3.31) one finds the relation

Kαβ = ∑
µ,ν

KαµS
µνKνβ (3.32)

or in more compact form

K = KSK. (3.33)

Consequently any method that tries to determine the density matrix using the ansatz
(3.15) has to make sure that Eq. (3.33) holds, be it by construction of the method or by
additional constraints in the optimization procedure.

3.3.4 Relation to the traditional Kohn-Sham scheme

The ansatz of writing the density matrix in terms of the support functions and the den-
sity kernel can smoothly be transformed back into the traditional Kohn-Sham formula-
tion. If the support functions were identical to the eigenfunctions of the Hamiltonian,
i.e. φα = φα = ψα = ψα – the contravariant and covariant quantities are identical in
this case due to the orthonormality of the Kohn-Sham orbitals –, the kernel elements
would be the occupation number times a Kronecker delta:

K
(KS)
αβ =

∫∫

ψα(r)F(r, r′)ψβ(r
′)drdr′

= f (ǫβ)
∫

ψα(r)ψβ(r)dr

= f (ǫβ)δαβ.

(3.34)
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In this way one is back at the standard Kohn-Sham formulation:

E
(KS)
BS = ∑

α,β
K
(KS)
αβ Hαβ = ∑

α,β
f (ǫβ)δαβHαβ = ∑

α

f (ǫα)Hαα = ∑
α

f (ǫα)ǫα,

ρ(KS)(r) = ∑
α,β

ψα(r)K
(KS)
αβ ψβ(r) = ∑

α,β
ψα(r) f (ǫβ)δαβψβ(r) = ∑

α

f (ǫα)|ψα(r)|2,

n(KS) = ∑
α,β

K
(KS)
αβ Sαβ = ∑

α,β
f (ǫβ)δαβδαβ = ∑

α

f (ǫα).

(3.35)

3.3.5 The Kohn-Sham orbitals in terms of the support functions

An alternative way of thinking is to directly express the Kohn-Sham orbitals ψi as a
linear combination of the support functions:

ψi(r) = ∑
α

ciαφα(r). (3.36)

This formulation is completely equivalent to Eq. (3.15) since

F(r, r′) = ∑
i

f (ǫi)ψi(r)ψi(r
′) = ∑

i

f (ǫi)∑
α,β

ciαciβφα(r)φβ(r′) = ∑
α,β

φα(r)Kαβφβ(r′),

(3.37)
where the density kernel is given by

Kαβ = ∑
i

f (ǫi)ciαciβ. (3.38)

The starting point to determine the expansion coefficients cα
i is the eigenvalue equation

(2.44) for the Kohn-Sham orbitals, Hψi(r) = ǫiψi(r). Inserting Eq. (3.36) yields

∑
α

ciαHφα(r) = ǫi ∑
α

ciαφα(r). (3.39)

Multiplying from left with φβ(r) and integrating gives

∑
α

ciα

∫

φβ(r)Hφα(r)dr = ǫi ∑
α

ciα

∫

φβ(r)φα(r)dr. (3.40)

Introducing the usual notations Hβα =
∫

φβ(r)Hφα(r)dr and Sβα =
∫

φβ(r)φα(r)dr
one finally gets

∑
α

Hβαciα = ǫi ∑
α

Sβαciα. (3.41)

Thus the result is that the expansion coefficients ciα are given by the solution of the
generalized eigenvalue equation

Hci = ǫiSci. (3.42)
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3.3.6 Orthonormal versus non-orthonormal support functions

In order to develop a method that scales only linearly with respect to the size of the
system it is mandatory to use a set of support functions being strictly localized. How-
ever, as already mentioned, the sparsity of the density kernel is governed by the decay
properties of the covariant support functions and not the contravariant ones them-
selves. So it might happen that, even though the contravariant support functions are
well localized, the covariant ones are fairly extended, thus causing the density kernel
to be a rather dense matrix and in this way hindering the development of an efficient
linear scaling code.

A solution to this problem would be to use a set of orthonormal support functions such
that Sαβ = δαβ. It is clear from Eq. (3.18) that this implies the equality of contravariant
and covariant support functions, i.e. φα = φα. This simplifies the equations of the pre-
vious sections considerably since the overlap matrix appearing here and there can be
discarded.
Moreover, it is not required any more to distinguish between contravariant and covari-
ant quantities when considering, for instance, the density kernel. This is in particular
important from the viewpoint of the decay properties and consequently the sparsity of
the matrices. By using an orthonormal set of support functions it is guaranteed that the
sparsity of the density kernel is not artificially reduced due to the covariant support
functions being too extended.

However it is admittedly difficult to construct a set of support functions which is at
the same time strictly localized and orthonormal, since these are in general two con-
tradicting properties that are competing with each other. Actually there is only one
class of functions known which exhibits at the same time the two characteristics of
orthonormality and compact support, namely the Daubechies wavelets, which are the
underlying basis set of BigDFT and will be discussed in more detail in Sec. 4.4.

From these considerations it becomes clear that the support functions are actually re-
quired to exhibit two properties which are not compatible, meaning that it is necessary
to make some compromise for at least one of them. Since a stringent localization of
the support functions must be strictly enforced in order to reach linear scaling, there
will be a slight non-orthonormality of the support functions that has to be accepted.
However, if the localization regions are chosen sufficiently large, the deviations of the
overlap matrix from the identity matrix are fairly small. Therefore it is still justified
to make the assumption that the decay properties of the contravariant and covariant
support functions are identical, and thus also that the sparsity of the density kernel is
not artificially enlarged by the contravariant ones.
Still the general notation using the overlap matrix and the distinction between con-
travariant and covariant quantities is kept for the further discussions.
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3.3.7 Fixed versus optimized support functions

As can be seen from Eq. (3.26) the band-structure energy, which is one of the main
outputs of an electronic structure calculation, depends on the support functions and
the density kernel. Whereas the density kernel is characteristic for each system, this
is a priori not necessarily the case for the support functions. Thus they can basically
be classified in two categories, namely those which are fixed and those which are op-
timized in-situ during the calculation.
So far it has not been specified which category is most suited for the current purposes.

There might be the hope that it would be possible to use a fixed set of support func-
tions and only optimize the density kernel, in this way saving the time needed for the
in-situ optimization of the first ones.
However this approach is in general not suited from the viewpoint of the accuracy.
First of all there is no simple recipe how to generate a good set of support functions
beforehand, making their choice – and thus the final result of the calculation – some-
how arbitrary. In addition it might be that a given set gives good results for one system,
but fails for another one, i.e. the transferability would be completely lost in this way.

Furthermore it is not guaranteed that working with a fixed set of support functions is
actually faster. To overcome the mentioned problems it would be necessary to use a
rather large number of support functions. This large set will blow up the dimensions
of many quantities – e.g. overlap matrix, Hamiltonian matrix, density kernel, etc. –,
which will heavily increase the computation time.

By using, on the other hand, a set of support functions which is optimized in-situ for
each system, it should be possible to work with a much smaller set, resulting in ma-
trices whose dimensions are drastically reduced. Thus it might well happen that the
time spent for the optimization of the support functions is more than compensated.
Furthermore there will always be a natural transferability by construction in this way.

To summarize it seems to be more advantageous to optimize the set of support func-
tions in-situ during the calculation, which will then result in a relatively small number
of support functions still yielding an excellent accuracy.
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Wavelets – an ideal basis set for

linear scaling methods

4.1 Importance of the basis set

In reality most quantities that are dealt with are continuous functions. However, when
working on a computer, these quantities have to be transfered onto a finite grid and ex-
pressed in terms of a set of basis functions. Both the grid as well as the basis functions
which are chosen have a big influence on the accuracy and the speed of the calculation.

The simplest choice for the grid would be a uniform grid that covers the entire simula-
tions box. However this might result in a waste of computational resources if there are
wide regions of space which are empty, meaning that there is nothing that needs to be
expressed in terms of the basis set. A better solution would be to use an adaptive grid
which only covers those regions of space which are of interest.
The choice of the basis set is closely related to the choice of the grid. Obviously an
adaptive grid can only be used in connection with a basis set that allows such an adap-
tive resolution.

For the development of an efficient linear scaling code, the choice of the basis set is
of utmost importance. If one had to specify some properties that the basis set should
exhibit, one would probably list the following: It should have compact support in
order to give the possibility to work with strictly localized quantities; it should be or-
thonormal in order to avoid the tedious work with the overlap matrix that would arise
otherwise; and it should have systematic convergence properties such that one never
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has to worry about the quality of the basis set.
As will be shown in the next section, there indeed exists a basis set which exhibits all
these properties.

4.1.1 Wavelets – the third way

A popular choice for the basis set are plane waves. They have many nice properties
that make them a good candidate for electronic structure calculations: They exhibit
a systematic convergence, meaning that adding more plane waves will systematically
increase the accuracy; many of the important parts can efficiently be done using Fast
Fourier Transforms exhibiting a favorable N logN scaling; they form an orthonormal
basis set; and they are strictly localized in Fourier space.
On the other hand there are also a few properties that are quite disadvantageous in par-
ticular for linear scaling calculations: There is no localization in real space, i.e. empty
regions of space still have to be covered by the basis set; and there is no possibility
to increase the resolution around the nuclei where usually higher accuracy is required
than farther away.

Another popular choice for the basis set are Gaussians. They are in some sense the
opposite of plane waves, meaning that they perform poorly in those fields where the
plane waves are advantageous and vice versa. In more detail, they exhibit no sys-
tematic convergence properties since adding more and more Gaussians might lead to
basis superposition errors; furthermore it is not as obvious as for plane waves how to
generate a good basis set. On the other hand they have a natural localization in real
space and allow for an adaptive resolution around the nuclei. In addition the number
of basis functions that is required to get a certain level of accuracy is usually much
smaller compared to the number of plane waves needed to obtain the same accuracy.

Another interesting possibility for the choice of the basis set is to use wavelets. They
can in some sense combine the advantages of both plane waves and Gaussians. They
are well localized in both Fourier space and real space; they form an orthonormal basis
set; they allow for an adaptive resolution in certain regions of space; and they exhibit
systematic convergence properties.

Comparing these properties with the wish list at the end of the previous section it be-
comes clear that wavelets are an ideal candidate for a basis set to be used in the context
of linear scaling calculations.
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4.2 Basic properties of wavelets

There are many different families of wavelets, each one exhibiting some special charac-
teristics. BigDFT uses the so-called least asymmetric Daubechies of order 16 [67]. However
a much simpler wavelet family will be used in order to demonstrate some basic prop-
erties of wavelets.

4.2.1 An illustrating example – the Haar wavelet family

The conceptually simplest wavelet family is the so-called Haar wavelet family [68],
which is shown in Fig. 4.1. Of course this wavelet family is way too crude to be useful
in any numerical context, but it is well suited to illustrate some basic properties of
wavelets [69].

Each wavelet family consists of a mother scaling function φ and a mother wavelet ψ.
As can be seen from the figure, the wavelet is varying more rapidly than the scaling
function.
In order to generate a basis set out of these mother functions, one can use scaling and
shifting operations:

φk
i (x) ∝ φ(2kx− i),

ψk
i (x) ∝ ψ(2kx− i).

(4.1)

According to this notation the index k describes the resolution – i.e. higher values of k
represent skinnier functions –, whereas the index i stands for the localization in space.
These scaled and shifted scaling functions and wavelets can now be used to approxi-
mately represent a continuous function, as will be shown in the following.

For simplicity first the case where the basis set consists only of scaling functions is
considered. As an easy example a piecewise function f in the interval [0, 1] which can
exactly be expanded in terms of 16 Haar scaling functions at resolution level 4 will be
used for illustrating purposes. Thus the function f may be written as

f (x) =
15

∑
i=0

s4i φ4
i (x) with s4i = f (i/16). (4.2)

Φ Ψ

0 01

1

Figure 4.1: Plot of the Haar wavelet family, which is
conceptually the simplest wavelet family. On the
left side the scaling function φ is shown, on the
right side the corresponding wavelet ψ. As can
be seen the wavelet is varying more rapidly than
the scaling function.
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Figure 4.2: Representation of
a piecewise constant function
using 16 Haar scaling func-
tions at resolution level 4. 0 1

Φ
4

An illustration of this expansion is shown in Fig. 4.2. For a function which is not piece-
wise constant the expansion in terms of the scaling functions is analogous, just that in
general the equality between the original function and the scaling function representa-
tion is not absolutely exact – this would only hold true in the limit of infinitely skinny
scaling functions.

Another, more interesting possibility is to expand the function f in terms of both scal-
ing functions and wavelets. To this end it is necessary to determine a relation between
scaling functions and wavelets at different resolution levels. As is depicted in Fig. 4.3
a scaling function at resolution level k can be written as a linear combination of a scal-
ing function and a wavelet at resolution level k− 1. So any linear combination of the
two scaling functions φk

2i(x) and φk
2i+1(x) can be written as a linear combination of the

scaling function φk−1
i (x) and the wavelet ψk−1

i (x).
Consequently the function f from Eq. (4.2) may as well be written as

f (x) =
7

∑
i=0

s3i φ3
i (x) +

7

∑
i=0

d3i ψ3
i (x). (4.3)

The prescription how to get the expansion coefficients at level k− 1 from the coefficients
at level k can be determined in this simple case by looking at Fig. 4.3 and is given by

sk−1
i =

1
2
sk2i +

1
2
sk2i+1,

dk−1
i =

1
2
sk2i −

1
2
sk2i+1.

(4.4)

This procedure is called “forward transform” or “wavelet analysis”.

Figure 4.3: Each skinny scaling function
at resolution level k can be written as
a linear combination of a coarse scaling
function and a coarse wavelet at resolu-
tion level k− 1.

1/2
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=
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=
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0 1

Φ
3

(a) The scaling function part of the function,
which is much smoother than the origi-
nal one, meaning that it is varying more
slowly.

0 1

Ψ
3

(b) The wavelet part of the function, which
contains obviously the rapidly oscillating
corrections to the scaling function repre-
sentation.

Figure 4.4: Representation of the same function as in Fig. 4.2, however this time split up
in scaling functions and wavelets at resolution level 3 according to Eq. (4.3). The original
function is indicated in decent blue.

Eq. (4.4) demonstrates that the scaling function coefficients at the lower resolution
level are given by a weighted sum of the scaling function coefficients at the higher
resolution level, whereas the wavelet coefficients are given by a weighted difference.
Therefore it is intuitively clear that the scaling function part in Eq. (4.3) represents a
smoothened version of the function, whereas the wavelet part represents the rapidly
varying corrections to this smoothened function.
This fact is illustrated in Fig. 4.4. The part which is given by the scaling functions only,
i.e. the sum ∑

7
i=0 s

3
i φ3

i (x), is shown in Fig. 4.4a and is clearly much smoother than the
original function – at least to the extent to which a step function can be called smooth.
On the other hand, the wavelet part, i.e. the sum ∑

7
i=0 d

3
i ψ3

i (x), is varying much faster,
as can be seen from Fig. 4.4b.

Given a data set whose size is a power of 2, this procedure may now be applied
recursively until one finally arrives at

f (x) = s00φ0
0(x) + d00ψ0

0(x) +
1

∑
i=0

d1i ψ1
i (x) +

3

∑
i=0

d2i ψ2
i (x) +

7

∑
i=0

d3i ψ3
i (x). (4.5)

This representation requires exactly the same number of expansion coefficients as the
original one, namely 1 for the scaling function and 15 for the wavelets.
Still this representation is much more interesting than the one using only scaling func-
tions. As depicted in Fig. 4.5 there is a region where the function f is constant. From
the relations s4i = f (i/16) and dk−1

i = 1
2s

k
2i − 1

2s
k
2i+1 (Eqs. (4.2) and (4.4)) it is clear that

0 1

Figure 4.5: Since the function f is constant in
the region marked in yellow, some wavelet
coefficients will turn out to be zero in this
region. Consequently the function can be
compressed by using a mixed scaling func-
tion / wavelet expansion.
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some of the wavelet coefficients will turn out to be zero – this fact is also visible in
Fig. 4.4b, where the wavelet part of the function is zero for the region where f is con-
stant – and the function f as given by Eq. (4.5) can be expressed by fewer than the 16
coefficients which are used there.
Thus the conclusion is that a mixed scaling function / wavelet expansion is very well
suited to compress data that is only slowly varying.

Since the two representations (4.2) and (4.5) are completely equivalent, it is also pos-
sible to go back from the mixed scaling function / wavelet representation to an ex-
pansion using only scaling functions. Here the fact that a wavelet family fulfills the
so-called refinement relations can be used, meaning that each scaling function and
wavelet at resolution level k− 1 can be written as a linear combination of scaling func-
tions at resolution level k. This fact is again depicted for the Haar wavelet family in
Fig. 4.6.
In this simple example the prescription how to get the expansion coefficients for the
scaling functions at resolution level k from the scaling function and wavelet coefficients
at resolution level k− 1 can again be determined by looking at the figure and is given
by

sk2i = sk−1
i + dk−1

i ,

sk2i+1 = sk−1
i − dk−1

i .
(4.6)

This procedure is call a “backward transform” or “wavelet synthesis”.

Figure 4.6: Illustration of the refinement
relations for the Haar wavelet family:
Each scaling function and wavelet at
resolution level k− 1 can be written as
linear combination of scaling functions
at resolution level k.
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4.2.2 Basic formulas for wavelets

In this section some basic formulas that are valid for an orthogonal wavelet family are
noted. A more detailed list can be found in an overview by Goedecker [69] and the
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non-trivial proofs in the book by Daubechies [67].

An orthogonal wavelet family can be completely characterized by two filters h and g

of finite length. Even though the functional form of the scaling functions and wavelets
is missing, knowing these filters allows to completely specify the wavelet family.

4.2.2.1 Orthogonality and symmetry of the filters

The filters h and g fulfill the following orthogonality relations

∑
l

hl−2ihl−2j = δij, (4.7a)

∑
l

gl−2igl−2j = δij, (4.7b)

∑
l

hl−2igl−2j = 0, (4.7c)

and the symmetry relation

gi+1 = (−1)i+1h−i. (4.8)

4.2.2.2 Refinement relations

The refinement relations, which were descriptively shown in Fig. (4.6), are given by

φ(x) =
√
2

m

∑
j=−m

hjφ(2x− j), (4.9a)

ψ(x) =
√
2

m

∑
j=−m

gjφ(2x− j), (4.9b)

or alternatively written by

φk
i (x) =

√
2

m

∑
j=−m

hjφ
k+1
2i+j(x), (4.10a)

ψk
i (x) =

√
2

m

∑
j=−m

gjφ
k+1
2i+j(x), (4.10b)

where the notations φk
i (x) =

√
2
k
φ(2kx− i) and ψk

i (x) =
√
2
k
ψ(2kx− i) were used.
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4.2.2.3 Forward and backward transform

The prescription how to calculate the new coefficients in the course of a forward trans-
form – also called wavelet analysis – is given by

sk−1
i =

m

∑
j=−m

hjs
k
j+2i, (4.11a)

dk−1
i =

m

∑
j=−m

gjs
k
j+2i, (4.11b)

and the one for the backward transform – also called wavelet synthesis – is given

sk+1
2i =

m/2

∑
j=−m/2

h2js
k
i−j + g2jd

k
i−j, (4.12a)

sk+1
2i+1 =

m/2

∑
j=−m/2

h2j+1s
k
i−j + g2j+1d

k
i−j. (4.12b)

Eqs. (4.11) and (4.12) are the generalizations of Eqs. (4.4) and (4.6), respectively.

4.2.2.4 Orthogonality of the scaling functions and wavelets

Just as the filters, the scaling functions and wavelets satisfy as well orthogonality rela-
tions:

∫

φk
i (x)φ

k
j (x)dx = δij, (4.13a)

∫

ψk
i (x)φ

q
j (x)dx = 0, k ≥ q, (4.13b)

∫

ψk
i (x)ψ

q
j (x)dx = δkqδij. (4.13c)

4.2.3 Wavelets in three dimensions

So far only scaling functions and wavelets in one dimension have been considered.
However real applications typically require a three-dimensional basis set. Thus the
one-dimensional scaling functions and wavelets have to be generalized to three dimen-
sions.

The easiest way to construct such a three-dimensional basis set consists in forming
products of one dimensional scaling function and wavelets. This gives rise to one
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three-dimensional scaling function, which is a product of three one-dimensional scal-
ing functions, and seven three-dimensional wavelets, which are products containing at
least one one-dimensional wavelet:

φi,j,k(x, y, z) = φ(x− i)φ(y− j)φ(z− k),

ψ
(1)
i,j,k(x, y, z) = ψ(x− i)φ(y− j)φ(z − k),

ψ
(2)
i,j,k(x, y, z) = φ(x− i)ψ(y− j)φ(z − k),

ψ
(3)
i,j,k(x, y, z) = ψ(x− i)ψ(y− j)φ(z − k),

ψ
(4)
i,j,k(x, y, z) = φ(x− i)φ(y− j)ψ(z − k),

ψ
(5)
i,j,k(x, y, z) = ψ(x− i)φ(y− j)ψ(z − k),

ψ
(6)
i,j,k(x, y, z) = φ(x− i)ψ(y− j)ψ(z − k),

ψ
(7)
i,j,k(x, y, z) = ψ(x− i)ψ(y− j)ψ(z − k).

(4.14)

The three-dimensional scaling functions and wavelets fulfill as well orthogonality and
refinement relations which are generalizations of the ones for the one-dimensional
case.
Forward and backward transforms are done by first transforming along the x dimen-
sion, then along the y dimension and finally along the z axis, or any other order.

4.3 Calculating derivatives in a wavelet basis

Since the application of the kinetic energy operator − 1
2∇2 requires the calculation of

derivatives, it is important that the basis set allows to perform this operation efficiently.
Fortunately this is the case for wavelets.

It turns out that applying the derivative operator of any order l, ∂l

∂xl
, to a scaling func-

tion at position j1 and projecting this quantity back onto a scaling function at position
i1 gives rise to a special filter of finite length that is denoted by ai1−j1 and only depends
on the difference i1 − j1. The filters for the other cases – applying the derivative to a
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wavelet and projecting back onto a scaling function etc. – are defined analogously:

ai1−j1 =
∫

φ(x− i1)
∂l

∂xl
φ(x− j1)dx, (4.15a)

bi1−j1 =
∫

ψ(x− i1)
∂l

∂xl
φ(x− j1)dx, (4.15b)

ci1−j1 =
∫

φ(x− i1)
∂l

∂xl
ψ(x− j1)dx, (4.15c)

ei1−j1 =
∫

ψ(x− i1)
∂l

∂xl
ψ(x− j1)dx. (4.15d)

The calculation of these filters is shown in more detail in appendix A.1.

Once these filters are determined, the calculation of derivatives in the wavelet basis
is not difficult any more. Given a quantity Ψ(x, y, z) that is expanded in a three-
dimensional wavelet basis,

Ψ(x, y, z) = ∑
j1,j2,j3

sssj1,j2,j3φ(x− j1)φ(y− j2)φ(z− j3)

+ ∑
j1,j2,j3

dssj1,j2,j3ψ(x− j1)φ(y− j2)φ(z− j3)

+ ∑
j1,j2,j3

sdsj1,j2,j3φ(x− j1)ψ(y− j2)φ(z− j3)

+ ∑
j1,j2,j3

ddsj1,j2,j3ψ(x− j1)ψ(y− j2)φ(z− j3)

+ ∑
j1,j2,j3

ssdj1,j2,j3φ(x− j1)φ(y− j2)ψ(z− j3)

+ ∑
j1,j2,j3

dsdj1,j2,j3ψ(x− j1)φ(y− j2)ψ(z− j3)

+ ∑
j1,j2,j3

sddj1,j2,j3φ(x− j1)ψ(y− j2)ψ(z− j3)

+ ∑
j1,j2,j3

dddj1,j2,j3ψ(x− j1)ψ(y− j2)ψ(z− j3),

(4.16)

where sss, dss etc. are the three-dimensional generalizations of the s and d coefficients
introduced previously, applying the derivative operator is straightforward, as is shown
in more detail in appendix B.1. Denoting by sss′i1,i2,i3 the expansion coefficient for
the scaling function φ(x − i1)φ(y − i2)φ(z − i3) after the application of the derivative
operator, then its value is given by

sss′i1,i2,i3 =
∫∫∫

φ(x− i1)φ(y− i2)φ(z− i3)
∂l

∂xl
Ψ(x, y, z)dxdydz

= ∑
j1

aj1−i1sssj1,i2,i3 +∑
j1

bj1−i1dssj1,i2,i3 .
(4.17)
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The coefficients for the three-dimensional wavelets and the other directions can be cal-
culated along the same lines and are given in appendix B.1.

To conclude this means that the calculation of the derivatives requires simply a convo-
lution with a filter of finite length.

4.4 Wavelets in BigDFT

As already mentioned the wavelet family used in BigDFT is the least asymmetric Daube-

chies of order 16 family, which is an orthogonal family with compact support. The filters
h and g which characterize the family have only non-zero entries in the interval from
-7 to 8, which makes in total 16 elements. Since the extent of the scaling functions and
wavelets is as well determined by the length of this filter, a scaling function or wavelet
centered on a given grid point i does not extend farther than i− 7 and i+ 8. A plot of
the scaling function and the associated wavelet is given in Fig. 4.7.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-6 -4 -2  0  2  4  6  8

scaling function
wavelet

Figure 4.7: Plot of the scaling function and
wavelet of the least asymmetric Daubechies
of order 16 wavelet family. Due to the fil-
ter which has non-zero entries only in the
range from -7 to 8, the Daubechies are only
different from zero in the same interval.
The wavelet is varying more rapidly than
the scaling function, which is in agreement
with the discussion of the Haar wavelet at
the beginning of this chapter.

4.4.1 The various resolution levels

A priori a wavelet basis allows to use as many resolution levels as desired. However
in BigDFT there are only three levels of accuracy:
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• A grid point carries one scaling function and seven wavelets. This is the case for
all grid points that are close to the nuclei and therefore require a high resolution.
Points which belong to this category are said to lie in the “fine region”.

• A grid point carries only one scaling function. This is the case for all grid points
that are farther away from the nuclei. Points which belong to this category are
said to lie in the “coarse region”. The resolution in the coarse region is half that
of the fine region.

• A grid point carries neither scaling function nor wavelet. This is the case for all
grid points that are even farther away from the nuclei than those of the coarse
region. Since these points do not contribute to the representation of a quantity in
the wavelet basis, they can be completely discarded.

It is worth noting that even though the resolution in the fine region is doubled com-
pared to the coarse region, the grid spacing is the same in the entire simulation box.
The resolution enhancement stems only from the additional wavelets in the fine region.

The prescription how to generate the coarse and the fine region is rather simple. The
coarse region is defined as the union of spheres with a given radius which are cen-
tered on each nuclei, and the fine region is analogously defined by a union of spheres
with a smaller radius. The radii of these spheres are given by the product of an atom-
dependent constant and a user-specified factor. The grid which is constructed in this

Figure 4.8: Visualization of the
coarse and fine regions for cin-
chonidine which has the chemi-
cal formula C19H22N2O. The yel-
low points represent the coarse
grid, the light blue points the fine
grid. Points which are neither in
the coarse nor in the fine region
are not shown.
The points belonging to the
coarse region carry one scaling
function, whereas the points be-
longing to the fine region carry in
addition seven wavelets. It is ob-
vious how the resolution is adap-
tively increased around the nu-
clei in this way.
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way will be referred to as global grid or global region. A visualization of both regions
for the case of a small molecule (cinchonidine, C19H22N2O) is given in Fig. 4.8.

4.4.2 The wavelet basis in the traditional cubic version

In the traditional cubic version of BigDFT, the Kohn-Sham orbitals – denoted here by Ψ

to avoid any confusion – are directly expanded in the basis of the Daubechies scaling
functions and wavelets:

Ψi(r) = ∑
j1,j2,j3

sij1,j2,j3φj1,j2,j3(r) + ∑
j1,j2,j3

7

∑
ν=1

dij1,j2,j3;νψ
(ν)
j1,j2,j3

(r). (4.18)

Here sij1,j2,j3 and dij1,j2,j3;ν correspond to the sssj1,j2,j3 etc. coefficients in (4.16), and

φj1,j2,j3(r) and ψ
(ν)
j1,j2,j3

(r) are shorthand notations for φ(x− j1)φ(y− j2)φ(z− j3) etc.
According to the definition in the previous section, a given grid point (j1, j2, j3) will
have both s and d coefficients if it belongs to the fine region, only a s coefficient if it
belongs to the coarse region, and no coefficients if it belongs to the empty region. The
Kohn-Sham orbitals can then be represented by a compressed form where only the
non-zero coefficients are stored.
Thanks to the orthonormality of the Daubechies wavelet family, many operations can
be directly done using only these compressed vectors holding the coefficients. For in-
stance, a scalar product of two orbitals is simply given by the dot product of the two
coefficient vectors. Another example is the application of the projectors which were
described in Sec. 2.3.4 since they are as well expressed in this basis; thus also the ap-
plication of the pseudopotential part is rather straightforward.

However there are also some quantities which are not represented in this compressed
form. For instance the potential is evaluated on a uniform grid consisting of interpo-
lating scaling functions with a grid spacing which is half that of the combined scaling
function / wavelet representation. To go from one representation to the other one the
forward and backward transforms described in 4.2.2.3 can be used.
Furthermore it turned out that it is not advantageous to evaluate the potential directly
in the basis of these interpolating scaling functions. The reason is that one single scal-
ing function is not very smooth. Instead it is better to evaluate the potential in the
basis of some modified scaling functions – denoted by φ̃(x − i1) – which exhibit a
higher smoothness. In this way one single matrix element

Vi1i2i3,j1 j2 j3 =
∫∫∫

φ̃(x− i1)φ̃(y− i2)φ̃(z− i3)V(x, y, z)φ̃(x− j1)φ̃(y− j2)φ̃(z− j3)dxdydz

(4.19)
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is not very accurate either, but the total expectation value

Epot =
∫∫∫

Ψ(x, y, z)V(x, y, z)Ψ(x, y, z)dxdydz (4.20)

can be evaluated with very high accuracy [70].
The smoothening can be done on the fly as one transforms from the mixed scaling
function / wavelet representation to the scaling function only representation [71].

4.4.3 The wavelet basis in the new linear version

The implementation of the linear scaling version of BigDFT is based on Eq. (3.15) or
Eq. (3.36), respectively. Both the support functions φα and the density kernel K (or the
coefficients ci, respectively) are optimized in order to get the best accuracy possible.

The support functions are in turn again expanded in the underlying basis set of scaling
functions and wavelets, which are denoted here by ϕj1,j2,j3 and ψj1,j2,j3 in order to avoid
confusions with the support functions φα. Consequently each support function can be
written as

φα(r) = ∑
j1,j2,j3

sα
j1,j2,j3ϕj1,j2,j3(r) + ∑

j1,j2,j3

7

∑
ν=1

dα
j1,j2,j3;νψ

(ν)
j1,j2,j3

(r). (4.21)

Thanks to this expansion, the same considerations as for the Kohn-Sham orbitals apply,
i.e. the support functions can as well be stored in a compressed format and many
operations can be carried out straightforwardly thanks to the orthonormality of the
scaling functions and wavelets.

In order to keep the support functions strictly localized, the coefficients sα
j1,j2,j3

and
dα
j1,j2,j3;ν

that represent a scaling function or wavelet, respectively, on the grid point
(j1, j2, j3) are set to zero if this grid point lies outside of the localization region of the
support function. For simplicity, the localization regions are atom-centered spheres
with a cutoff radius rcut, but there is no fundamental constraint that would prevent
them to have a different shape in the future, e.g. to be centered in between two atoms.
Thus the condition for the localization region is given by

sα
j1,j2,j3 = 0

dα
j1,j2,j3;ν = 0

}

if |Rj1,j2,j3 − Rα| > rcut, (4.22)

where Rj1,j2,j3 is the position of the grid point (j1, j2, j3) and Rα is the center of the
localization region for the support functions φα.

The localization regions are always a subset of the global grid, i.e. a given grid point
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of the localization region is only occupied if it is occupied as well for the global re-
gion. This is in particular important for the distinction between coarse and fine region,
meaning that a grid point of the localization region can only belong to the fine region
if it belongs as well to the fine region for the global grid.
As an illustration, Fig. 4.9 shows the same system as in Fig. 4.8, but this time including
one such localization region.

The choice of the cutoff radius is one of the most important parameters from the view-
point of both the accuracy and the speed and can be specified manually. It will depend
both on the type of the atom on which the localization region is centered and on the
accuracy that should be obtained. By choosing a too small radius it is not possible
to get a set of support functions that can yield meaningful results since the density
matrix – or the Kohn-Sham orbitals, respectively – cannot reasonably be represented
anymore. Choosing the cutoff radius too large, on the other hand, will increase the
computational time without giving significantly better results.

Figure 4.9: Visualization of the vari-
ous grids used for the linear scal-
ing version, for the same system
as shown in Fig. 4.8. The yel-
low and the light blue points are
the coarse and fine grid, respec-
tively, of the global region. The
orange and dark blue points are
the coarse and fine grid, respec-
tively, for the localization region.
It becomes clear that the localiza-
tion region is built on top of the
global grid, i.e. a grid point of the
localization region is only occu-
pied if it is occupied as well for
the global grid. In particular this
applies to the distinction between
coarse and fine region.

4.4.3.1 Enlarging the localization regions for the application of the Hamiltonian

The introduction of finite localization regions for the support functions involves some
subtleties with respect to the application of the Hamiltonian onto the latter ones. The
problematic part are the convolutions required for the evaluation of the kinetic energy.
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Since these convolutions involve eight neighboring grid points, the value of 〈φα|∇2φβ〉
is not the same as 〈φβ|∇2φα〉. As a consequence the Hamiltonian matrix will not be
symmetric.

This problem can be overcome by the introduction of a buffer zone of eight grid points
around each support function. This buffer is initialized to zero, but the application
of the Hamiltonian will fill it with non-zero values, as illustrated in Fig. 4.10. When
calculating the scalar products in order to build the Hamiltonian matrix, it is important
to keep the buffer zones; in this way the symmetry of the matrix is restored.

Figure 4.10: Illustration of the cor-
rect way to calculate the matrix
elements 〈φα|H|φβ〉. In a first
step a buffer of eight grid points
is added around each support
function and initialized to zero.
The convolutions performed in
the course of the Hamiltonian ap-
plication will then fill it with non-
zero values. When building the
scalar product with another sup-
port function, this buffer has to
be retained.

H│Φ〉

〈Φ│H│Φ〉

buffer
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5
Detailed implementation of a linear

scaling algorithm in BigDFT

5.1 Optimization of the support functions

According to the previous discussions, the number of support functions should be kept
as small as possible. Therefore it is important that they are of very high quality.

The best possible choice would be to find some set of well localized Wannier functions,
since they are equivalent to the extended Kohn-Sham orbitals that would emerge from
a traditional cubic calculation. In this way the linear scaling version should give exactly
the same results as the cubic one.
Of course it is not possible to simply generate the Wannier functions on-the-fly without
any additional constraints, but there is still the hope that a set of support functions can
be generated which has some resemblance with them.

There are four different modes how the support functions can be optimized: The trace
minimization mode, the energy minimization mode, the mixed mode and the hybrid
mode.
In principle they only differ in the target function that has to be minimized; apart from
that the procedure is the same for all modes. First one calculates the unconstrained
gradient of the target function Ω that has to be minimized with respect to the support
functions:

gα(r) =
δΩ

δφα(r)
. (5.1)
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It has to be stressed that the derivative of the scalar Ω with respect to the contravariant
support function φα(r) yields a covariant gradient gα(r). Therefore, before updating
the support functions with this gradient, it first has to be converted to contravariant
form, as follows from the discussion in Sec. 3.3.1:

gα(r) = ∑
β

Sαβgβ(r), (5.2)

where S is the overlap matrix among the support functions.
Next one has to apply the orthonormality constraint to this gradient, as will be de-
scribed in more detail in Sec. 5.1.8. Then the support functions are updated with this
constrained gradient using any optimization method; in practice steepest descent or
DIIS [72] is employed. In the last step one has to orthogonalize the support functions,
as will be described in Sec. 5.1.7. After this the cycle starts over again.

It has to be noted that the support functions are always optimized at a fixed potential,
i.e. in a non-self-consistent way. The potential is only updated in a second step, after
the support functions have been optimized to some extent. The update of the potential
is related to an optimization of the density kernel and will be described in more detail
in Sec. 5.2.

Figure 5.1: Flowchart to illustrate the basic linear
scaling approach. There is one outer loop and
two inner loops.
In the first inner loop the support functions are
optimized until the exit criterion or the maximal
number of iterations is reached. In the second
inner loop the density kernel is optimized, fol-
lowed by a mixing of the density, again until the
exit criterion or the maximal number of itera-
tions is reached.
These two loops are then iterated in the outer
loop until overall convergence is reached. This
overall convergence is based on the mean differ-
ence of the charge density per grid point which
must come below a given threshold.
The input guess which precedes the outer loop
will be described in more detail in Sec. 5.1.5.
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As a consequence it is not advisable to do many steps in the optimization of the support
functions, but rather only a few ones and then to update the potential. Therefore this
optimization typically stops since the maximal number of iterations has been reached
and not since some convergence criterion has been undercut.

These two tasks – first the optimization of the support functions and then that of the
density kernel – build the two inner loops of the algorithm. They are contained in
an outer loop and are executed alternately until overall convergence is reached. This
convergence of the outer loop is based on the mean difference of the charge density
per grid point between two iterations which must come below a given threshold.

A schematical overview of the method is given in Fig. 5.1. As will be shown in the next
sections, this simple scheme is valid for both the trace minimization and the energy
minimization mode.

5.1.1 Trace minimization

The trace minimization mode was the first one which was implemented. Its discussion
will be rather detailed since many aspects will then apply as well to the other modes.

5.1.1.1 Keeping the support functions localized

As has been mentioned the optimization of the support functions is done in a non-self-
consistent way using a fixed potential; only after some iterations in this optimization
procedure the charge density and the potential are updated. This is similar to the
mixing approach in the cubic version, where the trace of the Hamiltonian is minimized
at a fixed potential, meaning that the target function is given by

Ω = ∑
i

fi 〈ψi|H|ψi〉 . (5.3)

Here fi is the occupation number of orbital i which remains – as well as the potential
– fixed during this minimization.
One could now formally apply the same procedure to the support functions and min-
imize the trace of the fixed Hamiltonian, i.e. the target function would be given by

Ω = ∑
α

〈φα|H|φα〉 . (5.4)

The occupation numbers can all be set to one, since one is only interested in the sup-
port functions and not in any physical meaningful value of Ω.
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If there were no localization constraints, this would be equivalent to the mixing ap-
proach in standard cubic DFT. Thus this procedure would finally lead to the ordi-
nary Kohn-Sham orbitals (occupied ones and virtual ones) and the kernel elements in
Eq. (3.15) – or the coefficients in Eq. (3.36), respectively – would be Kronecker deltas.

Unfortunately the situation is not that simple. In order to reach a linear scaling algo-
rithm it is necessary to keep the support functions strictly localized. However several
factors – e.g. the kinetic energy operator and the orthonormalization – tend to spread
them out. Of course the strict localization can easily be achieved by cutting any contri-
bution that extends outside of the localization region, but it is clear that the quality of
the support functions will deteriorate if too much is cut in this way. However, since the
number of support functions should be kept small, they need to be of high quality. As
a consequence one has to find a way to keep them well localized while still preserving
their high quality.

One possibility is to add a confining potential to the Kohn-Sham Hamiltonian which
will tend to push the support functions back into their localization regions as soon as
they spread out too much. As functional form for this confining potential a simple
quartic function was chosen:

Vα(r) = cα(r− Rα)4, (5.5)

where Rα is the center of the localization region in which the support function φα is
contained. This functional form has the advantage that the confinement remains very
small around the origin, but grows rapidly towards the edge of the localization region.
In addition its evaluation is computationally cheap and can be added to the Kohn-
Sham potential on the fly.
An illustration of the effect of this confining potential is given in Fig. 5.2. As can be
seen the effective potential is indistinguishable from the true DFT potential close to the
center, but increases rapidly towards the edges.

Using this effective potential one gets a new Hamiltonian which is different for each
localization region. In the most general case each support function has its own local-

Figure 5.2: Illustration of the effect of the confin-
ing quartic potential. The plot shows the poten-
tial along one axis. Since an alkane was used
for this plot, the Kohn-Sham potential is a peri-
odic function. It is obvious that the effective po-
tential is indistinguishable from the true Kohn-
Sham potential at the center of the localization
region, but increases rapidly towards the edges.

Kohn-Sham potential
confining potential
effective potential
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ization region and thus its own Hamiltonian

Hα = HKS + Vα. (5.6)

Consequently the target function is now given by

Ωtr = ∑
α

〈φα|Hα|φα〉 . (5.7)

From this expression the unconstrained gradient, which is – after applying the orthog-
onality constraint – used for the optimization of the support functions, can be read-
ily calculated. Taking into account the distinction among covariant and contravariant
quantities it is given by

1
2
|gα〉 = 1

2 ∑
β

Sαβ δΩtr

δφβ
= ∑

β

SαβHβ |φβ〉 . (5.8)

5.1.1.2 Improved convergence speed

There is – apart from the localization which is preserved –yet another reason why the
trace minimization with the confining potential is advantageous, namely an improved
convergence speed.

If all support functions are optimized using the same Hamiltonian – i.e. according
to Eq. (5.4) – and without any localization constraints, then they are invariant under
unitary transformations among themselves. Thus these transformations correspond to
zero eigenvalues of the Hessian matrix which characterizes the optimization of the sup-
port functions. However, as soon as localization regions are introduced, this unitary
invariance is slightly broken, and consequently these zero eigenvalue become finite,
but still remain very small.
This fact is problematic for the convergence speed, which is characterized by the con-
dition number κ. The exact relation between the convergence speed and the condition
number depends on the specific optimization algorithm that is used, but the number
of iterations which is required to converge is always monotonically increasing with κ,
i.e. the larger the value of κ the slower is the convergence. Denoting by λmin and λmax

the smallest and largest eigenvalue of the Hessian, respectively, the condition number
is given by

κ =
λmax

λmin
. (5.9)

Whereas the eigenvalues which are exactly zero do not enter this equation, the slightly
non-zero eigenvalues do. Therefore the condition number can explode if λmin is very
tiny, which is the case if the unitary invariance is slightly violated.
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On the other hand, the unitary invariance is strongly violated by the introduction of
the confining potential. In this way these small eigenvalues will become larger, and
thus the condition number will decrease, in this way accelerating the convergence.

This fact is illustrated in Fig. 5.3, where the mean gradient norm of the support func-
tions is shown as a function of the number of iterations in the optimization procedure.
The test system was a water droplet consisting of 150 atoms – thus amounting to 300
support functions – and the optimization algorithm was steepest descent with gradi-
ent feedback. The cutoff radius was set to a large value of 20 bohr in order to avoid
the orthogonality problem, which will be discussed in more detail in Sec. 5.1.6. The
prefactor for the confinement was chosen to be 1.25 · 10−4 hartree/bohr4, consequently the
confining potential had a value of 20 hartree at the edges of the localization region.
As can be seen, the gradient norm decreases faster for the case where the confinement
is used compared to the one where the Hamiltonian is the same for all localization
regions, thus confirming that it is advantageous to artificially increase the small eigen-
values of the Hessian by strongly violating the unitary invariance

Figure 5.3: The gradient norm of the sup-
port functions as a function of the num-
ber of iterations in the optimization pro-
cedure. The introduction of the confining
potential – thereby strongly violating the
unitary invariance – helps to improve the
convergence speed.
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5.1.1.3 Preconditioning

An efficient preconditioning scheme is of utmost importance to get a fast and reliable
minimization. To derive the preconditioning prescription one starts with the gradient,
which is – including the normalization constraint – given by

|gα〉 = H |φα〉 − ǫα |φα〉 (5.10)

with the Rayleigh quotient ǫα = 〈φα|H|φα〉 and a Hamiltonian which is not further
specified, i.e. the ordinary Kohn-Sham Hamiltonian as well as the one including the
confinement can be used. For simplicity both the overlap matrix and the factor 1

2 were
omitted in the above expression. At a certain stage of the minimization procedure
it can be assumed that an approximate solution for φα and ǫα has been found and
that the true solution can be written as φα + ∆φα and ǫα + ∆ǫα, respectively. Since the
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error in the Rayleigh quotient is proportional to the square of the error in the support
functions, it is justified to assume that ∆ǫα is zero and one is hence left with

|gα〉 = H |φα + ∆φα〉 − ǫα |φα + ∆φα〉 = 0. (5.11)

A rearrangement of the terms gives

(H− ǫα) |∆φα〉 = −(H− ǫα) |φα〉 = − |gα〉 . (5.12)

Solving this equation for |∆φα〉 – symbolically written as |∆φα〉 = −(H − ǫα)−1 |gα〉
– yields as result a modification of the original gradient |gα〉. Consequently |∆φα〉 is
called the preconditioned gradient and will from now on be denoted by |g̃α〉.
Using this preconditioned gradient will then allow powerful optimization steps with a
step size of the order of one.

In practice it is not necessary to take the entire Hamiltonian to solve equation (5.12),
but only the most important part which turns out to be the kinetic energy. So one is
left with the task of solving

(

−1
2
∇2 − ǫα

)

|g̃α〉 = − |gα〉 . (5.13)

This is true as long as the standard Kohn-Sham Hamiltonian is used. However, it
turned out to be important to include the confining potential into the preconditioning
prescription as soon as such a confinement is present. This will only slightly modify
Eq. (5.13) and the equation that must be solved for |g̃α〉 becomes

(

−1
2
∇2 + cα(r− Rα)4 − ǫα

)

|g̃α〉 = − |gα〉 . (5.14)

In practice both Eqs. (5.13) and (5.14) need only be solved approximately by perform-
ing a few steps of a Conjugent-Gradient procedure [73]. To this end the operators
have to be applied to the gradient, i.e. one has to calculate

(

− 1
2∇2 − ǫα

)

|gα〉 and
(

− 1
2∇2 + cα(r − Rα)4 − ǫα

)

|gα〉, respectively. It has already been demonstrated that
the application of the kinetic energy operator can efficiently be done thanks to the un-
derlying wavelets basis and is given by convolutions of the scaling function / wavelet
coefficients with some filters of finite length.
The application of the confinement operator is a bit more involved, but can as well be
accomplished in a similar way, as will be shown in the following.

First the operator is split up in its contribution along the x, y and z direction. Denoting
by the subscript 0 the center of the localization region this yields

(r− R0)
4 =

(

(x− x0)
2 + (y− y0)

2 + (z− z0)
2
)2

= (x− x0)
4 + (y− y0)

4 + (z− z0)
4

+ 2(x− x0)
2(y− y0)

2 + 2(x− x0)
2(z− z0)

2 + 2(y− y0)
2(z− z0)

2.

(5.15)
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Now all the six terms can be applied independently, and the procedure is analogous to
the case of the derivative operators. Assuming a quantity Ψ(x, y, z) that is expanded
in a scaling function / wavelet basis according to Eq. (4.16), then, as an example, the
scaling function coefficients after the application of the term (x− x0)

4 are given by

sss
′{(x−x0)

4}
i1,i2,i3

=
∫∫∫

φ(x− i1)φ(y− i2)φ(z− i3)(x− x0)
4Ψ(x, y, z)dxdydz

= ∑
j1

aj1−i1sssj1,i2,i3 +∑
j1

bj1−i1dssj1,i2,i3 ,
(5.16)

where a and b are filters of finite length that represent the application of the quartic
potential. The prescriptions for the other coefficients and dimensions are similar. A
detailed calculation of the filter elements is given in appendix A.2. Eq. (5.16) is com-
pletely identical to the case of the derivative operator, i.e. Eq. (4.17), just with different
filters; consequently its derivation is the same as shown in appendix B.1 for that case.

The evaluation of the mixed terms, e.g. (x− x0)
2(y− y0)

2, is a bit more involved, but
conceptually the same:

sss
′{(x−x0)

2(y−y0)
2}

i1,i2,i3

=
∫∫∫

φ(x− i1)φ(y− i2)φ(z− i3)(x− x0)
2(y− y0)

2Ψ(x, y, z)dxdydz

= ∑
j2

aj2−i2σσσi1;a
i1,j2,i3

+ ∑
j2

aj2−i2δσσi1;b
j1,j2,i3

+ ∑
j2

bj2−i2σδσi1;a
i1,j2,i3

+∑
j2

bj2−i2δδσi1;b
j1,j2,i3

(5.17)
with

σσσi1;a
i1,j2,i3

= ∑
j1

aj1−i1sssj1,j2,i3 , δσσi1;b
i1,j2,i3

= ∑
j1

bj1−i1dssj1,j2,i3 ,

σδσi1;a
i1,j2,i3

= ∑
j1

aj1−i1sdsj1,j2,i3 , δδσi1;b
i1,j2,i3

= ∑
j1

bj1−i1ddsj1,j2,i3 ,
(5.18)

where again a and b are some filters, representing this time the application of a
quadratic potential. A detailed derivation is given in appendix B.2.

5.1.1.4 Moderate accuracy

In spite of the striking advantages of the trace minimization mode – namely that it
keeps the support function well localized while still optimizing them and in addition
accelerates the convergence – it is not well suited in practice.

First of all the accuracy obtained in this way is only moderate. The reason is probably
that the effect of the confining potential is too strong and as a consequence the support
functions are not of high enough quality in order to allow a reasonable representation
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of the density matrix or the Kohn-Sham orbitals, respectively, and to yield accurate
results.
Furthermore the outer loop – i.e. the loop in which first the optimization of the sup-
port functions and then that of the density kernel is executed and which terminates as
soon as a self-consistent solution has been found – shows an extreme slow convergence
towards the end of the calculation.

To illustrate the problem a test run was done for a water droplet consisting of 300
atoms and exhibiting a diameter of about 35 bohr. The droplet was not relaxed, but
still the forces on the atoms are only at around 10−1 hartree/bohr and it is thus well
suited for these tests. The cutoff radii for the support functions were set to 9 bohr
for both atom kinds and the prefactor for the confining potential was chosen to be
1.5 · 10−3 hartree/bohr4, which corresponds to a value for the confinement of 9.84 hartree
at the edges of the localization region. The optimization of the density kernel is done
using the FOE method which will be presented in more detail in Sec. 5.2.3 and which
is able to give accurate results, i.e. the moderate accuracy obtained here is entirely due
to the trace minimization mode used for the optimization of the support functions.
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(b) The mean change of the charge density per
grid point as a function of the number of iter-
ations in the outer loop. Whereas the conver-
gence is pleasing in the beginning, it becomes
very slow after about 15 iterations.

Figure 5.4: Results for a run using the trace minimization mode for the optimization of the
support functions. The x axis stands for the iterations of the outer loop, i.e. in each such
iteration first the support functions and then the density kernel are optimized. The run was
done for a water droplet consisting of 300 atoms; the cutoff radii for the support functions
were set to 9 bohr and the confinement prefactors to 1.5 · 10−3 hartree/bohr4. The overall results
are not satisfying. The sharp kink at nearly 120 iterations is due to a fixation of the support
functions and is discussed in more detail in the text.
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The results of the run are shown in Fig. 5.4. It is obvious that the total energy calcu-
lated by the linear scaling version deviates considerably from the value of the cubic
reference calculation. In addition the convergence of the density in the outer loop is –
except for the first few iterations – extremely slow.
Towards the very end of the run the minimization of the target function becomes unsta-
ble, i.e. the trace increases even if the step size for the optimization is decreased. This
phenomenon will be discussed in more detail in Sec. 5.1.6. In such a case the code stops
the optimization and fixes the support functions since a further improvement does not
seem possible any more; as a consequence only the density kernel is optimized in this
fixed set of support functions and the charge density quickly converges.

5.1.2 Energy minimization mode

As has been demonstrated in the previous section the presence of the confining po-
tential has several – at least theoretical – advantages, but it will still prevent the linear
version from yielding a result that is of equal quality than the cubic reference calcula-
tion.

So it seems that it is only possible to get highly accurate results if no confinement is
used.
Furthermore switching off the confinement offers another interesting possibility. Since
in this case the Hamiltonian is the same for all localization regions, it is not manda-
tory any more to minimize the trace. Instead it is possible to directly minimize the
band-structure energy according to Eq. (3.27), i.e. the target function is given by

Ωen = ∑
α,β

Kαβ 〈φα|H|φβ〉 . (5.19)

Since in this way exactly the same quantity as in the cubic version is minimized – just
this time in the basis of the support functions –, it is to be expected that the accuracy
which is obtained is much better.

The covariant gradient corresponding to this target function can readily be derived
from Eq. (5.19) and is given by

1
2
|gα〉 = ∑

β

KαβH |φβ〉 . (5.20)

The contravariant gradient is – according to (5.2) – consequently given by

1
2
|gα〉 = 1

2 ∑
β

Sαβ |gβ〉 = ∑
β,γ

SαβKβγH |φγ〉 = ∑
γ

K′α
γ |φγ〉 (5.21)
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with the modified density kernel K′α
γ = ∑β S

αβKβγ.

Apart from this modification the procedure is still the same as for the trace minimiza-
tion mode, i.e. the flowchart in Fig. 5.1 is still valid.

The results of a run with this minimization mode are shown in Fig. 5.5, again for the
case of the water droplet. In order to be able to compare these results with the ones
obtained by the trace minimization mode, exactly the same parameters were used.
It is obvious that the energy comes much closer to the cubic value than with the trace
minimization mode. In addition the convergence is much faster compared to that ap-
proach.

From these data it seems to be clear that the energy minimization mode is superior to
the trace minimization mode.
On the other hand this method exhibits as well one severe shortcoming, namely that
there is no more force that keeps the support functions well localized. In addition there
are several driving forces that tend to delocalize the support functions, in particular
the kinetic energy operator and the orthonormalization; this issue will be discussed
in more detail in Sec. 5.1.6. It turns out that this can easily cause a breakdown of
the minimization procedure optimizing the support functions in the first inner loop in
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(a) The energy calculated by the linear scaling
version as a function of the number of itera-
tions in the outer loop. The energy minimiza-
tion mode comes much closer to the value of
the cubic reference calculation than the trace
minimization mode.
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(b) The mean change of the charge density per
grid point as a function of the number of it-
erations in the outer loop. The energy mini-
mization mode converges much faster. How-
ever this is – at least in parts – due to the early
breakdown of the optimization procedure.

Figure 5.5: Comparison of the results for a run using the energy minimization mode and one
using the trace minimization mode. The same test system and parameters were used as in
Fig. 5.4. The results are much better for the energy minimization mode compared to the
other one, from the viewpoint of both the accuracy and the convergence speed.
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Fig. 5.1 since the support functions do not fit anymore into the localization regions.
In such a case the target function Ωen will always increase, no matter how small the
step size used for the optimization algorithm – in practice often steepest descent – is
chosen. Thus the code stops the optimization – i.e. it fixes the support functions – and
the remaining optimization of the density kernel until the achievement of the overall
convergence has to be carried out with the given set at that stage.
This situation actually arose for the test run, where the optimization broke down at the
12th iteration of the outer loop.

Since in general the support functions exhibit already a very good quality if such a
breakdown occurs, it is still possible to come reasonably close to the cubic reference
calculation, as has been demonstrated by the test run. Thus it is not that problematic
for one single run.
However it can cause considerable problems if one wants to determine energy differ-
ences between several structures. There is the hope that the energies calculated by the
linear version have a more or less constant offset compared to the values from the cu-
bic reference calculations, and thus the energy differences between different structures
should be pretty much the same for the cubic and the linear version since this offset
cancels. However if the optimization breakdown does not occur at the same stage of
quality for the various configurations, then this offset may be different and the energy
differences thus not as good as hoped for.

5.1.3 Mixed mode

It is intuitively clear that the breakdown in the inner loop optimizing the support func-
tions, which was described briefly in the previous section, happens more likely if the
support functions are not yet well adapted to their chemical environment, since in this
case they will still undergo heavy modifications.

Therefore it might be advantageous to combine the two modes presented so far, mean-
ing that the first few iterations of the outer loop use the trace minimization mode and
the remaining ones the energy minimization mode. As a result the support functions
should already be adapted to their chemical environment to some extent while still
being localized when the energy minimization mode starts, and therefore not undergo
heavy modifications after the confining potential is switched off. In this way the prob-
lems related to this breakdown can hopefully be diminished, meaning that they do not
occur or at least happen much later such that the quality of the support functions is
always pretty much the same.

A flowchart of this approach is shown in Fig. 5.6. As can be seen, the procedure is
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basically the same as for the trace minimization and the energy minimization modes
whose flowcharts are shown in Fig. 5.1, with the exception that there are now two dif-
ferent loops for the optimization of the support functions. The switch from the trace
minimization mode to the energy minimization mode is either done as soon as the
maximal number of iterations using the first mode is reached or as soon as the mean
change in the charge density per grid point between two iterations of the outer loop is
below a given threshold.

A comparison of all three approaches is shown in Fig. 5.7, again using the same
test system and parameters. The prefactor for the confinement which is used in the
first iterations of the mixed mode – i.e. where the trace is minimized – was set to
3 · 10−3 hartree/bohr4, which is higher compared to the one used for the pure trace mini-
mization mode; the idea is to strongly confine the support functions in the beginning
in order to be in a position to tolerate some spreading which will inevitably occur as
soon as the confinement is switched off. In this test the threshold for the switch from
trace minimization to energy minimization was chosen such that two iterations of trace
minimization were performed.
It is obvious that the mixed mode leads to the same final energy as the approach where

Figure 5.6: Flowchart to illustrate the
mixed mode, which is a combina-
tion of trace minimization and en-
ergy minimization. The flowchart is
similar to the one shown in Fig. 5.1,
apart from the fact that there are
now two loops for the optimization
of the support functions. In the be-
ginning they are optimized using the
trace minimization mode including
the confining potential in order to let
them adapt themselves to the chem-
ical environment while still remain-
ing well localized. After a few iter-
ations of the outer loop using this
mode, the remaining iterations em-
ploy the energy minimization mode
for the optimization of the support
functions in order to get more accu-
rate results.
The kernel loop is not modified and
still the same as in Fig. 5.1.
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(a) The energy calculated by the linear version
as a function of the number of iterations in
the outer loop. The final result for the mixed
mode is more or less the same as for the
energy minimization mode, even though the
convergence is slightly delayed.
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(b) The mean change of the charge density per
grid point as a function of the number of iter-
ations in the outer loop. The mixed mode and
the energy minimization mode exhibit a simi-
lar convergence speed, but the mixed mode is
slightly shifted to the right.

Figure 5.7: Comparison of the results for one run with the mixed mode, one with the energy
minimization mode and one with the trace minimization mode. The same test system and
parameters were used as in Figs. 5.4 and 5.5. The results for the mixed mode and the
energy minimization mode are comparable from the viewpoint of both the accuracy and the
convergence speed.

only the energy is minimized, however with a slightly delayed convergence.

On the other hand this approach has as well some shortcomings.
First of all the breakdown of the optimization occurs as well, even if it happens later.
For this test the breakdown occurred at the 15th iteration of the outer loop, which is
only slightly better compared to the energy minimization mode; thus only a scant im-
provement of the stability can be gained.
However the real problems lie somewhere else. The switch from the trace minimiza-
tion mode to the energy minimization mode is rather drastic, which might potentially
lead to some problems. In addition it is somehow arbitrary when this switch should
take place. As mentioned it is based on the same criterion as the overall convergence of
the outer loop, namely the mean change in the charge density per grid point. However
choosing this threshold too small – i.e. more iterations using the trace minimization
mode are performed – will yield a worse result, as illustrated in Fig. 5.8. The first
curve, where the switch was performed at a mean change of 10−7, is identical to the
one shown in Fig. 5.7a and resulted in two iterations with trace minimization. For the
next one the switch was performed at 10−8, resulting in 8 iterations of trace minimiza-
tion, and for the last one the switch was done at 10−9, resulting in 15 iterations of trace
minimization. It is obvious that the final results of the three runs do not coincide and
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that the deviation from the cubic reference calculation is larger the more trace mini-
mization steps were done, meaning that the error introduced by confining the support
functions for too long could not be cured anymore.

Consequently there is a thin line between choosing too few iterations – causing the
mixed mode to be similar to the energy minimization mode including its shortcom-
ings – and too many iterations – making it similar to the trace minimization mode
and yielding only moderate results –, which makes the usage of the mixed mode a bit
involved.
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Figure 5.8: Comparison of different thresh-
olds to switch from the trace minimiza-
tion to the energy minimization mode. The
switch was done as soon as the mean
change of the charge density per grid point
between two iterations of the outer loop
was below this threshold. It is obvious that
choosing this value too small will result in
runs which are less accurate and in addi-
tion converge more slowly.

5.1.4 Hybrid mode

The previous section has shown that it might be a good idea to combine the trace
minimization and the energy minimization in order to retard the breakdown of the
support function optimization. On the other hand a drastic switch from the one to the
other is not desirable, and in addition the switching criterion is not evident.
Thus it is probably better to use an approach that can smoothly transform one method
into the other one.

To this end the two target functions are briefly noted again. For the trace minimization
mode it is given by

Ωtr = ∑
α

〈φα|Hα|φα〉 , (5.22)

where Hα is the Hamiltonian including the confining potential, whereas for the energy
minimization mode it is given by

Ωen = ∑
α,β

Kαβ 〈φα|H|φβ〉 . (5.23)
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These two methods can now be combined to get the so-called hybrid mode with the
target function

Ωhy = ∑
α

Kαα 〈φα|Hα|φα〉+ ∑
β 6=α

Kαβ 〈φα|H|φβ〉 . (5.24)

By decreasing the prefactor of the confining potential – i.e. the value of cα in Eq. (5.5)
–, the hybrid target function Ωhy will be smoothly transformed into the energy target
function Ωen. The prescription how the confinement should be reduced will be de-
scribed in Sec. 5.1.4.1.

A flowchart of this method is shown in Fig. 5.9. The method is quite similar to the trace
or energy minimization approach which are illustrated in Fig. 5.1, with the difference
that the confinement is continuously adjusted each time the loop which optimizes the
support functions is re-entered.

A comparison of the hybrid mode with all the other modes – again using the same
system and parameters – is shown in Fig. 5.10. For the hybrid mode the prefactor
for the initial confining potential was set to 3 · 10−3 hartree/bohr4; during the run it was
then continuously decreased and had a value of 3.89 · 10−13 hartree/bohr4 in the iteration
where the support functions were optimized the last time.

Figure 5.9: Flowchart to illustrate the hybrid
mode. The procedure is very similar to the
trace minimization mode and the energy min-
imization mode – whose flowcharts are shown
in Fig. 5.1 –, i.e. there is one outer loop and two
inner loops optimizing first the support func-
tions and then the density kernel, respectively.
The only difference is that the value of the con-
finement is reduced each time the loop opti-
mizing the support functions is re-entered.
The kernel loop is not affected by the hybrid
mode and is still the same as for the other
modes.
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As can be seen the final energy is again comparable to the energy minimization and
the mixed mode, but the convergence is slightly slower. Unfortunately the breakdown
of the support function optimization happens as well, but at least much later compared
to the to other modes, namely at the 21st iteration of the outer loop.

To summarize one can conclude that the hybrid mode gives identical results as the en-
ergy minimization mode and the mixed mode; furthermore it seems to exhibit a higher
stability, however at the cost of a slightly slower convergence.
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(a) The energy calculated by the linear scaling
version as a function of the number of itera-
tions in the outer loop. The final result of the
hybrid mode is identical to the ones yielded by
the energy minimization mode and the mixed
mode, but the number of iterations that is re-
quired to reach convergence is slightly larger.
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(b) The mean change of the charge density per
grid point as a function of the number of it-
erations in the outer loop. The convergence
speed of the hybrid mode is identical to the
energy minimization mode and the mixed
mode in the end, but slightly slower in the
beginning.

Figure 5.10: Comparison of the results for a of run using the hybrid mode with the results of
the runs using the other modes. Again the same test system was used as in Figs. 5.4, 5.5
and 5.7. Compared to the energy minimization mode and the mixed mode, the results for
the hybrid mode are comparable from the viewpoint of the energy, but the convergence is
slightly slower.

5.1.4.1 How to reduce the confinement

The value of the confining potential will be reduced during the calculation, thereby
smoothly transforming the target function from the hybrid expression to the energy
expression. The question is how the prefactor cα should be reduced.

The most naive way would be to reduce the parameter as soon as the support func-
tions are converged for the value cα that is currently used, indicated by the norm of
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the gradient which has to come below a given threshold. Unfortunately this does not
work due to the influence of the localization regions, which will prevent the gradient
from reaching small values even though the energy saturates; some more details on
this issue will be discussed as well in the Secs. 5.1.6 and 6.5.1. Therefore a slightly
different approach is used.

To derive this prescription it is assumed that the difference of the target function be-
tween iteration n and n+ 1 of the minimization procedure can be approximated to first
order by the gradient of the target function with respect to the support functions times
the change in the support functions, i.e.

∆Ω′
(n) = ∑

α

〈gα
(n)|∆φα

(n)〉 , (5.25)

where |∆φα
(n)〉 is the change which the support functions will undergo between itera-

tion n and n+ 1, i.e.
|∆φα

(n)〉 = |φα
(n+1)〉 − |φα

(n)〉 , (5.26)

and |gα
(n)

〉 is the gradient including the orthonormality constraint at iteration n, which
will be derived in detail in Sec. 5.1.8.

As already mentioned, the gradient of the target function will never go to zero due
to the influence of the localization regions which is competing with the orthogonality
constraint imposed on the support functions. Since the expected decrease of the target
function is directly proportional to the gradient, the same considerations apply as well.
Consequently ∆Ω′

(n) will not go down to zero. On the other hand the actual change
in the target function which is observed and which is denoted by ∆Ω(n) will go to
zero if the limit for the localization region and the currently used confining potential
is reached, meaning that a further optimization is not possible anymore. If this is the
case, the only possibility to further minimize the target function is to decrease the value
of the confining potential.

One can now make a virtue out of necessity and use these properties in order to derive
a prescription how the prefactor of the confinement should be reduced. At each step
of the minimization procedure the ratio of the actual decrease in the target function
and the previous estimate is determined:

κ =
∆Ω(n)

∆Ω′
(n)

. (5.27)

When re-entering the optimization loop for the support functions the next time, the
prefactor for the confinement is then multiplied with the last value of κ of the previous
optimization loop, i.e.

cα
new = κcα

old. (5.28)
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If κ is of the order of one, this means that there is still some scope for the support func-
tions with the current value of the confining potential and it should therefore be kept
as it is. If, on the other hand, κ is much smaller, this means that it is hardly possible
to further improve the support functions and the magnitude of the confining potential
should consequently be decreased.

An illustration of the effect of reducing the confinement in this way is shown in
Fig. 5.11, where the value of κ is plotted as a function of the number of iterations
in the outer loop. The red curve shows the behavior if the strength of the confinement
is reduced as specified by Eq. (5.28), whereas the green curve shows the evolution of κ

if the confinement is held constant.
As can be seen, the second possibility is much less stable, indicated by the value of
κ becoming negative, meaning that the actual change of the target function, ∆Ω(n),
became positive, whereas the estimate, ∆Ω′

(n), was negative.
The red curve, on the other hand, shows the expected behavior. In the beginning the
value of κ is close to one, meaning that the support functions can still be optimized
with the strong confinement, whereas towards the end it becomes very small, meaning
that the confinement should be reduced.
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Figure 5.11: The value of κ – as defined by
Eq. (5.27) – as a function of the number of
iterations in the outer loop. The test sys-
tem was an alkane consisting of 302 atoms;
the cutoff radius for the support functions
was set to 9 bohr and the initial prefactor
for the confinement to 3 · 10−3 hartree/bohr4.
A negative value of κ means that the target
function increased even though the estima-
tion predicted a decrease.

5.1.4.2 Preconditioning with the hybrid method

The minimization of the target function will only be efficient if a good preconditioning
scheme is available. Finding such a good scheme is often some trial-and-error process.
Therefore it is not guaranteed that the following scheme will be the ultimate solution,
but still it is a reasonable proposal.

If there was no confinement, the preconditioning would be done by solving the equa-
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tion
(

−1
2
∇2 + ǫα

)

|g̃α〉 = |gα〉 (5.29)

for the preconditioned gradient |g̃α〉. However this prescription tends to spread out the
support functions, which is not desirable if a confinement is used. Therefore it turned
out that it is better to include the confining potential in the above equation in the latter
case, as has been described in Sec. 5.1.1.3:

(

−1
2
∇2 + ǫα + cα(r−Rα)4

)

|g̃α〉 = |gα〉 . (5.30)

When minimizing the new hybrid target function, there are contributions from both
Hamiltonians with and without the confinement. However the preconditioning cannot
be done independently for both parts, since it is applied to the gradient after the
orthonormality constraint, which will mix these two contributions.

One possible solution to circumvent this problem is the following:
First a gradient |Gα〉 is defined which would arise if there were only contributions from
the Hamiltonian including the confinement:

|Gα〉 = Hα |φα〉 − λα |φα〉 (5.31)

with λα = 〈φα|Hα|φα〉, i.e. only a normalization constraint, but no orthogonality con-
straint is applied.
Next the projectors on this confining gradient and its orthogonal complement are de-
fined:

Pα
c =

1
〈Gα|Gα〉 |G

α〉 〈Gα| ,

Pα
nc = 1− Pα

c = 1− 1
〈Gα|Gα〉 |G

α〉 〈Gα| ,
(5.32)

where “c” stand for confining and “nc” for non-confining. Using these projectors the
gradient is split up in two parts:

|gα
c 〉 = Pα

c |gα〉 ,
|gα

nc〉 = Pα
nc |gα〉 . (5.33)

Now two separate preconditioning equations can be solved for both parts:
(

−1
2
∇2 + ǫα + cα(r− Rα)4

)

|g̃α
c 〉 = |gα

c 〉 ,
(

−1
2
∇2 + ǫα

)

|g̃α
nc〉 = |gα

nc〉 .
(5.34)
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After these equations have been solved for |g̃α
c 〉 and |g̃α

nc〉, the two solutions can be
added to get the final preconditioned gradient:

|g̃α〉 = |g̃α
c 〉+ |g̃α

nc〉 . (5.35)

In the limit where cα is zero, this will be equivalent to solving directly Eq. (5.29):

|g̃α〉 =
(

−1
2
∇2 + ǫα

)−1

|gα〉

=

(

−1
2
∇2 + ǫα

)−1

|gα
c + gα

nc〉

=

(

−1
2
∇2 + ǫα

)−1

|gα
c 〉+

(

−1
2
∇2 + ǫα

)−1

|gα
nc〉

= |g̃α
c 〉+ |g̃α

nc〉 .

(5.36)

It must be noted that this prescription is just a suggestion and it might well be that
other procedures are more suited in practice. This can also be seen from Fig. 5.12,
which shows a comparison of the performance of the three available preconditioning
schemes, namely the one used for the trace minimization mode (Eq. (5.30)), the one
for the energy minimization mode (Eq. (5.29)) and the one just described. The target
function was in all cases the same – namely the hybrid expression – and only the
preconditioning was done in a different way. As can be seen the difference among
the three methods is rather small and one can thus not conclude that one approach is
superior to the other ones.
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Figure 5.12: Comparison of the three avail-
able preconditioning scheme. “trace pre-
conditioning” stands for the precondition-
ing according to Eq. (5.30), “energy pre-
conditioning” for the one according to
Eq. (5.29), and “hybrid preconditioning”
for the one described in Sec. 5.1.4.2 with
the final result of Eqs. (5.34) and (5.35).
At the 16-iteration the optimization for
the run using the hybrid preconditioning
broke down. The test system was an
alkane consisting of 302 atoms; the cutoff
for the support functions was set to 9 bohr
and the prefactor for the confinement to
3 · 10−3 hartree/bohr4.
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5.1.5 Input guess

In the previous section several methods to optimize the support functions have been
presented. However, in order to be able to carry out any optimization, first a reasonable
input guess has to be created.

In the cubic version of BigDFT, the input guess for the Kohn-Sham orbitals is done as a
linear combination of atomic orbitals (LCAO). This means that first the atomic orbitals
– denoted by χα – for all atoms are generated and the charge density is calculated as
the superposition of the atomic charge densities ρI(r):

ρ(r) = ∑
I

ρI(r) = ∑
α

fα|χα(r)|2, (5.37)

where fα denotes the occupation number of the atomic orbital χα. Using this charge
density a Hamiltonian H can be constructed and be represented in the basis of the
atomic orbitals:

Hαβ = 〈χα|H|χβ〉 . (5.38)

Defining furthermore the overlap matrix Sαβ = 〈χα|χβ〉 and solving the generalized
eigenvalue problem

Hci = ǫiSci (5.39)

gives the expansion coefficients of the Kohn-Sham orbital ψi in terms of the atomic
orbitals:

ψi(r) = ∑
α

ciαχα(r). (5.40)

This approach is analogous to the one briefly presented in Sec. 3.3.5 for the linear
scaling version, just with the difference that the support functions φα are this time
replaced by the atomic orbitals χα.

Since this method generates in general quite good input guesses for the Kohn-Sham
orbitals, there is the hope that a similar method can also be used for the linear version,
i.e. that the support functions can as well be written as a linear combination of the
atomic orbitals:

φα(r) = ∑
β

dα
βχβ(r). (5.41)

Because the solution of the eigenvalue problem in Eq. (5.39) leads in general to ex-
tended orbitals which do not fit into a given localization region, the procedure has to
be slightly adapted. Since, as has been discussed, the trace minimization is able to op-
timize the support functions to some degree while still keeping them well localized, it
is an obvious choice to perform the same procedure in the basis of the atomic orbitals.
Consequently one has to construct for each localization region γ its own Hamiltonian
matrix

Hγ;αβ = 〈χα|Hγ|χβ〉 , (5.42)
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where the Hamiltonian Hγ is given by Eq. (5.6). Now a trace minimization can be
performed in the basis of the atomic orbitals, i.e. the expansion coefficients dα of the
support functions in terms of the atomic orbitals are given by the minimization of

Ω = ∑
α

〈dα|Hα|dα〉 (5.43)

under the constraint
dTSd = I, (5.44)

where d is the matrix constructed out of the vectors dα, S the overlap matrix among the
atomic orbitals and I the identity matrix. In this way the input guess for the support
functions should be well adapted to its chemical environment while still remaining
fairly localized. Furthermore this method has the advantage that there is no constraint
on the number of support functions that can be generated.

In spite of these striking advantages it turned out that an alternative approach that
simply uses the atomic orbitals in their original form yields an input guess of equal
quality. Furthermore it is of course much cheaper since the entire minimization proce-
dure can be avoided.
The limitation that the number of support functions which can be generated in this
way is at the moment restricted to be a complete shell of the atom on which they will
be centered does not seem to be a serious issue. The other restriction, namely that
there is no flexibility with respect to the localization of the support functions – e.g. to
center them in between to atoms – might be an issue to be addressed in the future.

Since these restrictions are – at least at the moment – not heavy limitations, the input
guess using simply the atomic orbitals is consequently the method of choice

5.1.6 Orthogonality problem

It has been demonstrated that any method that eventually minimizes the energy – i.e.
the energy minimization mode, the mixed mode and the hybrid mode – yields consid-
erably better results than only minimizing the trace using the confinement. However,
as has been shown as well, minimizing the energy may lead to an early breakdown of
the optimization of the support functions since there is no more force that counteracts
their extension.

One of the main reasons for the spreading of the support functions is the orthogonality
that is imposed on them. If it happens that they become too extended in the course
of the optimization procedure due to the orthogonalization it may occur that all of a
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sudden the chosen localization radius becomes too small and consequently a large part
of the support functions has to be cut at the boundaries of the localization regions in
order to retain the strict localization. This may lead to a deterioration of the quality of
the support functions and as a consequence the value of the target function will raise
instead of decrease.

These problems due to the orthogonalization are illustrated in Fig. 5.13. Here the target
function – which is the energy in this case – is shown as a function of the iterations
in the inner loop optimizing the support functions. In order to isolate the effect of the
orthogonalization, the support functions were optimized using steepest descent with a
step size of zero, i.e. they just repeatedly underwent orthogonalizations without being
modified otherwise. This means that the target function is actually shown as a function
of the number of orthogonalizations.
If there were no localization constraints, the support functions should be exactly – up
to numerical noise – orthonormal after the first step and subsequent orthogonalizations
should not modify the energy any more. However, if there are localization constraints,
the support functions will in the most general case not be exactly orthonormal and
thus the target function keeps changing in every step.

As can be seen the energy increases considerably after each orthonormalization step
for small cutoff radii. For instance for the smallest cutoff radius of 5 bohr, the energy
increased by 0.039 hartree in the first step, which corresponds to 0.009% of the total
value, and even the subsequent steps raise the energy each time by values of the order
of 10−3 hartree.
For larger cutoffs the energy increase diminishes, as expected, but it still remains a
considerable problem. Furthermore the plot shows that – even if the effect becomes
smaller and smaller – the energy increases in each step since, as explained before, the

Figure 5.13: Illustration of the orthog-
onality problem for a system con-
sisting of 25 water molecules. The
plot shows the energy increase af-
ter each orthonormalization step. In
between the orthonormalizations the
support functions were not modified
except for the inevitable cutting at the
boundaries. As expected the problem
is worst for small cutoff radii. Fur-
thermore the energy increase becomes
smaller with each orthonormalization
step that is performed, but it never
vanishes completely.
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support functions will never be exactly orthogonal.

It is obvious that this energy increase will create problems at some point. If the sup-
port functions are already rather well converged, then only very little can be gained by
optimizing them according to the gradient. On the other hand the orthonormalization
will always raise the value of the target function. Thus it will happen that the value of
the target function starts to increase even if the gradient is not yet zero.
Reducing the step size for the optimization, which is usually done as soon as an opti-
mization runs into trouble, will in general not help, but rather aggravate the problem
since the energy increase stemming from the orthogonalization will preponderate even
more.

If modifying the step size should help, then it should rather be enlarged in the hope to
optimize the support functions to a larger extent such that the energy increase due to
the orthogonalization can be compensated.
However it is admittedly quite hazardous to increase the step size for an optimization
that gets into a mess. For this reason such an energy increase which can not be elim-
inated by reducing the step size – and thus being identified as a problem stemming
from the orthogonalization – is considered as a breakdown of the optimization proce-
dure and leads to a fixing of the support functions, meaning that the following density
kernel optimizations until the achievement of overall convergence are all carried out
using this fixed set of support functions.

Due to these difficulties its is also quite involved to find a convergence criterion for the
support function optimization that depends on the gradient. More details on this are
given in Sec. 6.5.1.

These problems are in some sense the price that has to be payed if one wants to work
with a set of orthonormal support functions. It is not surprising that they arise since –
as already mentioned in Sec. 3.3.6 – orthogonality and localization are in general two
contradicting properties.
However completely releasing the orthogonality would open new problems and bot-
tlenecks – for instance necessitating the introduction of a larger cutoff radius for the
density kernel or complicating the calculation of S−1 and S−1/2, which are used in
various locations – that are probably not easier to overcome than this one.
A possible solution might be to only relax the orthogonality as soon as a further op-
timization of the support functions with the orthogonality constraint is not possible
anymore. If they are already reasonably converged and will thus not undergo heavy
changes from that point on, the approximate orthogonality should be preserved in this
way.
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5.1.7 Orthogonalization

As already mentioned several times the support functions are required to be orthonor-
mal. This is accomplished by means of a Löwdin orthonormalization [74], which gen-
erates a set of orthonormal support functions φ̃α out of the non-orthonormal ones φα:

|φ̃α〉 = ∑
β

(S−1/2)αβ |φβ〉 (5.45)

with the overlap matrix Sαβ = 〈φα|φβ〉. Whereas the calculation of the latter can be
done with linear scaling thanks to the strict localization of the support functions – more
details on this are given in Sec. 6.3.1.1 – the calculation of S−1/2 remains a bottleneck
since it requires a diagonalization of the matrix. Consequently a way to circumvent
this obstacle has to be found.

5.1.7.1 Taylor approximation

Even if the value of S−1/2 is calculated exactly, it will – due to the strict localization of
the support functions – not be possible to exactly orthogonalize the support functions
since in general the orthonormalized support function φ̃α does not fit into the same
localization region as the non-orthonormal one φα. Therefore one can make a virtue
out of necessity and try to replace the exact calculation of S−1/2 by an approximation
which can be calculated much faster. If the error introduced by this approximation is
of the same order of magnitude as the one caused by the localization constraint, this
approach should be an acceptable way to go.

Luckily the situation is such that one is dealing with support functions being only
slightly non-orthonormal, thus yielding an overlap matrix which is still close to the
identity. Thus there is the hope that the error introduced by approximating S−1/2 by
a first order Taylor expansion is not too large. Consequently the value of S−1/2 is
approximated by

(S−1/2)αβ = ([I + (S− I)]−1/2)αβ ≈ ((I − 1
2
(S− I))αβ =

3
2

δαβ − 1
2
Sαβ. (5.46)

A comparison of this way of approximating S−1/2 and its exact calculation is shown in
Fig. 5.14, where the maximal deviation of the overlap matrix from the identity before
and after the orthonormalization is shown as a function of the cutoff radius for the
support functions. The test was done for a water droplet consisting of 1500 atoms,
giving rise to an overlap matrix of dimension 3000×3000.

First of all it can be seen that the maximal deviation from the identity matrix before
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the orthogonalization is quite independent of the cutoff radius, meaning that all or-
thogonalizations start from approximately the same conditions and can thus well be
compared. Furthermore it is obvious that the difference from the identity matrix after
the orthonormalization is more or less independent of the localization radius for the
Taylor approximation, whereas the one for the exact calculation of S−1/2 decreases as
the cutoff radius is increased.
This is intuitively clear, since for the exact calculation the only source of error comes
from the cutting of the support functions due to the localization constraint; obviously
this error tends to zero as the cutoff radius is increased. On the other hand the error in-
troduced by the Taylor expansion does not only depend on the localization constraint,
but also on how much the overlap matrix deviates from the identity matrix before
S−1/2 is calculated; as mentioned, this deviation is more or less independent of the
localization radius. Thus one can conclude that as long as the two curves are close
together, the error stemming from the localization constraint dominates, whereas the
one caused by the Taylor approximation prevails as soon as they spread apart.
As can be seen the differences between the version that calculates S−1/2 exactly and
the one that approximates it using the Taylor expansion are – at least for typical cutoff
radii which are around 10 bohr – not huge. In view of the enormous time saving of-
fered by the Taylor expansion – see in this context also Fig. 5.17 –, it therefore seems to
be a good strategy to use this approximation.
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Figure 5.14: Comparison of the two orthog-
onalization procedures, i.e. the one which
exactly calculates S−1/2 and the one which
approximates it using a first order Taylor
expansion, illustrated by the maximal de-
viation of the overlap matrix after the or-
thogonalization from the identity. The red
curve shows the same quantity before the
orthogonalization. The test was done for a
water droplet consisting of 1500 atoms and
a total matrix size of 3000× 3000.

5.1.7.2 Submatrix method

Unfortunately the procedure described in the previous section is not applicable right
after the input guess when the support functions are not yet close to being orthonor-
mal, thus yielding an overlap matrix that is considerably distinct from the identity.
Using the Taylor approximation in such a case is not advisable since it assumes only
slightly non-orthonormal support functions.
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However always using the exact calculation of S−1/2 in this situation would create a
bottleneck causing severe problems for large systems. Therefore a procedure was de-
veloped which avoids the diagonalization of the entire matrix while still approximating
S−1/2 very accurately.

A schematical overview of this so-called submatrix method is shown in Fig. 5.15. The
basic idea behind it is that the value of S−1/2 is calculated independently for each col-
umn of the matrix.
Therefore one starts by first determining the “active space” for each column, meaning
that one selects all matrix elements that correspond to support functions with which

Figure 5.15: Schematical view of the submatrix method which allows to calculate S−1/2 without
diagonalizing the entire matrix. The procedure is shown for the three first columns of the
matrix; for the other ones the procedure is analogous.
On the very left side the overlap matrix with its sparsity pattern – i.e. only the yellow fields
are non-zero – is shown. Now for each column which is processed – visualized by the bold
frame – the “active space” (indicated by red) is selected, given by those matrix elements
corresponding to support functions with which the support function represented by the
current column overlaps. For instance, the first support function has overlaps with the
support functions 1, 2, 5 and 6, and consequently the matrix elements belonging to these
support functions form the active space. This active space is then cut out of the large matrix
and filled into a smaller matrix s, padding with zero the empty entries. For this smaller
matrix the value of s−1/2 is calculated exactly, as indicated by the green matrices. Now the
result of this smaller matrix is inserted back into the large matrix, but only filling the column
that has been chosen initially. The matrix elements which are not covered by the submatrix
s due to the sparsity of S are padded with zeros.
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the support function represented by the current column overlaps. This active space de-
fines a smaller submatrix s which is then cut out of the large matrix and for which the
exact value of s−1/2 can be calculated with much less computational effort compared
to the large matrix. Afterwards the result for s−1/2 is inserted back into that column
of the large matrix which is processed, padding with zero those elements which were
not part of the small matrix s. If S−1/2 is directly stored in the same sparse format as
S, this padding is not required.
Since the columns can be treated independently, this method can be easily parallelized
and is therefore quite efficient on large parallel architectures.

An overview of the performance of this method is shown in Fig. 5.16. The first plot,
Fig. 5.16a, shows the matrix norm of the difference between the overlap matrix after the
orthogonalization using the exact calculation of S−1/2 and the one using the submatrix
method, i.e. it plots the value

κ = ||Sexact − Ssubmatrix|| =
√

∑
α,β

∣

∣

∣
S

αβ
exact − S

αβ
submatrix

∣

∣

∣

2
. (5.47)

Here quite some variations with respect to the cutoff radius can be observed, but still
the maximum is only of the order of 10−7. This is actually an excellent value in view of
the fact that the maximal error introduced by the localization constraints is – depend-
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Figure 5.16: An overview of the performance of the submatrix method. The tests were again
done for the water droplet containing 1500 atoms. Figs. 5.16a and 5.16b show the accuracy
of the method, whereas Fig. 5.16c is rather a performance issue.
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ing on the localization radius – of the order of 10−4 to 10−3, as has been demonstrated
in Fig. 5.14. This means that an orthogonalization using the submatrix method can be
considered as exact.

An even much better way to estimate the accuracy of the submatrix method itself is
to plot the value of

∣

∣

∣

∣

∣

∣
S−1/2
exact − S−1/2

submatrix

∣

∣

∣

∣

∣

∣
, i.e. the matrix norm of the difference be-

tween the two ways to calculate S−1/2. In this way the error introduced by using the
submatrix method can be isolated and is not mixed up with the error introduced by
the localization constraint. This plot is shown in Fig. 5.16b. As can be seen this ma-
trix norm shows only a weak variation with respect to the cutoff radius and is always
smaller than 10−5, once more demonstrating the accuracy of the submatrix method.

Last but no least Fig. 5.16c shows the maximal size of the the submatrices. As expected
this number exhibits a strong increase with respect to the cutoff radius. Still it is ap-
pealing that the error introduced by the submatrix method does not seem to depend
heavily on the size of the submatrices.

In view of these impressing results one might wonder why it is not possible to use
the submatrix method throughout the entire calculation, replacing the Taylor approx-
imation. The reason is quite simple: The Taylor approximation method is still much
faster – by orders of magnitude – than the submatrix method. This fact is illustrated in
Fig. 5.17, where the time required by the three approaches to calculate S−1/2 – exact,
Taylor approximation and submatrix method – are shown as a function of the cutoff
radius.
Furthermore the scaling with respect to the cutoff radius is much better for the Tay-
lor approximation method. Here the time is directly proportional to the number of

Figure 5.17: The time re-
quired for the calculation
of S−1/2 by the three
methods “Taylor approxi-
mation”, “submatrix” and
“exact”, with respect to the
cutoff radius. The right plot
is the same on a log-log
scale, demonstrating that
the scaling of the subma-
trix method is the cube of
the scaling of the Taylor ap-
proximation.
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non-zero matrix elements, which is in turn related to the number of overlaps a given
support function exhibits with the other ones and depends – apart from the cutoff
radius – as well on the geometry. For the submatrix method, on the other hand, the
most time consuming part is the diagonalization of the submatrix, which scales cubi-
cally with respect to the size of the matrix. This size is, in turn, again related to the
number of overlaps a given support functions exhibits. Consequently the scaling of the
submatrix method is the cube of the scaling of the Taylor approximation. This fact is
demonstrated by the log-log plot in Fig. 5.17.
The exact calculation of S−1/2 requires the diagonalization of the entire overlap matrix
and its time requirement is therefore independent of the cutoff radius. Thus it can
happen that the submatrix method becomes slower than the exact calculation of S−1/2

for very large cutoff radii.

It is worth noting that both the Taylor approximation method and the submatrix
method can rather easy be parallelized, whereas this is much more difficult for the
exact method. Consequently the crossover point between the exact and the submatrix
method depends on the number of MPI tasks that are used. For the current test 1500
MPI tasks were used, meaning that each MPI task had to handle two columns of the
matrix.

5.1.8 Orthonormality constraint

In order to keep the support functions as orthogonal as possible in the course of the
optimization procedure, it is important to incorporate an orthogonality constraint into
the gradient. For its derivation one has to temporarily abandon the orthonormality and
only reapply it after the gradient has been calculated. A way how this can be done if the
Hamiltonian is orbital-dependent – which corresponds to the case where the support
functions are optimized using a confining potential, i.e. the trace minimization mode,
the mixed mode and the hybrid mode – was outlined by Goedecker and Umrigar [75]
and will be shown in the following.

5.1.8.1 Derivation for orthonormal orbitals

For this derivation it is assumed that the support functions can be orthonormalized
exactly; consequently the distinction between covariant and contravariant quantities
is not necessary and everything is written with a lower index. The generalization to
non-orthogonal support functions will be shown in Sec. 5.1.8.2.

The derivation starts with the construction of a set of orthonormal support functions
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φ̃α out of the non-orthonormal set φα by means of a Löwdin orthogonalization:

φ̃α = ∑
β

(S−1/2)αβφβ (5.48)

with the overlap matrix Sαβ =
∫

φα(r)φβ(r)dr. Since one wants to calculate the deriva-
tive for a set of support functions which are only slightly non-orthonormal it is justified
to approximate the calculation of S−1/2 by a first order Taylor approximation and to
write S−1/2 = [I+ (S− I)]−1/2 ≈ I− 1

2(S− I) = 3
2I− 1

2S. The Löwdin orthogonaliza-
tion then reads

φ̃α = ∑
β

(
3
2

δαβ −
1
2
Sαβ)φβ. (5.49)

The total gradient of the target function with respect to the support function φα can
now be calculated by applying the chain rule:

δΩ

δφα(r)
= ∑

β

∫

δΩ

δφ̃β(r′)

δφ̃β(r
′)

δφα(r)
dr′. (5.50)

The first part is just the unconstrained gradient that depends on the specific functional
form of the target function Ω,

gβ(r) =
1
2

δΩ

δφ̃β(r)
. (5.51)

For the second part one gets

δφ̃β(r
′)

δφα(r)
=

3
2

δαβδ(r− r′)− 1
2
Sαβδ(r− r′)− 1

2 ∑
γ

φγ(r
′)

δ

δφα(r)

∫

φβ(r
′′)φγ(r

′′)dr′′

=
3
2

δαβδ(r− r′)− 1
2
Sαβδ(r− r′)− 1

2 ∑
γ

φγ(r
′)[δαβφγ(r) + δαγφβ(r)]

=
3
2

δαβδ(r− r′)− 1
2
Sαβδ(r− r′)− 1

2
δαβ ∑

γ

φγ(r
′)φγ(r)−

1
2

φα(r
′)φβ(r)

= δαβδ(r− r′)− 1
2

δαβ ∑
γ

φγ(r
′)φγ(r)−

1
2

φα(r
′)φβ(r),

(5.52)

where in the last step the fact that the derivative is calculated for a set of orthonormal
orbitals was used and therefore the overlap matrix is equal to the identity matrix, i.e.
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S = I. Inserting the results (5.51) and (5.52) in the total gradient (5.50) one gets

1
2

δΩ

δφα(r)
= ∑

β

∫

gβ(r
′)δαβδ(r− r′)dr′

− 1
2 ∑

β,γ

∫

δαβgβ(r
′)φγ(r

′)φγ(r)dr′

− 1
2 ∑

β

∫

gβ(r
′)φα(r

′)φβ(r)dr′

= gα(r)−
1
2 ∑

γ

(

∫

gα(r
′)φγ(r

′)dr′
)

φγ(r)−
1
2 ∑

β

(

∫

gβ(r
′)φα( r

′)dr′
)

φβ(r).

(5.53)

Defining the Lagrange multiplier matrix which enforces this constraint by

Λαβ =
∫

gα(r)φβ(r)dr (5.54)

the above result can be written in a more compact form as

1
2

δΩ

δφα(r)
= gα(r)−

1
2 ∑

β

Λαβφβ(r)−
1
2 ∑

β

Λβαφβ(r). (5.55)

If the matrix Λ was symmetric – which would be the case if the form of the gradient
did not depend on the specific value of α, i.e. without using any confinement – the two
sums could be combined into one.

5.1.8.2 Generalization to non-orthonormal orbitals

The above derivation – with the final result (5.55) – was done for a set of orthonormal
support functions. Now it has to be generalized to non-orthogonal ones. This can most
easily done in the space of the coefficients of the underlying wavelet basis. To this end
each support function is written explicitly in this basis:

φα(r) = ∑
i

ciαχi(r), (5.56)

where χi stands for both scaling functions and wavelets. The coefficients ciα form
a matrix of dimension nbasis × nsup.f., where nbasis is the total number of underlying
basis functions (scaling functions and wavelets) and nsup.f. the total number of support
functions. Denoting the quantities for the orthonormal support functions by a tilde,
the Löwdin orthogonalization can – thanks to the orthonormality of the wavelet basis
– be written as

c̃ = cS−1/2, (5.57)
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where S = cTc is the overlap matrix of dimension nsup.f. × nsup.f.. Expressing the
Hamiltonian as a matrix H of dimension nbasis × nbasis the orthogonality constraint of
Eq. (5.55) – now as well represented by a matrix G̃ of dimension nbasis × nsup.f. – can
be written as

G̃ = Hc̃− 1
2
c̃Λ̃ − 1

2
c̃Λ̃

T, (5.58)

where the matrix Λ̃ of dimension nsup.f. × nsup.f. is this time given by Λ̃ = c̃T g̃ with
g̃ being the expansion coefficients of the unconstrained gradient in the underlying
basis. Again the tilde indicates that these are the quantities for the case of orthonormal
support functions.
The gradient matrix for the orthogonal case, G̃, is related to the one for the non-
orthogonal case, G, in the same way as the coefficients, namely

G̃ = GS−1/2. (5.59)

This equation can now be solved for G, yielding

G =

[

Hc̃− 1
2
c̃Λ̃ − 1

2
c̃Λ̃

T

]

S1/2

=

[

Hc̃− 1
2
c̃(c̃T g̃)− 1

2
c̃(g̃T c̃)

]

S1/2

=

[

H(cS−1/2)− 1
2
(cS−1/2)(S−1/2cTgS−1/2)− 1

2
(cS−1/2)(S−1/2gTcS−1/2)

]

S1/2

= Hc− 1
2
cS−1cTg− 1

2
cS−1gTc

= Hc− 1
2
cS−1

Λ − 1
2
cS−1

Λ
T,

(5.60)

where the symmetry of S−1/2 was used. This is exactly the same expression as for the
orthonormal case, i.e. Eq. (5.58), except for the fact that the Lagrange multiplier matrix
has to be multiplied first with the inverse of the overlap matrix.

Whereas the correction for the non-orthonormality is quite simple in principle, its
implementation might be problematic since it requires to invert the overlap matrix
which could become a bottleneck. However, after the discussion in Sec. 5.1.7, it seems
to be plausible to approximate the inverse as well by a first order Taylor expansion,

S−1 = (I+ (S− I))−1 ≈ I− (S− I) = 2I− S, (5.61)

thereby circumventing this problem.

Since the effect of the slight non-orthonormality is not very strong, it can be specified
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manually whether the inverse of the overlap matrix should be applied to the Lagrange
multiplier matrix or not. Furthermore it can be chosen whether the calculation of S−1

should be done exactly or only approximately using the Taylor expansion.

5.1.9 The number of support functions

As already mentioned several times, the goal is to use only a very small number of
support functions. If they are of good enough quality, adding more support functions
will improve the final result only little while still increasing the computational demand
considerably.

The number of support functions can be specified for each atom type in the system.
Due to the nature of the input guess consisting of the atomic orbitals, it is at the
moment only possible to use the numbers 1, 4, 9 and 16, which correspond to the sum
of s-, p-, d- and f-orbitals, respectively. Usually it is enough to use a minimal basis set,
consisting of those orbitals for which the atom exhibits a non-zero occupation.

To investigate the effect of using more support functions than just such a minimal set, a
test for an alkane consisting of 152 atoms was performed. For this system the minimal
basis set consists of 4 support functions for each carbon atom and 1 for each hydrogen
atom, denoted by 4/1. The next step would be to add as well the p-orbitals for the
hydrogen atoms – denoted by 4/4 –, and a further increase in the accuracy is expected
when taking in addition the d-orbitals for the carbon atoms, denoted by 9/4.
The results of this test are shown in Fig. 5.18. Very surprisingly the system behaves in
a non-variational way, i.e. the energy does not systematically decrease if the number of
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Figure 5.18: Comparison of the effect of
increasing the number of support func-
tion, tested for an alkane consisting of
152 atoms. The hybrid mode and the
FOE method were used for the optimiza-
tion of the support functions and the den-
sity kernel, respectively; the cutoff radius
was set to 9 bohr and the initial prefactor
for the confinement to 3.0 · 10−3 hartree/bohr4.
4/1 means 4 support functions per carbon
atom and 1 per hydrogen atom; the mean-
ing of 4/4 and 9/4 is analogous. The en-
ergy difference between the linear and the
cubic version, Elinear−Ecubic, is clearly non-
variational.
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support functions is increased. This means that the additional support functions have
in some way deteriorated the quality of the original ones.

It turns out that the problem is related to the orthonormalization of the atomic orbitals
which are used as the input guess for the support functions. It seems that the more
support functions are contained in one localization region, the more they are spread out
in the course of the orthonormalization, thus requiring to cut a lot at the boundaries.
Since this cutting affects as well the original support functions, it becomes clear why
adding more and more support functions can deteriorate their quality and lead to
worse results.

In order to prevent this deterioration of the support functions, the orthonormalization
procedure has to be modified, as will be shown in the following. In a first step the
minimal basis is orthonormalized without taking into account the remaining support
functions:

φ̃α = ∑
β∈M

(S′−1/2)αβφβ ∀α ∈ M, (5.62)

where M denotes the minimal set and S′ is the overlap matrix of this subset. This
generates by definition the same orthonormal set as the minimal approach, i.e. without
the additional support functions. In a second step the latter ones are orthogonalized
with respect to the minimal basis by means of the Gram-Schmidt procedure:

φ̃α = φα − ∑
β∈M

Sαβφβ ∀α /∈ M, (5.63)

where S is this time the overlap matrix among all support functions. Finally the addi-
tional support functions are orthonormalized without modifying the other ones:

˜̃φα = ∑
β/∈M

(S′′−1/2)αβφ̃β ∀α /∈ M, (5.64)

Figure 5.19: Illustration of the effect of the
two different orthonormalization methods
for the input guess of the support func-
tions on the results when a larger set of
support functions than just the minimal
one is used. The same system and param-
eters were used as in Fig. 5.18. It is obvi-
ous that the results using the new method
are clearly superior; furthermore the vari-
ationality is perfectly restored. In addition
the lines for “4/1 old” and “4/1 new” co-
incide, as it should be.
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where S′′ is the overlap matrix among the support functions which do not belong to
the minimal set.
If one is using more than just one additional level – e.g. using s-, p- and d-orbitals
instead of just s-orbitals – this procedure can be applied recursively.
In this way one gets an orthogonal set of support functions which is by construction
an enhancement of the minimal basis, meaning that the variationality is restored.

This is confirmed by the results shown in Fig. 5.19, which compares this new orthonor-
malization with the data of Fig. 5.18.
First of all it is obvious that the results for the minimal basis are identical to the ones
yielded by the old version, as it should be. Furthermore, as expected, the variationality
is perfectly restored and the results for the settings 4/4 and 9/4 are considerably better
compared to the old orthonormalization method.

These results are quite astonishing taking into account that the only difference between
the two versions is the very first orthonormalization. This demonstrates the huge im-
pact of the input guess on the final results.

However it is questionable whether it is worth – at least for this system – to take more
support functions than the minimal set. Tab. 5.1 shows the energy difference per atom
between the linear and the cubic version and the average time required for one iter-
ation of the outer loop. As can be seen, the energy difference is already very small
(1.41meV/atom) for the minimal basis set. Increasing the number of support functions
further gives only little improvement of the accuracy, but increases the run time con-
siderably.

Elinear − Ecubic time
(meV/atom) (seconds)

4/1 1.41 6.7
4/4 1.11 15.5
9/4 0.79 26.8

Table 5.1: The energy difference between a run using the
linear version and one using the cubic version, together
with the average time needed for one iteration in the
outer loop. The energy difference, this time shown in
meV/atom, is already very small for the minimal basis set.
The test systemwas the same that was used for Fig. 5.19.

5.2 Kernel optimization

Unlike the optimization of the support functions, where the various modes may lead
to different results, the situation for the optimization of the density kernel is contrary.
All methods to optimize the density kernel should finally yield the same result even
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though they may be quite different in spirit.

The optimization of the density kernel is always done using a fixed set of support
functions. Still it is an iterative procedure – even if some of the methods presented
in this section, for instance the direct diagonalization, seem to be non-iterative at first
sight –, since the density kernel is optimized in a self-consistent way, meaning that
after each update of the density kernel a new charge density and a new potential are
determined, which are then the input for the next optimization step. This is in contrast
to the optimization of the support functions which is done in a non-self-consistent way.

Still it is in general better not to optimize the density kernel to a fully self-consistent so-
lution, but rather to stop after a few iterations and then to further optimize the support
functions with the new potential. Otherwise one may just have found a self-consistent
solution in a basis which is not yet of high quality, which will most likely simply in-
crease the time to solution without giving a better final result.
A general overview can also be gained from the various flowcharts in Sec. 5.1.

The most straightforward approach would be to directly calculate the gradient of the
energy with respect to the elements of the density kernel, i.e. ∂E

∂Kαβ , and then to up-
date the density kernel with this gradient. However this procedure would violate the
idempotency of the density kernel; thus each such update would require an additional
operation that restores this property.

For the linear scaling version of BigDFT several approaches for the optimization of the
density kernel were implemented which all have in common that they automatically
yield an idempotent density kernel. These various methods will first be explained in
detail, followed by a comparison of their performances.

5.2.1 Direct diagonalization

The most straightforward way to optimize the density kernel is a direct diagonalization
of the Hamiltonian matrix in the basis of the support functions, i.e. Hαβ = 〈φα|H|φβ〉.
By solving the generalized eigenvalue problem of Eq. (3.42),

Hci = ǫiSci, (5.65)

one gets the eigenvectors ci which are – according to Eq. (3.36) – the expansion co-
efficients of the Kohn-Sham orbitals in terms of the support functions, i.e. |ψi〉 =

∑α ciα |φα〉. Thus the density kernel can – in agreement with Eq. (3.38) – be constructed
out of them according to

Kαβ = ∑
i

ciαciβ. (5.66)
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This new density kernel automatically satisfies the requirement of idempotency. From
the normalization of the coefficients cTi Scj = δij – which is automatically provided by
the eigensolver – it follows that

∑
µ,ν

KαµS
µνKνβ = ∑

µ,ν
∑
i,j

ciαciµS
µνcjνcjβ = ∑

i,j
ciαδijcjβ = ∑

i

ciαciβ = Kαβ, (5.67)

or written in more compact form
KSK = K, (5.68)

which is exactly the idempotency condition (3.33).

This normalization of the coefficients also ensures the orthonormality of the fictitious
Kohn-Sham orbitals, since

〈ψi|ψj〉 = ∑
α,β

ciαcjβ 〈φα|φβ〉 = ∑
α,β

ciαS
αβcjβ = δij. (5.69)

The new kernel as calculated by (5.66) then permits the determination of the new
charge density according to Eq. (3.28). However this new charge density cannot be
used directly; instead a mixing with the old density has to be performed first. In the
simplest case of linear mixing, the final charge density ρ̃ which will be used in the
subsequent step is given by

ρ̃ = αρnew + (1− α)ρold, (5.70)

where α is the mixing parameter and lies between 0 and 1. There exist also more elabo-
rate mixing prescriptions than this simple one – e.g. the Pulay mixing [72], which is as
well implemented – that typically give a faster convergence. The choice of the mixing
scheme can be specified manually by the user.

Instead of mixing the charge density it is also possible to mix the potential which is
calculated out of it. Apart from this difference the procedure is exactly the same. How-
ever, as will be shown later in Sec. 5.2.4, it turned out that mixing the charge density
gives usually a faster convergence.

Even if this straightforward approach is very fast for small systems, it becomes pro-
hibitive for larger ones due to the cubic scaling of the diagonalization.
An improvement of the scaling could be achieved by exploiting the sparsity of the
matrix. Unfortunately most of the packages that can diagonalize large sparse matrices
(e.g. Anasazi [76] and SLEPc [77]) are mainly designed to extract only a few eigen-
values and eigenvector, whereas the approach of the direct diagonalization requires a
considerably larger number of eigenvectors. Furthermore it is rather difficult to effi-
ciently parallelize this operation, meaning that the code will exhibit a bad performance
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on highly parallel architectures.
As a consequence this method remains limited to systems where the matrix dimensions
do not exceed a few thousand.

5.2.2 Direct minimization

Another possibility is to directly optimize the expansion coefficients ci which appear
in the representation of the Kohn-Sham orbitals in the basis of the support functions
according to Eq. (3.36).
To this end one starts with the gradient of the Kohn-Sham orbitals, which can be
derived by calculating the derivative of the band-structure energy EBS = ∑i 〈ψi|H|ψi〉
and applying the orthogonality constraint:

|gi〉 = H |ψi〉 −∑
j

Λij |ψj〉 , (5.71)

where the Lagrange multiplier matrix Λij = 〈ψi|H|ψj〉 enforces the orthonormality
constraint. This is the same prescription as Eq. (5.55) – the factor 1

2 in front of |gi〉 has
been omitted for simplicity since it just corresponds to a scaling of the gradient –, just
with the difference that the Lagrange multiplier matrix is this time symmetric due to
the independence of the Hamiltonian on the orbitals and as a consequence the two
terms of the right hand side of (5.55) can be combined into one single expression.

The goal is to write this gradient in terms of the support in the same way the orbitals
are represented in this basis, meaning that one has to determine the coefficients di of
the expansion

|gi〉 = ∑
α

diα |φα〉 . (5.72)

The first step is to insert the expansion of the Kohn-Sham orbitals, i.e. |ψi〉 = ∑α ciα |φα〉,
into the formula for the Lagrange multiplier matrix Λ:

Λij = ∑
α,β

ciαcjβ 〈φα|H|φβ〉 . (5.73)

Since both the support functions φα and the coefficients ciα are available, this matrix
can be evaluated straightforwardly. Inserting the same expansion into the expression
for the gradient of (5.71) leads to

|gi〉 = ∑
α

ciαH |φα〉 −∑
j

∑
α

Λijcjα |φα〉 . (5.74)
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This expression has to be equal to the representation of the gradient according to (5.72),
i.e. one gets the relation

∑
α

diα |φα〉 = ∑
α

ciαH |φα〉 − ∑
j

∑
α

Λijcjα |φα〉 . (5.75)

Multiplying from left with 〈φβ| and using the notations Sαβ = 〈φα|φβ〉 and Hαβ =
〈φα|H|φβ〉 yields

∑
α

Sβαdiα = ∑
α

Hβαciα −∑
j

∑
α

SβαcjαΛij. (5.76)

The sums over j and α on the right hand side of (5.76) can be evaluated independently
of the rest of the equation. Thus one can define the vector bi by

b
β
i = ∑

α

Hβαciα −∑
j

∑
α

SβαcjαΛij (5.77)

which then leads to the expression

∑
α

Sβαdiα = b
β
i . (5.78)

Thus the final result is that the expansion coefficients di for the gradient are given by
the solution of the linear system of equations

Sdi = bi. (5.79)

After solving this equation the coefficients ci can be optimized with any optimization
procedure, giving in this way an improved representation of the Kohn-Sham orbitals
in terms of the support functions.

What remains is the orthonormalization of the coefficients, since the orthonormality
constraint in Eq. (5.71) preserves this property only to first order. Therefore it has to
be ensured explicitly after each optimization step that

cTi Scj = δij. (5.80)

This is accomplished using the Löwdin method, which reads in this case

c̃i = ∑
j

[

cTSc
]−1/2

ij
cj, (5.81)

where c̃i are the coefficients after the orthonormalization and ci the ones before.

Using these normalized coefficients the density kernel can then be evaluated in exactly
the same way as for the direct diagonalization approach. Thanks to the normalization
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of the coefficients it again automatically fulfills the requirement of idempotency.

From the viewpoint of the scaling with respect to the size of the system, this approach
has a priori again a cubic scaling due to the linear algebra contained in it. Eq. (5.79)
requires to invert the overlap matrix in order to solve the linear system of equation,
and the orthonormalization necessitates the calculation of

[

cTSc
]−1/2
ij

; both operations
will scale cubically with respect to the size of the matrices.
However there are a few differences compared to the direct diagonalization approach
described in Sec. 5.2.1. First of all solving a linear system of equations is typically
faster than diagonalizing a matrix, i.e. the coefficients can be obtained in less time.
Furthermore the dimension of the matrix which has to be diagonalized for the Löwdin
procedure is equal to the number of Kohn-Sham orbitals, whereas the Hamiltonian
matrix which has to be diagonalized in the direct diagonalization approach has the
dimension of the number of support functions.

A clear improvement of the scaling could be reached by exploiting the sparsity prop-
erties of the matrices. Furthermore it could be possible to use the fact that both S

and cTSc are not very distinct from the identity matrix and the calculation of S−1 and
[cTSc]−1/2 might consequently be approximated in some form, for instance again by
using a Taylor expansion.

5.2.3 Fermi Operator Expansion

Unlike the direct diagonalization and the direct minimization approach which both
first determine the expansion coefficients c of the Kohn-Sham orbitals and then cal-
culate the density kernel K out of them, the Fermi Operator Expansion (FOE) [47, 48]
directly calculates the density kernel in the basis of the support functions.
There exist several different flavors of such an expansion; the one used in the linear
scaling version of BigDFT is the so-called Chebyshev Fermi Operator Expansion.

5.2.3.1 Chebyshev expansion

The basic idea of the FOE method is to express the density matrix as a function of
the Hamiltonian, i.e. F = f (H). In terms of the support functions, this would then
correspond to an expression of the density kernel in terms of the Hamiltonian matrix,
i.e. K = f (H).
One such expression which is particularly simple is a polynomial expansion of order



5.2. KERNEL OPTIMIZATION

CHAPTER 5. DETAILED IMPLEMENTATION OF A LINEAR SCALING ALGORITHM IN BIGDFT

99

npl in the Hamiltonian matrix:

K ≈ p(H) =

npl

∑
i=0

ciH
i. (5.82)

Unfortunately polynomials of high degree can become numerically unstable. How-
ever this problem can be circumvented by using a Chebyshev polynomial representa-
tion [78]:

p(H) =
c0
2
I+

npl

∑
i=1

ciT
i(H), (5.83)

where I is the identity matrix, which was written as H0 in Eq. (5.82), and Ti(H) the
Chebyshev matrix polynomials of degree i. These polynomials are only defined in the
interval [−1, 1], which requires that the Hamiltonian has to be scaled and shifted such
that its eigenvalue spectrum lies within this range. If ǫmin and ǫmax are the smallest and
largest eigenvalue, respectively, which would result from diagonalizing the Hamilto-
nian matrix according to Hci = ǫiSci, then the scaled Hamiltonian H̃ has to be built
according to

H̃ = σ(H− τS), with σ =
2

ǫmax − ǫmin
, τ =

ǫmin + ǫmax

2
, (5.84)

where S is again the overlap matrix.
A way to determine the lowest and highest eigenvalue without diagonalizing the entire
matrix will be shown in Sec. 5.2.3.3.

The Chebyshev polynomials appearing in (5.83) can be calculated from the following
recursion relation:

T0(H̃) = I,

T1(H̃) = H̃,

Tj+1(H̃) = 2H̃Tj(H̃)− Tj−1(H̃).

(5.85)

What remains is to calculate the expansion coefficients ci. To this end one has to recall
that the density matrix is a projection operator onto the occupied subspace of the
Kohn-Sham orbitals:

〈ψi|F|ψj〉 = f (ǫj)δij, (5.86)

where the function f (ǫj) is the Fermi distribution describing the occupation of the
orbital |ψj〉 and is given by

f (ǫ) =
1

1+ e(ǫ−µ)/kBT
, (5.87)

where µ is the chemical potential, kB Boltzmann’s constant and T the temperature. For
systems with a finite band gap the temperature is usually set to zero, in which case
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the chemical potential corresponds to the Fermi energy and the Fermi distribution be-
comes a step function with its values being either 1 or 0. The Fermi energy has to
be adjusted such that the sum of the occupation numbers – which corresponds to the
trace of the density kernel – is equal to the number of electrons in the system. A way
to accomplish this is shown in Sec. 5.2.3.4.

Evaluating the polynomial p(H) in the same eigenfunction representation as the den-
sity matrix in (5.86) gives

〈ψi|p(H)|ψj〉 = p(ǫj)δij, (5.88)

where

p(ǫ) =
c0
2
+

npl

∑
i=1

ciT
i(ǫ). (5.89)

By comparing Eqs. (5.86) and (5.88) it becomes clear that the polynomial expansion
p(ǫ) has to approximate the Fermi distribution f (ǫ) in the interval [−1, 1]. Thus the
coefficients ci are simply the expansion coefficients of the Fermi distribution with re-
spect to the Chebyshev polynomials in the interval [−1, 1].

Once the expansion coefficients ci are determined, which is negligible from the view-
point of the time consumption, the expansion of the density kernel according to
Eq. (5.83) can be carried out using only matrix-vector multiplications. If the lth column
of the Chebyshev matrix T is denoted by tl, then these vectors fulfill – according to
Eq. (5.85) – the recursion relation

t0l = el,

t1l = H̃el ,

t
j+1
l = 2H̃t

j
l − t

j−1
l ,

(5.90)

where el is the lth column of the identity matrix. The lth column of the density kernel,
denoted by kl, is then given by the linear combination of all the columns tl according
to Eq. (5.83), i.e.

kl =
c0
2
t0l +

npl

∑
i=1

cit
i
l . (5.91)

This demonstrates that the density kernel can be constructed using only matrix vector
multiplications.

Due to the fact that the Hamiltonian was scaled and shifted such that its eigenvalues
lie in the interval [−1, 1], the band-structure energy is not simply given by tr(KH̃), but
the shifting and scaling operations have to be undone. Thus the correct value is given
by

EBS =
tr(KH̃)

σ
+ τ tr(KS), (5.92)



5.2. KERNEL OPTIMIZATION

CHAPTER 5. DETAILED IMPLEMENTATION OF A LINEAR SCALING ALGORITHM IN BIGDFT

101

where σ and τ are defined in Eq (5.84)

However the procedure presented so far will – even if the matrix vector multiplications
are relatively cheap operations – lead to a cubic scaling. Exploiting the sparsity of
the matrix H̃ will reduce the scaling, but it will still remain quadratic since both the
number of columns of the Chebyshev matrices and their length is proportional to the
size of the system.
Thus true linear scaling can only be achieved by introducing a localization region for
each column and setting all elements to zero if they lie outside of this region. As will
be shown later in Sec. 6.2.1.2 the final result is not that sensitive with respect to the
choice of this cutoff radius and saturates quite rapidly.

In practice it turns out that it is more advantageous to replace the Fermi distribution
by the function

f (ǫ) =
1
2

[

1− erf
(

ǫ − µ

∆ǫ

)]

, (5.93)

since it approaches the limits 0 and 1 faster as one goes away from the chemical poten-
tial.
It has to be stressed that even for calculations performed at zero temperature, where
the Fermi distribution is a step function, it is important to use a function corresponding
to finite temperature. Otherwise it would be hard to represent the Fermi distribution
as a polynomial due to the introduction of Gibbs oscillations at the Fermi energy that
spoil the Chebyshev fit.
For the function given by Eq. (5.93) this means that ∆ǫ should not become too small;
typically it is a fraction of the band gap [48]. Larger values give lower accuracy,
whereas smaller values give higher accuracy. However, as mentioned, it has to be
ensured that the value does not become too small in order to maintain the good qual-
ity of the Chebyshev fit.

The last thing to show is that the density kernel calculated in this way again auto-
matically fulfills the requirement of idempotency. To demonstrate this one can use the
fact that the kernel calculated by the Fermi Operator Expansion is by construction the
density matrix in the basis of the support functions, i.e. Kαβ = 〈φα|F|φβ〉. Using the
completeness relation ∑µ |φµ〉 〈φµ| = ∑µ |φµ〉 〈φµ| = 1 and the idempotency property
of the density matrix gives

∑
µ,ν

KαµS
µνKνβ = ∑

µ,ν

〈

φα

∣

∣ F
∣

∣ φµ

〉

〈φµ | φν〉
〈

φν

∣

∣ F
∣

∣ φβ

〉

=
〈

φα

∣

∣ FF
∣

∣ φβ

〉

=
〈

φα

∣

∣ F
∣

∣ φβ

〉

= Kαβ,

(5.94)
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which shows that the density kernel indeed fulfills the idempotency requirement.

5.2.3.2 Generalization to non-orthonormal support functions

If the set of support functions in which the density matrix is represented is non-
orthonormal, almost all the central equations remain identical if the Hamiltonian ma-
trix H̃ is replaced with a modified matrix H̃′ which is – as follows from Eq. (3.25) –
given by

H̃′ = S−1/2H̃S−1/2, (5.95)

where Sαβ = 〈φα|φβ〉 is, as usual, the overlap matrix among the support functions. The
only equation which is modified by the introduction of non-orthonormal orbitals is the
expression for the total number of electrons. Whereas this quantity is simply given by
the trace of the density kernel in the orthonormal case, the expression has now to be
replaced by

n = tr(KS), (5.96)

as follows from Eq. (3.26).

However exactly evaluating S−1/2 would again require a diagonalization of the overlap
matrix, thus spoiling the linear scaling that has been obtained by exploiting the sparsity
properties and introducing the localization regions for the vectors of the Chebyshev
matrices. Therefore its calculation is again approximated by a first order Taylor expan-
sion, which can be evaluated in very little time. Since the overlap matrix is very close
to the identity thanks to the quasi-orthonormality which is imposed on the support
functions, the error introduced in this way should not be too large.

5.2.3.3 Guessing lower and upper bounds for the eigenvalue spectrum

As has been mentioned it is necessary to know the lowest and highest eigenvalue of
the Hamiltonian matrix, ǫmin and ǫmax, in order to be able to shift its spectrum into the
interval [−1, 1]. However determining these two values by a diagonalization would be
wasteful. Since one does not have to determine the exact values of ǫmin and ǫmax, but
only an lower and upper bound, ǫlow and ǫup, such that ǫlow ≤ ǫmin and ǫup ≥ ǫmax , a
faster approach can be used.

To this end one first guesses reasonable values for ǫlow and ǫup and scales and shifts
the Hamiltonian according to Eq. (5.84). With this Hamiltonian two “penalty-kernels”
according to Eq. (5.83) can be calculated; the term penalty-kernel is used since the
expansion coefficients are this time not a Chebyshev fit to the Fermi distribution, but
rather a fit to a penalty function. For the upper penalty-kernel – meaning that it is used
to determine the upper bound of the eigenvalue spectrum –, this penalty function is



5.2. KERNEL OPTIMIZATION

CHAPTER 5. DETAILED IMPLEMENTATION OF A LINEAR SCALING ALGORITHM IN BIGDFT

103

zero throughout the entire spectrum, but starts to blow up as soon as it comes in the
neighborhood of ǫup. Analogously the lower penalty-function is very large for values
below and around the value of ǫlow, but rapidly decays to zero for larger values. For
simplicity two exponential functions were used, which exhibit these desired proper-
ties.
A plot of two such penalty functions is shown in Fig. 5.20. The exponential decay and
increase, respectively, around the lower and upper bounds are clearly visible. The flat
part is due to the fact that the value of the penalty functions is set equal to noise level
of the Chebyshev fit as soon as it falls below this value.

Consequently the upper penalty-kernel can be seen as an operator that assigns a non-
zero occupation to all eigenstates that lie above ǫup and a zero occupation to all states
that lie below it, and in the same way the lower penalty-kernel assigns non-zero occu-
pation numbers to states that lie below ǫlow and zero occupations to states above it.
Since the sum of the occupation numbers is given by the trace of the kernel, it can
now easily be determined whether the bounds ǫlow and ǫup cover the entire eigenvalue
spectrum. If the trace of the lower penalty-kernel is zero, this means that there are
no states with eigenvalues below ǫlow and that consequently ǫlow is smaller than ǫmin;
thus this bound is fine in such a case. On the other hand, if the trace is different from
zero, this means that there is at least one eigenvalue below ǫlow; in such a situation, the
value of ǫlow has to be decreased and a new penalty-kernel is calculated.
The determination of the upper bound is of course done in a completely analogous
way.

10
-15

10
-10

10
-5

10
0

10
5

10
10

10
15

10
20

-1 -0.5  0  0.5  1

p
e

n
a

lt
y
 f

u
n

c
ti
o

n

eigenvalue (hartree)

upper penalty function
lower penalty function

Figure 5.20: Plot of the two penalty functions
used to estimate the bounds of the eigenvalue
spectrum. The upper penalty function is zero
throughout the entire interval, but blows up
in the neighborhood of the upper bound. The
lower penalty function exhibits the analogous
behavior around the lower bound. The lower
and upper bound for this test were set to −1.1
and 0.8, respectively. The flat part corresponds
to the noise level of the Chebyshev fit, which is
set to be the lower bound for the functions.

5.2.3.4 Determining the Fermi energy

The sum of the eigenvalues of the density matrix – which is also equal to its trace –,
gives the sum of all occupation numbers of the Kohn-Sham orbitals. Of course this
value must be equal to the number of electrons in the system which is denoted by
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n. Consequently the density kernel has to be calculated several times; if the trace is
smaller than the number of electrons then the Fermi energy was too low, if it is larger
than the number of electrons then the Fermi energy was too high.

The condition that the trace of the density kernel equals the number of electrons in the
system corresponds to determining the root of the function

g(µ) = tr[K(µ)S] − n, (5.97)

which is a monotonically increasing function that ranges from −n to nsup.f. − n, where
nsup.f. is the total number of support functions. The dependence of the density kernel
on the Fermi energy µ has this time been explicitly noted as K(µ).

In the beginning, when the guess for the Fermi energy might be quite far away from
the correct value, this search for the root of Eq. (5.97) can be accomplished using the
bisection method, which is a stable, but rather slow approach. Given two values µ1
and µ2 for which the function g(µ) is negative and positive, respectively, a new guess
for the Fermi energy is calculated according to

µbs
3 =

µ1 + µ2

2
. (5.98)

It turned out that the convergence can be accelerated by taking the average of the root
proposed by the bisection method and the one proposed by the secant method which
is given by

µsm
3 = µ2 − g(µ2)

µ2 − µ1

g(µ2)− g(µ1)
, (5.99)

meaning that the final solution is given by

µbs+sm
3 =

µbs
3 + µsm

3
2

. (5.100)

A further acceleration – however at the cost of some stability – can be reached by using
a cubic interpolation, which is possible as soon as one has four pairs (µi, g(µi)). To this
end one first determines the cubic polynomial

p(µ) = aµ3 + bµ2 + cµ + d (5.101)

that goes through the points {(µ1, g(µ1)), (µ2, g(µ2)), (µ3, g(µ3)), (µ4, g(µ4))}. The co-
efficients a, b, c, d are given by the solution of the following linear system of equations:









µ3
1 µ2

1 µ1 1
µ3
2 µ2

2 µ2 1
µ3
3 µ2

3 µ3 1
µ3
4 µ2

4 µ4 1

















a

b

c

d









=









g(µ1)
g(µ2)
g(µ3)
g(µ4)









. (5.102)
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The three (possibly complex) roots of the resulting interpolating polynomial can be
determined analytically and are given by

µ(1) = − b

3a
− R

3a
− b2 − 3ac

3aR
,

µ(2) = − b

3a
+

R(1+ i
√
3)

6a
− (1− i

√
3)(b2 − 3ac)
6aR

,

µ(3) = − b

3a
+

R(1− i
√
3)

6a
− (1+ i

√
3)(b2 − 3ac)
6aR

,

(5.103)

with

R =
3

√

1
2
(Q+ 2b3 − 9abc+ 27a2d),

Q =
√

(2b3 − 9abc+ 27a2d)2 − 4(b2 − 3ac)3.
(5.104)

Out of these three solutions the one which is real and closest to the old Fermi energy
is selected.

As already mentioned the interpolation method comes at the cost of a decreased sta-
bility. First of all the matrix in Eq. (5.102) can become virtually singular if the values
µi are all close together, making the solution of this equation numerically unstable.
In addition it might happen that the function g(µ) is not monotonically increasing on
a very small scale due to the nature of the polynomial fit that is used to represent the
Fermi function or the one of Eq. (5.93), respectively. If the values used for the inter-
polation happen to lie in such a region it is not sensible any more to use the cubic
interpolation and consequently better to go back to the combination of bisection and
secant approach.

5.2.4 Comparison of the different methods

The various approaches that were presented in order to optimize the density kernel
can be compared from two different perspectives, namely the accuracy and the speed.
As will be shown in the following sections, the FOE method is slightly less accurate
than the other methods, however only by an amount which is easily acceptable. On
the other hand, it is by far the fastest method, in particular for very large systems.

5.2.4.1 Accuracy of the kernel methods

In principle all approaches should lead to the same final result since they all aim at
the same goal, namely the calculation of the density kernel in the basis of the support
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functions. However there are a few subtleties.

The most fundamental difference is that the diagonalization methods and the FOE
method determine the exact density kernel for the current potential, whereas the di-
rect minimization approach only improves it and calculates a new potential before
the minimization has been completed. However, this should not affect the final result
when self-consistency has been reached.

Furthermore only the diagonalization methods and the direct minimization take cor-
rectly into account the slight non-orthogonality of the support functions by solving
the generalized eigenvalue problem or the linear system of equations, respectively,
without adopting any approximations with respect to the overlap matrix. Also the or-
thogonalization of the expansion coefficients which has to be carried out for the direct
minimization is done exactly.

The Fermi Operator Expansion method, on the other hand, approximates the value of
S−1/2 by a first order Taylor expansion. For this reason some small error is introduced
for this approach compared to the two other ones.
Furthermore it is assumed that the matrix H̃′ = S−1/2H̃S−1/2 which is used for the
calculation of the density kernel has the same sparsity pattern as the matrices S or H̃,
which is in general not true. This will introduce an additional error.
It has to be stressed that these inaccuracies are not a shortcoming of the method, but
rather errors introduced in trying to reach linear scaling. If the same approximations
were applied as well to the other methods – which would be necessary to improve the
scaling – the same problems would arise as well.

However there are also some approximations for the FOE method which are inherent
to this approach. As explained in Sec. 5.2.3.1, the function that describes the occupa-
tion of the eigenstates – i.e. the modified Fermi distribution – corresponds to a finite
temperature distribution, whereas the other methods calculate the density kernel at
zero temperature. Furthermore the approximation of this function as a polynomial of
finite degree introduces as well some small errors.

Due to all these reason, it is to be expected that the two direct diagonalization methods
and the direct minimization approach give identical results, whereas the FOE method
will perform slightly worse.
In order to validate this assumption, a direct comparison of all four methods was per-
formed for alkanes of varying lengths; the number of atoms ranged from 152 to 1052.
The cutoff radius for the support functions was set to 8 bohr, and they were optimized
using the hybrid mode with an initial prefactor of 4.9 · 10−3 hartree/bohr4 for the confine-
ment. To compare the various approaches, the difference between the final energy as
calculated by the linear versions using these methods and the one from a cubic refer-
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ence calculation was evaluated and divided by the number of atoms in order to have a
size-independent quantity.

The results of this test are shown in Fig. 5.21. First of all it can be seen that the energy
difference is more or less independent of the length of the alkanes for all four methods,
as it should be the case.
Furthermore it is obvious that indeed the diagonalization methods and the direct min-
imization give almost identical results, whereas the FOE method is slightly worse.
However the deviation between the FOE method and the other ones – which is of the
order of 10−5 hartree/atom – has to be compared with the deviation of the linear results
from the cubic reference calculation, which is of the order of 10−4 hartree/atom. Thus
the difference between the FOE approach and the other linear methods is one order of
magnitude smaller than then overall deviation of the linear results from the cubic one.
Therefore it seems to be well justified to use the FOE method in practice. This is im-
portant since – as will be shown in Sec. 5.2.4.2 – only the FOE method is at the moment
capable to perform calculations which exhibit a strict linear scaling with respect to the
size of the system.

In addition the results of these test runs validate the approximations that were used
in order to reach linear scaling for the FOE method, and the same approximations can
thus also be applied to the other methods in the future.
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Figure 5.21: Comparison of the accuracy of
the various methods to calculate the den-
sity kernel. The plot shows the energy dif-
ference per atom between the linear ver-
sion and the cubic one for alkanes of var-
ious length. Whereas the diagonalization
methods and the direct minimization give
very similar results, the FOE method is
slightly worse. However the difference is
very small; the deviation of the FOE ap-
proach from the other ones is roughly one
order of magnitude smaller than the devi-
ation of the linear results from the cubic
one.
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5.2.4.2 Scaling of the kernel methods

As has been demonstrated in the previous section all methods to optimize the density
kernel yield more or less identical results. For practical applications one can thus sim-
ply choose the fastest approach out of them.

Due to the fact that at the moment only the FOE method has completely eliminated the
cubically scaling linear algebra parts, it is to be expected that this method outperforms
the other approaches, in particular for large systems.
In order to validate this assumption, the runs which were used in Sec. 5.2.4.1 to check
the accuracy of the various methods are now analyzed from the viewpoint of the run-
time.

The results are shown in Fig. 5.22. As can be seen the time needed by the four methods
is more or less the same for the smallest system, consisting of 152 atoms. This means
that the problematic linear algebra parts are not yet important for this size. How-
ever the differences between the methods become dramatic as the number of atoms
increases. Whereas the FOE method shows a strict linear scaling, the other methods
perform much worse. For the largest system, where 2102 support functions were used,
the FOE method is 9 times faster than the direct diagonalization with density mixing,
which is the second-best method.
This is an impressive demonstration of the importance to remove the bottleneck gen-
erated by the cubically scaling linear algebra.

As a consequence the FOE approach is at the moment the only method which is suited
to be used for very large systems and will therefore also be employed for the scaling
tests in Sec. 6.4.

Figure 5.22: Comparison of the total run-
time for the four different methods to op-
timize the density kernel, using the same
test system and parameters as in Fig. 5.21.
Whereas all methods are close together for
the smallest system, it is obvious that only
the FOE method scales linearly with re-
spect to the size of the system. This is due
to the fact that the FOE approach is the
only one which has fully removed the cubi-
cally scaling linear algebra. Furthermore it
can be seen that the direct diagonalization
with density maxing is faster than with po-
tential mixing.
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5.3 Forces

So far only the total energy has been considered when comparing the linear scaling
version with its cubic counterpart. However the calculation of the forces acting on the
nuclei is as well an important output of an electronic structure calculation. Whereas
their determination is rather straightforward for the cubic version of BigDFT, this is
unfortunately not the case for the linear scaling version.

5.3.1 The Hellmann-Feynman theorem

The evaluation of the forces in a standard cubic DFT calculation is based on the
Hellman-Feynman theorem [79, 80], which will be derived in the following.

To this end one assumes that the Hamiltonian depends on some external parameter λ,
thus giving rise to λ-dependent eigenvalues and eigenvectors

H(λ)ψ(λ, x) = ǫ(λ)ψ(λ, x). (5.105)

Here x is any set of coordinates, i.e. ψ can be a single- or many-electron wave function.
The Hellman-Feynman theorem then states that the derivative of ǫ(λ) with respect to
the external parameter λ is given by

∂ǫ(λ)

∂λ
=

∂

∂λ

∫

ψ(λ, x)H(λ)ψ(λ, x) dx

=
∫

ψ(λ, x)
H(λ)

∂λ
ψ(λ, x)dx+

∫

ψ(λ, x)
∂λ

H(λ)ψ(λ, x)dx

+
∫

ψ(λ, x)H(λ)
∂ψ(λ, x)

∂λ
dx

=
∫

ψ(λ, x)
H(λ)

∂λ
ψ(λ, x)dx+ ǫ(λ)

∫

ψ(λ, x)
λ

ψ(λ, x)dx

+ ǫ(λ)
∫

ψ(λ, x)
∂ψ(λ, x)

∂λ
dx

=
∫

ψ(λ, x)
H(λ)

∂λ
ψ(λ, x)dx+ ǫ(λ)

∂

∂λ

∫

ψ(λ, x)ψ(λ, x)dx

=
∫

ψ(λ, x)
H(λ)

∂λ
ψ(λ, x)dx.

(5.106)

In the last step the fact that
∫

ψ(λ, x)ψ(λ, x)dx = 1 and thus ∂
∂λ

∫

ψ(λ, x)ψ(λ, x)dx = 0
was used.

In one wants to calculate the forces acting on the nuclei, the parameter λ corresponds
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to the atomic coordinates. Consequently the Hellman-Feynman theorem can be ap-
plied to this special case. Again going back to the very beginning and taking the
electronic Hamiltonian H of Eq. (2.3) and the true many-electron wavefunction Φ –
i.e. the variable x now corresponds to all the electronic coordinates {r1, . . . , rn} – the
Hellman-Feynman theorem yields for the forces acting on atom n

Fn = −∂E({Rl})
∂Rn

= −
∫

dr1· · ·
∫

drn Φ({Rl}, r1, . . . , rn)
∂H({Rl}, r1, . . . , rn)

∂Rn
Φ({Rl}, r1, . . . , rn)

= −
N

∑
i=1

i−1

∑
j=1

∫

dr1· · ·
∫

drn Φ({Rl}, r1, . . . , rn)
∂

∂Rn

ZiZj

|Ri − Rj|
Φ({Rl}, r1, . . . , rn)

+
n

∑
i=1

N

∑
j=1

∫

dr1· · ·
∫

drn Φ({Rl}, r1, . . . , rn)
∂

∂Rn

Zj

|ri − Rj|
Φ({Rl}, r1, . . . , rn)

= −
N

∑
i=1

i−1

∑
j=1

∂

∂Rn

ZiZj

|Ri −Rj|
+

N

∑
j=1

∫

ρ(r)
∂

∂Rn

Zj

|r− Rj|
dr

= ∑
j 6=n

ZnZj(Rn − Rj)

|Rn −Rj|3
+ Zn

∫

ρ(r)
r−Rn

|r −Rn|3
dr,

(5.107)

where the results of Eqs. (2.22a) and (2.22d) were used.
This means that the force depends only on the charge density and is identical to the
expression that would arise from a classical charge distribution.

5.3.2 Forces in Density Functional Theory

The derivation of the Hellmann-Feynman theorem was assuming that the energy can
be written as E = 〈Φ|H|Φ〉. Whereas this is true for the many-electron wave function
Φ, it is not the case for the Kohn-Sham orbitals ψi appearing in DFT.
Here the part of the energy which can be written in this way is the band-structure
energy EBS = ∑i 〈ψi|H|ψi〉. The total energy, however, is given by

E({Rl}) = ∑
i

〈ψi({Rl})|H({Rl})|ψi({Rl})〉+ EDC[ρ], (5.108)

where the double counting energy is – according to Eq. (2.53) – given by

EDC[ρ] = −1
2

∫∫

ρ(r)ρ(r′)
|r− r′| drdr′ + EXC[ρ(r)] −

∫

vXC(r)ρ(r)dr. (5.109)
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Thus the forces are given by

Fn = −dE({Rl})
dRn

= −∂E({Rl})
∂Rn

−
∫

δE({Rl})
δρ(r)

∂ρ(r)

∂Rn
dr. (5.110)

However as soon as a fully self-consistent solution has been found the total energy is
a minimum with respect to the electronic density according to Eq. (2.33) and conse-
quently

δE

δρ(r)
= 0. (5.111)

Therefore the contribution to the forces stemming from the double counting term is
zero and the results of the previous section are still valid, i.e. the forces are given
by Eq. (5.107) with the total charge density calculated from the superposition of the
individual orbital charge densities,

ρ(r) = ∑
i

ρi(r) = ∑
i

|ψi(r)|2. (5.112)

5.3.3 Forces due to the pseudopotential

So far the formulas for the forces have been derived for the case of all-electron cal-
culations, meaning that the number of Kohn-Sham orbitals is equal to the number of
electrons in the system (or equal to half the number in the case of a closed shell calcu-
lation).
However BigDFT uses pseudopotentials to simulate the core electrons, and conse-
quently the number of Kohn-Sham electrons is smaller than the total number of elec-
trons. This has also an impact on the calculation of the forces acting on the nuclei.

The first term in Eq. (5.107), which is simply the interaction among the nuclei, is still
correct within the pseudopotential framework. The second term, however, needs to be
modified since the interactions between the nuclei and the electrons are now described
by the pseudopotential [71].

According to Sec. 2.3.4 the pseudopotential is split up in a local and a non-local part.
The energy contribution stemming from the local part for an atom located at position
Ri is given by

Elocal(Ri) =
∫

Vlocal(|r−Ri|)ρ(r)dr. (5.113)



5.3. FORCES

CHAPTER 5. DETAILED IMPLEMENTATION OF A LINEAR SCALING ALGORITHM IN BIGDFT

112

The local potential can further be split up in a long-range and a short range part:

Vlocal(λ) = VL(λ) + VS(λ),

VL(λ) =
Zion

λ
erf

(

λ√
2rloc

)

,

VS(λ) = e−r2/2r2loc

[

C1 + C2

(

r

rloc

)2

+ C3

(

r

rloc

)4

+ C4

(

r

rloc

)6
]

.

(5.114)

By defining a “long-range charge density” ρL such that

∇2
rVL(|r− Ri|) = −4πρL(|r−Ri|), (5.115)

the local energy contribution can be rewritten as

Elocal(Ri) =
∫

ρL(|r− Ri|)VH(r)dr+
∫

VS(|r−Ri|)ρ(r)dr, (5.116)

where VH is the Hartree potential which is the solution of

∇2VH(r) = −4πρ(r). (5.117)

From (5.114) and (5.115) the value of ρL can be calculated; the final result is given by

ρL(λ) = − 1
(2π)3/2

Zi

r3loc
e−λ2/2r2loc. (5.118)

The forces stemming from this local part of the pseudopotential can now be determined
by calculating the derivative with respect to the atomic coordinates and are given by

Flocali =
∂Elocal

∂Ri
=

1
rloc

∫

r−Ri

|r−Ri|
[

ρ′L(|r− Ri|)VH(r) + V ′
S(|r−Ri|)ρ(r)

]

dr (5.119)

with

ρ′L(λ) =
1

(2π)3/2
Zi

r4loc
λe−λ2/2r2loc ,

V ′
S =

λ

rloc
e−λ2/2r2loc

×
[

(2C2 − C1) + (4C3 − C2)

(

λ

rl

)2

+ (6C4 − C3)

(

λ

rloc

)4

− C4

(

λ

rloc

)6
]

.

(5.120)

Since both ρ′L and V ′
S are localized functions due to the presence of the Gaussians, the

integral of Eq. (5.119) only has to be performed in a relatively small region around the
atom.
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The nonlocal part of the pseudopotential is – according to Eq. (2.60) – given by

Enonlocal(Ri) = ∑
j

∑
l

3

∑
m,n=1

〈ψj|p(l)m (Ri)〉 h(l)mn 〈p(l)n (Ri)|ψj〉 , (5.121)

where the dependence of the projector on the atomic position has been explicitly noted.
The forces are thus given by

Fnonlocali = −∑
j

∑
l

3

∑
m,n=1

[〈

ψj

∣

∣

∣

∣

∣

∂p
(l)
m (Ri)

∂Ri

〉

h
(l)
mn

〈

p
(l)
n (Ri)

∣

∣

∣
ψj

〉

−
〈

ψj

∣

∣

∣
p
(l)
m (Ri)

〉

h
(l)
mn

〈

∂p
(l)
n (Ri)

Ri

∣

∣

∣

∣

∣

ψj

〉]

.

(5.122)

Expressing the derivatives of the projectors in the same wavelet basis as the Kohn-Sham
orbitals, the evaluation of the scalar products in Eq. (5.122) is straightforward.

5.3.4 Forces in terms of the support functions and the density

kernel

In the context of the linear scaling version one does not have the Kohn-Sham orbitals
at hand in order to evaluate the forces, but only the support functions and the density
kernel. However their calculation can still be done straightforwardly in terms of these
quantities.

The evaluation of the local part of the forces can actually be carried out in the same
way as for the cubic version, since it requires only the charge density and the Hartree
potential which are both available.
In order to calculate the nonlocal forces, the Kohn-Sham orbitals have to be replaced
by their representation in terms of the support functions, ψj = ∑α cjαφα. Afterwards
the sum over j can be evaluated, leading to

Fnonlocali = −∑
α,β

∑
l

3
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(5.123)

where the density kernel is – according to Eq. (3.38) – given by Kαβ = ∑j cjαcjβ.
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5.3.5 Pulay forces

For the linear scaling version the calculation of the forces is more involved than for the
cubic version. In contrast to the latter case, where the Kohn-Sham orbitals are directly
represented in the wavelet basis whose functional form is independent of the positions
of the atoms, the orbitals are this time expanded in terms of the support functions φα:

ψi(r) = ∑
α

ciαφα(r). (5.124)

The problem is that these support functions depend explicitly on the atomic positions.

Thus the force acting on atom n is – taking into account the results of Sec. 5.3.2, stat-
ing that it is only necessary to consider the band-structure part of the energy for the
calulation of the forces – this time given by

Fn = − ∂

∂Rn
∑
i

∫

ψi({Rl}, r)H({Rl}, r)ψi({Rl}, r)dr

= −∑
i

∫

ψi({Rl}, r)
∂H({Rl}, r)

∂Rn
ψi({Rl}, r)dr

− ∑
i

∫

∂ψi({Rl}, r)
∂Rn

H({Rl}, r)ψi({Rl}, r)dr

− ∑
i

∫

ψi({Rl}, r)H({Rl}, r)
∂ψi({Rl}, r)

∂Rn
dr.

(5.125)

The first term is the standard Hellman-Feynman force term which has been calculated
previously. The two other terms, which do not vanish any more, are known as Pulay
forces [81]. They are present as soon as a basis set which explicitly depends on the
atomic positions – such as Gaussians – is used and are therefore not limited to the case
of a linear scaling DFT code, but can also appear in a traditional one exhibiting a cubic
scaling.

It has to be stressed that, even for support functions that depend explicitly on the
atomic positions, the Pulay terms can be exactly zero. This would be the case if the sup-
port functions formed a complete set such that the linear combinations of Eq. (5.124)
would yield the exact eigenfunctions of H. In this case the equation Hψi = ǫiψi would
hold and the representation of the Kohn-Sham orbitals in the basis of the support func-
tions would be equivalent to their representation in terms of the underlying wavelet
basis, which is free of any Pulay terms.

The next step is to see whether it is possible to calculate the Pulay corrections to the
forces. The band-structure energy is – this time written in terms of the density kernel
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and the support functions instead of the fictitious Kohn-Sham orbitals – given by the
expression

EBS({Rl}) = ∑
α,β

Kαβ({Rl})
∫

φα({Rl}, r)H({Rl}, r)φβ({Rl}, r)dr, (5.126)

where this time the dependence of the density kernel, the support functions and the
Hamiltonian on the atomic coordinates is written. Using this expression the forces
acting on atom n are given by

Fn = −dEBS

dRn
= −∂EBS

∂Rn
− ∑

α,β

∂EBS

∂Kαβ

∂Kαβ

∂Rn
− ∑

α

∫

δEBS

δφα(r)

∂φα(r)

∂Rn
dr. (5.127)

The first term describing the explicit dependence of the energy on the atomic coordi-
nates is the standard Hellmann-Feynman term, whereas the second and third terms
describing the implicit dependence of the energy on the atomic coordinates are the
Pulay corrections.

In case the energy is perfectly converged to zero with respect to both the density kernel
and the support functions, i.e.

∂EBS

∂Kαβ
= 0 and

δEBS

δφα(r)
= 0 (5.128)

for all values of α and β, then the additional Pulay terms are zero and one is left with
the standard Hellman-Feynman force. This is the second case – in addition to the one
where the support functions permit an exact representation of the Kohn-Sham orbitals
– which gives no Pulay forces even though a basis set explicitly depending on the
atomic positions is used.

In practice neither of these two situations will arise. Thus one has in general to deal
with Pulay forces. Explicitly writing out Eq. (5.127) gives for the forces acting on atom
n

Fn = −∑
α,β

Kαβ({Rl})
∫

φα({Rl}, r)
∂H({Rl}, r)

∂Rn
φβ({Rl}, r)dr

−∑
α,β

∂Kαβ({Rl})
∂Rn

∫

φα({Rl}, r)H({Rl}, r)φβ({Rl}, r)dr

−∑
α,β

Kαβ({Rl})
[

∫

∂φα({Rl}, r)
∂Rn

H({Rl}, r)φβ({Rl}, r)dr

+
∫

φα({Rl}, r)H({Rl}, r)
∂φβ({Rl}, r)

∂Rn
dr

]

.

(5.129)
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The first term, which contains the derivative of the Hamiltonian, is the standard
Hellman-Feynman term and can be calculated as shown previously. The last two terms
can as well be calculated since the derivatives of the support functions appearing in
them can be determined thanks to the fact that the support functions are represented
in terms of the underlying wavelet basis. What remains is the second term containing
the derivative of the density kernel; unfortunately this quantity can not be evaluated
straightforwardly.

A possible solution for the problem might be to neglect this term and to calculate
only those Pulay corrections stemming from the terms containing the derivatives of
the support functions. However this is probably a rather bad idea, since it might well
happen that some of the Pulay forces caused by the terms containing the derivatives
of the density kernel cancel at least partially with those contributions caused by the
terms containing the derivatives of the support functions; thus a neglect of only one
part could lead to an increase of the Pulay forces instead of a reduction.
Therefore it is probably better to neglect as well those terms containing the derivative
of the support functions and to keep only the Hellman-Feynman forces:

Fn ≈ ∑
α,β

Kαβ({Rl})
∫

φα({Rl}, r)
∂H({Rl}, r)

∂Rn
φβ({Rl}, r)dr. (5.130)

A check whether this is a sensible approximation is performed in Sec. 6.1.2; as will be
shown the accuracy obtained in this way is usually sufficient in practice.

Still it must be noted that simply neglecting the other terms is only a stopgap and
there might well be cases where they are important. Therefore it remains a task for the
future to see whether their calculation is possible nevertheless.
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Benchmarking the linear scaling

version of BigDFT

6.1 Accuracy of the linear scaling version

The accuracy of the linear scaling version will be checked from three viewpoints, al-
ways comparing its results with those obtained by a reference calculation using the
cubic version. The first check will be a comparison of the energy, the second one will
compare the forces, and the last one will analyze the outcome of a geometry optimiza-
tion.

6.1.1 Accuracy of the energy

The easiest way to estimate the accuracy of the linear scaling version is to compare
the final energy with the one obtained with the cubic scaling version of the code. This
comparison will be carried out for several systems in order to get a broad overview
over the performance of the linear scaling version.

The 6 systems that were used for the tests are an alkane C100H202, a water droplet
H200O100, a carotene molecule C40H52, a carbon fullerene C60, a boron cluster B80 and
a silicon-hydrogen cluster Si123H100. Figures of these systems are shown in Fig. 6.1.

In order to test the accuracy, four calculations were done in total for each system: First
one using the linear version and one using the cubic version, respectively, for the origi-
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nal geometry, and then the same for a slightly modified configuration where all atoms
were randomly shifted a bit. The linear scaling calculations were all done using the
hybrid mode for the optimization of the support functions and the FOE method for
the optimization of the density kernel. As a further complication, the input parameters
affecting the performance of the linear scaling version were identical for all systems,
namely 9 bohr for the cutoff radius of the support functions and 3 · 10−3 hartree/bohr4 for
the initial prefactor of the confinement. The parameter for the density mixing – which
is a well an important parameter and depends on the gap of the system – was set to
a small value of 0.1, which is a conservative estimation that should hopefully fit all
configurations. The number of support functions was chosen to be a minimal basis set.

The results of these runs are shown in Tab. 6.1. As can be seen the energies calculated
by the linear and the cubic version are always rather close together, which is pretty

(a) C100H202 (b) H200O100 (c) C40H52

(d) C60 (e) B80 (f) Si123H100

Figure 6.1: The six systems which were used for the accuracy tests. Not all configurations
were fully relaxed to their configurational ground state. The water droplet exhibits the
largest force norm of 2.43 · 10−1 hartree/bohr, whereas the carbon fullerene, which is the system
exhibiting the smallest value, is relaxed to a force norm of 1.51 · 10−6 hartree/bohr. The other
systems have force norms of the order of 10−3 hartree/bohr.
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configuration 1 configuration 2

Elinear Ecubic ∆E Elinear Ecubic ∆E
(eV) (eV) (meV/atom) (eV) (eV) (meV/atom)

C100H202 -18733.538 -18734.014 1.58 -18730.898 -18731.378 1.59
H200O100 -46806.816 -46807.425 2.03 -46804.219 -46804.845 2.09
C40H52 -7027.518 -7028.182 7.22 -7026.605 -7027.277 7.31
C60 -9301.260 -9302.436 19.61 -9300.353 -9301.578 20.42
B80 -6138.687 -6141.208 31.52 -6138.278 -6140.744 30.83
Si123H100 -14808.389 -14815.567 32.19 -14807.388 -14814.599 32.33

Table 6.1: The results of the accuracy test runs for the six systems shown in Fig. 6.1. For both
configurations, the first column shows the energy calculated by the linear version, the second
one the energy calculated by the cubic version, and the third one the difference between the
two values. As can be seen, this difference varies considerably, from about 1meV/atom for the
alkane up to more than 30meV/atom for the boron and the silicon-hydrogen cluster.

nice in view of the fact that the chosen parameters for the linear scaling version were
always identical. However there is still quite some variation in the quality of the results
for the various systems, which becomes visible when looking at the energy differences
between the linear and the cubic version, which range from about 1meV/atom, which
is an excellent value, to more than 30meV/atom, which is still good, but nevertheless
considerably worse than the other result. As will be shown in Sec. 6.2.1, the energy
will converge exponentially towards the cubic value if the cutoff radius is increased;
thus it is possible to systematically improve these results.

On the other hand, one is in general not that much interested in absolute energy val-
ues, but rather in energy differences between two structures. Consequently there is
hope that the energy offset between the linear and the cubic version remains more or
less constant for different configurations and that therefore energy differences are very

energy difference

linear cubic ∆

(eV) (eV) (meV/atom)

C100H202 -2.640 -2.636 -0.01
H200O100 -2.598 -2.579 -0.06
C40H52 -0.913 -0.905 -0.09
C60 -0.907 -0.858 -0.81
B80 -0.408 -0.464 0.69
Si123H100 -1.001 -0.968 -0.15

Table 6.2: The energy differences between the two con-
figurations for the same systems as in Tab. 6.1. The
first column gives the value obtained by using the
linear version, the second one the value calculated
with the cubic version. The last column shows the
difference between the two values. It is obvious that
the energy differences are much more accurate than
the absolute values shown in Tab. 6.1.
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accurate even for those systems exhibiting a large offset.
This is actually confirmed by the values shown in Tab. 6.2, which shows the energy
difference between the two configurations for both the linear and the cubic version. As
can be seen, the values are very similar; the largest deviation is only −0.81meV/atom,
which is considerably better than the absolute differences shown in Tab. 6.1.

To summarize, this test shows that it is possible to get very accurate results – in particu-
lar energy differences – with a standard set of parameters, which is of great importance
for practical applications.

6.1.2 Accuracy of the forces

In Sec. 5.3.5 it has been shown that it is not possible to calculate the Pulay forces which
arise for the linear scaling version. Consequently the forces will not exactly be the
negative derivative of the energy as they should. However, even if it was possible to
calculate the additional Pulay forces, the forces would still not be identical to the ones
obtained by a cubic reference calculation due to the effect of the strict localization of
the support functions and the cutoff radius used for the density kernel construction.
If this additional error – which is inherent to any linear scaling code – is larger than
the error introduced by the neglect of the Pulay forces, then this approximation is well
justified.

In order to check whether the forces are accurate or not one should thus not compare
the linear forces with their cubic counterpart – i.e. to look at the value of |Flinear−Fcubic|
– but rather verify whether the forces are the negative derivative of the energy.
To do so, an initial configuration R(a) and a final configuration R(b) are chosen, where
R stands for all the atomic positions and is thus a vector of length 3N. Now the initial
configuration is slowly transformed into the final one using small steps of length ∆R.
The energy difference between the two configurations can then be approximated by

∆E =
∫ b

a
F(r)dr ≈ ∑

µ

F(R(a) + µ∆R)∆R, (6.1)

where the force vector F has as well dimension 3N and µ indicates the intermediate
steps to get from configuration a to configuration b.
This approximation can then be compared with the exact value obtained by directly
calculating the energy differences, i.e. E(R(b))− E(R(a)). If the forces are exactly the
negative derivative of the energy, these two values will agree up to the noise level of
the calculation.
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In order to estimate the magnitudes of the various error sources, this test was done for
five different setups:

1. First a reference calculation was done with the traditional cubically scaling Kohn-
Sham scheme where all orbitals are allowed to extend over the entire simulation
box. This will give the noise level of this test setup, since everything is absolutely
exact.

2. Next a calculation was done with the linear scaling version, but neither a cutoff
for the support functions and the density kernel construction nor a confining
potential was used. In this way one has to get back the same results as for the
reference calculation.

3. The third step was to switch on the confining potential – in order to avoid in-
stabilities due to large gradients, it was necessary to reduce the step size (and
thus to increase the number of iterations) used in the optimization of the support
functions. In this way errors from the neglect of the Pulay terms should be intro-
duced since the support functions depend now on the atomic positions. On the
other hand there is still no error from the localization constraints.

4. The fourth step was to introduce a finite localization radius of 15 bohr for the
kernel construction, but not yet for the support functions.

5. Finally the localization constraints for both the support functions – a value of
9 bohr was chosen – and the density kernel construction were applied. In this
way one will get errors from both the strict localization and the neglect of the
Pulay forces.

This test was done for an alkane consisting of 92 atoms. Even though this is not a very
large number, the introduction of finite cutoff radii for the support functions and the
density kernel construction will have a strong effect due to the chain-like structure of
the molecule. The support functions were optimized using the hybrid mode, and the
FOE approach was used for the determination of the density kernel. The step size to
go from configuration R(a) to configuration R(b) was set to 0.005bohr.

The results for all four setups are shown in Tab. 6.3. For the cubic reference calculation
the discrepancy between the energy difference and the integral is of the order of 10−6;
this seems to be the noise level for this test, since there are no approximations in the
cubic version and the forces have to be exactly the negative derivative of the energy.
Therefore all linear setups that yield differences which are as well of this order of
magnitude can be considered as exact.

It is obvious that this is more or less the case for all linear setups that do not apply
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any localization constraint on the support functions, independent of whether they use
a confinement or not. This shows that the influence of the Pulay forces – which should
arise as soon as one introduces a confinement making the support functions dependent
on the atomic positions and are thus present in the third, fourth and fifth setup – is
very small.
The introduction of the finite cutoff radius for the construction of the density kernel
does not deteriorate the quality of the results either; as will be shown later in Sec. 6.2.1.2
the accuracy with respect to this cutoff radius saturates quite rapidly and a value of
15 bohr is enough to reduce the error to the noise level. However, a much sharper drop
in the accuracy appears as soon as the finite localization is imposed on the support
functions by applying a strict cutoff radius of 9 bohr. Here the discrepancy between
the energy difference and the force integral increases suddenly by almost two orders
of magnitude.

In summary, this test demonstrates that the error introduced by the strict localization
of the support functions is much larger than that caused by the neglect of the Pulay
forces. Therefore it seems to be well justified to adopt this approximation and to use
Eq. (5.130) to determine the forces.

∆E
∫

F(r)dr difference
(hartree) (hartree) (hartree)

cubic 0.2082569 0.2082653 −8.4 · 10−6

linear global, no confinement 0.2082571 0.2082583 −1.2 · 10−6

linear global, with confinement 0.2082568 0.2082592 −2.4 · 10−6

linear global, FOE cutoff 0.2082671 0.2082592 7.9 · 10−6

linear global, both cutoffs 0.2083683 0.2084804 −1.1 · 10−4

Table 6.3: Overview of the various methods that were used to test the quality of the forces. “cu-
bic” is the reference calculation with the cubic version and has to be considered as exact, i.e.
the error seen here is the inevitable noise that is always present in DFT calculations, together
with the one introduced by the approximation of the integral as a finite sum. “linear global,
no confinement” is the linear version using the global localization region (i.e. employing an
infinite cutoff radius) and no confinement. “linear global, with confinement” is the same, but
this time using a confinement for the support functions (prefactor set to 3.0 · 10−3 hartree/bohr4).
“linear global, FOE cutoff” adds in addition a cutoff radius of 15 bohr for the construction
of the density kernel. “linear global, both cutoffs” finally uses in addition a cutoff radius
of 9 bohr for the support functions and is thus the standard linear version. It is obvious
that the effect of strictly localizing the support functions is much stronger than those of the
confinement and the cutoff for the density kernel construction.
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6.1.3 Geometry optimizations

Whereas one single electronic structure calculation only determines the electronic
ground state for a given nucleonic configuration, a geometry optimization searches
for minima on the Born-Oppenheimer surface. To this end, the atoms are moved ac-
cording to the forces – which are the output of the electronic structure calculation –
acting on them, in this way lowering the energy of the system until a point is found
where the forces vanish. This means that the electronic structure problem has to be
solved for many nucleonic configurations until finally the energetically most favorable
one is reached.
The linear scaling version of BigDFT can use any of the geometry optimization meth-
ods available for the cubic version, which include SD [73], CG [73], DIIS [72], FIRE [82],
and various flavors of BFGS [73].

It is clear that a reasonable geometry optimization is only possible if the forces are
reliable. Therefore geometry optimizations can also be used to validate the accuracy of
the forces. One starts with a given configuration where the forces acting on the atoms
are non-zero, and relaxes the structure both with cubic and the linear version. If the
forces of the linear scaling version are accurate enough, the structure should evolve in
a similar way as with the cubic version.

The system which was used to carry out this test was the alkane C100H202; this system
is still small enough such that the cubic version runs fast enough, but at the same time
a good candidate to test the linear scaling version due to its chain-like structure. The
support functions were optimized with the hybrid mode, and the density kernel was
determined using the FOE approach. The cutoffs were set to 9 bohr for the support
functions and 15 bohr for the density kernel construction, and the initial prefactor for
the confinement was set to 3 · 10−3 hartree/bohr4. Four support functions were centered
on each carbon atom and one on each hydrogen atom, i.e. a minimal basis set was
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Figure 6.2: The energy as a function
of the iterations in the geometry
optimization for both the linear
and the cubic version. The val-
ues decrease in a similar manner,
which becomes even more clear
by the small inset showing the
energy difference at each itera-
tion. The geometry optimization
was performed using the BFGS
algorithm for the movements of
the atoms.



6.1. ACCURACY OF THE LINEAR SCALING VERSION

CHAPTER 6. BENCHMARKING THE LINEAR SCALING VERSION OF BIGDFT

124

used.

The energies calculated by both the cubic and the linear version as a function of the
iterations in the geometry optimization are shown in Fig. 6.2. It is obvious that both
curves decrease in a similar manner, i.e. the offset between the cubic and the linear
version seems to remains more or less constant throughout the entire calculation. This
can be best seen from the inset which shows the difference between the two curves; this
value lies always in between 0.0170 hartree and 0.0182 hartree, which is a very small
variation in view of the total energy of about −688 hartree.

Another quantity that can be compared is the force acting on the atoms at each iter-
ation. Since the forces are – at least if they can be calculated correctly – the negative
derivative of the energy with respect to the atomic coordinates, the constant offset
which is present in the energies should vanish and the forces should consequently be
identical for both the linear and the cubic version. If there are differences between
the two curves, this indicates that the forces of the linear version are not the negative
derivative of the energy, which is a consequence of the neglect of the Pulay forces and
the finite cutoff radii.
The results for the same test system are shown in Fig. 6.3. In the large plot the force
norm at each iteration is shown; it is obvious that the two curves exhibit an excellent
agreement. The small inset, which shows the norm of the difference of the forces, i.e.
the value of |Flinear − Fcubic|, supports this observation; in view of the fact that the
noise level for this calculation was of the order of 10−4 hartree/bohr to 10−5 hartree/bohr, the
agreement is actually marvellous.

The last quantity that can be studied is the root mean square displacement (RMSD) be-
tween the linear and the cubic structure at each iteration of the geometry optimization,

Figure 6.3: The force norm of
the linear and the cubic ver-
sion as a function of the itera-
tions in the geometry optimiza-
tion. The agreement between the
two curves is excellent. This be-
comes even more visible in the
inset, which shows the norm of
the difference between the two
forces, i.e. the value |Flinear −
Fcubic|. The numbers were taken
from the same test as the ones for
the energy comparison.
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defined by

RMSD(i) =
1√
N

√

√

√

√

N

∑
j=1

(

R
j
linear(i)−R

j
cubic(i)

)2, (6.2)

where N is the number of atoms and R
j
linear(i) and R

j
cubic(i) are the positions of atom

j at the ith step of the geometry optimization for the linear and cubic version, respec-
tively. In the beginning the RMSD is zero since both the linear and the cubic version
start from the same initial structure. In the course of the geometry optimization this
value will increase, but if it remains small throughout the entire optimization, this
means that the two structures evolve in a very similar manner.
The results, again for the same test system, are shown in Fig. 6.4. As expected, the
RMSD slightly increases during the optimization, but saturates towards the end and
remains always below 0.01 bohr. This is an extremely small value which is not even
visible by eye and lies below the typical error of DFT calculations. Consequently the
final configuration of the linear and the cubic geometry optimization can be considered
as identical.

Together these results demonstrate once more that the linear version yields vary accu-
rate forces which are of high enough quality to be used for geometry optimizations.
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Figure 6.4: The RMSD between the
linear and the cubic structures
as a function of the iterations in
the geometry optimization, again
for the same run as the other
two plots. The value slightly
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low 0.01 bohr, which is admit-
tedly very small.

6.2 Performance with respect to the cutoff radius

This section will address the question of how the performance of the codes varies with
respect to the cutoff radii. First the accuracy will be investigated – where it is to be
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expected that the results converge towards those of a cubic reference calculation – and
in a second part the runtime as a function of the cutoff radius will be examined.

6.2.1 Convergence with respect to the cutoff radius

An important property that a linear scaling DFT code should exhibit is the ability to
reproduce the results from a reference calculation using the cubically scaling version
of the code in the limit of an infinitely large cutoff radius. It is obvious that more
time will be required to determine the solution due to the larger prefactor of the linear
scaling method, but the results should be identical up to the noise level.

To compare the results of a run using the linear scaling version with the reference
calculation employing the cubic one, three quantities were considered:

• The difference of the total energy Elinear − Ecubic, which should go to zero as the
cutoff radius goes towards infinity.

• The norm of the difference of the forces |Flinear − Fcubic|, which should as well go
zero as the radius goes towards infinity.

• The consistency between energy and forces as described in Sec. 6.1.2, i.e. the
quantity ∆E −

∫

F(r)dr. Here the value for the linear scaling run should go
down to the same noise level as the cubic reference.

In the most general case, there is not only one cutoff radius for the support functions,
but two, namely one for the contravariant ones and one for the covariant ones, as was
explained in more detail in Sec. 3.3.1. The cutoff for the contravariant ones determines
the sparsity of the overlap and Hamiltonian matrix, whereas the cutoff for the covari-
ant ones is related to the sparsity of the density kernel.
However, if the support functions are orthonormal, the contravariant and covariant
quantities are identical and can thus be characterized by one single cutoff radius. Thus
it is also reasonable to assume that the density kernel exhibits the same sparsity as
the Hamiltonian and overlap matrix. As already mentioned several times, the support
functions can not be exactly orthogonal due to the strict localization constraint, but the
deviations of the overlap matrix from the identity are so small that it is well justified to
use only one single cutoff radius, even though the introduction of a separate parameter
for the density kernel might still be an option for the future in order to increase the
flexibility.

For the case of the Fermi Operator Expansion, there is – as briefly mentioned in
Sec. 5.2.3.1 – however still a second cutoff radius. This parameter determines at which
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distance the vectors are cut while building the expansion of the density kernel. As will
be shown in Sec. 6.2.1.2, the influence of this cutoff radius is much smaller compared
to the one for the support functions.

6.2.1.1 Cutoff radius for the support functions

To investigate the convergence properties with respect to the cutoff radius for the sup-
port functions, an alkane consisting of 92 atoms was chosen. This is not a large amount,
but due to the chain-like geometry a finite cutoff still has a big influence; furthermore
it is still small enough for the cubic version. The runs were performed using the hy-
brid mode for the optimization of the support functions and the FOE approach for
the determination of the density kernel. The initial prefactor for the confinement was
chosen such that the confining potential had a value of 20 hartree at the edges of the
localization region and the cutoff radius for the construction of the density kernel was
set to 20 bohr. The cutoff radius for the support functions was then varied in the range
from 5bohr to 15 bohr.

The results for all three quantities that were investigated – i.e. the energy, the forces
and the consistency between energy and forces – are shown in Fig. 6.5. The energy dif-
ferences between the runs using the linear version and the one using the cubic version,
Elinear − Ecubic, are shown in Fig. 6.5a. The general trend exhibits a clear exponential
convergence with respect to the cutoff radius; however the line has a slight kink at a
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Figure 6.5: A comparison between the linear and the cubic version for various quantities as
a function of the cutoff radius for the support functions. The test system was an alkane
consisting of 92 atoms. An exponential convergence with respect to the cutoff radius is
obvious. The kinks which are present at 6 bohr for the energy and the forces are due to a
later breakdown of the support function optimization for this cutoff radius.
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cutoff of 6 bohr. It turned out that this is due to the fact that for some reason the or-
thogonality problem was showing up much later for this cutoff radius and the support
functions could consequently be optimized better, resulting in a slightly lower energy
than expected for this cutoff.

Fig. 6.5b shows the norm of the differences in the forces, |Flinear − Fcubic|. Again an
exponential convergence can be observed as a general trend, but the kink at 6 bohr is
this time much more pronounced, indicating that the forces are more sensitive to the
quality of the support functions than the energy. In addition there is a slight flattening
of the curve in the region of the larger cutoff radii. The noise level for the chosen
parameters was of the order of 10−6 hartree/bohr.

Last but not least Fig. 6.5c shows the consistency between the energy and the forces,
i.e. the value of |∆E−

∫

F(r)dr|, as explained in Sec. 6.1.2. Since both the energy and
the forces exhibit an exponential convergence, it is not surprising that the same also
applies to this quantity. This curve is a bit less straight than the other two, but still the
trend of an exponential decay is obvious.

To conclude these results show on the one hand that the linear version can reproduce
the results of the cubic reference in the limit of large cutoff radii, and on the other hand
they demonstrate the enormous influence of the cutoff radius on the accuracy of the
calculation.

6.2.1.2 Cutoff radius for the Fermi Operator Expansion

As explained in more detail in Sec. 5.2.3 the Fermi Operator Expansion uses a cutoff
radius for the calculation of the matrix vector multiplications which finally build up
the density kernel. The smaller this cutoff is, the less accurate the matrix vector multi-
plications are performed.
Therefore it is to be expected that this cutoff affects the accuracy of the FOE method
and consequently also the overall results of the calculation.

To investigate the effect of this cutoff radius, several runs with different cutoff radii
were performed for the same test system, namely the alkane consisting of 92 atoms.
The cutoff radius for the support functions was set to 15 bohr, which is a very large
value and should – according to the results of the previous section – not affect the ac-
curacy considerably. The other parameters were chosen identical to the ones used for
the runs in the previous section. The value of the FOE cutoff was varied from 9bohr
to 20 bohr.

The results are shown in Fig. 6.6; this time only the energy and the forces were inves-
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tigated. It is obvious that the influence of this cutoff radius is much smaller than that
of the one for the support functions.
Fig. 6.6a shows the energy difference between the linear runs and the cubic reference
calculation; the curve shows a nice exponential decay in the beginning, but then starts
to saturate at a cutoff of about 12 bohr.
The situation for the norm of the force difference between the linear runs and the cubic
one is similar, as can be seen from Fig. 6.6b. Again the decay of the curve stagnates at
a cutoff of 12 bohr while being exponential for smaller values.

To conclude it seems that the choice of the cutoff radius for the FOE method has – at
least if it is chosen large enough to reach the zone where the curves are flat – only little
influence on the accuracy. Increasing it further beyond the start of the plateau will only
make the calculation more costly without giving any improvement of the results.
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Figure 6.6: Convergence of energy and forces as a function of the cutoff radius used for the
kernel construction in the FOE method. The test system was the same as in Fig. 6.5. The
cutoff radius for the support functions was set to the large value of 15 bohr such that it should
not affect the results considerably. Both the energy and the force exhibit an exponential decay
in the beginning, but then saturate quite fast at around 12 bohr.

6.2.2 Runtime as a function of the cutoff radius for the support

functions

Increasing the cutoff radius for the support functions has two effects. On the one hand
it simply enlarges the volume of the localization regions, thus requiring more work to
be done for one support function within its own localization region, on the other hand
it also increases the overlaps among the support functions and consequently affects the
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operations which are related to this part.
Whereas the first effect is independent of the system under investigation since the
shape of the support functions is always the same and thus the volume will increase
as the third power of the cutoff radius, the second effect depends heavily on the geom-
etry of the configuration. For a system which extends only along one dimension the
number of overlaps will obviously increase much more slowly than for a configuration
that extends also in the other dimensions.

As an illustration the number of overlaps among the support functions – i.e. the num-
ber of non-zero elements in the overlap matrix – was calculated as a function of the
cutoff radius. Three different systems were taken for this test: An alkane consisting
of 602 atoms, a graphene sheet with hydrogenated dangling bonds, amounting to 572
atoms in total, and a water droplet containing 600 atoms. In this way the test set con-
tained a one-dimensional, a two-dimensional and a three-dimensional system.
The support functions were optimized using the hybrid mode and the FOE approach
was employed for the determination of the density kernel. Whereas this is not im-
portant from the viewpoint of the number of overlaps among the support functions, it
will be of great importance later on when the timings will be compared, since the FOE
method depends heavily on the sparsity of the Hamiltonian matrix.

The results of this test are shown in Fig. 6.7. In order to be able to compare the three
runs, the numbers of overlaps were all scaled down to the value 1 for the smallest
cutoff radius. As expected the increase of the number of overlaps is strongly cor-
related with the dimensionality of the system. The three-dimensional water droplet
exhibits the fastest increase, followed by the two-dimensional graphene sheet and the
one-dimensional alkane.

Figure 6.7: The number of overlaps
among the support functions as a
function of their cutoff radius. The
numbers are all scaled down to 1 for
the smallest cutoff radius in order to
allow a comparison. Obviously the
overlaps increase much more rapidly
the higher the dimensionality of the
system is.
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Now the question is whether this strong dependence on the geometry is as well present
in the total runtime – meaning that the operations related to the overlaps of the support
functions are dominating – or whether there is an overall cubic scaling – independent
of the geometry – stemming from the increase of the localization regions alone.
It has to be noted that there was a slight difference in the input parameters between
the three systems, namely the choice of the mixing parameter – and consequently the
number of iterations in the kernel loop – which had to be adjusted due to the different
HOMO-LUMO gaps. Thus there might be a slight variation in the weights the various
operations – e.g. support function optimization versus density kernel optimization –
exhibit, but this should not affect the general statement.

The above question in answered in Fig. 6.8, where the total runtime for the same three
systems is plotted as a function of the cutoff radius. In order to allow a fair comparison,
the timings were again scaled down such that they exhibit the value 1 for the smallest
cutoff radius. Furthermore the number of iterations in the outer loop was limited to
10 such that potential convergence problem – which might appear in particular for the
small radii – cannot spoil the comparison.
As can be seen the increase of the timings is very different for the three systems and
again ordered according to their dimensionality. This demonstrates that the runtimes
are much more influenced by those parts depending on the overlaps of the support
functions among each other than by those which depend only on the support func-
tions inside their localization regions alone.
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Figure 6.8: The total runtime for the
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6.3 Parallelization

Treating hundreds or even thousands of atoms at the level of Density Functional The-
ory is a very demanding task. Even with an algorithm that only scales linearly with
respect to the size of the system, the computational cost remains tremendous. Conse-
quently the calculations are only feasible within a reasonable time frame if the overall
workload can be split up among many processors.
Thus an efficient parallelization scheme is of utmost importance if the code is supposed
to exploit the massive parallelism offered by nowadays supercomputers.

BigDFT exhibits two level of parallelization, namely distributed memory paralleliza-
tion using MPI [83] and shared memory parallelization using OpenMP [84]. In addition
some parts can exploit the massive parallelism offered by GPUs [85], however this is –
at least for the moment – not relevant for the linear scaling version.
Whereas OpenMP can rather easily be added on top of any distributed memory paral-
lelization, the MPI parallelization has to be planned carefully.

6.3.1 MPI parallelization

Since MPI is a shared memory programming model, one first has to think about how
the data should be distributed among the various MPI tasks. At the moment there are
basically two main quantities that are distributed, namely the support functions and
the charge density or potential.

With respect to the support functions, it is a natural choice to simply split up the total
number of support functions among the MPI tasks, i.e. each task only handles a few
ones. Since the support functions are all quite similar in size, this should lead to an
efficient parallelization.
On the other hand, the charge density – or the potential, respectively – has to be cut
into pieces in order to be distributed. Since the charge density is stored in an or-
thorhombic box, the most convenient way is to split it up in planes and to distribute
them among the MPI tasks. The axis for this distribution is chosen to be the z direction,
thus the parallelization is most efficient if the system has the largest extent along this
dimension.

As soon as the data distribution has been settled, the question of how to parallelize the
computation can be addressed. Some operations related to the support functions can
be done completely independent of each other – i.e. no communication among the var-
ious MPI tasks is required –, in this way exhibiting a natural parallelization. Examples
are the application of the kinetic energy operator, the evaluation of the pseudopotential
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part or the preconditioning.
However there are also some operations – both with respect to the support functions
and the charge density – which require some communication among the MPI tasks
and which can become a bottleneck if this communication is not done in an efficient
way. Some of these problems will be discussed in the following.

6.3.1.1 Calculation of scalar products

One of the most common operations that requires communication among the various
MPI tasks is the calculation of scalar products, for instance to build the overlap matrix:

Sαβ =
∫

φα(r)φβ(r)dr. (6.3)

Since the support functions are distributed among the MPI tasks, it is obvious that they
must be communicated in some way in order perform this operation.

The most obvious way would be to directly exchange in a point-to-point fashion those
parts of the support functions which overlap with each other. Afterwards the scalar
products can be calculated locally on each single MPI task.
Assuming, for simplicity, that each MPI task handles one support function, then this
MPI task has to calculate one line of the overlap matrix. For instance, if MPI task 0
holds the support function number 1, then it has to calculate the first line and thus
to determine the matrix elements

∫

φ1(r)φj(r)dr for all values of j. If the sparsity of
the matrix is known, some matrix elements are zero and need not be calculated, but in
general there still remain quite a lot which are non-zero.
In order to calculate all these integrals, task number 0 has to receive those parts of all
the other support functions with which support function 1 overlaps. Though this is
conceptually a straightforward approach, it has several severe drawbacks.

First of all the amount of data that has to be communicated is tremendous since the
support functions have in general quite a notable overlap. This will also result in a
very poor ratio between computation and communication; if each MPI task handles
only one support function, then each element that is communicated is only used in
one single operation.
Furthermore there is an enormous load unbalancing since support functions that are
localized in the center of the system have in general a larger number of overlaps with
other support functions than those which are localized at the boundary of the simu-
lation cell, at least for free boundary conditions where no periodic images have to be
considered.
Last but not least the large amount of data required by this point-to-point communi-
cation scheme is split up in a huge number of small messages, which could result in a
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large overhead due to the latency of the network.

Some of these problems are illustrated in Fig. 6.9 for the case of a water droplet con-
sisting of 300 atoms. The plot shows – as a function of the cutoff radius – the overall
amount of data that has to be communicated and the total number of point-to-point
messages that are required for one single calculation of the overlap matrix. The total
number of MPI tasks used for this test was equal to the number of support functions
such that each MPI task had to handle exactly one support function; this amounted to
totally 600 MPI tasks.
It is obvious that the total amount of data that has to be communicated with this point-
to-point approach is enormous. For instance, for a cutoff radius of 9 bohr – which is a
typical value used in a practical application – roughly 8.96GB have to communicated.
This has to be compared with the total size of all support functions, which amounts to
only 0.20GB. So the total amount of data that needs to be communicated is about 45
times larger than the data itself.
Furthermore it can be seen that the total number of messages that have to be sent in
total is indeed huge. Again specifically looking at a cutoff of 9 bohr, they amount to
142’842. It is very likely that such a large number will stress the network.

Due to all these problems it was necessary to develop a different approach. The basic
idea behind it is to use a data layout where the support functions are “transposed”.

For reasons of simplicity this layout is first briefly described for the case where no
localization constraints are present, i.e. all support functions extend over the entire
simulation box. In such a situation the support functions are represented by vectors
containing the expansion coefficients with respect to the underlying wavelet basis and

Figure 6.9: Illustration of the problems
related to the point-to-point commu-
nication scheme. The test system
was a water droplet consisting of 300
atoms; the number of MPI tasks used
was equal to the number of sup-
port functions, namely 600. The to-
tal amount of data to be communi-
cated (red curve, left axis) and the to-
tal number of point-to-point commu-
nications (green curve, right axis) are
shown with respect to the cutoff ra-
dius. Both numbers are huge in view
of the rather small dimensions of the
system.
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have – due to the absence of the localization constraint – all the same length.
In the standard data distribution, each MPI task holds a few of these vectors. In the
transposed scheme, each MPI task holds only a subset of the coefficients, but in turn
from all support functions. If the vectors representing the support functions were col-
lected together to form a matrix, this new layout would correspond to a transposition
of the matrix.
An illustration of the two layouts is given in Fig. 6.10 for the case of four MPI tasks
and four support functions.

If the support functions are available in this transposed layout, each MPI task can cal-
culate the partial scalar products among all support functions locally and in this way
build up a partial overlap matrix. Afterwards these partial overlap matrices have to
be summed up among all MPI tasks. Since all support functions extend over the en-
tire simulation box, each support function overlaps with all the other ones and as a
consequence the number of scalar products is the same on each MPI task, leading to a
perfect load balancing.

In the general case where each support function is strictly localized not only the length
of the vectors holding the support functions is slightly different, but also the number
of overlaps per support function is not always the same. Therefore the simple transpo-
sition scheme is not applicable anymore.
In order to carry over the concept to this case the transposed layout has to be viewed
from a different perspective. Instead of thinking of a matrix transposition, this layout
can be seen as a distribution where each MPI task is responsible for a given region of
the global simulation box and gets from all support functions those parts extending
into this region.

1 2 3 4 1 2 3 4

Figure 6.10: Illustration of the data layouts for
the case where all support functions extend
over the entire simulation cell, i.e. each sup-
port function can be written as a vector of
some length N. On the left-hand side the
standard data distribution is shown where –
in this case – each MPI task holds one sup-
port function, i.e. one entire vector of length
N. On the right-hand side the transposed
data layout is shown where each MPI task
holds components of all support functions,
but in turn only a subset of them, namely
N/ntask, where ntask is the total number of
MPI tasks.
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Figure 6.11: A simple example which will be used to illustrate
the optimal transposed layout of the support functions. The
system consists of four grid points labeled by Arabic numerals
and four support functions labeled by Roman numerals. The
support functions are constructed such that they all extend
over two grid points.

I
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This picture can now be transfered more easily to the general case. The entire simula-
tion box has to be partitioned among all MPI tasks, and the support functions are then
distributed to the various MPI tasks such that each one can calculate a partial overlap
matrix for its region. This means that each MPI task has to receive those parts of all
support functions which extend into that region of the simulation box for which the
MPI task is responsible. These partial matrices are then again summed up to build the
entire overlap matrix.
This partitioning of the box has to be done such that the load balancing among the
MPI tasks is optimal, which in general does not correspond to a uniform distribution
of the global simulation box.

The exact procedure can most easily be explained with a small example, which is
shown in Fig. 6.11. For simplicity the system consists of only four grid points (denoted
by Arabic numerals) and four support functions (denoted by Roman numerals) which

4

3 4

4

(a) The standard layout where
each MPI task has the entire
data of some support func-
tions.

2 3

4

(b) The naive transposed lay-
out where each MPI tasks
has all the data for some grid
points.

2 4

3

(c) Optimized transposed lay-
out similar to 6.12b, but this
time with an optimal load
balancing.

Figure 6.12: Schematic view of the different data layouts for the support functions of the simple
example shown in Fig. 6.11. Fig. 6.12a is the standard layout, whereas Figs. 6.12b and 6.12c
are transposed layouts.
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all extend over two grid points.
The various data layouts that emerge from this small example are shown in Fig. 6.12.
If there are two MPI tasks, each of them will handle two support functions in the stan-
dard data layout, i.e. task 0 will handle the support functions I and II and task 1 the
support functions III and IIII. This is illustrated in Fig. 6.12a.

In order to build the transposed layout, the most naive implementation would simply
split up the four grid points among the two MPI tasks, i.e. the first one would handle
the grid points 1 and 2 and the second one the grid points 3 and 4. This approach is
illustrated in Fig. 6.12b.

However this is not the optimal distribution from the viewpoint of the total workload
per MPI task. In order to calculate the partial overlap matrix each MPI task has to iter-
ate through all grid points it handles and perform multiplications among all support
functions touching a given grid point.
If the transposed layout was constructed as described, this would mean that task 0 has
to perform one multiplication for grid point 1 and four multiplications for grid point
2, whereas task 1 has to perform four multiplications for grid point 3 and nine for grid
point 4. As a consequence there is an enormous load unbalancing of totally 5 versus
13 multiplications.

A much better solution, which will give an optimal load balancing, is illustrated in
Fig. 6.12c. In this layout task 0 handles the grid points 1, 2 and 3, whereas task 1
only handles the grid point number 4. In this way both MPI tasks have to perform 9
multiplications.

In order to determine the shape of this optimized layout, a weight is assigned to each
grid point, given by the square of the number of orbitals touching it. For the simple
example these weights would consequently have the values one, four, four and nine,
respectively. The total weight which is given by the sum of all partial weights is then
split up among the MPI tasks as evenly as possible. For the simple test case this means
that each process gets assigned a total weight of nine. Now the grid points can finally
be assigned to the MPI tasks such that the total number of operations induced by the
partitioning comes as close as possible to the target weight.
Since the calculation of the partial overlap matrices requires that all support functions
for a given grid point are handled by the same MPI task, it is not possible to split up
grid points. Consequently it will in general not be possible to exactly reach the target
weight. However, since there are usually much more grid points than MPI tasks, these
deviations from the optimal load balancing will remain small.

A demonstration of the superiority of the transposition scheme over the point-to-point
approach from the viewpoint of the load balancing is given in Fig. 6.13. The plot shows
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the minimal and maximal number of multiplications that have to be performed by a
single MPI task in order to calculate the overlap matrix, again for the same system as
in Fig. 6.9. For the point-to-point approach each MPI task has to calculate one line
of the final overlap matrix, whereas for the transposition approach each task has to
calculate an entire partial overlap matrix. Of course summing up the total number of
multiplications among all MPI tasks gives the same result for both approaches.
The closer these two lines representing the minimal and maximal number of multipli-
cations come to the optimal value – which is given by the total number of multipli-
cations divided by the number of MPI tasks – the better the load balancing is. It is
obvious that the transposition approach outperforms the point-to-point approach by
far. For the typical cutoff radius of 9 bohr, the ratio between the maximum and the min-
imum is 4.11 for the point-to-point approach, whereas for the transposition approach
it is only 1.11. To estimate the additional runtime caused by the load unbalancing, it is
also interesting to compare the maximal value with the optimal one. For the point-to-
point approach this ratio is 1.83, whereas for the transposed approach it is only 1.05.

The next observation is that calculating the scalar products using the transposed lay-
outs requires considerably less data to be communicated than the point-to-point fash-
ion.
Since the transposed layout is just a redistribution of the standard layout, the total
amount of data that has to be communicated is always equal to the total size of all
support functions. In general this is much less data compared to the amount that is
communicated in the point-to-point approach, where a lot of data has to be duplicated.
A direct comparison of the total amount of data that has to be communicated for the
point-to-point and the transposition approach is shown in Fig. 6.14. Again the same
system and number of MPI tasks as before were used. It is obvious that for the trans-

Figure 6.13: Minimal and maxi-
mal number of multiplications to
be done by a single MPI task
in order to calculate the over-
lap matrix among the support
functions, together with the op-
timal value which is given by
the total number of multiplica-
tions divided by the number of
MPI tasks. The spread for the
point-to-point approach is much
larger than for the transposition
approach, which comes close to
the optimal value and thus ex-
hibits a good load balancing.
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Figure 6.14: Comparison of the to-
tal amount of data that has to
be communicated for the point-
to-point approach and the trans-
position approach. The amount
of data is smaller by orders of
magnitude for the transposition
approach. The test system was
again identical to the one which
was used before and whose
other benchmarks are shown in
Figs. 6.9 and 6.13.

position approach the amount of data that has to be communicated is much smaller.

Furthermore the transposition approach has the advantage that the communication
can be done in a much more efficient way. After some local rearrangement of the
data for each MPI task, it can in principle be communicated with one single MPI call
(MPI_Alltoallv); in practice there are actually two since the coarse and fine parts are
handled separately. After the data has been received again some local rearrangement is
required in order to reach the correct data layout. These three steps – local rearrange-
ment for the communication, the communication itself and the local rearrangement to
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Figure 6.15: Illustration of the transposition process for the small test example of Fig. 6.11. In
step I, the data is rearranged locally on each MPI task. Afterwards it can be communicated
using one single collective call (MPI_Alltoallv), as shown in step II. Finally, in step III, it has
again to be rearranged locally in order to reach the final layout.
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get the correct layout – are illustrated in Fig. 6.15 again for the small example.
Due to the latency of the network, two MPI calls will most likely be more efficient than
the tens of thousands of small messages that have to be sent around for the point-to-
point approach.
For the latter case such a communication in one single step is not possible straightfor-
wardly since a given data point is in general sent to more than one MPI task. If such
a scheme was wanted, one would have to use large buffers where the data is often
duplicated, thus leading to a large memory overhead.

In summary it is clear that this transposition approach eliminates all problems that
arise with the point-to-point approach. Again looking specifically at the water droplet
consisting of 300 atoms and a cutoff radius of 9 bohr the numbers for a run using 600
MPI tasks are impressive:

• The amount of data that is communicated is reduced by a factor of 45.

• The number of MPI calls is reduced from 142’842 to 2.

• The load unbalancing is reduced from 1.83 to 1.05.

Due to these numbers it is not surprising that the calculation of scalar products can be
done much more efficiently using the transposition approach.

6.3.1.2 Calculation of the charge density

The calculation of the charge density is another task that requires communication
among the various MPI tasks. The formula for its calculation is – according to Eq. (3.28)
– given by

ρ(r) = ∑
α,β

φα(r)Kαβφβ(r). (6.4)

This looks formally very similar to the calculation of the overlap matrix, since again
the product of different support functions has to be computed.
However there are also a few differences. Whereas the overlap matrix is calculated
with the support functions being stored in the compressed scaling function / wavelet
basis, the charge density is calculated with the support functions given in a dense rep-
resentation in a orthorhombic box. Furthermore the calculated charged density must
match the shape of the Poisson Solver [86,87], which is parallelized in planes along the
z axis.

This latter requirement was the reason to first implement the calculation of the charge
density in such a way that each MPI task directly calculates the charge density of those
planes that it will use later for the Poisson Solver. This has the advantage that there is
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no more communication requirement after the calculation of the charge density.
Recalling that the transposition approach discussed previously can be seen as a parti-
tioning of the simulation box among the MPI tasks, it becomes clear that this way of
calculating the charge density is already such a transposition method.
Thus its performance from the viewpoint of the total amount of data that has to be
communicated is quite advantageous. Since the overall simulation box is split up in
disjoint planes, each element of a given support function has to be sent to exactly one
MPI task, as illustrated in Fig. 6.16. Consequently the total amount of data that has to
be communicated is equal to the total size of all support functions, in agreement with
the discussion in Sec. 6.3.1.1.

However it turned out that this scheme has several shortcomings from the viewpoint
of the load balancing.
First of all it might well happen that there are more MPI tasks than planes in the z
direction. As a consequence some MPI tasks will be idle, leaving more work for the
remaining ones.
In addition, even if the planes can be well distributed among the MPI tasks, the load
balancing will still be very poor. This is simply due to the fact that the number of sup-
port functions extending to the planes at the edges of the simulation box is very small
and as a consequence the sum in Eq. (6.4) runs only over a few terms in those regions.
This is in strong contrast to the planes in the center of the simulation box, where many
support functions overlap and the sum runs consequently over many terms.

Due to these reasons it turned out that it is more advantageous to perform the calcula-
tion of the charge density along the same lines as the calculation of the overlap matrix,
i.e. to give up the strict partitioning into planes and to split the entire simulation box
such that the load balancing is optimal. In this way it is also guaranteed that there are
no more MPI tasks being idle.

The way the simulation box is partitioned among the MPI tasks is completely analo-
gous to the case of the overlap matrix, i.e. on assigns to each grid point a weight which
is given by the square of the number of support functions touching this grid point

I

IIII

III

II

Figure 6.16: Illustration how the support functions (rectangles with
Arabic numerals) must be distributed to the MPI tasks which
handle the planes (underlying rectangles with Roman numerals).
Since the planes are disjoint, each element of a given support func-
tions has to be sent to exactly one MPI task. Consequently the total
amount of data that has to be communicated is equal to the size of
all support functions.
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and then distributes the grid points among the MPI tasks such that the total weight is
distributed evenly.

Since this way of partitioning the simulation box gives a different layout than that re-
quired by the Poisson Solver, an additional communication step is needed after the
calculation of the charge density.
However, since only a redistribution of the charge density is required, the total amount
of data to be communicated equals the size of this quantity and is thus rather small
compared to the amount that had to be communicated before in order to distribute
the support functions. Furthermore the communication can again be accomplished by
one single MPI call. Due to these reasons it is not to be expected that this additional
communication will create problems.

A comparison of the two ways of partitioning the simulation box is given in Fig. 6.17.
The plot shows the minimal and maximal number of operations per MPI task for both
approaches as a function of the cutoff radius; an operation corresponds to the calcula-
tion of one element in the sum in Eq. (6.4), i.e. two multiplications.
As test system again the water droplet consisting of 300 atoms was used. With the
chosen grid spacing of 0.28 bohr this amounted to 431 planes in the z direction. Since
600 MPI tasks were used – which is reasonable since there are 600 support functions –
some MPI tasks did not participate in the calculation of the charge density for the sim-
ple partitioning. Therefore the minimum number of operations per MPI task is zero
for this approach and cannot be displayed in the plot due to the use of a logarithmic
scale.

Figure 6.17: Minimal and maximal
number of operations to be done
by a single MPI task in order
to calculate the charge density,
together with the optimal value
which is given by the total num-
ber of operations divided by the
number of MPI tasks. The min-
imal value for the simple parti-
tioning is zero and cannot be dis-
played on the logarithmic scale.
For the optimized partitioning
the minimal and maximal value
almost coincide with the optimal
value and are hardly visible. The
inset shows these three values for
a cutoff of 9 bohr on a non-logari-
thmic scale.
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However it becomes clear from the figure that the maximal number is much larger
than the optimal value which is given by the total number of operations divided by
the number of MPI tasks. The ratio between the maximum and the optimum is close
to four, independent of the cutoff radius. Again looking specifically at the value for a
cutoff radius of 9 bohr, the maximal number is 3.81 times larger then the optimal value.
On the other hand the situation looks much better for the optimized partitioning. Here
the minimal and maximal values almost coincide with the optimal one and the three
curves are basically indistinguishable. A small inset shows the three values for a cut-
off radius of 9 bohr, where it becomes clear how excellent the load balancing is. The
minimal value is at 0.9999 of the optimal value and the maximum at 1.0001.

The reason why the load balancing is much better compared to the case of the calcu-
lation of the overlap matrix which was shown in Fig. 6.13 is simply the much larger
number of grid points – the support functions are given on a grid having half the grid
spacing compared to the original one and in a cube instead of a sphere – which allows
a better distribution of the total weight.

6.3.1.3 Linear combinations

Building linear combinations among the support functions is another operation that
requires to communicate them among the MPI tasks. One example is the Löwdin
orthonormalization:

φ̃α(r) = ∑
β

(S−1/2)αβφβ(r). (6.5)

The overlap matrix is already available on each MPI task; thus this prescription is
formally again very similar to the calculation of scalar products since each support
function needs to receive those parts of the other support functions with which it
overlaps. Consequently again the same considerations as in Sec. 6.3.1.1 apply and it
turns out that the transposition approach is much more efficient than the direct point-
to-point approach.
Furthermore, since the two operations – for the specific case of the orthonormalization
the computation of the overlap matrix and the calculation of the linear combinations –
are often close together, the transposed layout can directly be reused.

6.3.1.4 Gathering the potential to apply the Hamiltonian

As already mentioned the charge density and the potential are stored in an orthorhom-
bic box being distributed in planes along the z axis in order to meet the parallelization
of the Poisson Solver [86, 87].
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However, in order to apply the Hamiltonian onto a support function one needs the
potential in a subbox that comprises this support function. If the support functions
extended over the entire volume, then this subbox would be the identical to the global
simulation box and the potential could be gathered using one single collective MPI
call. This is the case for the cubic version, where the Kohn-Sham orbitals take over the
role of the support functions.
However, for the linear scaling version, this subbox is in general only a small fraction
of the global box and gathering the entire potential would be wasteful.

The situation is illustrated for a small example in Fig. 6.18. As is shown in Fig. 6.18a
there are four planes which are distributed among four MPI tasks (Roman numerals)
and four orbitals (Arabic numerals) that are as well distributed among the four MPI
tasks.
The way the potential has to be gathered in order to be able to apply the Hamiltonian
is shown in Fig. 6.18b. It can be seen that a given MPI task needs in general also parts
of the potential being treated by other MPI tasks. Furthermore a given part of the
potential is in general needed by more than one MPI tasks.
As a consequence the communication pattern is highly complicated and it is therefore
the best solution to accomplish each communication step separately using a point-to-
point scheme.

Since the potential that has to be communicated from one MPI task to another one is
in general only a subblock of the potential on the MPI task from which it originates,
it is not possible to directly communicate the entire array. Instead one either has to

34

1
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IIII

III

II

(a) The potential distributed in
planes (Roman numerals) and the
four support functions (Arabic
numerals).

(b) The parts of the total po-
tential that are needed for
the Hamiltonian applica-
tion onto the support func-
tion.

Figure 6.18: Illustration of the data layout for the communication required to gather the po-
tential for the application of the Hamiltonian. This small example consists of four support
functions and four planes, both being distributed among four MPI tasks.
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send each line of the subblock separately, thus leading to many small messages and
therefore to a large overhead due to the latency, or to copy the subblock to a work
array which can then be sent as one large array, in this way blowing up the memory
requirements.

Fortunately there exists in addition a third way, namely the use of MPI derived data
types [83]. In this way the entire block can be sent as one message without the need to
copy it first to a work array. Due to the enormous saving this approach offers, it is the
method of choice.

6.3.2 OpenMP parallelization

In contrast to MPI, OpenMP is a shared memory model, meaning that all threads
within a team can access the same shared memory. Therefore one does not have to
worry about the detailed data layout and communication bottlenecks, and OpenMP
parallelization can often be added on top of an existing code without the need of a
fundamental redesign.
OpenMP is frequently used in connection with the existing MPI parallelization, mean-
ing that each MPI task is again parallelized over several OpenMP threads.

There are several reasons why an MPI task should be further split up in several
OpenMP threads. One advantage is that the parallelism of modern supercomputers
can be further exploited. Increasing the number of MPI tasks beyond the number of
support functions will only give a moderate speedup, since the additional tasks will
be idle for large sections of the program. On the other hand, by using several OpenMP
threads for each MPI task, it is possible to go beyond this limitation and consequently
exploit more cores, resulting in a considerable speedup of the calculation.

In addition, using several OpenMP threads is useful to avoid a potential loss of com-
puting power due to memory limitations. As there are often memory requirements
that can not be distributed among the MPI tasks – i.e. each MPI task has a given basic
requirement – it is sometimes not possible to use as many MPI tasks as one has cores
on a compute node since this would exceed the available memory. Thus one has to
reduce the number of MPI tasks per node, thereby only using a fraction of the avail-
able cores. Here OpenMP can help: If each of the remaining MPI tasks spawns several
OpenMP threads, it is again possible to exploit the full computing power of the node
that would be lost otherwise.

Furthermore it can also be advantageous to use fewer MPI tasks and more OpenMP
threads in order to reduce the overhead caused by the communication. In general
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the performance of the MPI parallelization deteriorates as the number of MPI tasks is
increased since the time taken by the communication becomes longer; consequently
decreasing the number of MPI tasks and using more OpenMP threads can help in such
situations.

The linear scaling version of BigDFT contains OpenMP statements in various places.
Fig. 6.19 shows the speedup that can be gained by using several OpenMP threads for
a various number of MPI tasks. The test system was a water droplet consisting of 300
atoms, in this way amounting to 600 support functions. The number of MPI tasks was
varied from 75 to 300, and the number of OpenMP threads was ranging from 1 to 16.
Due to the limited size of the supercomputer, a calculation using 300 MPI tasks and 16
OpenMP threads was not possible.

First of all it has to be noted that the sharp kink when going from 8 to 16 threads is
caused by the architecture of the compute node. Consequently it is not really meaning-
ful to conclude anything about the performance of the OpenMP parallelization from
the values for 16 threads.
Furthermore it is evident that the OpenMP speedup is better the smaller the number
of MPI tasks is. This is not surprising, since in these cases there is more work per MPI
task which can be split up among the OpenMP threads. In addition the time spent for
the communication is smaller if fewer MPI tasks are used, consequently increasing the
ratio between computation and communication. For the most favorable case – the one
using 75 MPI tasks – the speedup one gets by going from 1 to 8 threads is about 5.8,
whereas for the worst case – the one using 300 MPI tasks – it is about 4.

Figure 6.19: Speedup of the
OpenMP parallelization for a
water droplet consisting of 300
atoms, amounting to 600 support
functions. The speedup is better
for a smaller number of MPI
tasks since in this way there
is more work that can be split
among the OpenMP threads.
The sharp kink when going
from 8 to 16 threads is due to
the architecture of the compute
node. Using 300 MPI tasks and
16 OpenMP threads was not
possible since this would have
surmounted the total number of
cores on the supercomputer.
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It is interesting to fit Amdahl’s law [88] to the data points up to 8 threads. If the frac-
tion of the code which can be parallelized is denoted by p, then Amdahl’s law states
that the maximal speedup that can be gained by using N cores in parallel is given by

S(N) =
1

(1− p) + p
N

. (6.6)

In this way the data from Fig. 6.19 gives a non-parallel fraction of 14% for 300 MPI
tasks, 9% for 150 MPI tasks and 5% for 75 MPI tasks. This non-parallel amount is
mainly caused by the communication required for the MPI parallelization.

However it is astonishing that these numbers are smaller than the actual communica-
tion time required for the run with one thread. This means that even the communica-
tion time can be sped up by using more OpenMP threads.
This is a consequence of the limited injection bandwidth of the network – the amount
of data that can be transfered from the compute node to the network within a certain
time interval – over which the communication takes places. If only one thread is em-
ployed, then there are – for the architecture used for this test – 16 MPI tasks per node.
If they all send their data at the same time, this operation will be limited by the injec-
tion bandwidth, leading to a slowdown of the communication. If, on the other hand,
more threads are used, the number of MPI tasks per node is reduced, consequently
increasing the available injection bandwidth per task and removing this bottleneck.

6.3.3 Scaling with the number of processors

As already mentioned it is of utmost importance that the code exhibits a good paral-
lelization due to the enormous amount of work a DFT calculation requires. In order to
measure the performance of the code as the number of cores is increased two possibil-
ities exist:

• the so-called “strong scaling” indicates how the time to solution varies with the
number of cores for a fixed problem size

• the so-called “weak scaling” indicates how the time to solution varies with the
number of cores for a fixed problem size per core

Given an ideal parallelization, the strong scaling should lead to a runtime proportional
to the inverse of the number of cores that are used, whereas the weak scaling should –
assuming a perfect linear scaling with respect to the total size of the system – lead to a
constant runtime.
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6.3.3.1 Strong scaling

Measuring the strong scaling for a wide range of processors is a bit involved for tech-
nical reasons. The most difficult problem is the memory limitation. Whereas even for
large systems the memory requirement is not a bottleneck if many cores are used since
the data can be distributed over many compute nodes, it becomes problematic if the
number of cores – and consequently also the number of compute nodes – is decreased.
Using only a fraction of the available cores per node and in this way extending the
calculation over more nodes would increase the total amount of memory that is avail-
able and thus be a workaround. However this would falsify the results by increasing
the available memory bandwidth per core and therefore privilege those runs where a
small number of cores is used.

For this reason the strong scaling for the chosen system – a water droplet consisting
of 960 atoms – could only be measured from 160 to 3840 cores. Still this is a rather
wide range and consequently a meaningful indication of the scaling properties of the
code. The support functions were optimized using the hybrid mode and the FOE ap-
proach was employed for the optimization of the density kernel. The cutoff radii were
set to 8 bohr and 12 bohr, respectively, and the initial prefactor for the confinement to
4.9 · 10−3 hartree/bohr4.
The speedup that resulted by varying the numbers of cores – defined as s(N) =
t160/tN , where tx is the runtime for x cores – is shown in Fig. 6.20. The test was
performed for 2 and 4 OpenMP threads, meaning that the number of MPI tasks was
ranging from 80 to 1920 and 40 to 960, respectively.
The runs using 4 OpenMP threads, which performed slightly better in this test than
those using 2 threads, gave a speedup of about 15 by going from 160 to 3840 cores.

Figure 6.20: Plot of the effective
speedup for a water droplet con-
sisting of 960 atoms, together
with the ideal speedup. The
smallest number of cores used
was 160, the largest 3840. A
smaller number of cores was not
possible due to memory limita-
tions. Even for this large num-
ber of cores, a speedup of about
15 could be reached, which corre-
sponds to a an efficiency of 62%.
As shown by the inset, the scal-
ing for the smaller values is even
better.
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Comparing this with the ideal value of 24 one gets an efficiency of roughly 62%. This
is an excellent value considering the large number of cores used.
Furthermore it is obvious that the speedup is almost perfect for a small number of
cores, as shown by the small inset in the figure – from 160 cores to 480 cores the
speedup is roughly 2.75, i.e. about 92% of the ideal value. Since it is to be expected
that the scaling towards a very small number of cores is rather getting better than
worse, it is a fair assumption that one would get at least 90% efficiency by going from
1 to 160 cores. This would then result in an overall speedup of more than 2000 by
going from 1 to 3840 cores, which demonstrates that the code exhibits an excellent
parallelization.

Another important issue is the memory usage as a function of the numbers of cores.
The memory is in general not perfectly balanced among all MPI tasks and usually the
master task exhibits a memory requirement which lies above the average value. This
is due to the fact that in the transposed layout this task handles a region at the border
of the simulation box. Since the number of overlaps among the support functions is
rather small in this region, the master task has to cover a portion of the simulation box
which is larger than the average in order to reach the optimal load balancing, as was
explained in more detail in Sec. 6.3.1.1.
The memory peak for the MPI master task – again for the same system as the timings
– is shown in Fig. 6.21. As expected the memory usage decreases as the number of
cores is increased.

Since the memory requirements depend only on the number of MPI tasks and not
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Figure 6.21: Memory peak for the
MPI master task as a function of
the total number of cores used,
for the same system as the tim-
ings in Fig. 6.20. Since the mem-
ory usage depends only on the
number of MPI tasks and not on
the number of OpenMP threads,
the memory requirements for a
given number of cores is always
larger for the run with 4 OpenMP
threads. However – as indi-
cated by the blue dotted line –
the memory peak per node is al-
ways smaller for the runs with
4 OpenMP threads compared to
the ones with 2 threads.
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on the number of OpenMP threads, the memory peak for a given number of cores
is always larger for a run with 4 OpenMP threads compared to another one with 2
OpenMP threads.
However the run with 4 OpenMP threads still uses the memory in a more efficient
way. What is ultimately limiting is not the memory peak for one single MPI task, but
the memory peak for one compute node. This value is indicated by the dotted lines in
Fig. 6.21; for simplicity it was assumed that all MPI tasks on the compute node have the
same memory requirement as the master task, which is in general too pessimistic. As
can be seen the values for the runs with 4 OpenMP threads are always lower than those
for the runs with 2 OpenMP threads. This behavior can be explained by the fact that
there are some quantities which have to be stored by all MPI tasks; therefore reducing
the number of MPI tasks per node by increasing the number of OpenMP threads di-
minishes the overall memory requirements. This demonstrates that OpenMP is a good
option if the available memory is a bottleneck.

6.3.3.2 Weak scaling

Measuring the weak scaling is not such a problem from the viewpoint of the memory
requirements as the strong scaling, in particular for the case of a linear scaling code
where the memory requirements increase only linearly with respect to the size of the
system. If the number of cores increases in the same way as the number of atoms,
the memory needs per core are expected to remain constant. Consequently the range
of the number of atoms that can be used for the test is basically only limited by the
number of available cores.

The results of a test for water droplets of different sizes are shown in Fig. 6.22. The
smallest droplet consisted of 150 atoms, the largest one of 3600 atoms. As for the
strong scaling the support functions were optimized using the hybrid mode and the

Figure 6.22: Weak scaling for water droplets
of different sizes. The bad scaling has
mainly two reasons. First of all the code
only starts to scale linearly for rather large
droplets (cf. Secs. 6.4.2 and 6.4.3). In ad-
dition the communication time increases
with the number of MPI tasks even if the
amount of data to be communicated per
task remains constant. The runs were per-
formed with 2 OpenMP threads per MPI
task.
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FOE approach was employed for the optimization of the density kernel. The cutoff
radii were again set to 8 bohr and 12 bohr, respectively, and the initial prefactor for the
confinement to 4.9 · 10−3 hartree/bohr4.
There are two different curves, one representing the runs with two support functions
per MPI task and another one for the runs with four support functions per MPI task.
Due to the limited size of the supercomputer, the runs where each MPI task holds two
support functions could not go beyond 2100 atoms.
For a code that strictly scales linearly with respect to the number of atoms and further-
more exhibits a perfect parallelization, it is to be expected that the weak scaling gives
a horizontal line.

This is obviously not the case here. There are mainly two reasons for this rather bad
behavior. First of all, the water droplets must be rather larger in order to reach the
linear scaling regime, as will be shown in more detail in Secs. 6.4.2 and 6.4.3. As a con-
sequence it is not surprising that the run time increases for a small number of atoms
even if the number of support functions per MPI task is held constant.
Later on, in regions where the code is expected to scale linearly with respect to the
size of the system, the lines are still not horizontal. This is mainly due to the com-
munication among the various MPI tasks. Whereas the overall amount of data that is
communicated should increase linearly with respect to the size of the system – thus
keeping the amount of data per MPI task constant –, there is an additional overhead
due to the fact that more and more MPI tasks are involved in the communication. As a
consequence the communication will take more and more time as the number of atoms
increases.

These assumptions are confirmed by the plot in Fig. 6.23. Here the time taken by the
linear algebra – comprising the FOE part which depends heavily of the sparsity of the
matrices and is thus a good indicator of whether the linear scaling regime has been
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Figure 6.23: The time taken by the linear al-
gebra and the communication for the run
using 4 support functions per MPI task
shown in Fig. 6.22. The time required
by the linear algebra is an indicator of
whether the linear scaling regime has been
reached; as expected it increases rapidly in
the beginning but flattens out for the large
systems. The communication, on the other
hand, exhibits a continuous increase over
the entire range. Some possible explana-
tions for the strong oscillations above 3000
atoms are given in the text.
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reached – and by the communication are shown separately for the run with 4 support
functions per MPI task. It is obvious how the linear algebra part exhibits a very steep
increase in the beginning, but flattens towards the large number of atoms. The com-
munication, on the other hand, increases uniformly over the entire range. The strong
oscillations above 3000 atoms might be caused by other calculations running at the
same time on the cluster, in this way increasing the total traffic on the network, or by a
less favorable arrangement of the used compute nodes over the cluster.

6.4 Scaling with respect to the size of the system

The scaling with respect to the size of the system is the ultimate test to verify whether
the goal – a DFT code that scales linearly – has been reached. From the discussions in
the previous sections it is clear that only the Fermi Operator Expansion offers at the
moment the possibility to calculate the density kernel with linear scaling. Therefore
the following scaling benchmarks were all done with this method.

However it will be very hard to reach an absolutely perfect linear scaling, as there
will always be some very small portions of code exhibiting a worse scaling. A simple
example is the setup of the sparsity pattern of the matrices, which requires to deter-
mine which support functions overlap with each other; this procedure will result in a
quadratic scaling in a straightforward implementation.
Therefore one simply has to make sure that the prefactors of these parts are as small
as possible in order to minimize their bad influence on the overall scaling.

Another interesting question is that of the crossover point between the linear and the
cubic scaling version, i.e. the system size at which the linear scaling version will be
faster than the cubic one. This crossover point depends on the prefactors for the two
versions; the larger the prefactor for the linear version is compared to the one for the
cubic version, the higher will be the crossover point. It is clear that the crossover point
depends also heavily on the accuracy that has to be obtained, i.e. how close the linear
results should come to the cubic ones. The higher the accuracy requirements are, the
larger the cutoff radius must be chosen and consequently the more the crossover point
will be shifted towards larger numbers.

Furthermore it has to be noted that the convergence speed of the linear version de-
pends also on the choice of the mixing parameter which has to be specified unless
the direct minimization approach is used. Choosing a large value will accelerate the
calculation, but as well decrease the stability. For the following benchmarks rather
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conservative values were chosen, in particular for the one presented in Sec. 6.4.2.
The same considerations as for the mixing parameter apply as well to the choice of
the mode with which the support functions are optimized. For the following bench-
marks the hybrid mode is used, which in general exhibits a high reliability, but is often
slightly slower than the energy minimization and the mixed mode, as follows from the
discussion in Sec. 5.1.4.
Whereas all these issues do not affect the scaling behavior of the linear version, they
heavily affect its prefactor, which will eventually determine the crossover point. Thus
the crossover points which will be presented in the following sections might be low-
ered by choosing more aggressive parameters.

Furthermore it must be noted that the FOE method is used in connection with a mix-
ing approach. This is in contrast to the cubic version where the direct minimization
approach was used since the HOMO-LUMO gaps for the used test systems are large
enough. Using as well a mixing approach for the cubic version would considerably
slow down the calculations, in this way lowering the crossover point.

Apart from the mentioned parameters, the prefactor for the linear scaling version de-
pends also heavily on the geometry of the structure under consideration. The best
case is a large chain-like system which has a large extension in one direction and only
small extensions in the other two dimensions. In such a case there are only very few
overlaps between the support functions, giving rise to extremely sparse matrices and
consequently a fast linear scaling code. The other extreme is a compact system where
many overlaps among the support functions are present; for such a system the matri-
ces are much less sparse, in this way increasing the prefactor considerably.
For the cubic version, on the other hand, the geometry is not that important since any-
way all orbitals extend over the entire simulation box. As a consequence the crossover
point will be much lower for a chain-like structure than for a compact one.

Due to these reasons the most extreme cases – chain-like alkanes and compact water
droplets – will be used for the benchmarks.

6.4.1 The best case – a chain-like system

First the optimal case of the chain-like alkanes CnH2n+2 is considered, for which the
linear scaling version is expected to perform best. The hybrid mode was used for the
optimization of the support functions and the FOE method for the optimization of the
density kernel; the cutoffs were set to 8 bohr and 12 bohr, respectively. The prefactor
for the initial confinement was chosen to be 4.9 · 10−3 hartree/bohr4.
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For the linear scaling version the number of atoms ranged from 152 to 12002; beyond
this number the available memory was not sufficient any more. For the cubic version
the largest system that could be treated without running out of memory consisted of
1502 atoms. In order to set this number as high as possible and following the discussion
in Sec. 6.3.2, 8 OpenMP threads and 302 MPI tasks were used, amounting to 2416 cores
in total.

6.4.1.1 Timings

The runtimes for both the linear and the cubic versions as a function of the number of
atoms is shown in Fig. 6.24. Before looking at the results in more detail it is necessary
to note a few things which might otherwise lead to a wrong interpretation.
For the smallest molecule C50H102 the number of MPI tasks is equal to the number
of support functions used in the linear version, but twice as large as the number of
orbitals used in the cubic version. Since the parallelization over the support functions
– or the Kohn-Sham orbitals, respectively – is one of the main concepts to exploit the
MPI parallelism, it is clear that the available resources may be utilized much more effi-
ciently by the linear version than by the cubic one. However the additional MPI tasks
which are idle most of the time will become usable as soon as the number of atoms
increases, resulting in a flatter rise of the run time than expected for the cubic version.
Furthermore it has to be noted that the large number of OpenMP threads will ten-
dentially perform better for the bigger systems. For the smallest molecule C50H152 the
code is already heavily parallelized using the 302 MPI tasks and the speedup stemming
from the 8 OpenMP threads is only moderate; however, as one goes to larger systems,

Figure 6.24: The total CPU time
for both the linear and the cu-
bic version as a function of the
number of atoms for alkanes of
various length. The shortest
molecule consisted of 152 atoms,
the longest of 12002 atoms. The
cubic version could not go be-
yond 1502 atoms due to memory
limitations. The kink in the cu-
bic version for 752 atoms is due
to an additional iteration which
was required for the optimiza-
tion of the Kohn-Sham orbitals.
The strong oscillations of the lin-
ear version will be addressed in
Sec. 6.4.1.3.
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the workload per MPI task increases and these 8 threads can thus offer a substantial
speedup.

With these considerations in mind it is now possible to have a closer look at the figure.
It is obvious that the linear version exhibits a much more favorable scaling than the
cubic one. A linear extrapolation starting from the timing for 152 atoms pretends a
superlinear behavior in the beginning and an almost perfect linear scaling towards the
large numbers, whereas an extrapolation starting from the value for 902 atoms reveals
the small sections of the code which do not scale in a perfectly linear manner. This fact
is probably due to the usage of the large number of 8 OpenMP threads, resulting in a
slightly superlinear scaling for the smallest systems.
The cubic version shows rather a quadratic than a cubic scaling; it is actually even
slightly better than quadratic, probably again due to the better exploitation of the par-
allelism for the larger systems. This demonstrates that the 1502 atoms which could be
treated before running out of memory were still not enough in order to reach the range
where the cubically scaling linear algebra dominates and the system is thus still in the
wide range where – in agreement with the discussion in Sec. 2.4 – the quadratically
scaling convolutions prevail.

To estimate the crossover point one has to look at the small inset in Fig. 6.24. It can
be seen that even for the smallest system consisting of 152 atoms the total CPU time
is slightly smaller for the linear version compared to the cubic one. This would indi-
cate that the crossover point is located at less than 152 atoms. On the other hand, as
already mentioned, the cubic version can not fully exploit the MPI parallelism for this
small system and is therefore slightly disadvantaged compared to the linear version.
The first data point where both versions can fully exploit the MPI parallelism is at 302
atoms; however the cubic version is here already considerably slower – around 50% –
than the linear one. Since, according to Sec. 2.4, the scaling of the cubic version is ac-
tually rather quadratic for such small systems, the conclusion is that the true crossover
point is located at around 200 atoms.
However, as mentioned in the beginning of this section about the scaling, the crossover
point depends strongly on the choice of various parameters and may thus vary a lot.

6.4.1.2 Memory

Besides the timing it is also interesting to have a look at the scaling of the memory
requirements for the linear and the cubic version. The memory peak for the MPI mas-
ter task is shown in Fig. 6.25. Due to an integer overflow in the memory profiler the
peak values could only be determined up to 1052 atoms for the cubic version and 9002
atoms for the linear version.
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Still it is obvious that the linear version has a memory requirement that increases only
linearly with respect to the size of the system, whereas the one of the cubic version
increases much faster. In addition the plot demonstrates that even for the smallest
system the memory peak of the linear version is only at about 60% of that of the cubic
version, i.e. the crossover point from the viewpoint of memory usage is much lower
than that from the viewpoint of the CPU time.
Furthermore, whereas the crossover point for the runtimes is considerably affected
by both the cutoff radii and the other parameters as the mixing constant or the opti-
mization mode for the support functions, the crossover point for the memory usage
depends essentially only on the cutoff radius.

Figure 6.25: The memory peak of
the MPI master task as a func-
tion of the number of atoms for
the same alkanes as in Fig. 6.24.
Due to an integer overflow in the
memory profiler the values are
only available up to 1052 atoms
for the cubic version and 9002
for the linear one. The linear
version shows a strict linear in-
crease, whereas the cubic version
exhibits a much faster rise of the
memory requirements.
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6.4.1.3 The Poisson Solver – problematic for large chain-like structures

As can be seen from Fig. 6.24 the timings for the linear scaling version exhibit consid-
erable oscillations, in particular for the larger systems. It turns out that these variations
stem mainly from the Poisson Solver, as demonstrated by Fig. 6.26. Here the total time
consumption of the Poisson Solver (both communication and computation) is sub-
tracted from the total run time and shown separately. It is obvious that the oscillations
are almost entirely due to these parts.
Furthermore the remaining time shows an almost perfect linear scaling, even when
taking the values for 902 atoms as reference. Only for a very large number of atoms
there are some small deviations from the straight line which must be caused by some
other small sections of the code which are not yet fully linearized. Thus one can con-
clude that the Poisson solver is – at least for the alkanes – the main cause why the strict
linear scaling is slightly spoiled.
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The rather bad performance of the Poisson Solver has several reasons.
First of all the scaling is by construction not strictly linear, since the Poisson solver has
an intrinsic N logN scaling due to the Fast Fourier Transforms (FFTs) that are used.
Secondly the oscillations in the timing are most probably caused by the zero-padding
required for the FFTs, which puts some restrictions on the size of the data sets which
can be processed. Thus it might happen that in some cases even a small increase in
the size of the system blows up the dimensions of the Poisson Solver considerably,
whereas in other situations an increase of the system does not even alter them.
Last but not least it has to be noted that the parallelization of the Poisson solver over
planes is not well suited for long chain-like structures as the alkanes. As an example,
the dimensions of the computational box for the largest alkane were 161× 165× 59673,
meaning that the number of planes in the z direction is several hundred times larger
than the one in the other two directions. As a consequence the parallelization over
planes is very efficient as long as they are aligned along the z direction; however the
Poisson Solver also has to perform operations in planes along the other dimensions,
which leads to a severe load unbalancing if the number of planes is smaller then the
number of MPI tasks.
A solution to this problem would be to parallelize the Poisson solver over lines instead
of planes. In this way the workload could be distributed among the MPI tasks in a
much more efficient way. Some preliminary results for this approach will be presented
in Sec. 6.5.5.
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6.4.2 The worst case – a compact system

The worst case for the linear scaling version is a compact system, exhibiting much
overlap among the support functions and thus leading to rather dense matrices. As a
specific example water droplets of different size were considered; the smallest droplet
consisted of 150 atoms, the largest one of 8400 atoms. For the cubic version is was
not possible to go beyond 1500 atoms due to memory limitations. Again 8 OpenMP
threads were used in order to push this limit up as much as possible. The number of
MPI tasks was set to 300, thus being equal to the number of support functions used for
the smallest droplet. Consequently 2400 cores were used in total.
As for the alkanes the hybrid mode in connection with the FOE method was used;
the cutoffs were again 8 bohr and 12 bohr, respectively, and the prefactor for the initial
confinement was once more set to 4.9 · 10−3 hartree/bohr4.

6.4.2.1 Timings

In Fig. 6.27 the total CPU time is plotted as a function of the number of atoms for
both the linear and the cubic version. Again it is important to note that the available
MPI parallelization is smaller for the cubic version, but this time the effect is not as
heavy as for the alkanes. Whereas in that case the number of orbitals was only half
the number of support functions, here the number of orbitals is two third the number
of support functions. Consequently the cubic version is still a bit disadvantaged, but
not as heavily as for the alkanes. Furthermore it is again to be expected that the large
number of 8 OpenMP threads gives a better speedup the larger the systems are, thus
slightly improving the scaling.

Figure 6.27: The total CPU time as a
function of the number of atoms
in water droplets of different size.
The smallest droplet consisted of
150 atoms, the largest one of 8400
atoms. The cubic version could
not go beyond 1500 atoms due
to memory limitations. The scal-
ing for the linear and the cubic
version is similar in the begin-
ning; the linear version starts to
show the desired scaling only at
a larger number of atoms. Still
there are some deviations from
the perfect linear scaling for the
largest systems.
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First of all it is obvious that the scaling of the linear and the cubic version is very
similar in the beginning and seems to be rather linear. Whereas this is to be expected
for the linear scaling version, it is surprising for the cubic one; however this behavior
can most probably be explained by the better exploitation of the available cores for
the larger systems. Furthermore the similar scaling of the linear and the cubic version
means that the system is still to small in order to allow the linear version to exploit the
localization properties of the support functions and the corresponding sparsity of the
matrices. This becomes also visible by the linear extrapolation from the value for 150
atoms, which lies considerably below the actual numbers.
Only at about 1000 atoms the system seems to be large enough such that the linear
version can take advantage of the localization and sparsity properties and thus starts
to exhibit a better scaling than the cubic version. However the extrapolation from the
value for 1500 atoms shows that the scaling is still not perfectly linear, but nevertheless
it is obviously much better than that of the cubic version.

The determination of the crossover point is this time not so easy, since both versions
exhibit a similar behavior in the beginning. From Fig. 6.27 it can be concluded that
the point where the linear scaling version starts to perform considerably better than
the cubic one is located at around 1000 atoms. Due to this rather large number, the
considerations about the exploitation of the parallelism are not as important as for the
alkanes.
The fact that the crossover point is much higher compared to the case of the alkanes
demonstrates the huge impact of the geometry. However, it must be noted that – as
for the alkanes – the crossover point might be lowered by choosing more aggressive
parameters.

6.4.2.2 Memory

The memory peak for the MPI master task is shown in Fig. 6.28. Due to an integer
overflow in the memory profiler the values are only available up to 5100 atoms for the
linear version and 1050 atoms for the cubic version.

As for the case of the alkanes it is obvious that the memory requirements increase
strictly linearly for the liner scaling version, whereas they grow much faster for the
cubic version.
Again there is no crossover point, i.e. the linear version requires always less memory
than the cubic one. For the smallest droplet the peak of the linear version is only 55%
of that of the cubic version.

This demonstrates that the memory requirements are not that much dependent – even
though there is still some effect – on the geometry as the runtime.
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Figure 6.28: The memory peak of
the MPI master task as a function
of the number of atoms for the
same runs as in Fig. 6.27. The lin-
ear version shows a strict linear
increase, whereas the memory re-
quirements of the cubic version
increase much faster. Due to an
integer overflow in the memory
profiler the values are only avail-
able up to 5100 atoms for the lin-
ear and 1050 atoms for the cubic
version.
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6.4.3 Impact of the geometry on the sparsity properties

The results of the Secs. 6.4.1 and 6.4.2 have already demonstrated that the geometry
has a huge impact on the runtime of the linear scaling version. This is mainly due to
the fact that the overlaps among the support functions – and thus the sparsity of the
matrices – depend strongly on the geometrical arrangement.

An impressing demonstration of the impact of the geometry on the sparsity of the ma-
trices is shown in Fig. 6.29. The plot shows on the right axis the relative sparsity of the
matrices – i.e. the number of zero-elements divided by the total number of elements –
as a function of the number of atoms; on the left axis it shows the relative time taken
by the FOE part, which depends heavily on the sparsity of the matrices, again as a
function of the number of atoms. As soon as this relative time stops to increase, it can
be concluded that the system has reached the linear scaling regime.
The data for the plot was extracted from the same runs which were used to illustrate
the scaling behavior in the Secs. 6.4.1 and 6.4.2, thus representing the most favorable
case of the chain-like alkanes and the worst case of the compact water droplets. Since
the number of MPI task was chosen such that in both cases each MPI task had to handle
one support function for the smallest system and in addition also all the other crucial
parameters (as the cutoff radii) were identical, these runs allow a fair comparison. The
only parameters that were different are the mixing parameter and the number of it-
erations in the kernel loop, which were smaller and larger, respectively, for the water
droplets; this slightly increases the relative amount taken by the FOE part for these
systems, but still the general statement will remain valid.

First of all it becomes clear from the figure that the matrices for the alkanes are much
sparser than those for the water droplets even though the same localization radii were
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used for both systems, which is simply a consequence of their geometrical arrange-
ment.
Furthermore it is obvious how the sparsity has an impact on the relative time taken by
the FOE part. For the smallest system – 152 atoms for the alkane and 150 atoms for
the water droplet – the sparsity of the matrices is still rather small for both systems,
namely 75.84% and 50.12%, respectively. Consequently also the relative time taken by
the FOE part – 7.4% and 10.5%, respectively – is close together.

However the situation changes drastically as the number of atoms is increased. For
the alkanes the sparsity grows very rapidly and already reaches 94.87% for 752 atoms.
At this point the relative time taken by the FOE part starts to remains constant at a
few percent. The decrease in the beginning is probably due to a better exploitation
of the parallelism; the 8 OpenMP threads that were used were most likely not able to
perform well for the smallest systems.

For the water droplet, on the other hand, the same level of sparsity is only reached for
a much larger number of atoms; a value of 94.54% is attained for 2400 atoms. Therefore
the relative time taken by the FOE part grows in a similar manner as the sparsity and
saturates at much higher values than for the alkanes; it only starts to remain constant
at a sparsity level of about 95%.
Again it can be observed that the FOE time increases a bit more slowly than expected
in the very beginning which is probably once more due to a better exploitation of the
parallelism.

As a rule of thumb it can be concluded from these tests that, in order to reach the lin-
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Figure 6.29: The relative time taken
by the FOE part (left axis) and
the relative sparsity of the ma-
trices (right axis), extracted from
the same runs that were used
in Figs. 6.24–6.28. The matrices
for the alkanes are much sparser
than those for the water droplet,
demonstrating the huge impact
of the geometry of the system on
this property. As a rule of thumb
it can be concluded that the ma-
trices need to exhibit a relative
sparsity of at least 95% in order
to reach the linear scaling regime,
as indicated by the relative FOE
time remaining constant.
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ear scaling regime, the matrices need to exhibit a relative sparsity of at least 95%. The
number of atoms for which this value is attained depends strongly on the geometry,
and consequently does as well the size for which the linear scaling regime is reached.

6.5 Open problems

In spite of the already quite impressing performance of the linear scaling version of
BigDFT, there are still some issues that need to be further investigated and improved.

6.5.1 Convergence criterion for the support functions

A very important point which needs to be addressed is to find a good convergence
criterion for the optimization of the support functions. So far they are optimized until
one runs into the orthogonality problem causing a breakdown of the optimization pro-
cedure. As soon as this happens, the support functions can de facto not be improved
any further, so the code stops the optimization and one consequently works with a
fixed set of support functions from this point on.

In general the support functions are already of good enough quality when this break-
down occurs in order to still yield highly accurate results. The problem is rather that
sometimes this breakdown happens slightly later, making the already good support
functions even better. Whereas this is not a problem for one single calculation, it can
be problematic if results from different calculations have to be compared. In order to
prevent this problem, it would be necessary to stop the optimization of the support
functions always at the same stage of quality.

The most obvious way to define a convergence criterion would be to rely on the gra-
dient of target function with respect to the support functions. However this will not
work due to the strict localization that is enforced, which will cause the target function
to saturate even if the gradient does not go to zero. Thus the gradient can not be used
as a good convergence criterion.

Another simple possibility would be to stop the optimization as soon as the difference
of the target function between two subsequent iterations is below a given threshold.
However this is not a good criterion either, since in this way a slow convergence might
pretend that this threshold has already been reached and the optimization is then
stopped too early.
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A slightly more sophisticated approach, which combines both the gradient and the dif-
ference in the target function between two iterations, will be shown in the following.
To first order it can be assumed that the difference in the target function is given by
the gradient, |gα〉, times the change in the support functions between two iterations,
|∆φα〉:

∆Ω ≈ ∑
α

〈gα|∆φα〉 . (6.7)

Assuming that the support functions are optimized using steepest descent with a step
size α, i.e. |∆φα〉 = −λ |gα〉, this estimated difference becomes

∆Ω = −λ ∑
α

〈gα|gα〉 . (6.8)

Without the localization constraint it should be possible to converge ∆Ω to any small
value. However, following the discussion in Sec. 5.1.6, this is not possible, mainly due
to the orthogonality that is imposed and which is competing with the strict localiza-
tion. Consequently, if the overall change in the value of the target function between
two iterations is supposed to be negative, it is necessary that ∆Ω must be larger in
magnitude than the increase caused by the orthogonalization which follows the up-
date of the support functions. As soon as the opposite happens, the support functions
have to be considered as converged. If the increase caused by the orthogonalization is
denoted by ξ, the convergence condition thus reads

−∆Ω < ξ. (6.9)

Inserting Eq. (6.8) yields
λ ∑

α

〈gα|gα〉 < ξ, (6.10)

from which a convergence criterion for the mean gradient norm can be derived:
√

∑α 〈gα|gα〉
Nsf

<

√

ξ

λNsf
, (6.11)

where Nsf is the number of support functions.

Even though this scheme is fully implemented, it is still not completely clear yet
whether it is a suitable criterion in practice. Thus the optimization is at the moment
typically stopped after two iterations and the support functions are permanently fixed
as soon as one runs into the orthogonality problem.

6.5.2 Strict treatment of the quasi-orthogonality

As already mentioned the support functions are only quasi-orthogonal due to the strict
localization that is imposed on them. This is in principle not a problem since it simply
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introduces some overlap matrices S – or S−1 and S−1/2, respectively – here and there.
In addition it has been shown that simplifying the calculation of S−1/2 by a first order
Taylor expansion might be an acceptable compromise between accuracy and speed .

Still there are several open questions related to this topic. First of all it is not completely
clear whether this correction due to the quasi-orthogonality is needed everywhere at
all. It might well be that it is only required when the density kernel is calculated, but
negligible for the optimization of the support functions.
Furthermore more investigations are required in order to fully validate the approxi-
mation of S−1/2 for the kernel optimization and to explore whether there are better
options for this task.

6.5.3 Releasing the orthogonality constraint

As shown in Sec. 5.1.6 the strict orthogonality that is imposed on the support functions
can cause problems towards the end of the optimization procedure. A possible solution
would be to release this constraint as soon as it starts to cause problems.
However it has to be made sure that still the overlap matrix among the orbitals does
not become too distinct from the identity, since otherwise the various approximations
that rely on this quasi-orthogonality are doomed to failure.

6.5.4 Preconditioning

Finding an efficient preconditioning scheme is a rather involved task. Since it does
not modify any result, but simply acts as a convergence accelerator, it is difficult to
determine whether the approach being currently used is well suited.

Whereas the preconditioning procedures for the pure trace minimization and for the
pure energy minimization are rather straightforward, the prescription for the hybrid
method is just one proposition. It might well be that there exist other approaches
which give better results.

6.5.5 Optimizations for extreme conditions

As has been demonstrated there are some sections of the code which exhibit problems
when they are used under extreme conditions.
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One example is the Poisson Solver for very long alkanes and many MPI tasks. As
mentioned the problem could be alleviated by a parallelization over lines instead of
over planes. Some preliminary results of this approach are shown in Fig. 6.30. Here
the time taken by the Poisson Solver (both communication and computation) is shown
as a function of the number of atoms in alkanes of various length. The runs were
executed using 3004MPI tasks. Since this number considerably exceeds the dimensions
of the Poisson Solver in the x- and y-direction, it is clear that the old parallelization
over planes is problematic and causes a severe load unbalancing which manifests itself
in the timings. The new parallelization over lines, on the other hand, can much better
exploit the parallelism and is thus considerably faster. For the largest system consisting
of 7502 atoms, the new version outperforms the old one by a factor of about 15.

Another issue is the reduction of the memory requirement for very large systems.
Since some quantities – e.g. the sparse matrices – are stored by each MPI task, they can
create severe bottlenecks. Consequently one has to think about a way of distributing
these quantities among the various MPI tasks.
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Figure 6.30: Comparison of the time taken by the Pois-
son Solver for the old version, which is parallelized
over planes, and the new version, which is paral-
lelized over lines, for alkanes of various lengths. The
support functions were optimized using the hybrid
mode and the density kernel was constructed using
the FOE method; the cutoff radii were set to 8 bohr
and 12 bohr, respectively, and the initial prefactor for
the confinement was set to 4.9 · 10−3 hartree/bohr4. 3004
MPI tasks and 4 OpenMP threads were used, thus
amounting to totally 12016 cores.

6.5.6 More sparse algebra

Whereas all methods to optimize the support functions systematically exploit their lo-
calization properties, the situation for the kernel optimization is different. So far only
the FOE method makes full usage of the sparsity properties of the matrices, thus reach-
ing a strict linear scaling. All other methods, i.e. the diagonalization methods and the
direct minimization, do not fully exploit this sparsity.

It will be rather hard to make the diagonalization methods scale linearly. Two pack-
ages that allow to solve for eigenvectors of large sparse matrices were tested, namely
Anasazi [76] and SLEPc [77]. Even if they are in principle able to deal with very large
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matrices, they are mainly designed to calculate only a few eigenvectors from a matrix.
This is in strong contrast to the requirements of the direct diagonalization methods,
which need to know a large part of the spectrum of the matrices.
The situation for the direct minimization is better, since the diagonalization is only
required for the overlap matrix among the fictitious Kohn-Sham orbitals during the or-
thonormalization. It might be that this diagonalization can be avoided by again using
a Taylor approximation.

6.5.7 More feelings for the parameters

Another important point is the tuning of the various input parameters, e.g. localization
radius, confining potential, number of iterations in the inner loops, etc. Even if the
number of parameters is not huge, they may have a big impact on the speed and
accuracy of the calculation.
Even if some knowledge about these parameters is available at present, more tests are
required for a full understanding.

6.5.8 More functionals

At the moment the linear scaling code is only able to work with LDA functionals. A
generalization to GGA functionals should not be too difficult, since it basically just
requires a modified distribution of the charge density such that each MPI task is able
to calculate the gradient of this quantity, which then enters into the calculation of the
functional.

Hybrid functionals, which contain some portions of exact Hartree-Fock exchange, can
in principle as well be handled. Denoting the Kohn-Sham orbitals by ψi, this exchange
energy is given by [1]

EHF
X = ∑

i,j

∫∫ ψi(r)ψj(r
′)ψj(r)ψi(r

′)

|r− r′| drdr′. (6.12)

By replacing the Kohn-Sham orbitals by their representation in terms of the support
functions according to Eq. (3.36) one gets

EHF
X = ∑

i,j
∑

α,β,γ,δ
ciαcjβcjγciδ

∫∫

φα(r)φβ(r′)φγ(r)φδ(r′)
|r− r′| drdr′

= ∑
α,β,γ,δ

KαδKβγ

∫∫

φα(r)φβ(r′)φγ(r)φδ(r′)
|r− r′| drdr′,

(6.13)
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which allows to evaluate the Hartree-Fock exchange energy in terms of the density
kernel and the support functions.

The same arguments apply also to meta-GGA functionals, where the kinetic energy
density may as well be written in terms of these quantities:

1
2 ∑

i

|∇ψi(r)|2 =
1
2 ∑

i
∑
α,β

ciαciβ∇φα(r)∇φβ(r) =
1
2 ∑

α,β
Kαβ∇φα(r)∇φβ(r). (6.14)

However the situation is more complicated when it comes to functionals which explic-
itly depend on a single Kohn-Sham orbital or the orbital-density, as SIC functionals.
These quantities can again be expanded in terms of the support functions, but this
time the coefficients ciα are explicitly required and can not be replaced by the density
kernel:

ψi(r) = ∑
α

ciαφα(r),

ρi(r) = ∑
α,β

ciαciβφα(r)φβ(r).
(6.15)

If the density kernel is optimized by the direct diagonalization or the direct minimiza-
tion approach, then these coefficients are available. For the FOE approach, on the other
hand, only the density kernel is known, and there is no way to get access to the ex-
pansion coefficients of the Kohn-Sham orbitals. Consequently such orbital-dependent
functionals cannot be used in connection with the FOE approach.

6.5.9 Improve the quality of the forces

Even though it has been shown in the Secs. 6.1.2 and 6.1.3 that the forces calculated by
the linear version are quite accurate, there still seems to be some room for improve-
ment.

First of all it might be worth to see whether it is nonetheless possible to determine the
Pulay forces which are neglected at the moment.
Furthermore it turned out that the noise level of the forces is usually higher compared
to the cubic version, in particular for small cutoff radii. Finding a way to reduce this
noise would allow to use smaller cutoff radii in practical applications and thus accel-
erate the calculations a lot.
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6.5.10 More boundary conditions

At the moment the linear version can only handle free boundary conditions. A general-
ization to wire, surface and periodic boundary conditions would considerably enlarge
the range of possible applications.

6.5.11 Technical optimizations

Even though some sections of the code are already highly optimized – e.g. the matrix
vector multiplications for the FOE or the communication for the calculation of scalar
products and the charge density – there are some other sections which can still consid-
erably be improved.
This is in particular the case for the direct minimization approach, where some pre-
liminary results are already available and are illustrated in Fig. 6.31. This plot shows
the scaling of the direct minimization mode as a function of the number of MPI tasks
for the old unoptimized version and the new one after the improvements. The timings
for the smallest system were both scaled down to one since the tests were executed
on different machines; because the optimizations do not only affect the prefactor of
the method, but also its scaling, the improvements are still visible. It is amazing how
much could be gained by the technical optimizations.

Figure 6.31: Scaling of the direct minimiza-
tion mode before and after the technical
optimizations as a function of the number
of atoms in alkanes of various lengths. The
support functions were optimized with
the hybrid mode using a cutoff radius of
8 bohr and an initial prefactor for the con-
finement of 4.9 · 10−3 hartree/bohr4. In order
to allow a fair comparison, the timings
for the smallest systems were scaled down
to one since the tests were performed on
different machines. The runs were exe-
cuted using 302 MPI tasks and 2 OpenMP
threads.
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Conclusions and outlook

The first part of this Thesis described in detail the various steps – from the theoretical
background over the practical implementations, the technical challenges and finally
the check of the results – that had to be taken in order to develop a DFT code which
scales only linearly with respect to the size of the system.

First it was demonstrated that the solution of the electronic structure problem can be
efficiently solved within the framework of DFT, which gives a good balance between
cost and accuracy. Next it was shown that the intrinsic cubic scaling of this formalism
can be reduced to a strict linear scaling by exploiting the decay properties of the den-
sity matrix describing the system. After a very short introduction to wavelets, which
form the underlying basis set and are predestined for linear scaling calculations, the
largest part of the text was devoted to the description of the implementation of a linear
scaling version within the framework of the BigDFT package.

Representing it in terms of a set of support functions – which are optimized in-situ –
and the density kernel allows to determine the density matrix in an accurate and ef-
ficient way and paves the way towards a linear scaling algorithm. Several approaches
have been developed for the optimization of the support functions and the density
kernel; it will be a task for the future to further determine which ones are best suited
for the actual purpose.
Most of the bottlenecks that appeared on the way towards an algorithm with the de-
sired scaling properties could be eliminated and it is therefore possible to perform
calculations whose time requirements scale only linearly with respect to the size of the
system. The benchmarks towards the end of the text have furthermore demonstrated
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that the code still yields very accurate results. In addition it is highly parallelized and
can scale up to thousands of cores.

Even though there are still some open questions whose solutions are expected to im-
prove the accuracy and the speed further, these preliminary results are already very
encouraging.

Apart from further improving and stabilizing the code, the next step will be to to see its
performance for realistic applications. Thanks to the fact that the linear scaling version
is able to give reasonable results with a standard set of parameters it is to be expected
that this transition from the benchmark systems which have been considered so far to
the real ones will be possible straightforwardly.

To this end it will also be necessary on the one hand to remove some bottlenecks
which are still present under certain circumstances and one the other hand to enhance
the functionality of the code. As these issues are mainly technical things and should
not create fundamental problems it is to be expected that these steps can be taken
smoothly.
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Introduction

Unlike the first part of the Thesis, which was only describing basic developments, this
second part is about a real application, namely the structural investigation of boron-
carbon fullerenes.

Since its discovery by Kroto et al. in 1985 [89] the C60 fullerene has found a wide range
of applications as a building block in the field of nanoscience. For instance it is possible
to directly form solids out of it [90] or to dope it by adding substitutional or endohe-
dral atoms, e.g. in the context of hydrogen storage [91].
For future applications it would be advantageous to have more such basic building
blocks which could then be selected depending on the specific needs. One possibility
is to modify the original carbon fullerene by substitutional doping. A very popular
choice for the dopant atoms are boron and nitrogen since they are neighbors to carbon
in the periodic table; thus they are comparable in size and electronic properties and it
is to be expected that they can be integrated into the carbon geometry without affecting
the overall shape too much. Various boron-carbon heterofullerenes have been observed
experimentally [92, 93]. The existence of cross-linked N12C48 fullerenes could explain
experimental measurements of thin solid films [94]. The case of boron is of particular
importance as it is the p-type counterpart of the n-type nitrogen doping in fullerenes
and graphene used to tune their electronic or catalytic properties [95, 96].

It is clear that such heterofullerenes may only be useful as building blocks in prac-
tice if they are energetically stable. Therefore is is important to get more insight into
the structural properties of these compounds, i.e. to determine the energetically most
favorable configuration for a given stoichiometry and to get some knowledge about
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the surrounding energy landscape. If the energetically most favorable structure is rea-
sonably separated from the other ones, it is to be expected that it can be produced
experimentally.
In order to determine the energetically lowest structure, it is in principle necessary to
perform an unbiased search over all possible stable configurations. Of course this is not
feasible for such a large system, since this number increases in general exponentially
with the number of atoms. As a consequence one either has to use an algorithm which
is able to find the most favorable configuration without searching over all possibilities
– a task which became possible only recently [97–100] – or one has to constrain the
search beforehand in some way, thereby only investigating a small portion of the entire
energy landscape.

For the stoichiometries C60-nBn this constraint typically consisted in starting the search
from the perfect C60 fullerene and substituting n carbon atoms by boron. Garg et
al. [101] extensively investigated the geometries C60-nBn for n = 1− 12. They con-
cluded that the boron is arranged in such a way that a pentagon ring does not contain
more than one boron atom and a hexagon not more than two boron atoms (at non-
adjacent sites). Putting more boron atoms in a ring increases the bond lengths and
decreases the stability. A study by Viani and Santos [102] on various smaller fullerenes
again confirmed that boron atoms are most preferably situated at opposite sites in a
hexagon, thereby increasing the bond lengths in their neighborhood. For the hetero-
fullerene B12C48, which will be one of the two stoichiometries investigated here, Manaa
et al. [103] did a detailed study; they claimed that the best structure was the same that
was previously found for N12C48 [104], thereby again confirming the previous results
stating that the boron atoms should be distributed over the entire carbon cage and
isolated.

This second part of the Thesis describes how an extensive and unbiased search for
energetically low structures for the stoichiometries B12C48 and B12C50 was performed,
however this time trying to explore a wider range of the energy landscape by not re-
stricting the investigation to the structural motif of substituted C60 fullerenes where
the boron atoms are isolated. In this way it was possible to discover many new struc-
tures which are energetically more favorable than those which have been known so far.
Furthermore they belong to a completely new class of structures. This demonstrates
that many energetically low configurations have been missed so far.

However, before presenting the results of this investigation, some basic introduction
into the field of structure prediction will be given.
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Short introduction to structure

prediction

9.1 Some basic terms

In order to determine stable configurations of molecules or solids, one has to search for
minima on the potential energy surface which has been introduced in Sec. 2.1. These
minima are characterized by two conditions, namely the forces acting on the atoms
which must be zero and the eigenvalues of the Hessian which must all be positive.
Any point on the potential energy surface which exhibits these two properties is a local
minimum, whereas the global minimum, on the other hand, is the energetical mini-
mum of all local minima.

In this context it is also useful to introduce the term basin of attraction. A basin of
attraction for a given minimum consists of all configurations which would relax into
this local minimum if a geometry optimization with a sufficiently small step size was
performed.

Another important term is that of a funnel. A funnel consists of a subset of all minima
– or basins of attraction, respectively – which are all connected by a certain maximal
barrier height. A system whose internal energy is higher than this maximal barrier is
thus able to move freely inside the funnel and access all the minima contained within
it. In order to leave the funnel, a higher barrier would have to be crossed, necessitating
the system to exhibit a larger internal energy.
Of course the definition of a funnel depends on the barrier height which is considered
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and the assignment of the various minima to different funnels is thus somehow arbi-
trary.

An illustration of all these terms is given in Fig. 9.1 for a simple one-dimensional
function. There are several local minima – denoted by yellow stars – with their corre-
sponding basins of attraction which are separated by the vertical blue bars. The global
minimum is marked with a green star. Furthermore the high barrier in the middle
suggests to define two different funnels, as indicated by the red arrows.

These terms do not only apply to the search of stable configurations for solids or
molecules, where the function whose minima are searched for is the energy as a func-
tions of their coordinates, but to any other quantity whose minima have to be deter-
mined. Global optimization is consequently a very general problem.

Figure 9.1: An illustration of the basic terms
by a simple one-dimensional energy land-
scape. The vertical blue bars separate the
basins of attractions belonging to the lo-
cal minima indicated by the yellow stars.
The green stars represents the global mini-
mum. The two funnels being separated by
the high central barrier are indicated by the
red arrows.

9.1.1 Difficulties of a global optimization

Whereas a local optimization is rather straightforward – one starts from a given con-
figuration and simply minimizes the target function using any optimization method
with a sufficiently small step size – a global optimization is a very involved task. In
order to determine the global minimum with absolute certainty, it would in principle
be necessary to first identify all local minima and then to determine the global mini-
mum out of them. This is problematic for two reasons: Firstly it is hard to determine
whether really all local minima have been found or whether some have been missed,
and secondly the number of local minima is in general tremendous, making a system-
atic search impossible in practice.
As a consequence the determination of global minima is a very challenging task, and it
is therefore advisable to rather call the result of such an investigation a putative global
minimum in order to take into account the mentioned uncertainties.

Furthermore systems with several deep funnels are even more challenging for any
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global optimization algorithm, since one can very easily get trapped in a funnel which
does not contain the global minimum. In such a situation it is very hard to get out of it
and enter the correct funnel. This problem can at least partially be overcome by start-
ing several global optimization searches from many different initial configurations, out
of which at least one will hopefully end up in the correct funnel.

9.2 Global optimization methods

In spite of the mentioned difficulties there exist several methods trying to determine
the global minimum of a given target function. Some important ones, which may also
be applied to structural optimizations [105], will be briefly presented in the following
sections.

9.2.1 Genetic algorithms

Genetic algorithms try to mimic Darwin’s theory of evolution, meaning that they em-
ploy the concept of the “survival of the fittest”. To this end one starts with an initial
set of structures, which will then undergo random modifications, known as mutations.
Furthermore it is possible to combine two initial structures into a new one, called a
crossover. Out of all of the structures generated in this way – i.e. the initial set and the
new ones – one then selects those which are the fittest; in the context of a structural
optimization the fitness would be measured by the energy of the configurations.
Repeating this process of creating new structures and selecting the best ones will re-
sult in a set of configurations which will more and more exhibit the desired property,
namely come close to the global minimum.

However applying genetic algorithms to a structural optimization is not as straight-
forward as it might seem at first sight. First of all completely random mutations of a
structure will in most cases result in rather unphysical configurations. Thus it might
be necessary to restrict these random modifications somehow, in this way biasing the
algorithm. Furthermore it is not obvious how two structures can be combined into a
new one. A possibility would be two cut the two initial configurations into two pieces
and then glue together the latter ones in order to build a new structure, but it is of
course questionable whether a reasonable configuration can be constructed from two
fragments in this way.
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9.2.2 Simulated annealing

At a sufficiently low temperature the probability of the system being in any other
state than the ground state is vanishingly small due to the tiny Boltzmann weight
e−(Ei−E0)/kBT of the excited states. Consequently one could perform moves one the
potential energy surface and accept or reject these new configurations in such a way
that one finally obtains a low-temperature Boltzmann distribution.

However this method will in general not work in practice. Unless one uses very violent
moves – which will then, on the other hand, in most cases lead to very unphysical
configurations – the system will be trapped in another than the global minimum since
it can not overcome the surrounding barriers due to the low temperature.

Simulating annealing circumvents this problem by starting the simulation at a high
temperature and then to gradually decrease it. In this way the system should hopefully
have enough energy in order to overcome the mentioned barriers in the beginning even
when only physical meaningful moves are used and already be close to the global
minimum – or at least in the correct funnel – when the temperature becomes small.
The simplest prescription is to let the system evolve according to Molecular Dynamics
(MD). Due to the ergodicity the Boltzmann distribution will eventually be reached.
Thus simulated annealing is in some sense imitating was is happening in nature during
a cooling precess.

9.2.3 Basin hopping

The key idea behind the basin hopping method is to use a simplified potential energy
surface compared to the original one. To this end the energy of an entire basin of
attraction is set equal to the energy of the corresponding local minimum, resulting in
a piecewise constant energy landscape. An illustration for the sample function shown
in Fig. 9.1 is given in Fig. 9.2.
In this way two neighboring local minima are not separated any more by potentially

Figure 9.2: The same function as shown in
Fig. 9.1, however this time modified ac-
cording to the basin hopping algorithm.
For each basin of attraction, the function
takes on the value of the corresponding lo-
cal minimum. In this way, the high bar-
rier separating the two funnels has disap-
peared.
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high barriers, and it is therefore much easier to switch from one minimum to the other
one. This can also nicely be seen in the illustration, where the high barrier in the mid-
dle has completely disappeared, thereby also removing the two-funnel character of the
system.

In the context of a Monte Carlo simulation, where a new trial configuration is accepted
or rejected according to its Boltzmann factor e(Etrial−Eold)/kBT, one is thus only compar-
ing energies of local minima. Since these are in general not very distinct, the Boltzmann
factor is consequently not getting too small. On the other hand, when using the origi-
nal energy landscape, it might happen that Etrial is much higher than the energy of the
local minimum to whose basin of attraction this trial configuration belongs, and the
Boltzmann factor becomes therefore very tiny, making it very unlikely that this trial
step is accepted.
The generation of the modified energy landscape can be done on-the-fly. For each trial
configuration one performs a local geometry optimization whose final result will then
be used to determine whether the trial configuration is accepted or not.

The temperature, which is a free parameter in the basin hopping method, has not
been specified so far. Thus it could be used to combine basin hopping with a simu-
lated annealing scheme by continuously lowering the temperature as the simulation
progresses. However this is rarely done in practice.

9.2.4 Minima Hopping

The Minima Hopping method [100] is a global optimization method which is neither
based on genetic algorithms nor on thermodynamics. Still it is closely related to the
basin hopping method since it employs the same modified energy landscape.

However the new trial configurations – which are generated by a short MD trajectory
starting from the current local minimum – are not accepted or rejected based on their
Boltzmann weight, but rather based on whether their energy is higher or lower than a
threshold energy which is continuously adjusted such that on average half of all trial
steps are accepted. Furthermore the trial steps become heavier – by means of a higher
kinetic energy used for the MD part – if a given minimum is visited several times, be it
since the trial step did not lead out of the basin of attraction or be it since the algorithm
simply came back after visiting some other minima.

Together these two feedback mechanisms ensure that repeated visits of the same min-
imum are avoided and the energy landscape can consequently be explored efficiently.
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Since the escape steps are in addition always directed towards low lying barriers, this
gives a fast trend towards the global minimum.

9.3 Structural stability

For the discussion of the structural stability it is in principle necessary to take into
account temperature and pressure. However for the moment it is assumed that both
quantities are zero; in such a case a configuration is by definition in its ground state if
its energy is minimal. In the language of the previous section, the ground state thus
corresponds to the global minimum of the potential energy surface. Since a system
always tends to lower its energy, it can be concluded that such a configuration must
consequently be stable, i.e. the system has no tendency to modify its state.

For the other local minima the situation is more complicated. Since in these cases the
energy is as well at a minimum – although only locally – the system has again no
tendency to leave this local minimum. On the other hand, there are by definition other
minima which are lower in energy than the current one. Even if they are separated by
potentially high barriers, there is a chance that the system will eventually end up in
one of them. Thus such configurations which are a local – but not a global – minimum
of the potential energy surface are called metastable.

As mentioned, the question whether a given system will be found in its ground state
or in any other metastable state does not only depend on the heights of the barriers
separating the various minima, but also on the temperature of the system and the
external pressure which is applied. The higher the temperature is, the more the sys-
tem will undergo thermal fluctuations and therefore more easily cross barriers. This
crossing of barriers may occur in both directions, i.e. it is also possible that the system
leaves the ground state and ends up in a metastable one. However, since the energy
difference from the ground state to a given barrier is larger compared to the one from
a metastable state to the same barrier, the stability of the ground state is still higher
than that of the metastable one.

Even if a complete description of the system is in principle only possible if all minima
and the corresponding barriers are known, some basic estimation about the stability
of a system can still be gained from the minima alone. If the energy gap between the
ground state and the excited states is rather larger, this implies that the lowest mini-
mum is separated from the other ones by rather high energy barriers. Thus it is more
likely that the system will be found in the ground state.
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New structural motifs for

boron-carbon fullerenes

10.1 Methodology to determine low energy structures

As written in more detail in the introduction to this second part, it has been believed
so far that the ground state for boron-carbon nanocages is given by structures that are
identical to carbon fullerenes, just with some carbon atoms substituted by boron. Fur-
thermore it has been assumed that the boron atoms are distributed across the entire
surface of the fullerene and isolated, meaning that they are always separated by at least
one carbon atom. Thus all investigations done so far have been biased in this direction.
In the language of the global optimization problematic which was briefly introduced
in Sec. 9.1 this means that only one funnel has been explored.

However there is no guarantee that the global minimum is really located in this funnel.
Therefore it is necessary to explore also other parts of the energy landscape belonging
to other structural motifs and funnels. Thus it was attempted in the course of this
work [106] to explore the potential energy surface as unbiased as possible by gener-
ating a very wide range of initial structures, out of which at least one will hopefully
belong to the funnel containing the global minimum.

The input structures for the two stoichiometries B12C48 and B12C50, which were inves-
tigated in this study, were generated using several approaches.
For B12C48, the most obvious approach, which had also been used in previous studies,
was to replace 12 carbon atoms by boron in a perfect C60 fullerene. Another approach
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consisted in replacing 10 atoms in a C58 fullerene and to add two additional boron
atoms at the centers of both pentagons and hexagons as they were demonstrated to
be the building blocks [107, 108] in the B80 fullerene [109]. A third one was to cut
out 12 adjacent atoms from a C60 fullerene and to fill the hole with a compact boron
icosahedron or a boron patch. In the last approach structures of high symmetry were
generated for the stoichiometry C48 and 12 boron atoms were added at locations where
it seemed appropriate by intuition.
For the stoichiometry B12C50 the first approach for the generation of initial structures
was to take those configurations which turned out to be optimal for B12C48 and to
manually add two additional carbon atoms. The second one consisted in replacing ten
carbon atoms by boron in a C60 fullerene and to add two additional interstitial boron
atoms at positions where it seemed appropriate by intuition. In the last approach 12
carbon atoms were replaced by boron starting from a C62 fullerene; for this last one two
examples of C62 fullerenes were taken which were first described by Ayuela et al. [110]
and Qian et al. [111] and turned out to be the most stable C62 isomers in a study by
Cui et al. [112].

For all of the structures generated in this way a local geometry optimization was per-
formed first in order to sort out the least favorable compounds. For the most interesting
ones among the remaining configurations some short runs using the minima hopping
method – which was presented in Sec. 9.2.4 – were performed in order to see some
trends towards an energy lowering. With these informations some manual modifica-
tions – e.g. exchanging a boron and a carbon atom – were applied in order to speed up
the exploration in a second step of minima hopping. Finally a systematical exchange of
boron and carbon atoms up to second-nearest neighbors for the most favorable struc-
tures emerging from this process was performed.
As was stated, the minima hopping method allows, in principle, to find the global min-
imum of the potential energy surface; however, due to the complexity of the current
system, this search would last very long if it is started in the wrong funnel and one
can thus only determine the pseudo-global minimum in a given region of the poten-
tial energy surface within a reasonable time frame. However, thanks to the fact that
the minima hopping searches were started from many distinct minima, this problem
could hopefully be overcome since there is a larger chance that at least one of the initial
structures belongs to the funnel containing the ground state.

In this way more than thousand configurations for both stoichiometries could be gen-
erated without the restriction of sticking too much to a given structural motif.

All calculations were done at the level of DFT, using the BigDFT package [71] which
was presented in detail in the first part of the Thesis. All calculations were done using
the traditional cubic version of the code since the system is still too small in order to
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profit from the linear scaling version. The exchange correlation part was described by
the PBE functional [24], which has shown to give highly reliable energy differences
between different structural motifs in boron [113] and is therefore used [114] in this
work. The grid spacing was set to 0.24 bohr, which allowed – together with the chosen
radii for the coarse and fine regions – a convergence of the energy to 10−5 hartree, and
all systems were relaxed until the maximal force component on any atom was within
the noise level of the calculation, which was of the order of 1meV/Å.

10.2 Energy landscape for B12C48

10.2.1 Putative ground state known so far

As already mentioned several times it has been assumed so far that the ground state
for the stoichiometry B12C48 is given by structures which exhibit the same shape as the
Buckminster fullerene C60, just with some carbon atoms substituted by boron. Further-
more it has been believed that the boron atoms should be distributed across the entire
surface and isolated, meaning that they are always separated by at least one carbon
atom. In the following this class of structures will be referred to as “diluted”.

The three energetically lowest structures that have been found so far [115] are shown
in Fig. 10.1. In the most favorable one, which is shown in Fig. 10.1a, 6 boron atoms are
situated in pentagons at the top and the bottom of the fullerene, respectively, while the

(a) The lowest structure. (b) The second-lowest structure. (c) The third-lowest structure.

Figure 10.1: The three energetically lowest structures found so far for the stoichiometry B12C48.
They have in common that the boron atoms are distributed over the entire surface and iso-
lated, i.e. always separated by at least one carbon atom. Furthermore they exhibit the same
overall shape as the C60 fullerene.
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remaining 6 boron atoms are distributed around the equator within the remaining six
pentagons in a way that exhibits a S6 symmetry; the same structure proved to be the
most favorable structure as well for N12C48 [104]. In the figure, these top and bottom
parts are actually located at the top right and bottom left, respectively. Several studies
confirmed that this is the energetically most favorable compound [101, 116].
A second type of structure – shown in Fig. 10.1b – of D3d symmetry with two boron
atoms per pentagon was considerably higher in energy, as well as a third structure
– shown in Fig. 10.1c – of S6 symmetry in which the boron atoms are distributed in
pairs per hexagon and which was also known for N12C48 [117]. The energy differences
between the lowest structure and the two other isomers were calculated [115] to be
0.65 eV and 1.13 eV, respectively.

10.2.2 New structural motifs

In the course of the survey of the energy landscape several structures were found
which are considerably lower in energy than the ones which have been proposed so
far. Whereas the new configurations agree with them in the overall shape exhibiting a
cage-like structure, they differ substantially by the fact that the boron is not distributed
over the entire cluster, but aggregated in a patch, thereby separating the surface of the
compound in a boron-rich and a boron-poor part. This is in strong contrast to the
widely accepted belief that the boron atoms should be isolated [118], i.e. be always
separated by one or several carbon atoms. This new structural motif will be referred
to as “patched”.

The low energy part of the spectrum that was explored is shown in Fig. 10.2, together
with figures of the 12 lowest isomers that have been found and the three lowest diluted
structures. In total 143 new structures being lower in energy than the most favorable
configuration known so far have been found. However, since the main focus was put
on determining the ground state and not on systematically exploring the entire energy
landscape, it is almost guaranteed that there are even more minima in the range be-
tween the new putative ground state and the lowest diluted structure.
The energy levels are colored on a scale from 0 to 1 which describes the relative amount
of carbon atoms being first neighbors to boron. Thus a value of 0 (red) means that
the boron atoms are only surrounded by boron – which can obviously not happen –,
whereas a value of 1 (blue) means that the boron atoms are only surrounded by carbon.
Consequently the coloring of the patched structures tends towards red values, while
the coloring of the diluted ones tends towards blue values.

As has been mentioned previously the structures being lowest in energy have in com-
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Figure 10.2: Plot of the 12 energetically most favorable structures and the three lowest diluted
configurations of B12C48. On the left side the lower part – only up to 3 eV above the putative
ground state – of the energy spectrum is shown. The coloring scheme is explained in the
text. It must be noted that the spectrum is most likely not complete – in particular for higher
energies – as the focus was put on determining the ground state and not on exploring the
entire energy landscape.
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mon that the boron atoms are aggregated at one single location on the surface of the
cluster, in this way forming a flat patch. However it is interesting to see that for the
lowest structures the boron part does not form a compact patch, but rather one which
is slightly frayed at the boundaries. This results in astonishing configurations where
carbon atoms have four boron atoms as first neighbors. Furthermore it is surprising
that the lowest structure exhibits a heptagon, which is usually less favorable than the
penta- and hexagons, and twice two adjacent pentagons, which is in general very dis-
advantageous [119]. However the pentagons do not only consist of carbon, but there
are some substitutional boron atoms contained within them.

The energy spectrum exhibits rather large separations at the bottom and gets narrower
for values which are more than roughly 0.5 eV above the new putative ground state.
Furthermore there is a clear spacing between the ground state and the first excited
state.

Tab. 10.1 gives some more details about the structures depicted in Fig. 10.2.
The first column shows the energy separation ∆E of the configurations with respect
to the energetically lowest one. Comparing with the class of the diluted structures, it
can be seen that the new putative ground state is 1.8 eV lower in energy than the most
favorable configuration of that structural motif. Since, as mentioned, the latter one
is identical to the putative ground state identified by Manaa et al., it follows that the

Table 10.1: Some details about
the same minima as shown
in Fig. 10.2, i.e. the 12 ener-
getically most favorable ones
and the three lowest diluted
structures of the stoichiom-
etry B12C48. The first col-
umn shows the energy sep-
aration ∆E to the new pu-
tative ground state, the sec-
ond the HOMO-LUMO gap,
the third the formation energy
∆H with respect to the bulk
phases of boron and carbon,
the fourth the point group
and the fifth the RMSD with
respect to the new putative
ground state. The minima are
labeled according to their en-
ergetical ordering.

∆E gap ∆H PG RMSD
(eV) (eV)

( eV
atom

)

(bohr)

1st 0.000 0.457 0.340 Cs 0.000
2nd 0.232 0.477 0.344 Cs 1.003
3rd 0.362 0.646 0.346 Cs 1.717
4th 0.462 0.645 0.348 C1 1.092
5th 0.553 0.295 0.350 Cs 1.589
6th 0.557 0.236 0.350 C1 0.558
7th 0.575 0.247 0.350 C1 1.486
8th 0.582 0.452 0.350 C1 1.579
9th 0.607 0.604 0.350 Cs 0.783
10th 0.624 0.378 0.351 C1 0.533
11th 0.644 0.616 0.351 Cs 1.344
12th 0.665 0.644 0.351 Cs 1.490
144th 1.836 0.494 0.371 S6 3.465
295th 2.273 0.316 0.378 D3d 3.501
453th 2.661 0.302 0.385 S6 3.442
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new putative ground state is 1.8 eV below the one previously proposed. The second
lowest structure where the boron is diluted is only the 295th lowest structure among
all minima that have been found with an energy separation of 2.3 eV, being identical
to the second-lowest structure identified by Manaa et al., and the third lowest diluted
structure – being identical to the third lowest structure found by Manaa et al. – turned
out to be the 453rd lowest structure in this study with an energy separation of 2.7 eV.
These results confirm in some sense the findings of previous studies as the same di-
luted structures turned out to be the most favorable ones; on the other hand they
demonstrate that many minima have been missed so far by restricting the search to the
structural motif of diluted cages.

In the second column the HOMO-LUMO gaps of all these structures are presented.
The values range from 0.2 eV to 0.6 eV, thus being rather small, and do not exhibit any
special pattern. In particular there is no notable difference between the class of the
patched and the diluted structures.

The next column shows the formation energies per atom ∆H with respect to the bulk
conformations of boron and carbon (α-boron and cubic diamond, respectively), which
is defined by ∆H = (E − nBE

0
B − nCE

0
C)/(nB + nC) with E being the energy of the

compound and E0
X and nX being the energy per atom of the reference configurations

and the number of atoms, respectively. As expected, the formation energy is clearly
positive and does not give any useful information right here; however it can be used in
order to compare different stoichiometries, as will be done later when the results for
B12C50 are presented.

In the fourth column the symmetry classes of the structures are noted. Whereas the
diluted structures exhibit rather high symmetries (point groups S6 and D3d), the new
structures are much less symmetric (point groups Cs and C1).
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Figure 10.3: The energy difference versus the
RMSD – both with respect to the putative
ground state – of all structures of the stoi-
chiometry B12C48 up to 8 eV above the pu-
tative global minimum. There is a broad
range containing structures whose energies
are completely uncorrelated to the value of
the RMSD. However there is a sharp bound-
ary at about 2 bohr, and the structures ex-
hibiting a larger RMSD are not as favorable
energetically as the ones belonging to the
first group.
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Finally in the last column the RMSD [120] values of the structures with respect to the
new putative ground state are presented. It is obvious that there is a clear separation
between the patched structures and the diluted ones. Within the patched ones, how-
ever, there is no relation between the energy and the RMSD.

A more complete overview of the energies and the corresponding RMSD values is
shown in Fig. 10.3. Here for all structures being separated from the putative ground
state by less than 8 eV the energy difference and the RMSD with respect to the latter
one are plotted. As can be seen there is a broad range with structures whose en-
ergies are completely uncorrelated to the value of the RMSD. However this range is
sharply bounded at a value of about 2 bohr, separating it from energetically higher
configurations. These results suggest that there is a deep, but relatively flat and broad
funnel ranging up to the mentioned boundary and being clearly separated from the
other structural motifs which exhibit higher energies. The configurations exhibiting
the largest RMSD values belong to a class where the boron atoms are arranged in two
patches at opposite sides of the cluster and to the class of the diluted structures.

In Tab. 10.2 the minimal and maximal bond lengths are given for the same 15 structures
which were presented in detail in Fig. 10.2 and Tab. 10.1. As can be seen the minimal
and maximal boron-boron bond lengths are often shorter and longer than their coun-

Table 10.2: The minimal and
maximal bond lengths in Å
for the 12 energetically most
favorable configurations and
the three lowest diluted struc-
tures of the stoichiometry
B12C48, i.e. the same struc-
tures which are shown in
Fig. 10.2 and whose details
are presented in Tab. 10.1.
For the diluted structures
there are no direct boron-
boron bonds.

bond lengths (Å)
B-B C-C B-C

min max min max min max
1st 1.638 1.790 1.388 1.471 1.539 1.628
2nd 1.663 1.765 1.385 1.485 1.544 1.618
3rd 1.666 1.681 1.391 1.495 1.530 1.630
4th 1.641 1.810 1.390 1.480 1.521 1.679
5th 1.687 1.735 1.386 1.474 1.522 1.630
6th 1.619 1.787 1.391 1.494 1.526 1.776
7th 1.648 1.803 1.389 1.479 1.496 1.659
8th 1.644 1.761 1.390 1.481 1.514 1.621
9th 1.626 1.770 1.392 1.491 1.535 1.795
10th 1.637 1.793 1.382 1.492 1.529 1.631
11th 1.657 1.765 1.395 1.485 1.518 1.639
12th 1.656 1.762 1.390 1.474 1.506 1.557
144th - - 1.390 1.502 1.541 1.577
295th - - 1.380 1.490 1.548 1.587
453th - - 1.393 1.498 1.538 1.587
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terparts in the pure B80 fullerene proposed by Szwacki et al. [109], which range from
1.674 Å to 1.728 Å. On the other hand the minimal carbon-carbon bond lengths are
still close to their value found in a pure C60 fullerene (1.398 Å); however the maximal
value is often slightly larger than that of C60 (1.452 Å). Still it seems that the carbon
parts of the clusters are not much distorted by the presence of the boron atoms. The
boron-carbon bond lengths lie in between the other two categories, as expected.

Finally the results of a Mulliken charge analysis for the same 15 configurations are
presented in Fig. 10.4. It turned out that there is a strong correlation between the net
charge of an atom and its surrounding. The x axis corresponds to the relative amount
of opposite atom kinds being first neighbors to a given atom, i.e. a value of 0 means
that a given atom is only surrounded by atoms of the same kind, whereas a value of 1
means that a given atom is only surrounded by atoms of the opposite kind. The y axis
shows the net charge of the given atom.
Whereas for x = 0 – i.e. boron atoms are only surrounded by boron and carbon atoms
only by carbon – the net charge is approximately zero for both kinds, they behave
differently for increasing values of x. The higher the value of x is – i.e. boron atoms
are more and more surrounded by carbon and carbon atoms more and more by boron,
respectively –, the more the carbon atoms get negatively charged, whereas the boron
atoms get positively charged. Furthermore it seems that these results are valid for both
structural motifs – i.e. diluted and patched – as there are no notable deviations from
the pattern.
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carbon Figure 10.4: The net charge per atom, as cal-

culated by the Mulliken charge analysis, for
the 15 clusters shown in Fig. 10.2. The x
coordinate denotes the fraction of opposite
atom kinds surrounding a given atom, as ex-
plained in the text. There is a clear connec-
tion between the coordinate x and the mag-
nitude of the net charge. Boron atoms get
positively charged when the value of x is
increased, whereas carbon atoms get nega-
tively charged.
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10.3 Energy landscape for B12C50

Looking at the energetically most favorable configuration of B12C48, it can be seen that
the heptagon which is present in this compound could be filled up by adding two
additional carbon atoms, as illustrated in Fig. 10.5. In this way the heptagon would
be modified into one hexagon and one pentagon, and furthermore the two adjacent
pentagons which are present twice on both sides of the heptagon are turned into a
pentagon and a hexagon each. Since this configuration consists only of pentagons and
hexagons and furthermore respects the isolated pentagon rule, it is plausible to assume
that it is an excellent candidate for a global minimum of the stoichiometry B12C50.

In order to confirm this assumption an extended search for the ground state of these
compounds was performed as well. The way how the initial structures were generated
and the further procedure has already been explained in Sec. 10.1.

It turned out that the structure that was manually constructed from the ground state
of B12C48 by adding the two carbon atoms as just described is the energetically most
favorable configuration. The lower part of the energy spectrum – again up to 3 eV
above the putative ground state – is shown in Fig. 10.6, together with figures of the 12
structures being lowest in energy and the two most favorable diluted configurations.
Again the same coloring scheme as in Fig. 10.2 is used.
As for the case of B12C48 it is clear that all low lying minima correspond to the same
structural motif where the boron is aggregated at one location, separating the surface
of the cluster in a boron-rich and a boron-poor part. Furthermore it can be seen that
once more the patch formed by the boron atoms is not compact, but rather frayed at
the boundaries. As for the case of B12C48 the putative ground state is well separated
from the first excited state; however the energy levels are slightly closer together this
time.

The most favorable configurations belonging to the structural motif of the diluted clus-
ters are only the 673rd and the 965th lowest structures, respectively, according to the
ordering that was found; they exhibit an energy separation from the lowest one of

Figure 10.5: The energetically most favorable structure for the
stoichiometry B12C48 contains a heptagon. Inserting two addi-
tional carbon atoms at the positions marked by arrows would
turn the heptagon into a hexagon and a pentagon and further-
more modify the two adjacent pentagons which are present
on both side of the heptagon into a pentagon and a hexagon
each.



10.3. ENERGY LANDSCAPE FOR B
12

C
50

CHAPTER 10. NEW STRUCTURAL MOTIFS FOR BORON-CARBON FULLERENES

191

1 2

7 8

1210

9

11

654

31

2

3

4

5

6

7

8

9

10

11

12

673 965

e
n
e
rg

y
 (

e
V

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 10.6: The lower part of the energy spectrum – only up to 3 eV above the putative ground
state – of B12C50, together with figures of the 12 energetically lowest structures and the two
most favorable diluted configurations. The energies of the latter ones are too high to be
displayed on the spectrum. Again the same coloring scheme as in Fig. 10.2 is used. As for
B12C48 it must be noted that the spectrum is most likely not complete.
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Table 10.3: A more detailed
description – analogous to
Tab. 10.1 – of the 12 ener-
getically most favorable con-
figurations and the two low-
est diluted structures of the
stoichiometry B12C50, i.e. the
ones depicted in Fig. 10.6:
the energy separation ∆E to
the putative ground state, the
HOMO-LUMO gap, the for-
mation energy ∆H with re-
spect to the bulk phases of
boron and carbon, the point
group and the RMSD with re-
spect to the putative ground
state.

∆E gap ∆H PG RMSD
(eV) (eV)

( eV
atom

)

(bohr)

1st 0.000 0.534 0.322 Cs 0.000
2nd 0.110 0.416 0.324 C2 1.363
3rd 0.158 0.434 0.325 C1 1.209
4th 0.237 0.283 0.326 C1 0.976
5th 0.262 0.338 0.327 C1 1.285
6th 0.358 0.308 0.328 C2v 1.390
7th 0.377 0.154 0.328 Cs 1.168
8th 0.453 0.215 0.330 C1 1.113
9th 0.494 0.249 0.330 C1 0.530
10th 0.515 0.380 0.331 C1 1.451
11th 0.539 0.227 0.331 C1 0.539
12th 0.595 0.363 0.332 C1 0.931
673th 3.921 0.204 0.386 Cs 3.289
965th 5.227 0.458 0.407 Cs 3.080

already 3.9 eV and 5.2 eV. However it has to be emphasized that there was no specific
search for diluted structures, as the focus was mainly put on determining the ground
state, so it might well be that there are still some other ones which are slightly more
favorable. Furthermore it must be noted again that the energy spectrum is most likely
not complete – in particular for the higher energies – as the goal was not to explore the
entire energy landscape, but only the low energy part.

In Tab. 10.3 some more details about the structures shown in Fig. 10.6 are presented,
in analogy to Tab. 10.1.
The first column gives the energy separation ∆E of the configurations with respect to
the lowest one. As can be seen the spacing between the energy levels is slightly smaller
than for B12C48. On the other hand the difference to the diluted configurations is, as
mentioned, considerably larger this time.

The second column gives the HOMO-LUMO gaps; compared to the values for B12C48
they are – except for the few lowest structures – tendentially smaller. However there is
again no notable difference between the patched and the diluted structures.

The third column shows the formation energy per atom with respect to the bulk con-
formations of boron and carbon, respectively. These values are slightly lower than
their counterparts for B12C48 in Tab. 10.1, indicating that it is more likely to encounter
experimentally the stoichiometry B12C50 than B12C48.



10.3. ENERGY LANDSCAPE FOR B
12

C
50

CHAPTER 10. NEW STRUCTURAL MOTIFS FOR BORON-CARBON FULLERENES

193

The point groups of the configurations are presented in the fourth column. Comparing
with the results for the stoichiometry B12C48 shown in Tab. 10.1 one can see that there
is a wider variation of symmetry classes; the energetically most favorable structures
have the point groups C1, C2, Cs and C2v. On the other hand the diluted structures are
of lower symmetry than their counterparts for B12C48 and exhibit only the point group
Cs.

In the last column the RMSD of the configurations with respect to the energetically
lowest one are presented. Again it can be seen that there is a clear separation between
the patched and the diluted configurations, whereas there is no notable correlation
between the energy and the RMSD within the class of the patched structures.

A more complete overview of the energy versus the RMSD of all structures up to a
value of 8 eV above the putative ground state is shown in Fig. 10.7. The results are sim-
ilar to those found for B12C48. Again there is a wide range which contains structures
whose energies are completely uncorrelated to the value of the RMSD and which is
sharply bounded at a bit less than 2 bohr; the configurations lying beyond this range
are considerably less favorable. The structures exhibiting the largest RMSD values be-
long to a class where the boron atoms are arranged in a band-like manner around the
cage and to the diluted class.

Tab. 10.4 shows the bond lengths for those 14 structures which were presented in detail
in Fig. 10.6 and Tab 10.3; the results are similar to the ones obtained for B12C48. Again
the minimal carbon-carbon bond lengths are close to the value in pure C60, whereas
the maximal ones are in general slightly larger; the boron-boron bonds exhibit a wider
variation and their minimal and maximal values are often shorter and longer, respec-
tively, than the corresponding values in B80; and the carbon-boron bond lengths lie in
between the other two numbers.
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Figure 10.7: The energy difference versus the
RMSD of all structures for the stoichiom-
etry B12C50 up to 8 eV above the putative
ground state. Again there is a broad range
containing structures whose energies are
completely uncorrelated to the value of the
RMSD and which is limited by a sharp
boundary at a bit less than 2 bohr. The
structures exhibiting the largest RMSD be-
long to a class where the boron atoms are
arranged in a band-like manner around the
cage or to the diluted class.
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Table 10.4: The minimal and
maximal bond lengths for the
12 energetically lowest struc-
tures and the two most fa-
vorable diluted ones for the
stoichiometry B12C50, i.e. the
same configurations which
are shown in Fig. 10.6 and
whose details are presented
in Tab. 10.3. For the di-
luted structures the boron-
boron bond lengths are not
meaningful.

bond lengths (Å)
B-B C-C B-C

min max min max min max
1st 1.664 1.749 1.384 1.479 1.537 1.664
2nd 1.670 1.752 1.393 1.482 1.536 1.645
3rd 1.665 1.790 1.393 1.489 1.517 1.693
4th 1.669 1.776 1.394 1.489 1.512 1.698
5th 1.666 1.751 1.394 1.496 1.535 1.630
6th 1.659 1.761 1.395 1.496 1.533 1.566
7th 1.665 1.750 1.390 1.487 1.532 1.661
8th 1.650 1.778 1.393 1.505 1.522 1.656
9th 1.651 1.776 1.389 1.485 1.525 1.674
10th 1.657 1.814 1.395 1.483 1.531 1.653
11th 1.592 1.807 1.392 1.474 1.544 1.729
12th 1.651 1.843 1.388 1.497 1.496 1.679
673th — — 1.375 1.492 1.521 1.588
965th — — 1.383 1.487 1.500 1.573

Finally in Fig. 10.8 the results of a Mulliken charge analysis for the same structures
are presented. In analogy to Fig. 10.4 the net charge per atom is plotted as a function
of the coordinate x denoting the fraction of opposite atom kinds surrounding a given
atom. As for B12C48 there is once more a clear connection between the neighborhood
of an atom and its net charge. Atoms which are only surrounded by the same kind
are more or less neutral, whereas – with a magnitude which increases with the value
of x – boron atoms being surrounded by carbon are positively and carbon atoms being
surrounded by boron negatively charged.

Figure 10.8: The net charge per atom – in anal-
ogy to Fig. 10.4 – as a function of the coordi-
nate x denoting the fraction of opposite atom
kinds surrounding the given atom for the 14
structures shown in Fig. 10.6. There is a clear
connection between the value of x and the
magnitude of the net charge. Carbon atoms
surrounded by boron are negatively charged,
whereas boron atoms surrounded by carbon
are positively charged.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.2  0.4  0.6  0.8  1

n
e
t 
c
h
a
rg

e

fractional opposite neighbors

boron
carbon



C
h

a
p

t
e

r

11
Conclusions and outlook

An extended study of the heterofullerene B12C48 revealed many new minima that are
considerably lower in energy than those which have been proposed so far. In addition it
turned out that the energetically most favorable configurations belong to a completely
new structural motif than those previously known. Whereas up to now it has been
believed that the boron atoms should be distributed over the entire cage and isolated
– referred to as diluted –, it seems that it is more favorable if they are aggregated in a
single patch on the surface being slightly frayed at the boundaries. This demonstrates
that the ground state for heterofullerenes is not necessarily related to the Buckminster
fullerene.

Starting from the lowest configuration of B12C48 an extensive survey of the energy
landscape for the stoichiometry B12C50 was performed as well. Also here the new
structural motif of the patched structures is more favorable than that of the diluted
ones. Since this stoichiometry exhibits a lower formation energy than B12C48, it should
be more likely to encounter it experimentally.

Calculations of the HOMO-LUMO gaps demonstrated that the structures which were
found for both B12C48 and B12C50 are insulators, however with small gaps of consider-
ably less than 1 eV. A Mulliken charge analysis showed that there is a strong correlation
between the net charge of a given atom and its surrounding, leading to an increasingly
positive (negative) charge of a boron (carbon) atom the more it is surrounded by atoms
of the opposite kind.

In a broader context these findings show that doping in sp2-materials is not yet well
understood and that no universally valid rules are available to predict which struc-
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tural motifs are the most stable ones in such doped structures. The results could also
give guidance to synthesis efforts [121] for such heterofullerenes. The steep rise of
the energy of metastable configurations as a function of the distance from the ground
state shown in Figs. 10.3 and 10.7 indicates that there is a substantial driving force to-
wards low energy motifs with patches and suggests that a synthesis of patched struc-
tures should be possible. The energy gap between the ground state and the lowest
metastable state (0.2 eV for B12C48 and 0.1 eV for B12C50) is however much smaller than
in C60 (1.6 eV) and reaching the ground state might therefore be difficult.
A synthesis procedure based on the substitution [93] of carbon atoms by boron is un-
likely to succeed for heterofullerenes containing a larger number of boron atoms which
then form patches. Planar boron clusters that are structurally similar to the boron
patches found in the ground states can however be synthesized experimentally [122]
and might form growth nuclei for such heterofullerenes in a carbon rich spark or vapor
chamber.
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Calculation of the wavelet filters for

different operators

This section describes in detail how the wavelets filters of various operators Ô can be
calculated for an orthogonal wavelet family. It is only necessary to calculate the filters
for the scaling functions, i.e. 〈φ|Ô|φ〉; the ones for the other possibilities – i.e. 〈ψ|Ô|φ〉,
〈φ|Ô|ψ〉 and 〈ψ|Ô|ψ〉 – can be derived from the first ones.

A.1 Derivative filters

The first class of filters which are calculated are the derivative filters of arbitrary order
l, i.e. the operator is given by Ô = ∂l

∂xl
. The specific value of l is not important for the

derivation and the final result is valid for any l [69, 123].

A.1.1 The basic filter

The basic filter among the scaling functions is denoted by ai = 〈φ(x− i)| ∂l

∂xl
|φ(x)〉. It

is more convenient in the following to use an integral notation and therefore to write
ai =

∫

φ(x− i) ∂l

∂xl
φ(x)dx.
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Using – according to Eq. (4.9) – the refinement relation φ(x) =
√
2∑µ hµφ(2x− µ) and

applying the variable substitutions x′ = 2x and x′′ = x′ − µ this leads to

ai =
∫

φ(x− i)
∂l

∂xl
φ(x)dx

=2∑
ν,µ

hνhµ

∫

φ(2x− 2i− ν)
∂l

∂xl
φ(2x− µ)dx

=2∑
ν,µ

hνhµ2l−1
∫

φ(x′ − 2i− ν)
∂l

∂x′l
φ(x′ − µ)dx′

=2l ∑
ν,µ

hνhµ

∫

φ(x′′ − 2i− ν + µ)
∂l

∂x′′l
φ(x′′)dx′′

=2l ∑
ν,µ

hνhµa2i+ν−µ.

(A.1)

This means that the filter values ai are the elements of the eigenvector a associated
with the eigenvalue 2−l,

∑
j

Aijaj = 2−lai, (A.2)

where the matrix elements Aij are given by

Aij = ∑
ν,µ

hνhµδj,2i+ν−µ. (A.3)

A.1.2 The remaining filters

The calculation of the filter element bi = 〈ψ(x− i)| ∂l

∂xl
|φ(x)〉 can be calculated from the

values of the filter a. Again using the refinement relations φ(x) =
√
2∑µ hµφ(2x− µ)

and ψ(x) =
√
2∑µ gµφ(2x− µ) one gets

bi =
∫

ψ(x− i)
∂l

∂xl
φ(x)dx

=2∑
ν,µ

gνhµ

∫

φ(2x− 2i− ν)
∂l

∂xl
φ(2x− µ)dx

=2∑
ν,µ

gνhµ2l−1
∫

φ(x′ − 2i− ν)
∂l

∂x′l
φ(x′ − µ)dx′

=2l ∑
ν,µ

gνhµ

∫

φ(x′′ − 2i− ν + µ)
∂l

∂x′′l
φ(x′′)dx′′.

(A.4)
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The integral
∫

φ(x′′ − 2i− ν + µ) ∂l

∂x′′l φ(x
′′)dx′′ has been calculated previously, and one

thus gets the relation
bi = 2l ∑

ν,µ
gνhµa2i+ν−µ. (A.5)

The filters c and e can be derived along the same lines; the final result is given by

ci =
∫

φ(x− i)
∂l

∂xl
ψ(x)dx = 2l ∑

ν,µ
hνgµa2i+ν−µ, (A.6)

ei =
∫

ψ(x− i)
∂l

∂xl
ψ(x)dx = 2l ∑

ν,µ
gνgµa2i+ν−µ. (A.7)

A.1.3 The filters for the general case

The above filters were derived for the special case where the grid spacing is equal to 1
and one scaling function or wavelet is located at the origin. The most general case is
to consider the filters for variable grid spacings and positions, i.e.

ai,j;h =
∫

φ
(x

h
− i

) ∂l

∂xl
φ
(x

h
− j

)

dx. (A.8)

Using the variable substitution x′ = x
h − j, which implies ∂

∂x = ∂
∂x′

∂x′
∂x = 1

h
∂

∂x′ and
dx = hdx′, this can be reduced to the general case

ai,j;h = h−l+1
∫

φ
(

x′ + j− i
) ∂l

∂x′l
φ
(

x′
)

dx′ = h−l+1ai−j. (A.9)

This demonstrates that the value of the filter depends only on the difference i− j. The
same arguments apply as well for the other filters:

bi,j;h = h−l+1
∫

ψ
(x

h
− i

) ∂l

∂xl
φ
(x

h
− j

)

dx = h−l+1bi−j, (A.10)

ci,j;h = h−l+1
∫

φ
(x

h
− i

) ∂l

∂xl
ψ
(x

h
− j

)

dx = h−l+1ci−j, (A.11)

ei,j;h = h−l+1
∫

ψ
(x

h
− i

) ∂l

∂xl
ψ
(x

h
− j

)

dx = h−l+1ei−j. (A.12)

From these results it follows that the filters fulfill the following symmetry relations:

ai−j = aj−i, bi−j = cj−i,

ci−j = bj−i, ei−j = ej−i.
(A.13)
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A.2 Position operators filters

A.2.1 The basic filters

The ultimate goal is to calculate the filter for the operator x4, i.e. the matrix element
〈

φ(x− i)
∣

∣ x4
∣

∣ φ(x)
〉

. To this end one first has to derive the filters corresponding to the
operators x, x2 and x3.

A.2.1.1 Basic filter – the linear operator

The procedure is analogous to the calculation of the filter for the derivative operator,
i.e. one uses the refinement relation φ(x) =

√
2∑µ hµφ(2x − µ). However, since the

operator x is – in contrast to ∂l

∂xl
– not translational invariant, the variable substitu-

tion which is done in the course of the calculation introduces some additional terms.
Denoting by a

(1)
i =

∫

φ(x− i)xφ(x)dx the basic filter one gets

a
(1)
i =

∫

φ(x− i)xφ(x)dx

=2∑
ν,µ

hνhµ

∫

φ(2x− 2i− ν)xφ(2x− µ)dx

=
1
2 ∑

ν,µ
hνhµ

∫

φ(x′ − 2i− ν)x′φ(x′ − µ)dx′

=
1
2 ∑

ν,µ
hνhµ

∫

φ(x′′ − 2i− ν + µ)(x′′ + µ)φ(x′′)dx′

=
1
2 ∑

λ,µ
hλ+µ−2ihµ

∫

φ(x′′ − λ)(x′′ + µ)φ(x′′)dx′′

=
1
2 ∑

λ,µ
hλ+µ−2ihµ

[

∫

φ(x′′ − λ)x′′φ(x′′)dx′′ + µ
∫

φ(x′′ − λ)φ(x′′)dx′′
]

.

(A.14)

Using the orthonormality relation
∫

φ(x− λ)φ(x)dx = δλ0 this leads to

a
(1)
i =

1
2 ∑

λ,µ
hλ+µ−2ihµa

(1)
λ +

1
2 ∑

λ,µ
µhλ+µ−2ihµδλ0

=∑
λ

Miλa
(1)
λ + ci

(A.15)

with the shorthand notations

Miλ =
1
2 ∑

µ

hλ+µ−2ihµ, ci =
1
2 ∑

µ

µhµ−2ihµ. (A.16)
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So one gets the relation

∑
λ

(δiλ −Miλ) a
(1)
λ = ci, (A.17)

which means that the filter elements ai are the solution of the linear system of equations

Sa = c with Siλ = δiλ −Miλ. (A.18)

A.2.1.2 Basic filter – the quadratic operator

The next step is to calculate the filter for the operator x2. As will turn out its evaluation
requires the results of the previous section, i.e. the filter a(1)i . Denoting the basic filter

by a
(2)
i one gets

a
(2)
i =

∫

φ(x− i)x2φ(x)dx

=2∑
ν,µ

hνhµ

∫

φ(2x− 2i− ν)x2φ(2x− µ)dx

=
1
4 ∑

ν,µ
hνhµ

∫

φ(x′ − 2i− ν)x′2φ(x′ − µ)dx′

=
1
4 ∑

ν,µ
hνhµ

∫

φ(x′′ − 2i− ν + µ)(x′′ + µ)2φ(x′′)dx′

=
1
4 ∑

λ,µ
hλ+µ−2ihµ

∫

φ(x′′ − λ)(x′′ + µ)2φ(x′′)dx′′

=
1
4 ∑

λ,µ
hλ+µ−2ihµ

[

∫

φ(x′′ − λ)x′′2φ(x′′)dx′′ + 2µ
∫

φ(x′′ − λ)x′′φ(x′′)dx′′

+µ2
∫

φ(x′′ − λ)φ(x′′)dx′′
]

.

(A.19)
Again using the orthonormality relation

∫

φ(x − λ)φ(x)dx = δλ0 and the results for
the calculation of the operator x this leads to

a
(2)
i =

1
4 ∑

λ,µ
hλ+µ−2ihµa

(2)
λ +

1
2 ∑

λ,µ
µhλ+µ−2ihµa

(1)
λ +

1
4 ∑

λ,µ
µ2hλ+µ−2ihµδλ0

=∑
λ

Miλa
(2)
λ + bi + ci

(A.20)

with the shorthand notations

Miλ =
1
4 ∑

µ

hλ+µ−2ihµ, bi =
1
2 ∑

λ,µ
µhλ+µ−2ihµa

(1)
λ , ci =

1
4 ∑

µ

µ2hµ−2ihµ. (A.21)
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So there is again a similar relation as before, namely

∑
λ

(δiλ −Miλ) a
(2)
λ = bi + ci, (A.22)

which means that one has to solve the linear system of equations

Sa = d with Siλ = δiλ −Miλ, di = bi + ci. (A.23)

A.2.1.3 Basic filter – the cubic operator

Now one can proceed to the operator x3, which again requires the results of the previ-
ous sections. Denoting the basic filter by a

(3)
i one gets

a
(3)
i =

∫

φ(x− i)x3φ(x)dx

=2∑
ν,µ

hνhµ

∫

φ(2x− 2i− ν)x3φ(2x− µ)dx

=
1
8 ∑

ν,µ
hνhµ

∫

φ(x′ − 2i− ν)x′3φ(x′ − µ)dx′

=
1
8 ∑

ν,µ
hνhµ

∫

φ(x′′ − 2i− ν + µ)(x′′ + µ)3φ(x′′)dx′

=
1
8 ∑

λ,µ
hλ+µ−2ihµ

∫

φ(x′′ − λ)(x′′ + µ)3φ(x′′)dx′′

=
1
8 ∑

λ,µ
hλ+µ−2ihµ

[

∫

φ(x′′ − λ)x′′3φ(x′′)dx′′ + 3µ
∫

φ(x′′ − λ)x′′2φ(x′′)dx′′

+3µ2
∫

φ(x′′ − λ)x′′φ(x′′)dx′′ + µ3
∫

φ(x′′ − λ)φ(x′′)dx′′
]

.

(A.24)
Using the orthonormality relation

∫

φ(x− λ)φ(x)dx = δλ0 this leads to

=
1
8 ∑

λ,µ
hλ+µ−2ihµa

(3)
λ +

3
8 ∑

λ,µ
µhλ+µ−2ihµa

(2)
λ +

+
3
8 ∑

λ,µ
µ2hλ+µ−2ihµa

(1)
λ +

1
8 ∑

λ,µ
µ3hλ+µ−2ihµδ0λ

=∑
λ

Miλa
(3)
λ + bi + ci + di

(A.25)
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with the shorthand notations

Miλ =
1
8 ∑

µ

hλ+µ−2ihµ, bi =
3
8 ∑

λ,µ
µhλ+µ−2ihµa

(2)
λ ,

ci =
3
8 ∑

λ,µ
µ2hλ+µ−2ihµa

(1)
λ , di =

1
8 ∑

µ

µ3hµ−2ihµ.
(A.26)

Thus there is again a similar relation as before, namely

∑
λ

(δiλ − Miλ) a
(3)
λ = bi + ci + di, (A.27)

meaning that one has to solve the linear system of equations

Sa = e with Siλ = δiλ −Miλ, ei = bi + ci + di. (A.28)

A.2.1.4 Basic filter – the quartic operator

Now it is finally possible to calculate the matrix elements for the operator x4. Denoting
the basic filter by a

(4)
i one gets

a
(4)
i =

∫

φ(x− i)x4φ(x)dx

=2∑
ν,µ

hνhµ

∫

φ(2x− 2i− ν)x4φ(2x− µ)dx

=
1
16 ∑

ν,µ
hνhµ

∫

φ(x′ − 2i− ν)x′4φ(x′ − µ)dx′

=
1
16 ∑

ν,µ
hνhµ

∫

φ(x′′ − 2i− ν + µ)(x′′ + µ)4φ(x′′)dx′

=
1
16 ∑

λ,µ
hλ+µ−2ihµ

∫

φ(x′′ − λ)(x′′ + µ)4φ(x′′)dx′′

=
1
16 ∑

λ,µ
hλ+µ−2ihµ

[

∫

φ(x′′ − λ)x′′4φ(x′′)dx′′ + 4µ
∫

φ(x′′ − λ)x′′3φ(x′′)dx′′

+6µ2
∫

φ(x′′ − λ)x′′2φ(x′′)dx′′ + 4µ3
∫

φ(x′′ − λ)x′′φ(x′′)dx′′

+µ4
∫

φ(x′′ − λ)φ(x′′)dx′′
]

.

(A.29)
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Using the orthonormality relation
∫

φ(x− λ)φ(x)dx = δλ0 this leads to

a
(4)
i =

1
16 ∑

λ,µ
hλ+µ−2ihµa

(4)
λ +

1
4 ∑

λ,µ
µhλ+µ−2ihµa

(3)
λ +

3
8 ∑

λ,µ
µ2hλ+µ−2ihµa

(2)
λ

+
1
4 ∑

λ,µ
µ3hλ+µ−2ihµa

(1)
λ +

1
16 ∑

λ,µ
µ4hλ+µ−2ihµδ0λ

=∑
k

Mika
(4)
k + bi + ci + di + ei

(A.30)

with the shorthand notations

Miλ =
1
16 ∑

µ

hλ+µ−2ihµ, bi =
1
4 ∑

λ,µ
µhλ+µ−2ihµa

(3)
λ ,

ci =
3
8 ∑

λ,µ
µ2hλ+µ−2ihµa

(2)
λ , di =

1
4 ∑

λ,µ
µ3hλ+µ−2ihµa

(1)
λ ,

ei =
1
16 ∑

µ

µ4hµ−2ihµ.

(A.31)

From this one gets the relation

∑
λ

(δiλ − Miλ) a
(4)
λ = bi + ci + di + ei, (A.32)

which means that one has to solve the linear system of equations

Sa = f with Siλ = δiλ − Miλ, fi = bi + ci + di + ei. (A.33)

A.2.2 The remaining filters

The remaining filters can be derived from the basic ones as it was the case for the
derivative filters. However there are this time some additional terms stemming from
the fact that the operators are not translational invariant.
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A.2.2.1 Remaining filters – the linear operator

To derive the filter b
(1)
i = 〈ψ|x|φ〉 one can again use the refinement relations φ(x) =√

2∑µ hµφ(2x− µ) and ψ(x) =
√
2∑µ gµφ(2x− µ). This leads to

b
(1)
i =

∫

ψ(x− i)xφ(x)dx

=2∑
ν,µ

gνhµ

∫

φ(2x− 2i− ν)xφ(2x− µ)dx

=
1
2 ∑

ν,µ
gνhµ

∫

φ(x′ − 2i− ν)x′φ(x′ − µ)dx′

=
1
2 ∑

ν,µ
gνhµ

∫

φ(x′′ − 2i− ν + µ)(x′′ + µ)φ(x′′)dx′′

=
1
2 ∑

ν,µ
gνhµ

[

∫

φ(x′′ − 2i− ν + µ)x′′φ(x′′)dx′′

+µ
∫

φ(x′′ − 2i− ν + µ)φ(x′′)dx′′
]

.

(A.34)

The value of the integral
∫

φ(x′′ − 2i− ν + µ)x′′φ(x′′)dx′′ has been determined previ-
ously. Using furthermore the orthonormality of the scaling functions one thus gets

b
(1)
i =

1
2 ∑

ν,µ
gνhµ

[

a
(1)
2i+ν−µ + µδ2i+ν−µ,0

]

. (A.35)

The filters c(1)i and e
(1)
i can be derived along the same lines, leading to

c
(1)
i =

∫

φ(x− i)xψ(x)dx =
1
2 ∑

ν,µ
hνgµ

[

a
(1)
2i+ν−µ + µδ2i+ν−µ,0

]

, (A.36)

e
(1)
i =

∫

ψ(x− i)xψ(x)dx =
1
2 ∑

ν,µ
gνgµ

[

a
(1)
2i+ν−µ + µδ2i+ν−µ,0

]

. (A.37)
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A.2.2.2 Remaining filters – the quadratic operator

The derivation of the remaining filters for the operator x2 is completely analogous to
the case of the operator x:

b
(2)
i =

∫

ψ(x− i)x2φ(x)dx

=2∑
ν,µ

gνhµ

∫

φ(2x− 2i− ν)x2φ(2x− µ)dx

=
1
4 ∑

ν,µ
gνhµ

∫

φ(x′ − 2i− ν)x′2φ(x′ − µ)dx′

=
1
4 ∑

ν,µ
gνhµ

∫

φ(x′ − 2i− ν + µ)(x′′ + µ)2φ(x′′)dx′′

=
1
4 ∑

ν,µ
gνhµ

[

∫

φ(x′ − 2i− ν + µ)x′′2φ(x′′)dx′′

+2µ
∫

φ(x′ − 2i− ν + µ)x′′φ(x′′)dx′′

+µ2
∫

φ(x′ − 2i− ν + µ)φ(x′′)dx′′
]

.

(A.38)

The two integrals have already been determined. Together with the orthonormality of
the scaling functions this yields

b
(2)
i =

1
4 ∑

ν,µ
gνhµ

[

a
(2)
2i+ν−µ + 2µa

(1)
2i+ν−µ + µ2δ2i+ν−µ,0

]

. (A.39)

In a similar way one gets for the other two filters

c
(2)
i =

∫

φ(x− i)x2ψ(x)dx =
1
4 ∑

ν,µ
hνgµ

[

a
(2)
2i+ν−µ + 2µa

(1)
2i+ν−µ + µ2δ2i+ν−µ,0

]

, (A.40)

e
(2)
i =

∫

ψ(x− i)x2ψ(x)dx =
1
4 ∑

ν,µ
gνgµ

[

a
(2)
2i+ν−µ + 2µa

(1)
2i+ν−µ + µ2δ2i+ν−µ,0

]

. (A.41)
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A.2.2.3 Remaining filters – the cubic operator

The remaining filters for the operator x3 can be derived along the same lines:

b
(3)
i =

∫

ψ(x− i)x3φ(x)dx

=2∑
ν,µ

gνhµ

∫

φ(2x− 2i− ν)x3φ(2x− µ)dx

=
1
8 ∑

ν,µ
gνhµ

∫

φ(x′ − 2i− ν)x′3φ(x′ − µ)dx′

=
1
8 ∑

ν,µ
gνhµ

∫

φ(x′ − 2i− ν + µ)(x′′ + µ)3φ(x′′)dx′′

=
1
8 ∑

ν,µ
gνhµ

[

∫

φ(x′ − 2i− ν + µ)x′′3φ(x′′)dx′′

+3µ
∫

φ(x′ − 2i− ν + µ)x′′2φ(x′′)dx′′

+3µ2
∫

φ(x′ − 2i− ν + µ)x′′φ(x′′)dx′′

+µ3
∫

φ(x′ − 2i− ν + µ)φ(x′′)dx′′
]

.

(A.42)

Again using the previous results and the orthonormality leads to

b
(3)
i =

1
8 ∑

ν,µ
gνhµ

[

a
(3)
2i+ν−µ + 3µa

(2)
2i+ν−µ + 3µ2a

(1)
2i+ν−µ + µ3δ2i+ν−µ,0

]

. (A.43)

In a similar way one gets for the other two filters

c
(3)
i =

∫

φ(x− i)x3ψ(x)dx

=
1
8 ∑

ν,µ
hνgµ

[

a
(3)
2i+ν−µ + 3µa

(2)
2i+ν−µ + 3µ2a

(1)
2i+ν−µ + µ3δ2i+ν−µ,0

]

, (A.44)

e
(3)
i =

∫

ψ(x− i)x3ψ(x)dx

=
1
8 ∑

ν,µ
gνgµ

[

a
(3)
2i+ν−µ + 3µa

(2)
2i+ν−µ + 3µ2a

(1)
2i+ν−µ + µ3δ2i+ν−µ,0

]

. (A.45)



A.2. POSITION OPERATORS FILTERS

APPENDIX A. CALCULATION OF THE WAVELET FILTERS FOR DIFFERENT OPERATORS

208

A.2.2.4 Remaining filters – the quartic operator

What remains is the calculation of the remaining filters for the operator x4. Proceeding
in an analogous way as for the other cases leads to

b
(4)
i =

∫

ψ(x− i)x4φ(x)dx

=2∑
ν,µ

gνhµ

∫

φ(2x− 2i− ν)x4φ(2x− µ)dx

=
1
16 ∑

ν,µ
gνhµ

∫

φ(x′ − 2i− ν)x′4φ(x′ − µ)dx′

=
1
16 ∑

ν,µ
gνhµ

∫

φ(x′ − 2i− ν + µ)(x′′ + µ)4φ(x′′)dx′′

=
1
16 ∑

ν,µ
gνhµ

[

∫

φ(x′ − 2i− ν + µ)x′′4φ(x′′)dx′′

+4µ
∫

φ(x′ − 2i− ν + µ)x′′3φ(x′′)dx′′

+6µ2
∫

φ(x′ − 2i− ν + µ)x′′2φ(x′′)dx′′

+4µ3
∫

φ(x′ − 2i− ν + µ)x′′φ(x′′)dx′′

+µ4
∫

φ(x′ − 2i− ν + µ)φ(x′′)dx′′
]

.

(A.46)

With the previous results and the orthonormality condition this gives

b
(4)
i =

1
16 ∑

ν,µ
gνhµ

[

a
(4)
2i+ν−µ + 4µa

(3)
2i+ν−µ + 6µ2a

(2)
2i+ν−µ + 4µ3a

(1)
2i+ν−µ + µ4δ2i+ν−µ,0

]

.

(A.47)
The other two filters can be derived along the same lines, leading to

c
(4)
i =

∫

φ(x− i)x4ψ(x)dx

=
1
16 ∑

ν,µ
hνgµ

[

a
(4)
2i+ν−µ + 4µa

(3)
2i+ν−µ + 6µ2a

(2)
2i+ν−µ + 4µ3a

(1)
2i+ν−µ + µ4δ2i+ν−µ,0

]

,

(A.48)

e
(4)
i =

∫

ψ(x− i)x4ψ(x)dx

=
1
16 ∑

ν,µ
gνgµ

[

a
(4)
2i+ν−µ + 4µa

(3)
2i+ν−µ + 6µ2a

(2)
2i+ν−µ + 4µ3a

(1)
2i+ν−µ + µ4δ2i+ν−µ,0

]

.

(A.49)
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A.2.3 The Filters for the general case

The calculation of the filters for the general case – i.e. variable grid spacing and location
– is not as simple as for the derivatives, since the operator is this time not translational
invariant.

A.2.3.1 General case – the linear operator

For the evaluation of the linear operator in the most general case one has to calculate

a
(1)
i,j;h =

∫

φ
(x

h
− i

)

(x− x0)φ
(x

h
− j

)

dx. (A.50)

Again using the variable substitution x′ = x
h − j this leads to

a
(1)
i,j;h = h

∫

φ(x′ + j− i)(h(x′ + j)− x0)φ(x
′)dx′

= h

[

h
∫

φ(x′ + j− i)x′φ(x′)dx′

+hj
∫

φ(x′ + j− i)φ(x′)dx′

−x0

∫

φ(x′ + j− i)φ(x′)dx′
]

= h
[

ha
(1)
i−j + hjδi−j,0 − x0δi−j,0

]

= h
[

ha
(1)
i−j + (hj − x0)δi−j,0

]

,

(A.51)

where the results of Sec. A.2.1.1 and the orthonormality relations were used. As for
the case of the derivatives, this filter again only depends on the difference i− j.
The other filters can be determined analogously and are given by

b
(2)
i,j;h = h2b

(1)
i−j, (A.52)

c
(2)
i,j;h = h2c

(1)
i−j, (A.53)

e
(1)
i,j;h = h

[

he
(1)
i−j + (hj − x0)δi−j,0

]

. (A.54)

A.2.3.2 General case – the quadratic operator

The most general case for the quadratic operator reads

a
(2)
i,j;h =

∫

φ
(x

h
− i

)

(x− x0)
2φ

(x

h
− j

)

dx, (A.55)
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which becomes with the variable substitution x′ = x
h − j

a
(2)
i,j;h = h

∫

φ(x′ + j− i)(h(x′ + j)− x0)
2φ(x′)dx′. (A.56)

Expanding the term (h(x′ + j)− x0)
2 gives

(h(x′ + j)− x0)
2 = h2(x′ + j)2 − 2hx0(x′ + j) + x20

= h2x′2 + 2h2x′ j+ h2 j2 − 2hx0x′ − 2hx0 j+ x20.
(A.57)

Inserting this expansion in (A.56) yields a bunch of terms of the form
∫

φ(x′ + j− i)x′lφ(x′)dx′, (A.58)

where l ranges from 0 to 2. Using the results of Sec. A.2.1 and the orthonormality of
the scaling functions one therefore gets the final result

a
(2)
i,j;h =h

[

h2a
(2)
i−j + 2h2 ja(1)i−j + h2 j2δi−j,0− 2hx0a

(1)
i−j − 2hx0 jδi−j,0 + x20δi−j,0

]

=h
[

h2a
(2)
i−j + 2h(hj − x0)a

(1)
i−j + (hj − x0)

2δi−j,0

]

,
(A.59)

which again only depends on the difference i− j.
Analogously one gets for the other cases

b
(2)
i,j;h = h

[

h2b
(2)
i−j + 2h(hj − x0)b

(1)
i−j

]

, (A.60)

c
(2)
i,j;h = h

[

h2c
(2)
i−j + 2h(hj − x0)c

(1)
i−j

]

, (A.61)

e
(2)
i,j;h = h

[

h2e
(2)
i−j + 2h(hj − x0)e

(1)
i−j + (hj − x0)

2δi−j,0

]

. (A.62)

A.2.3.3 General case – the cubic operator

The most general case for the cubic operator reads

a
(3)
i,j;h =

∫

φ
(x

h
− i

)

(x− x0)
3φ

(x

h
− j

)

dx, (A.63)

which becomes, using again the variable substitution x′ = x
h − j,

a
(3)
i,j;h = h

∫

φ(x′ + j− i)(h(x′ + j)− x0)
3φ(x′)dx′. (A.64)

Expanding the term (h(x′ + j)− x0)
3 gives

(h(x′ + j)− x0)
3 = h3(x′ + j)3 − 3h2x0(x′ + j)2 + 3hx20(x

′ + j)− x30

= h3x′3 + 3h3x′2 j+ 3h3x′ j2 + h3 j3

− 3h2x0x′2 − 6h2x0x′ j− 3h2x0 j2 + 3hx20x
′ + 3hx20 j− x30.

(A.65)
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Inserting this expansion in (A.64) yields again a bunch of terms of the form
∫

φ(x′ + j− i)x′lφ(x′)dx′, (A.66)

where l ranges this time from 0 to 3. With the results of Sec. A.2.1 and the orthonor-
mality of the scaling functions this gives

a
(3)
i,j;h = h

[

h3a
(3)
i−j + 3h3 ja(2)i−j + 3h3 j2a(1)i−j + h3 j3δi−j,0

−3h2x0a
(2)
i−j − 6h2x0 ja

(1)
i−j − 3h2x0 j2δi−j,0+ 3hx20a

(1)
i−j + 3hx20 jδi−j,0 − x30δi−j,0

]

= h
[

h3a
(3)
i−j + 3h2(hj− x0)a

(2)
i−j + 3h(hj − x0)

2a
(1)
i−j + (hj − x0)

3δi−j,0

]

,
(A.67)

which again only depends on the difference i− j.
For the other cases one gets in the same way

b
(3)
i,j;h = h

[

h3b
(3)
i−j + 3h2(hj − x0)b

(2)
i−j + 3h(hj − x0)

2b
(1)
i−j

]

,

c
(3)
i,j;h = h

[

h3c
(3)
i−j + 3h2(hj − x0)c

(2)
i−j + 3h(hj − x0)

2c
(1)
i−j

]

,

e
(3)
i,j;h = h

[

h3e
(3)
i−j + 3h2(hj − x0)e

(2)
i−j + 3h(hj − x0)

2e
(1)
i−j + (hj − x0)

3δi−j,0

]

.

(A.68)

A.2.3.4 General case – the quartic operator

For the evaluation of the quartic operator in the most general case one has to calculate

a
(4)
i,j;h =

∫

φ
(x

h
− i

)

(x− x0)
4φ

(x

h
− j

)

dx. (A.69)

Again using the variable substitution x′ = x
h − j this leads to

a
(4)
i,j;h = h

∫

φ(x′ + j− i)(h(x′ + j)− x0)
4φ(x′)dx′. (A.70)

Expanding the term (h(x′ + j)− x0)
4 gives

(h(x′ + j)− x0)
4 = h4(x′ + j)4 − 4h3x0(x′ + j)3 + 6h2x20(x

′ + j)2 − 4hx30(x
′ + j) + x40

= h4x′4 + 4h4x′3 j+ 6h4x′2j2 + 4h4x′ j3 + h4 j4

− 4h3x0x′3 − 12h3x0x′2 j− 12h3x0x′ j2 − 4h3x0 j3

+ 6h2x20x
′2 + 12h2x20x

′ j+ 6h2x20 j
2 − 4hx30x

′ − 4hx30 j+ x40.
(A.71)

Inserting this expansion into (A.70) yields a bunch of terms of the form
∫

φ(x′ + j− i)x′lφ(x′)dx′, (A.72)
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where l ranges now from 0 to 4. Again using the results of Sec. A.2.1 and the orthonor-
mality of the scaling functions yields the final result

a
(4)
i,j;h = h

[

h4a
(4)
i−j + 4h4 ja(3)i−j + 6h4 j2a(2)i−j + 4h4 j3a(1)i−j + h4 j4δi−j,0

−4h3x0a
(3)
i−j − 12h3x0ja

(2)
i−j − 12h3x0 j2a

(1)
i−j − 4h3x0j3δi−j,0

+6h2x20a
(2)
i−j + 12h2x20 ja

(1)
i−j + 6h2x20 j

2δi−j,0 − 4hx30a
(1)
i−j − 4hx30 jδi−j,0 + x40δi−j,0

]

= h
[

h4a
(4)
i−j + 4h3(hj − x0)a

(3)
i−j + 6h2(hj− x0)

2a
(2)
i−j

+4h(hj − x0)
3a

(1)
i−j + (hj − x0)

4δi−j,0

]

,
(A.73)

which again only depends on the difference i− j.
The other filters can be determined along the same lines, leading to

b
(4)
i,j;h =

∫

ψ
(x

h
− i

)

(x− x0)
4φ

(x

h
− j

)

dx

=h
[

h4b
(4)
i−j + 4h3(hj − x0)b

(3)
i−j + 6h2(hj − x0)

2b
(2)
i−j + 4h(hj − x0)

3b
(1)
i−j

]

, (A.74)

c
(4)
i,j;h =

∫

φ
(x

h
− i

)

(x− x0)
4ψ

(x

h
− j

)

dx

=h
[

h4c
(4)
i−j + 4h3(hj − x0)c

(3)
i−j + 6h2(hj − x0)

2c
(2)
i−j + 4h(hj − x0)

3c
(1)
i−j

]

, (A.75)

e
(4)
i,j;h =

∫

ψ
(x

h
− i

)

(x− x0)
4ψ

(x

h
− j

)

dx

=h
[

h4e
(4)
i−j + 4h3(hj − x0)e

(3)
i−j + 6h2(hj− x0)

2e
(2)
i−j

+4h(hj − x0)
3e

(1)
i−j + (hj − x0)

4δi−j,0

]

. (A.76)

The filters again fulfill the same symmetry relations as in Eq. (A.13).
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B
Applying operators to quantities

expanded in a wavelet basis

In appendix A it has been demonstrated how to calculate the filters – i.e. the matrix
elements among scaling functions and wavelets – for various operators.

This section will now show how these results can be used to apply the same operators
to a quantity which is expanded in a wavelet basis. In three dimensions, such an
expansion is given by

|Ψ〉 = ∑
j1,j2,j3

sssj1,j2,j3 |φj1φj2φj3〉+ ∑
j1,j2,j3

dssj1,j2,j3 |ψj1φj2φj3〉

+ ∑
j1,j2,j3

sdsj1,j2,j3 |φj1ψj2φj3〉+ ∑
j1,j2,j3

ddsj1,j2,j3 |ψj1ψj2φj3〉

+ ∑
j1,j2,j3

ssdj1,j2,j3 |φj1φj2ψj3〉+ ∑
j1,j2,j3

dsdj1,j2,j3 |ψj1φj2ψj3〉

+ ∑
j1,j2,j3

sddj1,j2,j3 |φj1ψj2ψj3〉+ ∑
j1,j2,j3

dddj1,j2,j3 |ψj1ψj2ψj3〉 ,

(B.1)

where |φj1φj2φj3〉 etc. is a shorthand notation for |φ(x− j1)φ(y− j2)φ(z− j3)〉 etc.
After the application of the operator Ô the quantity Ψ is still represented in the same
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basis, just this time with modified coefficients:

Ô |Ψ〉 = ∑
j1,j2,j3

sss′j1,j2,j3 |φj1φj2φj3〉+ ∑
j1,j2,j3

dss′j1,j2,j3 |ψj1φj2φj3〉

+ ∑
j1,j2,j3

sds′j1,j2,j3 |φj1ψj2φj3〉+ ∑
j1,j2,j3

dds′j1,j2,j3 |ψj1ψj2φj3〉

+ ∑
j1,j2,j3

ssd′j1,j2,j3 |φj1φj2ψj3〉+ ∑
j1,j2,j3

dsd′j1,j2,j3 |ψj1φj2ψj3〉

+ ∑
j1,j2,j3

sdd′j1,j2,j3 |φj1ψj2ψj3〉+ ∑
j1,j2,j3

ddd′j1,j2,j3 |ψj1ψj2ψj3〉 .

(B.2)

From the orthogonality relations of the scaling functions and wavelets it thus follows
that the expansion coefficients after the application of the operator are given by

sss′i1,i2,i3 = 〈φi1φi2φi3 |Ô|Ψ〉 , dss′i1 ,i2,i3 = 〈ψi1φi2φi3 |Ô|Ψ〉 ,
sds′i1,i2,i3 = 〈φi1ψi2φi3 |Ô|Ψ〉 , dds′i1 ,i2,i3 = 〈ψi1ψi2φi3 |Ô|Ψ〉 ,
ssd′i1,i2,i3 = 〈φi1φi2ψi3 |Ô|Ψ〉 , dsd′i1 ,i2,i3 = 〈ψi1φi2ψi3 |Ô|Ψ〉 ,
sdd′i1,i2,i3 = 〈φi1ψi2ψi3 |Ô|Ψ〉 , ddd′i1 ,i2,i3 = 〈ψi1ψi2ψi3 |Ô|Ψ〉 .

(B.3)

B.1 Derivative operators

Applying the derivative operator of any order l in x direction, i.e. ∂l

∂xl
, has no effect on

the other dimensions. Thus it follows from the orthonormality relations 〈φi2 |φj2〉 = δi2 j2
and 〈φi2 |ψj2〉 = 0 (and the analogs for i3 and j3) and the filters calculated in appendix

A (i.e. ai1−j1 = 〈φi1 | ∂l

∂xl
|φj1〉 and ci1−j1 = 〈φi1 | ∂

∂x |ψj1〉) that

sss′i1,i2,i3 = 〈φi1φi2φi3 |
∂l

∂xl
|Ψ〉

= ∑
j1,j2,j3

ai1−j1sssj1,j2,j3δj2i2δj3i3 + ∑
j1,j2,j3

ci1−j1dssj1,j2,j3δj2i2δj3i3

= ∑
j1

ai1−j1sssj1,i2,i3 +∑
j1

ci1−j1dssj1,i2,i3

= ∑
j1

aj1−i1sssj1,i2,i3 +∑
j1

bj1−i1dssj1,i2,i3 .

(B.4)

In the last step the symmetry relations of Eq. (A.13) were used. Exactly the same
considerations apply of course as well for the other coefficients. Consequently the
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entire list for the operator ∂l

∂xl
is

sss′i1 ,i2,i3 = 〈φi1φi2φi3 |
∂l

∂xl
|Ψ〉 = ∑

j1

aj1−i1sssj1,i2,i3 + ∑
j1

bj1−i1dssj1,i2,i3 , (B.5)

dss′i1 ,i2,i3 = 〈ψi1φi2φi3 |
∂l

∂xl
|Ψ〉 = ∑

j1

ej1−i1dssj1,i2,i3 + ∑
j1

cj1−i1sssj1,i2,i3 , (B.6)

sds′i1 ,i2,i3 = 〈φi1ψi2φi3 |
∂l

∂xl
|Ψ〉 = ∑

j1

aj1−i1sdsj1,i2,i3 + ∑
j1

bj1−i1ddsj1,i2,i3 , (B.7)

dds′i1 ,i2,i3 = 〈ψi1ψi2φi3 |
∂l

∂xl
|Ψ〉 = ∑

j1

ej1−i1ddsj1,i2,i3 + ∑
j1

cj1−i1sdsj1,i2,i3 , (B.8)

ssd′i1 ,i2,i3 = 〈φi1φi2ψi3 |
∂l

∂xl
|Ψ〉 = ∑

j1

aj1−i1ssdj1,i2,i3 + ∑
j1

bj1−i1dsdj1,i2,i3 , (B.9)

dsd′i1 ,i2,i3 = 〈ψi1φi2ψi3 |
∂l

∂xl
|Ψ〉 = ∑

j1

ej1−i1dsdj1,i2,i3 + ∑
j1

cj1−i1ssdj1,i2,i3 , (B.10)

sdd′i1 ,i2,i3 = 〈φi1ψi2ψi3 |
∂l

∂xl
|Ψ〉 = ∑

j1

aj1−i1sddj1,i2,i3 +∑
j1

bj1−i1dddj1,i2,i3 , (B.11)

ddd′i1 ,i2,i3 = 〈ψi1ψi2ψi3 |
∂l

∂xl
|Ψ〉 = ∑

j1

ej1−i1dddj1,i2,i3 + ∑
j1

cj1−i1sddj1,i2,i3 . (B.12)

The coefficients for the derivative along the y dimension can be calculated along the
same lines:

sss′i1,i2,i3 = 〈φi1φi2φi3 |
∂l

∂yl
|Ψ〉 = ∑

j2

aj2−i2sssi1,j2,i3 + ∑
j2

bj2−i2sdsi1,j2,i3 , (B.13)

dss′i1,i2,i3 = 〈ψi1φi2φi3 |
∂l

∂yl
|Ψ〉 = ∑

j2

aj2−i2dssi1,j2,i3 + ∑
j2

bj2−i2ddsi1 ,j2,i3 , (B.14)

sds′i1,i2,i3 = 〈φi1ψi2φi3 |
∂l

∂yl
|Ψ〉 = ∑

j2

ej2−i2sdsi1,j2,i3 +∑
j2

cj2−i2sssi1,j2,i3 , (B.15)

dds′i1,i2,i3 = 〈ψi1ψi2φi3 |
∂l

∂yl
|Ψ〉 = ∑

j2

ej2−i2ddsi1,j2,i3 +∑
j2

cj2−i2dssi1,j2,i3 , (B.16)

ssd′i1,i2,i3 = 〈φi1φi2ψi3 |
∂l

∂yl
|Ψ〉 = ∑

j2

aj2−i2ssdi1,j2,i3 + ∑
j2

bj2−i2sddi1 ,j2,i3 , (B.17)

dsd′i1,i2,i3 = 〈ψi1φi2ψi3 |
∂l

∂yl
|Ψ〉 = ∑

j2

aj2−i2dsdi1,j2,i3 + ∑
j2

bj2−i2dddi1,j2,i3 , (B.18)
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sdd′i1,i2,i3 = 〈φi1ψi2ψi3 |
∂l

∂yl
|Ψ〉 = ∑

j2

ej2−i2sddi1,j2,i3 +∑
j2

cj2−i2ssdi1,j2,i3 , (B.19)

ddd′i1,i2,i3 = 〈ψi1ψi2ψi3 |
∂l

∂yl
|Ψ〉 = ∑

j2

ej2−i2dddi1,j2,i3 + ∑
j2

cj2−i2dsdi1,j2,i3 . (B.20)

Finally the coefficients for derivatives along the z direction are given by

sss′i1,i2,i3 = 〈φi1φi2φi3 |
∂l

∂zl
|Ψ〉 = ∑

j3

aj3−i3sssi1,i2,j3 + ∑
j3

bj3−i3ssdi1 ,i2,j3, (B.21)

dss′i1,i2,i3 = 〈ψi1φi2φi3 |
∂l

∂zl
|Ψ〉 = ∑

j3

aj3−i3dssi1 ,i2,j3 + ∑
j3

bj3−i3dsdi1,i2,j3, (B.22)

sds′i1,i2,i3 = 〈φi1ψi2φi3 |
∂l

∂zl
|Ψ〉 = ∑

j3

aj3−i3sdsi1 ,i2,j3 + ∑
j3

bj3−i3sddi1,i2,j3, (B.23)

dds′i1 ,i2,i3 = 〈ψi1ψi2φi3 |
∂l

∂zl
|Ψ〉 = ∑

j3

aj3−i3ddsi1,i2,j3 + ∑
j3

bj3−i3dddi1,i2,j3, (B.24)

ssd′i1,i2,i3 = 〈φi1φi2ψi3 |
∂l

∂zl
|Ψ〉 = ∑

j3

ej3−i3ssdi1,i2,j3 +∑
j3

cj3−i3sssi1,i2,j3 , (B.25)

dsd′i1 ,i2,i3 = 〈ψi1φi2ψi3 |
∂l

∂zl
|Ψ〉 = ∑

j3

ej3−i3dsdi1,i2,j3 + ∑
j3

cj3−i3dssi1,i2,j3 , (B.26)

sdd′i1 ,i2,i3 = 〈φi1ψi2ψi3 |
∂l

∂zl
|Ψ〉 = ∑

j3

ej3−i3sddi1,i2,j3 + ∑
j3

cj3−i3sdsi1,i2,j3 , (B.27)

ddd′i1 ,i2,i3 = 〈ψi1ψi2ψi3 |
∂l

∂zl
|Ψ〉 = ∑

j3

ej3−i3dddi1,i2,j3 + ∑
j3

cj3−i3ddsi1,i2,j3 . (B.28)

B.2 Position operators

Applying just a position operator along one dimension, for instance x4 |Ψ〉, is com-
pletely analogous to the case of the derivative, just with the difference that the filters
a, b, c and e are different. Even the application of operators which are not centered
around the origin, i.e. (x − x0)

4 |Ψ〉, can be done along the same lines as long as the
general filters of Sec. A.2.3 are used.

However the situation is a bit more complicated for mixed expression, for instance
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x2y2 |Ψ〉. Such terms arise if the confining potential which is used (cf. Sec. 5.1.1) is
expanded:

(r− r0)
4 =

(

(x− x0)
2 + (y− y0)

2 + (z− z0)
2
)2

= (x− x0)
4 + (y− y0)

4 + (z− z0)
4

+ 2(x− x0)
2(y− y0)

2 + 2(x− x0)
2(z− z0)

2 + 2(y− y0)
2(z− z0)

2.

(B.29)

Again the dependency on the origin is already contained in the general filters and it is
therefore sufficient to consider the cases of x2y2, x2z2 and y2z2.

Defining, as usual, the filter elements ai1−j1 = 〈φi1 |x2|φj1〉 and ci1−j1 = 〈φi1 |x2|ψj1〉 and
using the orthonormality relation 〈φi3 |ψj3〉 = 0 one can first evaluate the operator x2:

sss′i1,i2,i3 = 〈φi1φi2φi3 |x2y2|Ψ〉
= ∑

j1,j2,j3

ai1−j1sssj1,j2,j3 〈φi2φi3 |y2|φj2φj3〉+ ∑
j1,j2,j3

ci1−j1dssj1,j2,j3 〈φi2φi3 |y2|φj2φj3〉

+ ∑
j1,j2,j3

ai1−j1sdsj1,j2,j3 〈φi2φi3 |y2|ψj2φj3〉+ ∑
j1,j2,j3

ci1−j1ddsj1,j2,j3 〈φi2φi3 |y2|ψj2φj3〉 .

(B.30)
The analogous procedure can now be applied for the y2 operator. Using the orthonor-
mality relation 〈φi3 |φj3〉 = δi3 j3 this yields

sss′i1,i2,i3 = ∑
j1,j2,j3

ai1−j1sssj1,j2,j3ai2−j2δi3 j3 + ∑
j1,j2,j3

ci1−j1dssj1,j2,j3aj2−i2δi3 j3

+ ∑
j1,j2,j3

ai1−j1sdsj1,j2,j3ci2−j2δi3 j3 + ∑
j1,j2,j3

ci1−j1ddsj1,j2,j3cj2−i2δi3 j3

= ∑
j1,j2

ai1−j1ai2−j2sssj1,j2,i3 + ∑
j1,j2

ci1−j1ai2−j2dssj1,j2,i3

+ ∑
j1,j2

ai1−j1ci2−j2sdsj1,j2,i3 + ∑
j1,j2

ci1−j1ci2−j2ddsj1,j2,i3 ,

(B.31)

or, again using the symmetry relations (A.13),

sss′i1 ,i2,i3 = ∑
j1,j2

aj1−i1aj2−i2sssj1,j2,i3 + ∑
j1,j2

bj1−i1aj2−i2dssj1,j2,i3

+ ∑
j1,j2

aj1−i1bj2−i2sdsj1,j2,i3 + ∑
j1,j2

bj1−i1bj2−i2ddsj1,j2,i3 .
(B.32)

In order to avoid these cumbersome two-dimensional convolutions, a set of auxiliary
coefficients can be constructed as follows:

σσσi1;a
i1,j2,i3

= ∑
j1

aj1−i1sssj1,j2,i3 , δσσi1;b
i1,j2,i3

= ∑
j1

bj1−i1dssj1,j2,i3 ,

σδσi1;a
i1,j2,i3

= ∑
j1

aj1−i1sdsj1,j2,i3 , δδσi1;b
i1,j2,i3

= ∑
j1

bj1−i1ddsj1,j2,i3 .
(B.33)
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Now the coefficients sss′i1,i2,i3 can be calculated as one-dimensional convolutions using
these auxiliary coefficients:

sss′i1,i2,i3 = ∑
j2

aj2−i2σσσi1;a
i1,j2,i3

+ ∑
j2

aj2−i2δσσi1;b
j1,j2,i3

+ ∑
j2

bj2−i2σδσi1;a
i1,j2,i3

+ ∑
j2

bj2−i2δδσi1;b
j1,j2,i3

.
(B.34)

The procedure to calculate the other coefficients is completely analogous; thus the
entire list is

sss′i1,i2,i3 = 〈φi1φi2φi3 |x2y2|Ψ〉 = ∑
j2

aj2−i2σσσi1;a
i1,j2,i3

+∑
j2

aj2−i2δσσi1;b
i1,j2,i3

+∑
j2

bj2−i2σδσi1;a
i1,j2,i3

+∑
j2

bj2−i2δδσi1;b
i1,j2,i3

, (B.35)

dss′i1,i2,i3 = 〈ψi1φi2φi3 |x2y2|Ψ〉 = ∑
j2

aj2−i2σσσi1;c
i1,j2,i3

+∑
j2

aj2−i2δσσi1;e
i1,j2,i3

+∑
j2

bj2−i2σδσi1;c
i1,j2,i3

+∑
j2

bj2−i2δδσi1;e
i1,j2,i3

, (B.36)

sds′i1,i2,i3 = 〈φi1ψi2φi3 |x2y2|Ψ〉 = ∑
j2

cj2−i2σσσi1;a
i1,j2,i3

+ ∑
j2

cj2−i2δσσi1;b
i1,j2,i3

+∑
j2

ej2−i2σδσi1;a
i1,j2,i3

+ ∑
j2

ej2−i2δδσi1;b
i1,j2,i3

, (B.37)

dds′i1,i2,i3 = 〈φi1ψi2ψi3 |x2y2|Ψ〉 = ∑
j2

cj2−i2σσσi1;c
i1,j2,i3

+ ∑
j2

cj2−i2δσσi1;e
i1,j2,i3

+∑
j2

ej2−i2σδσi1;c
i1,j2,i3

+ ∑
j2

ej2−i2δδσi1;e
i1,j2,i3

, (B.38)

ssd′i1,i2,i3 = 〈φi1φi2ψi3 |x2y2|Ψ〉 = ∑
j2

aj2−i2σσδi1;ai1,j2,i3
+ ∑

j2

aj2−i2δσδi1;bi1,j2,i3

+∑
j2

bj2−i2σδδi1;ai1,j2,i3
+ ∑

j2

bj2−i2δδδi1;bi1,j2,i3
, (B.39)

dsd′i1,i2,i3 = 〈ψi1φi2ψi3 |x2y2|Ψ〉 = ∑
j2

aj2−i2σσδi1;ci1,j2,i3
+ ∑

j2

aj2−i2δσδi1;ei1,j2,i3

+∑
j2

bj2−i2σδδi1;ci1,j2,i3
+ ∑

j2

bj2−i2δδδi1;ei1,j2,i3
, (B.40)

sdd′i1,i2,i3 = 〈φi1ψi2ψi3 |x2y2|Ψ〉 = ∑
j2

cj2−i2σσδi1;ai1,j2,i3
+ ∑

j2

cj2−i2δσδi1;bi1,j2,i3

+∑
j2

ej2−i2σδδi1;ai1,j2,i3
+∑

j2

ej2−i2δδδi1;bi1,j2,i3
, (B.41)
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ddd′i1 ,i2,i3 = 〈ψi1ψi2ψi3 |x2y2|Ψ〉 = ∑
j2

cj2−i2σσδi1;ci1,j2,i3
+ ∑

j2

cj2−i2δσδi1;ei1,j2,i3

+∑
j2

ej2−i2σδδi1;ci1,j2,i3
+∑

j2

ej2−i2δδδi1;ei1,j2,i3
, (B.42)

where the various auxiliary filters are obvious generalizations of (B.33).

The coefficients for the other two operators, that is x2z2 and y2z2, can be derived along
the same lines. The result for x2z2 is

sss′i1,i2,i3 = 〈φi1φi2φi3 |x2z2|Ψ〉 = ∑
j3

aj3−i3σσσi1;a
i1,i2,j3

+ ∑
j3

aj3−i3δσσi1;b
i1,i2,j3

+∑
j3

bj3−i3σσδi1;ai1,i2,j3
+∑

j3

bj3−i3δσδi1;bi1,i2,j3
, (B.43)

dss′i1,i2,i3 = 〈ψi1φi2φi3 |x2z2|Ψ〉 = ∑
j3

aj3−i3σσσi1;c
i1,i2,j3

+ ∑
j3

aj3−i3δσσi1;e
i1,i2,j3

+∑
j3

bj3−i3σσδi1;ci1,i2,j3
+∑

j3

bj3−i3δσδi1;ei1,i2,j3
, (B.44)

sds′i1,i2,i3 = 〈φi1ψi2φi3 |x2z2|Ψ〉 = ∑
j3

aj3−i3σδσi1;a
i1,i2,j3

+ ∑
j3

aj3−i3δδσi1;b
i1,i2,j3

+∑
j3

bj3−i3σδδi1;ai1,i2,j3
+∑

j3

bj3−i3δδδi1;bi1,i2,j3
, (B.45)

dds′i1,i2,i3 = 〈φi1ψi2ψi3 |x2z2|Ψ〉 = ∑
j3

aj3−i3σδσi1;c
i1,i2,j3

+ ∑
j3

aj3−i3δδσi1;e
i1,i2,j3

+∑
j3

bj3−i3σδδi1;ci1,i2,j3
+∑

j3

bj3−i3δδδi1;ei1,i2,j3
, (B.46)

ssd′i1,i2,i3 = 〈φi1φi2ψi3 |x2z2|Ψ〉 = ∑
j3

cj3−i3σσσi1;a
i1,i2,j3

+ ∑
j3

cj3−i3δσσi1;b
i1,i2,j3

+∑
j3

ej3−i3σσδi1;ai1,i2,j3
+ ∑

j3

ej3−i3δσδi1;bi1,i2,j3
, (B.47)

dsd′i1,i2,i3 = 〈ψi1φi2ψi3 |x2z2|Ψ〉 = ∑
j3

cj3−i3σσσi1;c
i1,i2,j3

+ ∑
j3

cj3−i3δσσi1;e
i1,i2,j3

+∑
j3

ej3−i3σσδi1;ci1,i2,j3
+ ∑

j3

ej3−i3δσδi1;ei1,i2,j3
, (B.48)

sdd′i1,i2,i3 = 〈φi1ψi2ψi3 |x2z2|Ψ〉 = ∑
j3

cj3−i3σδσi1;a
i1,i2,j3

+ ∑
j3

cj3−i3δδσi1;b
i1,i2,j3

+∑
j3

ej3−i3σδδi1;ai1,i2,j3
+ ∑

j3

ej3−i3δδδi1;bi1,i2,j3
, (B.49)

ddd′i1,i2,i3 = 〈ψi1ψi2ψi3 |x2z2|Ψ〉 = ∑
j3

cj3−i3σδσi1;c
i1,i2,j3

+ ∑
j3

cj3−i3δδσi1;e
i1,i2,j3
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+∑
j3

ej3−i3σδδi1;ci1,i2,j3
+ ∑

j3

ej3−i3δδδi1;ei1,i2,j3
, (B.50)

and finally the one for y2z2

sss′i1 ,i2,i3 = 〈φi1φi2φi3 |y2z2|Ψ〉 = ∑
j3

aj3−i3σσσi2;a
i1,i2,j3

+ ∑
j3

aj3−i3σδσi2;b
i1,i2,j3

+ ∑
j3

bj3−i3σσδi2;ai1,i2,j3
+ ∑

j3

bj3−i3σδδi2;bi1,i2,j3
, (B.51)

dss′i1,i2,i3 = 〈ψi1φi2φi3 |y2z2|Ψ〉 = ∑
j3

aj3−i3δσσi2;a
i1,i2,j3

+ ∑
j3

aj3−i3δδσi2;b
i1,i2,j3

+ ∑
j3

bj3−i3δσδi2;ai1,i2,j3
+ ∑

j3

bj3−i3δδδi2;bi1,i2,j3
, (B.52)

sds′i1,i2,i3 = 〈φi1ψi2φi3 |y2z2|Ψ〉 = ∑
j3

aj3−i3σσσi2;c
i1,i2,j3

+ ∑
j3

aj3−i3σδσi2;e
i1,i2,j3

+ ∑
j3

bj3−i3σσδi2;ci1,i2,j3
+ ∑

j3

bj3−i3σδδi2;ei1,i2,j3
, (B.53)

dds′i1,i2,i3 = 〈φi1ψi2ψi3 |y2z2|Ψ〉 = ∑
j3

aj3−i3δσσi2;c
i1,i2,j3

+ ∑
j3

aj3−i3δδσi2;e
i1,i2,j3

+ ∑
j3

bj3−i3δσδi2;ci1,i2,j3
+ ∑

j3

bj3−i3δδδi2;ei1,i2,j3
, (B.54)

ssd′i1,i2,i3 = 〈φi1φi2ψi3 |y2z2|Ψ〉 = ∑
j3

cj3−i3σσσi2;a
i1,i2,j3

+∑
j3

cj3−i3σδσi2;b
i1,i2,j3

+ ∑
j3

ej3−i3σσδi2;ai1,i2,j3
+ ∑

j3

ej3−i3σδδi2;bi1,i2,j3
, (B.55)

dsd′i1,i2,i3 = 〈ψi1φi2ψi3 |y2z2|Ψ〉 = ∑
j3

cj3−i3δσσi2;a
i1,i2,j3

+∑
j3

cj3−i3δδσi2;b
i1,i2,j3

+ ∑
j3

ej3−i3δσδi2;ai1,i2,j3
+ ∑

j3

ej3−i3δδδi2;bi1,i2,j3
, (B.56)

sdd′i1,i2,i3 = 〈φi1ψi2ψi3 |y2z2|Ψ〉 = ∑
j3

cj3−i3σσσi2;c
i1,i2,j3

+∑
j3

cj3−i3σδσi2;e
i1,i2,j3

+ ∑
j3

ej3−i3σσδi2;ci1,i2,j3
+ ∑

j3

ej3−i3σδδi2;ei1,i2,j3
, (B.57)

ddd′i1,i2,i3 = 〈ψi1ψi2ψi3 |y2z2|Ψ〉 = ∑
j3

cj3−i3δσσi2;c
i1,i2,j3

+∑
j3

cj3−i3δδσi2;e
i1,i2,j3

+ ∑
j3

ej3−i3δσδi2;ci1,i2,j3
+ ∑

j3

ej3−i3δδδi2;ei1,i2,j3
. (B.58)
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