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A B S T R A C T

The action of piperine (the pungent component of pepper) and its derivative SCT-66 ((2E,4E)-5-(1,3-

benzodioxol-5-yl))-N,N-diisobutyl-2,4-pentadienamide) on different gamma-aminobutyric acid (GABA)

type A (GABAA) receptors, transient-receptor-potential-vanilloid-1 (TRPV1) receptors and behavioural

effects were investigated.

GABAA receptor subtypes and TRPV1 receptors were expressed in Xenopus laevis oocytes. Modulation

of GABA-induced chloride currents (IGABA) by piperine and SCT-66 and activation of TRPV1 was studied

using the two-microelectrode-voltage-clamp technique and fast perfusion. Their effects on explorative

behaviour, thermoregulation and seizure threshold were analysed in mice. Piperine acted with similar

potency on all GABAA receptor subtypes (EC50 range: 42.8 � 7.6 mM (a2b2)–59.6 � 12.3 mM (a3b2)). IGABA

modulation by piperine did not require the presence of a g2S-subunit, suggesting a binding site involving only

a and b subunits. IGABA activation was slightly more efficacious on receptors formed from b2/3 subunits

(maximal IGABA stimulation through a1b3 receptors: 332 � 64% and a1b2: 271 � 36% vs. a1b1: 171 � 22%,

p < 0.05) and a3-subunits (a3b2: 375 � 51% vs. a5b2:136 � 22%, p < 0.05). Replacing the piperidine ring by a

N,N-diisobutyl residue (SCT-66) prevents interactions with TRPV1 and simultaneously increases the potency

and efficiency of GABAA receptor modulation. SCT-66 displayed greater efficacy on GABAA receptors than

piperine, with different subunit-dependence. Both compounds induced anxiolytic, anticonvulsant effects

and reduced locomotor activity; however, SCT-66 induced stronger anxiolysis without decreasing body

temperature and without the proconvulsive effects of TRPV1 activation and thus may serve as a scaffold for

the development of novel GABAA receptor modulators.
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1. Introduction

Piperine (1-piperoylpiperidine) is the pungent component of
several pepper species and activates transient receptor potential
of the subfamily V member 1 (TRPV1) receptors [1,2]. We
have recently shown that piperine modulates g-aminobutyric acid
(GABA) type A (GABAA) receptors [3]. Via TRPV1-activation, piperine
affects pain signalling and regulation of the body temperature [4,5],
while GABAA receptor modulation is expected to induce fast
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inhibitory synaptic neurotransmission in the mammalian
brain, resulting in, for example, anxiolysis, sedation, hypnosis,
muscle relaxation, analgesia and anticonvulsant effects [6–11].

Piperine complies in all respects with Lipinski’s ‘‘rule of five’’
and could therefore be a scaffold for the development of novel
GABAA receptor modulators [3,12]. However, it is currently
unknown whether piperine interacts preferentially with specific
GABAA receptor subtypes. Moreover, simultaneous activation of
TRPV1 receptors may cause unwanted side effects including
changes in pain sensation and body temperature that would be an
obstacle to its therapeutic use [5]. Here we analyse the action of
piperine and its derivative SCT-66 ((2E,4E)-5-(1,3-benzodioxol-5-
yl))-N,N-diisobutyl-2,4-pentadienamide) on nine GABAA receptor
subtypes and on TRPV1 receptors. Unlike piperine, SCT-66 did not
activate TRPV1 receptors. This compound increased IGABA more
potently and more efficaciously than piperine, although with
altered subunit dependence. In vivo studies in mice revealed that
A license.
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only piperine affects thermoregulation; that both piperine and
SCT-66 have anticonvulsant and anxiolytic effects and reduce
locomotor activity; and that SCT-66 has a stronger anxiolytic effect
than piperine.

2. Materials and methods

All procedures involving animals were approved by the Austrian
Animal Experimentation Ethics Board in compliance with the
European Convention for the Protection of Vertebrate Animals
used for Experimental and Other Scientific Purposes (ETS No. 123).
Every effort was made to minimize the number of animals used.

2.1. Reagents

Piperine was obtained from SigmaTM (Vienna, Austria) and the
piperine derivative SCT-66 (2E,4E)-5-(1,3-benzodioxol-5-yl))-N,N-
diisobutyl-2,4-pentadienamide) was synthesized as described
below (for structural formulae see Fig. 1): To a solution of piperic
acid chloride (3 mmol, 0.71 g) in 10 mL dry THF, diisobutylamine
(10.5 mmol; 1.357 g) was added and stirred overnight. The
reaction mixture was evaporated and purified by column
chromatography (toluene/ethyl acetate 20:3) to give the com-
pound SCT-66 (0.661 g, 67%) as oil.

1H NMR (200 MHz, CDCl3): d 7.,54–7.34 (m, 1H), 7,00 (d,
J = 1.4 Hz, 1H), 6.90 (dd, J = 8.0, 1.6 Hz, 1H), 6.84–6.71 (m, 3H), 6.39
(d, J = 14.6 Hz, 1H), 5.97 (s, 2H), 3.28 (d, J = 7.5 Hz, 2H), 3.19 (d,
J = 7.5 Hz, 2H), 2.12–1.88 (m, 2H), 0.98–0.82 (m, 12H). 13C NMR
(50 MHz, CDCl3): d 167.0, 148.4, 148.3, 142.5, 138.5, 131.2, 125.6,
122.7, 120.8, 108.7, 105.9, 101.5, 56.2, 54.9, 29.2, 27.2, 20.5, 20.3.
Fig. 1. Comparison of TRPV1 activation by piperine and SCT-66. (A) The concentration–

shown. These normalized data were generated by measuring the net currents evoked in

preceding 300 mM piperine control response recorded in the same cell. Data are expr

33.3 � 0.1 mM (Hill coefficient of 4.1 � 0.1; n = 3–10 per concentration). The EC50 value of

piperine and the lack of TRPV1 activation by SCT-66 at the indicated concentrations. (C) S
MS m/z: 329 (12%, M+), 201 (100%), 115 (39%), 57 (17%), 43 (23%).
CHN for C20H27NO3: calc.: C 72.92, H 8.26, N 4.25; found: C 72.78, H
8.13, N 4.16.

Stock solutions of piperine and SCT-66 were prepared in 100%
DMSO (100 mM for oocyte experiments, 10 mg/ml for animal
experiments; Dimethyl Sulfoxide). All chemicals were purchased
from SigmaTM, Vienna, Austria except where stated otherwise.

2.2. Expression and functional characterization of GABAA receptors

and TRPV1 channels

Preparation of stage V-VI oocytes from Xenopus laevis and
synthesis of capped off run-off poly(A+) cRNA transcripts from
linearized cDNA templates (pCMV vector) were performed as
previously described [13]. Briefly, female X. laevis (NASCOTM, Fort
Atkinson, WI, USA) were anaesthetized by exposing them for
15 min to a 0.2% solution of MS-222 (methane sulfonate salt of 3-
aminobenzoic acid ethyl ester) before surgically removing parts of
the ovaries. Follicle membranes from isolated oocytes were
digested with 2 mg/ml collagenase (Type 1A). Selected stage V-
VI oocytes were injected with about 10–50 nl of DEPC- treated
water (diethyl pyrocarbonate) containing the different cRNAs at a
concentration of approximately 300–3000 pg/nl. The amount of
cRNA was determined by means of a NanoDrop ND-1000 (Kisker-
biotechTM, Steinfurt, Germany).

GABAA receptors: To ensure expression of the gamma-subunit in
rat GABAA receptors, cRNAs for expression of a1b2g2S, a2b2g2S,
a3b2g2S and a5b2g2S receptors were mixed in a ratio of 1:1:10. For
receptors comprising only a and b subunits (a1b2, a2b2, a1b3,
a2b2, a3b2, a5b2), the cRNAs were mixed in a ratio 1:1. cRNAs for
response relationship for piperine (&; 3–300 mM) and SCT-66 (*, 3–300 mM) are

 response to a test concentration of agonist and are expressed as a percentage of a

essed as the mean � S.E.M with n = 3–10 individual cells. The EC50 for piperine was

 piperine agrees with [2]. (B) Typical traces showing activation of TRPV1 channels by

tructural formulae of piperine and its derivative SCT-66.
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a1b1 channels were injected in a ratio 3:1 to avoid formation of b1

homomeric GABAA receptors [14,15].
TRPV1 channels: The rat TRPV1 clone was a gift from Prof. David

Julius (Department of Cellular and Molecular Pharmacology,
University of California, San Francisco).

After injection, oocytes were stored at 18 8C for 24–48 h in
ND96 solution containing penicillin G (10 000 IU/100 ml) and
streptomycin (10 mg/100 ml) [16]. Electrophysiological experi-
ments on GABAA receptors and TRPV1 channels were performed
using the two-microelectrode-voltage-clamp method at a holding
potential of �70 mV (GABAA receptors) and �60 mV (TRPV1),
respectively, making use of a TURBO TEC 01 C amplifier (npi
electronicTM, Tamm, Germany) and an Axon Digidata 1322A
interface (Molecular DevicesTM, Sunnyvale, CA). Data acquisition
was done using pCLAMP v.9.2. The bath solution contained 90 mM
NaCl, 1 mM KCl, 1 mM MgCl2�6H2O, 1 mM CaCl2 and 5 mM HEPES
(pH 7,4). Microelectrodes were filled with 2 M KCl.

2.3. Perfusion system

GABA, piperine and SCT-66 were applied by means of a fast
perfusion system [17, ScreeningTool, npi electronicTM, Tamm,
Germany] to study IGABA modulation and TRPV1 activation. To
elicit IGABA, the chamber was perfused with 120 ml of GABA-
containing solution at a volume rate between 300 and 1000 ml/s.
The IGABA rise time ranged from 100 to 250 ms [13].

To account for possible slow recovery from increasing levels of
desensitization in the presence of high GABA or piperine/SCT-66
concentrations, the duration of washout periods was extended
from 1.5 min (for 1–10 mM GABA, <10 mM piperine/SCT-66) to
30 min (for �30 mM GABA, �10 mM piperine/SCT-66). To exclude
voltage-clamp errors, oocytes with maximal current amplitudes
>3 mA were discarded.

Because of low solubility in the bath solution, piperine and SCT-
66 were used up to a concentration of 300 mM. Equal amounts of
DMSO were present in all testing solutions. The maximum DMSO
concentration in the bath (0.3%) had no observable effects on IGABA

or TRPV1.

2.4. Analysing concentration–response curves

Stimulation of chloride currents by modulators of the GABAA

receptor was measured at a GABA concentration eliciting between
3 and 7% of the maximal current amplitude (EC3–7). The EC3–7 was
determined at the beginning of each experiment.

Enhancement of the chloride current was defined as (I(GABA+-

Comp)/IGABA) � 1, where I(GABA+Comp) is the current response in the
presence of a given compound and IGABA is the control GABA
current. Concentration–response curves for activation of TRPV1
channels were generated by comparing the peak response evoked
by a test concentration of the compounds at the different
concentrations to that evoked by a previous control current
recorded in response to 300 mM piperine.

Data were fitted by non-linear regression analysis using Origin
software (OriginLab Corporation, USA). Data were fitted to the
equation: 1/(1 + (EC50/[Comp])nH), where nH is the Hill coefficient.
Each data point represents the mean � S.E.M. from at least 3 oocytes
and �2 oocyte batches.

2.5. Behavioural analysis

2.5.1. Animals

Male mice (C57BL/6N) were obtained from Charles River
LaboratoriesTM (Sulzfeld, Germany). For maintenance, mice were
group-housed (maximum 5 mice per type IIL cage) with free access
to food and water. At least 24 h before the commencement of
experiments, mice were transferred to the testing facility, where
they were given free access to food and water. The temperature in
the maintenance and testing facilities was 23 � 1 8C; the humidity
was 40–60%; a 12 h light–dark cycle was in operation (lights on from
07:00 to 19:00). Only male mice aged 3–6 months were tested.
Compounds were applied by intraperitoneal (i.p.) injection of
aqueous solutions (either control or compound) 30 min before each
test, except for body temperature, which was measured 3 h after
injection. Testing solutions were prepared in a solvent composed of
saline 0.9% NaCl solution with 10% DMSO and 3% Tween 80. The final
DMSO concentration did not exceed 10% (see [18] for effects of DMSO
on blood-brain barrier penetration). 1 M NaOH was used to adjust the
pH to 7.4. All solutions were prepared freshly on the day of the
experiment. Application of the solvent alone did not influence animal
behaviour.

2.5.2. Measurement of body temperature

A temperature probe (Type T Thermocouple probe RET-3
connected to a Type T Thermometer, Physitemp Instruments
IncTM; Clifton, USA), lubricated with glycerol, was inserted into the
rectum of the mouse for a depth of up to 1 cm. The temperature
probe remained in the animal till a stable temperature was reached
(maximum 10 s).

2.5.3. Open Field Test (OF)

Ambulation was tested over 10 min in a 50 cm � 50 cm � 50 cm
field box equipped with infrared rearing detection. Illumination was
set to 150 lx. The explorative behaviour of C57BL/6N mice was
analysed using the Actimot2 equipment and software (TSE-
systemsTM, Bad Homburg, Germany). Areas were subdivided into
border (up to 8 cm from wall), centre (20 cm � 20 cm, i.e. 16% of
total area), and intermediate areas according to the recommenda-
tions of EMPRESS (European Mouse Phenotyping Resource of
Standardized Screens; http://empress.har.mrc.ac.uk). The test was
automatically started when the mouse was placed in the centre area.

2.5.4. Elevated Plus Maze Test (EPM)

The animal’s behaviour was tested over 5 min on an elevated
plus maze 1 m above ground consisting of two closed and two open
arms, each 30 cm � 5 cm in size. The height of the closed arm walls
was 20 cm. Illumination was set to 180 lx. Animals were placed in
the centre, facing an open arm. Analysis was done automatically
with Video-Mot2 equipment and software (TSE-systemsTM, Bad
Homburg, Germany) [19].

2.5.5. Seizure threshold

Seizure threshold was determined by pentylentetrazole (PTZ)-
tail-vein infusion on freely moving animals at a rate of 100 ml/min
(100 mg/ml PTZ in saline). Infusion was stopped when animals
displayed generalized clonic seizures. Animals were killed by
cervical displacement immediately after the first generalized
seizure. The seizure threshold dose was calculated from the
infused volume in relation to body weight [20]. Piperine and SCT-
66 were applied 30 min before PTZ infusion. Control animals were
pre-treated with 10% DMSO in saline containing 3% Tween 80. At
the infusion rate of 100 ml/min, generalized seizures are induced
within 2 min after beginning infusion of PTZ.

2.5.6. Statistical analysis

Statistical significance of electrophysiological data was calcu-
lated using a paired Student t-test with a confidence interval of
p < 0.05; for in vivo experiments, one-way ANOVA (Bonferroni
Adjustment) was used. Statistical analysis was done with Origin
software (OriginLab Corporation; USA). p-values of <0.05 were
accepted as statistically significant. All data are given as mean
� S.E.M. (n).
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3. Results

3.1. Replacing the piperidine ring by a N,N-diisobutyl-residue

prevents activation of TRPV1 receptors

In line with previous studies piperine induced marked inward
currents when applied to oocytes expressing TRPV1 receptors
(Fig. 1A and B, [2]). A simple structural modification (replacing the
piperidine ring by a N,N-diisobutyl residue; Fig. 1C) completely
eliminated activation of TRPV1 receptors by SCT-66 (300 mM,
Fig. 1A and B).

3.2. Different g2 subunit dependence of piperine and SCT-66

In order to analyse the interaction of piperine and SCT-66 with
different GABAA receptor subtypes, receptors composed of
different subunits were heterologously expressed in Xenopus

oocytes and IGABA modulation by both compounds was studied by
means of the 2-microelectrode voltage-clamp technique and a
fast-perfusion system (see Section 2).

First the enhancement of IGABA by piperine and SCT-66 through
a1b2 and a1b2g2S receptors was compared. As illustrated in
Fig. 2A, omitting the g2S subunit had no significant effect on IGABA

enhancement (IGABA,max) or on the potency (EC50) of piperine
(a1b2: EC50 = 50.0 � 7.9 mM, IGABA,max = 271 � 36%, n = 13 vs.
a1b2g2S: EC50 = 52.4 � 9.4 mM, IGABA,max = 302 � 27%; n = 6;
p > 0.05; data for modulation of IGABA through a1b2g2S receptors
by piperine taken from [3]). This finding suggests that piperine
interacts with a binding site located on a and/or b subunits or the a/b
interface. In contrast, co-expression of a g2S subunit resulted in
significant reduction of IGABA enhancement by SCT-66 (a1b2:
1256 � 292%; n = 4; p < 0.05; a1b2g2S: 378 � 15%, n = 6; a2b2g2S:
572 � 51%, n = 5; a3b2g2S: 584 � 20, n = 5 and a5b2g2S: 398 � 26%,
see Fig. 2D, Tables 1 and 2) suggesting a role of g2 in receptor
modulation. Co-expression of a g2S-subunit did, however, not
significantly affect the potency of SCT-66 (see Tables 1 and 2).

3.3. Piperine potentiates GABAA receptors composed of a1/2/3/5 and b1/

2/3 subunits

In order to investigate a potential subunit dependent action of
piperine and SCT-66, we studied their interaction with 8 different
receptor subtypes (a1b1, a1b2, a1b3, a2b2, a3b2 and a5b2)
(Fig. 2A, B, D and E, Table 1). The highest efficacy of piperine was
observed for receptors containing a3 subunits, with maximal IGABA

potentiation (EC3–7) of 375 � 51% (n = 6), followed by GABAA

receptors composed of a1 and b2 subunits (271 � 36%, n = 13) and
a2 and b2 subunits, respectively (248 � 48; n = 6) (see also Table 1).
Piperine was significantly less efficacious on a5b2 receptors
(IGABA,max = 136 � 22%, n = 6, Fig. 2A, Tables 1 and 2). The potencies
of IGABA modulation, however, did not significantly differ with EC50

values ranging from 42.8 � 17.6 mM (a2b2) to 59.6 � 12.3 mM
(a3b2), Fig. 2B illustrates the effect of piperine on GABAA receptors
with three different b-subunits. a1b2 and a1b3 receptors were more
efficaciously modulated by piperine than a1b1 receptors (maximal
IGABA modulation of a1b2 receptors: 271 � 36%, a1b3 332 � 64% vs.
a1b1 receptors: 171 � 22%; (see Fig. 2 C for representative IGABA

through GABAA receptors composed of a3 and b2 subunits in the
absence and presence of 30 mM piperine).

3.4. Higher potency and different subunit dependence of SCT-66

SCT-66 displayed a higher potency on all subunit compositions
tested (Fig. 2E and F, Tables 1 and 2 e.g. on a1b2g2S receptors:
EC50(SCT-66): 21.5 � 1.7 mM, n = 6 compared to EC50(piperi-
ne):57.6 � 4.2 mM, n = 6, p < 0.01 and IGABA was more efficaciously
modulated by SCT-66 than by piperine. Stronger maximal IGABA

enhancement by SCT-66 ranged from 1.2-fold (a1b2g2S receptors) to
6.5-fold (a1b1) (Tables 1–2). Taken together, the stronger IGABA

enhancement by SCT-66 was accompanied by an apparent change in
receptor subtype dependence (SCT-66 was e.g. equally efficacious on
receptors comprising different b-subunits compared to piperine that
was more efficacious on b2/3 incorporating receptors, compare Fig. 2B
to Fig. 2E).

3.5. Piperine and SCT-66 shift the GABA concentration–response curve

GABA concentration–response curves in the presence of piperine
and SCT-66 for a3b2 receptors are compared in Fig. 3. Almost-
saturating concentrations of piperine and SCT-66 (100 mM, Fig. 2A,
B, D and E) shifted the curves to the left (5.7 � 1.9 mM and
nH = 1.1 � 0.1 (control); 2.7 � 0.8 mM and nH = 1.1 � 0.2 (piperine),
and 1.9 � 0.4 mM and nH = 1.1 � 0.1 (SCT-66). Enhancement of
IGABA,max by piperine and SCT-66 was statistically not significant (IGABA;

max-piperine = 123 � 3; n = 4 and IGABA; max-SCT-66= 129 � 6%, n = 3;
p > 0.05). Neither piperine nor SCT-66 (up to 300 mM) activated
GABAA receptors when applied in the absence of GABA.

3.6. Effects of piperine and SCT-66 on thermoregulation

Changes in body temperature might indicate activation of
TRPV1 channels in vivo [21]. Core body temperature of male
C57BL/6N mice was measured rectally shortly before application of
saline, piperine or SCT-66. Basal values did not differ between the
groups, averaging 36.80 � 0.04 8C (n = 184). This temperature
measurement was repeated 3 hours after injection of compound
(to avoid interference from stress-induced hyperthermia early after
injection). As illustrated in Fig. 4, a dramatic drop of body
temperature was observed after injection of piperine at doses higher
than 3 mg/kg bodyweight: application of 10 mg/kg bodyweight
piperine significantly (p < 0.01) reduced body temperature of mice
(Control: 36.10 � 0.10 8C; n = 38 vs. 10 mg/kg bodyweight piperine
34.86 � 0.29 8C; n = 16). An even more pronounced effect was
observed upon application of 30 mg/kg bodyweight: body tempera-
ture was lowered to 30.37 � 0.84 8C (n = 9; p < 0.01). In contrast, no
significant changes in body temperature were observed after
application of SCT-66 at all tested doses (see Fig. 4), thereby resulting
in a statistically significant difference between the two drugs as
analysed by one-way ANOVA (p < 0.01).

3.7. Piperine and SCT-66 reduce locomotor activity

In the Open-Field-Test (OF, see Section 2), control mice covered
a distance of 39.3 � 1.9 m, (n = 20; Fig. 5; white bar). Injection of
piperine resulted in a dose-dependent reduction of ambulation:
significant reductions were apparent from doses �3 mg/kg body-
weight, and the highest dose of 30 mg/kg reduced ambulation by
approximately 50% compared to control littermates (control:
39.3 � 1.9 m; n = 20 vs. 30 mg/kg bodyweight piperine
21.0 � 3.7 m; n = 13; p < 0.01; see Fig. 5A; black bars for piperine).
Unlike piperine, SCT-66 did not affect ambulation over a broad range
(0.3–10 mg/kg bodyweight; see Fig. 5A, SCT-66 shaded bars). Only at
a dose of 30 mg/kg bodyweight SCT-66 significantly reduced
locomotor activity (Control: 39.3 � 1.9 m; n = 20 vs. 30 mg/kg
bodyweight SCT-66: 28.6 � 2.5 m, n = 10, p < 0.01), however, this
effect was still weaker than with piperine at the same dose.

3.8. Piperine and SCT-66 influence anxiety-related behaviour in the

OF test

The marked influence of even low doses of piperine (�3 mg/kg)
on the locomotor activity of mice makes it difficult to analyse



Fig. 2. IGABA modulation by piperine and SCT-66 concentration–response curves for IGABA modulation through GABAA receptors of the indicated subunit combinations by

piperine (A and B) and SCT-66 (D and E) at a GABA concentration eliciting 3–7% of the maximal GABA response (EC3–7). The enhancement of IGABA by piperine trough a1b2g2S

receptors (dashed line) receptors is taken from [3]. Each data point represents the mean � S.E.M. from at least five oocytes and at least two oocyte batches. (C and F) Typical traces

illustrating IGABA enhancement by 30 mM compound. Control currents (GABA, single bar) and corresponding currents elicited by co-application of GABA and 30 mM piperine/SCT-66

(double bar) are shown.
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anxiolytic properties in activity-based testing conditions. At lower
doses, the only difference observed was an increase in distances
travelled in the centre area (control: 8.8 � 0.6%, n = 20 vs. SCT-66
0.3 mg/kg bodyweight: 10.7 � 1.1%, n = 12; p < 0.05) in mice treated
with SCT-66 at a dose of 0.3 mg/kg bodyweight.
3.9. Piperine and SCT-66 reduce anxiety-related behaviour in the EPM

test

In order to analyse the impact of piperine and SCT-66 on
anxiety-related behaviour, male C57BL/6N mice were tested



Table 1
Potency and efficiency of piperine/SCT-66 enhancement of GABAA receptors with

different subunit compositions.

Subunit

combination

EC50 (mM) Maximum

stimulation

of-IGABA at EC3–7

Hill

coefficient

(nH)

Number of

experiments

(n)

Piperine

a1b1 57.6 � 4.2 171 � 22 1.4 � 0.2 10

a1b2 50.0 � 7.9 271 � 36 1.5 � 0.3 13

a1b3 48.3 � 7.3 332 � 64 1.5 � 0.3 7

a2b2 42.8 � 17.6 248 � 48 1.9 � 0.5 6

a3b2 59.6 � 12.3 375 � 51 1.4 � 0.2 6

a5b2 47.5 � 17.9 136 � 22 1.7 � 0.4 6

SCT-66

a1b1 13.3 � 2.9 1112 � 136 1.5 � 0.2 4

a1b2 19.8 � 9.7 1256 � 292 1.3 � 0.4 4

a1b3 12.3 � 4.5 1128 � 155 1.5 � 0.3 3

a1b2g2S 21.5 � 1.7 378 � 15 1.8 � 0.2 6

a2b2 13.1 � 9.0 1204 � 233 1.1 � 0.3 4

a2b2g2S 24.1 � 7.5 572 � 51 1.3 � 0.3 5

a3b2 22.2 � 12.1 1169 � 195 0.9 � 0.2 3

a3b2g2S 15.1 � 1.8 584 � 20 1.6 � 0.2 5

a5b2 11.5 � 2.7 705 � 24 1.3 � 0.2 3

a5b2g2S 14.2 � 1.4 398 � 26 2.0 � 0.3 5

Fig. 3. Piperine and SCT-66 shift the GABA concentration–response curve towards

higher GABA sensitivity GABA concentration–response curves for a3b2 GABAA

receptors in the absence (control, &) and in the presence of 100 mM piperine (&),

and 100 mM SCT-66 (*) are compared. The corresponding EC50 values and Hill-

coefficients were 5.7 � 1.9 mM and nH = 1.1 � 0.1 (control) and 2.7 � 0.8 mM and

nH = 1.1 � 0.2 (piperine), and 1.9 � 0.4 mM and nH = 1.1 � 0.1 (SCT-66), respectively.

Each data point represents the mean � S.E.M. from at least four oocytes and at least

two oocyte batches.
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30 min after i.p. injection in the Elevated-Plus-Maze-test (EPM, see
Materials and Methods section). As illustrated in Fig. 6A, control
mice (treated with saline; white bar) spent 28.6 � 2.1% of the total
test time in the open arms (OA) of the EPM (n = 27). While the
behaviour of mice treated with 0.1 mg/kg bodyweight of piperine did
not significantly differ from saline-treated control littermates, upon
application of higher doses (i.e. 0.3 and 1 mg/kg bodyweight) mice
spent significantly (p < 0.01) more time in the OA (0.3 mg/kg
bodyweight: 43.0 � 4.2%, n = 22 and 1 mg/kg bodyweight:
45.7 � 6.3%, n = 16, black bars). At a dose of 1 mg/kg bodyweight
piperine significantly reduced ambulation (see Fig. 6D), thus, higher
doses were not investigated. Unlike piperine, SCT-66 did not
significantly influence overall ambulation at the tested doses (0.3–
10 mg/kg bodyweight; see Fig. 6D shaded bars). As shown in Fig. 6A, a
significant increase in the time spent in the OA was observed with
increasing doses of SCT-66, reaching a maximum at a dose of 1 mg/kg
bodyweight (control: 28.6 � 2.1, n = 27 vs. 1 mg/kg bodyweight SCT-
66: 45.1 � 5.7%, n = 14, p < 0.01). This effect remained stable and did
Table 2
Comparison of efficiencies for GABAA receptors of different subunit compositions. (*) i

Piperine

a1b2 a1b2 a1b3

a1b1 * * 

a1b2 * 

a1b3 * 

a1b2g2S
a * 

a2b2

a3b2

a5b2 * * 

SCT-66

a1b1 a1b2 a1b3 a1b2g2S a2b2

a1b1 * 

a1b2 * 

a1b3 * 

a1b2g2S * * * * 

a2b2 * 

a2b2g2S * * * * 

a3b2 * 

a3b2g2S * * * * 

a5b2 * * * 

a5b2g2S * * * * 

a Emax values for enhancement of IGABA through a1b2g2S receptors by piperine are t
not change even when applying higher doses (3–10 mg/kg body-
weight). Moreover, mice treated with 0.3 mg/kg bodyweight SCT-66
visited the OA more frequently than control mice (control: 12.4 � 0.9,
n = 27 vs. 0.3 mg/kg bodyweight SCT-66: 13.7 � 1.1, n = 22, p < 0.05),
while the number of visits to the OA did not differ at the other doses of
piperine and SCT-66, respectively (see Fig. 6B). Accordingly, the
number of closed arm (CA) entries also dropped significantly at doses
�0.3 mg/kg bodyweight piperine and SCT-66, respectively (Fig. 6 C).

3.10. Piperine and SCT-66 modulate seizure threshold

The seizure threshold as assessed using pentylentetrazole (PTZ)
tail vein infusions was significantly increased 30 min after i.p.
injection of piperine at 3 or 10 mg/kg bodyweight (Control:
39.4 � 2.8 mg/kg bodyweight PTZ; n = 7; vs. 3 mg/kg bodyweight
ndicates statistically significant (p < 0.05) differences.

a1b2g2S
1 a2b2 a3b2 a5b2

*

*

*

*

*

*

* * *

a2b2g2S a3b2 a3b2g2S a5b2 a5b2g2S

* * * *

*

* * * *

* * * *

* * *

* *

* * *

* * *

* *

* * * * *

aken from [3].



Fig. 4. SCT-66 does not reduce body temperature in mice Effects of piperine and

SCT-66 on body temperature 3 h after injection of (&) piperine or (*) SCT-66 at the

indicated doses (mg/kg bodyweight) are illustrated. Each data point represents the

mean � S.E.M. of at least 9 mice. (**) indicates statistically significant (p < 0.01)

differences to control (ANOVA with Bonferroni).
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piperine: 46.2 � 5.4 mg/kg bodyweight PTZ; n = 4; p < 0.05 and
10 mg/kg bodyweight piperine, respectively: 48,7 � 2.1 mg/kg body-
weight PTZ; n = 4; p < 0.01). A dose of 30 mg/kg bodyweight,
however, resulted in a significant drop in seizure threshold
Fig. 5. Piperine and SCT-66 dose-dependently reduce locomotor activity in the OF test. Ba

the number of entries to the centre and in (D) the distance travelled in the centre as % 

piperine (black bars), SCT-66 (shaded bars) or control (white bars). Bars always represe

differences with p < 0.05, (**) p < 0.01 to control (ANOVA with Bonferroni).
(30.3 � 3.4 mg/kg bodyweight PTZ; n = 4; p < 0.01; Fig. 7A). Doses
below 3 mg/kg bodyweight did not affect seizure threshold.

Unlike piperine, SCT-66 did not display any observable effects
on the seizure threshold up to 3 mg/kg bodyweight. Only higher
doses significantly raised the seizure threshold (10 mg/kg body-
weight SCT-66: 47.6 � 3.4 mg/kg bodyweight PTZ; n = 4; p < 0.01
and 30 mg/kg bodyweight SCT-66: 55.8 � 2.8 mg/kg bodyweight PTZ,
n = 4, p < 0.01; Fig. 7B).

4. Discussion

Natural products from distinct structural classes including
flavonoids [22–25], terpenoids [26–28], sesquiterpenes [29–31],
diterpenes [32], triterpene glycosides [33], polyacetylenes [34],
(neo)lignans [28,35], alkaloids [3] or (furano)coumarins [36,37]
have been shown to modulate GABAA receptors.

We have recently reported that besides activating TRPV1
receptors [2] piperine modulates GABAA receptors [3]. Here we
report that replacing the piperidine ring by a N,N-diisobutyl-residue
prevents activation of TRPV1 (Fig. 1A and B). In order to get insights
into their therapeutic potentials we subsequently characterized the
actions of piperine and its derivative SCT-66 in vitro and in vivo.

4.1. Subunit-dependent modulation of GABAA receptors by piperine

Comparable enhancement of IGABA through a1b2 receptors
as through the a1b2g2S [3] and the similar potencies on the two
receptor subtypes suggests that piperine interacts with a binding
rs indicate in (A) the total distance travelled, in (B) the time spent in the centre, in (C)

of the total distance after application of the indicated dose (mg/kg bodyweight) of

nt means � S.E.M. from at least 8 different mice. (*) indicates statistically significant



Fig. 6. Piperine and SCT-66 display anxiolytic-like effects in the EPM test. Bars indicate in (A) the time spent in the open arms (OA) in % of the total time, in (B) the number of OA

entries, in (C) the number of closed arm (CA) entries and in (D) the total distance after application of the indicated dose in mg/kg bodyweight of either piperine (black bars) or

SCT-66 (shaded bars), respectively. White bars illustrate the behaviour of control mice. Bars represent means � S.E.M. from at least 9 different mice. (*) indicates statistically

significant differences with p < 0.05, (**) p < 0.01 to control (ANOVA with Bonferroni).
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site located on a and/or b subunits. This hypothesis is in line with
our previous findings that GABAA receptor modulation by piperine
is not blocked by flumazenil [3].

IGABA enhancement by piperine was most efficacious for GABAA

receptors with a3 subunits, weakest for GABAA receptors
Fig. 7. Piperine and SCT-66 affect seizure threshold differently. Changes in seizure thresh

SCT-66 (B) are depicted. Each data point represents the mean � S.E.M. of a least 3 mice.

(ANOVA with Bonferroni).
incorporating a5 subunits (Fig. 2A) and dependent on the b-
subunit (Fig. 2B). While there was no significant difference in
enhancement of IGABA through GABAA receptors with either b2 or
b3 subunits, incorporation of b1 subunits reduced enhancement of
IGABA (see also Fig. 2B).
old upon PTZ-infusion of the indicated dose (mg/kg bodyweight) of piperine (A) and

 (*) indicates statistically significant differences with p < 0.05, (**) p < 0.01 to control
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4.2. SCT-66 modulates GABAA receptors with higher potency and

efficiency

A principle finding was that replacing the piperidine ring by a
N,N-diisobutyl-residue did not only diminish interaction with
TRPV1 receptors but additionally increased potency and efficacy of
GABAA receptor modulation and affected subunit dependency
(Figs. 2E, D and Table 1). Replacing the piperidine ring by a N,N-
diisobutyl-residue not only diminished the b2/3 subunit depen-
dence (Fig. 2F), but also induced g-subunit dependence. Hence,
IGABA stimulation in a1b2g2S receptors was about four times
smaller than in a1b2 receptors. These data suggest differences in
the binding pockets of the two molecules and/or the existence of an
additional binding site for SCT-66 involving the g-subunit.

4.3. Consequences of different receptor specificity on anxiety,

locomotor activity and seizure threshold

In order to analyse the consequences of the structural changes
in the piperine scaffold we compared the in vivo action of piperine
and SCT-66. However, before analyzing behavioural effects of
piperine and SCT-66, the consequences of different TRPV1 activity
were studied: since TRPV1 channels are involved in a variety of
physiological processes including thermoregulation [38], measur-
ing changes in body temperature is one way to detect their
activation. In agreement with the literature, piperine at doses �
10 mg/kg bodyweight drastically lowered body temperature of
mice (compare to similar results in rats in [39]). In contrast, SCT-66
did not affect thermoregulation even at high doses (see Fig. 4). Our
data derived on TRPV1 channels expressed on oocytes indicate that
SCT-66, unlike piperine, does not interact with TRPV1 channels.
While the in vivo effects of piperine are thus likely to include a
TRPV1-related component, it seems that the in vivo effects of SCT-
66 do not.

First insights into the behavioural effects of piperine and SCT-66
were obtained from the OF and the EPM test. Though both
compounds reduced animals’ locomotor activity, SCT-66 did so
only at higher doses (see Fig. 5A). Considering the higher potency
and efficiency of SCT-66 on GABAA receptors in vitro (Fig. 2D and E
and Table 1) we speculate that the reduced locomotor activity
induced by piperine at doses �10 mg/kg reflects interactions with
vanilloid receptors. A plausible explanation would be that the
alterations in pain sensation and thermoregulation result in
depressed ambulation as discomfort and pain may well interfere
with the exploratory drive. In contrast, reduced ambulation upon
application of high doses of SCT-66 may indeed reflect sedation
resulting from an enhancement of IGABA. This is further supported
by our finding of relatively subtype-independent, strong modula-
tion of GABAA receptors by SCT-66 that did not differ between
receptors containing a1, a2 or a3 subunits, which is seen as a
prerequisite for sedative actions of drugs [40,41].

As both tests depend on motor activity, potential anxiolytic
effects of piperine could be observed only in one parameter of the
EPM test, where mice treated with low doses of either piperine
spent significantly more time in the open arms of the maze (see
Fig. 6A). In contrast, clear anxiolytic effects were observed for SCT-
66, which agrees with the stronger enhancement of IGABA (see
Fig. 2D and E) and the lack of TRPV1 activation observed in vitro.

Beside influences on emotional behaviour, positive allosteric
modulators of GABAA receptors also influence the seizure
threshold. Thus, enhancing GABAergic signalling was shown to
significantly increase seizure threshold in mice. Importantly, the
seizure threshold is independent of motor activity. Consistent with
the data obtained from behavioural testing, the effects of piperine
on the PTZ-induced seizure threshold suggest the involvement of
more than just one receptor/target in vivo. Thus, piperine revealed
a biphasic dose-response curve displaying increased thresholds at
doses of 3–10 mg/kg bodyweight, which reverts to decreased
thresholds at a dose of 30 mg/kg (Fig 7A). In contrast SCT-66
significantly increased the threshold at a dose of 10–30 mg/kg
(Fig. 7B). Little information is available on the effects of TRPV1
activation on seizure threshold. The proposed effects of TRPV1 on
epilepsy are controversial: while some groups suggest TRPV1
agonists as potential candidates for antiepileptics [42], others have
shown increased glutamate release from hippocampal granule
cells as a consequence of TRPV1 activation [43]. We can also not
exclude the involvement of receptors other than GABAA and
TRPV1. However, TRPV1 activation has been shown to cause
vasodilation [44], and we observed vasodilatory effects during
the PTZ tail-vein infusion experiments with piperine at doses of
10–30 mg/kg (data not shown), but not with SCT-66.

4.4. Conclusions and outlook

Replacing the piperidine ring by the N,N-diisobutyl residue of
piperine diminished interaction with TRPV1 receptors, enhanced
potency and efficacy of IGABA modulation, diminished the higher
efficacy of piperine on a3-subunit and/or b2/3-subunit containing
receptors (compare Fig. 2A and B with Fig. 2D and E) and induced a
g2 subunit dependence (Fig. 2 D). Piperine and SCT-66 induced
anxiolytic-like, anticonvulsant action with SCT-66 and
less depression of locomotor activity compared to piperine
(Figs. 5–7). Its higher receptor specificity (lack of interaction with
TRPV1) and higher potency and efficacy of IGABA modulation and its
in vivo action suggest that SCT-66 may represent a suitable scaffold
for development of novel GABAA receptor modulators with
anxiolytic and anticonvulsant potential. The addition of 2 extra
methyl groups in SCT-66 significantly increased flexibility in the
side chain and almost doubled the molecular volume of this part of
the molecule. The generation of further piperine derivatives and
studies on different GABAA receptor subtypes will help to clarify
the structural basis of the receptor selectivity (TRPV1 vs. GABAA)
and changes in IGABA modulation.
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