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Summary

Traditionally, the role of information carrier in spin- and electronic de-
vices is taken by respectively the spin or the charge of the conduction
electrons in the system. In recent years, however, there has been an
increasing awareness that spin excitations in insulating magnets (either
magnons or spinons) may offer an interesting alternative to this paradigm.
One of the advantageous properties of these excitations is that they are
not subject to Joule heating. Hence, the energy associated with the trans-
port of a single unit of information carried by a magnon- or spinon cur-
rent could be much lower in such insulating magnets. Additionally, the
bosonic nature of the magnon quasi-particles may be advantageous.

Three crucial requirements for the successful implementation of spin-
tronics in insulating magnets are the ability to create, detect, and control
a magnon- or spinon current. The topic of creation and read-out of such
currents in insulating magnets has been discussed elsewhere, in this the-
sis we will mainly focus on the third requirement, that of the ability to
control magnon- and spinon currents.

In the first part of this thesis is we aim to draw a parallel between
spintronics in nonitinerant systems and traditional electronics. We do
this by considering the question to which extent it is possible to create
the analog of the different elements that are used in electronics for mag-
netic excitations in insulating magnets. To this end, we consider (in Ch.
2 and 3 respectively) rectification effects and finite-frequency transport
in one-dimensional (1D) antiferromagnetic spin chains. We mainly fo-
cus our attention on the effects of impurities, which are modeled by local
changes in the exchange interaction of the underlying Hamiltonian. Us-
ing methods from quantum field theory, which include renormalization
group analysis and functional field integration, we determine the effect
of such impurities on the transport properties of the spin chains. Our
findings allow us to propose systems which behave as a diode and a ca-
pacitance for the magnetic excitations. In Ch. 4 we introduce a setup
which behaves as a transistor for either magnons or spinons: a triangu-
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lar molecular magnet, which is weakly exchange-coupled to nonitinerant
spin reservoirs. We use the possibility to control the state of triangular
molecular magnets by either electric or magnetic fields to affect tunneling
of magnons or spinons between the two spin reservoirs.

The second part of this thesis is devoted to the study of thermal trans-
port in two-dimensional (2D) nonitinerant ferromagnets with a noncollinear
ground state magnetization. More specifically, our interest is in thermal
Hall effects. Such effects can be used to control a magnetization current,
and arise because the magnons (which carry the thermal current) expe-
rience a fictitious magnetic field due to the equilibrium magnetization
texture. We consider the different magnetic textures that occur in ferro-
magnets with spin-orbit interaction, and discuss which of them give rise
to a finite thermal Hall conductivity.



Acknowledgements

The work presented in this thesis would not have been possible without
the support of several people.

First of all, I would like to thank my supervisor Daniel Loss for ac-
cepting me as a PhD student. His knowledge, insight, and the originality
of his ideas have benefitted and motivated me throughout the last four
years, and I will remember his enthusiasm and the trust he bestowed
upon me warmly. Furthermore, I am grateful for his continued efforts
to make the theoretical condensed matter group not only a stimulating
research environment, but also a place where people feel at home.

I would also like to thank my collaborator Yaroslav Tserkovnyak for
sharing with me his knowledge on a wide variety of subjects, as well
as his contagious enthusiasm. I am grateful to Pascal Simon for being
co-referee.

My time in Basel has been interesting and enjoyable, for which I have
to thank the group members and regular visitors of the condensed matter
theory group, many of whom I consider friends rather than colleagues.
My thanks go out to Samuel Aldana, Daniel Becker, Massoud Borhani,
Dan Bohr, Bernd Braunecker, Christoph Bruder, Stefano Chesi, Charles
Doiron, Mathias Duckheim, Carlos Egues, Gerson Ferreira, Jan Fischer,
Suhas Gangadharaiah, Adrian Hutter, Daniel Klauser, Jelena Klinovaja,
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CHAPTER 1
Introduction

We begin this chapter by giving a brief historic introduction to mag-
netism. Starting with Thales of Miletus, we address some of the most
important persons and milestones in its history. Next, we give an intro-
duction to spintronics, the field of spin-based electronics. Specifically,
we focus on spintronics in nonitinerant magnets. Lastly, we give some
theoretical background information on the most important models used
in this thesis.

1.1 History of magnetism
The history of magnetism is a long and rich one. Probably the first writ-
ten reference to a magnetic phenomenon dates back to the sixth cen-
tury BC, and is due to Thales of Miletus. [1] Thales was an early Greek
philosopher, who described the attraction between lodestone and iron.

The most interesting myth regarding the origin of the name magnet is
due to the Roman scholar Gaius Plinius Secundus, or Pliny the Elder. [2]
According to the story, there was once a Greek shepherd named Magnes,
whose iron soles (or staff, depending on who tells the story) on many
an occasion became stuck on the rocks in his native land. The rocks,
naturally, were rich in lodestone. An explanation that is possibly closer
to the truth, is that the name finds its origin in the Magnesia region, a
place where naturally magnetic ore is abundant.

Already around the time of the start of the Gregorian calendar, there
were attempts to describe magnetic phenomena on a more or less scien-
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2 CHAPTER 1. INTRODUCTION

tific basis. One famous work is due to Lucretius. His poem ’De Rerum
Natura’ (On the Nature of Things) was inspired by the work of Epicurus,
who was himself a follower of Democritus. The latter is well-known as
the joint inventor of an atomic theory for the universe, together with his
mentor Leucippus. Hence, Lucretius’ attempt to describe the action of a
magnet on iron relies on atomic theory: [2]

First, from the Magnet num’rous Parts arise.
And swiftly move; the Stone gives vast supplies;

Which, springing still in Constant Stream, displace
The neighb’ring air and make an empty Space;

So when the Steel comes there, some Parts begin
To leaps on through the Void and enter in...

The steel will move to seek the Stone’s embrace,
Or up or down, or t’any other place

Which way soever lies the Empty Space.

After the initial attempts of the Roman scholars to explain magnetism,
things quieted down as the dark ages came and went. The next milestone
in the field of magnetism (setting aside the introduction of the compass)
occurred only around 1600, and can be ascribed to William Gilbert, [2]
an English physician, physicist and natural philosopher, who lived from
1544 to 1603. Gilbert conducted many experiments on both electricity
and magnetism, perhaps the most famous of which were on his terrella:
a small magnetized ball, which acts as a model for the earth. From his
experiments, he concluded that the earth itself must be a magnet. These,
and many other of his findings, where published in his magnum opus,
’De Magnete’, in 1600. [3] Maybe even more important than his discover-
ies themselves, was the way in which he proceeded to make them. Unlike
many natural philosophers before him, who were content to take known
knowledge and try to expand the knowledge by philosophical means,
he tried to expand the known knowledge by systematic experimental
means. In this respect, Gilbert was genuinely a child of his time.

Around the start of the nineteenth century, the development of the
theory of electromagnetism as we know it today started. [4] In 1819, the
Danish scientist Hans Christian Ørsted discovered that a wire that carries
an electric current deflects a nearby magnetic compass, thereby establish-
ing that an electric current produces a magnetic field. Shortly thereafter,
in 1820, André-Marie Ampère extended Ørsteds work by performing ex-
periments that gave rise to his discovery of Ampère’s law, which relates
the line integral of the magnetic field around a surface to the current
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through that surface. At roughly the same time, Jean-Baptiste Biot and
Félix Savart discovered their Biot-Savart law, which gives the magnetic
field for a given current distribution.

Up to this point, the experiments were on static phenomena. This
changed when Faraday discovered electromagnetic induction in 1931: a
magnetic field that is changing in time gives rise to an electric field. By
now, we are firmly in the realm of the central set of equations in electro-
dynamics: Maxwell’s equations. This set of 4 vector equations (Ampère’s
law with Maxwell’s correction, Gauss’ law, Gauss’ law of magnetism,
and Faraday’s law), together with the Lorentz force law and Newton’s
second law fully describes the behavior of a charged particle in a classi-
cal electromagnetic field. [4]

Even though Maxwell’s equations fully describe the classical behav-
ior of charged particles in an electromagnetic field, they do not give an
explanation for the existence of magnetic ordering in solids. In other
words, they do not explain the ordering of the net magnetic moments of
the constituents of a solid, be they atoms or ions. In fact, according to the
Bohr-van Leeuwen theorem, [2] the expectation value of the magnetiza-
tion of a collection of classical non-relativistic charged particles is identi-
cally zero at any finite temperature. Instead, the explanation of magnetic
ordering requires quantum mechanics. The magnetic moment of atoms
or ions can originate both from the spin of the electrons as well as from
their orbital motion. When two electrons have overlapping wave func-
tions, their magnetic moments are coupled due to exchange interaction.
The origin of exchange interaction lies in the fact that Pauli’s exclusion
principle puts strong constraints on the quantum numbers (and hence on
the magnetic moment) of overlapping wave functions. We will explain
the origin of exchange interaction in more detail in Sec. 1.3.

Applications of magnetism

Today, magnetic phenomena have found a plethora of applications in
many branches of society. We have already mentioned what was ar-
guably the first technological invention which involved magnetism, the
compass. This device was especially crucial for the development of mar-
itime navigation. Among the most important modern applications of
magnetism are those in medicine (for instance in Magnetic Resonance
Imaging) and information storage (where the most famous example is
Magnetoresistive Random-Access Memory). This thesis, however, fo-
cuses on a different application of magnetism, namely spintronics.
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1.2 Spintronics

Spintronics [5] is the field of spin-based electronics. Unlike in tradi-
tional electronics, where information is carried by charge, in spintronics
the spin degree of freedom is taken as the carrier of information. Spin-
tronics in metallic devices has its origin in 1988, when the giant mag-
netoresistance (GMR) effect was discovered independently by two dif-
ferent research groups. [6, 7] In 2007, the Noble prize in physics was
awarded to Albert Fert and Peter Grünberg for this discovery. The GMR
effect is observed in multilayer materials consisting of alternating ferro-
magnetic and non-magnetic metallic layers. A large decrease in electric
conductance is measured when the alternating ferromagnetic layers are
switched from a parallel- to an anti-parallel orientation. This effect can be
understood by considering the fact that the electric current is made up of
two contributions, a current of spin-up electrons and one of spin-down
electrons, both of which have a magnetization-dependent conductance.
Present-day magnetic storage devices (MRAMs) are based on the TMR
effect, an effect closely related to the GMR effect.

Spintronics in semiconductors can be traced back to the proposal by
Datta and Das for a spin field-effect transistor. [8] The use of semiconduc-
tors offers several advantages compared to metallic devices. [9, 10] Per-
haps most notable is the fact that strong spin-orbit interaction in semicon-
ductors in principle opens up possibilities of electric control of spintronic
devices. [11] Furthermore, it has been shown to be possible to electrically
control the Curie temperature [12] and coercive field [13] of ferromag-
netic semiconductors. Lastly, the sheer enormity of the semiconductor
electronics industry can be seen as an incentive to consider spintronics in
semiconducting materials.

From a practical point of view, the wide-spread interest in spintronic
devices arises from the fact that they are considered to have certain fa-
vorable properties compared to electronic devices. Indeed, one of the
main issues in modern electronics is that as devices get ever smaller
the removal of waste energy generated by Joule heating (which is in
turn caused by the scattering of the information carrying conduction
electrons) becomes problematic. In principle, one of the main potential
advantages of spin-based devices in comparison to their charge-based
counterparts is the anticipated lower energy dissipation associated with
performing logical operations and transporting the information carriers.
However, this advantage is strongly reduced by the fact that schemes
for spin-based devices in metallic- and semiconducting materials rely on
spin currents that are generated as a by-product of associated charge cur-
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rents. [5, 9, 10]
Spintronics in nonitinerant (insulating) materials does not suffer from

this deficiency. Indeed, there is virtually no transport of charge in non-
itinerant materials at all. Nevertheless, since the spin states of the differ-
ent constituents are coupled via exchange interaction, information about
the spin state can still propagate through the system. As a consequence,
magnetization can be transported by magnons (spin waves) or spinons
(domain walls), without any transport of charge, in such systems. Since
charge transport is absent in such materials, the energy that is dissipated
in the transport of a single information carrier (a spin) in a nonitiner-
ant system can be much lower [14] than in both itinerant electronic- and
spintronic devices. [15, 16] Furthermore, it has been theoretically shown
that the energy required for a single logic operation can be low in a spin-
based device. [17] We mention here also the fact that this type of ballistic
transport in magnetic systems is not the only kind of nearly dissipation-
less spin transport. Other systems which have received wide attention
recently are topological insulators, [18] where in particular edge states
in a quantum spin Hall insulator have been predicted to be dissipation-
less. [19] For an overview of other possibilities see a recent review by
Sonin. [20]

Clearly, energy considerations are not the only factor that play a role
in the determination of the feasibility of spintronics in nonitinerant ma-
terials. Other important considerations are the working principle and
operating speed of potential devices, and the possibility of creation, con-
trol, and read-out of the signals used in these systems. Spin pumping
has been proposed as a method to create a pure spin current in nonitin-
erant systems. [21] Creation of a magnon current has been shown to be
possible by means of the spin Seebeck effect, [22] and with high spatial
accuracy by means of laser-controlled local temperature gradients. [23]
The resulting spin current can be measured utilizing the inverse spin Hal
effect. [24, 25] It has also been shown that, using the spin Hall effect, it is
possible to convert an electric signal in a metal into a spin wave, which
can then be transmitted into an insulator. [24]

Logic schemes that are based on interference of spin waves in insulat-
ing magnets have been proposed. [26, 27] In these schemes, the disper-
sion relation of the spin waves can be controlled either by magnetic fields,
magnetic textures, [28, 29] electric fields due to the induced Aharonov-
Casher phase [30] or in multiferroic materials, [31, 32] or spin-orbit cou-
pling. [33]

Likewise, much of the work in this thesis is motivated by the wish to
successfully implement spintronics using spinons and magnons in non-
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itinerant magnets. In the first part of this thesis, in Ch. 2, 3, and 4, we
introduce systems which behave as the spintronic elements which mimic
the working of some of the most important elements used in conven-
tional electronics: the diode, the capacitance, and the transistor. Specifi-
cally, the transistor in Ch. 4 allows to perform arbitrary logic operations
using magnetic excitations in insulating magnets. In the second part of
this thesis, in Ch. 5, we study thermal Hall effects in nonitinerant fer-
romagnets. From a practical point of view, such effects are interesting
because they allow one to control spin currents.

1.3 Theory of magnetic materials
In the first part of this thesis we will often consider insulating antiferro-
magnetic 1D spin-1/2 systems. We will see that such systems must be
analyzed using a fully quantum mechanical description, which is most
conveniently based on the Heisenberg Hamiltonian. In contrast, when
considering thermal Hall effects in Ch. 5, we will be interested in de-
scribing bulk ferromagnetic systems with a macroscopic magnetization
M(r). In this case, since the macroscopic magnetization is a classical ob-
ject, a phenomenological description suffices. To gain some more insight
into these different models, we will discuss the origin of the Heisenberg
model and the phenomenological description here.

The Heisenberg Hamiltonian

In Ch. 2, 3, and 4 we will typically use the anisotropic Heisenberg Hamil-
tonian as the starting point of our analysis of transport phenomena in 1D
insulating magnets

H =
∑
⟨ij⟩

Jij
[
Sx
i S

x
j + Sy

i S
y
j +∆ijS

z
i S

z
j

]
. (1.1)

Here, the summation is over nearest neighbors, and we avoid double
counting of the bonds. Furthermore, Sα

i is the α-component of the spin-
1/2 operator at position ri, with α = x, y, z. The different components of
the spin operator satisfy the usual commutation relations[

Sα
j , S

β
j

]
= iℏϵαβγSγ

j , (1.2)

and spin operators at different positions commute. Furthermore, Jij de-
notes the strength of the exchange interaction between the two nearest
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neighbors at ri and rj . For constant Jij < 0 the system is ferromagnetic
(FM), meaning that neighboring spins wish to align in a parallel manner;
For constant Jij > 0 the system is antiferromagnetic (AF), and neigh-
boring spins tend to antiparallel alignment. The magnetic properties of
the system described by Eq. (1.1) depend strongly on the value of the
anisotropy ∆ij . For constant anisotropy ∆ij = ∆ > 1, the system has an
easy axis along the z axis, so that any magnetic order will preferably be
along this axis. In the limit ∆ ≫ 1 the system is described by the famous
Ising model. For 0 < ∆ < 1, the magnetization is preferably in plane,
since the system has the xy plane as its easy plane. This regime is often
called the xy-limit. For ∆ = 1, Eq. (1.1) describes the rotationally in-
variant isotropic Heisenberg Hamiltonian. Even though we use Eq. (1.1)
as the starting point of our calculations, a tremendous amount of work
has gone into the justification of this equation over the last decades. We
will therefore devote this section to giving a very brief introduction to
the origin of Eq. (1.1) for insulating magnets.

Exchange interaction in insulating materials can be explained by the
superexchange mechanism. First proposed by Anderson in 1959, [34]
this mechanism also gives a microscopic explanation for the fact that
many insulating materials can be described by the AF isotropic Heisen-
berg Hamiltonian. Superexchange processes are important in magnets
in which direct exchange is suppressed due to the limited overlap of
the wave functions of the localized electrons on the magnetic ions. [35]
Instead, interaction between two magnetic ions is mediated by a non-
magnetic ion. To explain superexchange, Anderson considered the ques-
tion which spin-dependent interactions can originate from electronic in-
teractions between different localized d- or f -shell electrons in an insula-
tor (the wave functions are adapted to the underlying lattice, and hence
contain an admixture of the electron wave function on the non-magnetic
ions). His most important observation was that the system can gain a
small amount of energy due to virtual hopping of localized electrons be-
tween the two neighboring magnetic ions. Due to the Pauli exclusion
principle, this hopping can only take place when the unpaired electrons
on the two neighboring ions have opposite spin. Hence, the resulting
isotropic spin-interaction is of antiferromagnetic character. His observa-
tion that such superexchange processes determine the magnetic proper-
ties of insulators explains the fact that most known insulating magnets
are of an antiferromagnetic nature.

One possible origin of anisotropy in the Heisenberg Hamiltonian is
spin-orbit interaction. As we will see, the presence of this interaction can
lead to the so-called Dzyaloshinskii-Moriya (DM) interaction term. This
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term has to be added to the isotropic Heisenberg Hamiltonian

HDM =
∑
⟨ij⟩

J ′
ijSi · Sj +Dij · (Si × Sj) . (1.3)

The fact that the DM interaction term has to occur generally in the Hamil-
tonian of magnets that lack inversion symmetry was first realized by
Dzyaloshinskii, [36] who used a phenomenological approach to derive
its form. The microscopic explanation was given by Moriya [37] and, as
we mentioned before, is based on the addition of spin-orbit interaction
to Anderson’s model. The mapping of Eq. (1.3) on the anisotropic model
is done by performing a rotation in spin space. Assuming that Dij = Dẑ
and J ′

ij = J ′, the rotation is implemented by rewriting Eq. (1.3) in terms
of the new operators

S̃+
j = eiθjS+

j ,

S̃−
j = e−iθjS−

j ,

S̃z
j = Sz

j .

(1.4)

Here, θ = atan(D/J ′), and the spin-ladder operators are defined as S+
j =

(Sx
j + iSy

j ) and S−
j = (Sx

j − iSy
j ). With these definitions, the Hamiltonian

in terms of the new spin operators (now written without tilde) becomes
Eq. (1.1) with parameters J =

√
J ′2 +D2 and ∆ = J ′/

√
J ′2 +D2.

Another possible source of anisotropy is magnetic dipole-dipole in-
teraction. [35] To see how this interaction can lead to anisotropy, let us
consider the interaction between two magnetic dipoles with respective
magnetic moments m1 = gµBS1 (located at the origin) and m2 = gµBS2

(located at position r). The magnetic field at the position r due to the
dipole moment m1 is

Bdip(r) =
µ0

4π

3 (m1 · r̂) r̂−m1

r3
. (1.5)

Here, µ0 = 4π · 10−7 N A−2, is the permeability of vacuum. Also, r̂ = r/r,
with r = |r|. Since the energy of a magnetic dipole in a magnetic field
is given by U = −m · B, the interaction energy depends on the angle
between r and the two magnetic moments. For instance, when r̂ = ẑ, the
dipole-dipole interaction leads to an additional term ∝ Sz

1S
z
2 . We note

that, even though the magnitude of the dipole-dipole interaction term is
typically much smaller than that of the exchange interaction, the latter
decays exponentially with distance, whereas the former decays as 1/r3.
Therefore, dipole-dipole interactions can become important for materials
with relatively large interatomic spacing.
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Phenomenologic description

The Heisenberg model is inherently a quantum mechanical model. This
is due to the fact that the individual magnetic moments are quantum
mechanical objects. However, when one is interested in describing the
macroscopic magnetization M(r) of a material, the quantum mechanical
nature of the individual magnetic moments is irrelevant. In this scenario,
one can work with a phenomenological description. The description we
will introduce here is valid for ferromagnets, although similar models
exist for antiferromagnetic materials.

To illustrate the mechanism, we will first consider ferromagnets with
isotropic exchange interaction. At temperatures far below the Curie tem-
perature, the free energy of such an isotropic ferromagnet is minimized
through the alignment of all magnetic moments, such that the equilib-
rium magnetization is uniform. This alignment occurs in an arbitrary di-
rection, and is an example of the spontaneous breaking of a continuous
symmetry, in this case the spin-rotational symmetry. The classical gapless
low-energy excitations of the system are called spin waves. These corre-
spond to long-wavelength rotations of the magnetization M(r) around
its equilibrium value, and are the Goldstone modes related to the break-
ing of the spin-rotational invariance of the Hamiltonian. Indeed, due
to this symmetry, such rotations with an infinite wavelength cannot re-
quire any energy. Furthermore, it can easily be shown that when the
deviation from the equilibrium magnetization is small, the magnetiza-
tion of the spin waves is perpendicular to the equilibrium magnetization,
and their time-evolution can be described by the Landau-Lifshitz-Gilbert
equation. [38]

1.4 Outline

This work is organized as follows. In the first part of this thesis, we fo-
cus mainly on transport of magnetic excitations in low-dimensional non-
itinerant systems. In Ch. 2 we study rectification effects in both ferro-
magnetic and antiferromagnetic insulating magnets. We find a variety
of possible realizations of systems that display a nonzero rectification
current. In Ch. 3 we analyze finite-frequency spin transport in nonitin-
erant 1D spin chains. We propose a system that behaves as a capacitor
for the spin degree of freedom. In Ch. 4 we consider a magnon- and
spinon-transistor, which uses the possibility to control the state of tri-
angular molecular magnets by either electric or magnetic fields to affect



10 CHAPTER 1. INTRODUCTION

tunneling of magnons or spinons between two spin reservoirs.
In the second part of this thesis we consider thermal transport in tex-

tured ferromagnets. We investigate how fictitious magnetic fields due to
a noncollinear equilibrium magnetic texture (the texture itself is caused
by spin-orbit interaction) lead to thermal Hall effects in 2D insulating fer-
romagnets. We consider the different ground states in the phase diagram
of a 2D ferromagnet with spin-orbit interaction: the spiral state and the
skyrmion lattice. We find that thermal Hall effects can occur in certain
domain walls as well as the skyrmion lattice.
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Spin transport in
low-dimensional systems
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CHAPTER 2
Rectification effects

Adapted from:
K. A. van Hoogdalem and D. Loss,

“Rectification of spin currents in spin chains”,
Phys. Rev. B 84, 024402 (2011).

In this chapter, we study magnetization transport in nonitinerant 1D
quantum spin chains. Motivated by possible applications in spintron-
ics, we consider rectification effects in both ferromagnetic and antifer-
romagnetic systems. We find that the crucial ingredients in designing a
system that displays a nonzero rectification current are an anisotropy in
the exchange interaction of the spin chain combined with an offset mag-
netic field. For both ferromagnetic and antiferromagnetic systems we
can exploit the gap in the excitation spectrum that is created by a bulk
anisotropy to obtain a measurable rectification effect at realistic mag-
netic fields. For antiferromagnetic systems we also find that we can
achieve a similar effect by introducing a magnetic impurity, obtained by
altering two neighboring bonds in the spin Hamiltonian.

2.1 Introduction
The focus of the present chapter lies on transport of spin excitations in
nonitinerant 1D quantum systems (spin chains). More specifically, we in-
vestigate rectification effects in such spin systems. Our motivation to do
so lies therein that such effects form the basis for a device crucial to spin-

13
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and electronics, the diode. In charge transport, rectification effects in
mesoscopic systems have received considerable attention in recent years,
both in 1D [39, 40, 41, 42] and higher dimensional systems. [43, 44, 45]
However, these studies have so far been limited to the itinerant electronic
case. Here, we consider insulating spin chains (without itinerant charge
carriers) and study the analog of such rectification effects in the transport
of magnetization, see Fig. 2.1.

The magnetic systems we consider are assumed to have an anisotropy
∆ in the z direction in the exchange interaction between neighboring
spins in the spin chain. Together with an offset magnetic field applied
to the entire system, also in the z direction, this anisotropy will allow
us to design systems that display a nonzero rectification effect. We con-
sider both ferro- and antiferromagnetic systems, using respectively a spin
wave and a Luttinger liquid description. For both types of magnetic or-
der we find that an enhanced exchange interaction in the z direction gives
rise to the opening of a gap in the excitation spectrum of the spin chain.
We can use the offset magnetic field to tune the system to just below
the lower edge of the gap, so that we get the asymmetry in the magne-
tization current between positive and negative magnetic field gradients
∆B required to achieve a nonzero rectification current. We find here that
larger values of the exchange interaction J or the exchange anisotropy ∆
lead to a larger gap, and hence require stronger magnetic fields.

For the case of antiferromagnetic order we also discuss the case of
suppressed exchange interaction in the z direction. As it turns out, in
this case we need an extra ingredient to achieve a sizable rectification ef-
fect. Here the extra is a ’site impurity’, a local change in the exchange
anisotropy, which models the substitution of a single atom in the spin
chain. We find that, in the presence of the offset magnetic field, the lead-
ing term in the perturbation caused by such an impurity flows - in a
renormalization group sense- to strong coupling for low energies. We
can therefore, again in combination with the offset magnetic field, use
it to achieve the rectification effect. In the regime where our calcula-
tions are valid, we find that the rectification current is quadratic in the
strength of the impurity, and behaves as a negative power of (∆B/J).
The dependence of the rectification current on the anisotropy ∆ is more
complicated, and described in detail in section 2.8.

This chapter is organized as follows. In Section 2.2 we introduce
our model, in Section 2.3 we discuss the rectification effect for ferromag-
netic systems using the spin wave formalism. In Section 2.4 we map the
antiferromagnetic (AF) Heisenberg Hamiltonian on the Luttinger Liq-
uid model and describe the different perturbations resulting from the
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Figure 2.1: (a) Schematic view of the nonitinerant spin system. The 1D
spin chain is adiabatically connected (see text) to two spin reservoirs. (b)
A magnetic field gradient ∆B gives rise to transport of magnetization
through the spin chain, e.g. via spin waves. Depending on the anisotropy
in the exchange interaction ∆i in the spin chain [see Eq. (2.1)], part of
the magnetization current can be reflected. In a rectifying system, the
magnitude of the magnetization current through the system depends on
the sign of ∆B.

anisotropic exchange anisotropy in the presence of the offset magnetic
field. We then continue in Section 2.5 with a renormalization group anal-
ysis to find the most relevant perturbations. In Section 2.6 we focus on
the case of enhanced exchange anisotropy and find the resulting rectifi-
cation effect. Section 2.7 contains the analysis for a suppressed exchange
anisotropy in combination with the site impurity, and in Section 2.8 we
give numerical estimates of the rectification effect for the latter system.
Finally, in Sec. 2.9 we will discuss some experimental realization of quasi-
1D insulating magnets.

2.2 System and model

The system we consider consists of a 1D spin chain of length L, adia-
batically connected (see below) to two three-dimensional (3D) spin reser-
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voirs. This system is described by the anisotropic Heisenberg Hamilto-
nian

H =
∑
⟨ij⟩

Jij
[
Sx
i S

x
j + Sy

i S
y
j +∆ijS

z
i S

z
j

]
+ gµB

∑
i

BiS
z
i . (2.1)

Here ⟨ij⟩ denotes summation over nearest neighbors, and we count each
bond between nearest neighbors only once. Sα

i is the α-component of the
spin operator at position ri. Jij denotes the exchange coupling between
the two nearest neighbors at ri and rj . The non-negative variable ∆ij

is the anisotropy in the exchange coupling. Regarding the ground state
of the spin chain, assuming ∆ij to be constant, we can distinguish two
different classes of ground states in the absence of an external magnetic
field, depending on the sign of the exchange coupling Jij . For constant
Jij < 0 the spin chain has a ferromagnetic ground state and we can de-
scribe its low-energy properties within the spin wave formalism. For
constant Jij > 0 the ground state is antiferromagnetic, and, in princi-
ple, we can determine the full excitation spectrum using Bethe-Ansatz
methods. [46] However, given the complexity of the resulting solution
it is convenient to use a different approach and describe the system and
its low-lying excitations using inhomogeneous Luttinger Liquid theory,
which is what we will do in this chapter.

We will study two different scenarios for the exchange interaction in
the spin chain. In the first scenario we assume

∆ij = ∆ > 1. (2.2)

In general, such a constant anisotropy in the spin chain will open a gap
in the excitation spectrum, which we can use to design a system that
displays a nonzero rectification effect. Furthermore, it will turn out that
when the constant ∆ satisfies 0 < ∆ < 1 we need a spatially varying
∆ij to achieve a sizable rectification effect. Therefore, in the second sce-
nario we will consider a site inpurity at position ri0 . This perturbation,
in which two adjacent bonds are altered, describes the replacement of a
single atom in the spin chain. It can be modeled as

∆ij = ∆+∆′δi,j−1 (δi,i0 + δi,i0+1) and ∆ < 1. (2.3)

Here δi,j is the Kronecker delta function.
The last term in the Hamiltonian (2.1) is the Zeeman coupling caused

by an external, possibly spatially varying, magnetic field Bi = Biz (where
z is a unit vector). This term defines the z axis as the quantization axis
of the spin. In all the cases that we will consider the total magnetic
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Figure 2.2: Schematic view of the system under consideration (bottom)
and the band structure for the ferromagnetic exchange interaction (top).
The colored areas on the left and right in the top picture depict the filled
states in the reservoirs. The position of the bottom of the band in the left
reservoir depends on ∆B. The striped area in the middle denotes the
band of allowed states in the spin chain. It is seen that magnetization
transport through the spin chain can be large for ∆B < 0, but only small
for ∆B > 0

field Bi can be split into a constant part and a spatially varying part,
Bi = B0 + ∆Bi. Here the constant offset magnetic field B0 > 0 is ap-
plied to the spin chain and the two reservoirs. ∆Bi is constant and equal
to −∆B in the left reservoir and goes to zero in the contact region be-
tween the left reservoir and the spin chain. The extra minus-sign has
been included to ensure that a positive ∆B yields a positive magnetiza-
tion current. We now define a rectifying system as a system in which the
magnetization current Im(∆B) satisfies Im(∆B) ̸= −Im(−∆B), see also
Figure 2.1. To quantify the amount of rectification, we use the rectifica-
tion current Ir(∆B), defined as

Ir(∆B) =
Im(∆B) + Im(−∆B)

2
. (2.4)

2.3 Ferromagnetic spin chains: spin wave
formalism

To illustrate the mechanism behind the rectification effect we first con-
sider a ferromagnetic spin chain with constant anisotropic exchange in-
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teraction in the z direction [Jij = J < 0 and ∆ij = ∆ > 1 in Eq. (2.1)]. The
spin chain is adiabatically connected (see below) to two 3D ferromagnetic
reservoirs RL and RR (see Fig. 2.1) and we assume initially that only the
the constant magnetic fieldB0 is present. For temperatures T ≪ gµB0/kB
the density of spin-excitations is low, which allows us to use the Holstein-
Primakoff transformation to map the Heisenberg Hamiltonian on a set of
independent harmonic oscillators. [2] In the presence of a constant mag-
netic field B0 and a nonzero anisotropy ∆ the excitation spectrum of the
magnons, the bosonic excitations of the system, has the following form

ℏωk = gµBB0 + 2 (∆− 1) |J |s+ |J |s(ka)2, (2.5)

with a the distance between nearest-neighbor spins and s the magnitude
of a single spin. The magnons have magnetic moment −|g|µBz. The
magnon distribution is given by the Bose-Einstein distribution nB(ωk).
In order for the spin chain and reservoirs to be adiabatically connected,
the length of the transition region Lt between spin chain and reservoir
must be much larger than the typical wavelength of the excitations. From
Eq. 2.5 we can now see that for ferromagnets this requirement becomes
Lt ≫ 2π

√
Js/gµBB0a (we ignore the anisotropy in this estimate). For

Js = 10kB J, B0 = 0.5 T the requirement amounts to Lt ≫ 25a.
From Eq. (2.5) it follows that magnons in the spin chain require a min-

imum energy of gµBB0+2 (∆− 1) Js, whereas the magnons in the reser-
voirs (assuming that ∆ = 1 in the reservoirs) have a minimum energy
of gµBB0. The effect of applying a magnetic field −∆B to the left reser-
voir is to create the non-equilibrium situation in which the distribution
of magnons in the left reservoir is shifted by an amount −gµB∆B. From
Fig. 2.2 it is seen that shifting the magnon spectrum up (∆B < 0) allows
the magnons from RL to be transported through the spin chain. Because
of the asymmetry of the distributions in RL and RR a large magnetiza-
tion current will flow in this situation. When we shift the spectrum in RL

down (∆B > 0), the magnetization current is blocked by the gap in the
excitation spectrum of the spin chain, hence only a small magnetization
current will flow in the opposite direction. To determine the rectification
current we use the Landauer-Büttiker approach [47] to calculate the mag-
netization current through the chain. The total magnetization current is
given by Im = IL→R − IR→L, where

IL→R(∆B) = −gµB

∫ kmax,L

kmin,L

dk

2π
nB(ωk)v(k)T (k), (2.6)

and IR→L is defined analogously. The ∆B-dependence will be shown
to be in the limits of integration. Here v(k) is the group velocity of the
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magnons, v(k) = ∂ωk/∂k, and T (k) is the transmission coefficient of the
spin chain. For this system the transmission coefficient T (k) = 1 as long
as the magnons are not blocked by the gap in the excitation spectrum
of the spin chain. In the absence of ∆B the magnon spectrum in the
reservoirs reaches the upper edge of the gap in the spectrum at wave
vector k0 =

√
2(∆− 1)/a2. We can incorporate the shift in the magnon

spectrum in the left reservoir by changing the lower boundary in the
integral for the magnetization current to kmin = max {0, kL}, where we
defined kL = Re[

√
k20 + ξ∆B] and ξ ≡ gµB/(Jsa

2). For temperatures T
such that T ≪ sJ/kB, so that we can set the upper boundary to infinity,
we then have the limits of integration (max {0, kL} ,∞) for the current
from RL to RR. For IR→L we have the limits (max {k0, kR} ,∞), where
kR = Re[

√
−ξ∆B]. The resulting magnetization current is then

Im(∆B) = −gµB

h

∫ max{k0,kR}

max{0,kL}
dk

2αk

eβ(αk2+gµBB0) − 1
, (2.7)

where α ≡ sa2J . The magnetization current has been plotted in Fig. 2.3
for reasonable material parameters.

2.4 AF spin chains: Luttinger liquid formalism
We now consider the case of an antiferromagnetic spin chain consisting
of spins-1/2 which is adiabatically connected (for the antiferromagnetic
system this means Lt ≫ 2πk−1

F = 4a, see below) to two 3D antiferromag-
netic reservoirs. We will show that it is possible to map both the spin
chain and the two reservoirs on the Luttinger Liquid model.

We start with the description of the spin chain and come back to the
description of the reservoirs at the end of this section. To model the
spin chain [48] we use that in one dimension we can apply the Jordan-
Wigner transformation to map the spin operators onto fermionic oper-
ators: S+

i → c†ie
iπ

∑i−1
j=−∞ c†jcj and Sz

i → c†ici − 1/2. This allows us to
rewrite the part of Hamiltonian (2.1) that describes the spin chain as the
fermionic Hamiltonian

H =
∑
i

J

2

(
c†i+1ci + c†ici+1

)
+ gµB

∑
i

Bi

(
c†ici − 1/2

)
+

+
∑
i

J∆i

(
c†i+1ci+1 − 1/2

)(
c†ici − 1/2

)
≡ H0 +HB +Hz. (2.8)
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Figure 2.3: Magnetization current as function of applied magnetic field
for the parameters J = 10kB J, s = 1, g = 2, B0 = 0.1 T, T = 100 mK, and
a = 10 nm. The magnetization currents for different anisotropies all sat-
urate at the same positive value, this is the point where all the magnons
incoming from the left reservoir are transmitted. This maximum current
is on the order of 109 magnons per second. Since the typical magnon
velocity v̄ = Ja2k0/ℏ is on the order of 103 m s−1, and assuming length
L ≈ 1 µm for the spin chain, this is indeed within the single magnon
regime.

We initially assume that the magnetic field satisfies gµBB ≪ J and that
∆ ≪ 1, so that we can use perturbation theory to describe HB +Hz. We
will ultimately want a description of the system by its bosonic action.

Considering first H0, and restricting the Hamiltonian to low-energy
excitations, we can take the continuum limit and linearize the excitation
spectrum around the Fermi wave vector kF = π/(2a), where a is again the
lattice spacing, to arrive at an effective (1 + 1)-dimensional field theory
involving left- and right-moving fermionic excitations. To this purpose
we replace c†i → a1/2ψ†(x),

∑
i a →

∫
dx and ∆i → ∆(x). Here x =

ia. After introducing left- and right-moving fermions, ψ†(x) = ψ†
L(x) +

ψ†
R(x), we carry out a bosonization procedure [49, 50] using the following

operators

ψ†
r(x) =

1√
2πa

e−ϵrkrxei[ϵrϕ(x)−θ(x)]. (2.9)

Here r = L,R, ϵr = ∓1, and kr is the Fermi wave vector for r-moving
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particles (see below). ϕ(x) is the bosonic field related to the density fluc-
tuations in the system as ∂xϕ(x) = −π [ρR(x) + ρL(x)]. Here, θ(x) is the
conjugate field of ϕ(x). It satisfies [ϕ(x), ∂x′θ(x′)] = iπδ(x − x′). We have
left out the Klein operators in the fermionic creation operators, since they
cancel in the subsequent perturbation theory. Using the aforementioned
operations we can transform the Hamiltonian H0 into the quadratic ac-
tion

S0[ϕ] =
ℏ

2πK

∫
d2r

[
u (∂xϕ(r))

2 − 1

u
(∂tϕ(r))

2

]
. (2.10)

In this chapter we use the notation r = (x, t)T . For the free action u =
Ja/ℏ and K = 1. These parameters will change due to the presence of
the HB- and Hz-terms.

The effect of the inclusion of the magnetic field term HB is twofold:
in the absence of any backscattering and umklapp scattering the field,
which is applied to the left reservoir, will introduce different densities of
left- and right-moving excitations in the spin chain. The effect of this is to
change the Fermi wave vectors in Eq. (2.9) for the respective particles to:
kR = π/(2a)+ K

uℏgµB (B0 −∆B) and kL = π/(2a)+ K
uℏgµBB0. This does not

affect the bosonized form of H0, but will have an effect on the bosonized
form of Hz. Furthermore, the spatial dependence of the magnetic field
makes that the spin chain is now described by S[ϕ] = S0[ϕ]+SB[ϕ], where

SB[ϕ] = −gµB

π

∫
d2rϕ(r)∂xB(r). (2.11)

We use the specific form of the magnetic field

∂xB(r) = ∆Bδ(x− L/2). (2.12)

This corresponds to the magnetic field described in Section 2.2.
Next, we derive the bosonic representation of the Hz-term. [51, 52] In

the continuum limit the z component of the spin operator is given by the
normal ordered expression

Sz(x) = : ψ†
R(x)ψR(x) + ψ†

L(x)ψL(x) +

+ψ†
R(x)ψL(x) + ψ†

L(x)ψR(x) : . (2.13)

The interaction termHz contains terms that transfer approximately 0, 2kF
or 4kF momentum. Around half-filling and for a constant anisotropy
in the exchange interaction, as is the case in Eq. (2.2), conservation of
momentum requires that the only terms that can survive are the ones
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that transfer approximately 0 or 4kF momentum, the 2kF -terms are sup-
pressed by rapidly oscillating exp(±2ikFx) terms. The terms that transfer
small momentum give rise to terms proportional to (∂xϕ(r))

2, and hence
change the parameters u,K in Eq. (2.10). It is not possible to determine
the exact values from the linearized theory, they can however be deter-
mined from the Bethe-Ansatz solution. [53] Important here is that for
∆ ≶ 1 we have K ≷ 1/2. The 4kF -term (umklapp scattering term) be-
comes

SUS[ϕ] =
aJ

(2πa)2

∫
d2r∆(x) cos [4ϕ(r)− 4ρx] , (2.14)

where ρ ≡ K
uℏgµB (B0 −∆B/2). We have neglected a constant term ∝ ρa

inside the cosine.
If a spatially varying anisotropy is present, as in Eq. (2.3), the 2kF -

backscattering terms do not necessarily vanish in regions where ∆(x)
varies on a scale of order a. The bosonization of the 2kF -terms then re-
quires some care. If we naively use the continuum form of Eq. (2.8),
this term contains infinities after the bosonization. Therefore, it has to
be normal ordered, [49] which we can do using Wick’s theorem and the
contraction

ψr(x)ψ
†
r′(x+ a) = −ϵr

e−irkra

2πai
δr,r′ . (2.15)

Since the Sz
i S

z
i+1-term contains four-fermion operators the normal order-

ing will yield not only additional constants, but also two-fermion opera-
tors, as can for instance be seen from the typical term ψ†

R(x)ψR(x)ψ
†
R(x+

a)ψL(x+ a), which becomes

: ψ†
R(x)ψR(x)ψ

†
R(x+ a)ψL(x+ a) : −e

−ikRa

2πai
: ψ†

R(x)ψL(x+ a) : . (2.16)

There are four such two-fermion operators. Together they give rise to the
backscattering term

SBS[ϕ] = − 2aJ

(2πa)2

∫
d2r(−1)x/a∆(x)×

{sin [2ϕ(r)− 2ρx] + sin [2ϕ(r)− 2ρ(x+ a)]} . (2.17)

The completely normal-ordered term becomes

SBSN[ϕ] =
8aJ

(2πa)2

∫
d2r(−1)x/a∆(x) [a∂xϕ(r)]

2 ×

{sin [2ϕ(r)− 2ρx] + sin [2ϕ(r)− 2ρ(x+ a)]} . (2.18)
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The latter can be seen by expanding the normal ordered term around x
and invoking the Pauli exclusion principle. Due to the presence of the
[a∂xϕ(r)]

2-term we can always neglect this contribution. The total action
describing the spin chain is then given by

S[ϕ] = S0[ϕ] + SB[ϕ] + SUS[ϕ] + SBS[ϕ]. (2.19)

Now we can distinguish between the two scenarios in Eq. (2.2) and
Eq. (2.3). For the constant anisotropy in Eq. (2.2) the SBS[ϕ] and SBSN[ϕ]
terms vanish as they are proportional to the rapidly oscillating (−1)x/a.
Hence only the bulk umklapp scattering term, given by

SBUS[ϕ] =
λ1

(2πa)2

∫
dxdt cos [4ϕ(r)− 4ρx] , (2.20)

remains. Here λ1 ≡ aJ∆. The spin chain in Eq. (2.2) is thus described by
the action S0[ϕ] + SBUS[ϕ] + SB[ϕ]. As we will discuss in the next section,
the bulk umklapp scattering term renormalizes as 2 − 4K, hence it is
irrelevant for K > 1/2 (∆ < 1) and relevant for K < 1/2 (∆ > 1). If
this term is relevant, as it is for the parameters in Eq. (2.2), it opens a
gap in the excitation spectrum of the spin chain, which, as we will show
in Section 2.6, can be used to achieve the rectification effect in a similar
way as for the ferromagnetic system in Section 2.3. To wit, if we tune B0

such that it lies just below the upper edge of the gap, for ∆B > 0 there
can be no magnetization transport, since there are no states available for
transport in the chain, whereas for ∆B < 0 the states above the edge of
the gap are accessible, and transport is made possible.

Next we discuss the case with spatially varying exchange anisotropy,
Eq. (2.3). We start out by noting that, since the bulk umklapp scatter-
ing term is irrelevant for this scenario, the spin chain is not in a gapped
state in equilibrium. The effect of the applied magnetic field is then to
move the spin chain away from half-filling. As we will show later, in
the current scenario this doping is required in order to achieve a nonzero
rectification current. In the case of Eq. (2.3) the backscattering term van-
ishes everywhere, except in the region where ∆(x) itself varies on a short
length scale. For the specific form of the anisotropy of Eq. (2.3), the action
resulting from the site impurity is

SBS[ϕ] = −a2J∆
′

(2π)2

∫
dt∂x{sin

[
2ϕ(x0, t)− 2ρ(x0 −

a

2
)
]
+

+sin
[
2ϕ(x0, t)− 2ρ(x0 +

a

2
)
]
}. (2.21)
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Where, here and elsewhere, ∂xf(x0, t) should be read as ∂xf(x, t)|x=x0 .
Adding to this term the local umklapp scattering term caused by the site
impurity, the total action coming from this impurity becomes

SI[ϕ] =
1

π2a

∫
dt

{
1

4

[
λa2 cos 4ϕ(x0, t) + λb2 sin 4ϕ(x0, t)

]
+

+σ
[
λa3 cos 2ϕ(x0, t) + λb3 sin 2ϕ(x0, t)

]
+ (2.22)

+a
[
λa4∂xϕ(x0, t) cos 2ϕ(x0, t) + λb4∂xϕ(x0, t) sin 2ϕ(x0, t)

]}
.

This expression contains terms caused by umklapp scattering (propor-
tional to λa,b2 ), terms that may be called offset-induced backscattering
terms (proportional to λa,b3 ), and terms that describe combined forward-
and backscattering (proportional to λa,b4 ). In the expression for the action
SI[ϕ] we have defined

σ ≡ ρa =
Ka

uℏ
gµB (B0 −∆B/2) = K [gµB(B0 −∆B/2)/(ℏωc)] . (2.23)

Here we have identified the UV-cutoff of the theory ωc with u/a. Further-
more the prefactors are given by

λa2 = 2λ
[
cos 4ρ

(
x0 − a

2

)
+ cos 4ρ

(
x0 +

a
2

)]
,

λb2 = 2λ
[
sin 4ρ

(
x0 − a

2

)
+ sin 4ρ

(
x0 +

a
2

)]
,

λa3 = λ(−1)
x0
a

[
cos 2ρ

(
x0 − a

2

)
+ cos 2ρ

(
x0 +

a
2

)]
,

λb3 = λ(−1)
x0
a

[
sin 2ρ

(
x0 − a

2

)
+ sin 2ρ

(
x0 +

a
2

)]
.

(2.24)

Where λ = aJ∆′. Lastly, λa,b4 = −λa,b3 . In this scenario the spin chain is
thus described by S0[ϕ] + SBUS[ϕ] + SI[ϕ] + SB[ϕ].

Finally we return to the description of the spin reservoirs. As we
show in detail in Appendix A, we can describe the low-energy excitations
of the reservoirs by the quadratic Luttinger Liquid action, Eq. (2.10). The
effective Luttinger Liquid parameters ur, Kr of the 3-dimensional reser-
voirs can be determined by mapping its dynamic susceptibility onto that
of a Luttinger Liquid, using the non-linear sigma model, resulting in

ur =
√
3Ja/ℏ Kr = π/(4

√
3). (2.25)

This means that we can describe the reservoirs by letting u → u(x) and
K → K(x) in Eq. (2.10), where

u(x), K(x) =

{
u,K for x ∈ (−L/2, L/2)
ur, Kr for x /∈ (−L/2, L/2) . (2.26)
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2.5 Renormalization group treatment
We start the analysis of the antiferromagnetic spin chain by studying the
scaling behavior of the spin chain. The results of this analysis allow us to
determine which perturbations will be most relevant in the low energy
sector. We perform the renormalization group (RG) calculation in mo-
mentum space, [48] assuming there is a hard natural momentum-cutoff
Λ0 in the system. In the RG procedure the cutoff Λ(l) = Λ0e

−l is de-
creased from Λ(l) to Λ(l + dl). For the RG procedure we consider the
partition function written in terms of the action in imaginary time. As is
customary, we split the field ϕ(r) contained in this action up in a fast and
a slow part, ϕ(r) = ϕ>(r) + ϕ<(r). The fast part contains Fourier compo-
nents with momentum between Λ(l + dl) and Λ(l), and the slow part the
components with momentum less then Λ(l+dl). The RG-procedure then
consists of integrating out the fast modes, and subsequently restoring
the original cutoff in the action, in order to find an effective low-energy
action with the same couplings, but different coupling constants. This al-
lows us to find the relevant (increasing in magnitude under a decrease of
the cutoff) and irrelevant (decreasing in magnitude under a decrease of
the cutoff) couplings. For completeness, we mention the renormalization
equations for the constant anisotropy ∆ (see Ref. [48])

dK

dl
= − 8λ21

(2πℏ)2
1

u2
KCK ,

du

dl
=

8λ21K
2

(2π)3ℏ2
1

u
Cu,

dρ

dl
= ρ,

dλ1
dl

= (2− 4K)λ1.

(2.27)

We have omitted several instances of Λa, which is a number of order 1.
The different constants are given by (here r̄ = Λ(x, uτ)T is dimensionless)

CK =
1

2

∫
d2r̄ cos [4ρx] r̄2J0(r̄)e

−8KF1(r̄),

Cu = −1

2

∫
d2r̄(x̄2 − u2τ̄ 2) cos [4ρx] J0(r̄)e

−8KF1(r̄).

(2.28)

Here J0(r̄) is the zeroth-order Bessel function and F1(r̄) =
∫ 1

0
dq(1 −

J0(qr̄)q
−1. Both integrals converge and are of order 1. From the last RG-
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equation it follows that for K < 1/2, which as we have seen before corre-
sponds to ∆ > 1, the perturbation caused by the bulk umklapp scattering
grows under renormalization. This corresponds to the opening of a gap
in the excitation spectrum of the spin chain. The magnitude M of this
gap has been calculated analytically using Bethe-Ansatz methods, [54]
and is given by

M

J
=
π sinh ν

ν

∞∑
n=−∞

1

cosh [(2n+ 1)π2/2ν]
, (2.29)

where ν = acosh∆. For ∆ ≳ 1 this gap is exponentially small, and is
given byM ≈ 4πJ exp[−π2/(2[2(∆−1)]1/2)]. For ∆ → ∞ the gap becomes
M ≈ J [∆− 2].

If we now assume to be in the regime where K > 1/2 and add the site
impurity described by SI[ϕ], we get the following additional equations

dλ
a/b
2

dl
= (1− 4K)λ

a/b
2 − Γ

a/b
44 C1 − Γ

a/b
33 Cβ,

dλ
a/b
3

dl
= (1−K)λ

a/b
3 − Γ

a/b
23 Cα − Λ

b/a
3∓Cc ± Λ

b/a
4±Cs,

dλ
a/b
4

dl
= (1−K)λ

a/b
4 − Γ

a/b
24 Cα − Λ

b/a
4±Cc.

(2.30)

Where we have defined the second order terms Γ
a/b
nm = λanλ

a/b
m + λbnλ

b/a
m

and Λ
a/b
nη =

(
ηλ

a/b
n sin 4ρx0 + λ

b/a
n cos 4ρx0

)
λ1. Here η = ±. The different

constants used here are given by

C1 =
1

2π3ℏu

∫
dτ̄
J1(τ̄)

τ̄
e−2KF1(τ̄),

Cα =
K

π2ℏu

∫
dτ̄J0(τ̄)e

−3KF1(τ̄),

Cβ =
8Kσ2

π2ℏu

∫
d2r̄J0(r̄)e

−2KF1(r̄),

Cc =
K

2π2ℏu

∫
d2r̄ cos [4(ρ/Λ)x̄] J0(r̄)e

−3KF1(r̄),

Cs =
K2

σπ2ℏu

∫
d2r̄

x̄

r̄
sin [4(ρ/Λ)x̄] J0(r̄)e

−3KF1(r̄).

(2.31)

Again, all integrals converge and are of order 1. From the form of the
equations it follows that we can ignore contributions that are of second
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order in the couplings, and we see that the most relevant couplings are
the λa,b3 - and λa,b4 -terms, which to first order scale as 1 − K. For K ∈
(1/2, 1), the regime in which we operate in the case of Eq. (2.3), these
terms thus grow in magnitude under a decrease of the cutoff. Because of
the extra ∂xϕ(x0, t) proportionality in the λa,b4 -terms, one would expect the
effect of these terms on the magnetization current to be smaller than that
of the λa,b3 -terms. However, since the λa,b3 -terms have an additional σ in
front of them, in the regimeB0 ≈ ∆B/2 these are suppressed, so that they
could become comparable to the λa,b4 -terms. Therefore we will consider
the effect of both types of coupling when calculating the magnetization
current for the system with anisotropy in the exchange interaction as in
Eq. (2.3) in Section 2.7.

2.6 Enhanced anisotropy
As we have shown in Section 2.5, the enhanced exchange anisotropy of
Eq. (2.2) gives rise to a bulk umklapp scattering term in the action of
the spin chain, and the chain is described by the sine-Gordon model. [48]
This model has been studied extensively, and is known to give rise to two
possible phases depending on the value of the chemical potential gµBB:
for values of the chemical potential lower than the gap M the system
is a Mott-insulator; when the chemical potential is increased to values
above the gap, the system undergoes a commensurate-incommensurate
transition and becomes conducting.

To simplify the sine-Gordon model we replace ϕM(r) = 2ϕ(r) and,
in order to keep the commutation relation between the two fields un-
changed, θM(r) = θ(r)/2. The umklapp scattering term then reduces
to a backscattering term (a two-particle operator), and the effective Lut-
tinger parameter becomes 4K. The fermionic form of the resulting new
action is known as the massive Thirring model. At the Luther-Emery
point, K = 1/4, (Ref. [55]) the new fermions whose action is given by
the massive Thirring model are non-interacting, and we can diagonalize
the quadratic part of the action by a Bogoliubov transformation, which
gives rise to two separate bands of fermionic excitations with dispersion
ϵ±(k) = ±

√
(uk)2 +M2. If K ̸= 1/4 there are residual four-fermion in-

teractions present. However, it can be shown [56] that, independent of
the initial interactions, near the C-IC transition the strength of these in-
teractions vanishes faster than the density of the fermions, so that the
interactions become negligible. The new free fermions are not the origi-
nal fermions, instead they correspond to solitonic excitations of the origi-
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nal action. These solitons have fractional magnetic moment −gµB/2. We
finally can relinearize the excitation spectrum around the point M to ar-
rive at a new Luttinger Liquid in terms of the fields ϕM(r), θM(r) with
parameter KM = 4K.

To calculate the DC magnetization current through the system we
use [30] that in linear response theory the DC magnetization current is
given by Im = G∆B, where the conductance G is given by

G = −i(gµB)
2

π2ℏ
lim
ω→0

[
ω Gϕϕ(x, x

′, ωn)|iωn→ω+iϵ

]
, (2.32)

and Gϕϕ(x, x
′, ωn) is the time-ordered Green’s function in imaginary time

Gϕϕ(x, x
′, ωn) =

∫ β

0

dτeiωnτ ⟨Tτϕ(x, τ)ϕ(x′, 0)⟩S0
. (2.33)

Here ωn is the Matsubara frequency. At zero temperature, and assuming
infinitesimal dissipation in the reservoirs, the ω → 0 limit of this Green’s
function can be determined for the inhomogeneous system including the
two reservoirs, [57] and is given by Kr/(2|ωn|). The effect of the entire
mapping of the original sine-Gordon model onto the new free Luttinger
Liquid can be captured here by replacing gµB → gµB/2 and Kr → 4Kr,
so that the conductance in the conducting phase is G = Kr(gµB)

2/h. Fol-
lowing Ref. [58] we conclude that excitations that are injected at energies
above the Mott gap are transported through the chain, giving rise to the
aforementioned conductance, whereas excitations injected at chemical
potential lower than the gap are fully reflected. Assuming that gµBB0 ≈
M , this gives rise to the magnetization current

Im(∆B) = Kr
(gµB)

2

h
∆BΘ(−∆B). (2.34)

Where Θ(−∆B) is the unit step function. Since magnetization transport
is absent for ∆B > 0, we have Ir(∆B) = Im(∆B)/2. In these calcula-
tions we assumed that the length of the spin chain L → ∞, so that we
can neglect tunneling of solitons, and we have assumed zero tempera-
ture. Finite size and temperatures are known to give corrections to the
conductance. [59, 60]

2.7 Suppressed anisotropy
To determine the rectification current resulting from the anisotropy as
given in Eq. (2.3) we need to calculate the magnetization current through
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the system given the action S[ϕ] = S0[ϕ] + SI[ϕ] + SB[ϕ]. For simplicity
we assume here that the impurity is located at x0 = 0. We ignore the
bulk umklapp scattering term, since we have shown in Section 2.5 that
the contribution of this term is irrelevant for the parameters used here.
From the RG analysis it also followed that the most important terms
are the offset-induced backscattering terms and that in regions where
B0 ≈ ∆B/2 the effect of the terms describing combined forward- and
backscattering and the offset-induced backscattering terms can become
comparable, due to the extra σ in front of the latter terms. Therefore we
need to calculate the magnetization current due to both types of contri-
bution. We will show that the rectification effect appears in the contribu-
tions to the magnetization current that are second order in the coupling
constants.

We calculate the magnetization current using the Keldysh technique. [61]
We assume that at t = −∞ the system is described by the action S0[ϕ] +
SB[ϕ], and that the perturbation SI[ϕ] is turned on adiabatically. From
conservation of spin it follows that the expression for the magnetization
current in the Luttinger Liquid is given by Im(r) = −(gµB/π)∂tϕ(r). The
magnetization current can then be calculated as [62]

Im = −gµB

π
∂t
1

2

∑
η=±

⟨ϕη(r)⟩S =
gµBi

π
∂t

(
δZ[J(r)]

δJ(r)

)
. (2.35)

Here, ⟨ϕ±(r)⟩S is the average of the field ϕ(r) over the Keldysh contour
with respect to the action S[ϕ]. The ± denotes that the field is located
on the positive respectively negative branch of the contour. The right
hand side contains the functional derivative of the partition function of
the system with respect to the generating functional J(r), which is given
in Eq. (B.2). The details of the calculation are given in appendix B, here
we summarize the results. We find that there are two fundamentally
different contributions to the magnetization current

Im(∆B) = I0(∆B) + IBS(∆B). (2.36)

Here, I0(∆B) is the magnetization current through the systems in the
absence of SI [ϕ], given by the well-known expression

I0(∆B) = Kr
(gµB)

2

h
∆B, (2.37)

and IBS(∆B) described (negative) contributions to the magnetization cur-
rent due to SI[ϕ], which we will derive next.
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The contribution to the magnetization current that arises as the result
of the contribution σ(λa3/π

2) cos[2ϕ(0, t)] (which describes offset-induced
backscattering) is given by

I3a(∆B) =
gµBσ

2
(
λa3,R

)2
π4

1

as
KrA0(∆B), (2.38)

where

A0(∆B) = − K4Kπ

Γ(1 + 2K)
γR |γR|−2+2K e−2|γR|. (2.39)

Here we introduced the dimensionless parameters λa3,R = λa3/(ℏωc) and
γR = KrgµB∆B/(ℏωc). As before, ωc denotes the UV-cutoff of our theory,
given by ωc = u/a. In Section 2.5 it was determined that the backscatter-
ing term scales as 1 − K under renormalization. To improve our result
we should therefore not use the bare coupling λa3,R, but instead the renor-
malized coupling. Since we assumed an infinitely long chain, and con-
sider zero temperature, the renormalization group procedure is stopped
on the energy scale determined by the magnetic field, gµB∆B. We can
account for this by replacing λ′a3,R → |gµB∆B/(ℏωc)|−1+K λa3,R. At this
point we have determined the magnetization current resulting from the
backscattering term. By repeating the previous calculation with both the
λa3- and the λb3-proportional terms included it is easily seen that the

(
λb3
)2-

proportional contribution to the magnetization current is also given by
Eq. (2.38), with

(
λa3,R

)2 replaced by
(
λb3,R

)2. The two cross terms propor-
tional to λa3λb3 do not contribute to the magnetization current, since they
cancel each other.

The calculation of the contribution to the magnetization current due
to a term aλa

4

π2 ∂xϕ(0, t) cos 2ϕ(0, t) that describe combined forward- and
backscattering proceeds along the same lines, we refer again to appendix
B for the details. The resulting contribution to the magnetization current
is given by

I4a(∆B) =
gµB

(
λa4,R

)2
π4

1

as
KrA1(∆B), (2.40)

where

A1(∆B) = − 4Kπ

Γ(2 + 2K)
γR |γR|2K e−2|γR|. (2.41)

Again, according to the RG analysis, we have to replace the bare coupling
with its renormalized value, in this case: λ′a4,R → |gµB∆B/(ℏωc)|−1+K λa4,R.
Like with the backscattering-terms, we can easily determine the effect of
the λa4- and λb4-terms combined. The magnetization current proportional
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to (λb4)
2 is given by Eq. (2.40) with (λa4,R)

2 replaced by (λb4,R)
2, and the two

cross-terms cancel each other.
Finally, we need to consider the cross terms between the λ3- and λ4-

terms, such as for instance λa3λb4. Using the results from appendix C it is
easily seen that these always vanish, since they are all proportional to⟨

Tc∂xϕ
η(0, t)e

±2i
[
ϕη(0,t)−ϕη′ (0,t′)

]⟩
= 0. (2.42)

The total backscattered current is then given by

IBS(∆B) =
gµB

π4

Kr

as

{
σ2λ23,effA0(∆B) + λ24,effA1(∆B)

}
, (2.43)

where λi,eff = [(λ′ai,R)
2 + (λ′bi,R)

2]1/2.
Eq. (2.43) is the main result of this section. From the explicit form

of A0(∆B) and A1(∆B) (see Eq. (2.39) and (2.41)) it is clear that the im-
purity flows to strong coupling for low ∆B away from half-filling, as
was expected from the RG analysis. We note that, since both A0(∆B)
and A1(∆B) are odd in ∆B, one could naively think that the impurity
does not contribute to the rectification current, which requires the mag-
netization current to have a component that is even in ∆B. However,
from the explicit form of the λi,eff (see Eq. (2.24) for the bare couplings)
it follows that these couplings also contain parts that are proportional to
∆B. Furthermore, the part of the magnetization current that is propor-
tional to A0(∆B) is proportional to σ2, which also contains a ∆B. Physi-
cally, these terms are caused by the fact that an incoming excitation sees a
slightly different impurity depending on the energy with which is comes
in. The magnetization current Eq. (2.43) therefore has components even
in ∆B, which contribute to the rectification current. We are now also in a
position to explain why it is needed to move the system away from half-
filling in order to obtain a nonzero rectification current. If we set B0 = 0
in Eq. (2.24), it turns out that the λi,eff’s and σ contain only terms that are
even in ∆B, so that the magnetization current is odd in ∆B. In contrast,
when B0 ̸= 0, we create terms in the λi,eff’s and σ that are odd in ∆B,
thereby causing a nonzero rectification current.

2.8 Estimate of rectification currents
In this section we will give numerical estimates of the rectification cur-
rent for realistic experimental parameters. Experimental results [63] show
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Figure 2.4: Normalized rectification current Ir/|I0| (main figure) and
backscattering current IBS/|I0| (inset) as a function of the applied mag-
netic field difference ∆B for different values of the exchange interac-
tion J . Parameters are: K = 0.63, B0 = 750 mT, and ∆′ = 0.5.
The black dots in the main figure denote the values ∆B∗ for which
max [|IBS(∆B

∗)|, |IBS(−∆B∗)|] = |I0(∆B∗)|. As explained in the text, our
perturbative results are not valid for |∆B| < |∆B∗|.

that the exchange coupling in certain spin chains can be on the order of
J ≈ 102 K. The effect of a different exchange interaction is illustrated in
Fig. 2.4. In the analysis of these results one must keep in mind that, since
our perturbative calculation of IBS(∆B) diverges for ∆B → 0, it breaks
down for field differences |∆B| < |∆B∗|, where ∆B∗ is the field such
that max [IBS(∆B

∗), IBS(−∆B∗)] = I0(∆B
∗). Instead of the showing the

apparent divergent behavior the backscattering current must go to zero
for ∆B < ∆B∗. With this in mind, Fig. 2.4 shows that a smaller exchange
interaction J gives rise to a larger rectification current at equal ∆B. The
maximum value of Ir(∆B) will also be reached at a higher value of ∆B.
In order to get the largest possible rectification current it is thus required
to use a material with an exchange interaction as low as possible, with
the constraint that it must be large enough to yield its maximum at rea-
sonable values of ∆B.

In Fig. 2.5 we show the dependence of the backscattering and rec-
tification current on the Luttinger Liquid parameter K. The behavior
for smaller K is similar to the behavior shown for smaller J : the max-
imum rectification current is increased, but occurs at a higher value of
∆B. Indeed, we know that both Im(∆B) and Ir(∆B) obey a powerlaw
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Figure 2.5: IBS/|I0| as a function of the applied magnetic field difference
∆B for different values of K. Parameters are: B0 = 750 mT, J = 100 K,
and ∆′ = 0.5. See the caption of Fig. 2.4 for the explanation of the black
dots.

Figure 2.6: IBS/|I0| as a function of the applied magnetic field difference
∆B for different values of B0. Parameters are: K = 0.63, J = 100 K, and
∆′ = 0.5. See the caption of Fig. 2.4 for the explanation of the black dots.

dependence of ∆B with negative exponent. Since the modulus of this
exponent decreases for increasing K, the behavior is as expected.

Fig. 2.6 shows the dependence of the backscattering current on the ap-
plied magnetic field B0. A larger amount of doping clearly corresponds
to larger possible rectification current, again at the price of a higher re-
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quired magnetic field ∆B. This can be understood by realizing that B0

determines to a large extend how much of the impurity the incoming ex-
citations see at low energies ∆B ≪ B0, as follows from the σ-dependence
in the λa,b3 -terms in the action Eq. (2.23).

In Ref. [30] it has been shown that N parallel uncoupled AF spin
chains connected between two 3D AF spin reservoirs, each one carrying
a magnetization current Im(∆B), give rise to an electric field

E(r) = N
µ0

2π

Im(∆B)

r2
(0, cos 2ϕ,− sin 2ϕ) (2.44)

Here the spin chains are assumed to extend in the x direction, and z is
the quantization axis as before. Also, r =

√
y2 + z2, sinϕ = y/r and

cosϕ = z/r. We can use this electric field to measure the rectification
current Ir(∆B). To illustrate the method we assume K = 0.6, B0 =
750 mT and N = 104. We apply the time-dependent field ∆B(t) =
∆B cos (ωt) to the left reservoir. From Eq. (2.43) it follows that, if we
trust our perturbative calculation of IBS up to the value ∆B∗ ≈ −43
mT, where |I0(∆B∗)| ≈ |IBS(∆B

∗)|, the difference in magnitude between
|Im(∆B∗)| and |Im(−∆B∗)| is on the order of 10% of the unperturbed
current |I0(∆B∗)|. From Eq. (2.44), and assuming r = 10−5, it then fol-
lows that the difference in voltage drop between two points (0, r, 0) and
(0, 0, r) is VS ≈ 10−13 V, which is within experimental reach. Here we note
that as long as the driving frequency ℏω < gµB∆B, our calculation of the
magnetization current in the DC-limit remains valid. A lower bound on
the driving frequency is given by the inverse of the spin relaxation time
τs. This time can be on the order of 10−7 s. [64] This allows us to use
frequencies in the MHz-GHz range.

Another possibility to observe the rectification effect is by spin accu-
mulation. By applying again an AC driving field to the left reservoir
it is possible to measure an accumulation of spin in the right reservoir,
since transport is asymmetric with respect to the sign of ∆B. We con-
sider again 104 parallel spin chains with K = 0.6, consider B0 = 750 mT,
and an amplitude ∆B = 43 mT for the driving field. For ∆B(t) < 0 the
magnetization current is always zero. For ∆B(t) > 0 there is a nonzero
magnetization current. Assuming that the magnetization current is 10%
of the unperturbed magnetization current (the value at ∆B(t) = ∆B)
over the entire range (0,∆B), the rate of spin accumulation is about 10−11

JT−1s−1 ≈ 1012 magnons per second. We also note that, contrary to the
electric case, where charge repulsion prevents a large charge accumula-
tion, there is no strong mechanism that prevents spin accumulation in
this scenario.
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Figure 2.7: Unit cell of Sr2CuO3 (left) and SrCuO2 (right). Lattice con-
stants are respectively a = 3.6 Å, b = 16.3 Å, and c = 3.9 Å for SrCuO2

(see Ref. [65]), and a = 3.5 Å, b = 3.9 Å, and c = 12.7 Å for Sr2CuO3

(see Ref. [66]). Both systems behave as collections of parallel 1D antifer-
romagnetic spin-1/2 chains in certain temperature ranges.

2.9 Experimental realizations

In this section, we will discuss several realizations of nonitinerant 1D
systems. Bulk structures of cuprate compounds are exemplary systems
which behave as a collection of 1D spin chains under certain conditions.
The list of cuprates which show this behavior includes materials such
as KCuF3, [67] Cs2CoCl4, [68] Sr2CuO3, and SrCuO2. [69, 70] To gain
some more insight, we will consider the case of Sr2CuO3, which is a
cuprate with a relatively simple unit cell, see Fig 2.7 (left). Crystals of
Sr2CuO3 contain 1D structures whose building blocks are CuO4 quadri-
lateral structures which share the oxygen ions on adjacent corners. The
neighboring magnetic Cu2+ ions are rather strongly exchange coupled
with strength J/kB = 2200 K. [69] This coupling is due to the existence of
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a superexchange path along the Cu-O-Cu bond. Furthermore, the inter-
chain exchange interaction is expected to be as small as J⊥/J ∼ 10−5. [71]
In accordance with this, it has been observed that the system has 3D
long range antiferromagnetic order only at very low temperatures up to
around TN ∼ 5 K. [72] and undergoes a transition to a 1D ordered state
around that temperature. Since there have been no signs of additional
phase transitions (such as the commonly occurring spin-Peierls transi-
tion) in Sr2CuO3 over a temperature range between 5 and 800 K, [66] bulk
structures of this cuprate are expected to behave as a collection of paral-
lel spin chains which are described by the spin-1/2 isotropic Heisenberg
antiferromagnets up to temperatures higher than 1000 K.

A similar cuprate, SrCuO2, has received a lot of attention recently;
spin-charge separation was observed in this material using ARPES, [73]
and in a recent experiment [74] it has been shown that the cuprate SrCuO2

has a mean-free path for spinon excitations exceeding 1µm. The latter
shows that ballistic transport of magnetic excitations over relatively long
distances in spin chains is indeed possible. As can be seen from Fig.
2.7 (right), SrCuO2 has a slightly more complicated unit cell compared
to Sr2CuO3. SrCuO2 contains zigzag Cu2+ chains due to CuO4 quadri-
lateral structures which now share the oxygen ions on adjacent vertices.
At low-temperatures, the zigzag chain is frustrated due to the compet-
ing antiferromagnetic straight Cu-O-Cu bonds (with strength J ≈ 2100
K [69]) and the ferromagnetic diagonal Cu-O-Cu bonds (with strength
|J ′| ≈ (0.1−0.2)|J |. [75]) This frustration, and presumably quantum fluc-
tuations, [74] prevent the system from having long range 3D magnetic
order at low temperatures up to TN ∼ 1.5 − 2 K. [76, 77] However, since
|J ′| ≪ |J |, at higher temperature the diagonal bonds get randomized,
and the zigzag chains can be described as two magnetically independent
linear spin chains.

Both SrCuO2 and Sr2CuO3 are described by the isotropic 1D S = 1/2
Heisenberg Hamiltonian. A material that is described by the anisotropic
1D spin-1/2 Heisenberg Hamiltonian is Cs2CoCl4. Comparison of heat-
capacity measurements [78] with numerical simulations, [79] as well as
measurements of the in-plane magnetic susceptibility [80, 81] have shown
that this system is well-described by the anisotropic Heisenberg Hamil-
tonian, Eq. (2.1), with antiferromagnetic exchange interaction J/kB ∼ 3
K and anisotropy ∆ ≈ 0.25. The system undergoes a phase transition into
the 1D ordered phase at TN ≈ 0.22 K. Because of the smaller magnitude
of J , the antiferromagnetic order persists up to much lower temperatures
than in SrCuO2 and Sr2CuO3.
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2.10 Conclusions
In this chapter we have proposed various realizations of the rectification
effect in spin chains, which consist of either ferromagnetically or antifer-
romagnetically coupled spins, adiabatically connected to two spin reser-
voirs. For both ferromagnetic and antiferromagnetic spin chains we find
that the two crucial ingredients to achieve a nonzero rectification cur-
rent are an anisotropy in the exchange interaction in combination with
an offset magnetic field, both in the z direction. An enhanced anisotropy
creates a gap in the excitation spectrum of the spin chain. Using the mag-
netic field to tune the chemical potential of the excitations to just below
the lower edge of the gap then allows us to achieve a large rectification
current for realistic values of the applied magnetic field. For antiferro-
magnetic coupling and suppressed exchange interaction in the z direc-
tion we find that a uniform anisotropy is not sufficient to achieve a siz-
able rectification effect. Instead we use a spatially varying anisotropy,
which we attain in the form of a site impurity. Away from half-filling
this impurity flows to strong coupling under renormalization, which al-
lows us to achieve a sizable rectification effect for realistic values of the
applied magnetic field. We have also proposed several ways to observe
this rectification effect. Finally, we have given several examples of exper-
imental realizations of spin chains.





CHAPTER 3
Finite-frequency response

Adapted from:
K. A. van Hoogdalem and D. Loss,

“Frequency-dependent transport through a spin chain”,
Phys. Rev. B 85, 054413 (2012).

Motivated by potential applications in spintronics, we study frequency
dependent transport of magnetization in nonitinerant 1D spin chains.
We propose a system that behaves as a capacitor for the spin degree
of freedom. It consists of a spin chain with two impurities a distance
d apart. We find that at low energy (frequency) the impurities flow to
strong coupling, thereby effectively cutting the chain into three parts,
with the middle island containing a discrete number of spin excitations.
At finite frequencies magnetization transport through the system in-
creases. We find a strong dependence of the finite-frequency character-
istics both on the anisotropy of the spin chain and the applied magnetic
field. We propose a method to measure the finite-frequency conduc-
tance in this system.

3.1 Introduction
Inspired by possible applications in spintronics, we set out to design the
spin analogues in insulating magnets of the different components that
are used in modern electronics. In the previous chapter, we have shown
that systems containing spin chains can be used as a spin diode (Ref. [82]
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and Ch. 2). In this chapter, we propose a device based on spin chains
that mimics the working of a capacitor, but for the spin degree of free-
dom. That is, a device which has a spin conductance that is zero for
applied DC driving fields and increases with frequency for applied AC
driving fields. Traditional capacitors have a wide range of applications
in electronics, most notably in frequency selection, noise reduction, and
temporary energy storage.

The device that we propose consists of a spin chain with anisotropy
∆ij in the exchange interaction in the z direction, adiabatically connected
to two 3D magnetic reservoirs. We introduce two impurities, that each
model the replacement of a single atom, in the spin chain. A renormaliza-
tion group argument shows that the impurities flow to strong coupling
at low energies, or, equivalently, low frequencies. At low frequencies the
chain is therefore in an insulating state, with an island containing a dis-
crete number of spin excitations in the middle. We show that at higher
frequency the spin conductance becomes nonzero; the system undergoes
a transition to a conducting state. We show that the point at which this
transition occurs can be tuned by an external magnetic field or the bulk
anisotropy in the exchange interaction. Transport through double barrier
systems has received attention recently, [83, 84, 85, 86, 87] but these stud-
ies were restricted to the itinerant electronic case. Here we focus on the
nonitinerant magnetic case with an emphasis on applications.

In Section 3.2 we introduce our system and the techniques we use
to analyze the system. Explicit expressions for the finite-frequency spin
conductance of the system under consideration are derived in Section
3.3. This finite-frequency spin conductance contains all the required in-
formation to show that our system behaves as a spin capacitor. In Section
3.4 we present numerical results, conclusions are given in Section 3.5.

3.2 System and model
We have seen in the previous chapter that a spin chain of length L (see
Fig. 3.1), which is adiabatically connected to two 3D spin reservoirs, can
be described by the anisotropic Heisenberg Hamiltonian

H =
∑
⟨ij⟩

Jij
[
Sx
i S

x
j + Sy

i S
y
j +∆ijS

z
i S

z
j

]
+ gµB

∑
i

BiS
z
i , (3.1)

where the summation is over nearest neighbors, and we avoid double
counting of the bonds. Here Sα

i is the α-component of the spin oper-
ator at position ri. Jij denotes the exchange interactions between the
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Figure 3.1: (a) Schematic view of the nonitinerant spin system. The 1D
spin chain of finite length L is adiabatically connected (meaning that the
length of the transition region Lt ≫ 4a) to two spin reservoirs. (b) Il-
lustration of the working principle behind the spin capacitor. Strong im-
purities pin the field ϕ(r), thereby blocking the system for magnetization
transport.

two nearest neighbors at ri and rj . We assume an, in general spatially
varying, anisotropy ∆ij > 0 in the exchange coupling. This anisotropy
typically originates either from a Dzyaloshinksii-Moriya (DM) or dipole-
dipole interaction between the different spins. [35] The last term in the
Hamiltonian describes the Zeeman coupling between the external time-
dependent magnetic field, Bi(t) = Bi(t)z, and the spin operator. z de-
notes a unit vector, and the magnetic field is of the form Bi(t) = B0 −
[1− θ(−L/2)]∆B cosωt. For our spin capacitor, we need to introduce
two impurities in the spin chain. We propose to use an impurity of a
specific type, a single instance of which, located at ri0 , is described by its
anisotropy

∆ij = ∆δi,j−1 (δi,i0 + δi,i0+1) ≡ ∆i0 . (3.2)

Such an impurity describes the replacement of a single ion in the spin
chain by another ion with a different anisotropy. We choose this form
because it contains all the important physics for a general impurity. With
two impurities, located at ri = ±d/2, and allowing for a constant contri-
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bution to the anisotropy, ∆′ (which we assume to be smaller than 1), the
anisotropy becomes

∆ij = ∆−d/2 +∆d/2 +∆′. (3.3)

It is well known [48] that for the 1D spin chain we can map the Heisen-
berg Hamiltonian on a fermionic Hamiltonian by means of the Jordan-
Wigner transformation. Assuming that gµBB ≪ J and ∆ij ≪ 1 we can
take the continuum limit in the resulting fermionic Hamiltonian, which
we can then linearize around the Fermi wave vector. In the process we
need to introduce left- and right going fermions ψ†

L/R(r). We can then per-
form a bosonization procedure [49, 50] using the density field ϕ(r) and its
conjugate field θ(r), which satisfy [ϕ(x), ∂x′θ(x′)] = iπδ(x− x′). Using the
fermionic creation operator for r = L/R-going particles

ψ†
r(x) =

1√
2πa

e−iϵrkF xei[ϵrϕ(x)−θ(x)], (3.4)

where a is the distance between two neighboring spins, and ϵr = ∓1, we
arrive at the following real-time action describing the system

S[ϕ] = S0[ϕ] + Sz[ϕ] + SB[ϕ]. (3.5)

Here S0[ϕ] is the quadratic action which originates from the in plane
terms and the forward scattering terms in the out-of-plane part of the
Heisenberg Hamiltonian. It is given by

S0[ϕ] =
ℏ

2πK

∫
d2r

[
u (∂xϕ(r))

2 − 1

u
(∂tϕ(r))

2

]
. (3.6)

Here u is the propagation velocity of the bosonic excitations and K is the
Luttinger Liquid interaction parameter which can be determined from
the parameters J and ∆′ of the spin chain from Bethe-Ansatz methods. [53]
We denote r = (x, t). SB[ϕ] describes the Zeeman coupling between mag-
netic field and the z component of the spin operator

SB[ϕ] = −gµB

π

∫
d2rϕ(r)∂xB(r). (3.7)

Lastly, Sz[ϕ] contains the most relevant contributions coming from the
two impurities. We have shown previously that, for an impurity of the
form Eq. (3.2) centered at x0, the most relevant terms are given by (see
Ref. [82] and Ch. 2)

Sx0 [ϕ] =
σ

π2

∫
dt
[
λax0

cos 2ϕ(x0, t) + λbx0
sin 2ϕ(x0, t)

]
. (3.8)
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Here, the couplings λa/bx0 are of order J∆. Also, σ = KgµBB0/(ℏωc) is
the doping away from half-filling due to the magnetic field B0. The UV-
cutoff of the theory, ωc, is on the order of J/ℏ. For our system, Sz[ϕ] =
S−d/2[ϕ] + Sd/2[ϕ]. Note that we must assume here that 2kFd ̸= π, since
otherwise the two impurities would cancel each other. To lowest order
the backscattering terms flow under renormalization as 1−K. Since we
work in the regime 1/2 ≤ K < 1 (which corresponds to 0 < ∆′ ≤ 1) the
impurities flow to strong coupling for low energies. In this regime, the
spin chain is effectively cut into three parts. The middle island (−d/2 ≤
x ≤ d/2) contains a discrete number of excitations, and tunneling through
the island is only possible by co-tunneling processes, in which two exci-
tations hop on and off the middle island simultaneously. These processes
are strongly suppressed at low temperatures. For finite frequency, pro-
cesses similar to photon-assisted tunneling become possible, so that we
expect the magnetization current through the spin chain to increase as a
function of frequency.

From Eq. (3.8) it is seen that the strength of the impurities is propor-
tional to the filling σ. Hence, we can control the finite-frequency char-
acteristics of the system by applying a constant magnetic field B0 to our
system. Most strikingly, this field allows us to control the frequency at
which the system will become conducting in the spin sector. Since the
Fermi wave vector depends on B0, this field also controls the number
of spinons that are on the island for a given width d of the island. The
number of spinons relative to half-filling can be estimated as (d/a)σ.

We can model the excitations in the two reservoirs by the quadratic
Luttinger Liquid action as well. We will assume two reservoirs that are
described by the the anisotropic Heisenberg Hamiltonian with ∆ = 0, so
that the excitations in the reservoirs are free, and we have Kr = 1. For
the following it is not strictly nessecary to use a free reservoir, indeed it
is enough to have a mismatch in Luttinger Liquid interaction parameter
between the spin chain and the two reservoirs.

3.3 Finite-frequency spin conductance

As long as we consider only magnetic fields that point along the quan-
tization axis, the magnetization current Im(r) through the system can be
determined from the conservation of spin, and is given by

Im(r) = −gµB

π
∂tϕ(r). (3.9)
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The nonlocal differential finite-frequency conductivity σ(x, x′, ω) is de-
fined as the Fourier transform σ(x, x′, ω) =

∫
dteiωtσ(x, x′, t) of the real-

time linear response of the magnetization current to an infinitesimal change
in the time-dependent magnetic field gradient

σ(x, x′, t− t′) =
δ ⟨Im(r)⟩
δ[∂x′B(r′)]

. (3.10)

In circuit theory, the quantity which is of interest is the spin conductance
G(ω), which we define for our system as

G(ω) = σ(−L/2, L/2, ω). (3.11)

With this convention a positive magnetic field difference ∆B yields a
positive magnetization current for the free system at zero frequency. To
calculate the transport properties we use the Keldysh formalism. [61] We
assume that at t = −∞ the system is described by the quadratic action
S0[ϕ] + SB[ϕ] and that the perturbation Sz[ϕ] is turned on adiabatically.
We calculate the conductivity to second order in Sz[ϕ]. In this description
the conductivity is given by

σ(x, x′, t− t′) = i
gµB

π

δ

δ[∂x′B(r′)]

(
δZ[J ]

δJ(r)

)∣∣∣∣
J=0

. (3.12)

Here, Z[J ] is the partition function of the system [see Eq. (B.2)], and
J(r) a generating functional. The evaluation of Eq. (3.12) can be done
using the methods described in Appendix B. We will only summarize
the important results here. We can show that the conductivity consists of
two contributions

σ(x, x′, ω) = σ0(x, x
′, ω) + σBS(x, x

′, ω). (3.13)

The first contribution to the conductivity describes the system in the ab-
sence of impurities. It gives the exact magnetization current for the free
system, since in the absence of impurities the current is linear in magnetic
field gradient. The free conductivity is given by

σ0(x, x
′, ω) = −

(
gµB

π
√
ℏ

)2

(iω) iGR
0 (x, x

′, ω). (3.14)

The retarded Green’s function for x, x′ in the chain or at the boundaries
can be obtained from analytic continuation of the Matsubara Green’s
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function for the inhomogeneous Luttinger Liquid model. [57] If we as-
sume infinitesimal dissipation in the leads, the retarded Green’s function
is given by

GR
0 (x, x

′, ω) =
πK

2ω

{
1 +

1

γ−1e−iω̃ − γeiω̃
×∑

r=±1

[
eirω̃(x̃+x̃′) + γr

(
e−irω̃|x̃−x̃′| + r

)
eirω̃
]}

. (3.15)

Here γ = (1 − κ)/(1 + κ) is the reflection coefficient for Andreev-like
(in the sense that for some processes the transmission coefficient can be
larger than 1) density wave scattering at the chain-reservoir interface,
and κ = K/Kr. The dimensionless frequency ω̃ = ω/ωL, where ωL = u/L
is the energy scale determined by the finite length of the spin chain. Also
x̃ = x/L. In the limit ω̃ → 0 we have G = Kr(gµB)

2/h as expected.
The quantity σBS(x, x

′, ω) contains corrections to the conductivity com-
ing from the impurities. For the situation with two impurities, it depends
on the amplitude and both the absolute and relative position of the im-
purities, and is given by

σBS(x, x
′, ω) =

(
π
√
ℏ

gµB

)4 ∑
ξ,ξ′=±d/2

σξ,ξ′(x, x
′, ω). (3.16)

As it turns out, the terms with ξ = ξ′ reduce to the known result for a
single impurity, [62, 88] the terms with ξ ̸= ξ′ come from interference
between the impurities located at −d/2 and d/2. Here, σξ,ξ′(x, x′, ω) is
given by

σξ,ξ′(x, x
′, ω) = −σ0(x, ξ, ω)

ℏω
[
σ0(ξ

′, x′, ω)iK(ξ, ξ′, ω) +

−σ0(ξ, x′, ω)iK(ξ, ξ′, 0)
]
. (3.17)

K(ξ, ξ′, ω) denotes the retarded backscattering current-backscattering cur-
rent correlator, which is defined as

iK(ξ, ξ′, ω) =

∫ ∞

0

dτeiωτ ⟨[IBS(ξ, τ), IBS(ξ
′, 0)]⟩ . (3.18)

The backscattering current operator is defined as

IBS(x0, t) =
gµB

πℏ
δSx0 [ϕ]

δϕ(x0, t)

= 2
gµB

πℏ
[
λbx0

cos 2ϕ(x0, t)− λax0
sin 2ϕ(x0, t)

]
. (3.19)
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In taking the functional derivative, ϕ(x0, t) is regarded as a function of
t only. Some lengthy but straightforward algebra shows that we can
rewrite Eq. (3.18) as

iK(ξ, ξ′, ω) = 2
(gµB

πℏ

)2 [
λaξλ

a
ξ′ + λbξλ

b
ξ′

] ∫ ∞

0

dτeiωτ

×
[
e2C0(ξ,ξ′,τ) − e2C0(ξ′,ξ,−τ)

]
, (3.20)

where C0(x, x
′, τ) is the regularized ϕϕ-correlator at zero temperature for

the free Luttinger Liquid action on a system of finite length L, given by

C0(x, x
′, τ) =

K

2

{ ∑
n∈even

γ|n| ln

[
n2 + α2

(n+ x̃− x̃′)2 + α2(iτ̄ + 1)2

]
+

1

2

∑
n∈odd

γ|n| ln

[
[(n+ 2x̃)2 + α2][(n+ 2x̃′)2 + α2]

[(n+ x̃+ x̃′)2 + α2(iτ̄ + 1)2]2

]}
. (3.21)

Here τ̄ = ωcτ , α = ωL/ωc, and ωc is the UV-cutoff of the theory, which is
on the order of J/ℏ. Finally, we have to replace the bare couplings λ in Eq.
(3.20) by the renormalized couplings, given by (max [ωL, ω] /ωc)

−1+Kλ. In
the next section we will evaluate Eq. (3.16) numerically.

3.4 Results
We have shown in Sec. 3.3 that the spin conductance of our system, de-
fined as G(ω) = σ(−L/2, L/2, ω), consists of two parts: the free conduc-
tance G0(ω) and the backscattering conductance GBS(ω). These contri-
butions are of opposite sign for low frequencies. Fig. 3.2 (top) shows
a plot of log10 |GBS(ω)| (GBS(ω) is here in units of (gµB)

2/h) as a func-
tion of log10(ω/ωc) for different values of the Luttinger liquid parameter
K. Different values of K correspond to different values of the constant
anisotropy ∆′ in the spin chain [see Eq. (3.3)]. It is seen that GBS(ω) goes
to zero at high frequencies. In the high-frequency regime the spin con-
ductance is therefore determined by the free conductanceG0(ω) only, and
hence the system is conducting. For lower frequencies the backscattering
conductance GBS(ω) grows, so that the total spin conductance decreases.
Since our calculation of GBS(ω) is perturbative in the strength of the im-
purities, we cannot trust our calculations at frequencies ω ≲ ω∗, where
ω∗ is the frequency such that |GBS(ω

∗)| = |G0(ω
∗)|. Indeed, instead of the
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Figure 3.2: (top) Plot of log10 |GBS(ω)| (in units of (gµB)
2/h) as a function

of log10(ω/ωc) for different values of the Luttinger liquid interaction pa-
rameter K (increasing from top to bottom). Used parameters are B0 = 70
mT, J = 102 K, L = 106a, d = 104a, Kr = 1, and ∆ = 0.3. The black dots
denote the frequencies ω∗ where |G0(ω

∗)| = |GBS(ω
∗)|. Our perturbative

results cannot be used for ω < ω∗. (bottom) Idem for different values
of B0 (decreasing from top to bottom). Used parameters are K = 0.7,
J = 102 K, L = 106a, d = 104a, Kr = 1, and ∆ = 0.3. The oscillatory
behavior is explained in the caption of Fig. 3.3 and the associated part in
the text.

behavior shown in Fig. 3.2 the total spin conductance G(ω) is approxi-
mately zero at frequencies below ω∗. Therefore, ω∗ is approximately the
frequency at which the system undergoes the transition from insulating
to conducting behavior.

Interestingly, we see that the backscattering conductance is strongly
dependent on the Luttinger liquid parameter K. If we focus again on the
conductance at the frequency ω∗, we see that an increase from K = 0.6 to
K = 0.7 leads to a decrease of the frequency at which the system switches
between conducting and insulating behavior of approximately 2 orders
of magnitude. We note that we have ωc ≈ J/ℏ, which for J = 102 K is
approximately ωc ≈ 2.1 · 1012 rad s−1. The previously discussed increase
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Figure 3.3: Real part of the backscattering conductance GBS(ω) as a func-
tion of ω/ωc for different values of the impurity separation d (in units of
a). Used values are B0 = 1.4 T, J = 102 K, L = 104a, K = 0.7, Kr = 1,
and ∆ = 0.2. It is seen that, independent of d, the conductance oscillates
with period 2πωL (we estimate (ωL/ωc) ≈ a/L here, the values for the free
system). The values of d only influences the shape of the oscillations, not
the period.

in ω∗ is therefore approximately from 7.4 · 105 rad s−1 to 6.7 · 107 rad s−1.
We see from Fig. 3.2 (bottom) that the frequency ω∗ strongly depends

on the applied magnetic field B0 as well. This is caused by the fact that
the strength of the impurity is proportional to B0, see Eq. (3.8). This
strong dependence is convenient for possible applications, since it allows
us to create an externally tunable capacitor. For the parameters in Fig. 3.2
we see that by increasing B0 from B0 = 70 mT to B0 = 700 mT, we can
increase ω∗ from 7.4 · 105 rad s−1 to 9.5 · 107 rad s−1.

In Fig. 3.3 we show the dependence of GBS(ω) on the distance d be-
tween the two impurities. Regardless of d, it is seen that the conduc-
tance oscillates with frequency 2πωL (see caption). These oscillations are
caused by interference of the bosonic excitations due to Andreev-like re-
flections at the boundaries between reservoir and spin chain. It has been
shown that, in the presence of a double barrier structure in the chain, ad-
ditional oscillations with frequency determined by the parameters d/L
and (L−d)/(2L) are visible in the current at finite driving field. [87] These
oscillations do not show up in the conductance at zero ∆B; however, they
are expected show up in the conductance at finite ∆B. Here, d changes
the shape of the oscillations, but not the frequency. All the calculations
here were done at T = 0. Generally, the effect of finite temperature is to
wash out the fluctuations.

The finite-frequency spin conductance could be measured by mea-



3.5. CONCLUSIONS 49

suring the spin accumulation in a system consisting of a spin diode of
the form proposed in Ref. [82] in series with the spin capacitor proposed
here, between two spin reservoirs. We can apply the driving field ∆B(t)
to the left reservoir, and measure the spin accumulation in the right reser-
voir. In this setup, the spin accumulation is zero when the spin capacitor
is in the insulating state. As was shown in Ref. [82], if we consider 104

parallel spin chains with K = 0.6 in a magnetic field B0 = 750 mT, and
amplitude of the driving field ∆B = 43 mT, we have a spin accumula-
tion of approximately 1012 magnons per seconds if the capacitor is in the
conducting state.

3.5 Conclusions
In this chapter we have proposed a spin capacitor in a system consisting
of a 1D nonitinerant spin chain adiabatically connected to two spin reser-
voirs. The spin chain is required to have an anisotropy in the exchange
interaction. We have shown that the replacement of a single atom in the
spin chain leads to an local backscattering term in the Hamiltonian that
flows to strong coupling at low energies. By including two such impuri-
ties in the spin chain we got a device which is insulating at zero frequency
driving field ∆B, and has a spin conductance that grows in magnitude
under an increase in frequency of the driving field. We have studied the
influence of the anisotropy in the exchange interaction ∆ and the exter-
nal magnetic field B0, and have found that both have a strong influence
on the finite frequency characteristics of the system. We have proposed a
way to measure the effects.





CHAPTER 4
Transistor behavior

Adapted from:
K. A. van Hoogdalem and D. Loss,

“Ultrafast magnon transistor at room temperature”,
Phys. Rev. B 88, 024420 (2013).

We study sequential tunneling of magnetic excitations in nonitinerant
systems through triangular molecular magnets. It is known that the
quantum state of these molecular magnets can be controlled by applica-
tion of an electric- or a magnetic field. Here, we use this fact to control
the flow of a pure magnetization current through the molecular mag-
net by electric- or magnetic means. This allows us to design a system
that behaves as a magnon-transistor. We show how to combine three
magnon-transistors to form a NAND-gate, and give several possible re-
alizations of the latter, one of which could function at room temperature
using transistors with a 11 ns switching time.

4.1 Introduction
In spintronic devices in insulating magnets, information about the logic
state can be encoded in collective magnetic excitations, typically either
spinons or magnons. [2] Due to the nature of these carriers, power dissi-
pation in such nonitinerant devices is anticipated to be much lower [14,
15] than in their electronic counterparts, as well as in spintronics devices
in semiconductors. [89] As excess heating is a limiting factor in modern
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electronics, spintronics in insulating magnets is considered a contender
to become the next computing paradigm. [22, 24, 26, 30, 82, 90, 91, 92]

Since any classical algorithm can be implemented using a combina-
tion of transistors only, the design of this element in insulating mag-
nets is a pivotal issue. Here, we theoretically show that that it is pos-
sible to make a transistor in which the logic state is encoded in purely
magnetic excitations, and whose operation can be controlled by either a
magnetic- or electric field. In our transistor, triangular molecular mag-
nets [93, 94, 95, 96, 97] take the role of gate, and we model the source
and drain by spin reservoirs. We show that our transistor, which could
operate at high clock speed at room temperature, can be used to imple-
ment the NAND-gate, one of the two existing universal gates for classical
computation.

One of the earliest proposals for a spin-based logic device is the spin-
field-effect transistor due to Datta and Das. [8, 98] Other proposals in-
clude spin-field-effect transistors in non-ballistic systems [99] and rings, [100]
a spin Hall effect transistor, [101] an adiabatic spin transistor, [102] and
a bipolar magnetic junction transistor. [103, 104, 105] However, all these
proposals have in common the fact that they concern spintronics in semi-
conductors. In contrast, for the reasons explained above, we focus on
spintronics in magnet insulators.

In our system, transport of magnetization occurs primarily by se-
quential tunneling of magnons (for ferromagnetic reservoirs) or spinons
(for antiferromagnetic reservoirs) through a molecular magnet. We will
show how it is possible to suppress or increase this sequential tunneling
(and thereby switch between the insulating and conducting state of the
transistor) by changing the internal state of the molecule through exter-
nal fields, either electric or magnetic. Molecular magnets are especially
suitable due to their chemical variety and controllability, as well as their
relatively large size, which makes control of the state easier. For similar
reasons, they have been proposed as good building blocks for novel spin-
polarized-, [106] as well as quantum computing devices. [107, 108, 109]

This chapter is organized as follows. In Sec. 4.2 we introduce in more
detail the previously mentioned system in which we will create our tran-
sistor. In Sec. 4.3 we calculate the tunneling rates of magnons/spinons
through a triangular molecular magnet, and calculate the spin current
through the molecular magnet from these rates. In Sec. 4.4 we show how
controlling the state of a molecular magnet by electric- or magnetic fields
allows us to design a transistor for either magnons or spinons. In Sec.
4.5 we focus on possible implementations of our transistor. Finally, we
discuss certain constraints on our results in Sec. 4.6.
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4.2 System
The system we employ consists of a triangular molecular magnet such
as {Cu3} (see Ref. [110]), weakly exchange-coupled to two identical spin
reservoirs. Initially, we will assume that a single spin in each reservoir
is coupled to a single spin located on a vertex of the triangular molecule,
see Fig. 4.1(a)-(b). We will consider both one-dimensional (1D) and two-
dimensional (2D) ferromagnetic (FM) spin reservoirs as well as 1D anti-
ferromagnetic (AF) spin reservoirs.

Both spin reservoirs, the molecular magnet, and the weak coupling
between the subsystems are described by the isotropic Heisenberg Hamil-
tonian with Dzyaloshinkii-Moriya (DM) interaction

H =
∑
⟨ij⟩

Jijsi · sj + Dij · (si × sj) . (4.1)

The exchange interaction Jij and DM vector Dij = Dijz are assumed
to be constant for each subsystem. Here, z denotes a unit vector. We
assume that for the reservoirs Jij = J and Dij = D, for the molecule
Jij = JM and Dij = DM/

√
3, and the coupling between the molecule

and the left (right) reservoir is described by Eq. (4.1) with Jij = J ′
1(2) and

Dij = 0 [see Fig. 4.1(b)]. We will assume that the J ′
i ’s set the smallest

energy scale in the system, so that we can analyze tunneling processes
using perturbation theory. In our model, a finite spin current is induced
by application of a magnetic field ∆B to the left spin reservoir, which
creates a non-equilibrium distribution of magnetic excitations. In reality,
due to the finite lifetime of the magnetic excitations, a steady state spin
current has to be generated using e.g. an AC magnet field difference, a
static temperature difference, [22] or spin pumping. [21, 24]

When DM ≪ JM , the low-energy subspace of the triangular magnetic
molecule consists of a quadruplet with total spin 1/2, and the eigenstates
of the Hamiltonian can be labeled as |mS,mC⟩ (see Refs. [111, 112]).
These states are eigenstates of the z projections of two mutually com-
muting effective spin-1/2 degrees of freedom: the total-spin operator
S = s1 + s2 + s3 (with eigenvalues mS = ±1/2) and the chirality oper-
ator C (with eigenvalues mC = ±1). The chirality operator can be de-
fined by its z component: Cz = (4/

√
3)s1 · (s2 × s3). An in-plane electric

field E = Exx + Eyy couples to the chirality through the spin-electric ef-
fect; [111, 112, 113] the coupling of a magnetic field B = Bz to the total
spin is described by the Zeeman interaction. Here, x, y, and z denote unit
vectors. The Hamiltonian for the low-energy subspace is [111, 112]

HM = gMµBBS
z + dE′ ·C∥ +DMS

zCz. (4.2)
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Figure 4.1: (a)-(b) Pictorial representation of a single purely magnetic
spin transistor, including Heisenberg parameters of the subsystems and
the different magnetic- and electric fields. The field B0 is applied to both
spin reservoirs (here shown as 1D AF spin chains) and the molecular
magnet, the magnetic field ∆B(t) is applied only to the left reservoir,
and the fields E ′ and B′ are applied only to the molecular magnet. The
left reservoir acts as source-terminal of the transistor, the molecular mag-
net as gate, and the right reservoir as drain (see inset). (c)-(d) Excitation
spectrum corresponding to the Hamiltonian in Eq. (4.2). In (c) we choose
gMµBB = DM = 1, in (d) we put DM = 5 and E ′ = 0.

We split the magnetic field B = Bz that is applied to the molecular mag-
net into two contributions,B = B′+B0, whereB′ is the magnitude of a lo-
cal magnetic field that is applied only to the molecular magnet, and B0 is
the magnitude of a global magnetic field that is applied to the entire sys-
tem [see Fig. 4.1(a)]. Furthermore, d is the effective dipole moment of the
molecule, E ′ is the rotated electric field, [111, 112] and C∥ = Cxx + Cyy.
The g-factor of the molecular magnet is denoted gM .

Assuming that E′ = E ′x, we can rewrite Eq. (4.2) in diagonal form as

HM = gMµBBS
z
θ + 2

√
(DM/2)2 + (dE ′)2Sz

θC
z
θ . (4.3)

Here, Sθ (Cθ) denotes the total-spin (chirality) operator with respect to the
basis given by | ↑,+⟩θ = sin θ| ↑,+⟩+cos θ| ↑,−⟩, | ↑,−⟩θ = − cos θ| ↑,+⟩+
sin θ| ↑,−⟩, and | ↓,+⟩θ, | ↓,−⟩θ the same but with the total spin flipped
and θ → −θ. We defined tan θ = [

√
(DM/2)2 + (dE ′)2 +DM/2]/dE

′. The
spectrum of the triangular molecular magnet is depicted in Fig. 4.1(c)-
(d).

In the setup depicted in Fig. 4.1(a), tunneling of magnetic excitations
between the left (right) spin reservoir and the molecular magnet is de-
scribed by the isotropic Heisenberg exchange interaction between sL(R)
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and s1(2) [see Fig. 4.1(b)]. The corresponding Hamiltonian is given by
HL(R) = J ′

1(2)sL(R) · s1(2). Later, we will also consider the scenario in which
a spin sM in a reservoir is coupled to the third vertex of the triangular
molecular magnet, s3. The Hamiltonian that describes this coupling is
given by HM = J ′

3sM · s3.
We want to find the effective Hamiltonian that describes the cou-

pling J ′
isj · si between a spin si on the molecular magnet and a spin sj

in a reservoir (hence {i, j} = {1,L}, {2,R}, {3,M}) within the low-energy
subspace of the molecular magnet spanned by the basis |mS,mC⟩ defined
above. In doing so, we neglect transitions to the higher-lying S = 3/2
subspace of the molecule. This is allowed as long as we restrict ourselves
to energies much smaller than JM . By evaluating all relevant matrix ele-
ments ⟨mS,mC |J ′

isj · si|m′
S,m

′
C⟩, we find the effective Hamiltonian

Hj = sj · ¯̄Ji(Cθ) · Sθ +Kis
z
jC

z
θ . (4.4)

Here, ¯̄Ji(Cθ) is an antisymmetric 3× 3-matrix. We interpret the first term
in Eq. (4.4) as effectively describing tunneling of spin excitations from
the spin reservoir onto the total spin of the molecular magnet and vice
versa, with a tunneling strength that depends on the chirality state of
the molecule. This term leads therefore to magnetization transport and
is the one of interest to us. The second term does not induce hopping of
magnetic excitations. We will show at the end of this section that its main
effect for FM reservoirs is that of a static perturbation on the chirality
state of the molecule, due to the static equilibrium magnetization Sz of
a FM reservoir. In Sec. 4.3 we will show that szj is not the most relevant
operator (in the renormalization-group sense) for AF reservoirs, so that
we can ignore the second term for AF reservoirs.

The matrix ¯̄Ji(Cθ) can be written generally as

¯̄Ji(Cθ) =
J ′
i

3

 Ai Bi 0
−Bi Ai 0
0 0 Ci

 . (4.5)

We find that A1 = − cos(2θ) − 2Cx
θ , B1 = − sin(2θ)Cy

θ , and C1 = 1 +
2 cos(2θ)Cx

θ . Furthermore, A2 = − cos(2θ) + Cx
θ −

√
3 cos(2θ)Cy

θ , B2 =
−
√
3 sin(2θ) − sin(2θ)Cy

θ , and C2 = 1 +
√
3Cy

θ − cos(2θ)Cx
θ . Lastly, we

find A3 = − cos(2θ) + Cx
θ +

√
3 cos(2θ)Cy

θ , B3 =
√
3 sin(2θ) − sin(2θ)Cy

θ ,
and C3 = 1−

√
3Cy

θ − cos(2θ)Cx
θ . The different functions Ki are given by

K1 = − sin(2θ) and K2 = K3 = sin(2θ)/2.
We note that in the scenario where a single reservoir-spin sL(R) is exchange-

coupled to all three spins si of the molecular magnet with equal strength
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J ′, and we also put E ′ = 0, the effective Hamiltonian is simply J ′sL(R) ·Sθ.
In this case, the tunneling of magnetic excitations no longer depends on
the chirality of the molecule.

The first thing we see from Eq. (4.4) is that a static equilibrium mag-
netization Sz of a reservoir acts as a constant perturbation on the state
of the molecular magnet through the relevant exchange interaction be-
tween reservoir and molecule. We will show that it is possible to make
this perturbation trivial, or even beneficial to our purposes, in all cases
under consideration. Additional dynamics of the systems is due to the
behavior of magnetic excitations which exist on top of the equilibrium
magnetization. We will study this dynamics next.

4.3 Transition rates and spin current
To determine the spin current through the molecular magnet for the setup
in Fig. 4.1(a), we use a master-equation approach. We assume that energy
is conserved in all tunneling processes, and ignore higher-order effects.
The transition rates from initial state |i⟩ to final state |f⟩ due to tunneling
processes between the left (right) reservoir and the molecule are denoted
by R

L(R)
if . Using Fermi’s golden rule, we can calculate RL(R)

if to second
order in J ′

1(2). We find

RL
if =

1

ℏ2

∫ ∞

−∞
dτ⟨i|H ′

L(τ)|f⟩⟨f |H ′
L(0)|i⟩. (4.6)

The rates RR
if are given by Eq. (4.6) with H ′

L replaced by H ′
R. The apostro-

phe denotes an operator in the interaction representation with respect to
the Hamiltonian of the uncoupled subsystems. The nontrivial part of the
problem reduces then to finding correlation functions such as ⟨s+L (τ)s

−
L (0)⟩

in the spin reservoirs, where s+(−)
L (τ) denotes the spin raising (lowering)

operator. In the next two sections we will find the relevant expressions
for both FM and AF spin reservoirs.

Calculation of the spin current requires both the transition rates as
well as the probabilities Pi that the molecule is in the state |i⟩. We define
the vector P = (P↑+, P↑−, P↓+, P↓−). The time evolution of the occupation
probability vector P is then given by dP/dt = R̂P, where R̂ is the 4x4 ma-
trix that contains the appropriate transition rates. The steady state prob-
abilities are contained in the kernel of R̂, normalized such that

∑
i Pi = 1.

Hence, P is uniquely determined by the transition rates. The spin cur-
rent IS is then defined as the net rate with which excitations leave the left
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reservoir

IS =
(
RL

↓+↑+ +RL
↓+↑−

)
P↓+ +

(
RL

↓−↑+ +RL
↓−↑−

)
P↓−+

−
(
RL

↑+↓+ +RL
↑+↓−

)
P↑+ −

(
RL

↑−↓+ +RL
↑−↓−

)
P↑−.

(4.7)

Next, we will calculate the relevant transition rates for the different types
of reservoirs.

FM reservoirs

We first consider the simplest case of tunneling of magnons between a
triangular molecular magnet and 1D FM reservoirs. We assume for sim-
plicity that the FM reservoirs are described by the isotropic Heisenberg
Hamiltonian, i.e. D = 0. Using the Holstein-Primakoff transformation,[2]
we can map a 1D FM system with spins S ≫ 1/2 on a system of non-
interacting bosonic particles (magnons). In the presence of a magnetic
field B0z, these magnons have a dispersion ℏωq = 4|J |S sin2(qa/2) +
gRµBB0. Here, q is the wave vector of the magnons, a is the lattice spac-
ing of the reservoir, and gR is the g-factor of the reservoir. The Holstein-
Primakoff transformation allows us to obtain the correlation functions
that are required to find the transition rates by rewriting ⟨s+L (τ)s

−
L (0)⟩ etc.

in terms of the bosonic operators a†q, aq. We find the rates

RL
↑+↓+ =

(
J ′
1ξ

L
+

3ℏ

)2
S

2π
KFM(ωB + ωE − ω∆B),

RL
↑+↓− =

(
J ′
1η

L
+

3ℏ

)2
S

2π
KFM(ωB − ω∆B).

(4.8)

The energy scales are given by ℏωB = gMµBB, ℏω∆B = gRµB∆B, and
ℏωE = 2

√
(DM/2)2 + (dE ′)2. Also, ξL+ = cos(2θ) and ηL+ = 2−sin(2θ). Fur-

thermore,KFM(ω) = ρ1D(ωq) [1 + nB(ωq)]|ωq=ω, where ρ1D(ωq) = a |∂ωq/∂q|−1

is proportional to the density of states (DOS) in the reservoir, and nB(ωq)
is the Bose-Einstein distribution of the magnons.

To get the other rates, we note that the only effect of inverting the
total spin while keeping chirality unchanged (in the initial and final state
simultaneously) is to replace 1+nB(ωq) → nB(ωq) as well as ξL+ → ξL− = ξL+
and ηL+ → ηL− = 2 + sin(2θ) in Eqs. (4.8); inverting both the chiralities
while keeping the total spin constant changes ωE → −ωE , ξL+ → ξL−, and
ηL+ → ηL−; finally, flipping both total spins and chiralities simultaneously
requires us to replace 1 + nB(ωq) → nB(ωq) and ωE → −ωE .
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To obtain the rates for tunneling between the molecule and the right
reservoir, we put ω∆B = 0 in Eqs. (4.8) and the derived rates. Fur-
thermore, we replace ξL± → ξR± =

∣∣cos(2θ) + i
√
3 sin(2θ)

∣∣, ηL± → ηR± =

2
∣∣1± sin(2θ) + i

√
3 cos(2θ)

∣∣, and J ′
1 → J ′

2.
The transition rates due to a coupling HM can be calculated analo-

gously, and we refrain from repeating those steps here. For the choosen
setup, the resulting rates due to a coupling HM are the same as those due
to a coupling HR, except for the replacement J ′

2 → J ′
3. We also mention

here that in the remainder of this work we will always chose our param-
eters (specifically J ′

1, J
′
2, and possibly J ′

3) in such a way that processes
that only flip the chirality but not the total spin [such processes would be
described for instance by a term szjC

x
θ in Eq. (4.4)] cannot occur. Hence,

we can put these rates to zero.
To obtain the rates for a system with 2D FM reservoirs, we simply

replace ρ1D(ωq) in Eqs. (4.8) by the 2D DOS, which for small |q| is given
by ρ2D(ωq) = ℏ/(4S|J |).

AF reservoirs

Next, we will derive the rates for tunneling of spinons between semi-
infinite AF spin-1/2 chains and a triangular molecular magnet. In order
to do so, we start by giving a description of the spin chains in terms of
Luttinger liquid theory, which turns out to be a convenient framework
for our purpose. For concreteness, we focus on the description of the left
spin chain. Eq. (4.1) can then be mapped on the anisotropic Heisenberg
Hamiltonian with anisotropy ∆ = J/

√
J2 +D2 by performing a position-

dependent rotation in spin space. After performing a Jordan-Wigner
transformation, taking the continuum limit of the resulting fermionic
Hamiltonian, and subsequent bosonization, the resulting Hamiltonian
describing the left spin chain [for which x ∈ (−∞, 0)] becomes [48]

HL =
ℏ
2π

∫ 0

−∞
dx
[
uK (∂xϑ(x))

2 +
u

K
(∂xφ(x))

2
]
. (4.9)

The bosonic density field φ(x) and its conjugate momentum field ϑ(x)
satisfy [φ(x), ∂x′ϑ(x′)] = iπδ(x − x′). The sound velocity u of the bosonic
excitations as well as the interaction parameter K can be determined
from the parameters J and D of the spin chain using Bethe Ansatz re-
sults. [53] At the isotropic point K = 1/2, and K = 1 describes the free
model. To analyze the hopping between spin chain and molecular mag-
net, we will need the continuum form of the spin operators in the spin
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chain. These are given by [51]

s−(x) =
eiϑ(x)√
2πa

(−1)x [cos (2φ(x)− 2kFx) + 1] ,

sz(x) = − 1

π
∂xφ(x) +

1

πa
cos [2φ(x)− 2kFx] .

(4.10)

Here, a is the lattice spacing of the spin chain, and kF = π/2a+gRµBB0/uℏ
is the Fermi wave vector. For simplicity, we will ignore the small contri-
bution proportional to B0 in the expression for the Fermi wave vector.
Since the spin chain is semi-infinite (with its last spin at x = −a), we re-
quire that the wave function vanishes at the origin. This constrains the
density field to a constant value at the origin, such that cosφ(0) = 0. To
analyze the behavior of the spin fields at the origin, we introduce chiral
fields φL/R(x) = Kϑ(x) ± φ(x), which are related on the entire space by
the constraint on the density field at the origin. [51] This allows us to
map Eq. (4.9) on a quadratic Hamiltonian that only depends on φL(x).
Performing a renormalization group (RG) analysis on the spin operators
near the boundary then yields that sz(0) is a marginal operator, and s±(0)
scales as 1−1/(2K), so that it is relevant for systems with finite DM inter-
action. Since sz(0) is less relevant than s±(0), we will ignore the former in
our perturbative analysis (assuming low enough energies). This allows
us to ignore perturbations due to the interaction between the molecu-
lar magnet and the sz(0) terms in Eq. (4.4) for AF reservoirs. Since the
RG flow is stopped either by temperature or by the relevant energy scale
EM of the molecular magnet, this gives the constraint on the tunneling
J ′
i [max(kBT,EM)/J ]−1+1/(2K) ≪ J for our sequential tunneling approach

to be valid.
In order to calculate the required transition rates, we need to calculate

spin-spin correlation functions at the boundary of the spin chain. Since
the density field is constant at the boundary, the sole relevant correlation
function is that of the momentum field ϑ(t) ≡ ϑ(0, t). At finite tempera-
ture T , it is given by

⟨[ϑ(t)− ϑ(0)]2⟩ = 2

K
ln

[(
iℏωC

πθ0

)
sinh

(
πθ0 [t− iδ]

ℏ

)]
. (4.11)

Here, θ0 = kBT , and ωC is the UV-cutoff of the theory. For this model it is
approximated as ωC ≈ J/ℏ. δ is a positive infinitesimal. The analysis of
the right spin chains goes along the same lines, and we will refrain from
repeating the steps here.
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To calculate the transition rates for AF reservoirs we substitute Eqs.
(4.10) in Eq. (4.6). Using the correlation function Eq. (4.11) and the fact
that φ(x) is constant at the boundary then gives the rates

RL
↑+↓+ =

(
J ′
1ζ

L
+

3ℏωC

)2

KAF(ωB + ωE − ω∆B),

RL
↑+↓− =

(
J ′
1ν

L
+

3ℏωC

)2

KAF(ωB − ω∆B).

(4.12)

Here, ζL+ = dL cos(2θ)/2, νL+ = dL[1 − sin(2θ)/2], and dL =
√
2/π. We

have ignored a small kF -dependent contribution to dL here. The function
KAF(ω) describes the influence of the spin chain on the transition rate and
is given by

KAF(ω) = ω2
C

∫ ∞

−∞
dτeiωτe−

1
2
⟨[ϑ(τ)−ϑ(0)]2⟩

= ωT

(
ωT

ωC

)−2+ 1
K

eπω/ωT
|Γ(1/(2K) + iω/ωT )|2

Γ(1/K)
.

(4.13)

Here, ωT = 2πθ0/ℏ.
To get the other rates, we note that the only effect of inverting the to-

tal spin while keeping chirality unchanged (in the initial and final state
simultaneously) is to change the sign of ωB, ω∆B, and ωE , as well as to
ζL+ → ζL− = ζL+ and νL+ → νL− = dL[1 + sin(2θ)/2]; inverting both the chiral-
ities while keeping the total spin constant changes ωE → −ωE , ζL+ → ζL−,
and νL+ → νL−; finally, flipping both total spins and chiralities simultane-
ously requires us to change the sign of ωB and ω∆B only.

To obtain the rates with the respect to the right spin chain, we put
ω∆B = 0 in Eqs. (4.12) and the derived rates. Furthermore, we replace
ζL± → ζR± = dR

∣∣cos(2θ) + i
√
3 sin(2θ)

∣∣ /2, νL± → νR± = dR|1 ± sin(2θ) +

i
√
3 cos(2θ)|/2, and J ′

1 → J ′
2. The constant dR = dL.

The transition rates due to a coupling HM can be calculated analo-
gously, and we refrain from repeating those steps here. As in the FM
case, the resulting rates are the same as those due to a coupling HR for
the choosen setup, except for the replacement J ′

2 → J ′
3.

We note that processes that flip chirality but not the total spin are
proportional to szj . Since we have shown that this operator is less relevant
than s±j , we can ignore such processes and put these rates to zero.

At this point, we have derived the transition rates for both AF and
FM reservoirs. As we have seen, the main difference in the resulting
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Figure 4.2: (a)-(b) log10(IS) versus ∆B for different values of the magnetic
field B, for 1D AF reservoirs with different Luttinger liquid parameters
K. Due to the gapless nature of the spinons, we can always set B = B0

and B′ = 0 when considering AF reservoirs. (c) log10(IS) versus ∆B
for different values of the magnetic field B, for 1D FM reservoirs. Here,
B0 = 1 µT and B′ ≈ B. (d)-(e) log10(IS) versus ∆B for different val-
ues of dE ′, for AF reservoirs with different Luttinger liquid parameters
K. We assumed DM/kB = 0.6 K and B0 = 150 mT. (f) log10(IS) ver-
sus ∆B for different values of dE ′, for the FM system. Here, B0 = 1
µT and B′ = 150 mT. We assumed DM/kB = 0.6 K. (g) Illustration of
the alternative switching mechanism for FM reservoirs. When the level
splitting of the molecular magnet is smaller than the minimum energy
of a magnon in the lead, the system is in the insulating phase. Again,
B0 = 1 µT. The plots (a)-(g) are for parameters J/kB = 100 K, T = 10
mK, and J ′

1/kB = J ′
2/kB = 0.05 K (see text). For the FM plots, S = 1. In

(d)-(f) we have assumed that the left (right) reservoir is coupled to spin
2(3) in the molecular magnet with strength J ′

1(2). This setup is beneficial,
since in this way both reservoirs decouple from the molecular magnet for
dE ′ ≫ DM . (h) IS versus ∆B for different values of dE ′ for the AF system,
at an experimentally accessible temperature. Parameters are J/kB = 100
K, J ′/kB = 2 K, DM/kB = 0.3 K, B = 75 mT, and T = 1 K.

rates is the replacement of the bosonic DOS and distribution function by
correlation functions typical for Luttinger liquid models. We note here
that, at low energies, the bosonic character of the magnons in the FM
system yields larger spin currents than the fermionic spinons, which is
extremely beneficial for the application we have in mind here.
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4.4 Transistor behavior

Next, we discuss two different ways in which our setup can be used
as a logic switch whose working is controlled by an external magnetic
field. This is one of two functionalities of a transistor, the other being
that of amplification of a signal. We will briefly get back to this second
functionality later in this section. For the description of the first mecha-
nism by which our setup can be used as a logic switch, we assume that
kBT ≪ ℏω∆B, ℏωB ≪ DM , so that we only need to take the states | ↑,−⟩θ
and | ↓,+⟩θ into account. We will assume B0 = 0 in our explanation
for simplicity. Referring back to Fig. 4.1(d), we see that spin transport
through the molecule will be strongly suppressed for magnetic field dif-
ferences such that ω∆B ≪ ωB, since in this regime the vast majority of the
excitations in the reservoirs lack the required energy to induce a spin-
flip on the molecule; For ω∆B ≲ ωB, transport increases rapidly with
ω∆B. Hence, for magnetic field gradients ω∆B ≈ ωB1 , our setup can be
switched between the insulating- (for ωB ≈ ωB2) and conducting (for
ωB ≈ ωB1) state. This is shown in Fig. 4.2(a)-(c).

The system with FM reservoirs offer an additional possibility to switch
between the insulating and conducting state: When ω∆B > ωB, the min-
imum energy of the magnons in the reservoir exceeds the level splitting
of the molecular magnet. In this case, the system is also insulating (ne-
glecting higher order processes). This behavior has been indicated in
Fig. 4.2(g). The use of this mechanism to switch between insulating and
conducting states requires smaller magnetic fields compared to the previ-
ously discussed mechanism. Furthermore, this method does not require
the assumptions on temperature put forward in the previous paragraph.

The second scheme may allow us to achieve amplification of an input
signal in systems with FM reservoirs under certain conditions. We con-
sider the magnetic field B applied to the molecular magnet to be the in-
put signal, and the magnetization of the drain to be the output signal. ∆B
is assumed to be constant. It is important to remember that the bosonic
distribution of magnons is peaked at low energies, i.e. nB(ωq) ≫ 1 at
small ωq and low temperatures. This translate into sizable currents at
given (small) values of ∆B when the system is in the conducting phase.
By switching ωB between just below ω∆B and just above ω∆B, we can then
control this relatively large spin current by a small change in B. This can
be viewed as a type of amplification.

Lastly, we will discuss how the switching behavior can be controlled
by an electric field. The mechanism is different from that for magnetic
control, since an electric field does not influence the splitting between
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the two lowest states with opposite total spin. However, we note that
when kBT, ℏω∆B, ℏωB ≪ ℏωE , transport occurs through transitions be-
tween states in the subspace spanned by | ↑,−⟩θ and | ↓,+⟩θ; transitions
to the states | ↑,+⟩θ and | ↓,−⟩θ are forbidden under these conditions
since they cannot conserve energy. To illustrate the mechanism through
which we can control the switching behavior by an electric field, we note
that it follows from the expressions for the transition rates RR

↑−↓+ and
RR

↓+↑− in the previous sections that when θ → π/4, i.e. when dE ′ ≫ DM ,
the molecular magnet and the right spin reservoir are effectively decou-
pled in the low-energy subspace in the setup described there. This can
be seen from the fact that the prefactors ηR−, νR− → 0 for θ → π/4.

Fig. 4.2(d)-(f) shows this switching behavior as a function of applied
electric field. To determine the required strength of the electric field, we
note that if we assume that the effective dipole moment lies between d =
(10−4 − 1)eR (see Ref. [113]), where R ≈ 1 nm is the bond length of the
molecular magnet, then dE ′/kB = 0.1 K corresponds to an electric field
E ′ ∼ (108 − 104) V m−1.

In Fig. 4.2 we assumed in plane Heisenberg exchange interaction be-
tween reservoirs and vertices for all AF reservoirs. This is motivated
by the fact that the sz(0)-operator in the AF reservoirs is irrelevant com-
pared to the s±(0) operators. For FM reservoirs we assumed isotropic
coupling J ′

1 and J ′
2. Additionally, we assumed that the third vertex of

each molecular magnet is coupled to a separate reservoir by an Ising-like
interaction with strength J ′

3 = J ′. The reason behind this assumption is
that in this way the sole effect of the equilibrium magnetization of the
reservoirs on the Hamiltonian of the molecular magnets is to act as an
effective magnetic field J ′Sz. This effective field for the parameters in
Fig. 4.2 (a)-(g) is on the order of 75 mT, and can take the role of B′. This
reduces (or could even completely take over the role of) the required ex-
ternal magnetic field B′. We emphasize that the assumption of coupling
to an additional third reservoir will not be needed for the experimental
realizations of the magnon-transistor in the next section.

4.5 Experimental realizations

A single magnetic dipole moving with constant velocity v gives rise to
a magnetic field Bdip(r) = µ0

4π
gµB

r3
[3 (z · êr) êr − z] in its rest frame, as well

as an electric field Edip(r) = v × Bdip(r) in the laboratory frame. Con-
ceivably, it is therefore possible to use the setup depicted in Fig. 4.3(a) to
measure the switching behavior of a collection of spinon-transistors due
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Figure 4.3: (a) Proposed setup to measure the switching effect due to
the spin-electric effect. The setup consists of a single-layer crystal of
triangular magnets, of dimension 0.2 × 0.2 µm. The crystal contains
∼ 4 ·104 molecules, given a lattice constant of 1 nm. The crystal is weakly
exchange-coupled to a bulk collection of AF 1D spin chains, such as is
realized in SrCuO2 (Ref. [74]) or Cs2CoCl4 (Ref. [68]). Assuming the lat-
tice constant is commensurate with that of the crystal, the setup contains
∼ 4 · 104 parallel transistors. The ∼ 103 molecules at the edge can be ac-
cessed electrically by an array of STM tips. Using our previous estimate
for d and the values from the text, fields between 108 − 104 V m−1 are re-
quired to switch between insulating and conducting state. (b) Combining
three transistors into a single NAND-gate. (c) Proposed setup to enhance
the magnetic field due to the accumulated magnons. The role of the per-
forated superconductor is to increase the density of magnetic-field lines
due to the magnetic field Bmag and thereby increase the magnetic field
acting on the molecular magnet. The crystal of molecular magnets is
placed directly above the hole in the superconductor. We denote by f the
portion of the total flux directly on the surface of the magnet that can be
enhanced into the area of the molecular magnets. ax and ay (not shown)
are the dimensions of the hole of the superconductor, which should equal
those of the crystal of molecular magnets.

to the spin-electric coupling at temperatures of ∼ 1 K. This can be done
by measuring the difference in voltage drop between points (0, 0, r) and
(0, r, 0) in the insulating- [at dE ′ ≈ 2DM ] and conducting (at dE ′ ≈ 0)
state. For the parameters in Fig. 4.2(h), and for ∆B ≈ 200 mT, the differ-
ence in spinon current between the two states is ∼ 3·1010 spinons s−1. For
r = 1 µm, this leads to a difference in voltage drop of ∼ 10−13 V, which is
within experimental reach. [114] The strength of the required switching
field E ′ can be achieved near a STM-tip for molecules with reasonable d,
see the caption of Fig. 4.3(a). This experiment would be interesting in its



4.5. EXPERIMENTAL REALIZATIONS 65

own right, since to our knowledge there have been no measurements of
the spin-electric effect yet.

By combining three transistors as shown in Fig. 4.3(b), we can create
a purely magnetic NAND-gate. The NAND-gate is a two-bit gate that
gives a logical 0 as outcome if and only if both the input bits are 1, and
yields a logical 1 otherwise. We will show how it may be possible to
implement a NAND-gate consisting of magnon-transistors using readily
available materials at ∼ 10 K, and we will indicate the requirements for
a working NAND-gate at room temperature.

Within a single transistor, the two FM spin reservoirs act respectively
as source and drain. In our proposal, a finite non-equilibrium magnetiza-
tion of the source (drain) encodes the logical state 1 of the source (drain);
the logical state 0 has only the equilibrium magnetization present. A fi-
nite non-equilibrium magnetization of a reservoir is caused by having an
excess number of magnons in that reservoir. The logic state at the gate is
encoded in the strength of the local magnetic field, such that the transis-
tor is insulating (conducting) if the logical state of the gate is 1 (0). Here,
we propose to use the magnetic dipole field Bmag = Bmagz due to the ex-
cess N accumulated magnons in the 1-state of the relevant terminal as
gate-field at the points A-C in Fig. 4.3(b).

We use the setup in which the left (right) reservoir in a given transis-
tor is exchange-coupled to all three vertices of the triangular magnet of
that transistor with equal strength J ′

1(2) (see Sec. 4.2), and put E ′ = 0.
We assume that J ′

1 > 0, so that the coupling between the left reservoir
and the molecular magnet is antiferromagnetic; we set J ′

2 < 0, so that the
coupling between the right reservoir and the molecular magnet is ferro-
magnetic. It is important to remember that both reservoirs are assumed
to be ferromagnetic, but they are not necessarily identical. Therefore,
they could be engineered in such a way that J ′

1 and J ′
2 have the prop-

erties stated above. In an experiment, J ′
1 and J ′

2 should be chosen such
that the effects of the equilibrium magnetization of the reservoirs on the
state of the molecular magnet (see end of Sec. 4.2) approximately cancel
each other, up to the required value of B′ in the conducting state of the
transistor. This solves the issue of having to create relatively large local
magnetic fields B′ in our proposal.

If the ordering of the energy levels of the molecule is such as depicted
in Fig. 4.1(d), we only need to consider transitions between the states
| ↓,+⟩θ and | ↑,+⟩θ. To switch between the insulating- and conducting
state of a single transistor, we use the fact that the system is insulating for
ωE + ωBmag > ω∆B, and conducting for ωE + ωBmag < ω∆B. Due to thermal
fluctuations, the magnetic field Bmag is not constant. These fluctuations
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limit the fidelity of our NAND-gate. We characterize the fluctuations
by the standard deviation σ = ⟨[n̂− ⟨n̂⟩]2⟩1/2 of the number of magnons
n on the gate, and calculate σ using the equilibrium distribution of the
magnons using the grand canonical ensemble.

For the implementation at temperatures T ∼ 10 K, we consider quasi-
2D FM reservoirs of thickness d with spin S = 10, |J |/kB = 5 K, and
lattice spacing a = 1 nm. These are the approximate values for yttrium
iron garnet (YIG), a material that is often considered appropriate for ap-
plications in spintronics. For the source and drain, we consider a quasi-
2D sample of dimensions 300 nm × 300 nm. For simplicity, we assume
a single layer sample with d = 1 nm, and we put J ′

1/kB = −J ′
2/kB = 1

K in our calculation. As our gate, we use a single layer crystal of molec-
ular magnets with DM/kB = 0.26 K (this corresponds to 200 mT), and
JM/kB ≫ 10 K. Lower JM ’s can be used when the the experiment is
performed at a lower temperature, making the use of materials such as
{Cu3} (see Ref. [110]) feasible. Assuming matching lattice constants, this
setup contains 300 parallel single-molecule transistors. We estimate the
field at the position of the molecular magnet [see Fig. 4.3(c)] due to the
N magnons as

∣∣Bmag
∣∣ ≈ 1

2
µ0NgµBf/(daxay) (see caption of Fig. 4.3(c) for

the definitions). Additionally, we use parameters gM = gR = 2, f = 0.15,
B0 = 200 mT, B′ = −160 mT in the insulating phase and B′ = −140
mT in the conducting phase, and ∆B = 50 mT. In the conducting state,
we find a magnon current exceeding 1.5 · 1010 s−1, which amounts to a
switching time of a transistor of ∼ 300 ns. In our model, the fidelity of a
single-NAND-gate then exceeds 99.9%.

By using materials with an increased g-factor, we can create a NAND-
gate that functions at room temperature, consisting of transistors with a
∼ 11 ns switching time. We use the same setup as in the previous para-
graph, but with parameters S = 3, |J |/kB = 500 K, a = 1 nm for the
2D FM reservoir; DM/kB = 2.6 K (this corresponds to 200 mT for the
g-factor under consideration), and JM/kB ≫ 300 K for the molecular
magnet; and J ′

1/kB = −J ′
2/kB = 100 K, gM = gR = 20, f = 0.015, B0 = 1

T (easily achievable near the surface of a FM), B′ = −160 mT in the insu-
lating phase and B′ = −140 mT in the conducting phase, and ∆B = 50
mT. Evidently, the development of molecular magnets with an exchange
interaction JM/kB ≫ 300 K, needed in order to have stable molecular
magnets at room temperature, will require a certain amount of experi-
mental progress: typical values of currently existing molecular magnets
are in the range of 1-10 K. However, there is nothing fundamental that
forbids the existence of molecular magnets with larger exchange interac-
tion. We find a magnon current exceeding 3.7 · 1011 s−1 in the conducting
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state, which corresponds to a 11 ns switching time. Reducing the magnon
fluctuations on the gate can further reduce the switching time. As before,
the fidelity of a single NAND-gate exceeds 99.9%.

4.6 Discussions

In this section, we will discuss several different requirements that have
to be fulfilled for our perturbative calculations of the tunneling current
through the molecular magnet to be valid. The first constraint on our cal-
culations concerns the validity of our spin wave analysis of the FM spin
chains; the number of magnons per site has to satisfy ⟨a†iai⟩ ≪ 2S. In our
calculations, the average number of magnons per site is typically 0.05-
0.13, so that non-interaction spin wave theory is valid. The AF theory is
valid for energies much smaller than the exchange interaction J .

We checked the validity of our sequential tunneling approach in a
self-consistent manner. For the AF reservoirs, the criterion is simply that
the tunneling current is much smaller than the current in the ballistic
system, that is IS(∆B) ≪ gµB∆B/h. For the FM reservoirs, we require
that the broadening of the energy levels of the molecule is smaller than
the unperturbed level splitting. In other words, all transition rates RL/R

if

of the FM system satisfy

R
L/R
if /nB(ωi − ωf ) ≪ |ϵ0i − ϵ0f |/ℏ, (4.14)

where ϵ0i , ϵ0f are the unperturbed energies of the states |i⟩, |f⟩.
Another constraint is given by the fact that, near Breit-Wigner res-

onances, the current through the molecular magnet can be strongly in-
creased due to coherent tunneling processes. This only holds at low tem-
peratures, at higher temperatures the broadening of the thermal distribu-
tion destroys coherent tunneling, and the sequential tunneling approach
is valid again. The minimal temperature T for FM reservoirs is given by

R
L/R
if /nB(ωi − ωf ) ≪ kBT/ℏ. (4.15)

All our calculations are at high enough temperature for the sequential
tunneling approach to be valid for the FM system.

We note that relaxation of the state of the molecular magnet can be
neglected as long as the coupling strength between the reservoirs and the
molecular magnet exceeds the coupling between the molecular magnet
and hyperfine- and phonon baths.
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4.7 Conclusions
Using a sequential tunneling approach, we have studied transport of
magnons and spinons through a triangular molecular magnet which is
weakly coupled to two spin reservoirs. We have shown that, by changing
the state of the molecular magnet through application of an electric- or
magnetic field, we can control the magnitude of the spin current through
the molecular magnet. We used this fact to propose a magnon-transistor,
whose operation can be controlled by an electric- or magnetic field. We
have shown for which parameters our transistor could operate at room
temperature with a 11 ns switching time. We have shown how several
magnon-transistors can be combined to create a NAND-gate.
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CHAPTER 5
Thermal Hall effects

Adapted from:
K. A. van Hoogdalem, Y. Tserkovnyak, and D. Loss,

“Magnetic texture-induced thermal Hall effects”,
Phys. Rev. B 87, 024402 (2013).

Magnetic excitations in ferromagnetic systems with a noncollinear
ground state magnetization experience a fictitious magnetic field due
to the equilibrium magnetic texture. Here, we investigate how such fic-
titious fields lead to thermal Hall effects in two-dimensional insulating
magnets in which the magnetic texture is caused by spin-orbit interac-
tion. Besides the well-known geometric texture contribution to the ficti-
tious magnetic field in such systems, there exists also an equally impor-
tant contribution due to the original spin-orbit term in the free energy.
We consider the different possible ground states in the phase diagram
of a two-dimensional ferromagnet with spin-orbit interaction: the spi-
ral state and the skyrmion lattice, and find that thermal Hall effects can
occur in certain domain walls as well as the skyrmion lattice.

5.1 Introduction
Hall effects for magnon currents are of interest both from a fundamen-
tal point of view as well as from the point of view of applications. Even
though the physical magnetic field does not directly couple to the orbital
motion of neutral magnons, certain kinds of spin-orbit interactions can

71
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lead to Hall phenomena similar to those of a charged particle in a mag-
netic field. Mechanisms that have been shown to give rise to nonzero
Hall conductances in certain insulating magnets include coupling of spin
chirality to a magnetic field [115] and Dzyaloshinskii-Moriya (DM) inter-
action. [116] Of interest for applications is the fact that Hall effects in
insulating magnets allow one to control the magnon spin current.

Recently, Katsura et al. predicted [115] a nonzero thermal Hall con-
ductivity for the Heisenberg model on the Kagomé lattice. The finite
conductivity originates from the fact that the coupling of spin chiral-
ity to an applied magnetic field leads to a fictitious magnetic flux for
the magnons in the specific case of the Kagomé lattice. Later, Onose et
al. measured [116] the thermal Hall effect in the pyrochlore ferromagnet
Lu2V2O7. In this experiment, the combination of DM interaction and the
pyrochlore structure leads to the finite thermal Hall conductivity.

In those previous studies, the thermal Hall effect was considered us-
ing a quantum mechanical lattice model as starting point. The symmetry
of the underlying lattice played a crucial role. We take a different ap-
proach and consider insulating ferromagnets with a noncollinear ground
state magnetic texture, which we model using a phenomenological de-
scription. It is well known that the effect of the presence of a noncollinear
ground state on the elementary excitations in a ferromagnet can be cap-
tured by introducing a fictitious electromagnetic potential in the equa-
tion of motion for the magnons. [28, 29] Spin-orbit interactions gener-
ally also contribute non-Abelian gauge fields into the magnetic Hamilto-
nian. [117] Furthermore, non-linearized gauge fields for Dzyaloshinskii-
Moriya interaction were derived in Ref. [118] using the CP1 representa-
tion. There are correspondingly two contributions to the fictitious elec-
tromagnetic potential. The first one only depends on the equilibrium
magnetic texture, the second depends on the form of the free energy that
gives rise to the noncollinear ground state in the first place, i.e. the contri-
bution to the free energy due to spin-orbit interaction. Since both contri-
butions are determined by the spin-orbit interaction, they will generally
be of similar magnitude.

It has been shown that the fictitious electromagnetic potential cou-
ples the motion of magnetic texture and that of heat currents. [119] This
coupling reveals itself through local cooling by magnetic texture dynam-
ics [119] and thermally induced motion of magnetic textures such as do-
main walls. [120, 121]

This chapter is organized as follows. In Section 5.2 we introduce our
system and derive the fictitious electromagnetic vector potential that acts
on the magnons, which turns out to include an often-overlooked contri-
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Figure 5.1: Pictorial representation of the thermal spin Hall effect. A tem-
perature difference ∆T applied to a sample leads to a finite heat current.
Since the heat current is carried by the magnons in the system, the ficti-
tious magnetic field that magnons experience due to a non-trivial mag-
netic ground state will lead to a finite thermal Hall conductivity.

bution. In Sec. 5.3 we derive the relevant ground state properties of
the different ground states in the phase diagram of the insulating ferro-
magnet with nonzero Dzyaloshinskii-Moriya interaction. In Sec. 5.4 we
calculate the band structure of one of the ground states, the triangular
skyrmion lattice, and calculate its thermal Hall conductivity.

5.2 Magnons in the presence of magnetic
texture

We consider a two-dimensional non-itinerant ferromagnet in the x-y plane
with spatially varying and time-dependent spin density sm(r, t). The
spin density is related to the magnetization M(r, t) as sm(r, t) = M(r, t)/γ,
where γ is the gyromagnetic ratio (γ < 0 for electrons). The magnitude s
of the spin density is assumed to be constant, and m(r, t) is a unit vector.
The system is described by the Lagrangian [28, 29]

L =

∫
d2r [D(m) · ṁ − F (m, ∂jm)] . (5.1)
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Here D = sℏ (nD × m) /(1 + m · nD) is the vector potential correspond-
ing to the Wess-Zumino action with an arbitrary nD pointing along the
Dirac string. F (m, ∂jm) is the magnetic free energy density of the sys-
tem, which we assume to be of the form (here j = x, y; double indices are
summed over)

F (m, ∂jm) =
Js

2
(∂jm)2 −Msm · H + sFΓ(m, ∂jm). (5.2)

Here J is the strength of the exchange interaction, Ms = γs is the satura-
tion magnetization, H the external magnetic field (which we will always
assume to be in the z direction), and FΓ(m, ∂jm) describes terms due to
broken symmetries. For isotropic ferromagnets in the exchange approx-
imation, the leading order terms in the free energy are quadratic in the
texture [first term in Eq. (5.1)]. Breaking inversion symmetry by spin-
orbit interactions, while still retaining isotropy in the x-y plane, allows
us to construct terms that are first order in texture. These terms are given
by

FΓ(m, ∂jm) = ΓRmz∇ · m + ΓDMm · (∇× m) . (5.3)

We defined ∇ = ∂xx + ∂yy, where x,y are unit vectors. The first term is
due to structural inversion symmetry breaking and hence is anisotropic
in the z direction. Such terms occur in systems with finite Rashba spin-
orbit interaction [122] or on the surface of a topological insulator. [123]
The second term describes DM interaction, [36, 37] which originates from
the breaking of bulk inversion symmetry and is therefore isotropic. We
note that the two terms in Eq. (5.3) are equivalent (up to an irrelevant
boundary term) under a simple rotation around the z axis in spin space.
Since such a rotation does not have any additional effect on the equation
of motion for the magnetization, Eq. (5.4), we can always absorb the term
proportional to ΓR in the term proportional to ΓDM. We will therefore
put ΓR to zero in the remainder of this work. For simplicity, we have
ignored a term −κm2

z that would describe easy axis anisotropy, and a
term −Msm · Hm/2, where Hm describes the magnetic stray field, in Eq.
(5.2).

Substitution of Eq. (5.1) in the Euler-Lagrange equation leads to the
Landau-Lifshitz equation

sℏṁ − m × δmF(m, ∂jm) = 0, (5.4)

where F(m, ∂jm) is the total magnetic free energy of the system. We
split the magnetization m in a static equilibrium magnetization m0 and
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small fast oscillations δm (spin waves) around the equilibrium magne-
tization. To lowest order in δm the two are orthogonal. In a textured
magnet m0 = m0(r), which makes finding the elementary excitations a
nontrivial task. To circumvent this issue we introduce a coordinate trans-
formation m′(r) = R̂(r)m(r), where R̂(r) is such that the new equilibrium
magnetization m′

0 is constant and parallel to the z axis. In this coordinate
frame the spin waves are in the x-y plane.

The 3 × 3 matrix R̂ describes a local rotation over an angle π around
the axis defined by the unit vector n = [z + m0] / [2 cos (θ/2)]. Here, θ
is the polar angle of m0, and z is a unit vector. Using Rodrigues’ rota-
tion formula, we find R̂ = 2nnT − 1̂. The effect of the transformation to
the new coordinate system is that we have to use the covariant form of
the differential operators, ∂µ → (∂µ + Âµ), with Âµ = R̂−1(∂µR̂), in the
Landau-Lifshitz equation. The subscript µ describes both time (µ = 0)
and space (µ = 1, 2) coordinates.

In the new coordinate system, the Landau-Lifshitz equation for the
free energy Eq. (5.2) becomes

iℏṁ+ =
[
J (∇/i+ A)2 + φ

]
m+. (5.5)

Here, m± = (δm′
x ± iδm′

y)/
√
2 describe circular spin waves in the rotated

frame of reference. Furthermore, φ = m0 · H/s + ℏ[R̂−1(∂tR̂)]|12, and the
components of the vector potential A are given by Aj = Âj|12. The skew-
symmetric matrices Âj are here defined as Âj = R̂(∂j − ζÎj)R̂. In the
latter equation we defined ζ = ΓDM/J , and the matrices

Îx =

 0 0 0
0 0 −1
0 1 0

 and Îy =

 0 0 1
0 0 0
−1 0 0

 . (5.6)

We see that the components Aj of the fictitious magnetic vector potential
consist of two contributions. The first comes from the exchange interac-
tion in the presence of magnetic texture; the second (texture-independent)
part originates from the DM interaction term in the free energy. While it
may be tempting to neglect the latter contribution, we will show here that
it has important consequences. Indeed, typically both contributions will
be of the same order of magnitude. This is because the magnetic texture
itself is caused by the DM interaction, and will therefore manifest itself
on lengthscales J/ΓDM.

We can quantize Eq. (5.5) by introducing the bosonic creation opera-
tor b† ∝ m−. This quantization works since m′

+ and m′
− satisfy approxi-

mate bosonic commutation relations in the limit of small deviations from
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equilibrium. After quantization, Eq. (5.5) can be interpreted as the von
Neumann equation belonging to the Hamiltonian

H =

∫
d2rb†

[
J (∇/i+ A)2 + φ

]
b. (5.7)

Therefore, the elementary excitations of the system behave as noninter-
acting bosonic quasiparticles. The effect of the smoothly-varying equilib-
rium magnetization is captured by the inclusion of a fictitious magnetic
vector potential A and electric potential φ.

In the derivation of Eq. (5.5) we have assumed that the length of
a typical wave packet is much smaller than the spatial extension over
which the magnetic texture varies. We will refer to this as the adiabatic
approximation. [124] Using this assumption, we have neglected terms
in Eq. (5.5) that are higher order in texture. Such terms, which become
important at lower wave vectors, lead to two distinct effects. [124] Firstly,
a term −J [(Âx|13)2+(Âx|23)2+(Ây|13)2+(Ây|23)2]/2, which is quadratic in
magnetic texture, has to be added to the fictitious electric potential φ in
Eq (5.5) at low wave vectors. Secondly, at low wave vectors one needs to
add to the right-hand side of Eq. (5.5) a term J [(Âx|13+iÂx|23)2+(Ây|13+
iÂy|23)2]m−, which introduces a finite ellipticity of the magnons.

5.3 Textured ground states

In this section we will present the different possible ground states for
systems with free energy given by Eq. (5.2) (with ΓR = 0), as a function
of the external magnetic field H = Hz. We will also present the ficti-
tious magnetic vector potentials that find their origin in these textured
ground states. It has been shown [125, 118] that as the magnetic field H
increases from zero, the ground state of a two-dimensional ferromagnet
with spin-orbit interaction changes from a spiral state for H < Hc1, to
a skyrmion lattice state for magnetic fields Hc1 < H < Hc2, and finally
to the ferromagnetic ground state for H > Hc2. Both critical fields Hc1

and Hc2 are typically of the order Γ2
DM/J (see Refs. [118, 126]). This last

observation, in combination with the adiabatic assumption and the fact
that the equilibrium magnetization is time independent, allows us to ne-
glect the fictitious electric potential φ in Eq. (5.7). Since the ferromagnetic
ground state has no magnetic texture, it is of no interest for our purposes.
In this section we will therefore derive the properties of the spiral- and
skyrmion lattice ground state.
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Spiral state

Following Ref. [125] we will derive the properties of the spiral ground
state m0(r) of a two-dimensional ferromagnet with DM interaction. We
write m0(r) in the following form

m0(r) = cos ξ sin θx + sin ξ sin θy + cos θz. (5.8)

For the spiral state, θ = θ(y) and ξ is a constant. With these constraints,
the free energy becomes a functional that depends only on θ(y) and ∂yθ(y).
Minimizing this functional with respect to θ(y) gives the following dif-
ferential equation

∂2yθ + α sin θ = 0, (5.9)

where we defined α = −γH/J . Eq. (5.9) is the equation of motion for the
mathematical pendulum. The general solution is given in implicit form
by the expression ∫ θ(y)

0

dθ

2

1√
1−m2 sin2 θ/2

=
1

2
βy, (5.10)

where m = 4α/(2α + C) and β =
√
2α + C. Alternatively, we can write

θ(y) = 2ϕ(βy/2,m), where ϕ(u,m) is the amplitude of the Jacobi elliptic
function. The constant C is the first constant of integration. To determine
it, we use the fact that θ(y) is a periodic function with period y0. By
integrating the inverse of the first integral ∂yθ of Eq. (5.9) over one period
we can determine y0 as

y0 =

∫ 2π

0

dθ
1√

2α cos θ + C
. (5.11)

To fix C, we minimize the average free energy (1/y0)
∫ y0
0
F (θ, ∂yθ), which

leads to the following implicit expression for C∫ 2π

0

dθ
√
2α cos θ + C = 2πζ. (5.12)

The minimization of the average free energy also fixes cos ξ = 1. From
this we see that the ground state is a spiral state whose structure lo-
cally resembles a Bloch domain wall, as is expected for the DM inter-
action. [125] We also note that in the case of zero magnetic field (α = 0)
the spiral state is described by a simple sinusoid with period y0 = 2π/ζ ,
whereas for finite magnetic field the mirror symmetry with respect to the
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x − y plane is broken. Eq. (5.12) also puts a constraint on the maximum
value of H for which the spiral state is stable.

Some general observations can be made with regard to the fictitious
magnetic vector potential due to the spiral ground state. For the ground
state Eq. (5.8) with θ = θ(y) and ξ constant, the fictitious vector po-
tential is A(y) = ζ sin θ(y)x. This potential is caused solely by the DM
contribution to A, the geometric texture contribution is zero everywhere.
The z component of the fictitious magnetic field that the magnons ex-
perience is given by Bz(y) = ∇× A|z = −ζ∂yθ(y) cos θ(y). It is easily
seen that the total fictitious magnetic flux over one period of the spiral
⟨Bz⟩ =

∫ y0
0

dyBz(y) = 0. The fictitious magnetic field Bz(y) has been
plotted in Fig. 5.2 for different magnitudes of the applied magnetic field
H = Hz. Transport in the presence of a magnetic field that is spatially
varying in one direction and has zero average has been studied exten-
sively (see Ref. [127] for a recent review). It is well known that these
systems do not display a finite Hall conductivity. However, such mag-
netic fields have been predicted to influence the longitudinal conduc-
tance, due to the presence of localized snake orbits at energies that are
low compared to the cyclotron frequency associated with the amplitude
of the magnetic field. [128, 129] From our analysis it is also seen that
one-dimensional textures can give rise to a nonzero average fictitious
magnetic flux for certain domain walls, since these consist of only half
a period of the spiral. Hence, such domain walls will display the thermal
Hall effect.

Lastly, we note that a proper statistical mechanical description of the
spiral phase in three dimensions (or less) requires the inclusion of leading-
order non-linearities in the free energy. [130] The role of those non-linearities
in the thermal Hall physics is yet to be understood.

Skyrmion lattice

For magnetic fieldsHc1 < H < Hc2 the ground state of the two-dimensional
ferromagnet with DM interaction is a skyrmion lattice. [126] This triangu-
lar lattice has basis vectors a1 = ax and a2 = (a/2)x + (a

√
3/2)y, and con-

tains skyrmions with radius R. The size of a single unit cell is (
√
3/2)a2,

where a = 2R. The magnetization m0(r) of a single skyrmion of radius R
centered at the origin is parametrized in polar coordinates (ρ, ϕ) by Eq.
(5.8) with θ = θ(ρ) and boundary conditions

θ(0) = π and θ(R) = 0. (5.13)



5.3. TEXTURED GROUND STATES 79

Figure 5.2: Fictitious magnetic field due to the spiral ground state. Pa-
rameters are ζ = 70 µm−1, J/(kBϵ2) = 63 K, and the interatomic spacing
is taken to be ϵ = 4.5 Å. (See Ref. [126]) To make the connection to elec-
tromagnetism, we note that a fictitious fieldBz = 2πζ/y0(0) ≈ 5·1015 m−2

acting on a spin wave gives rise to the same magnetic length as a ℏ
e
ζ2 ≈ 3

T magnetic field acting on a free electron.

Furthermore, ξ = Nϕ − π/2, where N is the charge of the skyrmion.
We will assume N = 1 throughout. The magnetization profile can in
principle be determined numerically by minimizing the free energy with
the aforementioned boundary conditions. However, for simplicity we
will assume a linear dependence θ(ρ) = π(1−ρ/R) for our analysis of the
texture-induced thermal Hall effect.

In polar coordinates the fictitious magnetic vector potential A(r) due
to a single skyrmion centered at the origin is given by (here 0 ≤ ρ ≤ R
and ϕ is a unit vector)

A(r) =
[
cos θ(ρ)− 1

ρ
− ζ cos θ(ρ)

]
ϕ. (5.14)

The z component of the fictitious magnetic field for this vector potential
is given by Bz(ρ) = ρ−1∂ρ(ρAϕ). It follows that the total flux through
a unit cell is ⟨Bz⟩ = 2π

∫ R

0
dρρBz = 4π. This means that each unit cell

contains two magnetic flux quanta. The nonzero average flux is caused
by the texture contribution to A(r), the DM-interaction contribution av-
erages to zero. From the fact that the average magnetic flux is nonzero,
it follows that the skyrmion lattice has a nonzero Hall conductivity. One
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might then be inclined to take the average value of the fictitious mag-
netic field and ignore the spatial dependence when calculating the ther-
mal Hall conductivity of the skyrmion lattice. However, we will show
shortly that the spatial variation of the fictitious magnetic field is sub-
stantial, so that we should take both contributions into account in our
analysis.

To illustrate this point, let us consider the situation in which R =
π/ζ . In that case Bz(ρ) = ζ2 cos θ(ρ). The spatial variation is therefore
large enough that the fictitious field switches from a negative minimum
at ρ = 0 to a positive maximum at ρ = R. Such large variations have been
shown to have a significant influence on the band structure of magnetic
lattices. [131]

For what follows, it will be convenient to formally split the fictitious
magnetic vector potential in two parts, A(r) = A0(r) +A′(r), where A0(r)
describes the contribution from the homogeneous nonzero average ficti-
tious magnetic flux, and A′(r) the periodic contribution with zero aver-
age (we work in the Landau gauge)

A0(r) = −B0yx,

A′(r) =
∑
τ,η

[Ax(τ, η)x + Ay(τ, η)y] ei(τk1+ηk2)·r. (5.15)

Here, B0 = 8π/(
√
3a2) is the average fictitious magnetic field, and k1 =

(2π/a)(x − y/
√
3) and k2 = (2π/a)(2/

√
3)y are the basis vectors of the

reciprocal lattice, such that the periodic part of the fictitious vector po-
tential satisfies A′(r + a1) = A′(r + a2) = A′(r). Such spatially varying
magnetic fields are known to give rise to a finite Hall conductivity, even
in the absence of a nonzero average. [132]

5.4 Thermal Hall conductivity of the skyrmion
lattice

Since the magnetic excitations of the skyrmion lattice can be described
by a free bosonic Hamiltonian with a spatially varying fictitious magnetic
field with on average two magnetic flux quanta per unit cell and the same
symmetry as the skyrmion lattice, the eigenstates of the skyrmion lattice
are magnetic Bloch states. In Sec. 5.4 we will determine the excitation
spectrum and explicit form of these states. In Sec. 5.4 we will show how
the thermal Hall conductivity of the skyrmion lattice is determined by
the Berry curvature of these magnetic Bloch states.
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Figure 5.3: Band structure of the skyrmion lattice with parametersR = 45
nm, ζ = 70 µm−1, and 2JB0/kB ≈ 50 mK. The labels on the horizontal
axis denote (k1, k2), with the wave vectors normalized to 2π/a.

Diagonalization

To find the elementary excitations of the skyrmion lattice, we need to di-
agonalize the Hamiltonian H in Eq. (5.7) with the fictitious magnetic vec-
tor potential given in Eq. (5.14). We do this by numerically diagonalizing
the matrix that results from rewriting H in the basis of the Landau levels
that describe excitations with the appropriate symmetry in the presence
of the fictitious magnetic vector potential A0(r) only. Our derivation fol-
lows that of Ref. [131], with the difference that we consider the case with
two flux quanta instead of one flux quantum per unit cell.

The eigenstates of a free system of dimensions L × L with only a ho-
mogeneous magnetic field B0z and without any underlying symmetries
are given by

ψnkx(r) =
Nn√
L
e−ikxxφn(B

1
2
0 y +B

− 1
2

0 kx), (5.16)

where Nn = 1√
2nn!

(
B0

π

) 1
4 and φn(x) = e−x2/2Hn(x), with Hn(x) the n-th

Hermite polynomial. The corresponding energies are En = 2JB0(n +
1/2). To account for the presence of the triangular lattice, and the fact
that every unit cell contains two flux quanta, we need to find the most
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general linear combination of eigenstates that satisfies

M̂a1ψnmk(r) = eik1aψnmk(r),
M̂a2ψnmk(r) = eik2aψnmk(r). (5.17)

Here, k1 and k2 are defined such that (2π/a)k = k1k1+k2k2. Furthermore,
k is restricted to lie within the first Brillouin zone. We will discuss the
origin of the quantum number m later. We have to work with magnetic
translation operators M̂a1,2 since the canonical momentum is no longer
a good quantum number in the presence of the vector potential A0(r).
These magnetic translation operators are defined as M̂a1 = T̂a1 and M̂a2 =

exp[−i(4π/a)x]T̂a2 , where T̂a1,2 are the usual translation operators. The
appropriate eigenstates are then given by

ψnmk(r) =
∞∑

l=−∞

(−1)(l+
m
2
)(l+m

2
−1)e−i(l+m

2
)(

k1
2
−k2)a

×ψn,−k1−(l+m
2
) 4π

a
. (5.18)

The quantum number m, which in our case can take values 0 or 1, ac-
counts for the fact that in the presence of a natural number p of flux
quanta per unit cell each magnetic band will split up in p subbands.
These subbands are degenerate for a constant magnetic field, but will
in general split for a spatially varying magnetic field, as we will see later.
The set of wave functions defined in Eq. (5.18) constitutes a complete
orthonormal basis with triangular symmetry. The eigenfunctions are
chosen in such a way that perturbations in the fictitious magnetic vec-
tor potential that are periodic in the triangular lattice are diagonal in the
momenta k1 and k2.

We are now in a position to calculate the matrix elements of H with
respect to the basis defined by the eigenstates in Eq. (5.18). We rewrite
H = H0 +H1 +H2, where the subscript denotes the order in which A′(r)
occurs in the respective term. The matrix elements of H0 are then trivially
given by (we have suppressed the k-dependence of the eigenstates in our
notation)

⟨n′,m′|H0|n,m⟩ = 2JB0 (n+ 1/2) δn,n′δm,m′ . (5.19)
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The matrix elements of H1 are given by

⟨n′,m′|H1|n,m⟩n′≥n = J
∑
τ,η

δ
(mod 2)
m′−m,τB(τ, η)

×
[
Ln′−n
n (zτη)−

(
n+ n′

zτη
Ln′−n

n (zτη)−
2n′

zτη
Ln′−n
n−1 (zτη)

)]
× (−1)mηGn′n(τ, η), (5.20)

and the matrix elements of H2 by

⟨n′,m′|H2|n,m⟩n′≥n = J
∑

τ ′,η′,τ,η

δ
(mod 2)
m′−m,τ ′+τ

× [Ax(τ
′, η′)Ax(τ, η) + Ay(τ

′, η′)Ay(τ, η)]

× (−1)m(η′+η)Gn′n(τ
′ + τ, η′ + η). (5.21)

We defined the function

Gn′n(τ, η) =

(
n!

n′!

)1/2

(
√

2/B0π)
n′−n

[
i
2η − τ√

3a
− τ

a

]n′−n

×e−zτη/2eπiτη/2eiηk1a/2eiτ(k2a+π)/2. (5.22)

Furthermore, we defined zτη = (2π/
√
3)(τ 2−τη+η2). The function Lα

n(x)

is the associated Laguerre polynomial. The function δ(mod 2)
i,j is defined as

δ
(mod 2)
i,j = 1 when i = j(mod 2), and δ

(mod 2)
i,j = 0 otherwise. The first

10 subbands of the band structure of the skyrmion lattice with parame-
ters 2JB0/kB ≈ 50 mK, R = 45 nm, and ζ = 70 µm−1 (similar values to
those found in Ref. [126]) are given in Fig. 5.3. In our numerical calcula-
tion we used the fact that the coupling between two band decays super-
exponentially [to be precise, it decays as

√
(n!/n′!)], so that only a limited

number of bands have to be taken into account. It is seen that the inclu-
sion of the spatially varying fictitious magnetic field has a pronounced ef-
fect, leading both to different splittings of the different subbands, as well
as substantial broadening of the subbands. From Fig. ?? it is seen that the
typical level splitting between magnetic subbands is 50 mK, which sets
the temperature scale on which the system is in the quantum Hall regime.
Systems with larger ratio Γ2

DM/J will display quantum Hall behavior at
higher temperatures. We note that finite Gilbert damping α will broaden
the different magnetic subbands by an amount (∆ω/ω) = 2α. Eventually
this will destroy the visibility of individual subbands. However, since
the Gilbert damping is around α ∼ 10−3 in a range of different materials,
this only becomes problematic at high magnetic subbands.
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Figure 5.4: Berry curvature of the two highest magnetic subbands in Fig.
5.3 in a single Brillouin zone. The subband corresponding to the top
figure does not carry a net curvature, the bottom figure carries 2π.

We note that within our model we do not find the expected Gold-
stone modes associated with the skyrmion lattice. [133] We argue that
this is due to our adiabatic assumption, which breaks down for the small-
est wave vectors. Assuming a quadratic dispersion for the magnons, we
can estimate the magnitude |km| of the characteristic wave vector of the
magnons that make up the lowest magnetic subband as J |km|2 = JB0,
which leads to a typical magnon wave length λm ∼ a. The wave vector
|km| increases for higher subbands. Since the accuracy of our model in-
creases with increasing wave vector, our description improves for higher
magnetic subbands.

In the next section we will investigate the effect of the finite band-
width of the magnetic subbands on the thermal Hall conductivity of the
skyrmion lattice.

Thermal Hall conductivity

It is well known [134] that the semi-classical dynamics of a wave packet
in the basis of the magnetic Bloch states unk(r) = e−ik·rψnk(r) is described
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by

ṙ = ∂kEn(k)− k̇×Ωn(k) and ℏk̇ = 0. (5.23)

We have assumed here that there are no electric fields present and that
the states unk(r) are the eigenstates of the Hamiltonian H including the
fictitious magnetic vector potential A(r). Ωn(k) is the Berry curvature
of the n’th magnetic Bloch band. Since we consider a two-dimensional
system, only its z component is relevant. It is given by

Ωn(k) = 2Im
[⟨

unk(r)
∂kx

∣∣∣∣unk(r)
∂ky

⟩]
. (5.24)

For the skyrmion lattice, the magnetic Bloch states are given by

unk(r) = e−ik·r
∑
n′,m′

cnn′m′kψn′m′k(r). (5.25)

The weights cnn′m′k follow from the diagonalization performed in Sec. 5.4.
It should be noted that every completely filled subband carries a total
Berry curvature that is a multiple of 2π, in accordance with the quantiza-
tion of the TKNN invariant. [135]

Matsumotu et al. have shown [136] that the thermal Hall conductivity
for a system described by Eq. (5.23) is given by

κxy =
k2BT

ℏV
∑
n,k

c2(ρnk)Ωn(k). (5.26)

Here c2(ρ) = (1 + ρ)
(
log 1+ρ

ρ

)2
− (log ρ)2 − 2Li2(−ρ) describes the effect

of the thermal distribution of the magnons, and ρ(ϵ) = (expβ(ϵ−µ)−1)−1 is
the Bose-Einstein distribution function.

Fig. 5.4 shows the Berry curvature for the two highest magnetic sub-
bands in Fig. 5.3. Together with the band structure given in Fig. ?? the
Berry curvature completely determines the thermal Hall conductivity, as
can be seen from Eq. (5.26). The position and width of the magnetic
subbands determine at which energies states become available for ther-
mal transport, the Berry curvature determines the extend to which these
states contribute to the thermal Hall conductivity.

We have shown then that the spatially varying fictitious magnetic
field gives rise to a nontrivial structure of the Berry curvature as well as
a broadening of the magnetic subbands. As follows from Eq. (5.26), the
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combination of these two effects may be studied experimentally by mea-
suring κxy as a function of temperature. As the temperature increases, the
thermal distribution of the bosonic magnons broadens, which enables the
higher bands to contribute to thermal transport.

Alternatively, one can probe the chiral subgap edge states (above the
bands whose total TKNN number is odd) directly by microwave means.
The first magnetic subband corresponds to several GHz, which falls within
the scope of standard microwave techniques. Excitation of some of the
low-energy modes of the skyrmion lattice by microwave radiation has
been performed [137] and analyzed. [138] The magnonic reflectionless
wave guide modes are analogous to those found in photonic crystals [139]
and can provide intriguing spintronics applications. Magnonic edge states
have recently been proposed to exist in YIG without any equilibrium spin
texture but with an array with an array of Fe-filled pillars, in which ellip-
ticity of magnons due to dipolar interactions can give rise to magnonic
bands with a nonzero TKNN invariant. [140]

5.5 Conclusions

We have studied how fictitious magnetic fields, which are caused by a
textured equilibrium magnetization, lead to thermal Hall effects in two-
dimensional insulating magnets in which the nontrivial equilibrium mag-
netization is caused by spin-orbit interaction. We have given a general
expression for the fictitious magnetic vector potential, and found that
it consists of two contributions: a geometric texture contribution and a
contribution due to the original spin-orbit term in the free energy. We
have shown that both contributions are generally of the same order of
magnitude.

We have derived the relevant properties of the two ground states of
interest to us (the spiral state and the skyrmion lattice state) in the phase
diagram of a two-dimensional non-itinerant ferromagnet with nonzero
Dzyaloshinskii-Moriya interaction. We have found that a system which
has the spiral state as magnetic ground state does not have a finite ther-
mal Hall conducitivity. However, we predicted that certain domain wall
structures do display thermal Hall effects.

We have numerically diagonalized the Hamiltonian describing the
triangular skyrmion lattice. We found that due to the spatially varying
fictitious magnetic vector potential, the excitation spectrum consists of
broadened magnetic subbands. We have calculated the Berry curvature
of the magnetic subbands, and showed that the Berry curvature in com-
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bination with the excitation spectrum completely determines the thermal
Hall conductivity of the skyrmion lattice. At present, we are only able to
capture the contribution to the thermal Hall conductivity from higher
magnetic subbands, as well as thermal- or microwave transport through
the associated edge states. In order to properly describe the lowest sub-
bands, our model has to be amended to capture non-adiabatic magnon-
transport effects, in the way described at the end of Sec. 5.2.
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APPENDIX A
Determining Luttinger Liquid

parameters from the non-linear
sigma model.

In this section we calculate the magnetic susceptibility of a 3D antiferro-
magnet, denoted by χ3D

αβ(q). In the continuum limit, the magnetic suscep-
tibility is defined as

χ3D
αβ(q) =

(gµB

a3

)2 1
ℏ

∫
d4seiq·s ⟨TτSα(s)Sβ(0)⟩ , (A.1)

where s = (τ, r)T , q = (ωn,k)T , and q · s = ωnτ − k · r.
We start from the isotropic Heisenberg model in three dimensions,

described by Eq. (2.1) with ∆ij = 1 and Bi = 0. We introduce the unit
vector field ns

i = Si/S. This vector field can be written as a staggered
Néel vector part ni plus a fluctuating part li, both of which are slowly
varying on the scale a

ns
i = (−1)ini

√
1− a2l2 + ali ≈ (−1)ini + ali. (A.2)

In the continuum limit it can be shown [141] that the imaginary time
action describing this system can be approximated as S[n, l] = S0[n, l] +
Sl[n, l], where

S0[n, l] =
ℏ
2γ

∫
d4s

[
1

c
(∂τn)

2 +
3∑

i=1

c (∂rin)
2

]
, (A.3)

Sl[n, l] = 12ℏα
∫

d4s

[
l+ i

1

48a2α
(n× ∂τn)

]2
. (A.4)
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APPENDIX A. DETERMINING LUTTINGER LIQUID PARAMETERS

FROM THE NON-LINEAR SIGMA MODEL.

Here, α = J/(8aℏ), c =
√
3Ja/ℏ, and γ = 4

√
3a2. From a substitution of

Eq. (A.2) in Eq. (A.1) it is clear that we can write

χ3D
αβ(q) =

(gµB

2a2

)2 1
ℏ

∫
d4seiq·s ⟨Tτ lα(s)lβ(0)⟩S , (A.5)

where the Green’s function is calculated with respect to the action S[n, l].
The Green’s function can then be determined from the partition function
Z =

∫
DnDlδ(n2 − 1) exp (−ℏ−1S[n, l]). We can perform the functional

integration over l in Eq. (A.5) to arrive at

χ3D
αβ(q) =

(
gµB

γ

)2
1

ℏc

[
γδαβ −

∫
d4se−q·s ×⟨

(n× ∂τn)α (s) (n× ∂τn)β (0)
⟩
S0

]
, (A.6)

where we replaced τ → cτ . Here, the average is with respect to S0[n, l].
Assuming the magnetization is ordered along the z axis, we write n =

(σ1, σ2,Π)
T . The σi’s describe thermal fluctuations perpendicular to the

direction of order, [142] and Π =
√
1− σ2. Also, σ = (σ1, σ2)

T . For low
temperatures, we can then rewrite the action of Eq. (A.3) as

S0[σ] = − ℏ
2γ

∫
d4sσ ·

[
∂2τ +

3∑
i=1

∂2xi

]
σ. (A.7)

From this and Eq. (A.6) it then follows that the magnetic susceptibility in
the gapless direction is given by

χ3D(q) =
(gµB)

2

ℏ
c

γ

q2

ω2
n + (cq)2

. (A.8)

To compare this relation to the magnetic susceptibility in one dimension,
we use χ1D(q) = a2χ3D(q). Since we know [48] that in the Luttinger Liquid
model

χLL
zz (q) =

(gµB)
2

ℏ
uK

π

q2

(uq)2 + ω2
n

, (A.9)

we have
ur =

√
3Ja/ℏ Kr = π/(4

√
3) (A.10)

as effective Luttinger Liquid parameters of the 3D reservoirs.



APPENDIX B
Calculation of the magnetization

current in the Keldysh formalism

In this appendix we will show how to calculate the magnetization current
Im(∆B) in a system described by the action S[ϕ] = S0[ϕ] + SI[ϕ] + SB[ϕ].
According to Eq. (2.35), the magnetization current is given by

Im = −gµB

π
∂t
1

2

∑
η=±

⟨ϕη(r)⟩S =
gµBi

π
∂t

(
δZ[J(r)]

δJ(r)

)
. (B.1)

The partition function can be written in vectorized form as

Z[J(r)] =

∫
Dϕ exp

[
− 1

2

∫
d2rd2r′ ×

[ϕ(r) ·G0(r, r
′)ϕ(r′)− 2iδ(r− r′)ϕ(r) ·QJ(r′)]

]
×

exp

[
− iσλ

a
3

π2ℏ

∫ ∞

−∞
dt
∑
η=±

η cos [2ϕη(0, t)]

]
, (B.2)
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APPENDIX B. CALCULATION OF THE MAGNETIZATION

CURRENT IN THE KELDYSH FORMALISM

where we have defined

ϕ(r) =

(
ϕ+(r)
ϕ−(r)

)
,

J(r) =
√
2

(
−gµB

πℏ ∂xB(r)
J(r)/2

)
,

Q =
1√
2

(
1 −1
1 1

)
,

G0(r, r
′) =

(
G++

0 (r, r′) G+−
0 (r, r′)

G−+
0 (r, r′) G−−

0 (r, r′)

)
.

(B.3)

Here Gη,η′

0 (r, r′) is the contour-ordered Green’s function

Gη,η′

0 (r, r′) =
⟨
Tcϕ

η(r)ϕη′(r′)
⟩
S0

. (B.4)

We will also need the retarded, advanced, and Keldysh Green’s functions
G

R/A/K
0 (r, r′), which are related to the contour-ordered Green’s functions

in the usual way. Performing the linear transformation ϕ′(r) = ϕ(r) −
i
∫
dr′G0(r, r′)QT J(r′) shows that the partition function can be factorized

into two parts, the first one containing the quadratic part of the action, the
second containing the backscattering term. The magnetization current is
therefore made up of two contributions. The first, I0, comes from the
quadratic action, and describes the magnetization current in the absence
of any backscattering. The second, I3a, originates from the backscattering
term. Using the explicit form for the magnetic field Eq. (2.12) it turns out
that the expression for the unperturbed magnetization current is given
by

I0 = i
(gµB)

2

π2ℏ
∆B∂t

∫ ∞

−∞
dt′GR

0 (r;−L/2, t′). (B.5)

Since this is exactly the expression for the magnetization current in the
linear response regime, [30] which yields I0 = Kr

(gµB)2

h
∆B, we can infer

that ∫ ∞

−∞
dt′iGR

0 (r;−L/2, t′) =
πKrt

2
. (B.6)

To calculate the contribution from the backscattering term we perform
the functional derivative of the partition function with respect to J(r).
The resulting expression is

I3a = −2gµBσλ
a
3

π3ℏ
∂t

∫ ∞

−∞
dt′iGR

0 (r; 0, t
′)×⟨

sin
[
2ϕ′+(0, t′)− 2γt′

]⟩
S
, (B.7)
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where γ = Kr
gµB∆B

ℏ . Expanding this term in λa3 gives

I3a = i
2gµBσ

2 (λa3)
2

π5ℏ2
∂t

∫ ∞

−∞
dt′iGR

0 (r; 0, t
′)dt′′ ×∑

η=±

η
⟨
sin
[
2ϕ′+(0, t′)− 2γt′

]
cos [2ϕ′η(0, t′′)− 2γt′′]

⟩
S0
.

Since contour-ordering reduces to time-ordering for two fields on the
same branch of the Keldysh contour, and because the system in equi-
librium is time-reversal invariant, the term with the fields at times t′ and
t′′ on the same branch averages to zero. Switching the variable of inte-
gration to τ = t′ − t′′ and using Eq. (B.6) it is seen that the contribution
from the backscattering term is given by

I3a =
gµBσ

2
(
λa3,R

)2
π4

1

as
KrA0(∆B). (B.8)

Here as = a/u can be interpreted as the cutoff in the time domain. As be-
fore, we identify the cutoff in time with the cutoff in frequency: as = ω−1

c ,
so that we can write the expression for the backscattering current in terms
of the dimensionless parameters λa3,R = λa3/(ℏωc), γR = KrgµB∆B/(ℏωc)
and τ̄ = τ/as. Here

A0(∆B) =
i

2

∫ ∞

−∞
dτ̄ sin [2γRτ̄ ] e

−2
⟨
Tc[ϕ+(0,τ)−ϕ−(0,0)]

2
⟩
S0 . (B.9)

The contour-ordered correlation function can be determined from the in-
homogeneous Luttinger Liquid model [57] and the fluctuation-dissipation
theorem, and can be written in terms of τ̄ as⟨

Tc
[
ϕ+(0, τ)− ϕ−(0, 0)

]2⟩
S0

= K log [−iτ̄ + 1] . (B.10)

With this expression we can rewrite Eq. (B.9) as a function of γR and K
only

A0(∆B) = − K4Kπ

Γ(1 + 2K)
γR |γR|−2+2K e−2|γR|. (B.11)

Next we discuss the contribution of the aλa
4

π2 ∂xϕ(0, t) cos 2ϕ(0, t) term from
Eq. (3.8). We again perform the linear transformation ϕ(r) → ϕ′(r), which
yields

I4a = −2gµBλ
a
4a

π3ℏ
∂t

∫ ∞

−∞
dt′iGR

0 (r; 0, t
′)×⟨

∂x′ϕ′+(0, t′) sin
[
2ϕ′+(0, t′)− 2γt′

]⟩
S
. (B.12)
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APPENDIX B. CALCULATION OF THE MAGNETIZATION

CURRENT IN THE KELDYSH FORMALISM

There is also an additional term in the expression for the magnetization
current introduced by the linear transformation, which is proportional to
the expression ∂x

∫
dtGR

0 (0, t; r′′). Eq. (B.6) however shows that this term
is zero. We can expand Eq. (B.12) in λa4

I4a = i
2gµB (λa4)

2 a2

π5ℏ2
∂t

∫ ∞

−∞
dt′iGR

0 (r; 0, t
′)dt′′ ×∑

η=±

η
⟨
∂x′ϕ′+(0, t′) sin

[
2ϕ′+(0, t′)− 2γt′

]
×

∂x′′ϕ′η(0, t′′) cos [2ϕ′η(0, t′′)− 2γt′′]
⟩
S0
. (B.13)

We now use the results from Appendix C to evaluate the correlation func-
tion

∂x∂x′
⟨
Tcϕ

+(0, t)ϕ−(0, t′)
⟩
S0

=
2

(uas)2

(
1 + iτ̄

1 + τ̄ 2

)2

. (B.14)

We also use that ∂x ⟨Tcϕ+(0, t)ϕ−(0, t′)⟩S0
= 0, so that the magnetization

current is given by

IBS =
gµB

(
λa4,R

)2
π4

1

as
KrA1(∆B). (B.15)

Where the dependence on the parameters of the spin chain and the ap-
plied magnetic field difference is contained in the function A1(∆B)

A1(∆B) = i
(uas)

2

2

∫ ∞

−∞
dτ̄ e

−2
⟨
Tc[ϕ+(0,τ)−ϕ−(0,0)]

2
⟩
S0 ×

⟨∂xϕ′(0, τ)∂xϕ
′(0, 0)⟩S0

sin [2γRτ̄ ] , (B.16)

where we again used that terms containing correlators with both fields
on the same branch of the contour vanish. Straightforward manipula-
tions show that A1(∆B) is given by

A1(∆B) = − 4Kπ

Γ(2 + 2K)
γR |γR|2K e−2|γR|. (B.17)



APPENDIX C
Correlators

In this appendix we show how to calculate a correlation function of the
form ⟨

TcΠi∂xi
ϕ(xi, ti)e

i
∑

j Ajϕ(xj ,tj)
⟩
S0
. (C.1)

First of all, we can pull the derivatives outside of the expectation value.
therefore, we can calculate

⟨
TcΠiϕ(xi, ti)e

i
∑

j Ajϕ(xj ,tj)
⟩
S0

instead and take
the derivatives afterwards. For a lighter notation we prove the required
results in discrete space, making the connection: ϕi = ϕ(ri). We use the
main result of Gaussian integration [143]∫

dϕe−
1
2
ϕT ·Ḡϕ+jT ·ϕ ∝ ej

T ·Ḡ−1j. (C.2)

Given the partition function

Z =

∫
dϕe−

1
2
ϕT ·Ḡϕ, (C.3)

we can then calculate for instance ⟨ϕiϕj⟩S0
by letting ∂2jnjm

∣∣
j=0

work on
both sides of Eq. (C.2). To calculate the required correlator, Eq. (C.1),
we replace j → j + b in Eq. (C.2), where b consists of the components:
bi =

∑
j Ajδij . By letting ∂jn |j=0 work on both sides of this equation we

arrive at ⟨
ϕne

bT ·ϕ
⟩
= Ḡnlble

1
2

bT ·Ḡ−1b. (C.4)

Here we sum over double indices. We also used the fact that Ḡ−1 is a
symmetric matrix, e.g. G−1

nm = G−1
mn, which is true since it contains con-

tour ordered correlation functions. By letting ∂2jnjm
∣∣

j=0
work on Eq. (C.2)

97
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we get ⟨
ϕnϕme

bT ·ϕ
⟩
=
[
Ḡ−1

mn + Ḡ−1
mlblḠ

−1
nl bl

]
e

1
2
bT ·Ḡ−1b. (C.5)

Both two equations above are valid when
∑

j Aj = 0, otherwise the cor-
relators vanish.
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[39] T. Christen and M. Büttiker, Europhys. Lett. 35, 523 (1996).

[40] D.E. Feldman, S. Scheidl, and V.M. Vinokur, Phys. Rev. Lett.
94, 186809 (2005).



102 BIBLIOGRAPHY

[41] A. De Martino, R. Egger, and A.M. Tsvelik, Phys. Rev. Lett.
97, 076402 (2006).

[42] B. Braunecker, D.E. Feldman, and F. Li, Phys. Rev. B 76,
085119 (2007).
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