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Research Summary  

Tuberculosis (TB) is a global health problem. One reason of conducting molecular 

epidemiology studies is to understand the uneven distribution of the disease in different parts 

of the world. The global population structure of MTBC can be studied by genotyping strains 

from different geographic regions, which describes the evolutionary relatedness of MTBC. 

The choice of appropriate genetic tools is fundamental that can elucidate local as well as 

global spread of disease. Genetic markers like large sequence polymorphisms (LSPs) and 

single nucleotide polymorphisms (SNPs) have been used to construct phylogenies of MTBC 

lineages that are informative for understanding the global distribution of MTBC. 

Additionally, markers such as direct repeats can differentiate strains within smaller 

geographical settings or cohort of patients. Studies have shown that the lineages diversity 

itself could be associated with differences in the pathogenesis and epidemiology of TB. Most 

importantly, the emergence of drug resistance, which results mostly among treatment failures, 

is a serious threat to TB control programs.  

Our aim was to use those markers to explore the phylogenetic diversity and distribution of 

MTBC in Nepal and compare it to the global phylogeography of MTBC. Furthermore, to 

identify the mutational hotspots conferring drug resistance. Understanding the molecular 

mechanisms of drug resistance will allow us to develop rapid molecular drug resistance 

detection tools and management of TB cases with improved and more rational drug therapies.  

We used SNPs based genotyping tool for 506 M. tuberculosis strains from Nepal. This 

revealed four major lineages of MTBC. This allowed us to map the MTBC structure in Nepal 

compared to the global diversity. Additionally, the use of spoligotyping and MIRU-VNTR 

(used for XDR strains only) provided data within particular geographical settings and within 

human populations. A total of 69 different spoligotypes with unique SIT numbers were 
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identified. We found Beijing and Central Asian Strain (CAS) family as the predominant 

genotypes as was expected owing to geo-position of Nepal in Asia.  

Molecular analysis of drug resistance for most common anti-TB drugs (i.e. isoniazid, 

rifampicin) from our sample set confirmed that the polymorphisms were more or less similar 

as previously documented globally, although we found some additional non-synonymous 

mutations which need validation. In general, our findings showed that the rapid molecular 

tools currently developed will detect most of the drug resistance isolates in Nepal. Among 

drug resistance strains, the katG S315T was proportionally more represented by multi-drug 

resistance strains. However, the patterns of rpoB mutation were unrelated to multi-drug 

resistance or MTBC genotypes. By performing 24 MIRU-VNTR loci plus additional 4 hyper-

variable region intended to use for Beijing spoligotypes, we provide evidence of primary 

transmission of XDR strains.   

On the other hand, the aim was to identify risk factors, risk groups, and co-morbidities that 

may relate to the susceptibility to TB. The number of male patients constituted two-third of 

the total sample population and most of them were at the age of 15-24 years. However, 

female TB patients in Nepal seem to be associated with “virulent” strains of TB (Beijing 

genotype) and drug resistance. We identified four XDR cases; the younger age (median age 

21 yrs.) of XDR-TB is a serious matter that requires immediate attention from NTP, Nepal. 
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1.1 Global epidemiology of human tuberculosis1 

The most recent global TB report of the World Health Organization (WHO) from 2012 

provides the latest TB situation from more than 200 countries, covering both developing and 

developed countries (World Health Organization, 2012). In the year 2011, 8.7 million new 

cases of TB and 1.4 million deaths due to TB were recorded (Figure 1). However, the 

estimates of incidence and death rates varied by country. Geographically, the TB burden is 

highest in highly populated continents. Together with India and China accounting for almost 

one quarter of global cases, 40% of the world’s TB cases reside in Asia and in Africa,.  

 

Figure 1: Estimated global incidence rates of tuberculosis (2011). 
 

The new TB cases notified to WHO by the country-specific NTP programs were 5.8 million 

in 2011. The first similar publication by WHO in the year 1995, which was during the start of 

the Directly Observed Short Course Therapy (DOTS) strategy, notified 3.4 million new 

cases. This illustrates how the number of diagnosed TB cases has increased in the past 10-12 

                                                           
1
 Adapted from “Global Tuberculosis Report - 2012” 
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years. The large disparity between estimated and notified cases for the year 2011 highlights 

the inability of many NTP programs to correctly diagnose the actual number of TB cases, 

leaving many undiagnosed and thus untreated. This will lead to adverse consequences, 

particularly in those settings where drug resistance is on the rise.  

With the declaration of TB a “global emergency” by WHO in 1993, the implementation of 

combined therapy also known as DOTS was successfully implemented in many parts of the 

world. This had an impact on lowering the prevalence of TB. Currently, the treatment success 

rate is 80% or more among new TB cases globally. The remaining 20-30% of cases is at 

increased risk of failure, with increasing drug resistance as being one of the underlying 

reasons. With the accessibility of drug resistance screening methods such as phenotypic drug 

susceptibility tests (DST) or molecular tools (despite being only slowly adopted in some 

countries), data on TB drug resistance have become available from many parts of the world. 

Worldwide, 3.7% of new cases and 20% of previously treated cases were estimated to have 

multi-drug resistance (MDR)-TB as recorded in 2011 (Figure 2). However, these drug 

resistance figures are likely far from being truly representative, as due to technical and 

logistic constraints, many countries cannot perform routine DST on all patients.  
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Figure 2: Percentage distribution of global MDR-TB in new and previously treated TB cases. 
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The global plan to Stop TB 2011-2015 includes targets that by 2015, all cases of TB should 

be considered as at high risk of MDR-TB, and hence should have access to standard DST. 

Similarly, all patients with MDR-TB should undergo DST for second-line drugs to detect 

potential extensively drug resistance (XDR) TB, as this form of TB is particularly difficult to 

treat. By 2011, XDR-TB had been reported from 84 countries (Figure 3). However, because of 

the limited technical and financial resources in many countries, only a small proportion of TB 

cases are currently tested for drug resistance.  

 

Figure 3: Countries that had notified at least one case of XDR-TB by the end of 2011 
 

In addition to being threatened by the emergence of drug resistance, global TB control is 

further complicated by co-morbidities such as HIV and diabetes. These diseases lead to 

immunosuppression in the host and make the patient particularly susceptible to TB. In 

persons co-infected with HIV, the risk of developing active TB exceeds 10% per year, as 

opposed to 10% per a life-time in HIV-uninfected individuals. HIV/TB co-infection is one of 
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the most common causes of death in least developed countries (Aaron et al., 2004). The 

WHO data from the year 2011 estimated 430,000 HIV-associated TB deaths globally. In an 

effort to better control HIV/TB, screening programmes are being scaled up. Globally, 79% of 

people living with HIV were provided with co-trimoxazole preventive therapy in 2011. 

To address the concerns of growing number of TB cases and drug resistance, WHO has 

developed the “Stop TB Strategy” that was launched in 2006. With a vision of “A TB-free 

world”, Stop TB Strategy has set an objective linked to Target 6.c of the Millennium 

Development Goals (MDGs), which plans to “Halt and begin to reverse the incidence of TB 

by 2015” and to “reduce prevalence of and deaths due to TB by 50% compared to their levels 

in 1990”. Another MDGs target associated to the Stop TB Strategy is to “eliminate TB as a 

public health problem by 2050”. 

Starting in 2009, several publications have led to controversies regarding the classification of 

a new form of TB that is resistant to all anti-TB drugs and which has been coined “totally 

drug resistant TB (TDR-TB)”. These reports came first from Italy (Migliori et al., 2007), Iran 

(Velayati et al., 2009), and later also from India (Udwadia et al., 2012). WHO argues that 

such a definition of “TDR-TB” cannot be used unless proper verification and standardization 

of DST guidelines have been established that i) cover all anti-TB drugs, and ii) can be applied 

in all TB diagnostic laboratories (World Health Organization, 2008). Moreover, the 

reproducibility and reliability of second-line DST is limited, and critical concentrations to 

define resistance have been found to differ in different laboratory settings. Finally, new anti-

TB drugs are still being evaluated in clinical trials, and the “TDR-TB” has not yet been tested 

against those drugs (World Health Organization, 2008). 
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1.2 The origin of pathogenic mycobacteria  

The mycobacteria exhibit great diversity in growth and live in diverse ecological niches. 

Most of the ~120 mycobacterial species are saprophytes that grow and are able to replicate in 

soil or water. It is hypothesized that the pathogenic species of mycobacteria diverged from 

early ancestors that evolved in different environments, eventually developing the capacity to 

survive intracellularly (i.e. in free-living amoebas). Some of these mycobacteria eventually 

evolved to become true pathogens, depending on the host environment to survive and 

multiply. The three major mycobacteria species that are pathogenic to humans are known as 

the Mycobacterium tuberculosis complex (MTBC), M. leprae and M. ulcerans, and cause 

TB, leprosy, and Buruli ulcer, respectively. In addition, several “non-pathogenic” 

mycobacteria (also known as the “non-tuberculous mycobacteria (NTMs)”) that are 

commonly found in the environment can cause opportunistic infections in humans; examples 

include M. intracellulare or M. kansasii, which are often associated with opportunistic 

infections in HIV co-infected individuals. Many of these NTM infections are difficult to treat 

as many environmental mycobacteria are naturally resistant to many of the drugs used to treat 

TB. The growth rate of these environmental mycobacteria is much faster and similar to other 

organisms like Escherichia coli.  In contrast, generation time of parasitic mycobacteria ranges 

from ~24h in MTBC to >72h in M. ulcerans and 14 days in M. leprae. 
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TB is primarily caused by the different members of the MTBC. Based on 16S rRNA 

sequencing, MTBC forms a single and 

compact clonal group together with M. 

canettii and other so-called “smooth 

strains” (Figure 4)  (Gutierrez et al., 

2005). M. canettii and the other smooth 

strains have distinct phenotypes, forming 

smooth colonies with a shorter 

generation time compared to the other 

members of the MTBC which form rough colonies. These smooth strains have been proposed 

to represent the population of mycobacteria from which the MTBC evolved. Hence 

collectively, M. canettii and the other smooth strains have been referred to as M. 

prototuberculosis (Gutierrez et al., 2005). Little is known on the epidemiology of M. 

prototuberculosis, but the fact that only about 60 patient isolates have been reported to date, 

and almost all of them were associated with the Horn of Africa, suggests that an animal or 

environmental reservoir might exist (Fabre et al., 2004).   

By contrast, the other members of the MTBC are obligate pathogens with no known 

environmental reservoir. The MTBC sensu stricto (i.e. excluding M. canettii) comprise 

several human- and animal-associated species and sub-species. Human TB is primarily 

caused by M. tuberculosis sensu stricto and M. africanum. In addition, several MTBC 

lineages are thought to be specially adapted to particular domestic and wild animal species. 

These include M. bovis (a cattle pathogen) M. caprae (sheep and goat), M. pinnipedii (seals 

and sea lions), M. mungi (mangoose), M. orygis (antilope) and the “dassy bacillus” (rock 

hyrax). One of first molecular markers used to define these different MTBC lineages were 

genomic deletions also known as Regions of Difference (RDs) (Brosch et al., 2002) .  

Figure 4: Phylogenetic position of tubercle bacilli within the genus 

mycobacterium 
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Analyses based on these RDs provided insights into the evolution of MTBC. For example, 

the M. tuberculosis-specific deleted region 1 (TbD1) is of importance as it differentiates the 

modern and ancient lineages based on the absence or presence of it (Figure 5).  

 

Among MTBC adapted to humans, the genetic variability of strains is evident both in terms 

of phylogenetic relationship and geography.  

1.3 The global diversity of human-associated MTBC 

 

The phylogenetic structure of human-associated MTBC has been extensively studied using 

LSPs in 875 globally representative strains from 80 different countries (Gagneux et al., 

2006). This study found that human-associated MTBC consists of six major lineages which 

show biogeographic specificities in that the individual lineages are associated with particular 

geographic locations (Figure 6). Lineages 1, 5 and 6, which are referred to as the “ancient” 

lineages are predominant in Africa (Lineage 5 and 6) and around the Indian Ocean (Lineage 

1), while the “modern lineages are more widespread but still strongly associated with 

Figure 5: Proposed evolutionary pathway of tubercle bacilli based on deletions and sequence 

polymorphisms in five selected genes katG, gyrA, oxyR, pncA, mmpl6 and TbD1 
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particular geographic settings; Lineage 4 in Europe, the Americas and Africa, Lineage 2 in 

East Asia, and Lineage 3 in South-Asia. 

 

 

 

The same authors used another approach using maximum parsimony analysis of 89 genes in a 

global collection of 108 human and animal strains (Hershberg et al., 2008). This analysis 

yielded a single comprehensive phylogenetic tree (Figure 7), which showed analogy to ancient 

and modern lineages defined based on the presence/absence of TbD1. Analysis of genetic 

distances revealed that human MTBC strains are genetically diverse as represented by 

different phylogenetic lineages. Lineages from Africa and animal hosts are represented 

mostly in ancient lineage while others are represented in modern lineages 

Figure 6: The biogeography of MTBC of six lineages 
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Figure 7: Phylogeny of M. tuberculosis showing six major lineages (Source: Hershberg et al, 2006) 

 

More recently, the global phylogeny of human-associated MTBC was defined into six major 

lineages based on whole genome sequences (Coscolla and Gagneux, 2010). This lineage 

classification corresponds to genotypes as detected and defined by other techniques. 
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Although the explanation on genetic diversity of global MTBC continues using different 

genes and molecular biological tools, it is equally important to understand whether this 

variability has biological consequences in terms of host immune recognition, pathogenesis, 

and the outcome of infection and disease in clinical settings (Portevin et al., 2011,Brites and 

Gagneux, 2012). 

1.4 Clinical and epidemiological consequences of MTBC diversity:  

In animal models, it has been found that virulence can dependent on the genotype of the 

infecting MTBC strain (Lopez et al., 2003). With recent development in genotyping tools 

and use of them for exploration of local, regional, and global distribution of MTBC diversity, 

much attention has been given to strain variation and its association with drug resistance and 

disease outcome. One of the approaches is to find associations between inter-genotype 

characteristics within pathogen population and corresponding clinical features among TB 

patients. The major motivation is to provide evidence to explain if the MTBC diversity 

matters for global TB control (Coscolla and Gagneux, 2010).   

Source: Coscolla and Gagneux, 2010 

Figure 8: Phylogeny of M. tuberculosis based on 9037 variable common nucleotide positions 
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Studies in Vietnam have shown that lung cavitations were found in higher proportion in TB 

patients infected by Lineage 4 (i.e. the Euro-American lineage) (Thwaites et al., 2008) and 

that Lineage 4 was also less likely to cause TB meningitis (Caws et al., 2008). The same 

study showed that the shorter duration of illness among TB meningitis was related to 

infection by Lineage 2 (East Asian/Beijing lineages) (Thwaites et al., 2008). However, a 

study in Netherlands where TB cases and controls were stratified by age, previous episode of 

TB and ethnicity, showed that the bacterial genotypes were not associated with chest 

radiological presentation (Borgdorff et al., 2004). A study among HIV negative TB patients 

and contacts in Gambia showed that the progression of disease was less likely among patients 

infected with M. africanum compared to M. tuberculosis (de Jong et al., 2008). These 

differing findings on links between bacterial genotypes and disease phenotypes could also be 

due to factor like sample size, stage of disease, geographical differences, and patient 

ethnicity. On the other hand, clinical presentation and disease outcomes could also be due to 

different treatment strategies, immunization, patient’s predisposition such as HIV, diabetes, 

ethnicity, age which may be coupled with immigration history, past TB outbreaks, substance 

abuse, place of patient’s origin, homelessness, and year of first episode of TB (Dye and 

Williams, 2010,Dalton et al., 2012). A prospective study from South Africa showed an 

association of late sputum smear conversion among TB patients who smoked and who were 

infected with W-Beijing genotype (Visser et al., 2012). If the MTBC genotype affects the 

formation of lung cavities, then the degree of lung cavitation will have an effect on the 

grading of the sputum smear. Patients with larger lung cavitations tend to be positive for 

maximum smear grade due to a higher bacterial load. Hence, severity of disease could also be 

correlated with MTBC lineages.  

In another study conducted in India, old patients were more frequently associated with the 

East African Indian (EAI) spoligotype as compared  the Central Asian Strains (CAS) 
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spoligotype (which correspond to Lineage 1 and Lineage 3, respectively) (Arora et al., 

2009). This may suggest that the predominance of one MTBC genotype may have biological 

advantages in specific host populations, and such findings may help our understanding of the 

host and environmental risk factors as well as the pathogen characteristics determining the 

outcome of TB. 

1.5 Overview of genotyping tools used for MTBC 

The whole genome sequencing of M. tuberculosis H37Rv in 1998 paved the way for a better 

understanding of the biology of the bacilli (Cole et al., 1998). MTBC is a genetically 

monomorphic bacterium that has little sequence diversity compared to most other bacteria 

(Achtman, 2008). After sequencing of MTBC strains collected worldwide, progress has been 

made in finding other discriminatory markers that can be used to trace the evolutionary 

patterns of spread of the MTBC worldwide, country wise, and locally (Mathema et al., 

2006).  

Genome sequencing has revealed polymorphic regions at nucleotide and gene level. The 

former also referred as single nucleotide polymorphisms (SNPs) are ideal for use as genetic 

markers for inferring deep phylogenies of M. tuberculosis (Filliol et al., 2006). Moreover, 

compared to repetitive elements, SNP-based analysis is less prone to distortion due to 

homoplasy (i.e. the emergence of convergent DNA fingerprints in unrelated strains) (Schork 

et al., 2000). Furthermore, horizontal gene transfer is presumed rare in MTBC, so deletions 

of large sequences and polymorphisms at nucleotide level (that are used as SNP based 

markers) are unidirectional, and evolutionary history can be determined. These changes can 

be purposively used to construct phylogenetic linkages/trees that represent the evolution and 

global spread of MTBC. However, LSP- and SNP-based typing methods have a relatively 

low discriminatory power and cannot be used to infer ongoing transmission or identifying 

outbreaks (Mathema et al., 2008). Hence, polymorphic markers which have a faster 
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molecular clock are generally used to trace the transmission of disease at the community level 

(van Embden et al., 1993). The insertion sequence IS6110 shows polymorphic patterns in 

MTBC as it is present in multiple copies in the genome. This has made it possible to use this 

insertion sequence as a molecular marker to trace the ongoing transmission of MTBC during 

molecular epidemiological investigations. The classical method of studying TB epidemiology 

is restriction fragment length polymorphisms (RFLP) of IS sequences. Two 

epidemiologically linked strains would have identical or almost identical IS6110 

fingerprinting patterns. Although IS elements have a high discriminatory power in 

differentiating epidemiologically unrelated strains, this method requires high DNA quantity 

and digestion of DNA with restriction enzymes (PvuII) for southern blotting (Millan-Lou et 

al., 2012).  

Other methods such as spoligotyping and MIRU-VNTR typing present the better technique 

for molecular epidemiological studies as their discriminatory power to trace ongoing 

transmission as similar to IS6110 RFLP, when used in combination. Spoligotyping has been 

widely used in high incidence areas, and where infection and disease patterns are 

heterogeneous. Spoligotyping is based on the polymorphisms in the direct repeat region of 

MTBC. In MTBC, this region consists of multiple 36-bp direct repeats (DRs) interspersed by 

unique spacer DNA sequences (35 to 41 bp) (van Embden et al., 2000). This genotyping 

method is based on the evaluation of the presence or absence of 43 spacer DNA sequences 

between the 36 bp direct repeats in the DR region of MTBC strains. These multiple copies of 

36-bp direct repeats are well conserved but the spacer sequences between those DR 

sequences are different. The lack of certain spacers is helpful for genotyping MTBC strains. 

In Netherlands, outbreak strains from epidemiologically related cases were evaluated by 

spoligotyping; the hybridization was identical for all except for one which was different in 

one spacer. All those strains had similar IS6110 pattern. Similarly, outbreak strains from UK 
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which were epidemiological linked have been shown to harbor identical hybridization 

patterns. The conventional contact tracing suggested that patients with similar IS6110 

patterns were from the same chain of TB transmission. This suggested that these genotyping 

tools can be used as surrogate markers for disease transmission.  

Mycobacterial interspersed repetitive units (MIRUs) in DNA elements are tandem repeats 

and are dispersed throughout the genome (Allix-Beguec et al., 2008). The MIRU-VNTR 

genotyping method evaluates the number of tandemly repeated sequences at different loci and 

whether the number of copies of the repeated sequence varies among strains. PCR 

amplification and comparison of the product sizes of those repeated sequences with a 

molecular size marker on an agarose gel is normally sufficient to find the number of copies 

present. The Mycobacterium tuberculosis H37Rv reference strain contains 41 MIRU loci, of 

which many are polymorphic and currently used in standard  MIRU-VNTR typing (Supply et 

al., 2000) . The discriminatory power of MIRU-VNTR analysis is typically proportional to 

the number of loci evaluated; in general, when only 12 loci are used, it is less discriminating 

relative to using 15 or 24 MIRU loci (Kremer et al., 2005) . 

1.6 Diagnosis, treatment and vaccination in TB 

 

The diagnosis of TB is done by detecting MTBC from the samples collected from specific 

infection sites. The most common form of TB is the pulmonary TB, which is diagnosed by 

sputum collected from a patient with an abnormal chest x-ray. However, some active TB 

patients show normal X-ray, especially during early times of infection, or when harboring a 

low bacterial load. For extra-pulmonary TB, a biopsy sample from the infection site is 

collected. For example, Fine Needle Aspiration Cytology (FNAC) can be performed from 

suspected TB patients with enlarged lymph nodes. Smear microscopy is the most commonly 

used technique for the diagnosis of TB which is still considered as the “gold standard” 
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techniques in most developing countries. The specificity and sensitivity of microscopy is less 

than culture, so despite collecting three sputum samples (as NTP guidelines) from suspected 

TB cases, there is a high possibility that some cases will remain undetected (Dye et al., 

2003).  

In developed countries, bacterial culture is considered the gold standard for TB diagnosis, 

However, the conventional culture technique needs several weeks or months before a 

diagnosis (for e.g. for drug resistance) can be made. Hence, several rapid diagnostic tests 

based on molecular markers such as Xpert MTB/RIF (Kurbatova et al., 2012) and 

GenoType MTBDRsl assay have been developed (Ling et al., 2008). These rapid molecular 

based tools are a step ahead in providing the point-of-care test needed to efficiently control 

TB globally. Early case detection and efficient use of those rapid tools depend on training of 

health staff, accessibility, and affordability by the NTP programs, which are still important 

challenges for many developing nations (Ling et al., 2008). The policy implementation of 

those rapid tools for the diagnosis of drug-resistant TB is yet another and particular 

challenge.    

After introduction of anti-TB drugs as a combined therapy, much progress has been made in 

the control of TB (World Health Organization, 2008). Rifampicin, isoniazid, pyrazinamide, 

and ethambutol are the most important first-line drugs used under DOTS. Resistance against 

these drugs, especially rifampicin and isoniazid pose a serious global threat. The genes 

involved in resistance of isoniazid are katG and inhA. Although there are many mutational 

changes characterized in  those genes, Ser315Thr amino acid replacement in katG has been 

the most common mutation, occurring in about 50-93% of resistant clinical isolates. 

Additionally, molecular analysis to define rifampicin resistance suggests that mutations in an 

81 bp drug resistance determining  region (RRDR) of rpoB lead to different levels of 

resistance to rifampicin where mutations in positions 526 (H/D), 516 (D/V) and 531 (S/L) are 
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most common and seen worldwide. With the increase in MDR-TB cases globally, second-line 

drugs such as floroquinolones and aminoglycosides have been used frequently. 

Floroquinolones target the DNA gyrase involved in DNA replication, which is encoded by 

gyrA and gyrB. Point mutations at codon 90, 91, 94, and 95 of gyrA (a region known as 

“quinolones resistance determining region” (QRDR)) are associated with drug resistance. 

Another class of second-line anti-TB drugs, aminoglycosides, inhibits protein synthesis. 

Mutation from A to G at rrs gene position 1400 is associated with resistance to commonly 

used kanamycin and amikacin (Table 1). The rapid tools such as Xpert MTB/RIF exploits 

those mutations in RRDR region to verify drug resistance in TB and are used as a proxy for 

the multi-drug resistance. However, contrasting results were shown that strains with 

rifampicin resistance may or may not be isoniazid resistance depending on geography and 

treatment protocol of the local TB Control Program (Smith et al., 2012).  

Table 1: Anti tuberculosis drugs and the gene(s) involved in drug resistance 

Essential anti-TB agents  

(abbreviation) 

Mode of action, 

Potency 

Product (Genes involved in drug resistance) 

Isoniazid (H) Bactericidal, high Enoyl acp reductase (inhA) 

Catalase-peroxidase (KatG) 

Alkyl hydroperoxide reductase (ahpC) 

Oxidative stress regulator (oxyR) 

Rifampicin (R) Bactericidal, high RNA polymerase subunit B (rpoB) 

Pyrazinamide (Z) Bactericidal, low Pyrazinamidase (pncA) 

Streptomycin (S) Bactericidal, low Ribosomal protein subunit 12 (rpsL) 

16s ribosomal RNA (rrs) 

Aminoglycoside phosphotransferase gene (strA) 

Ethambutol (E) Bactericidal, low Arabinosyl transferase (emb A, B and C) 

Fluoroquinolone Bactericidal, low DNA gyrAse A subunit and B subunit (gyr A and B) 

 

In recent years, additional mutations in these resistance genes have been documented. A 

study by Gagneux et al. has showed that drug resistance  in MTBC is associated with a 

competitive fitness cost in absence of the drug, which varies depending on the specific 
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resistance mutation (Gagneux et al., 2006). Moreover, compensatory mechanisms are able to 

mitigate the negative fitness effects of resistance mutations (Comas et al., 2012). Because of 

the fitness cost of drug resistance, it has been hypothesized that drug-resistant strains are less 

likely to transmit and result in disease. So comparing the size of molecular clusters of drug 

resistance versus sensitive strains may help predict transmission of drug-resistant strains 

compared to drug-susceptible strains. Hence, introduction of genotyping methods to drug 

susceptibility testing can assist drug resistance surveillance. For example, Beijing strains 

which are prevalent in Asia (Li et al., 2005) have often been associated with drug resistance 

(Borrell and Gagneux, 2009). Hence, we could expect that where many Beijing strains 

circulate, drug resistance, treatment failure, and relapses might be a particular problem. 

The BCG vaccine offers unreliable protection against TB in adults and provides limited 

protection among children above 2 years of age. However, because BCG protects small 

children against TB meningitis,  BCG continues to be one of the major constituent of the 

routine Expanded Program on Immunization (EPI) (World Health Organization, 1999). 

One of the mechanisms of attenuation during the development of BCG vaccine from virulent 

M. bovis was due to the deletion of RD1 region. RD1 comprises 9 genes, including early 

secreted antigen type 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) (Young, 2003).  

1.7 The Tuberculosis Control Programme in Nepal (TB situation in Nepal)
2
 

Nepal is one of the least developed countries in the world, situated between the two high TB 

burden countries, India and China. The DOTS strategy in Nepal was adopted in 1996 as pilot 

project in four districts, and by 2001, it was extended to all 75 districts with an institutional 

nationwide coverage. By 2011, 1118 treatment centers and 3103 sub-treatment centers were 

offering DOTS treatment, which is complemented by many private health facilities. About 

45% of the total population of Nepal is considered latently infected with MTBC, resulting in 

                                                           
2
 This section is adapted from “Annual Report 2010/2011- Nepal National TB Programme.” 
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49,000 new active TB cases each year, corresponding to an annual incidence rate of 

163/100,000 population. The annual death rate (deaths/100,000 population/year) was 

estimated at 21/100,000 in 2010, which is down from 51/100,000 before 1990 (i.e. during the 

pre-DOTS era). Similarly, the treatment success rate for the year 2009/10 was 90%, 

exceeding the global target of 85%. Since the adoption of the DOTS strategy in 1996, the 

DOTS population coverage has reached 100% since 2004, and the case detection rate by 

sputum microscopy is more than 70% (National Tuberculosis Programme, 2011). 

Therefore, the TB control program in Nepal as a whole has been quite successful so far.  

The National Tuberculosis Programme (NTP) adapts its goal, policies, and guidelines 

according to the international health organizations such as WHO and the Stop TB 

partnership, and is integrated into the Ministry of Health of Nepal. The National Tuberculosis 

Center (NTC) is the central governing body of NTP. The NTP activities at regional level (5 

developmental regions) and district level (75 districts) are planned and coordinated by NTP. 

The DOTS centers and microscopy centers at the level of Health Post and Sub-health Post act 

as primary health care institutions and are governed by District Public Health Office at 

district level.  

Sputum microscopy is still the gold standard method for the diagnosis of TB in Nepal. This is 

a free diagnostic service for patients registered in the NTP program. At present, 407 

microscopy centers are providing diagnosis service under the direct NTP laboratory network 

coverage, while an additional 98 microscopy centers are operated through private partners. 

The culture and drug resistance testing services are provided by the NTC and German Nepal 

Tuberculosis Project (GENETUP) laboratories. Recently, the government of Nepal has 

planned to extend culture services in five regional hospitals. The national quality control of 

these laboratories is done by NTC and GENETUP, while Supranational Reference 
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Laboratory “Kuratorium tuberkulose in der Welt, Germany” issues the quality assurance for 

NTC and GENETUP. 

The fixed-dose combination (FDC) for treatment of TB is a free treatment service for patients 

registered under NTP in Nepal. The treatment used to be eight months (2HRZE/6HE); 

however the standard WHO six months regimen was introduced in Nepal in 2009. The 

ambulatory DOTS program has been successfully implemented in selected DOTS center in 

Nepal (Malla et al., 2009). Treatment of TB is successful where early diagnosis and prompt 

treatment is in place. Supervision of the treatment and monitoring of possible side effects is 

essential for the cure of the TB patient. All the TB cases are categorized into specific disease 

category prior start of treatment for the homogeneity of classification of disease and to 

provide the standard treatment (Table 2). This also contributes to a standardized recording 

system. 

Table 2: TB Patient Registration Category 

Disease Category Definition of Case 

New A patient who has received no or less than 28 days of anti-tuberculosis treatment. 

This also applies to primary resistant DR-TB confirmed after DST.  

Relapse A previously treated case whose most recent treatment outcome was “cured” or 

“treatment completed”, and who is subsequently diagnosed with bacteriologically 

positive either by microscopy or culture. 

Treatment after 

default 

A patient whose previous DOTS treatment was interrupted for two or more 

consecutive months, and returned for treatment. The patient is bacteriologically 

positive either by microscopy or culture. 

Treatment after 

failure Category I 

A patient under category I treatment but is still sputum smear positive at five 

months or later during treatment.  

Treatment after 

failure Category II 

A patient under category II treatment but is still sputum smear positive at five 

months or later during treatment. 

Transfer in /out A patient who has transferred in from one DOTS treatment center to another DOTS 

center to continue treatment 

Other These are types of patients who may not fi t into any of the above categories. 

Examples include the following: sputum smear-positive patients with unknown 

previous treatment outcome; sputum smear-positive patients who received 

treatment other than Category I or II (possibly in the private sector); patients who 

have received several unsuccessful treatments, were considered incurable by health 

staff and who have lived with active TB disease with no or inadequate treatment 

(so-called “chronic” patients). 
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The treatment regimen is based on the type of the patients as categorized following the WHO 

standard guidelines which is outlined in Table 3. 

Table 3: NTP Treatment Regimens 

Tuberculosis 

Category  

Treatment Regimen Type of patients 

I 2(HRZE)/4(HR) New sputum smear-positive 

Suggestive of TB although Sputum 

Negative 

II 2S(HRZE)/1(HRZE)/5(HRE) Re-treatment TB cases including 

failures, relapse and return after default 

MDR 8(Km-Z-Lfx-Eto-Cs)/ 12(Lfx-Eto-Cs-Z) Multi-Drug resistant Cases 

Intensive Phase 

(8-12 months) 

Continuation 

Phase (12 months) 

 

Kanamycin (KM) 

Pyrazinamide (Z) 

Levofloxacin (Ofx) 

Ethionamide (Eto) 

Cycloserine (Cs) 

 

Pyrazinamide (Z) 

Levofl oxacin (Ofx) 

Ethionamide (Eto) 

Cycloserine (Cs) 

XDR Based on disease prognosis and response 

to anti-TB drugs and side effects 

MDR cases with resistant to 

floroquinolone and at least one 

injectable. 

Intensive Phase 

(12 months) 

Continuation 

Phase (12 months) 

 

Capreomycin (CM) 

Moxifloxacin (Mfx) 

PAS 

Cycloserine (Cs) 

Amx/Clv 

Clofazimine 

Any other drug 

thought susceptible 

Moxifloxacin (Mfx) 

PAS 

Cycloserine (Cs) 

Amx/Clv 

Clofazimine 

Any other drug 

thought 

susceptible 

 

A standard drug-resistant TB management programme was implemented in Nepal in 2005, 

after the WHO Green Light Committee (GLC) gave approval and with technical support from 

WHO. NTP provides fully supervised standard regimen for the treatment of MDR-TB from 

12 treatment centers and 62 Sub Treatment Centers spread nationwide.  
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The NTP national strategic plan for the year 2010-2015 aims to detect 82% of infectious TB 

cases and maintain the treatment success rate at 90%. From the NTP program perspective, 

despite progress in case detection rate and DOTS coverage rates, the main challenges are the 

sustainability of the programme, which is largely dependent on foreign donors. Lack of 

technical expertise in surveillance of drug resistance, and for strengthening of the reference - 

and the regional laboratories, are key challenges. One of the objectives of the Stop TB 

Strategy is to “contribute to health system strengthening” by “adaptation of innovations”. We 

believe that research on TB not limited to control activities, but covering other fields such as 

epidemiology, strain diversity, and drug resistance, will contribute to the control of TB in 

Nepal and worldwide.  
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2.1 Rationale 

In the developed world, molecular epidemiological studies of M. tuberculosis are performed 

in order to understand the dynamics of transmission among and local and migrant population. 

These findings have proved to be valuable and effective in TB control in the respective 

countries. Similar work from developing countries is limited despite of the endemicity of TB. 

In Nepal, there is currently no data about the phylogeographic distribution of MTBC. 

Exploring the lineage diversity of MTBC strains in Nepal is relevant as it will provide the 

evolutionary linkage between strains circulating in Nepal to the neighboring countries and 

globally. The relevance is specifically vital as the neighboring countries, India and China, are 

two high TB burden countries. Furthermore, the threat of drug resistance and molecular 

mechanisms behind emergence of such forms of disease are important for the development 

and effective use of new molecular diagnostic tools. In Nepal, the results of molecular 

epidemiological studies could assist in recommending novel disease control strategies. This 

will further promote research in explaining risk groups and risk factors, which is a 

prerequisite for an effective control program. Finally, the combination of demographic and 

clinical data with strain diversity data and drug resistance can provide a better picture of the 

evolution and transmission of TB in Nepal.  
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2.2 Goals 

 

To contribute to the understanding of the phylogeography and molecular epidemiology of 

Mycobacterium tuberculosis in Nepal. 

2.3 Objectives 

 

The objectives of this research are categorized into the main and exploratory objectives, and 

are explained in the respective sections.  

Objective 1 - To define the MTBC diversity in Nepal compared to the world 

 

Rationale: Various studies have shown that the geographic origin of human is suggestive of 

the MTBC lineage. MTBC consists of 6 main lineages (Comas et al., 2009), and SNPs can 

be used as an assay to define lineages from previously unexplored geography (Stucki et al., 

2012).  

General Approach: Appropriate genotyping tools and reference information are prerequisite 

for performing molecular epidemiological analysis. For M. tuberculosis, genotyping tools 

based on direct repeats (DR), single nucleotide polymorphisms (SNPs) are well established, 

however the extent of appropriateness may slightly vary depending on geography and host 

factors. Taking genotype information from neighboring countries, SNPs specific to four 

different lineages were evaluated in samples from Nepal. For SNP typing, TaqMan and 

Luminex genotyping assays were used as previously described (Stucki et al., 2012). These 

methods are  described in General Materials and Methods section. 

In order to have good representation of the geography, MTBC strains from patients 

representing different regions of Nepal were enrolled in the study. The demography and 

clinical characteristics of the cases were diverse.  
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Objective 2 - To determine the distribution of drug resistance mutations and 

association with MTBC lineages 

 

Rationale: Our understanding of the genetic changes conferring drug resistance and the 

underlying mechanisms has advanced rapidly (World Health Organization, 

2008,Ramaswamy and Musser, 1998). It has been observed that the major drug resistance 

conferring mutations are the same worldwide. Although Nepal is a TB-endemic country, 

limited information regarding molecular characteristics of drug resistance in TB is available. 

Knowledge of the molecular mechanisms of resistance also assists in the design of rapid 

diagnostics for detecting drug resistance. As newly developed rapid drug resistance detection 

kits are becoming available, a thorough understanding of the mutational sites and frequencies 

of mutation is critical for effective treatment and case management. Moreover, results from 

recent studies have shown that the drug resistance mutation and patterns are related to strain 

diversity among MTBC lineages (Fenner et al., 2012,Koser et al., 2012). We assume that 

investigating this relation in this part of world will provide evidences to critically validate the 

hypothesis and help predict the susceptibility to drug resistance among MTBC lineages.  

General Approach:  We studied anti-TB drug resistance in new and previously treated cases. 

We used PCR and direct sequencing to analyze drug target genes for rifampicin, isoniazid, 

fluoroquinolones, and aminoglycosides including rpoB, katG, inhA, rrs, and gyrA. 

Phenotypic drug susceptibility tests were performed at GENETUP for first line drugs and 

second line drugs for selected strains. The mutations and polymorphisms in drug resistance 

genes were compared to global database as hosted in www.tbdreamdb.com (Sandgren et al., 

2009).  

 

http://www.tbdreamdb.com/
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Objective 3 – To assess the clinical and demographic characteristics of TB 

patients in Nepal 

 

Rationale: The clinical and demographic characteristics of each TB patient provide critical 

information about TB epidemiology at a given time. The data mirror the changing trends of 

the disease as well as the state of TB control program. Data regarding clinical manifestations 

like onset of signs and symptoms relating to the disease, localized or disseminated TB, 

response to treatment, sputum conversion varies greatly among TB patients. Similarly, 

demographic variables like age, ethnicity, and patient’s place of origin help understand the 

determinants of the disease. This descriptive epidemiological information can aid in 

identifying people at risk of disease, risk factors and prioritizing control programs.  

General Approach A structured questionnaire was developed to collect patient variables 

including risk factors, clinical features, radiological presentation, and disease severity.  All 

demographic, clinical, and epidemiological data were double-entered into a customized 

project database prepared in Microsoft
©

 Access, (Copyright Microsoft
©

 Corporation). We 

conducted univariate, and multivariate analyses of clinical factors to explore possible 

associations between patient and MTBC genotyping data. 

Objective 4 - To seek association between MTBC lineages (Objectives 1) and 

clinical characteristics of TB patients (Objectives 3) 

 

Rationale: Genotypically distinct pathogens have different degrees of fitness and virulence 

and clinical outcomes (Visser et al., 2012). TB patients, too, differ in terms of exposure to 

risk factors, place of origin, diabetes, HIV, and vaccination. A better understanding of the 

possible correlation between MTBC genotypes and host characteristics may identify factors 

predictive of ongoing transmission and shed light onto the biology of TB.  
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General Approach:  A univariate and multivariate regression statistical approach was used to 

find associations between patient characteristics and MTBC lineage. We used Chi-square test 

to test the statistical significance of differences between groups in binary variables, and the 

Kruskal Wallis rank test for continuous variables. Logistic regression models were used for 

statistical analysis to compare patient characteristics associated with Lineages, adjusted for 

age, sex, treatment history, BCG vaccination status, and any drug resistance. The p-value less 

than 0.05 were considered significant. All statistical tests were performed in STATA 10.1 

(Stata Corp., College Station, TX, USA). 

Objective 5 - To use molecular typing tools to study the transmission of 

extensively drug-resistant tuberculosis 

 

Rationale: By mid-2011, twenty-seven XDR-TB cases have been documented in Nepal. 

XDR-TB poses serious challenges for public health and clinical management. The emergence 

and transmission of XDR-TB is little known because the treatment history and case contacts 

are considered as the major risk factors. Moreover, the examination of second line DST 

preferentially among MDR failure cases has limited the case notification. It is yet unclear if 

the XDR-TB cases are emerging independent of each other or are transmitted from another 

case.   

General Approach: First, to identify XDR-TB cases, we performed rpoB and gyrA DNA 

sequencing of all the culture positive cases. Those found resistant were then checked for rrs 

gene mutation to confirm XDR-TB. To summarize the epidemiological, clinical 

characteristics, and clustering of XDR-TB cases, we performed distinctive genotyping tools. 

Additional to SNP typing and spoligotyping methods which alone cannot predict the 

transmission chain due to their low discriminatory power, additional markers such as MIRU-

VNTR were used. 
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3.1  Study settings 

Nepal is a small country with 147,181 square kilometers in size populated by 26,494,504 

people (www.cbs.gov.np). The country has five development regions and seventy-five 

districts. The Central Development Region (CDR) includes the capital city Kathmandu and is 

the most densely populated region with internal migration of population from other regions of 

the country. It also has the highest number of TB cases (National Tuberculosis Programme, 

2011).  

We conducted a prospective, clinic based study over a three year period from 2009 (Aug-

Dec), 2010 (Aug-Dec) to 2011 (Mar-Jul) in a TB reference laboratory, known as the German 

Nepal Tuberculosis Project (GENETUP) in Kathmandu, Nepal. GENETUP was established 

in 1987 with the objective of providing standard TB diagnosis and DOTS service to patients. 

The laboratory is certified by the Supranational Reference Laboratory “Kuratorium 

Tuberkulose in der Welt e.V.” in Gauting, Germany. It is also a GLC and WHO-approved, 

treatment programme site in Nepal that provides standardized, second-line drug therapy for 

MDR-TB cases. The primary culture and phenotypic drug susceptibility tests for the first-line 

and second-line drugs are performed in collaboration with NTP. GENETUP has been 

involved in national surveillance of MDR and XDR among the DOTS registered patients in 

Nepal. Additionally, GENETUP is also the tertiary health institute, and patients suspected of 

drug resistance are referred for diagnosis from other microscopy centers which spread 

throughout the country. These centers exist under government programs or I/NGOs. 

GENETUB has recently introduced the molecular line probe assay for rapid diagnosis of 

MDR-TB. GENETUP also offers ambulatory DOTS and DOTS-plus treatment. The latest 

data from July 2010- July 2011 showed that there were 3568 outpatient visits by suspected 

TB cases, 1972 follow-up visits, and 671 newly diagnosed cases (National Tuberculosis 

Programme, 2011). There are other private microscopy centers in Kathmandu where TB 

http://www.cbs.gov.np/
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patients may seek health advice and diagnosis, and some are referred to GENETUP for 

confirmation. Hence, our sampling is not population-based but represents a convenience 

sampling of patients visiting GENETUP.  

3.2  Study population 

The pulmonary TB suspects who reported with symptoms of TB such as cough for more than 

two weeks, hemoptysis, chest pain, night sweat and fever were subjected to microscopy. 

Patients already undergoing DOTS therapy were also enrolled during their follow-up visits 

and sputum samples were collected from them. After informed consent, we enrolled 650 

sputum smear positive cases that visited GENETUP between August 2009 and June 2011. 

These patients included new cases as well as patients referred from other microscopy centers. 

A schematic view of the study processes is shown below Figure 9.  
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Identify cases with sputum smear positive (new diagnosis) 
And  

Follow-up patients (re-treatment cases) 
N=650 

Referred to study group for 
• Informed consent  

• Clinical and epidemiological information 

• Follow-up sputum sample if necessary 

Culture sputum sample on LJ tubes in duplicate 

N=144 
Any slants, if  
• growth observed before 2 weeks 

• Contaminated growth 

• Negative culture  
Record LJ tubes in which 

growth observed after 2 wks 
N=506 

Phenotypic Drug Susceptibility Test 
Proportion method  

For 1
st

 line Anti-TB drugs 
• Isoniazid (INH) 0.2µg/ml 

• Rifampicin (RIF) 40 µg/ml 

• Streptomycin (STR) 4.0 µg/ml 

• Ethambutol (EMB) 2.0µg/ml 

EXCLUDE 

N=506 

Sequencing of rpoB region to 
• Exclude non-tuberculous  mycobacteria 

• Drug resistance mutations in rpoB region 

N=506  

•  DNA sequencing to identify drug resistance mutations 
•  SNP typing for lineage Identification 
•  Spoligotyping  
•  MIRU-VNTR- only for selected strains (XDR-TB) 

Figure 9: Summary of Study Design 
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We collected socio-demographic and clinical data including previous TB episodes, treatment 

history, HIV, and BCG vaccination status. The information was collected by physicians and 

trained medical and nursing staff. A new case of TB was defined as a patient who had taken 

anti-TB drugs for less than 28 days according to WHO guidelines (World Health 

Organization, 2008, 2008). A previously treated case was defined as a patient who received 

TB treatment for one month or more. BCG vaccination status was defined based on the 

presence or absence of a BCG scar. The data was double-entered in a customized and 

password protected Microsoft® Access database. 

Sputum samples: Altogether, 3 sputum samples were collected from each patient. One was 

collected on the first day of visiting the GENETUP and the other two sputum samples were 

collected at intervals of 2 hours and on the next morning. A bacteriologic diagnosis of TB 

was done by microscopy using the fluorescence dye AuramineO. The sputum smear result 

was determined based on the WHO grading system for fluorescence microscopy.  

For culture, sputum samples were decontaminated using N-acetyl-L-cysteine sodium 

hydroxide. The Sputum was mixed with twice of its volume with 4% NaOH in a graduated 

15 ml centrifuge tube and shaken several times to digest, then left for 15 minutes at room 

temperature. The specimen was then centrifuged at 3000g for 15 minutes and the sediment 

suspended with 15ml distilled water. The tube was again centrifuged at 3000g for 15 minutes. 

Then, 400µl of sediment collected was used to inoculate the LJ slants. At least two sputum 

samples from each patient were cultured on LJ slants following standard guidelines (who 

reference) and were preserved in glycerol medium in -20
o
C until further processing for DNA 

extraction. For positive LJ slants, the colony characteristics not resembling to MTBC colony 

characteristics were discarded to rule out possibility of atypical mycobacteria. Finally, 506 

culture growths were collected included for genotyping and other molecular biology work. 

Hence, 144 cases were either sputum culture negative, or contaminated, and were excluded 
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from the molecular study. Patients were considered culture negative when no visible colony 

appeared on LJ slants, and contamination was defined if growth of other organisms such as 

fungi occurred or if the colony morphology was inconsistent with MTBC. Nevertheless, all of 

these cases showed at least one positive sputum smear and had chest radiography and 

symptoms suggestive of TB. Once TB was diagnosed, the cases either started DOTS at 

GENETUP or were “transferred out” to other DOTS center for the convenience of the 

patients. In summary, data from all the 650 cases were used for the epidemiological analyses, 

and data from 506 cases with culture-positive results were used for molecular biological 

analyses.  

 

 

 

Figure 10: Outline of the multivariate analysis used in this thesis. 

The clinical, epidemiological information about patient was considered as independent 

variable while drug susceptibility results, and strain genotype were used as dependent 

variables in the statistical analysis. The drug susceptibility results were categorized as any 

Strain Lineage DR 

mutations 

Combined Lineage and 
DR mutations 
(Multivariate) 

 

Independent Variables 

 Lung cavitation 

 Duration of signs/symptoms 

 Categorized Age  

 BCG Scar 

 Sputum smear grading 

 Drug resistance 

 Duration (time of onset of 
disease) 

 Episodes of TB 

 HIV status 

 Treatment outcome 
 

Outcome Variables 
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resistance, multi-drug resistance, and extremely drug resistance for data generation and 

subsequent statistical analysis. 

3.3  SNP typing 

 

The list of genes, primers and probes used are mentioned in Table 4. Preliminary data 

analysis showed that blue and purple lineage was dominant in Nepal, so SNP for those 

lineages Rv2952_0526n and Rv3804c_0012 respectively were tested first. Any strains not 

suggestive of those two lineages were then tested for red and purple SNPs (Table 4). 

Although many SNPs are accounted for each lineage, use of single SNPs probe as depicted in 

table below can assign MTBC lineage. 

Table 4: List of Lineage, SNPs, Primers and Probes for Lineage typing 

Lineage SNP_Name Primer Primer Sequence Probe Probe_seq 

Euro-American  

(red) 

katG463 katG463_F CCGAGATTGCCAGCCTTAAG H37Rv_probe 6FAM-CAGATCCGGGCATC 

  katG463_R GAAACTAGCTGTGAGACAGTCAATCC Mutant_probe VIC-CCAGATCCTGGCATC 

Blue (RD105) Rv2952_0526n Rv2952_F CCTTCGATGTTGTGCTCAATGT H37Rv_probe 6FAM-CCCAGGAGGGTAC 

  Rv2952_R CATGCGGCGATCTCATTGT Mutant_probe VIC-CCCAGGAAGGTACT 

Pink (RV3221c) Rv3221c_0085n RV3221c_F TGTCAACGAAGGCGATCAGA H37Rv_probe 6FAM-ACAAGGGCGACGTC 

  RV3221c_R GACCGTTCCGGCAGCTT Mutant_probe VIC-ACAAGGGCGACATC 

Purple  

(Rv3804c T-C) 

Rv3804c_0012 Rv3804c_F GCATGGATGCGTTGAGATGA H37Rv_probe 6FAM-AAGAATGCAGCTTGTCGA 

  Rv3804c_R CGAGTCGACGCGACATACC Mutant_probe VIC-AAGAATGCAGCTTGTTGA 

 

3.4  Ethical Consideration 

This study was ethically approved by the Nepal Health Research Council (NHRC), Nepal, 

and the Ethics Committee of the Canton of Basel (EKBB), Switzerland. Sputum smear 

positive cases were required to provide written informed consent for collection and analysis 
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of samples and demographic/clinical data. If the patient was minor or illiterate, the parent or 

caretaker was requested for consent. All the information collected from cases was kept 

confidential. Patient names and identifiers were stripped off prior data analysis. During study, 

any newly diagnosed TB cases were registered to DOTS at GENETUP or were referred to 

nearby treatment center of their residence for the DOTS treatment as provided by NTP 

guidelines. Diagnosed TB cases along with MDR cases received free treatment once 

registered as TB patient in national TB register.  

Sample transport: Following culture, DNA extraction from each MTBC isolate was done at 

GENETUP and then transported to SwissTPH. Live TB strains were also transported to 

SwissTPH following the international regulations of bio-safety (World Health 

Organization, 2004). The transportation of both DNA and the live MTBC strains was 

approved by NHRC. 
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This study included 650 TB cases from 54 of the 75 districts of Nepal, and six patients from 

India (Figure 11). The detail is provided in Appendix 2. More than half of the patients (56.3%) 

were from Kathmandu.  The demographic and socioeconomic characteristics of the TB cases 

including age, educational status, homelessness, geographic location, previous treatment 

status, comorbidities (HIV and Diabetes status), Chest X-ray, substance abuse, and the 

treatment outcome for the current episode of TB are presented in this chapter.  

As in many developing countries, direct sputum microscopy is the gold standard method for 

the diagnosis of pulmonary TB in Nepal (Tuberculosis Division International Union 

Against Tuberculosis and Lung Disease, 2005). Microscopy has a varying sensitivity 

depending on the quality of the sputum and the skill of the microscopist. Many smear-

negative TB cases yield at least one positive culture when tested for three individual sputum 

samples. On the other hand, smear-positive but culture-negative is seen among cases under 

treatment who may continue to show dead organisms in sputum samples during follow-up 

smear microscopy test. This is particularly true among patients with a heavy pre-treatment 

bacillary load, or because of delays in sputum processing. Although 650 sputum smear-

positive TB cases were included in this study, not all the cases were culture-positive. The 

proportion of smear-positive but culture-negative cases were 22.2% (144/650) as shown in 

Table 5, and the distribution of these cases was similar in all age groups. This highlights that 

the sputum smear negativity is likely not only due to difficulty in sputum production among 

younger patients. Here, we briefly discuss the clinical characteristics of patients with the 

complete dataset of 650 cases (i.e. irrespective of the culture results). 
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Table 5: Characteristics of patients with sputum smear positive and with or without culture positive result 

 

Sputum Smear Positive 

Culture Negative (N=144) 

Sputum Smear Positive 

Culture Positive (N=506) Total 

Sex of patient n (%) n (%)   

Male 99 (68.75) 354 (69.96) 453 

Female 45 (33.25) 152 (30.03) 197 

Age group (years)  

Up to 24 yrs. 40 (27.78) 169 (33.40) 209 

25-34 33 (22.92) 115 (22.73) 148 

35-44 21 (14.58) 80 (15.81) 101 

45-54 21 (14.58) 66 (13.04) 87 

55-64 17 (11.81) 47 (9.29) 64 

65-74 12 (8.33) 29 (5.73) 41 

Chest X-ray report 

Normal 40 (27.77) 142 (28.06) 182 

Cavitary disease 104 (72.22) 364 (71.93) 468 

BCG scar present 73 (57.94) 212 (47.86) 285 

Signs and Symptoms 

Cough 111 (77.08) 445 (87.94) 556 

Night sweat 80 (55.56) 345 (68.18) 425 

Chest pain 69 (47.92) 293 (57.91) 362 

Hemoptysis 27 (18.75) 139 (27.47) 166 

Loss of appetite 68 (47.22) 265 (52.37) 333 

HIV positive 5 (3.47) 10 (1.97) 15 

 

The males accounted for 69.69% of the subjects (453/650) and were aged between 5 – 83 

years. The patients of age group (0-24 years) were highest in proportion with 27.37% 

(124/453) and 43.15% (85/197) in male and female patients, respectively. The HIV status 

was known for 90 cases, and 16.6% (15/90) were co-infected with HIV at the time of TB 

diagnosis. During clinical examination, 8% (52/650) were known to be diabetic, and this 

proportion was higher among males (9.05%) than in females (5.58%), however with no 

significant difference (p=0.134). The percentage of males with habits of alcohol consumption 

(49.89%) was significantly higher than in females (23.86%) (p=0.000). Smoking was also 

significantly higher among males (48.34%) compared to females (18.27%) (p=0.00). No 

difference in lung cavitation was found among sexes (p=0.974). The patient characteristics 

such as age, sex, HIV status, Diabetic status, X-ray, clinical sign and symptoms were found 

to be comparable among smear positive/culture negative and smear positive/culture positive 
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cases (Table 5). Therefore, the rest of the analyses were focused on the smear positive/culture 

positive cases. Molecular characterization of the MTBC isolates allowed us to use the strain 

genetic background as an additional factor to relate with geography and patient characteristics 

from culture positive cases.  

The incidence of TB in Nepal differs by geography (National Tuberculosis Programme, 

2011), and because the epidemiological risk factors vary in these regions, there is a need to 

identify the variables that might have contributed to these differences in TB prevalence. In 

this context, use of molecular tools that provide phylogenetic information that can be linked 

to the geography is useful for understanding the diversity of MTBC locally, as well as 

compared to the global population structure of MTBC. Here, we used Single Nucleotide 

Polymorphisms (SNPs) assays to analyze the distribution of MTBC lineages across Nepal. 

The MTBC has been divided into phylogenetically ancient and modern lineages (Brosch et 

al., 2002). The evolutionary “ancient” and “modern” lineages were originally characterized 

by the presence and absence of TbD1, respectively. This classification was further supported 

by DNA sequence analysis of multiple genes, which differentiated the global phylogeny of 

MTBC into six major lineages (Hershberg et al., 2008). The Lineages 1, 5 and 6 represent 

the “ancient” lineages while Lineage 2, 3, and 4 represent the “modern” lineages (Hershberg 

et al., 2008,Brites and Gagneux, 2012). The modern epidemic of TB is largely caused by 

evolutionarily “modern” lineages (except for particular regions such as South-India and the 

Philippines).   

In our dataset, the “modern” lineages accounted for 449/506 (88.74%) of cases, with the 

proportion of “ancient” lineages being substantially lower (57/506; 11.26%), supporting the 

hypothesis that modern lineages might be generally more successful (Arnvig et al., 2011). 

Moreover, within the “modern” lineages, Lineage 2 (157/506; 31.02%) and Lineage 3 

(206/506; 40.71%) dominated in Nepal. This result was somehow expected given the 
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geographic association of these lineages with the neighboring regions to the North (Tibet) 

and South (North-India), respectively (Li et al., 2005,Singh et al., 2004,Narayanan et al., 

2008,Dong et al., 2012). The map illustrates the geographic distribution of the MTBC 

lineages identified in this study across the 75 districts of Nepal (Figure 11). We found no 

obvious differences in the relative proportion of MTBC lineage distribution across the 

different regions of Nepal as shown in Table 6.  

Table 6: Geography wise distribution of MTBC lineages  

GEO_REGION Lineage 1 n (%) Lineage 2 n (%) Lineage 3 n (%) Lineage 4 n (%) Total 

Mountain (North) 1 (3.85) 11 (42.31) 11 (42.31) 3 (11.54) 26 

Hill 45 (10.9) 126 (30.51) 169 (40.92) 73 (17.68) 413 

Terai (South) 11 (18.03) 18 (29.51) 24 (39.34) 8 (13.11) 61 

India 0 (0) 2 (33.33) 2 (33.33) 2 (33.33) 6 

Total 57 (11.26) 157 (31.03) 206 (40.71) 86 (17.00) 506 
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Figure 11: Origin and number of TB patients from the 75 districts in Nepal (n=650) 
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In addition to SNP-typing, we also performed spoligotyping on all 506 patients isolates for 

which the bacterial culture was available. A total of 69 different spoligotypes with unique 

SIT numbers were identified by comparing to the SITVITWEB website (http://www.pasteur-

guadeloupe.fr:8081/SITVIT_ONLINE/) (Demay et al., 2012). We found that 155/506 

(30.63%) patient isolates showed the of “Beijing” spoligotypes (Shared International Types 

(SIT 1)) (Table 7). Interestingly, we observed one strain showing the typical “Beijing” 

spoligotypes but which clearly belonged to Lineage 3 (rather than Lineage 2). These data are 

further discussion in Chapter 6 (Malla et al., 2012). 

Table 7: Lineage wise comparison of patient clinical characteristics 

Patient Characteristics Lineage 1 (n=57) Lineage 2 (n=157) Lineage 3 (n=206) Lineage 4 (n=86) total (n=506) 

Sex of patients      

MALE 46 (80.70) 94 (59.87) 152 (73.79) 62 (72.09) 354 (69.96) 

FEMALE 11 (19.30) 63 (40.13) 54 (26.21) 24 (27.91) 152 (30.04) 

Age group (years)      

Up to 24 yrs 14 (8.28) 56 (33.14) 69 (40.83) 30 (17.75) 169 (100) 

25-34 12 (10.43) 40 (34.78) 42 (36.52) 21 (18.26) 115 (100) 

35-44 6 (7.50) 24 (30) 40 (50) 10 (12.50) 80 (100) 

45-54 11 (16.67) 15 (22.73) 30 (45.45) 10 (15.15) 66 (100) 

55-64 10 (21.28) 12 (25.53) 19 (40.43) 6 (12.77) 47 (100) 

65 and more 4 (13.79) 10 (34.48) 6 (20.69) 9 (31.03) 29 (100) 

TOTAL 57 (11.26) 157 (31.03) 206 (40.71) 86 (17) 506 (100) 

HIV Status      

HIV positive 0 3 (1.91) 7(3.40) 0 10 (1.98) 

HIV negative 12 (21.05) 16 (10.19) 21 (10.19) 12 (13.95) 61(12.06) 

Unknown 45 (78.95) 138 (87.90) 178 (86.41) 74 (86.05) 435 (85.97) 

DIABETES      

Yes 6 (10.53) 14 (8.92) 15 (7.28) 8 (9.30) 43 (8.50) 

no or Unknown 51 (89.47) 143 (91.08) 191 (92.72) 78 (90.70) 463 (91.50) 

BCG status      

scar present 23 (40.35) 63 (40.13) 86 (41.75) 40 (46.51) 212 (41.90) 

Contact of TB case      

Close contact of TB case 13 (22.81) 40 (25.48) 41 (19.90) 18 (20.93) 112 (22.13) 

No TB contact 41 (71.93) 113 (71.97) 157 (76.21) 65 (75.58) 376 (74.31) 

Unknown 3 (5.26) 4 (2.55) 8 (3.88) 3 (3.49) 18 3.56) 

Chest X-ray report      

Normal 4 (7.02) 14 (8.92) 10 (4.85) 4 (4.65) 32 (6.32) 

Cavitary 39 (68.42) 113 (71.97) 147 (71.36) 65 (75.58) 364 (71.94) 

Non cavitary consistent 
with TB 6 (10.53) 17 (10.83) 30 (14.56) 10 (11.63) 63 (12.45) 

http://www.pasteur-guadeloupe.fr:8081/SITVIT_ONLINE/
http://www.pasteur-guadeloupe.fr:8081/SITVIT_ONLINE/
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Non cavitary non 

consistent with TB 1 (1.75) 2 (1.27) 4 (1.94) 1 (1.16) 8 (1.58) 

Not done or Unknown 7 (12.28) 11 (7.01) 15 (7.28) 6 (6.98) 39 (7.71) 

Signs and symptoms      

Cough 48 (84.21) 138 (87.90) 185 (89.81) 74 (86.05) 445 (87.94) 

Duration of cough 

(median weeks) 4 (2-10) 5 (3-12) 4 (3-12) 4 (3-12) 4 (3-12) 

Night sweat 34 (59.65) 113 (71.97) 143 (69.42) 55 (63.95) 345 (68.18) 

Duration of night sweat 
(median weeks) 4 (2-6) 4 (2-8) 4 (2-8) 4 (2-12) 4 (2-8) 

Chest pain 29 (50.88) 95 (60.51) 123 (59.71) 46 (53.49) 293 (57.91) 

Duration of chest pain 

(median weeks) 4 (2-8) 4 (2-8) 4 (2-8) 4 (2-10) 4 (2-8) 

Haemoptysis 18 (31.58) 40 (25.48) 55 (26.70) 26 (30.23) 139 (27.47) 

Duration of Haemoptysis 

(median weeks) 1 (1-4) 2.5 (1-4) 2 (1-4) 2 (1-3) 2 (1-4) 

Loss of appetite 27 (47.37) 82 (52.23) 110 (53.40) 46 (53.49) 265 (52.37) 

Duration of loss of 
appetite (median weeks) 4 (2-8) 4 (3-8) 4.5 (3-8) 8 (4-16) 3 (6-12) 

Weight loss 38 (66.67) 102 (64.97) 138 (66.99) 50 (58.14) 328 (64.82) 

Duration of weight loss 

(median weeks) 4.5 (4-8) 8 (4-12) 8 (4-16) 8 (4-14) 8 (4-14) 

Breathlessness 18 (31.58) 60 (38.22) 68 (33.01) 24 (27.91) 170 (33.60) 

Duration of Breathless 

(median weeks) 8 (4-16) 4 (2.5-10) 4 (2-12) 4 (2-12.5) 4 (2-12) 

History of TB       

Yes 9 (15.79) 60 (38.22) 65 (31.55) 29 (33.72) 163 (32.21) 

Number of TB episodes      

0 (None) 48 (84.21) 97 (61.78) 141 (68.45) 57 (66.28) 343 (67.79) 

1 9 (15.79) 49 (31.21) 51 (24.76) 22 (25.58) 131 (25.89) 

2 or more 0 9 (5.73) 14 (6.80) 7 (8.14) 30 (5.93) 

missing 0 2(1.27) 0 0 2(0.39) 

Persons per room share      

1 person 25 (46.30) 80 (52.63) 87 (44.16) 37 (44.05) 229 (47.02) 

2-3 persons 25 (46.30) 55 (36.18) 87 (44.16) 38 (45.24) 205 (42.09) 

4 or more persons 4 (7.41) 17 (11.18) 23 (11.68) 9 (10.71) 53 (10.88) 

TB contact in past 2 years      

Yes 13 (22.81) 40 (25.48) 41 (19.90) 18 (20.93) 112 (22.13) 

No 44 (77.19) 117 (74.52) 165 (80.10) 68 (79.07) 394 (77.87) 

Drug resistance      

MDR 3 (5.26) 17 (10.83) 15 (7.20) 7 (8.14) 42 (8.30) 

XDR 0 4 (2.54) 0 0 4 (0.80) 

Current smoker      

yes 23 (40.35) 57 (36.31) 87 (42.23) 31 (36.05) 198 (39.13) 

No 34 (59.65) 100 (63.69) 119 (57.77) 55 (63.95) 308 (60.87) 

Treatment outcome      

Cured 4 (7.02) 5 (3.18) 8 (3.88) 6 (6.98) 23 (4.55) 

Completed 0 0 0 1 (1.16) 1 (0.20) 

Failure 0 6 (3.82) 4 (1.94) 1 (1.16) 11 (2.17) 

Died 0 2 (1.27) 0 2 (2.33) 4 (0.79) 

Transferred out 53 (92.98) 144 (91.72) 194 (94.17) 76 (88.37) 467 (92.29) 
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There is increasing evidence that in addition to host factors (Ben-Selma et al., 2012), the 

bacterial factors might also influence the outcome of TB (Coscolla and Gagneux, 2010). 

These include genetic factors (Weiner et al., 2007,Mathema et al., 2012), strain-specific 

differences in immunological recognition (Portevin et al., 2011) and in bacterial fitness 

(Borrell and Gagneux, 2009) (Chernyaeva et al., 2012). The Table 7 shows the patient 

characteristics as categorized by MTBC lineage (based on all culture-positive samples: 

N=506). We did sample collection at a reference laboratory, so the treatment outcome result 

was limited to only those who had DOTS treatment at GENETUP. Here, the “transferred out” 

cases meant those patients who once diagnosed at GENETUP were sent to their closest 

DOTS center for start of DOTS treatment. Hence, the clinical outcome was unknown. 

Nonetheless, in-depth analyses are currently ongoing to look for lineage-specific differences 

among these variables; a brief summary is shown in Table 7. A previous analysis on a smaller 

subset of strains has been published recently and is presented in the following chapter. 
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5.1 Abstract 

Background: Tuberculosis is a major public health problem in Nepal.  Strain variation in 

Mycobacterium tuberculosis may influence the outcome of TB infection and disease. To date, 

the phylogenetic diversity of M. tuberculosis in Nepal is unknown. 

Methods and findings: We analyzed 261 M. tuberculosis isolates recovered from pulmonary 

TB patients recruited between August 2009 and August 2010 in Nepal.  

M. tuberculosis lineages were determined by single nucleotide polymorphisms (SNP) typing 

and spoligotyping. Drug resistance was determined by sequencing the hot spot regions of the 

relevant target genes. Overall, 164 (62.8%) TB patients were new, and 97 (37.2%) were 

previously treated. Any drug resistance was detected in 50 (19.2%) isolates, and 16 (6.1%) 

were multidrug-resistant. The most frequent M. tuberculosis lineage was Lineage 3 

(CAS/Delhi) with 106 isolates (40.6%), followed by Lineage 2 (East-Asian lineage, includes 

Beijing genotype) with 84 isolates (32.2%), Lineage 4 (Euro-American lineage) with 41 

(15.7%) isolates, and Lineage 1 (Indo-Oceanic lineage) with 30 isolates (11.5%). Based on 

spoligotyping, we found 45 different spoligotyping patterns that were previously described. 

The Beijing (83 isolates, 31.8%) and CAS spoligotype (52, 19.9%) were the dominant 

spoligotypes. A total of 36 (13.8%) isolates could not be assigned to any known 

spoligotyping pattern. Lineage 2 was associated with female sex (adjusted odds ratio [aOR] 

2.58, 95% confidence interval [95% CI] 1.42-4.67, p=0.002), and any drug resistance (aOR 

2.79; 95% CI 1.43-5.45; p=0.002). We found no evidence for an association of Lineage 2 

with age or BCG vaccination status. 

Conclusions: We found a large genetic diversity of M. tuberculosis in Nepal with 

representation of all four major lineages. Lineages 3 and 2 were dominating. Lineage 2 was 

associated with clinical characteristics. This study fills an important gap on the map of the M. 

tuberculosis genetic diversity in the Asian region. 
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5.2 Introduction 

Tuberculosis caused by Mycobacterium tuberculosis remains a global health threat with an 

estimated nine million incident cases and 440,000 multidrug-resistant TB cases worldwide 

(World Health Organization, 2010). The incidence of TB was 163 per 100,000 population 

in 2010, and multidrug resistance (MDR) occurred in 2.9% of new cases and 11.7% of 

previously treated cases based on the most recent drug resistance survey in 2006 (World 

Health Organization, 2011,National Tuberculosis Program, 2010). In Nepal, the NTP 

adopted Directly Observed Short Course therapy (DOTS) in 1995. 

Mycobacterium tuberculosis complex (MTBC) has a global phylogeographic population 

structure consisting of six main phylogenetic lineages (Gagneux et al., 2006,Comas et al., 

2009,Gutacker et al., 2002): Lineage 1 (also known as Indo-Oceanic Lineage), Lineage 2 

(East-Asian Lineage, includes the Beijing genotype), Lineage 3 (Delhi/CAS), Lineage 4 

(Euro-American Lineage), and Lineages 5 and 6 (M. africanum West African lineages 1 and 

2). These lineages are associated with specific geographic regions and human populations 

(Gagneux et al., 2006,Gagneux and Small, 2007,Baker et al., 2004,Hirsh et al., 2004). 

Lineage 2, for example, is most often isolated in countries in Asia and the former Soviet 

Union (Sun et al., 2011). There is increasing evidence that in addition to host and 

environmental factors, the epidemiology of TB may also be influenced by bacterial strain 

variation (Coscolla and Gagneux, 2010,Caws et al., 2008,Thwaites et al., 2008,de Jong et 

al., 2008,Dou et al., 2008,Tho et al., 2012,Hanekom et al., 2011,Lari et al., 2009,Click et 

al., 2012). For example, Lineage 2 (includes the Beijing genotype) has been repeatedly 

associated with drug resistance in a wide range of settings and countries (Borrell and 

Gagneux, 2009,Parwati et al., 2010,Pang et al., 2012,Fenner et al., 2012), while a few 

studies could not find evidence for such an association (Rajapaksa and Perera, 

2011,Iwamoto et al., 2008,Lasunskaia et al., 2010). 
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There are several genotyping techniques to define the genetic diversity of M. tuberculosis 

(Gagneux and Small, 2007,Malik and Godfrey-Faussett, 2005,Supply et al., 2006). 

Spoligotyping is a widely used genotyping technique (Brudey et al., 2006,Kamerbeek et al., 

1997). It is based on the repetitive DNA region known as the Direct Repeat (DR) locus in M. 

tuberculosis (Supply et al., 2006). This region is characterized by series of direct repeats 

interspersed by short unique regions called “spacers”. However, these spacers exhibit a high 

rate of change, and convergent evolution can lead to identical genetic character states in 

phylogenetically unrelated strains (Comas et al., 2009,Fenner et al., 2011). By contrast, 

genomic deletions and single nucleotide polymorphism (SNPs) evolve more slowly. Recent 

advances in comparative genomics have led to the development of more robust markers to 

study the genetic diversity (Gagneux and Small, 2007,Sreevatsan et al., 1997,Supply et al., 

2003,Brudey et al., 2006,Niemann et al., 2009,Stucki et al., 2012), and are therefore ideal 

for determining phylogenetic lineages and sub-lineages (Coscolla and Gagneux, 2010). 

Nepal lies between two high TB burden countries, India and China which together account 

for one third of the world’s TB cases (World Health Organization, 2010). To date, there are 

no data on the phylogenetic diversity of M. tuberculosis in Nepal. The aims of the study were 

to describe the main M. tuberculosis lineages and spoligotypes circulating in Nepal, and to 

explore possible associations with clinical and epidemiological characteristics. 
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5.3 Methods 

Ethics statement 

This study was approved by the Nepal Health Research Council, Nepal and the Ethics 

Committee of the Canton of Basel (EKBB), Switzerland. All study participants provided 

written informed consent. After diagnosis, the TB cases were referred to DOTS centers for 

treatment as provided by the Nepal Government’s National TB Control Program.  

Study setting 

The study was based on a convenience sample of TB patients mainly representing 

populations from Kathmandu and the surrounding area. TB suspects who reported symptoms 

of TB including cough for more than two weeks, chest pain, night sweat and fever were 

recruited at the German Nepal Tuberculosis Project (GENETUP), Kathmandu, Nepal. 

Patients already undergoing DOTS therapy were also enrolled, if found smear-positive during 

follow-up visits. GENETUP is a national reference laboratory, technically and financially 

supported by “Kuratorium Tuberkulose in der Welt e. V.” (Gauting, Germany), and is the 

main referral center for culture and drug susceptibility testing to diagnose MDR and 

extensively drug-resistant TB. 

Study population and data collection 

We included a total of 261 culture-confirmed TB cases diagnosed between August 2009 and 

August 2010. We collected socio-demographic and clinical data including previous TB 

episodes, treatment history, HIV, and BCG vaccination status. The information was collected 

by physicians and trained medical and nursing staff. A new case of TB was defined as a 

patient who had not taken anti-TB drugs for at least one month according to WHO guidelines 

(World Health Organization, 2009). A previously treated case was defined as a patient who 

received TB treatment for one month or more. BCG vaccination status was defined based on 

the presence or absence of a BCG scar. 
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Culture, DNA extraction and identification of M. tuberculosis complex 

Sputum samples were cultured on Löwenstein Jensen (LJ) growth medium following 

standard microbiological laboratory procedures. The DNA was extracted by re-suspension of 

MTBC colonies in 500 µl of sterile distilled water, heat killed at 90° C for one hour, and 

centrifuged. The supernatants were preserved at 4°C until further use. MTBC strains were 

identified by multiplex polymerase chain reaction (PCR) by targeting the rpoB gene region. 

We used the forward primers K-0155 (5'-TCCTCGATGACGCCGCTTTCT-3') and K-0209 

(5'-AYATCGACCACTTCGGYAACC-3'), and the reverse primer K-0156 (5'-

TCRGAGATCTTGCGCTTCTGS-3'). PCR conditions were as follows: initial denaturation 

step for 5 minutes at 96° C, 35 amplification cycles of 96° C for 40 secs (denaturation), 62° C 

for 30 secs (annealing), 72° C for 1 min (extension), and a final extension cycle of 7 minutes 

at 72° C. The amplicons were separated by electrophoresis on a 2% agarose gel. The PCR 

yielded a 849 bp amplicon in M. tuberculosis isolates, compared to a 1539 bp amplicon in 

non-tuberculous mycobacteria. All M. tuberculosis isolates were stored in glycerol medium at 

-70
o 
C. 

Determination of the main M. tuberculosis lineages  

We determined the main phylogenetic lineages of M. tuberculosis by real-time PCR using 

fluorescence-labeled probes (Taqman, Applied Biosystems, USA) targeting lineage-specific 

SNPs as previously described (Gagneux et al., 2006,Sreevatsan et al., 1997,Stucki et al., 

2012).  

Spoligotyping 

Spoligotyping was performed according to the manufacturer’s instructions, using 

commercially available kits from Isogen Bioscience BV (Maarssen, The Netherlands) 

(Kamerbeek et al., 1997,Lillebaek et al., 2003). Spoligotyping patterns were defined 
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according to the definitions in the SITVITWEB database (http://www.pasteur-

guadeloupe.fr:8081/SITVIT_ONLINE/) accessed on October 22, 2012. The SITVITWEB 

global database has documented 7,105 spoligotyping patterns from a global collection of 

53,816 strains (Demay et al., 2012). All patterns that could not be assigned were considered 

orphan spoligotypes. 

Molecular drug resistance testing 

As phenotypic drug susceptibility testing results were not available for all strains, we used 

molecular methods to detect drug resistance in our study. Molecular drug resistance testing 

was performed on all strains by direct sequencing of the hotspot regions of the target genes 

for rifampicin (rpoB), isoniazid (inhA promoter region and katG), and streptomycin (rpsL). 

MDR strains were then further sequenced and analyzed for ethambutol (embB), 

fluoroquinolones (gyrA) and aminoglycoside (rrs) resistance by sequencing of the relevant 

gene segments. For the rpoB region, we used an in-house PCR assay with primer pair K-0155 

and K-0209 as described above. For all other target genes, PCR primers and PCR conditions 

were adapted from previously published studies (Victor et al., 1999,Feuerriegel et al., 

2009,Brossier et al., 2010).The sequences were analyzed with M. tuberculosis H37Rv as 

reference sequence using the Staden software package (Staden et al., 2000,Bonfield et al., 

1995), and compared to the publicly available web-based database 

(http://www.tbdreamdb.com/) (Sandgren et al., 2009). Any drug resistance was defined as 

resistance to isoniazid, rifampicin, streptomycin, ethambutol, fluoroquinolones, and/or 

aminoglycosides. MDR was defined as resistance to at least isoniazid and rifampicin. 

Statistical analyses 

We used Chi-square test to test the statistical significance of differences between groups in 

binary variables, and the Kruskal Wallis rank test for continuous variables. Logistic 

regression models were used to compare patient characteristics associated with Lineage 2 

http://www.pasteur-guadeloupe.fr:8081/SITVIT_ONLINE/
http://www.pasteur-guadeloupe.fr:8081/SITVIT_ONLINE/
http://www.tbdreamdb.com/
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(includes the Beijing genotype) compared to all other lineages (Lineages 1, 3 and 4), adjusted 

for age, sex, treatment history, BCG vaccination status, and any drug resistance. All statistical 

analyses were performed in STATA 10.1 (Stata Corp., College Station, TX, USA). 

5.4 Results 

Patient characteristics 

Of the 261 patients included in this study, 164 (62.8%) were new TB cases. Overall, 182 

(69.73%) were male, and the median age was 31 years (interquartile range [IQR] 23-50). 

Females were significantly younger than males (median age 26 versus 35 years, p<0.001). 

HIV status was known in 26 patients; of these 8 (30.8%) were HIV-positive. Most patients 

originated from Kathmandu valley (153 cases, 58.6%), followed by 104 cases (39.8%) from 

different districts of Nepal, and four patients (1.5%) who were born in India. 

Mycobacterium tuberculosis genotyping and lineage assignment 

We analyzed a total of 261 M. tuberculosis isolates (one from each patient). The SNP-typing 

results showed the presence of four different M. tuberculosis lineages (Table 8). The most 

frequent lineages were Lineage 3 (includes CAS/Delhi) with 106 isolates (40.6%) and 

Lineage 2 (East-Asian lineage, includes Beijing genotype) with 84 isolates (32.2%). Forty 

one isolates (15.7%) belonged to Lineage 4 (Euro-American Lineage), and 30 isolates 

(11.5%) to Lineage 1 (Indo-Oceanic Lineage). Lineages 5 and 6 (M. africanum West African 

lineages) were not found in our sample. 
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Table 8: Description of the main M. tuberculosis lineages and spoligotyping patterns from Nepal (n=261) 

Lineage Spoligotyping family Spoligotyping pattern (spacers 1-43) SIT n % 

1 EAI5 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■□■■■■■□□□□ 138 10 33.33 

1 EAI3_IND ■□□■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■□■■□□□■■■■ 11 4 13.33 

1 EAI1_SOM □□□■■■■■■■■■■■□■■■■■■■■■■■■■□□□□■□■■■■■□■■■ 1734 1 3.33 

1 EAI1_SOM ■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■□■■■■■□■■■ 48 1 3.33 

1 EAI2_MANILLA ■■□■■■■■■■■■■■■■■■■□□■■■■■■■□□□□■□■■■■■■■■■ 19 1 3.33 

1 EAI6_BGD1 ■■■■■■■■■■■■■■■■■■■■■■□■■■■■□□□□■□■■□■■■■■■ 292 1 3.33 

1 Orphan ■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□□□■□■■■■■□□□□ - 1 3.33 

1 Orphan □□□■■■■■■■■■■□■■■■■■■■■■■■■■□□□□■□■■□□□■■■■ - 1 3.33 

1 Orphan ■■■■■■■■■■■■■■■■■■■■■■■■■■□■□□□□■□■■■■■□■■■ - 1 3.33 

1 Orphan ■■■■■■■■■□■■■■■■■■■■■■■■■■■■□□□□■□■■■■□□□□□ - 1 3.33 

1 Orphan ■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■□□□■■■□□□□ - 1 3.33 

1 Orphan ■■■■■■■■■■■□■■■■■■■■■■■■■■■■□□□□■□■■■■■□□□□ - 1 3.33 

1 Orphan ■■■■■■■■■■■■■□□□■■■■■■■■■■■■□□□□■□■■■■■□□□□ - 1 3.33 

1 Orphan ■■■■■■■■■■■■■■■■■■■■■■□■□□□■□□□□□□■■□■■■■■■ - 1 3.33 

1 Orphan ■■■■■■■■■■■■■□□□□■□□□□□□□■□□□□□□□□■■□■■■■■■ - 1 3.33 

1 Orphan ■■■■■■■■■■■■■■□□□□■■■■■■■■■■□□□□■□■■■■■□□□□ - 1 3.33 

1 Orphan ■□□■■■■■■■■■■□■■■■■■■■■■■■■■□□□□■□■■□□□■■■■ - 1 3.33 

1 Orphan ■□□■■■■□□□□□□□□□□□■■■■■■■■■■□□□□■□■■□□□■■■■ - 1 3.33 

Subtotal    30 100.00 

2 Beijing □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■■■ 1 82 97.62 

2 Beijing □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■□■■ 941 1 1.19 

2 Beijing-like □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■ 250 1 1.19 

Subtotal    84 100.00 

3 CAS1_DELHI ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□■■■■■■■■■ 26 52 49.06 

3 CAS ■■■□□□□■■■■■■■■■■■■□□□□□□□□□□□□□□□□□■■■■■■■ 599 9 8.49 

3 CAS ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□□□■■■■■■■ 357 6 5.66 

3 CAS2 ■■■□□□□□□□■■■■■■■■■■■■□□□□□□□□□□□□■■■■■■■■■ 288 3 2.83 

3 CAS1_DELHI ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□■■□■■■■■■ 428 3 2.83 

3 CAS1_DELHI ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□■□■■■■■■■ 1091 3 2.83 

3 CAS1_DELHI ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□■■□□□□□■■ 2147 2 0.94 

3 CAS1_DELHI ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□■■□□■■■■■ 25 1 0.94 

3 U (CAS_ANCESTOR) ■■■□□□□■■■■■■■■■■■■■■■□□■■■■■■■■■□□□□■■■■■■ 27 1 0.94 

3 CAS1_DELHI ■■■□□□□■■■■■■■□■■■■■■■□□□□□□□□□□□□■■■■■■■■■ 141 1 0.94 

3 CAS ■■■□□□□■■■■■■■■■■■■■■□□□□□□□□□□□□□■■■■■■■■■ 142 1 0.94 

3 CAS ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□□■■■■■■■■ 203 1 0.94 

3 CAS1_DELHI ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□■■□□□■■■■ 381 1 0.94 

3 CAS1_DELHI ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□■■■■■□■■■ 429 1 0.94 

3 CAS ■■■□□□□■■■■■■■■■■■■■□□□□□□□□□□□□□□■■■■■■■■■ 1093 1 0.94 

3 CAS ■■■□□□□■■■■■■■■■■■□□□□□□□□□□□□□□□□□□■■■■■■■ 1422 1 0.94 

3 CAS ■■■□□□□□■■■■■■■■■■■■■■□□□□□□□□□□□□■■■■■■■■■ 1551 1 0.94 

3 CAS1_DELHI ■■■□□□□■■■■■■■■■■■□■■■□□□□□□□□□□□□■■■■■■■■■ 1590 1 0.94 

3 CAS1_DELHI ■■■□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□□□□□■■■■■ 1789 1 0.94 

3 Beijing c □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■■■ 1 1 0.94 

3 Orphan ■■■□□□□■■■■■■■■■□■■■■■□□□□□□□□□□□□□□□□■■■■■ - 3 0.94 

3 Orphan ■■■□□□□■■■■■■■■■□□□□□□□□□□□□□□□□□□□□□□□■■■■ - 1 0.94 

3 Orphan ■■■□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■□■■■ - 1 0.94 

3 Orphan ■■■□□□□■■■■■■□□■■■■■■■□□□□□□□□□□□□■■■■■■■■■ - 1 0.94 

3 Orphan ■■■□□□□■■■■■■■■■■■■□□□□□□□■□□□□□□□□□■■■■■■■ - 1 0.94 

3 Orphan ■■■□□□□■■■■■■■■■□■■■■■□□□□□□□□□□□□■■■□■■■■■ - 1 0.94 

3 Orphan ■■■□□□□■■■■■■■■■■■■■■■□■■■■■■■■■■□□□■■■■■■■ - 1 1.89 

3 Orphan ■■□□□□□■■■■■■■■■■■■■■■□□□□□□□□□□□□■■□□■■■■■ - 1 0.94 

3 Orphan ■■■□□□□■■■■■■■■□□□□□□□□□□□□□□□□□□□□□□□□□■■■ - 1 0.94 

3 Orphan ■■■□□□□■■■■■■■■■□■■■■■□□□□□□□□□□□□■■■□□□□□■ - 1 0.94 

3 Orphan ■■■□□□□□□□■■■■■■■■■■■■□□□□□□□□□□□□□□□□□□□□□ - 1 0.94 

3 Orphan ■■■□□□□■■■■■■■■■■■■■■□□□□□□□□□□□□□□□□□□□□□□ - 1 2.83 

3 Orphan ■■■□□□□■■■■■■■■□□□□□□□□□□□□□□□□□□□□□□□□□■■■ - 1 0.94 

Subtotal    106 100.00 

4 H3 ■□□■■■■■■■■■■■■■■■■■■■■■■■■■■■□■□□□□■■■■■■■ 655 6 14.63 

4 T2 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■ 52 2 4.88 

4 T3 ■■■■■■■■■■■■□■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■ 37 3 7.32 

4 S ■■■■■■■■□□■■■■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■ 34 2 4.88 

4 T1 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■ 53 4 9.76 

4 X2 ■■■■■■■■■■■■■■■■■□■■■■■■■■■■■■■■□□□□■■□□□□■ 137 2 4.88 

4 T1 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■■□□□□■ 244 2 4.88 

4 H1 ■■■■■■■■■■■■■■■■■■■■■■□□■□□□□□□■□□□□■■■■■■■ 620 2 4.88 

4 LAM9 ■■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■ 42 1 2.44 

4 H3 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□■□□□□■■■■■■■ 50 1 2.44 

4 T2-T3 ■■■■■■■■■■■■□■■■■■■■■■■■■■■■■■■■□□□□■■■□■■■ 73 1 2.44 

4 T1 ■■■■□■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■ 154 1 2.44 

4 T1 ■■■■■■■■■■■■□□□□■■■■■■■■■■■■■■■■□□□□■■■■■■■ 102 1 2.44 

4 X1 ■■■■■■■■■■■■■■■■■□■■■■■■■■■■■■■■□□□□■■■■■■■ 119 1 2.44 

4 H1 ■■■■■■■■■■■■■■■■■■■■■□□□■□□□□□□■□□□□■■■■■■■ 283 1 2.44 

4 T1 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■■■■■□□ 628 1 2.44 

4 H3 ■■■■■■■■■■■■□■■■■■■■■■■■■■■■■□□■□□□□■■■■■■■ 929 1 2.44 

4 Orphan ■■■■■■■■■■■■■■■■■■■■□■□□□□■■■■■■□□□□■■■■■■■ - 1 2.44 

4 Orphan □■■■■■□■■■■■■■■■■□■■■■■■■■■■■■■■□□□□■■■■■■■ - 1 2.44 

4 Orphan ■■■■■■□■■□■■■■■■■■□■■■■■■■■■■■■■□□□□□■■■■■■ - 1 2.44 

4 Orphan ■□■■■■■■■■■■■■□□■■■■■■■■■■■■■■■■□□□□■■■■■■■ - 1 2.44 

4 Orphan ■□■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□□■■■■■■ - 1 2.44 

4 Orphan ■■■□■■■■□□■■□■■■■■■■■■■■■■■■■■■■□□□□■■■■□■■ - 1 2.44 

4 Orphan ■■■■■■■■■■■■■■■■■■■■□■■□□□□□□□□■□□□□■■■■■■■ - 1 2.44 

4 Orphan ■■■■■□■■■■■■■■■■■■□■■■■■■■■■■■■■□□□□■■■■■■■ - 1 2.44 

4 Orphan ■■□■■■■■■■■■■■■■■■■■■■■■■■□□□□□□□□□□■■■■■■■ - 1 2.44 

Subtotal    41 100.00 

                                                           
c
 This strain was assigned to Lineage 3 (Delhi/CAS) based on alternative molecular markers, as previously published (Fenner et al., 2011) 

SIT, Spoligotype International Type according to the definitions in the SITVITWEB database (http://www.pasteur-

guadeloupe.fr:8081/SITVIT_ONLINE/) accessed on April 2012. Lineage 1: Indo-Oceanic Lineage; Lineage 2: East-Asian Lineage (includes 

Beijing strains); Lineage 3: Delhi/CAS; Lineage 4: Euro-American Lineage 
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Based on spoligotyping, we detected 45 different spoligotypes (SITs) corresponding to 225 

M. tuberculosis isolates (Table 8). The remaining 36 (13.8%) strains could not be assigned to 

any known spoligotyping pattern in the SITVITWEB database, and were therefore considered 

orphan spoligotypes. The spoligotyping results showed that CAS family (90, 34.5%) and 

Beijing (84 isolates, 32.2%) were the predominant spoligotypes in our sample (Table 8). 

Among the CAS family, the most prevalent spoligotype was CAS1_DELHI (SIT 26) 

representing 52 (19.9%) isolates, and almost all Beijing isolates (83 of 84 isolates belonging 

to Lineage 2) showed the classical Beijing spoligotyping pattern. Of the 41 strains belonging 

to Lineage 4, we found spoligotypes that have been reported before in India or Tibet (LAM9, 

H3, T2-T3, T1, XI, H1, and H3) according to the SITVITWEB database. Among the 30 

(11.5%) Lineage 1 strains, only 18 (60.0%) matched the SITs of the East African Indian 

(EAI) family. Only two SIT types SIT 138 (EAI5; n=10), and SIT 11 (EAI3_IND; n=4) were 

represented by more than one strain. However, SIT 1734 (EAI1_SOM) present as a single 

isolate in our dataset was not reported before from the Indian sub-continent according to the 

SITVITWEB database. When comparing SNP typing with the spoligotyping results, we 

found one case of “pseudo-Beijing” spoligotpype as previously reported (Fenner et al., 

2011). 

Drug resistance 

Overall, 50 (19.2%) M. tuberculosis isolates had any drug resistance and 16 (6.1%) were 

MDR as determined by DNA sequencing of the main target regions (Table 9). Any drug 

resistance was more frequently detected among previously treated TB cases (29 cases, 

30.0%) compared to new cases (21 cases, 12.8%, p=0.001). Among the 16 MDR strains, 9 

(56.3%) were assigned to Lineage 2 (East-Asian Lineage), 6 (37.5%) to Lineage 3 

(CAS/Delhi), and one (6.2%) to Lineage 4 (Euro-American Lineage). 
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Association between M. tuberculosis lineages and patient characteristics 

We observed that the proportion of female sex was different across the four main  

M. tuberculosis lineages. Lineage 2 isolates were more common among females (41.7%), 

compared to other lineages (range 13.3% to 27.4%, overall p=0.016, Table 9). Moreover, any 

drug resistance was more frequently detected in Lineage 2 isolates (31.0%) than in any other 

lineages (range 13.2% to 14.6%, overall p=0.011). Other patient characteristics such as age, 

previous treatment history, or BCG vaccination were not significantly associated with any of 

the four lineages (Table 9). 

Table 9: Associations of patient characteristics across the four main Mycobacterium tuberculosis lineages 

identified in Nepal 

Patient characteristics Total Lineage 

1 

Lineage 2 Lineage 3 Lineage 4 P 

value 

 n (%) (n=30) (n=84) (n=106) (n=41)  

Age, median  

(IQR), years 

31  

(23-50) 

42  

(24-50) 

30  

(23.5-50.5) 

30  

(23-45) 

38  

(23-55) 
0.50 

Female sex 79 (30.3) 4 (13.3) 35 (41.7) 29 (27.4) 11 (26.8) 0.016 

Previously treated 97 (37.2) 8 (26.7) 39 (46.4) 35 (33.0) 15 (36.6) 0.15 

BCG vaccinated 110 (42.2) 13(43.3) 31 (36.9) 46 (43.4) 20 (48.8) 0.62 

Any resistance 50 (19.2) 4 (13.3) 26 (30.9) 14 (13.2) 6 (14.6) 0.011 

MDR 16 (6.1) 0 9 (10.7) 6 (5.7) 1 (2.4) 0.14 
d
 

 

Because Lineage 2 (includes Beijing genotype) has been previously associated with particular 

characteristics (Caws et al., 2008,Thwaites et al., 2008,Parwati et al., 2010,Drobniewski et 

al., 2005), and because Lineage 2 was the second most common lineage in our sample, we 

tested whether these characteristics were also associated with Lineage 2 in our setting by 

comparing our Lineage 2 isolates to the other lineages combined (Table 3). Logistic 

regression analyses showed that Lineage 2 was associated with female sex (adjusted odds 

ratio [aOR] 2.58; 95% confidence interval [95%CI] 1.42-4.67, p=0.002) and any drug 

resistance (aOR 2.79; 95%CI 1.43-5.45, p=0.002). A history of previous TB treatment tended 

                                                           
d Fisher’s exact test 

BCG, Bacille Calmette Guerin; IQR, Interquartile range; MDR, Multidrug-resistant 
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to be associated with Lineage 2 (aOR 1.68, 95% CI 0.95-2.97, p=0.074), while BCG 

vaccination status was not associated with Lineage 2 (includes Beijing genotype) compared 

to other lineages (aOR 0.67; 95%CI 0.37-1.20, p=0.18).  

5.5 Discussion 

We analyzed 261 M. tuberculosis isolates from Nepal using SNP typing and spoligotyping. 

We found that four main phylogenetic lineages of M. tuberculosis were present in Nepal. 

Lineage 2 (East-Asian Lineage, includes the Beijing genotype) and Lineage 3 (CAS/Delhi) 

were the most frequent, while Lineage 1 (Indo-Oceanic Lineage) and Lineage 4 were less 

prevalent. Spoligotyping revealed a large genetic diversity with the predominant 

spoligotyping families being Beijing and CAS/Delhi, and nearly 14% of spoligotyping 

patterns previously unreported. 

Because Nepal is geographically located between India and Tibet (China), we expected to 

observe similar M. tuberculosis genotypes in Nepal as in these neighboring countries. Indeed, 

Lineage 3 (corresponds to Delhi/CAS spoligotype), which was the most common M. 

tuberculosis genotype in our sample, was previously shown to be predominant in Northern 

India (Singh et al., 2004,Narayanan et al., 2008,Svensson et al., 2011). Similarly, Lineage 2 

(includes Beijing), which was the second most common genotype in our study has been 

reported as the most frequent among TB cases from China (including Tibet) (Dong et al., 

2012,Pang et al., 2012,Liu et al., 2011,Hu et al., 2009,Guo et al., 2011,Han et al., 2007). 

The prevalence of the Beijing genotype of 32.2% in our study is in the range of the 

prevalence reported from other Asian countries, ranging from 17% in Malaysia to 72% in 

Japan (European Concerted Action on New Generation Genetic Markers and 

Techniques for the Epidemiology and Control of Tuberculosis, 2006). Lineage 1 which is 

association with South-Indian region, Bangladesh and the Philippines was also present in our 

study sample (Gagneux et al., 2006). 
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We observed a discrepancy between SNP typing and spoligotyping results. Spoligotyping is 

based on the highly variable DR locus, and convergent evolution may therefore lead to 

homoplasy in spoligotyping patterns (Comas et al., 2009) . We found a strain with a Beijing 

spoligotype, which was assigned to Lineage 3 (includes CAS genotype) rather than to 

Lineage 2 (includes Beijing) based on alternative molecular markers. We have previously 

published this phenomenon as “Pseudo-Beijing” (Fenner et al., 2011). In Asian countries 

with a high prevalence of Beijing spoligotypes, it is likely that this phenomenon may be 

observed in other settings. 

We found that Lineage 2 was associated with female sex, which is in line with a previous 

study from Vietnam (Buu et al., 2009). In contrast to other studies (Buu et al., 2009,Buu et 

al., 2009) however, we found no evidence for an association between Lineage 2 and age. Our 

observation may be explained by bacterial factors or genetic host factors. Young and middle-

aged women may be more likely to progress from infection to disease than men (Holmes et 

al., 1998,Borgdorff et al., 2000). Alternatively, our results may be influenced by recruitment 

of more young females than young males into our study. Indeed, females were younger than 

males in our study population. Overall, our study population showed a male-to-female ratio 

of 2.3:1 which is similar to the global estimate of 1.9:1 reported by WHO (World Health 

Organization, 2011), and may reflect differences in access to health care (Connolly and 

Nunn, 1996,Getahun et al., 2010). Furthermore, sex differences in TB case notification rates 

among males and females have been noted before in other settings (Neyrolles and 

Quintana-Murci, 2009,Uwizeye et al., 2011). 

Lineage 2 was also associated with any drug resistance. This is consistent with previous 

studies from different settings (Parwati et al., 2010,Fenner et al., 2012). The reasons for this 

association remain unknown (Borrell and Gagneux, 2009), but the strain genetic 

background of Beijing strains (Borrell and Gagneux, 2011) and their interactions with the 
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human immune system may play a role (Parwati et al., 2010). Alternatively, this association 

might reflect higher relapse rates in patients infected with Beijing strains (Sun et al., 2006). 

Indeed, in our study, Lineage 2 included more patients that were previously treated but this 

association was not statistically significant. Finally, previous studies hypothesized that 

Beijing strain may escape the protective immunity of BCG vaccination (Parwati et al., 

2010), but we found no evidence for such an association between Lineage 2 and BCG 

immunization. BCG immunization has been introduced in Nepal more than 30 years ago, 

with an estimated immunization coverage of 96% in 2009 (World Health Organization, 

2011). However, larger studies may be required for a more complete understanding of the 

association between previous BCG vaccination and particular M. tuberculosis genotypes. 

Our study has several limitations. First, the study was not population-based as patients were 

recruited only at GENETUP (Kathmandu), and patients diagnosed at other microscopy 

centers during the study period could not be included. Second, patients coming from more 

remote areas outside of Kathmandu might be more likely to be referred as drug resistance 

suspects. Therefore, this may have artificially increased the proportion of drug-resistant 

strains in our sample. Third, although our study covered samples from forty different districts 

of Nepal including those bordering with India and Tibet, half of patients were from the 

Kathmandu area. Therefore, the study results mainly reflect the genetic diversity of the 

strains from the patients who visited GENETUP.  

In conclusion, we found a high diversity of M. tuberculosis genotypes in Nepal with 

representation of all four main M. tuberculosis lineages, and showed that Lineage 2 (includes 

Beijing genotype) was associated with female sex and any drug resistance. This study fills the 

gap on the map of the genetic population structure of M. tuberculosis in the Asian region by 

providing a first insight into the phylogenetic lineages of M. tuberculosis circulating in 

Nepal. 
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6.1 Abstract 

Background: Mycobacterium tuberculosis has a global population structure consisting of six 

main phylogenetic lineages associated with specific geographic regions and human 

populations. One particular M. tuberculosis genotype known as “Beijing” has repeatedly been 

associated with drug resistance and has been emerging in some parts of the world. “Beijing” 

strains are traditionally defined based on a characteristic spoligotyping pattern. We used three 

alternative genotyping techniques to revisit the phylogenetic classification of M. tuberculosis 

complex (MTBC) strains exhibiting the typical “Beijing” spoligotyping pattern. 

Methods and Findings: MTBC strains were obtained from an ongoing molecular 

epidemiological study in Switzerland and Nepal. MTBC genotyping was performed based on 

SNPs, genomic deletions, and 24-loci MIRU-VNTR. We identified three MTBC strains from 

patients originating from Tibet, Portugal and Nepal which exhibited a spoligotyping patterns 

identical to the classical Beijing signature. However, based on three alternative molecular 

markers, these strains were assigned to Lineage 3 (also known as Delhi/CAS) rather than to 

Lineage 2 (also known as East-Asian lineage). Sequencing of the RD207 in one of these strains 

showed that the deletion responsible for this “Pseudo-Beijing” spoligotype was about 1,000 

base pairs smaller than the usual deletion of RD207 in classical “Beijing” strains, which is 

consistent with an evolutionarily independent deletion event in the direct repeat (DR) region of 

MTBC. 

Conclusions: We provide an example of convergent evolution in the DR locus of MTBC, and 

highlight the limitation of using spoligotypes for strain classification. Our results indicate that 

a proportion of “Beijing” strains may have been misclassified in the past. Markers that are 

more phylogenetically robust should be used when exploring strain-specific differences in 

experimental or clinical phenotypes. 
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6.2 Introduction 

Mycobacterium tuberculosis complex (MTBC) adapted to humans consist of six main 

phylogeographical lineages(Gagneux and Small, 2007). There is increasing evidence that 

strain diversity in MTBC plays a role in the outcome of infection and disease in tuberculosis 

(TB) (Coscolla and Gagneux, 2010,Malik and Godfrey-Faussett, 2005). One particular 

MTBC genotype known as “Beijing” has repeatedly been associated with drug 

resistance(Borrell and Gagneux, 2009) and increased virulence in animal models(Coscolla 

and Gagneux, 2010). This genotype was first described in 1995(van Soolingen et al., 1995), 

and has traditionally been defined based on a characteristic spoligotyping pattern (Parwati et 

al., 2010). More recently, phylogenetic analyses showed that the Beijing strain family 

belongs to Lineage 2 (known as East Asian lineage), which is one of the six main human-

adapted lineages of MTBC (Gagneux et al., 2006,Comas et al., 2009). Beijing strains are 

most often isolated in East- and Southeast Asia, in countries of the former Soviet Union, and 

have recently been emerging in South Africa (Gagneux et al., 2006,Parwati et al., 

2010,Cowley et al., 2008,Tsolaki et al., 2005). 

Spoligotyping is based on the Clustered Regulatory Short Palindromic Repeats (CRISPR) 

region known as the Direct Repeat (DR) locus in  

MTBC. This region is characterized by series of direct repeats interspersed by short unique 

regions called “spacers” (Supply et al., 2006). The characteristic spoligotyping pattern of 

Beijing strains reflects the loss of the first 34 spacers of a total of 43 used in standard 

spoligotyping (van Soolingen et al., 1995). Repetitive DNA sequences like the DR locus 

exhibit a high rate of change, and convergent evolution can lead to identical genetic character 

states in phylogenetically unrelated strains; a phenomenon referred to as homoplasy (Comas 

et al., 2009).  
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We recently identified novel SNP markers that define the main phylogenetic lineages 

(Hershberg et al., 2008,Comas et al., 2009). In contrast to spoligotyping, SNPs in MTBC 

exhibit almost no homoplasy (Comas et al., 2009). Here we used these SNPs, combined with 

genomic deletion and MIRU-VNTR analyses to revisit the phylogenetic classification of 

MTBC strains exhibiting the classical “Beijing” spoligotyping pattern. 

6.3 Methods 

MTBC isolates were obtained during an ongoing population-based study on the molecular 

epidemiology of TB in Switzerland, and from an ongoing hospital-based study in Nepal.  

Mycobacterial isolates were cultured and DNA extracted according to standard laboratory 

procedures. Spoligotyping was performed as previously described and compared to data 

published in SpolDB4 (Brudey et al., 2006,Kremer et al., 2004). 24-loci MIRU-VNTR was 

performed as previously described (Supply et al., 2006), and the data analyzed using the 

MIRU-VNTRplus online tool (http://www.miru-vntrplus.org). Determination of the main 

phylogenetic MTBC lineages was performed by TaqMan real-time PCR (Taqman, Applied 

Biosystems, USA) using primers (Sigma-Aldrich, Buchs, Switzerland), Taqman Universal 

MasterMix II and Taqman minor groove binder probes (Table 10) targeting lineage-specific 

SNPs reported previously(Hershberg et al., 2008,Cowley et al., 2008). Region of difference 

(RD) deletion PCRs were performed for RD105, RD207 and RD750 (Tsolaki et al., 2004). 

PCR products of RD207 were directly sequenced. All genotyping experiments of the three 

“Pseudo-Beijing” isolates described here were repeated at least twice by two independent 

investigators. 

 

http://www.miru-vntrplus.org/
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Table 10: Sequence information of probes and primers used in this study  to detect main phylogenetic lineages of M. tuberculosis complex isolates by single 

nucleotide polymorphisms genotyping.

 Lineage 
Alternative 

name 
SNP name *  Primer sequences  Probe sequences 

2 East Asian 

Lineage 

Rv2952_0526n  F: 5‘-CCTTCGATGTTGTGCTCAATGT-3‘  Wild type probe:  

FAM: 5‘-CCCAGGAGGGTAC-3‘ 

    R: 5‘-CATGCGGCGATCTCATTGT-3‘  Lineage-specific probe:  

VIC: 5‘-CCCAGGAAGGTACT-3‘ 

3 Delhi/CAS Rv3804c_0012s  F: 5‘-GCATGGATGCGTTGAGATGA-3‘  Lineage-specific probe:  

FAM: 5‘-AAGAATGCAGCTTGTCGA-3‘ 

    R: 5‘-CGAGTCGACGCGACATACC-3‘  Wild-type probe:  

VIC: 5‘-AAGAATGCAGCTTGTTGA-3‘ 

          * as reported in Ref. [Comas et al., 2009] F: forward; R: reverse; SNP, single nucleotide polymorphisms 

          Probes are minor groove binder probes 
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The Swiss study was approved by the ethics committee of the Canton of Berne, Switzerland. 

Written informed consent was obtained from the patient by the treating physicians. In some 

cases informed consent could not be obtained because the patient could not be located or was 

known to have died. For these cases we obtained permission from the Federal expert 

commission on confidentiality in medical research (based at the Federal Office of Public 

Health, Bern, Switzerland) to use the data provided by the treating physician based on clinical 

notes. The study in Nepal was approved by the Nepal Health Research Council (NHRC), 

Kathmandu, Nepal, and the ethics committee of the Canton of Basel, Switzerland. Written 

informed consent was obtained for all Nepalese patients. 

6.4 Results 

Among the isolates recovered in Switzerland, we identified a total of 52 that exhibited the 

characteristic “Beijing” spoligotype. SNP-genotyping confirmed that 50 of these (96.2%) 

belonged to Lineage 2. Two isolates (3.8%) belonged to Lineage 3 (also known as 

Delhi/CAS). Similarly, among 55 Nepalese isolates with a Beijing spoligotype, 54 (98.2%) 

were confirmed as belonging to Lineage 2, while one isolate (1.8%) belonged to Lineage 3 

(Table 11). The three Lineage 3 isolates were epidemiologically unrelated and were isolated 

from HIV-negative patients. The two strains from Switzerland were isolated in patients living 

in Switzerland but originating from Portugal and Tibet, and the strain from Nepal was 

isolated in a patient born and living in Nepal. All but one strains were pan-susceptible (one 

isolate with a katG S315T mutation). We found no evidence for a mixed-strain infection or 

clonal heterogeneity (Cohen et al., 2011)based on the 24-loci MIRU-VNTR pattern. 
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Table 11: Spoligotyping, single nucleotide polymorphism (SNP) and region of difference (RD) PCR 

results from the three Mycobacterium tuberculosis isolates belonging to Lineage 3 
Specimen no. Spoligotyping pattern (spacers 1-43) SIT 1 Clade SNP for  

Lineage 2 

SNP for  

Lineage 3 

Deletion of  

RD 105 

Deletion of  

RD 750 

1395 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■■■ 1 Beijing - + - + 

1476 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■■■ 1 Beijing - + - + 

2503 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■■■ 1 Beijing - + - + 

                1
 Spoligotype International Type (SIT) according to the definition in SpolDB4 database using SITVIT2        

             (http://www.pasteur-guadeloupe.fr:8081/SITVITDemo/index.jsp) 

             +, present; -, absent; RD, region of difference;  

To confirm our SNP data, we subjected these three isolates to further molecular 

investigations. Lineage 2 strains, including all Beijing strains, are deleted in RD105 

(Gagneux et al., 2006,Tsolaki et al., 2005), whereas Lineage 3 strains have a deletion in 

RD750 (Gagneux et al., 2006). We found that the three strains of interest had RD105 intact 

and a deletion in RD750 (Table 11). In addition, the MIRU-VNTR profiles of these isolates 

clustered with the Lineage 3 strains (Delhi/CAS) rather than with the Beijing strains (Figure 

1). The further investigations thus confirmed that these three strains belonged to Lineage 3 

rather than Lineage 2.  

 

Figure 12: Neighbor-joining Dendogram based on the copy numbers of 24 MIRU-VNTR loci using the 

web-based MIRU-VNTRplus tool 

 

 

We explored the molecular mechanism by which these Lineage 3 isolates acquired their 

“Pseudo-Beijing” spoligotyping patterns. “True” Beijing strains harbor a 7,399 base pair 

(bp) deletion in RD207, which is responsible for the missing spacers 1-34(Tsolaki et al., 

                                                                   using the web-based MIRU-VNTRplus tool 

(http://mvpl.mlvaplus.net). The Mycobacterium tuberculosis isolates reported here are highlighted in 

boxes, reference strains are from the MIRU-VNTRplus database. The corresponding spoligotyping 

patterns are shown as a reference but were not included in the construction of the dendogram. 

http://www.pasteur-guadeloupe.fr:8081/SITVITDemo/index.jsp
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2005). We thus hypothesized that the strains of interest might have acquired a similar but 

distinct deletion linked to an independent mutational event. We amplified RD207 (Tsolaki 

et al., 2004) but failed to obtain a product in two of the three strains. Strain 1395 for which 

our PCR was successful yielded a PCR product that was about 1,000 bp larger than the 

corresponding product seen in true Beijing strains (Figure 13), indicating that the deletion 

responsible of the “Pseudo-Beijing” spoligotype in 1395 was about 1000 bp smaller than 

the classical deletion of RD207. Direct sequencing of the PCR product showed that the 3’-

deletion boundary was 1,093 bp upstream (GenBank accession no. JF789456) of the 

deletion end point for RD207 published previously(Tsolaki et al., 2004). These results 

again indicate that the deletion in strain 1395 is distinct from the standard RD207 deletion. 

We were unable to determine the exact deletion starting point of this new deletion due to 

the repetitive nature of the DR region. 

 

Figure 13: Results of Region of Difference (RD) 207 polymerase chain reaction 
 

 

M, molecular weight marker; 1, “True” Beijing isolate; 2, “Pseudo-Beijing” isolate no. 1395; 3, 

Negative control. 
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6.5 Discussion 

In this report we present three cases with MTBC isolates harboring spoligotype patterns 

identical to the Beijing signature, which were assigned to Lineage 3 (also known as 

Delhi/CAS) rather than to Lineage 2 (also known as East-Asian) based on three alternative 

molecular markers. We also provide evidence that these strains acquired independent 

deletion(s) in the DR locus of MTBC. 

The fact that phylogenetically unrelated MTBC strains can harbor identical or very similar 

spoligotyping patterns has been observed before (Flores et al., 2007,Warren et al., 2002). 

The DR locus of MTBC is highly variable, and convergent evolution can lead to 

homoplasy in spoligotyping patterns (Cowley et al., 2008). Even though strain 

classification based on spoligotyping will assign MTBC strains to the correct phylogenetic 

lineages in about 90% of the cases, some strains cannot be classified at all (Kato-Maeda et 

al., 2011), and others will be misclassified as shown here. 

Misclassification of “Beijing” strains is particularly relevant given that this strain family 

has received increased attention over the last few years (Parwati et al., 2010)  [6]. In 

addition to their association with clinical drug resistance and hyper-virulence in animal 

models (Coscolla and Gagneux, 2010) [2,4], Beijing strains have been emerging in Cape 

Town, South Africa (Cowley et al., 2008,van der Spuy et al., 2009) [9,20], and the 

Canary islands (Caminero et al., 2001). 

The data presented here suggest that a small fraction of strains traditionally referred to as 

“Beijing” strains might belong to another phylogenetic lineage. We stress that the 

prevalence of this phenomenon observed in our study of isolates from Switzerland and 

Nepal will not reflect the global M. tuberculosis genetic diversity. Of note, the three 

“Pseudo-Beijing” strains belonging to Lineage 3 were isolated from patients originating 

from three different countries. Given the mutational dynamics within the DR locus, and the 
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fact that strains harboring the classical Beijing spoligotyping pattern are rarely verified 

using independent molecular markers, it is possible that other so-called “Pseudo-Beijing” 

strains might turn out to belong to yet a different MTBC lineage. Further studies are 

needed to better define the global molecular epidemiology of these strains, including 

clinical phenotypes. 

In conclusion, our case report illustrates an example of convergent evolution in the DR 

locus of MTBC, and highlights the limitation of using spoligotypes for genotypic 

classification. Markers that are more phylogenetically robust should be used when looking 

for associations between particular MTBC genotypes and experimental or epidemiological 

variables (Coscolla and Gagneux, 2010). Future work should define the global prevalence 

and phenotypic characteristics of the “Pseudo-Beijing” strains. 
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Chapter 7: The genotyping and geographical analysis reveals 

random distribution of MTBC lineages in the disease endemic 

Kathmandu Valley.  
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7.1 Abstract 

The NTP, Nepal estimates for the nationwide prevalence of tuberculosis is high (238 per 100, 

000) and at sub-national level or major cities, the risk of transmission could be higher due to 

crowding and recent population growth. In past 10 years, the in-migration of population from 

other parts of the country to Capital Kathmandu might have played a role in altering the 

prevalence of the disease. This gives an opportunity to portray the phylogeography of MTBC 

that represents genotypes from Kathmandu as well as the genotypes from many parts of the 

country. Understanding the nature of genetic diversity is critical for disease control programs. 

The city of residence of patients was used to identify the geographical location. For 

phylogenetic analysis, MTBC lineages were characterized by single nucleotide 

polymorphisms (SNPs) markers. The genetic diversity of the strains was further analyzed by 

the spoligotyping method. The phylogenetic data based on SNPs suggests that four major 

MTBC lineages were present among residents of Kathmandu and the non-residents with no 

significant difference. We found that the strains were randomly distributed across the 

geography of the Kathmandu which this study demonstrates as not different from strains 

circulating outside of Kathmandu. However, additional samples covering migrants from 

remote regions of Nepal may add to MTBC diversity yet to be discovered.  

7.2 Introduction 

The national data reports that the central development region including Kathmandu has the 

highest number of TB cases in Nepal. In the central development region, the case finding rate 

has decreased from 83% in the year 2009/10 to 76% in the year 2010/11. The current case 

finding rate (as registered at NTP) is 49% in Kathmandu (Department of Health Service, 

2011). This change in statistics indicates different putative factors including migration 

influencing the spread of infectious diseases in cities (Wang and Wang, 2012). The 

urbanization and spur in population density has a significant impact on the prevalence and 

mortality due to respiratory diseases such as TB (Barnes et al., 2011). The human migration 
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in any form as temporary or permanent migration impacts on the local disease transmission 

and prevalence (Ormerod, 1998). Thus, it is essential to understand the local distribution and 

type of MTBC strains circulating in Kathmandu. However, in order to understand the 

spectrum and burden of transmission of TB, the implementation of different genetic markers 

and epidemiological index case verification is essential (Kato-Maeda et al., 2011). The 

advantage would be to document the genotypes that may have disparities in virulence, in the 

likely hood of developing resistance to drugs, and in transmission. The Beijing family of 

strains is of particular interest, as experimental studies have demonstrated it as a virulent 

genotype. Moreover, it has been hypothesized that Beijing might show an advantage to 

spread over other genotypes where BCG vaccination is widely implemented through 

immunization program (Parwati et al., 2010,Malik and Godfrey-Faussett, 2005). We have 

previously shown the major MTBC genotypes that are circulating in Nepal using a subset of 

data that gave us the first insights into the diversity of MTBC in Nepal (Malla et al., 2012) 

(Chapter 5). 

In this chapter, we will focus on strain diversity of MTBC within the Kathmandu valley; we 

have attempted to use the patient residence as geographic information. The importance of 

using geographic information was to reveal homogeneity of strains if any, that exists among 

patients who share close geographical proximity inside the Kathmandu valley. This might 

contribute to the understanding of TB epidemiology in the Kathmandu valley and identify 

risk groups and risk areas within the city and allow for more effective control measures. The 

secondary objective of this work was to see what patient factors might be associated with 

bacterial genotypes.  

7.3 Methods 

Kathmandu, the capital of Nepal is the most densely populated city in Nepal with a 

population size of 1.7 million. The nearby large cities, Lalitpur, Bhaktapur, that are part of 
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Kathmandu valley also experienced population growth in the past decade with an estimated 

average household size of 3.7 to 4.4 (Central Bureau of Statistics, 2012). The housing 

conditions in Kathmandu valley are poor (The World Bank, 2012), and overcrowded with 

the population density per square kilometer of 2739 (Kathmandu), 877 (Lalitpur), 1895 

(Bhaktapur). 

TB patients were recruited at GENETUP which is located centrally in Kathmandu city, 

making it a primary health care unit for the surrounding population. There are 58 DOTS 

centers in Kathmandu city including GENETUP. The nearby districts such as Lalitpur and 

Bhaktpur have 23 and 20 centers, respectively, that are directly under supervision of the NTP. 

These DOTS centers refer patients to GENETUP for confirmation of diagnosis or for drug 

susceptibility tests as tertiary health care centers (National Tuberculosis Programme, 

2011). There are other private microscopy centers that suspected TB patients may seek health 

advice and diagnosis, and some are referred to GENETUP for confirmation. In short, 

GENETUP serves both as primary and tertiary health center for TB cases.  

We prospectively studied a total of 410 pulmonary tuberculosis cases from 2009 to 2011 

visiting GENETUP at Kathmandu. The patients enrolled were native Kathmandu residents as 

well as those who have migrated to Kathmandu at least 2 years before the date of their 

enrollment into the study. In other words, all patients analyzed in this chapter were residents 

of Kathmandu valley during the study period. This chapter focuses on defining strain 

genotype in relation to geography, and we analyzed patients who were culture positive 

(n=317). We analyzed whether there was any trend in geographic distribution of the four 

MTBC lineages that we found in our data set by using patient residence as a geographic 

variable. These data were then adjusted to other variables to compare with age and gender. 

We also attempted to find the geographic location of multi-drug resistance cases in our study 

population. 
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Geograpical analysis: The name of the residence of the patient was obtained from the 

questionnaire of demographic data. We then used the name of the city to retrieve the 

geographic locations by entering the name of the city into Google earth version 6.2.2.6613 

(http://www.google.com/earth/index.html). The longitude and latitude in decimal degrees of 

the place of residence was then used in Quantum GIS v.1.8.0-Lisboa (http://www.qgis.org/) 

to explore the geographic link between MTBC genotypes. . The *.SHAPE file of the 

Kathmandu valley used as geospatial vector data was obtained from International Centre for 

Integrated Mountain Development (ICIMOD) 

(http://www.geoportal.icimod.org/Downloads/) after online registration. 

7.4 Results 

To assess the geographical clustering of MTBC, we used lineage data using the residences of 

299 cases out of 317 culture positive cases. For the remaining 18 cases, the geographic data 

based on name of residence (within Kathmandu) could not be retrieved through Google earth. 

The total number of TB cases recruited by year and the proportion of MTBC lineages is 

shown in Figure 14. Similar to our previous findings based on a smaller samples (chapter 5), 

we found 4 main MTBC lineages while Lineage 3 and 2 being the most common with 

(132/317; 41.64%) and (92/317; 29.02%) respectively, followed by Lineage 4 and 1 (56/317; 

17.66% and 37/317; 11.67%, respectively). We found a similar prevalence of MTBC lineages 

over the three year period from 2009 to 2011 (Pearson chi square test 3.22, p=0.78). Based on 

our geographical analyses, we saw that the MTBC lineages were spread randomly in the 

Kathmandu valley (Figure 15). The higher number of cases around GENETUP was probably 

due to the catchment area of GENETUP. The decline in cases from the regions far away from 

GENETUP did not affect our objective of identification of MTBC lineages/genotypes and 

their geo-spread in Kathmandu. The host factors such as age and gender distribution also 

represent the local spread of disease (World Health Organization, 2008,Malla et al., 2012). 

http://www.google.com/earth/index.html
http://www.qgis.org/
http://www.geoportal.icimod.org/Downloads/
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The male patients represented 67.19% of total cases. The age distribution of TB cases showed 

that the age group of 15-25 years has the highest TB prevalence with 116 (36.59%) cases as 

shown in Table 12; this findings match with the national data (National Tuberculosis 

Programme, 2011).  
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Figure 14: Study year and distribution (%) of lineages 
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Table 12: Patient age distribution compared to MTBC lineages 

Lineages Lineage 1 Lineage 2 Lineage 3 Lineage 4 Total Percentage 

Up to 24 yrs. 10 34 53 19 116 36.59 

25-34 7 22 28 15 72 22.71 

35-44 5 15 22 8 50 15.77 

45-54 7 8 20 7 42 13.25 

55-64 7 6 6 3 22 6.94 

65 and above 1 7 3 4 15 4.73 

Total 37 92 132 56 317 100.00 

 

The spread of TB did not follow any geographic trend in Kathmandu. In other words, we 

found random distribution of the lineages in Kathmandu as supported by genotypes of 

circulating MTBC. As we previously discussed in chapter 5 (Malla et al., 2012), Lineage 2 

and Lineage 3 were predominant lineages while Lineage 1, and Lineage 4 accounted each for 

less than 20% in the study. The latter two lineages also did not seem to be geographically 

clustered. As the SNP typing only allows defining the main phylogenetic lineages in given 

geographic settings (Hershberg et al., 2008), we used spoligotyping to further discriminate 

the lineages into sub-groups (Table 13). This method identified 23 distinct spoligotypes in the 

Kathmandu valley during the study period. Almost 64% (n=202) of the MTBC strains were 

either Beijing (n=91) or CAS family spoligotypes (n=111). The Beijing spoligotypes was 

highly uniform (as mostly SIT1 was found) and we did not perform any additional typing 

methods to discriminate further. However, the CAS family was represented by four different 

variants (Table 13). We linked the spoligopatterns with the available geographic location of 

the patients to explore possible geographical clustering (Figure 15) to (Figure 17). Again, we 

found that the CAS family was randomly distributed. 
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                Table 13: Description of lineages and Spoligotypes of MTBC from Kathmandu (N=317) 

Lineage Spoligotyping families N Percentage 

1 EAI6_BGD1 2 0.63 

1 EAI1-SOM 4 1.26 

1 EAI3-IND 5 1.58 

1 EAI5 15 4.73 

1 Unknown 2 0.63 

2 BEIJING 91 28.71 

2 Unknown 1 0.32 

3 CAS-DELHI 2 0.63 

3 CAS2 5 1.58 

3 CAS 34 10.73 

3 CAS1-DELHI 70 22.08 

3 Unknown 1 0.32 

4 AMBIGOUS :T3 T2 1 0.32 

4 H1 1 0.32 

4 H4 1 0.32 

4 LAM 1 0.32 

4 S 1 0.32 

4 T2-T3 1 0.32 

4 U(CAS_ANCESTOR) 1 0.32 

4 X1 1 0.32 

4 LAM9 2 0.63 

4 T2 2 0.63 

4 T3 2 0.63 

4 T1 9 2.84 

4 H3 12 3.79 

 -- ORPHAN 51 16.09 

  TOTAL  317 100.00 
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Figure 15:  Geographic distribution of MTBC lineages across Kathmandu Valley 
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Figure 16: Geographic distribution of MTBC lineages across Kathmandu Valley (surrounding GENETUP) 

Figure 17: The Spread of Beijing and CAS family 
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Next, we compared the age and sex of the patients infected with the different MTBC 

lineages. We assumed that the movement of (economically active) male young aged 

population was higher than female of same age group in Nepal (Central Bureau of 

Statistics, 2012). This was evident as we observed significant difference between the median 

age of male (33 years) and female cases (24 years) (p=0.04) in our sample set. In both sexes, 

the age (after 10 years categorization) was found to be not associated with MTBC lineages 

(chi2=24.70; p=0.26). Finally, we did not observe any geographical clustering of the 

seventeen MDR cases identified in Katmandu valley (for 2 strains the geographic information 

was not available).  

7.5 Discussion 

Our molecular data showed the presence of different genotypes of MTBC in Kathmandu. 

Additionally, we showed that the disease was particularly prevalent among the young 

population. Although the number of cases varied between different age groups, the proportion 

of lineages of MTBC was similarly represented in all age groups. These findings suggest that 

all four MTBC lineages have been circulating in Kathmandu since many years. 

Because the exact GIS coordinates of households were unavailable, we used the city name to 

find the corresponding coordinates through Google maps. Two reasons can possibly support 

this approach in defining the geo location of TB cases and the corresponding MTBC 

genotypes. First, unmanaged urbanization has led to the construction of unplanned 

households that were not far apart. This leads to over-crowding within and between 

households. Second, Kathmandu is the most important disease endemic region, and when 

considering the above mentioned argument, may cause transmission not localized in the 

household or within certain perimeter of residence of the patient. In other words, the 

transmission in the community (e.g. in any social or public place; as opposed to within the 



 Chapter 7: Geographical analysis of MTBC genotypes in Kathmandu valley  

84 

 

household) is as likely as transmission inside the households (Marais et al., 2009). 

Additionally, the TB patients have to travel daily to the nearby DOTS center for their daily 

intake of drugs, and because the use of protective masks (i.e. N95) by the patients is not well 

adhered to, disease can be actively transmitted during their travel (Hubad and Lapanje, 

2012,Dharmadhikari et al., 2012). 

We observed the significant age difference between the male and female patients, which led 

us to categorize age into groups of 10-years interval. The similar proportion of MTBC 

lineages throughout the age groups implies that patients of all age groups were equally likely 

to harbor MTBC strains of any lineages. Irrespective of lineage, the male and female patients 

of the age group 0-24 years were nearly equal, while the female representation was 

comparatively lower in other age groups. The age and gender distribution of the cases 

showed that nearly 36% (n=116) of the patients fall in the age group of 15-24 years, and the 

number of cases decreased as age increased. 

Studies have shown that the incidence of TB in older age is due to reactivation of infection 

that might have happened long time ago (Kamper-Jorgensen et al., 2012). However, in our 

study, the discrepancy in age and sex was not significant as far as the relative proportion of 

the four MTBC lineages is concerned. The proportion of Lineage 3 and Lineage 2 were 

higher in all age group Table 12. In other words, the bias towards the younger age was not 

influenced by MTBC genotype in Kathmandu. This can be interpreted as the geographic 

distribution of MTBC genotypes in Kathmandu has not been influenced by possible internal 

migrations, even when we consider that the younger aged population are migrating the most 

(Long et al., 2002). This then raises the question as to whether there were differences in 

distribution of the MTBC genotypes among non-resident Kathmanduties in comparison to the 

resident Kathmanduties. First, our statistical analysis comparing these two patient populations 

showed no differences in MTBC lineage distribution (Chi square =12; p=0.21). Second, the 
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migrants do not settle in any specific area of the Kathmandu valley but were largely spread 

inside Kathmandu. This suggests that the common genotypes in Nepal overall are more or 

less the equally distributed. Provided that the population migration to Kathmandu was from 

all region/geography of Nepal, the MTBC strain diversity in Kathmandu might in fact 

represent the national strain diversity. 

We observed MDR strains in all four lineages, albeit in different proportions. This could be 

due to at least two factors. First, the MDR prevalence represents the genotype proportions 

indicating that the bacterial genetic background as well as the prevalent genotypes, in given 

geographical setting, might be influencing the emergence of drug resistance (Fenner et al., 

2012). Similar to our findings, another study in a refugee camp found no geo-spatial 

association in MDR cases that were infected with strains forming the same genotypic cluster 

(Oeltmann et al., 2008). Second, MDR strains did not show geo-clustering, which is in 

parallel to our findings on the uneven distribution of MTBC genotypes in Kathmandu. This 

arguably supports the hypothesis of ongoing community transmission of MDR strains not 

restricted to direct household contacts. This information can be used to identify the 

(individual) risk factors to drug resistance such as differential adherence to treatment or 

acquisition of drug resistance due to primary resistance (Lin et al., 2011) and possibly 

provide underlying mechanisms responsible for increased MDR transmission (Manjourides 

et al., 2012). 

7.6 Limitations 

Our results have several limitations as this study was conducted in one health center in 

Kathmandu. The limited sample size represented mostly by the patients from nearby areas of 

study site may not fully represent the epidemiology of TB from Kathmandu. As human 

migration is a dynamic process, the establishment of new strains in a community may occur 

at different time intervals, dependent on environmental and clinical factors. However, given 
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the heretofore non-existent documentation of MTBC genotypes and associated geo-

information in Nepal, our data provides an outline of the contemporary MTBC strains from 

Kathmandu. Our hypothesis was that the MTBC strain diversity in Kathmandu remained 

same even after the urban-drift needs to be confirmed through detailed geographic and 

molecular epidemiological studies. Due to lower number of cases, the MDR transmission 

hotspots could not be identified, although we found many MDR cases near GENETUP. 

7.8 Conclusion 

We found no obvious pattern in geo-distribution of MTBC genotypes in Kathmandu. The 

dominance of Lineage 2 and Lineage 3 could mean transmission of local strains or less 

frequent import of strains in Kathmandu from other regions. Alternatively, the lineage 

distribution of MTBC in Nepal could be same all across the country and the migration of 

cases to Kathmandu does not alter the distribution of the proportion of MTBC lineages inside 

Kathmandu.  Our study supports the previous findings that the young population represents 

the major risk group for TB. Targeted epidemiological studies among this age group may 

reveal the geo-epidemiological distribution of TB in Kathmandu. 
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Chapter 8: Are some molecular mechanisms of drug resistance 

preferred by certain MTBC lineages? 
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8.1 Abstract 

The drug resistance surveys conducted by the National Tuberculosis Program (NTP), Nepal 

found increasing numbers of drug resistance among TB cases. This has raised concerns on 

the effectiveness of disease control in Nepal.  The previous exposure to anti-TB drugs 

increases the risk of drug resistance, and early detection of drug resistance among new TB 

cases allows for more effective treatment. However, for increasing the sensitivity and 

effectiveness of rapid molecular tests that detect drug resistance, molecular characterization 

of genes conferring resistance to anti-TB drugs is important. Additionally, different MTBC 

genotypes have been discussed as a potential factor leading to the heterogeneity of drug 

resistance mutations, which in turn could influence the disease prognosis and treatment 

outcomes. To characterize mutations causing rifampicin and isoniazid resistance, 506 

pulmonary TB patients with or without previous history of TB were investigated at a TB 

reference laboratory at Kathmandu. By DNA sequencing of the targeted hotspots regions for 

drug resistance in the rpoB, katG, and inhA genes, we found 101/506 (19.96%) strains 

resistant to either one or both drugs. A mutation in rpoB was detected in 68/506 (13.43%) 

strains with codon position S531L being most the frequent (46/68; 67.64%). Seventy-six out 

of 506 (15.21%) strains were isoniazid resistant and 62/76 (81.57%) had a mutation at codon 

position S315T of katG. Moreover, 17/76 (22.36%) strains had a mutation in the inhA 

promotor region. We found odds of association of Lineage 4 (Euro-American lineage) to 

katG (S315T) (OR, 3.06; 95% CI, 0.94 to 9.98; p=0.38) higher compared to other lineages. 

Our results showed different drug resistance mutations for selected genes which seem to be 

favored by genetic variation of MTBC. We suggest that the variability in association needs 

further assessment with a larger sample size. The implementation of molecular tools as 

routine diagnostic procedure is advisable for identification of various mutations and strain 

genotyping that could identify probable drug resistant bacteria.  



 Chapter 8: Are molecular drug resistance mechanisms linked to certain MTBC lineages?  

89 

 

8.2 Introduction 

The World Health Organization report published in 2011 showed varying worldwide 

estimates on drug resistance TB burden that ranged from 3.7% to 20% in new or previously 

treated cases, respectively (World Health Organization, 2012). Since 1996, when the 

DOTS era started with implementation of standardized treatment regimen based on the 4 

drugs isoniazid, rifampicin, pyrazinamide and ethambutol, TB treatment has been highly 

successful in producing a cure rate of more than 80% in Nepal (National Tuberculosis 

Programme, 2011). On the other hand, the emergence and spread of drug resistance has 

started in parallel since around the same time. Drug resistant TB is an emerging challenge to 

national TB control programmes, with 2.9% MDR among new TB cases and 11.7% among 

pre-treated cases in Nepal (World Health Organization, 2012).  

MDR occurs spontaneously after exposure to anti-TB drugs where poor patient adherence, 

mono-therapy, inappropriate treatment occur, and through direct transmission of already drug 

resistant strains, which is referred to as “primary drug resistance”. In recent years, 

conventional phenotypic drug resistance testing is slowly being replaced by more rapid 

molecular tools (Bodmer and Strohle, 2012,Ignatyeva et al., 2012). These tools interrogate 

mutational hotspots in inhA, katG, and rpoB, which are the genes in which most of the 

resistance conferring mutations occur in clinical strains resistant to isoniazid (inhA and katG) 

or rifampicin (rpoB)  (Zhang and Yew, 2009,Hillemann et al., 2007). 

A longer duration of treatment can also be a determining factor for the acquisition of drug 

resistance in bacterial populations. Studies have shown that multiple mutations can emerge 

during the standard treatment period of 6-8 months (Rinder et al., 2001,Mariam et al., 

2011). In some TB patients, not only the accumulation of mutations, but the co-existence of 

different mutants were found (Mariam et al., 2011). This means that either the same strain 

harbors multiple mutations, or different strains carry different mutations within single 
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patients with multiple infections. Alternatively, the genetic diversity of clinical MTBC strains 

can influences the emergence of resistance (Koser et al., 2012). Drug resistance mutations 

often cause fitness defects in absence of the drug, but low or no-cost mutations may also 

occur (Comas et al., 2012). Moreover, the strain genetic background can influence the 

specific Minimum Inhibitory Concentration of a given resistance conferring mutation 

(Borrell and Gagneux, 2009,Fenner et al., 2012).  

Despite the rising number of drug resistant TB cases in Nepal, limited data is available on the 

molecular mechanisms of drug resistance. We conducted this study to obtain that information 

and analyze it in context of the variable strain genetic background defined as the main MTBC 

lineages circulating in Nepal. 

8.3 Materials and methods  

The MTBC strains isolated from the sputum samples provided by new and follow-up TB 

patients during the study period (details are given in the General Materials and Methods 

chapter). Briefly, the phenotypic DST for isoniazid, rifampicin, streptomycin, ethambutol 

was performed in a selected number of cases as requested by treating physician or in 

suspicion of drug resistance. The inhA promoter region and partial sequences of katG 

(Rv1908c) and rpoB (Rv0667) were sequenced in all strains to confirm the molecular 

mechanisms of drug resistance as well as to document the mutational hotspots.  

8.4 Results 

This study was based on laboratory based molecular epidemiological study in Nepal. A total 

of 650 smear positive TB cases were recruited and clinical characteristics obtained using a 

standardized questionnaire. Only 506 cases were culture positive for MTBC. The phenotypic 

drug susceptibility test (DST) results were only available for 70/506 (13.83%) cases. This 

was particularly due to NTP guidelines, as in Nepal DST is only performed if requested by 

physician in suspicion of drug resistance or if the suspected case was an MDR contact. The 
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DNA sequencing of the three drug resistance loci was performed in all of the 506 strains. We 

found that based on this DNA sequence-based DST, 101/506 (19.96%) strains showed 

resistance to either isoniazid or rifampicin only (mono-resistance) or both (MDR) Table 14. 

Table 14: Number of resistance patterns based on DNA sequencing 

Drug resistance resistance (n) % 

INH mono-resistant 33 32.67 

RIF mono-resistant 25 24.75 

Multi drug resistant 43 42.57 

Total 101 100.00 

 

The isoniazid resistance was the most common drug resistance observed in our sample set 

Table 15. Among the 76/506 (15.01%) isoniazid resistant strains, mutations in katG were most 

common (59/76; 77.63%) with polymorphisms exclusively found at codon position katG 315 

with amino acid substitution from S to T. Two of these strains with katG S315T mutation had 

another non-synonymous mutation (AGC 632 AAC S 211 N) not documented as drug 

resistance conferring polymorphisms. An inhA promotor mutation was found in 14/76 

(18.42%) strains. Three strains (3/76; 3.94%) had both katG and inhA promotor mutations. 

The phenotypic DST report of isoniazid was available for 70 samples that were performed at 

concentration level (INH; 0.2ug/ml) in LJ slants in duplicates. Of the 52/70 (74.28%) 

resistant strains, 40/52 (76.92%) were genotypically confirmed, while another 12 (23.08%) 

resistant strains had no mutation in the inhA promotor or in the region of katG that was 

sequenced. On the other hand, 16/70 (22.85%) strains found susceptible by the phenotypic 

method showed resistance mutations suggesting these strains are in fact resistant to isoniazid. 

In these 16 strains, the proportion of inhA promotor mutation (8/16; 50 %) and katG mutation 

(8/16; 50 %) were the same. One possibility for the discrepancies between the phenotypic 

DST and DNA sequencing results, at least for the strains harboring an inhA promotor 

mutation, is that these strains have a low level of resistance and therefore failed to grow at the 
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drug concentration used for phenotypic testing (0.2ug/ml for isoniazid) (Zhang and Yew, 

2009).  

Table 15: Spectrum of mutations obtained by DNA sequencing for isoniazid resistance conferring genes 

Isoniazid resistance conferring mutations in inhA and 

katG genes n % 

  inhA -8 1 1.32 

  inhA -8 + katG S315T 2 2.63 

  inhA -15 13 17.11 

  inhA -15 + katG S315T 1 1.32 

  katG S315T 59 77.63 

  Total 76   
AGC 315 ACC S TO T *&     

* 2 HAVE ADDITIONAL MUTATIONS     
& AGC 315 ACC S to T; plus; AGC 210 AAC S to N     

 

Of the 70 strains for which phenotypic DST data was available, 44 strains showed phenotypic 

drug resistance against rifampicin (RIF; 40ug/ml). Sequencing of the whole rifampicin 

resistance determining region (RRDR) of the rpoB gene was performed for all 506 cultures –

positive MTBC strains. Overall, we found a good correlation between the phenotypic and 

genotypic resistance data, with 43/44 (97.73%) strains that showed phenotypic resistant to 

rifampicin harboring a mutations in RRDR Table 16. Overall, an RRDR mutation was 

detected in 68/506 (13.43%) strains at codon position 531 which was also the most frequent 

(46/68; 67.64%), followed by codon 516 (14/68; 20.59%). Mutations at codon position 511, 

513, and 526 of rpoB accounted for less than 6% among rifampicin resistant strains. Except 

for one MDR strain which had multiple mutations in RRDR (CTG 511 GTG; L to V and 

GAC 516 TAC; D to Y), all other strains had a single mutation. Four strains had discrepant 

results showing the TCG 531 TTG S to L mutation, while being phenotypically susceptible. 

Several novel non-synonymous mutations within and outside of RRDR were also observed 

Table 16. Based on DNA sequencing data only, 43/101 (42.57%) strains were identified as 

MDR. 
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Table 16: Spectrum of mutations obtained by DNA sequencing for rifampicin rifampicin resistance 

conferring mutations in rpoB gene 

Nucleotide change     amino acid change  n % 

CTG 511 GTG           L TO V 1 1.47 

CTG 511 CCG           L TO P 1 1.47 

CAA 513 AAA         Q TO K 1 1.47 

CAA 513 CTA          Q TO L 1 1.47 

GAC 516 GTC          D TO V 8 11.76 

GAC 516 TAC          D TO Y 2 2.94 

GAC 516 TTC          D TO F 4 5.88 

CAC 526 CGC          H TO R 1 1.47 

CAC 526 CTC          H TO L 2 2.94 

CAC 526 GGC         H TO G 1 1.47 

TCG 531 TGG          S TO W 3 4.41 

TCG 531 TTG          S TO L 43 63.24 

Total 68   

Additional mutations n  

(1609 to 1611) CAG to AAG Q 537 K    2  

522 TCG to TTG Ser to Leu   1  

TTG 524 TGG L to W; plus; ACC 525 CCC T to P;  

plus; CACAAG 526 527 ACA IS DELETED 1  

ATG 515 TTG M to L  1  

CTG 533 CCG L to P 1  

ATC 491 TTC I toF; plus; GCG 559 GTG A to V 1  

 

We next compared the distribution of isoniazid resistance mutations as a function of the drug 

susceptibility profile. Specifically, we found that the katG S315T mutation was strongly 

associated with MDR (OR, 10.76; 95% CI, 3.7 to 31.35; P = 0.000; Table 17), occurring in 

37/42 (88.10%) MDR strains. This finding is in agreement with previous findings (Hazbon et 

al., 2006). 

Table 17: Mutational spectrum of preferential isoniazid resistance conferring mutations in MDR (N=42) 

  katG S315T inhA -15 inhA -8 

MDR
#
 MUT n (%) WT n (%) 

MUT n 

(%) WT n (%) MUT n (%) WT n (%) 

YES (n=42) 37 (88.10) 5 (11.90) 5 (11.90) 37 (88.10) 0 (0) 42 (100) 

NO (n=56) 22 (39.39) 34 (60.71) 8 (14.29) 48 (85.71) 1 (1.79) 55 (98.21) 

# 
1 MDR with multiple mutation (both in inhA -8 plus katG 315 ) was excluded to reduce preferential bias. 

 

To explore the influence of the strain genetic background on the mutational trajectory 

towards drug resistance, we genotyped each of the 101 drug resistant strains using SNP 
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markers that define the four major MTBC lineages circulating in Nepal (Stucki et al., 2012). 

The distribution of the main drug resistance mutations across the four MTBC lineages are 

shown in Table 18 and Table 19. Overall, the S531L was the most frequent mutation in RRDR, 

irrespective of lineage. Similarly, the katG S315T was most frequent mutation in isoniazid 

resistant strains, irrespective of lineage, but was somehow underrepresented in Lineage 2, 

particularly in comparison to Lineage 3 and 4, suggesting that other mutations (e.g. in other 

parts of katG that have not been sequenced here) might be important in the emergence of 

isoniazid resistance in Lineage 2 as suggested previously (Gagneux et al., 2006).The inhA -

8/-15 promotor mutations were overall relatively rare (less than 20%) in all the four lineages 

Table 19.  

Table 18: RIF-resistance conferring mutation codon position in RRDR region 

Lineage n RIF resistant (n) CP-511 CP-513 CP-516 CP-526 CP-531 TOTAL 

lineage 1 7 5 0 0 0 0 5 5 

lineage 2 45 34 0 2 4 2 26 34 

lineage 3 28 19 1 0 8 2 8 19 

lineage 4 21 10 1 0 2 0 7 10 

  101 68 2 2 14 4 46 68 

CP= Codon position 

 

Table 19: INH-resistance conferring mutation in katG and inhA promotor region 

Lineages n INH resistant katG -S315T % inhA promotor -15/-8 % 

lineage 1 7 5 4 80.00 1 14.29 

lineage 2 45 29 22 75.86 8 17.78 

lineage 3 28 24 20 83.33 4 14.29 

lineage 4 21 18 16 88.89 4 19.05 

Total 101 76 62   17   

 

8.5 Discussion  

Here, we focused on the mutations in the resistance-determining regions of genetic targets of 

isoniazid and rifampicin, as these mutations are most commonly found in strains resistant to 

first line anti-TB drugs and are epidemiologically most relevant. We show the extent and 
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association of different drug resistance mutations and their frequencies in different genotypes 

of MTBC strains in Nepal. These mutations can have serious clinical impact on patient and 

may lead to further resistance if not properly managed.  

By analyzing the clinical and molecular data, we found that the drug resistance appeared 

more among patients with previous treatment history. For isoniazid and rifampicin resistance 

strains, the mutations conferring high level drug resistance were more frequent. Similar 

reports have been described among pulmonary tuberculosis cases in South Asia based on 

DNA sequencing and molecular probe assays (Yadav et al., 2013,Siddiqi et al., 2002). 

Altogether, we found 101/506 strains with any resistance to isoniazid and rifampicin (INH 

mono-resistant: 33; RIF mono-resistant: 25; MDR: 43). The prevalence of mutations at katG 

codon position 315 with amino acid change (S to T) was the most common (Table 15) which 

is considered as the mutation conferring high level of drug resistance and transmission (van 

Soolingen et al., 2000). The reduced virulence of INH resistant strains seen in mouse models 

depends on the type of mutation in katG gene (Pym et al., 2001,Pym et al., 2002), and this is 

reflected in the primary transmission of isoniazid resistant strains. For example, several 

studies have shown that whiles some resistance mutations are associated with reduced 

transmission, the katG S315T is associated with successful transmission (van Soolingen et 

al., 1999). 

Similar to previous reports, we found that strains with katG S315T mutations were associated 

with multi-drug resistance (Marttila et al., 1998). The higher prevalence of katG S315T 

mutation and its association with MDR as we observed in this study could arguably indicate 

that the resistance was acquired during prolonged treatment. Among the MDR cases, the 

proportion of getting katG S315T with rpoB S531N and rpoB D516V (the two most frequent 

mutations as in Table 20) was similar for new and previously treated cases. This raises a 



 Chapter 8: Are molecular drug resistance mechanisms linked to certain MTBC lineages?  

96 

 

question if strains harboring this particular set of mutations were more fit to persist in drug 

containing environment and also to transmit more efficiently than strains with other 

combination of mutations.  

Table 20: Frequency of RIF-mutations in relation to INH-mutations among MDR strains (n=43) 

Group Mutations L 511 N Q 513 N D 516 N H 526 N S 531 N 

multiple 

L 511 V 

PLUS  

D 516 Y Total (n) 

katG S 315 T 2 1 10 4 20 1 38 

katG 

S 315 T plus 

 inhA prom -8; T to G 0 0 1 0 0 0 1 

inhApro inhA prom -15; C TO T 0 1 2 0 2 0 5 

 

In addition to differential acquisition of mutations and persistent combination of mutation 

patterns in different research settings and treatment regimens in place, studies have shown the 

impact of strain genetic background on emergence and fixation of drug resistance mutations 

(Gagneux et al., 2006,Sun et al., 2012). The isoniazid resistance due to katG S315T was 

found associated with Euro-American Lineage (Lineage 4) and another lineage (Lineage 1) 

has showed predisposition to inhA promotor mutations (Fenner et al., 2012). The bacterial 

lineages are different depending on specific geography as we have shown in our earlier 

publication the variability of lineages in this study settings (Malla et al., 2012).  

Other studies have either failed to support the association of specific drug resistance 

mutations with bacterial genotype (Lavender et al., 2005), or proposed that pre-existing 

isoniazid resistance induce or select the rifampicin resistance codon in vitro, irrespective of 

bacterial genotypes (Bergval et al., 2012).  The in vitro study showed the shift towards 

acquisition of rpoB-S531L as the fit mutation, and suggested this kind of mutations will 

accumulate in subsequent bacterial population. In our clinical sample of 43 MDR strains, of 

the 37 strains with a katG S315T mutation, the proportion of rpoB-531 mutation was highest 

(20/37; 54.05%) followed by rpoB-516 (10/37; 27.02%).  



 Chapter 8: Are molecular drug resistance mechanisms linked to certain MTBC lineages?  

97 

 

We performed DNA sequencing of only part of katG (Rv1908c) covering 541 base pairs (bp) 

covering the most frequent mutation region (H37Rv position; 2154957 to 2154974). The katG 

gene is 2223 bp long, and other mutations in other regions of katG have been shown to cause 

isoniazid resistance (Sandgren et al., 2009,Sherman et al., 1996). This could be one of the 

reasons for the inconsistent phenotypic and genotypic drug resistance test results seen in our 

sample-set. Moreover, the method of sampling also has significant impact on clinical and 

drug resistance patterns (Piatek et al., 2000). Hence, population based sampling or sampling 

from different laboratories, including more extensive DNA sequencing need to be performed 

in Nepal to complement our results. 

8.6 Conclusion 

In conclusion, our data suggest that MDR strains with a combination of katG S315T with 

rpoB S531L are selected in clinical settings and might propagate more efficiently. Our study 

did not support the hypothesis of genotype preference to specific drug resistance mutations. 

Further research is required to verify if this is true in a larger sample set considering other 

possible confounders such as geographic settings, co-morbidities. The TB control program 

should be vigilant and consider implementation of molecular tools for drug resistance 

identification and strain genotyping as a routine diagnostic tool. 
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9.1 Abstract 

Since the first report of extensively drug-resistant tuberculosis (XDR-TB) in 2008 in Nepal, 

the number of such cases is continuously rising. The fact that XDR-TB emerges due to poor 

management of directly observed treatment short course (DOTS)-plus treatment among 

multi-drug resistant TB cases is well accepted and is generally considered as an instance of 

acquired resistance. Although XDR cases are detected more among multi-drug resistant 

(MDR) cases after failure of prolonged treatment, primary resistance of XDR-TB has rarely 

been described. Here, we report four cases of XDR-TB; two of these were presumably 

acquired XDR during treatment, while the other two reported no more than three months of 

first line anti-TB treatment history and no TB contacts. Hence, the latter two cases could be 

primary XDR cases. All four XDR strains belonged to Lineage 2 and the Beijing (SIT 1) 

spoligotype, and MIRU-VNTR typing showed that the two putative primary XDR cases 

showed identical 24-loci profiles, supporting an epidemiological link. The four XDR-TB 

strains showed different drug resistance profiles and mutations in rpoB (S531L), katG 

(S315T), gyrA (D94G, D94N), and rrs (C1402A, C1402T, G1484T). These factors and 

young age (median age 21 years) of the patients indicate the evidence of transmission of 

XDR-TB in community and raise concerns on future TB epidemiology. This data revealed 

emergence of both acquired and primary resistance of XDR cases that may be contributing in 

community transmission of nearly untreatable form of TB, posing an emerging threat to TB 

control program of Nepal. 

9.2 Introduction 

WHO declared TB a global emergency in 1993, and in 1996, implemented the multi-drug 

therapy widely known as directly observed short course therapy (DOTS) which is a 6-8 

months long treatment (Grange and Zumla, 2002). In Nepal, the nationwide institutional 

coverage of DOTS programme was achieved only in 2001, with prime objective of diagnosis 

and treatment of all the TB cases. The drug resistance surveys that were first conducted in 
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1996 and in later years showed fluctuating numbers (prevalence) of MDR cases, which made 

it difficult to interpret the true prevalence of drug resistance in Nepal (National Tuberculosis 

Programme, 2011). MDR-TB can be effectively treated with second-line drugs for the 

duration of 16-18 months, and latest data available from the year 2008/09 in Nepal showed a 

cure rate of 71.2%, while defaulter and failure rate constitute 13.2 and 8.2%, respectively 

(National Tuberculosis Programme, 2011). Exposure to second-line anti-TB drugs among 

MDR defaulter and failure cases augments the risk for the emergence of extremely drug 

resistance (XDR) with the estimated prevalence rate ranging from 5% to 25% among MDR 

cases in different countries (World Health Organization, 2008). XDR-TB has become a 

global threat to TB control programmes worldwide. Seventy-seven countries both from 

developed and developing countries had reported at least one case of XDR-TB by October 

2011 (World Health Organization, 2011). Especially the increase of MDR-TB numbers 

(defined as resistant to at least isoniazid and rifampicin) in high TB burden countries is a 

growing public health problem, as MDR-TB cases have to be treated with second-line anti-

TB drugs. These drugs are more expensive, less effective and often associated with sever 

side-effects. In Nepal, nearly 3% of MDR cases are new TB cases, while data regarding 

primary XDR cases are un-available (World Health Organization, 2012). As drug-resistant 

TB cases are not kept in isolation at health facilities, and provided there is widespread use of 

second-line drugs, it is possible that not only MDR but XDR-TB transmission is also on-

going in the community. XDR-TB is defined as an MDR strain which is additionally resistant 

to fluoroquinolones, and at least one of the injectable second-line drugs (World Health 

Organization, 2010). In Nepal, a study conducted in 2009 showed an XDR prevalence of 5% 

among MDR-TB cases (National Tuberculosis Programme, 2011). The WHO report first 

published in 2007 showed 41 countries with XDR-TB cases, while the first XDR-TB case in 
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Nepal was documented in 2008, and by July 2011, 27 XDR cases were under treatment 

through NTP (National Tuberculosis Programme, 2011).    

Previous studies have reported primary transmission of XDR-TB among close contacts as 

well as in the community (Leung et al., 2012). This means TB cases with pre-treatment 

history and currently under treatment are not the only risk groups for XDR-TB. On the one 

hand, due to resource limitations and difficulty in performing second-line drug susceptibility 

testing (DST), screening of XDR is performed mostly among chronic TB cases or MDR 

failures, leaving many drug resistant cases undiagnosed. On the other hand, unknown drug 

resistant status will render current treatment ineffective, which will further worsen the 

situation by not being able to stop transmission (Udwadia, 2008). Only few studies have 

reported primary transmission of XDR in the community. The molecular genotyping methods 

used to study TB outbreaks are key in such investigations.  

The concerns about primary XDR transmission are particularly valid in low resource settings 

such as Nepal. The hidden burden of XDR-TB will be difficult to reveal unless the second 

line drug resistance testing is routinely available and used, which is economically and 

technically demanding. Our objective was to detect XDR-TB strains form patients with or 

without previous treatment history by a hospital based survey. 

9.3 Methods 

 The study was carried out at German Nepal Tuberculosis Project (GENETUP), a 

tuberculosis reference laboratory in Kathmandu, Nepal which is the only laboratory for 

performing first-line and second-line drug susceptibility tests in Nepal. The laboratory is 

certified by the Supranational Reference Laboratory, “Kuratorium Tuberkulose in der Welt 

e.V.” in Gauting, Germany (World Health Organization, 2012). GENETUP is also a DOTS 

and DOTS-plus treatment center.  
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Nepal is a relatively small country and the numbers of TB and MDR-TB cases vary among 

regions and districts. The Central Development region (CDR) including capital city 

Kathmandu is the most densely populated region with internal migration of population from 

other regions of the country, and has the highest number of TB cases (Department of Health 

Service, 2011). In this study, the majority (62.6%; 317/506) of patients enrolled was from 

Kathmandu, and others were referred to GENETUP from DOTS-center, and microscopy 

centers situated in various districts other regions of Nepal. This study analyzed 506 strains 

(one per TB case) prospectively collected from culture confirmed TB cases during 2009 to 

2011 at GENETUP. The patient participation was voluntary. After written informed consent 

was obtained, the demographic and clinical data including geography, previous and current 

treatments, and TB contacts was collected by treating physician and trained medical staffs. In 

order to determine the prevalence of XDR-TB, we characterized the resistance to second line 

drugs among detected MDR-TB cases. The data was entered in password protected 

Microsoft® Access database.  

The phenotypic DST was performed at GENETUP for isoniazid (INH; 0.2ug/ml), rifampicin 

(RIF; 40.0ug/ml), streptomycin (STR; 4.0 ug/ml), and ethambutol (EMB; 2.0 ug/ml) by 

proportion method on Lowenstein Jensen Slants in duplicates. Strains resistant to isoniazid 

and rifampicin, and strains from patients referred as suspected for XDR-TB were subjected to 

drug susceptibility test for second-line drugs; Ofloxacin, Capreomycin, and Kanamycin by 

proportion method (World Health Organization, 2008, 2001). The resistance was recorded 

when 1% of growth was observed in drug containing Lowenstein Jensen slants compared 

proportionally to drug-free Lowenstein Jensen slants. Molecular drug resistance testing was 

performed on all strains by direct sequencing of the hotspot regions of the target genes for 

rifampicin (rpoB), isoniazid (inhA promoter region and katG), and streptomycin (rpsL). MDR 

strains were then further sequenced and analyzed for ethambutol (embB), fluoroquinolones 
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(gyrA) and aminoglycoside (rrs) resistance by sequencing of the relevant gene segments as 

shown in Appendix 1 (Malla et al., 2012). The sequences were analyzed with M. tuberculosis 

H37Rv as reference sequence using the Staden software package(Staden et al., 2000). 

SNP typing was performed as described previously (Malla et al., 2012). Spoligotyping was 

performed using commercially available kits from Isogene Bioscience BV (Maarssen, The 

Netherlands) following the manufacturer’s instructions (Kamerbeek et al., 1997). The 

spoligotype patterns were classified according to the online SITVITWEB database 

(http://www.pasteur-guadeloupe.fr:8081/SITVIT_ONLINE/) accessed on October 22, 2012. 

The MIRU-VNTR typing of four XDR-TB Beijing strains was done at Genoscreen, France 

(www.genoscreen.com) following standard protocols. The MIRU-VNTR analysis was done 

using standard 24 loci plus 4 hypervariable loci markers (Supply et al., 2006). The additional 

4 hypervariable loci (VNTR 1982, VNTR 3232, VNTR 3820, VNTR 4120) typing were 

conducted for improved clonal distinction between closely related Beijing strains allowing 

more discrimination (Gopaul et al., 2006) (Allix-Béguec et al., based on email 

correspondence to Genoscreen).  

This study was ethically approved by the Nepal Health Research Council, Nepal and by the 

Ethical Review Board (EKBB) of the Canton of Basel-Stadt, Switzerland. All patients 

provided written informed consent. During informed consent, all patients were informed and 

agreed about use of strains for research purposes.  

9.4 Results 

Patient characteristics: Among all the 506 patients, four (0.8%) XDR-TB cases were 

identified. Of the total 45 MDR-TB cases, these 4 (8.9%) XDR cases were resistant to both 

fluoroquinolones and aminoglycosides as summarized in Table 22. The MDR cases 

(excluding four XDR cases) were four folds more frequent among previously treated cases 

http://www.pasteur-guadeloupe.fr:8081/SITVIT_ONLINE/
http://www.genoscreen.com/
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(15.5%; 27/174) than in new TB cases (4.2%; 14/332). Patients treated for 28 days or more 

were grouped as previously treated cases (World Health Organization, 2010). The median 

age of XDR-TB was 21 years and three were males (Table 21).  

Patients (ID no. 2010326 and 2010408) were failure cases of previous tuberculosis treatment 

(more than a year), so presumably non-compliance has contributed to the acquired XDR-TB 

status. Remarkably, two (ID no. 200964 and 2010310) of the four XDR cases were under 

intensive phase of category 1 treatment regimen (2HRZE/4HR) of the NTP, Nepal, 

suggesting these cases might show primary XDR-TB. Both patients failed to show sputum 

conversion during follow-up visit of 2-3 months after the start of treatment.  

Drug resistance: The phenotypic DST results for first line drugs as well as second line drugs 

are shown in Table 22. The drug resistance mutations were identified by DNA sequence 

analysis and are presented in the same table. The XDR strains exhibited different drug 

resistance mutations except in case of rifampicin (rpoB S531L). The most frequent mutation 

associated with isoniazid resistance was S315T in katG gene while in two XDR strains (ID 

no. 2010326 and 2010408) we were unable to identify any mutation despite being 

phenotypically resistant to isoniazid. The mutation in inhA region that is associated with low 

level resistance to isoniazid was absent in all strains (Banerjee et al., 1994). Hence these 

strains might harbour a mutation in another region of katG (which was not explored in this 

study) (Kelley et al., 1997). Except for the strain ID no.2010408 for which phenotypic DST 

was not performed, all other strains were found resistant to fluoroquinolones and 

aminoglycosides when tested phenotypically. We then analyzed the gyrA and rrs gene to 

confirm the phenotypic XDR status. The sequencing of the gyrA gene revealed that the codon 

position 94 (D94G, D94N) was the most frequent mutation site conferring resistance to 

fluoroquinolones in all four XDR strains. The strain ID NO. 2010326 showed rrs mutation 

(G1484T) which is associated with resistance to kanamycin, amikacin, viomycin, 
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capreomycin and hence consistent with the treatment history of patient as a case of MDR 

failure. The remaining three XDR strains showed different mutations in rrs. Moreover, these 

XDR strains showed varied resistance to other anti-TB drugs as shown in Table 22; two 

strains (ID no. 2010310 and 2010326) were resistant to all first line drugs and second line 

drugs tested.  

The acquisition of additional mutations to mitigate the loss of fitness through compensatory 

mutations is observed in many organisms. Moreover, in clinical strains the fitness loss can be 

compensated by secondary mutations (i.e. so called compensatory mutations) (Gagneux et 

al., 2006,Borrell and Gagneux, 2009). The rpoC and rpoA genes undergo mutations to 

compensate the fitness lost due to the mutations occurred in rpoB. Drug resistance mutations 

often cause fitness defects in absence of the drug, but low or no-cost mutations can occur 

(Comas et al., 2012). This finding is also supported by our study, as three out of all four 

XDR strains had an rpoC mutation. We found high probability compensatory mutations 

(HCMs) rpoC V483G along with others except for one (ID 2010310). The rpoC (Rv0668) is 

3951 bp long sequence which we sequenced only a fraction of. The ID 2010310 might have 

compensatory mutation in another region of rpoC.  

Geographic distribution and genotyping: The XDR-TB patients were living in Kathmandu 

at the time of study, which might suggest an epidemiological link, although the time of initial 

infection was unknown. Based on the patient questionnaires, the patients’ acquaintance was 

not known to each other, although patient ID no. 2010408 had one TB contact. The patient ID 

no. 200964 was permanent resident of Solukhambu and ID no. 2010310 was a permanent 

resident of Dolakha, both in eastern region of Nepal. Both patients migrated to Kathmandu, 

one ten years and the other one year before the interview, respectively.  
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All four strains were Lineage 2 by SNP-typing and SIT1/Beijing genotype as defined by 

spoligotyping. The Beijing genotype has been found associated with drug resistance and is 

particularly frequent in Asia (Kamper-Jorgensen et al., 2012). Studies from Russia (Casali 

et al., 2012) and India (Ajbani et al., 2011) showed that more than 60% of XDR strains 

belonged to the Beijing genotype. We further analyzed the clustering of these cases, MIRU-

VNTR typing identified three unique patterns with one cluster; strains ID no. 200964 and 

2010408 shared a common profile with identical alleles at all of the 24 loci screened Figure 

18. The four hypervariable loci (in rectangular box) were also identical for these two strains. 

 

Figure 18: Dendrogram of MIRU-VNTR typing data of four XDR strains from Nepal 
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Table 21: Epidemiology and clinical characteristics of XDR-TB cases 

Patient ID year 

Permanent 

Address Year of Migration Age/Sex 

TB close contact in  

past 2 years WHO case category 

Sputum 

Microscopy 

Grading 

BCG 

immunization 

200964 2009 SOLUKHUMBU more than 10 years 15/M no 

3 months follow up for first line drugs 

(Category I) 3+ yes 

2010408 2010 KATHMANDU 

no migration 

history 16/M yes (Friend) 

6 months follow up for first line plus 

streptomycin treatment (Category II) 3+ yes 

2010310 2010 DOLAKHA 1 year before 21/M no 

2 months follow up for first line drugs 

(Category I) 3+ no 

2010326 2010 KATHMANDU 

no migration 

history 21/F UN MDR treatment failure case 3+ unknown 

 

Patient treatment status at time of enrollment in study. 

1. ID 200964.Sputum was examined at 3 months of Cat I,and found MDRTB,then switch on to Second Line drugs as per the rules & regulations of 

NTP.But unfortunately he was persistent positive and SLDST found XDR-TB. 

2.  ID 2010408. Sputum was examined at the follow-up month of 6 of Cat II treatment, and was found XDR-TB. 

3. ID 2010310. Sputum was examined at 2 months of Cat I,and was found as MDR-TB.then switched on to second line drugs. 

4. ID 2010326.this case has attended our laboratory as known XDR-TB.This was a case of MDR-TB treatment failure. 

X. HIV status was unknown for all XDR-TB cases 
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Table 22: Phenotypic and genotypic drug resistance characterization of XDR strains 

Patient ID Lineage Spoligotype katG inhA rpoB rpsL pncA embB 

Phenotypic 

resistance 

to 1st line 

drugs gyrA rrs 

Phenotypic 

resistance to 

2nd line drugs 

200964 Lineage 2 BEIJING (SIT 1) 

AGC 315 

ACC  

S TO T WT 

TCG 531 

TTG  

S TO L 

AAG 128 

AGG K 43 R WT WT HRSE 

GAC 94 GGC  

D to G 1402 C/A* Ofx, CM, KM 

2010408 Lineage 2 BEIJING (SIT 1) NA WT 

TCG 531 

TTG  

S TO L WT WT 

CAT 935 

CGT  

H 312 R HRSE 

GAC 94 GGC  

D TO G 1402 C/T* UN 

2010310 Lineage 2 BEIJING (SIT 1) 

AGC 315 

ACC  

S TO T WT 

TCG 531 

TTG  

S TO L 

AAG 128 

AGG K 43 R 

TTG 545 

TCG  

L 182 S 

CAT 935 

CGT  

H 312 R HRSE 

GAC 94 GGC  

D TO G 1402 C/T* Ofx, CM 

2010326 Lineage 2 BEIJING (SIT 1) NA WT 

TCG 531 

TTG  

S TO L 

AAG 263 

AGG  

K TO R 

TCG 199 

CCG  

S 67 P 

CAT 935 

CGT  

H 312 R HRSE 

GAC 94 AAC  

D TO N 1484 G/T** Ofx, CM, KM 

*rrs associated resistance against kanamycin, amikacin, viomycin 

**rrs associated resistance against kanamycin, amikacin, viomycin, capreomycin 

NA=NOT DONE  

UN= Unknown 
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9.5 Discussion  

Our findings suggest both the acquisition of XDR-TB during MDR-TB treatment as well as 

primary transmission of XDR-TB in the community. Three major findings in this paper are of 

particular interest. The first is that all the XDR TB cases were of young age (range 15-21 

years). Young age in TB patients can be considered as a proxy for ongoing transmission. A 

study based on genotyping in Denmark showed higher number of clustered cases in young 

aged group compared to old aged population (Kamper-Jorgensen et al., 2012). This 

presumably implies reactivation of old infection among old aged population, different from 

young aged population that formed on-going transmission clusters. 

Secondly, except for the case ID no. 2010326, the other XDR-TB cases visited health facility 

with the first episode of TB and reported to never have received any second-line drugs to 

which resistance was observed. In other words, patient ID no. 2010326 was treated more than 

20 months and was a known MDR failure case, thus the multiple mutational events might 

have occurred resulting in accumulation of drug resistance mutation. The strain from this 

XDR-TB case showed resistance to other anti-TB drugs as well, including streptomycin, 

ethambutol, and pyrazinamide. In particular, the mutation at nucleotide position G 1484 T in 

rrs gene that confers higher level of resistance to kanamycin, amikacin, viomycin, and 

capreomycin was found only in this case, which suggests a long treatment history (Maus et 

al., 2005) (Long et al., 2012). Patients ID no. 200964 and 2010310 received no more than 

three months of treatment with first line drugs. XDR-TB does not respond to the standard six-

month treatment with first-line anti-TB drugs; this generally leads to treatment failure  

(World Health Organization, 2010). The common sings of TB such as coughing and chest 

pain remained persistent in all four XDR cases. Contact investigations through patient 

interviews did not disclose any potential epidemiologic link between these XDR-TB patients. 
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In addition to patient characteristics, the third factor is strain genetic background that is 

constantly argued to be linked to the drug resistance problem (Niemann et al., 2009). We 

found that all the XDR strains belonged to the Beijing genotype which has been associated 

with drug resistance. The limited number of XDR-TB patients does not allow us to draw any 

statistical inference, however our finding are consistent with the view that Beijing might be 

more prone to develop drug resistance, including XDR (Comas et al., 2012,Fenner et al., 

2012,Lee et al., 2012).  

The geographic location of the XDR-TB patients and the non-identical mutations in drug 

resistance genes indicate that the strains might in fact not be epidemiologically linked. In 

Nepal, there is no movement restrictions for MDR- or XDR-TB patients and such patients are 

treated as outpatients in most of the DOTS clinics. These patients have to travel daily to the 

DOTS centers to take the drugs in presence of health staffs. Hence, these patients might 

become a source of infection given that the drug resistant cases remain infectious for longer 

despite under treatment (Borrell and Gagneux, 2009). A study from South Africa 

emphasized the multi-factorial reasons for transmission of XDR-TB, that include the delay in 

detection, inadequate treatment, and social factors such as crowding households, and socio-

economic factors (Basu and Galvani, 2008). In Nepal, the establishment of hostels for some 

MDR cases may be beneficial for the containment of drug-resistant cases. Still, the 

undiagnosed cases might be moving around in community posing a risk of transmission 

(National Tuberculosis Programme, 2011). 

The 24-locus MIRU-VNTR plus additional 4 loci (highlighted in rectangle in Figure 18) 

analysis formed three different patterns and showed that the strains ID no. 200964 and 

2010408 were genetically clustered, suggesting that these cases were epidemiologically 

linked. However, the drug resistant profiles (both phenotypic and genotypic) were not 

identical. Moreover, the year of isolation of the two strains was one year apart. So, it can be 
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argued that both of these patients were infected by another (unknown) XDR-TB case at 

different time intervals or Case ID 200964 transmitted to Case ID 2010408 after being 

infected from another XDR-TB case (Figure 19). The other two XDR strains had different 

MIRU-VNTR types, indicating that the cases were unlinked.  

 

Figure 19: Proposed chain of transmission dynamics of XDR-TB  in Case ID 200964 and Case ID 2010408  

 

 

Following current guidelines of National Tuberculosis Program of Nepal, the second line 

DST tests are not performed among new TB cases due to technical and resource limitations 

(World Health Organization, 2001,Kim et al., 2004). We may argue that the current NTP 

strategy for drug screening among MDR failure cases is not sufficient for TB case 

management, as indicated by the probable community transmission of XDR-TB reported 

here.  A study from KwaZulu-Natal, South Africa reported emergence of XDR cases through 

exogenous reinfection as confirmed by genotyping of follow-up strains (Andrews et al., 

We proposed two routes of transmission; A- Unknown (Index) case first transmitted to 

Case ID 200964 and this case then transmitted to Case ID 2010408. B- Unknown (Index) 

case transmitted the XDR-TB to both cases. The first four digits of case ID denote year of 

isolation of strains. 
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2008). This emphasizes the urgent need of detection of drug resistance status right at the 

beginning of treatment (or during follow-up visits if the patient is consistently sputum smear 

positive or sputum conversion is delayed). In other words, the NTP strategy should highlight 

the need to measure the extent of XDR-TB and not only consider MDR-TB cases as risk 

groups. The hidden burden of XDR-TB will be difficult to uncover unless routine second-line 

drug resistance test is standardized, and made widely available (Ignatyeva et al., 2012). 

The MDR-TB cases are treatable and case management is generally successful (National 

Tuberculosis Programme, 2011). However, XDR-TB is virtually untreatable, particularly in 

low-resource country such as Nepal (Migliori et al., 2012). Incorrect treatment may lead to 

worsening of the disease, and disease transmission. XDR-TB has been shown to transmit in 

other settings and our data suggest that it might transmit in Nepal as well (Leung et al., 

2012).  

In summary, the latest annual report from NTP, Nepal showed increasing number of XDR 

cases with a documented 27 XDR-TB cases under treatment by July 2011 (National 

Tuberculosis Programme, 2011). Our study provides evidence of four XDR-TB cases 

which we believe is a good representation (14.8%; 4/27) to interpret the emergence and likely 

ongoing transmission of this severe form of TB.  

9.5 Limitations 

The limitation of this study is a possible sampling bias, which could be due to availability of 

second line DST in the reference laboratory, Kathmandu only. This might cause the 

geographic bias in representing the prevalence of XDR-TB. Moreover, the patient 

participation was voluntary, so this study does not represent all the patients who visited the 

reference laboratory during the study period. In addition, the low sampling fraction and the 

short study period may cause difficulty in defining or finding clustered cases (Glynn et al., 
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1999,Houben and Glynn, 2009). One possible reason for fluoroquinolones resistance could 

be the use of the drugs against other diseases by these patients. The fluoroquinolones are 

broad spectrum antibiotics and are used empirically for treatment of other diseases 

(Kakinuma et al., 2012,Ginsburg et al., 2003). The recent history of use of 

fluoroquinolones for any diseases by the patients was unavailable. 

9.6 Conclusion   

The geographical distribution of patients, variable drug resistance mutations, and MIRU-

VNTR data of XDR-TB strains in this study suggest that the transmission of XDR-TB was 

not caused by one single outbreak of one specific Beijing (SIT 1) strain alone, but highlights 

likely on-going community transmission of XDR-TB in Nepal. As the number of MDR cases 

are increasing, both among new and pretreated cases, so are the chances of detecting XDR-

TB. We provided examples showing that the treatment failure cases were not the only group 

at risk of becoming XDR. Our study emphasizes the necessity of drug resistance screening as 

routine tests at treatment onset, irrespective of treatment history. We hope that our findings 

will help policy makers to adopt necessary strategies to diagnose and contain the XDR-TB 

cases and prevent community transmission. NTP program should take serious steps and 

initiate the action for timely diagnosis of severe forms of TB in Nepal and globally. Future 

studies covering many patients from diverse region of the country will help reveal the true 

burden of XDR-TB in Nepal. 
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Chapter 10: Discussion and Conclusion 

 

The details of this research project are discussed in the respective chapters. This chapter 

focuses on the general discussion of the overall project followed by the suggestions and 

conclusions. 

In Nepal, NTP is in charge of performing prevalence surveys of TB, compiling and reporting 

clinical and epidemiological data, and providing patient management, all of which are core 

components of TB control. The main objective of this thesis was to foster the understanding 

of the epidemiology of TB in Nepal through novel research approaches using molecular tools. 

The use of molecular methods proved also to be useful in investigating the MTBC diversity 

circulating in Nepal compared to other geographic regions. In addition, we collected the 

demographic, clinical and epidemiological data from TB cases, their treatment histories, and 

phenotypic drug resistance data (when available) using semi-structured questionnaires. We 

adopted a passive case detection approach, as only one laboratory in Nepal (i.e. GENETUP) 

is currently certified by supranational reference laboratory to perform culture and phenotypic 

DST. This has resulted in a convenience sample, which is not necessarily representative of 

the whole of Nepal. Nevertheless, many of the cases included came from other districts (some 

bordering India and Tibet), allowing us to study the diversity of MTBC in these geographic 

areas as well. Some of the most remote areas of Nepal were only represented by a few strains. 

Nevertheless, this is the first report of MTBC genotypes from these areas. Another limitations 

of our study was that because TB has a long incubation time and DOTS treatment is 6 months 

long, follow-up of patients from start of diagnosis to treatment outcome was not possible due 

to time and logistics constraints. Moreover, because referred patients were also enrolled in 

this study, follow-up of all patients and retrospectively trace their contacts was not possible.  
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The aim of this research was to genotype the MTBC strains circulating in Nepal. The 

appropriateness of the genotyping tools depends on many factors. For phylogeographic 

analysis, the SNPs based genotyping tools are appropriate as these markers have slower 

molecular clocks and are therefore more stable. Using SNP-based genotyping and 

classification, we found four of the six main lineages of the MTBC represented in Nepal. For 

contact tracing, genotyping techniques with a higher discriminatory power are required 

(Mathema et al., 2008,Allix-Beguec et al., 2008,Gutacker et al., 2002,Kato-Maeda et al., 

2011). Following the replacement of IS6110 RFLP by a combination of spoligotyping and 

MIRU-VNTR, the latter two methods have now become the new gold standard for molecular 

epidemiological investigation of TB. Some investigator use spoligotyping to identify the 

main phylogenetic lineages of the MTBC. In theory, different genotyping methods should 

identify the same groupings. However, because both spoligotyping and MIRU-VNTR are 

based on repetitive elements that are prone to convergent evolution generating homoplasies, 

relying only on these methods for phylogenetic strain classification can be misleading  

(Comas et al., 2009). This problem is illustrated by our report of the “Pseudo-Beijing” 

spoligotype (Chapter 6).  Moreover, the limitations of the spoligotyping nomenclature also 

necessitate the use of other techniques. For example, we found 78 (15.22%) spoligotypes that 

were “orphan”, which did not allow defining a specific genotype. Additionally, the 

discriminatory power of particular genotyping technique can also depend on the particular 

strain. For example, using spoligotyping to analyze the genetic diversity among Beijing 

strains will limit the discriminatory power because spacers 1-34 are inherently deleted 

(Ferdinand et al., 2004). In regions like Nepal, where nearly one third of MTBC strains 

belong to the Beijing family (Chapter 4), the use of spoligotyping can be used as a starting 

point, but other genotyping methods need to be used to explore diversity within the family 

and to differentiate “true” Beijing strains from “Pseudo-Beijing” strains. 
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The most common MTBC lineage observed in our study was Lineage 3 which includes the 

CAS family spoligotype. In terms of different spoligotypes, the CAS family was also more 

diverse compared to the Beijing family of strains, which was the second most frequent 

lineage in Nepal. Why is the CAS family spoligotype more diverse than the Beijing family? 

As discussed earlier, one explanation could be the lower number of spacers present in 

Beijing, which limits further discrimination unless other tools are used. Another reason could 

be that the spread of Beijing strain was more confined (or clonal) compared to the CAS 

family. If this is correct, then the risk factors and risk groups for the spread of these two 

genotypes could be different and could depend on several factors including host variables. In 

the future, investigation into the details of why one genotype is more frequent than another 

should be performed, as this may uncover some of the factors responsible for the spread of 

TB in Nepal and elsewhere. 

Traditionally, molecular epidemiology of TB investigates the transmission of strains from 

one patient to another, as well as the progressive change in drug resistance within the same 

host (de Jong et al., 2008). Moreover, molecular epidemiological investigation allows 

differentiating between recent transmission, reactivation or relapse of previous infections, 

which is of particular importance for TB control programs. In contrast to most of the 

developed world, in places where TB is highly endemic, contact tracing by conventional 

processes will be difficult. In Nepal, we found Beijing strains related to pre-treatment history 

when adjusting for drug resistance (Chapter 6). This suggests that the exposure to drugs 

might have selected for one genotype over another. Molecular epidemiology can also help 

identifying ongoing outbreaks of TB. Despite Nepal being TB endemic country, TB 

outbreaks have never been documented. This is presumably due to lack of reference 

genotyping data and/or tools. Now, our findings filled some of this data gap and NTP in 
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Nepal should consider establishing genotyping facilities for MTBC, as it may also contribute 

to innovative control strategies. 

The results from the DNA sequencing of drug resistance genes provided an overview of the 

mutations and mutational hotspots for resistance to first-line and second-line drugs in Nepal.  

These hotspots are similar to the ones seen globally; however some differences in the relative 

proportions were seen. We documented several additional mutations that need further 

verification to confirm they indeed cause drug resistance. Another approach would be to 

document the frequency of those mutations in a larger sample sets. From our findings we can 

confirm that at least for the diagnosis of MDR-TB based on the currently available molecular 

assays including the HAIN test and Xpert MTB/RIF will provide adequate sensitivity and 

specificity. Drug resistance is an emerging problem in Nepal and our findings show that it is 

represented mostly among previously treated cases or those infected with the Beijing 

genotype. An additional finding of our work is the association of female patients with Beijing 

genotype (Chapter 5). The NTP report of Nepal for the year 2010/11shows that 2/3 of the TB 

cases were male. Some Beijing strains have been associated with higher virulence in animal 

models and drug resistance (de Steenwinkel et al., 2012,Aguilar et al., 2010). Hence based 

on our findings, female TB patients in Nepal seem to be associated with “virulent” strains of 

TB and drug resistance. Future research on host factors may shed lights on the host-pathogen 

interaction in TB and identify the reasons behind the apparent higher susceptibly of females 

to “virulent” TB. 

Finally, we provided some evidence that XDR-TB in Nepal occurs both as transmitted (i.e. 

primary) and acquired (i.e. secondary) drug resistance. All four XDR-TB strains we 

identified were Beijing strains, which was consistent with our findings on the general 

association between Beijing strains and any drug resistance. Overall, Beijing represented 

about 30% of the samples in our study. Hence from a bacteriological point of view, up to one 
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third of the TB patients in Nepal will be at risk of drug resistance. Investigating the risks 

associated with drug resistance among new as well as pre-treated cases will be crucial to 

better understand the basis of the ongoing epidemics of drug-resistant TB. 

Assessing the socio-economic impact of tuberculosis in Nepal 

TB has been considered as a disease of poverty and affects the economically disadvantaged 

group of society (Oxlade and Murray, 2012). Despite the fact that DOTS treatment is 

provided free to the patients registered to NTP, the direct financial burden to the individual 

and the family is substantial. The lengthy treatment (at least 6-8 months) can render patients 

economically inactive, causing great economic loss to both the individual and the family. 

Addressing the socio-economic factors has contributed to the reduction of TB and has 

improved treatment adherence (Kamineni et al., 2012). A study from China has shown that 

the poor quality of DOTS, treatment adherence, and a previous TB episode and poverty were 

associated with drug resistance (Zhao et al., 2012). In our study, the socio-economic factors 

were also addressed. For example, we have shown that TB affects young adults who are in 

their economically most productive age (Chapter 4). 

Many studies from Africa and India have assessed the association between poverty and TB, 

(Oxlade and Murray, 2012), but few publications are available on similar assessment 

focusing on the direct financial burden of TB diagnosis and treatment for individuals and 

their household. In order to assess the costs that the patients incur through the processes of 

diagnosis and treatment in Nepal, we collected additional data during our study. Generally, 

we found that patients could not continue with their jobs due to weakness or social stigma. 

The impact of TB was the largest on patients whose occupation was “daily wage earners”. 

The indirect cost of TB was also high, suggesting that a policy shift from “Health worker 

supervised DOTS” to “Home-based DOTS” or “ambulatory DOTS” could be a cost-effective 
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option in Nepal (Malla et al., 2009,Prado et al., 2011). The data analysis on direct, indirect 

cost expenditure to the patients is still ongoing. This out of pocket expenses as stratified by 

economic status of patients will be used to measure the “treatment outcome” of TB. Our 

hypothesis is to test if the risk of treatment failure or relapse or defaulter is significantly high 

among economically disadvantaged group. The findings will be submitted to International 

Journal of Tuberculosis and Lung Disease.   
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Appendix 1: The PCR primer sets used for detection of mutations 

in respective drug target genes 

Target Gene (Drugs) Primer Direction 

Primer Sequence in direction  

5' to 3' 

Size of 

PCR product (bp) 

rpoB (RIF) F TCCTCGATGACGCCGCTTTCT 849 

  R 

TCR GAG ATC TTG CGC TTC TGS; 

R=G/A, S=G/C  

  R 

AYATCGACCACTTCGGYAACC; 

Y=C/T   

katG (INH) F CCAGCGGCCCAAGGTATC 850 

  R GCTGTGGCCGGTCAAGAAGAAGTA  

inhA (INH) F GGCACGTACACGTCTTTATGTA 478 

  R GGTGCTCTTCTACCGCCGTGAA  

rpsL (STR) F CGTGAAAGCGCCCAAGATAG 375 

  R GAACCGCGGATGATCTTGTAG  

embB (EMB) F CGGCATGCGCCGGCTGATTC 260 

  R TCCACAGACTGGCGTCGCTG  

pncA (PZA) F GGCTGCCGCGTCGGTAGG 652 

  R GCCGCCAACAGTTCATCCC  

gyrA (FQ) F CAGCTACATCGACTATGCG 320 

  R GGCTTCGGTGTACCTCATC  

rrs (AMK) F CGTTCCCTTGTGGCCTGTG 547 

  R GGCGTTTTCGTGGTGCTCC  
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Appendix 2: District wise frequency of TB cases enrolled in the 

study (N=650) 

S. No 

Origin of Patients 

(Districts) n Percent 

1 KATHMANDU 366 56.31 

2 LALITPUR 36 5.54 

3 DHADING 27 4.15 

4 MAKWANPUR 16 2.46 

5 NUWAKOT 15 2.31 

6 SINDHUPALCHOK 13 2.00 

7 RAMECHHAP 12 1.85 

8 KAVREPALANCHOK 10 1.54 

9 CHITWAN 9 1.38 

10 RUPANDEHI 9 1.38 

11 SINDHULI 9 1.38 

12 BHAKTAPUR 8 1.23 

13 DOLAKHA 8 1.23 

14 GORKHA 8 1.23 

15 SARLAHI 7 1.08 

16 KAILALI 6 0.92 

17 BARA 5 0.77 

18 PALPA 5 0.77 

19 PARSA 5 0.77 

20 SYANGJA 5 0.77 

21 DANG 4 0.62 

22 KAPILVASTU 4 0.62 

23 SUNSARI 4 0.62 

24 GULMI 3 0.46 

25 KANCHANPUR 3 0.46 

26 MORANG 3 0.46 

27 RASUWA 3 0.46 

28 RAUTAHAT 3 0.46 

29 SIRAHA 3 0.46 

30 SURKHET 3 0.46 

31 BAGLUNG 2 0.31 

32 BANKE 2 0.31 

33 MAHOTTARI 2 0.31 

34 MUSTANG 2 0.31 

35 MYAGDI 2 0.31 

36 OKHALDHUNGA 2 0.31 

37 TANAHU 2 0.31 

38 UDAYAPUR 2 0.31 

39 ACHHAM 1 0.15 
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40 BAJHANG 1 0.15 

41 BAJURA 1 0.15 

42 BHOJPUR 1 0.15 

43 DAILEKH 1 0.15 

44 JHAPA 1 0.15 

45 KASKI 1 0.15 

46 KHOTANG 1 0.15 

47 LAMJUNG 1 0.15 

48 MANANG 1 0.15 

49 MUGU 1 0.15 

50 PANCHTHAR 1 0.15 

51 ROLPA 1 0.15 

52 SOLUKHUMBU 1 0.15 

53 TAPLEJUNG 1 0.15 

54 TERHATHUM 1 0.15 

55 INDIA (foreign) 6 0.92 

 TOTAL 650 99.95 
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