
Modelling the seasonal and spatial variation of

malaria transmission in relation to mortality

in Africa

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät der

Universität Basel

von

Susan Fred Rumisha

aus Tanga, Tanzania

Basel, 2013



Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von

Prof. Dr. M. Tanner, Dr. P. Vounatsou, Dr. T. Smith und Prof. Dr. Heiko Becher

Basel, den 13. December 2011

Prof. Dr. Martin Spiess

Dekan



… to my beloved parents, sisters and brothers.





Time,
The most essential professional tool,

The necessary connection between events,
The device that prevents everything from happening at once,

Time.
~Penelope Lively





Table of Contents
List of abbreviation................................................................................................................................. i
List of Tables.......................................................................................................................................... ii
List of Figures......................................................................................................................................... ii
Summary............................................................................................................................................... iii
Zusammenfassung................................................................................................................................vii
Acknowledgement................................................................................................................................xii

Chapter 1 Introduction ............................................................................................. 1
1.1. Background ................................................................................................................................ 2

1.1.1. Malaria burden................................................................................................................................ 2
1.1.2. Species, vector and behavioral characteristics ............................................................................... 3
1.1.3. Clinical features and malaria diagnosis ........................................................................................... 5

1.2. Measuring malaria transmission................................................................................................ 5
1.3. Malaria control and interventions ............................................................................................. 7
1.4. Malaria transmission and mortality......................................................................................... 10
1.5. Demographic surveillance systems, malaria transmission intensity and mortality ................ 11
1.6. Mapping of malaria transmission ............................................................................................ 12
1.7. Geostatistical modeling ........................................................................................................... 15

1.7.1. Bayesian modeling of large geostastical data ............................................................................... 15
1.7.2. Approximation of spatial processes using a subset of data.......................................................... 16
1.7.3. Modeling large sparse zero-inflated entomological data ............................................................. 17
1.7.4. Modelling seasonality and temporal effect in malaria data ......................................................... 17

1.8. Aims and objectives ................................................................................................................. 19
1.8.1. Specific methodological objectives ............................................................................................... 19
1.8.2. Epidemiological questions addressed by the developed methods............................................... 19

Chapter 2 Assessing seasonal variations and age patterns in mortality during the
first year of life in Tanzania .......................................................................................... 21

Abstract ............................................................................................................................................... 22
2.1. Introduction ............................................................................................................................. 23
2.2. Data .......................................................................................................................................... 25

2.2.1 Infant Mortality ................................................................................................................................. 25
2.2.2 Seasonality ........................................................................................................................................ 26

2.3. Methodology............................................................................................................................ 26
2.3.1 Seasonality Index............................................................................................................................... 26
2.3.2 Goodness-of-fit test .......................................................................................................................... 27
2.3.3 Modeling ........................................................................................................................................... 27
2.3.4 Description of harmonic cycle model................................................................................................ 28
2.3.5 Bayesian model specification............................................................................................................ 29
2.3.6 Model assessment and selection ...................................................................................................... 30

2.4. Results ...................................................................................................................................... 31
2.4.1 Descriptive analysis ........................................................................................................................... 31
2.4.2 Seasonality index............................................................................................................................... 33
2.4.3 Goodness-of-fit test .......................................................................................................................... 34
2.4.4 Modeling ........................................................................................................................................... 34

2.5. Discussion................................................................................................................................. 39



Chapter 3 Bayesian modeling of large geostatistical data to estimate seasonal and
spatial variation of sporozoite rate .............................................................................. 43

Abstract ............................................................................................................................................... 44
3.1. Introduction ............................................................................................................................. 45
3.2. Data and Study site .................................................................................................................. 48
3.3. Model formulation................................................................................................................... 49

3.3.1 Geostatistical modeling via Gaussian spatial processes ................................................................... 50
3.3.2 Geostatistical modeling via Gaussian spatial processes approximations ......................................... 50
3.3.3 Selection of knots.............................................................................................................................. 51
3.3.4 Bayesian kriging................................................................................................................................. 52
3.3.5 Model validation ............................................................................................................................... 52
3.3.6 Practical implementation.................................................................................................................. 53
3.4. Results ...................................................................................................................................... 54

3.4.1. Descriptive analysis ........................................................................................................................... 54
3.4.2. Selection of knots.............................................................................................................................. 55
3.4.3. Model validation ............................................................................................................................... 56
3.4.4. Model-based estimates..................................................................................................................... 57
3.5. Discussion................................................................................................................................. 62

Chapter 4 Modelling heterogeneity in malaria transmission using large sparse
spatio-temporal entomological data............................................................................ 69

Abstract ............................................................................................................................................... 70
4.1. Introduction ............................................................................................................................. 71
4.2. Methodology............................................................................................................................ 74

4.2.1. Study Site........................................................................................................................................... 74
4.2.2. Mosquito Data................................................................................................................................... 74
4.2.3. Environmental and Climatic Data...................................................................................................... 75
4.2.4. Statistical analysis.............................................................................................................................. 75

4.3. Results ...................................................................................................................................... 81
4.3.1. Data Description................................................................................................................................ 81
4.3.2. Geostatistical model results.............................................................................................................. 82
4.3.3. Mapping EIR ...................................................................................................................................... 83
4.3.4. Population adjusted EIR .................................................................................................................... 87

4.4. Discussion................................................................................................................................. 89

Chapter 5 Assessing the relation between child survival and malaria transmission:
an analysis of the MTIMBA data in Rufiji DSS, Tanzania ............................................... 93

Abstract ............................................................................................................................................... 94
5.1. Introduction ............................................................................................................................. 95
5.2. Methods ................................................................................................................................... 97

5.2.1. Study Area ......................................................................................................................................... 97
5.2.2. Data ................................................................................................................................................... 97
5.2.3. Linking mortality with other databases ............................................................................................ 98
5.2.4. Statistical analysis.............................................................................................................................. 99

5.3. Results .................................................................................................................................... 100
5.3.1. Mortality data ................................................................................................................................. 100
5.3.2. Exploratory analysis ........................................................................................................................ 102
5.3.3. Model-based results........................................................................................................................ 104

5.4. Discussion............................................................................................................................... 105



Chapter 6 Malaria transmission intensity and mortality in older children and adults
in Rufiji DSS, Tanzania ................................................................................................ 111

Abstract ............................................................................................................................................. 112
6.1. Introduction ........................................................................................................................... 113
6.2. Methods ................................................................................................................................. 114

6.2.1. Study site and the data ................................................................................................................... 114
6.2.2. Statistical analysis............................................................................................................................ 115

6.3. Results .................................................................................................................................... 116
6.3.1. Descriptive statistics........................................................................................................................ 116
6.3.2. Model based results ........................................................................................................................ 118
6.3.3. Effect of EIR on mortality from birth to adulthood......................................................................... 119
6.3.4. Excess mortality attributed to malaria transmission ...................................................................... 120

6.4. Discussion............................................................................................................................... 121

Chapter 7 General discussion and conclusion ....................................................... 127
7.1. A preamble............................................................................................................................. 128
7.2. Justification for the research and goals ................................................................................. 129
7.3. Structure ................................................................................................................................ 130
7.4. Statistical contribution........................................................................................................... 131
7.5. Epidemiological contribution................................................................................................. 133
7.6. Limitations and challenges..................................................................................................... 136

7.6.1 Awareness and capacity in statistical data analysis ........................................................................ 136
7.6.2 Epidemiological ............................................................................................................................... 137
7.6.3 Statistical ......................................................................................................................................... 138

7.7. Future research and extension .............................................................................................. 141
7.7.1 Non-stationary spatial process and space-time interactions.......................................................... 141
7.7.2 Jointly modeling of malaria transmission and mortality accounting for spatial misalignment and
species heterogeneity.................................................................................................................................. 142
7.7.3 Improving EIR estimates and assessing other measures of transmission....................................... 142
7.7.4 Converting malaria transmission risk on mortality to disease burden ........................................... 143
7.7.5 From DSS to vital registration system ............................................................................................. 143

7.8. Implication and concluding remark ....................................................................................... 144

References……............................................................................................................ 145
Curriculum Vitae ........................................................................................................ 165





List of abbreviation i

List of abbreviation
ACT Artemisinin-based Combination Therapy
ADDS Africa Data Dissemination Service
AIC Akaike Information Criteria
AIDS Acquired Immunodeficiency Syndrome
BCI Bayesian Credible Interval
CDC Centers for Disease Control and Prevention
CSP Circumsporozoite Protein
DALYs Disability-Adjusted Life Years
DDT dichlorodiphenyltrichloroethane
DHS Demographic and Health Surveys
DSS Demographic Surveillance Systems
EIR Entomological Inoculation Rate
ELISA Enzyme Linked Immuno-Sorbent Assay
GIS Geographical Information Systems
GMAP Global Malaria Action Plan
GMEP Global Malaria Eradication Program
GPS Global Positioning System
HIV Human Immunodeficiency Virus
INDEPTH Network The International Network for the Demographic Evaluation of Populations and Their Health in developing countries
ITNs Insecticide-Treated Nets
IRS Indoor Residual Spraying
IPTi Intermittent Preventive Treatment for infants
IPTp Intermittent Preventive Treatment in pregnancy
LLITNs Long Lasting Insecticide-Treated Nets
MAP Malaria Atlas Project
MARA Mapping Malaria Risk In Africa
MCMC Markov Chain Monte Carlo
MDGs Millennium Development Goals
MICS Multiple Indicator Cluster Survey
MIM Multilateral Initiative on Malaria
MIS Malaria Indicators Survey
MMV Medicines for Malaria Venture
MTIMBA Malaria Transmission Intensity and Mortality Burden across Africa
MODIS Moderate Resolution Imaging Spectroradiometer
MVI Malaria Vaccine Initiative
MVN Multivariate Normal
NB Negative Binomial
NDVI Normalized Distance Vegetation Index
NIMR National Institute for Medical Research
PATH Program for Appropriate Technology In Health
RBM Roll Back Malaria
RDSS Rufiji DSS
RS Remote Sensing
SAPV Spatially Averaged Predicted Variance
SAVVY Sample Vital Statistics with Verbal Autopsy
SARIMA Seasonal Auto-Regression Integrated Moving Average
SES Socio-Economic Status
SR Sporozoite Rate
SRS Sample registration systems
SSA sub-Saharan Africa
SVR Sample vital registration
TDHS Tanzania Demographic and Health Survey
TEHIP Tanzania Essential Health Interventions Project
UNDP United Nations Development Programme
UNICEF United Nations Children's Fund
VC Vectorial Capacity
WHO World Health Organization





List of Tables and Figures ii

List of Tables
Table 2.1: Age-specific point estimate and model based (with 95% Bayesian Credible Interval (BCI)) seasonality indices by year and on

pooled data......................................................................................................................................................................................... 33
Table 2.2: Model assessment: the error sum of squares, number of parameters, and variance and autocorrelation parameters from

models fitted with data for infants of 10-months of age...................................................................................................................... 35
Table 2.3: Results of M12 for infants age 2, 5, 8 and 11 months and for pooled data................................................................................ 37
Table 3.1: Environment and Climate data ................................................................................................................................................... 48
Table 3.2: Space-time posterior estimates for predictors, space and time parameters .............................................................................. 57
Table 4.1: Results of association of environment/climate variables on sporozoite rate and mosquito density and spatio-temporal

parameters ......................................................................................................................................................................................... 82
Table 4.2: Overall predicted EIR with the percent (%) attribute of each species ........................................................................................ 87
Table 4.3: Distribution of predicted EIR over the RDSS area by Year, N*(%):............................................................................................ 87
Table 5.1: Number of individuals, deaths and locations after merging mortality database with entomological, socio-economic and malaria

interventions databases ..................................................................................................................................................................... 98
Table 5.2: Descriptive statistics on mortality at different age groups of child health, Oct 2001- Sept 2004, Rufiji DSS ........................... 101
Table 5.3: Mortality rate according to ITN possession, SES and EIR levels (natural scale) in the Rufiji DSS.......................................... 103
Table 5.4: Parameter estimates obtained from Bayesian spatial-temporal models on neonates, infants and older children survival in the

Rufiji DSS ......................................................................................................................................................................................... 104
Table 6.1: Model estimates from Bayesian discrete time Bernoulli survival geostatistical models on school age children, adults and older

individuals’ survival in the Rufiji DSS, Oct 2001-Sept 2004 ............................................................................................................. 118
Table 7.1: ITN ownership (%) by age in the Rufiji DSS, Oct 2001- Sept 2004 ......................................................................................... 135

List of Figures
Figure 1.1: Risk of malaria transmission worldwide (Source: WHO, 2010) .................................................................................................. 2
Figure 1.2: Malaria transmission cycle (Source: CDC) ................................................................................................................................. 4
Figure 1.3: Countries with DSS sites within the INDEPTH Network (Source: SIDA Review, 2010) ........................................................... 11
Figure 2.1: Death counts and age-specific mortality rates (MR) of infants in Rufiji DSS, October 2001- September 2004........................ 31
Figure 2.2: Age-specific mortality rates by calendar months....................................................................................................................... 32
Figure 2.3: Mortality rates (MR) for the Infants during the period of October 01 – September 04, Rufiji DSS............................................ 32
Figure 2.4: Error Sum of Squares for Models 1-12 for all age groups* ....................................................................................................... 36
Figure 2.5: Monthly time series of mortality rates aligned with the fitted values, RDSS ............................................................................. 38
Figure 3.1: (a) Crude monthly sporozoite rate for An. funestus and An. gambiae (b) Monthly rain and temperature........................... 54
Figure 3.2: Box plots for the distance measureD for An. funestus (left) and An. gambiae (right) between the spatial parameters

estimated by the empirical variables of the sub-sample..................................................................................................................... 55
Figure 3.3: Grid showing original and sub-locations selected using a balance sampling for An. funestus (left) and An. gambiae (right)

........................................................................................................................................................................................................... 56
Figure 3.4: Proportion of points included in the CI of the posterior predictive distribution .......................................................................... 56
Figure 3.5: Predicted sporozoite rates An. funestus for Jan-Dec in Rufiji DSS, Tanzania....................................................................... 59
Figure 3.6: Predicted sporozoite rates An. gambiae for Jan-Dec in Rufiji DSS, Tanzania ....................................................................... 60
Figure 3.7: Mean predicted sporozoite rates for An. funestus and An. gambiae ................................................................................... 61
Figure 4.1: Seasonal variations of a) rainfall, temperature and b) mosquitoes densities of An. gambiae and An. funestus in the Rufiji

DSS October 2001- September 2004 ................................................................................................................................................ 81
Figure 4.2: Selected EIR maps showing the spatial distribution and the seasonal pattern, for the period of Oct 2001- Sept 2004. A) Dry

months followed by the period of short rains, B) Months immediately after the onset of heavy rains during the 1st year (very wet), C)
Months immediately after the onset of heavy rains during the 2nd year (dry) and D) Months immediately after the onset of heavy rain
season during the 3rd year (normal rains) ......................................................................................................................................... 84

Figure 4.3: Predicted monthly EIR median and attribute of each species in Rufiji DSS ............................................................................. 85
Figure 4.4: Spatial temporal distribution of annual EIR with prediction error maps..................................................................................... 86
Figure 4.5: Distribution of households in the Rufiji DSS area (N=14,516), Source: TEHIP, 2002 .............................................................. 88
Figure 5.1: Child death rates by age categories and month of death, RDSS ........................................................................................... 101
Figure 6.1: Gender and age specific estimates of mortality rates in children and adult population, RDSS, Oct 2001- Sept 2004 ........... 117
Figure 6.2: Estimates of HR of EIR on mortality (with 95% BCI) from a geostatistical model for different age categories. The under five

years were added to allow clear presentation of the trend ............................................................................................................... 119
Figure 6.3: Age-specific patterns of excess mortality by transmission intensity ....................................................................................... 120
Figure 7.1: Age-specific patterns of excess mortality by transmission intensity (Source: WHO/Health Metrics Network)........................ 144





Summary iii

Summary

Based on the recent world malaria report, about three billion people, which is almost half of the world

population, are estimated to be at risk of malaria transmission. In developing countries, malaria is

believed to be a major cause of morbidity and mortality. The disease affects all age groups with children

under five years carrying the highest morbidity and mortality burden. It is among the indirect causes of

maternal mortality. In endemic areas many infants’ deaths are attributed to low-birth-weight resulted

from malaria infection during pregnancy. Malaria brings huge economic burden due to number of days

lost during sickness and deaths, sustaining a vicious cycle of disease and poverty in sub Saharan Africa

(SSA). In World Health Organization Regional Office for Africa (WHO/AFRO), nine percent of deaths and

more than ten percent of disability-adjusted life years (DALYs) are attributable to malaria alone.

A number of malaria control interventions to reduce intensity of transmission have been successfully

implemented in endemic areas in the regions of SSA. In the past, elimination of malaria succeeded in

many developed countries but it is still a dream in many developing countries today. Failures in global

eradication are related to resistance in insecticides and anti-malarial drugs and health systems related

factors. In the last decade, the Roll Back Malaria (RBM) partnership reinforced new strategies to combat

malaria with long-term goal of eradicating the disease globally. This facilitated about tenfold rise in

global funding for malaria research and development of multi disciplinary initiatives to combat malaria.

Malaria is now in the main agenda of all international health and development forums and part of the

Millennium Development Goals (MDGs). Recent global health statistics report declines in mortality

especially in children. The reduction in mortality is associated with achievements in intervention

strategies and also improvements in malaria diagnosis and treatment. The coverage of the most efficient

control intervention, the use of Long Lasting Insecticide-Treated Nets (LLITN)/ITN has increased in

many countries resulting in substantial lessening of malaria transmission and infection rates. However,

poor natural acquisition of malaria immunity in children as a consequence of weak or no exposure is a

major epidemiological concern and brings a fear of higher mortality rates or shifting of age of death to

older children. Understanding possible links between transmission, intervention, immunity and mortality

is important for sustainable progress towards the targets set by RBM or MDGs, is crucial.

Comprehensive analysis of information on malaria transmission, vital events, drivers of transmission and

mortality-related risk factors is required to assess and quantify how intervention, transmission and

mortality are related. The data should have high spatial and temporal resolutions to assess micro scale

variability of transmission and seasonality. Lack of vital registration systems in developing countries

hinders availability of such data. Establishment of Demographic Surveillance Systems (DSS) in many

developing countries aims to fill these information gaps. Within a DSS, a defined population is routinely
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monitored on vital events and other demographic indicators which create a platform for evaluating public

health indicators. One of the initiatives integrated within DSSs is the Malaria Transmission Intensity and

Mortality Burden across Africa (MTIMBA) project. The project compiled a database of mosquito

collections at selected sites in Africa over a large number of locations, using standardized

methodologies for a period of three years. The entomological parameters were linked with routinely

monitored vital events within the DSS. The MTIMBA database is the most comprehensive entomological

database ever collected in Africa which allows studying small area spatial-temporal variation in malaria

transmission in relation to mortality.

Malaria is an environmental disease hence transmission varies with climate as it modifies population,

survival, distribution and infectivity of malaria vectors. Quantification of association between climate and

transmission is important to allow prediction of risk even in areas that field data cannot be easily

obtained. Development in geographical information systems (GIS) and availability of remote sensing (RS)

data facilitates availability of environment and climate data at high space and time resolutions allowing

accurate estimation of outcome-factor relationship. However, DSS data are collected longitudinally at

fixed locations (i.e. geostatistical data) and are characterized by seasonal patterns, spatial and temporal

correlations due to similar exposures shared within small proximities and close time profiles.

Additionally, DSS data are large, sparse and zero-inflated (e.g. mosquito data). Standard models assume

independence between observations, an assumption which do not hold for correlated data, hence

utilizing these models might result into biased estimates. Geostatistical modeling of large, sparse and

zero inflated space-time data is computational challenging specifically in the estimation of the spatial

processes. The spatial correlation is accounted by introducing location-specific random effect

parameters which are assumed to arise from a spatial process quantified by a multivariate normal

distribution. The models are highly parameterized and their fit is computationally intensive. Bayesian

computational algorithms such as Markov Chain Monte Carlo (MCMC) can be used to fit these models.

Estimation of the spatial process requires inversion of the covariance matrix at each simulation point.

The dimension of the matrix increases exponentially with number of locations and the inversion

becomes infeasible when the size is too large. Recent techniques overcome this problem by

approximating the spatial process from a subset of locations. These methods have been applied on

Gaussian outcomes observed over a grid. However, the MTIMBA data are neither Gaussian nor regular

in space. Extension of methodology is required to address MTIMBA data characteristics. Another

important aspect is the modeling and estimation of malaria transmission using Entomology Inoculation

Rate (EIR). EIR is typically treated as a continuous outcome and modeled using linear regression models

after performing a logarithmic transformation to meet the assumption of normality. However, it is

difficult to achieve normality from sparse data with large number of zeros. Formulation of rigorous
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methods to efficient model these data are needed to allow precise prediction of malaria transmission at

locations with mortality data to enhance studying the association. Lastly, seasonality in climatic

conditions introduces seasonal patterns in transmission and mortality data. Although in statistical

literature modeling formulations of seasonality patterns are well developed, most epidemiological

applications ignore or do not fully explore this aspect of the data.

The objectives of this thesis were to i) develop Bayesian geostatistical models to analyze very large and

sparse geostatistical and temporal non-Gaussian data with seasonal patterns and ii) apply these models

to (a) estimate space-time heterogeneity in malaria transmission (b) assess mortality variations between

different ages during the first year of life while adjusting for seasonality and (c) determine the relation

between transmission intensity and risk of mortality in children and adult population after taking into

account control interventions. This work used an extract of MTIMBA data from the Rufiji DSS (RDSS)

collected between October 2001 and September 2004.

Evaluation of different approaches to capture seasonal pattern using infant mortality data is discussed in

Chapter 2. The aim was to estimate mortality peaks and assess whether they differ at different stages of

infant life. The peaks of mortality were observed to be seasonal and aligned with climate conditions.

However, no difference in the timing of peaks was observed among age groups. Among the statistical

approaches assessed, cosine terms were able to best capture seasonality with mixture of cycles.

In Chapter 3, models approximating the spatial process from a subset of locations were developed to

assess seasonal and spatial pattern of sporozoite rate (SR) of An. funestus and An. gambiae and produce

smooth monthly maps of SR for RDSS. Effect of climate was also determined. The SR data were selected

due to moderate number of locations involved so we could easily validate our model performance.

Balanced sampling was employed to draw 5000 samples of the original data with size varying from 50 to

350. A distance measure was used to compare the variogram of the full data and the samples. The

location coordinates were used as auxiliary variables to ensure a balance sample. Results showed that it

is not the size of the sample that determines how good is the approximation to the spatial process but

rather the sample spatial configuration. The results emphasized the importance of understanding vector

behaviors and how they respond towards changes in different attributes.

A rigorous approach to analyze EIR data is discussed in Chapter 4. EIR is the product of mosquito

density and SR which are count and binomial data, respectively. Separate models for SR (binomial) and

density data (negative binomial) were fitted by species and the EIR was calculated using model-based

predictions of SR and mosquito density. Zero-inflated analogue of negative binomial was used to

account for over-dispersion and zero-inflation in the mosquito data. The large spatial process was

approximated by a sample of locations obtained via minimax space-filling methods. The model took into
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account seasonality, temporal trends and correlations and adjusted for climatic predictors. High

resolution EIR maps were produced for the RDSS. Temporal, spatial and seasonal patterns of EIR were

highly influenced by environmental predictors.

Using the EIR estimated in Chapter 4, we aligned all locations (households) with mortality data within

the RDSS and predicted malaria transmission on monthly intervals. Bernoulli discrete-time regression

models were used to assess the relationship between all-cause mortality and malaria transmission (i.e.

EIR) in different age categories. Separate analyses were performed for neonates (0-28days), infants (1-

11months), children (1-4yrs), school-children (5-14yrs), young adults (15-60yrs) and older individuals

(>60yrs). The results of these analyses are presented in Chapters 5 and 6. Models include spatial and

non-spatial random effects at village level and monthly temporal correlation and were adjusted for age

and ITN possession. The EIR was incorporated in the model as a covariate with measurement error to

account for the prediction uncertainty. The results indicated that i) the effect of malaria transmission on

mortality differ by age with school-children having higher impact as compared to younger children and

adults possibly due to weak immunity development during childhood which emphasize on the importance

of preventive interventions in this age group ii) ITNs had a protective effect but rather not significant on

neonate mortality, however, interactions between ITN ownership and  family socio-economic status

(SES) are likely, iii) it is importance to incorporate information on exposure history and malaria

immunity when studying the transmission-mortality relation to assess how that modifies the association.

This work is a building block on the insight and understanding of association between malaria

transmission and all-cause mortality. The major strength of results of this work relies on EIR estimates

predicted at high spatial (household level) and temporal resolution by employing rigorous geostatistical

models fitted on large entomological data. The better exposure estimates obtained (which include

measure of uncertainty) are able to more accurately estimate the relation between malaria transmission

and mortality which is important for determining the consequences of malaria intervention on

transmission and mortality trends. However, comparison of analyses conducted within and between

different sites in SSA is critical to better understand the reproducibility of most of conclusions. That

might facilitate developing a refined model to relate different measures of malaria transmission with

mortality which is essential for the targets set by RBM initiatives.
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Zusammenfassung

Einer weltweiten Schätzung zufolge leben etwa drei Milliarden Menschen in Gefahr sich mit Malaria zu

infizieren, was etwa der Hälfte der Weltbevölkerung entspricht. In den Entwicklungsländern ist Malaria

wahrscheinlich die Hauptursache von Morbidität und Mortalität. Die Krankheit befällt alle Altersgruppen,

allerdings tragen Kindern unter fünf Jahren die höchste Last an Morbidität und Mortalität. Malaria ist

ausserdem eine der Hauptursachen der Müttersterblichkeit und viele Todesfälle in Kleinkindern gehen

auf eine Infektion der Mutter während der Schwangerschaft zurück. Durch die Krankheit kommt es zu

einer enormen wirtschaftlichen Belastung aufgrund der hohen Anzahl an Fehltagen und wegen der

Todesfälle, was einen durch Krankheit und Armut bedingten Teufelskreis in Subsahara-Afrika (SSA)

aufrecht erhält. Im Gebiet des Regionalbüros der Weltgesundheitsorganisation in Afrika (WHO/AFRO)

sind allein neun Prozent der Todesfälle und mehr als zehn Prozent der sogenannten disability-adjusted

life years (DALY) auf Malaria zurückzuführen.

Eine Reihe von Malaria-Kontroll-Interventionen um die Intensität der Übertragung in den endemischen

Gebieten von SSA zu verringern wurde erfolgreich umgesetzt. In der Vergangenheit ist die Ausrottung

der Malaria in vielen Industrienationen gelungen, allerdings bleibt sie auch heute noch immer ein Traum

in vielen Entwicklungsländern. Misserfolge in der weltweiten Ausrottung der Krankheit sind auf

Resistenzen gegenüber Insektiziden und Anti-Malaria-Medikamenten zurückzuführen, als auch auf

bestimmte Faktoren in Bezug auf die Gesundheitssysteme. In den letzten zehn Jahren verstärkte die Roll

Back Malaria (RBM) Partnerschaft neue Strategien zur Bekämpfung der Malaria mit dem langfristigen

Ziel der weltweiten Ausrottung der Krankheit. Diese verzehnfachte die globalen Mittel zur Erforschung

der Malaria und zur Entwicklung von multidisziplinären Initiativen zu deren Bekämpfung. Inzwischen ist

Malaria ein Teil der Agenda aller internationalen Gesundheits- und Entwicklungsforen und gehört zu den

sogenannten Millennium Development Goals (MDGs). Aktuelle globale Statistiken berichten von einem

Rückgang der Sterblichkeit, vor allem bei Kindern. Diese Verringerung der Mortalität ist eng mit

Errungenschaften der Interventionsstrategien und auch der Verbesserungen der Diagnostik und

Behandlung verbunden. Die Flächendeckung der effizientesten Intervention, der Einsatz von langlebigen

und mit Insektizid imprägnierten Moskitonetze (LLITN)/ITN, hat sich in vielen Ländern erhöht, was zu

einer wesentlichen Verminderung der Malaria-Übertragung und Infektionsraten führte. Allerdings

steigert die verringerte Immunität gegen Malaria bei Kindern als Folge der schwachen Exposition die

epidemiologische Sorge einer erhöhten Sterblichkeit und der Verschiebung des Todesalters hin zu

älteren Kindern. Daher ist das Verständnis möglicher Verbindungen zwischen Übertragung, Intervention,

Immunität und Mortalität von entscheidender Bedeutung um nachhaltige Fortschritte bei der

Verwirklichung der Zielsetzung von RBM oder den MDGs zu erreichen.
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Es wird eine umfassende Datenbank benötigt, welche Informationen über die Malaria-Übertragung,

Geburts- und Sterbefälle, ausschlaggebende Faktoren zur Übertragung und Mortalität beinhaltet, um die

Zusammenhänge von Intervention, Übertragung und Mortalität zu untersuchen und zu quantifizieren. Die

enthaltenen Daten sollten eine hohe räumliche und zeitliche Auflösung besitzen, damit Unterschiede in

der Übertragung auf Mikroebene und Saisonalität betrachtet werden können. Der Mangel an staatlich

erfassten Geburts- und Sterbefällen in den Entwicklungsländern behindert allerdings die vollständige

Verfügbarkeit dieser Daten. Die Gründung der demographischen Überwachungssysteme (DSS) in vielen

Entwicklungsländern soll diese Lücke beheben. Innerhalb des Einzugsgebietes eines DSS wird eine

definierte Bevölkerung routinemäßig hinsichtlich der Geburts- und Sterbefälle und anderer

demographischer Indikatoren überwacht, um eine Plattform zur Bewertung gesundheitlicher Indikatoren

zu schaffen. Eine der Initiativen die in die DSS integriert sind ist das sogenannte Malaria Transmission

Intensity and Mortality Burden across Africa (MTIMBA) Projekt. Dieses Projekt erstellt eine Datenbank

mit Hilfe standardisierter Methoden zur zweiwöchentlichen Erfassung von Mücken an einer Vielzahl von

ausgewählten Standorten in Afrika über einen Zeitraum von drei Jahren. Die entomologischen Parameter

werden mit den routinemäßig überwachten demographischen Daten innerhalb des DSS verbunden. Die

MTIMBA Datenbank ist die umfassendste entomologische Datenbank die jemals in Afrika erstellt wurde

und die sich dem Studium der mikroräumlichen und zeitlichen Variation der Malaria-Übertragung in

Bezug auf die Mortalität widmet.

Malaria ist eine umweltbezogene Krankheit, da die Übertragung stark mit dem Klima schwankt, welches

die Bevölkerung, das Überleben, die Verteilung und die Infektiösität des Vektors beeinflusst. Die

Quantifizierung des Zusammenhangs zwischen Klima und Übertragung ist daher wichtig, um eine

Vorhersage des Risikos in Gebieten ohne zuverlässige Studiendaten zu ermöglichen. Die Entwicklung

der geografischen Informationssysteme (GIS) und die Verfügbarkeit von Satellitendaten erleichterte die

Verfügbarkeit von geographischen und klimatischen Daten mit hoher räumlicher und zeitlicher

Auflösung, was eine genaue Abschätzung der Faktor-Wirkungsbeziehung ermöglicht. Die DSS-Daten

werden zu verschiedenen Zeitpunkten an festen Standorten (d.h. es handelt sich um geo-statistische

Daten) gesammelt und sind durch saisonale Muster und räumliche und zeitliche Korrelationen

gekennzeichnet, die aufgrund ähnlicher beeinflussender Faktoren in Nachbarschaften und zeitlicher Nähe

entstehen. Darüber hinaus handelt es sich um sehr große, räumlich karge und zu Null tendierende (z.B.

Mückenanzahl) Daten. Die Standard-Modelle gehen allerdings von der Unabhängigkeit der

Beobachtungen aus, eine Annahme die nicht auf korrelierte Daten zutrifft. Daher kann die Nutzung

dieser Modelle zu verzerrten Schätzungen führen. Wohingegen die geo-statistische Modellierung dieser

Art von Daten eine rechenintensive Herausforderung, speziell bei der Schätzung der räumlichen

Prozesse, darstellt. Die räumliche Korrelation wird durch die Einführung von Orts-spezifischen



Zusammenfassung ix

Zufallsparametern ermöglicht, deren Verteilung durch eine multivariate Normalverteilung des räumlichen

Prozess angenommen wird. Die Modelle enthalten dadurch eine Vielzahl von Parametern und sind sehr

rechenintensiv. Berechnungsalgorithmen nach Bayes, wie Markov Chain Monte Carlo (MCMC), können

verwendet werden, um diese Modellierungen durchzuführen. Allerdings erfordert die Schätzung der

räumlichen Prozesse die Inversion der Kovarianzmatrix bei jedem Schritt der Simulation. Die Dimension

dieser Matrix steigt exponentiell mit der Anzahl der Standorte, was deren Inversion bei sehr vielen

Studienorten undurchführbar macht. Aktuelle Techniken zur Überwindung dieses Problem nähern sich

dem tatsächlichen räumlichen Prozess mittels einer Teilmenge der Standorten an. Diese Methoden

wurden bereits an Gauß-verteilten Ereignissen an Rasterpunkten verwendet, allerdings sind die

MTIMBA Daten werden weder nach Gauß noch regelmäßig im Raum verteilt. Daher ist eine Erweiterung

dieser Methodik erforderlich, um die MTIMBA Daten auszuwerten. Ein weiterer wichtiger Aspekt ist die

Modellierung und Schätzung der Malaria-Übertragung mittels der entomologischen Inokulationsrate

(EIR). Die EIR wird in der Regel als kontinuierliches Ereignis angesehen und mittels linearer Regression,

nach der Durchführung einer logarithmischen Transformation um normalverteilte Daten zu erzielen,

modelliert. Allerdings ist es schwierig, Normalität aus spärlichen Daten mit einer großen Anzahl von

Nullen zu erreichen. Die Formulierung von rigorosen Methoden zur effizienten Modellierung dieser

Daten wird benötigt, um genaue Vorhersagen der Malaria-Übertragung zu ermöglichen. Außerdem führt

die Saisonalität der klimatischen Bedingungen zu saisonalen Mustern der Übertragungs- und

Mortalitätsraten, und obwohl Saisonalität in der statistischen Literatur ausreichend betrachtet wurde,

wird sie in den meisten epidemiologischen Betrachtungen ignoriert oder nicht vollständig zu untersucht.

Die Ziele dieser Arbeit waren, i) die Entwicklung geostatistischer Modelle nach Bayes um sehr große

zeitlich verteilte aber räumlich spärliche geo-statistische und Nicht-Gauß-verteilte Daten mit saisonalen

Mustern zu analysieren, ii) diese Modelle anzuwenden auf (a) die Abschätzung der räumlich-zeitlichen

Heterogenität der Malaria-Übertragung, (b) die Beurteilung der höchsten Sterblichkeitsrate in den

verschiedenen Stadien der Kindheit unter Einbeziehung der Saisonalität, und (c) das Bestimmen des

Verhältnisses zwischen der Intensität der Übertragung und des Mortalitätsrisikos bei Kindern und

Erwachsenen mit Berücksichtigung von Interventionen. Diese Arbeit verwendet einen Teil der MTIMBA

Daten aus dem Rufiji DSS (RDSS), welche zwischen Oktober 2001 und September 2004 gesammelt

wurden.

Die Auswertung der verschiedenen Ansätze um saisonale Muster in der Säuglingssterblichkeit Daten zu

erkennen wird in Kapitel 2 diskutiert. Ziel war es, die Sterblichkeitsrate abzuschätzen und zu beurteilen,

ob sie sich in den verschiedenen Stadien eines Säuglings unterscheidet. Die höchste Sterblichkeit ist

saisonal bedingt und wird durch klimatische Bedingungen beeinflusst. Es wurde jedoch kein Unterschied
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zwischen den Altersgruppen beobachtet. Unter den verschiedenen statistischen Ansätzen stellten sich

Kosinus-Terme mit einer Mischung aus Zyklen als am besten heraus um die Saisonalität wiederzugeben.

In Kapitel 3 wurden Modelle zur Abschätzung des räumlichen Prozesses aus einer Teilmenge der

Standorte entwickelt, um zeitliche und räumliche Muster der Sporozoiten-Rate (SR) von An. funestus und

An. gambiae zu bewerten und um Karten der SR für jeden Monat im Gebiet des RDSS zu erstellen. Der

Einfluss des Klimas wurde ebenfalls bestimmt. Die SR-Daten wurden an einer moderaten Anzahl von

Standorten erfasst, so dass die Modelle leicht gegeneinander getestet werden konnten. Balance-

Sampling wurde hierbei eingesetzt, um 5000 verschiedene Stichproben mit zwischen 50 und 350

Elementen aus den ursprünglichen Daten zu erhalten. Zusätzlich wurden Variogramme der einzelnen

Stichproben und der vollständigen Daten erstellt und deren Abstände ermittelt. Die Ortskoordinaten

wurden als Ausgleichsvariablen verwendet. Die Ergebnisse zeigten, dass nicht die Größe der Stichprobe

die beste Annäherung an den tatsächlichen räumlichen Prozess bestimmt, sondern die räumlichen

Konfiguration der Stichprobe. Die Analysen zeigten außerdem Unterschiede in der Übertragung

zwischen den beiden Arten, wobei An. funestus verantwortlich ist für die Trockenzeit-Übertragung und

An. gambiae für die Regenzeit-Übertragung. Dies führt zu einer ganzjährlichen Übertragung.

Ein umfassender Ansatz um EIR Daten zu analysieren wird in Kapitel 4 behandelt. EIR ist das Produkt

der Mücken-Dichte und der SR. Separate Modelle für die SR (binomialverteilt) und Dichte-Daten

(negativ binomial-verteilt) wurden für die verschiedenen Mückenarten durchgeführt und die EIR wurde

abschließend unter Verwendung modellbasierter Vorhersagen der SR und der Moskito-Dichte

berechnet. Eine zero-inflated negative Binomialverteilung wurde unter Berücksichtigung der

Überdispersion und der Null-Inflation der Mücke-Daten verwendet. Der räumlichen Prozess wurde

durch eine Stichprobe, welche durch das Minimax space-filling Verfahren ermittelt wurde, angenähert.

Das Modell berücksichtigte außerdem die Saisonalität, zeitliche Trends und Zusammenhänge, und

klimatische Prädiktoren. Hochauflösende EIR-Karten wurden für den RDSS produziert. Zeitliche,

räumliche und saisonale Muster des EIR wurden stark von umweltbezogenen Faktoren beeinflusst.

Mit dem in Kapitel 4 berechneten EIR wurden alle Standorte (Haushalte) mit den Sterblichkeitsdaten

innerhalb des RDSS verbunden und die monatlichen Malaria-Übertragungsrate vorhergesagt.

Zeitdiskrete Bernoulli-Regressionsmodelle wurden verwendet, um die Beziehung zwischen der

allgemeinen Mortalität und der Malaria-Übertragung (d.h. EIR) in den verschiedenen Alterskategorien zu

beurteilen. Separate Analysen wurden für Neugeborene (0-28 Tage), Säuglinge (1-11 Monate), Kinder

(1-4 Jahre), Schüler (5-14 Jahre), Jugendliche (15-60 Jahre) und älteren Personen (>60 Jahre)

durchgeführt. Die Resultate dieser Analysen werden in den Kapiteln 5 und 6 dargestellt. Die Modelle
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beinhalteten sowohl räumliche und nicht-räumliche zufällige Effekte auf Dorfebene als auch monatliche

zeitliche Korrelationen und bezogen das Alter und den Besitz von ITNs mit ein. Die EIR wurde in das

Modell als Kovariate samt Messfehler in die Rechnung mit aufgenommen. Die Ergebnisse zeigten, dass i)

die Auswirkung der Malaria-Übertragung auf die Sterblichkeit je nach Alter unterschiedlich ist, wobei

schulpflichtige Kindern die größeren Auswirkungen im Vergleich als jüngere Kinder und Erwachsene

erleiden, möglicherweise auf Grund der geringen Immunität, was von Bedeutung für die präventiven

Maßnahmen ist, ii) der fehlende Zusammenhang zwischen Malaria-Übertragung und Mortalität bei jungen

Erwachsenen untermauert die Behauptung, dass die Interaktion zwischen HIV und Malaria nicht

wesentlich zur erhöhten Erwachsenensterblichkeit beiträgt, iii) ITNs eine schützende Wirkung haben,

allerdings nicht signifikant auf die Neugeborensterblichkeit, wobei Wechselwirkungen zwischen ITN-

Besitz und dem sozio-ökonomischen Status (SES) der Familie wahrscheinlich sind, iv) es wichtig ist,

Informationen über die Expositionsvergangenheit und Malaria-Immunität einbeziehen, wenn die

Zusammenhänge zwischen der Übertragung und der Mortalität zueinander untersucht werden.

Diese Arbeit ist ein Baustein zum Verständnis der Zusammenhänge zwischen Malaria-Übertragung und

Mortalität. Die große Stärke unserer Ergebnisse stützt sich auf die räumlich (Haushaltsebene) und

zeitlich hoch aufgelösten EIR-Vorhersagen erstellt mittels umfassender geo-statistischer Modelle für

die große Anzahl an entomologischen Daten. Wir glauben, dass die bessere Abschätzung der Einflüsse

eine genauere Bestimmung des Verhältnis zwischen Malaria-Übertragung und Mortalität ermöglicht, was

wichtig für die Ermittlung der Folgen von Malaria-Interventionen auf die Übertragungsrate der

Krankheit und die Entwicklung der Sterblichkeit ist. Allerdings brauchen wir noch weitere Ergebnisse

von anderen Standorten um die Reproduzierbarkeit der meisten unserer Ergebnisse zu untersuchen. Die

Entwicklung eines stochastischen Modells um verschiedene Maßnahmen der Malaria-Übertragung mit

der Sterblichkeit in Zusammenhang zu setzen könnte dabei das Ziel nachfolgender Forschungen sein.
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1.1. Background

1.1.1. Malaria burden

Malaria is among the oldest infectious disease in human populations, and currently still

endemic in over 90 countries worldwide, mainly in the tropics (Garcia 2010; Hay et al. 2009)

(Figure 1.1). In 2009, 169–294 million cases of malaria with about 780 thousands deaths were

estimated worldwide (WHO 2010b). Around 78% of these cases and over 90% of the deaths

occurred in the African region. Most deaths (85%) are observed in children under five years of

age (Snow et al. 1999; WHO 2007, 2010a). Reduction and resurgences in malaria cases and

deaths have been reported in different regions, nevertheless, the situation in SSA is still

intolerable (Bryce et al. 2005; WHO 2006, 2010a). A number of vector control and intervention

programs have been put in place to reduce transmission levels and burden of the disease.

However, for decades, due to lack of longitudinal surveillance data, no clear evidence on the

association between effectiveness of interventions and changes in transmission intensities has

been confirmed (Smith et al. 2001; Snow et al. 1997). Evidence-based and effective vector

control and elimination/eradication programs are needed to clearly understand dynamics in

malaria burden, transmission and their association with other health outcomes (The malERA

Consultative Group on Vector Control 2011). This creates an urge to generate accurate and

comprehensive data on these parameters to allow rigorous and precise analysis of all potential

linkages (de Savigny and Binka 2004; Greenwood et al. 2005).

Figure 1.1: Risk of malaria transmission worldwide (Source: WHO, 2010)
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1.1.2. Species, vector and behavioral characteristics

Malaria is an infectious disease caused by parasitic protozoa of the genus Plasmodium

transmitted by a bite from an infected mosquito. The four species of Plasmodium that cause

human malaria are P. falciparum, P. vivax, P. ovale, and P. malariae (Warrell & Gilles, 2002). The

predominant species is the P. falciparum which is confined in the tropics and is known to cause

the most dangerous form of the disease. P. vivax is present in the tropics, subtropics and in

temperate zones while no specific areas are defined for P. malariae (Garcia 2010). P. ovale is

most prevalent in the region of West Africa. A fifth species, P. knowlesi, primarily infecting

monkeys, has been identified in Southeast Asia (Greenwood et al. 2008; Jongwutiwes et al.

2004; Singh et al. 2004).

The vector of the malaria parasites are the female anopheline mosquitoes. The mosquito is the

primary host while humans act as intermediate host and reservoir of the parasite. When an

infected mosquito bites an individual, the sporozoites, which are contained in the salivary

glands, are injected into the human bloodstream and migrate to the liver (Beier et al. 1999).

The liver cells become infected and form schizonts which rupture and release merozoites. This

stage is referred to as the exo-erythrocytic cycle. The merozoites attack the red blood cells

and feed on the haemoglobin. The immune system fights most of the merozoites, however,

some invade the cells to initiate the so called erythrocytic cycle. Within this cycle, the infected

cells form into a ring-shaped immature trophozoite which later develops new schizonts. With

time and several generations of this cycle, some merozoites develop into male and female

forms, namely gametocytes. When a mosquito takes a blood meal from an infectious person

and picks gametocytes, the sporogonic cycle is initiated. Within the mosquito gut, the male and

female gametocytes mate and mature via different stages into oocysts. The oocysts grow and

rupture to release new sporozoites which migrate to the salivary glands of the mosquito. In

case the mosquito is taking another blood meal, the sporozoites are injected to an individual

and the cycle starts again (Figure 1.2).



Chapter 1: Introduction and objectives 4

Figure 1.2: Malaria transmission cycle (Source: CDC)

Approximately 430 Anopheles species are known, of which only 30-50 are able to transmit

human malaria. In SSA, the primary vectors for malaria transmission are An. gambiae complex

and An. funestus (Coetzee and Fontenille 2004; Gillies and De Meillon 1968; Hay et al. 2005).

Behavioral characteristics of these vectors, such as feeding and habitation preferences,

distinguish their potential to transmit malaria. Environmental and climatic conditions, mainly

temperature, rainfall and humidity, are the key drivers of the vector’s population density,

distribution and survival. An. funestus is responsible for dry season malaria while An. gambiae is a

dominant vector in the rainy seasons (Fontenille et al. 1997a). High temperature (between 25

and 30 °C) catalyzes development of parasites within mosquitoes and shortens the gonotrophic

cycle (simply the time between two consecutive blood meals) which increases mosquito

population and biting frequency (Afrane et al. 2005; Charlwood and Graves 1987; Lardeux et

al. 2008; Quiñones et al. 1997). Parasite development ceases at 16°C while mosquito thermal

death is expected at temperatures above 40 °C (Haddow 1943; Craig et al. 1999). Rainfall

creates breeding sites and favorable humid conditions for mosquito growth. However, heavy

rain flushes away mosquito larva preventing development of adult vectors. In tropical regions,

transmission of malaria follows a distinctly seasonal pattern influenced by seasonality in

climatic factors (Hay et al. 1998; Thomson et al. 1997).
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1.1.3. Clinical features and malaria diagnosis

The symptoms of malaria, specifically P. falciparum infections, include headache, joint aches,

fatigue or malaise, fever, and sometimes diarrhea and vomiting. Initial symptoms typically

appear about seven days after receiving an infectious bite. In most cases, untreated or poorly

managed malaria case progress to severe form of the disease which might even cause death,

sometimes within several hours after the first symptoms. Therefore, treatment within 24 hours

of onset is highly recommended. Severe case of the disease might result to cerebral malaria,

severe anaemia (especially in children), other serious complications such as brain damage (due

to high fever and seizures) and kidney failure might (mainly in adults) (WHO 2010a). In remote

areas where no laboratory facilities are available, malaria is often diagnosed presumptively.

However, proper diagnosis requires microscopic examination of blood films and other

specialized tests, such as serology and polymerase chain reaction (CDC 2010). Recently, rapid

diagnostic tests have been introduced to improve diagnosis and quality of management of

malaria patients (D’Acremont et al. 2009; WHO 2009).

1.2. Measuring malaria transmission

The malaria transmission cycle involves both the host and the vector (Figure 1.2), hence the

intensity of transmission is assessed using parasitological indicators (such as parasite density,

prevalence or incidence rates describing the strength in human) and/or entomological

parameters (such as mosquito density, sporozoite rates, survivorship or vectorial capacity

from which human exposure to infectious mosquitoes can be measured) (MacDonald 1957).

These measures quantify the risk and intensity malaria transmission and can be used to

evaluate effectiveness of intervention strategies (Molineaux 1988; Smith and McKenzie 2004;

Shaukat et al. 2010).

The most direct measure of malaria transmission intensity is the entomological inoculation rate

(EIR). The EIR estimates the number of effective bites per person at a certain unit of time and

quantifies the level of exposure to infected mosquitoes (Burkot and Graves 1995; Beier et al.

1999; Billingsley et al. 2005; Killeen et al. 2006; Kelly-Hope and McKenzie 2009). It is derived

by the product of man-biting mosquito density, SR (proportion of infected mosquitoes) and
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human blood index (proportion of blood meals obtained from humans) (Garrett-Jones 1964;

Birley and Charlewood 1987; Drakeley et al. 2003). EIR varies between (small) regions due to

differences in environmental conditions, type and effectiveness of interventions (Kelly-Hope

and McKenzie 2009; Shaukat et al. 2010). As it measures human risk of exposure to infection

it is preferable and widely used. Additionally, EIR can be estimated under (manageable) field

conditions and directly associated with prevalence and incidence rates (Trape and Rogier

1996; Beier et al. 1999; Smith et al. 2004) and other public health indicators such mortality

(Smith et al. 2005; Ross et al. 2006).

The length of the gonotrophic cycle is another measure to estimate the strength of

transmission and survival of anopheline mosquitoes (Rodriguez et al. 1992; Fernandez-Salas et

al. 1994; Quiñones et al. 1997). It is governed mainly by temperature (MacDonald 1957; Gu et

al. 2006) and comprises of three stages: i) search for a host and taking of a blood meal, ii)

blood digestion and development of the ovaries, and iii) search for a suitable breeding place

and oviposition. Additionally to temperature, distance between breeding sites and hosts, and

use of insecticide treated nets alter the length of this cycle (Detinova 1962; Hii et al. 1995; Gu

et al. 2006). These factors need consideration when assessing malaria transmission.

Alternative transmission measures include infectious reservoir and vectorial capacity (VC).

The infectious reservoir estimates the probability of a mosquito to become infected when

taking a feed from an infected human (Charlewood 1997; Killeen et al. 2000; Pethleart et al.

2004; Smith and McKenzie 2004) and it is useful in assessing changes in infection rates after

introducing control measures (Jeffery and Eyles 1955; Pethleart et al. 2004). The VC

expresses the potential of malaria transmission. Assuming a perfect transmission (i.e. a human

host always contract an infection when bitten by infective mosquitoes), it represents the

expected number of infectious bites from a single vector after feeding on an infectious host.

VC is the best measure to quantify receptivity to malaria infections (Adlaoui et al. 2011).

However, its estimation requires knowledge of several parameters such as the emergence and

survival rates of mosquitoes. These parameters vary significantly in place, time and species

and are difficult to obtain in practical scenarios (Dye 1986). Mathematical models using

theoretical data and assumptions on transmission competence and vector survival are usually
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used to estimate VC but suffer from bias and limited practical applicability (Molineaux 1988).

Estimation of infectious reservoir of Plasmodium requires direct feeding of mosquitoes through

human volunteers or artificial membranes. Seeking ethical consents laboratory work and

resources are among few limitations for routine application of this measure (Githeko et al.

1992; Drakeley et al. 2000; Shaukat et al. 2010).

Simplicity in estimation and direct interpretation made EIR a commonly used measure of

malaria transmission as compared to other measures such as infectious reservoir and VC.

However, in addition to the spatio-temporal heterogeneity in mosquito density and SR which

result into a large variability of EIR, in some settings malaria transmission might be

concentrated in a small fraction of population making it difficult to select a representative

sample of human population to where EIR should be estimated (Smith et al. 1995; Woolhouse et

al. 1997; Billingsley et al. 2005). In most cases, information on important factors that alter EIR

such control interventions (e.g. ITNs, IRS), demographic (e.g. urbanization, migration, high

population density) and climatic (e.g. rain, temperature) are not readily available to be

accounted for, resulting into inaccurate estimation of EIR, poor association with other disease

indicators and lack of comparability between and within regions (Service 1977; Hay et al.

2000b; Robert et al. 2003; Mboera 2006; Kelly-Hope and McKenzie 2009).

1.3. Malaria control and interventions

Campaigns to fight malaria started before the World War II with main focus in larval control

and source reduction managed to eradicate malaria in regions including Italy, United States and

Israel (Kitron and Spielman 1989). In the year 1939, a Swiss chemist, Paul Muller discovered

that the chemical dichlorodiphenyltrichloroethane (DDT) could eradicate many insects without

harming human beings. Availability of DDT shifted malaria control focus to strategies that

reduce vector populations through indoor residual spraying (IRS) which were complimented

with case management using effective drugs (quinine and chloroquine) for prophylactic and

treatment (Harrison 1978). This resulted to a substantial reduction of malaria in many states,

for example in India. The shift provided great hope on the fight against malaria resulting to

initiation of WHO Global Malaria Eradication Program in 1955 which ran until 1970s (WHO
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1957). The initiative aimed at global eradication of the disease using vector control strategies.

Great success was achieved in Europe, some African countries and the Middle East.

Unfortunately, the program excluded most of the SSA countries due to difficulties in logistics,

operational and financial issues (Wernsdorfer and McGregor 1988; Nájera 2001; Greenwood

and Mutabingwa 2002). In 1978, following the Alma Ata Declaration, most African states

adopted the primary health care strategy as an alternative approach by integrating malaria

control activities within the health systems (Muturi et al. 2008; Christopher et al. 2011). This

strategy was not very effective as it required funds and well functioning health systems which

were not in place in most of these countries at the time. Other reasons contributed to poor

success were increasing anti-malarial drug resistance and failure in vector control programs

due to insecticide resistance (WHO 1984; Sachs and Malaney 2002; Alilio et al. 2004). With

time, the burden of malaria disease was increasing significantly (WHO 1984).

In 1988, the RBM partnership was launched with the idea of redesigning strategies and

approaches previously used with additional components in the health systems targeting case

management, improve use of ITNs and preventive treatment (RBM, WHO 1999). Partners of

RBM include WHO, United Nations Children's Fund (UNICEF), the United Nations Development

Programme (UNDP) and the World Bank. Other programs and international initiatives

supporting the RBM vision include the Multilateral Initiative on Malaria (founded in 1997) which

focuses on research and training; Medicines for Malaria Venture (founded in 1999) dealing

with development and delivery of new antimalarial drugs; and the Malaria Vaccine Initiative

(founded in 1999) which works on the development of vaccine (Davies 1999; Wheeler and

Berkley 2001; Rabinovich 2002; PATH, Program for Appropriate Technology in Health 2007).

Via improved treatment and prevention strategies targeting the most vulnerable groups of

malaria infections, i.e. children under five and pregnant mothers, RBM aimed to halve malaria

mortality in SSA by 2010 and to reduce cases and malaria deaths close to zero by 2015 as

compared to the 2000 statistics (WHO 2000; Yamey 2000; Sachs and McArthur 2005;

RBM:GMAP 2008). The long term vision of RBM is a world-wide eradication of malaria

through progressive country by country elimination (RBM:GMAP 2008).
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Funding in malaria research has increased widely in the past decade with a number of funding

agents involved in development of new tools and interventions to achieve eradication (Roberts

and Enserink 2007; WHO/UNICEF/PATH 2010). Malaria control intervention strategies

principally aim at i) reducing the vector population by implementing IRS and source reduction,

ii) reducing human-vector contact by promoting the use of LLINs/ITNs (Maxwell et al. 2002,

2003; Flaxman et al. 2010), iii) preventing the vulnerable groups from infections through

interventions such as intermittent preventive treatment in pregnancy (IPTp), intermittent

preventive treatment for infants (IPTi) and development of vaccines (Bejon et al. 2008), and iv)

ensuring prompt and accurate case management through monitoring treatment policies and

drug resistance. Among those available today, the use of LLINs/ITNs is the most effective

(Lengeler 2004; Fegan et al. 2007; WHO 2008a). According to the World Malaria Report, more

than 80 million ITNs were distributed to SSA by 2009 which have contributed to a significant

reduction in mortality, low birth weight and mosquitoes population (Gamble et al. 2007; Killeen

et al. 2007a; Noor et al. 2009; WHO 2010b). Introduction of IPTp and IPTi have also shown

positive effects on the burden of malaria in a number of areas (Schellenberg et al. 2001a; Eijk

et al. 2004, 2005; Hommerich et al. 2007; Mockenhaupt et al. 2007; Manzi et al. 2009).

Replacing single antimalarial therapy by artemisinin-based combination therapy (ACT) and use

of rapid diagnostic tests have had great improvement in the treatment and accurate diagnosis

of malaria in endemic countries (D’Acremont et al. 2009; MMV 2009; Snow and Marsh 2010;

WHO 2010b).

The multi -innovative and -sectorial efforts are expected to sustainably lessen malaria burden

and to significantly reduce or even interrupt transmission. However, weak health systems, lack

of tools and understanding of the heterogeneity in malaria transmission create doubts in the

achievement of the RBM vision (Tanner and de Savigny 2008).
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1.4. Malaria transmission and mortality
In areas with high levels of malaria transmission, most deaths are associated with malaria

infection (Marsh and Snow 1999; Smith et al. 2001; Korenromp et al. 2003, 2004; Idro et al.

2006; Rowe et al. 2006; Okiro et al. 2009). Recently, most of SSA countries have experienced

a downshift trend in mortality especially in infants and children (Rajaratnam et al. 2010a; WHO

2010b). The advances in implementation, access and success in malaria control interventions

strategies on transmission, and efficient malaria treatment are among the factors driving the

observed mortality pattern (Ahmad et al. 2000; Kleinschmidt et al. 2009a; WHO 2010a).

However, from a clinical point of view, reducing malaria transmission may affect acquisition of

malaria immunity in children and shift the mean age of child mortality to older ages (Snow and

Marsh 2002; Lindblade et al. 2004; Omeara et al. 2008). Todate arguments regarding the way

malaria transmission affects mortality are contradictory. However, to sustain progress in

malaria control, adequate knowledge is required on the effect of interventions on transmission

and consequences of altering transmission on malaria morbidity and mortality.

Several efforts aimed to understand the relationship between malaria transmission and

mortality in Africa (Lengeler et al. 1995; Snow and Marsh 1995a; Trape and Rogier 1996;

Smith et al. 2001; Phillips-Howard et al. 2003; Lindblade et al. 2004; Lim et al. 2011). Yet,

opposing results and conclusions have been reported. For example, Smith et al. (2001) showed

a positive association between infant mortality rate and EIR in Africa. A study in Western

Kenya, (Lindblade et al. 2004) observed no difference in mortality rates between areas with

and without ITNs interventions. Other studies which relate ITN efficacy and child mortality

include those in Tanzania(Schellenberg et al. 2001b), Kenya (Fegan et al. 2007) and the

Gambia (D’Alessandro et al. 1995). In another attempt, Demographic and Health Surveys (DHS)

and Mapping Malaria Risk in Africa (MARA) databases were linked to assess the transmission-

mortality relation, but no clear relationship was observed (Gemperli 2003). Based on the

results of these studies, it is difficult to generalize and foresee the effect of interventions on

malaria burden. However, most of these studies are either small scale trials or they are based

on aggregated data collected at different time points (seasons) and places, and probably not

aimed to investigate the effect of malaria transmission on mortality. Analysis of a

comprehensive database linking vital events, information on transmission, interventions and

other risk factors related to poverty and health systems, is required to study the malaria-

mortality relationship.
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1.5. Demographic surveillance systems, malaria transmission intensity and
mortality

Most African countries do not have reliable vital registration systems, resulting into invalid

estimates of all-cause or malaria specific deaths. Long term and standardized monitoring of

entomological parameters and evaluation of prevention and control interventions is also

lacking. To address data needs, demographic surveillance systems (DSS) were established in a

number of developing countries (INDEPTH Network 2002; Jamison and Bank 2006). DSS

monitor birth, deaths, cause of death, in- and out- migration and other demographic

information such as social economic status, education and access to health services of a

defined population. DSS serve as the best platform of accurate and reliable data to understand

population diversities (in regions of similar conditions/settings) and to study all-cause and

cause-specific mortality (UNICEF/MICS 1995; Korenromp et al. 2004).

The International Network for the Demographic Evaluation of Populations and Their Health in

developing countries (INDEPTH) Network was formed in 1998 to strengthen capacity, to

monitor and to facilitate analysis of DSS data, and to conduct multi-site comparative

demographic research (Sankoh and Binka 2005a). Figure 1.3 shows a map with countries

involved in this network.

Figure 1.3: Countries with DSS sites within the INDEPTH Network (Source: SIDA Review, 2010)



Chapter 1: Introduction and objectives 12

In 2002, the INDEPTH Network launched the Malaria Transmission Intensity and Mortality

Burden across Africa (MTIMBA) initiative aiming to collect information that will guide

evidence-based malaria control policies in Africa (Sankoh and Binka 2005b; INDEPTH

Network- Homepage 2011). Particularly, the project was designed to elicit understanding of

the relationship between malaria transmission intensity, mortality and the effect of control

interventions. Countries involved in MTIMBA project were Ghana, Kenya, Mozambique,

Burkina Faso, Senegal and Tanzania. Integrated within the DSS, the MTIMBA project collected

entomological data at a large number of survey locations (households) for a period of three

years. The tools and methodology were standardized across all sites. The project covered

over 700,000 people living in about 10,000 km2 and collected hundreds of thousands of

mosquitoes (Kasasa et al. in preparation). The entomological parameters were linked to time,

place and vital events in a population which is rigorously monitored through the DSS. To date,

the MTIMBA database is the only comprehensive geo-referenced entomological database with

information which allows studying space-time heterogeneity and seasonality of malaria

transmission in relation to mortality.

1.6. Mapping of malaria transmission

Climate and environment are the main factors of malaria transmission. Precise mapping of

malaria transmission requires reliable data on the outcome and risk factors data, as well as

appropriate techniques in estimating existing relationship. Malaria mapping involved use of

geographical information systems (GIS) techniques, remote sensing data and geostatistical

modeling (Beier et al. 1999; Kleinschmidt et al. 2000, 2001a; Thomson and Connor 2000;

Diggle et al. 2002; Gemperli 2003). GIS can manage, manipulate, analyze and display geo-

referenced data from different sources. Remote sensing (RS) is a technique to derive

information about ground objects on the earth surface via sensors attached on satellites. RS

data has been used for more than thirty years to extract information on climate conditions at

high spatial and temporal resolution. These data can be linked with malaria transmission and

endemicity to accurately estimate their association, identify potential risk factors, predict at

un-surveyed locations and display spatial patterns of the disease (Hay et al. 2000a, 2009;

Tanser et al. 2003; Hay and Snow 2006; Usher 2010).
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Malaria transmission can be mapped using parasitological (prevalence) data (compilation of

historical or contemporary national surveys), clinical incidence information and data from

entomological surveys. However, historical data are heterogeneous in age, period,

methodology, diagnostic methods and might include sparse survey locations. These

heterogeneities and lack of important information such as intervention and other demographic

factors at the time of collection complicates spatial mapping (Gemperli et al. 2006a; Gosoniu

2008). National parasitological surveys are routinely carried out as part of Malaria Indicators

Survey (MIS). These provide the best source of data for estimating the geographical

distribution of the disease risk at national scale but cannot be used to estimate seasonal and

temporal variations. Incidence data especially in infants and children might reflect a direct

impact of malaria transmission, however, should be used carefully as they require precise

estimates of population at risk. All these data indirectly measure intensity of malaria

transmission. Entomological data, if collected longitudinally using standardized techniques,

would be most appropriate to directly assess malaria transmission since entomological

parameters, such as EIR can be estimated.

Attempts to produce global and regional maps of malaria transmission initially involved mainly

models based on climatic suitability for vectors supported by expert opinion. Lysenko and

Semashko (1968) produced the first global map of malaria risk based on relationship between

the duration of sporogony and temperature (global isotherms). In considering temperature

limits of transmission, elevation and rainfall conditions ideal for parasites and vector survival,

Dutta & Dutt (1978) mapped a possibility of malaria occurrence worldwide. Combining GIS

techniques, spatial interpolation and a developed fuzzy climatic suitability model, Craig et al.

(1999) obtained a malaria map for Africa based on biological relations of climate on parasite

and vector development. Malaria vector niche models were applied to generate a high

resolution map of malaria prevalence in northern Tanzania (Kulkarni et al. 2010) by estimating

the interaction between mosquito niche space and climate. Further refinement of ecological

approaches involved incorporating (historical) parasitological databases such as those

compiled in the “Mapping Malaria Risk in Africa” (MARA) project (MARA/ARMA 1998) or

Malaria Atlas Project (MAP) (Guerra et al. 2007) with climatic data (Omumbo et al. 1998; Snow

et al. 1998a). Following advances in modeling techniques and use of RS data the Bayesian
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geostatistical models were applied to produced smooth maps of malaria risk at different

regions (Diggle et al. 2002; Gemperli et al. 2006a; Gosoniu et al. 2006) and the most recent

global map of malaria endemicity (Hay et al. 2009). Other applications of mapping malaria using

parasitological data, include Bayesian analysis of MIS databases adjusting for interventions,

climatic and socio-economic factors which helped in measuring the malaria-related burden and

produce smooth maps of malaria prevalence in African countries such as Zambia (Riedel et al.

2010); Angola (Gosoniu et al. 2010) and Liberia (Gosoniu and Vounatsou 2011). Model-based

estimation is advantageous over GIS-based approaches as it can quantify the outcome-

predictor relationship, but more importantly, it allows predictions in areas with no survey data

with a measure of uncertainty (Banerjee et al. 2003; Patil et al. 2011).

Mapping malaria transmission using incidence data received less attention in Africa due to lack

of reliable disease surveillance system in most of developing countries. Spatial generalized

linear mixed models and model-based prediction were applied to produce smooth small-area

maps of malaria incidence in South Africa (Kleinschmidt et al. 2001b, 2002). Employing malaria

incidence data from several Southern African countries, maps showing spatial-temporal

patterns and seasonality of malaria incidence in relation to climate were produced (Mabaso et

al. 2006, 2007) and in another example, a Bayesian hierarchical model accounting for spatial

variation was employed to link incidence of malaria and weather parameters in Mozambique

but with no prediction (Zacarias and Andersson 2010, 2011).

EIR has been widely applied to map malaria transmission in Africa. The literature includes a

work by Rogers et al. (2002) who produced a map of EIR in Africa after determine factors

associated with the variation of malaria mosquito density and transmission. In The Gambia,

entomological field data, satellite image analysis and GIS modeling techniques were combined

to produce a smooth map of EIR (Bøgh et al. 2007). Employing the MARA database, Gosoniu et

al. (2008) and Gemperli et al. (2006b) used transmission models to translate prevalence data to

EIR parameters by fitting Bayesian geostatistical model adjusting for environmental and

climatic factors and produce high resolution smooth map of EIR for Mali. However, estimating

EIR from prevalence data might results into bias estimation of transmission due to small

number of locations involved in collection of parasitological data.
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1.7. Geostatistical modeling
Development and application of geostatistical models focused in estimation and mapping of

malaria transmission exposures (i.e. EIR) within the study area at high spatial-temporal

resolutions accounting for seasonal variations. The exposure surfaces are used to assess age-

specific transmission-mortality relationships adjusting for control interventions while

incorporating transmission uncertainty.

1.7.1. Bayesian modeling of large geostastical data
DSS collect data longitudinally (temporal) and over large number of fixed locations

(geostatistical). Geographical proximity of locations, similarities in survey timing and common

exposures introduce clustering, spatial and temporal correlation. Most of the classical

statistical methods assume independence between observations. Ignoring space-time

correlation might result in over/under-estimation of the significance of covariates (Ver Hoef et

al. 2001; Cressie et al. 2009; Riedel et al. 2010). In modeling geostatistical data, random effect

parameters are introduced at each location to account for a spatial correlation. The distribution

of the random effects is assumed to be a zero-mean multivariate normal with a defined

covariance matrix, referred to as Gaussian spatial process. The correlation between any pair

of locations is considered to be a function of distance between them and modeled by the

covariance matrix of the process (Gemperli et al. 2006a; Schur et al. 2011a). The number of

these parameters increases with the number of survey locations.

Introduction of location-specific random effect parameters in geostatistical modeling results in

highly parameterized models. It is difficult to apply maximum likelihood-based methods to

estimate such a (very) large number of parameters. Bayesian approaches implemented via

MCMC algorithms (Gelfand and Smith 1990) avoid the computational issues and can be used to

estimate the outcome-predictor relation and spatial correlations (i.e. the random effects

parameters) simultaneously (Gelfand and Smith 1990; Diggle et al. 1998). MCMC are iterative

algorithms which estimate model parameters by drawing samples from their posterior

distribution. The main challenge of MCMC estimation carried out in geostatistical modelling is

that it requires repeated inversion of the covariance matrix of the spatial process. The

inversion of this matrix is numerically not feasible when the number of locations )(n is very

large as the computational expenses increase exponentially in terms of time and accuracy (Xia

and Gelfand 2005).
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1.7.2. Approximation of spatial processes using a subset of data

Several approaches have been suggested to overcome the computation problems involved in

modeling large geostatistical data. These include the use Gaussian Markov fields (Rue and

Tjelmeland 2002), sampling importance re-sampling methods (Smith and Gelfand 1992),

parallelized computations (Yang et al. 2007), use of Kernel convolutions (Higdon 2001) and

many more (see Chapter 3 for details). However, criticism related to adequacy (Jones and

Zhang 1997; Stein et al. 2004), tuning (Gemperli and Vounatsou 2003) and performance

(Gemperli and Vounatsou 2006) of some of the proposed algorithms have been reported.

Recently, Banerjee et al. (2008) and Finley et al. (2009) proposed new strategies to fit large

Gaussian geostatistical data by approximating the spatial process from a subset of locations,

m ( nm  ) which reduces the dimension of the covariance matrix from nn to a smaller

dimension mm which can be easily inverted. Direct application of the new proposed methods

on field data is hindered by the underlying requirements including Gaussian outcomes and data

observed on regular grids.

Selection of the subset for approximating the spatial process is an additional challenge.

Random selection of the subset locations has been discussed (Banerjee et al. 2008) but does

not perform well for clustered data. Finley et al. (2009) proposed selecting the subset of

locations while minimizing the variance of the approximation, namely the spatially averaged

predicted variance (SAPV). Compared with other sampling approaches including random

sampling, balanced sampling (Deville and Tillé 2004) and minimax space filling design (Johnson

et al. 1990), SAPV has been claimed to be the most efficient and precice method for sampling.

However, this approach requires prior knowledge on spatial characteristics of the data and it is

computationally expensive even for small subsets (Finley et al. 2009). In addition, further

development of these approaches to non-Gaussian and irregularly distributed data, and

exploration of less computation techniques to select subsets are essential. Moreover,

evaluation of the performance of subsets to approximate the spatial process in real-life field

data is also needed.
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1.7.3. Modeling large sparse zero-inflated entomological data

Entomological data are usually sparse and with high variability, especially when collected over

a large area and over a long period of time. The variability is caused by large number of zero

outcomes, either in the SR or mosquito densities. This could be a result of environmental

conditions for the mosquitoes but also related to logistic and infrastructure problems which

make it infeasible to visit some areas. Excess zeros create over- or under-dispersion and

zero-inflation which implies that the data contain too many zeros in relation to the underlying

data distribution (e.g. Poisson for count data). In statistical analyses, EIR data or a logarithm

logarithmic transformation of EIR is assumed to follow a Normal distribution and a linear

regression model is applied. However, it is difficult to transform to normality sparse EIR data.

In addition, EIR is the product of SR (binomial data) and density (count data), therefore a

rigorous analysis should model SR and density data separately. Zero inflated analogues of the

standard Poisson/negative binomial or binomial distributions are more appropriate to analyze

sparse data (Greene 1994; Cheung 2002; Yau et al. 2003). A zero-inflated model is a two-

component mixture model with a point mass at zero and a proper data distribution (Ridout et al.

2001; Yau et al. 2003). Zero inflated models have been applied in several studies however,

applications in malaria transmission modeling are very limited (Barnes et al. 2005; Banerjee et

al. 2008; Manh et al. 2011).

1.7.4. Modelling seasonality and temporal effect in malaria data

Malaria is an environmental disease with strong seasonal patterns. Accurate assessment of

seasonality is important to understand the seasonal variability which is necessary for timely

targeting of interventions and control programs. Assessing seasonal patterns in malaria has

been often implemented by relating occurrence of events with climatic factors such as rain

(Hay et al. 1998; Thomson et al. 1999, 2008; Mabaso 2007). This is done by comparing the

outcome of interest among categories (e.g. wet and dry seasons) either through calculating

seasonality indices (Mabaso et al. 2005; Rau 2006), summary statistics (such as frequency,

rates, proportions), (Becker and Weng 1998; Pascual et al. 2008), or significance tests such as

chi-square (Bailey et al. 1992; Hamad et al. 2002; Singh et al. 2007; Vitali et al. 2009).
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However, seasonal data often are collected over a time series which introduces temporal

correlation that is hardly captured using methods described earlier (Cameron and Trivedi

1990). Model-based approaches are recommended for accurate assessment of seasonal and

temporal trends in the time series data (Zhang et al. 2007; Briët et al. 2008).

The use of harmonic functions (separately or within regression models) has been suggested to

efficiently model seasonal trends (Stolwijk et al. 1999; Kynast-Wolf et al. 2006; Zeger et al.

2006; Ramroth et al. 2009; Griffin et al. 2010). Most of these formulations capture seasonal

pattern but ignore temporal correlation. The correlation in time can be modeled by introducing

random temporal parameters at each time point (such as week, month) which are considered to

be either independent and follow a normal distribution with a common variance, or temporally

correlated and modeled via an autoregressive process of a specific order. Selected

trigonometric functions with extended terms accounting for temporal correlation can be

employed to capture seasonal and temporal trends in malaria transmission and mortality,

especially in the data coming from the DSS.
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1.8. Aims and objectives

The aims of this thesis were i) to develop Bayesian geostatistical models to analyze large and

sparse space-time count and binomial data by approximating the spatial process from a subset

of  survey locations, accounting for seasonality and temporal correlation ii) to validate and

implement the developed methodology by analyzing the large point referenced entomological

field data collected under the MTIMBA project, to estimate small scale heterogeneities and

produce smooth maps of malaria transmission and lastly iii) to assess the malaria transmission

attribution to mortality in children and adults accounting for the effect of interventions and

demographic parameters.

1.8.1. Specific methodological objectives
 assess existing methods to capture seasonal pattern and temporal correlation in the data

and propose a formulation to be incorporated in the spatio-temporal models (Chapter 2).

 develop geostatistical spatial-temporal model to analyze sparse non-Gaussian large data

observed irregularly in space by extending existing methods developed for Gaussian

outcomes and approximate the spatial process from a subset of locations (Chapter 3).

 propose a less computational strategy for selecting the subset of locations (knots) for

approximating the spatial process preserving the variability of the outcome and the spatial

process configuration (Chapter 3).

 formulate a rigorous approach for analyzing EIR data considering distributions generating

EIR data, i.e. binomial (sporozoite rate) and negative binomial (density), (Chapter 4).

1.8.2. Epidemiological questions addressed by the developed methods
 estimate seasonal peaks of mortality at different stages of infancy in malaria endemic site.

 mapping seasonal and spatial variation of sporozoite rate of An. gambiae and An. funestus

adjusting for environment and climate factors as covariates in Rufiji DSS, Tanzania.

 modeling spatial-temporal heterogeneity and mapping of malaria transmission while

accounting for overdispersion and zero inflation and produce smooth seasonal and temporal

maps of EIR for Rufiji DSS, Tanzania.

 assessing the relationship between malaria transmission and survival in children under

fives and adults in the Rufiji DSS, Tanzania, correcting for demographic parameters and

malaria control intervention (Chapter 5 and 6).
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Abstract
Lack of birth and death registries in most of developing countries, particularly those in sub-Saharan

Africa led to the establishment of Demographic Surveillance Systems (DSS) sites which monitor large

population cohorts within defined geographical areas. DSS collects longitudinal data on migration, births,

deaths and their causes via verbal autopsies. DSS data provide an opportunity to monitor many health

indicators including mortality trends. Mortality rates in Sub-Sahara Africa show seasonal patterns due to

high infant and child malaria-related mortality which is influenced by seasonal features present in

environmental and climatic factors. However, it is unclear whether seasonal patterns differ by age in the

first few months of life. This study provides an overview of approaches to assess, capture and detect

seasonality peaks and patterns in mortality using the infant mortality data from the Rufiji DSS, Tanzania.

Seasonality was best captured using Bayesian negative binomial models with time and cycle dependent

seasonal parameters and autoregressive temporal error terms.  Seasonal patterns are similar among

different age groups during infancy and timing of their mortality peaks do not differ. Seasonality in

mortality rates with two peaks per year is pronounced which corresponds to rainy seasons.

Understanding of these trends is important for public health preparedness.

Keywords: Seasonality modeling, harmonic models, mortality, Demographic Surveillance Systems, Bayesian
inference, MCMC
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2.1. Introduction

Demographic Surveillance Systems (DSS) sites established within the INDEPTH network in

many Sub Saharan African countries continuously collect large amount of data on trends of

disease morbidity, mortality, in- and out-migration (INDEPTH Network, 2002; Sankoh and

Binka, 2005). Due to lack of efficient and reliable national vital registration systems to collect

data on population and health in developing countries, these surveillance data are invaluable

for evidence-based health planning and guide policy decisions (Snow et al., 1998; INDEPTH

Network, 2002; Kynast-Wolf et al., 2002; Hammer et al., 2006; Lutambi et al., 2010).  DSS

data have been used to study number of health indicators such as mortality rates, produce life

tables and estimating burden of diseases (Tollman and Zwi, 2000; Korenromp et al., 2004).

Most DSS sites are located in rural areas and in countries which are endemic for malaria

(http://www.indepth-network.org) where environmental factors such as rain and temperature

influence highly the patterns and seasonality of transmission (Snow et al., 1998). In these

sites, just like in many parts of Sub-Saharan Africa, one-fifth of all deaths that occurred,

including those of neonates, infants and children between 1-5 years is attributed to malaria

alone (WHO, 2010). That is due to indirect effect of malaria including low birth weights

(Steketee et al., 2001), high prevalence at early stage of life (Greenwood, 2006) and lack of

proper determination of specific cause of death (Masanja et al., 2008; Ramroth et al., 2009;

Adjuik et al., 2010; Shabani et al., 2010). Nevertheless, factors related to child immune

development and passively transferred antibodies from mother to child, are believed to cause a

relatively protection of neonates and infants under age of 3-6 months from severe

consequences of malaria illness (Riley et al., 2000; 2001; Mutabingwa et al., 2005) hence

malaria-related mortality would be expected to be low (Amaratunga et al., 2011; Kitua et al.,

1996; Le Hesran et al., 2006; Snow et al, 1998). However, other differential factors such as

age, quality of health services and genetics influences ultimately modify the mortality pattern,

especially in young children (Riley et al., 2000; Poespoprodjo et al., 2010).

The complexity of the factors associated with mortality trends, especially in infants, pose a

difficulty to predict the timing that mortality peaks and to assess whether these peaks are
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age-dependent. Utilizing the richness of DSS databases, vigorous quantitative methodologies

can be formulated to study and quantify association with risk factors and at the same time

estimate seasonal peaks and temporal trends. Clarity in these variations is crucial to timely

interventions (Lawn, Cousens, et al., 2005; Lawn, Shibuya, et al., 2005), prepare health system

demand and for guiding proper allocation of resources (Fisman, 2007; Medina et al., 2007;

Naumova et al., 2007; UNICEF, 2005).

Most epidemiological and longitudinal studies employ summary statistics, graphical

presentation (Becker and Weng, 1998; Pascual et al., 2008) and statistical tests (Bailey et al.,

1992; Yip and Yang, 2004; Singh et al., 2007; Vitali et al., 2009) while assessing seasonality.

Selected applications extended the seasonality assessment with application of time series

methodologies such as Seasonal Auto-Regression Integrated Moving Average (SARIMA)

models (Tong et al., 2005; Hu et al., 2007; Zhang et al., 2007; Briët et al., 2008). However

SARIMA models are mainly appropriate for Gaussian data (Zeger et al., 2006; Huang et al.,

2011). Statistical techniques which incorporate harmonic functions with varying coefficients in

traditional models have also been used to efficiently model seasonality, though claimed to

introduce a large number of parameters and sometimes overfit the data (Stolwijk et al., 1999;

Rau, 2006; Eilers et al., 2008). However, there are limited applications which involved

assessing seasonality in tropical diseases or utilizing various DSS data specifically on mortality

(Becher et al., 2008; Becker and Weng, 1998; Byass et al., 2002; Kynast-Wolf et al., 2006;

Ramroth et al., 2009). The referred studies utilized Poisson regression models with

trigonometric functions to capture seasonality proficiently (Kynast-Wolf et al., 2006; Becher et

al., 2008).  It is an observation that most of the modeling attempts ignore accounting for

temporal correlation and overdispersion which are vital in longitudinal data analysis (Cameron

and Trivedi, 1998).

This study aims to provide an overview of different approaches to assess seasonality in

mortality data. Further extensions of existing measures are given to allow statistical inference

and in contrary to previous application, negative binomial (NB) regression models with

temporal random effects are used instead, to provide a rigorous but simplified approach for

modeling seasonal patterns and detection of mortality peaks at different age groups in infancy.
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Models are formulated in a Bayesian framework and accounted for excess zeros, temporal

correlation and used various components to capture seasonal patterns. The methods are

illustrated using the infant mortality data from the Rufiji DSS (RDSS) database and outputs are

discussed to suggest best approaches that can be used to assess mortality peaks. The analysis

was carried out for different age-groups during infancy and on pooled data (combining all age

groups). This paper is organized as follows; Section 1 defines the data used, Section 2

describes methods considered in measuring seasonality with formulation of models. Results

and discussion are presented in Sections 3 and 4 respectively.

2.2. Data

2.2.1 Infant Mortality
Mortality data were extracted from the Rufiji DSS database covering a period of October 2001

– September 2004. The RDSS, located in Rufiji District, Tanzania commenced in 1998. It

extends from 7.470 to 8.030 south latitude and 38.620 to 39.170 east longitude. The DSS

monitors 85,000 people, which is about 47% of the total population of the District (Source:

INDEPTH Monogram). From the database we extracted dates of birth, entry and exit from a

survey (given by day, month and year) and death status (Source: Rufiji DSS). The outcome of

interest is a binary variable indicating a death status of an infant at exit of a specific calendar

month during the study period. Infants were grouped in age intervals of thirty days (i.e. 0-

30days, 31-60days..., 331-360days) and referred to age in month 0 to month 11. It is worth

noting that, person-time (period) methods were used for data analysis, rather than cohort

analysis based on number of live births, hence rates calculated on the basis of person-times

are expected to be higher than those based on number of live-births. However, the approach

facilitated analyses of multiple age groups.

Total death counts and time at risk were calculated by calendar month and by age group. An

individual’s “time at risk” is defined as number of days an infant was alive during a specific age

group and/or a calendar month. Age-specific mortality rates (rate at thi month of life,

11,...,0i ) were calculated by taking a ratio between total deaths counts and total time at risk

(multiplied by 1000) and expressed as deaths per 1000 person-years. For this study, years are

defined as Year 1 (October 2001-September 2002), Year 2 (October 2002-September 2003)

and Year 3 (October 2003-September 2004).
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2.2.2 Seasonality

Rufiji district is characterized by two main rainy seasons; short rains (October - December)

and long/heavy rains (February - May) with the remaining months (January, June, July, August

and September) remain relatively dry. In this study two seasons were considered, a dry season

which comprised of the dry months and wet season which included both, the short and heavy

rain months (season). This categorization was used in the calculation of the mortality indices

and included in the regression models (described in the next section).

2.3. Methodology

In this section methods to assess seasonality patterns considered in this paper are described.

These include mortality indices, statistical testing and modeling.

2.3.1 Seasonality Index

The ratio of wet season mortality rate (MR) to dry season MR is the most commonly index

used to measure the strength of seasonality (Rau, 2007).  Mathematically, a point estimate for

this index (denoted as ) is calculated as:
1 2

i k
i S k S
MR MR

 

  , where 1S is a set of wet months and

2S a set of dry months. The value 1 indicates no difference between the two seasons, 1

indicates higher mortality rate in wet season while 1 indicates higher rates during the dry

season. However, a measure uncertainty for the parameter is not always considered hence

limit making statistical inference for the index. To address this, a model based approach was

used to estimate  with its associated confidence intervals. Details of model formulation are

described in the modeling section. In this study, point estimate values for  denoted as

p were calculated for each age group on annual basis and for pooled data and while model

based index denoted as m were calculated only for pooled data. Results are presented and

discussed.
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2.3.2 Goodness-of-fit test

This is a form of a chi-square test which has been commonly applied to measure seasonality in

time series data (Sogoba et al., 2007; Zhang et al., 2007; Mohorovic et al., 2010). Thinking of a

time series as a process, the test determines whether the process systematically deviates

from pre-defined expectation (Zeger et al., 2006). In this study the test was used to indicate

whether it is reasonable to assume that mortality rates (of specific age group or pooled data)

observed over a period of 12t months (a complete year) arised from a specific distribution,

hypothesized as uniform distribution (Horn, 1977; Siegel and Castellan, 1988). With the null

hypothesis being absence of seasonality, the test statistic, Z which has a chi-square

distribution with 1t (11) degrees of freedom, is calculated as  



12

1

2

t t

tt
E

EYZ where tY are

the observed death rates at month t and tE are the mean (average) of the rates over all 12

months. A small value (close to zero) of Z is interpreted as absence of seasonal pattern.

2.3.3 Modeling

This section explains formulation of NB regression models that were used to model monthly

time series age-specific mortality rates to assess seasonality and estimating temporal

patterns. Models were implemented in a Bayesian framework to allow flexible estimation of

needed parameters (Diggle et al., 1998).

For each age group, let tD and tT represent the death counts and time at risk at a calendar

month t respectively, and let the expected value of tD denoted by ttDE )( . Then tD is a

random variable following a negative binomial distribution with parameters t and r , i.e.

),(~ rNBD tt  where r is a dispersion parameter of the distribution. The general model with a

log link is described as:

( ) ( ) ( ) ( )T
t t T Slog log T f t f t    X β

( ) ( ) ( ) ( ) (1)T
t t T S tlog D log T f t f t     X β
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The )(tfT term models the time trend, )(tfS identifies the seasonal pattern, β is a vector of

regression coefficients associated with the matrix of covariates X , t are time-specific error

terms modeling temporal correlation and )( tTlog is an offset term corresponds to the

denominator of the mortality rate.

The time trend )(tfT considered annual and monthly time trends. Let jY , 3,2,1j and

tM , 12,...2,1t indicate time in years and months respectively. We then chose a discrete-time

formulation for the annual effect, i.e. 



2

1
)1()(

k
jkT kYItf  and a continuous trend for the

monthly effect, i.e. ttfT *)(  where  and k are estimated as normal regression

coefficients. The seasonal pattern )(tfS was captured by (i) a binary variable defining wet and

dry seasons, i.e. )1()( )(  W
tS SItf  where

)(W
tS is an indicator for wet season, (ii) a categorical

variable defining calendar month, i.e., 



11

1
)()(

k
tkS kMItf  , where tM indicates a calendar

month k that an infant died and  , k are regression coefficients, and (iii) using harmonic

cycles as described in the next section. The index  (explained above) is equivalent to model

(1) with )(tfS defined as a binary seasonal variable (wet and dry) and without the

terms TX β , )(tfT , and t in the model )1( .

2.3.4 Description of harmonic cycle model
In this case the seasonal term )(tfS of the model is formulated via a cosine function expressed

as:

2 2 2( ) * *Sf t ACos t a Cos t b Sin t
T T T
               
     

where t is the time (in months), T is the period of a cycle C, A defines the amplitude which

estimates the peak mortality within the time period, expressed as 2 2A a b  and  gives

the phase, the point in time where the peak occurs (in radian scale), calculated as

( / )arctan a b   .  Parameters a and b are estimated from a regression model.
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To capture the rainy seasons in Rufiji and assess annual trend of the seasonal patterns, (see

Figure 2.3), ( )Sf t was modeled considering two scenarios. The first case used a mixture of

two cycles C , having periods of 6-months and 12-months and cycle-dependent parameters

(i.e. ca and cb , 2,1C ). Two cycles are appropriate when two seasons are expected within a

year. Hence, with this specification seasonal-specific amplitudes, cA and phases, c were

estimated with an assumption that they do not vary from one year to another. In the second

scenario, the model was similar to that expressed in the first case but with year-dependence,

i.e. amplitudes and phases that vary annually, ( ) ( )S Sjf t f t . Parameters were therefore

estimated for each cycle and year, i.e. cja and cjb to estimate CjA and
jC

 3,2,1j , 2,1C .

The )(tfSj and respective amplitudes and phases are expressed as follows,

2,1;3,2,12*2*)(
1























 



Cjt
T
cSinbt

T
cCosatf

C

c
CjCjSj



and,
22
CjCjCj baA  ; )/arctan( CjCjC ba

j


2.3.5 Bayesian model specification

Following Bayesian model formulation, prior distributions were specified for all model

parameters. For the regression coefficients a non-informative normal prior distribution was

assumed, a Gamma distribution with mean 1 and variance 100 was adopted for the parameter,

r . Two specifications were adopted for the temporal error terms t . In the first attempt, error

terms 12,...,1,)1(  ttt  were considered to be independent variables arise from a normal

distribution with mean 0 and a common variance 2
e . Alternatively, the error terms

12,...,1,)2(  ttt  were considered to be temporally correlated and modeled via an

autoregressive process of first order i.e., )1(~)2( ARt , that is 2,)2(
1

)2(   tttt  , where t

is a ‘white noise’ time series comprising of independent observations which are normally

distributed with mean zero and variance )1/( 22  w . The autocorrelation parameter,  , which

quantifies degree of dependence between time series points (Zeger et al., 2006) was assumed
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to follow a Uniform distribution,  1,1~ U . An inverse gamma prior distribution with mean 10

and variance 100 was used for the independent, 2
e , and autoregressive, 2

w temporal variance

parameters. Models were run in OpenBUGS and parameters were estimated using Markov

Chain Monte Carlo (MCMC) simulations algorithm with 300,000 iterations and a burn-in period

of the first 30,000 iterations with a thinning of 20 iterations.

2.3.6 Model assessment and selection

Convergence of the models was assessed by visual inspection of trace and density plots and

the Gelman and Rubin convergence statistics (Gelman and Rubin, 1992). Model selection was

based on the least square methods where error sum of squares (SSE) were calculated and

fitted values plotted against the original rates. The model giving the lowest SSE was

considered the best. The measure of variability for the NB distribution, r , was also assessed

(Lloyd-Smith, 2007).
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2.4. Results

2.4.1 Descriptive analysis
A total of 448 infants deaths were observed during the study period with an overall mortality

rate of 49.4 deaths per 1000 person-years (p-y). The mortality rates were 58.3, 44.0 and 45.7

deaths per 1000 p-y for the 1st, 2nd and 3rd year of the study, respectively. Figure 2.1: Death

counts and age-specific mortality rates (MR) of infants in Rufiji DSS, October 2001- September 2004,

Figure 2.2 and Figure 2.3 present the pattern of the MR a) age (in months), b) by calendar

months and c) over the entire study period (October 2001- September 2004). Infants of zero

month of age presented the highest mortality rate of 185.4 deaths per 1000 p-y whilst the 10

months old had the lowest rate of 22.65 deaths per 1000 p-y. A total of 185 deaths (MR=49.0)

were observed during the dry season while 263 deaths (MR=49.6) occurred during the wet

season. About 32.6% of all deaths occurred in infants between 0-30 days of age. The

remaining infants presented very similar rates with slight low rates observed after 6 months of

age (Figure 2.1).
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Figure 2.1: Death counts and age-specific mortality rates (MR) of infants in Rufiji DSS, October 2001- September 2004
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Figure 2.2: Age-specific mortality rates by calendar months

Comparing with the overall rate (red reference line), the mortality rates were higher during the

first half of a calendar year showing a decreasing trend between months of July – December.

Mortality peak on February and June (Figure 2.2). The mortality trend for the entire study

period is shown in Figure 2.3.
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Figure 2.3: Mortality rates (MR) for the Infants during the period of October 01 – September 04, Rufiji DSS

The two reference lines indicated the overall MR when infants aged 0-30 days were included

(solid) and excluded (dotted) from the data. The two rates differed by 12.8 deaths/1000p-y

indicating high mortality in the neonates group. Figure 2.3 also elicit differences in dry and wet

season mortality and between years.



Chapter 2: Assessing seasonality in DSS data 33

2.4.2 Seasonality index

Point estimates, p and model based m seasonality indices estimated for each year and for the

pooled are presented in Table 2.1. For the point estimates, most indices indicated higher

mortality in the rainy season as compared to the dry season ( p > 1). However, estimates were

close to one indicating a small difference in mortality between the two seasons. Considerable

variation was observed among the age groups and across years. During the study period, the

highest value was estimated for the 4 months old infants during Year 2 ( p =2.857) indicating

that, for this group, MR was 3 times higher in the wet season than in the dry season. The

indices were consistently small in infants aged 11 months old suggesting this group to be

affected more during dry season.

Table 2.1: Age-specific point estimate and model based (with 95% Bayesian Credible Interval (BCI)) seasonality indices by year
and on pooled data

Age in days Point Estimates, p †Model-based Estimates, m (Pooled data)

(Months) Year 1 Year 2 Year 3 All Median 95% BCI
0-30 (0) 0.907 0.913 1.015 0.941 0.888 (0.640, 1.238)

31-60 (1) 1.607 1.786 --- ** 2.143 2.113 (0.985, 5.079)
61-90 (2) 2.619 1.429 0.714 1.571 1.659 (0.804, 3.681)
91-120 (3) 0.833 0.612 2.143 0.905 0.931 (0.471, 1.870)
121-150 (4) 1.286 2.857 0.714 1.310 1.341 (0.669, 2.814)
151-180 (5) 0.857 0.286 0.595 0.580 0.568 (0.267, 1.180)
181-210 (6) 0.833 0.476 0.714 0.670 0.671 (0.328, 1.367)
211-240 (7) 0.952 1.429 1.429 1.224 1.215 (0.483, 3.284)
241-270 (8) 1.000 0.179 --- ** 1.270 1.268 (0.568,3.016)
271-300 (9) 0.952 2.143 1.190 1.339 1.346 (0.582, 3.381)
301-330 (10) 1.786 0.000 5.714 2.321 2.398 (0.837, 8.847)
331-360 (11) 0.238 0.286 0.595 0.378 0.386 (0.163, 0.853)
** No deaths occurred during dry season †Model-based estimates correspond to posterior median

Model based estimates were similar to the point estimates, however, all 95% BCIs (except for

11 months old) included one indicating non-significance difference of mortality rates between

the two seasons. In addition, no significant difference of indices between age groups, years

and their interaction could be found.
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2.4.3 Goodness-of-fit test

The test statistic, Z , was calculated to test the null hypothesis which assumed presence of

seasonality in the monthly mortality rates. The value of Z obtained was 254. Comparing

254Z with the critical value at 5% probability level which is 84.3Z , the null hypothesis

was rejected and it was concluded that there is a significant difference between the

distribution of the observed and expected MR, which interpreted as existence of seasonality.

2.4.4 Modeling

Negative Binomial models were fitted for each age group separately. Following different

formulations of seasonal term, the models (M) were grouped into 4 Sets. Set 1: models 1-4

(dry/wet), Set 2: models 5-8 (mixture of 2 cycles, year-independent), Set 3: models 9-12

(mixture of 2 cycles, year-dependent) and Set 4: models 13-16 (binary variable for months).

Each set includes models that considered time trend as discrete or continuous and error terms

independent or AR(1). For illustration, Table 2.2 shows results of performance of all models

for the infants aged 10 months old.
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Table 2.2: Model assessment: the error sum of squares, number of parameters, and variance and autocorrelation parameters
from models fitted with data for infants of 10-months of age

Model ¥Model description
( )tlog 

SSE No. of
parameters

r 

Set 1

M1 ( ) (1)
0 ( 1) *W

t tI S t       25.953 42 8.23 ----
M2 2

( ) (1)
0

1
( 1) ( 1)W
t k t t

k
I S I Y k   



      20.770 43 11.58 ----

M3 ( ) (2)
0 ( 1) *W

t tI S t       27.744 44 6.48 0.23
M4 2

( ) (2)
0

1
( 1) ( 1)W
t k t t

k
I S I Y k   



      21.131 45 10.30 0.22

Set  2

M5 (1)
0 ( ) *

CS tf t t     26.595 47 5.58 ----
M6 2

(1)
0

1
( ) ( 1)

CS k t t
k

f t I Y k  


     22.439 48 7.95 ----

M7 (2)
0 ( ) *

CS tf t t     27.793 49 5.09 0.45
M8 )2(

2

1
0 )1()( t

k
tkS kYItf

C
  



21.976 50 7.98 0.14

Set  3

M9 )1(
0 *)( tSj ttf   15.300 53 2.96 ----

M10 )1(
2

1
0 )1()( t

k
tkSj kYItf   



13.414 54 3.72 ----

M11 )2(
0 *)( tSj ttf   14.338 55 2.94 0.33

M12 )2(
2

1
0 )1()( t

k
tkSj kYItf   



13.007 56 3.59 0.41

Set  4

M13 )1(
11

1
0 *)( t

k
tk tkMI  



16.450 52 3.50 ----
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k
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k
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

12.358 53 4.72 ----

M15 )2(
11

1
0 *)( t

k
tk tkMI  



24.773 54 2.60 0.044

M 16 )2(
2

1

11

1
0 )1()( t

k
tk

k
tk kYIkMI   



18.506 55 3.93 0.065

¥ 12,...2,1t ; 3,2,1j ; An offset )( tTlog was included in all models.

Generally, models with discrete time and autoregressive errors performed better than models

which considered time as continuous or/ and independent errors terms. Models with harmonic

cycles and year-dependent seasonal pattern (Set 3: M9-M12) presented lower SSE as

compared to other models followed by models in Set 4: M13-M16. Models in Set 1 and 2 had

relatively high SSEs. Model sets 3 and 4 estimated comparative smaller value for the variance

parameter r than Sets 1 and 2. Value for parameter r can be compared with the ratio of

annual MR to its variance over a period of 12 months. For this age group this ratio was

22.65/35.0 = 1.54. Models in Set 4 estimated very low autocorrelation parameters, which could

be explained as an effect of including each month as an independent variable. Due to that and a

similar performance of Set 3 and Set 4, we excluded Set 4 for all future discussion. These
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results were consistent in all age groups. Figure 2.4 depicts SSE for models from Set 1, 2 and

3 for all age groups with SSEs obtained from models in Set 3 circled.
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Figure 2.4: Error Sum of Squares for Models 1-12 for all age groups*
* Age group 1 excluded due to high deviation of estimates from other groups

M12 featured as the best model in 6 age groups (2,6,7,8,9,10) and second best in 2 age groups

(1,4) hence selected as the best model. Parameters estimated from this model for selected age

groups and pooled data are presented in Table 2.3. Effect of age was assessed when pooled

data was used.
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Table 2.3: Results of M12 for infants age 2, 5, 8 and 11 months and for pooled data

Parameter 2 months 5 months 8 months 11 months Pooled Data
Median (95% BCI) Median (95% BCI) Median (95% BCI) Median (95% BCI) Median (95% BCI)

1 (Age) --- --- --- --- 0.864 (0.836, 0.893)
Seasonality terms

Year 1

11A 0.6 (0.03,2.099) 0.51 (0.025,1.73) 0.76 (0.038,2.825) 1.54 (0.123,3.778) 0.40 (0.03,0.95)
21A 0.39 (0.018,1.496) 0.40 (0.018,1.44) 0.69 (0.035,2.602) 0.78 (0.037,2.714) 0.13 (0.01,0.43)

11 8.40 (1.004,23.47) 7.97 (0.947,23.28) 6.41 (0.573,22.04) 7.93 (1.374,23.27) 5.56 (0.82,19.52)
21 7.0 (0.604,22.38) 7.29 (0.85,23.06) 6.20 (0.548,22.17) 7.46 (0.937,22.85) 6.35 (0.57,22.15)

Year 2

12A 0.43 (0.02,1.628) 0.65 (0.028,2.61) 1.89 (0.118,5.383) 0.76 (0.035,2.504) 0.19 (0.01,0.7)

22A 0.43 (0.02,1.606) 1.02 (0.06,2.95) 0.86 (0.039,3.775) 0.69 (0.03,2.388) 0.14 (0.01,0.48)
12 7.29 (0.776,22.73) 5.93 (0.551,21.6) 8.27 (1.403,23.22) 8.02 (0.741,23.15) 7.29 (0.68,22.79)
22 7.09 (0.616,22.73) 5.38 (0.529,21.17) 7.39 (0.79,22.65) 7.43 (0.96,22.6) 6.75 (0.64,21.65)

Year 3

13A 0.61 (0.028,2.298) 0.42 (0.019,1.56) 0.9 (0.041,3.397) 1.002 (0.064,2.672) 0.24 (0.01,0.77)
23A 0.64 (0.03,2.332) 0.80 (0.048,2.109) 0.78 (0.033,2.927) 0.43 (0.02,1.61) 0.16 (0.01,0.52)
13 7.29 (0.85,22.46) 7.15 (0.778,22.4) 8.21 (1.057,23.54) 6.26 (0.714,21.68) 5.66 (0.5,21.57)
23 7.11 (0.823,22.381) 8.37 (1.313,23.4) 6.23 (0.562,22.07) 7.47 (0.769,22.55) 7.99 (0.99,23.44)

Annual time trend
Year2

1 0.85 (0.27,2.61) 0.48 (0.10, 1.65) 0.21 (0.017,1.36) 1.25 (0.24,8.33) 0.77 (0.58, 1.014)
Year3

2 0.38 (0.093,1.35) 0.93 (0.29,2.80) 0.56 (0.10,2.66) 1.99 (0.42,12.06) 0.83 (0.63, 1.09)
Other parameters

r 2.30 (0.46,18.57) 3.62 (0.67,22.60) 1.31 (0.21,14.95) 2.24 (0.40,18.69) 3.407 (2.106, 6.534)
 0.19 (-0.80,0.94) 0.15 (-0.79,0.93) 0.28 (-0.72,0.97) 0.22 (-0.80,0.96) 0.18 (-0.994, 1.0)
2
w 0.49 (0.20,1.30) 0.41 (0.19,1.04) 0.79 (0.24,2.67) 0.44 (0.20,1.21) 0.042 (0.007, 0.253)

Among the groups no common pattern was observed for the temporal trend, however, the

overall trend, estimated from pooled data, showed a reduction in mortality during the 2nd and

3rd year of the study as compared to year 1 (p-value >0.05). There were similarities in values

of phases and amplitudes between groups, however, age-specific results showed wide CI for

the variance and amplitude parameters. Mortality was seen to decrease as age increases (p-

value<0.001).

Estimates from the pooled data fell within CIs of parameters estimated using age-specific data

(some results not shown). Therefore, results from pooled data were used to calculate the

amplitude (peak) and phase (point in time) for the MR of all infants. Average amplitudes for the
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Year 1, 2 and 3 were 0.265, 0.165 and 0.20 respectively, indicating high mortality during the

1st year, a decrease in the 2nd year and an increase in the last year.

Using the formula suggested by Stolwijk et al. (2008), extreme time points (where minimum

and maximum mortality occurred) were determined. The two extremes min and max were

obtained by solving  2/*min Tcj ( =3.1415) and 2/minmax T  respectively. Based on

the cycle of our data, which started on October, min 1.3  and max 8.75  are converted to a

scale of month, thus values translate to a month of November and end of May. In Figure 2.5

monthly time series of observed mortality rates (fitted values and 95%BCI) are shown. The

most visible peak is the one at the end of May.
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Figure 2.5: Monthly time series of mortality rates aligned with the fitted values, RDSS
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2.5. Discussion

This study assessed different approaches for optimal capturing of seasonality and temporal

trend in data obtained from longitudinal survey. Infant mortality data from Rufiji DSS were used

as a case study to discuss performance of the methodologies. Extensions of existing methods

were considered and different model formulations were presented. With the strength of the

data obtained from the DSS in terms of spatial resolution and richness, we have developed and

discussed easy-to-follow approaches to capture and quatify seasonality while considering

pros and cons of each technique. These methodologies can be applied directly to data obtained

from other longitudinal surveys focusing in epidemiology and public health.

Mortality indices and statistical tests are implemented easily and finely detect trends present

in the data (Rau, 2006). However, such methods involved conservative prerequisite steps such

as grouping and collapsing of data, which results into a significant loss of information, mask

underlying features of the data and mostly rely on strong assumptions which could influence

the results of the analysis (Rau, 2006; Eilers et al., 2008). In this paper, a reformulation of a

seasonality index which was implemented in model framework and allows researchers to make

statistical inferences on the estimated value was proposed. The advantage of model based

approaches includes a possibility to incorporate other terms but also to estimate effect of

predictors. Most rigorous techniques are hard to employ, but capture best information from the

data enabling proper studying of trends and patterns. Our models took into consideration

seasonality, temporal correlation using harmonic cycles and autoregressive temporal effects

respectively and could be extended to account for confounders, effect modifiers and

prediction.

We found an association between the peak of infant mortality and the climatic seasons. Higher

mortality rate were observed in the wet seasons (months, year) as compared to dry ones.

Changes in environment and climate influence seasonal trends of the disease and other health

parameters (Lipp et al., 2002; Patz, 2002; Patz et al., 2008). However, to accurate determine

presence of these trends, a longitudinal monitoring of events is required to assess repetitive

behaviors. Interestingly, mortality was high in the first half of the year and dropped in the last
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six months. Substantial behavioral, socio-economic status, food security or health system

factors such as access to care could be associated with these patterns. Our model reported

similar seasonal patterns and temporal trends of mortality among age groups during infancy.

These results suggest that factors (e.g. environment, socio economic status) and causes (e.g.

malaria, diarrhea) associated with mortality of infants can be hardly distinguished between

such age categories in these data.

High proportion of deaths was observed in neonates, however, seasonal patterns could not be

distinguished from one age group to another. Neonatal mortality accounts for 8.2% of the total

mortality burden in RDSS (Source: District Health Profile Report, 2007); (Carneiro et al.,

2010). Factors associated with neonate deaths such as place of birth, low birth weight, quality

of obstetrical care and coverage of immunization program, are predominantly non-seasonal

hence the overall seasonal trend could be hidden behind climatic and malaria-related factors

(Rumisha et al., submitted for publication). A slight decrease in mortality observed after the

age of six months could be explained by progressively immunity acquisition to specific

diseases with age, especially malaria (Anderson and May, 1991).

By incorporating a harmonic function in a regression model we were able to determine the

peaks of mortality which strongly mark a relation with environment seasons. The framework

developed here can be extended to adjust for risk factors and accounting for other types of

correlations e.g. spatial effects. This work is among few that present a step by step

methodological framework on how best seasonality can be assessed (formulations are

available upon request from the authors). Application of NB models with terms that capture

seasonal patterns, temporal trend and correlation are rarely discussed in literature hence

emphasis the novelty of this work. The implication of this work in malaria interventions and

control is the timing and targeting. These are key elements for design of effective malaria

control strategies as scarce resource and operational cost are of concern.
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Abstract

Understanding seasonal and spatial variations in malaria transmission is important for a targeted

control strategy. The Malaria Transmission Intensity and Mortality Burdens across Africa project

compiled the most comprehensive, large geo-referenced entomological database to study malaria

seasonality. However, rigorous analyses have not been done due to limitations in statistical

methodology. Recently, approaches have been developed for fitting large Gaussian geostatistical

data observed on regular grids by approximating the spatial process from a subset of locations.

Extending this methodology for non-Gaussian geostatistical longitudinal data, observed irregularly

in space, we proposed ways of selecting the subset of locations for approximating the spatial

process taking into account outcome variability, the underlying spatial process and location

configuration. This methodology is implemented to study seasonality in the sporozoite rate as a

proxy measure of malaria transmission. We fitted Bayesian geostatistical logistic models adjusting

for environment and climate factors. Seasonal patterns were captured by a mixture of harmonic

cosine functions with different cycles. Sporozoite rates were predicted using Bayesian kriging and

monthly mosquito species-specific transmission maps were produced. Results indicated seasonal

variation of the sporozoite rates that differ between species, location and time and suggest malaria

control programs that target exact periods where transmission peaks.

Keywords: Africa, approximate spatial process, sporozoite rates, seasonality, malaria, Markov Chain Monte
Carlo
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3.1. Introduction

Malaria transmission is influenced by climatic and environmental conditions suitable for

survival of the mosquito vector of the disease. Rainfall and temperature affect the breeding

environment, vector species behavior and gonotrophic cycle (number of times mosquitoes lay

eggs in a lifetime) hence the potential of malaria transmission. Seasonality in climatic factors

introduces seasonal fluctuation in transmission. Climate also affects large areas leading to

spatial variation of the disease burden. Malaria transmission has shown seasonal variations in

many regions in Sub-Saharan Africa (Gemperli et al. 2006a; Romagosa et al. 2007; Abellana et

al. 2008; Noor et al. 2008). Estimating seasonal and spatial variation helps in understanding

disease dynamics, better designing and evaluating malaria interventions, and preparedness of

the health system.

A number of entomological studies have looked at small area variations of the malaria

transmission (Mbogo et al. 1995, 2003; Fontenille et al. 1997a; Robert et al. 2003; Shililu et al.

2003; Bøgh et al. 2007; Mboera et al. 2007, 2010; Sogoba et al. 2007; Atangana et al. 2009).

However, very few were based on entomological data collected over a long period of time with

high temporal resolution in order to capture seasonality taking into account year to year

variation. Even more, to our knowledge there are no studies looking at spatial variation of

seasonality using entomological data with high spatio-temporal scales. The Malaria

Transmission Intensity and Mortality Burdens across Africa (MTIMBA) project has compiled

the most comprehensive geo-referenced entomological database to study malaria seasonality.

However rigorous analyses have not been carried out to date due to data characteristics and

limitations in statistical methodology.

MTIMBA are large geostatistical data consisting of mosquito collections every two weeks

during 2001-2004 over a number of household locations (up to 2500) within selected sites in

Africa. Relevant analysis for such data are through geostatistical models which take into

account spatial correlation via location-specific random effects which are viewed as latent

data of an unobserved Gaussian spatial process (Diggle et al. 1998). Correlations between any

pair of locations are considered to be a function of their distance modeled by the covariance
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matrix of the process. Typical covariance functions are the exponential, matern, Gaussian,

Cauchy, spherical and Bessel (Ecker and Gelfand 1999). Bayesian model formulations facilitate

model fit via Markov chain Monte Carlo simulation. However, posterior calculations require

repeated inversions of the covariance matrix of the process which for very large number of

locations is not feasible.

A number of approaches have been suggested to overcome very large matrix computations

involved in geostatistical model fit.  Rue and Tjelmeland (2002) approximated a Gaussian

spatial process by a Gaussian Markov field. Results showed that not all covariance models

fitted well. Smith and Gelfand (1992) proposed replacing matrix inversion with simulation using

sampling importance re-sampling as a first step in addressing the issue, however finding

importance sampling densities is difficult and it requires tedious tuning (Gemperli and

Vounatsou 2003). Stein et al. (2004) reduced the size of the covariance matrix by considering

correlations only within the subset of "nearest" observations. The performance of this

approximation depends on size of the subset and the choice of ordering the observations.

Furrer et al. (2006) proposed covariance tapering to produce a sparse covariance matrix by

forcing small covariances to be zero. However, the choice of the distance where correlation can be

neglected is subjective and the misclassification is more severe when the study region is small as might

lead to independency between observations. In geostatistical modeling, the decay parameter directly

estimate this distance from the model. Gemperli and Vounatsou (2006) compared the performance

of a number of numerical algorithms especially suited for sparse matrix inversion within the

MCMC framework. Whiley and Wilson (2004) assessed various parallel MCMC algorithms for

handling large geostatistical data. Similarly, Yang et al. (2007) parallelised computations

related to large matrices involved in fitting spatial Gaussian models. Higdon et al.

(2003)proposed a Metropolis coupled MCMC which runs multiple chains, a fine one estimating

the spatial process at the whole set of locations and others which estimate the spatial process

on a subset of locations chosen from coarse grids of various resolutions. The coarser faster

running but less accurate chains “update” the slow fine chain is helpful for moderate rather

than very large number of locations. Kernel convolutions, moving averages or basis functions

(Wikle and Cressie 1999; Higdon 2001; Banerjee et al. 2003, 2008; Kammann and Wand 2003;

Xia et al. 2006; Paciorek 2007; Cressie and Johannesson 2008) have all been applied to
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approximate the spatial process. Approximations based on spectral domains received a lot of

criticism and challenges due to inadequacy of the obtained approximation (Jones and Zhang

1997; Stein et al. 2004).

Recently, more approaches have been developed for fitting large Gaussian geostatistical data

observed on regular grids by approximating the spatial process from a subset of locations (Xia

and Gelfand 2005; Banerjee et al. 2008; Finley et al. 2009). However in many real time

applications the outcomes of interest are neither Gaussian nor the locations of observed data

are regularly distributed in space. Selection of the subset for approximating the spatial process

is still a challenge. For Gaussian data, Finley et al. (2009) proposed selecting the subset of

locations (knots) by minimizing the spatially averaged predicted variance. This variance

measures how well the predictive process approximates the original process. However, the

method requires large computation power even to select a small set of knots. For practical

applications other methods like balance sampling can be employed. To date there are very few

studies that have assessed the influence of using the subset of locations on estimation of

spatial parameters in real life data.

This work extends the methodology of Banerjee et al. (2008) and proposes ways of selecting

the subset of locations for approximating the spatial process preserving the variability of the

outcome, the underlying spatial process and location configuration. It also assesses how well

the knots represent the spatial characteristics of the observed data. This methodology is

implemented to study malaria seasonality in the sporozoite rate data from the MTIMBA

project. We fitted Bayesian geostatistical logistic models with environment and climate factors

as covariates. Seasonal patterns were captured by a mixture of harmonic cosine functions with

different cycles (Rumisha el al., 2013). The model assumes separable space-time variation

with Gaussian spatial process and temporal random effects modeled with first order

autoregressive correlation structure (Hay and Pettitt 2001). Sporozoite rates were predicted

using Bayesian kriging and monthly transmission maps for two mosquito species were

produced. The data used for analysis is presented in Section 2. The formulation of the

Bayesian geo-statistical model is given in Section 3. The results of the application are in

Section 4 and finally conclusion and discussion are presented in Section 5.
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3.2. Data and Study site

The study was carried out in the Rufiji Demographic Surveillance Site (RDSS). The RDSS is

located in the Rufiji District. The area extends from 7.470 to 8.030 south latitude and 38.620 to

39.170 east longitude and covers an area of 1813 square kms. The entomological data were

collected as part of the MTIMBA project.  Details of the protocol for mosquito collection are in

the MTIMBA documentation (http://www.indepth-network.org). Shortly, anopheles mosquitoes

caught in the light traps (or bed nets) over two consecutive nights every two weeks during the

period of October 2001- September 2004 (http://www.indepth-

network.org/dss_site_profiles/rufiji.pdf). Heads and thoraces were tested for Plasmodium

falciparum circumsporozoite protein (CSP) by enzyme linked immuno-sorbent assay (ELISA). A

total of 11,227 (482 positive) An. gambiae and 17,263 (405 positive) An. funestus mosquitoes

were analyzed. Locations were geo-referenced with global positioning system (GPS) and date

of collection was recorded. All repeated surveys of a specific location within the same month

were collapsed to a single observation. A total of 670 data points were obtained for An. gambiae

with 639 unique locations and 430 data points for An. funestus with 415 unique locations. RS

climate and environment data were used as predictors. The data source, spatial and temporal

resolutions are given in Table 3.1.

Table 3.1: Environment and Climate data

Variable Spatial resolution Temporal resolution Source

Normalized Difference Vegetation Index (NDVI) 250m2 16 days MODIS
Temperature (Day and Night) 1km2 8 days MODIS
Rainfall 8km2 10 days ADDS
Water bodies 1km2 --- Health Mapper

Lag analysis was used to link the RS to the mosquito data (Riedel et al. 2010). Lag refers to

the time interval prior to data collection that was used to summarize the

environmental/climatic covariates. The best lag was chosen based on the goodness of fit of the

corresponding model. Lags considered include the current month (month of collection of

mosquitoes), one month prior the collection, average of two previous months, average of
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current month and one previous month, and the average of current and two previous months.

The analysis took into account seasonality and distance from water bodies, and was carried

out for each species separately.

3.3. Model formulation
Sporozoite rate is the proportion of positive mosquitoes to P. falcipurum parasite calculated

from entomological surveys. The data are typically binomial and modeled via the logistic

regression. For a specific species, let itN and itY be the number of mosquitoes tested and

number infected, respectively, at location ,...,1,, nisi  and calendar month 36,...,1t and

1 2( , ,..., )Tit it it itpX X XX be the vector of p associated predictors. We assume that itY is binomially

distributed, ),(~ ititit NBinY  with parameter it measuring the sporozoite rate (SR) at location

is and month t . A logistic regression model relates the sporozoite rate with the predictors via

the equation ( ) X ( )Tlogit f t Us tit it i     where  1 2, ,...,
T

p   are the regression

coefficients, )(tf s is a seasonality term, tiU , are parameters related with the spatial and

temporal characteristics of the data, respectively. In our formulation, )(tf s captures

seasonality through (i) a binary categorical variable (i.e. dry and wet) (ii) a cosine/sine function

with one cycle C , every of 6 or 12 months, and (iii) a cosine/sine function with a mixture of

two cycles corresponding to 6 and 12 months respectively (Stolwijk et al. 1999; Rau 2006),

that is

2 2
( ) * * , 2; 1, ...,12 / 361 21 c c

C
f t cos t sin t C ts c cT Tc

 
    



     
    
     

where cT is the period or length of the season for cycle C (i.e. 121 T and 62 T ) and c1 and

c2 describe the amplitude and phase within a period. Separate models were fitted assuming a

constant seasonal pattern across the three years of the study taking 12,...,1t . The t model

temporal correlation via an autoregressive AR(1) stationary process, i.e.

2 2
1 1~ (0, / (1 ))Normal   and 2

1,... 1 1 1| ~ ( , ), 2t t tNormal t      . 2
1 is the temporal variance

and  is the autocorrelation parameter 1||  (Hay and Pettitt 2001).



Chapter 3: Seasonal and spatial variation of sporozoite rate 50

3.3.1 Geostatistical modeling via Gaussian spatial processes

The iU ’s are considered as observations from a latent isotropic Gaussian spatial process with

covariance matrix nxn and elements defined by ),( jiij UUCov . Under the assumption of

stationarity, the spatial correlation is taken to be a function of distance between locations. The

assumption is justified based a uniform movement of malaria vectors and human population in

space and distribution of other transmission factors. We adopt an exponential correlation

structure for the covariance matrix of the spatial process, that is )exp(2  ijij d where 2

is the spatial variance, ijd is the distance between locations is and js .  measures the

correlation decay and it estimates the effective range ( 3 ), the distance where the spatial

correlation is less than 5%.

3.3.2 Geostatistical modeling via Gaussian spatial processes approximations

Computation of the Gaussian process requires the inversion of the covariance matrix,  , which

for very large number of locations is not feasible. To facilitate model fit we approximate the

spatial process by a subset of locations  *, 1,..,is i m (m<<n) with latent observations

 1( *),... ( *)
T

mU s U s*U . *U is considered to arise from the same Gaussian process U and thus

*~ (0, )N *U where * is the m m covariance matrix of the sub-process. These latent

observations U of the original process can be approximated by the mean of the Gaussian

conditional distribution,

1 2 1( ) | ~ ( * , * ) (1)T TN Q    U* *U s U Q Q

that is 1ˆ * *T  U Q U where Cov( )Q = U*,U is an m n matrix of the covariance functions

between the full and the sub-process (Seeger 2003; Xia and Gelfand 2005; Banerjee et al.,

2008).
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3.3.3 Selection of knots
Banerjee et al (2008) proposed selecting the knots randomly from a regular grid, however this

approach does not work well for clustered survey locations. Finley et al (2009) suggested

selecting the subset of locations (knots) in such a way that the variance of the predictive

process (1)described above becomes minimal. Although the later gives a good approximation

of the spatial process, it is computationally very expensive and requires prior knowledge (a

guess of the value) of the spatial variance of the full process, 2 . Both methods of knot

selections do not consider variation in the outcome. However, entomological data are sparse,

clustered at household locations which are not evenly distributed within the area and have

large variability. The balance sampling technique for selecting set of knots proposed by Deville

and Tillé (2004) preserve the configuration of observed locations in space. The

aforementioned strategy is extended here by additionally preserve the variability of the

outcome and the location distance configuration. In particular, we overlay a grid over the study

area and calculate the variability of the sporozoite rates within each tile. We then select the

knots with inclusion probabilities equal to the proportion of tile-variability out of the total. The

location coordinates (longitude and latitude in radian scale) were used as balancing variables.

A sampling exercise was carried out to choose the sub-sample giving an empirical variogram

as close as possible to the one obtained from the full set of observed locations. Several knot

sizes have been selected equal to 50, 100, 150, 200, 250, 300 and 350. For a given knots size,

5000 samples were drawn using balance sampling and the respective empirical variogram

( ) , 1,...,5000l h l  was calculated. A distance measure lD between the empirical variogram of

the full data ( )h and of the selected knots l was computed as,

 2
( , ) ( )

( ) ( )l l
i j N h

D h h 


 

( )h is defined as
2

( , ) ( )

1( )
( ) i j

i j N h
h Y Y

N h




  where Y are residuals obtained after fitting a

logistic regression model to the data. ( )N h denotes the set of pairs of observations ,i j such

that the distance between is and js is approximately equal to h and ( )N h is the number of

pairs in the set (Cressie 1993). The subset with the minimum value of lD across different knot

sizes was considered to be the best for approximating the spatial process.
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3.3.4 Bayesian kriging

Bayesian kriging was used to predict sporozoite rates at locations with no mosquito data. In

particular at a set of k new un-sampled location 0 01 02 0( , ,..., )Tks s ss the number of infected

mosquitoes 0 01 02 0( , ,..., )TkY Y YY is estimated by the predictive distribution,

* 2 2
0 0 0 0 1

* 2 2 * 2 2
1 0 1

ˆ ˆ( , ) ( | , ) ( | , , , , ) x

ˆ( , , , , , | , )

p N p p

p N d d d d d d d

   

       

 Y Y Y β U U U

β U Y β U U

* 2 2
1( , , , , , | , )p N   β U Y is the posterior distribution and 0Û are random effects at 0s .

*
0
ˆ |U U are normally distributed, i.e.

1 1* 2 *
0 0

ˆ ( ) | ~ ( , )T TN  
  *U U *

0 0s Q U Q Q where 0 0( , *)Cov s sQ is

the covariance matrix between the new location and the knots.

0 0 0 01
ˆ ˆ( | , ) ( | , )k

j jj
p p


Y β U Y β U is binomially distributed with probability 0 jp which estimates

the sporozoite rate. At location j and time t 0 0 0
ˆlogit( ) ( ) ( )T

jt jt s j tp f t U s    X  where

0 jtX represent the environmental covariates at the new location js0 at time t . The above

integral is estimated via simulation based inference (Gelfand and Smith 1990). The substantial

advantage of this approach over classical methods of prediction is that it calculates the entire

predictive distribution of the sporozoite rate at a given location hence allows estimation of the

prediction error (Diggle et al. 1998).

3.3.5 Model validation

To assess the presence of temporal correlation in the data, spatial and spatial-temporal

models were fitted. Models were applied on 90% of the data (training set) and their predictive

abilities were assessed on the remaining 10% (test locations). Three approaches have been

used for model validation i) the mean absolute error to measure the accuracy of the

predictions by averaging the absolute difference between the observed sporozoite rates and

the predicted values over the test locations, ii) Bayesian p-value calculated by the area of the

predictive posterior distribution which is more extreme than the observed value, and iii)  the

proportion of test locations with SR included in the credible intervals (CI) of different

probability coverage (ranging from 0 to 100% with interval of 5%) of the posterior predictive
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distribution (Gosoniu et al. 2006). The model with the smallest mean absolute error, low

Bayesian p-value and with higher proportion included in the low coverage credible intervals

was considered the best.

3.3.6 Practical implementation

Bayesian model formulation requires specification of prior distributions for all parameters to

be estimated. A non-informative uniform distribution was assumed for the regression

coefficients p , i.e. p ~Unif(-1000,1000), inverse gamma for the variance parameters 2 , 2
1

and gamma prior for the decay parameter  . The autocorrelation parameter was assumed to

follow  1,1~ Unif . The model was fitted using the Gibbs sampling algorithm (Gelfand and Smith

1990). The spatial and temporal variance parameters were sampled directly from their inverse

gamma full conditional distributions. The remaining parameters were simulated using

Metropolis algorithm with a Normal proposal distribution. The mean of the proposal

distribution was the parameter estimated from the previous Gibbs iteration with a fixed

variance [Metropolis et al. 1953; Hastings 1970]. The variance was adjusted during the burn-

in period to allow acceptance rates of parameters to be around 40%. Two separate chains

were run in parallel with a total of 200,000 iterations each. A burn-in of 20,000 iterations was

done and the last 1000 samples from each chain were used for posterior inference and

prediction. The model was implemented in FORTRAN 90 using numerical libraries (The

Numerical Algorithms Group Ltd). The packages geoR (Barry et al. 1997) and Sampling (Matei

and Tillé 2005) in R (http://www.r-project.org) were used to calculate the empirical variogram

and sampling of knots respectively.
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3.4. Results

3.4.1. Descriptive analysis

A total of 11,227 An. gambiae mosquitoes (SR=4.29%) from 639 unique locations and 17,263 An.

funestus mosquitoes (SR=2.35%) from 415 unique locations were analyzed. Figure 3.1 shows

the crude SR for the two species with data aggregated by months and the summarized monthly

rain and temperature data during the study period. Despite noise in the monthly observed SR,

An. gambiae presents higher rates than An. funestus. Peaks for both species are observed in the

months of May-June and Oct-Nov. It appears that the peaks of transmission are related with

the trend of rain and temperature, as occurs mainly shortly after the rainy seasons.  Few

catches of An. gambiae in the months of May-July compared to that of An. funestus could explain

the high fluctuation in the observed SR for this species.
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Figure 3.1: (a) Crude monthly sporozoite rate for An. funestus and An. gambiae (b) Monthly rain and temperature

Explorative analysis was carried out to select the best lag and best method to capture seasonal

pattern using the Akaike Information Criteria (AIC) values. For both species, the best

environmental lags were the average of ‘current and one previous month’ for day temperature

and vegetation, and ‘current month’ for rainfall. Night temperature did not show any significant

improvement in explaining the sporozoite rate hence was dropped. Seasonal pattern was best

captured by the mixture of two cycles and period of 12 months and had a repeating pattern in
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all years (p-value <0.001). Since data for 3 years (36 months) were available, all calendar

months were considered the same regardless of the year. The seasonality terms included in

our models were (2 / )cos T and (2 / )sin T for 6T and 12T .

3.4.2. Selection of knots

The box plots in Figure 3.2 summarized the values of the distance measure lD (in log scale)

derived from the sampling exercise for each specific knot size for both species. The figures

show the median, interquartile range, the 5th and 95th percentile intervals and extreme values

beyond these intervals for 5000 estimates of D for a given knots size. Higher values of

lD indicate higher deviation of the spatial processes estimated by the knots and the original

data hence a “bad” subset. For both species, An. funestus and An. gambiae, the proportion of what

is referred as “bad” subset reduces significantly when the size of knots increases. The

practical implication of this is that, as it is possible to obtain a good set regardless of the knots

size, the chance of “landing” with a “bad” subset when small size of knots are used is higher

given that the sampling is customarily done once. For model implementation, we select the

subset with the minimum value of D from the knots size 200 for An. funestus (415 unique

locations) and An. gambiae (639 unique).

50 Knots 100 Knots 150 Knots 200 Knots 250 Knots

-2
0

2
4

6

E
rro

r S
um

 o
f S

qu
ar

es

An. funestus

50 Knots 100 Knots 150 Knots 200 Knots 250 Knots 300 Knots 350 Knots

-2
0

2
4

6

E
rro

r S
um

 o
f S

qu
ar

es

An. gambiae

Figure 3.2: Box plots for the distance measureD for An. funestus (left) and An. gambiae (right) between the spatial
parameters estimated by the empirical variables of the sub-sample
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In Figure 3.3, the study area with surveyed locations for each species is plotted with red dots

indicating the selected knots.

Figure 3.3: Grid showing original and sub-locations selected using a balance sampling for An. funestus (left) and An. gambiae
(right)

3.4.3. Model validation

In Figure 3.4 the percentages of locations with SR included in each of the 20 credible intervals

of the posterior predictive distribution, for both the space and spatial-temporal models are

shown. Although the spatial model includes about 3.3% of the locations in the 5% CI, its

performance was similar to that of spatial-temporal model up to 50% CI.
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At higher coverage CIs, the performance of spatial-temporal model was twice as good as the

spatial model. At 95% CI, the spatial and spatial-temporal models were able to predict 36.7%

and 70% of the locations respectively. The lines indicate the width of the CI. The spatial-

temporal model also has the smallest CI width which indicates small uncertainty. The other two

validation methods show similar results (not shown). These results suggest the spatial-

temporal model to have high predictive power. Hence, in this paper, only results from this

model are presented and discussed. In Table 3.2 estimates from this model are presented.

3.4.4. Model-based estimates

Table 3.2 depicts the model-based estimates for regression coefficients, spatial and temporal

parameters for both species. Results obtained from a full model for An. funestus are presented

to evaluate performance of the approximation.

Table 3.2: Space-time posterior estimates for predictors, space and time parameters

Variable An. funestus An. gambiae
Full Approximation Approximation

Median 95% CI Median 95% CI Median 95% CI
Intercept -3.206 -4.940, -1.486 -3.738 -5.415, -2.766 -2.638 -4.031, 0.755

Environmental and Climatic Variables
Day Temperature -0.040 -0.211, 0.143 -0.081 -0.108, 0.078 -0.222 -0.466, -0.018
Rainfall 0.024 -0.20, 0.254 0.058 -0.069, 0.068 -0.32 -0.637, -0.029
NDVI 0.093 -0.130, 0.313 0.136 0.107, 0.151 -0.025 -0.282, 0.292
Distance to water bodies 0.210 0.051, 0.484 0.14 0.120, 0.253 0.009 -0.312, 0.362

Spatial parameters
Spatial variance 1.051 0.490, 2.728 1.14 0.935, 1.162 0.946 0.274, 3.560
rho 35.13 13.05, 75.10 44.5 28.51, 62.73 21.61 5.78, 37.78
Range (in km)* 9.35 4.39, 25.30 7.44 5.33, 12.21 15.54 8.77, 57.72

Temporal parameters
Temporal variance 0.303 0.133, 0.84 0.54 0.22,1.41 0.204 0.04, 1.061
Autocorrelation 0.371 -0.53, 0.87 0.63 0.42,0.72 0.356 -0.522, 0.786

*Conversion used radians to km: 1 = 110

Effect of environment and climatic variables on the sporozoite rates differs between species.

Temperature has a negative effect on the sporozoite rates of both species while vegetation

and distance to the water bodies were only significant for An. funestus. Rain presents a negative
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effect on the An. gambiae sporozoite rates. The effective range parameter indicates a moderate

spatial correlation (less than 5%) of up to 7.4km and 15.5km for An. funestus and An. gambiae

respectively. The temporal variance accounts for 32% of the total variance in the An. funestus

and 18% for An. gambiae therefore most of the variability is due to spatial effect. Results of the

approximation were within a good range when compared with results obtained from a model

that utilized a full data, indicating good performance of the approximation.

Prediction of SR was carried out for 33,428 pixels over the Rufiji DSS area considering

seasonality as well as environmental and climatic predictors. Smooth sporozoite rate maps for

An. funestus and An. gambiae were produced for 12 calendar months to study seasonal

differences (Figure 3.5 and Figure 3.6). Interestingly, the seasonal and spatial pattern of

sporozoite rates differs between species. In particular, seasonal differences were observed in

both species with the months of April and May showing the highest SR for An. funestus and

March, September and October for An. gambiae.
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Figure 3.5: Predicted sporozoite rates An. funestus for January-December in Rufiji DSS, Tanzania
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Figure 3.6: Predicted sporozoite rates An. gambiae for January-December in Rufiji DSS, Tanzania
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Considering the heavy rains in Rufiji between March and May and the short rains during

October-December, a clear relation between the rain seasons and transmission is profound in

both species. The two species transmit in different regions of the study area and in different

time periods which sustains the transmission over the area. An. funestus transmits more in the

central and western parts while An. gambiae are in the north and south. Maps for the prediction

error are found in Appendix.

The annual predicted SR was 3.7% and 4.1% for An. funestus and An. gambiae respectively. In

Figure 3.7 the monthly predicted SR for An. funestus and An. gambiae averaged over the study

area are plotted. The SR for An. funestus increased progressively starting March and peaks

during April with a SR of about 6%, sharply decreasing in June and peaks again during the

rainy season in October-November. The highest sporozoite rates for An. gambiae were

observed in March and in the period of September-October. On average, the predicted

sporozoite rates for An. gambiae were lower than that of An. funestus. Maximum SR predicted for

An. funestus was about 9% while for An. gambiae was approximately 8%. Patterns for the

observed (Figure 3.1) and predicted sporozoite rates are comparable which might suggest

goodness fit of the model.
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3.5. Discussion

Recently, approaches have been developed for fitting large data, mainly Gaussian geostatistical

data observed on regular grids by approximating the spatial process from a subset of locations. We

extend this methodology for non-Gaussian geostatistical longitudinal data, observed irregularly in

space and a proposed way of selecting the subset of locations for approximating the spatial process

taking into account the variability of the outcome, the underlying spatial process and the distance

configuration. This methodology is implemented to study seasonality and spatio-temporal patterns

in malaria transmission extracting data from MTIMBA, the most comprehensive entomological

database in Africa. The data have been available since 2004, however lack of appropriate

methodologies delayed their analysis to date.  They have been collected in 7 DSS sites with

number of observed locations varying between 400 to 2800 locations.

Selection of knots for the approximation of the spatial process is still a challenging task (Finley et

al. 2009). Previous suggested methodologies on selection of knots such as naive random selection

would hardly provide optimal points to approximate the spatial process for this kind of data (Xia

and Gelfand 2005; Xia et al. 2006; Banerjee et al. 2008). The spatially averaged predicted variance

method proposed by Finley at al., (2009) can select the best possible sample regarding the spatial

process but it is computationally expensive and ignores the variability of the outcome. Descriptive

measures of spatial correlation, such as the variogram can provide guidance on the selection of the

subset. Results of this work indicate that, it is not the size of the knots that determines the best

sub-sample of location but rather its spatial representation. For the field data, with a lot of

variability in the outcome and location configuration, the exercise becomes much more difficult.

Balanced sampling approach with variance of the outcome as an inclusion probability and location

coordinates as balancing variables was employed to select subset of location. The balance

sampling algorithm was selected over other sampling techniques as it is a model-based

approach which allows, unequal inclusion probability, adjusting over multiple covariates and it

is easy to implement. The risk of obtaining a non representative subset when smaller knots sizes

are used is quite high. To obtain a reliable configuration evaluation of different knots with different

choices is required (Eidsvik et al. 2010). The computational cost gained by employing balance

sampling in selecting multiple knots compared to other designs for knot selection such as SAPV

(Finley et al., 2009) underscore the rationale of this choice. Selecting 200 knots out of 639

locations requires less that 5minutes in Intel® Core™ Duo Processor with 3GB of RAM.
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Rufiji as most of the regions in the sub-Saharan Africa which are along the coast has stable

perennial malaria transmission (Craig et al. 1999). The estimated seasonal pattern confirmed

the actual situation and shows that the two species transmit malaria at different times in the

year hence sustain the high transmission throughout the year. Seasonality was present in the

sporozoite rates for both species and was driven mostly by environment and climate

parameters. An. gambiae was observed to sustain transmission continuously for about three

months contrary to An. funestus which peaks and drops quickly probably due to changes in

climate. Pagès et al. (2008) reported the same situation in a two-year entomological study in

Dakar concerning the sustainable transmission capacity of the An. gambiae s.l.. Effect of

environment factors on sporozoite rates differ by species and this can be explained by the

ecological behavior of these vectors for instance environment preferences on breeding areas

(Wanji et al. 2003; Pagès et al. 2008; Kelly-Hope et al., 2009).

In areas that malaria is endemic, maps of the transmission pattern are useful tools to target

control strategies and monitor success of interventions. Results of this study show spatial

differences in malaria transmission within very small localities. The maps presented in this

paper stimulate the discussion on why transmission of malaria can be sustained in a specific

area despite several interventions and control available. In addition, understanding behavior of

vector(s) responsible for transmission and how their response towards changes in different

attributes is important. The two species An. gambiae and An. funestus indicated to be the main

responsible vectors for the malaria transmission and play an important role in maintaining the

transmission throughout. The species have been reported as principal malaria vectors in

several parts in the sub-Saharan African (Wanji et al. 2003; Shililu et al., 1998; Lindblade et

al., 1999; Atangana et al., 2009; Githeko et al., 2006). Following the modelling approach used,

the model can be formulated jointly by species which will allow accounting for the correlation

between species as the current model assumes independence between them.

The results of this work can be extended to analyze important epidemiological questions like

the relation between malaria transmission and mortality. In most of the DSS sites in sub-

Saharan African countries and Asia routinely mortality data are collected. Model based

prediction estimates of the malaria transmission can be obtained in location with mortality

data. This study used sporozoite rates as a proxy measure for malaria transmission, however,
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there are other measures of transmission intensity like Entomology Inoculation Rate which

takes into account not only the infectivity of the mosquitoes but also the mosquito density.

From the statistical point of view, the study confirmed that it is challenging to obtain a

representative knots and the performance of the predictive process is sensitive to the choice

made. Simulation based studies which leverage computational gains, assessing what important

characteristics of the parent process are to be preserved and developing of a proper indicator

to select knots with assured performance are among future work in this regard.
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Appendix:
Prediction error maps An. funestus
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Prediction error maps An. gambiae
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Abstract
Malaria transmission is commonly measured using entomological inoculation rate (EIR), the number of

infective mosquito bites per person per unit time. Understanding heterogeneity of transmission has been

difficult due to lack of accurate data to conduct such analysis. The Malaria Transmission Intensity and

Mortality Burden across Africa (MTIMBA) project has compiled a comprehensive entomological

database at selected sites in Africa in a large number of household locations during 2001-2004 to study

malaria transmission in relation to mortality. The data are sparse, large, with small-scale spatial-

temporal variation and observed irregularly. We demonstrate the application of a more rigorous

approach to analyze spatial heterogeneity of malaria transmission in Rufiji, Tanzania by employing

Bayesian geostatistical models incorporating existing methods to approximate the spatial process from a

subset of locations. The result of this work is essential in assessing the contribution of malaria

transmission in relation to mortality and monitoring control and intervention strategies.

Keywords:  approximate spatial process; malaria transmission; seasonality; MCMC; INDEPTH-MTIMBA
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4.1. Introduction

Malaria remains among the serious tropical diseases with almost half of the world’s population

living in areas at risk of transmission. It is endemic in more than 100 countries worldwide,

children and pregnant mothers being the most vulnerable groups for infections (WHO 2010b).

In 2009, estimates of malaria cases were more than 200 million with about 800 thousands

deaths most of these (~90%) occurring in Africa. The impact of the malaria burden on the

achievement of Millennium Development Goals is enormous and its control is a potential

contribution towards significant progress (WHO 2010b).

Malaria is transmitted by a female Anopheles mosquito. The transmission intensity is therefore

highly sensitive to environmental variations that affect the densities of these vectors and their

ability to transmit the infection (Hay and Snow 2006; Hay et al. 2009; Parham and Michael

2009; Gatton 2010). Up to 10-fold variations in transmission intensity have been observed

within very small localities due to geographical, biological or socio-economic factors

(Fontenille et al. 1997b; Beier et al. 1999; Hay et al. 2000b; Mboera et al. 2010).

Understanding the heterogeneity in transmission and human exposure to malaria infection is

critical for optimizing control programs and targeting interventions (Nedelman 1983; Alexander

et al. 2000; Michael et al. 2001; Shaukat et al. 2010).

Malaria disease burden and transmission can be assessed using incidence or prevalence in

human hosts. However, the Entomological Inoculation Rate (EIR) most directly quantifies the

exposure of the human population to the infectious stages of the parasite (Smith et al. 1993;

Killeen et al. 2000; Lee et al. 2001; Kelly-Hope and McKenzie 2009; Shaukat et al. 2010). EIR

is the product of the human biting rate, e.g. mosquito bites/person/night (which can also be

estimated using mosquito density) and the sporozoite rate (SR) which is the proportion of

infective mosquitoes (Snow et al. 1999; Hay et al. 2000b). The measure expresses the average

number of infective bites a person receives in a specified unit of time. It can be also used to

predict other measures of transmission which are used to evaluate effectiveness of malaria

control program (Woolhouse et al. 1997; Beier et al. 1999; Killeen et al. 2006). Uncertainty

due to small sample, low values and variability in the SR and cost, complicate precise
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estimation of EIR requiring standardized entomological surveys conducted over large areas

(Fontenille et al. 1997b; Beier et al. 1999; Killeen et al. 2000; Kelly-Hope and McKenzie

2009). Accurate estimation of EIR requires longitudinal surveys within the study area to take

into account spatio-temporal variations and seasonality trends. However, there is a paucity of

this type of data due to cost and resources needed to collect them (Brogan and Zhao 1992;

Smith et al. 2001; Thomson and Connor 2001).

The Malaria Transmission Intensity and Mortality Burden across Africa (MTIMBA) project was

initiated by the INDEPTH Network (INDEPTH Network 2002) and conducted over a period of

2001 – 2004 in several countries in Africa including Tanzania, Kenya, Mozambique, Senegal,

Ghana and Burkina Faso. The main objective of the initiative was to assess the relation

between the intensity of malaria transmission and all-cause as well as malaria-specific

mortality across Africa, taking into account the influence of malaria control activities. The

MTIMBA entomological data have been collected fortnightly over large number of locations

(households) and to date this is the only available entomological database appropriate to study

space-time heterogeneity of malaria transmission in Africa. These data are sparse with

seasonal variations and spatio-temporal correlations. Many of the survey locations had zero

mosquitoes or proportion of infected ones. In standard modeling approaches, EIR is treated as

a continuous outcome, logarithmically transformed to fulfill the assumption of normality

(Gemperli et al. 2006a; Leisnham et al. 2007; Killeen et al. 2007b; Chase and Shulman 2009;

Kweka et al. 2010). However, when EIR is estimated as a product of the SR and mosquito

density which are generated from the binomial and a count distribution like Poisson or negative

binomial, respectively, normality assumptions are void. In addition, due to the amount of zeros

which is larger than what can be generated by the standard distributions, the data are

over/under dispersed and zero inflated (Greene 1994; Cheung 2002; Yau et al. 2003; Ryan et

al. 2004; Killeen et al. 2007b). Statistical analysis which accounts for these characteristic are

essential to obtain unbiased estimates for the regression coefficients (Ridout et al. 2001;

Agarwal et al. 2002; Warton 2005; Sogoba et al. 2007).

Moreover, the MTIMBA-EIR data have been collected at fixed locations and they are typically

geostatistical data. Similar exposures of environmental and climatic conditions to locations
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which are geographically close introduce spatial correlation between them. Geostatistical

models take into account spatial correlation by introducing location-specific random effects as

latent observations from a multivariate spatial Gaussian process (Cressie 1993). Spatial

correlation between any pair of locations is considered often as a function of distance on the

covariance matrix of the process. These models have large number of parameters. Bayesian

formulations (Diggle et al. 1998) allow model fit via Markov Chain Monte Carlo (MCMC)

simulation methods (Gelfand and Smith 1990). However, the estimation process involves

covariance matrix computations which are infeasible when the number of locations is too large

(Banerjee et al. 2008; Eidsvik et al. 2010). A computational flexible way to overcome this

problem is the approximation of the spatial process from a subset of locations using properties

of conditional multivariate Gaussian distribution of the process (Banerjee et al. 2008; Finley et

al. 2009; Eidsvik et al. 2010). Most of these techniques have been applied in simulated data,

observed in regular grid and mainly with Gaussian characteristics. In this study, selection of

subset of locations is implemented using methods proposed in our previous work (Rumisha et

al. submitted).

We now demonstrate a rigorous modeling way of analyzing large spatio-temporal EIR data and

study the heterogeneity, space and temporal patterns of malaria transmission within one MTIMBA site,

the Rufiji DSS area in Tanzania (Mwageni et al. 2002). The Gaussian process approximation

proposed by Banerjee et al, (2008) is extended to binomial (sporozoite rates) and NB (density)

data with zero inflation. The models are fitted using Bayesian MCMC simulation and assessed

on the basis of their predictive ability. The EIR is computed as a product of model based

predictions of SR and density. Model formulation details are given in the methodology section

and selected results are presented afterwards. The discussion and conclusion of the findings

consider the implications for timing and allocation of resources for malaria interventions.



Chapter 4: Modelling heterogenity of malaria transmission 74

4.2. Methodology

4.2.1. Study Site
The study utilized data collected from one of the MTIMBA sites in Tanzania, the Rufiji DSS

(RDSS). The RDSS is located in Rufiji District, Coast Region, Tanzania about 178 kilometres

south of Dar-es-Salaam. The RDSS area extends from 7.470 to 8.030 south latitude and 38.620

to 39.170 east longitude and operates in six contiguous wards and 31 villages. The surveillance

area covers an area of 1,813 square kilometers and monitors 85,000 people, which is about

47% of the total population of the Rufiji District (INDEPTH Monogram). Rufiji District has an

overall mean altitude of less than 500 metres. Its vegetation is mainly formed of tropical

forests and grassland.  The district has hot weather throughout the year and two rainy

seasons; short rains (October to December) and long rains (February to May). The average

annual precipitation in the district is between 800 to 1000 millimetres. A prominent feature in

the District is the Rufiji River with its large flood plain and delta, the most extensive in the

country (INDEPTH Monogram; Rufiji DSS Profile, 2000). The majority of the people in Rufiji

District are subsistence farmers.

The main responsible malaria vectors in the area include An. funestus, and members of the An.

gambiae complex, including An. gambiae (sensu stricto) and An. arabiensis. Mosquito populations

usually peak during the rain seasons especially in areas where rice cultivation is taking place

and during the dry months high population was usually observed in areas with permanent water

bodies (INDEPTH Network 2002).

4.2.2. Mosquito Data

The entomological data were collected for the period of three years, October 2001-

September 2004 (Source: http://www.indepth-network.org/dss_site_profiles/rufiji.pdf). The

MTIMBA entomological protocol has been well defined in MTIMBA documentation

(unpublished). In a snapshot, mosquitoes were captured at least twice every month using

Centers for Disease Control (CDC) miniature light traps. The human population in the RDSS

was classified into geographical clusters (100-1000 people) then for each round a simple

random sampling (without replacement) was employed within clusters to select between 20-
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100 “index” people (households) for set up of mosquito catches (traps). The traps were fitted

indoors with incandescent bulbs and laid close to a human volunteer (randomly selected from

members of the household) sleeping under an untreated bednet. Light traps operated from

sundown to sunrise (i.e. 6pm-6am) for two consecutive nights in each household and bags

were emptied every morning. In total mosquitoes were collected at 2479 unique locations

(households).

All households where collection was done were geo-referenced. Collected mosquitoes were

counted and sorted into vector species to allow separate assessment of transmission intensity.

A total of 15983 An. funestus mosquitoes (obtained from 18% of the surveyed locations, n=447)

and 17885 An. gambiae mosquitoes (obtained from 27.3% of the surveyed locations, n=678)

were available for analysis of the sporozoite rate and mosquito density. This implies that most

of the visited households, approximately 80% had zero mosquito collection. The crude

sporozoite rates were 4.3% and 2.35% for An. gambiae (639 locations) and An. funestus (415

locations) respectively.

4.2.3. Environmental and Climatic Data

Remote sensing data were extracted from different sources with different spatial, SpR and

temporal, TR resolutions. These include normalized difference vegetation index (NDVI)

[SpR:250m2; TR:16days; Source: MODIS], day and night temperature [SpR:1km2; TR:8days;

Source: MODIS], rainfall [SpR:8km2; TR:10days; Source: ADDS] and distance to the nearest

water bodies [SpR:1km2; Source: Health Mapper].

4.2.4. Statistical analysis

Geostatistical zero inflated negative binomial and logistic regression models were fitted on the

mosquito density and sporozoite rate data respectively. The models accounted for the effect of

environmental and climatic predictors, seasonal patterns, spatial and temporal correlations.

The predictive process was used to approximate the spatial process using a subset of

locations. Model based prediction of SR and density were multiplied to obtain estimates of

monthly and annual EIR. Details of the model formulation and its implementation are described

in the subsections below.
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i) Model formulation for density data

Let itY be the number of female mosquitoes and )1(X it be a vector of environmental predictors

(extracted from satellite data) observed at location ,,...,1, nis i  and calendar month

36,...,1t for a specific species. itY is assumed to follow a negative binomial distribution,

),(~ itit prNBY where )/( itit rrp  . r is an overdispersion parameter and it is the mean

mosquito density. Covariates
)1(Xit , seasonal trends )1()(tf ,  spatial

)1(
iU , temporal

(1)
1 2( , ,..., )t te e e  and non-spatial

)1(
i random effects are introduced on the log scale of the

mean count via the equation
(1) (1) (1) (1)(1) (1)( ) ( )T

it i t ilog f t U e     X β , where (1)β is the

vector of regression coefficients,
)1(

i is a residual error term capturing the remaining

variability in the data. )1()(tf is modeled via trigonometric function with a mixture of cycle, C

(1) (1)
1 2

2 2
( ) * * , 2; 1, ...,12 / 36

1 c c
c c

C
f t cos t sin t C t

T Tc
 

    


     
    
     

cT is the period of the season for cycle C (i.e. 121 T and 62 T ) and )1(
1c and )1(

2c are regression

parameters used to describe the amplitude and phase within a period (Stolwijk et al. 1999; Rau

2006). Separate models were fitted assuming i) a constant seasonal pattern across the three

years of the study by taking 12,...,1t or ii) a continuous time for the entire study period by

taking 36,...,1t . The seasonal pattern considering dry/wet categorization of the data was also

assessed.

A zero inflated model formulation was adopted to take into account the excess zeros in the

count data. The model is defined as a mixture of a degenerate distribution with mass at zero

and a non-degenerate count distribution. The log-likelihood is therefore a sum of the log-

likelihood for the non-zero and the zero counts. The distribution of the data is now defined as:

0),|()1(),|(
)|0()1(),|0(
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where *p is the probability for a count to arise from the zero mass and *1 p is the probability

to observe a sample from a count distribution (i.e. NBy )θ|( for our case, and θ is the

vector of parameters associated with the distribution). This probability can be assigned a value

between 0 and 1, usually approximates the proportion of zero counts in the sample or can be a

function of covariates similar or different from those used in the full model (Lambert 1992;

Agarwal et al. 2002; Killeen et al. 2007b; Lawal 2010). Involving possible sources of zero

inflation (e.g. covariates) reduces bias in parameter estimation of p and other sources of

uncertainty. In our case p is modeled with a logit link as a function of all climatic predictors

*
iX observed at location is , i.e. α)( ** T

i Xplogit  where α is the corresponding vector of

regression coefficients.

Bayesian model formulation requires the specification of prior distributions for all unknown

parameters. For the regression coefficients, )1(β , )1(δ and α , a standard non-informative

uniform prior is adopted, i.e.  (1) ~ Unif , β ,  (1) ~ Unif ,   and  ~ Unif , α respectively. The

latent observations )1(
iU introduced at each location is are assumed to derived from a

multivariate normal distribution with a covariance matrix
)1(

nxn , i.e. ),0(MVN~
)1()1(
nxnU . The )1(

is a matrix with elements )1(
ij and quantify the covariance ),( ji UUCov between pair of location

is and js respectively. Its distribution defines the Gaussian spatial process. Under the

assumption of stationarity, the spatial correlation is taken to be a function of distance between

locations. An exponential correlation structure for the covariance matrix of the spatial process

is adopted, that is )exp( )1(2)1( )1(

 ijspij d where
)1(2

sp is the spatial variance, ijd is the distance

between locations is and js and )1( measuring the correlation decay and also known as the

effective range (
)1(3  ) and estimates the distance where the spatial correlation is less than

5%.  The decay parameter )1( assumed to follows a gamma distribution.

Computation of the Gaussian process requires the inversion of the covariance matrix, )1( ,

which for very large number of locations is not feasible. To enable model fit we approximate
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the spatial process by a subset of locations, knots,  *, 1,..,is i m (m<<n) with latent

observations  1( *),... ( *)
T

mU s U s
(1)*U .

(1)*U is considered to arise from the same Gaussian

process as (1)U and thus *~ (0, )N 
(1)*U where * is the m m covariance matrix of the sub-

process. These latent observations U of the original process can be approximated by the

"predictions" of the sub-process via the mean of Gaussian conditional distribution

1 2 1( ) | ~ ( * , * )T TN Q    U
(1) (1)(1) * *U s U Q Q , that is 1ˆ *T  

(1)*U Q U where ( )Cov
(1)* (1)Q = U ,U is an

m n matrix of the covariance functions between the full and the sub-process (Seeger 2003;

Xia and Gelfand 2005). Selection of subset of location was done using the minimax space filling

design implemented in R software (Johnson et al. 1990). The approach optimizes the selection

of the best subset by minimizing the maximum of the nearest-neighbor distance between the

original survey and the subset locations.

The
)1(

t model temporal correlation via a stationary autoregressive process of order one, i.e.

))1/(,0(~ 22
1

)1(

 TNormale and 2),,(~|
)1(2

1
)1(

1,...1  teNormalee Tttt  where )1( is an autocorrelation

parameter 1|| )1(  which adopts a bounded uniform distribution,  1,1Unif~)1(  and
)1(2

T is the

temporal error (Hay and Pettitt 2001). The
)1(

i are assumed to follow a normal distribution

with mean zero and a homoscedastic variance
)1(2

e . Inverse gamma priors are adopted for the

variance parameters
)1(2

sp ,
)1(2

T and
)1(2

e .

ii) Model for SR

Let itN and itZ be the number of mosquitoes tested and number infected, respectively at

location is and calendar month .t itZ is assumed to arise from a Binomial

distribution, ),(~ ititit NBinZ  where it measure the SR at location is and time t . The regression

function links the SR with other terms of the model (as shown for the density data) is given as

)2()2()2()2()2()2( )(βX)( iti
T

it Utflogit   . Similar specification described for the density

model is followed in this model.
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iii) Data management and environmental lags

To facilitate the assessment of the seasonal pattern, data was summarized by location and

calendar month. That implies that all repeated surveys from a specific location within the same

month were collapsed (sum of mosquito density/tested and positive) to a single observation.

To account for the environmental-lag-effect on mosquito density or sporozoite rate, non-

spatial (negative) binomial models (with/without zero-inflation) were fitted and best lags were

assessed. Lags refer to a climate/ environment value at different time intervals prior to the

study date that might influence the amount of mosquitoes collected or the sporozoite rate.

Lags considered include the current month (month of collection of mosquitoes); one/two/three

month(s) prior to the collection; average of current and one previous month; average of one

and two previous months; and lastly average of current, one and two previous months. The

analysis took into account seasonality, distance from water bodies and time (annual effect)

which was incorporated as a binary variable indicating the year of study. Analysis was

conducted separately for each species. Fitted values from models with all possible

combinations of the environmental lags were calculated and plotted against the observed

values (mosquito counts or sporozoite rate). The combination which fits best the data was used

for further analysis. This was implemented in STATA 10 (Stata Corps).

iv) Model validation and prediction

About 15% (test locations) randomly selected from the entire dataset was left out and models

were fitted using the remaining 85% of the data. The predictive ability of the model was then

assessed using the test locations. Specifically we calculated different credible intervals with

different probability coverage of the posterior predictive distribution and compare the

percentage of test locations which falls within these credible intervals (Gosoniu et al. 2006).

The predicted power reported represents the percentage covered at 95% credible interval.

Using the estimates obtained from the models, SR and mosquito density were predicted for the

whole Rufiji site. The prediction was done at the 250m resolution.
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v) Calculation of EIR
The EIR can be estimated as a product of the sporozoite rate and human-biting rate.

Depending on the mosquitoes collection method used (human landing, light trap, etc), the

human-biting rate can be correctly approximated either by the number of blood meals taken on

humans/ mosquito/day or by the mosquito density. Established correlation between number of

mosquitoes captured by light traps and human landing catches is usually used to adjust light

trap collection to equivalence of biting catches and avoid collection bias (Lines et al., 1991).

For this study EIR was calculated as a product of sporozoite rate (SR) and mosquito density

and then adjusted using a correction factor of 1.605 to calibrate estimates obtained from light

trap collection (Lines et al., 1991; Amek et al., 2012).

At a specific pixel j and month t the predicted values of SR, jt̂ and mosquito density, jt̂ were

obtained for An. funestus and An. gambiae species. EIR estimates representing the infectious

bite/person/day were calculated as:

 )ˆ*ˆ()ˆ*ˆ(*605.1ˆ
agagafaf jtjtjtjtjtRIE  

where 1.605 is the correction factor.

The jtRIE ˆ were then multiplied by 30.5 and 365 to obtain monthly and annual estimates

respectively. Monthly and annual maps were produced to show seasonal and temporal trend of

the transmission.

vi) Geostatistical model implementation

The final model was implemented in OpenBUGS and parameters were estimated using the

Gibbs sampler MCMC algorithm. The spatial variance parameter was sampled directly from its

inverse gamma full conditional distributions using Gibbs sampling (Gelfand and Smith, 1990).

The remaining parameters were simulated using Metropolis algorithm with a Normal proposal

distribution. The mean of the proposal distribution was the parameter estimated from the

previous iteration with a fixed variance (Hastings, 1970; Metropolis, 1987). Two separate

chains were run in parallel with a total of 150,000 iterations each. A burn-in of 20,000

iterations was done and the last 5000 and 1000 samples were used for posterior inference and

prediction respectively. The Gelman-Rubin model diagnostic tool (Gelman and Rubin, 1992)
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was used to assess convergence of chains before summarizing the results. The package 'fields'

in R was used for selection of knots. For practical implementation of the geostatistical model

281 knots (2479 unique locations) were selected for the density data (both species), 177 (415

unique locations) for SR analysis of An. funestus and 219 (639 unique locations) for SR of An.

gambiae. Predictions and calculation of EIR were done in Fortran 95 (Compaq Visual Fortran

Professional 6.6.0).

4.3. Results

4.3.1. Data Description
In total of 2479 unique locations were visited for the collection of the mosquitoes. A total of

15983 and 17885 An. funestus and An. gambiae mosquitoes were captured respectively. About

83% and 74.3% of the visits for mosquito collection for An. funestus and An. gambiae received

zero counts. The crude annual sporozoite rates, calculated as the percentage of infectious

mosquitoes out of those tested, were 3.3%, 2.8% and 3.2% for Year 1 (October 01-September

02), Year 2 (October 02-September 03) and Year 3 (October 03-September 04) respectively.

The observed EIR (i.e. observed SR multiplied by man-biting rate) were 507, 72.8 and 146

infectious bites/person/year for three years respectively. In Figure 4.1, the relation between

rainfall, temperature and mosquito density is shown (data collapsed in a period of one calendar

year).
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Figure 4.1: Seasonal variations of a) rainfall, temperature and b) mosquitoes densities of An. gambiae and An. funestus in the
Rufiji DSS October 2001- September 2004
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Most An. gambiae mosquitoes were captured during the months of April and May while most An.

funestus were collected in the period of July – September. The number of An. gambiae collected

was higher during the heavy rains while short rains with high temperature favor the population

of An. funestus (Figure 4.1). Almost 74% of total An. funestus and 63% of An. gambiae mosquitoes

caught for the entire study period were collected during the first Year. More than 50% of the

all tested and positive mosquitoes were obtained in the 1st year of the study (data not shown).

4.3.2. Geostatistical model results
Table 4.1 summarizes the results of parameter estimations from a multivariate geostatistical

models on sporozoite rates and mosquito density.

Table 4.1: Association of environment/climate variables on sporozoite rate and mosquito density and spatio-temporal parameters

SR: Model: Binomial Density: Model: Zero Inflated NB
Parameter Median [95% CIa] Median [95% CIa]
Seasonality An. funestus An. gambiae An. funestus An. gambiae

Cos 12 0.99 [0.41,2.41] 0.72 [0.29,1.66] 1.1 [0.54,2.3] 0.39 [0.2,0.86]
Sin 12 0.84 [0.31,2.53] 0.54 [0.19,1.32] 0.75 [0.4,1.55] 0.6 [0.32,0.96]
Cos6 1.27 [0.66,2.47] 0.81 [0.44,1.53] 0.75 [0.43,1.39] 0.76 [0.41,1.13]
Sin6 0.65 [0.34,1.25] 0.87 [0.45,1.68] 1.13 [0.58,2.08] 0.99 [0.53,2.43]

Environment and Climate
NDVI 1.03 [0.85,1.25] 0.93 [0.79,1.1] 1.15 [0.87,1.6] 1.11 [0.92,1.35]
RAIN 0.96 [0.73,1.26] 0.53 [0.36,0.79] 1.33 [1.06,1.68] 1.26 [0.97,1.79]
Day temperature 2.31 [1.06,6.97] 0.92 [0.7,1.22] 1.23 [0.81,1.69] 0.77 [0.64,0.89]
Night temperature 1.04 [0.52,3.51] 0.96 [0.73,1.27] 1.47 [1.02,2.02] 0.84 [0.69,1.03]
Distance to the water bodies 0.93 [0.76,1.11] 0.97 [0.85,1.1] 0.96 [0.65,1.22] 0.94 [0.79,1.11]

Annual Trend
Year 2 1.01 [0.61,1.67] 0.48 [0.31,0.75] 0.13 [0.08,0.24] 0.17 [0.11,0.25]
Year 3 0.41 [0.2,0.79] 0.37 [0.24,0.57] 0.34 [0.2,0.61] 1.6 [1.04,2.53]

Spatial Process
Range (in km)bc 35.52 [11.1,78.81] 49.95 [15.54,81.03] 21.1 [12.2, 56.6]km 15.5 [8.9, 32.19]km
Variance 2

sp 0.9 [0.37,2.36] 0.45 [0.2,1.18] 11.35 [6.58,29.2] 5.04 [3.1,10.33]

Temporal Process
Correlation  0.5 [-0.52,0.96] 0.5 [-0.51,0.96] -0.15 [-0.79,0.67] 0.08 [-0.77,0.83]
Variance 2

T 0.34 [0.14,1.11] 0.33 [0.14,0.94] 0.61 [0.22,2.59] 0.51 [0.2,2.55]
Other parameters

Non-spatial variance 2
e 0.31 [0.16,0.61] 0.34 [0.19,0.59] 2.88 [1.81,4.4] 2.59 [1.89,3.2]

Overdispersion r --- --- 2.64 [1.7,3.67] 1.16 [0.77,1.61]
Effect of covariates on the mixing probability

NDVI --- --- 0.3 [0.17,0.54] 0.93 [0.7,1.29]
RAIN --- --- 1.3 [0.84,5.37] 0.65 [0.36,1.85]
Day temperature --- --- 0.07 [0.01,0.64] 0.05 [0.02,0.18]
Night temperature --- --- 0.53 [0.27,1.14] 0.71 [0.28,3.64]

a: Credible Intervals (or posterior intervals)
b: Based on spatial decay parameter, the Range is calculated as /3 (x111km).
c: The spatial correlation is significant (>5%) within this distance
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The effect of environmental variables differs significantly between species. Rain and

temperature are the most influencing factors for density and sporozoite with higher effect on

the An. funestus species. No significant effect of distance to the water bodies was obtained.

Temporal effect (annual) is highly pronounced with a significant increase of mosquito

population in the third year of the project as compared to first year. Spatial ranges are quite

high especially for the sporozoite rates. The estimate of the over dispersion parameter of An.

funestus is twice as large as that of An. gambiae which could be the influence of the amount of

zeros in the data. However, the estimate of r is larger than 1 indicating that the data are not

highly overdispersed. Day temperature significantly reduces the probability of observing zero

mosquito counts. Spatial variability accounts more for the total variability in the data as

compared to the non-spatial and temporal.

For a total of 63, 99, 368 and 368 test locations selected for validation of SR-An. funestus, SR-

An. gambiae, Density-An. funestus and Density-An. gambiae models respectively, 68.3%, 63.6%,

84.1% and 89.9% of the locations were correctly predicted within 95% credible interval

respectively.

4.3.3. Mapping EIR
Figure 4.2, presents selected EIR maps for the Rufiji DSS site for the An. funestus and An.

gambiae.
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Figure 4.2: Selected EIR maps showing the spatial distribution and the seasonal pattern, for the period of Oct 2001- Sept 2004.
A) Dry months followed by the period of short rains, B) Months immediately after the onset of heavy rains during the 1 st year
(very wet), C) Months immediately after the onset of heavy rains during the 2nd year (dry) and D) Months immediately after the

onset of heavy rain season during the 3rd year (normal rains)

A

B

C

D
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The southern part of the DSS showed high transmission throughout the years. High

transmission was observed immediately at the onset of rains, especially during the heavy rain

period. At the end of the rainy season (May-June) the transmission spread throughout the

region.

In Figure 4.3 monthly time series (median) predicted EIR are plotted for the entire study

period. Attribute of each species is also indicated.
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Figure 4.3: Predicted monthly EIR median and attribute of each species in Rufiji DSS

The transmission starts peaking at the month of April (just after rains) and gradually dropped

in July (1st year of the study). There was a reduction in the second year of the study and EIR

increased again during the last year. Similar monthly trend is observed across years which

emphasize seasonality. An. funestus are more prominently during the dry months while An.

gambiae responsible for the rainy periods. The spatial temporal distribution of year-by-year

EIR is shown in Figure 4.4 with maps of prediction error. The prediction error for the EIR

estimates was obtained my multiplying the prediction errors obtained from SR and Density

models.



Chapter 4: Modelling heterogenity of malaria transmission 86

Figure 4.4: Spatial temporal distribution of annual EIR with prediction error maps.

Patterns in Figure 4.4 shows that few surveyed households are located in areas with EIR less than

1, however, a large proportion of household presented high transmission intensity. Higher

prediction errors are seen in areas with no or few surveyed locations.
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4.3.4. Population adjusted EIR
The annual and species-specific population-adjusted EIR were calculated by averaging

predicted inoculation rates at all households within the RDSS (Figure 4.5) excluding all the

other pixels. Results are presented in Table 4.2.

Table 4.2: Overall predicted EIR with the percent (%) attribute of each species

Period An. funestus + An. gambiae An. funestus An. gambiae

October 2001 - September 2002 853.6 582.9 (68%) 270.7 (32%)
October 2002 - September 2003 113.7 88.8 (78%) 24.9 (22%)
October 2003 - September 2004 286.1 107.2 (37%) 178.9 (63%)

Overall transmission intensity reduced significantly during year 2 and 3 as compared to year

1 of the study. An. funestus was the main responsible vector for transmission in the first (68%)

and second (78%) year while during the last year transmission was mainly driven by An.

gambiae (63%).

In addition, we assessed the spatial shift (distribution) of transmission intensity over time, as

illustrated in Table 4.3. EIR were categorized into five transmission intensities which were;

no transmission (EIR=0), very low (EIR=>0.0-1), low (EIR=>1-10), average (EIR=>10-100),

and high (EIR=>100). The change in the percentage of households exposed to a specific level

of transmission was then studied.

Table 4.3: Distribution of predicted EIR over the RDSS area by Year, N*(%):

Category EIR range Year 1 N*(%) Year 2 Year 3
No 0 4896 (27.5) 13124 (73.8) 4225 (23.8)
Very low >0.0-1 704 (4.0) 1320 (7.4) 1286 (7.2)
Low >1-10 4568 (25.7) 2081 (11.7) 6779 (38.1)
Average >10-100 5377 (30.2) 1068 (6.0) 4781 (26.9)
High >100 2238 (12.6) 190 (1.1) 712 (4.0)

* The number of households within a specific transmission intensities category

The proportion of households predicted with very low transmission intensity increased

between the 1st year and the 3rd year of the study, from 4.0% to 7.2%. A significant reduction

(over 68%) of locations with high transmission is seen during the last year of the study (i.e.

12.6% in the 1st year to 4% in the 3rd year).
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Figure 4.5: Distribution of households in the Rufiji DSS area (N=14,516), Source: TEHIP, 2002
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4.4. Discussion

In this study we assessed spatial-temporal variation and heterogeneity of malaria

transmission in the Rufiji DSS site using a large geo-referenced biweekly entomological

dataset collected over three years, and rigorous Bayesian geostatistical models. Our work is

amongst the few to address spatial modeling of EIR based on sparse data by applying current

Bayesian methodologies approximating spatial processes for large data. The INDEPTH-

MTIMBA data which was used in our application is the most comprehensive entomological

database in Africa. Bayesian spatio-temporal binomial and zero inflated negative binomial

regression models were developed to produce monthly maps of EIR taking into account the

malaria-climate relation and seasonality in transmission (Thomas and Lindsay 2000; Sogoba

et al. 2007; Gosoniu 2008; Reid et al. 2010; Stresman et al. 2010).

Geostatistical models have been widely used in malaria mapping in recent years ((Amek et

al., 2012; Diggle et al. 1998; Gemperli et al. 2004; Gosoniu et al. 2006; Hay et al. 2009; Amek

et al. 2011). Most of these analysis involved standard geostatistical models which are

relevant for a moderate number of locations. Computation involved in these models is not

feasible for data collected over large number of survey locations. In this study we used

methods proposed by Barnejee et al. (2008) and Finley et al. (2009) to approximate the

spatial process using a subset of survey locations selected via space filling design. Additive

temporal correlations with autoregressive structure were incorporated in all models.

Changes in climate conditions, natural inhabitants and other human activities which depend on

environment alter the intensity of malaria transmission (Snow et al. 1998b; Thomson and

Connor 2001; Hay et al. 2002). Our results depict temporal and seasonal variation in EIR

along the study period and study area. Transmission was higher during the rainy periods with

high temperatures and very low during the dry season or year. Two species An. funestus and

An. gambiae are mainly responsible for malaria transmission in this region. Differences on the

effect of environmental factors on the mosquito abundance and sporozoite rates of the

species were observed. The population of An. gambiae increases at the onset of heavy rains

while that of An. funestus peaks during the short rains season. Similar results have been
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reported in the Kilombero valley and other areas with similar climate in Africa and are

associated with the preferential conditions of breeding sites of these species (Gillies and De

Meillon 1968; Smith et al. 1993; Charlwood et al. 2000; Warrell and Gillies 2002; Guelbeogo

et al. 2009; Adja et al. 2011; Mala et al. 2011). Highly significant effects of temperature on

the SR and density of An. funestus was observed. Contrary to An. gambiae which has relatively

exophilic behavior, this species is strictly endophilic, which could facilitate choice of

conducive resting environment favoring the gonotrophic cycle resulting to higher survival

hence longer infectivity (Charlwood et al. 2001; Kent et al. 2006; Atieli et al. 2009).

Knowledge of these characteristics can be important for understanding disease dynamics and

for efficient implementation of interventions (Beier et al. 1999; Thomson et al. 2005; Koudou

et al. 2010; Adja et al. 2011).

There was considerable variation over short distances in intensity of transmission. Small

scale variations in malaria transmission are commonly in sub Saharan Africa and create

complexity in implementing strategies to combat malaria (Thomas and Lindsay 2000;

Drakeley et al. 2005; Stewart et al. 2009; Bousema et al. 2010a; Mboera et al. 2010). The

spatial correlation was still present over a substantial distance and the spatial variation

comprised of about 90% of the total data variance. The spatial correlation arises partly due to

spatial pattern in environmental drivers of transmission, partly due to effects of limited

mosquito dispersion, and is also affected by human factors such as migration and human

population densities (Finley et al. 2009; Eidsvik et al. 2010). We had an abundance of data on

both mosquito and human populations, however, due to relative small DSS area, it is difficult

to separate the contributions of these different factors to the spatial correlation which

explains the higher spatial range.

The data available from Rufiji include comprehensive records of mortality in the human

population at the time of the entomological surveillance. In our future work, the exposure

surfaces estimated in this work will be used to assess the relation between malaria

transmission and mortality. By allowing for both temporal variation and small area spatial

variation in EIR, this analysis should provide much more accurate estimates of the benefits to
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be gained by reducing malaria transmission than is possible from analyses that aggregate EIR

over large areas and time periods.
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Abstract
The precise nature of the relationship between malaria mortality and levels of transmission is unclear,

since efforts to assess this have been inconclusive because of methodological limitations. The

MTIMBA project was initiated by the INDEPTH Network to collect longitudinally entomological data

within a number of DSS in sub-Saharan Africa to study this relationship. This work linked the MTIMBA

entomology data, with the routinely collected vital events within the DSS to analyze the transmission-

mortality relation in the Rufiji DSS. Bernoulli spatio-temporal regression models with village

clustering, adjusted for age and ITNs, were fitted to assess the relation between mortality and malaria

transmission measured by EIR. EIR was predicted at household locations using transmission models

and it was incorporated in the model as a covariate with measurement error. Hazard ratios (HR) were

estimated for predictors, spatial and temporal parameters. Separate analysis was carried out for

neonates, infants and children 1-4 years of age. No significant relation between all-cause mortality

and intensity of malaria transmission was indicated at any age in childhood. However, a strong age

effect was shown. Comparing effects of ITN and EIR on mortality at different age categories, a

decrease in protective efficacy of ITN was observed (i.e. neonates: HR=0.65; 95% BCI: 0.39-1.05;

infants: HR=0.72; 95% BCI:0.48-1.07; children 1-4 years: HR=0.88; 95% BCI: 0.62-1.23) and

reduction on the effect of malaria transmission exposure was detected (i.e. neonates: HR=1.15; 95%

BCI:0.95-1.36; infants: HR=1.13; 95% BCI:0.98-1.25; children 1-4 years: HR=1.04; 95% BCI:0.89-

1.18). A very strong spatial correlation was also observed. These results imply complexity in the

malaria transmission-mortality relation. The clarity of this relation involved more than the knowledge

on the performance of interventions and control measures from a single site. The relation depends on

the levels of malaria endemicity which varies between sites, therefore, within and between sub-

regions in SSA analyses should be conducted to assess reproducibility and validity of findings.

Key words: Child mortality, EIR, time varying covariates, DSS, malaria, MTIMBA
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5.1. Introduction

In sub-Saharan African countries about 20 percent of all deaths occurring in under-fives are

generally attributed to malaria (WHO, RBM 2002; Korenromp et al. 2003; Snow et al. 2005;

Rowe et al. 2006). Malaria infection is a leading cause of deaths in children but also a main

confounder of other causes such as low birth weights, malnutrition and anaemia (Pelletier et al.

1995; Snow et al. 1999). Recently, a decline in child mortality has been observed in most

developing countries (Rajaratnam et al. 2010a; WHO 2010a; Lozano et al. 2011b). The drop in

mortality is partly associated with success in interventions and control strategies targeting

malaria transmission such as ITNs and efficacious antimalarial drugs (Schellenberg et al.

2001a; Lengeler 2004; Kleinschmidt et al. 2009a; WHO 2010b). In the Rufiji DSS, change of the

first-line drug for the treatment of malaria from chloroquine to sulfadoxine pyremethamine and

increasing coverage of ITNs are among contributing factors of the sharp decline in mortality

and malaria transmission (Shabani et al. 2010; Kigadye et al. 2011). Thus, all-cause mortality

in under-fives is an essential indicator of malaria control programs (RBM 2000; de Savigny

and Binka 2004). Progress towards malaria eradication as the long term vision of RBM

partnership, requires accurate knowledge of the transmission-mortality relation (Snow and

Marsh 1995b; Trape and Rogier 1996; Smith et al. 2001; Ndugwa et al. 2008).

Lack of vital registration in developing countries, unreliable information on specific causes of

deaths and problems related to malaria diagnosis, complicate the study of transmission-

mortality relations (UNICEF/MICS 1995; Smith et al. 2001; Gemperli 2003; Gemperli et al.

2004; Hammer et al. 2006). Discrepant results which might be related to higher levels of

indirect mortality attributable to malaria have been observed in attempts to relate transmission

and mortality. In a review article, Smith et al. (2001) found an increase in infant mortality rate

with increase in EIR in Africa. However, Gemperli (2003) linked the DHS and MARA databases

to assess the effect of malaria transmission on mortality, and found no clear relationship. In a

study conducted in Western Kenya, no difference in mortality rates could be observed between

villages with and without ITNs intervention (Lindblade et al. 2004). These conclusions are

based on reviews and/or analyses of aggregated data from studies conducted at different times

(periods), regions, and designs, which might be not directly comparable.  Many of these

studies were not designed to assess the mortality attributed to malaria (Omumbo et al. 2004).
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In malaria endemic areas, mortality is influenced not only by transmission but also factors

related to poverty, control interventions and health systems performance (Snow et al. 2001;

Wagstaff 2002; Wagstaff and Watanabe 2002; Müller et al. 2008; Ndugwa and Zulu 2008) and it

is challenging to take these factors in to account.

The MTIMBA project initiated by the INDEPTH Network (INDEPTH Network 2002) was

designed specifically to assess the malaria transmission-mortality relation. Integrated within

the Demographic Surveillance Systems (DSS) which routinely monitor mortality, causes of

death, and other demographic parameters, the MTIMBA project collected biweekly

entomological data at a large number of geo-referenced household locations, using

standardized methodology for a period of three years (Sankoh and Binka 2005a; Ramroth et al.

2009). The MTIMBA database has the epidemiological data required to study the above

relation. However, data characteristics such as spatio-temporal correlations over large

number of locations and lack of appropriate statistical methodologies delayed the data analysis

to date. Banerjee et al. proposed modeling of large geostatistical data to approximate a spatial

process from a subset of locations (Banerjee et al. 2008). These methods have been applied to

model the MTIMBA entomological data in Rufiji (Rumisha et al. under review) and estimate

monthly surfaces of the EIR malaria transmission measure during the three years of the

project.

In this study, the Rufiji DSS-mortality databases are linked to EIR estimates to assess the

relationship between malaria transmission and all cause mortality in children less than five

years. The analysis is conducted using Bayesian geostatistical and temporal regression models

applied on the mortality outcome, considering EIR as predictor and adjusting for malaria

control interventions. The EIR is predicted from a spatio-temporal transmission model and the

prediction uncertainty is incorporated during estimation of mortality risk (Rumisha et al. under

review).
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5.2. Methods

5.2.1. Study Area

Rufiji District is one of the six districts of the Coastal Region in the southeast part of Tanzania,

with a population size of about 182,000 inhabitants. The Rufiji DSS is located in the Rufiji

District (7.47° - 8.03° south latitude and 38.62° - 39.17° east longitude). The RDSS covers an

area of 1,813 km2 with 85,000 inhabitants under surveillance (Mwageni et al. 2002). The

population density is 46 people per km2 and the average household size is about five people

(Bureau of Statistics, 1994). The major causes of mortality in the RDSS include acute

respiratory infections, tuberculosis, acquired immunodeficiency syndrome (AIDS), perinatal

causes, and malaria (Shabani et al. 2010). Malaria is endemic and seasonal throughout the

region. Higher transmission occurs during and shortly after the rains (March – June).

Prevalence of malaria was 28% in 2002 and 20% in 2004 which is approximately twenty-eight

percent reduction in a period of two years (Source: INDEPTH Monograph, 2002).

5.2.2. Data

i) Mortality, demographic and malaria intervention data

Child all-cause mortality data were obtained from the RDSS database for the period of the

MTIMBA project (i.e. October 2001- September 2004). We extracted individual-specific

information comprising dates of birth, start and exit from the study, age, sex, and vital status

(1 if death occurred during the study period and within the DSS and 0 otherwise). Other

household-level information such as ITN possession, SES (INDEPTH Network 2005), travel

time to health facilities and altitude were taken from other sources such as district health

plans, and linked to the mortality database (Table 5.1). Time at risk (person-days) contributed

by each child was calculated until exit, which could be migration (outside the study area),

death or end of the study. In the case where a child migrated to a different location (within the

study area), time at risk was computed separately for each location. The outcome of interest is

the vital status and the mortality rates were expressed per 1000 person-years (py).
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ii) Malaria transmission data

The entomological data from the MTIMBA project were analyzed using Bayesian geostatistical

models to obtain EIR estimates at locations (households) and months where mortality data

were available. In particular, separate geostatistical and temporal logistic regression and

negative binomial models were fitted to sporozoite rate and mosquito density data,

respectively. Using Bayesian prediction (kriging) and environmental factors as predictors, EIR

was subsequently estimated by the product of the sporozoite rate and the man biting rate

(MBR) predicted from the above models at the household locations. MBR was calculated from

the mosquito density estimates (Lines et al. 1991a). Details of this work are available in

(Rumisha et al. under review, under reviewb).

5.2.3. Linking mortality with other databases

The mortality database included information on 27049 children from 14847 locations. Linking

with entomological, socio-economic and malaria interventions databases by household

locations (latitude and longitude), the final dataset included 17717 children from 8144

locations. Although 45.1% of the locations with mortality data were lost after merging the

databases, the proportion of deaths remained similar (Table 5.1).

Table 5.1: Number of individuals, deaths and locations after merging mortality database with entomological, socio-economic and
malaria interventions databases

Merged database Unique locations Individuals Deaths counts (%)

Mortality 14847 27049 831 (3.07%)
Entomological 11631 23905 768 (3.21%)
Socio-economic 9574 20341 651 (3.20%)
Malaria interventions 8144 17717 567 (3.20%)
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5.2.4. Statistical analysis

Non-spatial survival models were fitted for different groups of child age (neonatals [0-

28days]; postneonatal [29days to 11months]; infants [0days-11months]; children1 [0 days to

59months]; children2 [29days to 59 months] and, children3 [12months-59months] to assess

differences in mortality risks between the groups and decide whether separate analyses are

required for each age subgroup. Mortality rates were calculated and compared between

subgroups (see Table 5.2). For the selected groups we fitted bivariate models to assess

potential non- linearity in the relation between EIR and mortality by considering the following

transformations of EIR: i) categorical; ii) logarithmic and iii) fractional polynomials of different

orders. The Akaike Information Criterion (AIC) was used to assess the model performance and

select the best model including the one assuming linearity (Akaike 1973). The best model was

the one with the smallest AIC value. These analyses were carried out in STATA v10 (Stata

Corp., 2007).

In addition, bivariate and multivariate time dependent survival models with spatial and

independent village level random effects were fitted for selected age groups. These models

were approximated by a pooled logistic regression (D’Agostino et al. 1990; Singer and Willett

1993) and included monthly temporal random effects. The spatial random effects were

considered to derive from a zero-mean multivariate normal distribution (Diggle et al. 1998)

with covariance matrix assuming that spatial correlation decays exponentially with distance

between villages. The temporal random effects were modeled by a first order autoregressive

process. Following a Bayesian formulation, appropriate prior distributions for the parameters

were adopted.

The data were disaggregated by months to incorporate a time varying trend of EIR. Bayesian

prediction allowed estimation of the full posterior predictive distribution of EIR parameter at

each location with a measure of uncertainty (Rumisha et al. under review; Diggle et al. 1998).

EIR (logarithmic transformed) was then assumed to arise from a normal distribution with a

mean and variance defined by median and standard deviation of the posterior predictive

posterior, respectively. This allowed taking into account the measurement errors of predicted
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EIR when estimating the regression parameters. The mortality events were related with a one-

month lag EIR. Other predictors considered included age, sex, SES, ITN ownership, first-line

malarial drug, travel time to the health facility and altitude. All geostatistical models were

fitted in OpenBUGS (Spiegelhalter et al. 1999). Formulation of the geostatistical model is given

in the Appendix.

5.3. Results

5.3.1. Mortality data

The complete mortality database included 27049 children from 32 villages which were

followed up during the project period. The mean follow-up time was 1.6 years with a total time

at risk of 44,286 py. Of these children, 31.5% (n= 8528) entered in the course of the study (via

birth or in-migration). Among those available at the beginning of the study (n=15377), 2%

(n=315) were neonatal, 21% (3207) postneonatal, and 77.1% (11855) were 1-4yr (59 months).

At the end of the study, a total of 831 deaths were registered. The overall under-five

mortality rate for the three year period was 18.7 per 1000py. For the year 1 (Oct 01- Sept

02), 2 (Oct 02- Sept 03) and 3 (Oct 03- Sept 04) of the study, the death counts (mortality

rates per 1000py) were 321 (261.5), 237 (68.9) and 273 (7.1) respectively (bivariate analysis:

p-value<0.001). The mean age at death was 2.36 years (±1.44). Almost a quarter (26%,

n=213) of all deaths occurred in individuals before the age of one month. The numbers and

proportion of post-neonatal deaths (n=304, 37%) and child deaths (12 months -59months)

(n=314, 37%) were very similar. Figure 5.1 depicts the death rates by age and (calendar)

month of death. The annual time series show higher mortality during the first half of the

(calendar) year (corresponding to the rainy season) compared to the second half.
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Figure 5.1: Child death rates by age categories and month of death, RDSS

In Table 5.2 the number of children, death counts and mortality rates at different age groups

are shown.

Table 5.2: Descriptive statistics on mortality at different age groups of child health, Oct 2001- Sept 2004, Rufiji DSS

Group Age range n* Death
counts

Person
years

Mortality rate (95% CI)
(per 1000py)

1 Neonatal (0-28days) 9758 213 712 299.2 (265.71, 334.27)
2 Infants (0days-11months) 13228 517 9239 56.0 (51.35, 60.84)
3 Postneonatal (29days-11months) 13015 304 9236 32.9 (29.36, 36.75)
4 Children1 (0days - 59months) 27049 831 44286 18.8 (17.52, 20.07)
5 Children2 (29days-59months) 26836 618 44283 14.0 (12.88, 15.09)
6 Children3 (12months-59months) 26539 314 44150 7.1 (6.35, 7.94)

*including migration within the study area

The mortality rates declined with age. The highest rate was observed in neonates. Table 5.2

shows that mortality rates do differ significantly between the subsets of infants and children

with and without neonates (groups 2 vs. 3 and 4 vs. 5) implying a need for a separate analyses

for the neonates. In addition, mortality rates in children with and without postneonatal (groups

5 and 6) significantly differ. Taking all these descriptions into consideration, three separate

analyses were conducted for the: i) neonates (0-28days), ii) postneonatal (29days-11months)

and iii) children3 (12months-59months).
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5.3.2. Exploratory analysis

The results of the exploratory analysis carried out on the final datasets including all covariates

(i.e. 17717 children and 567 deaths) are given in Table 5.3. EIR is categorized into five groups

and mortality rates were estimated for each group. Bivariate analysis did not indicate strong

associations of EIR with mortality, however, the mortality rates are considerably decreasing

across age categories. No clear trend of mortality rates with increasing EIR intensity is

observed, though this could be an effect of small death counts within categories. Low mortality

is observed in individuals with ITNs compared to those without, though this was not

statistically significant. The overall levels of ITNs ownership across SES quintiles (1st-5th),

were 0.0%, 3.3%, 23.8%, 28.9% and 44.0% respectively. These proportions indicate a

significant relationship between ITN possession and levels of income.

The overall poorest/least-poor mortality ratio was 1.49 and the ratios were 0.71, 1.33, 1.66

for neonate, infants and older children, respectively. This suggests that (except for the

neonates) within this region, children living in poorest families have on average 50% higher

risk of dying than those living in better-off families. Another observation (results not shown)

was higher mortality rate marked in the households with many members (>10) than those with

fewer individuals (≤5) (bivariate analysis: p-value <0.001). Differences in the mortality by

family size could be highly influenced by the variation in the socioeconomic status of the

families which might also alter the status of ITN possession. As the focus of this work was not

to understand in detail the effect of these interactions, we opt to include only ITN in our

models. Travel time to health facilities and altitude were not significant at the bivariate

analysis hence not included in final models.
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Table 5.3: Mortality rate according to ITN possession, SES and EIR levels (natural scale) in the Rufiji DSS

Neonates Infants Children 1-4 All
Variable n deaths MR (95%CI) n deaths MR (95%CI) n deaths MR (95%CI) n deaths MR (95%CI)
EIR

0 4946 101 291.9 (244.5,342.9) 7852 132 27.1 (22.7,32) 14486 159 7.8 (6.6,9.1) 17455 392 15.1 (13.6,16.6)*
>0.0-1 809 18 367.3 (234.2,517.1) 2897 17 11.6 (6.8,18.5)* 7525 26 2.6 (1.7,3.8) 9225 61 4.6 (3.5,5.9)
>1-10 1323 20 238.1 (151.9,343.5) 3842 44 22.0 (16,29.4) 8883 27 2.4 (1.6,3.5) 10768 91 6.2 (5,7.6)
>10-100 442 8 285.7 (132.2,486.7) 1280 13 20.2 (10.8,34.3) 3243 14 4.1 (2.3,6.9) 4024 35 8.0 (5.6,11.1)
>100 34 2 1000 (158.1,1032.4) 118 2 35.7 (4.4,123.1) 327 0 0.0 (0,13.8) 417 4 11.5 (3.1,29.3)

ITN possesion
No 5145 128 344.1 (295.9,394.8) 6801 177 40.1 (34.5,46.3) 12195 183 10.6 (9.1,12.2) 14704 488 22.1 (20.2,24.1)
Yes 1279 21 225.8 (145.5,324.2) 1731 31 27.9 (19.1,39.4) 3169 43 9.4 (6.8,12.7) 3775 95 16.5 (13.3,20.1)*

SES
Poorest 1156 21 250.0 (161.9,356.4) 1560 44 44.0 (32.2,58.7) 2783 49 12.5 (9.3,16.5) 3345 114 22.8 (18.8,27.3)
Very poor 1351 37 377.6 (281.6,481.2) 1783 47 39.9 (29.5,52.7) 3237 57 12.2 (9.3,15.8) 3875 141 23.8 (20.1,28)
Poor 1514 42 381.8 (290.8,479.3) 1963 47 36.3 (26.8,48) 3496 45 9.0 (6.5,12.0) 4207 134 20.9 (17.5,24.7)
Less poor 1376 23 230.0 (151.7,324.9) 1841 41 34.9 (25.2,47) 3299 48 10.3 (7.6,13.6) 3971 112 18.9 (15.6,22.7)
Least poor 1027 26 351.4 (243.9,471.1) 1385 29 33.0 (22.2,47) 2549 27 7.5 (4.9,10.8)* 3081 82 17.9 (14.3,22.2)

* significantly associated with mortality (bivariate analysis)
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5.3.3. Model-based results

The natural logarithmic transformation of EIR provided the lowest AIC value and was used for

analysis (results not shown). Results of parameters estimated from multivariate spatial-

temporal models for all groups, i.e. neonates, infants and children are described in Table 5.4.

These include hazard ratio (HR) for predictors, spatial and temporal parameters.

Table 5.4: Parameter estimates obtained from Bayesian spatial-temporal models on neonates, infants and older children survival
in the Rufiji DSS

Neonates (0-28days) Infants (1-11months) Children (12-59 months)
Variable HR (95% BCI) HR (95% BCI) HR (95% BCI)
Age 0.79 (0.77,0.82)† 0.92 (0.88,0.96)‡ 0.97 (0.96,0.98)‡

ITN use 0.65 (0.39,1.05) 0.72 (0.48,1.07) 0.88 (0.62,1.23)
EIR (log scale) 1.15 (0.95,1.36) 1.13 (0.98,1.25) 1.04 (0.89,1.18)

Other parameters
Spatial range (in km) 56.32 (16.12,82.15) 55.81 (17.2,82.08) 54.62 (15.68,82.06)
Spatial variance 0.28 (0.13,0.74) 0.29 (0.13,0.80) 0.30 (0.13,0.83)
Temporal variance 0.22 (0.11,0.57) 0.23 (0.11,0.52) 0.26 (0.12,0.70)
Non-spatial variance 0.22 (0.11,0.46) 0.21 (0.11,0.46) 0.20 (0.10,0.44)
Autocorrelation 0.32 (-0.67,0.98) 0.45 (-0.51,0.94) 0.99 (-0.09,1.00)

†Age in days; ‡ Age in months

In all categories, age is negatively related with the odds of dying and this is more prominent

for the neonates (HR=0.79, 95% CI: 0.77, 0.82). No significant association was obtained

between mortality and ITN possession or malaria transmission intensity. Nevertheless,

comparing very young children and the older ones, a decrease in the protective effect of ITN

(i.e. 35%, 28% and 12% for neonates, infants and older children, respectively) and, on the odds

of mortality with levels of malaria transmission intensity were indicated (i.e. 15%, 13% and 4%

for neonates, infants and older children, respectively) (Table 5.4). Similarly, pooled analysis

(combining all age categories) did not indicate significant effect of neither EIR nor ITNs on

mortality. The spatial range is similar in all groups and showed a strong correlation with a

wide interval (almost the furthest distance between the two ends of the RDSS).
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5.4. Discussion

Recent health statistics report reductions in mortality rates in some areas in the SSA region (You et

al. 2010; WHO 2010b), and a drop in malaria infection is among the main factors that have been

linked with this decline in the mortality. However, the relationship between child mortality and

malaria transmission is not well understood (Snow and Marsh 1995b; Smith et al. 2001; Lengeler

2004). In this study we assessed the relation between malaria transmission and all-cause child

mortality by linking the Rufiji DSS-mortality database and the malaria transmission database from

the INDEPTH-MTIMBA project. This project is among the few initiatives aiming to understand the

longitudinal effect of intervening malaria transmission on mortality in children and adults in

different malaria endemic areas in SSA (INDEPTH Network 2002; de Savigny and Binka 2004). The

intensity of malaria is measured by the EIR predicted at households which are routinely monitored

for vital events hence create opportunity to precise estimation of the exposure and quantification of

the relationship. Separate analyses were conducted for neonatal, infants and older children. The

uncertainty of the EIR estimates is incorporated by including the measurement error of the

predicted EIR. We adjusted for age, the effect malaria-related control strategies and took into

account the spatial-temporal correlations.

Our study did not observed a significant relationship between malaria transmission and child

mortality at any stage of childhood. Within the DSS areas, a number of malaria and non-malaria

related interventions are routinely and effectively implemented. There could be therefore an

optimal effect of the malaria interventions which reduces the malaria burden and its aftermath

significantly (de Savigny and Binka 2004). Independently, the intensity of malaria transmission

might play a role in the trend of mortality, however, the effect is minimized when other factors are

put into consideration since its direct consequence which is the malaria infection is not significant.

Therefore, it could be difficult to capture the actual transmission-mortality association within these

settings (Greenwood et al. 1987; Ndugwa et al. 2008). However, there was a clear downwards

trend of the effect of transmission with age which may be an effect of the cumulative malaria

exposure (Doolan et al. 2009). It has been reported that high cumulative exposure reduces the risk

of infection especially in older children (Henning et al. 2004; Maire et al. 2006).
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A reduction on the protective efficacy of ITNs with age was indicated despite that the proportions

of ITN possession (utilization) were very similar for the three subgroups. This observation might

be associated with the acquisition on malaria immunity which is believed to increase with age or

behavioral change of older children (Bejon et al. 2009). It is expected that ITNs reduce the

exposure of an individual to mosquito hence reduce the chance for malaria transmission. Therefore,

at early stages of life ITNs are beneficial as might lead to less maternal malaria and protect

children with low (or no) immunity. With time the children build up the immunity and given that the

malaria infection is significantly low, the effect of ITNs on their death risks becomes redundant

which support the argument that other factors than malaria drives the mortality in these children

(Alba 2010). However, a three fold reduction of households with high malaria transmission had

been reported in this region in the area during that period (Rumisha et al. under review). Higher

incidence of malaria is expected in older children in areas with intermediate transmission (Snow et

al. 1997; Ross et al. 2006; Gardella et al. 2008). Monitoring of malaria incidence in young and older

children over a period of time is required to evaluate if the reduction cause a substantial malaria

risk to non-exposed individuals.

A significant drop in mortality was observed in the second and third year of the study period.

Factors related to improvement in the health services, access to care and food security could

explain the decline (Black et al. 2010; You et al. 2010). Our study also report less mortality for the

children from the least poor families. Poverty leads to poor access to care and more exposure to

diseases resulting into higher risk of death. Higher mortality risk presented for the households with

more members could be an interaction between the family size and the income which regulate

family expenditures (Lanjouw and Ravallion 1995; Mahfouz et al. 2009).

The spatial correlation was estimated at village level and the spatial range of more than 50kms was

obtained. Factors related to spatial differences in child mortality include bio-demographic factors

such as maternal age, place of birth and birth order (Kazembe et al. 2007; Sartorius et al. 2011).

These risk factors are not expected to differ much within the DSS area which demonstrates wide

dependency on occurrence of vital events. A significant amount of data could not be used for

analysis due to missing coordinates which could cause bias in the output of our final analysis

especially the linkage between malaria transmission and child mortality. However, bivariate models

fitted at each stage assessing the transmission-mortality relationship reported similar results.
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This study relates vital events to the closest measure of malaria exposure than previous

approaches (Smith et al. 2001; Gemperli 2003; Lim et al. 2011), however few limitations

accompanied the analysis. First, spatial effect was determined at the village level rather than

location based. This may result to poor capturing of individuals’ spatial variability and cause

uncertainty in estimation of model parameters including significance level. Secondly, due to lack of

cause-specific mortality data, we could not estimate the effect of transmission on direct malaria

mortality. Verbal autopsy are used to ascertain causes of death in the DSS (Chandramohan et al.

2005). The method had been criticized as it tends to magnify the burden of malaria infection due to

poor sensitivity and specificity in distinguishing fevers that caused by malaria and those which are

not, especially in regions where transmission intensity has been reduced (Deressa et al. 2007;

Dhingra et al. 2010; Mpimbaza et al. 2011). However, in endemic area malaria specific and all-

cause mortality are highly related (Adjuik et al. 2006; Ndugwa et al. 2008) hence using all-cause

mortality should be sufficient. However, this analysis will be performed in the next step of analysis

of MTIMBA data.

Our analysis used the most comprehensive entomological database which has been linked with vital

events to assess the site-specific relationship between malaria transmission and child mortality.

The relation depends on the levels of endemicity which varies considerably from site to site.  It is

therefore difficult to generalize conclusion drawn from these results as they are valid for areas

with comparable levels of transmission, coverage of intervention and control programs. However,

the INDEPTH-MTIMBA project collected data in several DSS in SSA (Kasasa et al. in preparation).

Our future works involve conducting multi-site comparison of the transmission-mortality

relationship using mortality data from all sites and assessment of other measures of transmission

than EIR. In the pooled analysis, child-specific cumulative exposure to malaria since birth which

differentiate the degree of protection against malaria among children, (Baird et al. 1991; Snow et

al. 1998b; Maire et al. 2006; Mayor et al. 2007; Ross et al. 2008; Doolan et al. 2009) will be

calculated and evaluated on how it modifies the relationship. The meta analysis involving all

MTIMBA sites should provide concrete evidence on the effect of interventions to the all- and

cause-specific- mortality. Efforts to obtain information on cause-specific mortality are ongoing in

most of the DSS sites.
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Appendix: Geostatistical model specification

Let ijtY be the death status of a child i ni ...3,2,1,  from a village j vj ...3,2,1,  at a calendar month 12,...,1t .

ijtY is assumed to follow a Bernoulli distribution with a probability ijp , i.e. )(~ ijijt pBeY where ijp is the probability of

death.  Let ),,( )3()2()1(
ijtijtijt
XXXijt X be a vector of covariates associated with ijtY which are age, ITN, and EIR,

respectively. We modeled the relationship between ijp and the covariates ijtX , the village-specific spatial jU and non-

spatial j , and month-specific temporal 1 2( , ,..., )t te e e  random effects using a logit link via the  equation

logit( ) T
ij j t jp U e    X β , where β is the vector of regression coefficients. Taking into account the measurement

error of the EIR during estimation of the coefficient, the EIR (on logarithmic scale) was sampled from a normal distribution i.e.
 (3) 2~ N ,

ijt x xX   where x and 2
x are the mean and standard deviation of posterior predictive distribution of EIR at

location i , ni ...3,2,1 (a child was followed depending on the location), respectively.

The Bayesian model formulation requires specification of prior distributions for all unknown parameters. For the regression
coefficients, β a non-informative normal prior is adopted, i.e.  3~ N 0,10β . The sU j ' , i.e.  1( ), ... ( )

T
vU v U vU are

assumed to derive from a multivariate normal distribution with a covariance matrix vxv , i.e. ),0(MVN~ vxvU which

defines the Gaussian spatial process. The  is a matrix with elements ij and quantify the covariance ),( ji UUCov

between pair of villages iv and jv respectively. We assumed an isotropic spatial process where the spatial correlation is

taken to be only a function of distance between the villages. An exponential correlation structure for the covariance matrix is
adopted, that is )exp(2  ijspij d where 2

sp is the spatial variance, ijd is the Euclidean distance between villages iv

and jv and  measuring the correlation decay and also known as the effective range ( 3 ) and estimates the distance

where the spatial correlation is less than 5%. The decay parameter  assumed to follows a gamma distribution. We modeled

the t via a stationary autoregressive process of order one, i.e. ))1/(,0(~ 22
1  TNormale and

2),,(~| 2
11,...1  teNormalee Tttt  where  is an autocorrelation parameter 1||  which adopts a bounded uniform

distribution,  1,1Unif~  and 2
T is the temporal error (Hay and Pettitt 2001). The j ’s are assumed to follow a normal

distribution with mean zero and a homoscedastic variance 2
e . Inverse gamma priors are adopted for the variance

parameters 2
sp , 2

T and 2
e . The geostatistical models were implemented in OpenBUGS and parameters were estimated

using the Gibbs sampler Markov Chain Monte Carlo (MCMC) algorithm (Gelfand and Smith 1990). Two parallel chains were

run with a burn-in of 10000 initial samples, and the models were run till convergence before summarizing the results for

statistical inferences.
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Abstract
The INDEPTH-MTIMBA project is among few initiatives aiming to study the association between

malaria transmission intensity and mortality in SSA. The project includes the largest spatio-temporal,

entomological database compiled across seven DSS sites for three years and linked to the routinely

monitored vital events within the DSS. Information on how heterogeneity of plasmodium inoculation

influences adult mortality is unclear. Potential interactions between human immunodeficiency virus (HIV)

and malaria infections may increase the risk of malaria attributed mortality in adults. This work assesses

the all-cause mortality-malaria transmission relationship in the population of the Rufiji DSS using data

from the MTIMBA project. Mortality data were extracted for the period of project (October 2001-

September 2004) and analyzed using Bayesian Bernoulli discrete time geostatistical models accounting

for temporal, village-specific spatial and non-spatial correlations while adjusting for age and ITNs

possession. The analyses were carried out separately for school-age children (5-14years), adults (15-

60years) and older individuals (>60years). Malaria mortality was measured using EIR which was

incorporated in models as a covariate with measurement error. Individual information were partitioned

and spatially linked to monthly transmission intensities. Using model estimates, age-specific excess

mortality was calculated and assessed how it varies at different levels of exposure. A total of 69,053

individuals (5-104years) were involved and 1,337 deaths were recorded during the study period. In

overall, men showed higher mortality as compared to women individuals, with exception of those

between 15-29years. Malaria transmission exposure increased the mortality risk for school-age

children by 23% (95% BCI: 6%-36%), however, this was not a case in adults. Despite this, excess

mortality for school-age children was not relatively higher than that observed in children 0-4yrs.

Results observed in this study suggest that preventive interventions need to be promoted more in the

school-age children, especially as malaria transmission has declined in formerly highly endemic areas.

Poor association between adult mortality and malaria exposure, reinforce the conclusion from other

studies that interaction between malaria and HIV does not contribute to an increase in mortality caused

by other immunity suppressing diseases. A reduction in mortality in people over 60years with increasing

malaria exposure may be explicable by selection effects. There is a need to examine data from other

regions to better understand the reproducibility of these results.

Keywords: malaria transmission, mortality, school-age, adults, Rufiji DSS, Tanzania
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6.1. Introduction

The MTIMBA project was initiated by the INDEPTH Network to evaluate the association

between mortality and intensity of malaria transmission (INDEPTH Network 2002). The project

includes the largest spatio-temporal and longitudinal entomological database compiled across

seven DSS sites in Africa (Kasasa et al. in preparation).  The MTIMBA database contains

biweekly entomological data collected at the household level for a period of three years and

linked to the routinely monitored vital events within the DSS. Most of the DSS are located in

malaria endemic areas where a number of malaria transmission and control programs are

successfully implemented (INDEPTH Network 2002; de Savigny and Binka 2004). In these

settings a relation between malaria-specific deaths and all-cause death is therefore expected

(Smith et al. 2004; Becher et al. 2008; Ndugwa et al. 2008). Weak health systems and poor

diagnosis of malaria contribute to a large number of deaths attributed to malaria (de Savigny et

al. 2004; WHO 2005; Deressa et al. 2007; Mboera et al. 2007). All-cause mortality has been

used to evaluate malaria control interventions (Molineaux and Gramiccia 1980; McElroy et al.

2001; Lengeler 2004; Rowe and Steketee 2007; Eisele et al. 2010), however the relation

between all-cause mortality and malaria transmission is not well understood (Snow and Marsh

1995b; Smith et al. 2001, 2004; Gemperli et al. 2006a; Lim et al. 2011). That knowledge is

essential to facilitate monitoring targets set by the RBM initiative and MDGs aiming to reduce

significantly the incidence and mortality of malaria by 2015 (RBM, WHO 1999; RBM:GMAP

2008).

The effect of malaria transmission intensity on morbidity and mortality has been well studied

and documented in children under fives (Alonso et al. 1991; D’Alessandro et al. 1995; Snow et

al. 1997; Ahmad et al. 2000; Abdulla et al. 2001; Aponte et al. 2009; Bejon et al. 2009). It is

postulated that intervening levels of transmission alter malaria-immunity acquisition and could

increase severe malaria infection and death especially at a later stage of a child life (Bradley

1991; Snow and Marsh 1995b, 2002; Beier et al. 1999; Bousema et al. 2010b). The cumulative

exposure to malaria occurring during childhood might affect the malaria-related mortality risk

during adulthood. HIV infection have been reported to increase frequency of clinical malaria,
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severe malaria cases (Whitworth et al. 2000; Patnaik et al. 2005) and treatment failures (Shah

et al. 2006; Martin-Blondel et al. 2007). However, some studies reported no evidence in such

interactions (Kalyesubula et al. 1997; Quigley et al. 2005). Potential interaction between

HIV/AIDS and malaria infections may increase the risk of mortality in adult population (Diallo

et al. 2004; Cohen et al. 2005; Lopez et al. 2006; Becher et al. 2008; Saleri et al. 2009).

Understanding the influence of plasmodium inoculation in adult mortality is important for long

time evaluation of malaria control interventions (Yamano and Jayne 2004; Hill et al. 2007;

Rajaratnam et al. 2010b). This study employed the MTIMBA-INDEPTH entomology and the

mortality databases from the RDSS to assess the relation between all-cause mortality in adult

(>5 years old) and malaria transmission measured by the EIR. The EIR parameters were

predicted at monthly intervals from a Bayesian geostatistical transmission model accounting

for seasonality, spatial and temporal correlations (Rumisha et al. under review, under reviewb).

The mortality analysis is conducted using Bayesian Bernoulli discrete time models with

temporal and spatial random effects, and adjusted for age and malaria control measures.

6.2. Methods

6.2.1. Study site and the data

The RDSS is located in Rufiji District, Tanzania about 178 kilometers south of Dar-es-Salaam

(7.47° - 8.03° south latitude and 38.62° - 39.17° east longitude). Total population under

surveillance is 85,000 individuals which is about 47% of the district total inhabitants (Mwageni

et al. 2002). The main economic activity in the region is farming. Most of the agricultural areas

are away from households, hence some families have temporary houses in farmland which are

used for up to four months of the year (Mwageni et al. 2002).

Mortality data are routinely collected at household level within the DSS. The MTIMBA data

collection activities were integrated within the DSS during Oct 2001- Sept 2004.  Individual

vital statistics were extracted for the period of the MTIMBA study. The initial follow up date

for individuals already registered under the DSS is at the onset of the MTIMBA project,

however, for those entered the DSS later (via birth or in-migration) their respective starting

dates were recorded. Exit dates due to out-migration, death or the last date of the MTIMBA
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study were also registered. All households were geo-referenced; therefore, a follow up time

of an individual was computed based on the residing location. This implies that, the time at risk

was re-initiated in case an individual migrated to a different location within the DSS. Time at

risk for each individual was partitioned according to calendar months and spatially linked to

the EIR parameter. Other information extracted including age, sex and ITNs possession at

household level. Information on net ownership was collected as part of the RDSS general asset

survey in October 2000 – January 2001 which is usually conducted in two years interval

(INDEPTH Network 2005). The overall ITNs coverage was about 20%. The outcome of

interest is the status of death (1 if death occurred during the study period and within the DSS

and 0 otherwise). Using the total time at risk obtained from all individuals and the death counts

at groups of interest, we computed mortality rates which were expressed per 1000 person

years (py).

6.2.2. Statistical analysis

The analysis was carried out separately for three age categories, school-age (5-14years),

adults (15-60) and older individuals (>60 years). We fitted Bayesian discrete time Bernoulli

survival geostatistical models accounting for temporal (at month level) and spatial (at village

level) correlations (Singer and Willett 1993; Diggle et al. 1998; Sartorius et al. 2011) (see

Appendix). Non spatial analyses were also performed for comparative purposes. All models

included exchangeable random effects at village level. The village-specific spatial random

effects were assumed to follow a Gaussian distribution with zero mean and a covariance matrix

with an isotropic exponential correlation function (Diggle et al. 1998) of distance between pairs

of villages. The temporal correlation was captured using monthly dependent random effects

modeled by an autoregressive process of first order. Following a Bayesian modeling

formulation, a vague normal prior distribution was adopted for covariates coefficients and non-

informative gamma distribution for the spatial parameters. The measurement error of predicted

EIR was incorporated during parameter estimation and mortality events were linked to EIR

with a one month-lag. Specifically, a natural logarithmic transformation of EIR estimates,

assumed to follow a normal distribution with a mean and variance defined by the parameters

from a posterior predictive distribution was employed (Rumisha et al. under review). The
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transformation was selected after conducting a detailed analysis assessing best way to relate

malaria transmission and mortality including non- linearity. All analyses were implemented in

OpenBUGS (Spiegelhalter et al. 1999). Details of the model formulation are provided in

Appendix.

6.3. Results

6.3.1. Descriptive statistics

A total of 69053 individuals (53.6% females) of age between 5 to 104 years were involved

in the study. By the end of the study a total of 1337 deaths were recorded. Thirty-six

percent among these were school-age children (5-14years). 53% were adults (15-

60years) and the remaining 11% were older individuals above sixty years. The older

adults (60+) contributed to almost 58% of all registered deaths. Other descriptions of the

data are provided in Table 6.1.

Table 6.1: Number of individuals (n) and death counts (D) by age, gender and status of ITN possession

Age
(yrs)

Female Males ITN(No) ITN(Yes) ITN(Own)

N (%) D (%) N (%) D (%) N (%) D (%) N (%) D (%) %

5-14 12533 (33.8) 34 (4.8) 12655 (39.5) 50 (7.9) 19996 (36.6) 70 (6.2) 5192 (35.9) 14 (6.5) 0.21
15-29 11268 (30.4) 83 (11.8) 9381 (29.3) 58 (9.1) 15946 (29.2) 113 (10.1) 4703 (32.5) 28 (13.0) 0.23
30-44 5413 (14.6) 101 (14.4) 4211 (13.1) 93 (14.7) 7401 (13.6) 151 (13.5) 2223 (15.4) 43 (20.0) 0.23
45-60 3649 (9.9) 68 (9.7) 2724 (8.5) 73 (11.5) 5092 (9.3) 110 (9.8) 1281 (8.8) 31 (14.4) 0.20
60-70 1716 (4.6) 105 (14.9) 1144 (3.6) 84 (13.2) 2406 (4.4) 166 (14.8) 454 (3.1) 23 (10.7) 0.16
71-90 2232 (6) 247 (35.1) 1759 (5.5) 237 (37.4) 3425 (6.3) 427 (38.1) 566 (3.9) 57 (26.5) 0.14
90+ 216 (0.6) 65 (9.2) 152 (0.5) 39 (6.2) 307 (0.6) 85 (7.6) 61 (0.4) 19 (8.8) 0.17

Total 37027 (100) 703 (100) 32026 (100) 634 (100) 54573 (100) 1122 (100) 14480 (100) 215 (100) 0.21

Overall, more deaths were observed in female than male individuals, exceptionally for

school-age children where the number of deaths were higher in males. About 59% of

deaths in the age of 15-29 years were attributed to females. Among all death recorded,

only 16% were from population reporting ownership of ITNs. However, the bivariate

analysis did not indicate any difference in the mortality rate among households claiming

ITN possession and those who do not, in any of the subgroups. Figure 6.1 depicts the
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age-specific rates mortality rates of females and males with error bars showing the 95%

CI, for the three-year period of the INDEPTH-MTIMBA project.
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Figure 6.1: Gender and age specific estimates of mortality rates in children and adult population, RDSS, Oct 2001- Sept 2004

For both genders, the mortality rates increased consistently with age. The mortality rate

lessened by approximately 90% from under fives to school age children. With an exception of

those between 15-29years, the data in Figure 6.1 suggest that the mortality in men is higher

compared to women (p-value<0.01, bivariate analysis). The higher mortality rates in male

individuals (contrary to the death counts) could also be attributed to the imbalance population

and total time of observation between male and female.
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6.3.2. Model based results

Table 6.1 reports hazard ratio estimates of age, ITN and malaria transmission, and the spatial

and temporal parameters obtained from the Bayesian geostatistical-temporal models fitted for

the three age categories.

Table 6.1: Model estimates from Bayesian discrete time Bernoulli survival geostatistical models on school age children, adults
and older individuals’ survival in the Rufiji DSS, Oct 2001-Sept 2004

Variable School-age (5-14years) Adults (15-60years) Older individuals (>60years)
HR (95% BCI) HR (95% BCI) HR (95% BCI)

Age 0.97 (0.91,1.04) 1.52 (1.39,1.65) 1.7 (1.6,1.81)
ITN possession 0.85 (0.5,1.46) 0.93 (0.74,1.16) 0.83 (0.67,1.03)
Log EIR 1.23 (1.06,1.36) 0.97 (0.86,1.10) 0.95 (0.85,1.04)

Other parameters
Spatial range (in km) 54.43 (14.29,81.94) 69.67 (24.81,82.87) 66.69 (24.3,82.59)
Spatial variance 0.33 (0.14,1.61) 0.33 (0.12,0.61) 0.23 (0.11,0.76)
Temporal variance 0.40 (0.16,1.34) 0.18 (0.09,0.41) 0.19 (0.09,0.45)
Non-spatial variance 0.26 (0.12,0.6) 0.15 (0.08,0.29) 0.13 (0.08,0.26)
Autocorrelation 0.97 (-0.74,0.99) 0.35 (-0.69,0.98) 0.87 (-0.61,0.99)

Age was positively associated with the mortality rate after the age of 15years (Adults:

HR=1.52, 95% BCI: 1.39,1.65; Older individuals: HR=1.7 , 95% BCI: 1.6,1.81). Malaria

transmission exposure increased the risk of dying for the school age children but had not

substantial effect after an individual reached an age of 15years. No significant change in all-

cause mortality rate as effect of ITNs was observed in any age category (p-value>0.05). The

spatial range was highly significant suggesting that the spatial correlation existed up to a

distance of 54kms. Spatial variability accounted for the 33%, 50.0% and 41.8% of the total data

variability in the school age children, adults and older individuals, respectively. This was

followed by temporal variability which was higher in school age data (40.4%) than in the adults

(28.7%) or older individuals (34.5%).
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6.3.3. Effect of EIR on mortality from birth to adulthood
In Figure 6.2 the HR of EIR on all-cause mortality estimated for different age categories are

shown. Looking at the HR as the relative risk, decreasing pattern of risk was observed until

the time a child reaches five years, and then a sharp peak was detected for school-age

children.
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Figure 6.2: Estimates of HR of EIR on mortality (with 95% BCI) from a geostatistical model for different age categories. The under
five years were added to allow clear presentation of the trend



Chapter 6: Malaria transmission and mortality in older children and adults 120

6.3.4. Excess mortality attributed to malaria transmission

Using model coefficients, midpoint for each age category, ITN possession and EIR (infectious

bites/month), probabilities of death, prob were computed from the regression function over a

range of EIR between 0.1 and 600 (with an interval of 0.1). The probabilities were converted

to rate using a function tprobrate /))1ln((  where 1t month. A Taylor series

approximation was used to obtain probability at zero level of transmission. Excess mortality

rate was then calculated as the difference between rate at any value of EIR and at zero, i.e.

)0()0(  EIRrateEIRraterateex and expressed per 1000py. In Figure 6.3, age-specific

excess mortality, exrate are plotted against the EIR (note the difference in y-axis scale).
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Figure 6.3: Age-specific patterns of excess mortality by transmission intensity

In children under five years of age, excess mortality shows a clear increase with malaria

exposure. The highest rate is observed in neonates. School-age children demonstrate higher

excess mortality than children 1-4 yrs. A protective effect is observed in older individuals and

young adults showed a very low excess mortality as a consequence of transmission.
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6.4. Discussion

This study linked the MTIMBA-INDEPTH and the mortality databases from Rufiji DSS to

estimate the relationship between all cause mortality and malaria exposure. The analyses were

implemented within the Bayesian framework, accounting for village clustering and variation

between months, using as exposure measure, the EIR, predicted at the household level from a

high resolution spatio-temporal model. Deaths and EIR were linked by month to allow for

temporal variability in the malaria exposure during the whole study period. The prediction

error of the EIR estimates was taken into account by modeling it as a covariate with

measurement error. The analyses were conducted separately for school-age children, adults

and older individuals. The overall age-trends in mortality were similar to those observed in

other studies including Tanzania (Adjuik et al. 2006; Abdullah et al. 2007; TDHS 2010) and

Zambia (Jamison et al. 2006). The mortality rate was higher in men than in women except in

the 15-29 years age group.

During the study period the prevalence of malaria in the Rufiji DSS ranged between 20-35%

and showed only small inter-annual fluctuations (Source: Rufiji Burden of Disease Profile,

1999; Tanzania Coastal District Health Profile, 2007); (Somi et al. 2008).  In such settings,

natural immunity to severe malaria is acquired early in life (Marsh and Snow 1999; Rogier

2000; Makani et al. 2003) in response to frequent exposure to the parasite (Jamison et al.

2006). In accordance with this, in younger children the mortality risk associated with a given

EIR of inoculation of plasmodium exposure on child mortality reduced with age (i.e. unit

increase in log EIR increased mortality risk by 15%, 13% and 4% for the neonates, infants and

children between 1-4years, respectively) (Rumisha et al. in preparation). At high levels of

malaria exposure there is effective clinical immunity in older children, with a consequent

reduction in the effect of EIR on mortality (Abdullah et al. 2007), and field trials of ITNs have

found protection in only the youngest children (Binka et al. 1998; Eisele et al. 2005).

However, at the time of the study, Rufiji had much lower transmission than that experienced in

either the Kisumu or Navrongo ITN trials, and so a different age-distribution as a consequence

of lower exposure is plausible (Snow et al. 1997, 1998b).
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In contrast to very small effect of EIR in children aged 1-4 years, we found associations

between transmission exposure and mortality in children aged 5 to 14 years. In the school-age

children a unit increase in log EIR was estimated to increase mortality risk by 23% (95% CI:

6%-36%)(Figure 6.2). This effect on mortality translates into a relatively small excess

mortality rate (Figure 6.3), because the baseline mortality rate that is being multiplied is

relatively low. However, unlike the ITN trials, the present study was not randomized, and it

will be important both to see whether this result is reproduced in other sites, and to analyse

malaria incidence in the whole age range from 1 month to 15 years over time to assess

whether this shows patterns consistent with those in mortality (Mbogo et al. 1993; Jamison et

al. 2006; Rowe and Steketee 2007; Carneiro et al. 2010).

Age dependence in human behaviour could explain why school age, rather than pre-school

children seem to be more vulnerable to malaria exposure. Most malaria prevention campaigns

(in particular, ITN promotion (Alaii et al. 2003)) have stressed the need to protect children

under five and mothers.  In children under 5, household ownership of ITNs appeared to be

protective, but not in older ones, but ownership does not indicate the quality of the mosquito

net and does not translate directly to consistent use (De La Cruz et al. 2006). Variations in net

usage could easily bias the estimated EIR-mortality relationship, because it is likely that young

children more often sleep under ITNs when mosquito densities are high. Protection measures

are often relaxed as the child grows or when a new born arrives in the family (Alaii et al.

2003; Bejon et al. 2009; Eisele et al. 2010) and older children are more likely to stay out at

late hours, increasing their exposure to infected mosquitoes and making net ownership

irrelevant in this age group.

About twenty percent of the population possessed nets at the time of the project, but this has

already increased. With massive distribution of ITNs and LLITNs ongoing in most SSA

countries (WHO 2010b), higher levels of effect are expected in the future (Hawley et al. 2003;

Killeen and Smith 2007), and this may accentuate any shift of mortality to school-age children,

making it important both to stress the need for this age group to use nets, and to monitor

changes in mortality patterns by age. Moreover, use of ITNs in this age group is in any case
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important as they probably contribute a significant proportion of the parasite reservoir

transmitting to mosquitoes (Killeen et al. 2007a; Atieli et al. 2011).

In contrast to the evidence we found for malaria attributable mortality in school-age children,

we found no evidence of malaria mortality in adults, despite evidence that malaria and AIDS

interact (Herrero et al. 2007), and the high prevalence of HIV, which alongside TB and

maternal mortality remains a major cause of adult mortality in rural East African sites like

Rufiji (Parise et al. 1998; Shulman 1999; Verhoeff et al. 1999; Francesconi et al. 2001). In the

RDSS, HIV/AIDS prevalence ranges between 5-10% and contributed to about 17% of the total

burden of the disease (Source: Tanzania Coastal District Health Profile, 2007; Global Fund

Evaluation Report, 2009) increasing from 14% in 1999. Our results support other studies

suggesting that the HIV-malaria interaction does not contribute substantially to increased

mortality (Quigley et al. 2005; Van Geertruyden et al. 2006).

In the oldest age group, higher malaria exposure was linked to lower mortality. This result

lends itself to interpretation as “selection effect”, whereby individuals living at high exposure

who are vulnerable to the disease because of genetic traits, die early, leaving only a selected

group of resilient survivors in areas of high exposure (Jamison et al. 2006). This cannot be

discounted as an explanation for age-dependence in malaria mortality since there is genetic

variation (for instance in globin genes) with substantial effects on susceptibility to malaria

mortality. However, it is not clear that this effect is reproducible, nor that individual-level

exposures are consistent over long periods. Internal movement is common, especially of

adults, who include people working in activities such as farming and fishing that can involve

substantial mobility, and this needs to be considered in estimating long-term exposures.

Nevertheless, selection effects on human mortality need carefully attention by assessing

mortality across the whole age-range in other similar datasets.

In conclusion, this study found a strong association between malaria transmission and all-

cause mortality in school-age children, suggesting that preventive interventions need to be

promoted more strongly in this age group, especially as malaria transmission has declined in

many formerly highly endemic areas. Adult mortality could not be attributed to malaria
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exposure, reinforcing the conclusion from other studies that the interaction of malaria and HIV

does not contribute to an increase in mortality caused by other immunity suppressing diseases.

A reduction in mortality in people over the age of 60 with increasing malaria exposure may be

explicable by selection effects. This supports the need to examine data from more sites to

better understand the reproducibility of these results.
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Appendix: Geostatistical model specification

Let ijtY be the death status of an individual i ni ...3,2,1,  residing at a location k nk ...3,2,1,  in a village j vj ...3,2,1,  at a

calendar month 12,...,1t ( i and k can be used interchangeably as individuals are monitored location based). ijtY follow a Bernoulli

distribution with a probability ijp , i.e. )(~ ijijt pBeY where ijp is the probability of death.  Let ),,( )3()2()1(
ijtijtijt
XXXijt X denote a

vector of covariates associated with ijtY which are age, ITN or EIR, respectively. Let jU and j be village-specific spatial and non-

spatial random effects, respectively, and 1 2( , ,..., )t te e e  introduce a month-specific temporal random effect. Using a binary logistic

regression equation logit( ) T
ij j t jp U e    X β we can model the relationship between ijp , the covariates and the remaining

parameters, where β is the vector of regression coefficients. Taking into account the prediction error of the EIR estimates, EIR is modeled

as a covariate with measurement error. Specifically, logarithmic transformed EIR k value predicted at a location k are sampled from a

normal distribution i.e.  (3) 2~ N ,
ijt x xX   where x and 2

x are the mean and standard deviation of posterior predictive distribution of

EIR at location i , ni ...3,2,1 , respectively.

Following a Bayesian model formulation (Diggle et al. 1998), vague normal prior distribution was adopted for the regression coefficients,
β , i.e.  3~ N 0,10β . The sU j ' , i.e.  1( ), ... ( )

T
vU v U vU are assumed to follow a zero-mean multivariate normal distribution

with a covariance matrix vxv , i.e. ),0(MVN~ vxvU which defines the Gaussian spatial process. The  is a matrix with elements

ij and quantify the covariance ),( ji UUCov between pair of villages iv and jv respectively. The spatial correlation is taken to be a

function of distance and modeled with an exponential correlation structure for the covariance matrix, that is
)exp(2  ijspij d where 2

sp is the spatial variance and ijd is the distance between villages iv and jv .  is a correlation

decay parameter also known as the effective range ( 3 ) and used to estimate the distance where the spatial correlation is less than 5%

and was assumed to follows a gamma distribution. The temporal effect, t is modeled via a stationary autoregressive process of first
order, i.e. ))1/(,0(~ 22

1  TNormale and 2),,(~| 2
11,...1  teNormalee Tttt  where  is an autocorrelation parameter

1||  which adopts a bounded uniform distribution,  1,1~ Unif and 2
T is the temporal error (Hay and Pettitt 2001). The j ’s

are assumed to follow a normal distribution with mean zero and a constant variance 2
e . Inverse gamma priors are adopted for all

variance parameters 2
sp , 2

T and 2
e . Models were implemented in OpenBUGS and parameters were estimated using the Gibbs

sampler Markov Chain Monte Carlo (MCMC) algorithm (Gelfand and Smith 1990). Two parallel chains were run with a burn-in of 10000

initial samples, and the models were run until convergence before results were summarized for inferences.
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7.1. A preamble

Wide spread implementation of malaria intervention and control strategies has reduced

transmission intensities in much of SSA (Flaxman et al. 2010; WHO 2010b). More funding is

being directed in development of new diagnostic tools, vaccines and preventive initiatives,

which provide hope for achieving malaria elimination and eradication in the future (Source:

www.theglobalfund.org: The Global Fund to Fight AIDS, Tuberculosis and Malaria),

(WHO/UNICEF/PATH 2010; PMI 2011). However, global health statistics still show high

burdens of malaria related morbidity and mortality in children and pregnant mothers (Hogan et

al. 2010; WHO 2010a, 2010b). Various studies have collected data on malaria incidence,

prevalence, transmission, interventions successes and trends of mortality, at national, regional

or global scale aiming to track progress of targets set by RBM, WHO or MDG (Lengeler et al.

1998; Kobbe et al. 2007; Kleinschmidt et al. 2009b; Rajaratnam et al. 2010a). Specifically,

efforts are done to understand the effect of control interventions in morbidity and mortality in

children and adults (Lal et al. 2010; Atieli et al. 2011; Lim et al. 2011) and consequences of

altering malaria transmission in child survival (D’Alessandro et al. 1995; Lengeler et al. 1995;

Habluetzel et al. 1997; Smith et al. 2001; Schellenberg et al. 2001b; Fegan et al. 2007; Hamel

et al. 2011). However, varying results and conclusion had been reported, resulting to lack of

precise evidence on the nature of important public health parameters such as mortality-

transmission relationship, correct burden of disease attributed to malaria, and significant risk

factors. Aspects related to that include i) lack of adequate systems for registration of vital

events, specifically statistics on causes of death, ii) weak and non-functional health systems in

most of the developing countries and iii) inadequate statistical methodologies to accurate

analyze available data and provide valid estimates (Sankoh and Binka 2005b). The poor

understanding left open the key question of, “how do we correctly assess if we are on track and sustain

the progress that had been achieved if it is so difficult to collect and manage comprehensive data that can provide

such evidence?” This work discusses approaches to address specific statistical issues relevant to

provide insights on a major public health concern on malaria transmission and its relation to

mortality.
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7.2. Justification for the research and goals

For the past twenty years, a number of developing countries established DSS to fill the

information gaps, monitor population health and create a platform for generating fundamental

information that would allow evidence-based decisions and effective policies in states with

weak information systems (INDEPTH Network 2002, 2005; Sankoh and Binka 2005b). Within a

DSS, rigorous monitoring of large population cohorts is done which gives opportunities to

study a number of indicators and to understand small scale population dynamics (de Savigny

and Binka 2004). Exploiting the existence of the DSS, MTIMBA initiative was established with

the specific aim of compiling a standardized and comprehensive entomological database that

will allow accurate and precise estimation of the malaria transmission-mortality relationship

accounting for the effect of interventions and socio-demographic factors across multiple sites

in Africa (INDEPTH Network 2002). The design, amount of data and regions involved made

MTIMBA the richest entomological database ever compiled in the history of malaria research

with high spatial-temporal resolutions and excellent basis for studying seasonal patterns of

transmission in relation to mortality.

MTIMBA data are typical geostatistical data and require specific methodologies for accurate

analysis. However, such methodologies are either not readily available or do not incorporate

some data characteristics hindering direct application. A major statistical challenge in

geostatistical modeling is estimation of the spatial processes when a number of surveyed

locations is large. To overcome computation difficulties, recent developments focus on

approximating the spatial process using a subset of survey locations (Banerjee et al. 2008;

Finley et al. 2009). These strategies have been applied mainly for data with Gaussian

characteristics observed over a grid, which is contrary to characteristic of many field data.

There is a growing and continuing rate of acquisition of large and complex geostatistical data

from DSS sites, regional and national representative surveys such as MIS, DHS (UNICEF/MICS

1995; RBM, WHO 2005) and other compiled databases such as MARA, MAP project (Guerra et

al. 2007). Therefore new development, extension of existing strategies and formulation of

rigorous statistical methods are required to allow wider application, to ensure efficient analysis

and reliable inferences and precise prediction.
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In this thesis a portion of the MTIMBA database extracted from the Rufiji DSS was employed

to i) develop Bayesian geostatistical models to analyze very large and sparse geostatistical and

temporal non-Gaussian data with seasonal patterns and (ii) apply the models to (a) estimate

space-time heterogeneity in malaria transmission (b) assess mortality peaks between different

stages of infancy age while adjusting for seasonality and (c) determine the relation between

transmission intensity and risk of mortality in children and adult population after taking into

account control interventions. The mortality events were not observed at similar locations as

the mosquito data, hence, models developed were employed to predict malaria exposure

(measured by EIR) at each household within the study area at monthly intervals at 250m by

250m spatial resolution. For the first time mortality events are linked with estimates of

transmission intensity based on rigorous geostatistical analysis via models fitted on large

spatial-temporal data. The uncertainty of the EIR predictions was incorporated while relating

transmission with mortality.

The statistical methodologies and public health components discussed in this work provide

opportunity for prompt and accurate analysis, disease mapping, identification and quantification

of effect of potential risk factors, which are key elements for planning, implementation, and

evaluation of control strategies but also for public health surveillance. Results of this work

contributed to a better understanding on the consequences of altering malaria transmission in

mortality of children and adults, and establish foundations for future research including

estimation of burden of disease accounted for by the malaria transmission.

7.3. Structure

The work is split into five chapters. The first two focused on development of statistical model

while addressing epidemiological questions (published in Acta Tropica and submitted to Spatial

and Spatio-temporal Epidemiology, respectively); the third chapter applied the developed model to

analyze and predict malaria transmission intensities over the study area and produce smooth

seasonal maps of EIR (submitted to Global Health Action); the last two chapters utilized the

predicted EIR to assess mortality-transmission relationship in children and adults (submitted to

Malaria Journal and Parasites and Vectors, respectively). Detail discussions of the results from each

chapter are provided within specific sections. This section provides a general discussion

scrutinizing main findings, limitations, opportunities for future research and recommendations.
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7.4. Statistical contribution

This thesis extended models for large geostatistical Gaussian data to large spatio-temporal

non-Gaussian data while accounting for seasonality and zero-inflation (Chapters 2, 3 and 4).

Strategies to analyze large geostatistical data, in particularly, approximation of the spatial

processes had been discussed in detail for Gaussian outcomes (Banerjee et al. 2003; Finley et

al. 2009). Zero-inflated (analogues of standard approaches) models are well developed and

widely applied for count and binomial data (Lambert 1992; Welsh et al. 1996; Filipe et al.

2005). In addition, few applications of zero-inflated models formulated in Bayesian framework

have been documented (Agarwal et al. 2002; Rathbun and Fei 2006; Ver Hoef and Jansen

2007; Vounatsou et al. 2009). However, none of the mentioned attempts discussed application

in very large geostatistical data with seasonality and temporal effects. A significant proportion

of field survey data are large, non-Gaussian, with complex characteristics, hence methods

described in this thesis would be useful not only in entomological research but also in other

fields generating data with similar characteristics. Introduction of techniques to approximate

spatial processes for large data has created vast opportunities to handle several field data.

Among available Bayesian algorithms which conduct Gaussian spatial process approximation

and mapping include BayesX (Brezger et al. 2005) and spBayes (Finley et al. 2007) packages

which are freely available and implemented in R software (www.r-project.org). However,

these algorithms are limited to spatial analysis and do not allow accounting for temporal

correlation and/or zero-inflation, which hindered direct application in the MTIMBA data.

Specific modifications involving program writing are usually required to incorporate specific

data characteristics to such statistical packages.

The spatial-temporal models with seasonality and temporal effects were applied to analyze

MTIMBA entomological data and produce smooth temporal and seasonal maps of EIR in the

Rufiji DSS (Chapters 3 and 4). The spatial process was approximated from a subset of location

selected (in Chapter 3) using balance sampling algorithm, the cube method, (Deville and Tillé

2004; Chauvet and Tillé 2006). The algorithm was selected over other strategies as it allows

stratification, unequal inclusion probability, balancing for more than one covariate and easy

practical application. Stratification was introduced by splitting the region into a finite number
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of tiles then the inclusion probabilities for location within tiles were computed while preserving

the spatial configuration and outcome heterogeneity (see details in Chapter 3). Multiple

subsets with different size were generated, and the criterion for best set was based on a

distance measure comparing the variogram analysis of the full data and the samples (i.e.

spatial parameters). The sampling exercise was performed separate for An. funestus and An.

gambiae data and differences in efficiency of samples selected were observed. The number of

zero observations differed between the two species with An. funestus having the highest

proportion. In An. gambiae efficient samples was observed even at small subset size (include

<25% of the full data) in contrary to An. funestus (Figure 3.3) suggesting influence of

overdispersion in obtaining a “good” subset for approximation. Selection of balance sample

from a dispersed data is challenging (Li et al. 2007) and deserves further research especially

for geostatistic data. However, the procedure described in Chaper 3 can serve as a starting

point. Other balance sampling algorithms include those described by Yates (1949) and Neyman

(1934). However, most of these older methods are limited to equal probability sampling and

allow only one balancing variable (Tillé 2006).

A rigorous approach of modeling EIR data is presented in Chapter 4. This is a substantial

contribution, particularly in statistical analysis of entomological data. Classical approaches

treat EIR data as a continuous outcome, performing logarithmic transformation to meet

normality assumptions so linear regressions models can be applied (Shililu et al. 2003; Prakash

et al. 2005; Githeko et al. 2006; Gemperli et al. 2006b; Kelly-Hope and McKenzie 2009). The

main concern is the difficulty to obtain normality for sparse and zero-inflated data.

Furthermore, EIR data is a product of sporozoite rate (binomial) and mosquito density (count)

data of which each merit separate analysis. A step-by-step and easy-to-follow model

description in Chapter 4 includes approximation of the spatial process, selection of covariates,

model validation and calculation of EIR. Model-based estimates can significantly reduce the

uncertainties of parameter estimation and improve model predictive ability.
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7.5. Epidemiological contribution

Spatial mapping of disease risk is a useful tool for guiding control interventions, resource

allocation and monitoring. Risk factors identification and ‘hot spots’ which requires more

attention are additional gain from the application of mapping technologies. Using the

transmission model and the environmental-transmission relation, high resolution maps

(monthly and annual) for EIR were generated (Chapter 4) for the Rufiji DSS. The maps were

plausible regarding the actual situation in the area which justified internal validity of the model

estimates. A potential strength on these maps is that they account for small scale and species-

specific spatial-temporal variation of malaria transmission within the RDSS area. Unique

locations surveyed for this entomological work were 2479 which cover an area of 1813 km2

and are widely distributed (Figure 4.4). Considering the size of the RDSS, these locations are

relatively large than those used in national or regional malaria transmission mapping work such

as in West and Central Africa (Gemperli et al. 2006a), Mali (Gemperli et al. 2006b), globally

(Hay et al. 2009) and Kenya (Omumbo et al. 1998). Transmission maps based on climate

suitability (Craig et al. 1999; Rogers et al. 2002; Tanser et al. 2003) and biological models

(Martens et al. 1995) are generally good to establish link between climate and malaria

transmission, however, temporal variations of key predictors (Gething et al. 2011) and

practical validation are not always done.

Availability of remote sensing data at very high spatial and temporal resolution has resulted in

development of accurate climate suitability models allowing efficient estimation of the

outcome-exposure relationship, which is essential for prediction of health outcomes and

forecasting of (malaria) epidemics, even in hard-to-reach areas. Efforts to ensure quality of

public health research data, such as vital events within populations, should be complimented

with routine monitoring of ecological risk factors. In this thesis environment data were

obtained from MODIS and ADDS (now FEWS NET) databases. Other databases with refined

and higher resolutions environment and climate data include the European Space

Administration collected by Envisat satellite, National Aeronautics and Space Administration

via the Aqua satellite, and Advanced Very High Resolution Radiometer. Utilization of most

accurate outcome predictors can improve model efficiency significantly.
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The relationship between malaria transmission and all-cause mortality in children and adults

was assessed in this thesis (Chapters 5 and 6). This is not the first attempt to study this

relation. Initial works include those by Smith et al (2001) and Snow and Marsh (2002) who

conducted reviews to assess the transmission-mortality relation. Gemperli (2003) employed

the MARA and DHS databases to study this link by fitting models adjusted for environmental

and socio-demographic predictors. In specified approaches, ITNs randomized controlled trials

had been designed to assess effect of net use on mortality rates in Ghana (Binka et al. 1998),

Tanzania (Schellenberg et al. 2001a) and Kenya (Hawley et al. 2003; Fegan et al. 2007).

Recently, Lim and colleagues conducted a multi-country analysis and observed a 23%

reduction on child mortality attributed to ITN ownership (Lim et al. 2011). However,

contradictory results have been reported (Lengeler 2004; Smith et al. 2004; Mathanga et al.

2005; Lim et al. 2011) making it difficult to draw a general conclusion concerning the pattern

of the relationship. A major limitation in many of those efforts was inadequacy of the data,

explicitly the small number of survey involved in some analyses and bias of study designs.

Employing the MTIMBA database to determine the amount of mortality attributed to malaria

transmission (adjusting for the uncertainty) might lead to robust and more informative

estimates which allow generalization.

The age-specific trend of mortality-malaria transmission linkage obtained from this work is a

potential step in clarifying and understanding of this relation. Similarity in the direction of our

findings with those obtained in randomized trials, systematic analyses and quantitative models

highlight areas which are well described and those that need further research to accurately

establish the impact of malaria interventions (e.g. emphasize in school-age children). We

accentuate the importance of evaluating how individual’s history of exposure and malaria

immunity modifies the impact of transmission and assessing if incidence-transmission relation

agrees with that of mortality. However, this requires compilation of long term retrospective

data from medical records. Strong association between malaria transmission and all-cause

mortality in school-age children and decreasing risk in adults suggest consequences of malaria

immunity. More research on duration of immune memory and timing of stabilization to the level

that avert severe case is necessary (Filipe et al. 2007). However, examination of data from

other sites is needed to evaluate reproducibility of these results.
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A consistent non-significant protective effect of ITNs on mortality was detected in all ages

with a slightly higher efficacy in very young children. Net ownership might not be the best

proxy for net utilization, and the net-effect might be confounded by other factors such as

socio-economic status. During the time of MTIMBA project, there was no program distributing

nets free of charge in Rufiji district, hence net ownership was related to household’s income

and wealth (Mwageni et al. 2002). The poorest families therefore benefited less with net

protection (poorest/least-poor overall mortality ratio = 1.49). (Table 7.1).

Table 7.1: ITN ownership (%) by age in the Rufiji DSS, Oct 2001- Sept 2004

Age category (years)
Socio Economic Status 0-4 5-14 15-60 60+
Poorest 0 0.4 0.3 0.2
Very poor 3.3 4.7 4.0 4.8
Poor 23.8 19.6 17.7 22.2
Less poor 28.9 29.6 28.2 35.9
Least poor 44.0 45.7 49.8 36.9

The interaction between SES and the ITNs possession justified the exclusion of SES in our

mortality analysis. In doing so, power of the model was increased allowing optimal estimation

of the effect size of the malaria transmission and reduces masking (Walker 1996). It remains to

be established whether SES is on a causal pathway between transmission and mortality (Agha

et al. 2007; Rowe et al. 2007; Bernard et al. 2009). We aim to address this issue in the second

stage of analysis of MTIMBA data thorough SES quintile stratification analyses.
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7.6. Limitations and challenges

While addressing MTIMBA objectives several challenges and bottlenecks which limit the

performance of analysis were encountered. This section discussed some of these issues,

underlined potential gaps and provides insights on possible considerations for future works.

7.6.1 Awareness and capacity in statistical data analysis

Timing between data acquisition, processing and feedback communication is an important

aspects of research. Substantial intervals between these steps affect evidence-based decision,

resource allocation and value of data. Availability of reliable data collection tools resulted

acquiring and archiving of enormous surveys data in many (health) institutes. Despite the

efforts invested to data collection, minimal priority is given to data analysis hence delayed

optimal and quality gain of information which was the case for the MTIMBA database. The

hindrances could be in the context of administrative and methodological constraints. However,

most research work ignore involvement of statistical expertise hence the data are rarely gets

into the hands of those who are capable to understand statistical issues involved to realize a

need for detailed analysis. Without discounting substantial work done in previous analyses

utilizing RDSS MTIMBA database (Abdullah et al. 2007; Kigadye et al. 2010, 2011), to date, no

rigorous model-driven methods were used to address the key objective of the MTIMBA

project. These underline a substantial shortage of human resources in biostatistics in many

institutes in developing countries and emphasize a need for statistical capacity building through

training and mentorship.
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7.6.2 Epidemiological

i) Mortality trends: interventions, treatment efficacy or correct diagnosis

Marked reduction in malaria burden and mortality has been reported recently and is associated with

widespread distribution of LLINs/ITNs and introduction of efficient anti-malarial drug such as

artemisinin-based combination therapy (Flaxman et al. 2010). Accuracy in malaria diagnosis

following use of rapid diagnostic tests (RDT) improved effective treatment of malaria patients in

several regions in Africa and reduced unnecessary deaths attributed to false negatives (Hopkins et

al. 2007; Msellem et al. 2009; WHO 2009; Lemma et al. 2010; D’Acremont et al. 2011). However, it

is difficult to separate the effect of interventions, treatment and diagnosis on mortality trends.

Clear understanding on the attributes of mortality will allow better resource investments and design

effective interventions. The possibility that effects of control interventions have saturated in some

regions should not be ignored and must be clarified to justify continuing implementation of specific

interventions. Populations within DSSs are provided with optimal environment to access

successfully a number of interventions implemented. In those settings it might be feasible to

establish a distinction in mortality attributed to specific strategies. However, in a general

population such assessments are far more difficult and not straightforward. Several countries in

SSA including Tanzania are in the process of scaling up the use RDTs in peripheral health facilities

(RBM 2009; Ishengoma et al. 2011) and wide distribution of LLINs is ongoing (WHO 2010b). These

efforts should be accompanied by health system strengthening to allow thorough monitoring and

evaluation of impact and consequences of interventions.

ii) Intervention and socio-demographic data in the MTIMBA database

The MTIMBA project was designed to collect comprehensive entomological data. However, the

initiative overlooked routine acquisition of data on control interventions such as ITNs or IRS and

information on SES at the time of the project. Integrating this information with scheduled

entomological/vital registration collection rounds would allow precise estimation of their impact.

During analysis of the MTIMBA-RDSS data, SES and ITN data were taken from household's asset

survey which is conducted every two years (Mwageni et al. 2002). This source does not include all

MTIMBA survey locations resulting to a considerable waste of data due to spatial misalignment.

More critical, we assumed similar state of ITN possession and SES for the entire study period

which may well not be the case and could affect model results.
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iii) Malaria-specific mortality and transmission

A major concern in management of DSS mortality information is ascertaining causes of death.

This is done using verbal autopsy which involves trained clinicians or computer-based

algorithms (Setel et al. 2006; Lozano et al. 2011a; Riley 2011). Considering the amount of data

generated in surveillance sites and time required to perform coding, this information is not

always updated. Verbal autopsies are reported to be sensitive but unreliable in identifying

malaria deaths (Snow et al. 1992; Dhingra et al. 2010). In malaria endemic regions, where

accurate diagnosis is not practical, febrile illnesses are easily coded to malaria once no other

etiology is confirmed (Abdullah et al. 2007). Additionally, malaria confounds other infections

such as respiratory infections and deaths, specifically in children (Giglioli 1972; Molineaux

1985; Müller et al. 2003; Ramroth et al. 2009) contributing to over estimation of deaths

attributed to malaria. Hospital-based death statistics could be used to relate malaria specific

mortality and transmission intensity, however, they account for a small portion of the whole

picture as many children deaths occurred outside health facilities (Rowe et al. 2007). The true

incidence of malaria deaths lies between those reported in health facilities and community

based deaths which in most developing countries are only available in DSS. Mechanisms to

integrate such data sources are highly needed. In this thesis all-cause mortality were used to

attribute the effect of malaria transmission on mortality in the population of Rufiji DSS.

However, in endemic areas malaria-specific mortality rates are highly associated with all-

cause mortality rate (Ndugwa et al. 2008) which justifies our approach.

7.6.3 Statistical

i) Lag analysis for environment and climate variables

The term “lag analysis” referred to a process of summarizing covariates to specific periods

prior to survey dates, link the summarized data to the outcome of interest and assess which

time interval explains the data better. In some instances the outcome variable has to be

summarized to accord with the time series of the predictors. MTIMBA data were collected bi-

weekly while the climate data were obtained in continuous scale at different temporal and

spatial resolutions. A compromise aggregation time series was on monthly scale. Monthly data

aggregation assumes similar temporal points between locations surveyed at the beginning of
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the months and those visited towards the end. Collapsing of data might mask variation in the

data lead to biased parameter estimates. Additionally, depending on the predictors-outcome

relationship (e.g. temperature conditions and mosquito development), long temporal lags could

result into a significant difference (Pampana 1969; Bradley 1987). Considering a wide

application of remote sensing data, algorithms which calculate environmental/climatic time lags

taking into account temporal and spatial variability should be considered.

Applications in this thesis observed variability in environmental lags () between species with

long-term lags obtained in some cases (e.g. three months prior the collection). Apparent long-

term effects of climate/environment on entomological parameters, might be influenced by

similarity in climatic condition over time, however, might suggest existence of older

mosquitoes and longevity. Analyses determine parity or age of mosquitoes would clarify this.

ii) Variable selection and modeling non-linearity

The choice of optimal and parsimonious models is a critical concern in statistical research and

mainly involves selecting a set of covariates which explains the observed data best. For

prediction models, choice of covariates is more sensitive to reduce prediction uncertainty and

allow generalizability (Craig et al. 2007). In our analyses, selection of environmental and

climatic variables was done by fitting non-spatial models using different combinations of

variables (Gosoniu et al. 2006; Kristan et al. 2008; Riedel et al. 2010). The best set was

discussed with local experts and supported by literature. Although these approaches are well

justified, they do not optimize the choice of covariates as they ignore spatial and temporal

dependence in the data. In a Bayesian framework, variable selection is done by obtaining the

posterior probability of models derived from all possible combination of predictors. The

approach gives an opportunity to assess all possible models and minimize arbitrary choice of

covariates. Examples of MCMC based methods for variable selection include the stochastic

search variable selection (George and McCulloch 1993) and Gibbs variable selection

(Dellaportas et al. 2000, 2002). Most of these strategies can be formulated and implemented in

BUGS software but are highly computationally intensive for large dataset (involving

simultaneous estimation of spatial parameters) and when many (correlated) predictors are

involved. The computations expense limits applications of Bayesian variable selection,
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especially in disease mapping (Craig et al. 2007; Giardina et al. 2011; Gosoniu and Vounatsou

2011; Schur et al. 2011b). In practice, non-spatial selection can be used as an explorative step

to identify candidate predictors for the Bayesian selection. Bootstrap simulation methods in

combination with step-wise variable selection are also efficiently used to reduce the set of

covariates (Harrell 2001; Austin and Tu 2004; Babyak 2004). Consideration of these less

computational applications will improve model selection, convergence and computational

efficiency (Nott and Leonte 2004; Eklund and Karlsson 2007; Li and Zhang 2010).

The variability in climatic factors and malaria transmission complicates the form of their

relationship. Parametric models are not always able to capture complex relationships between

variables, specifically non-linearity. To address this, logarithmic transformation, categorization

of covariates and application of polynomial functions can be employed (Magalhães et al. 2011).

Other alternative is use of semi- or nonparametric models which incorporate spline functions

(Crainiceanu et al. 2005). Bayesian spline regression models were employed in mapping of

malaria risk (Gosoniu et al. 2009) and schistosomiasis (Magalhães et al. 2011) in West Africa

with good predictive performance. However, difficulties in interpreting coefficients estimated

from spline regression models hinders their wide application (Marsh and Cormier 2002; Briand

et al. 2004).

iii) Missing coordinates in geo-referenced data

Geostatistical modeling requires geo-reference information from all surveyed locations which

is somewhat difficult to obtain in practice (Wieczorek et al. 2004). In some analyses, a vast

amount of data was dropped due to lack of geographic coordinates. The geographical

coordinates for each location were needed to align socio-demographic, intervention and

malaria transmission databases. Coordinates obtained by averaging all locations observed from

a higher level, such as village (representing cluster centroids) could be used instead to assign

coordinates to locations belong to that cluster. Although that will save an enormous amount of

data, has a consequence on the estimation of spatial parameters which could influence model

prediction power. Sensitivity analysis assessing the magnitude of uncertainty would have been

therefore necessary.
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7.7. Future research and extension

This section highlights possible extensions and future analysis plans for this work.

7.7.1 Non-stationary spatial process and space-time interactions

Space and time correlations were modeled using separable models (i.e. additively effect of

time and space), which assumes dependent processes. The model assumes a stationary spatial

correlation over the whole time series and the temporal lags are generalized believed not to

interact with space (Cressie 1993). Stationary spatial process implies that the correlation is

only a function of distance between points. The assumption is critical for large region and

might be feasible for small regions like DSS sites (Gosoniu et al. 2009; Vounatsou et al. 2009;

Magalhães et al. 2011). However, seasonality in environmental factors might modify pattern of

malaria transmission introducing effect of time and location characteristics on the spatial

structure. For example, temporary water bodies (breeding sites) might appear and disappear

on short time periods resulting to differences in mosquito production within close localities.

Incorporation of variables which distinguish neighbouring locations such as soil types and

agricultural systems might adequately account for non-stationary in small areas. However,

non-stationary separable models do not necessarily capture space-time interactions. Correct

formulation requires joint space-time process and introduce space-time random effects and

interaction parameter (Gneiting 2002; Ma 2003; Stein et al. 2004; Stein 2005). The spatio-

temporal models are highly computational for large data. The dimension of the covariance

matrix increases with number of locations and time points and the inversion is more tedious

(Genton 2007). Approximation of spatial process in space-time context has been described by

Barnejee et al. (2008). The selection of subset shift from spatial only to space-time dimension

resulting to signigicant computational cost. No practical applications utilizing these approaches

have been reported.
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7.7.2 Jointly modeling of malaria transmission and mortality accounting for
spatial misalignment and species heterogeneity

The entomological and mortality data are collected at different locations within the DSS area.

Mosquito species are also distributed differently over space. In statistic research this scenario

is referred to as spatial misalignment (Banerjee and Gelfand 2002). Gemperli, (2003)

formulated a Bayesian model to account misalignment in malaria risk and survival outcomes to

produce a smooth mortality map for Mali. However, the spatial misalignment problem has not

received enough attention in statistical research. In this thesis transmission models were built

by fitting species-specific binomial (for SR) and negative binomial (for density) models and

perform Bayesian kriging of each component separately before calculating EIR (Chapter 4).

Computational inaccuracy occurred at each stage of the analysis could minimized by

formulating a single model which approximate the spatial process, estimate covariates-

outcome relation, calculating malaria transmission and predict at mortality locations. A major

challenge is the computational load associated with it.

7.7.3 Improving EIR estimates and assessing other measures of transmission

EIR was used to measure the intensity of malaria transmission. This measure is widely applied

and often used to assess effectiveness of control interventions such as ITN and IRS (Hii et al.

1993; Curtis et al. 1998; Maxwell et al. 2003; Lindblade et al. 2004). However, changes in

environmental conditions and control intervention alter vector survival, making age and

survival of the mosquito important parameters to consider when assessing variation in

transmission and choosing a control strategy (Cook et al. 2008). Age of the mosquito is usually

approximated using parity rate (Forattini et al. 1993; Smith and McKenzie 2004). Specifically,

EIR can be estimated at different parity levels to determine any variation in transmission

intensities between young and older mosquitoes. Following the change in malaria treatment

policy in Tanzania, Huho et al (in preparation) observed that at the time of MTIMBA project,

using the RDSS data, EIR levels and mosquito survival rate increased after introduction of

combination therapy of Artesunate co-administered with sulfadoxine-pyrimethamine as

compared to the period where Sulfadoxine-pyrimethamine (SP) were used. High vector

survival could imply presence of adult mosquitoes in vector population.
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7.7.4 Converting malaria transmission risk on mortality to disease burden

Combining within- and between-sites analyses of mortality – transmission relationship is the

next step of this project. The pooled analysis will assess other malaria transmission measures

than EIR and their relation with mortality in order to assess heterogeneity and similarities on

the effect. The critical concern is the reproducibility and consistency of the impact of

transmission on mortality between sites in SSA. Other components include determining the

effect of malaria immunity and cumulative plasmodium exposure on the strength of infection

and age-specific patterns of transmission on all-cause mortality as compared to that of

malaria-specific mortality. Such understanding might allow translating the potential EIR risk to

actual malaria burden at different age groups. Principally, quantification of deaths resulted

from the plasmodium exposure. Harmonizing within- and between-site parameters a more

refined model to relate different measures of transmission with mortality could be developed,

following examples such as the Garki model (Dietz et al. 1974), Pull and Grab model (Pull and

Grab 1974), the Lives Saved Tool (LiST) model (www.rbm.who.int) and a model proposed by

Ross et al. (2006).

7.7.5 From DSS to vital registration system

Continuing establishment of new DSS sites in many regions in SSA and Asia has resulted to

provision of key information to guide effective and evidence-based health policies decisions

(Sankoh et al. 2003; Kamugisha et al. 2011). DSS are debated not to generate representative

population parameters, however, DSS are sentinel vital registration system towards complete

vital registration system (Figure 7.1) and should not be considered for national figures (Setel

et al. 2005; WHO 2008b). Introduction of sample vital registration (SVR) and sample

registration systems (SRS) in countries like India (Padmanabha 1982) and China (Lopez et al.

2006) have led to availability of national statistics on important public health indicators such as

child and maternal mortality. Utilization of Sample Vital Statistics with Verbal Autopsy

(SAVVY) methodologies in collection vital event has also shown substantial improvement

(Mudenda et al. 2011) and should be a way forward for countries with poor systems. Following

that, Tanzania is now in a process of establishing the Sentinel Panel District (SPD) which has a
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complementary SAVVY with facility based information to generate national representative

statistics (http://www.ihi.or.tz).

Figure 7.1: Age-specific patterns of excess mortality by transmission intensity (Source: WHO/Health Metrics Network)

However, implementation of such large survey requires integrated approaches and state

commitment. Lessons learned in establishment and implementation of DSSs should be

considered to ensure effective operation of SRS. Components such as identification of financial

sources, evaluation, analysis plans, measurable indicators and potential stakeholders should

not be ignoired. Possibilities to employ existing algorithms for selecting subsets of locations to

select representative samples for these surveys should be explored.

7.8. Implication and concluding remark

The results of this thesis created a baseline for a better insight on the relation between

malaria transmission and mortality which is essential for understanding the consequences of

intervention strategies applied today. The clarity should steer targets set by RBM-WHO,

Global funds and MDG and allow better evaluation of impact of interventions. Analyzing data

from a single DSS site, a contextual modeling approaches to relate transmission and mortality

in all age were established. The approaches can be employed to compare analyses within and

between other sites in SSA to assess how consistent and reproducible the relation is.
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