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Summary 

African sleeping sickness, also called human African trypanosomiasis (HAT), results from 

the infection of humans with either of two protozoan parasites, Trypanosoma brucei gambiense and 

T. b. rhodesiense. HAT is transmitted by tsetse flies (Glossina spp) and, like the vector, is found 

exclusively in Africa between the latitudes 14° North and 29° South. A total of 50 million people 

live in foci where active transmission is possible and are therefore at risk of infection; however, the 

annual incidence and estimated prevalence currently stand at 7139 and 30 000 cases respectively. 

When trypanosomes are inoculated into a human host, the resulting clinical disease is classified into 

a first (early) stage in which trypanosomes are localised within the haemo-lymphatic system and a 

second (late) stage in which trypanosomes have crossed the blood brain barrier (BBB) and invaded 

the central nervous system (CNS).  

Currently, pentamidine and suramin are used to treat the first stage of T. b. gambiense and 

T. b. rhodesiense HAT, respectively. On the other hand, eflornithine and the nifurtimox eflornithine 

combination therapy (NECT) are the preferred treatments for second stage T. b. gambiense HAT. 

The organo-arsenic drug melarsoprol may be used for both forms of HAT but is mainly used 

against T. b. rhodesiense. Clearly, the therapeutic options for HAT are very limited. In addition, 

available drugs are associated with different levels of toxicity, especially melarsoprol which causes 

a post treatment reactive encephalopathy (PTRE) in 5-10% of treated patients, up to 50% of PTRE 

patients may die. There are also reports of high melarsoprol treatment failure rates in some foci and 

there is a lack of easy to use oral formulations for all the drugs. We have carried out biological and 

pharmacological investigations of potential new drug candidates in animal models of HAT with the 

objective of contributing to the development of safe, efficacious and easy to use treatments for 

HAT. The studies were carried out in the context of a PhD programme at the Swiss TPH/University 

of Basel and were anchored onto an ongoing diamidines development project of the Consortium for 

Parasitic Drug Development (CPDD). Vervet monkeys (Chlorocebus [Cercopithecus] aethiops) 

were the main model for this study. 

To prepare for the studies in monkeys, one prodrug (DB289) was evaluated in mouse 

models of first stage HAT. We obtained good activities against different trypanosome isolates, 

including the one that is used in the monkey model, T. b. rhodesiense KETRI2537. We further 

evaluated the metabolism of the prodrugs in monkey liver microsomes. In all cases, prodrugs were 

metabolized to generate expected intermediate and active metabolites, thus allowing us to proceed 
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to test the compounds for safety in un-infected monkeys. We determined that in monkeys: i) 

diamidine toxicity was dependent on the dose and duration of dosing, ii) the plasma concentrations 

of active metabolites were potentially therapeutic for HAT, and iii) the dose level at which there 

were no observed adverse effects (NOAEL). Three prodrugs (DB289, DB844 and DB868) and one 

active compound (DB829) were subsequently evaluated for efficacy at dose rates that were equal or 

below NOAEL. In general, the prodrugs were highly active against first stage HAT after oral 

administration and one prodrug (DB844) had additionally an improved activity (43%) in the second 

stage monkey HAT model in comparison with pentamidine (0%). The intramuscularly administered 

parent compound DB829 was fully curative in the second stage HAT model at 2.5 mg/kg x 5 days. 

 

Our findings suggest that the two compounds (oral DB868 and intramuscular DB829) 

should be recommended to enter the regulatory phase of development as potential HAT drugs. Oral 

DB868 cured the first stage HAT model at a daily dose of 3 mg/kg for 7 days (cumulative dose, CD 

= 21 mg/kg) compared to a maximum tolerated daily dose of 30 mg/kg for 10 days (CD = 300 

mg/kg). The efficacy, safety and pharmacokinetic profiles suggest that this compound would be a 

useful clinical candidate using an optimal dosing duration of 5-7 days. The second compound, 

intramuscular DB829, cured the second stage HAT model at a daily dose of 2.5 mg/kg for 5 days 

and was tolerated at 5 mg/kg for 5 days (CD = 25 mg/kg). Pharmacokinetic analysis indicated the 

intramuscular administration of DB829 resulted in better systemic bioavailability, thus accounting 

for the improved efficacy in comparison with oral dosing. 
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Zusammenfassung 

 

Die Afrikanische Schlafkrankheit, auch humane Afrikanische Trypanosomose (HAT) 

genannt, wird im Menschen durch eine Infektion mit einem der zwei einzelligen Parasiten, 

Trypanosoma brucei gambiense und T. b. rhodesiense verursacht. HAT wird durch Tsetsefliegen 

(Glossina spp) übertragen und kommt wie der Vektor ausschließlich in Afrika zwischen den 

Breitengraden 14° Nord und 29° Süd vor. Insgesamt 50 Millionen Menschen leben in den Gebieten, 

in denen eine aktive Übertragung möglich ist, und sie sind somit dem Risiko einer Infektion 

ausgesetzt. Die Inzidenz lag 2010 bei 7139 gemeldeten Fällen und die Prävalenz wurde auf 30 000 

Fälle geschätzt. Wenn Trypanosomen in einen menschlichen Wirt gelangen verläuft die 

Erkrankung in zwei Stadien. In einer ersten (akuten) Phase sind die Trypanosomen im hämo-

lymphatischen System lokalisiert, in der zweiten (chronische) Phase überwinden die Trypanosomen 

die Blut-Hirn-Schranke und infizieren das zentrale Nervensystem (ZNS). 

 

Derzeit werden Pentamidin und Suramin verwendet, um das erste Stadium einer T. b. 

gambiense Infektion respektive einer T. b. rhodesiense Infektion zu behandeln. Eflornithin und die 

Nifurtimox-Eflornithin Kombinationstherapie (NECT) sind die bevorzugten Medikamente für das 

zweite Stadium einer T. b. gambiense HAT. Das arsenhaltige Medikament Melarsoprol kann für 

beide Formen von HAT verwendet werden, wird aber hauptsächlich nur bei der durch T. b. 

rhodesiense verursachten Schlafkrankheit verwendet. Die therapeutischen Möglichkeiten zur 

Behandlung von HAT sind eindeutig begrenzt. Zusätzlich sind die verfügbaren Medikamente in 

unterschiedlichem Masse toxisch. Insbesondere Melarsoprol kann bei 5-10% der behandelten 

Patienten eine  reaktive Enzephalopathie (PTRE) verursachen, die in 50% der Fälle tödlich ist. 

Zusätzlich gibt es Berichte von Behandlungsmisserfolgen mit Melarsoprol, in manchen 

Schlafkrankheitsgebieten bis zu 30%. Die bisher verfügbaren Medikamente müssen intramuskulär 

oder intravenös verabreicht werden. Es fehlen leicht verabreichbare orale Formulierungen. Mit dem 

Ziel, eine verträgliche, wirksame und leicht zu verabreichende Medikation gegen HAT zu finden, 

haben wir biologische und pharmakologische Untersuchungen von potentiellen neuen 

Wirkstoffkandidaten in Tiermodellen durchgeführt. Die Studien waren Teil eines laufenden 

Diamidin-Entwicklungsprojekts des „Consortium for Parasitic Drug Development“ (CPDD) und 

wurden im Rahmen einer Doktorarbeit am Swiss TPH / Universität Basel durchgeführt. Meerkatzen 

(Chlorocebus [Cercopithecus] aethiops), eine Affenart, waren das Hauptmodell für diese Arbeit. 
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Während der Vorarbeit, wurde eine Substanz (DB289), ein Prodrug, in Mausmodellen  mit 

dem ersten Krankheitsstadiums untersucht. Die Substanz zeigte gute Aktivitäten, einschliesslich 

gegen den Parasitenstamm T. b rhodesiense KETRI2537, der ebenso im Affenmodell verwendet 

wird. Zusätzlich haben wir die Metabolisierung der verschiedenen Prodrugs in Affen-

Lebermikrosomen untersucht. In allen Fällen wurden die Prodrugs wie erwartet in Zwischen-und 

aktive Metabolite umgesetzt. Die Ergebnisse ermöglichten es uns, die Verträglichkeit der 

Substanzen in uninfizierten Affen zu prüfen. Wir stellten fest, dass in Affen: i) die Toxizität der 

Diamidine von der Dosis und der Dauer der Dosierung abhängig war, ii) die Plasma-

Konzentrationen der aktiven Metaboliten potentiell therapeutisch für HAT sind und konnten iii) die 

Dosis bestimmen, die keine erkennbaren und keine messbaren Schädigungen hinterlässt (NOAEL: 

no observed adverse effect level). Die drei Prodrugs DB289, DB844 und DB868 und das aktive 

Diamidin B829, wurden anschließend auf ihre Wirksamkeit untersucht. Die verwendete Dosis war 

entweder gleich oder unterhalb NOAEL. Im Allgemeinen waren die Prodrugs hochaktiv gegen das 

erste Schlafkrankheitsstadium bei einer oralen Verabreichung. Eine Substanz (DB844) wies im 

Vergleich zu Pentamidin (0%) zusätzlich eine verbesserte Aktivität (43%) im chronischen 

Affenmodell (mit ZNS- Infektion) auf. Das intramuskulär verabreichte Diamidin DB829 konnte bei 

einer täglichen Dosis von 2.5 mg/kg für 5 Tage das chronische Affenmodell vollständig heilen. 

 

Unsere Ergebnisse legen nahe, dass die beiden Wirkstoffe (DB868 oral und DB829 

intramuskulär) als potenzielle HAT Medikamente weiterentwickelt werden sollten.  Oral 

verabreichtes DB868 heilte das akute HAT Affenmodell bei einer täglichen Dosis von nur 3 mg/kg 

und einer 7 Tage Behandlung (kumulative Dosis, CD = 21 mg/kg).  Im Vergleich dazu lag die 

maximal tolerierte  Dosis von DB868 bei 30 mg/kg für 10 Tage (CD = 300 mg/kg). Die 

Wirksamkeit, Verträglichkeit und das pharmakokinetische Profil zeigen, dass diese Verbindung ein 

guter klinischer Kandidat für das erste Stadium sein könnte, mit einer optimalen Dosierungsdauer 

von 5-7 Tagen. Die zweite intramuskulär verabreichte Verbindung DB829, heilte das zweite 

Krankheitsstadium im Affenmodell bei einer täglichen Dosis von nur 2,5 mg/kg und einer 5 Tage 

Behandlungsdauer. Die tolerierte Dosis lag bei 5 mg/kg für 5 Tage (CD = 25 mg/kg). Die 

pharmakokinetische Analyse zeigte, dass die intramuskuläre Verabreichung von DB829 zu einer 

verbesserten systemischen Bioverfügbarkeit führt und damit zur verbesserten Wirksamkeit im 

Vergleich zur oralen Dosierung. 
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Chapter 1: General Introduction 

The Problem of Human African Trypanosomiasis (HAT) 

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a debilitating 

disease that is caused by two flagellated protozoan parasites, Trypanosoma brucei (T. b.) 

gambiense and T. b. rhodesiense.  The two pathogens are native to the African continent. Not 

surprisingly, Africa has borne the blunt of the losses attributable to sleeping sickness since only a 

limited number of infections have been diagnosed in tourists or travellers from other countries 

visiting areas where active disease transmission was occurring (Sinha et al., 1999; Jelinek et al., 

2002; Moore et al., 2002). HAT is ranked among the thirteen most neglected tropical diseases 

(NTDs), with disability adjusted life years (DALY’s) lost of 1 673 000 years (Vanderelst and 

Speybroeck, 2010). NTDs have in common, a lack or shortage of efficacious medicines that are 

also safe to use, easily administrable and inexpensive, in order to benefit patients in resource-poor 

settings where NTDs are common. 

 

HAT is transmitted by tsetse flies (Glossina spp), and as a result, is only found between 

latitudes 14° North and 29° South, the ecological limits of the vector.  Tsetse flies also transmit 

animal pathogenic trypanosomes that together with their vectors, cover an estimated area of 10 400 

000 km2 of agricultural land and are estimated to cost Africa an annual income of 4.5 billion USD 

(Wilson et al, 1963; DFID, 2010; Tesfaye et al., 2012). Indeed, successive African Governments 

from colonial times and the African Union (AU) have acknowledged that human and animal 

trypanosomiasis need to be controlled to improve health and economic development of Africa 

(Wilson, 1963; Simarro et al., 2008; African Union, 2002). 

 

A total of 36 countries are classified by the World Health Organization (WHO) as endemic 

for HAT (Simarro et al, 2008; WHO, 2012a).  A number of these countries have however not 

reported a single case of the disease in more than 10 years (WHO, 2012a) and according to Stuart et 

al., (2008) HAT is a significant public health problem in only 20 countries. However, this restricted 

number of countries may mask the fact that the disease is a threat to an estimated 50-60 million 

people who live in foci where active transmission is possible (Stuart et al., 2008; WHO, 2012a). 

The significance of this threat is amplified by the fact that a majority of the affected people are 

exposed to the tsetse fly menace in the course of eking out a livelihood in agriculture, fishing, 



 11

animal husbandry or hunting (Simarro et al., 2008; WHO, 2012a).  Preventing new infections is 

therefore a formidable challenge indeed. 

 

HAT occurs in cycles of epidemics interspersed with periods when the disease was almost 

decimated (Figure 1). During the most recent epidemic which peaked in 1998, a total of 37, 991 

new cases of HAT were reported to the World Health Organization (WHO), with an estimated 

prevalence of 300,000 to 500,000; these high numbers were considered to be the result of an 

underestimation of the true situation because of insufficient coverage by surveillance systems 

(Chappuis et al., 2010; WHO, 2012a). The extent of this human catastrophe was magnified by the 

fact that only an estimated 10-20% of infected persons are accessed by disease control authorities 

and put on treatment (Torreele et al., 2010; WHO, 2012a). Without treatment, it is widely accepted 

that HAT is invariably fatal (Kennedy 2004; WHO, 2012a). 

 

Yet sleeping sickness has been shown to be amenable to therapy. In the recent 1998 

epidemic, National disease control authorities were galvanised into action, supported by WHO and 

non-governmental organizations (NGOs) such as Medicines San Frontiers, philanthropic 

organizations such as Bill and Melinda Gates Foundation and bilateral donors (WHO, 2012a). The 

support was channelled to strengthening of disease surveillance activities, efficient supply of 

existing drugs and increased drug development activities (WHO, 2012a; Paine et al., 2010; 

Chappuis et al., 2010). The re-invigorated activities led to a major decline in HAT incidence, which 

by 2010, stood at 7, 139 cases, which was an 81% decline in comparison to the 1998 figures. The 

prevalence has similarly declined to an estimated 30, 000 cases, showing that, HAT is clearly in 

retreat. 

 

Unfortunately, the optimistic prediction that HAT could soon be eliminated as a disease of 

public health significance throughout Africa (Simarro et al., 2011) could yet prove to be a mirage. 

The trypanosome has shown itself to be quite resilient and is capable of exploiting weaknesses in 

disease surveillance and/or unavailability of the right tools (drugs and diagnostics) to make an 

unwanted comeback.  Historical data (Figure 1) capture this succinctly. In addition, one Belgian 

and one German tourist came down with sleeping sickness recently after visiting Maasai Mara 

Game Reserve in Kenya, an area not regarded as an active HAT focus (Clerix et al., 2012; Wolf et 

al., 2012); these cases serve as a portent reminder that the danger of HAT flare ups remains. 
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Figure 1: Human African trypanosomiasis from 1927 to 1998 (Source: Simarro et al., PLoS Med 

2008) 
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The Parasite 

Taxonomy 

Trypanosomes were first observed in a trout in 1841. The genus name Trypanosoma was 

however coined in 1843 when morphologically similar protozoan parasites were detected in the 

blood of a frog (WHO, 2012b). Trypanosomes were later confirmed to be pathogenic and to be the 

aetiological agents of surra in horses and nagana in cattle before being identified in a human patient 

with recurrent fevers in the Gambia in 1901 (WHO, 2012b). They were later confirmed to be the 

aetiological agent of sleeping sickness, then known as sleepy distemper or African lethargy (WHO, 

2012b).  

 

Trypanosomes are classified under Kingdom Protista, sub-Kingdom protozoa, Phylum 

Sarcomastigophora and Class Mastigophora although there is some difference of opinion among 

taxonomists on exact application of these terms (Hoare, 1972). Trypanosomes are then placed into 

the order Kinetoplastida, family Trypanosomatidae and genus Trypanosoma (Hoare, 1972).  Genus 

Trypanosoma is further subdivided into two sections, Salivaria and Stercoraria. Salivarian 

trypanosomes mature in the salivary medium of the “anterior station” and are transmitted by 

inoculation into susceptible vertebrate hosts (Hoare 1972); the exact location of this maturation is 

in the salivary glands (e.g. T. brucei spp) or in the proboscis (T. congolense and T. vivax) (Hoare, 

1972; Vickerman, 1985; Peacock et al, 2012). Section Salivaria consists of four subgenera, 

including Trypanozoon (T. brucei brucei, T. b. rhodesiense, T. b. gambiense, T. evansi and T. 

equiperdum, T. equinum), Duttonella (T. vivax and T. uniforme); Nannomonas (T. congolense and 

T. simiae) and Pycnomonas (T. suis) (Hoare 1972).  Apart from T. b. rhodesiense and T. b. 

gambiense which cause disease in humans, other members of section Salivaria cause disease in 

livestock and wildlife. Domestic and wild animals have further been identified as reservoirs of the 

zoonotic T. b. rhodesiense (Simarro et al., 2008) and less commonly of T. b. gambiense (Cordon–

Obroso et al, 2009); T. b. gambiense is mainly assumed to be anthroponotic (Simarro et al, 2011; 

WHO, 2012a). 

 

Section Stercoraria has only one pathogenic trypanosome, T. cruzi, which causes Chagas 

disease (American trypanosomiasis). T. cruzi matures in the faecal medium of the “posterior 

chamber” of the Triatomine insect, also called reduviid or kissing bug, and is therefore transmitted 

through contamination of bite wounds with the insect’s faeces (Hoare, 1972). T. cruzi infections are 

prevalent in Latin America with a prevalence of 12-16 million cases (Diaz, 2009) 



 14

Life Cycle 

The life cycle of trypanosomes involves two hosts, a mammal which acts as the definitive 

host and an insect vector which acts as the intermediate host (Vickerman, 1985; 

http://content.lib.utah.edu:81/cgi-bin/showfile.exe?CISOROOT=/EHSL-

NOVEL&CISOPTR=426&filename=900.pdf). In an infected vertebrate, the dividing trypanosome 

population are the long slender trypomastigotes, also called long slender bloodstream forms 

(BSFs). The long slender BSFs divide rapidly by binary fission, with a doubling time of 

approximately 6-8 hours (Vickerman, 1985). For their metabolic needs, BSFs rely exclusively on 

glucose which is freely and abundantly available in host blood. As a result, BSFs obtain their 

energy by glycolysis which occurs in spherical glycosomes. They have no capacity for cytochrome 

mediated terminal respiration since their tricarboxylic acid cycle (Krebs cycle) is silenced. The 

BSFs multiply unchallenged until the host mounts an immune (IgM) response against the 

predominant variant antigen type (VAT) which is then quickly decimated. However, this does not 

lead to cure, rather it allows another previously minor VAT to assume the dominant position and 

generate the next wave of parasitaemia. The different VAT types are generated through the process 

of antigenic variation that is encoded in trypanosome genome by up to 1000 genes. Thus, 

parasitaemia and associated trypanosome-induced host tissue pathology continue until terminated 

by death of the host or therapeutic intervention. Some authors however argue that the evolution of 

trypanosome infections could be ameliorated or stopped altogether through the action of host 

immune systems, a process called trypanotolerance. Trypanotolerance is well documented for cattle 

breeds such as the Orma Boran and Ndama (Grace Murilla, personal communication). It may also 

occur in some human T .b. gambiense infections (Chechi et al., 2008) although most authors 

support the view that HAT is invariably fatal unless patients are treated (Kennedy, 2004, Kuepfer et 

al., 2011). During peak and declining parasitaemia, a new morphological form, the short stumpy 

trypomastigote or short stumpy BSF is generated. These short stumpies are the tsetse fly infective 

forms. 

 

The short stumpy BSFs are picked up when the flies take a blood meal from an infected 

mammal. The blood is swallowed to the fly’s midgut where the short stumpy BSFs transform to 

procyclics while within the peritrophic membrane (endoperitrophic space) (Vickerman 1985). The 

transformation to procyclics is characterised by changes in morphology (elongation and loss of the 

VSG coat) and a biochemical switch from dependence on glucose to dependence on the amino acid 

proline for metabolism. This clever tactical switch by the trypanosome is necessitated by the fact 

that glucose is unavailable in tsetse flies which, instead of glucose, depend on proline for energy 
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metabolism. Furthermore, procyclics adapt to a cytochrome mediated terminal respiration by 

enlarging and activating their mitochondria (Vickerman, 1985). The procyclics invade the 

ectoperitrophic space within 4 days of an infective blood meal, multiply rapidly and subsequently 

migrate to the proventriculus. In the proventiculus, the procyclics transform to mesocyclics, re-

invade the endotrophic space and migrate to the salivary glands via the oesophagus, mouthparts and 

salivary ducts (Vickerman, 1985). In salivary glands, trypanosomes change to epimastigotes which 

proliferate while attached to the salivary gland epithelia. Finally, epimastigotes transform to 

premetacyclics and then to metacylics which acquire a variant surface glycoprotein (VSG) coat, 

thus acquiring the ability to survive in mammals. It takes 20-30 days for mature mammal infective 

metacyclics to be generated. When tsetse flies feed on a new host, the metacyclics are deposited in 

dermal or subcutaneous tissues where they rapidly transform to long slender trypomastigotes, thus 

completing the cycle. 

 

The trypanosome life cycle reveals the different strategies employed by trypanosomes 

against host defences. In tsetse flies, evasion: procyclics avoid migrating through the haemolyph, 

which contains anti-trypanosomal agents such as atacin and defensin. Despite this evasion tactic, 

many tsetse flies are still able to free themselves of infecting trypanosomes, which partly explains 

why trypanosome infection rates are only estimated at 0.1% (Vickerman, 1985). In mammals, the 

variant surface glycoprotein coat (VSG), which is attached to the plasma membrane via GPI 

anchors, serves as physical barrier against the innate immune system while antigenic variation 

enables the pathogen to survive the attacks of humoral immune system. The VSG coat covers the 

entire trypanosome with the possible exception of the flagellar pocket through which receptor 

mediated endocytosis of proteins and protein-drug complexes (e.g. for suramin) are thought to 

occur (Fairlamb and Bowman, 1980). The trypanosome defence against natural mammalian 

immune system is so effective that the mammals require assistance to be freed of the trypanosome 

invaders. 
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Figure 2: Development cycle of Trypanosoma brucei. Source: Hadjuk et al., Am J Med Sci 1992 
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Clinical Signs, Diagnosis and the Disease in Animal Models 

After the infective tsetse bite, a local inflammatory swelling (chancre) develops at the site of 

the fly bite within 5-15 days (Kennedy 2004; Sternberg et al., 2006). Trypanosomes establish 

infection in the haemo-lymphatic system, marked by general malaise, fluctuating fever and general 

lymphadenopathy. The enlargement of lymph nodes of the neck region (Winterbottom’s sign), is 

commonly observed in T. b. gambiense infection. Other clinical signs that may be observed during 

the 1st (early, haemolymphatic) stage of HAT include pale mucous membranes indicative of 

anaemia, headache, fever, pruritus, oedema, splenomegaly, hepatomegaly, and weight loss ( Moore 

et al., 2002; Kennedy, 2004). Clinical signs of 2nd (late, CNS) stage of HAT include altered sleep 

patterns, sensory disturbances, abnormal movements, limb tremors, muscle fasciculation, mental 

changes or psychiatric disorders, anorexia, coma and finally death (Kennedy, 2004). 

 

Diagnosis of HAT relies mainly on visualization by microscopy of the causative 

trypanosome parasites in stained smears of body fluids such as blood, cerebrospinal fluid (CSF) and 

lymph node aspirates (WHO, 1998; Kennedy, 2004). Microscopy has limited sensitivity due to low 

and fluctuating parasitaemias in HAT patients (Van Meirvenne, 1999). Specifically, examination of 

wet smears of blood by the matching method of Herbert and Lumsden (1976) can in theory detect 

up to 10,000 trypanosomes/ml of blood. In practice, however, observation of one trypanosome in 

20 microscopic fields corresponds to a parasitaemia of 250,000 trypanosomes/ml of blood 

(equivalent to antilog 5.4) and it is unlikely laboratory personnel will routinely examine more than 

20 microscope fields per sample. The most sensitive microscopic techniques include the mini-anion 

exchange centrifugation technique (mAECT) and haematocrit centrifugation technique (HCT) also 

called capillary tube centrifugation technique or buffy coat technique (Woo, 1970; Lumsden et al., 

1979; Cattand et al., 1988) for blood and the modified single centrifugation or double 

centrifugation techniques for CSF (Miezan et al., 2000). The centrifugation component in these 

techniques improves their sensitivity to approximately 1000 trypanosomes/ml of blood. In areas 

that are endemic for T. b. gambiense HAT, a serological test, the card agglutination test for 

trypanosomiasis (CATT) is routinely used as a screening test before microscopy (Simarro et al., 

2008). 

 
Animal models of HAT have been used to study different aspects of the disease including 

chemotherapy, pathogenesis, and pathology and to evaluate the potential of resultant host clinical 

and biological changes as diagnostic and disease staging markers (Jennings et al., 1977; Fink et al., 
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1983; Gichuki and Brun, 1999; Kagira et al., 2006). These models are based on experimental 

infection of various animal hosts with T. b. brucei, T. b. rhodesiense or T. b. gambiense. 

Confirmation that these parasites are able to establish infections and characterization of the 

resultant disease progression in terms of clinical signs, immunology and pathology are some of the 

indicators of a well developed animal model. The most commonly used models for HAT research 

are the mouse, rat and other rodents, and vervet monkey models. Characterisation of these HAT 

models shows that the disease occurs in two stages irrespective of the host: a first stage in which 

trypanosomes are localised in the haemo-lymphatic system and a second stage in which the central 

nervous system (CNS) is invaded by trypanosomes, indicating that the basic pattern is similar to the 

disease in humans (Jennings et al., 1977; Poltera et al., 1980). The T. b. brucei GVR 35 model, in 

which mice are treated at 21 days post infection (Jennings et al., 1977), is widely used in murine 

chemotherapy trials of second stage HAT. The vervet monkey model is similarly widely used in 

preclinical drug research, with treatments for first stage compounds initiated at 7 days post 

infection while those for second stage compounds are initiated at 28 days post infection (Gichuki 

and Brun, 1999). The monkey model has the added advantage of permitting collection of 

cerebrospinal fluid (CSF) for monitoring CNS infections and has been described as closely 

mimicking the human disease in terms of clinical signs, immunological status and pathology 

(Schmidt and Sayer, 1982). 

 

Taking the Fight to the Trypanosome 

Vaccination, chemotherapy, patient and vector management are in general key strategies 

that are employed to fight vector-borne infectious diseases. The phenomenon of antigenic variation 

displayed by mammalian stages of trypanosomes however makes it very difficult, if not impossible, 

to develop vaccines based on their variant surface glycoproteins (VSG’s) (Vickerman, 1985). The 

invariant surface glycoproteins on the trypanosome’s plasma membrane are also not useful vaccine 

candidates since they are protected from contact with components of the host’s immune system by 

the 12-15 nM thick VSG coat.  However, there are better prospects of success in developing 

transmission blocking vaccines that interfere with the maturation of the insect stages of the 

trypanosome (Aksoy et al., 2001; Macleod et al., 2007). The tsetse flies can also be targeted 

through mass spraying with insecticides followed by the sterile insect technique to eradicate 

residual fly populations. Tsetse eradication campaigns have been successfully carried out in 

Zanzibar and Botswana and are in progress in three tsetse belts, Lake Victoria basin, Mwea/Meru 

and Lake Bogoria, in Kenya. The eradication activities are carried out under the leadership of the 
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Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC) that was formed by 

African heads of state and Government in 2002. Indeed, the African Union believes that tsetse flies 

can actually be eradicated from the African continent (African Union, 2002). Currently, however, 

the fight against human infective trypanosomes, especially T. b. gambiense infection which 

constitute more than 95% of HAT cases (WHO, 2012a), relies heavily on surveillance and 

treatment of infected persons. The chemotherapy of HAT currently relies on the following drugs:  

 

Pentamidine 

Pentamidine was introduced for clinical use in 1941, becoming the first of its class to attain 

this milestone. Currently, 71 years later, it remains the only diamidine in clinical use and is 

recommended for the treatment of the 1st stage of T. b. gambiense-caused West African form of 

HAT (WHO, 2012a). The drug is available as pentamidine isethionate, Pentacarinat® (sanofi-

aventis) in 200 mg vials for deep intramuscular injection at a dose rate of 4 mg/kg x 7 days qd 

(Burri, 2010). Relative to other HAT drugs, pentamidine is well tolerated. However it still causes 

non-negligible side effects including pain and/or transient swelling at the injection site, abdominal 

pain, diarrhoea, nausea, vomiting and hypoglycaemia (Burri, 2010). Other less commonly 

encountered adverse reactions include QT-prolongation and hyperglycaemia (Burri, 2010). 

Available mechanistic data show that pentamidine is selectively accumulated by trypanosomes via 

the P2 amino-purine transporter aided by the high affinity pentamidine transporter (HAPT 1) and 

the low affinity pentamidine transporter (LAPT 1) ((Mäser et al, 1999; de Koning, 2001) Similar to 

other diamidines, pentamidine has a predilection for DNA containing organelles, including the 

kinetoplast and nucleus, where it binds onto the minor groove of DNA at AT rich sites (Wilson et 

al., 2008). What happens thereafter is not known; it is however thought that the drug catalyses 

kinetoplast fragmentation, inhibition of glycolysis and/or interference with DNA dependent 

enzymes such as topoisomerase II RNA (Denise and Barrett, 2001; Tidwell and Boykin, 2003; 

Wilson et al., 2008). 

Suramin 

Suramin was first used against sleeping sickness in 1921 (WHO 2012), capping a successful 

medicinal chemistry effort in which more than 1000 naphthalene urea compounds were synthesized 

and evaluated for efficacy against trypanosomes (Steverding, 2010). Suramin is marketed as 

Germanin® (Bayer) in ampoules of 1 g and is effective against the first stage of both forms of 

HAT. However, suramin is clinically, used almost exclusively for T. b. rhodesiense infections since 
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pentamidine is considered to be a better choice for T. b. gambiense HAT. The most commonly used 

dosage regimen consists of a test dose of 4–5mg/kg body weight at day 1, followed by five 

injections of 20 mg/kg intravenously every 3–7 days (e.g. days 3, 5, 12, 19, 26) of suramin with a 

maximum dose per injection of 1 g (Burri, 2010). Suramin is extensively (99.7%) bound to plasma 

constituents including albumin and low density lipoproteins (Fairlamb and Bowman, 1980) (Denise 

and Barrett, 2001). The suramin-protein complex is taken up by trypanosomes via receptor 

mediated endocytosis (Denise and Barrett, 2001). Its mode of action is uncertain but is thought to 

include inhibition of enzymes including those responsible for respiration and glycolysis (Fairlamb 

and Bowman, 1980; Denise and Barrett, 2001). Pharmacokinetic studies revealed that suramin has 

a long half-life of 44–92 days (Burri, 2010). While suramin is better tolerated than the drugs used 

for late stage disease treatment, its use is associated with hypersensitivity reactions, albuminuria, 

haematuria and peripheral neuropathy (Burri, 2010). A bloodstream stage-specific invariant surface 

glycoprotein (ISG75) family mediates suramin uptake, and the AP1 adaptin complex, lysosomal 

proteases and major lysosomal transmembrane protein, as well as spermidine and N-

acetylglucosamine biosynthesis, all contribute to suramin action (Alsford, 2012). 

 

Melarsoprol 

Melarsoprol, Arsobal® (sanofi-aventis), is a melaminophenyl based organic arsenical that 

was introduced as an anti-trypanosomal agent in 1949 (Pepin and Milord, 1994). It is accumulated 

into trypanosomes via P2, an aminopurine transporter that is encoded by the TbAT1 gene (Maser et 

al., 1999). Deletions or mutations in the TbAT1 gene lead to drug resistance (Maser et al., 1999) 

which may be one of the causes of high treatment failure rates that are sometimes reported from the 

field (Brun et al., 2001). Melarsoprol has for a long time been the first line treatment for late-stages 

of both T. b. rhodesiense and T. b. gambiense (WHO, 2012a). However the development of 

eflornithine in 1990 and the nifurtimox-eflornithine combination therapy (NECT) in 2009 (Priotto 

et al., 2009; WHO, 2012a), both better tolerated than melarspoprol, meant that clinicians now had 

better choices for management of West African sleeping sickness. Trypanosomes exposed to 

arsenicals lyse very rapidly, but the mode of action of the drug has also not been completely 

elucidated (Denise and Barrett, 2001). Melarsoprol has many undesirable side effects, the most 

significant being a post treatment reactive encephalopathy (PTRE) which occurs in 5-10% of 

treated patients and may be fatal in 50% of the affected patients (Kuzoe, 1993; WHO, 2012a). 
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Eflornithine 

Eflornithine (difluoromethylornithine [DFMO]), is the treatment of choice for second 

stage T. b. gambiense HAT, although it was first developed as an anti-cancer agent (WHO, 1998; 

Brun et al., 2009). The uptake of eflornithine in T. brucei occurs via passive diffusion across the 

plasma membrane (Bitonti et al., 1986). DFMO inhibits ornithine decarboxylase (ODC), which is 

involved in polyamine metabolism leading to cessation of trypanosomes growth. A functional 

immune system is required to kill the growth-arrested trypanosomes (Ghoda et al., 1990). Its lack 

of activity against T. b. rhodesiense is thought to be due to higher overall activity and a shorter 

half-life of ODC in this subspecies compared to T. b. gambiense (Iten et al., 1997). 

 

Nifurtimox-Eflornithine Combination Therapy (NECT) 

The Nifurtimox–Eflornithine Combination Therapy (NECT) has recently been included in 

the 16th WHO Essential Medicines list as treatment for 2nd stage sleeping sickness (Priotto et al., 

2009; WHO, 2012a). In NECT, eflornithine is administered intravenously at 200 mg/kg bid x 7 

days, compared to 100 mg/kg four times per day x 14 days for monotherapy eflornithine (Priotto et 

al., 2009; Burri, 2010; WHO, 2012a) while nifurtimox is administered at 10mg/kg x 10 days per os. 

Thus, the key advantages of NECT are the simplification of eflornithine treatment, reduction of 

costs and overall reduction in hospitalization time for patients. In addition, NECT was shown to be 

equally effective to monotherapy eflornithine and to have comparable safety profiles (Priotto et al., 

2009). However, NECT has not been evaluated against T.b. rhodesiense strains and is therefore not 

used for this indication. 

 

New drugs for HAT 

All the currently available HAT treatments have various shortcomings as highlighted above. 

The development of new drugs for HAT and other NTDs was however hardly being addressed in 

the period before year 2000 because these diseases do not offer good returns for the immense 

financial investments required to bring a drug to the market (www.thecpdd.org; Trouiller et al., 

2002; Adams and Brantner, 2006; Chirac and Toreele, 2006). The gap in development of drugs for 

NTDs was well captured in Chirac and Toreele (2006) who demonstrated that out of 1556 drugs 

developed over the period from 1975 to 2004, only 21 (1.3%) were for NTDs and tuberculosis 

although these diseases accounted for 11.4% of the world’s disease burden. Since the year 2000, 

public private partnerships (PPPs) which are also called product development partnerships (PDPs), 
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were formed to address the drug research and development (R&D) needs of NTDs with funding 

from public and philanthropic organizations and other donors (www.thecpdd.org. accessed July 24, 

2012; Chatelain and Ioset, 2011). As a result the following compounds are now at different stages 

of the drug discovery and development process: 

 

Fexinidazole 

Fexinidazole is a nitroheterocyclic molecule that has recently shown promising activity 

against T. brucei strains (Kaiser et al, 2011) and visceral leishmaniasis (Wyllie et al., 2012).  

Fexinidazole was originally shown to have anti-trypanosomal activity by the drug company 

Hoechst in the 1980s but its development was, for unknown reasons, not pursued to clinical testing. 

It has only recently been rediscovered through compound mining and subsequent screening of at 

least 700 nitroheterocycles by the Drugs for Neglected Diseases initiative (DNDi) (Torreele et al., 

2010). The in vitro activity of fexinidazole and its metabolites fexinidazole-sulfoxide and 

fexinidazole-sulfone are indicated by IC50 values ranging from 0.7 to 3.3 µM against both drug-

sensitive and drug-resistant T. brucei spp (Kaiser et al., 2011. Fexinidazole was subsequently 

shown to cure T. b. rhodesiense and T. b. gambiense acute and chronic mouse models (Kaiser et al., 

2011), was well tolerated in humans during phase I clinical trials (Torreele et al., 2010) and is 

scheduled to enter into phase II/III pivotal clinical trial in the third quarter of 2012 

(http://www.dndi.org/portfolio/fexinidazole.html, accessed on 6th August 2012). Apart from an 

Ames positive result and the need for high dose rates to achieve in vivo efficacy, the available 

pharmacological data are all positive (Maser et al., 2012), justifying optimism that fexinidazole 

might complete the drug development programme successfully. 

 

Benzoxaboroles  

The oxaboroles are a promising new class of antimicrobials that contain boron in their 

structure. Screening an oxaborole library against T. brucei at Scynexis (Research Triangle Park, 

NC) and further activity based structural modifications led to the selection of SCYX-7158 as a 

clinical drug candidate for second stage HAT (Jacobs et al., 2011; Maser et al., 2012). The 

compound has an IC50 against T.b. rhodesiense and T. b. gambiense strains between 0.2-1 µM. 

SCYX-7158 also cures mouse models of both 1st and 2nd stage HAT (Jacobs et al., 2011). Phase 1 

clinical trials were initiated in March 2012 by DNDi (Maser et al. 2012), ensuring that the HAT 

pipeline will not be empty even should an unexpected failure of fexinidazole occur. 
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Novel Diamidines 

The Consortium for Parasitic Drug Development (CPDD) has focused on the diamidines 

class of compounds in their search for potential new therapeutic agents for neglected tropical 

diseases such as HAT. This was largely influenced by the success of pentamidine against T. b. 

gambiense since 1941 (WHO, 2012a).  Continued interest in diamidines as antiparastic agents led 

the synthesis of novel aromatic diamidines by a group of researchers led by Dr David Boykin; six 

of these aromatic diamidines, including furamidine (DB75), were more active against T. b. 

rhodesiense than pentamidine (Das and Boykin, 1977). Despite their improved activity against 

trypanosomes, the new diamidines were, like pentamidine, not well absorbed after oral 

administration due to their positively charged amidine moieties. This was considered a significant 

limitation because of the need to develop easy to use oral drugs that would be more appropriate for 

the resource and infrastructure poor areas where HAT was endemic (Etchegory et al., 2001; Wilson 

et al., 2008). 

 

In 1999/2000, the CPDD obtained funding from the Bill and Melinda Gates Foundation to 

develop furamidine (DB75) and its analogues for NTDs, including HAT. Since then, prodrugs were 

synthesised by masking the amidine moieties with alkoxy groups (Boykin et al., 1996; Ismail et al., 

2003; Hua et al., 2009). The diamidine prodrugs were shown to be significantly more permeable 

across Caco-2 cell monolayers than their parent molecules (Ansede et al., 2005). In other studies, in 

vitro and in vivo (in mice) evaluation of prodrugs and/or active diamidines revealed that that these 

compounds had broad-spectrum activity against trypanosomes, Leishmania and Plasmodium 

species (Werbovetz, 2006), Pneumocystis carinii (jirovecii) pneumonia (Boykin et al., 1995, 1996; 

Hall et al., 1998; Tidwell and Boykin, 2003) and T. cruzi (Soeiro et al., 2011). Furthermore, over 

2000 diamidines were screened against a variety of T. brucei isolates in vitro, with 517 yielding an 

IC50 of less than 0.2µM and a selectivity of over 1000 against a mammalian cell line (L6) (Maser et 

al., 2012). These studies demonstrated the enormous potential of this class as source of potential 

new antiparasitic drugs. 

 

This PhD study was anchored onto the diamidines development project with the objective of 

identifying molecules with suitable biological and pharmacological properties to be recommended 

for further development as potential HAT drugs. 
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Chapter 2: Goals and Objectives 

Goal 

The goal of this thesis was to investigate the efficacy and pharmacology of selected novel 

diamidines in animal models in order to contribute to the development of safe, efficacious and easy 

to use treatments for both first and second stage human African trypanosomiasis (HAT). 

 

Objectives 

The study’s specific objectives were: 

1. To elucidate the oral bioavailability of prodrug DB289 and compare its efficacy with that of 

parenterally administered DB75 and pentamidine in different mouse models of first stage 

HAT. 

2. To evaluate the efficacy of DB289 against first and second stage T. b. rhodesiense 

infections in vervet monkeys in order to understand its therapeutic range in primates. 

3. To characterize the nature, target organs and determinants of DB844 toxicity in vervet 

monkeys and evaluate its pharmacokinetics and efficacy in the vervet monkey model of 

second stage HAT. 

4. To determine the utility of prodrug DB868 as a potential therapeutic agent for first stage 

HAT through metabolism studies in liver microsomes, toxicity study in un-infected 

monkeys and pharmacokinetics and efficacy evaluation in the first stage monkey model of 

HAT. 

5. To compare the efficacy and pharmacokinetics of an orally administered prodrug (DB868) 

with that of its intramuscularly administered active metabolite (DB829) against second 

stage T. b. rhodesiense infections in monkeys. 
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ABSTRACT 

The choice of drugs for the treatment of sleeping sickness is extremely limited. To redress 

this situation, the recently synthesised diamidines, 2,5-bis(4-amidinophenyl)-furan (DB75, 

Furamidine) and its methamidoxime prodrug, 2,5-bis(4-amidinophenyl)-furan-bis-O-

methylamidoxime (DB289, Pafuramidine) were, together with pentamidine, evaluated for efficacy 

in rodent models.  The activity was compared in three common mouse models that mimic the first 

stage of human African sleeping sickness. The mice were infected with the pleormorphic T. b. 

rhodesiense strains KETRI2537 and STIB900 or with the monomorphic T. b. brucei strain 

STIB795. Importantly, DB75 showed enhanced activity over pentamidine at comparable doses in 

all three mouse models. Complete cures were achieved with oral dosing of the prodrug DB289 in 

all three models without any observed toxicity. This shows that the prodrug strategy was successful 

in terms of reducing toxicity and increasing efficacy and oral bioavailability.  Thus, both DB75 and 

especially its orally active prodrug, DB289, provide a promising new treatment approach for early 

stage human African trypanosomiasis. 

 

Key words: Furamidine, DB75, Pafuramidine, DB289, sleeping sickness, mouse models, African 

trypanosomiasis 
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INTRODUCTION 

The number of drugs available for the treatment of sleeping sickness is extremely limited. 

Pentamidine isethionate (Pentacarinat®) and suramin (Moranyl®, Germanin®) are the only two 

drugs currently registered for the treatment of early stage disease that is characterised by 

localization of trypanosomes within the haemolymphatic system. Both drugs are highly effective 

against the West African form of the disease that is caused by Trypanosoma brucei gambiense.  

However, only suramin is recommended for the treatment of the East African form that is caused 

by T. b. rhodesiense since pentamidine is considered less effective (Apted, 1980). Similarly, two 

drugs, melarsoprol (MelB, Arsobal®) and eflornithine (Ornidyl®), are recommended for the 

treatment of the late (meningoencephalitic) stage of the T. b. gambiense disease, but only 

melarsoprol is effective against T. b. rhodesiense infections (WHO, 1998). This situation is 

compounded by the fact that all the current therapies are unsatisfactory for various reasons, 

including poor efficacy, unacceptable drug toxicity, upcoming resistance, costs and undesirable 

route of administration (Fairlamb, 2003). 

 

Recently, renewed efforts in the development of new drugs for HAT and other pathogenic 

conditions, have led to the synthesis of an extensive collection of low toxicity pentamidine–like 

diamidines by an international consortium for parasitic drug development (CPDD) under the 

leadership of the University of North Carolina at Chapel Hill. The diamidine-appeal is based on 

their known broad spectrum of activity against protozoal and fungal pathogens, including African 

trypanosomes. Initially, these drugs were developed as treatment for the AIDS related 

Pneumocystis carinii pneumonia (PCP) and leishmaniasis (Tidwell et al., 1990, Hall et al., 1998). 

Since the year 2000 studies on these compounds have been extended to cover HAT with the double 

aim of i) increasing the number of chemotherapeutic agents available for this neglected disease and 

ii) developing a product that is orally administrable and can therefore be used in the rural African 

settings where HAT is a major problem. In this study, the orally active prodrug, 2,5-bis(4-

amidinophenyl)-furan-bis-O-methylamidoxime (Pafuramidine, DB289) was evaluated together 

with its active parent compound 2,5-bis(4-amidinophenyl)furan (Furamidine, DB75) and the related 

comparator, pentamidine. The compounds were evaluated for efficacy against early stage T. brucei 

(T. b. rhodesiense and T. b. brucei) infections, using established animal models at the 

Trypanosomiasis Research Centre of the Kenya Agricultural Research Institute (TRC-KARI) and at 

the Swiss Tropical Institute (STI). 
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MATERIALS AND METHODS 

Mice 

Adult female Swiss White mice were used in experiments for the KETRI 2537 model. The 

mice were obtained from colonies maintained at TRC-KARI. Adult female NMRI mice were used 

in experiments for the STIB900 and the STIB795 model at STI. The mice were obtained from 

RCC, Ittingen, Switzerland. They weighed between 20-30g at the beginning of the study and were 

house under standard conditions with pelleted food and water ad libitum.  

 

Trypanosomes 

T. b. rhodesiense KETRI2537 is a derivative of EATRO1989 (Fink and Schmidt, 1980). 

The isolate is stored as cryopreseved stabilates in the TRC cryobank.  

T. b. brucei STIB795, a derivative of S427 was received from the International Laboratory for 

Research on Animal Diseases, Kenya, and was originally isolated from a Glossina pallidipes in 

Uganda in 1960. After passages in a sheep, a tsetse fly and several passages in mice, a clone was 

adapted to axenic cultivation in vitro. T. b. rhodesiense STIB900 is a derivative of STIB704. The 

pathogen was isolated from a male patient at St. Francis Hospital in Ifakara/Tanzania in 1982. After 

several passages in rodents and a cyclical passage in Glossina morsitans morsitans, a cloned 

population was adapted to axenic culture in vitro. STIB795 and STIB900 isolates are maintained in 

the STI trypanosome cryobank. 

 

Trypanocidal Compounds 

The two experimental compounds, 2,5-bis(4-amidinophenyl)-furan-bis-O-

methylamidoxime) (DB289), and 2,5-bis(4-amidinophenyl)furan) (DB75), both yellow odourless 

powders, were obtained from Immtech International, USA through Professor Rick Tidwell of the 

University of North Carolina (UNC). Pentamidine isethionate, a white powder, was obtained from 

supplies donated by the WHO. At TRC, the compounds were reconstituted as per the 

manufacturer’s instructions using distilled deionised water (DB75) and commercially available 

water of injection (pentamidine). DB289 stock suspension was prepared in a solvent consisting of 

deionised water (99.4%), Tween 80 (0.1%), and carboxymethyl cellulose sodium (CMC, medium 

viscosity, 0.5%). All compounds were freshly prepared every two days, in concentrations ranging 

from 7.5 mg/ml to 0.078 mg/ml. At STI, all compounds were dissolved in DMSO and subsequently 

diluted with distilled sterile water to final maximal concentration of 10% DMSO for the STIB795 

and the STIB900 models. 



 36

Experimental Design 

KETRI2537 Mouse Model 

Two sub-lethally irradiated (600rads, 5 minutes) donor Swiss White mice were each 

inoculated intraperitoneally with 0.2 ml of the thawed T. b. rhodesiense stabilates, diluted in 

phosphate saline glucose (PSG). When these mice had a circulating parasitaemia of antilog 7.8 to 

8.1 as described by Herbert and Lumsden (1976), they were bled and used to infect the 

experimental group of Swiss White mice, each mouse receiving 1x104 parasites in 0.2 ml of PSG. 

Immediately after infection, mice were randomly assigned to groups comprising six mice each. 

Parasitaemia was monitored daily using smears of tail-snip blood, a minimum of 20 fields being 

examined before a sample was designated negative.  

 

Treatment was initiated on first detection of trypanosomes. Oral (per os, PO) treatments 

(DB289) were administered using a gavage needle for five consecutive days while intraperitoneal 

(IP) treatments (DB289, DB75 and pentamidine) were administered for four consecutive days. 

Intravenous (IV) DB75 was administered as a single injection only. Compound volume 

administered to the mice was maintained at 0.1ml /10g of mouse body weight (bwt). Six mice 

served as infected-untreated controls.  

Post treatment parasitaemia was monitored thrice a week for 60 days. Monitoring for deaths 

was carried out daily. When mice relapsed, they were promptly euthanised by carbon dioxide 

inhalation and incinerated. Median time to relapse (MTR) was calculated in days post last 

treatment. All protocols and procedures used in the current study were reviewed and approved by 

the Trypanosomiasis Research Centre (TRC) Institutional Animal Care. 

 

STIB795 and STIB900 Mouse Models 

Four female NMRI mice were used per experimental group. Each mouse was inoculated 

intraperitoneally with 1x105 bloodstream forms of STIB795 or STIB900 respectively. The 

cryopreserved stabilate containing 10% glycerol was suspended in PSG to obtain a trypanosome 

concentration of 4 x 105 /ml. Each mouse was injected with 0.25 ml. Compound treatment was 

initiated 3 days post infection on 4 consecutive days for all administration routes in a volume of 

0.1ml /10g mouse. Parasitaemia was monitored using smears of tail-snip blood twice a week after 

treatment followed by once a week until 60 days post infection. Mice were considered cured when 
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there was no parasitaemia relapse detected in the tail blood over the 60 days observation period. 

Four mice served as infected-untreated controls. Mean survival days (MDS) were calculated in day 

of death post infection of parasitaemic mice. All protocols and procedures used in the current study 

were reviewed and approved by the local veterinary authorities of the Canton Basel-Stadt. 

 

RESULTS 

Disease Pattern KETRI2537 

A pre-patent period of 3 (range = 3-5) days was observed. Peak parasitaemia was reached 

on day 8-9 post-infection. This first parasitaemia wave was well controlled, in some cases being 

reduced to below the detection limit of antilog 5.4 (Herbert and Lumsden, 1976). Subsequent waves 

were not as well controlled, with only slight fluctuations between peak and trough parasitaemia 

levels. At terminal disease stage the untreated control mice were euthanised when parasitaemia 

levels reached antilog 8.4. The mean survival times of the infected control animals was 33 (range = 

24-47) days. 

 

Disease Pattern STIB795 and STIB900 

A prepatent period of 3 days was observed for STIB795 and one of 2.6 days (range = 2-3) 

for STIB900. Peak parasitaemia for both strains was reached on day 4 to 5 post-infection. The mice 

could not control parasitaemia and consequently died with a mean survival time of 6 (range = 5-8) 

days.  

 

Efficacy against KETRI2537 Infections 

In mice that were treated with DB289, clearance of parasites from the peripheral circulation 

began 48 hours after initiation of treatment and was complete in all groups six days after the first 

drug dose. DB289 when administered orally or IP at dose rates equal or greater than 4mg/kg 

resulted in 100% cure rates (Table 1). However, at 4x3.125 mg/kg bwt, IP administration resulted 

in a higher cure rate of 4/6 (67%, CI=22.3-95.7%) as compared to a cure rate of 2/6 (33%, CI=4.3-

77.7%) for PO administration at 5x 3.125 mg/kg, but this difference was statistically not significant 

(P>0.05). DB289 was well tolerated with no toxicity detected at any of the dose levels tested, which 

was up to 5x75 mg/kg PO and 4x75 mg/kg IP. 
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DB75 achieved 100% cure rates at all IP dose regimes equal to or greater than 4x1.56 

mg/kg bwt and at the IV dose regimes tested (25, and 12.5 mg/kg bwt, single dose). At the lowest 

dose tested, 4 x 0.78 mg/kg bwt IP a cure rate of 3/4 (75%) was obtained. DB75 was significantly 

toxic when used at 4x50 mg/kg bwt IP (5/6 deaths). However, the lowest dose at which significant 

toxicity was detected (4x50 mg/kg) was 32 times higher than the minimum curative dose (4x1.56 

mg/kg), resulting in a reasonable therapeutic index. Pentamidine achieved 100% cure rate at 4x12.5 

mg/kg bwt IP. The results at lower doses tested demonstrated a clear dose response with 80% cures 

at 4x6.25 mg/kg and 40% at 4x3.125 mg/kg bwt. No signs of toxicity could be observed at 4x12.5 

mg/kg bwt. 

 

Efficacy against STIB795 Infection 

The data obtained with the T. b. brucei STIB795 model was comparable with the data of the 

T. b. rhodesiense KETRI2537 model.  

DB289 administered PO resulted in a good dose response. The minimum curative dose was 4x10 

mg/kg. At 4x5 mg/kg, 3/4 mice (75%) were cured. The total dose was equal to 5x4 mg/kg PO in the 

KETRI2537 infected mice, which was also the minimum curative dose. No cures were obtained at 

4x2.5 mg/kg PO. However the survival was extended compared to the untreated control mice, 

indicating that DB289 still exhibited some activity at this low dose. 

A good dose response with regard to cures was also obtained with IP treatment of DB75. A 

dose of 4x1.0 mg/kg resulted in cure of all animals while 4x0.5 mg/kg cured 3/4 mice (75%). The 

KETRI2537 data was comparable showing 3/4 cures at the similar dose of 4x0.78mg/kg IP. DB75 

failed to cure at 4x0.25mg/kg but could prolong the survival time significantly to >32.5days 

compared to the untreated control mice, which survived only for 6 days post infection. Pentamidine 

gave complete cures at the lowest tested dose of 4x5 mg/kg IP. 

 

Efficacy against STIB900 Infections 

The T. b. rhodesiense STIB900 model is significantly more stringent as compared to 

STIB795 or KETRI2537. A 10-times higher PO administered dose of DB289 was needed to 

achieve complete cure as compared to the STIB795 or a 20-times higher dose as compared to 

KETRI2537. DB289 failed to give any cures at ≤4x10 mg/kg but it prolonged the mice survival 

significantly and in a dose dependent manner. The untreated control mice died on average on day 6. 

DB289 was also administered IP in the STIB900 model and 3/4 cures were obtained at 4x50 mg/kg.  
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At half the dose, all mice developed a parasitaemia relapse but the relapses were late and all 4 mice 

survived the 60 days observation period.  

 

DB75 was not able to cure mice at doses up to 4x20 mg/kg bwt in the STIB900 mouse 

model. However, a clear dose response on the level of survival could be observed. The parasitaemia 

relapses occurred late particularly at 4x20 mg/kg IP indicating that this dose was close to the 

minimum curative dose. DB75 administration at 4x 20mg/kg IP was recently repeated and cure of 

single mice could be achieved (data not published).  

IV administration of DB75 did not result in cures of infected mice. The survival of the 

treated mice was dose-dependent and comparable to the IP administration. The toxicity limit was 

lower with IV administration as compared to IP.  

 

Pentamidine gave no cures up to the maximum dose of 4x25 mg/kg IP. The survival of the 

mice was in a similar range as after DB75 treatment but slightly shorter. 



 40

Table 1: Treatment of KETRI 2537 infections with DB289, DB75 and pentamidine 

 

Drugs 
Dose: mg/kg No 

cured/total  
MST (range)  

Pafuramidine (DB289, administered PO x 5 days) 
6.25 6/6  
4 6/6  
3.13 2/6  23.5 (16-32) 
1.56 0/6  9.0 (6-13) 
0.78 0/6  6.0 (4-9) 
Pafuramidine (DB289, administered IP x 4 days) 
6.25 4/4  
4 6/6  
3.13 4/6  25 (19, 31) 
1.56 1/6  16 (10-31) 
0.78 0/6 12.0 (5-15) 
Furamidine (DB75, administered   IP x 4 days 
6.25 6/6  
3.13 3/3  
1.56 5/5  
0.78 3/4  21 
Furamidine (DB75, administered IV x 1day 
25 6/6  
12.5 6/6  
Pentamidine (administered IP x 4 days)  
12.5 3/3  
6.25 4/5  10 
3.13 2/5  14 (7, 21) 
1.56 0/6 15 (5-15) 
Controls 0/6 33 (24-47) 
 

Key: Cure = mice survived for more than 60 days after last drug dose without showing a relapse 

MTR= median time to relapse post last treatment or mean time to death post infection for control 
mice 
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Table 2: Treatment of STIB795 and STIB900 infections with DB289, DB75 and Pentamidine 
 

Drugs T.b.brucei STIB 795 T.b.rhodesiense STIB 900 

Dose: 
mg/kg 

No 
cured/infected 

MSD (range) 
No 

cured/infected 
MSD (range) 

Furamidine (DB75, administered   IP x 4 
days 

    

4x  20  -   0/4 >52.5 (40->60) 
4x  10  -   0/4 46.5 (38-55) 
4x   5  -   0/4 35.5 (33-40) 
4x   2.5  4/4   0/4 32.75 (31-35) 
4x   1.0  4/4   -  
4x   0.5  3/4 >60 -  

4x 0.25  0/4 
>32.5 (5, 

>60) 
-  

Furamidine (DB75, administered IV x 4 days   
4x  15  -    toxic 
4x  10  -   0/4 47.5 (32-58) 
4x   5  -   0/4 33.75 (29-36) 
4x   2.5  -   0/4 28.5 (24-34) 
4x   1.25   -   0/4 25.75 (21-31) 
Pafuramidine (DB289, administered IP x 4 
days) 

    

4x 50  -   3/4 >60 
4x 25  -   0/4 >60 
Pafuramidine (DB289, administered PO x 4 days)   
4x 100  - - 4/4  
4x  50  - - 2/4 >60 
4x  10  4/4   0/4 46.5 (31-55) 
4x    5  3/4 6 0/4 30 (24-38) 
4x 2.5  0/4 22 (5-53) 0/4 19.75 (14-26) 
Pentamidine (administered IP x 4 days)      
4x 25  - - 0/4 >60 
4x 20  - - 0/4 42.75 (39-47) 
4x 10  4/4   0/4 28 (18-35) 
4x   5  4/4   - - 
4x 2.5 4/4  -  
4x 1 3/4 > 60 -  
4x 0.5 3/4 58 -  
4x 0.25 0/4 >35 (24->60) -  
control 0/4 6 (5-8) 0/4 6 (5-7)  

 

Key:  MSD: mean survival days post infection of the mice that got a parasitaemia relapse 

Range: days of death post infection of the mice with parasitaemia 
Cure= mice survived for more than 60days after infection without showing a parasitaemia relapse 
Control: infected mice without any drug treatment 
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DISCUSSION 

Pentamidine and the diamidine DB75 and its prodrug DB289 showed excellent activities in 

the T. b. rhodesiense KETRI2537 mouse model of infection. This trypanosome strain is routinely 

used in the vervet monkey model at TRC (Schmidt and Sayer, 1982).  Importantly, 100% cure rates 

were achieved at dose rates of 4x12.5 mg/kg bwt IP with pentamidine, 4x4 mg/kg bwt IP and 5x4 

mg/kg bwt PO with DB289 and 4x1.56 mg/kg bwt IP with DB75. Comparable results were 

obtained using the T. b. brucei STIB795 mouse model. 100% cure rates were achieved at dose rates 

of ≤ 4x5 mg/kg bwt IP with pentamidine (testing of lower doses ongoing), 4x 10 mg/kg PO with 

DB289 and 4x1 mg/kg bwt IP with DB75. The T .b. rhodesiense STIB900 mouse model is very 

stringent and hard to cure as compared to STIB795 although both strains show similar in vitro drug 

sensitivity (Bernhard, 2006). High level of parasitaemia was reached more rapidly with STIB900 

and clearance after treatment with DB75 took more time compared to STIB795 (Bernhard, 2006). 

Pentamidine could not cure the STIB900 model, not even at the highest dose tested (4x25 mg/kg 

IP). Also DB75, which cured easily the KETRI2537 and STIB795 model, did not give any cures in 

the STIB900 model. However, DB75 prolonged the mice’s survival more than pentamidine at 

identical dosages. A higher dose of DB75 was not used as a preliminary toxicity test did show 

toxicity at 1x100 mg/kg IP. DB289, the prodrug of DB75, achieved complete cures in the STIB900 

mouse model without showing any toxicity at 4x100 mg/kg PO. Partial cure (50%) was achieved at 

4x50 mg/kg PO. Intraperitoneal administration of DB289 resulted in insignificantly higher activity. 

Approximately 10-times more prodrug was needed to achieve comparable cure rates in the 

STIB900 model as compared to KETRI2537 and STIB795. 

 

Interestingly, DB289 showed good oral efficacy indicating that sufficient quantities were 

absorbed from the mouse gastrointestinal tract, confirming that the prodrug approach is an effective 

way of delivering dicationic drugs across the gut mucosa (Tidwell et al., 1990; Hall et al., 1998). 

Oral efficacy presents the exciting new possibility to treat HAT patients without the need for 

hospitalisation, thus making the treatment of a neglected tropical disease that affects the world’s 

poorest people easier to manage and cheaper (WHO, 1998; Etchegorry et al., 2001). Oral diamidine 

activity has earlier been reported for diminazene aceturate (Berenil®) in a substantial number of 

HAT patients (Abaru et al., 1984) although this drug is not registered for human use.  

 

All the drugs were well tolerated, except intravenous administered DB75 had toxic effects 

at 4x15 mg/kg or intraperitoneally at the high dose of 4 x 50 mg/kg bwt. No adverse effects were 
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noticed for the prodrug DB289 at dose levels up to 5 x 75 mg/kg bwt in the KETRI2537 model, a 

dose that is 18.8 times higher than the minimum curative dose. Also at 4 x 100 mg/kg bwt which 

cured the highly stringent STIB900 model no signs of toxicity could be observed. This compares 

well with pentamidine and diminazene aceturate which, when administered in mice at dose rates as 

high as 50 mg/kg did not cause overt signs of toxicity (Zweygarth and Rottcher, 1989). Thus, 

although susceptibilities of T. b. rhodesiense clinical isolates to drugs are known to vary widely 

(Bacchi et al., 1990, 1994 and 1997), the wide safety margin suggests that there is adequate room 

for adjustment of dose rates to cater for such differences between isolates.  

 

In conclusion, this study has shown that DB75 is much more potent than pentamidine and 

that the prodrug DB289 cures the T. b. rhodesiense mouse models when administered PO. This 

supports the expectation that DB289, which is currently in phase III clinical trials, may successfully 

become the first oral treatment of human African trypanosomiasis. 
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ABSTRACT 

Owing to the lack of oral drugs for human African trypanosomiasis, patients have to be 

hospitalized for 10 to 30 days to facilitate treatment with parenterally administered medicines. The 

efficacy of a novel orally administered prodrug, 2,5-bis(4-amidinophenyl)-furan-bis-O-

methlylamidoxime (pafuramidine, DB289), was tested in the vervet monkey (Chlorocebus 

[Cercopithecus] aethiops) model of sleeping sickness. Five groups of three animals each were 

infected intravenously with 104 Trypanosoma brucei rhodesiense KETRI 2537 cells. On the 

seventh day postinfection (p.i.) in an early-stage infection, animals in groups 1, 2, and 3 were 

treated orally with pafuramidine at dose rates of 1, 3, or 10 mg/kg of body weight, respectively, for 

five consecutive days. The animals in groups 4 and 5 were treated with 10 mg/kg for 10 

consecutive days starting on the 14th day p.i. (group 4) or on the 28th day p.i. (group 5), when 

these animals were in the late stage of the disease. In the groups treated in the early stage, 10 mg/kg 

of pafuramidine completely cured all three monkeys, whereas lower doses of 3 mg/kg and 1 mg/kg 

cured only one of three and zero of three monkeys, respectively. Treatment of late-stage infections 

resulted in cure rates of one of three (group 4) and zero of three (group 5) monkeys. These studies 

demonstrated that pafuramidine was orally active in monkeys with early-stage T. brucei 

rhodesiense infections at dose rates above 3 mg/kg for 5 days. It was also evident that the drug 

attained only minimal efficacy against late-stage infections, indicating the limited ability of the 

molecule to cross the blood-brain barrier. This study has shown that oral diamidines have potential 

for the treatment of early-stage sleeping sickness. 
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INTRODUCTION 

Human African trypanosomiasis (HAT) (sleeping sickness) is caused by the flagellated 

protozoan parasites Trypanosoma brucei gambiense and T. brucei rhodesiense and is inevitably 

fatal when untreated. The disease is endemic to sub-Saharan Africa, where an estimated 50 million 

people in more than 20 countries are considered to be at risk (23). WHO statistics show that from 

1998 to 2004, the number of HAT cases declined from 37,991 to 17,616 (30), and the estimated 

prevalence declined in the same period, from 300,000 to 500,000 cases to 50,000 to 70, 000, even 

though the number of people covered by active screening almost doubled in the same period (30). 

These declining trends are indicators that the partnerships between individual African governments 

and the WHO are having a positive impact on the control of HAT. However, these gains could 

easily be lost through political instability and/or the outbreak of wars, which inevitably lead to a 

breakdown in surveillance activities (10). At present, HAT remains a major health problem in 

certain foci in the Democratic Republic of Congo, Angola, and Southern Sudan (10, 30). Since the 

trypanosomes' remarkable ability to vary their major surface antigen makes successful vaccine 

development unlikely in the near future (26), the only recourse available is to intensify research and 

the development of new drugs. 

Current drugs that are used to treat HAT include pentamidine, suramin, melarsoprol, and 

eflornithine (5). These are far from ideal, since they elicit substantial toxic effects and/or require 

parenteral application, which makes them difficult to administer in the rural African settings where 

the disease typically occurs. Furthermore, melarsoprol, the only drug available that is effective 

against the late stages of both T. brucei gambiense and T. brucei rhodesiense disease, has shown 

incidences of treatment failure of >25% in epidemic areas of northern Uganda and northern Angola 

(4, 7, 8). Both melarsoprol and eflornithine require long periods of hospitalization and monitoring 

owing to the complicated treatment schedules needed (1). In addition, melarsoprol may cause 

reactive encephalopathy; this occurs in 5 to 10% of treated patients and has a fatality rate of ∼50% 

(5). The provision of an oral drug of low toxicity for sleeping sickness would allow an effective 

administration of the required doses with minimal supervision from medical personnel. This is an 

important consideration, since enough qualified people are rarely available in those parts of Africa 

where the disease is endemic. 

A recently synthesized novel prodrug, 2,5-bis(4-amidinophenyl)-furan-bis-O-

methlylamidoxime (pafuramidine, DB289) exhibited excellent oral activity and reduced acute 

toxicity in acute and chronic mouse models of trypanosomiasis (3, 12, 27). The enhanced oral 

activity of DB289 is attributed to an improved oral absorption of the prodrug in which the cationic 
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functionalities are masked and to its conversion to the active compound 2,5-bis(4-

amidinophenyl)furan (furamidine; DB75) in the liver. DB75 strongly binds to the minor groove of 

DNA at AT-rich sites and weakly binds by intercalation at the GC sites of DNA (25). 

Consequently, its subsequent mode of action involves interference with the normal function of the 

pathogen's DNA-dependent enzymes, perhaps topoisomerase II (2). In spite of pafuramidine being 

an analogue of pentamidine, it appears to possess two properties that would overcome the two 

disadvantages of pentamidine, namely, parenteral administration and lack of efficacy against 

central nervous system (CNS) infection. 

Recently, following prolonged administration with the drug in a clinical trial for AIDS 

related Pneumocystis cariini pneumonia, abnormal liver enzyme values were found in several 

volunteers. However, no subject required any treatment or hospitalization for this abnormality. 

Despite this, pafuramidine is evidently a promising candidate for use as a new drug for oral 

administration. It was therefore tested in the vervet monkey model of sleeping sickness at the 

Trypanosomiasis Research Centre of the Kenya Agricultural Research Institute. This nonhuman 

primate model is known to mimic the human disease closely (21) and is a valuable tool for 

preclinical chemotherapeutic studies. Experiments were conducted to determine the efficacy of 

DB289 after multiple oral doses against both early- and late-stage infections with T. brucei 

rhodesiense. 
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MATERIALS AND METHODS 

Experimental Animals 

Fifteen vervet monkeys (Chrolocebus [Cercopithecus] aethiops) of both sexes and weighing 

between 2.5 and 4.5 kg were obtained from the Institute of Primate Research in Kenya. They were 

housed in quarantine for a minimum of 90 days and screened for evidence of disease, including 

zoonotic infections. They were also dewormed using albendazole (Valbazen; Utravetis Ltd., 

Kenya) and treated for ectoparasites using carbaryl (1-naphthyl methylcarbamate) (Sevin; Bayer 

Ltd., Kenya). During that period, the monkeys became accustomed to staying in individual 

squeeze-back stainless steel cages and to being handled. They were fed twice daily on fresh 

vegetables and commercial monkey cubes (Unga Ltd., Kenya) and given water ad libitum. Before 

the study, the animals were transferred to experimental wards and acclimatized for a further 2 

weeks. 

 

Trypanosomes 

The T. brucei rhodesiense stabilate used was KETRI 2537, a derivative of EATRO 1989, 

isolated from a patient in Uganda by direct inoculation of blood and lymph node aspirates into a 

monkey and later cryopreserved (9). 

 

Test Drug.  

Pafuramidine (DB289) [2,5-bis(4-amidinophenyl)-furan-bis-O-methlylamidoxime; 

MediChem, Lemont, IL] was provided by Immtech Pharmaceuticals, Inc., as a yellow powder. 

 

Drug Preparation 

DB289 was prepared as a 1% suspension in distilled water containing 0.5% (wt/vol) 

carboxymethylcellulose sodium and 0.1% (wt/vol) Tween 80. The preparation was stored at 4°C 

and used for up to 3 days before a fresh preparation was made. 

 

Drug Administration 

The DB289 suspension was administered orally using a gavage needle once daily for 5 or 

10 days depending on the treatment regimen for each group. 
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Experimental Design 

The 15 monkeys were randomized into five treatment groups without sex bias (Tables 1 and 

2). The monkeys were all infected by intravenous injection of 104 trypanosomes diluted from the 

infected blood of immunosuppressed donor mice using phosphate-buffered saline as previously 

described for the vervet monkey model (11, 17). On the seventh day postinfection (p.i.) in an early-

stage infection, animals in groups 1, 2, and 3 were treated orally with pafuramidine at dose rates of 

1, 3, and 10 mg/kg, respectively, for five consecutive days. The animals in the remaining two 

groups, groups 4 and 5, were treated with 10 mg/kg for 10 consecutive days, starting on the 14th 

day p.i. (group 4) or on the 28th day p.i. (group 5). The monkeys were monitored for clinical 

changes and for the presence of trypanosomes in body fluids. Once parasites were detected in any 

of the body fluids, the monkeys were removed from the study through humane euthanasia. 

 

Table 1: Body weight and PCV changes in vervet monkeys infected with T. brucei rhodesiense and 

treated with different regimens of pafuramidine 

Group (dose 

[mg/kg]) 

Mean 

preinfection 

wt (kg) ± SE 

% Wt change at a   Mean 

preinfection 

% PCV ± SE 

% Change in PCV at a  

Day 0 

p.t. b  

Day 

28p.t.c  

End 

point 

Day 0 

p.t. b 

Day 28 

p.t.c  

End 

point 

1 (1) 3.15 ± 0.45 −2.20 −2.1 d  0 47.0 ± 4.4 −4.30 −17.0 d  −23.40 

2 (3) 3.18 ± 0.33 −5.00 −6.60 −1.60 46.0 ± 4.4 −9.40 −2.90 −3.60 

3 (10) 2.88 ± 0.43 −6.30 0 +3.50 40.3 ± 2.5 −5.80 −1.60 +13.20 

4 (10) 4.25 ± 0.52 −4.20 −5.20 −0.70 51.7 ± 6.1 −25.80 −13.50 −7.70 

5 (10) 3.32 ± 0.60 −10.50 −8.10 −2.10 47.7 ± 1.5 −41.30 −9.10 +1.40 

 
a = Percent change in body weight or PCV from preinfection values, – indicates a decline, + 

indicates an increase; b = Values taken before the first treatment dose, i.e., on the 7th day p.i. for 

groups 1 to 3, 14th day p.i. for group 4, and 28th day p.i. for group 5; c
 = Data for groups 2 to 5 at 

28 days p.t.; d = Percent change in body weight and PCV at 1 day p.t. for group 1. 
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Table 2: Outcomes of treatment of T. brucei rhodesiense-infected vervet monkeys with different 

regimens of pafuramidine (DB289) 

Group Dose (mg/kg) (length 

of treatment [days]) 

Monkey Time to detection of 

trypanosomes in biological 

fluids (days p.t.) 

No. of cured 

monkeys/no. of total 

monkeys 

Blood CSF 

MIT 

WS + 

HCT MIT 

HC + 

CT 

1 1 (5) 463 7 9 NC NC 0/3 

  484 NC 4 7 14  

  485  3 14 21  

2 3 (5) 482 55 79  21 1/3 

  483 69 66 69 55  

  411 Cured     

3 10 (5) 454 Cured    3/3 

  468 Cured     

  486 Cured     

4 10 (10) 471 56 87 NC NC 1/3 

  478 Cured     

  488 ND  42 ND  

5 10 (10) 490 ND  21 42 0/3 

  501 56 73 NC   

  520 ND  119 119  

ND, not detected for >180 days p.t.; WS, wet smear; HC, hemocytometer counting; CT, 

concentration techniques for CSF; NC, trypanosome not cleared. 

 

Monitoring and Sample Collection 

Physical examinations and sampling of body fluids were carried out weekly for the first 28 

days and then once every 2 weeks up to 100 days post treatment and monthly thereafter until the 

end of the experiment. Physical examinations and collection of blood and cerebrospinal fluid (CSF) 

were undertaken on monkeys anesthetized with diazepam (May and Baker, United Kingdom) at 1 

mg/kg body weight and with ketamine hydrochloride (Rotexmedica, Trittau, Germany) at 15 mg/kg 

body weight. Post treatment monitoring was maintained for a period of 180 days. 
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At each time point, approximately 1 ml of blood was collected into EDTA by inguinal 

venipuncture. In addition to blood samples, 1.5 ml of CSF was collected by lumbar puncture of the 

anesthetized monkeys (11). Blood collected by inguinal venipuncture was used for determinations 

of the packed cell volume (PCV) using the microhematocrit method. White cells in the CSF were 

counted using a hemocytometer chamber. 

 

Determination of Parasitaemia 

The determination of parasitaemia started 3 days p.i. It was done by examination of wet 

films of ear prick blood according to a method described previously by Herbert and Lumsden (13) 

(detection limit, 105 trypanosomes/ml of blood) or by the hematocrit centrifugation technique 

(HCT) according to methods described previously by Woo (31) (detection limit, 103 

trypanosomes/ml of blood). Blood collected by inguinal venipuncture was used for parasitemia 

determinations using both the wet-film and HCT methods. 

For estimation of parasites in the CSF, some of the free-flowing CSF was collected into a 

capillary tube and immediately transferred into a hemocytometer chamber to count the number of 

trypanosomes and white cells. Negative CSF samples were then centrifuged and reexamined for 

trypanosomes. In cases where no parasites were detected in either blood or CSF by the above-

described methods, Swiss white mice were used to test for the presence of trypanosomes (11). 

Samples of 0.2 ml of blood or CSF were inoculated intraperitoneally into two mice per sample. 

 

RESULTS 

Clinical Disease before Treatment 

Following infection, trypanosomes were detected in wet smears of peripheral blood with a 

mean period of 4.2 days (range, 3 to 5 days). Enlargement of peripheral axillar and inguinal lymph 

nodes was observed by the seventh day p.i., and enlargement of the spleen was observed by the 

14th day p.i. The monkeys became dull, had rough hair coats, and showed a transient loss of 

appetite. The rectal body temperature rose from a preinfection (0 days p.i.) value of 38.2°C ± 0.2°C 

to 38.9°C ± 0.2°C (mean ± standard error). The rise in temperature was significant (P = 0.01) and 

coincided with peak parasitemia levels of 7 × 107 trypanosomes/ml of blood. Other clinical signs 

included loss of body weight as the infection progressed. The decrease in mean body weight was 

marginal (<6% of preinfection weight) for animals treated while in the first stage of disease at 7 to 

11 days p.i. (groups 1 to 3), and a more substantial change (10.5%) was found for animals (group 5) 

treated during late-stage disease at 28 days p.i. (Table 1). The changes in mean PCV were similarly 
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marginal for animals treated while in the early stage but more pronounced for those treated while in 

the late stage of disease (Table 1). Animals that were treated in the late stage of disease also had 

confirmed trypanosomes in CSF (1 to 6 trypanosomes/µl) and elevated white cell counts (mean, 10 

cells/µl of CSF; range, 4 to 20 cells/µl of CSF). 

 

Results of Treatment with Pafuramidine 

Pafuramidine treatment was shown to benefit most of the monkeys. Body weights and PCV 

improved in all monkeys by the time of termination of the experiment except for those in group 1 

(Table 1). In some individuals, there was clearance of both parasitemia and CSF parasitosis (Table 

2). However, the onset and durability of the beneficial effects of pafuramidine treatment varied in 

the different groups. 

 

Group 1 (1 mg/kg for 5 days per os) 

In group 1, trypanosomes became undetectable in the blood by direct microscopy or HCT a 

day after the last (fifth) drug dose and remained so for a mean of 5 days (range, 3 to 9 days). 

However, even during this period of apparent aparasitemia, viable trypanosomes were isolated from 

the monkeys' blood by the mouse inoculation test (MIT), indicating that blood parasites were never 

completely eliminated. In the CSF, trypanosomes were detected first by MIT on 7 to 14 days 

posttreatment (p.t.) or 14 to 21 days p.t. by microscopy (direct hemocytometer counting or 

concentration techniques), indicating that the drug treatment delayed the onset of trypanosomes in 

the CSF. Clinical data, especially the PCV, continued to decline (Table 1), indicating that at the low 

dose of 1 mg/kg of body weight, pafuramidine treatment did not cure any of the monkey infections. 

The monkeys were humanely euthanized. 

 

Group 2 (3 mg/kg for 5 days per os) 

Animals in group 2 became parasitologically negative by both blood and CSF on the fifth 

day of dosing. However, two of the three monkeys experienced recrudescence of trypanosomes, 

first in the CSF and later in the blood (Table 2). In these two animals, CSF trypanosomes were first 

detected by the MIT at 21 days p.t. and then by direct microscopy (Table 2). In this group, 

treatment led to improvement in both mean weight and mean PCV (Table 1) although only one of 

three the monkeys fulfilled the criteria of cure at 180 days p.t. The two monkeys that relapsed were 

humanely euthanized. 
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Group 3 (10 mg/kg for 5 days per os) 

Animals in group 3 became parasitologically negative by the fifth day of dosing and 

remained so until the end of the experimental period. Similarly, no trypanosomes were recovered 

by MIT throughout the 180 days of p.t. monitoring. Meanwhile, weight and PCV returned to 

preinfection levels by 28 days p.t. (Table 1), and all clinical aberrations resolved, underlining that 

all three of three monkeys were cured of the infection. 

 

Group 4 (10 mg/kg for 10 days per os starting 14 days p.i.) 

In group 4, following treatment, both weight and PCV improved, although not to 

preinfection levels (Table 1). All three monkeys in this group became aparasitemic by day 5 of 

dosing, but only two of three monkeys (monkeys 478 and 488) remained free of blood parasites 

until 180 days p.t. In the CSF, either trypanosomes were not cleared (monkey 471) or 

recrudescence occurred within the first 42 days p.t. (monkey 488) (Table 2). Only monkey 478 

remained free of trypanosomes in both blood and CSF as determined by HCT and MIT and was 

considered to be cured (Table 2). The results were confirmed by the pattern of white cell changes in 

the CSF; these oscillated between 0 and 12 cells/µl of CSF for monkey 478, which was cured, but 

occasional peaks of above 25 cells/µl of CSF, which declined to lower peaks below 15 cells/µl of 

CSF, were observed in monkey 488, where there was recrudescence of the infection (Fig.1). 
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FIG. 1: CSF white cell changes in vervet monkeys 478 (▴) and 488 (□) after treatment with 

pafuramidine at 10 mg/kg for 10 days while in the late stage (14 days p.i.) of disease. Note 

that in vervet monkey 478, levels of white cells declined after treatment and remained low 

throughout the observation period, while in vervet monkey 488, the drop in white cell 

number was transient and showed recrudescences to >25 cells/µl of CSF 

 

Group 5 (10 mg/kg for 10 days per os starting at 28 days p.i.) 

In group 5, all the animals became aparasitemic by day 4 of dosing. However, only two of 

three of them remained free of blood trypanosomes by the end of the 180 days of p.t. monitoring 

(Table 2). In the CSF, trypanosomes were not cleared in monkey 501, while in the remaining two 

monkeys, the trypanosomes disappeared after treatment, and recrudescence occurred (Table 2). The 

significant improvement in weight and PCV (Table 1) was probably due to the absence of 

trypanosomes from the hemolymphatic system in spite of the presence of trypanosomes in the CNS. 
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DISCUSSION 

In this study, the oral administration of pafuramidine (DB289) had a profound effect on 

established T. brucei rhodesiense infections in vervet monkeys. In the acute disease stage, when the 

monkeys showed high parasitemia levels, treatment with 10 mg/kg orally for five consecutive days 

cleared three of the three monkeys in group 3 of their trypanosome infections and kept them 

trypanosome free for the entire monitoring period of 180 days. In addition, the treatment reversed 

the clinical symptoms of trypanosomiasis, thus fulfilling all criteria for confirmation of cure. 

Comparison of this group of monkeys with groups 1 and 2, which also had an early-stage 

infection with a 5-day treatment schedule (days 7 to 11), shows a clear dose response to 

pafuramidine. At 3 mg/kg, only one of three animals was cured, and at the lowest dose, 1 mg/kg, all 

animals relapsed within 1 week after treatment or did not clear parasitemia at all. 

The clinical signs described in this report for acute infection mirror those described in 

previous reports for syringe passage of T. brucei rhodesiense infections in vervet monkeys (15, 21), 

tsetse-transmitted infections in vervet monkeys (28), and early-stage infections in sleeping sickness 

patients (16, 18, 22). These clinical manifestations are evidence of hemolymphatic system 

involvement. The fact that the clinical manifestations were reversed when pafuramidine was 

administered in sufficient concentrations indicates that the drug was able to access and eliminate 

trypanosomes from all hemolymphatic sites. 

In the two groups of monkeys with a late-stage infection, treatment with 10 mg/kg for 10 

days cured only one of three monkeys treated from 14 days p.i. (group 4) and none in the group 

treated from 28 days p.i. onwards. In group 4, the presence of trypanosomes and white cell counts 

above the 5-cell/mm3 cutoff for confirmation of late-stage disease (29) was demonstrated in the 

CSF of the infected monkeys. The fact that trypanosomes were eliminated from the CSF in one 

animal and the mean PCV in the group was improved (from −25.8% to −13.5%) (Table 1) suggests 

that orally administered pafuramidine has some ability to cross the blood-brain barrier. Although 

the levels of pafuramidine (DB289) and its active form, furamidine (DB75), in CSF were not 

determined in the present study, it is likely that the variation in individual responses resulted from 

variation in the CSF levels of the drugs. Generally, the activity of a drug may show considerable 

interanimal variation, which results in different concentrations at the site of action (kinetic 

differences) or different responses to a given drug concentration (dynamic differences) (19). 

Studies with melarsoprol, the drug used to treat late-stage sleeping sickness, similarly indicated that 

the peak levels attained in the CSF of monkeys were about 50 times less than peak levels in plasma 
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and were insufficient in some animals to eliminate all trypanosomes from the CSF compartment 

(6). 

The fact that none of the animals treated with pafuramidine at 10 mg/kg for 10 days starting 

at 28 days p.i. was cured shows that as the residence time of trypanosomes in the CSF increased, 

the infections became more difficult to treat. It has been postulated that the invasion of the CSF by 

trypanosomes progressively leads to parasite invasion of the perivascular spaces (Virchow-Robin 

spaces) and from there to the parenchyma of the CNS (20). Further evidence of the importance of 

the residence time of trypanosomes in CSF was provided previously by Schmidt and Sayer (21), 

who found that one monkey with a disease duration of 107 days had histologically demonstrable 

meningoencephalitis. Although our study had no component of histology and could therefore not 

confirm or rule out the presence of meningoencephalitis at 28 days p.i., it is clear that the levels of 

the active drug (DB75) attained in the CSF were inadequate to eliminate trypanosomes from the 

sites to which they were sequestered, making the CNS the main source of relapse parasites, as 

previously observed for mice (14). Even in this group of monkeys, however, the drug cleared 

bloodstream-form trypanosomes and maintained two of three monkeys trypanosome free 

throughout the monitoring period, which provides further evidence of the ability of pafuramidine to 

access hemolymphatic but not CNS sites of the infected monkeys. 

To conclude, the study showed that the novel prodrug pafuramidine (DB289) was effective 

against early T. brucei rhodesiense infection in monkeys. In addition, the drug was well tolerated 

by all the infected monkeys, confirming previous observations of uninfected vervet monkeys (John 

Thuita, TRC-KARI, personal communication). The drug was generally not effective against late-

stage disease and may therefore not be indicated for this use. However, Sturk et al. (24) previously 

observed that after intravenous administration in mice, there was a fivefold increase in brain levels 

of pafuramidine with parenchymal localization of compound fluorescence, which suggested that the 

unaltered prodrug does penetrate the blood-brain barrier and may be subject to in situ 

biotransformation. Since the present study showed that pafuramidine was efficacious in clearing 

trypanosomes from the bloodstream, it would be worth considering the testing of parenteral 

treatment regimens to improve the bioavailability of the drug in the CNS in nonhuman primates. 

However, the issue of recently found human toxicity should be taken in consideration in further 

nonhuman primate studies. 
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ABSTRACT 

Novel drugs to treat human African trypanosomiasis (HAT) are still urgently needed despite the 

recent addition of nifurtimox-eflornithine combination therapy (NECT) to WHO Model Lists of 

Essential Medicines against second stage HAT, where parasites have invaded the central nervous 

system (CNS).  The pharmacology of a potential orally available lead compound, N-methoxy-6-{5-

[4-(N-methoxyamidino) phenyl]-furan-2-yl}-nicotinamidine (DB844), was evaluated in a vervet 

monkey model of second stage HAT, following promising results in mice. DB844 was 

administered orally to vervet monkeys, beginning 28 days post infection (DPI) with Trypanosoma 

brucei rhodesiense KETRI 2537. DB844 was absorbed and converted to the active metabolite 6-[5-

(4-phenylamidinophenyl)-furanyl-2-yl]-nicotinamide (DB820), exhibiting plasma Cmax values of 

430 and 190 nM for DB844 and DB820, respectively, after the 14th dose at 6 mg/kg qd. A 100-fold 

reduction in blood trypanosome counts was observed within 24 h of the third dose and, at the end of 

treatment evaluation performed four days post the last drug dose, trypanosomes were not detected 

in the blood or cerebrospinal fluid of any monkey.  However, some animals relapsed during the 300 

days of post treatment monitoring, resulting in a cure rate of 3/8 (37.5%) and 3/7 (42.9%) for the 5 

mg/kg x 10 days and the 6 mg/kg x 14 days dose regimens respectively. These DB844 efficacy data 

were an improvement compared with pentamidine and pafuramidine both of which were previously 

shown to be non-curative in this model of CNS stage HAT. These data show that synthesis of novel 

diamidines with improved activity against CNS-stage HAT was possible. 
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AUTHOR SUMMARY 

New drugs are needed to treat sleeping sickness, especially the second stage of the disease, which is 

characterised by the presence of parasites (trypanosomes) in the brain. The purpose of this work 

was to determine whether DB844, a new drug that is converted to the active form (DB820) after 

oral administration, has the potential to treat second stage sleeping sickness. Two dosing regimens 

of DB844 were evaluated in two groups of vervet monkeys that were infected experimentally with 

trypanosomes. Treatment was initiated four weeks after infection, when the monkeys were in 

second stage sleeping sickness, as confirmed by the presence of trypanosomes in brain fluid. Orally 

administered DB844 was well absorbed, tolerated and resulted in a decrease of trypanosomes in 

both the blood and brain fluid. However, some monkeys relapsed after treatment, with an overall 

cure rate of approximately 40% in both study groups. For at least two days after last dosing, the 

active drug, DB820, achieved blood concentrations known to be at least 19 times more than the 

minimum concentration that has been shown to be effective against a stringent human infective 

trypanosome isolate (STIB 900). These results represent an advance in efforts to develop new 

related compounds as oral treatments for sleeping sickness. 



 66

INTRODUCTION 

Human African trypanosomiasis (HAT, sleeping sickness) is a debilitating disease that is 

caused by the protozoan parasites, Trypanosoma brucei gambiense and T. b. rhodesiense.  The 

disease is transmitted by tsetse flies (Glossina spp) and is therefore endemic only in geographical 

areas (foci) where both the parasite and vector are present; these foci are distributed in ∼20 sub-

Saharan African countries and are home to at least 50 million people who are at risk of contracting 

HAT [1]. The spatial and temporal distribution of HAT is further determined by emergence of 

virulent parasite strains, breakdown in control and/or surveillance activities, changes in climate and 

vegetation and movements of carrier livestock species across borders [2]. As a result, the 

epidemiology of HAT is characterised by periodic epidemics interspersed with periods of near total 

eradication [3]. In 2009, the annual incidence dropped below 10,000 reported cases for the first 

time in 50 years, a success credited to the World Health Organization (WHO), national disease 

control programmes, bilateral co-operation and non-governmental organizations [4]. However, 

control activities must be maintained and new diagnostics and drugs developed to have a realistic 

chance of eventually eliminating HAT, a disease which has a history of reversing previous gains [2, 

5-7]. 

 

Modern drug research and development activities for HAT have recently increased 

markedly, primarily through the efforts of public private partnerships (PPP’s), which are funded by 

governmental and philanthropic organizations. A first success of these PPP’s is the nifurtimox-

eflornithine combination therapy (NECT), a product that has was recently added to the WHO 

essential medicines list for the management of T. b. gambiense CNS-stage infections [4, 8]. In 

addition, the dimethoxyamidine prodrug pafuramidine (DB289), a pentamidine-like compound 

developed by the Consortium for Parasitic Drug Development (CPDD), became the first oral drug 

to enter phase III clinical trials for 1st stage HAT [9]. Clinical and preclinical investigations on 

pafuramidine (DB289) demonstrated that oral diamidine prodrugs could achieve efficacy equal to 

or better than pentamidine in the management of 1st stage HAT [9-12]. However, the development 

program was terminated after some subjects (6%) in an extended phase I clinical trial (14 day dose 

regimen of 100 mg bid) developed delayed renal insufficiency [9]. Like pentamidine, pafuramidine 

did not achieve cure against 2nd stage HAT in animal models [11, 12]. 

 

In an effort to develop a compound that was well tolerated and with efficacy against 2nd 

stage HAT, a next-in-class dimethoxyamidine prodrug, N-methoxy-6-{5-[4-(N-methoxyamidino) 
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phenyl]-furan-2-yl}-nicotinamidine (DB844), was evaluated. Similar to the biotransformation of 

DB289, DB844 was shown to be sequentially O-demethylated and N-dehydroxylated in human 

liver microsomes to form its active metabolite, 6-[5-(4-phenylamidinophenyl)-furanyl-2-yl]-

nicotinamide (DB820) [13]. In mice, oral DB844 appeared to be well absorbed and converted to 

DB820, and cured all animals (5/5) in the GVR35 CNS model of HAT [11]. In vitro, DB820 was a 

potent trypanocide with an IC50 value of 2.4 ng/ml (5.2 nM) against T. b. rhodesiense STIB900 

[11]. DB820 also accumulated in the DNA containing organelles and bound to DNA molecules 

preferentially at AT rich sites, thus likely sharing the same mechanism of action with pentamidine 

[14-16].  The purpose of this study was to further evaluate the potential of DB844 as a novel oral 

treatment against 2nd stage HAT by characterizing its pharmacology in vervet monkeys, a species 

commonly used as a preclinical model for HAT [12]. The specific study objectives were to (a) 

characterize the metabolic profile of the prodrug in vervet monkey liver microsomes; (b) evaluate 

the toxicity of orally administered DB844 in un-infected monkeys to understand tolerability and to 

define an appropriate dose range for efficacy studies in the monkey HAT model; and (c) evaluate 

the pharmacokinetics, efficacy and safety of DB844 in the infected vervet monkey model, which 

closely mimics human sleeping sickness. 
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MATERIALS AND METHODS 

Ethics Statement 

Studies were undertaken in adherence to experimental guidelines and procedures approved 

by the Institutional Animal Care and Use Committee (IACUC), the ethical review committee for 

the use of laboratory animals at the Trypanosomiasis Research Centre of the Kenya Agricultural 

Research Institute (TRC-KARI). The experimental guidelines also complied with National 

guidelines of the Kenya Veterinary Association. 

 

Trypanocidal Test Compound 

The test compound N-methoxy-6-{5-[4-(N-methoxyamidino) phenyl]-furan-2-yl}-

nicotinamidine (DB844) (Figure 1) was synthesized in the laboratory of Dr. David Boykin (Georgia 

State University, Atlanta, GA, USA) as previously reported [17]. The current study used DB844 

(lot D, C19H19N5O3�3HCl�H2O) with a purity of > 95% as determined by both NMR [17] and high 

performance liquid chromatography (HPLC)/UV (described below). DB844 was supplied to KARI-

TRC through CPDD in the form of yellow powder in opaque and water tight bottles. Once 

received, the drug containing bottle was wrapped in aluminium foil and refrigerated at 4-8°C. 

Dosing formulations were prepared daily by dissolving the drug in de-ionised distilled water to 

render concentrations of 5 and 6 mg/ml. Reconstituted drug was protected from light by wrapping 

drug-containing vials with aluminium foil. 

 

 

Figure 1: Chemical structure of DB844 and DB820, doi:10.1371/journal.pntd.0001734.g001 

 

Trypanosome Isolate 

A pleomorphic isolate, T.b rhodesiense KETRI 2537, a derivative of EATRO 1989 that was 

isolated from a patient in Uganda by direct inoculation of blood and lymph node aspirate into a 

monkey and later cryopreserved at KARI- TRC [18], was used. This isolate is the basis of the 

KETRI vervet monkey and mouse models and has been widely used for drug efficacy trials [19, 

20]. 
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Experimental Animals 

Adult vervet monkeys [Chlorocebus (Cercopithecus) aethiops syn. African green monkeys] 

(n = 22) weighing between 2.5 and 5.5 kg were acquired from the Institute of Primate Research 

(IPR) in Kenya. Monkeys were quarantined, screened, acclimated for the study for a minimum of 

90 days while being screened for evidence of disease as previously described [12, 20, 21]. They 

were also de-wormed, treated for ectoparasites, and acclimated to staying in individual squeeze-

back stainless steel cages and human handling. The monkeys were fed a diet of fresh vegetables and 

commercial monkey cubes (Unga feeds, Nakuru Kenya) twice daily and provided water ad libitum.  

 

Metabolism of DB844 in Vervet Monkey Liver Microsomes 

The metabolism of DB844 was investigated using liver microsomes, prepared from a male 

vervet monkey by XenoTech, LLC (Lenexa, KS), in the presence of NADPH as described 

previously [22] with modifications. Briefly, incubation mixtures (1 ml at pH7.4, in triplicate) 

contained 10 µM DB844 and 0.2 mg/ml monkey liver microsomes. After a 5-min equilibration 

period at 37°C, reactions were initiated with the addition of NADPH.  Aliquots (50 µl) of the 

reaction mixtures were removed at 0, 5, 10, 15, 30, 60, 90, and 120 min and mixed with 25 µl of 

ice-cold acetonitrile.  The mixtures were centrifuged (10,000 x g for 5 min at 4°C) and the 

supernatants were analyzed by HPLC/UV using the same method as previously described for 

DB289 [22].  Metabolite identification was performed by comparing retention times to those of 

synthetic standards, which include M1A (DB1284), M1B (DB1058), M2A (DB1285), M2B 

(DB1212), M3 (DB821), and DB820 [13]. DB844 and metabolites were quantified using a single-

concentration calibration curve generated using synthetic standards.  

Toxicity Study in Uninfected Monkeys 

The toxicity of DB844 was evaluated in uninfected vervet monkeys with the aim of defining 

the appropriate dose-range for the compound, identifying target organs of toxicity and 

characterizing the nature of drug-induced toxicity in this species.  Six monkeys were used to 

evaluate the tolerability of 10-day oral dose regimens. Baseline clinical and haematology data were 

collected during a 14-day period, after which two monkeys (one male and one female) per dose 

group were administered with DB844 at 5, 10 or 20 mg/kg/day for 10 days via oral gavage. A dose 

volume of 1 ml/kg was administered.  Daily ward rounds were conducted to assess feed intake 

(appetite), demeanour, posture and stool composition and consistency. Feed intake was assessed by 
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scoring the proportion of the daily ration consumed by each monkey based on a scale of 1 (full 

ration eaten), 3/4, 1/2, 1/4 and 0 (no feed eaten) as previously described [21]. 

Monkeys were monitored for 28 days post dosing. They were anaesthetized through 

intramuscular (IM) injection with ketamine HCl (10-15 mg/kg) and Valium® (0.5 mg/kg) to 

facilitate physical examination, body weight measurements and sample collection. Blood was 

collected from the femoral vein via inguinal venipuncture as described previously [20, 23] and 

divided into aliquots: 1 ml in EDTA for full haemogram determination and 2 ml in EDTA for 

plasma separation. Plasma was separated using a cool spin centrifuge (4°C, 1500 

revolutions/minute), separated into aliquots and stored at -20°C pending analysis for DB844/DB820 

concentrations.  

 

When overt drug related toxicity was detected, drug administration was withdrawn from the 

affected monkey(s) to allow the affected individuals to recover. Monkeys that failed to recover 

were humanely euthanized using 20% pentobarbitone sodium (Euthatal®, Rhone Merieux) for 

gross and histopathology examination. Euthanasia was carried out when monkeys were judged to 

have deteriorated to the in extremis condition, characterised by inability or reluctance to perch and 

very low feed intake (less than 1/4 of daily ration) for 2-3 consecutive days [21, 24]. Organ 

specimens from these monkeys were preserved in 10% formalin and later sectioned for 

histopathogy. The processed slides were stained with haematoxylin and eosin. 

 

Monkey Infections 

Sixteen vervet monkeys in two groups of eight monkeys each (four males and four females) 

were used. After a 14-day baseline weight, clinical and haematology data collection period, the 

sixteen monkeys were infected by intravenous injection of approximately 104 trypanosomes diluted 

from infected blood of immuno-suppressed donor Swiss white mice [12]. Parasitaemia post 

infection was determined by examination of wet film of ear prick blood and/or examination of 

buffy coat after centrifugation of blood collected in a heparinised capillary tube as described 

previously [25]. Parasitaemia in wet film was estimated using the rapid matching method of 

Herbert and Lumsden [26]. In addition, monkeys were confirmed to be in second stage disease by 

detection of trypanosomes in the CSF with or without elevated white cell counts above 5 cells/µl [4, 

20, 21, 23]. At 28 days post infection (DPI), the animals were treated with DB844 via oral gavage 

at 5 mg/kg qd x 10 days (group I, n = 8) or 6 mg/kg qd x 14 days (group II, n = 8), utilising a dose 

volume of 1 ml/kg.  The monkeys were examined for parasitaemia every day during drug treatment 
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and then twice weekly until ≥ 300 days post dosing, at which point monkeys were considered cured 

if they remained clinically normal and parasite-free as determined below. 

Pre and Post Treatment Monitoring 

Daily ward rounds were conducted throughout the study to assess feed intake, demeanour, 

posture, and stool composition and consistency. Feed intake was assessed by scoring the proportion 

of the daily ration consumed by each monkey on a scale of 1 (full ration eaten), 3/4, 1/2, ¼, and 0 

(no feed eaten) as previously described [21]. Monkeys were anaesthetised weekly by intramuscular 

injection of ketamine HCl (10-15 mg/kg) and Valium® (0.5 mg/kg) for physical examination, body 

weight measurements and collection of whole blood in EDTA and cerebrospinal fluid (CSF) 

samples. Blood samples (1 ml) were thereafter collected for preparation of plasma for 

pharmacokinetic studies at 1, 2, 4, 8, 24, 48, 96 and 168 h and then weekly until 28 days, while 

CSF samples (0.7-1.5 ml) were collected at 1, 24, 96, 168 h and then weekly until 28 days post last 

dosing. Samples were collected by inguinal venipuncture (blood) or lumbar puncture (CSF) of 

anaesthetised monkeys as previously described [12]. Plasma was separated using a cool spin 

centrifuge (4°C, 1500 RPM). After 28 days post last dosing, blood and CSF samples were collected 

once every two weeks up to 100 days, then once per month until 300 days post dosing for 

haematology and parasite detection only.  During sampling, some of the free-flowing CSF was 

collected into a capillary tube and immediately transferred onto a haemocytometer (Neubaeur) 

chamber for counting of trypanosomes and/or white blood cells. Samples that were negative for 

CSF trypanosomes by direct microscopy were concentrated and examined according to the 

modified single centrifugation technique [21, 27]. All the CSF samples that remained negative for 

trypanosomes after the concentration step were then sub-inoculated into Swiss white mice (2 mice 

per sample) to further aid in diagnosis of infected fluids. Similarly, blood samples that were 

negative for trypanosomes after concentration [26] were inoculated into Swiss white mice. When 

trypanosomes were detected in blood and/or CSF or when monkeys were diagnosed to have 

attained in extremis condition as previously described [21, 24], they were humanely euthanized 

using 20% pentobarbitone sodium (Euthatal®, Rhone Merieux) for post mortem examination. 

Haematology samples (1 ml) were analysed using an AC3diffT Coulter Counter (Miami, 

Florida, USA). Clinical chemistries were determined using a Humalyzer analyser system. Finally, 

plasma and CSF were analyzed for drug and metabolite concentrations using an HPLC-tandem 

Mass Spectrometry (HPLC-MS/MS) procedure as described below.  
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Sample Preparation and HPLC-MS/MS Quantification 

Monkey plasma and CSF samples were prepared and quantified for DB844 and DB820 

using previously described methods [22, 28] with modifications. Briefly, plasma or CSF samples 

(25 µl) were extracted with 200 µl of 7:1 (v/v) methanol:water containing 0.1% (v/v) trifluoroacetic 

acid and deuterated internal standards (30 nM each for DB844-d4 and DB820-d4), followed by 

centrifugation, evaporation, and reconstitution before HPLC-MS/MS analysis [28]. HPLC-MS/MS 

quantification of DB844 and DB820 was performed on an Applied Biosystems (Foster City, CA) 

API 4000 triple quadruple mass spectrometer equipped with a Turbo IonSpray interface in positive 

ion mode (MDS Sciex, San Francisco, CA).  Reconstituted samples (4-5 µl) were separated on an 

Aquasil C18 analytical column 2.1 × 50 mm, 5 µm (Thermo Electron, Waltham, MA) with mobile 

phases consisting of HPLC-grade water containing 0.1% formic acid (A) and methanol containing 

0.1% formic acid (B).  After a 0.4-min initial hold at 15% B, mobile phase composition began with 

15% B and was increased to 80% B over 1.6 min, followed by a 1.0-min hold, at a flow rate of 0.5 

ml/min.  The column was then washed with 95% B for 1.3 min at a flow rate of 0.5 ml/min and was 

re-equilibrated with 15% B at a flow rate of 0.5 ml/min for 0.5 min before injection of the next 

sample.  The characteristic SRM transitions for DB844 and DB820 were m/z 366.2 � 319.2 and 

306.2 � 289.2, respectively.  The calibration curves for DB844 ranged from 2.5 – 2500 nM and 1 

– 1000 nM in plasma and CSF, respectively, using a quadratic equation with 1/x weighting. The 

calibration curves for DB820 ranged from 10 – 2500 nM and 1 – 1000 nM in plasma and CSF, 

respectively, using a quadratic equation with 1/x weighting. 

 

Data Analysis 

Data were analysed statistically using Statview for Windows Version 5.0.1 (SAS Institute 

Inc, Cary, NC). Repeated measures ANOVA, with Fishers PLSD post hoc test, was used to test the 

effects of trypanosomal infection, as well as DB844, on haematology and clinical chemistry 

parameters in comparison with respective baseline values (α = 0.05). Confidence intervals [95%] 

were derived to further test the significance of observed findings. Pharmacokinetic outcomes were 

determined using standard non-compartmental methods performed using Phoenix WinNonlin 

(version 6.2, Pharsight, Mountain View, CA).  
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RESULTS 

Metabolism Profiles in Monkey Liver Microsomes 

DB844 was rapidly metabolized in vervet monkey liver microsomes (MLM) with a 

microsomal half-life of approximately 14 min to form at least seven metabolites over a 120 min 

incubation period (Figure 2). The first two metabolites to be detected, M1A and M1B, were likely 

formed through the oxidative O-demethylation of either the pyridyl or phenyl side of DB844 [13]. 

M1A and M1B gave rise to M2A and M2B respectively, through reductive N-dehydroxylation, or 

further O-demethylation to form the bis-amidoxime metabolite, M3. The O-demethylation of M2A 

and M2B resulted in M4A and M4B, respectively, which could also be generated by N-

dehydroxylation of M3. At last, the N-dehydroxylation of M4A and M4B gave rise to the active 

metabolite DB820 (Figure 2). Metabolites M1A and M1B attained the highest concentrations 

during the initial 20 minutes of incubation after which M3 became the metabolite with the highest 

concentration in the drug/liver microsome mixture (Figure 2). 
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Figure 2: HPLC/UV chromatograms and concentration-time profiles of DB844/metabolites 
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following incubation of DB844 with male vervet monkey liver microsomes. A: HPLC/UV 

chromatograms; B: Concentration-time profiles of DB844 and metabolites. Incubation mixtures (1 

ml at pH7.4, in triplicate) contained 10 µM DB844 and 0.2 mg/ml monkey liver microsomes. 

Aliquots were taken at 0.2, 5, 15, 30, and 120 min and evaluated for concentrations of DB844 and 

six metabolites (M1A, M1B, M2A, M2B, M3, and DB820). Metabolites M4A and M4B were not 

quantified due to lack of synthetic standards 

 

Toxicity 

Uninfected monkeys were orally dosed with DB844 at 5, 10 or 20 mg/kg/day for 10 days. 

The lowest, 5 mg/kg, did not elicit adverse clinical signs of toxicity in 2/2 monkeys (Table 1).  

Overt toxicity was however observed in 1/2 and 2/2 monkeys to which DB844 was administered at 

10 and 20 mg/kg, respectively (Table 1). In the high dose group, overt toxicity was confirmed, at 

the earliest, after eight daily doses (cumulative dose [CD] = 160 mg/kg). Drug administration to 

these monkeys was immediately withdrawn to allow clinical recovery which, however, did not 

occur. As a result, the monkeys were humanely euthanized 1-2 days later (9-10 days post first 

dosing) (Table 1). Both monkeys from the middle (10 mg/kg) dose group completed the 10-day 

dose regimen successfully (CD = 100 mg/kg) after which 1/2 developed signs of overt toxicity and 

was eventually euthanized 16 days post first dosing (Table 1). The adverse clinical events included 

anorexia, gastrointestinal disturbances (vomiting or changes in stool consistency), jaundice and 

weight loss of up to 10.5% (Table 1). Haematology revealed nothing significant except for vervet 

578 (10 mg/kg); in this monkey, the red cell distribution width (RDW) rose from 15 to 18.4 (23%) 

while mean corpuscular volume (MCV) rose from 76.6 to 86.9fl (13%). At histopathology 

examination, lesions observed included inflammation and erosions of the gastrointestinal tract 

(GIT), fatty change (steatosis) in the liver, hydropic degeneration of renal tubular cells and 

haemorrhage and haemosiderosis in multiple organs (Table 1). Toxicokinetic analysis revealed that 

in the two monkeys that were dosed at 5 mg/kg, DB844 and DB820 achieved average 

concentrations of 215 nM and 41.6 nM respectively at 1 h post last dosing. However, other 

toxicokinetic measurements could not be determined due to the limited sampling. 
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Table 1: Adverse events in monkeys treated orally with DB844. 
 
Parameters evaluated I: DB 844 at 5 mg/kg x 10 

days orally 

II: DB844 at 10 mg/kg x 
10 days orally 

III: DB844 at 20 mg/kg x 
10 days orally 

572F 582M 541F 578M 543F 606M 
Adverse clinical 
events 

Reduced feed intake None None Yes (11) Yes (14) Yes (8) Yes (9) 

 GIT changes None None None Yes (16) Yes (8) Yes (8) 
 Jaundice None None None yes yes yes 
 % weight loss 1.8 4.9 4.6 10.5 9.1 6.5 
 Daily doses completed 10/10 10/10 10/10 10/10 8/10 8/10 
 Euthanised due to 

toxicity 
No No No Yes (16) Yes (9) Yes (10) 

Liver histology Fatty change (Steatosis) NA NA NA +++ +++ +++ 
 Inflammation  NA NA NA ++ ++ +++ 
 Focal necrosis NA NA NA +++ +++ +++ 
 Haemosiderosis NA NA NA ++ + +++ 
GIT histology Ulcers/erosions NA NA NA +++ +++ +++ 
 Inflammation NA NA NA +++ +++ +++ 
 Haemosiderosis NA NA NA ++ + +++ 
Spleen histology Expanded red pulp NA NA NA +++ ++ ++ 
 Haemosiderosis NA NA NA +++ +++ +++ 
Kidney histology Hydropic degeneration/ 

interstitial oedema 
NA NA NA +++ + + 

Key: GIT = gastrointestinal system; numbers in parenthesis = time in days post first drug dose when an adverse clinical event was observed; NA 
= not assessed since the monkeys were not euthanized; F = female; M = male 
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Progression of the T.b. rhodesiense Infection 

The pre-patent period of the experimental T. b. rhodesiense infection in both groups of 

monkeys was approximately 5-6 days (Table 2). Parasitaemia rose to a peak of 5.0 x 107 

trypanosomes (antilog 7.7) within 2-3 days (7-8 DPI) but subsequently fluctuated to give 

characteristic waves of parasitaemia (Figure 3). Monkeys developed a classical T. b. rhodesiense 

clinical disease characterised by reduction in feed intake, raised hair coats, reduced activity, 

dullness and/or excitability when the clinical signs were first observed at 4-7 DPI. Anorexia and 

inactivity were transient, lasting a maximum of 3 days before normal appetite and activity were 

regained. Enlargement of peripheral lymph nodes (especially axillar and inguinal lymph nodes) and 

splenomegaly (up to 3 times compared to pre-infection) were also observed 7-14 DPI while facial, 

scrotal or eyelid oedema were observed in 8/16 (50%) of the infected monkeys from 20 DPI. 

Average (± SE) weight before infection was 3.6 ± 0.4 (range = 2.6-5.5) and 3.1 ± 0.3 (range = 2.3-

4.2) kg for group I and II, respectively. Four weeks after infection, weight decreased significantly 

(p = 0.0003) by 6.4% and 5.6%, respectively. Time to parasitization of the cerebrospinal fluid 

(CSF) was a median 21 days (range = 7-27) for both groups of monkeys (Table 2). At 27 DPI, one 

day before initiation of treatment with DB844, trypanosome numbers ranged from 1-8/µl of CSF; 

median cell numbers were 5.0 (range = 0-45) and 6.0 (range =1-20) cells/µl of CSF in groups I and 

II respectively. During previous weekly samplings, white cell counts in some monkeys increased to 

152/µl of CSF (Table 2).  

 

Efficacy 

At 28 DPI when monkeys had shown characteristic features of 2nd stage infection (i.e., 

presence of trypanosomes and elevated white blood cell counts above 5/µl of CSF), they were 

treated with DB844 at 5 mg/kg x 10 days (group I) or 6 mg/kg x 14 days (group II).  At 24 h post 

third drug dose (i.e., 4th day of treatment), trypanosomes were not detected in wet smears of 

peripheral blood (Figure 3), showing that at least 100-fold reduction in parasitaemia had been 

achieved, from 107 to 105 trypanosomes/ml of blood which is the detection limit of the matching 

method of Herbert and Lumsden [23]. End of treatment (EoT) evaluation was conducted at 1 and 4 

days post last dosing time points. At the one day post dosing time point, trypanosomes were 

detected in some monkeys using sensitive trypanosome concentration techniques for both blood 

and CSF [25, 27] as evidenced by provisional cure rates of 7/8 (group I) and 5/7 (group II) (Table 

2). The three monkeys with persisting low numbers of trypanosomes in the blood and/or CSF 
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eventually tested negative at the 4 days post dosing time point (Table 2), demonstrating an EoT 

provisional cure rate of 100% for both groups. 

Post treatment follow-up was carried out for at least 300 days post dosing. During this 

follow-up period, nine monkeys relapsed demonstrating an overall test of cure rate of 3/8 (37.5%) 

and 3/7 (42.5%) for the 5 mg/kg and 6 mg/kg dose groups respectively (Table 2). Trypanosomes 

were observed exclusively in the CSF in five of the relapsed monkeys. In three of the four 

remaining relapse cases, trypanosomes were detected in the CSF earlier than in the blood. Overall, 

the median (range) time to trypanosome recrudescence was 133 (35-322, n = 9) days for CSF and 

261 (239-322, n =3) days for blood trypanosomes. Despite trypanosomes becoming cleared from 

the peripheral blood by eighth day of dosing, monkey 625 (Table 2) developed toxicity and was 

humanely euthanized 2 days after administration of 10th dose of DB844 at 6 mg/kg (CD = 60 

mg/kg). At post mortem examination, liver and gastrointestinal toxicity were observed, comparable 

to findings in 1/2 (10 mg/kg) and 2/2 (20 mg/kg) un-infected monkeys euthanized due to DB844 

toxicity. 

 

Haematology Changes in the Infected Monkey Model 

The trypanosome infection provoked a reduction in erythrocytes (red blood cells, RBC) and 

associated parameters. Average haemoglobin concentration declined by 32.1% in group II 

monkeys, from 13.4 ± 0.6 [95% CI = 12.4-15.1] g/dl at baseline (day 0) to 9.1 ± 0.6 [95% CI =7.9-

10.3] g/dl (p < 0.0001] at 27 DPI (Table 3). Erythrocyte counts and haematocrit concentration, 

declined significantly (p < 0.0001, Table 3) by 28.7% and 32.1%, respectfully. Mean corpuscular 

volume (MCV) and mean corpuscular haemoglobin (MCH) decreased significantly (p < 0.0001) 

(Table 3). Erythrocyte associated parameters of group I monkeys exhibited similar trends (data not 

shown), indicating that the infection caused a microcytic hypochromic type of anaemia. Monkeys 

also experienced significant thrombocytopenia and leucopaenia (Table 3) related to the 

experimental T. b. rhodesiense infection. Upon treatment with oral DB844, no drug related 

haematology changes were observed. Trypanosome induced anaemia, thrombocytopenia and 

leucopaenia resolved rapidly. Baseline white cells numbers were re-established by end of treatment 

while platelet and RBC associated parameters were re-established within seven and 28-63 days 

respectively (Table 3; Figure 4). 
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Table 2: Treatment outcome in monkeys treated with DB844 while in second stage T. b. rhodesiense infection 

Group Monkey 
ID 

PP (DPI) Time to CSF 
parasitization 
(DPI) 

Tryps/µl 
CSF at  
27 DPI 

WC/µl of 
CSF at 27 
DPI 

EoT test at 1 day 
post last dose 

EoT test at 4 days 
post last dose 

TOC test at  300 
days post last dose 

I 566 5 7 1 4 [17] Neg Neg Cured 
 568 5 27 1 45 [45] Neg Neg Cured 
 576 5 21 1 2 [12] Neg Neg Relapsed 
 599 6 14 8 39 [152] Pos Neg Relapsed 
 601 6 21 1 0 [6] Neg Neg Relapsed 
 603 6 21 1 6 [44] Neg Neg Relapsed 
 607 5 14 2 1 [28] Neg Neg Relapsed 
 609 6 21 1 8 [8] Neg neg Cured 
Median (range) 5.5 (5-6) 21 (7-27) 1(1-8) 5 (0-45) Cure rate = 7/8 

(88%) 
Cure rate = 8/8 
(100%) 

3/8 (37.5%) 

II 571 6 21 1 4 [11] Neg Neg Cured 
 596 5 7 1 8 [19] Neg Neg Cured 
 600 5 14 1 6 [6] Neg Neg Cured 
 624 5 7 1 4 [4] Pos Neg Relapsed 
 625 5 21 1 1 [20] WD 
 630 5 21 4 20 [20] Pos Neg Relapsed 
 652 5 21 2 10 [11]  Neg Neg Relapsed 
 653 5 28 2 6 [141] Neg Neg Relapsed 
Median (range) 5.0 (5-6) 21 (7-27) 1 (1-4) 6 (1-20) Cure rate 5/7 

(71%) 
7/7 (100%) 3/7 (42.5%) 

 

Key: ID = identity in the laboratory; PP = pre-patent period; DPI = days post infection; CSF = cerebrospinal fluid; Tryps = trypanosomes;  

WC = white cells; EoT = end of treatment; ToC = test of cure; Neg = Negative; Pos = positive; WD = withdrawn from the experiment after  

10th drug dose due to toxicity; Numbers in square brackets = maximum number of white cell counts observed during any of the four  

weekly samplings between 0 -27 DPI; I: DB844 5 mg/kg x 10 days per os; 28-37 DPI; II: DB844 6 mg/kg x 14 days per os; 28-41 DPI 
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Figure 3: Parasitaemia pattern in monkeys infected with T.b. rhodesiense KETRI 2537 

and subsequently treated with DB844. 

Symbols and error bars represent means and SEs, respectively, of 7 animals; monkeys 

were treated with DB844 at 6 mg/kg x 14 days, from 28-41 days post infection; Log 

parasitaemia values were determined by microscopic examination of wet smears of blood 

using the matching method of Herbert and Lumsden, 1976 [23]. 
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Table 3: Haematologic effects of T. b. rhodesiense KETRI2537 infection and treatment with DB844 in 
vervet monkeys 
Parameters Days post infection (days post last drug dose) 

 0 27 41 (0) 48 (7) 69 (28) 104 (63)  

RBC (x 106/µl) 5.8 ± 0.2 4.2 ± 0.2,  
p < 0.0001 

4.8 ± 0.3,  
p < 0.0001 

4.9 ± 0.2,  
p < 0.004 

5.5 ± 0.2,  
p = 0.55 

6.1 ± 0.3  
p = 0.02 

Hemoglobin (g/dl) 13.4 ± 0.6 9.1 ± 0.6,  
p < 0.0001  

11.2 ± 0.7,  
p < 0.0001 

11.5 ± 0.6,   
p < 0.0001 

12.8 ± 0.5,  
p = 0.15 

14.1 ± 0.8,  
p = 0.11 

Haematocrit % 43.9 ± 2.0 29.8 ± 1.7,  
p < 0.0001 

31.6 ± 1.6, 
p < 0.0001 

31.8 ± 1.6,  
p < 0.0001 

43.8 ± 1.6,  
p = 0.91 

46.7 ± 2.7,  
p = 0.91 

Mean corpuscular 
volume (fl) 

78.2 ± 1.5 70.8 ± 0.8,  
p < 0.0001 

65.3 ± 0.9,  
p = 0.0001 

64.8 ± 0.9,  
p = 0.0001 

79.8 ± 1.4,  
p = 0.11 

77.0 ± 1.5,  
p = 0.21 

Mean corpuscular 
haemoglobin (g/dl) 

23.9 ± 0.4 21.6 ± 0.3,  
p < 0.0001 

23.0 ± 0.3  
p < 0.008 

23.3 ± 0.4  
p = 0.07 

23.4 ± 0.6,  
p = 0.13 

23.3 ± 0.5  
p = 0.21 

Platelet counts (x 
103/µl) 

346.5 ± 13.1 183.5 ± 24.6  
p = 0.002 

406.5 ± 22.5 
p = 0.05 

390.7 ± 32.4, 
p = 0.11 

332.2 ± 11.9, 
p = 0.78 

294.3 ± 17.4 
p = 0.55 

WBC counts (x 
103/µl) 

5.8 ± 0.5 3.0 ± 0.4,  
p= 0.003 

7.1 ± 1.0,  
p= 0.12 

5.6 ± 1.2,  
p= 0.9 

5.9 ± 0.8,  
p = 0.8 

5.1 ± 0.1,  
p = 0.4 

 

Key: RBC = red blood cells; WBC = White blood cells; g/dl = grams/decilitre; fl = femtolitres; p-values 

< 0.05 indicate values that were significantly different from pre-infection baseline (day 0) values 

(Repeated measures Anova with Fishers PLSD post hoc test); Monkey were treated with DB844 at 6 

mg/kg x 14 days, from 28-41 days post infection 
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Figure 4: Changes in red cell distribution width in monkeys following infection and 

subsequent treatment with DB844. 

Symbols and error bars represent means and SEs, respectively, of seven monkeys that 

were treated with DB844 at 6 mg/kg x 14 days, from 28-41 days post infection. 

 

Clinical Chemistries 

Plasma from infected monkeys treated with DB844 at 6 mg/kg (group II) was 

analyzed for several biomarkers of liver and kidney function. Plasma aspartate 

aminotransferase (AST) did not change significantly following infection but peaked 

transiently during drug administration (Figure 5, Figure S1). At 24 hours post dosing, 

mean (± SE) plasma AST increased to 3.3 times above baseline, from 37.0 ± 4.8 IU [95% 

CI = 26.7-46.8] (day 0) to 121 ± 21.6 IU [95% CI = 65.5 -176.5, p = < 0.0001]. Mean 

plasma alanine aminotransferase (ALT) exhibited an increasing trend immediately after 

infection (day 0) and peaked after 7 daily drug doses (34 DPI) (Figure 5). At its peak, 

mean plasma ALT increased by 2.7 times above baseline, from 4.5 ± 0.9 IU [CI = 2.1-

6.9] (day 0) to 13.6 ± 3.8 IU [CI = 3.8-23.4; p = 0.008].  Aberrations in ALT resolved 

rapidly after treatment.  Monkeys further demonstrated a significant infection-related 

25.8% decrease in mean plasma albumin concentration, from 35.3 ± 1.9 [CI = 30.4-40.3] 

g/l at baseline to 26.2 ± 4.2 [95% CI = 15.4-37.0, p = 0.02] g/l at 27 DPI.  Plasma 

albumin concentration stabilized during the treatment period, then decreased transiently 
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to a nadir at 48 h post dosing (43 DPI, Figure 5).  Total bilirubin and direct bilirubin 

concentrations fluctuated in a pattern comparable to the transaminases (Figure 5), but 

none of the changes were statistically significant. Mean alkaline phosphatase was 6.3 

±1.9 at baseline and 4.1± 0.8 at 27 DPI (p = 0.25) and showed no significant changes 

both during and after drug administration. Two indicators of renal function, blood urea 

nitrogen (BUN) and creatinine, were evaluated. BUN indicated a mild and reversible 

decrease in kidney function from 48 h post dosing (43 DPI) (Figure 5). Mean plasma 

concentration of creatinine fluctuated in a similar pattern to BUN, but the change from 

baseline was not significant (data not shown). 

 

 

Figure 5: Transient infection and DB844 induced changes in clinical chemistry indicators of liver 

and kidney function.  

Symbols represent mean ± SE (n = 7) of aspartate aminotransferase (AST, ■), alanine 

aminotransferase (ALT, □), total bilirubin (●), direct bilirubin (0), blood urea nitrogen (BUN, ▲) 

and albumin (◊); monkeys were treated with DB844 at 6 mg/kg x 14 days, from 28-41 days post 

infection. 
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Pharmacokinetics 

Plasma and CSF collected from group II monkeys (6 mg/kg) were analyzed for 

various pharmacokinetic outcomes using traditional non-compartmental methods. After 

the last (i.e. 14th) dose of DB844, geometric mean (90% CI) concentrations of DB844 

peaked at 1 h in plasma with a Cmax of 430 (100-1800) nM (Table 4, Figure 6) with 

modest individual animal variations in PK profiles (Figure S2). The active metabolite, 

DB820, peaked at 4 h in plasma with a Cmax of 190 (110-320) nM. Exposure to DB820 

was three-fold higher than that of DB844, as assessed by the metabolite:parent AUC ratio 

(Table 4). DB844 concentrations decreased at a faster rate than DB820 concentrations, 

with a geometric mean (90% CI) apparent terminal elimination half-life of 5.8 (3.4-9.6) 

h. DB820 was detected in plasma up to 28 days after the last dose of DB844 with a 

geometric mean (90% CI) concentration of 35 (14-86) nM. Given the protracted decline 

in DB820 plasma concentrations, the duration of plasma collection was insufficient for 

accurate estimation of the terminal half-life of DB820 for all monkeys (Figure 6). DB844 

was detected in CSF 1 h post dose, with a geometric mean (90% CI) concentration of 17 

(7.3-39) nM, and was not detected thereafter. DB820 was not detected in the CSF, with 

only 2/7 monkeys (monkeys 571 and 624) showing sporadic low concentration (< 4 nM) 

between 24 and 96 h post dose. 
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Table 4: Pharmacokinetics of DB844 and DB820 in vervet monkeys after the 14th oral 

dose at 6 mg/kg (n = 7) 

Outcome Units DB844 DB820 

AUC(0-∞) nmol/L•day 70 (16, 290) NC* NC 
AUClast nmol/L•day 68 (16, 300) 1400 (760, 2500) 
Metabolite: 
Parent AUC 
Ratio 

NA -- -- 3 (1.1, 6.5) 

Cl/F L/day/kg 240 (56, 1000) NC NC 
Cmax nmol/L 430 (100, 1800) 190 (110, 320) 
t1/2 day 0.24 (0.14, 0.40) NC┼ NC 
Tmax day 0.04 (0.04, 0.17) 0.17 (0.08, 0.17) 

 

Key: Values are geometric mean (90% CI) except for metabolite:parent AUC ratio 

and Tmax, which are reported as median (range). Metabolite:parent AUC ratio was 

derived using the AUC from time zero to the last common time point for DB844 and 

DB820.; *% AUC extrapolated to infinite time >25%. ┼Duration of sample collection 

was insufficient to derive an accurate estimate of terminal half-life; AUC(0-∞), AUC 

from zero to infinite time; AUClast, AUC from time zero to the last measurable 

concentration; Cl/F, apparent (oral) clearance; Cmax, maximum concentration; t1/2, 

terminal half-life; Tmax, time to reach Cmax; NA, not applicable; NC, not calculable. 
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Figure 6: Plasma concentration-time profiles following oral administration of the last (14th) daily 

dose of DB844. 

Symbols and error bars represent geometric means and SEs, respectively, for DB844 (△) and 

DB820 (○). The monkeys (n = 7) were treated with DB844 at 6 mg/kg x 14 days, from 28-41 days 

post infection. The insert graph shows the extended profile up to 28 days post the last daily dose of 

DB844. 
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Figure S1: Individual monkey activity/concentration-time profiles of aspartate amino transferase 

and blood urea nitrogen in plasma.  

The monkeys were treated with DB844 at 6 mg/kg x 14 days, from 28-41 days post infection with 

T.b. rhodesiense KETRI2537. 
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Figure S2: Individual monkey concentration-time profiles of DB844 and DB820 in plasma. 

The monkeys were treated orally with DB844 at 6 mg/kg x 14 days, from 28-41 days post 

infection with T.b. rhodesiense KETRI2537. The insert graph shows the extended profiles 

up to 28 days post the last daily dose of DB844 
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DISCUSSION 

The current study has shown that the novel diamidine prodrug (DB844) was 

effectively metabolized by male vervet monkey liver microsomes to yield at least seven 

metabolites which were also detected when DB844 was incubated with human liver 

microsomes [13]. The order in which metabolites were generated in the monkey liver 

microsomal/drug mixtures and their relative concentrations, dominated by M1A 

(DB1284) and M1B (DB1058) within the first 20 minutes and by M3 (DB821) thereafter, 

were also similar to the pattern observed in human liver microsomes [13] suggesting that 

vervet monkeys would be a useful animal model for evaluation of a drug (DB844) that 

was in development as a potential therapeutic agent for a human disease (HAT). Our 

study did not investigate the enzymes responsible for the conversion of DB844 to DB820. 

It has however been previously shown that conversion of pafuramidine (DB289) to 

furamidine (DB75) was catalysed by cytochrome P450 enzymes and cytochrome b5/b5 

reductase in the human liver [22, 29]. Liver microsomes derived from female vervet 

monkeys and Cynomolgus monkeys metabolized DB844 as efficiently as those derived 

from male vervets (data not shown), thus justifying evaluation of DB844 in monkeys. 

 

The prodrug (DB844) was well tolerated when tested in uninfected vervet 

monkeys at the lowest dose (5 mg/kg x 10 days) but was toxic to both monkeys when 

administered at the highest dose (20 mg/kg x 8 days). The middle dose (10 mg/kg x 10 

days) was well tolerated by 1/2 monkeys, suggesting that this dose was slightly more than 

the maximum tolerated dose in uninfected monkeys. Clinical signs of overt toxicity were 

detected either after completion of dose regimen (10 mg/kg group) or late into the 

treatment regimen (20 mg/kg group), suggesting that overt toxicity was dependent on 

both the daily drug dose and duration of drug administration. These results were 

consistent with a previous report in which several pentamidine derivatives were 

associated with acute to chronic toxicity in rodents, which was cumulative in nature with 

respect to drug exposure [30]. The no observed adverse effects level (NOAEL) for oral 

DB844 in un-infected monkeys was therefore in the range 5 - < 10 mg/kg, and as a result, 

daily dose levels of 5 and 6 mg/kg were chosen for the subsequent efficacy study.  
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DB844/DB820 concentrations in plasma samples from un-infected monkeys (5 

mg/kg group), though limited in scope, demonstrated that the prodrug was absorbed after 

oral administration and converted to the active metabolite (DB820). Similarly, when 

Cynomolgus monkeys were dosed orally with DB844 at 3 or 10 mg/kg, the drug was 

absorbed and the resulting plasma DB844/DB820 concentration-time profiles were 

comparable to those achieved in mice that were dosed at 25 and 100 mg/kg, respectively 

(Michael Z. Wang, personal communication). These findings were significant since 

DB844 at 25 or 100 mg/kg was subsequently determined to be curative for 1st and 2nd 

stage experimental murine HAT infections respectively [11], suggesting that 

comparatively low dose levels could be efficacious in primates. A period of dosing of 10-

14 days was selected for the vervet DB844 efficacy study, partly informed by a report 

that during clinical trials of the related 1st stage investigational HAT drug DB289, the 

duration of dosing had to be increased from 5 to 10 days in order to increase efficacy 

(Sonja Bernhard, Personal communication). In addition, the fact that in humans 2nd stage 

HAT is treated for 10 days with melarsoprol or NECT) and 14 days with intravenous 

eflornithine [4] was considered since these dosing periods are partly influenced by the 

tissue invasive nature of the human infective parasites. 

 

Oral DB844 achieved up to 43% cure rate in the vervet monkey model of 2nd 

stage HAT. Prior to initiation of treatment at 28 DPI, all 16 monkeys in this study were 

confirmed to have trypanosomes and pathological white cell numbers in their CSF, 

confirming that the model fulfilled the criteria for classification of CNS (late, 2nd) stage 

disease [4]. Pathophysiology studies have shown that trypanosome entry into the CSF 

initiates meningitis and leads to elevated CSF nitric oxide and IgM concentrations, all 

further indicating CNS disease [31, 32].  Although occurrence of histologically 

demonstrable meningoencephalitis may not be guaranteed in the course of primary T. b. 

rhodesiense infections [31, 33], previous studies have shown that when treatment was 

initiated at 28 DPI in this monkey model, pafuramidine (DB289) and pentamidine did not 

cure any monkey ([12]; unpublished TRC-KARI data).  The data reported in this study, 

therefore, indicates that DB844 had an improved activity in the CNS stage monkey model 

compared to the other diamidines. 
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Biological activity of orally administered chemotherapeutic agents against tissue 

invasive parasites such as T. b. rhodesiense is dependent upon absorption in the gut and 

attainment of effective exposure levels of the prodrug and/or active metabolites in body 

fluids and tissues. Pharmacokinetic evaluation of efficacy study (6 mg/kg group) 

monkeys confirmed that marked DB844 concentration was attained in plasma within 1 hr 

of the last dose. Peak plasma levels of DB820 were attained within 4 h post last dosing 

showing that metabolic conversion of DB844 to DB820 was comparable to previous 

observations in rats and cynomolgus monkeys involving the related prodrug/active 

metabolite pair, DB289/DB75 [34]. The peak plasma concentrations of the active drug 

(DB820) were 37 times (190/5.2) higher than the IC50 for T. b. rhodesiense STIB900; the 

DB820 concentrations remained at least 19 times (100/5.2) higher than the IC50 for T. b. 

rhodesiense STIB900 for at least 48 h post dosing, suggesting that alternative dose 

regimens in which the drug was dosed once every two days may be sufficient for 

bloodstream trypanosomes. The plasma Cmax achieved by DB844 in our study was 

significantly higher than the 30-35 nM Cmax values obtained when DB289 was dosed 

orally to cynomolgus monkey at 5 mg/kg [34]), consistent with similar observations 

when both DB844 and DB289 were dosed to mice [35]. 

 

Detection of DB844 in the CSF indicated BBB penetration and was likely 

responsible for observed reduction in trypanosome densities in CSF of all monkeys to 

below the limit of detection for varying periods and eventual cure of 3/7 (43%) group II 

monkeys. The active metabolite (DB820) was, however, detected only sporadically in 

CSF of two of the group II monkeys, one of which was eventually cured and one of 

which was not. The discordance between the CSF PK data and observed activity may 

result from three possibilities: i) No CSF samples were collected between 1-24 h post 

dosing. The reduced sampling time points, though justified due to ethical considerations, 

may have resulted in underestimation of DB820/DB844 in CSF; ii) Some of the 

intermediate metabolites of DB844, including the monoamidines DB1212, DB1285, 

M4A and M4B have been shown to have anti-trypanosomal activity in vitro [11]. 

Unfortunately, these were not quantified in the vervet CSF in our study; iii) trypanosomes 

were shown to be capable of accumulating DB820 and DB75 up to 15,000 times above 
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mouse plasma concentrations [36], suggesting that trypanocidal drug concentrations 

could accumulate and reduce the density of trypanosomes in CSF despite low 

concentrations of the active metabolite/s.  

 

Trypanosome recrudescence in the CSF preceded that in the blood (133 vs. 261 

days), indicating that CSF/CNS remained a major sanctuary/source of relapse 

trypanosomes despite the improved efficacy of DB844 compared with other diamidines. 

This was consistent with the generally low CSF: plasma ratio of 1:27 (3.7%) for DB844 

at 1 h post last dosing. In addition, and in spite of the limitations highlighted above, that 

DB820 was hardly quantified in CSF while it was detected in plasma in relatively high 

concentrations, accounts for the observation that trypanosomes were eliminated more 

rapidly from the blood than from the CSF (data not shown). An alternative dosing 

regimen in which higher daily DB844 doses were administered once every two days as 

discussed above could possibly result into more DB844/DB820 crossing the BBB and 

improve CNS activity as observed in the GVR 35 mouse model [11].  The rationale for 

higher daily drug doses would be based on the fact that drug transport across BBB is 

influenced by concentration dependent passive diffusion, presence of efflux aiding P-

glycoprotein transporters or multidrug resistance-associated protein transporter [37, 38]. 

Importantly, however, structure activity relationship studies need to be continued to 

identify molecules with superior activity against second stage HAT. 

 

No DB844-related haematological aberrations were observed in the infected 

monkey model, indicating that low doses (5 and 6 mg/kg) were safe. Erythrocyte and 

platelet associated parameters recovered rapidly indicating that erythropoesis and 

thrombocytogenesis remained robust. White blood cells were similarly not adversely 

affected, suggesting that DB844 was not myelotoxic. However, trypanosome-induced 

anaemia, thrombocytopenia and leucopoenia were observed. These are common features 

of experimental T.b. rhodesiense infections in monkeys [12, 21, 39] and natural HAT 

infections in humans [40-42] whose severity is determined by parasite virulence, time lag 

from infection to therapeutic intervention and individual host differences. The 

haematology changes before treatment were comparable to those reported in previous 
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infections with the KETRI2537 stabilate, indicating good reproducibility of the monkey 

model. Furthermore, resolution of haematology aberrations such as haemoglobin 

concentration and RDW was clearly related to treatment showing that these were 

additional indicators of therapeutic efficacy. In un-infected monkeys, the low dose 

regimen (5 mg/kg x 10 days) similarly did not manifest haematologic toxicity. At high 

doses (> 10 mg/kg), however, bleeding and haemosiderosis were observed in multiple 

organs possibly due to damage of endothelial membranes, increased sequestration of 

damaged erythrocytes and their subsequent destruction by tissue macrophages [43, 44]. 

 

Clinical chemistry results (group II, efficacy study) showed modest (2-3 fold) 

increases in plasma transaminases (AST and ALT) but not alkaline phosphatase, 

consistent with hepatocellular pathology. Importantly, these elevations in transaminases 

were reversible within 4-7 days after the last drug dose, indicating that they were likely 

caused by transient changes in the permeability of hepatocyte cell membranes (rather 

than necrosis). In contrast high doses (> 10 mg/kg) caused significant hepatotoxicity that 

was mainly characterized by fatty degeneration (steatosis), focal necrosis, mononuclear 

infiltration and haemorrhages. Steatosis is a common toxicity of many other drugs, 

including tetracyclines, corticosteroids, non-steroidal anti-inflammatory drugs and 

diamidines [45-48]. Steatosis in the un-infected monkeys was likely caused by 

impairment of mitochondrial fatty acid ß-oxidation causing microvesicular steatosis and 

resulting in accumulation of lipid vesicles in the cytoplasm of hepatocytes as previously 

reported for other drugs [45-48]. 

 

Analysis of clinical chemistry indicators of renal pathology in efficacy group II (6 

mg/kg) monkeys revealed that blood urea nitrogen (BUN) was minimally elevated while 

plasma creatinine was not, indicating that kidney function was only transiently affected. 

In contrast, histopathology results from the un-infected monkeys revealed evidence of 

renal tubular degeneration in the 10 and 20 mg/kg, showing that a more significant renal 

pathology resulted from the higher drug doses. Similarly, no lesions were seen at low 

doses in the GIT while moderate to severe gastroenteritis were observed at high doses. 

Overall therefore, toxicity was dose-dependent and, taken together with results of the 
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efficacy study, indicated that there was a lack of therapeutic window for DB844. As a 

result of toxicity, alternative dose regimens to improve efficacy were not attempted. 

 

In summary, this study showed that the prodrug DB844 achieved a moderate cure 

rate in the vervet monkey model of 2nd stage HAT, which was in contrast with studies in 

mice in which much higher DB844 doses (ie 100 mg/kg x 5 days) were tolerated and 

cured all 5/5 mice [11]. This is perhaps the main reason why new chemical entities 

(NCEs) that are targeted against HAT are preferably evaluated in both rodent and 

monkey models to obtain a more comprehensive understanding of safety, efficacy and 

pharmacokinetics before being forwarded for clinical trials in man. Although further 

development of DB844 against 2nd stage HAT was discontinued due to the lack of a 

therapeutic window, DB844 has demonstrated that structural modifications of amidines 

could eventually result in molecules with promising CNS activity at tolerated dose levels. 

Indeed, novel amidine analogues with better efficacy and safety profiles have been 

identified and are currently being evaluated in this vervet monkey model of HAT, which 

will be reported in due course.  
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ABSTRACT 

There are no oral drugs for human African trypanosomiasis (HAT, sleeping 

sickness). A successful oral drug would have the potential to reduce or eliminate the need 

for patient hospitalization, thus reducing healthcare costs of HAT. The development of 

oral medications is a key objective of the Consortium for Parasitic Drug Development 

(CPDD). In this study, we investigated the safety, pharmacokinetics, and efficacy of a 

new orally administered CPDD diamidine prodrug, 2,5-bis[5-(N-methoxyamidino)-2-

pyridyl]furan (DB868, CPD-007-10), in the vervet monkey model of first stage HAT. 

DB868 was well tolerated at a daily dose up to 30 mg/kg for 10 days, a cumulative dose 

(CD) of 300 mg/kg. Mean plasma levels of biomarkers indicative of liver injury (alanine 

aminotransferase, aspartate aminotransferase) were not significantly altered by drug 

administration (p > 0.05). In addition, no kidney-mediated alterations in creatinine and 

urea concentrations were detected. Pharmacokinetic analysis of plasma confirmed that 

DB868 was orally available and was converted to the active compound DB829, in both 

uninfected and infected monkeys. Treatment of infected monkeys with DB868 began 7 

days post-infection. In the infected monkeys, DB829 attained median Cmax values that 

were 12- (3 mg/kg for 7 days), 15- (10 mg/kg for 7 days), and 31-fold (20 mg/kg for 5 

days) greater than the IC50 (14 nmol/L) against T. b. rhodesiense STIB900. DB868 cured 

all infected monkeys, even at the lowest dose tested (3 mg/kg x 7 days; CD = 21 mg/kg). 

In conclusion, oral DB868 cured monkeys with first stage HAT at a cumulative dose 14-

fold lower than the maximum tolerated dose and thus, should be considered a lead 

preclinical candidate in efforts to develop a safe, short course (5-7 days), oral regimen for 

first stage HAT. 

 

 

Key words: human African trypanosomiasis; prodrug; diamidine; DB868; preclinical 

candidate; vervet monkeys; efficacy; toxicity; pharmacokinetics; pentamidine. 
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AUTHORS SUMMARY 

Development of orally administered medicines for human African 

trypanosomiasis (HAT) would potentially reduce the need for hospitalization of patients, 

thus lowering the cost of healthcare. In this study we investigated the potential of a novel 

diamidine prodrug, DB868 (CPD-007-10), to become an oral treatment for first stage 

HAT. When administered to uninfected monkeys by oral gavage, DB868 was well 

tolerated up to a maximum dose of 30 mg/kg/day for 10 days (total dose: 300 mg/kg). 

The compound (DB868) was confirmed to be absorbed from the monkeys’ alimentary 

canal and was successfully converted to the active compound (DB829) in concentrations 

that were potentially therapeutic for blood trypanosomes.  Subsequently, DB868 was 

evaluated for efficacy in the first stage vervet monkey model of HAT in which treatment 

was initiated at seven days post infection with T. b. rhodesiense KETRI2537. All the 

infected monkeys were cured, even at the lowest of the three dose regimens that were 

evaluated, 3 mg/kg/day for seven days (total dose 21 mg/kg), 10 mg/kg/day for seven 

days (total dose 70 mg/kg) and 20 mg/kg/day for 5 days (total dose 100 mg/kg). Analysis 

of plasma collected from the infected monkeys for drug levels revealed absorption of 

DB868 from the gut and subsequent conversion to the active compound (DB829) was 

comparable in both uninfected and infected monkeys. In view of its good safety and oral 

efficacy profile, we conclude that DB868 is a suitable candidate for development of a 

new treatment for first stage HAT. 
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INTRODUCTION 

Human African trypanosomiasis (HAT, sleeping sickness) is caused by two 

trypanosome species that are transmitted through the bite of blood-sucking tsetse flies 

(Glossina spp). Trypanosoma brucei (T. b.) gambiense is endemic to West and Central 

Africa, while T. b. rhodesiense is endemic to East and Southern Africa [1]. The disease is 

focal in distribution and is marked by wide temporal and spatial variations in incidence 

and prevalence [2-4]. HAT is characterised by two clinical stages. During the first (early, 

haemolymphatic) stage, trypanosomes proliferate at the site of the fly bite, travel to local 

lymph nodes and bloodstream, and progressively invade other tissues [5]. Approximately 

3-4 weeks post-infection with T. b. rhodesiense, or months to years with T. b. gambiense, 

trypanosomes invade the central nervous system (CNS), initiating the second (late, 

meningo-encephalitic) stage of HAT [5]. Second stage HAT is marked by neurological 

and endocrine disorders. If patients are not treated, they lapse into coma and die [6]. 

 

HAT chemotherapy is stage specific. Only two drugs have been approved for the 

treatment of first stage HAT, pentamidine and suramin. Pentamidine, a diamidine first 

used clinically in 1941, is used to treat first stage T. b. gambiense infections. Suramin, a 

naphthylurea first introduced for clinical use in 1921, is effective against both 

trypanosome species but is mainly used against first stage T. b. rhodesiense HAT [7,8]. 

Pentamidine is associated with hypoglycaemia, pain at the injection site, diarrhoea, 

nausea and vomiting, while suramin is associated with hypersensitivity reactions, 

albuminuria, haematuria and peripheral neuropathy [7]. In addition, these drugs must be 

administered via intramuscular injection or intravenous infusion in well-equipped 

hospitals, which are not readily available or accessible in rural areas where HAT typically 

occurs. To overcome these limitations, two orally active compounds, fexinidazole and the 

oxaborole SCYX-7158, have recently entered clinical development to treat both stages of 

the disease [9]. In addition, efforts by the Consortium for Parasitic Drug Development 

(CPDD) to address these limitations have resulted in the synthesis of a collection of 

diamidines with promising pharmacologic properties [10,11]. 
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One of the new aza diamidines, 2,5-bis(5-amidino-2-pyridyl)furan (DB829; 

Figure 1), exhibited an IC50 of 14 nmol/L against T. b. rhodesiense STIB900 in vitro [12]. 

In addition, it was shown to be 100% curative in both the acute (T. b. rhodesiense 

STIB900) and chronic CNS (T. b. brucei GVR35) mouse models of HAT after 

intraperitoneal administration [12]. However, the dicationic nature of DB829 and other 

diamidines (e.g., pentamidine and furamidine) contributes to poor permeation through 

biologic membranes and in turn, poor systemic exposure after oral administration [13]. 

As such, a prodrug of DB829 was designed, 2,5-bis[5-(N-methoxyamidino)-2-

pyridyl]furan (DB868; Figure 1), by masking the cationic functionalities of the active 

compound with methoxy groups [14]. Oral administration of DB868 was 100% curative 

in both the acute and chronic CNS mouse models of HAT [12]. Based on these desirable 

properties, DB868 progressed into our vervet monkey model to assess its potential as a 

new lead compound for oral treatment of first stage HAT. The purpose of this study was 

to evaluate DB868 metabolism in monkey liver microsomes, safety in uninfected 

monkeys, pharmacokinetics in both uninfected and infected monkeys, and efficacy in 

infected monkeys. 
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MATERIALS AND METHODS 

Ethics 

This study was conducted in accordance with experimental guidelines and 

procedures (Ref: C/TR/4/325/116) approved by the Institutional Animal Care and Use 

Committee (IACUC) at the Kenya Agricultural Research Institute’s Trypanosomiasis 

Research Centre (KARI-TRC). These IACUC regulations conformed to national 

guidelines provided by the Kenya Veterinary Association. 

 

Trypanocidal Test and Comparator Drugs 

The test drug, 2,5-bis[5-(N-methoxyamidino)-2-pyridyl]furan diacetate (DB868; 

CPD-007-10; Lot #2-JXS-28; Base MW = 366.37; FW = 564.37), was supplied by the 

University of North Carolina-led CPDD as a yellow powder stored in opaque, water tight 

bottles. In the laboratory, the drug-containing vials were wrapped in aluminium foil as 

further protection from light and stored at room temperature. The drug was dissolved 

fresh daily in distilled de-ionised water (pH 4.5 ± 0.2) at concentrations permitting 

administration of 2 mL/kg body weight per oral administration. For example, a 15 

mg/mL dose solution was prepared for animals receiving a dose of 30 mg/kg and a 10 

mg/mL dose solution for a dose of 20 mg/kg. Pentamidine isethionate, supplied by the 

World Health Organization (WHO), was used as the comparator drug. Pentamidine was 

dissolved in sterile distilled water and administered intramuscularly at 0.5 mL/kg body 

weight. 

 

 

Figure 1. Structures of the prodrug (DB868) and active compound (DB829). 
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Experimental Animals 

Eighteen vervet monkeys, also known as African green monkeys or Chlorocebus 

(Cercopithecus) aethiops, weighing from 2.0 to 4.5 kg, were acquired from the Institute 

of Primate Research in Kenya. To ensure animal welfare and ameliorate suffering, upon 

arrival at KARI-TRC, the monkeys were subjected to standard quarantine procedures, 

including screening for zoonotic and non-zoonotic diseases/infections and treatment for 

both endo- and ectoparasites, for a minimum of 90 days prior to study commencement as 

previously described [15,16]. They became accustomed to staying in individual squeeze-

back stainless steel cages during this time. The monkeys were maintained on a diet of 

fresh fruits and vegetables (bananas, tomatoes, carrots and green maize) and commercial 

monkey cubes (Unga Feeds®, Nakuru, Kenya) fed twice daily, and were given water ad 

libitum. The commercial monkey cubes were manufactured to have the following nutrient 

composition: crude protein, 19.4% (w/w); crude fiber, 5.6% (w/w); ether extracts that 

include fats and lipids, 4.2% (w/w); and nitrogen-free extracts, 66.5% (w/w).  

 

Metabolism of DB868 in Vervet Monkey Liver Microsomes 

DB868 metabolism was studied in male vervet monkey liver microsomes 

(custom-prepared by XenoTech, LLC, Lenexa, KS, USA) by adapting a previously 

published method [17]. Briefly, incubation mixtures contained 10 µM DB868, 0.5 

mg/mL monkey liver microsomes, and 3.3 mM MgCl2 in 100 mM phosphate buffer (pH 

7.4). Reactions were initiated by the addition of NADPH (1 mM final concentration). 

Control incubations were carried out without NADPH, DB868, or liver microsomes.  

Aliquots (100 µL) of the reaction mixtures were removed at 0, 5, 10, 15, 30, 60 and 120 

min and mixed with 100 µL of ice-cold acetonitrile. After centrifugation to pellet 

precipitated proteins, the supernatants were analyzed by HPLC/UV and fluorescence 

using the method previously described for pafuramidine (DB289) and furamidine (DB75) 

[18]. Metabolite identification was performed by comparing retention times to those of 

synthetic standards for M1 (DB1679), M2 (DB840), M3 (DB1712), and DB829. DB868 

and its metabolites were quantified using a calibration curve (0.1 – 10 µM) generated 

using synthetic standards. 
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Safety and Pharmacokinetics in Uninfected Monkeys 

Eight uninfected vervet monkeys, divided into two dose-groups of four monkeys 

(two females and two males) each, were used. Baseline weight and clinical and 

haematological data were collected over a 14-day period, after which the monkeys were 

orally administered DB868 at 10 mg/kg/day (group 1) or 30 mg/kg/day (group 2) for 10 

days (Table 1). Care was taken to avoid spillage and to minimise the time between drug 

preparation and dosing. Drug administration utilized a dose volume of 2 mL/kg body 

weight. The animals were monitored for indicators of overt toxicity, including changes in 

feed intake, weight, demeanour, posture and stool composition and consistency. Feed 

intake was assessed by scoring the proportion of the daily ration consumed by each 

monkey on a scale of 1 (full ration eaten), ¾, ½, ¼, and 0 (no feed eaten) as previously 

described [15]. To increase chances of detecting potential drug-related gastrointestinal 

toxicity, stool samples were collected and examined visually and by faecal occult blood 

tests conducted according to the modified guaiac method [19]. Post-last drug dose (LDD) 

monitoring extended to a minimum of 60 days. 

 

During pre- and post-dose monitoring, monkeys were anaesthetized by 

intramuscular injection of ketamine HCl (10-15 mg/kg) to facilitate physical 

examination, body weight measurements, and sample collection. Blood was collected 

from the femoral vein via inguinal venipuncture as described previously [16] and divided 

into aliquots: 1 mL blood into EDTA-containing tubes (1.5 mg EDTA/mL blood) for full 

haemogram determination and 2 mL blood into EDTA-containing tubes for plasma 

separation. Plasma was separated using a cool spin centrifuge (1500 rpm for 10 min at 

4°C). The harvested plasma was divided into aliquots for clinical chemistry 

determinations (500 µL), prodrug (DB868) and active compound (DB829) concentration 

measurement (150 µL), and preservation as a stock sample (approximately 250 µL). All 

plasma aliquots were frozen at -20°C before analysis. 

 

Efficacy and Pharmacokinetics in Infected Monkeys 

 The efficacy of DB868 administered orally at 20 mg/kg/day for 5 days was 

compared to that of pentamidine administered intramuscularly at 4 mg/kg/day for 7 days. 
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To obtain an indication of dose response, DB868 also was evaluated at 10 and 3 

mg/kg/day, administered orally for 7 days. The 10 and 3 mg/kg dose regimens were 

evaluated at a time when a regulator-imposed freeze on the acquisition of non-human 

primates was in force, hence only 2 animals were available per dose group. In each 

experiment, a 14-day baseline data collection period was observed, after which the 

monkeys were infected by intravenous injection of 104 T. b. rhodesiense KETRI 2537 

trypanosomes diluted from the infected blood of immuno-suppressed donor Swiss white 

mice [16]. Post-infection monitoring for the development of parasitaemia was initiated at 

three days post-infection (DPI) while treatment began 7 DPI, subsequent to confirmation 

of first stage HAT (defined as trypanosomes detectable in blood and not cerebrospinal 

fluid [CSF], and CSF white cell counts less than 5 cells/mm3) [16]. Ear-prick blood 

samples to determine parasitaemia were collected prior to daily drug administration. 

Clinical and parasitological cure was evaluated for at least six months as previously 

described [16]. In our studies with the related prodrug DB844, plasma samples collected 

out to 28 days post-LDD (6 mg/kg) were insufficient to recover a robust estimate of the 

elimination half-life of the active compound DB820 [20]; therefore, in the current study, 

plasma samples were collected for at least 60 days post-LDD for pharmacokinetic 

analysis. Haematology samples were analysed using an AC3diffT Coulter Counter (Miami, 

FL, USA). Clinical chemistry determinations were performed using a Humalyzer 

analyser system. Plasma was analyzed for prodrug and active compound concentrations 

using high performance liquid chromatography-tandem mass spectrometry (HPLC-

MS/MS) as described below. 

 

Handling of Moribund Infected Monkeys 

 Monkeys that were deemed as treatment failures/relapses or developed severe 

adverse clinical signs as defined in the protocol (e.g., inability or reluctance to perch, less 

than ¼ of normal daily feed intake for 2-3 consecutive days) were immediately 

withdrawn from the study and humanely euthanized for post-mortem examination. These 

monkeys were euthanized by intravenous administration of 20% (w/v) pentobarbitone 

sodium solution (150 mg/kg body weight; Euthatal®; Rhône-Mérieux, United Kingdom).  
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HPLC-MS/MS Quantification of DB868 and DB829 in Monkey Plasma 

Monkey plasma samples were processed for quantification of DB868 and DB829 

using previously described methods [21,22] with modifications made to the transition and 

mass spectrometer parameters. DB868-d6P (DB868 with deuterated pyridyl rings; 30 nM) 

and DB829-d6 (DB829 with deuterated pyridyl rings; 30 nM) were used as internal 

standards and were supplied by the CPDD. Prodrug and active compound were separated 

on an Aquasil C18 HPLC column (50 × 2.1 mm, 5 µm; Thermo Fisher Scientific, 

Waltham, MA, USA) and quantified using an Applied Biosystems API 4000™ triple 

quadrupole mass spectrometer equipped with a Turbo V™ source and electrospray probe 

(Foster City, CA, USA). The following transitions (in positive ion mode) were used in 

multiple reaction monitoring scans: 367.1→320.2 (DB868), 373.7→323.2 (DB868-d6P), 

307.1→290.1 (DB829), and 313.2→296.2 (DB829-d6). Calibration standards and quality 

controls were prepared in blank monkey plasma to mimic the matrix of the unknown test 

samples. Analyte concentrations were reported only for those samples that were between 

the standards and controls that had an accuracy and precision within 100% ± 20%. If 

samples were below this range, data are reported as below the limit of quantification. 

Data below the limit of quantification were not used for the pharmacokinetic analysis. 

 

Data Analysis 

Data were analysed statistically using StatView for Windows Version 5.0.1 (SAS 

Institute Inc., Cary, NC, USA) as previously published [20]. Repeated measures 

ANOVA, with Fisher’s PLSD post hoc test, was used to test the effects of trypanosomal 

infection, as well as DB868, on haematological and clinical chemistry parameters in 

comparison with respective baseline values (α = 0.05). Confidence intervals (95%) were 

derived to further test the significance of observed findings. The clinical data arising from 

the efficacy study are presented descriptively since the group sizes were too small for 

statistical analysis. Pharmacokinetic outcomes were determined with standard non-

compartmental methods using Phoenix WinNonlin (version 6.2; Pharsight, Mountain 

View, CA, USA). 



 111

RESULTS 

Conversion of Prodrug to Active Compound in Monkey Liver Microsomes 

The prodrug DB868 was metabolized in male vervet monkey liver microsomes to 

M1 (DB1679), M2 (DB840), M3 (DB1712), M4, and the active compound DB829 

(Figure 2). These metabolites were similar to those observed when DB868 was incubated 

with human liver microsomes [23]. Detection of these metabolites indicated that, like 

pafuramidine (DB289) and DB844, DB868 undergoes sequential O-demethylation and N-

dehydroxylation reactions to form the active compound DB829 in monkey liver 

microsomes. M2 (DB840), a bis-amidoxime metabolite, had the highest concentration at 

the end of the 120-min incubation. DB829 was at the limit of detection in UV mode; 

however, formation was confirmed by subsequent parallel fluorescence and mass 

spectrometric detection (data not shown). 
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A

B

 
Figure 2. HPLC/UV chromatograms (A) and concentration-time profiles (B) of the 

prodrug DB868, intermediate metabolites, and active compound (DB829) following 

incubation of DB868 with male vervet monkey liver microsomes.  

Incubation mixtures (1 mL at pH 7.4) contained 10 µM DB868, 0.5 mg/mL monkey liver 

microsomes, and 1 mM NADPH. Aliquots were removed at 1, 5, 15, 30 and 120 min, and 

analyzed for DB868, three intermediate metabolites (M1, M2, M3), and DB829 by 

HPLC/UV. Metabolite M4 was not quantified due to the lack of a synthetic standard. 

Symbols and error bars represent means and SDs of triplicate incubations. 
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Overt Toxicity and Haematology in Uninfected Monkeys 

Uninfected monkeys administered DB868 orally at 10 mg/kg/day for 10 days (n = 

4) did not exhibit any adverse clinical signs throughout the study. In addition, two of the 

four monkeys in the 30 mg/kg/day group did not display overt toxicity. The remaining 

two monkeys exhibited mild signs of toxicity, including excess mucous in the stool 

(monkey 567) and transient inappetance 1-2 days post-LDD (monkeys 567 and 546). In 

general, stool texture and consistency was unchanged and faecal occult blood tests 

revealed nothing significant in any study subject, suggesting that no notable 

gastrointestinal toxicity occurred. The mean body weight of monkeys in the 30 mg/kg 

group exhibited minimal variation (Figure 3), with a maximum decline of 6.5% from 

baseline (3.1 kg ± 0.3). A maximum decline of 6.2% from baseline (3.2 kg ± 0.5) was 

observed in the 10 mg/kg group (data not shown). Overall, the two oral DB868 dose 

regimens were well tolerated. 

 

Haematological parameters of the two treatment groups did not vary significantly 

from baseline throughout the study. For the 30 mg/kg group, the baseline mean red blood 

cell (RBC) and platelet counts (± SE) were 5.5 (± 0.1) x 106 and 3.7 (± 0.2) x 105 cells/µL 

of blood, respectively, and showed little change throughout the study (p = 0.10 and 0.06, 

respectively; Figure 3). Similarly, no significant variations were seen in the RBC or 

platelet counts for the 10 mg/kg group (data not shown). The mean white blood cell 

(WBC) count exhibited a minor transient increase post-LDD (1.5-fold over the baseline 

count (± SE) of 4.8 (± 0.5) x 103 cells/µL of blood; p = 0.05; Figure 3), which returned to 

baseline after 24 h. A comparable trend was seen in the WBC count of the 10 mg/kg 

group (data not shown), as well as in a separate monkey that was not administered drug 

or vehicle but had blood sampled at the same time as monkeys in the current experiment, 

suggesting that the change in the WBC count was not drug-related.  
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Figure 3. Changes in body weight and haematological parameters in un-infected vervet 

monkeys administered DB868.  

The monkeys (n = 4) were administered DB868 orally at 30 mg/kg/day for 10 days, between 

day -9 to day 0 post-last drug dose. Symbols and error bars represent means and SEs, 

respectively, of body weight, red blood cell count (RBC), white blood cell count (WBC), and 

platelet count (PLT). 

 

 

Clinical Chemistry 

Plasma biomarkers of liver injury, alanine aminotransferase (ALT), aspartate 

aminotransferase (AST) and total and direct bilirubin, were monitored in uninfected 

monkeys prior to (baseline), during, and following completion of the 10-day DB868 

dosing regimens. At the two baseline time points (-16 and -10 days post-LDD), mean (± 

SE) ALT levels were 14.6 (± 3.1) and 11.1 (± 2.3) IU/L, respectively, for the 10 mg/kg 

group and 27.3 (± 13.0) and 16.0 (± 7.2) IU/L for the 30 mg/kg group. During and 
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following the completion of dosing, mean ALT levels varied considerably in the 10 

mg/kg group (Figure 4A). The highest post-treatment mean ALT values observed were 

2.8-fold (31.3/11.1) greater than the second baseline sample for the 10 mg/kg group and 

1.3-fold (20.5/16.0) for the 30 mg/kg group. Neither variation was statistically significant 

(p = 0.71, 10 mg/kg group; p = 0.37, 30 mg/kg group). Mean AST and total and direct 

bilirubin levels also exhibited variability prior to, during, and following dosing (Figure 4, 

B and C) but overall, were not statistically different from baseline values (p > 0.05). 

 

Two biomarkers of kidney injury, creatinine and urea, were also evaluated in 

plasma samples. Mean (± SE) creatinine concentrations at the two baseline time points 

were 63.6 (± 4.0) and 54.1 (± 5.5) µmol/L, respectively, for the 10 mg/kg group and 61.5 

(± 14.5) and 57.3 (± 6.0) µmol/L for the 30 mg/kg group. Post-dosing variations were 

minimal (Figure 5A) and not statistically significant (p > 0.05). However, mean urea 

levels exhibited a transient increase following the completion of each dosing regimen 

(Figure 5B; Figure S1). Plasma urea peaked 1-2 days post-LDD and was 2.1- and 2.7-

fold greater than baseline for the 10 mg/kg and 30 mg/kg groups, respectively (both p < 

0.05). To determine whether increases in plasma urea levels were due to kidney 

dysfunction, the blood urea nitrogen (BUN):creatinine ratio was calculated for the 1-2 

days post-LDD period. The peak mean urea concentration for the 10 mg/kg group was 

12.8 mmol/L, which is equivalent to 35.9 mg/dL of BUN. The mean creatinine 

concentration was 72.3 µmol/L (equivalent to 0.8 mg/dL). Therefore, the BUN:creatinine 

ratio was 45:1 (35.9:0.8). The BUN:creatinine ratio for the 30 mg/kg group was higher at 

48:1.  
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Figure 4. Changes in plasma biomarkers of liver injury in un-infected vervet monkeys 

administered with DB868.  

The two groups of monkeys (each n = 4) were  dosed with DB868 daily from -9 to 0 days 

post last drug dose. Symbols and error bars represent means and SEs, respectively of (A) 

Alanine aminotransferase (ALT), (B) Aspartate aminotransferase (AST) and (C) Total 

(T) and direct (D) bilirubin (BIL) levels.  
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Figure 5. Changes in plasma biomarkers of kidney injury in un-infected vervet monkeys 

administered with DB868.  

DB868 was administered orally at 10 mg/kg/day (n = 4) or 30 mg/kg/day (n = 4) for 10 

days, between day -9 to day 0 post-last drug dose. Symbols and error bars represent 

means and SEs, respectively of (A) creatinine and (B) urea.  
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Pharmacokinetics in Uninfected Monkeys 

Following oral administration of the prodrug DB868 to uninfected monkeys, 

DB868 was detected in plasma at 4 h post-LDD (Figure 6; Table 1). DB868 

concentrations declined to below the limit of detection (BLD) within 1-2 days post-LDD 

for the 30 mg/kg group and in less than 1 day post-LDD for the 10 mg/kg group (data not 

shown). Accurate recovery of pharmacokinetic outcomes for DB868 was precluded for 

the 10 mg/kg dose group (Table 1). Greater inter-individual variability was observed for 

the 4 h post-LDD concentration (C4h) of DB868 than for DB829 (Table 1). The geometric 

mean DB868 C4h for the 30 mg/kg group (466 nmol/L) was 5.2-fold greater than that for 

the 10 mg/kg group (89 nmol/L). The geometric mean DB829 C4h for the 30 mg/kg group 

(320 nmol/L) was 1.6-fold greater than that for the 10 mg/kg group (185 nmol/L). The 

geometric mean AUClast and AUC0-∞ for DB829 in the 30 mg/kg group were 2.2-fold 

greater than that in the 10 mg/kg group. The geometric mean terminal elimination half-

life for DB829 was comparable between the two dose groups (29 and 31 days, 

respectively). 
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Figure 6. Plasma concentration-time profiles of the active compound DB829 following 

administration of the prodrug DB868 to un-infected vervet monkeys.  

DB868 was administered orally at 10 mg/kg/day (n = 4) or 30 mg/kg/day (n = 4) for 10 

days, between day -9 to day 0 post last drug dose. Symbols and error bars represent 

geometric means and SEs, respectively. The inset graph shows the plasma concentration-

time profiles starting at day 0 post-last drug dose on a logarithmic scale. 
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Table 1. Pharmacokinetics of DB868 and DB829 in un-infected vervet monkeys after the final (10th) oral dose of DB868 

Compound Outcome Units 
Oral DB868  

10 mg/kg x 10 days 30 mg/kg x 10 days 

  Monkey ID 643 659 675 677 546 567 668 679 

DB868 C4h nmol/L 50 130 39 250 1600 280 320 330 

 C24h nmol/L BLQ BLQ 6 BLQ 38 47 35 66 

 AUClast nmol/L•day NC NC NC NC 530 210 170 190 

 AUC0-∞ nmol/L•day NC NC NC NC 540 260 180 200 

 t1/2 day NC NC NC NC 1 1 1.3 0.4 

DB829 C4h nmol/L 240 160 180 170 290 300 270 440 

 C24h nmol/L 140 260 120 170 210 280 340 360 

 AUClast nmol/L•day 3000 2800 2100 2100 5700 4600 7100 4700 

 AUC0-∞ nmol/L•day 3700 3700 4100 2400 7000 6200 12100 5600 

 t1/2 day 30 30 55 18 24 29 47 22 

Key: C4h, concentration at 4h; C24h, concentration at 24 h; AUClast, area under the curve from time zero to the last measurable 

concentration; AUC0-∞, area under the curve from time zero to infinite time; t½, terminal elimination half-life; BLQ, below 

limit of quantitation; NC, not calculable. 
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Disease Progression and Efficacy 

Following inoculation, the median (range) prepatent period of T. b. rhodesiense 

infection in the monkeys was 4.5 (3-6) days (Table 2; Figure 7). The bloodstream form of 

T. b. rhodesiense KETRI 2537 trypanosomes multiplied rapidly, reaching a peak mean 

count of 1.1 x 107 trypanosomes/mL blood; in some monkeys, the count peaked as high 

as 1.3 x 108 trypanosomes/mL (antilog 8.1; Table 2). Classical signs of T. b. rhodesiense 

infection were observed, including rough hair coat, dullness, marked loss of appetite, and 

marginal declines in body weight (4% of pre-infection weight) and RBC count (7% of 

pre-infection value). Rectal body temperature increased from a pre-infection mean (± SE) 

of 38.3 (± 0.2)°C to a high of 38.7 (± 0.2)°C at 7 DPI; however, the increase was not 

statistically significant (p = 0.06). Trypanosomes were not detected, nor were white cell 

counts elevated in the CSF (data not shown), confirming that the monkeys were in the 

first stage of disease when treatment was initiated at 7 DPI. The prodrug DB868 was 

administered orally to three groups of monkeys: 20 mg/kg/day for 5 days (n = 3), 10 

mg/kg/day for 7 days (n = 2), or 3 mg/kg/day for 7 days (n = 2). A fourth group of 

monkeys (n = 3) was treated intramuscularly with the comparator drug, pentamidine, at 4 

mg/kg/day for 7 days (Table 2). Both oral DB868 and intramuscular pentamidine 

demonstrated efficacy against first stage infection as discussed below. Trypanosome-

associated waves of parasitaemaia were not observed (Figure 7), likely because all 

infections were treated during the first wave of parasitaemia. 

 

DB868 at 20 mg/kg/day x 5 days 

Three monkeys, 585, 658 and 686, were treated orally with DB868 at 20 

mg/kg/day for 5 days. In all monkeys, trypanosomes were undetectable in blood by direct 

microscopy or the haematocrit centrifugation technique [24] by the 4th day of drug 

administration. The monkeys remained trypanosome-free in body fluids (blood and CSF) 

for the remaining monitoring period (Table 2). Monkeys 686 and 585 were withdrawn 

from the study and humanely euthanized 4 and 145 days post-LDD, respectively (Table 

2), due to the continued deterioration of their health. Trypanosome recrudescence had not 

occurred in either monkey. Upon post-mortem examination, monkey 686 had peritoneal 

abscesses while monkey 585 had pneumonia, suggesting that their decline in health was 
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unrelated to drug therapy. The remaining monkey (monkey 658) was monitored over 525 

days post-LDD without any parasitological or clinical evidence of relapse and was 

declared cured. 

 

DB868 at 10 mg/kg/day x 7 days  

Upon treatment with 10 mg/kg/day DB868 orally for 7 days, monkey 691 was 

parasitologically negative on the 6th day of treatment while monkey 675 became 

consistently negative 7 days post-LDD. The two monkeys remained negative throughout 

the remaining post-treatment monitoring period (Table 2). Monkey 675, however, was 

only monitored up to 114 days post-LDD, at which time it was withdrawn from the study 

and euthanized due to clinical deterioration. Post-mortem examination indicated 

pneumonia to be the cause of declining health. Monkey 691 was monitored over 525 days 

post-LDD without a relapse and was declared cured. 

 

DB868 at 3 mg/kg/day x 7 days  

Two monkeys, 638 and 643, were treated orally with DB868 at 3 mg/kg/day for 7 

days. Monkey 638 was parasitologically negative on the 6th day of dosing, while monkey 

643 was 3 days post-LDD. Both monkeys remained trypanosome-free throughout the 

extended monitoring period of greater than 500 days and were declared cured (Table 2). 

 

Pentamidine at 4 mg/kg/day x 7 days  

Three monkeys, 541, 651 and 672, were administered pentamidine 

intramuscularly at 4 mg/kg/day for 7 days. Trypanosomes were not detected in monkeys 

541 and 651 immediately prior to the third dose. However, trypanosomes were observed 

intermittently in monkey 672, including 3 days post-LDD when its clinical condition 

deteriorated, necessitating euthanasia. Monkeys 541 and 651 were monitored over 600 

days post-LDD without any evidence of relapse and were declared cured (Table 2). 
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Figure 7. Changes in mean parasitaemia values of vervet monkeys infected with T. b. 

rhodesiense KETRI2537 and subsequently treated with DB868.  

Starting at 7 days post-infection, monkeys, confirmed to have first stage HAT, were 

treated with either DB868 orally or pentamidine intramuscularly. DB868 at 20mg/kg/day 

for 5 days (n = 2); DB868 at 10 mg/kg/day for 7 days (n = 2); DB868 at 3 mg/kg/day for 

7 days (n = 2); pentamidine at 4 mg/kg/day for 7 days (n = 3). Symbols and error bars 

represent means and interindividual differnces (range), respectively.  
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Table 2: Efficacy of oral DB868 and intramuscular pentamidine against 1st stage T. b. rhodesiense infection in vervet monkeys. 

Parameter/Outcome  
Oral DB868 Intramuscular Pentamidine 

20 mg/kg x 5 days 10 mg/kg x 7 days 3mg/kg x 7 days 4 mg/kg x 7 days 

Monkey ID 585 658 686 675 691 638 643 651 541 672 

Prepatent period (days post-
infection) 

5 5 4 5 3 4 4 4 5 6 

Peak parasitaemia (Log10 P) 7.2 6.9 6.0 7.8 7.8 8.1 8.1 5.4 7.8 5.4 

Trypanosomes blood/CSF at EoT Neg Neg Neg Neg Neg Neg Neg Neg Neg Pos 

Provisional efficacy at 100 days 
post-treatment  

Cured Cured WD Cured Cured Cured Cured Cured Cured WD 

Duration of post-treatment 
monitoring  

145 620 4 114 525 525 525 620 620 2 

Final efficacy assesment WD Cured WD WD Cured Cured Cured Cured Cured Not cured 

Key: P = parasitaemia; EoT = end of treatment; WD = withdrawn; Neg = negative; Pos = positive 
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Pharmacokinetics of DB868 and DB829 in Infected Monkeys 

The prodrug DB868 was detected in the plasma of all monkeys with first stage 

HAT, regardless of the dosing regimen, at 0.04 days (1 h) post-LDD (data not shown). 

The Tmax varied between individuals, with the majority (4/6 monkeys) occurring at 0.04 

days (1 h) post-LDD. DB868 concentrations declined rapidly. Only one monkey (monkey 

675; 10 mg/kg/day for 7 days) had detectable levels at 8 h post-LDD, precluding accurate 

recovery of pharmacokinetic outcomes for DB868. The median Cmax for DB829 for the 

20 and 10 mg/kg groups (435 and 205 nmol/L, respectively) were 2.6- and 1.2-fold 

higher, respectively, than that for the 3 mg/kg group (170 nmol/L) (Figure 8; Table 3). 

The median Tmax for the 20 and 3 mg/kg groups were similar (4 h), whereas that for the 

10 mg/kg group was longer (1 day). The median Tmax for DB829 in each dose group was 

longer than that for DB868. The mean AUClast for DB829 in the 20 and 10 mg/kg groups 

was 10- and 7-fold greater, respectively, than that in the 3 mg/kg group (Table 3). 

Accurate AUC0-∞ and terminal elimination half-life were only recoverable for the 20 

mg/kg group and one monkey in the 10 mg/kg group, precluding between-dose 

comparisons. The median AUC0-∞ and terminal elimination half-life for the 20 mg/kg 

group were twice those of the one (monkey 691) in the 10 mg/kg group (Table 3). 
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Figure 8. Plasma concentration-time profiles of the active compound DB829 following 

administration of the prodrug DB868 to vervet monkeys with first stage HAT.  

The monkeys were administered DB868 orally, beginning at 7 days post-infection, at 20 

mg/kg/day for 5 days, 10 mg/kg/day for 7 days,  or 3 mg/kg/day for 7 days, between day 

-9 to day 0 post-last drug dose. The inset graph shows the extended DB829 profiles up to 

150 days post-last DB868 dose. * denotes the time (4 days post-last drug dose) that 

monkey #686 was euthanized due to clinical morbidity (peritoneal abscesses).  
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Table 3: Pharmacokinetics of DB829 in vervet monkeys with first stage HAT after the 

final oral dose of BD868 

Outcome Units 
Oral DB868  

20 mg/kg x 5 days 10 mg/kg x 7 days 3 mg/kg x 7 days 

 Monkey ID 585 658 675 691 638 643 

Cmax nmol/L 370 500 210 200 110 230 

Tmax day 0.17 0.17 0.17 2.0 0.04 0.33 

AUClast† nmol/L•day 7300 4100 4000 3500 160 950 

AUC0-∞ nmol/L•day 10000 5300 NC 3900 NC NC 

t1/2 day 85 24 NC 25 NC NC 

Key: Cmax, maximum concentration; Tmax, time to reach maximum concentration; AUClast, 

area under the curve from time zero to the last measurable concentration; AUC0-∞, area 

under the curve from time zero to infinite time; t½, terminal elimination half-life; NC, not 

calculable due to >30% extrapolation of the AUC0-∞; † = last measurable concentration 

varied between monkeys (2-133 days). 
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DISCUSSION 

Consistent with observations involving human liver microsomes [23], vervet 

monkey liver microsomes metabolized the prodrug DB868 to four intermediate 

metabolites and the active compound DB829. Similar metabolic pathways have been 

reported for the related prodrugs pafuramidine and DB844 in rat, monkey and human 

liver microsomes [20,25-27], demonstrating that these alkoxy-type diamidine prodrugs 

[28] are converted to active compounds in different animal species. The low DB829 

concentrations in the microsomal samples were not unexpected, as similar results were 

observed with the active compound generated from the related prodrug pafuramidine 

[17]. The final metabolic steps in the formation of DB829, the N-hydroxylation of M2 

and subsequently M4, are analogous to those in the conversion of pafuramidine to 

furamidine. During microsomal pafuramidine metabolism, these steps are catalyzed by 

cytochrome b5/b5 reductase [29]. This enzyme is also abundant in mitochondria and 

Golgi [29,30], explaining why DB868 is more efficiently converted to DB829 in intact 

hepatocytes compared to the isolated microsomal system [27,31]. Collectively, these 

results provided justification for in vivo testing of the prodrug DB868 in uninfected and 

infected vervet monkeys.  

 

No significant overt toxicity was seen with up to 30 mg/kg/day DB868 orally for 

10 days (cumulative dose [CD] = 300 mg/kg) in the vervet monkey safety study, 

suggesting that this dose was below the maximum tolerated dose, but slightly above the 

no observed adverse effect level (NOAEL). Pharmacokinetic analysis of plasma from the 

uninfected monkeys showed that the geometric mean C4h of the active compound DB829 

in the 30 and 10 mg/kg groups were 23- and 13-fold greater than the IC50 (14 nmol/L) 

against T. b. rhodesiense STIB900, respectively. These results confirmed that 

DB868/DB829 are available systemically following oral administration, similar to 

pafuramidine/furamidine and DB844/DB820 [20,32], prompting further evaluation in the 

monkey model of first stage HAT. 

 

Based on the above observations, DB868 efficacy was evaluated in vervet 

monkeys with first stage HAT using doses below 30 mg/kg/day in order to minimise the 
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risk of unfavourable clinical outcomes. Dosing durations of 5-7 days were chosen based 

on the hypothesis that first stage disease can be cured using short treatment durations. 

DB868, administered orally, cured all monkeys of their experimentally introduced T. b. 

rhodesiense infection (Table 2). Post-treatment monitoring must be at least 180 days in 

order to declare a cure in the monkey model of first stage HAT [16]. All three DB868 

dosing regimens, including the lowest evaluated (3 mg/kg/day for 7 days; CD = 21 

mg/kg), effectively cleared the monkeys of their considerably high parasitaemia, which in 

some cases was as high as 108 trypanosomes/mL of blood. Elimination of the pathogens 

allowed the monkeys to return to their clinical and haematological baselines within one 

month post-LDD (data not shown), similar to what was observed in pafuramidine and 

DB844 efficacy studies conducted in this monkey model [16,20]. These results highlight 

the ability of diamidines to eliminate injurious trypanosomes, allowing the body to 

repair/heal itself. Furthermore, oral DB868 appears to be superior to oral pafuramidine in 

this first stage HAT monkey model, as a higher dose of pafuramidine than DB868 was 

required to achieve complete cure (10 mg/kg for 5 days vs. 3 mg/kg for 7 days, 

respectively) [16]. The longer dose regimen for DB868 compared to pafuramidine is 

consistent with the in vitro observation that DB829 required longer exposure periods than 

furamidine to kill T. b. brucei s427 trypanosomes [33]. For example, a 24-h exposure to 

DB829 (2.7 µM) was required, whereas a 1-h exposure to furamidine (3.2 µM) was 

required to kill these trypanosomes in culture. 

 

Based on a mg dose basis, DB868 has a larger therapeutic window than 

pafuramidine in vervet monkeys. No notable drug-induced overt toxicity was observed in 

either uninfected or infected monkeys administered DB868, except for mild excess 

mucous in the stool (n = 1) and transient inappetance (n = 2) in the group receiving 30 

mg/kg/day for 10 days. In comparison, similar mild adverse events were observed when 

pafuramidine was administered at 10 mg/kg/day for 10 days to vervet monkeys 

(unpublished data; JK Thuita). DB868, at all doses tested, did not cause significant 

elevations in plasma biomarkers of liver (ALT, AST, total and direct bilirubin; Figure 4) 

and kidney (creatinine; Figure 5) injury. These results contrasted with those of 

pafuramidine, which caused transient liver injury during an extended phase I clinical trial 
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in humans [11]. In addition, only a slight increase in ALT (less than 2-fold) was observed 

in female Sprague-Dawley rats administered DB868 orally (25 mg/kg/day for 3 weeks) 

compared to untreated rats, whereas an 18-fold increase was observed in rats 

administered pafuramidine (12 mg/kg/day for 4 weeks) [34]. In the current study, plasma 

urea concentrations, and therefore BUN levels, were transiently increased (2-3-fold; 

Figure 5B) shortly (1-2 days) after the last drug dose. However, the BUN:creatinine ratio 

was above the critical 20:1 ratio, suggesting that the elevations were likely due to pre-

renal causes such as dehydration. Direct comparison of plasma liver and kidney injury 

biomarkers between DB868 and pafuramidine in vervet monkeys are not possible due to 

insufficient data on pafuramidine. Nevertheless, the safety profile of DB868 is improved 

over that of the prodrug DB844, which caused significant liver injury when administered 

to monkeys at doses above 10 mg/kg/day [20], necessitating withdrawal of DB844 from 

further development.  

 

As discussed above, our study has demonstrated that oral DB868 has excellent 

efficacy and an improved therapeutic window in the first stage HAT monkey model, 

making it a promising lead candidate for further preclinical development. However, 

based on the previous lessons learned from the development of pafuramidine [11], 

several issues warrant mention. First, the kidney safety liability of DB868 needs to be 

further examined using more predictive models and biomarkers. Pafuramidine 

development was terminated due to an unexpected severe kidney injury that occurred in 

five patients (~6%), a liability not predicted by traditional preclinical safety testing in 

rodents [11]. Recently, Harrill et al. [21] showed, using a mouse diversity panel 

comprised of 34 genetically diverse inbred mouse strains, marked elevations of urinary 

kidney injury molecule-1 (KIM-1) in sensitive mouse strains following oral 

administration of pafuramidine, while classical kidney injury biomarkers, BUN and 

serum creatinine, remained unchanged. Hence, it may be prudent to screen DB868 for 

kidney injury liability using the sensitive mouse strains therein identified and KIM-1. 

Encouraging results from Sprague Dawley rats administered pafuramidine or DB868 

orally (12 mg/kg/day x 28 days) showed that DB868 had no effect on KIM-1 during the 

entire 4-month observation period (28 days of drug administration and 92 days of 
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recovery period), whereas pafuramidine caused a 13-fold increase in KIM-1 one week 

post-LDD [34].  

 

Second, treatment regimens should be optimized with the pharmacokinetics taken 

into consideration. The active compound DB829 was readily detected in the plasma 

following oral administration of the prodrug DB868 (Figures 6 and 8). Afterwards, 

DB829 was slowly eliminated from the blood with a terminal elimination half-life 

ranging from days to nearly three months depending on the dosing regimen (Tables 1 and 

3). This is similar to suramin [7], the only other first stage HAT drug besides 

pentamidine. Plasma concentrations of DB829 remained >100 nmol/L for long periods 

following the last DB868 dose, in some monkeys up to 7 days post-LDD. This finding 

was comparable to that reported for DB844 [20] and provides additional evidence that 1) 

prolonged treatment durations may not be necessary, especially for first stage HAT, and 

2) daily dosing of DB868 and other diamidine prodrugs may not be necessary. However, 

since trypanosomes are tissue invasive, a follow-up pharmacokinetic study is needed to 

determine if plasma active drug concentrations are predictive of tissue concentrations.  

 

Third, combined treatment of DB868 with a fast-acting trypanocide may 

accelerate recovery, improve efficacy and clinical outcomes, and prevent resistance. The 

time to clearance of trypanosomes from peripheral blood was shorter in monkeys treated 

with pentamidine intramuscularly (2 days after the 1st 4 mg/kg dose) than with oral 

DB868 (2-14 days after the 1st dose depending on the dose; Figure 7). It took longer for 

the lower DB868 dose regimen groups (3 and 10 mg/kg) to clear parasites from the blood 

than the 30 mg/kg group (6-14 days vs. 2-5 days after the 1st drug dose; Figure 7). The 

difference in parasite clearance between pentamidine and DB868 (or the active 

compound DB829) is consistent with observations in mouse models of HAT (Wenzler et 

al., Antimicrob Agents Chemother. under review). However, the slower parasite clearance 

by DB868 did not seem to compromise efficacy in the monkey model. Nevertheless, 

combining oral DB868 with another fast-acting trypanocidal agent, such as the oral drugs 

currently in clinical trials, may offer fast elimination of parasitaemia, the ease of oral 

pills, and a low probability of developing resistance. 
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In conclusion, oral DB868 demonstrated improved efficacy and safety profiles in 

the vervet monkey model of first stage HAT, in comparison to the previous clinical 

candidate pafuramidine. As such, DB868 should be considered a preclinical candidate for 

oral treatment of first stage HAT, supplementing the current drug development pipeline.  
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Figure S1: Individual plasma urea concentration-time profiles of un-infected vervet 

monkeys administered DB868.  DB868 was administered orally at 10 mg/kg/day 

(643, 675, 659, 677; blue symbols) or 30 mg/kg/day (567, 679, 546, 668; red 

symbols) for 10 days between day -9 to day 0 post-last drug dose. 
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Figure S2: Individual plasma concentration-time profiles of the active compound 

DB829 following administration of DB868 to un-infected vervet monkeys. DB868 

was administered orally at 10 mg/kg/day (643, 675, 659, 677; blue symbols) or 30 

mg/kg/day (567, 679, 546, 668; red symbols) for 10 days between day -9 to day 0 

post-last drug dose. 
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ABSTRACT 

Human African trypanosomiasis (HAT, sleeping sickness) ranks among the most 

neglected tropical diseases (NTDs), based on limited availability of safe and efficacious 

drugs especially for the late central nervous system (CNS) stage disease. Since 

approximately year 2000, considerable efforts have been made to redress this situation 

mainly by not-for-profit product development partnerships (PDPs) such as Drugs for 

Neglected Diseases initiative (DNDi) and the Consortium for Parasitic Drugs 

Development (CPDD). The CPDD in particular has developed novel parenterally 

administered diamidines and orally administered diamidine prodrugs which have shown 

potential for treatment of CNS stage HAT in murine studies. To provide a rationale for 

selection of either parenteral or orally administered compounds  for further development, 

the pharmacokinetics and efficacy of intramuscularly (IM) administered active drug 2,5-

bis[5-amidino-2pyridyl]furan (DB829, CPD-0802) and its orally administered prodrug 

2,5-bis [5-(N-methoxyamidino)-2-pyridyl] furan (DB868) were investigated in the vervet 

monkey model of CNS stage HAT. Treatments with either compound were initiated 28 

days post infection of monkeys with T. b. rhodesiense KETRI 2537. Results showed that 

IM DB829 at either 5 or 2.5 mg/kg/day for 5 days or as five doses of 5 mg/kg/day 

administered on alternate days cured 2/2 monkeys at each dose level. The prodrug 

(DB868) was less successful, with a cure rate of 1/4 at either 20 or 10 mg/kg/day x 10 

days per os and no cures at 3 mg/kg/day x 10 days. Pharmacokinetic analysis 

demonstrated that at 5 mg/kg of IM DB829, the plasma Cmax values were 25 times greater 

than DB829 Cmax values obtained after oral dosing of DB868 at 20mg/kg, suggesting that 

enhanced systemic availability of the active drug was the reason for better efficacy seen 

with IM dosing. These data show that the active diamidine DB829 should be considered 

for further development as a potential new treatment for CNS stage HAT. 

 

Key words: Novel diamidines, CNS stage HAT, chemotherapy, vervet monkeys, 

Pharmacokinetics 

 

Short title: Chemotherapy of CNS-stage HAT with parenteral or oral diamidines 
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INTRODUCTION 

Diamidines are widely used in the control of infectious diseases of both man and 

animals. In humans, pentamidine is used to treat first stage sleeping sickness (human 

African trypanosomiasis, HAT), leishmaniasis and Pneumocystis jirovecii (carinii) 

pneumonia which occurs mostly in AIDS patients (Tidwell et al., 1990). Diminazene 

aceturate, a diamidine that is primarily used in livestock medicine, has demonstrated 

activity against Babesia (bovis and bigemina) and a variety of animal infective 

trypanosomes. The development of the diamidines class of compounds was made 

possible by breakthrough discoveries that pathogenic trypanosomes required large 

amounts of sugar for their metabolism, indicating that their pathogenicity could be 

modulated by lowering plasma glucose levels (Sterverding, 2010). This was followed 

closely by findings that synthalin, a hypoglycaemic drug, exhibited antitrypanosomal 

activity in rodents that was independent of its ability to lower blood glucose levels (Bray 

et al., 2003; Steverding, 2010). The first aliphatic diamidines were made through 

structure-activity relationship studies (SARs) of the synthalin scaffold. 

 

Despite the proven utility of the aliphatic diamidine, pentamidine, as a therapeutic 

agent for first stage T. b. gambiense HAT (WHO, 2012), and the synthesis of aromatic 

diamidines such as furamidine (DB75) (Das and Boykin, 1977; Boykin et al, 1996), no 

new diamidines have entered clinical use for HAT or any other human diseases. Since the 

year 2000, however, there has been renewed research and development (R&D) focus on 

the diamidines with the objective/s of developing compounds with: i) good systemic 

bioavailability after oral administration since such compounds could be more readily 

used in the resource poor settings where HAT was common, ii) good activity against the 

difficult to treat second stage HAT that is characterised by trypanosome invasion of the 

cerebrospinal fluid (CSF), brain and associated membranes (meninges), causing 

menigoencephalitis (Kennedy, 2004). As a first step to address these objectives, novel 

diamidine prodrugs in which the positive charges on diamidines were masked by alkoxy 

molecules were developed (Ismail et al., 2003). The new prodrugs, including  DB289 and 

DB844, were subsequently shown to have improved transport across Caco-2 cell 

monolayers in comparison with their parent diamidines, DB75 and DB820 respectively 
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(Zhou et al., 2002; Ansede et al., 2004). They were also fully curative in mouse models 

of first and second stage HAT after oral administration (Boykin et al., 1996; Ansede et 

al., 2004; Thuita et al., 2008; Wenzler et al., 2009). In monkeys, pafuramidine (DB289) 

was shown to be fully curative against first stage HAT (Mdachi et al., 2009) thus 

providing additional evidence that the prodrug strategy was effective in delivering 

diamidines across biologic membranes in different animal species.  However, efficacy of 

the prodrugs against second stage HAT in monkeys ranged from a poor 0% for oral 

pafuramidine (Mdachi et al., 2009) to a moderately improved 43% for oral DB844 

(Thuita et al., 2012), suggesting the need to rethink the strategy to identifying potential 

therapies for second stage HAT. 

 

An alternative pair of active drug, 2,5-bis[5-amidino-2pyridyl]furan (DB829) and 

its orally administered prodrug 2,5-bis [5-(N-methoxyamidino)-2-pyridyl]furan (DB868), 

were also shown to be fully curative in the second stage GVR35 mouse model of HAT 

(Wenzler et al., 2009), suggesting that both molecules had good blood brain barrier 

(BBB) permeability in this species . On the basis of these data, DB868 progressed to the 

monkey model where we demonstrated that it was well tolerated in un-infected monkeys 

and was fully curative in the first stage vervet monkey model of HAT (Thuita et al., 

PLoS NTDs, in press). However, the activity of orally administered DB868 and 

parenterally administered DB829 against central nervous system (CNS) stage HAT in 

monkeys remained undetermined. In the current study, we therefore investigated the 

efficacy and pharmacokinetics of both DB829 after intramuscular (IM) administration 

and DB868 after oral administration in monkeys in order to determine which of the two 

test compounds would be better suited for treatment of second stage HAT. In addition, 

monkeys that relapsed after treatment with the diamidines were identified and retreated 

with the organo-arsenic drug melarsoprol to determine the continued sensitivity of the 

isolate (T.b. rhodesiense KETRI2537) to the recommended treatment for CNS stage 

eastern African HAT (WHO, 2012). Finally, monkeys were evaluated for time to relapse 

characteristics, haematological parameters and cerebrospinal fluid (CSF) white cell 

counts to gain insights on their utility as biomarkers of disease progression, resolution of 

disease post trypanocidal therapy and/or early detection of relapse in this model.   
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MATERIALS AND METHODS 

Ethics 

Studies were undertaken in adherence to experimental guidelines and procedures 

approved by the Institutional Animal Care and Use Committee (IACUC), the ethical 

review committee for the use of laboratory animals at the Trypanosomiasis Research 

Centre of the Kenya Agricultural Research Institute (TRC-KARI). The experimental 

guidelines also complied with National guidelines set by the Kenya Veterinary 

Association. 

 

Trypanocidal Drugs 

The test articles were two diamidines (DB868 and DB829) which were originally 

synthesised in the laboratories of Dr David W Boykin (Ismail et al., 2003). The drugs 

were presented in the form of yellow powder in opaque and water tight bottles. 

a) 2,5-bis[5-amidino-2pyridyl]furan (DB829 [CPD-0802] Lot # SP117-ACE-P5, 

MW = 451.648) which was synthesised by Solvias AG, Basel, Switzerland) and 

had a chemical purity of 97.2% as determined by 1H NMR and HPLC (Susan 

Jones, personal communication). In the laboratory, DB829 was reconstituted in 

5% dextrose (D5W) to render concentrations of 10 mg/ml and 5 mg/ml and 

administered to monkeys at 0.5 ml/kg intramuscularly (IM) as recommended 

(http://www.findthatpdf.com/search-19180523-hPDF/download-documents-

volume_guidelines.pdf.htm). Each dose was divided into two aliquots and 

administered at two sites on the same limb while the next day’s dose was 

administered on the alternate limb. Dosing formulations were prepared daily and 

protected from light (using aluminium foil) between preparation and actual 

injection into the monkeys which took a maximum of 30 minutes. 

b) 2,5-bis [5-(N-methoxyamidino)-2-pyridyl] furan (DB868, Lot # 2-JXS-28, MW = 

564.370) which was synthesised by Scynexis Inc., Research Triangle Park, NC, 

USA). It had a chemical purity of 95.6 as determined by NMR and High 

performance liquid chromatography (HPLC). In the laboratory, DB868 was 

wrapped in aluminium foil and stored at room temperature (23-25°C). Dosing 
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solutions were prepared daily by reconstituting the drug in distilled de-ionised 

water in three concentrations of 10, 5, and 1.5 mg/ml and administered to 

monkeys per os (PO) at 2 ml/kg body weight. 

c) Melarsoprol (Mel B, Arsobal), was supplied ready to use by the WHO in glass 

ampoules as a 3.6% solution in propylene glycol. It was administered to the 

monkeys intravenously (IV) at 3.6 mg/kg body weight for four days. 

 

Trypanosomes 

The isolate used in this study was T. b rhodesiense KETRI 2537 which was 

isolated in 1989 and cryopreserved in the TRC-KARI trypanosome bank as previously 

described (Fink and Schmidt, 1980). 

 

Experimental Animals 

A total of eighteen (18) vervet monkeys [Chlorocebus(Cercopithecus) aethiops , 

syn. African green monkeys] weighing between 2.5 and 5.5kg that were already in the 

colony maintained at TRC-KARI were used. These monkeys had initially been acquired 

from the Institute of Primate Research (IPR) in Kenya and had been subjected to the 

routine 90-day quarantine procedures that are designed to ensure their freedom from 

infectious diseases, especially the zoonotics (Gichuki and Brun, 1999; Thuita et al, 

2008b). The monkeys were housed in stainless steel cages and were fed a diet of fresh 

vegetables and commercial monkey cubes (Unga feeds, Nakuru Kenya) twice daily and 

given water ad libitum (Thuita et al, 2008b). 

 

Study Design 

The efficacies of the two test articles, orally administered prodrug DB868 and 

intramuscularly (IM) administered active drug DB829 (CPD-0802) were evaluated in two 

separate experiments. In each experiment, baseline data (weight, clinical and 

haematology parameters) were collected for 2 weeks after which monkeys were infected 

by intravenous injection of approximately 104 T. b. rhodesiense KETRI 2537 
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trypanosomes diluted from infected blood of immuno-suppressed donor Swiss white mice 

(Thuita et al., 2012). The matching method of Herbert and Lumsden (1976) and the 

haematocrit centrifugation technique (HCT) (Woo, 1970)  were used to collect 

parasitaemia data. Therapeutic intervention was initiated at 28 DPI after establishing that 

the animals had second stage disease using the presence of trypanosomes in CSF and 

elevated white cells (> 5 cells/µl) in CSF as biomarkers (WHO, 2012). CSF was 

processed as previously described (Miezan et al., 2000; Thuita et al., 2012). 

 

As a result of a regulator instituted freeze on acquisition of new non-human 

primates, only six monkeys were available for the IM DB829 study. These were divided 

into three treatment groups, each group consisting of two monkeys (one male and one 

female), to give a preliminary indication of dose response and compare consecutive-day 

with alternate-day dosing. They were treated at 5 mg/kg x 5 days consecutively (monkeys 

569 and 659), 5 mg/kg administered every alternate day for 5 days (monkeys 668 and 

676) and 2.5 mg/kg x 5 days consecutively (monkeys 546 and 693) (Table 1).  

Another 12monkeys were available for the efficacy study of oral DB868. These 

monkeys were divided into treatment groups, each consisting of two male and two female 

monkeys, for oral treatment with  DB868 at 20 mg/kg x 10 days consecutively (monkeys 

573, 679, 689 and 696) and 10 mg/kg x 10 days consecutively (monkeys 688, 690, 695 

and 697). A third treatment group, 3 mg/kg x 10 days consecutively, contained only two 

monkeys (numbers 670 and 687) (Table 1) since two other monkeys which had been 

allocated to this group did not become blood or CSF trypanosome positive at all and were 

consequently withdrawn from the study. 

Post treatment monitoring for clinical and parasitological cure as well as for 

haematologic and pharmacokinetic parameters, were carried out as previously described 

(Thuita et al., 2012). To facilitate collection of blood and CSF for these assessments, the 

monkeys were anaesthetised with ketamine HCl at 10-15 mg/kg and valium 0.5 mg/kg. 

 

HPLC-MS/MS Quantification of DB868 and DB829 in Monkey Plasma 

Monkey plasma samples were processed for quantification of DB829, DB868 or 

pentamidine using modifications of methods previously described in Harrill et al. (2012) 
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and Wang et al., 2010; the resultant modified methods used to assay monkey biological 

fluids for DB829/DB868 concentrations has been described in detail (Thuita et al., PLoS 

NTDs, in press).   

 

Data Analysis 

All clinical and haematological data were entered and managed using Microsoft 

Excel (Version 2003). The data were analysed using Statview for Windows Version 5.0.1 

(SAS Institute Inc, 1995–1998, Cary, NC). Repeated measures ANOVA was performed 

to test the effect of trypanosome infection on haematology and clinical chemistry 

parameters as well as the effect of IM DB829 and oral DB868 on the same parameters (α 

= 0.05). In addition, 95% confidence intervals were derived to further test the 

significance of observed findings. The PK data were analysed using the non-

compartmental analysis (NCA) with the aid of the WinNolin programme.  
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RESULTS 

Parasitaemia, CSF Parasitosis and Clinical Disease before Treatment 

Following intravenous injection of approximately 104  trypanosomes per monkey, 

median (range) pre-patent periods of 4.5 (4-7) and 4 (3-5) days were obtained for the 

monkeys in the efficacy studies of oral DB868 and IM DB829, respectively (Table 1).  

Thereafter, the parasitaemias were characterised by average peak values of 107 

trypanosomes/mL of blood (Table 1), with the characteristic fluctuations associated with 

trypanosome infections (Figures 1 and 2); these observations were similar to primary 

parasitaemia data previously reported for this model (Thuita et al., 2012). Clinically, the 

first stage disease was characterised by transient inappetance, rough haircoats, fluctuating 

fever and weight loss (< 5%). General lymphadenopathy and enlargement of the spleens 

(up to 3 times pre-infection sizes) were also observed.   

Cerebrospinal fluid (CSF) parasitosis was confirmed in all the monkeys before the 

last pre-treatment sampling point at 27 DPI (Table 1). The trypanosome densities were 

low at 1-2/µL of CSF (Table 1); in a majority of the monkeys, the parasites were however 

detected on more than one occasion during the weekly physical examination and sample 

collection activities before initiation of treatment (data not shown). In addition, white cell 

numbers in CSF were modestly elevated in comparison with baseline values as shown 

(Figure 3), thus confirming that the monkeys were in the central nervous system (CNS) 

stage disease (WHO, 1998; WHO, 2012). However, only a limited number of monkeys 

exhibited some clinical signs of late stage disease, including hind limb paresis, altered 

behaviour and chirping. They were treated with different dose regimens of either DB868 

or DB829 from 28 days post infection (DPI).  

 

Efficacy of DB829 Dose Regimens 

DB829 was administered intramuscularly (IM) at 5 mg/kg for 5 days 

consecutively (monkeys 569 and 659) or at 5 mg/kg every alternate day for 5 days 

(monkeys 668 and 676). A third group of monkeys was treated at 2.5 mg/kg for 5 days 

consecutively (Table 1). Monkeys that were treated using either of the 5 mg/kg dose 

regimens became blood and CSF parasite negative by the last day of dosing. In contrast, 
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trypanosomes were more persistent in the biological fluids of monkeys that were dosed at 

2.5 mg/kg; the trypanosomes were still detectable in blood and/or CSF for 4 days 

(monkey 693) and 7 days (monkey 546) post last dosing. Even in these two monkeys 

(546 and 693) however, trypanosomes were thereafter not detected in biological fluids, 

indicating that all the monkeys that were treated with DB829 were parasite negative at 

the last time point (14 days post last dosing) that could still be considered an end of 

treatment (EoT) evaluation (Table 1). All the monkeys subsequently regained their 

normal clinical condition. Five of the monkeys (569, 668, 676, 546 and 693) remained 

free of parasites in blood and CSF during the more than 300 days of post treatment 

monitoring (Table 1) and were therefore declared cured. However, monkey 659 of the 5 

mg/kg x 5 days consecutive daily dosing regimen, developed pneumonia and had to be 

euthanized 91 days post last dosing. Trypanosome recrudescence was not observed in 

blood or CSF collected from this monkey at any time point post last dosing. The monkey 

(659) was therefore classified as withdrawn from the study (Table 1). 

 

Efficacy of Oral DB868 Regimens 

The prodrug DB868 was dosed orally to groups of four monkeys using 10-day 

dose regimens of 20, 10 and 3 mg/kg, respectively. Monkeys in the 20 and 10 mg/kg 

dose-groups became blood and CSF parasite negative by the 7th day of dosing and all 

were therefore provisionally cured at the end of treatment (EoT) examination (Table 1). 

The two monkeys that were treated at 3 mg/kg (No 670 and 687) also experienced 

aparasitaemia after the 7th drug dose. However, the central nervous system (CNS) 

trypanosomes were not eliminated at all, indicating that the 3 mg/kg x 10 days regimen  

did not achieve cure (Table 1). 

 

Three of the four monkeys that were treated orally with DB868 at 20 mg/kg 

experienced trypanosome recrudescence at various times post last drug dose (LDD), 

giving a final cure of 1/4 for this group (Table 1). All three animals (monkeys 573, 689 

and 696) were confirmed to have CSF trypanosomes, CSF white cell aberrations and/or 

clinical signs of CNS disease (data not shown). However, only one, monkey 689, 

experienced trypanosome recrudescence in the blood (Figure 2). The median (range) time 



 150

to relapse was 133 (77-161) days. Clinical signs of CNS involvement included ataxia, 

circling and altered behaviour and were quite pronounced in monkey 696, necessitating 

humane euthanasia of the monkey. The remaining two monkeys (573 and 689) were 

successfully rescue-treated with melarsoprol (Mel B, Arsobal®) at 3.6 mg/kg x 4 days 

intravenously. 

Similarly, three out of the four monkeys that were treated with DB868 at 10 

mg/kg relapsed. The three monkeys (Monkey 688, 695 and 697) were all positive for 

blood trypanosomes (Figure 2) and two of them (688 and 697) also were positive for CSF 

trypanosomes and/or clinico-pathological indicators of late CNS stage disease. The 

median (range) time to relapse was 28 (28-56) days.  In these monkeys, relapse 

parasitaemia hovered around the limit of detection of Herbert and Lumsden (1976) and 

tended to be of a lower intensity in comparison with primary parasitaemia in the same 

monkeys (Figure 2). In contrast, CSF white cell aberrations were more pronounced in the 

relapsed monkeys, in comparison with the period before treatment (Figure 3 and data not 

shown). The three monkeys were also successfully rescue-treated with melarsoprol (Mel 

B, Arsobal®) at 3.6 mg/kg x 4 days intravenously.  

In all cases when monkeys were retreated with melarsoprol, trypanosomes were 

cleared from the peripheral blood by the second day of treatment confirming that 

melarsoprol is a fast acting trypanocide. The post treatment monitoring period was 

restarted after the last dose of melarsoprol and continued for at least 300 days before cure 

was declared. The monkeys remained free of trypanosomes and had normal clinical and 

haematology parameters; they were therefore confirmed cured. Monkey 687 was 

however not cured; its clinical condition deteriorated significantly after two daily doses 

of melarsoprol treatment, necessitating it to be euthanized.    

 



 151

Table 1: Efficacy of intramuscular DB829 and oral DB868 dose regimens in a second stage monkey model of HAT 
 
Experiment An # PP (DPI) Peak 

Log10P 
Time to 
parasitisation 
of CSF (DPI) 

# of 
tryps/ µl 
of CSF 
 

Dose 
regimen 
(mg/kg x # 
of days 

Time of 
treatment  
(DPI) 

Efficacy 
at EoT 

ToC at 
300 DPI 

Cured/ 
treated 

I: IM 
DB829 

569 4 7.2 27 1 5 x 5 28-32 Neg Cured 1/1 
659 4 7.8 27 1   Neg WD (91)  
668 5 7.8 21 1 5 x 5 28, 30, 32, 

34, 36 
Neg Cured 2/2 

676 5 7.5 21 1   Neg Cured  
546 4 7.5 27 1 2.5 x 5 28-32 Neg Cured 2/2 
693 3 8.1 14 1   Neg Cured  

Average 4 (3-5) 7.7 ± 0.1 24 (14-21) 1 NA NA NA NA  
          
I: Oral 
DB868 

573 4 8.1 14 2 20 x 10 28-37 Neg Relapsed 1/4 
679 5 7.8 27 1   Neg Cured  
689 5 7.8 27 1   Neg Relapsed  
696 4 7.8 7 1   Neg Relapsed  
688 5 7.5 21 1 10 x 10 28-37 Neg Relapsed 1/4 
690 5 7.8 14 1   Neg Cured  
695 4 7.5 7 1   Neg Relapsed  
697 4 7.8 7 1   Neg Relapsed  
670 7 7.2 NA NA 3 x 10 28-37 Neg WD  
687 4 7.8 21 2   Neg Not cured 0/2 

Average 4.5 (4-7) 7.8 ± 0.1 10.5 (7-27) 1 (1-2) N/A N/A N/A   
An #, animal number; PP, pre-patent period; DPI, days post infection; P, parasitaemia; IM, intramuscular; EoT, end of treatment; 
tryps, trypanosomes; CSF, Cerebrospinal fluid; WD, withdrawn; Neg, negative; N/A, not applicable; ND, not demonstrated; ToC, test 
of cure peforemd after 300 days post LDD 



 152

 

 

Figure 1: Parasitaemia progression in monkeys infected with T. b. rhodesiense KETRI 

2537 and later treated with DB829. DB829 was administered intramuscularly from 28 

days post infection at: - A:  5 mg/kg x 5 days consecutively; B: 5 mg/kg every alternate 

day; C:  2.5 mg/kg x 5 days consecutively.  
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Figure 2: Primary and relapse parasitaemia in monkeys infected with T. b. rhodesiense 

KETRI 2537 and subsequently treated with prodrug DB868. DB868 was administered 

orally from 28 days post infection at: - A:  20 mg/kg x 10 days consecutively; B: 10 

mg/kg x 10 days consecutively; C:  3 mg/kg x 10 days consecutively. 
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Figure 3: Cerebrospinal fluid white cell changes in monkeys that were treated with oral 

DB868 regimens. The monkeys were dosed from 28 (A) to 37 (B) days post infection 

with T.b. rhodesiense KETRI 2537. 

 

Infection and Treatment Induced Changes on Haematology 

Red blood cell (RBC) counts exhibited an infection-induced decline that was most 

prominent at 27 DPI, as shown by the mean (± SE) trends of all DB829 and DB868 

treatment groups (Figure 4). The average haematocrit (HCT) of the monkeys in the 

DB829 study (n = 6) was 35.5% (± 1.8) which was a 27.3% drop from the pre-infection 

mean value of 48.8% (±2.6). The monkeys in the oral DB868 study (n = 10) experienced 

a comparable 30.7% drop in mean haematocrit, from a pre-infection value of 42.4 (±1.5) 

to 29.4 (± 1.2) at 27 DPI. The mean corpuscular volume (MCV) and mean corpuscular 

haemoglobin (MCH) also declined significantly (p < 0.05), consistent with previous 

findings in monkeys infected with this strain (Thuita et al., 2012). Upon treatment with 

IM DB829 or oral DB868, the RBC counts recovered to baseline levels within 

approximately 1-2 months (Figure 4). In the monkeys that experienced trypanosome 

recrudescence in the blood (monkey 687 (DB868, 3mg/kg), monkeys 688, 695 and 697 

(DB868, 10 mg/kg) and monkey 689 (DB868, 20 mg/kg) (Figure 2), a second phase of 

declining RBC parameters was observed concurrently with the reappearance of 

trypanosomes in blood (data not shown). No such decline in RBC associated parameters 
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was observed for monkeys 573 and 696 in which trypanosomes reappeared only in the 

CSF.  

 Infection related thrombocytopenia was observed between 7-27 DPI, followed by 

recovery to baseline (pre-infection) levels within one week after therapeutic intervention 

(Table 2). Similarly, a significant leucopenia was observed at 7 DPI (Table 2). This 

leucopenia was largely determined by significant declines in lymphocyte numbers 

(Figure 5). However, unlike RBC and platelet counts which remained low as long as 

trypanosomes were still in the blood, white cell densities increased in some individuals 

and remained low in others (Table 2, Figure 5). Upon treatment with DB829/DB868, 

blood white cell counts remained somewhat elevated in those monkeys that eventually 

relapsed after variable periods of post treatment monitoring (Figure 5).  The strongest 

peaks of white blood cells were observed approximately 1-4 days post end of treatment 

with melarsoprol of relapsed individuals (Figure 5). These relapse-melarsoprol treatment 

associated peaks of blood white cells were mainly the result of increases in lymphocytes 

and granulocytes (Figure 5) and were observed only in those individual with 

trypanosomes in the blood but not those with only CSF trypanosomes.  
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Figure 4: Changes in density of red blood cells in blood of monkeys that were infected 

with T.b. rhodesiense and later treated with IM DB829 (A) or oral prodrug DB868 (B). 

DB829 was administered from 28 days post infection for 5 consecutive days or on 

alternate days (A).  DB868 was dosed orally for 10 consecutive days, starting 28 days 

post infection. 
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Table 2: Changes in blood platelet and white cell counts following infection of monkeys with T.b. rhodesiense and subsequent 

treatment with oral DB868 and intramuscular DB829. 

Drug Dose 
(mg/kg x d) 

DPI 
(DPT) 

0 7 27 38 (1) 44 (7) 65 (28) 100 (63) 137 (100) 224 (180) 

 20 x 10 a PLT 323 ± 42 112 ± 15 
(S) 

131 ± 32 
(S) 

410 ±14 362±57 334±52 318± 31 285± 51 243±50 

Oral 
DB868 

 WBC 8.1± 1.5 3.5 ± 0.8 
(S) 

4.3 ± 0.7 
(S) 

7.4 ± 0.8 6.5± 0.6 5.9 ± 0.3 
(S) 

6.9 ± 0.6 8.1 ± 0.6 9.7± 2.9 

 10 x 10a PLT 273 ± 76 75 ± 13 54 ± 4 292 ± 41 331 ± 90 307 ± 82 217 ± 32 451 ± 65 337 ± 19 
  WBC 5.7 ± 0.3   2.7 ± 0.2 

(S) 
4.3 ± 0.6  8.9 ± 0.3  7.1 ± 0.8 6.9 ± 0.7  7.9 ± 1.7  6.2 ± 0.5  6.4 ± 0.6 

 3 x 10a PLT 355 ± 
215 

259 ± 186 126 ±33 472 ±248 NA 
 

  WBC 5.7 ± 0.8 4.7 ± 0.6 6.4 ± 0.5 8.2 ± 0.6 NA 
 

 5 x 5a PLT 424 ± 60 112 ± 11 
(S) 

156 ± 42 
(S) 

464 ± 32  515 ± 39 419 ± 4.5 352 ± 44 367 ± 60 NA 

IM 
DB829 

 WBC 6.0 ± 0.4 3.4 ± 0.5  4.6 ± 0.2  7.8 ± 0.3 6.6 ± 0.5  7.3 ± 1.0 5.3 ± 1.1 4.5 ± 0.1 NA 

 5 x 5b PLT 312 ± 31 96 ± 12 
(S) 

200 ± 2 
(S) 

328 ± 7.5 395 ± 26 378 ± 71 246 ± 26 327±25 250 ± 53 

  WBC 4.8 ± 0.5 3.3 ± 1.1 4.7 ± 0.6 4.8 ± 0.6 5.6 ± 0.5 6.5 ± 0.7 5.8 ± 0.8 6.3 ± 0.3 6.0 ± 0.3 
 

 2.5 x 5a PLT 285 ± 23 54 ± 20 
(S) 

115 ± 32 
(S) 

265 ± 17 332 ± 27 292 ± 5 242 ± 64 327 ± 27 389 ± 13 

  WBC 5.8 ± 2.1 3.9 ± 1.4  
(S) 

5.4 ± 1.3 6.8 ± 1.5 8.9 ± 3.4 8.1 ± 2.1 6.3 ± 1.0 6.0 ± 1.6 6.7 ± 1.9 

IM, intramuscular; d, day; a, consecutive day dosing; b, alternate day dosing; DPI, days post infection; DPT, days post last treatment; 

WBC, white blood cell counts; PLT, Platelets; NA; not applicable; S, significant at p < 0.05, repeated measures ANOVA and post hoc 

tests;  
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Figure 5: White blood cell changes in three monkeys that were treated with oral DB868. 

DB868 was administered orally at 3 mg/kg x 10 days (M687); 10 mg/kg x 10 days 

(M688); and 20 mg/kg x 10 days (M689). When relapses were confirmed, the monkeys 

were retreated with melarsoprol at 3.6 mg/kg x 4 days intravenously; WBC, white blood 

cells; Ly, lymphocytes; Mo, monocytes; GR, granulocytes. Dashed arrows: last dose of 

DB868; bold arrows, last dose of melarsoprol. 



Pharmacokinetics 

Following intramuscular injection of the active drug DB829 at either 5 or 2.5 

mg/kg, similar Tmax values of 0.04 days (1 h) were obtained for all six monkeys, showing 

that the drug was rapidly absorbed into the blood. A geometric Cmax value of 13400 

(12000-15000) nmol/L was obtained for the 5 mg/kg x 5 days consecutive day dosing 

group while 5000 (4200-5900) nmol/L was obtained for the 2.5 mg/kg DB829 dose 

group. (2.7 fold). In the alternative day dosing regimen at 5 mg/kg, Cmax and Tmax were 

comparable to the consecutive day dosing (Table 2). The AUC for the 5mg/kg group was 

2.1-fold greater than that for the 2.5 mg/kg dose group. The terminal half-life for the 

consecutive day dosing regimens was an average of 38 days (32-44). The AUC and the 

terminal half-life for the alternative day dosing regimen were 5-fold and 3-fold greater 

than corresponding values for the consecutive day-dosing regimen at the same 5 mg/kg 

dose. 

For monkeys dosed with oral DB868, the prodrug was detected within 1 h post 

dosing in all monkeys at geometric mean values of 812 nmol/L (20 mg/kg group), 746 

nmol/L (10 mg/kg group) and 124.9 nmol/L (3 mg/kg group). The plasma values of the 

prodrug declined rapidly and were not detected after 8 h in any monkey. Thus, although 

the geometric mean values obtained at 1h were the highest plasma values for all the 

groups, accurate PK parameters could not be derived due to limited data points. On the 

other hand, the plasma Tmax for the active metabolite DB829 was an average of 0.33 days 

(8 h) for the three treatment groups, with a range of 0.04-2 days (1 – 44 h) (Table 3). The 

Cmax values were 526 (460-630) nM for the 20 mg/kg dose group, 269 (180-410) nmol/L 

for the 10 mg/kg dose group and 85 nmol/L for the 3 mg/kg dose group.   

CSF active drug (DB829) concentrations were determined only for the two groups 

of monkeys that were treated with DB829 at 5 mg/kg x 5 days IM. In the consecutive day 

dosing group, the geometric mean DB829 concentration was 13.6 nmol/L at the 1 h post 

LDD time point; the levels declined to about 5.7 nmol/L but were detected until 21-28 

days post LDD. In the alternate day dosing group, geometric mean DB829 concentration 

was 7.3 nmol/L at 1 h post LDD time point. The drug was detected at the same level until 

2 days post LDD before falling below the limit of quantification of the assay of 5 nmol/L. 
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DISCUSSION 

A variety of novel diamidines and their prodrugs have been synthesised (Das and 

Boykin, 1977; Ismail et al, 2003; Tidwell and Boykin, 2003) and subsequently shown to 

be highly active against African trypanosomes in vitro and in mouse models (Wenzler et 

al 2009; Ward et al., 2011). More recently, it was shown that one of the prodrugs, 

DB868, was significantly better tolerated in rats than the clinical candidate prodrug 

pafuramidine (Wolf et al., 2012). DB868 was also well tolerated in un-infected vervet 

monkeys and was highly active against first stage HAT in the vervet monkey HAT 

model, highlighting it as a potential new clinical candidate for first stage HAT (Thuita et 

al., PLoS NTDs, in press). In the current study, we compared the pharmacology 

(efficacy, pharmacokinetics) of orally administered DB868 to that of its intramuscularly 

administered parent drug (DB829) in the CNS stage vervet monkey model of HAT, in an 

effort to identify a suitable potential clinical candidate for the CNS stage human disease.      

The diamidine DB829, when administered IM at 5 or 2.5 mg/kg for five days 

consecutively or at 5 mg/kg x 5 days on alternate days, cured all monkeys with a CNS 

stage infection. These results were an indication of its superior efficacy compared to 

other previously evaluated diamidine prodrugs such as pafuramidine which cured 0/3 

(Mdachi et al., 2009) and DB844 which had a modest efficacy of 3/7 (43%) against 

similar CNS-stage infections in the monkey model (Thuita et al., 2012). The efficacy of 

IM DB829 was also in contrast to that of IM pentamidine which was shown to have good 

activity (2/3) in early stage disease (Thuita et al., PLoS NTDs, in press) but was not 

effective (0/3) when initiation of treatment was delayed to 14 days post infection with 

T.b. rhodesiense KETRI 2537 (unpublished data TRC KARI). In other studies, Schmidt 

and colleagues evaluated the efficacy of diminazene aceturate and several experimental 

diamidines against CNS-stage T.b. rhodesiense infections and reported unsatisfactory 

results (Schmidt and Sayer, 1982). The results we have reported therefore indicate that, 

unlike other diamidines and diamidine prodrugs previously evaluated in this monkey 

model, DB829 could potentially be developed as a therapy for CNS stage HAT. 

 

Oral DB868 had an excellent (4/4) end of treatment provisional cure rate for both 

10 and 20 mg/kg dose groups but not for the 3 mg/kg dose group (0/2). However, for the 
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10 and 20 mg/kg dose groups, the final efficacy result after more than 300 days of post-

dosing monitoring was only 1/4 (25%) cure rate. In contrast, both DB868 and DB844, 

when administered at 100 mg/kg x 5 days per os, cured 4/4 GVR 35 CNS stage infections 

in mice (Wenzler et al., 2009). A closer scrutiny of the treatment regimens used in the 

monkey and mouse studies suggests that the superior efficacies in the mouse model were 

likely related to the significantly higher daily drug doses employed (100 mg/kg [mouse] 

vs. 20 mg/kg [monkey]). Species differences (mouse vs. monkey) and the requisite 

scaling down of drug doses between species as well as results of toxicity studies of 10-

day oral DB868 regimens in un-infected vervet monkeys (Thuita et al., PLoS NTDs, in 

press) were considered when selecting the maximum dose of 20 mg/kg x 10 days for the 

monkey efficacy studies. However, on the evidence of our current results and comparable 

partial cures obtained after prodrug DB844 was used to treat CNS stage infections in 

monkeys using 10 or 14-day dose regimens (Thuita et al., 2012), there may be need to 

investigate alternative treatment regimens comprising of higher daily drug doses which 

are administered for shorter durations to maximise on efficacy and minimise the risks of 

dose-limiting toxicity.    

 

Pharmacokinetic evaluation of plasma samples provided evidence of the 

superiority of IM as compared to oral administration of these compounds. The geometric 

mean plasma Cmax resulting from IM administration of DB829 at 5 mg/kg was 26 times 

(13400/512) greater than the active metabolite (DB829) concentration resulting from 

administration of oral DB868 at 20 mg/kg. Even when DB829 was dosed at 2.5 mg/kg 

IM, resultant plasma DB829 Cmax values were approximately 10 times (5000/512) greater 

than values of the same compound (DB829) resulting from oral dosing of prodrug DB868 

at 20 mg/kg. In terms of systemic availability of active drugs therefore, the comparatively 

poorer performance of orally administered prodrugs in comparison with IM administered 

active drugs is best explained by a report that 50–70% of an oral dose of pafuramidine 

was absorbed (losses: 30-50%) and effectively converted to the active drug (DB75) in 

both rats and monkeys but subject to first-pass metabolism and hepatic retention, limiting 

its systemic bioavailability to 10 to 20% (Midgley et al., 2007).  



 163

The fact that high efficacies were obtained in IM treated monkeys indicates that 

sufficient quantities of the active drug (DB829) crossed the blood brain barrier (BBB) to 

eliminate trypanosomes from the central nervous system (CNS). Evaluation of CSF 

samples from monkeys that were treated at 5 mg/kg x 5 days confirmed that DB829 was 

indeed detected, with a geometric mean of 13.6 nmol/L (consecutive day-dosing group) 

and 7.3 nmol/L (alternate-day dosing group) at 1 h post LDD. These CSF DB829 

concentrations were not particularly high, especially in comparison with plasma levels of 

the same drug (Table 3). However, DB829 was present in CSF at levels greater than 5 

nmol/L for at least 2 days post LDD (alternate day dosing group) and 21-28 days post 

LDD (consecutive day dosing group). It is proposed therefore that the presence of DB829 

in CSF for relatively long periods led to successful elimination of trypanosomes from the 

CSF/CNS compartment, possibly due to the ability of trypanosomes to accumulate 

potentially toxic active drug levels from surrounding medium (Mathis et al., 2006). CSF 

DB829 levels were not determined for monkeys that were treated with oral DB868; the 

fact that poor overall efficacies were observed suggested that therapeutic concentrations 

of the active drug (DB829) were not attained in the CSF and CNS parenchyma of a 

majority of the monkeys. Studies on the related prodrug, pafuramidine reinforced the 

superiority of parenteral as compared to oral dosing of diamidines: active drug (DB75) 

concentrations were higher (61 nmol/mg of tissue) in the CNS of mice after IV 

administration of pafuramidine as compared to orally dosed mice (13nmol/mg of tissue) 

(Sturk et al., 2004). Thus, although efflux transporters present in the BBB (Krajcsi et 

al.2012) make it difficult for significant levels of active diamidines/other drugs to 

accumulate in the CSF/CNS, our data show that parenteral dosing improved active drug 

levels in CSF possibly through mechanisms such as concentration dependent diffusion 

(Nau et al., 2010) and/or enhanced activity of organic cation transporters (Ming et al., 

2009).  

 

Monkeys that relapsed at various times after oral DB868 treatment manifested 

clinical and clinico-pathological parameters that were distinctly different from primary 

infections in the same individuals. Firstly, the clinical disease in relapsed individuals was 

characterised by more signs of late CNS stage disease than primary infections in the same 
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monkeys, evidence of the important role of CNS as source of relapse trypanosomes 

(Thuita et al 2012). Secondly, parasitaemia in the relapsed monkeys hardly reached the 

peak levels observed in primary parasitaemia and was actually more similar in pattern to 

that seen in T. b. gambiense infections in monkeys (Dr David Mwangangi, personal 

communication) and in sleeping sickness in humans which is largely (more than 95%) 

caused by T.b. gambienese (Brun et al., 2011; WHO, 2012; Matovu et al., 2012). 

Parasitaemia loads in Trypanososma brucei spp are determined by density dependent 

parasite differentiation to non-replicating short stumpy forms and parasite killing by the 

hosts immune system (Tyler et al., 2001).  The apparently poor growth characteristics of 

relapse as opposed to primary infections of the same trypanosomes were therefore likely 

indicative of a heightened recognition and faster removal of successive variant antigenic 

types (VATs) by the immune system in the infected monkeys. The trypanosomes 

regained their robust growth characteristics and high parasitaemia loads when they were 

passaged in naive rodents (unpublished observations), indicating that there was no 

permanent change in trypanosome phenotype. Due to their intermittent nature, relapse 

parasitaemia were more difficult to detect by microscopy (van Meirvenne et al., 1999), 

sometimes only being detected when clinical disease was well developed. Importantly, 

confirmed relapse infections were successfully retreated with intravenously administered 

melarsoprol at 3.6 mg/kg x 4 days, highlighting the importance of this old drug in the 

fight against HAT, despite the well documented toxicity issues associated with its use 

(Burri, 2010; 2012)  

A major constraint of preclinical drug studies in animal models is the requirement 

for long post treatment monitoring periodes (more than 300 days in CNS stage HAT 

monkey model) before cure can be declared.  The timelines are even more protracted for 

clinical trials of potential new HAT treatments, with at least 18-24 months needed to 

confirm cure (WHO, 2004). However, our time to relapse data for monkeys treated with 

DB868 at 20 mg/kg, a median 133 (range, 77-161) days post last drug dose (LDD), 

indicates that the protracted timelines are not without justification. In an effort to improve 

the turnover times for compounds in development, primary efficacy endpoint assessments 

at 100 days post LDD have been proposed (Sonja Bernhard, personal communication). In 

our study, however, a primary efficacy endpoint set at 100 days post LDD would have 
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correctly predicted the final efficacy result for oral DB868 at 10 mg/kg group but not for 

the 20 mg/kg group i.e. 2/3 relapses in this group were diagnosed as relapses after the 100 

days post LDD time point. Indeed, a review of larger data sets of monkeys treated with 

different experimental diamidines in our laboratory revealed that a primary endpoint at 

100 days post LDD would have facilitated detection of 80% of all animals that eventually 

relapsed (unpublished data of TRC-KARI), highlighting a potential pitfall of reliance on 

primary efficacy data for decision making. Clearly, the utility of primary endpoint 

efficacy assessments needs to be improved, possibly by combining parasitaemia 

determinations with other surrogate biomarkers of cure assessment including CSF white 

cell counts (Priotto et al., 2012), serum/plasma trypanosome antigen levels as determined 

using TrypTectCIAAT (Karanja et al., 2010). However, these surrogate tests still need to 

be adequately validated to be reliably used as biomarkers of cure/relapse in drug trials.   

 

Haematology changes attributable to trypanosome infection and subsequent 

treatment with diamidines were generally consistent with previous observations in this 

model (Mdachi et al., 2009; Thuita et al., 2012; Maina Ngotho et al., 2011).  In the 

current study, however, we focussed more on total and differential blood white cell 

counts and observed that this parameter remained elevated in monkeys which eventually 

relapsed, suggesting this parameter could be a potential surrogate marker for cure 

assessment. In addition, blood white cell counts, especially lymphocytes and 

granulocytes, were markedly elevated post treatment with melarsoprol. The leucocytosis 

was likely a sequel to rapid destruction of trypanosomes by melarsoprol, release of high 

amounts of trypanosome antigens (antigenaemia) and their stimulatory effects on the 

host’s immune system. Importantly, the elevated leucocyte numbers normalised within 

approximately four days post LDD (Figure 5) and remained at baseline levels for the 

duration of post treatment monitoring; all other parameters remained normal indicating 

that like IM DB829, melarsoprol was curative for monkeys with CNS stage HAT.  

 

Overall therefore, this study has identified IM DB829 at 2.5 mg/kg administered 

for 5 consecutive days, but not oral DB868, as a promising late lead compound that could 

enter the development pipeline as a new therapeutic agent for CNS stage HAT. Despite 
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the fact that prodrugs cross biological membranes like gastrointestinal mucosa better than 

active diamidines (Ansede et al., 2004), we have demonstrated conclusively that 

parenteral administration of diamidines is superior to oral administration of diamidine 

prodrugs in terms of eventual systemic availability of active drugs, thus leading to better 

efficacies against the tissue invasive HAT causing parasites.    
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Chapter 8: General Discussion 

 

The Case for a New HAT Drug 

There is considerable concurrence among stakeholders on the need for new 

sleeping sickness medicines. Several authors, including those from the WHO, have 

published repeatedly on the need for new tools (especially drugs and diagnostics) in order 

to better meet the healthcare needs of sleeping sickness patients as well as other NTDs 

(Werbovetz et al., 2006; Simmaro et al., 2008; 2011; Brun et al., 2010, 2011; Chatelain 

and Ioset; 2011).  The drive for new drugs is largely based on the well documented 

shortcomings of currently available treatments (Burri, 2010) and the need to increase the 

treatment options available for this disease to cater for emergent cases of parasite 

resistance/treatment failure.  The studies reported in this PhD thesis show that two new 

chemical entities (NCEs), an oral prodrug DB868 and its intramuscularly administered 

parent drug CPD-0802, could be recommended to enter regulatory development for first 

and second stage HAT respectively. 

 

Currently, compounds undergoing regulatory development for HAT include 

fexinidazole (phase II/III) and the benzoxaborole SCYX-7158 (phase I).  These 

compounds performed well during preclinical and early phases of clinical development 

(Nare et al., 2010; Toreele et al., 2010; Kaiser et al., 2011; Jacobs et al., 2011), thus 

generating considerable optimism on their chances of successfully completing the drug 

development process. Indeed, it is now believed that a new drug will become available 

within the next 3-5 years (Maser et al., 2012). However, the drug development process 

suffers from a considerably high attrition ratio, with only 1:50 000 NCEs advancing to 

clinical trials from the drug discovery phase (Grewal et al., 2008).  Even after potential 

new therapies have entered clinical trial phase, the attrition ratio remains high. In a study 

by Prentis and Walker (1986), it was reported that out of 197 NCEs developed by seven 

UK pharmaceutical companies up to clinical testing phase, only 35 were eventually 

marketed giving an attrition ratio of 5.6:1. Comparable attrition ratios of 10:1 (Wardell 

and Scheck, 1982) and 13.5:1 (Mattinson et al., 1984) were reported for US and Swiss 
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companies respectively. Although the period since year 2000 has been very good for 

HAT drug research and development (R&D), the considerably high risk of attrition 

should remind us that with only two compounds currently, the HAT drug development 

pipeline is not yet robust enough. 

 

In spite of the scientific evidence and my advocacy for advancing both diamidines 

to regulatory development, it must be mentioned that drug development is a very costly 

undertaking. Actual estimates of developing a new drug up to market authorisation range 

from USD 500-2000 million (Dimasi et al., 2003; Adams and Brantner, 2006) although 

this cost is likely to be lower for drugs developed by the not for profit public private 

partnerships (PPPs). In addition, it takes an estimated 10-12 years to develop a new drug 

(Grewal et al., 2008). On the basis of cost then, it is unlikely that both diamidines could 

actually end up in regulatory development- rather a best case scenario would see only one 

of the two drugs funded for development. If it came to a choice between the two, 

conventional thinking would favour the parent drug DB829 on the basis of its activity 

against second stage disease. This is shown by target product profiles (TPPs) in use by 

the consortium for Parasitic Drugs Development (CPDD) and Drugs for Neglected 

Diseases initiative (DNDi) (sample TPP: appendix) which usually include activity against 

second stage disease top of the list of desirable attributes of potential new therapies 

(http://www.dndi.org/diseases/hat/target-product-profile.html, Susan Jones, personal 

communication). However, the orally active drug DB868 would also have its supporters, 

including myself. I consider arguments for oral HAT medicines, presented in this thesis 

and elsewhere, quite compelling.  A key plank in these arguments is that an oral medicine 

would make it possible to reduce hospitalization times and, in a best case scenario, 

completely render it unnecessary for a proportion of the patients.  Such an outcome 

would have the ripple effect of reducing healthcare costs at the national level, thus 

freeing up financial resources to take care of other pressing healthcare concerns such as 

malaria.  It would also free up more time for patients’ relatives/attendants to engage in 

economic activities that strengthen the household economy, as compared to spending a 

lot of time taking care of hospitalized patients.  In view of high poverty levels in disease 
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endemic countries, an efficacious oral drug would, in my view, be favourable even if it 

was only active against first stage HAT. 

If a potential advantage of an efficacious oral take home medicine would be to 

reduce the proportion of patients requiring hospitalization, the question of which patient 

categories (first or second stage) could benefit most needs to be considered. An oral take 

home medicine, if available, is likely to be prescribed only for those patients who are not 

moribund or in any way so incapacitated as to make hospitalization mandatory.  In 

general, first stage patients fit the description of those who are likely to benefit from such 

medicines better than second stage patients.  It must also be mentioned that barriers to 

early diagnosis of HAT are progressively being removed. One of these barriers, war and 

conflict, contributes to the spread of HAT through displacement of large populations of 

people and their livestock some of which are infected carriers (Kuzoe, 1993; Ford, 2007). 

Insecurity also makes certain regions/villages in HAT endemic countries inaccessible to 

health personnel thus hindering efforts to carry out proper surveillance; in areas where 

active surveillance has been carried out effectively HAT cases are increasingly diagnosed 

while still in first stage (Chappuis et al., 2010). It is encouraging to note that major long 

running conflicts in Angola and South Sudan have been resolved recently and the 

security situation has also improved in the DRC. Another hindrance to early diagnosis of 

HAT has been lack or poor knowledge of the disease symptoms among the general 

population. This drawback has been innovatively addressed in Kenya through education 

of schoolchildren as a way to disseminate vital disease information to the community 

(Julia Karuga, personal communication). Primary healthcare workers have also been 

targeted for education in a campaign to improve early detection of HAT (Dr Grace 

Murilla, personal communication). While the impact of these initiatives has not been 

independently evaluated, it is believed that supplying the right information to those who 

need it should help to improve early case detection which in turn would increase the 

proportions of patients likely to benefit from an oral drug for 1st stage HAT. 

 

Based on recent successes in reducing the incidence and prevalence of HAT, 

some authors currently believe that elimination of HAT as a disease of public health 

significance is an achievable goal (Nimo, 2010; Aksoy, 2011; Simmaro et al., 2011). In 
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order to achieve this noble goal, however, the stakeholders must find a way to keep the 

HAT control agenda alive despite the dwindling case numbers. We must find a way to 

avoid falling into a similar pitfall as happened in the 1960s when success was followed 

by a period of uncertainty and in some cases neglect of vital disease surveillance 

activities, leading to resurgence in the disease in the 1970s to 1990s (Simmaro et al., 

2008; Nimo, 2010). The WHO needs to continue the excellent coordinating and 

motivating role it has had on National Disease Control Programmes (NDCPs) as well as 

being the link between drug manufacturers and HAT endemic countries. In addition, 

regional groupings such as the Eastern Africa Network for Trypanosomiasis (EANETT) 

and the HAT Platform need to continue to meet to facilitate sharing of vital disease 

control information between members. Importantly, however, the development of new 

drugs must continue to be pursued despite the increased difficulties of carrying out 

clinical trials (Burri, 2012) and the challenge of finding donors for HAT R&D in the face 

of the reduced case numbers.  

 

Perhaps the most important reason why development of new drugs needs to 

remain a priority is the whole question of parasite resistance to existing agents. The case 

of resistance to melarsoprol is well documented (Maser et al., 1999; Brun et al., 2001; De 

Koning, 2001; Maina et al., 2006; Barret et al., 2011). In addition, the first anecdotal 

reports of treatment failures with eflornithine monotherapy are already emerging from 

some HAT foci (Barret et al., 2011). Resistance to melarsoprol and eflornithine (this 

would likely also affect NECT), would make it possible to get second stage HAT patients 

for whom there would be no available treatment - a scenario that must be avoided at all 

costs. However, the good news is that important developments have occurred in the 

chemotherapy of HAT in the recent past. These include the development and inclusion of 

the nifurtimox eflornithine combination therapy (NECT) in the essential medicines list of 

the WHO for the management of T. b. gambiense HAT (Priotto et al., 2009; WHO, 

2012). In addition, the ten-day melarsoprol treatment schedule that was already in use for 

T. b. gambiense HAT (Burri et al., 2000) has been evaluated against T. b. rhodesiense 

HAT in Tanzania and Uganda (Kuepfer et al., 2012). The results of these clinical trials 

indicated that the 10-day melarsoprol schedule had an efficacy of 96% at the 12 month 
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post treatment follow-up time point and did not expose patients to a greater risk of 

encephalopathic syndromes compared to the standard melarsoprol treatment schedules 

(Kuepfer et al., 2012). A number of molecules including the diamidines reported in this 

thesis and proposed new formulations of old drugs (Kennedy, 2012) have shown promise 

in preclinical development.  The development of better treatment schedules of current 

drugs as well as new safe and efficacious treatments must remain a priority in order to 

“dim the lights (Nimo, 2010)” on HAT. 

 

Understanding the Determinants of Diamidine Toxicity 

DB289 (pafuramidine) has so far been the only new generation diamidine 

developed by CPDD to enter clinical testing. The clinical trials were conducted in the 

DRC, Angola and South Sudan. DB289 performed well in phase I/II clinical trials 

(http://clinicaltrials.gov/ct2/show/NCT00803933), and became the first oral drug to enter 

the pivotal phase III clinical trial where its efficacy was insignificantly different from that 

of intramuscular pentamidine (Paine et al., 2010; Burri, 2010, Maser et al., 2012). 

However, while the phase III clinical trial for HAT was still in progress, an extra phase I 

clinical trial was initiated in South Africa (SA) at the request of the Federal Drug Agency 

(FDA) of the USA in order to generate additional safety data to support registration of the 

drug for Pneumocystis jiroveci pneumonia.  In this new study, DB289 was dosed at 100 

mg/kg bid for an extended 14 days as compared to 5 (phase I/II) and 10 days (phase III) 

clinical trials for HAT (http://clinicaltrials.gov/ct2/results?intr=%22DB289%22; 

http://clinicaltrials.gov/ct2/show/NCT00619346?intr=%22DB289%22&rank=5). Liver 

and more importantly delayed kidney toxicity were observed in this new phase I study, 

necessitating termination of the DB289 development programme (Paine et al., 2010).  

The phase III clinical trials data was then unblinded at which point two out of three 

nephrotoxicity cases were identified as possibly related to DB289; no such cases were 

reported for pentamidine (Dr Allison Harril, personal communication). Significantly, 

though, nephrotoxicity was also not reported for phase I/II DB289 clinical trials for HAT. 

Naturally, the determinants of DB289 (and by extension diamidine) toxicity needed to be 

elucidated in order to aid selection of next-in-class compounds that could be safely used 

in humans. 
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Insights from the Monkey HAT Model 

Pharmacological investigations carried out in vervet monkeys on DB289, DB844, 

DB1058, DB868 and DB829 suggested that members of the class (diamidines) exhibit 

differential toxicity profiles. Based on cumulative doses administered to un-infected 

monkeys during the toxicity study and cumulative doses that were curative in the 1st stage 

HAT model, DB868 exhibited a maximum tolerated dose (MTD): minimum curative 

dose (MCD) ratio of 14:1 (300:21). On the other hand, pafuramidine was administered at 

a maximum dose of 10 mg/kg x 10 days (CD = 100 mg/kg) and was fully curative (3/3) 

against 1st stage HAT when administered at 10 mg/kg x 5 days (Mdachi et al., 2009) 

indicating an approximate MTD: MCD ratio of 2:1. DB844, another of the prodrugs, 

turned out to have an insufficient therapeutic index for the targeted 2nd stage disease 

indication (Thuita et al., 2012), but was not evaluated against 1st stage HAT which, our 

studies on other prodrugs showed, require significantly less total drug doses. Similar to 

DB844, another prodrug DB1058 was poorly tolerated in un-infected monkeys (data not 

shown) and was therefore not evaluated for efficacy in the monkey model.  The parent 

drug CPD-0802 was tolerated at 5 mg/kg x 5 days (CD = 25 mg/kg) and was fully 

curative at 2.5 mg/kg x 5 days (CD = 25 mg/kg) giving an apparent therapeutic index of 

2:1 for 2nd stage HAT.  On the basis of these data, oral DB868 had the best therapeutic 

index when used against 1st stage HAT and would therefore be an interesting candidate 

for development. The five compounds (Figure 1) are structurally very similar; they differ 

only in the number and location of nitrogen atoms in their phenyl rings (appendix 1). The 

observed differences in their activity profiles highlight the value of structure activity 

relationship studies (SARs) as a strategy for filtering out the poor compounds and 

allowing potentially beneficial ones to progress to the next phase of the drug 

development process. 

 

In addition to differences between compounds, compound dose and duration of 

dosing were identified as important determinants of toxicity (e.g. for DB844 in Thuita et 

al., 2012). These studies relied on standard techniques, including observation for overt 

toxicity, haematology, and assay biomarkers of liver (alanine aminotransferase [ALT] 

and aspartate aminotransferase [AST]) and kidney (blood urea nitrogen [BUN] and 
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creatinine [CREA]) toxicity. In addition, animals that needed to be euthanized were 

subjected to necropsy and histopathology. A wider array of newer biomarkers especially 

for kidney toxicity are available and have been used to study diamidine toxicity in 

rodents (discussed below) but these were not used for the monkey studies. Even with the 

standard techniques employed in the monkey studies, however, the relationship between 

dose and toxicity was clearly demonstrated for the different compounds described in this 

thesis. In my view, these findings may partly explain why more pronounced toxicity, 

including delayed kidney toxicity, was observed in human volunteers who received a 

higher cumulative dose of pafuramidine (100 mg BID x 14 days) as compared to those 

who received the lesser doses (100 mg BID for 10 days or less) during the clinical trial 

phase for HAT. During the phase I/II DB289 clinical trials, all the volunteers and/or 

patients were assessed to have tolerated the drug well, with only mild and self-limiting 

side effects whose frequency and severity were comparable in the pafuramidine-treated 

and placebo or comparison drug treatment (pentamidine) group (Immtech data cited in 

Nyunt et al., 2009). In the clinical setting, adverse drug reactions (ADRs) that exhibit 

clear dose dependence and can be reproduced in experimental animals are termed “Type 

A” ADRs (Thompson et al., 2012). These types of ADRs can theoretically be avoided by 

identifying and keeping below the “threshold” for toxicity which, on the evidence of 

toxicity and efficacy studies in monkeys, would be best achieved through relatively short 

dosing regimens of 5-7 days duration. A recent clinical trial (ISRCTN55042030) 

attempted to reduce dosing for pentamidine to three days compared to the standard 7 to 

10 day period at 4 mg/kg (Burri 2010) based on previous pharmacokinetic studies of 

pentamidine in T. b. gambiense patients (Bronner et al., 1991). 

 

At clinical chemistry level, diamidine toxicity in monkeys was characterised by 

changes in the standard biomarkers of both liver and kidney, similarly to the case in 

humans. This is not surprising, considering the phylogenetic closeness between human 

and non-human primates. Aberrations were demonstrated in either ALT or AST for the 

liver as well as blood urea nitrogen (BUN) or creatinine for the kidney.  In my view, the 

challenge for drug developers is to decide whether transient 2-3 fold increases in clinical 

chemistry analytes (e.g. blood urea nitrogen) constitute a significant safety concern to 



 179

warrant discarding of a new chemical entity.  Achieving the balance between essential 

safety concerns and the possibility that promising therapeutic agents will get discarded 

without adequate review of their potential is not easy. It must be said also that 

pentamidine, which continues to be of benefit to thousands of HAT, leishmaniasis and 

Pneumocystis jiroveci pneumonia does not only cause some degree of reversible liver 

damage but it also causes some nephrotoxicity (Bronner et al., 1991). In conclusion, the 

observations in monkey studies suggest that the new diamidines are not more toxic than 

pentamidine; dose and duration of dosing are the twin issues that must be carefully 

considered in regulatory development of a next-in- class diamidine. 

 

Insights from the Mouse Diversity Panel (MDP) and Rats 

Efforts to understand how diamidines can be safely used therapeutically have also 

involved studies in rats (Wolf et al., 2012) and the development of a new model, the 

mouse diversity panel (MDP) by Dr Allison Harril and colleagues at the Hamner Institute 

for drug safety studies, University of North Carolina (UNC). In their studies, Kristina 

Wolf and colleagues compared the toxicity of DB289 and DB868 in female Sprague-

Dawley rats (8-10weeks). The results signify differences in the toxicity of the two 

compounds. D289 was found to have caused a 12-fold increase in mean ALT 

concentrations in comparison with vehicle (carboxymethyl cellulose), while DB868 

caused no such elevations of ALT. In their study, Wolf and colleagues found no changes 

in the standard biomarkers of kidney toxicity (BUN and CREA) that could be attributed 

to either DB289 or DB868. Novel biomarkers of kidney injury including the kidney 

injury molecule 1 (KIM-1) and full name TIMP I were found to be elevated in DB289 

treated rats, suggesting that these were more sensitive markers of renotoxicity in this 

model. 

 

A new rodent tool, the mouse diversity panel (MDP) was additionally evaluated 

for ability to predict renal toxicity (Dr Allison Harrill, personal communication). Dr 

Harrill and colleagues at the Hamner-University of North Carolina Institute for Drug 

Safety Sciences developed the MDP based on the hypothesis that genetic variability may 

render certain individuals/populations more susceptible to renal injury. This hypothesis 
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arose out of the fact that considerable DB289 renal toxicity was detected only after the 

extended phase I clinical trial in SA but not during clinical trials held in the DRC, Angola 

and South Sudan. In their studies, Harril and colleagues dosed 34 different strains of mice 

with DB289 and found that there were differences in susceptibility among the different 

mouse strains. They noticed that some strains of mice were indeed more susceptible to 

DB289 toxicity and could therefore be very useful in predicting clinically relevant 

toxicities in the evaluations of next-in-class molecules. Harril and colleagues also found 

that the KIM-1 and TIMP were more sensitive biomarker than standard renal clinical 

chemistry biomarkers-urea and creatinine. The addition of the MDP to an array of models 

available for preclinical evaluation of promising drug compounds makes it possible to 

detect agents that may cause toxicity only in certain susceptible patients. When toxicities 

are detected only in certain susceptible patients in the clinical setting (human), they are 

referred to as idiosyncratic drug reactions (IADRs, or Type B) (Thompson et al., 2012). 

 

Improving the Efficiency of Drug Evaluations in the Monkey Model 

Preclinical models are a critical component of R&D programmes. One key area of 

concern has been the need to monitor the monkeys for at least 300 days post last dosing 

in order to confirm cure which in turn slows down turn-atime for the compounds in the 

model.  We hypothesised that loop mediated isothermal amplication (LAMP) of 

trypanosome DNA could be a useful test that would help in reduction of post treatment 

monitoring times.  Preliminary studies on biological samples collected from the monkeys 

of the efficacy studies indicated that LAMP was indeed very sensitive in detecting 

residue DNA in biological fluids. However, clearance of the DNA post treatment 

appeared to be erratic in different individuals, in some cases DNA was detected through 

out the post treatment monitoring period.  This result was essentially similar to a report 

that PCR detected DNA in patients throughput the period of post treatment monitoring 

(Matovu et al., 2012) suggesting that DNA based tests may be good for diagnosis of new 

infections but not so good for detection of cures or relapses post treatment. 

 

In our studies we found that approximately 80% of monkeys that eventually 

relapsed had already been detected by the 3 months post treatment time point (appendix 
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2).  This observation suggested that where several compounds were available to be tested, 

the result at 3 months could be used as a milestone to decide whether to initiate a new 

study in the monkey model or not which would serve to improve turnover time for late 

stage drugs. This approach could be applied until more sensitive biomarkers have been 

identified that could reliably be used to predict cure. Work done so far on an antigen 

based test, TrypTect CIATT showed that about 12 months were needed before antigens 

were totally cleared from serum and CSF of cured monkeys and humans (Karanja et al., 

2010). The search for new biomarkers that can reduce post treatment follow-up has not 

yet yielded results that could be used in drug trials. In the meantime, our results on the 3 

month milestone for efficacy evaluations in the model could help to improve efficiency in 

preclinical monkey model studies. 
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