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Chapter 1

Introduction

In the post-genomic era the question of how the expression of genetic information is car-
ried out is the central question of molecular biology. The fascinating fact that a complex
multicellular organism originates from a single cell and the processes of cell differentia-
tion are very reproducible and robust to environmental changes poses a very fundamental
question of how the execution of the genetically encoded "program" is controlled. Al-
though, nearly all cells have essentially the same genetic information there is a number
of cell types with different function and morphological properties. This implies that dif-
ferent parts of the genome must be properly read and interpreted at very specific points
in time and space during development.

Transcription is the first step of the genome readout. The concentration of mRNA
is the key characteristic, despite all others, that defines cell identity. Although, there
are post-transcriptional mechanisms that control mRNA levels in the cell, such as RNA
decay and microRNA mediated RNA interference, it has been shown that transcription
is the major process that determines mRNA abundance [108]|. Scientists have made a
great effort to investigate the process of transcription and remarkable achievements have
taken place in the last few decades, nevertheless we are still far from full understanding
of what determines transcription rate, and we are even further away from creating a
computational model which could reliably predict mRNA levels in the cell.

In eukaryots the processes which preclude transcription elongation, such as binding
of transcription factors and assembly of the preinitiation complex (PIC), occur in the
context of chromatin. It has been shown that the role of chromatin extends far beyond
only DNA compaction. In this chapter we briefly introduce the role of chromatin in gene
regulation, methods which are used to study chromatin related effects and factors which

determine chromatin configuration in promoters of genes.
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1.1 Nucleosome - the basic unit of chromatin

The eukaryotic DNA is a long linear polymer. For instance, the human genome, con-
taining about three billion base pairs which corresponds to length of approximately 2
meters, has to be folded in a nucleus of size of few micrometers. Moreover, the DNA is
negatively charged polymer and electrostatic repulsion from neighboring phosphates does
not allow it to fit within the small nucleus [45]. Solution to the packaging problem has
appeared in the form of histone proteins that bind to DNA and neutralize the negative
charges leading to compaction of the DNA. Five types of histones, i.e. H1, H2A H2B, H3
and H4, have nearly perfect conservation across eukaryotic species. The lowest and the
most fundamental level of DNA compaction, which is called nucleosome, was discovered
in 1974 by Roger Kornberg [51|. The nucleosome is a complex of histone octamer, two
copies of each type of histones H2A, H2B, H3 and H4, and a stretch of DNA wrapped
around the histone octamer (Fig. 1.1 B and C). Although, there are higher levels of
chromatin compaction, such as 30 — nm chromatin fibers, that allow up to 10000-fold
compaction of the DNA, we focus on the most basic "beads-on-a-string" structure (Fig.
1.1 A) which is the most studied level of DNA compaction nowadays.

The biochemical analysis revealed roughly equal weights of histones and DNA in
the cell which corresponds to about 200 bp of DNA per each histone octamer [51]. It
implies that about 80% of the eukaryotic genome is packaged into nucleosomes. The
crystal structure of the nucleosome core particle (Fig. 1.1 B) shows that the nucleosome
consists of a DNA stretch with length 147 bp which is wrapped in approximately 1.65
super-helical turns around a histone octamer (Fig. 1.1 C) [29, 65]. The basic structure
of chromatin comprises repeating nucleosomes separated by linkers of length 20-40bp.

About 25 years ago molecular biologists were skeptical about the role of chromatin
in gene regulation [85]. It was thought that the only role of nucleosomes is the DNA
compaction. However, later in vitro studies |49, 62, 121] showed that nucleosomes are
barriers for both transcription initiation and elongation. The low copy number of the
histone genes in Saccharomyces cerevisiae allowed researchers to carry out genetic studies
with altered histone levels. The in vivo study of the PHO5 promoter 34| shows that under
knock-down of the H4 histone the PHO5 promoter is activated even under normally
repressing conditions. In general, these studies show repressive function of nucleosomes
in transcription.

In addition, the histones are subjects to a number of posttranslational modifications,
such as metylation, accetylation and ubiquitination. These histone marks, crucially af-

fect transcription (reviewed in [56]) . The importance of the histone marks is further
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Figure 1.1: The nucleosome. A: Electron micrography of the "beads-on-a-string" struc-
ture of chromatin. Size marker: 30nm. B: Crystal structure of a nucleosome core particle
(front and side view). C: A scheme of the nucleosome core particle. The histone octamer
comprising 4 types of histones (H3, H4, H2A and H2B) and a stretch of DNA wrapped
around. Also the linker histone H1, examples of histone tail modifications and histone
variants (H3.3 and H2A.Z) are shown. The A was adapted from reference [78] and B, C
were adapted from reference [45] with permission of the Nature Publishing Group
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supported by observations that disruptions in the epigenetic landscape are associated
with diseases (reviewed in [81]). The variety of the histone marks led researches to a
hypothesis of "histone code" as an extension of the genetic information, where different
combination of histone modifications are read by other protein complexes and determine
chromatin state of genes, for example silent or active [44].

Apart from canonical forms of the histones there are histone variants, such as H2A.Z
and H3.3. The histone variants replace the canonical histones in the nucleosome core (Fig.
1.1 C) and may affect DNA-related metabolic processes (reviewed in [91]). Interestingly,
the histone variant H2A.Z is found at 5’ ends of nearly 2/3 of genes in S.cereviciae ([82],
also see review [67]).

In general, it is now accepted that local chromatin configuration and epigenetic land-
scape affect almost all DNA-related metabolic processes, such as transcription, replica-
tion, DNA-repair and so forth. Therefore, elucidating the mechanisms which determine

chromatin state is of great importance.

1.2 Genome-wide nucleosome mapping

10 years ago nucleosome configuration was known only for a few genomic loci, for instance
for GAL1-10 [60], GAL80 [61] and PHO5 |4, 5| promoters. However, the technological
breakthrough in the last decade allowed mapping of nucleosomes across the whole genome
with unprecedented depth and accuracy. The first large scale experiments that measured
nucleosome occupancy using microarray technology in promoters of genes revealed, de-
spite their rather low resolution, that promoters of active genes are generally nucleosome
depleted [15, 54|. The nucleosome mapping experiment with higher resolution (20 bp)
confirmed this observation and showed that promoters of genes have distinct nucleosome
pattern [125]. Later, the data from the high-resolution nucleosome experiment using
high-throughput sequencing technology (ChIP-Seq experiment) showed that distinct nu-
cleosome patterns occur not only in promoters but also at the 3’ ends of genes [69].

All experimental methods for identifying nucleosome positions rely on the fact that
nucleosomes protect DNA from exonuclease digestion, though, recently a new technique
has appeared that uses chemically modified histones [17]. Nucleosome positions have
been mapped both in wvivo [28, 48, 55, 69, 100] and in wvitro [48, 127, 128]. The in
vivo studies aim to identify nucleosome positions in cells grown under certain condition,
usually in rich media but there are datasets for different conditions, such as heat-shock
[100] or cells grown in ethanol [48]. Usually, the histones are cross-linked to DNA using

formaldehyde to fixate nucleosomes in their in vivo locations (Fig. 1.2 A).
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The in vitro studies aim to measure nucleosome distribution which is governed solely
by intrinsic sequence preferences of histones. The purified histones and DNA are as-
sembled into nucleosomes (Fig. 1.2 A) using salt gradient dialysis (SGD) (methods for
chromatin reconstitution are reviewed in [66]).

Once chromatin has been isolated in vivo or reconstituted in witro it is sheared using
micrococcal nuclease (MNase) (sometimes sonication is used) (Fig. 1.2 B). The MNase
preferentially digests linker DNA, while nucleosomal DNA is protected from MNase di-
gestion. Then nucleosome particles are isolated by immunoprecipitation using antibodies
against histones or a certain histone modification and subjected to deproteinization to
release nucleosomal DNA (Fig. 1.2 C). After the DNA was purified, the DNA fragments
of length about 150 bp were selected using gel electrophoresis, and the positions in a
reference genome from which these fragments originated were identified by microarray
or high-throughput sequencing (Fig. 1.2 D). The development of the next-generation se-
quencing technologies allowed to identify nucleosome positions with up to 1 bp resolution
in yeast [28, 48, 55, 69, 100, 120, 127] and other eukaryots [46, 70, 93, 113]

Although the described methods were able to generate nucleosome maps that are
reproducible across different datasets, they have several experimental artifacts. Firstly,
MNase have sequence preferences for cutting DNA at AT rich regions. Recently, con-
trol experiments carried out with naked DNA digested by MNase revealed quite strong
correlation with nucleosome mapping datasets [22, 59]. This is particularly important
for models of intrinsic sequence specificity of histones as the sequence biases which are
introduced by MNase can lead to incorrect model. However, further analysis suggested
that MNase bias doesn’t significantly affect nucleosome maps [3]. Moreover, a nucleo-
some map generated by a new MNase free experimental technique shows very similar
sequence features of the nucleosomal DNA [17]. This method uses engineered histone
H4 with a unique cysteine introduced at position close to a nucleosome center. The in-
troduced cysteine can attach a special label, and after addition of copper and hydrogen
peroxide a short-lived radical created in a chemical reaction cleaves the DNA backbone
at position of the introduced cysteine. After high-throughput sequencing and mapping
to a reference genome a map of nucleosome centers with 1bp resolution can be created.
Since this method was introduced not so long ago possible biases and limitations of it
are not clear yet. Nevertheless, it is, perhaps, the most accurate method for nucleosome
mapping nowadays.

Apart from the possible biases introduced by MNase digestion there are experimental
artifacts related to microarray or high-throughput sequencing technologies. For exam-

ple, it is well known that the nucleotide composition and propensity to form secondary
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Figure 1.2: A general scheme of a nucleosome mapping experiment. (A) For in vivo
experiment chromatin is cross-linked and isolated. For in vitro experiment chromatin is
reconstituted using salt gradient dialysis or ATP-dependent chromatin remodelers. (B)
After fractionation with MNase, which preferentially digests linker DNA, chromatin is
immunoprecipitated using antibodies against a certain histone or epigenetic modification.
(C) After deproteinization the DNA is purified and size-selected to get mononucleosomal
DNA which is analyzed (D) using microarray or high-throughput sequencing technolo-

gies.
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structures of the reads can systematically bias the read counts in ChIP-seq by more than
10-fold ([36, 104]). For example, comparison of nucleosome datasets generated in dif-
ferent studies shows that positions of nucleosomes are very reproducible across datasets
[45]. However, actual signal values are poorly correlated. In other words, whereas the
positions of peaks and troughs of the signal are consistent between datasets, the ampli-
tude of the signal is not very well correlated. This point will be discussed in the section
2.1.

In summary, the methods for mapping nucleosomes and histone modification de-

scribed above are extremely important and widely used in chromatin biology nowadays.

1.3 Nucleosome positioning

The experimental methods for nucleosome mapping described above have made very
significant contribution to elucidating chromatin structure and its role in gene regulation.
The experiments revealed that substantial amount of nucleosomes are not randomly
distributed across the genome, but have distinct patterns, especially at genomic loci
related to DN A-related metabolic processes, such as transcription, replication and so on.

The first nucleosome mapping experiment with high-resolution [125] allowed to dis-
cover remarkable nucleosome pattern at promoters of genes. Later experiments [55, 69|
confirmed previous observations of nucleosome pattern at 5’ end and revealed distinct
nucleosome architecture at 3’ ends of genes (Fig. 1.3).

The chromatin architecture at 5’ end of genes is comprised of a region free of nu-
cleosomes just upstream of the transcription start site (TSS), usually called nucleosome
free region (NFR) or nucleosome depleted region (NDR), and a few well positioned nu-
cleosomes (phased nucleosomes) up- and downstream of the NFR (+1, -1, +2, -2 nu-
cleosomes) (Fig. 1.3 B and C). Importantly, the degree of positioning decreases further
downstream of the TSS.

The nucleosome pattern at 3’ end also comprised of an NFR just downstream of
the transcription termination site (TTS) and nucleosomes surrounding the NFR, even
though the nucleosomes at 3’ end are much less positioned than at 5" end.

Interestingly, the +1 and -1 nucleosomes often contain the histone variant H2A.Z [82]
and different histone modifications (reviewed in [56]).

Although, the nucleosome profile averaged across all genes helped to discover common
chromatin features at 5’ and 3’ ends, the difference in nucleosome occupancy (Fig. 1.3
A) helped researchers to make a link between chromatin structure and transcriptional

activity. Gene-by-gene analysis revealed two general classes of genes according to chro-
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Figure 1.3: Nucleosome patterns at 5’ and 3’ ends of genes. A: Color coded nucleosome
occupancy measured in [55] around every 5’ and 3’ end of genes (+/ — 500bp around
TSS or TTS acc.to [74]). B: Nucleosome occupancy averaged across all 5 and 3’ ends
of genes. C: Schematic representation of nucleosome patterns at 5’ and 3’ ends of genes.
The nucleosome pattern at 5’ ends comprised of a nucleosome free region (NFR) and few
well positioned nucleosomes up- and downstream of the NFR. The nucleosome pattern 3’
ends of genes contains an NFR as well. However, the NFR at 3’ end is not as pronounced
as at 5’ end and nucleosomes around it are much less positioned.
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matin structure and transcriptional activity: "growth" and "stress" genes (|55, 109] and
reviewed in [85]).

The "growth" or housekeeping genes generally have very pronounced NFR and well-
positioned +1/-1 nucleosomes in promoters [85]. Their expression is highest during rapid
growth and often low during stress response. These genes usually regulated by TFIID
rather than SAGA, lack TATA boxes, exhibit little noise in expression level and are not
affected by deletion of most chromatin regulatory genes [12, 76].

The "stress" genes are almost silent in rich media and transcribed under some stress
conditions. These genes are characterized by regulation by the SAGA complex, rather
than TFIID, have TATA boxes, have high "transcriptional plasticity" and noisy or
"bursty" expression [109]. Also, these genes are regulated by variety of chromatin-
remodeling factors and exhibit more variable promoter architecture [85].

The importance of nucleosome architecture at promoters begs the question of what
determines nucleosome positioning. The early studies suggested that underlying DNA
can influence nucleosome formation [25, 41, 63]. Indeed, the structure of the nucleosome
shows that DNA is bended around the histone octamer [29, 65] but bendability of under-
lying DNA depends of the nucleotide composition. The sequence determinants (or cis-
determinants) of nucleosome positioning attracted great attention recently. Nucleosome
maps generated in vitro, where nucleosomes are positioned solely by underlying DNA
sequence, allowed the discovery of sequence features which favor nucleosome formation.
Analysis of nucleosomal DNA showed periodic pattern of AA/TT/TA/AT dinucleotides
spaced every = 10 bp, which corresponds to one turn of the DNA helix, and similar pe-
riodic pattern of GC/CG/GG/CC dinucleotides but in anti-phase (shifted by 5-bp) with
AA/TT/TA/AT pattern [2, 40, 92, 97]. The AA/TT/TA/AT and GC/CG/GG/CC din-
ucleotide periodical pattern determine so called rotational setting of nucleosomes, i.e.
local orientation of DNA helix on the histone surface [45]. The observed positions of
AA/TT/TA/AT and GC/CG/GG/CC dinucleotides determine energetically favorable
configuration of DNA bending when AT rich dinucleotides face the histone surface and
GC rich dinucleotides point away from the histone surface. Moreover analysis of linker
DNA (nucleosome free DNA) showed that sequences which contain stretches of A or T
(poly(dA:dT) elements) are less favorable for nucleosome formation [41, 48|. In general,
it was shown that AT/GC content is highly correlated with nucleosome occupancy in
vitro [107].

Despite clear evidence for the role of underlying DNA sequence in nucleosome po-
sitioning, the DNA sequence can’t explain translational positioning of nucleosomes in

vivo, i.e. nucleosome positioning relative to a chromosomal locus [127]. First of all, nu-
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cleosome maps generated in vitro do not reproduce the in vivo nucleosome pattern at
promoters of genes. Even though, in vitro maps show nucleosome depletion at promoters
(5" NFR) it is not as pronounced as in vivo, and nucleosome surrounding 5° NFR are not
well-positioned [48, 128]. Moreover, the sequence determinants can’t explain differences
in nucleosome patterns in cells grown under different conditions [100].

It has been shown that a number of other protein complexes can affect nucleosome dis-
tribution. The trans-factors such as ATP-dependent chromatin remodelers and sequence
specific DNA binding proteins can substantially affect nucleosome positioning. For in-
stance, it was shown that upon loss of transcription factors ABF1, REB1 and RSC3
substantial amount of promoters become nucleosome occupied [8]. The other study of
the CLN2 regulatory region showed that mutation of the binding sites for auxiliary pro-
teins REB1, MCM1 and RSC30 leads to NFR loss and sporadic activation of CLN2 gene
by SBF [9].

Interestingly, the study [128] showed that reconstitution of chromatin with ATP-
dependent chromatin remodelers and yeast whole-cell extract allowed to reproduce in
vivo nucleosome pattern at 5’ end, i.e. 5 NFR and well-positioned nucleosomes sur-
rounding the NFR. This study suggests that ATP-dependent chromatin remodelers and
sequence specific DNA binding proteins work together to establish chromatin architecture
at promoters of genes.

In 1988 Kornberg and Stryer suggested theoretical explanation of repeating nucleo-
some patterns by statistical positioning effect [52|. They showed that nucleosomes without
sequence specificity become well-positioned against a barrier which prevents nucleosome
formation (see section 2.4.2). Importantly, the degree of positioning decreases with dis-
tance from a barrier, which resembles the nucleosome pattern at 5’ end of genes (Fig. 1.3
B). Originally, Kornberg and Stryer suggested transcription factors to play the role of bar-
riers against which nucleosomes are positioned. Later, it was suggested that poly(dA:dT)
elements or +1 well-positioned nucleosome may play the role of such barriers at promoters
of genes [69, 72, 125].

The functional evolutionary approach introduced in the study [39] provided remark-
able insights into mechanisms that control nucleosome positioning. The approach relies
on the observation that there are species-specific differences in parameters of nucleosome
positioning in a variety of yeast species [112]. The main idea of this approach is to
compare native chromatin of a specie to chromatin reconstituted in the foreign context
of another closely related specie. In other words, they took large genomic regions from
K.lactis, K. waltii and D. hansenii and reassembled artificial chromosomes (YAC) in the

context of S.cereviciae. In principle, features that change in the foreign context are de-

12
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termined by protein factors that are different in two species. On the other hand, features
which are similar are due to either intrinsic DNA sequence or to conserved trans-acting
factors.

This study showed that, even though many NFRs are maintained in the foreign con-
text, the nucleosome depletion at NFRs are not as strong as in wild type. This suggests
that, whereas poly(dA:dT) are important, other trans-acting factors play important role
in NFR formation as well. The other conclusion which was drawn from this experiment
was that position of +1 nucleosome is not determined by DNA sequence but linked to
transcription initiation. Remarkably, the comparison between nucleosome maps in YAC
and wild type revealed many NFRs which appeared in coding regions and not associ-
ated with poly(dA:dT) elements. These fortuitous NFRs are associated with intragenic
transcripts and flanked by reasonably well-positioned nucleosomes. Authors, note that
these NFRs are associated with TFIIB binding and most likely determined by fortu-
itous transcription factor binding sites that are recognized by transcription factors of
S. cereviciae. Transcription factors bound to fortuitous binding sites recruit chromatin
remodelers, which evict histones and generate NFR.

In general, it has been shown that chromatin architecture at promoters is tightly
linked to processes of transcription initiation and elongation. Previous studies have
made great achievements in elucidating mechanisms underlying nucleosome positioning.
However, mechanistic quantitative explanation of nucleosome patterns in vivo is still

missing.

1.4 Outline of the thesis

The content of the thesis is organized as follows: in chapter 2 we introduce thermody-
namic biophysical model for calculating nucleosome and transcription factor occupancies.
We also introduce statistical positioning effect and how it may affect binding of tran-
scription factors. The chapter 2 mostly addresses a question of how competition with
transcription factors can affect nucleosome positioning. We first examine nucleosome
experimental data and address the question of reproducibility of the data across different
experiments carried out in several labs. Then, we introduce a new method for quality
assessment for prediction of the model and use it to optimize parameters of the model to
fit experimental data. We focus on how transcription factors can explain observed in vivo
nucleosome positioning and which transcription factors play crucial role in establishing
nucleosome patterns at promoters of genes.

In chapter 3 we address a question of how nucleosomes and promoter architecture

13
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affect binding of TFs. We model binding of TFs in the context of chromatin to a cluster of
binding sites and investigate what factors determine main characteristics of TF binding.
Finally, we study how TFBSs in the real genomes position relative to each other and
show that there are certain biases in spacing between TFBSs, probably due to effects

caused by competition with nucleosomes.
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Chapter 2

Nucleosome free regions in yeast
promoters result from competitive
binding of transcription factors that

interact with chromatin modifiers

Ezxtended version of this chapter is accepted at PLOS Computational Biology

Evgeniy A. Ozonov!' and Erik van Nimwegen!*

1. Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel,

Switzerland.
* Corresponding Author: Erik van Nimwegen, erik.vannimwegen@unibas.ch.

Because DNA packaging in nucleosomes modulates its accessibility to transcription
factors (TFs), unraveling the causal determinants of nucleosome positioning is of great
importance to understanding gene regulation. Although there is evidence that intrin-
sic sequence specificity contributes to nucleosome positioning, the extent to which other
factors contribute to nucleosome positioning is currently highly debated. Here we ob-
tained both in vivo and in vitro reference maps of positions that are either consistently
covered or free of nucleosomes across multiple experimental data-sets in Saccharomyces
cerevisiae. We then systematically quantified the contribution of TF binding to nu-

cleosome positiong using a rigorous statistical mechanics model in which TFs compete
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CHAPTER 2. NUCLEOSOME FREE REGIONS RESULT FROM
BINDING OF TRANSCRIPTION FACTORS

with nucleosomes for binding DNA. Our results reconcile previous seemingly conflicting
results on the determinants of nucleosome positioning and provide a quantitative expla-
nation for the difference between in vivo and in vitro positioning. On a genome-wide
scale, nucleosome positioning is dominated by the phasing of nucleosome arrays over gene
bodies, and their positioning is mainly determined by the intrinsic sequence preferences
of nucleosomes. In contrast, larger nucleosome free regions in promoters, which likely
have a much more significant impact on gene expression, are determined mainly by TF
binding. Interestingly, of the 158 yeast TFs included in our modeling, we find that only
10-20 significantly contribute to inducing nucleosome-free regions, and these TFs are
highly enriched for having direct interations with chromatin remodelers. Together our
results imply that nucleosome free regions in yeast promoters results from the binding of

a specific class of TFs that recruit chromatin remodelers.

2.1 Introduction

The genomes of all eukaryotic organisms are packaged into nucleosomes, which are the
fundamental units of chromatin, each composed of approximately 147 base pairs (bp)
of DNA wrapped around a histone octamer. Recent developments in technologies for
measuring chromatin marks by chromatin immunoprecipitation (ChIP) on microarrays
(ChIP-Chip) or by sequencing (ChIP-seq) have enabled the construction of genome-
wide maps of nucleosome positions and modifications at high resolution across various
conditions. These experimental data have revealed that nucleosomes are not uniformly
distributed across the genome but rather that transcription start and termination sites
are relatively depleted of nucleosomes |55, 69]|. Furthermore, nucleosome positioning has
been shown to vary across physiological conditions [100].

It has long been accepted that nucleosomes have intrinsic sequence preferences which
influence nucleosome positioning, e.g. [64, 102, 105]. At the same time, it has also long
been known that barriers in the DNA can cause nucleosomes to be ‘statistically posi-
tioned’ relative to such barriers, introducing a periodic pattern of nucleosome occupancy
on both sides of the barrier [52]. Given the fact that nucleosomes may cover more than
80% of the genome [55], it is therefore also conceivable that a relatively small number
of barriers on the DNA, in combination with statistical positioning relative to these
barriers, determines most of the observed nucleosome positioning. For example, recent
work suggests that nucleosome occupancy patterns around TSSs could at least partly be
explained by such statistical positioning [72].

Probably the most obvious class of candidate molecules that could introduce condition-
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specific barriers on the DNA are sequence-specific transcription factors (TFs). Indeed,
for some specific promoters in S. cerevisiae it has been established that binding of TFs is
a major determinant of nucleosome positioning in the promoter region, e.g. [9, 30, 118].
Moreover, the resulting nucleosome positioning has major effects on gene regulation from
these promoters. In addition, for a few TFs it has been established that their binding
induces local nucleosome exclusion genome-wide 8, 31, 50, 55].

Although it is thus clear that both intrinsic sequence preferences of nucleosomes and
competitive binding of other DNA binding factors play a role in nucleosome positioning,
the relative importance of these factors have come under intense debate in recent years.
For example, it has been proposed that the positioning of nucleosomes, in particular in
S. cerevisiae, is mainly determined by intrinsic sequence preference of the nucleosomes,
ie. [95]. In this view, nucleosomes are mainly positioned by a ‘code’ in the DNA
sequence and the accessibility of the DNA to TFs is downstream of this sequence-guided
nucleosome positioning. However, these conclusions were challenged by several studies
which suggested nucleosome sequence specificity can only explain a modest fraction of
nucleosome positioning, and that statistical positioning likely also plays an important
role 20, 55, 69, 80]. More recently, several groups have undertaken further experimental
investigations into this question, in particular by experimentally comparing nucleosome
positioning in vivo and in wvitro [48, 127]. Although there is general agreement that
these experimental studies confirmed that both intrinsic sequence preferences and the
competitive binding of TFs play a role in nucleosome positioning, different authors came
to strikingly different, and often seemingly contradictory conclusions regarding which of
these factors play a dominant role [21, 47, 59, 96, 104]. It is thus clear that, rather than
lacking sufficient experimental data, the current challenge in furthering our understanding
of the determinants of nucleosome positioning lies in the quantitative interpretation of
this data.

Here we show that, by analyzing existing experimental data in combination with
rigorous computational modeling, important novel insights can be gained that reconcile
previous seemingly contradictory observations, and that suggest a new picture of the
mechanisms regulating nucleosome positions. In particular, we use a biophysical model
to quantitatively assess the role of TFs in determining nucleosome positioning in S.
cerevisiae, to assess which aspects of nucleosome positioning TFs contribute to most,
and to identify whether there are subsets of TFs that play a predominant roles in this
process. S. cerevisiae is a particularly attractive system for such an analysis because
extensive nucleosome positioning data are available, and because it is essentially the only

organism in which sequence-specificities are available for the very large majority of TFs.
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Rather than assuming that intrinsic sequence preferences determine nucleosome posi-
tioning and that TF binding occurs preferentially at those regions not covered by nucleo-
somes, or vice versa, assuming that TF binding sets boundaries in the DNA against which
nucleosomes are statistically positioned, in our model the TF binding and nucleosome
positioning patterns are determined by a dynamic competition of all TFs and nucleo-
somes for binding to the DNA. Our model incorporates both the sequence preferences
of the nucleosomes and of all TFs in a thermodynamic setting, and rigorously calculates
the resulting equilibrium occupancies genome-wide as a function of the concentrations of

all TFs and the nucleosomes.

Using this model in combination with experimental data we find that TF binding
makes a substantial contribution to nucleosome positioning but only at a specific sub-
set of genomic positions. In particular, the linker regions between nucleosomes can be
clearly divided into two classes based on their size: the large majority of linkers is small
(= 15 bp) and occurs within large nucleosome arrays in gene bodies, whereas a minority
of linkers is large (> 80 bp) and occurs predominantly in promoters. Our results show
that the phasing of the small linkers within nucleosome arrays, and thereby the majority
of nucleosome positioning genome-wide, is mainly determined by sequence preferences
of nucleosomes. In contrast, the larger nucleosome free regions in promoters, which are
likely most relevant for effects on gene expression, are mainly determined by competi-
tive binding of TFs. By applying our model to data on nucleosome positioning in vitro
we also confirm that the ability of TFs to explain nucleosome positioning in promoters
is restricted to wn vivo data. Thus, our model provides a quantitative and mechanistic
explanation for the observed discrepancies between in vivo and in vitro nucleosome po-
sitioning. Most strikingly, our results also show that, rather than all TFs contributing
roughly equally to the competition with nucleosomes, the effect of TFs on nucleosome
positioning is restricted to a relatively small set of about 10—20 TFs. Although one might
expect that these TFs are simply the highest expressed TFs with the largest number of
TFBSs genome-wide in the conditions in which the experiments were performed, we find
this not to be the case. Instead, we find that these TFs are highly enriched for having
known protein-protein interactions with chromatin remodeling complexes, histones, and
chromatin modification enzymes. Thus, the mechanistic picture suggested by our results
is that there is a specific class of TFs who, upon binding to the DNA, recruit chromatin

modifiers that then mediate local expulsion of nucleosomes.

18



2.2. RESULTS

2.2 Results

2.2.1 A biophysical model of TF and nucleosome binding to genomic
DNA

To rigorously investigate the competition between TFs and nucleosomes for binding to
DNA, and the role of TFs in nucleosome positioning, we take a statistical mechanics ap-
proach in which we explicitly consider all possible non-overlapping binding configurations
to the genome for nucleosomes and a large set of TFs, assigning a probability to each
configuration using standard Boltzmann-Gibbs statistics. The basic approach, which
uses dynamic programming to efficiently sum over all possible binding configurations,
has been used in computational methods for analysis of transcription regulation for over
a decade, e.g. 18, 20, 83, 94, 114], and has been used more recently to specifically inves-
tigate the effect of competitive binding of nucleosomes and TFs [87, 119]. Here we use
this approach to comprehensively investigate the role of TFs in determining nucleosome
positioning. We employ an unprecendented complete set of 158 TF binding models, we
investigate the dependence on the concentrations of these TFs, and we also introduce

tunable sequence-specificities for all TFs and nucleosomes.

The model is explained in detail in the Materials and Methods. Briefly, each TF ¢ is
assumed to bind DNA segments of a fixed length [; and, for any length-I; DNA segment s,
a binding energy F(s|t) is determined. The energies F(s|t) are calculated from a weight
matrix representation of the TF’s binding sites [14| and involve a tunable scale parameter
¢ which controls the sequence-specificity of the TF. To obtain energy matrices for the
large majority of sequence-specific TFs in S. cerevisiae we used a collection of 158 WMs
that we curated previously [19] and that are based on a combination of ChIP-chip and
in vitro binding data. Notably, while the WMs allow us to determine how the binding
energy (measured in units kp7') varies across positions in the genome for each TF, the
WDMs do not allow us to determine the sequence-independent contribution to binding
energy, i.e. the overall ‘stickines’ of each TF for DNA. To compare binding energies
across TFs we set the sequence-independent contribution to the binding energy such that
all TFs have equal overall affinity for the DNA (see Materials and Methods).

Of the computational work done on nucleosome positioning, probably most effort has
been invested in developing models for nucleosome sequence-specificity based on data
from both in vivo and in vitro nucleosome binding, e.g. [48, 95]. Exploiting analytical
results from statistical mechanics, Locke et al. [59] rigorously inferred the energies of

nucleosome binding from high-throughput data and used these to evaluate several models
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of different complexity for the sequence specificities of nucleosomes. The results from this
study suggested that the sequence specificity of nucleosomes can be captured by fairly
simple models. As we discuss below, our own analysis suggests that the performance
of different models of nucleosome sequence specificity depends on the precise data-set
and performance evaluation method used, but that all models make highly correlated
predictions (Figure 2.1A). Of the models analyzed, the model of [48] gave robustly high
performance across data-sets and we use this model in our study. In particular, we
assume that nucleosomes bind to DNA segments of 147 nucleotides and determine an
energy of binding E(s|nucl) for any length 147 segment s using a generalization of the
model of [48], involving a scale parameter 7, that controls the sequence specificity
of the nucleosomes, analogous to the scale parameters ; for the TFs (see Materials
and Methods). The parameter vy, allows us to investigate the effect of enhancing or
decreasing the nucleosome sequence specificity. For example, when setting vnua = 0.4,
the variation in nucleosome binding energies across different sequences is reduced to 40%

of the energy variations predicted by the model of [48].

As mentioned above, the model assumes that any DNA segment can only be bound
by a single TF or a nucleosome at a time. Although it is likely that there are exceptions
to this simplification, it is generally accepted that TFs and nucleosomes compete for
binding to DNA. In absence of specific information as to which TFs compete with nu-
cleosomes and which can co-bind with nucleosomes, we make the simplifying assumption
that all TFs compete with nucleosomes, as has been done previously by others [87, 119].
Like previous approaches, e.g. [72, 95, 96, 119], our model also assumes that the average
occupancy profiles across a population of cells are well approximated by their thermody-
namic equilibrium averages. Notably, given that there are many ATP-driven processes
that cause nucleosome turnover and displacement by chromatin remodelers, it is not a
priori clear that this equilibrium assumption holds. Ours and previous computational
approaches thus essentially assume that these ATP-driven processes act mainly to affect
kinetics, i.e. to allow nucleosomes to resample their positions, without systematically bi-

asing their positioning. Some recent evidence appears to support this assumption [111].

The model considers all possible non-overlapping configurations C' of TFs and nucle-
osomes bound along the genome. For each configuration C, a total energy E(Cl|c,) is
calculated. This energy depends on the concentrations of nucleosomes c¢pyue and all TFEs
¢t, which we collectively denote as ¢, and also on all energy scale factors v that determine

sequence-specificity (Materials and Methods). The probability P(C|c, ) to find a cell in
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configuration C is then given by the standard Boltzmann-Gibbs formalism as

e~ BE(Clc)
P(Cle,n) = ——F—, (2.1)
where 8 = 1/(kT) is the inverse temperature, Z is the partition sum, and we have

explicitly indicated that these probabilities depend on the concentrations ¢ and scale
factors . As explained in Materials and Methods, both the partition sum and the
fractions of the time each TF t is bound at each genomic position can be calculated
efficiently using standard dynamic programming techniques.

In summary, given a set of input concentrations ¢ for all TFs and nucleosomes, the
model efficiently calculates the equilibrium binding frequencies of all TFs and nucleosomes
across the entire genome. Note that, because all TFs and nucleosomes are in competition
for binding to the DNA, the occupancy of any factor to a sequence segment of the genome
in principle depends, not only on the concentration of this factor and its affinity to the
sequence segment, but on the concentrations of all other factors and their affinities to
all other locations in the genome. Thus, the TF and nucleosome occupancy profiles
across the genome can be changed by varying the concentrations ¢ and scale factors
~. In particular, these parameters can be optimized to maximize the agreement with

experimentally determined nucleosome occupancy profiles.

2.2.2 Comparing model predictions with experimental nucleosome po-
sition profiles

Many experimental studies have been carried out to map nucleosome positions in eu-
karyotic species, e.g. [46, 70, 93, 113], and in Saccharomyces cerevisiae in particular,
e.g. |28, 48, 55, 69, 100, 120, 127], so that several data-sets of nucleosome positions in
S. cerevisiae are available. In order to determine how to meaningfully compare com-
putational predictions with these experimental data, we first performed a comparative
analysis of several experimental data sets. Patterns of nucleosome positioning that are
typically highlighted in publications, such as the nucleosome-depleted regions upstream of
the transcription start sites (TSSs) and well-positioned nucleosomes immediately down-
stream of TSS, involve genome-wide averages of nucleosome occupancy across a class
of positions. Such average patterns are robust to fluctuations and are shared by all
data-sets.

Previous works have assessed the performance of models of nucleosome sequence

specificity by determining both the predicted and experimentally observed nucleosome
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Figure 2.1: Reproducibility of in witro and in vivo nucleosome data across different
experiments and performance of nucleosome sequence-specificity models. A: Pearson
correlation coefficients of the per-base nucleosome coverage between various experimental
data-sets measuring nucleosome occupancy either in vivo [28, 48, 55, 69, 100] or in vitro
[48, 127, 128], and predictions from a number of models of nucleosome sequence-specificity
[48, 59]. B: Reproducibility of annotated nucleosome positions across the in vivo data-
sets. For each annotated nucleosome in the reference map of [45], we calculated the
standard deviation in the annotated positions of the corresponding nucleosomes across
the 6 data-sets used to construct the map. The blue curve shows the distribution of
standard deviations across nucleosomes. The grey dotted curve shows the analogous
distribution that is obtained using randomized data (see Materials and Methods). The
high reproducibility of nucleosome positions across different data-sets justifies the use of
binary data, i.e. positions of "linkers" and "nucleosomes", instead of Pearson correlation
for evaluation of the performance of computational models for predicting nucleosome
positions.

22



2.2. RESULTS

occupancies across individual regions of the genome, and by calculating the Pearson
correlation of these nucleosome occupancy profiles. To assess the validity of such an
approach, we calculated Pearson correlations between observed occupancy profiles of
several experimental data-sets (both in vivo and in vitro) as well as several models of
nucleosome sequence specificity (Figure 2.1A). This shows that, unfortunately, the occu-
pancy profiles correlate only weakly across different experimental data-sets, with Pearson
correlation coefficients typically ranging from r = 0.2 to r = 0.45 for in vivo data-sets,
and only marginally higher for in vitro data-sets. This large variability across data-sets
may to some extent be due to biases of the technological platforms. For example, it is
well known that the nucleotide composition and propensity to form secondary structures
of the reads can systematically bias the read counts in ChIP-seq by more than 10-fold
[36, 104]. Variations in details of the ChIP protocol are likely also responsible for some of
the variation across data-sets, and previous studies have indicated that MNase digestion
bias may also systematically affect nucleosome positioning data [21, 59]. Since all exper-
iments were performed in YPD, true biological variation is likely only a minor source of
variation in these data.

In contrast to the experimental data, the occupancy profiles predicted by the differ-
ent computational models are all highly correlated. Moreover, the correlations across
models for a given data-set vary much less than the correlations for a given method vary
across data-sets. For example, all models consistently perform better on in wvitro than
on in vivo data. Among the in vivo data-sets, all methods perform by far best on the in
vivo data of Kaplan et al.[48] (which is also far more correlated with in vitro data than
any other in vivo data-set) and far worst on the in vivo data of Shivaswamy et al.[100].
Thus, comparison of different models with existing data supports the conclusions of [59]
that different models of nucleosome-specificity perform similarly in explaining nucleo-
some positioning. Since the model of Kaplan et al.[48] exhibits highest performance for
the majority of in vivo and in vitro data-sets, we chose to use this model in our anal-
ysis. However, the weak correlation of nucleosome occupancy profiles across data-sets
shows that assessing the performance of computational predictions by directly compar-
ing predicted and observed nucleosome occupancies is highly problematic. A meaningful
comparison of computational models requires that one first extracts those features of the
nucleosome positioning that are reproducible across experimental data-sets.

In contrast to the absolute value of the ChIP signal, we observed that the positions of
local maxima and minima in nucleosome occupancy are much better reproduced across
data-sets. This reproducibility of the ‘peaks and troughs’ in the nucleosome occupancy

profile has been observed previously [45], and has been used to create a reference set of
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‘nucleosome’ and ‘linker’ segments. In this procedure, local maxima and minima are used
to annotate nucleosomes and linkers in each data-set. These annotations are then inter-
sected, with reference nucleosomes placed at the consensus positions of regions annotated
as nucleosomes in all data-sets, and reference linkers the regions free of nucleosomes in all
annotations. That the positions of annotated nucleosomes are highly reproducible across
data-sets, especially compared to raw coverage and compared to nucleosome maps based
on randomized data, is illustrated in Figure 2.1B. The annotated positions of individ-
ual nucleosomes across different data-sets typically vary by less than 10 base pairs from
the reference position (blue curve in Figure 2.1B) and the vast majority of annotated
nucleosome positions vary by less than 20 bp from the reference position. In contrast,
on randomized data positions of annotated nucleosomes typically vary by roughly 40 bp
from the reference position (dotted curve in Figure 2.1B).

In summary, although ideally we would like to test whether computational models can
predict relative nucleosome occupancies across the genome, it is not possible to meaning-
fully perform such an assessment given the variability observed in the experimental data.
We thus evaluate the performance of different models by assessing their ability to predict
nucleosome and linkers that occur consistently across different data-sets. We use the
reference set annotated by [45] consisting of roughly 60’000 annotated linker regions and
21’000 annotated nucleosomes, that together cover about 50% of the genome, to assess
the performance of the model in predicting in vivo nucleosome positioning. In addition,
we have applied a similar annotation procedure (Materials and Methods) to produce a
reference set of nucleosomes and linkers from 3 in vitro data-sets, which we use to assess
the performance of the model in predicting nucleosome positioning in vitro.

To assess the model’s performance we compare the predicted nucleosome coverage at
annotated linker and nucleosome segments. That is, instead of comparing the predicted
and observed absolute occupancies, we assess the model’s ability to predict local max-
ima and minima in nucleosome occupancy, that occur consistently across data-sets. As
described in Materials and Methods, based on the predicted nucleosome coverage, we
classify each segment as either nucleosome or linker, and then calculate the mutual infor-
mation I between the predicted and experimentally measured classification. Finally, we
normalize this mutual information by the entropy H of the experimental classification to
obtain the fraction F' = I /H of information that is captured by the model’s predictions,
i.e. F runs from 0 (random predictions) to 1 (perfect predictions). An F' value of 0.2
means that the model captures 20% of all the information needed to specificy which of
the genomic segments correspond to nucleosomes and which to linkers. We will refer F'

as the ‘quality score’. As mutual information is the fundamental measure of dependence
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between two distributions|[43, 98|, we consider the quality score F' the most rigorous
quantification of model performance. However, as we show below, highly similar results
are obtained with other performance measures that are popular in machine learning, such
as area under the ROC curve (AUC).

2.2.3 Optimal fits to nucleosome positioning require weak nucleosome
sequence specificity

We first tested what quality score can be obtained by the intrinsic sequence specificity
of the nucleosomes, i.e. leaving all TFs out of the model, and how the quality of the
fit depends on the sequence specificity of the nucleosomes. Figure 2.2A shows the qual-
ity scores F' that are obtained for different scale factors y,,c on nucleosome sequence
specificity (with O representing no sequence preference whatsoever and 1 representing
the specificity used in Kaplan et al. [48]). The optimal fit is obtained for Jyuq =~ 0.47,
which corresponds to significantly lower nucleosome sequence specificity than those used
in Kaplan et al. [48]. That is, for the model of [48], the standard deviation of nucleosome
binding energies is approximately 1.64kpT across the genome (0.97kcal/mole), whereas
we observe optimal fits for roughly 2-fold lower variations in binding energies (roughly
0.77kpT). Moreover, the quality score depends weakly on 7y,uq and becomes small only
for extremely small sequence specificities.

These results may seem contradictory, given that the sequence-specificity model of
Kaplan et al. was developed specifically with the aim of explaining nucleosome position-
ing. However, Kaplan et al. optimized the overall Pearson correlation between predicted
and observed nucleosome coverage, which depends strongly on the variation in absolute
nucleosome occupancies. In contrast, the quality score F' depends mainly on the lo-
cations of local maxima and minima in the occupancy, and much less on the absolute
amount of variation in nucleosome occupancy. To investigate this further, we compared
the distribution of nucleosome occupancies for the model with different values of vynuea
with the distribution of nucleosome occupancies for the model of Kaplan et al. and the
experimentally observed distribution of nucleosome occupancies for the data of Lee et al.
[55] (Materials and Methods, and note that very similar distributions are obtained from
other experimental data-sets; Figure A.2.10).

As shown in Figure 2.2B, the model of Kaplan et al. [48] predicts an overall nucle-
osome coverage that is dramatically lower than our fits, i.e. with a median nucleosome
coverage of about 0.3. Such a coverage distribution is strongly at odds with the exper-

imental data which shows that, rather than 30%, about 80% of the genome is covered
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Figure 2.2: Performance of models that include only nucleosome sequence specificity. A:
Fraction of information regarding experimentally annotated linker and nucleosome posi-
tions explained by the nucleosome-only model (quality score, vertical bars) as a function
of relative nucleosome specificity. The relative nucleosome specificity is controlled by
the scale factor ynuel, where vnua = 1.0 corresponds to the sequence specificity of the
model of Kaplan et al. [48], for which the binding energy of the nucleosomes has a
standard-deviation of 1.64kpT = 0.97kcal/mole across the genome. The error-bars indi-
cate standard-errors across 5 separate test sets. B: Experimentally observed cumulative
distribution of nucleosome coverages (fraction of time a given genomic position is covered
by a nucleosome) from [55] (red dotted line) and cumulative distributions of predicted
nucleosome coverage of the models of [48| (dark green line) and our model using nucleo-
some specificity scale parameters of Y,y = 0.02 (black line), ypuer = 0.4 (blue line), and
Youel = 1.0 (light green line).

by nucleosomes, e.g. [42, 51, 55, 100]. It is likely that the unrealistically low nucleo-
some occupancy of Kaplan et al. [48] is an artefact of optimizing the Pearson correlation
in nucleosome coverage, since this objective function favors high variance in predicted
nucleosome coverage, and does not penalize the mismatch in the average nucleosome

coverage.

For our model, the coverage distribution indeed strongly depends on the nucleosome
specificity. Strikingly, by far the best fit between the observed and predicted coverage
distribution occurs precisely at the specificity that maximizes our quality score (i.e. at
Yauel = 0.4). This demonstrates that, in contrast to the predictions of Kaplan et al. [48],
our fits produce realistic nucleosome coverage profiles, in spite of not specifically optimiz-
ing these coverage profiles. In fact, at the optimal nucleosome specificity, the predicted
and experimentally observed nucleosome coverage distribution is virtually identical for
the 70% of base pairs in the genome with highest nucleosome coverage (blue and red

curves in Figure 2.2B). The main deviation between model and experimental data is
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that the model fails to predict regions with low nucleosome coverage that are observed
experimentally. Indeed, as we will see below, whereas the model correctly predicts al-
most all nucleosomes, the model fails to correctly predict a substantial fraction of linker
regions as nucleosome free.

In summary, optimizing the quality score F' produces much more realistic fits to the
nucleosome coverage distribution than previous models, and shows that the best fits are

obtained with only weak nucleosome sequence-specificity.

2.2.4 Transcription factor binding plays a major role in explaining nu-
cleosome free regions at promoters

We next investigated to what extent competition with TFs improves the predicted nucle-
osome positioning. We first considered models in which, besides the nucleosomes, there
is only a single TF. For each of these models we fitted the 4 parameters (i.e. the con-
centrations and sequence specificity of both nucleosomes and the TF) using simulated
annealing, and calculated the quality score F' obtained with this model using 80/20 cross-
validation (Materials and Methods). We ranked TFs by the z-statistic they obtained in
cross-validation (Materials and Methods), and then investigated what quality scores F
can be obtained using the top 5, 10, 20 and top 30 TFs, refitting all concentrations and
sequence specificity parameters. We find that adding the TFs clearly increases the qual-
ity of the predictions on the test-sets, although the improvement is relatively small, i.e.
from F' ~ 0.17 to F' =~ 0.2, Figure 2.3A. Given this modest increase in F' and the large
number of parameters involved when including many TFs in parallel, one may wonder
whether these results are affected by overfitting. However, as shown in Figure A.2.11,
the observed F' scores on train and test sets are essentially identical. In addition, adding
the TFs to the model further improves the match between the observed and predicted
nucleosome occupancy distribution (Figure A.2.10).

As already observed in [45], the length distribution of linkers is bimodal. The large
majority of linkers is short, around on average 15 bps in length, corresponding to short
linkers within arrays of nucleosomes. There is a second class, corresponding to roughly
25% of all annotated linkers, that are much longer, i.e. each more than 80 bps long.
We will refer to these longer linkers as ‘nucleosome free regions’ (NFRs). We next asked
whether TFs contribute more to explaining the positioning of the short linkers or the
longer NFRs. Moreover, as TFs are expected to bind predominantly to promoter re-
gions, we also investigated whether the contribution of the TFs to explaining nucleosome

positioning is most significant in promoters (defined as running from 500 bp upstream
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Figure 2.3: Incorporating competition with TFs improves predicted nucleosome posi-
tioning, particularly in promoter regions. A: Ability to predict nucleosome positioning
as a function of the number of TFs used in the model. The bars show the fraction of
all information regarding nucleosome positioning explained (quality score F') by each
model. Results are shown for, from left to right, the model including only nucleosomes
(no TFs), only the best TF, the top 5 TFs, top 10 TFs, etcetera. The rightmost pair of
bars correspond to a model including all TFs but without any sequence specificity for the
nucleosomes pue; = 0. Blue bars correspond to quality scores for predicting all nucleo-
somes and linkers genome-wide and red bars correspond to quality scores for predicting
nucleosomes and nucleosome free regions (long linkers) within promoters. The error bars
show standard-error across 5 independent test-sets. B: Fractions of correctly predicted
nucleosomes (grey bars) and linkers (green bars) for, from left to right, the model with
nucleosome sequence specificity and no TFs, the model with all TFs, and the model with
all TFs but no nucleosome sequence specificity. The left half of the figure shows results
for predicting all linkers and nucleosome genome-wide, and the right half for predicting
NFRs and nucleosomes in promoters.

to 500 bp downstream of TSS). We find that, generally, inclusion of the TFs leads to
a substantially larger increase in performance for promoter regions, and TFs contribute
much more to explaining NFRs than explaining small linkers (Figure A.2.12). In par-
ticular, considering NFRs and nucleosomes in promoter regions, inclusion of TFs almost
doubles the quality score F', i.e. from 0.23 to 0.38, Figure 2.3A, red bars. As an aside, we
note that these observations do not depend on assessing the model’s performance by the
quality score F'. As shown in Figure A.2.13, we find essentially the same results when as-
sessing the model’s performance using ROC curves, and the area under the curve (AUC)
is almost perfectly correlated (r = 0.99) with the quality score F. It is also noteworthy
that, both when predicting all linkers genome-wide or NFRs in promoters, even though
up to 158 TFs can be incorporated, the model essentially reaches its optimal performance
after adding the first 10 — 20 TFs. We investigate this in more detail below.

It thus appears that TFs contribute not so much to explaining positioned nucleosomes,
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but rather explain the location of longer NFRs, especially in promoters. Further support-
ing this observation, the rightmost pair of bars in Figure 2.3A shows the performance
of the model including all TFs but with nucleosome sequence specificity removed, i.e.
Ymuel = 0. We see that removing nucleosome sequence specificity only modestly affects
the ability of the model to predict NFRs in promoters. In contrast, the performance on
predicting all linkers genome-wide drops significantly when nucleosome sequence speci-
ficity is removed, even falling clearly below the performance of the model without TFs.
This is further confirmed by closer examination of the errors that the fitted models make
(Figure 2.3B).

For all models, the large majority of nucleosomes is correctly predicted and the frac-
tion of correctly predicted nucleosomes is most strongly affected by removing the sequence
specificity of the nucleosomes, i.e. from 95% correct for the model with only nucleosome
sequence specificity to 88% for the model with all TFs and no nucleosome specificity.
The fraction of correctly predicted linkers is much smaller, e.g slightly below 50% for
the model without TFs. Adding the TFs to the model consistently increases the fraction
of correctly predicted linkers, and this increase does not require nucleosome sequence
specificity. When considering all linkers genome-wide, the increase in correctly predicted
linkers is relatively modest, i.e. from 50% to 56%. However, for NFRs in promoters the
fraction of correctly predicted NFRs increases from 50% to around 70%. In summary,
correctly predicting the phasing of nucleosome arrays over gene bodies crucially depends
on nucleosome sequence specificity and is only weakly affected by including TFs, whereas
correctly predicting NFRs is strongly dependent on inclusion of the TFs and is almost

independent of nucleosome sequence specificity.

2.2.5 Characterization and additional validation of the fitted model

To characterize the biophysical properties of the fitted model we first determined the
overall statistics of nucleosome and TF occupancies (Figure 2.4A). Nucleosomes cover
more than 80% of the genome, and most of the remaining regions of the genome are
uncovered, with all TFs combined covering less than 1% of the genome. The top 10
TFs with the highest genomic coverage occupy between 0.15% and 0.02% of the genome,
corresponding to roughly 1500 and 200 binding sites genome-wide.

For the nucleosomes and the top 10 TFs with highest genomic coverage in the fitted
model we also determined the mean and standard-deviation of the binding energies at
their binding sites, and the entropy of the distribution of binding probabilities per site

(Materials and Methods). The latter quantity is low whenever the TF’s coverage results
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Figure 2.4: Biophysical properties of the fitted model. A: Average fraction of the
genome covered by nucleosomes, free DNA, and the top 10 TFs with highest coverage.
B: Average and standard-deviation of the binding energies (in units kgT') at binding
sites for nucleosomes and the top 10 TFs with highest coverage (vertical axis), against
the average entropy per binding site of the distribution of binding probabilities for the
corresponding TFs (horizontal axis).

from strong sites with high frequencies of binding, and is high when the TF’s coverage
comes from a large set of weak sites with lower binding frequencies. The results (Figure
2.4) show, first of all, that the binding sites of nucleosomes have both the lowest binding
energy and the lowest variation in binding energies, i.e. they are the least sequence
specific. Interestingly, the top 10 TFs clearly fall into 2 classes: a set of TFs (ABF1,
REB1, ORC1, and RSC30) that are highly sequence specific and have strong binding
sites, and a class of much less sequence specific TFs (PHO2, NHP6A, etcetera) that bind
at a much larger number of weaker sites.

As has been observed previously, e.g. [55, 69], averaged nucleosome coverage profiles
show a characteristic pattern relative to the starts of genes with a nucleosome depleted
region immediately upstream of TSS, followed by a well-positioned nucleosome imme-
diately downstream of T'SS and a periodic pattern of nucleosome coverage downstream
into the gene body. Although the nucleosome sequence specificity by itself, i.e. without
including TFs, reproduces some of this pattern at the 5" end of genes (Figure 2.5A), the
observed nucleosome depleted region and the oscillatory pattern into the gene body is
much weaker than observed experimentally. As an additional test of the validity of our
model, we checked whether inclusion of the TFs improves this average coverage profile
relative to gene starts and ends.

We find that adding TFs to the model significantly improves the match between the
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Figure 2.5: Predicted and observed nucleosome profiles around 5’ and 3’ ends of genes.
A: Averaged nucleosome coverage near transcription starts. Each curve shows the av-
erage nucleosome coverage at different positions relative to transcription start averaged
over all genes. Red dashed lines correspond to experimentally measured nucleosome
coverage (data from [55], right vertical axis). The solid lines correspond to the pre-
dicted nucleosome coverage by the model including only nucleosomes (light green) and
the model including all TFs (blue), left vertical axis. B: Averaged nucleosome coverage
near transcription ends. Curves are as described for panel A.

theoretically predicted and experimentally observed nucleosome coverage pattern at the
5 ends of genes (Figure 2.5A). It is noteworthy that the nucleosome-depleted region
immediately upstream of TSS coincides with a peak in the overall predicted binding
of TFs (Figure A.2.14C), further illustrating the role of TFs in establishing nucleosome
depletion in these regions. A local peak in TF binding is also predicted immediately
downstream of the 3’ ends of genes (Figure A.2.14D). Although at the 3’ ends of genes,
the inclusion of the TFs also improves the match between the theoretical predictions and
the experimentally observed nucleosome coverage, the experimental data and predictions
clearly disagree (Figure 2.5B). First, the width of the experimentally observed NFR is
twice as big as the width of the predicted NFR. Second, the oscillations exhibited by
the experimentally-determined distribution are not as pronounced as predicted by the
model. This lack of a match can likely be attributed to the role of RNA polymerase.
Our model considers only 158 TFs and, in particular, does not consider the effects of
binding of general transcription factors and RNA polymerase. Experimental data on the
positioning of the largest subunit of Pol II - Rpo21, and the general transcription factor
Sua7 shows that these factors localize at 3’ ends of genes [116], suggesting that they
may contribute to the nucleosome free region observed at the 3’ ends of genes (Figure
A.2.15). This is further supported by the analysis in [27]|, which shows that rapid removal

of Polymerase from 3’ end regions increases local nucleosome occupancy.
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As another validation of the model, we investigated whether the predicted TF binding
matches experimental observations. For example, we compared the intergenic regions
predicted to be targeted by the TFs Abfl, Rebl, and Suml, with the observed target
intergenic regions according ot the ChIP-chip data of [35]. This shows that, in spite
of the fact that the model was only optimized to fit nucleosome positioning, the fitted
model also accurately predicts which regions are targeted by these TFs (Figure A.2.16).

It is important to stress that, although we assess the model’s performance by these
global statistics, it predicts the precise locations of individual nucleosomes, NFRs, and TF
binding sites. The full genome-wide nucleosome and TF coverage predictions obtained
with the model including the TFs are made available through our SwissRegulon server
www.swissregulon.unibas.ch/ozonov, allowing users to investigate in detail which
NFRs at which promoters are explained by the binding of particular TFs. To illustrate
the detailed comparison of the model’s predictions and observed nucleosome occupancies
Figure 2.6 shows the measured nucleosome coverage, the predictions of the model with
and without TFs, and the predicted coverage of TFs, in two genomic regions. As the
figure shows, whereas the locations of small peaks and troughs in occupancy across arrays
of nucleosomes are reasonably well captured by nucleosome sequence specificity alone,
competition with TF binding is needed to explain the occurrence of larger nucleosome
free regions, which occur predominantly in promoters. Importantly, it is likely precisely
this latter class of regions that are crucial for the effects of nucleosome positioning on
gene expression.

However, this detailed comparison also reveals that, whereas the locations of TF bind-
ing typically matches the centers of observed NFRs, the predicted shape of these NFRs
differs considerably between the model and the experimental observations. In particular,
NFRs tend to be much narrower in the model’s predictions than in the experimental
data. This suggests that, although TF binding determines the genomic location where
nucleosome depletion is observed, the observed nucleosome exclusion is more substantial
than predicted from the steric hindrance between TFs and nucleosomes. This suggests
that TF binding may recruit aditional factors involved in nucleosome exclusion. We

return to this observation below.

2.2.6 Only a small subset of TFs, enriched for interacting with chro-
matin modifiers, crucially affects nucleosome positioning

Our model incorporates the role of TFs through a simple competition for binding DNA
and one might thus naively expect that all TFs that are expressed in YPD would con-
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Figure 2.6: Ilustration of the measured nucleosome occupancy and model predictions
within individual genomic regions. Each panel shows a section of the yeast genome within
our genome browser (swissregulon.unibas.ch/ozonov), with the tracks corresponding to,
from top to bottom, chromosomal location, annotated genes, the measured nucleosome
coverage based on the data from [55], the predicted nucleosome coverage using the model
without TFs, the predicted nucleosome coverage using the model including TFs, and the
total predicted TF coverage, i.e. summing over all TFs. Within the genome browser the
coverage of individual TFs can also be displayed.
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tribute similarly to explaining nucleosome positioning, maybe in proportion to the num-
ber of their binding sites in the genome. However, we observed above (Figure 2.3A) that
when consecutively adding more TFs to the model, the performance already assymptotes
after 10 — 20 TFs. This could be due to redundancies in the contributions of the TFs,
i.e. if sites for different TFs cluster in particular genomic regions, then binding by only
a subset of the TFs will suffice to explain the occurrence of NFRs in these regions, and
adding more TFs to the model would not further improve performance. Alternatively,
it may be that there is a specific class of TFs that contribute much more to nucleosome
positioning than other TFs.

To investigate this, we used 80/20 cross-validation on 5 independent training and
test sets to assess, for each of the 158 TFs, whether a model containing only nucleosomes
and the single TF statistically significantly outperforms the model with only nucleosome
specificity, quantifying the significance by a z-statistic (Materials and Methods). Figure
2.7A shows the distribution of z-statistics obtained for the 158 TFs (blue dots), together
with the distribution of z-statistics expected by chance (brown dotted curve). As the
figure shows, only 15 — 20 of the TFs significantly improve the predictions, indicating
that there is indeed a specific class of TFs that dominate in explaining NFRs. Indeed,
the large majority of all other TFs obtain quality scores on the test sets that are either
the same or worse than the model without any TFs (Figure A.2.17).

As another validation, we checked whether the ability of this subset of TFs to explain
nucleosome positioning is a specific property of the sequence specificities of yeast’s TFs.
That is, it is in principle conceivable that among any set of WMs with similar informa-
tion content and sequence composition, a few will be able to help explain nucleosome
positioning. To test this we constructed a set of synthetic WMs by randomly shuffling
the columns of the original WMs, and fitted models with these 158 TFs in exact analogy
to our fits with the original WMs. As shown in Figure 2.7A (green dots), none of the
shufled WMs perform better than expected by chance, confirming that the ability to
explain nucleosome positioning is unique to the specific set of 15 — 20 yeast WMs that
we identified.

As a final test, we also evaluated whether the real WMs can explain the nucleosome
positioning that is observed in vitro (Materials and Methods). On the one hand, since
no TFs are present in the conditions at which the in vitro experiments are performed,
the TFs should in principle not contribute to nucleosome positioning. On the other
hand, as the raw in vivo and in vitro occupancies are significantly correlated (Figure
2.1A), one might expect that the TF WMs can still positively contribute to explaining

in vitro nucleosome positioning. It is thus striking that none of the real yeast WMs
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Figure 2.7: Only approximately 20 TFs contribute significantly to nucleosome posi-
tioning. A: For each TF an average quality score F' across 5 test-sets was determined
using the model containing nucleosomes and the corresponding TF. TFs were then or-
dered by the z-statistic z = (F — Fyorrs)/Se, With Forps the quality score of the model
without any TFs, and s. the standard-error across the 5 test-sets (see Materials and
Methods). The panel shows the reverse cumulative distribution of z-statistics observed
across the 158 TFs (blue dots) together with the expected standard-normal distribution
expected for random predictions (brown dotted curve). Note that about 20 TFs have
z-statistics larger than expected by chance. The green dots show the reverse-cumulatives
of z-statistics for the fits obtained with WMs in which the columns of each WM have
been randomly shuffled. The red dots show the reverse-cumulatives of z-statistics ob-
tained when fitting the original WMs to the in vitro map of nucleosome positions. Note
that both the green and red dots closely follow the distribution expected by chance. B:
The top 20 TFs that contribute most to in vivo nucleosome positioning sorted by their

z-statistic. The bars show the average quality score F' and standard-error s, for each
TF.
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performs better than expected by chance in explaining in vitro nucleosome positioning
(Figure 2.7A, red dots), i.e. including TFs does not help explaining in vitro nucleosome
positioning. This shows that the actions of a specific set of 15 — 20 TFs are crucial for
explaining the differences between in vivo and in vitro nucleosome occupancies.

Figure 2.7B lists the top 20 TFs and shows their quality scores on the test sets. The
fact that only around 20 TFs contribute significantly to nucleosome positioning raises the
question of what distinguishes these TFs from the others and we investigated a number
of hypotheses. One might hypothesize that the top TFs are simply those that are highest
expressed in YPD, or those which occupy most sites genome-wide. However, expression
data indicates that these TFs are not particularly highly expressed in YPD compared
to other TFs (Figure A.2.18, data from [58]). Consistent with this, the genome-wide
number of binding sites, as observed in genome-wide ChIP-chip experiments (Figure
A.2.19), is not generally higher for these TFs. Thus, the role of these TFs in nucleosome
positioning is not simply the result of increased binding or expression in YPD. Notably,
for a considerable number of TFs our model predicts essentially no binding sites, and
not all of these TFs are low expressed in YPD. It is conceivable that the low number of
predicted sites for these TFs indicates that these TFs do not compete with nucleosomes
but can bind to DNA which is wrapped around a nucleosome. We also investigated
whether the top 20 TFs have particularly high or low information content and found
that this is not the case (Figure A.2.20).

However, when we manually inspected the functional annotation of the top 20 TFs,
we noticed that roughly half of these TFs are known to be involved in chromatin remod-
eling. Since, among our 158 TFs only 27 have been previously implicated in chromatin
remodeling or nucleosome positioning, this amounts to a highly significant enrichment
among our top 20 TFs (p-value 0.0016, see Materials and Methods). This suggested that
the top 20 TFs may be characterized by interacting directly with chromatin modification
machinery. To investigate this more systematically we investigated the occurrence of

known direct protein-protein interactions between TFs and
1. Histones
2. Enzymes that modify histones
3. Proteins that are subunits of chromatin remodeling complexes

(see Materials and Methods). As detailed in Table 2.1, we find that our top 20 TFs are

highly significantly enriched for direct protein-protein interactions with all 3 categories,
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showing the strongest enrichment for interacting directly with proteins in chromatin re-
modeling complexes. These results strongly suggest that our top 20 TFs are characterized

by their ability to locally recruit chromatin modifiers.

Class Total links | Links p-value Enrichment
among top
20 TFs
Chromatin remodeler complexes | 287 7 9.2x 10~ | 3.26
Histone modification enzymes | 369 74 4.1%107° | 1.58
Histones 103 34 7.3%x107% | 2.6
All three classes 718 176 4.1%1071% | 1.94

Table 2.1: Statistical analysis of protein-protein interactions between TFs and chromatin
remodeling complexes, histone modification enzymes, and histones.

The fact that only those TFs that interact directly with chromatin modifiers con-
tribute significantly to explaining NFRs has interesting implications for the mechanisms
of nucleosome positioning. It suggests that the creation of NFRs depends on the actions
of chromatin modifiers whose activities lead to local expulsion of nucleosomes from the
DNA. That is, the mechanistic picture that emerges is that, initially, the competition be-
tween TFs and nucleosomes for binding DNA, as implemented in our model, determines
where TFs will end up binding DNA. Subsequently, in those places where TFs from the
specific class that can recruit chromatin modifiers are bound, the recruitment of these
modifiers will lead to local expulsion of the nucleosomes, leaving a larger region depleted
of nucleosomes. This mechanistic picture also explains our previous observation that the

predicted NFRs tend to be much narrower than those observed in the data.

2.3 Discussion

It is generally accepted that the packaging of DNA by nucleosomes in eukaryotes can
modulate the accessibility of TFs to their cognate sites and thereby have major effects
on gene regulation. In recent years there have been significant experimental efforts to
determine nucleosome positioning patterns genome-wide, and to analyzing how these
nucleosome-positioning patterns are established. As we discussed in the introduction,
there has been a considerable debate as to whether nucleosome positioning in Saccha-
romyces cerevisiae is predominantly controlled by intrinsic sequence specificity of the
nucleosomes, or that statistical positioning around barriers introduced by other DNA

binding factors is more important for nucleosome positioning, and different researchers
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have presented seemingly contradictory results in this regard. We feel that these apparent
contradictions may be reconciled by the results presented here.

The large majority of annotated nucleosomes and linkers genome-wide concern the
phasing of short linkers within dense arrays of nucleosomes, mainly inside genes. We
find that the positioning of these nucleosomes and short linkers crucially depends on the
sequence specificity of the nucleosomes, and that TFs contribute relatively little to their
positioning. Therefore, predicting all linkers and nucleosomes on a genome-wide scale,
the sequence specificity of the nucleosomes provides the main contribution to explaining
their positions. In contrast, we find that nucleosome specificity contributes little to ex-
plaining larger nucleosome free regions, especially those within promoter regions. As our
modeling shows, NFRs in promoters are predominantly explained by the DNA binding
of a specific class of 10 — 20 transcription factors. Thus, while genome-wide locations of
nucleosomes and short linkers are predominantly determined by nucleosome sequence-
specificity, the large nucleosome free regions in promoters that likely contribute much
more significantly to gene regulation, are determined mainly through the competitive
binding of TFs. Importantly, the fact that competition with TFs can not help explain
the in vitro nucleosome positioning shows that the contributions of the TFs is restricted
to in wvivo positioning. Thus, the competitive binding of TFs provides a quantitative
and mechanistic explanation for the differences between in vivo and in vitro nucleosome
occupancies.

That nucleosome free regions in promoters result from a competition between TF and
nucleosome binding is supported by a number of recent studies of individual promoters,
e.g. |9, 30, 53, 118]. In these studies the interplay of TF and nucleosome binding deter-
mines positions of NFRs and the resulting accessibility pattern has major consequences
for gene expression. Our results suggest that this mechanism is not restricted to a few
promoters, but is the typical situation genome-wide. Thus, whereas nucleosome sequence
specificity does have a major impact on genome-wide nucleosome positioning, precisely
those aspects of nucleosome positioning that have most impact on gene regulation are
rather determined by the competition between nucleosomes and TF binding.

Another major result from our study is that less than 20 of the 158 TFs that we
analyzed appear to have a significant effect on nucleosome positioning. As we have
shown, these TFs are not characterized by particularly high expression or large numbers
of binding sites in YPD, nor do they possess particular sequence specificities or DNA
binding domains. Instead, our analysis suggests that these TFs engage in specific protein-
protein interactions with chromatin remodelers, thereby effecting nucleosome eviction

much more dramatically than other TFs.
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Although the final predictions of our statistical mechanical model are quite com-
petent, i.e. in promoters 96% of all nucleosomes and 70% of all NFRs are correctly
identified, they are still far from perfect. This raises the question as to what additional
elements are missing from the model. The main error the model makes is failing to
identify roughly one third of nucleosome free regions as nucleosome free. This suggests
that the model misses additional factors that promote displacement of nucleosomes. As
most sequence-specific TFs in yeast are already represented in the model, and our results
suggest that only a small fraction of these TFs significantly affect nucleosome positioning,
it seems unlikely that the missing sequence-specific TFs play a major role in the overall
quality of the results. In contrast, as shown in Figure A.2.15, general TFs including the
RNA polymerase itself may play an important role in nucleosome positioning. In this
context it has also been suggested [127] that the well-positioned nucleosome immediately
downstream of T'SS may result from a direct interaction between general transcription
factors and the RNA polymerase with this nucleosome. Thus, including the recruitment
and binding of general TFs and RNA polymerase will likely further improve the model.

In addition, TF binding can recruit chromatin modifying enzymes that displace nucle-
osomes and alter histone tails. The fact that experimentally observed NFRs are typically
wider than the theoretically predicted ones suggest that the TF binding recruits chro-
matin modifiers which lead to a larger region of nucleosome exclusion than given by the
TF binding itself. Thus, feed-back from TF binding to nucleosome modification and
ejection as mediated by chromatin remodelers is a major feature that could improve the
model’s predictions. In summary, the picture that emerges from our study is that the
binding of a specific class of 10 — 20 TFs determines local recruitment of chromatin re-
modelers, which then mediate local expulsion of nucleosomes. The latter may further
positively feed-back on TF binding and thereby expand and stabilize the nucleosome-free
regions.

Although this work has focused on yeast, the competition between nucleosomes and
TFs for binding DNA may even be more crucial for transcription regulation in higher
eukaryotes. For example, in multi-cellular eukaryotes many gene regulatory elements
occur in distal enhancers, i.e. local clusters of TF binding sites a few hundred base pairs
in length, to which a combination of TFs binds to effect transcription at a promoter that
can be hundreds of kilobases away. Recent mapping of enhancers based on chromatin
marks has suggested that these enhancers are bound and activated in a highly tissue-
and condition-specific manner [38, 117]. An attractive simplified model for such tissue-
specific binding is that nucleosomes by default cause DNA to be inaccessible and that

TF binding is too weak to access individual TF binding sites. Only in areas where a
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cluster with many binding sites for precisely that subset of TFs that is highly expressed
in the condition will these TFs jointly outcompete the nucleosomes and create a region
of DNA accessibility and TF binding, i.e. similar to the qualitative model presented in
[71]. We believe that the statistical mechanics model that we have used here, might also

be useful to quantitatively investigate such models of enhancer function.

2.4 Materials and Methods

2.4.1 A statistical mechanical model of competitive binding of proteins
to the DNA

Based on a combination of ChIP-chip data, in wvitro binding data, and computational
analysis [8, 33, 101], we previously curated [19] a collection of 158 position specific weight
matrices (WMs) representing the sequence-specificities of 158 S. cerevisiae TFs. We let
we(i, o) denote the WM probability that position ¢ in a binding site for TF ¢ contains
nucleotide . Consequently, the probability that a binding site for TF ¢ has sequence s

is given by
It
P(slt) = [ wili, s0), (2.2)
i=1

where I; is the length of the WM for TF ¢ and s; is the nucleotide at position 7 in sequence
segment s. For our statistical mechanical model we wish to determine energies F(s|t)
for the binding of sequence segment s to TF . We make the standard assumption that
the binding energy is a sum of individual contributions from different nucleotides in the

site, i.e.
lt

E(s|t) = Ef + Y Ey(i, i), (2.3)
=1

where Ef is a sequence-independent contribution to the binding energy. Under this
assumption, the sequence-specific energy components Fy(i, ) can be shown [14, 114] to

be related to the WM components through
Et(iva) =" log[wt(iva)L (2'4)

where ; is a scale parameter, and the binding energy is expressed in units of k7.
There has been a significant amount of effort into modeling the sequence specificity
of nucleosomes using data from both in vivo and in vitro experiments, e.g. [48, 55, 59,

95]. As shown in Figure 2.1A, different models of nucleosome sequence-specificity give

40



2.4. MATERIALS AND METHODS

CnucleﬁE"w,(Sl) CTFleﬁETFl(Sz) CTFZGSETFZ(SB) CnucleﬁE"”d(S'l) CnudeﬁEnm(Ss) CTFSESETFS(SS) CnucleﬁEnucz(Sv)
Conf. 1 rarm .
Con. 2 B ap - O
Conf. 3

ACTAGTTA TTGTAT - "
.

Conf. N - g e -

Figure 2.8: Illustration of example configurations of proteins bound to DNA. The top
line indicates contributions from the individual binding sites to the overall probability of
the configuration. Note that for illustration purposes, the sizes of TFs and nucleosomes
are not shown to scale, e.g. the sizes of nucleosome footprints are much larger in reality.

predicted occupancies that are very highly correlated, and the model of [48] exhibits
the most robustly high performance. We thus took the model of [48] as the basis for
calculating binding energies E(s|nucl) of the nucleosome to each possible 147 bp stretch
s. Specifically, the raw probability P(s|nucl) of a 147 bp long sequence segment s under
Kaplan et al’s model can be obtained using the “nucleosome prediction.pl” script, that
is provided by the authors on their website, with default parameters and using the option

“raw__binding”. Using this we define a binding energy under the Kaplan model as
FExapian(s) = —log[P(s|nucl)] + ¢, (2.5)

In order to allow us to tune the sequence specificity of the nucleosomes, we introduce a

similar scale parameter v,y to obtain
E(SIHUCI) = ’VnuclEkaplan(S)- (26)

Note that, at ynuea = 1, the sequence-specificity of this model will be equal to that of
Kaplan et al’s model, whereas at v, = 0 nucleosomes will have no sequence preferences
whatsoever. For notational simplicity, in the following we will consider the nucleosome

as just another member of the set T' of all DNA binding factors ¢.

Let C denote a (non-overlapping) configuration of TFs and nucleosomes bound to
the genome and let Sy denote all segments in the genome where a binding site for factor

t occurs. Using the standard Gibbs-Boltzmann approach, the probability of finding the
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cell in configuration C' is given by

P(Cle,7) = H H cre PEGI (2.7)

t seS;

where ¢; is the concentration of TF t, 5 = 1/(kpT) is the inverse temperature, and Z is

7 = ZHHC@ (sft (2.8)

t seSy

the partition function

Note that the probability depends on the scale factors v through the dependence of the

binding energies E(s|t) on the scale factors.

Note that, since we will be fitting the scale factors ~;, we can define

=Py (2.9)

and fit the 4;. For notational simplicity, we will drop the tilde and refer to these rescaled
gammas as simply ;. Note that this is equivalent to measuring the energy in units of
kpT.

Using only information about known binding sites, i.e. the WM entries w?,, we can-
not determine the sequence-independent contribution Ef for each TF, which essentially
controls how generally ‘sticky’ the TF is to DNA. To allow the comparison of binding
energies of different TFs on a common scale we set Ef such that, in the limit of low TF
concentrations, each TF has equal binding to the yeast genome. Specifically, we set Ef
such that the average (e~ F(I1)) = 1, when averaging over all sequence segments s in the

genome.

Using this reparametrization the probability of a configuration becomes simply

P(Cle, ) H H cre =B 41 22 loglwe (4,s4)] (2.10)

t seS;

Figure 2.8 shows a cartoon illustrating various configurations C' and the factors con-

tributing to their probabilities.

The partition function can be calculated efficiently using recursion relations variously
known as transfer matrices or dynamic programming, and this has been routinely used
in the field to sum over non-overlapping configurations of hypothesized binding sites,

e.g. [18, 83, 87, 114, 119]. Let Z,, denote the partition sum for all configurations up to
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position n in a given chromosome. We then have

= Tp1 + Z Ty, e Zit:llog[wt(i,snfzﬁi)]_ (2.11)
t

Similarly, we can calculate the ‘backward’ partition sums B, from position n to the
end of the chromosome. Finally, the probability that a binding site for factor ¢ covers
positions (n + 1) through (n + [;) is given by

c It ;
7. cre— WEE+7e 220 loglwi(isnti)] B
P(t,n|c,y) = ncte

n+le+1 (2 12)
Zy ’ '

where L is the chromosome length. The occupancy of factor ¢ to position n is then
given by O(t,n|c,y) = Z?:n—lt-i-l P(t,n|c,v). Thus, given a set of scale factors v and
concentrations ¢, we can efficiently calculate the occupancies of all 158 TFs and the

nucleosomes across the entire yeast genome.

2.4.2 Statistical positioning of nucleosomes

As first shown by Kornberg and Stryer [52], the repeating nucleosome pattern can be
observed around a well-positioned barrier along the DNA which prevents binding of
nucleosomes (Fig. 2.9A). The oscillating pattern of nucleosome occupancy occurs even
assuming that nucleosomes lack any sequence specificity. The phenomena is usually
called statistical positioning of nucleosomes. This phenomena arises from assumptions
that nucleosome packaging is very tight (= 80% of the genome) and nucleosomes can’t
overlap. Since nucleosomes can’t slide through the barrier, the configurations which
contain nucleosomes just near the barrier are more likely. The positioned nucleosomes
just near the barrier force positioning of all nucleosomes in the nucleosome array, since
the tight packing restricts their lateral movement. Importantly, the positioning becomes
weaker with the distance from the barrier. For example, when nucleosome coverage of
the genome is 80% the effect disappears at distance corresponding to 4-5 nucleosomes
(Fig. 2.9A).

Since transcription factors have to compete with nucleosomes for binding to DNA the
statistical positioning phenomena have important effect on TF binding efficiency. In the
model with a barrier and a binding site for a TF, the binding efficiency have oscillatory
behaviour (Fig. 2.9B). In other words, at the same concentration of TF and the same
binding energy of the binding site, the binding efficiency crucially depends on the position

relative to the barrier.
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Figure 2.9: A: Statistical positioning of nucleosomes. A well-positioned barrier on
the DNA leads to a periodic pattern of nucleosome positioning, even in the absence
of sequence-specificity in nucleosome binding. B: Statistical positioning of nucleosome
affects binding efficiency of TFs. TF binding to a single TFBS at different distances from
a barrier shows a periodic pattern with period of roughly 1 nucleosome and amplitude
increasing with overall nucleosome density.

Experimentally determined positions of nucleosomes and linkers

To compare the ‘raw’ occupancies as predicted by various models of nucleosome speci-
ficity and measured across several in vivo and in vitro experiments, we first downloaded
the per base occupancy predictions provided by [48] and [59] and used these predicted oc-
cupancies directly. We also obtained raw data from the experiments [28, 48, 55, 69, 100].
To obtain per-base nucleosome occupancies we calculated, for the ChIP-seq data, the
number of reads overlapping each position and log-transformed these read counts. For
the ChIP-chip data we log-transformed the chip signal. We observed that there is a
very small number of positions for which sometimes aberrantly high or low signals are
reported. To avoid having these outliers skew the observed correlations we removed the
0.5% of genomic positions with highest signal and 0.5% with lowest signal. We then
directly calculated Pearson correlation coefficients between all data-sets and all predic-

tions.

For the in vivo data, we make use of the reference map of nucleosomes and linkers for
S. cerevisiae growing in YPD that was constructed by combining 6 different experimen-
tal data-sets in [45]. We only retained nucleosomes that were observed in all 6 datasets
and have occupancy bigger then 80% (according to the authors’ annotation). This set

contained 21252 nucleosomes covering 26% of the S. cerevisiae genome, and covers ap-
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proximately 90% of all annotated nucleosomes in [45]. Linkers were defined as regions
lying in between segments that were annotated as nucleosomes in any of the 6 data-sets.
This set contained 60’448 linkers covering 26% of the S. cerevisiae genome. As observed
in [45] the distribution of linker lengths is bimodal and we separately considered ‘short
linkers’ (less than 80 bps long) and ‘nucleosome free regions’ (longer than 80 bps) in our
analysis. There were 45’981 short linkers and 14’467 nucleosome free regions, covering
9% and 17% of the genome, respectively. We also separately considered the quality of
the predicted nucleosome positions in promoter regions, defined as running from 500 bps
upstream to 500 bps downstream of the T'SS for each gene. The TSS definitions, as well
as the definitions of the 3’ ends of genes, were taken from [74].

To assess the reproducibility of annotated nucleosome positions across the 6 exper-
imental data-sets we calculated, for every nucleosome in the reference annotation, the
standard-deviation in the positions of the associated annotated nucleosomes in each of
the 6 data-sets. To compare the reproducibility of the annotated nucleosomes with what
may be expected by chance, given the annotation procedure, we created randomized
data-sets in which each sequencing read is mapped to a randomly chosen location in the
genome. We then applied the same annotation procedure to this randomized data and
calculated standard-deviations of the positions of annotated nucleosomes in the same
way.

We constructed a reference map of in vitro nucleosome positioning using 3 indepen-
dent data-sets from [48, 127, 128| using a procedure analogous to the one used in [45].
To annotate nucleosomes for every data-set we first run the GeneTrack software [1] us-
ing parameters e = 294 (width of the exclusion zone corresponding to configurations
with non-overlapping nucleosomes), s = 20 (width of the smoothing gaussian kernel),
u = d = 73 (half-width of the peak) and F = 1 (cut-off for peak height). The values of
parameters e and u and d are dictated by the 147 bp width of the nucleosome footprint.
Since the width s = 20 of the smoothing kernel is much smaller than the nucleosome
width, the final nucleosome annotation is insensitive to the precise width of this kernel.
Similarly, raising the cut-off F' by 2-fold or 4-fold would only slightly reduce the number
of called nucleosomes (i.e. 1% and 5% respectively) and not substantially affect the re-
sults presented in the paper. We use the annotated nucleosomes as input to GeneTrack
(with the same settings), i.e. as if each annotated nucleosome were a read, to produce
annotated reference nucleosomes. We retained the roughly 75% of annotated reference
nucleosomes that occur in all 3 data-sets, leaving 18’867 reference nucleosome genome-
wide. Reference linkers were defined as regions not covered by nucleosomes in any of the

annotations. There were 30’824 such linkers genome-wide.
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Assessing the match between predicted nucleosome coverage and exper-
imental nucleosome positioning

To compare the experimentally annotated linker and nucleosome regions with the pre-
dicted nucleosome coverage we proceeded as follows. For a given set of parameters, i.e.
concentrations ¢ and scale parameters v, we first calculate the median of the predicted
nucleosome occupancy across each annotated linker and nucleosome region. Given a crit-
ical median occupancy level O, we then classified each region as either ‘nucleosome’
n when its median occupancy was larger than Ot and ‘linker’ [ when its median occu-
pancy was less than or equal to Ot We then determined the fraction of regions both
predicted and annotated as nucleosome Py, (Oguit), the fraction of regions predicted as
nucleosome and annotated as linker P,;(Ogit), the fraction of regions predicted as linker
and annotated as nucleosome Py, (Oqit), and the fraction both predicted and annotated
as linkers Pj(Ocrit). Using these we determined the mutual information between the

predictions and the annotations based on the experimental data:

132' j (Ocrit )

Pi (Ocrit ) Pje

I(Ocrity c, 7) = Z Pz '(Ocrit) log ) (2'13)

i,j€{n,l}

where P;(Ogit) is the fraction of all regions predicted as i, P; is the fraction of regions
annotated as j, and we have explicitly indicated that this mutual information depends
on the concentrations ¢ and scale factors v used in the predictions. We then define the
mutual information I(c,v) as the maximal mutual information that can be obtained

varying the critical occupancy O, i-e.

I(c,v) = max [I(Ocit, ¢,7)] - (2.14)
crit
Finally, to normalize the mutual information on a more intuitive scale, we divide by the
maximal possible mutual information, i.e. the entropy of the experimentally observed
distribution:
H = —P% log[P%] — Py log[PY) (2.15)

to obtain

Fle,y) = (?I”). (2.16)

Thus, F(c,7) is the fraction of the information regarding nucleosome and linker posi-

tioning that is captured by the predictions, which we refer to as the quality score. We

calculate the mutual informations I and quality score F' in an entirely analogous man-
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ner when considering a particular subset of experimentally annotated nucleosomes and

linkers, i.e. excluding short linkers and/or focusing only on promoter regions.

To obtain predicted nucleosome coverage distributions we simply calculate the pre-
dicted occupancy at each position in the genome as described above. To obtain nu-
cleosome coverage distributions from different experimental data-sets we proceeded as
follows. As has been observed previously [104], especially for ChIP-seq data-sets, the
variance in read coverage along the genome is too large to be consistent with the known
overall nucleosome coverage of roughly 80%. Consequently, a naive normalization in
which one assumes read-coverage to be directly proportional to nucleosome occupancy
would lead to unrealistically low overall nucleosome coverage. To address this, we nor-
malize the data by rescaling log read-coverage, similar to the normalization procedure

we developed previously for next-generation sequencing data [10].

Specifically, for ChIP-chip data (from a tiling array with 4 bp resolution) we obtain
a signal z; corresponding to the log-ratio of signal from the nucleosome and background
sample for each probe i along the genome. Similarly, for ChIP-seq data we extend each
read to length 147 bp and defined the ‘signal’ x; at each genomic position i as the
logarithm of the number of reads overlapping position i. We assume that the signal x;
is proportional to the logarithm of the probability P; that a nucleosome is bound to the

corresponding segment in the genome, i.e
x; = Mog(P;) + ¢, (2.17)

where A and ¢ are unknown constants. We determine ¢ and A by demanding that the
average coverage probability matches the experimentally observed average nucleosome
coverage of 0.8, and that all coverage probabilities P; must lie in the interval [0, 1].
Finally, there is a small number of probes (0.1 percent of all probes) with an abnormally
high signal z; and we removed these outliers before fitting ¢ and A. As shown in Figure
A.2.10, this procedure leads to highly similar coverage distributions for different data-

sets.

Predicted average nucleosome coverage profiles around transcription starts and ends
were obtained by simply averaging the predicted nucleosome coverage at different posi-
tions relative to T'SS and transcription end over all genes. We similarly averaged the

experimental coverage profiles relative to transcription starts and ends.
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Model fitting

To optimize the concentration and specificity scaling parameters (c,7y) we used the
Melder-Mead algorithm in combination with a simulated annealing algorithm that is
implemented in the GNU Scientific Library (GSL). To avoid over-fitting when fitting
different models with varying numbers of parameters we used a 80/20 cross-validation
scheme for each model and data-set. That is, for each data-set and model, we randomly
divide the data-set of annotated nucleosomes and linkers into 5 equally sized sub-sets.
We then perform the parameter fitting 5 independent times, each time optimizing the
parameters on 80% of the data and then evaluating the final quality score of the model
on the ‘test-set’ containing the remaining 20% of the data. Whereever quality scores are

shown we show the average quality score and its standard-error across the 5 test-sets.

For the in vivo reference set of nucleosomes and linkers, we first performed optimiza-
tions of the nucleosome-only model with different (fixed) values of the specificity scaling
parameter Ynuel, i.€. optimizing only the concentration cp,e. For both the in vivo and in
vitro reference sets we optimized the two-parameter nucleosome-only model (obtaining
an optimal Yy, = 0.47 for the in vivo data, and vypu = 0.41 for the in vitro data). After
this we fixed the nucleosome specificity and concentration to their optimal values and,
for the in vivo data, fitted the model with all TFs, fitting the concentrations and scale

parameters for all TFs.

For the biophysical characterization of the fitted model, we first averaged the fit-
ted concentrations ¢ and scale parameters vy over the 5 training sets. We then cal-
culated the predicted posterior binding probabilities P(t,n|c,) for every factor ¢ (i.e.
the nucleosomes and all TFs) at every position n in the yeast genome. For each fac-
tor t, we then calculated the fraction of the genome f; covered by this protein: f; =
It Y, P(t,n|c,v)/Lgenome, where l; is the length of the footprint of protein ¢ and Lgenome
is the length of the yeast genome. We also calculated the average binding energy (FE;) of
the binding sites of each protein ¢, i.e. (Ey) = > Ei,P(t,n|c,v)/]>_, P(t,nle,v)], and
its standard deviation o(Ey) = v/(E?) — (E;)2. Here Ey, is the binding energy of protein
t at position n, measured in units kgT. Finally, we calculated the average entropy H;

per binding site:

- Zn P(tvnlcf)/) IOgQ[P(tvn’Q 7)] + (1 — P(t7 n|c, 7)) IOgQ[l — P(t, n|c, 7)] ]

H;
> P(t,nle,v)

(2.18)

To calculate the information content for a TF ¢, as shown in Figure A.2.20, we used
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the standard formula

wy (i, )

Ly
IC(t,’}/t) = Z Z wt(iva) 10g2[

i=1 a€{A,C,G,T}

1, (2.19)

(67

where the p, = 0.25 are background probabilities (which we chose uniform) and the
wy(i, ) are the weight matrix entries. Note that, to incorporate the scaling parameter

7, the weight matrix entries are rescaled according to:

[wunscaled (27 O‘)]’yt
o [wunscaled (i7 O/)}%

Wscaled (1, @) = 5 (2.20)

To assess the contribution of different TFEs we fitted, for each TF, the model with
nucleosomes and this single TF. For each TF we calculated, on each of the 5 test-sets, the
difference dF' between the quality score using only the nucleosome, and the quality score
with the TF added, and determined the mean (dF) and standard error SE = o(dF)/\/5
over the 5 test-sets. We then ranked the TFs by the z-statistic z = (dF)/SE. These fits
and statistics were obtained separately for both the in vivo and the in vitro data. Finally,
we also created a set of 158 randomized WMs by, for each WM, randomly shuffling
the columns of the WM. Note that this randomization conserves both the sequence
composition and the information scores of the WMs. We then performed the fitting with
these 158 randomized WMs and obtained z-statistics in the precise same way.

For the in vivo data we then also fitted models including the top 5, 10, 20, and 30
TFs from the list ranked by their z-statistic, re-optimizing all parameters. Finally, to
assess the contribution of the nucleosome specificity when TFs are added for the in vivo
data, we fitted the model including all TFs, but without nucleosome sequence specificity,

i.e. setting vpue = 0.

Annotating chromatin related TFs

To annotate TFs with known roles in chromatin dynamics we used the Gene Ontology
(GO) annotations available from the Saccharomyces cerevisiae genome database. We
considered a TF ‘chromatin related’ when its GO annotation included any of the following

categories:
e G0O:0016568 chromatin modification.
e G0O:0006338 chromatin remodeling.

e (GO:0008301 DNA bending activity.
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e (GO:0031491 nucleosome binding.
e (G0O:0003682 chromatin binding.

e G0O:0033698 Rpd3C(L) A histone deacetylase complex which deacetylates histones

across gene coding regions.

Finally, we also added the TFs identified in [8] to this list. To calculate the over-
representation of ‘chromatin related’ TFs among the top 20 TFs effecting nucleosome

positioning, we performed a simple hypergeometric test.

Protein-protein interactions between TFs, histones, and chromatin re-

modelers

We first annotated yeast proteins that are either (1) part of chromatin remodeling com-
plexes, (2) histone modification enzymes, or (3) histones themselves. Subunits of chro-
matin remodeler complexes were taken from |11, 103]. As subunits of histone modification
enzymes we took genes that have GO annotation "covalent chromatin modification" and
all children GO categories, i.e. histone methylation, acetylation etcera (108 genes in to-
tal). Information about protein-protein interactions were downloaded from the STRING
database (http://www.string-db.org, file ‘protein.links.detailed.v9.0.txt.gz‘), using only
experimental evidence with a cutoff of 400. After determining all known protein-protein
interactions between the 158 TFs and the three classes of proteins (histones, histone
modification enzymes, and subunits of chromatin remodeling complexes) we calculated
enrichment of interactions between each class and the top 20 TFs that significantly ex-
plain nucleosome positioning. To assess the significance of the enrichment we used a

simple hypergeometric test. The results are listed in Table 2.1.

2.5 Appendix
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Figure A.2.10: Comparison of nucleosome occupancy distributions across three exper-
imental data-sets and the model including all TFs. Cumulative distributions of nucle-
osome occupancies as measured in [55] (red dotted curve), as measured in [48]| (green
dotted curve), as measured in [128] (grey dotted curve), and as predicted by the model
including all TFs (blue curve).
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Figure A.2.11: Comparison of the model’s training and test scores shows there is no
over-fitting. For each of the 158 yeast TFs, we fitted a model containing a single TF
plus nucleosomes to the in vivo reference map of nucleosomes and linkers genome-wide,
optimizing the quality score F'. We ranked all TFs by the z-statistic they attain and
similarly fitted models that contain the nucleome plus the top 5, top 10, top 20, top 30,
and all TFs. For each model we used 80/20 cross-validation, i.e. we fitted the model
on 80% of the data and than evaluated it on the test-set of the remaining 20%. We
performed this fitting 5 times and then calculated both the mean and standard-deviation
of the quality score F' obtained on both the training and test-sets. The figures shows a
scatter of the quality scores on the training and test-sets for each of the models fitted. The
error-bars denote the standard-error across 5 repeats. The figure shows that, although
the test-set scores tend to vary more than the training set scores, the test scores are not
consistently lower than the training scores, i.e. the model does not show any over-fitting,.

52



2.5. APPENDIX

All linkers

Long linkers (NFRs)

‘ m All TFs: Linkers = = = All TFs: Nucleosomes === No TFs: Linkers = = =

No TFs: Nucleosomes‘

1 1
A B
o sl 204 osl 204
© a ]
§ >03 203
£ £ 0.23
) os 3 0.20 06 8
g 02 047 G2 0.8
s . No TFs All TFs 04 No TFs All TFs
C
(]
) 02 02
% o1 o0z 03 o4 % o1 o0z o0s
—
X
Kol
e
c' D'
0.8 004 08 904 0.38
(%)) 5 5
e a a
(O] 203 203
+ 06 I 0.22 06f 3 0.23
o 3 3
E Co2 0.16 CGo.2
g ——
o 04t No TFs All TFs 04 No TFs All TFs
S
(a
02 02
0 0
0 01 02 03 04 05 06 07 08 09 1 0 o1 02 03 04 05 06 07 08 09 1

Nucleosome coverage

Figure A.2.12: Quality of the predicted nucleosome positioning profiles when includ-
ing competition with TFs. The insets in each panel show the quality scores F of the
model both including TFs (blue bar) and without TFs (green bar) in predicting anno-
tated nucleosome and linker positions. The error-bars indicate the standard-error across
5 test sets. The curves in each panel show the cumulative distributions of predicted nu-
cleosome coverage in annotated nucleosomes (dotted lines) and annotated linkers (solid
lines) for the model using only nucleosomes (green) and the model including TFs (blue).
A: Predicting all annotated linkers and nucleosome genome-wide. B: Predicting anno-
tated nucleosomes and nucleosome free regions (long linkers) genome-wide. C: Predicting
annotated nucleosomes and linkers in promoter regions. D: Predicting annotated nucleo-
somes and nucleosome free regions (long linkers) in promoter regions. Note that, for all 4
data-sets, inclusion of the TFs has very little effect on the coverage distribution observed
at nucleosomes (i.e. annotated nucleosomes are generally predicted to be highly occu-
pied) but that the TFs significantly lower the predicted coverage at annotated linkers,
especially the long linkers in promoters.
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Figure A.2.13: Comparison of quality scores F' with model assessment based on ROC
curve analysis. A: For the models with no TFs, the top 1, 5, 10, 20, 30, and all TFs,
we obtained a ROC curve for the classification accuracy of the model, i.e. by varying
a cut-off in the predicted nucleosome coverage we calculated the rate of true-positive
and true-negative prediction of nucleosomes/linkers. Similarly to the results obtained
with the F' quality score, the area under the curve (AUC) increases rapidly when the
first few TFs are added and the performance saturates after 10 — 20 TFs are added. B:
Performance as measured by AUC for the models with increasing numbers of TFs, both
for all linkers genome-wide (blue bars), as well as long linkers (NFRs) at promoters (red
bars). Apart from a change in scale, the results look virtually identical to those obtained
with the quality score F. C: A scatter of the quality score F' against the AUC for all
fitted models shows that the two measures of performance are very highly correlated.
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Figure A.2.14: Nucleosome and TF coverage profiles around starts and ends of genes.
A: Averaged nucleosome coverage near the transcription starts. B: Average nucleosome
coverage near the ends of genes. Each curve shows the average nucleosome coverage at
different positions relative to transcription start or end averaged over all genes. Red
dashed lines correspond to experimentally measured nucleosome coverage (data from
[55], right vertical axis). The solid lines correspond to the predicted nucleosome coverage
by the model including only nucleosomes (light green) and the model including all TFs
(blue), left vertical axis. C: Averaged TF coverage (summed over all 158 TFs) relative
to transcription start sites. D: Average TF coverage near transcription ends.
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Figure A.2.15: Comparison of nucleosome coverage around ends of genes with binding
profiles of RNA polymerase subunits. A: Average binding profile of the RNA polymerase
IT sub-unit Rpo21 around 3’ ends of genes. B: Average binding profile of the general
transcription factor Sua7 around 3’ ends of genes. The blue curve corresponds to the
average ChIP signal (log-ratio, left vertical axis) at each position from 1000 bps upstream
to 1000 bps downstream of transcription end. The green dashed line shows the average
ChIP signal when only genes whose ends are distal to the next transcription start are
included. For reference, the red curves show the experimentally observed nucleosome
coverage profiles (data from [55], right vertical axis). The results indicate that Rpo21
and Sua7 are observed to bind precisely in the region corresponding to the 3’ nucleosome
depleted region. The fact that the binding profiles look similar for 3’ ends of genes that
do not have a neighboring transcription start site nearby shows that the Rpo21 and Sua7
binding is not associated with a nearby promoter.
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Figure A.2.16: Performance of the model with the nucleosome and all TFs in predicting
the observed target promoters of the TFs Abfl, Rebl, and Sum1. The ChIP-chip binding
data of [35] reports, for each TF, which promoter regions are bound by the factor and
we used these as a reference set to compare with our predictions. For each promoter and
each TF, we calculated a total ‘target score’ for the model by summing the predicted
posterior probabilities of binding across all positions in the promoter. We then obtained
ROC curves by varying a cut-off on this ‘target score’. The figure shows the ROC
curves of True positive and False positive rates obtained. Although our model was only
optimized to fit observed nucleosome positioning, we see that it also accurately predicts
the target promoters of these three TFs.
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Figure A.2.17: Distribution of test scores for the models with nucleosomes and a single
TF. For each TF we fitted the model including nucleosome specificity and the single
TF on the training set and then determined the quality score (fraction of explained
information) on the test set of annotated nucleosomes and linkers. We sorted TFs by
their quality score and the figure shows the quality score as a function of TF number
in this sorted list. For reference, the quality score obtained with the model without any
TFs, i.e. nucleosome specificity only, is shown as a black dashed line. Note that the
majority of TFs do not improve the quality score over the nucleosome-only model. The
quality scores of the top 20 TFs are indicated in red.
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Figure A.2.18: Relation between TF significance for explaining nucleosome position-
ing and mRNA expression levels in YPD. For each TF a z-statistic was calculated (see
Materials and Methods) that quantifies the extent to which the TF contributes to ex-
plaining nucleosome positioning genome wide. For each TF the z-statistic is shown on
the horizontal axis against the TF’s mRNA expression level in YPD expressed in tags
per million (vertical axis, data from [58|, note that the method smsDGE described in
[58] does not require normalization by transcript length). Red dots correspond to the 20
TFs that most significantly contribute to nucleosome positioning. The figure shows that
there is little correlation between expression level and the z-statistic.
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Figure A.2.19: Relation between the total number of promoters with binding in YPD
and the significance in explaining nucleosome positioning of TFs. For each TF a z-
statistic was calculated (see Materials and Methods) that quantifies the extent to which
the TF contributes to explaining nucleosome positioning genome wide. For each TF the
z-statistic is shown on the horizontal axis against the total number of promoters that
have binding of the TF in YPD (p-value < 0.05) as measured by [35]. The top 20 TFs

are indicated in red. There is no clear correlation between the total number of target
promoters in YPD and the z-statistic.
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Figure A.2.20: Relation between the information content of each TF’s binding motif
and its significance in explaining nucleosome positioning. For each TF a z-statistic was
calculated (see Materials and Methods) that quantifies the extent to which the TF con-
tributes to explaining nucleosome positioning genome wide. For each TF the z-statistic
is shown on the horizontal axis against the information content (in bits, vertical axis)
of its binding motif (i.e. a position specific weight matrix). Note that the information
content calculation takes into account the binding specificity factor 7, that is fitted for
each TF t. The top 20 most significant TFs are indicated in red. Note that there is no
correlation between information content and z-statistic.
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Chapter 3

Nucleosome mediated cooperativity

between transcription factors

In chapter 2 we focused on the question of how transcription factors may affect nucleo-
some distribution and showed that competition between nucleosomes and transcription
factors can significantly improve perfomance of the biophysical model by explaining nu-

cleosome free regions in promoters of genes.

This chapter is devoted to the question of how competition with histones affect bind-

ing of transcription factors.

Biophysical modeling predicts that competition between nucleosomes and transcrip-
tion factors (TF) for binding to nearby sites on the genome can induce both positive
and negative cooperativity in TF binding. In particular, we show that the cooperative
effect depends periodically on the distance between transcription factor binding sites
(TFBSs), with positive cooperativity for sites less than 40 bp apart, negative coopera-
tivity for larger distances up to one nucleosome length, and again positive cooperativity

for distances just above one nucleosome length.

A comprehensive statistical analysis of TFBS positioning for 158 TFs of Saccha-
romyces cerevisiae and for 189 TFs of Mus musculus and Homo sapiens shows that many
pairs of TFs have positioned their binding sites so as to optimize positive cooperativity
of their binding. Moreover, this positioning is most significant for a number of TFs that
have already been implicated in opening chromatin. In summary, our results show that
the “grammar® of the regulatory code in yeast promoters is shaped to a significant extent

by nucleosome-mediated cooperativity of TFs.

63



CHAPTER 3. NUCLEOSOME MEDIATED COOPERATIVITY
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3.1 Introduction

Binding of TFs to regulatory regions is a key event in regulation of transcription activity
of genes. Most TFs recognize their cognate binding sites in sequence specific manner. Re-
cent analysis of binding motifs reveals striking differences of gene regulation in prokaryots
and eukaryots [122]. The analysis of binding motifs shows that, in contrast to prokaryots,
the information content of TF’s binding motifs in eukaryots is not high enough to rec-
ognize binding sites with sufficient specificity. In other words, whereas a typical binding
motif in prokaryots provides enough information to recognize a unique and functional
binding site, the eukaryotic TF’s binding motifs are not so specific to distinguish func-
tional binding sites from background DNA. Indeed, most of potential binding sites for a
TFs in eukaryots are unoccupied and nucleosome occluded. Nevertheless, it has been sug-
gested that the paradox of information deficiency of binding motifs in eukaryots can be
resolved by organizing binding sites in clusters. For instances enhancers and promoters
are natural examples of such clusters of TFBSs.

Due to development of experimental techniques, such as microarray and next-generation
sequencing, it is now possible to map the occupancy of TFs across a huge number of cell
types during development and differentiation in variety of organisms. The analysis of
these maps revealed that regulatory regions are activated in highly cell type specific and
time dependent manner|[23, 38, 117, 123|. The mechanism of how the cell type specific
activation of regulatory regions is achieved in multicellular organisms is still unclear.
The "histone code" could serve as an explanation of this phenomena [44]. It has been
suggested that the epigenetic histone marks can serve as code which define the local
chromatin compaction in the genome, and therefore the accessibility of DNA to TFs.
Indeed, the presence of certain types of posttranslational histone modifications is highly
correlated with DNA accessibility, activity of regulatory modules and transcription rate
of nearby genes [7, 56, 108]. However, the mechanisms by which the chromatin marks are
targeted to specific genomic locations are not yet clear. It has been observed that some
sequence specific TFs can recruit chromatin modifying complexes which in turn induce
local chromatin modification and reorganization around TF binding sites [13, 75]. It is
likely that there are multiple feedback loops between TFs binding, activity of chromatin
modifying complexes and activity of ATP-dependent remodeling complexes. Thus, the
hypothesis that TFs play a crucial role in targeting chromatin marks once again raises the
question about what mechanisms control binding of TF to their cognate binding sites.

It has been suggested that mechanism of nucleosome-mediated cooperativity may

be the ground of so called “combinatorial gene regulation, where the combination of
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binding sites, their local arrangement relative to each other, TF’s concentrations and
local nucleosome occupancy determine activity of a regulatory module [71]. In other
words, whether or not a certain binding site is occupied by a TF depends not solely on a
sequence of the binding site and TF concentration but also on the local context of nearby
TFBSs and nucleosomes.

The comprehensive biophysical model considered in chapter 2.4.1 and in other studies
(e.g. [73, 88]) takes into account nucleosome sequence specificity along with competition
between nucleosomes and TFs. It predicts that competition between nucleosomes and
TFs for binding to nearby sites on the genome can induce both positive and negative co-
operativity between TFs. The theoretical results suggest that distance between adjacent
binding sites is the major determinant of the cooperativity effect, and the strength of the
cooperativity has oscillatory behavior with a period of roughly one nucleosome length.

In this work we study how architecture of a cluster of TFBSs affect binding of TFs.
Considering the simplest model of two binding sites next to each other we summarize
previously known theoretical results [88|, namely 1) spacing between binding sites is
the major factor which determines the cooperativity effect, 2) the cooperativity of TFs
with coordinated binding activity can reduce noise in TF binding. However, the main
result of this is study is investigation of spacing between binding sites in real genomes.
For the first time we show that some TFs in yeast, mouse and human have positioned
their binding sites to account for nucleosome mediated cooperativity. Remarkably, this
positioning is most significant for a number of TFs that have already been implicated in
opening chromatin. Our results support the idea of a special class of TFs, often reffered as
"pioneer" TFs, which bind to DNA prior to transcription initiation and help in organizing

local chromatin configuration.

3.2 Results

3.2.1 Nucleosome mediated cooperativity between transcription fac-
tors

The biophysical model described in Chapter 2.4.1 allows us to rigorously calculate the
probability of binding as a function of concentration and binding energy of TFs. To
investigate effects induced by competition between nucleosomes and TFs we consider the
most trivial architecture of a cluster of TFBSs. The toy promoter comprises only two
binding sites for two TFs , and nucleosomes without sequence specificity (see the inset
in the Fig. 3.1B).
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Figure 3.1:  The cooperativity effect depends periodically on the spacing between
TFBS. A: The cooperative effect as a function of concentration of T'F5 and distance
between binding sites. The axes X and Y represent the distance between binding
sites and concentration of T'Fy correspondigly. The Z-axis represents the difference
6Co5 = Cos1woBs — Cos0nes for TFy, namely how the Cys for TF; changes after
addition of TF, into the system (see the inset). B: The inset illustrates the toy model
that we investigate, namely a cluster of two TFBS (promoter) and two TFs which have
to compete with nucleosomes that have no sequence specificity. The curves at the plot
illustrate binding curves for different promoter architectures. The green curve is a bind-
ing curve for T'F; without cooperativity effect, i.e. at promoter without a binding site
for TF, (No cooperativity), set of blue curves are binding curves for T'F; at promoter
with positively cooperating TFs at different concentrations of T'F» (Positive cooperativ-
ity (d = 0 bp)), set of red curves are binding curves for T'F} at promoter with negatively
cooperating TFs at different concentrations of T'Fy (Negative cooperativity (d = 145

bp)).

To address the question of how TFBSs in a cluster affect binding of each other we
study the binding curve, i.e. binding probability as a function of TF concentration
P(“on“|C) (Fig. 3.8A). The first important characteristics of the binding curve is Cp 3,
i.e. the concentrations of 0.5 probability level (P(“on“|Cps) = 0.5). In other words
the Cy 5 is the point when a binding site changes its state. It is also important to note
that the Cp 5 is proportional to the effective affinity of a binding site (see Materials and
Methods).

We first tested how the Cp 5 of the binding curve depends on the promoter architec-
ture. For different distances d between binding sites (Fig. 3.1B) we sweep concentrations
of TFs and calculate Cy 5 for one of the binding site. We found that the Cy s depends
periodically on the distance between binding sites (Fig. 3.1A).
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For distances between binding sites up to 40 bp TFs help each other to outcompete
nucleosomes (positive cooperativity), for distances larger then 40 bp and up to one nu-
cleosome length (147 bp) TFs hinder each other, and for distances larger then 147 bp up
to roughly 210 bp again help each others binding.

The mechanism by which TFs cooperate or interfere is clear. Since our toy model
assumes that nucleosomes do not have sequence specificity they are positioned solely
by statistical positioning effect arisen by TFs bound to their binding sites. As was
described in 2.4.2 the nucleosome occupancy profile for nucleosomes has periodic pattern
relative to a barrier. Therefore, the promoter architectures for which the statistical
positioning effect reduces average nucleosome occupancy of TFBSs are more favorable
for TFs binding, due to higher effective affinity of TFBSs (see Fig. 2.9B). In other
words, we observe effect of positive cooperativity when binding to nearby sites reduces
nucleosome occupancy of TFBSs by statistical positioning effect and, therefore, increases
effective affinity of TFBSs. And opposite, we observe effect of negative cooperativity
when binding to nearby sites increases nucleosome occupancy of TFBSs and decreases
effective affinity of TFBSs.

3.2.2 Noise minimization by cooperativity between transcription fac-
tors

Recently, cell-to-cell variability, often reffered as noise, in a clonal population has received
great attention, e.g. |16, 26]. It has been suggested that noise in gene expression may
be an evolvable trait that can be optimized [86]. One important source of noise in gene
expression is the stochastic nature of gene regulation. Indeed, events of TFs binding
and assembly of preinitiation complex (PIC) are purely probabilistic and depend on
concentrations of TF and local chromatin configuration of a promoter.

Intuitively, the high level of noise in TF binding is associated with intermediate state
of a binding site, i.e. when the most heterogeneity in the cell population with respect to
a binding site is observed. Indeed, the very low or very high probability of TF binding
should correspond to low level of noise as most cells in the population have this binding
site free or occupied. And opposite, the intermediate state of the binding site, namely
when the probability is about 0.5, leads to the largest heterogeneity in the cell population,
since about half of the population have the binding site free and the other half have it
occupied. Thus, the average noise can be thought as a measure of how likely it is to
find the TFBS in its uncertain state during TF activation. Therefore, the noise in TF

binding is reflected in the steepness of the binding curve, namely the steep binding curve
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implies low level of average noise in TF binding since the transition between “on*/“off
state happens faster.

We quantify the noise level in TF binding as

Noise = /00 P(“on“|C) - (1 — P(“on“|C))dC (3.1)
—o0
which reflects the steepness of the binding curve (see Matherials and Methods).

It is noteworthy that the noise for the simplest system with only one binding site
in promoter always equals 1 and does not depend on the affinity of a binding site (see
Materials and Methods). Therefore, the affinity of the binding site affects Cy 5 of the
binding curve, i.e. shifts the binding curve left or right along the concentration axis (Fig.
3.8A), but the noise of the binding curve remains constant and does not depend on the
affinity of the binding site (see Matherials and Methods).

However, when TFBSs are organized in a cluster and TFs have to compete with
nucleosomes the steepness of the binding curve depends on the arrangement of TFBSs
in the cluster. For instance, in Fig. 3.2A the noise for two identical TFBSs for the
same TF periodically depends on the spacing between TFBSs. The case of two identical
binding sites for the same TF can be thought as an example of perfectly coexpressed
TFs, namely when concentrations of T'F; and T F5 are linearly dependent. In this case
positive cooperativity can reduce noise and negative cooperativity can induce noise (Fig
3.2B).

We next investigated how concentrations, or binding activities, of TFs should be
coordinated to minimize noise by positive or negative cooperativity between TFs.

The Fig. 3.3A illustrates the noise curves for positively cooperating TFs. In principal,
for certain concentration of T'F; there is a range of noise levels that can be achieved by
modulating concentration of T'F, (blue area in Fig. 3.3A). Therefore, possible scenario
which could lead to noise reduction by positive cooperativity would be rapid increase
of the binding activity of T'F5 when the binding site for TFj in its intermediate state
(Fig. 3.3C). This scenario could lead to a rapid transition of the binding site from “off*
to “on* state. In principle, binding activity of TFs can be changed in two ways, either
by changing concentration or by changing binding energy. If the fast increase of the TF
concentration seems unrealistic, the fast increase of binding energy seems possible, for
instance by changing phosphorylation state of a TF.

In case of negative cooperativity, the noise reduction can be even more dramatic (Fig.
3.4). In this case T'F, could play a role of a trigger, that keeps the binding site for T'F;

occluded by nucleosomes until the concentration of T'F} is high enough to rapidly move
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Figure 3.2: Cooperativity between TFs can reduce noise. A: Noise as a function of spac-
ing between two identical binding sites for the same TF (see the inset). B: Binding curves
for positively (blue curve, spacing(d)=0 bp) and negatively (red curve, spacing(d)=145
bp) cooperating TFs, and non-cooperating TFs (green curve).
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Figure 3.3: Noise reduction by positive cooperativity between TFs. A and B illustrate
noise curves Noise(TFi|Cy) and binding curves P(TF1|C}) for promoter architecture
with binding sites for TF; and T'F» next to each other (blue curves, Positive cooperativity
(d=0 bp)). The green curves correspond to the path of minimal average noise in binding
of TFy. The black curves correspond to promoter architecture where only two identical
binding sites for T'F} are present (the case of linear coexpression, see Fig. 3.2A). C:
Possible scenario for noise minimization by positive cooperativity. The path of minimal
noise in A and B corresponds to scenario where T'F5 acquires binding activity at the

point when concentration of TFj is high enough to evict a nucleosome together with
TF>.
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Figure 3.4: Noise reduction by negative cooperativity between TFs. A and B illustrate
noise curves Noise(TFi|Cy) and binding curves P(TF;|Cy) for promoter architecture
with binding sites for T'F} and T F» spaced by 145 bp (red curves, Negative cooperativity
(d=145bp)). The green curves correspond to the path of minimal average noise in binding
of TFi. C: Possible scenario for noise minimization by negative cooperativity. The path
of minimal noise in A and B corresponds to scenario where T'F5 loses its binding activity
at the point when concentration of T'F} is high enough to displace a nucleosome aside.

the nucleosome aside.

In summary, the theoretical analysis of plausible scenarios that could reduce noise in
TF binding make us hypothesize that in a cluster of TFBSs for TFs with well coordinated
binding activity the noise can be substantially reduced by positive or negative nucleosome
mediated cooperativity between TFs. The required coordination of binding activity of

TFs could be achieved by regulation of phosphorylation state of TFs.

3.2.3 Spacing between binding sites is biased so as to optimize positive
cooperativity of binding

Theoreticaly, the nucleosome mediated cooperativity between TFs has substantial effect
of the effective affinity of binding sites and on average noise in TF binding. One would
expect that this effects may cause biases in the arrangement of TFBSs in the real genomes.

Next we investigated whether TFBSs in real genomes are positioned relative to each
other so as to account for cooperativity between TFs. Using computational method for
TFBS prediction which takes into account sequence specificities (using position-specific
weight matrices (WM)) along with evolutionary conservation [6] we predicted binding
sites for 158 WMs in S. cerevisiae genome, and for 189 WMs in M.musculus and H.sapiens
genomes. Given the TFBS prediction we investigated the distributions of spacing between

binding sites for every possible pair T'F; : T'F}.
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Figure 3.5: Spacing between TFBSs is biased so as to optimize positive cooperativ-

ity of binding. Examples of TF pairs with optimized spacing distribution for positive
cooperativity in yeast (A), mouse (B) and human (C).
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Remarkably, we find that spacing distribution for some TFs pairs has periodic pattern
with peaks falling precisely to the areas of positive cooperativity between TFs (Fig. 3.5).
It suggests that spacing between binding sites of those TFs have evolved so as to account
for positive cooperativity of their binding.

To disentangle real spacing biases between TFBSs from possible biases due to TFBS
positioning with respect to transcription start sites (T'SS) we carried out comprehensive
statistical analysis where we randomly shuffle TFBSs keeping position relative to T'SSs
constant. If a spacing distribution (Fig. 3.5) was due to TFBS positioning relative to
TSS the biases would not disappear after the shuffling. For every pair T'F; : TF; we
calculate Z statistic

< SCgual > — (< SCFEdom )

Z(TF, : TF;) = 3.2
( 3) o(< 6Cpandom ) (3:2)

where < 50&‘?““1 > is expected value of 6Cy5 = Cysrwons — Cos0neBs for actual
spacing distribution (product of blue and green curves in Fig. 3.5), p(< dCradon )
and o(< §CEYdom ) are mean and standard deviation of < §Cj¥*°™ > distribution
obtained by random permutations (see Materials and Methods). Negative Z statistic
implies that actual spacing distribution is optimized for positive cooperativity, i.e. actual
6Co.5 is significantly lower than expected by chance.

Statistical analysis shows that many pairs of TFs have positioned their binding sites to
take positive cooperativity between TFs into account, namely have significantly negative
Z scores (Suppl. Tables A.3.1 and A.3.2).

Strikingly, pairs of TFs with optimized spacing distribution, i.e. with significantly
negative Z scores, seem to be conserved between human and mouse (Fig. 3.6).

Next, we addressed a question of what distinguishes TFs with optimized spacing from
others. It turns out that for S.cerevisiae the TFs pairs with optimized spacing between
TFBSs are enriched for TFs that have already been implicated in altering chromatin (p =
3-1075, Suppl. Table A.3.1). It suggests that TFs that affect local chromatin state tend
to have spacing distribution optimized for positive nucleosome mediated cooperativity.

The hypothesis that TF pairs with optimized spacing can affect local chromatin ar-
chitecture is further supported by analysis of nucleosome patterns around TFBSs spaced
for positive cooperativity (nucleosome data taken from [55]). Indeed, the experimental
nucleosome profiles in S.cerevisiae (Suppl. Fig. A.3.9) show that positively spaced bind-
ing sites of some TFs fall into NFRs. Interestingly, the nucleosome profiles for binding
sites with spacing from 150 to 211 bp reveal a nucleosome which is trapped between two
binding sites (Suppl. Fig. A.3.9 B).
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Figure 3.6:  Optimized spacing distribution is conserved between H.Sapiens and

M.Musculus. There are 27 TF pairs with Z score less then -5 (see Suppl. Table A.3.2)
and only one pair with Z score bigger then 5,(NRF1 : TLX2, Z = 6 both in human and
mouse)

In summary, we show that binding sites for some TFs are positioned in a way to

account for nucleosome mediated cooperativity between TFs.

3.3 Discussion

Promoter architecture plays important role in regulation of expression [110], in particular,
chromatin architecture at promoter crucially affects important characteristics of gene
regulation, such as expression rate, expression noise and transcriptional placticity [85,
109]. Even though, it has been known about the cooperative mode of TFs binding
which do not include protein-protein interaction [115], the study presented here helps in
mechanistic understanding of how arrangement of binding sites can affect gene regulation.

The biophysical modeling presented in this study shows that architecture of a simplest
TFBS cluster affects how well TFs compete with nucleosomes. The competition between
TFs and nucleosomes changes both efficiency and noise of TFs binding, and the distance
between binding sites is the main factor that defines the cooperative effect.

The analysis of spacing between transcription factor binding sites in the real genomes

supports the idea that nucleosome mediated cooperativity between transcription factor
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Figure 3.7: Examples of TF pairs with optimized spacing distribution for negative
cooperativity in yeast (A), mouse (B) and human (C).

may really happen in the cell. The remarkable fact that peaks in spacing distribution
of some TF pairs coincide with spacing constraints for positive cooperativity predicted
by the model suggests that the "grammar" of the regulatory code in eukaryots may be
indeed shaped to account for the nucleosome mediated cooperativity (Fig. 3.5). Inter-
estingly, the spacing biases for positive cooperativity is most significant for transcription
factors that have been implicated in chromatin related activity (Suppl. Table A.3.1).
For example, factors ABF1, REB1 and RAP1 are transcription factors which are well-
known for their ability to change local chromatin structure [8, 85]. It supports the idea
of a special class of TFs, called "pioneering TFs" [126]. It has been speculated that
these TFs factors bind to DNA and open up chromatin by evicting/shifting nucleosomes
or by recruiting ATP-dependent chromatin remodeling enzymes which destabilize local
chromatin and create nucleosome free region (NFR). After, establishment of an NFR the
transcriptional machinery is able to bind to promoter and initiate transcription. Our
study suggests that such factors need to have binding sites arranged in a way to help one

another to outcompete nucleosomes.

We suggested plausible scenarios of how the noise could be minimized by positive
or negative cooperativity. We show that cooperativity between TFs with coordinated
binding activity could substantially reduce noise in TF binding. Moreover, in case of the
negative cooperativity this reduction is most dramatic. However, we find not so many
TFs pairs with optimized spacing for negative cooperativity, even though there are few
examples (Fig. 3.7). It may be that the negative cooperativity is not important for gene
regulation, or our modeling is missing some important details. For example, we use the

assumption that nucleosomes can not be in partially unwrapped state, however, there is
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experimental evidence that nucleosomes can partially unwrap [30, 32, 77].

This work provides significant insight into the question of how promoter architecture
control main characteristics of gene regulations. However, the hypothesis that have been
made in this study need experimental validation. The direct experimental validation
would be measuring TF and nucleosome occupancy at synthetic promoters with different
architecture using experimental techniques with high-resolution, for example ChIP-exo
presented in [89]. It would also be interesting to investigate how dynamics of TF binding

depends on relative positioning of binding site using methods similar to presented in [57].

3.4 Materials and methods

3.4.1 Definitions of Cjj5 and Noise in TF binding

We investigate characteristics of a binding curve, i.e. binding probability as a function
of TF concentrations, namely P(“on*|C).
For the simplest system with one binding site in promoter the probability is expressed

as
eBE+C

P(“on®|C) = 1+ eBE+C?

(3.3)

where 5 = 1/kT, E is binding energy and C' is log-concentration. Further, for simplicity
we call the log-concentration just concentration if not mentioned otherwise.

An important feature of the binding curve is Cy 5,i.e. concentration of a TF at which
probability of binding equals 0.5 (Fig. 3.8A). In other words, the Cj 5 is the concentration
when a binding site changes it state from free to occupied.

Given the Equation 3.3 it is easy to calculte Cy 5 for the simplest case: Cy5 = —GE.
In other words, the Cp 5 is proportional to effective affinity (binding energy) of a binding
site, namely the higher affinity of a binding site the earlier the site becomes occupied.

The noise in TF binding at certain TF concentration can be thought as variance of the
binomial distribution B(1,p). If probability that a binding site occupied is P(“on“|C)
and probability that the binding site is free is 1 — P(“on“|C) then the noise is

Noise(C) = Var[B(1, P(“on*|C))] = P(“on“|C) - (1 — P(“on*|C)) (3.4)

The bell-shaped function Noise(C') reflects what level of heterogeneity in a large
population of identical cells one can expect with respect to a certain binding site (Fig.
3.8 B). Therefore the highest level of noise is associated with uncertain state of the
binding, namely when P(“on“|C') = 0.5.
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Figure 3.8: The definitions of Cy5 and Noise(C) of TF binding curve. The binding
curves in A correspond to noise curves in B. The steeper binding curve (light green
dashed curve in A) implies lower level of noise. The average noise during activation is
the surface under the noise curve (filled areas in B).

Thus, the noise averaged across all concentrations (assuming uniform prior distribu-

tion of concentrations) is
Noise = / Noise(C)dC = / P(“on“|C) - (1 — P(“on*|C))dC (3.5)

Note that for the simplest system noise in TF binding does not depend on affinity of
a binding site. Indeed, given the Eq. 3.3 and the Eq. 3.5 it is easy to calculate

[eS) eBE—i—C

o (1F ePETO)2 — 1 (3.6)

Noise = / " Pround(C) - (1 = Prouna(C))dC = /

—00 —

3.4.2 Modeling

We consider an artificial promoter comprised of only two TFBSs spaced distance d apart
(Fig. 3.1 B). We assume that nucleosomes bind to DNA without sequence specificity,
and set the nucleosome concentration such that average nucleosome coverage is about
80%, which is consistent with experimental data, e.g. [42, 55, 100].

For different distances d we sweep concentrations of TFs and use the biophysical
model described in Chapter 2.4.1 to calculate the binding curve P(“on“|C). Given the
binding curve we investigate how the characteristics Cy 5 and Noise depend on promoter

architecture (i.e. distance d).
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3.4.3 TFBS prediction

For transcription factor binding site (TFBS) prediction we used computational algorithm
MotEwvo |6]. The MotEvo algorithm uses position-specific weight matrix (WM) together
with evolutionary conservation for calculating posterior probability of every position on
a sequence to be a true binding site.

We predicted TFBSs for 158 WMs on intergenic regions of S.cervisiae (assembly sac-
Cer2) using multiple allignments for 5 species: S.cerevisiae, S.paradozus, S.kudriavzevii,
S.mikatae, S.bayanus.

The set of 189 WMs (which cover 340 TFEs) for H.sapiens and M.musculus was ob-
tained by manual curation of WMs from JASPAR [90] and TRANSFAC [68| databases.
For promoters (+/- 500bp relative to transcription start clusters) constructed from
deepCAGE data [10] we predicted TFBSs on multiple allignments of 7 species: H.sapiens
(hg18), R.macaca (rheMac2), M.musculus (mm9), C.familiaris (canFam?2), E.caballus
(equCabl), M.domestica (minDom4) and B.taurus (bosTau3). We consider only TFBSs
with posterior probability P > 0.75. We also eliminate TFBSs falling into repeat regions
since they can cause artificial spacing biases.

Given the TFBS prediction for every pair T'F; : TF; we searched for all pairs of bind-
ing sites and analyzed the distribution of distances between binding sites. We consider
only those TF pairs which have at least 25 TFBS pairs spaced shorter then 900 bp. The
density curve in Fig. 3.5 was plotted for distances weighted by the product of MotEvo
posterior probabilities Ppg, - Ppg, using MatLab function ksdensity with gaussian kernel

and window length 20 bp.

3.4.4 Statistical analysis of spacing between TFBSs

To disentangle spacing biases between TFBSs from possible spacing biases due to po-
sitioning relative to transcription start sites (TSS) we carried out a statistical test as
following. To quantify the strength of cooperativity between TFs T'F; : T'F; we used the

value

< 0Ch5 >= ZP(S) . 500.5(8) (3.7)

where P(s) is the probability to find a spacing s between TFBSs of T'F; and T'F},
and 0Co5(s) = Cos1wons(S) — Cos0neBs, i-e. the difference in Cj 5 after addition of a
second identical binding site to a promoter.

As the Cp 5 is closely related to effective binding energy of a binding site, i.e. Cy5 =
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—BEeysy, the < 6Cp5 > can be thought as expected energy contribution —6E.ss to a
binding site of T'F; from nearby binding of T'F}.

For each pair of TFBSs (T'F; : TFj), and TSS ¢t we construct a vector vy =
(dikt, djkt, Th, Pig, Pji), where d;py and dj; are distances from binding sites BS;, and
BSji, to a TSS t, T}, is total number of TSSs which are near the TFBS pair and Py, Pjj
are MotEvo posterior probabilities of binding sites. It is clear that the actual spacing

distribution is

Z P P Pj
vy Vsldine—djrel T Ty,

Z P Pjy,
Vit Tk

Pactual(s) = (38)

where d4,,,—d,,,| is the Kronecker delta.

ikt

To obtain P,qpdom(s) we randomly shuffle distances d;;¢ among all vectors vy which
is equivalent to random permutation of binding sites for T'F; among all promoters keeping
constant TFBS distribution with respect to T'SSs. Let vector v}, = (d}y;, djkt, Th» Pik, Pji)

be the vector with shuffled distances d};,. Then the random spacing distribution is

Py Pjy;
P _ Zth 5S|d:kt_ k] Tkj 3.9
Tandom(s) = Py Pjk ( . )
Z’U;t Tk
After 10000 random permutations for every pair T'F; : T'F; we obtain distribution of
J
< §Cdom - and calculate Z statistic

Z(TF, : TF;) = S0C85™ > —n(< 0GET™ >) (3.10)
ool o(< sCHadom ) '

where p(< §CEMem =) and o(< JCFLe™ >) are mean and standart deviation of
< §Cyandom

The negative Z(TF; : TF;) implies that the actual dCy 5 is lower then expected by
chance which means that T'F; : T'F}; positioned their binding sites so as to optimize pos-
itive cooperativity. And opposite, TF pairs with positive Z tend to negatively cooperate
with each other.

The TSS positions in S.cerevisiae were taken from [74]. In human and mouse the TSS
positions were defined as representative positions of transcription start clusters (TSC)
constructed from the deepCAGE data [10], namely positions of the maximum number of
CAGE tags in TSCs.
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Figure A.3.9: Experimental nucleosome occupancy around positively spaced pairs of
TFBSs. Experimental nucleosome occupancy (taken from [55] ) alligned relative to the
leftmost BS for TFBS pairs with spacing from 0 to 40 bp in A and from 150 to 211 bp
in B.
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TF; TF; Z-score  Number of pairs Chromatin related TFs

PBF1 STB3 -11.73 181 PBF1
PBF2 STB3 -11.02 162 PBF2
RAP1 RAP1 -10.37 80 RAP1, RAP1
ABF1 REB1 -10.06 135 ABF1, REB1
STB3 YBL054W -8.42 126
ABF1 ABF1 -7.57 80 ABF1, ABF1
PBF1 SFP1 -7.19 62 PBF1
ABF1 YDRO026¢ -7.18 97 ABF1
PBF2 SFP1 -6.80 61 PBF2
ABF1 UMEG6 -6.24 96 ABF1, UMEG6
ABF1 RTG3 -6.17 52 ABF1
ABF1 CBF1 -5.98 44 ABF1
REB1 REB1 -5.78 73 REBI1, REB1
TBF1 TBF1 -5.75 82 TBF1, TBF1
YRR1 YRR1 -5.46 35
REB1 STB3 -5.45 155 REB1
NHP10 YNRO63W -5.45 37 NHP10
ABF1 UGA3 -5.36 91 ABF1
ABF1 STB3 -5.27 208 ABF1
NHP10 RDS2 -5.14 32 NHP10
ABF1 TYE7? -5.04 27 ABF1
REB1 UMEG6 -5.03 88 REB1, UME6
STB3 STB3 -4.63 89

YDRO026c  YDRO026¢ -4.57 45
ABF1 RPN4 -4.45 104 ABF1
MBP1 REBI1 -4.43 52 REB1
REB1 YDRO026¢ -4.36 57 REB1
SFP1 YBL054W -4.34 44
PDR3 YLR278C -4.25 31
DALSO DALSO -4.11 54

Table A.3.1: Top 30 TFs with most significant spacing biases in S.cerevisiae. Among TF
pairs with optimized spacing the chromatin related TFs are overrepresented (p = 3-107°).
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Z-score for

Z-score for

#TF pairs in

#TF pairs in

TF; TF; H.Sapiens M.Musculus H.Sapiens M. Musculus
SP1 SP1 -19.24 -16.48 4096 3027
KLF4 SP1 -18.04 -15.61 2761 2372
NFY{A,B,C} SP1 -17.37 -13.52 1307 1035
KLF4 KLF4 -15.01 -15.78 1859 1800
KLF4 NFY{A,B,C} -11.95 -10.17 890 717
ELK1,4 ELK1,4
GABP{A,B1} GABP{A,B1} -11.08 -9.87 527 407
ELF1,2,4 ?}LAI:BII;?A,BI} -10.53 -8.82 569 451
ELF1,2,4 ELF1,2,4 -10.26 -9.96 667 562
PATZ1 SP1 -9.14 -10.00 2303 1724
KLF4 PATZ1 -9.04 -6.99 1799 1426
bHLH family bHLH family -7.01 -6.15 92 78
CREB1 NFY{A,B,C} -6.96 -7.38 102 78
CREB1 SP1 -6.85 -5.15 394 268
ATF5 CREB3 SP1 -6.69 -6.81 686 576
ARNT ARNT2 ARNT ARNT2
BHLHB2 MAX BHLHB2 MAX -6.66 -5.78 79 56
MYC USF1 MYC USF1
ELF1,2,4 FEV -6.61 -5.50 207 180
ELK1,4
EHF GABP{A,B1} -6.60 -6.95 259 228
SP1 SREBF1,2 -6.45 -5.02 504 383
ARNT  ARNT2
BHLHB2 MAX SREBF1,2 -6.40 -5.52 72 60
MYC USF1
ELF1,2,4 ETS1,2 -6.12 -5.17 257 175
ZNF143 ZNF143 -5.81 -5.32 276 186
ARNT ARNT2
BHLHB2 MAX SP1 -5.57 -5.86 544 400
MYC USF1
SP1 TFDP1 -5.52 -6.87 2013 1740
EHF ELF1,2,4 -5.30 -7.34 268 224
MAZ MAZ -5.15 -6.28 1914 1526
CREB1 KLF4 -5.14 -6.42 274 186
ATF4 SP1 -5.10 -5.65 337 217
Table A.3.2: Pairs of TFs with Z < —5 both in human and mouse.
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Chapter 4

Conclusions and Discussion

This thesis is devoted to a quantitative investigation of the effects which are induced by
competition between nucleosomes and transcription factors. We use a rigorous statistical
mechanics model that calculates occupancy profiles of nucleosomes and TFs to study
binding processes and address two key questions: 1) how competition with transcription
factors affects nucleosome positioning and 2) how nucleosomes and promoter architecture
affect binding of transcription factors.

The second chapter was devoted to the question of what determines nucleosome
positioning in promoters of genes. First we investigated how well different datasets which
were generated in different labs correlate with each other. It turns out that measured
nucleosome occupancies does not correlate very well and can vary from lab to lab. For
instance, Pearson correlation between in vivo nucleosome occupancies can range from
r = 0.18 to r = 0.65 (Fig. 2.1 A). Presumably, this large variability across datasets to
some extent may be due to biases of the technological platforms, i.e. microarray and
high-throughput sequencing. Even though the raw nucleosome occupancy is not very
well correlated, the positions of nucleosomes and linkers are quite consistent between
datasets. In other words we show that whereas amplitude of nucleosome occupancy
signal can vary strongly from dataset to dataset, the positions of peaks (nucleosomes)
and troughs (linkers) are very reproducible (Fig. 2.1 B). We show that comparison of
the positions of nucleosomes and linkers is more informative than comparison of the raw
occupancy signal. Therefore, we introduced a new method for assessment of performance
of the biophysical model which is based on mutual information between experimental
annotation of "nucleosomes" and "linkers" and prediction. The F score introduced in

the chapter 2 was used as an objective function to fit the model to nucleosome data.

Rigorous modeling helped us to estimate how well the competition between nucleo-
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somes and transcription factors can explain observed nucleosome patterns in vivo. We
show that adding transcription factors into the model improves its performance in pre-
dicting nucleosome positions, especially at promoters of genes. Importantly, the model
of competitive binding of transcription factors can reproduce the remarkable nucleosome
pattern at the 5 end of genes (Fig. 2.5). These results reconcile the previous seemingly
conflicting results on the determinants of nucleosome positioning, and provide a quan-
titative explanation for the difference between in vivo and in vitro positioning. We the
draw conclusion that whereas nucleosomes in gene bodies are positioned due to intrin-
sic sequence specificity of nucleosomes, the nucleosome free regions (NFRs) result from
competitive binding of transcription factors.

Importantly, we show that only a small subset of TFs contribute to NFR formation
(Fig. 2.7). The test with shuffled WMs proved that the ability of TFs in this small subset
to explain nucleosome positioning is a specific property of the sequence specificities of
yeast’s TFs. The other test involving fitting of in wvitro data, showed that this small
subset of TFs is specific to in vivo nucleosome positioning. Remarkably, many TFs in
this small subset tend to be involved in the processes of chromatin remodeling.

In summary, the results presented in chapter 2 support the hypothesis that general
regulatory factors play a major role in nucleosome organization in promoters of genes, in
particular in the formation of nucleosome free regions.

In chapter 3 we studied how nucleosomes may affect binding of transcription fac-
tors. We theoretically investigated processes of TF binding to a toy cluster of TFBSs
in the context of chromatin. We show that competition between nucleosomes and TFs
for binding to DNA can induce interesting effects, such as cooperativity between TFs.
Biophysical modeling carried out in chapter 3 shows that the ability of TFs to outcom-
pete nucleosomes crucially depends on the architecture of a cluster of TFBSs. Due to
the statistical positioning of nucleosomes, the cooperativity between TFs periodically
depends on distance between binding sites (Fig. 3.1). Moreover, we demonstrate that
cooperativity between TFs can significantly reduce noise in TF binding.

Strikingly, the investigation of binding site arrangement in real genomes shows that
some TFs have their binding sites optimized for positive cooperativity (Fig. 3.5, Tables
A.3.1 and A.3.2). The observed biases in spacing between TFBSs strongly support the
hypothesis that nucleosome mediated cooperativity may play an important role in gene
regulation.

Interestingly, many TFs which have been suggested in chapter 2 to participate in
NFR formation also have pronounced spacing biases for positive nucleosome mediated

cooperativity. It implies that 1) positions of binding sites for those TFs explain positions
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of nucleosome free regions and 2) binding sites for those TFs are arranged so as to
outcompete nucleosomes in the most efficient way. It suggests that those TFs have
special functions in chromatin related processes.

Even though, the simple analysis of binding sites in real genomes presented in this
thesis reveals interesting features of TFBS clusters, it still unclear how the actual archi-
tecture of binding sites affect transcription. It would be very interesting to investigate
whether there are distinct motifs or patterns in TFBS clusters across different promoters
and, if so, how the presence of such motifs correlates with characteristics of gene expres-
sion, such as "noise", transcriptional plasticity and so on. In other words, it would be
very helpful to develop an algorithm which finds patterns in the relative positioning of
binding sites given a set of TFBS clusters. For instance, in this thesis we discovered
simple patterns for some pairs of TFs, e.g. ABF'1: Lo_40,150—200 : UM E6, which stands
for an ABF1 binding site separated by a linker of length 0-40bp or 150-200bp from a
binding site of UMEG (see Fig. 3.5). However, there might be more complex patterns in
arrangement of binding sites, e.g. ABF1 : L15_40: ABF1: Ligg_180 : REB1. In order to
identify such TFBS patterns several problems need to be resolved. Firstly, patterns which
could appear in TFBS clusters are "fuzzy", namely there is not much difference between
linkers with length 15bp and 16bp. Secondly, it is not clear how to deal with cases when
different binding sites in a cluster are functional only under some particular conditions.
For example, it might be that in a TFBS cluster BSy : L1 : BSy : L2 : BS3 : L3y : BSy,
binding sites BS; and BSy are only used under heatshock condition, and sites B.S3 and
BSy only in rapid growth of a cell.

In spite of the simplicity of the model introduced in this thesis, it is able to reproduce
observed nucleosome patterns and predict effect which may influence gene regulation.
Nevertheless, there are still many factors which need to be taken into account in order to
get more realistic model. For example, it is now unclear whether the assumption holds
that the system is in its thermodynamic equilibrium state. It is also accepted nowadays
that the posttranslational modifications of histones can greatly affect binding energy
of nucleosomes [56]. This could be taken into account by introducing into the model
different kinds of nucleosomes which have different energy scaling factors v. However, the
variety of histone modifications might lead to huge number of parameters in the model.
Nevertheless, by restricting the number of histone modifications under consideration, e.g.
only "no modification", "accetylation" and methylation" similar to [24], it seems possible
to take it into account.

In addition, nucleosomes have been observed in a partially unwrapped or "loose"

state [32, 124], which also could be taken into account by introducing different kinds
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of nucleosomes with variable footprint, e.g. normal nucleosomes which cover 147bp and
partially unwrapped nucleosomes which cover smaller regions, for instance from 130 till
146 bp.

Chromatin biology is a rapidly evolving field nowadays. Due to technological break-
throughs and original experiments significant insights have been made into the role of
chromatin in gene regulation. Nevertheless, there are many open questions that require
further investigation. For example, it is now unclear what mechanisms underlie the for-
mation of the NFR at 3’ ends of genes. It has been suggested that the special spatial
configuration of genes called a "gene loop" may be the reason for the 3’ end NFR [69].
The gene loop conformation, when a promoter is juxtaposed with a terminator, has been
observed for FMP27 and SEN1 genes in S.cerevisiae and was hypothesized to help in
maintaining high rate of transcription [79]. Another study suggests that the gene loop
conformation controls transcriptional directionality [106]. However, whether 3’ end NFRs
are linked with transcription termination and how they are related to gene regulation is
not fully understood yet.

Since all experimental techniques for mapping locations of nucleosomes and tran-
scription factors deal with large populations of cells, the data that we obtain from such
experiments represent average across the whole population. Therefore, the question of
cell-to-cell variability in transcription factor and nucleosome configurations remains open.
Although it is now possible to measure mRNA abundance on the single cell level, e.g.
[84], experimental techniques which are able to reveal chromatin and TF distribution for
a single cell are still missing.

In general, understanding of how information encoded in regulatory sequences of the
genome is interpreted and converted into gene expression is a key challenge of modern
molecular biology. Experiments, similar to [99], where artificially designed promoters
drive expression of a reporter protein would be very helpful in unraveling the enigma of
gene regulation. These experiments make it possible to measure the activity of thousands
of synthetic promoters by measuring expression of a reporter protein. I believe that
such experimental data, together with mathematical modeling, similar to [37, 88] and
presented in this thesis, will lead to the construction of a comprehensive model of gene

regulation.
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