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Abstract
Dye-sensitized solar cells (DSCs) provide a promising third-generation photovoltaic concept based on the spectral sensitization of a

wide-bandgap metal oxide. Although the nanocrystalline TiO2 photoelectrode of a DSC consists of sintered nanoparticles, there are

few studies on the nanoscale properties. We focus on the microscopic work function and surface photovoltage (SPV) determination

of TiO2 photoelectrodes using Kelvin probe force microscopy in combination with a tunable illumination system. A comparison of

the surface potentials for TiO2 photoelectrodes sensitized with two different dyes, i.e., the standard dye N719 and a copper(I)

bis(imine) complex, reveals an inverse orientation of the surface dipole. A higher surface potential was determined for an N719

photoelectrode. The surface potential increase due to the surface dipole correlates with a higher DSC performance. Concluding

from this, microscopic surface potential variations, attributed to the complex nanostructure of the photoelectrode, influence the

DSC performance. For both bare and sensitized TiO2 photoelectrodes, the measurements reveal microscopic inhomogeneities of

more than 100 mV in the work function and show recombination time differences at different locations. The bandgap of 3.2 eV,

determined by SPV spectroscopy, remained constant throughout the TiO2 layer. The effect of the built-in potential on the DSC

performance at the TiO2/SnO2:F interface, investigated on a nanometer scale by KPFM measurements under visible light illumina-

tion, has not been resolved so far.
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Figure 1: Different components of a DSC under illumination in an open circuit. Upon light excitation electrons are injected from the adsorbed dye
molecules into the conduction band, Ecb, of the wide-bandgap metal oxide (nanoporous TiO2) resulting in an open-circuit voltage, Voc.

Introduction
Dye-sensitized solar cells (DSCs) provide a promising low-cost,

high-efficiency third-generation photovoltaic concept based on

the spectral sensitization of a nanoporous wide bandgap semi-

conductor [1,2]. In the past two decades DSCs have received

substantial attention from both academic and industrial commu-

nities focusing on new materials and advanced device concepts

[3-8]. A typical DSC consists of a dye-coated TiO2 photoelec-

trode, deposited on a fluorine-doped tin oxide (FTO) conduc-

tive-glass substrate, an  redox-couple-based electrolyte

and a platinum counter electrode as depicted in Figure 1. Upon

visible-light excitation, dye molecules inject electrons into the

conduction band, Ecb, of the semiconductor; the oxidized dye is

subsequently reduced by the redox couple of the surrounding

electrolyte. The generated electrons diffuse toward the SnO2:F

substrate and establish the photovoltage. The most frequently

used dye complexes contain less-abundant transition metal

elements such as ruthenium. Complexes of earth-abundant

metals such as zinc and copper are candidates to replace the

more expensive ruthenium dyes [9-13]. Recently, Yella et al.

reported an efficiency of over 12% with a porphyrin-sensitized

DSC and a cobalt(II/III) based redox electrolyte [14]. However,

many details of the hybrid organic/inorganic interface and the

influence of subsequent preparation steps on the device prop-

erties, e.g., surface topography and potential, are still unclear

and have the potential to increase the efficiency and long-term

stability of the devices. Investigations of nanoscaled photo-

voltaic devices require nanometer-scale measuring methods,

including time-resolved measurements of the carrier dynamics

[15,16]. Although a DSC photoelectrode consists of a nano-

structured TiO2, there are few microscopic studies [17].

Surface photovoltage (SPV) spectroscopy is a non-destructive

and sensitive method for determining surface potential changes

upon illumination, identifying surface states, and extracting ma-

terial parameters, in particular the bandgap, Eg, the minority

carrier diffusion length, Ln, and the flatband potential, Vfb [18].

SPV spectroscopy is usually performed with a macroscopic

vibrating capacitor and is hence limited by its poor lateral reso-

lution [19,20]. Bare and dye-sensitized nanocrystalline (nc)

TiO2 have been investigated with such a macroscopic Kelvin

probe (KP) revealing details about the electronic structure [21-

23], trap states [24], the surface dipole [25], charge-carrier

dynamics [26], and indicating changes upon chemical treat-

ments [24,27-29]. KP studies have helped to select surface

treatments that are beneficial for the DSC performance. In order

to achieve a nanometer scale resolution, SPV spectroscopy can

be combined with Kelvin probe force microscopy (KPFM) [30-

32], an atomic force microscopy (AFM) technique that was

introduced in 1991 [33]. KPFM is a surface-potential detection

method that determines the contact potential difference (CPD)

during scanning by compensating the electrostatic forces

between a microscopic tip and the sample [34]. Figure 2a illus-

trates a schematic band diagram for a KPFM tip in close prox-

imity to a semiconductor sample surface with surface states,

Etrap. An applied dc voltage, Vdc = CPD, nullifies the work-

function difference, ΔΦ, between both materials. The occupied

surface states of the n-type semiconductor, depicted in

Figure 2a, are depopulated upon illumination with an appro-

priate light energy. Consequently, the surface band bending of

an n-type semiconductor is shifted downwards and the

measured CPD decrease is equal to the SPV.

The considerably high performance in DSCs is achieved also

due to the high surface-to-volume ratio of nanocrystalline TiO2.

In any case, there is a trade-off between a high surface-to-

volume ratio and the carrier transport. Smaller TiO2 particles
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Figure 2: Schematic band diagram for a KPFM tip in close proximity to an n-type semiconductor surface (a) in the dark and (b) under illumination
while the CPD is nullified by an applied dc voltage. Upon illumination the local vacuum energy level, Evac, is shifted downwards and detected as a
work function or CPD decrease, which results in a “negative” SPV. Ef,t and Ef,s are the Fermi levels of tip and sample, respectively. Evb and Ecb are
the valence and conduction band edges of the semiconductor. Evac is the local vacuum and Etrap a surface-state energy level, respectively. The work-
function shift, ΔΦs, upon illumination is equal to e SPV.

lead to an increase of grain boundaries and reduce the solar cell

current. Hence, we have considered it as relevant to charac-

terize the surface potential of nanostructured TiO2 with a high-

resolution method. Surface dipole changes upon dye adsorption

induce a shift of the surface potential in the order of hundreds of

millivolts, which is detectable by KPFM on the nanometer scale

[35-37]. A direct influence of the surface dipole on the open-

circuit voltage, Voc, of a DSC was predicted by Angelis et al.

[38] and experimentally addressed by KPFM investigations

[39,40]. KPFM studies in UHV conditions of rutile TiO2 deco-

rated with either nanometer-sized Pt clusters [41] or single dye

molecules [42] revealed a significant impact of single particles

on the surface dipole. We have investigated the surface parame-

ters of DSC photoelectrodes on the nanoscale using KPFM,

which is not possible to achieve with a macroscopic KP. SPV

spectra were taken on desired locations with a lateral resolution

of 25 nm. Thus, the bandgap and time constants were obtained

on the nanoscale. In this work, microscopic variations of the

work function were observed for both sensitized and bare

nc-TiO2. To correlate the microscopic changes on a dry photo-

electrode with the macroscopic DSC parameters, local surface

dipole variations for a ruthenium(II)- and a copper(I)-based dye

were determined. The ruthenium(II) dye chosen was the stan-

dard dye N719. The copper(I)-based dye (Figure 3) was

selected from a range of complexes that we have recently

prepared and screened for their potential use as sensitizers [43].

Results and Discussion
Work function inhomogeneities
Figure 4 shows the topography and the work function of a bare

TiO2 and an N719-sensitized TiO2 layer measured by KPFM in

a dry nitrogen glove box at room temperature. The topography

images reveal, in both cases, a homogeneous surface with

nanoparticles, nominal diameter of 20 nm, in the range of

Figure 3: Schematic structures of (a) the standard dye N719 and (b) a
copper(I)-based dye, assembled in situ (see text).

20–100 nm. Work-function (Φ) variations reflecting the pos-

ition of the conduction band edge Ecb of 80 mV on average,

appear for both samples and are visible as dark regions in the

measurements. They are highlighted in the cross sections in the

lower part of the image. Such a local work function shift can be

attributed to local variations of chemisorbed contaminants

resulting in a decrease of the local vacuum energy, Evac, and

the electron affinity, χ. A thin water layer consisting of

chemisorbed and physisorbed H2O molecules on the nc-TiO2 is

known to be present even inside a dry nitrogen glove box [44].

Solvent residues are further possible contaminants that can be

locally attached to the TiO2 surface, or the variations may be

due to varying material properties in general. In any case, such

variations, which are clearly detectable by KPFM, may obstruct

the optimal attachment of dye molecules and thus reduce the

solar cell performance [25].

Microscopic surface photovoltage
By combining a tunable illumination system with KPFM, the

surface photovoltage (SPV) can be measured on the nanometer

scale and is referred to as microscopic SPV. A microscopic

SPV is caused by an electron generation upon light absorption
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Figure 4: Topography and work function of (a) a bare TiO2 and (b) an N719 sensitized TiO2 layer with a thickness of ≈10 μm revealing wide-spread
inhomogeneities in the work function. The measurements correspond to a scan size of (a) 2 × 4 μm and (b) 1 × 2 μm. Imaging parameters:
Afree = 20 nm rms, Aset = 70%, f1st = 72 kHz, f2nd = 452 kHz, Uac = 2 V, T = rt. The TiO2 is a commercial product from Solaronix, Ti-Nanoxide T.

at either the surface space-charge region or at the electric field

of a buried interface that is reached by the incident light [19]. In

the present work, the sample was illuminated with focused light

from an optical fiber or directly with a laser. The measured SPV

can have two contributions, one from the TiO2/SnO2:F inter-

face and the other from the TiO2 layer depending on the energy

of the incident light, i.e., super- or sub-bandgap(TiO2) illumina-

tion. Both SPV effects are described separately in the following

two sections. Time-resolved SPV measurements provide

insights into charge carrier dynamics [45] and are described

below.

Surface photovoltage under super-bandgap illumi-
nation
SPV spectroscopy (SPS) is a common method for measuring

the bandgap, Eg, of a semiconductor by determining its depen-

dency on the absorption coefficient, α. The obtained bandgap

for nc-TiO2 (Figure 5a) is in accordance with the literature

value for bulk TiO2, Eg = 3.2 eV [46] and validates the SPS

setup. The extraction of Eg by means of SPS is superior to the

usual transmission spectra since it is also applicable to thin

layers, nanowires, or single nanoparticles and also for opaque

samples [18]. Under illumination with a sufficiently low light

intensity, the SPV can be assumed to be proportional to the

absorption coefficient, implying a maximum SPV for super-

bandgap illumination. Depending on the bandgap type, either

direct or indirect, the SPV curve is fitted with the corres-

ponding relation [18,47]:

(1)

(2)

where h is the Planck constant and ν is the frequency of the

light. For anatase TiO2, an indirect bandgap material [48], α is

therefore expected to show a quadratic dependence on the

illumination wavelength for energies just above the bandgap.

Figure 5a presents an SPS measurement taken on a cluster of

sintered anatase particles showing a quadratic dependence on

the wavelength. By linear fitting, a bandgap energy of

Eg = 3.2 eV was extracted using Equation 1, assuming a phonon

energy Ep ≈ 0.

Figure 5b depicts the SPV of bare TiO2 as a function of the

light intensity for super-bandgap illumination with a wave-

length of 380 nm. The negative SPV indicates an n-type behav-

ior of the material. The SPV exhibits a linear dependency on the

light intensity up to a value of −250 mV. A logarithmic depend-

ence on the light intensity would be typical for a charge sep-

aration at a built-in potential, for instance at the surface space-

charge region. However, the linear dependence indicates a

charge separation, which is governed mainly by diffusion and

not by drift current (electric field). Preferential trapping of elec-

trons (holes) in defect states of the TiO2 network leads to

different diffusion coefficients for electrons and holes.
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Figure 5: SPV for bare nc-TiO2 in dependency on (a) the wavelength and (b) on the light intensity under super-bandgap illumination (380 nm). The
bandgap of the material was extracted by SPV spectroscopy.

Figure 6: Semilogarithmic plot of the SPV dependence on the incident light intensity, (a) measured for three different wavelengths on bare and
(b) N719-sensitized TiO2.

Surface photovoltage under sub-bandgap illumina-
tion
Figure 6a shows a semilogarithmic plot of the SPV versus the

light intensity for three different wavelengths for the bare

nc-TiO2. An SPV of −230 mV was reached under sub-bandgap

(λ = 408 nm) illumination. A negligible sub-bandgap SPV of

less than 20 mV was measured for λ = 408 nm on TiO2 layers

directly deposited on glass. We assume that the SPV under sub-

bandgap illumination results from a reduction of the built-in

potential, Vbi, at the TiO2/SnO2-interface. This built-in electric

field is screened by the photogenerated charge carriers resulting

in a downward band bending of the TiO2 conduction band edge

Ecb.

The measured SPV of −250 mV under super-bandgap illumina-

tion (Figure 5b) provides an estimation for this downward band

bending of Ecb. Figure 5b shows the CPD decrease with onset

illumination, which decreases further with higher illumination

intensities. A CPD decrease is equivalent to a work function

decrease of the TiO2. The observed logarithmic dependence

demonstrates a photodiode behavior according to Equation 5

and is an indication for a built-in (Schottky barrier) potential at

the interface. It should be noted that the photocurrent, Jph, in

Equation 5 is approximately proportional to the light intensity,

I. When the incident light wavelength approaches the bandgap

energy of TiO2 higher SPVs result leading to steeper slopes of

the SPV-versus-intensity curves. The SPV is proportional to the

number of photogenerated charge carriers. It is evident from

Figure 6a that more electrons are generated with higher illumi-

nation energies within the TiO2 network. We assume that empty

surface states just below the conduction band edge are occu-

pied by valence band electrons. According to Howe et al. there

are localized Ti3+(3d) trap states just below the conduction band

edge of nc-TiO2 [49]. According to our measurements, the SPV

decreases exponentially with decreasing illumination energies

and we conclude, therefore, that the number of trap states also

decreases exponentially with decreasing trap state energy rela-

tive to the conduction band edge of the TiO2 nanoparticles.

The buried TiO2/SnO2-interface is reached by the incident light

since the nanoporous TiO2, deposited on top of the FTO-layer,

is only about 10 μm thin and transparent to visible light
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(Eg = 3.2 eV). Due to the high n-dopant density of SnO2:F

(ND ~ 1020), it can be approximated to being nearly metallic.

Generally, the SnO2:F contact is regarded as Ohmic since elec-

trons may tunnel through the ca. 2 nm thin barrier at the inter-

face space charge region [50]. However, the TiO2/SnO2:F

contact forms a heterojunction between two wide-bandgap

semiconductors, degenerately doped SnO2 and (intrinsic)

nc-TiO2. Kron et al. and Levy et al. [51,52] investigated alter-

native materials to SnO2:F and found that the built-in voltage at

the interface has no significant influence on Voc of the DSC but

does influence the fill factor, FF. With the determined work

functions of 4.3 ± 0.1 eV for nc-TiO2 and 4.7 ± 0.1 eV for

SnO2:F in our KPFM measurements, the band offset at the

heterojunction allows an estimation of the energy barrier.

Depending on the front electrode material, this energy barrier

varies and consequently the interface contact resistance differs.

As a result, the FF of the DSC can be increased with a lower

interface energy barrier and a narrower space-charge region

decreasing the sheet resistance at the interface.

For the sensitized TiO2, the SPV also shows a logarithmic

dependence on the light intensity (Figure 6b). We conclude that

the measured SPV of the sensitized TiO2 is created by two

different effects: a change of the surface dipole (after electron

donation) and a charge carrier concentration gradient between

the illuminated surface and the bulk due to different diffusion

coefficients for electrons and holes (photo-Dember effect). The

latter effect causes a potential drop forming an electric field in

the z-direction across the TiO2 layer [29,53,54]. The Dember

photovoltage is caused by a non-uniform generation or recombi-

nation of charge carriers within the sample [18]. The adsorbed

dye molecules are considered as n-type “photodoping” since

electrons are generated under sub-bandgap illumination. After

electron injection into the conduction band of TiO2, the dye is

oxidized and charged more positive relative to its ground state.

Hence, the surface dipole is reduced and detected as a change in

the CPD.

Time evolution of the SPV
Time-dependent SPV measurements were performed at specific

positions above single TiO2 particles. Since KPFM is sensitive

to potential drops in the entire sample, the measurements give

insights into charge-carrier transport processes of the particle

network. Figure 7 shows the time evolution of the measured

CPD values after the turning on and off of the laser light illumi-

nation with a wavelength of 408 nm. For both sensitized and

bare TiO2 the SPV with onset illumination, ton, is below the

resolution limit (50 ms) of the measurement system. The

photoresponse time corresponds to the required time for the

charge carriers to reach a steady-state condition upon illumina-

tion. In turn the recombination time, toff, is the time required to

reach the initial value in the dark. Recombination times of

65 ± 6 s for bare TiO2 and 43 ± 4 s for N719 were determined

with KPFM. The recombination curve was divided into a fast

and a slow component and approximated as the sum of two

exponential functions. The slow component of the total recom-

bination time is attributed to an electron diffusion process

across the TiO2 network towards the contact, whereas the fast

recombination process occurs within single particles [55]. The

slow electron diffusion throughout the network is due to trap-

ping and detrapping [46] in surface and bulk defect states. TiO2

is regarded as an insulator with a relative permittivity of εr = 36

and consequently acts as a charge storage capacitor between a

metallic tip and a highly conductive SnO2:F contact. Upon

photoelectric charge injection, the redistribution of charge

carriers (by diffusion through the network) is slow (seconds to

minutes). A slow response time has also been reported for

nanoporous TiO2 [56,57] and for porous Si, which exhibited

recombination times of up to 1 h [58].

Figure 7: Time evolution of the measured CPD of TiO2 and TiO2 +
N719 during the turning on and off of the violet (408 nm) laser light.

Microscopic surface-dipole variations
By averaging the work function values over several images on

different sample spots an increase of ΔΦ = 150 ± 40 mV for

N719 and an average decrease of ΔΦ = −180 ± 40 mV for the

copper-containing dye was determined on sensitized TiO2 films

by KPFM. The values as well as a model describing the dipole

moment strength and orientation are presented in Figure 8.

The surface dipole is the result of a combined effect of both

anchoring domain and dye molecule. The effective electron

affinity, χ*, is affected by the surface dipole formed by

adsorbed dye molecules [59]. The detailed anchoring mecha-

nism for the N719 dye on TiO2 is still under debate. It is widely
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Figure 8: Schematic illustration of the KPFM measurement system and the surface dipole induced by adsorption of the ruthenium containing dye
N719 (6.3 D) and the copper(I) dye (5.3 D) pointing in opposite directions. The measured work-function values are compared with the bare TiO2 sub-
strate without external illumination.

accepted that the N719 is chemisorbed either through two or

three carboxylic acid groups. Results by Lee et al. support that

an additional hydrogen bonding (physisorption) is present [60].

Molecular dynamics simulations by DeAngelis et al. show that

the binding occurs through three carboxylic acid groups and

that the protons initially carried by the N719 dye are trans-

ferred to the semiconductor surface [61]. After covalent attach-

ment to the TiO2 surface, the formed dipole might turn

compared to the dipole of the free molecule in vacuum. After

N719 has been chemisorbed onto TiO2, the surface is proto-

nated and possesses a dipole pointing from the TiO2 surface to

the negative net charge (isothiocyanato-group,-NCS) as shown

in Figure 8 [38]. As a consequence the local vacuum level is

bent upwards and the work function is increased compared with

the bare TiO2 surface. For the nanoporous TiO2 surface sensi-

tized with the Cu(I)-containing dye, a negative surface dipole

pointing away from the surface leads to a decrease in work

function. The copper(I) dye is a monocation in its fully proto-

nated state, assuming that the phosphonic acid functionalities

are fully protonated.

To quantify the surface dipole, Natan et al. proposed a plate

capacitor model, in which the adsorbed molecules are regarded

as point dipoles [62]:

(3)

where P is the surface dipole moment, P0 is the dipole moment

of the free molecule in vacuum, k is a geometric correction

factor and a is the distance between two dipoles. The change in

work function, ΔΦS, is related to the surface dipole through the

Helmholtz equation:

(4)

where (N/A) is the number of dipoles/molecules per surface

area, ε = (P0/P) is the effective dielectric constant of a molec-

ular monolayer and ε0 is the permittivity in vacuum. The dipole

layer is oriented at an angle, θ, relative to the surface plane

normal. Due to the curved surface geometry of nc-TiO2, the

mean dipole in the z-direction is reduced (Figure 8).

A surface coverage of N/A = 1/4 molecules/nm2 is a reasonable

value found by Ikeda et al. by AFM measurements of N3 (N719

is the salt of N3) adsorbed on rutile TiO2 in ultrahigh vacuum

[42]. Using Equation 4 with θ = 0° and measured work-func-

tion shifts of ΔΦ = −180 ± 40 mV for the Cu(I) dye and

ΔΦ = 150 ± 40 mV for N719 results in 6.3 ± 1.5 D and

5.3 ± 2 D with opposite directions, respectively. The latter value

is in the same range as predicted by DFT calculations for N719

[38] and N3 [42,63] adsorbed on anatase plane-surface.

However, for a complete DSC device the surface dipole may

change due to screening by the surrounding electrolyte [64].

Figure 9a depicts the I–V characteristics for three different

DSCs, a bare TiO2 solar cell with electrolyte and DSCs sensi-

tized with a Cu(I)-dye or N719, respectively. The parameters of

the solar cell were extracted from the I–V data and are summa-

rized in Table 1. A DSC sensitized with N719 is 3 times more

efficient than the Cu-sensitized solar cell. We focus on the

difference in the open-circuit voltages of −220 ± 20 mV

between these DSCs. The deviation of the open-circuit

voltages is in the range of the measured difference for the

surface dipoles (350 ± 40 mV) formed by N719 and the

copper(I) dye. The two sensitizers possess oppositely directed

dipole moments.
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Figure 9: (a) I–V curves for a bare TiO2 solar cell and DSCs sensitized with Cu(I) dye and N719. (b) A schematic band diagram for a DSC under light
excitation of the dye. The desired forward reaction (blue arrow), i.e., electron transfer from ELUMO into the conduction band, Ecb of TiO2, is accompa-
nied by a backward electron injection (red arrow) from ELUMO into Eredox.

Table 1: I–V-characteristic values of a DSC sensitized with N719 or the copper(I)-based dye.

dye Jph [mA/cm2] Voc [V] FF dipole direction η [%]

Cu(I) dye 4 0.53 0.60 ↑ 1.4
N719 10 0.75 0.65 ↓ 4.9

Pandey et al. have investigated the surface dipoles of organic

dye molecules adsorbed on TiO2 using KPFM [40]. They

observed a decrease of Voc for DSCs sensitized with dye mole-

cules, which lead to a more positive surface potential. De

Angelis et al. found that the adsorption geometry of the sensi-

tizer on the TiO2 surface has a significant influence on Voc. The

desired forward reaction, i.e., electron injection from ELUMO

into Ecb of TiO2 is accompanied by a backward electron injec-

tion from ELUMO into Eredox (Figure 9b). This backward reac-

tion is affected by the surface dipole of the adsorbed sensitizer

[64]. Regarding the general expression for the open-circuit

voltage (Equation 5), it is the reverse saturation current density,

J0, and the conduction band minimum, Ecb, that are influenced

by the surface dipole and finally affect Voc:

(5)

wherein A is the correction factor and Jph the photocurrent

density. A performance comparison of DSCs sensitized with

N719 and the copper(I) dye is shown in Table 1.

Conclusion
Microscopic surface photovoltage and work-function measure-

ments were performed on bare and dye-sensitized TiO2 photo-

electrodes using Kelvin probe force microscopy. Compared to a

bare TiO2 layer, the surface potential is about 150 mV higher

for an N719 sensitized TiO2 photoelectrode and about 180 mV

lower for Cu-dye sensitized TiO2 resulting in a 200 mV higher

open-circuit voltage (Voc) for a complete N719 DSC. We

conclude that the surface dipole orientation is inverted for the

two dyes and the Voc of a complete DSC increases with a higher

surface potential. Consequently, we assume that the detected

microscopic surface potential drops/inhomogeneities on both

bare and sensitized TiO2 photoelectrodes lead to a lower Voc

and efficiency of the solar cell. The bandgap of 3.2 eV for

anatase nanocrystalline TiO2 particles was determined by SPV

spectroscopy on different locations. It is constant throughout the

TiO2 layer and in agreement with literature values for bulk

anatase. The measured SPV under sub-bandgap illumination is

formed at the SnO2:F/TiO2 interface due to the presence of a

built-in electric field. According to our results, the interface

barrier is around 250 mV. Its influence on the DSC perfor-

mance is not resolved. In the case of dye-sensitized photoelec-

trodes, three different mechanisms contribute to the measured

SPV. First, there is a contribution from the SnO2:F/TiO2 inter-

face, which forms a heterojunction. The band diagram at this

heterojunction is still unclear; however, the influence on our

measurements is expected to be negligible, and thus, we

decided not to include it in this paper. Secondly, there is an SPV

contribution from the nc-TiO2 layer itself, and third, there is a

reversible photochemical reaction of the dye molecule, which

donates electrons under illumination and hence changes the
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Figure 10: Lift-mode KPFM setup inside a nitrogen glove box in combination with a tunable illumination system for microscopic SPV measurements.
The CPD was nullified by an applied dc voltage between tip and sample.

surface potential. To our best knowledge, the measured SPV is

not understood well enough to represent it generally in a band

diagram without making major assumptions. Further studies are

needed to clarify this point.

Experimental
Preparation of the photoanode
A glass substrate coated with SnO2:F (TCO 22-7, Solaronix)

was cleaned in an ultrasonic bath successively with acetone,

ethanol, and distilled water and subsequently treated with UV/

ozone for 18 min (Model 42-220, Jelight Company). To study

the SPV without a contribution from the SnO2:F/TiO2 interface,

TiO2 layers were also prepared on uncoated glass substrates. A

colloidal TiO2 solution (Ti-Nanoxide T, Solaronix) consisting

of anatase nanoparticles (≈20 nm) was deposited by doctor

blading. A mask with an area of 25 mm2 was defined with

scotch tape. The TiO2 layer was sintered with a heating plate for

30 min at 500 °C resulting in a layer thickness of about 10 μm.

For the preparation of sensitized TiO2, the photoanode was

immersed in a sensitizer solution for 24 h after cooling it to

80 °C. The ruthenium dye solution consisted of a 1 mM ethanol

solution of standard dye N719. The nc-TiO2 was sensitized with

the heteroleptic copper(I) dye shown in Figure 3 by using the

procedure previously described, which involves an in situ

assembly of the dye starting with the adsorbed anchoring ligand

and the hexafluoridophosphate salt of the homoleptic complex

[Cu(6-(2-thienyl)-2,2′-bipyridine)2]+ [43]. In order to remove

weakly adsorbed contaminants, the sensitized TiO2 was rinsed

with ethanol and dried under nitrogen.

Kelvin probe force microscopy
AFM measurements were carried out inside a glove box

(labmaster 130, mBraun) maintaining a dry nitrogen atmos-

phere (<1 ppm H2O and <10 ppm O2) on a commercial micro-

scope (Solver PH-47, NT-MDT). Amplitude modulation (AM)

KPFM was conducted with a two-scan method (lift mode)

meaning that the topography and CPD were measured sepa-

rately (Figure 10). During the first line scan the topography was

determined in tapping mode AFM using a bias voltage of

Vdc = 0 V applied to the tip. The cantilever oscillation ampli-

tude was kept constant by a feedback controller at a setpoint,

Asp, of 20 nm rms that was pre adjusted to 75% of the free

vibrational amplitude, A0 = 27 nm rms. The second scan was

performed 20 nm above the previously obtained surface profile

on the same scan line. While the sample was grounded, the dc

and ac voltage were applied to the cantilever, Vac = 2 V at a

frequency equal to its first resonance, f1st. The X-component,

X = A · cos(θ), of the electrically induced oscillation signal,

which is proportional to the electrostatic force, Fes, was phase-

adjusted and retrieved with a lock-in amplifier and subse-

quently nullified by the applied dc voltage in the Kelvin feed-

back. Cantilever bending and vibration were optically detected

with an infrared laser (λ = 1300 nm, 1 mW, spot size

50 × 50 μm2) and a four-quadrant photodetector. To deduce the

sample work function and monitor the integrity of the tip, a

highly ordered pyrolytic graphite (HOPG) reference sample was

measured before and after each measured specimen. The HOPG

reference with a known work function of  = 4.6 eV [65] was

stored inside the glove box.

Microscopic photovoltage determination
A UV-lamp (360 nm, L18W/73, Osram) was used for super-

bandgap illumination. Trap and interface states were investi-

gated under sub-bandgap illumination (λ > 385 nm) with LEDs

(405 nm, 470 nm, 530 nm, 590 nm, Mightex Systems) or solid

state lasers each mounted on a x-y-z positioning stage. A red

laser (660 nm, 60 mW, LPM660-60C, Newport), a green laser

(532 nm, 4 mW, Alpec), a violet laser (408 nm, 2.5 mW, Power

Technology) and LEDs were applied for illumination from

above at an angle of 10° with respect to the sample plane. The

laser illumination was switched with a shutter (T132, Uniblitz).

Laser light intensity was gradually reduced with different

neutral density (ND) filters. Incident light intensity was
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measured at the sample location with a calibrated silicon

photodetector (PD300-UV-SH, Ophir) and a power meter head

(AN/2, Ophir). SPV spectroscopy was conducted on a commer-

cial AFM (Dimension 3100, Bruker). The cantilever vibration

was optically detected with a red laser (670 nm, 1 mW, spot

size ≈ 40 × 40 μm2), which partially hit the sample surface with

an intensity of ≈100 μW. In order to avoid background illumi-

nation by the red laser, the spot was positioned on the cantilever

center. The light of a xenon-arc lamp (300 W, model 6258,

Newport) was focused onto the entrance slit of a grating mono-

chromator (MS257, Newport) with a resolution of 5 nm in the

range between 350–700 nm. The monochromatic light was

coupled into an optical light guide (3 mm, 1.83 m, NA = 0.55,

Edmund optics) which was connected to an optical microscope

built-in within (inside) the AFM. Finally, the outcoming light of

the optical microscope was focused onto the sample surface

with a spot diameter of about 500 μm and a depth of focus of

about 10 μm.

Photovoltaic characterisation of DSCs
I–V-curves were measured under an AM1.5G solar simulator

(ABET) with an intensity of 100 mW/cm2 and a controlled

temperature of 25 °C. The voltage sweep was performed in

6 mV steps with a sampling rate of 1 Hz.
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