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  Abstract:   Reproducibility of economic research has 

attracted considerable attention in recent years. So far, 

the discussion has focused mainly on reproducibility of 

empirical analyses. This paper addresses a further aspect 

of reproducibility, the reproducibility of computational 

experiments. More specifically, we contribute to the emerg-

ing literature on reproducibility in economics along three 

lines: (i) we document how simulations of various types 

are an integral part of publications in modern economet-

rics, (ii) we provide some general guidelines about how to 

set up reproducible simulation experiments, and, finally, 

(iii) we provide a case study from time series econometrics 

that illustrates the main issues arising in connection with 

reproducibility, emphasizing the use of modular tools.  
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1     Introduction 
 The issue of reproducibility of research in economics has 

attracted considerable attention in recent years. Publica-

tions such as McCullough and Vinod (2003) demonstrate 

that in the absence of archives reproducibility is more 

an exception than the rule. Consequently, many leading 

economics journals recently introduced mandatory data 

archives, sometimes even mandatory code archives, 

coupled with corresponding editorial policies in order to 

provide sufficient information to facilitate replication. 

More recently, it has been found that even with archives 

there is no guarantee for reproducibility (e.g., McCullough, 

McGeary, and Harrison, 2008). One reason appears to be 

the lack of broadly accepted guidelines for what authors 

have to provide to ensure replicability. 

 Apart from a few exceptions, among them an early 

unpublished working paper by Koenker (1996), the discus-

sion has focused mainly on reproducibility of empirical 

work, i.e., of estimates and tests, or more broadly of tables 

and figures, in studies analyzing real-world data, often 

tacitly assuming that computations do not involve random 

elements. However, nowadays many papers in economet-

rics  –  methodological as well as applied  –  and computa-

tional economics make use of simulations. For these, rep-

lication is usually even harder than for empirical analyses 

because there is typically neither code nor data but only 

a textual description of the simulation setup in the paper. 

 Making readable code available for such simulations 

is therefore crucial because it happens rather easily that 

not all tiny details of either the data-generating process 

(DGP) or the analysis methods are spelled out. Computer 

code is typically much more concise and less clumsy for 

specifying such details, e.g., the exact distribution of 

artificial data, the precise specification of a model or test 

employed, tuning parameters, etc. 

 This immediately raises the question of why we should 

want to be able to reproduce the results of econometric 

simulations. There would seem to be different reasons 

for different groups of people: In the publication process, 

the availability of replication materials can help to resolve 

questions regarding technical details and convince review-

ers that the results are correct. (Of course, we can and do 

not expect that simulations are fully checked and repli-

cated on a regular basis in the publication process.) On the 

production side, there are also direct incentives and tangi-

ble benefits for the authors themselves: replication files for 

simulations should improve chances for acceptance of man-

uscripts in the publication process and, ultimately, recep-

tion of the work. Specifically, providing replication details 

will enhance communication of the underlying ideas and 

concepts to interested readers and hence improve under-

standing of the associated results. Hence the availability of 

code should also facilitate  follow-up work by other authors, 

such as applying different methods on the same DGPs, or 

evaluating the same methods on different DGPs. 

 In addition to the code, publication of the simulation 

results themselves (in the form of data) is often desirable. 

Regrettably, this is still not very common in economics 

and econometrics. Two notable exceptions from econo-

metrics with impact on applied work involve nonstan-

dard distributions in time series econometrics: Hansen 

(1997) and MacKinnon, Haug, and Michelis (1999) obtain 
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approximate asymptotic  p  values for certain structural 

change and cointegration tests, respectively, employing 

simulation techniques combined with response surface 

regressions. The simulation results are (or were: the 

archive of the  Journal of Business and Economic Statistics  

no longer exists) available from the archives of the respec-

tive journals. 

 Below we first, in Sections 2 and 3, examine recent 

volumes of two leading econometrics journals and docu-

ment the types of computational experiments conducted 

in the field, their relative frequencies, the amount of detail 

available regarding the computational aspects, and the 

way of reporting the results. We find that current practice 

is quite uneven and that relevant details are often unavail-

able. Very few papers are demonstrably replicable, in the 

sense that, in addition to any data, code for all simula-

tion experiments is available. Since no set of generally 

accepted rules for computational experiments appears 

to be available in the econometrics literature, Section 4 

next suggests some guidelines that might help to improve 

upon the current situation. These complement guide-

lines for empirical work that were recently proposed by 

McCullough et al. (2008). 

 Perhaps the costs of better reporting are still seen 

as rather high, at least by some authors. However, given 

that authors typically have replication materials of their 

own simulations for themselves, the additional costs of 

preparing these for publication should be relatively small 

compared to the potential benefits, such as those out-

lined above. Thus, in order to show that these costs are 

often lower than currently perceived, at least for some 

more standard tasks, we finally illustrate in Section 5 how 

modular tools for carrying out simulation studies could be 

made available. We employ such tools for replicating parts 

of Ploberger and Kr ä mer (1992), specifically a simulation 

of power comparisons for certain structural change tests.  

2    Simulations in Econometrics 
 The importance of simulations in econometrics has 

increased considerably during the last 10 – 15 years. 

Hoaglin and Andrews (1975), in an early paper explor-

ing then current practice in reporting computation-based 

results in the statistical literature, found that the ratio of 

papers with simulation results to total papers was about 

one to five when examining then recent volumes of two 

statistics journals. More than 30  years later, the situa-

tion has reversed: the ratio of papers  without  simulation 

results to total papers is now less than one to five, as we 

shall see below. Also, 20 – 30 years ago simulations were 

mainly used for performance comparisons of estimators 

and tests and also for evaluating nonstandard distribu-

tions, whereas several recent techniques of statistical 

inference themselves contain stochastic elements. 

2.1    Types of Simulations 

 In modern econometrics, simulations typically arise in 

one of the following forms: 

 –     Monte Carlo studies.  

     These are usually employed for assessing the finite-

sample power of tests or the performance of compet-

ing estimators.  

 –    Evaluation of nonstandard distributions.  

     As noted above, examples are found in time series 

econometrics, where many limiting distributions 

associated with unit root, cointegration or structural 

change methodology involve functionals of Brownian 

motion, for which tractable analytical forms are often 

unavailable.  

 –    Resampling.  

     This typically means bootstrapping or subsampling, 

often in order to obtain improved standard errors, 

confidence intervals or tests. A less common tech-

nique, at least in econometrics, is cross validation.  

 –    Simulation-based estimation.  

     This mainly refers to Bayesian and frequentist compu-

tations employing Markov Chain Monte Carlo (MCMC) 

machinery, further methods include simulation-based 

extensions of the method of moments or of maximum 

likelihood.   

 There are further but currently less common variants such 

as heuristic optimization, often confined to specialized 

journals in operational research or statistics. Also, there is 

the rapidly expanding field of computational economics 

(as opposed to econometrics), notably agent-based mod-

elling. Here we restrict ourselves to techniques typically 

found in econometrics.  

2.2    Some Technical Aspects 

 Simulation methods require numbers that are or appear 

to be realizations of random variables, in the sense that 

they pass certain tests for randomness.  “ Pseudorandom ”  

numbers are obtained using a random number genera-

tor (RNG), typically a deterministic algorithm that recur-

sively updates a sequence of numbers starting from a set 

of initial values called the  “ (random) seed. ”  (There also 

exist  “ quasirandom ”  numbers generated from a physical 
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device, but for reproducibility full understanding of the 

generation process is crucial, hence we shall confine our-

selves to pseudorandom numbers.) 

 Random number generation typically proceeds in two 

steps: (i) generation of pseudorandom numbers resembling 

an independent and identically distributed (i.i.d.) stream 

from a uniform distribution on the interval (0,1), and (ii) 

transformation of this sequence to the required objects. If 

the latter are random numbers from a specific univariate 

distribution, the transformation being used is often the 

associated quantile function; the entire procedure is then 

referred to as the  “ inversion method. ”  However, some spe-

cialized methods also exist for other distributions, notably 

the standard normal. It should further be noted that econo-

metric computing environments often provide functions 

that directly deliver random numbers for many standard 

statistical distributions, hence the above steps may not 

be visible to the user. For step (i), a currently popular 

uniform RNG   –  used below for our own simulations  –  is 

the Mersenne twister (Matsumoto and Nishimura, 1998). 

Gentle (2003) provides useful general information on 

random number generation including algorithms, while 

Chambers (2008, Chapter 6.10) is geared towards R, the 

computing environment used in this paper. 

 One source for differences in simulation studies is 

differences in RNGs. Ideally, these differences should be 

small. However, this issue is likely to be relevant if truly 

large simulation studies are required as some older but 

still widely available RNGs might not be up to the task. 

Simulation studies should therefore always report the 

RNGs employed. A casual exploration of the econome-

trics literature suggests that very few papers do so. We 

will come back to this issue below. In the supplements to 

this paper, we provide an example comparing simulation 

results obtained from two different RNGs. 

 Even if identical RNGs are used in the same com-

puting environment, small differences will result from 

different initializations of the pseudo RNG, the random 

seeds. Hence papers reporting on simulations should also 

provide random seeds, at least in the code accompanying 

the paper. We shall see that this is highly uncommon in 

the journals we examined. 

 On a more technical level, some (typically tiny) dif-

ferences can occur even when the same seed and RNG 

are used on different hardware architectures. The usual 

caveats concerning floating point arithmetic apply (see 

Goldberg, 1991). 

 As a straightforward robustness check, users could 

run the same experiment using (some combination of) 

different seeds, RNGs, operating systems and/or even dif-

ferent machines.   

3    Current Practice 
 For concreteness, we conducted a small survey in the fall 

of 2009 using the then most recent complete volumes of 

two econometrics journals. Specifically, we examined 

volume 23 (2008) of the  Journal of Applied Econometrics  

(hereafter JAE) and volume 153 (2009) of the  Journal of 
Econometrics  (hereafter JoE). The JAE is a journal with a 

fairly comprehensive data archive. Since 1995, it requires 

authors to provide their data prior to publication (unless 

they are proprietary). The JoE is a journal with a more 

methodological bent. In contrast to the JAE, it currently 

does not have archives of any form. In our survey, we were 

interested in the variety of applications involving simula-

tions and also in the amount of detail provided. The JAE 

volume 23 comprises seven issues containing 44 papers, 

 including three software reviews and one  editorial (per-

taining to a special issue on the econometrics of auctions). 

Among the 40 remaining papers presenting empirical 

analyses, only seven do not contain any simulations, on 

average one paper per issue. Thus, a large majority of 

papers in the JAE makes use of simulations, with varying 

levels of complexity. In the JoE volume in question, com-

prising two issues containing 15 papers in total, there is 

only a single paper  not  making use of simulations. 

  Table 1  details the frequencies of the various types 

of simulation studies listed in the preceding section, 

and also the amount of information provided. We see 

that the majority of papers in both journals makes use of 

simulation techniques, in one form or other. In  Table 1 , 

simulation-based estimation often means some variant 

of MCMC, but there are also examples of the methods of 

 simulated moments (MSM) or simulated scores (MSS). 

Resampling usually means some form of bootstrapping; 

one paper employs cross validation. With respect to the 

types listed above there are furthermore some clear differ-

ences between the journals: in the JoE, the typical com-

puter experiment is a Monte Carlo study, while in the JAE 

there is much greater variety. This presumably reflects 

the fact that new methodology, the dominant type of con-

tribution in the JoE, by convention requires, apart from 

theoretical justification, some limited support employ-

ing artificial data. It should also be noted that in the JAE 

the extent of computational experimentation is moreo-

ver quite hetero geneous: Some simulation experiments 

amount to  “ routine ”  applications of, e.g., bootstrap stand-

ard errors (this is the case for seven out of 15 JAE papers 

with resampling, but for none of the three papers from the 

JoE), others require a substantial amount of programming 

for novel algorithms or new implementations of (vari-

ants of) existing ones. We found that papers employing 
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resampling techniques typically provide very little detail, 

although there are many variations of the bootstrap. These 

papers are thus among the least reproducible papers that 

are included in our study.  

 Evidence of lack of attention to computational detail 

is provided by the fact that only for 65.0% and 26.7% of 

the manuscripts, respectively, the computing environ-

ment/programming language for all codes could be deter-

mined. In the manuscripts that indicated the software 

environment(s), a variety of different tools was employed 

in both journals (numbers of occurrences in  parentheses): 

GAUSS (12), Stata (7), MATLAB (6), Fortran (3), R  (3), 

EViews (2), while Frontier, GLLAMM-STATA, Mathe-

matica, PcGive, SAS, STABLE, SUBBOTOOLS, TRAMO/

SEATS, WinBUGS were each mentioned once. This already 

includes software that was not necessarily used for the 

simulations themselves but for some other computational 

task and also involves educated guessing by the authors 

based on implicit information. 

 Availability of the software was rarely mentioned. 

In the case of the JAE, code sometimes was nonetheless 

available from the archive, although this was not obvious 

from the paper; in some of these cases it even was con-

tained in zipped files named  “ data, ”  so it was necessary 

to inspect the entire contents of the archives. It is also 

worth noting that papers using proprietary data often do 

not supply code, presumably because full replication is 

impossible under these circumstances. Among the papers 

that provide code, only six (combined for both journals) 

provide code with random seeds, for one further paper 

the corresponding README file explicitly states  “ random 

draws are not seeded ” (!). (Note that we were liberal in 

recording a paper as specifying the seeds; any partial 

specification was counted.) Only one code explicitly con-

tains the RNG. 

 To summarize, the amount of available information 

required for replication is very heterogeneous: there are 

papers with very little information in the paper itself and 

no supplements of any kind, papers with fairly detailed 

descriptions of algorithms (but not necessarily of their 

implementation) but no code, papers with brief outlines 

but code available elsewhere [upon request, from a web 

page, in the archive of the journal (not always mentioned 

in the paper)]. Sometimes there is a reference to an earlier 

working paper with further details. Some authors also 

acknowledge reusing other people ’ s code in a footnote or 

the acknowledgements. 

 Finally, a striking difference between the JAE and the 

JoE is that although neither journal requires the authors to 

supply code, the journal with an archive (the JAE) none-

theless succeeds in obtaining codes for some of its papers, 

because authors voluntarily deliver such files along with 

their data. In the case of the JoE, there is only a single 

paper (Moon and Schorfheide, 2009) for which codes are 

available from the web page of one of its authors. 

 Some preliminary conclusions from our survey 

would thus seem to be that (1) without archives there is 

little chance that relevant materials will become avai-

lable, (2) voluntary or partial archives already represent 

a substantial improvement, and, in view of the amount 

of heterogeneity observed here, (3) some standardized 

rules for the precise form of the supplementary materials 

are needed. We shall expand on these issues in Sections 

4 and 6 below.  

 Table 1      Summary of Simulation Survey for  Journal of Applied Econometrics  (JAE), Volume 23, and  Journal of Econometrics  (JoE), Volume 153. 

Note that the  “ Data availability ”  Categories are Mutually Exclusive While all Other Categories are Not. Proportions are Given in Percent.  

     JAE  JoE 

 Frequencies of manuscripts  In total  40  15 

   With simulation  33  14 

 Frequencies of data availability  In archive  31  0 

   Proprietary  6  0 

   Not available  0  12 

   None used  3  3 

 Frequencies of simulation types  Monte Carlo  17  11 

   Resampling  15  3 

   Simulation-based estimation  13  3 

   Nonstandard distributions  2  0 

 Proportion of all manuscripts  With simulation  82.5  93.3 

   Indicating software used  65.0  26.7 

   Providing code  45.0  6.7 

   With code available upon request  17.5  0.0 

 Proportion of simulation manuscripts  With replication files  30.3  7.1 

   With random seed  15.2  7.1 
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4    Guidelines 
 Reproducibility of simulations, or more generally of com-

putational experiments, has been a recurring theme in 

various branches of computational science. Examples of 

papers providing guidelines for statistics, engineering 

and applied mathematics (notably optimization) include 

Hoaglin and Andrews (1975); Crowder, Dembo, and 

Mulvey (1979); Jackson et al. (1991), Lee et al. (1993) and 

Barr et  al. (1995). It should be noted that some of these 

works, namely those from the operational research litera-

ture, are mainly concerned with performance compari-

sons of algorithms, but many aspects are relevant here as 

well. 

 Similar guidelines in the context of econometric 

simulations are less common. A notable exception is 

the unpublished working paper of Koenker (1996) with 

its accompanying web page that provides a protocol for 

reproducible simulations in R, the computing environ-

ment also used below. Drawing on the aforementioned 

works, we provide a checklist slightly adapted to the 

needs of econometrics. 

 In view of the diversity of tasks encountered in 

Section 3 it is not easy to provide detailed recommenda-

tions that address all needs. However, we feel that the list 

below might give a good idea of what is required, espe-

cially for more standardized tasks such as Monte Carlo 

studies. 

 We suggest that any paper presenting results from 

computational experiments should contain the following 

elements (or provide them as a supplement): 

1.     Description of the (statistical/econometric) model.  

2.    Technical information (software environment 

including version numbers).  

3.    Code.  

4.    Replication files.  

5.    (Intermediate) results.   

 Some comments on the various elements are in order 

(further general comments follow below): 

1.     The paper should explain the methodology employed 

in reasonable detail. For specialized techniques 

requiring particularly lengthy descriptions, electronic 

supplements might be appropriate. Many journals 

now accept such supplements and publish them 

along with the papers.  

2.    As a vehicle for providing technical information 

such as software and version numbers we suggest to 

include, in the body of the paper, a section named 

 ‘ computational details ’  such as the one appearing 

below. Currently, this information is often only 

implicitly and approximately available; for example, 

because the computing environment is mentioned so 

that readers with access to the relevant software can 

find out more about RNGs etc.  

3.    Code typically means a collection of functions or 

macros, either provided by the authors themselves 

or by third parties. In our own replication study 

appearing in the following section it consists of 

 Tables  2  –  4  and the strucchange package. If third-

party code is used, it should be properly referenced.  

4.    The replication files themselves should contain the 

exact function calls providing all tables and figures 

of the paper. Hence, they must always contain the 

random seed(s). If the software package offers several 

RNGs, the code should also be explicit regarding 

the chosen RNG. Compare the RNGkind() and 

set seed() calls in our example. In our case, 

 Table 5  would serve as the replication file.  

5.    It is often useful to also provide the simulation results 

themselves in a file. As a rule, such data should be 

treated like any other data set, they supplement the 

paper and should thus be archived just like the data 

sets now required prior to publication of empirical 

work by many of the leading economics journals. In 

our case, a Monte Carlo study, the results are tables 

of simulation results, at a reasonable precision. In 

other types of simulation studies, other forms of 

(intermediate) results might be more relevant. For 

bootstrap exercises, this could mean saving sets 

of observation numbers. For MCMC jobs, saving a 

thinned version of the chain (say every 50th iteration, 

minus the burn-in phase) could be appropriate.   

     The paper should explicitly state if supplements are avail-

able, and if so where from. The preferred place for all 

supplements (code, results, further documentation, etc.) 

is the archive of the journal. For journals with only man-

datory data archives we suggest that authors nonetheless 

also deposit code there (as we observed in several cases at 

the JAE). For journals still not possessing archives of any 

form, authors could provide materials on their personal 

web pages, or upon request. Clearly, a personal web page 

provides a much less permanent solution, and material 

 “ available upon request ”  typically even less so. 

 If simulation results are provided as data in supple-

mentary files or data archives (such as our file sc_sim.

csv), it would also remove the need to print all simula-

tion results within the manuscript  –  the current prac-

tice in econometrics. Instead, graphical displays (such 

as  Figure  1 ) could be employed which are often more 

compact and thus more easily grasped than tables (such 
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as  Table 6 ). In this case, replication code for producing the 

figures from the tables should be included in the supple-

ments (see our Table 5).   

 In addition to the simulation results themselves, 

papers should also give information on their accuracy, 

e.g., in the form of standard errors. For many simulated 

probabilities (such as the power curves in Section 5) these 

are evident from the point estimates, however, more gene-

rally they are not. Specifically, for many MCMC applica-

tions, Flegal, Haran, and Jones (2008) suggest that there 

is room for improvement. 

 Regarding code it must also be taken into account 

that modern techniques are often highly nonlinear and 

thus inherently difficult to apply even outside the context 

of simulation studies. It is therefore mandatory to report 

tuning parameters, if any, along with the specification of 

the numerical algorithms themselves. For example, if a 

simulation involves use of iterative algorithms in an opti-

mization problem, then the stopping criterion must be 

provided in some form, typically code. 

 Some aspects of the guidelines suggested above might 

prove difficult to meet if proprietary software is used for 

the simulations. As already noted by Jackson et al. (1991, 

p. 417) some 20 years ago,  “ proprietary software presents 

special problems, ”  in that it intentionally withholds 

certain details of the implementation from the user (or 

reader). In fact, as early as 1975 Hoaglin and Andrews 

(1975, p. 125) recommend using software in the public 

domain for precisely this reason. We remark that the 

current definition of  “ public domain, ”  at least in the US, 

is perhaps more restrictive than needed for the purpose 

of reproducibility. The authors feel that open source soft-

ware might be sufficient.  

5     Example: The Power of Structural 
Change Tests 

 To illustrate the main issues in reproducibility of simu-

lations we now replicate a Monte Carlo study from the 

methodological literature on tests for structural change. 

We have deliberately chosen a fairly simple (and success-

ful) replication exercise in order to provide detailed infor-

mation about all steps involved which in turn are helpful 

illustrations for the guidelines suggested in Section 4. 

 Ploberger and Kr ä mer (1992) compared their CUSUM 

test based on OLS residuals with the standard CUSUM 

test based on recursive residuals, showing that neither 

has power against orthogonal shifts. Here, we follow their 

simulation setup, but to make it a little more satisfying 

methodologically (and cheaper to compute) we also 

compare the OLS-based CUSUM test to the Nyblom-

Hansen test (Nyblom 1989; Hansen 1992) which in con-

trast to the residual-based CUSUM tests is consistent for 

orthogonal changes. 

 The simulation setup considered by Ploberger and 

Kr ä mer (1992) is quite simple, and very clearly described. 

They consider a linear regression model with a constant 

and an alternating regressor  x t   = (1,( – 1)  t  ) ( t  = 1, … , T ), inde-

pendent standard normal errors, and a single shift in 

the regressor coefficients from   β   to   β   +  Δ  at time  T * =  z * T , 

z* ∈ (0,1). In the simulation, they vary the intensity  b , 

the timing  z * and the angle   ψ   of the shift as given by 

  = / ( cos ,sin ),b T ψ ψΔ  corresponding to their Equation 

35. They give sequences of values for all three parame-

ters and simulate power for a sample size of  T  = 120 from 

 N  = 1000 runs at the 5% significance level. This is a rather 

good description of the DGP, only two very small pieces of 

information are missing:   β   was left unspecified (presum-

ably because the tests are invariant to it) and it is not com-

pletely clear whether the observation  T * (if it is an integer) 

belongs to the first or second regime. Given the design of 

their previous simulation in their Equations 33 and 34, 

one could speculate that it belongs to the second regime. 

However, we will place it in the first regime so that  z * = 0.5 

corresponds to two segments of equal size (for  T  even). 

 To turn their simulation design into modular and 

easily reusable code, we split it into three functions that 

capture the most important conceptual steps: 

1.     dgp()  –  the DGP that simulates a data set for a given 

scenario,  

2.    testpower()  –  a function that evaluates the tests 

on this DGP by power simulations,  

3.    simulation()  –  a wrapper function that runs a 

loop over all scenarios of interest using the previous 

two functions.   

 We implement these functions in the R system for  statistical 

computing (R Development Core Team 2012), the source 

code is provided in  Tables 2 ,  3 , and  4 , respectively. 

 For step (1), function dgp() is a concise and easily 

accessible code description of the DGP described verbally 

above which can now be employed to apply the test pro-

cedures of interest to artificial data resulting from dgp(). 

 Based on this, we can define the function  testpower() 

for step (2) that takes the number of replications and the size 

of the test as its main parameters. We provide functionality 

for evaluating the tests of interest, the OLS-based CUSUM 

test and the Nyblom-Hansen test, as well as the recursive 

CUSUM test considered by Ploberger and Kr ä mer (1992). 

All tests are available in the strucchange package (Zeileis 
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 Table 3      Step (2)  –  Function testpower() for Evaluating Power Simulations of the Tests on a Single DGP Scenario generated by dgp() 

(see Table 2).  

 testpower   <  – function(nrep = 100, size = 0.05, 
   test = c("Rec–CUSUM", "OLS–CUSUM", "Nyblom–Hansen"),...) 
  {  
   pval   <  – matrix(rep(NA, length(test) * nrep), ncol = length(test)) 
   colnames(pval)   <  – test 
   for(i in 1:nrep)   {  
    dat   <  – dgp(...) 
    compute_pval   <  – function(test)  {  
     test   <  – match.arg(test, c("Rec–CUSUM", "OLS–CUSUM", "Nyblom–Hansen")) 
     switch(test, 
     "Rec–CUSUM" = sctest(y   ~   x, data = dat, type = "Rec–CUSUM") $ p.value, 
     "OLS–CUSUM" = sctest(y   ~   x, data = dat, type = "OLS–CUSUM") $ p.value, 
     "Nyblom–Hansen" = sctest(gefp(y   ~   x, data = dat, fit = lm), 
      functional = meanL2BB) $ p.value) 
     }  
    pval[i,]   <  – sapply(test,compute_p val) 
    }  
   return(colMeans(pval   <   size)) 
  }  

et  al., 2002). 1    The function simply runs a loop of length 

nrep, computes  p  values for the tests specified and finally 

computes the empirical power at level size. Furthermore, 

by using the  ...  notation in R all arguments used previ-

ously for dgp() can simply be passed on. 

 In step (3), a wrapper function simulation() is 

defined that evaluates testpower() for all combina-

tions of the simulation parameters, by default setting them 

to  b  = 0, 2.5, 5, 7.5, 10,  z*  = 0.25, 0.5,   ψ   = 0, 45, 90 for  T  = 100 

and  N  = 100 using only the OLS-based CUSUM test and the 

Nyblom-Hansen test. This is a coarser grid as compared 

to Ploberger and Krämer (1992) with fewer replications 

which are sufficient for illustration here. The function 

simulation() first expands the grid of all parameter 

combinations, then calls testpower() for each of them 

[which in turn calls dgp()] and then rearranges the data 

in a data frame. 

 Modular tools are extremely valuable when setting 

out to reproduce portions of a simulation study. They 

convey clearly what steps were carried out, the DGP could 

be reused for evaluating other structural change tests, 

or the tests could be reused on new DGPs. With these 

tools available, the main simulation amounts to loading 

the strucchange package, specifying the RNG, 2    setting a 

random seed and executing simulation(), see  Table 5 . 3    

 Table 2      Step (1)  –  Function dgp() for Generating a Data set from the Specified DGP.  

 dgp   <  – function(nobs = 100, angle = 0, intensity = 10, timing = 0.5, 
  coef = c(0, 0), sd = 1) 
  {  
  angle   <  – angle * pi/180 
  delta   <  – intensity/sqrt(nobs) * c(cos(angle), sin(angle)) 
  err   <  – rnorm(nobs, sd = sd) 
  x   <  – rep(c(–1, 1), length.out = nobs) 
  y   <  – ifelse((1:nobs)/nobs   <   = timing, 
      coef[1]  +  coef[2] * x  +  err, 
   (coef[1]  +  delta[1])  +  (coef[2]  +  delta[2]) * x  +  err) 
  return(data.frame(y = y, x = x)) 
  }  

  1 The interface for the Nyblom-Hansen test is somewhat different 

to avoid assessment of the stability of the error variance. Following 

Hansen (1992) this would be included by default, however, it is ex-

cluded here for comparability with the residual-based CUSUM tests 

that do not encompass a test of the error variance.  

  2 Our call to the default RNG is identifiable as long as the version 

number of the software is given. The version number appears in the 

 “ Computational Details ”  section at the end of this paper.  

  3 The parameters have been chosen such that the code can be run 

interactively, possibly while grabbing a coffee (or another preferred 

beverage).  
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 With a small simulation study as this one, we 

would generally only store the code and the outcome 

contained in sc_sim. For more complex simulations, 

it might make sense to store some intermediate results 

as well, e.g., the simulated data sets. Given the simu-

lated results, it is easy for readers to replicate  Table 6 . 

This compares the power curves (over columns corre-

sponding to intensity) for the two tests (nested last in 

the rows) given angle and timing. Instead of inspect-

ing this table, the differences between the two tests 

can be brought out even more clearly graphically in a 

trellis (or lattice) type layout such as  Figure 1 , using the 

same nesting structure as above. The replication code 

for tabular and graphical summary is also included in 

 Table 5 , employing the lattice package (Sarkar 2008) 

for visualization. 

 Table 6      Simulated Size and Power for OLS-Based CUSUM Test and 

Nyblom-Hansen Test.  

 Angle    Timing    Test    Intensity         

 0  2.5  5  7.5  10 

 0  0.25  OLS-CUSUM  0.02  0.09  0.43  0.66  0.91 

     Nyblom-Hansen  0.02  0.07  0.34  0.61  0.82 

   0.5  OLS-CUSUM  0.01  0.20  0.58  0.86  0.98 

     Nyblom-Hansen  0.05  0.18  0.58  0.84  0.96 

 45  0.25  OLS-CUSUM  0.03  0.02  0.17  0.37  0.47 

     Nyblom-Hansen  0.05  0.13  0.31  0.57  0.72 

   0.5  OLS-CUSUM  0.04  0.11  0.18  0.51  0.83 

     Nyblom-Hansen  0.04  0.18  0.47  0.82  0.99 

 90  0.25  OLS-CUSUM  0.01  0.02  0.01  0.05  0.01 

     Nyblom-Hansen  0.01  0.10  0.27  0.57  0.84 

   0.5  OLS-CUSUM  0.02  0.08  0.05  0.03  0.00 

     Nyblom-Hansen  0.06  0.20  0.53  0.84  0.99 

 Table 4      Step (3)  –  Function simulation() for Looping over a Range of Scenarios Generated by dgp() (see Table 2) and Evaluated by 

testpower() (see Table 3).  

 simulation   <  – function(intensity = seq(from = 0, to = 10, by = 2.5), 

   timing = c(0.25, 0.5), angle = c(0, 45, 90), 

   test = c("OLS–CUSUM", "Nyblom–Hansen"), ...) 

  {  

   prs   <  – expand.grid(intensity = intensity, timing = timing, angle = angle) 

   nprs   <  – nrow(prs) 

   ntest   <  – length(test) 

   pow   <  – matrix(rep(NA, ntest * nprs), ncol = ntest) 

   for(i in 1:nprs) pow[i,]   <  – testpower(test = test, intensity =  

    prs $ intensity[i], timing = prs $ timing[i], angle = prs $ angle[i], ...) 

   rval   <  – data.frame() 

   for(i in 1:ntest) rval   <  – rbind(rval, prs) 

   rval $ test   <  – gl(ntest, nprs, labels = test) 

   rval $ power   <  – as.vector(pow) 

   rval $ timing   <  – factor(rval $ timing) 

   rval $ angle   <  – factor(rval $ angle) 

   return(rval) 

  }  

 Table 5      Replication Code for Simulation Results Presented in Table 6 and Figure 1, Respectively. It Assumes that the Functions from 

Tables 2 – 4 are Loaded, then First Produces the Simulation Results, followed by the Replication of Tabular and Graphical Output.  

 library("strucchange") 

 RNGkind(kind = "default", normal.kind = "default") 

 set.seed(1090) 

 sc_sim   <  – simulation() 

 tab   <  – xtabs(power ~ intensity  +  test  +  angle  +  timing, data = sc_sim) 

 ftable(tab, row.vars = c("angle", "timing", "test"), col.vars = "intensity") 

 library("lattice") 

 xyplot(power ~ intensity  |  angle  +  timing, groups  = ~ test, 

   data = sc_sim, type = "b") 
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 This shows rather clearly that only for shifts in the 

intercept (i.e., angle 0), the OLS-based CUSUM test per-

forms very slightly better than the Nyblom-Hansen test, 

but dramatically loses power with increasing angle, being 

completely insensitive to orthogonal changes in slope 

only (i.e., angle 90). The Nyblom-Hansen test, however, 

performs similarly for all angles. Breaks in the middle of 

the sampling period are easier to detect for both tests. 4    All 

results are roughly consistent with Table II(b) in Ploberger 

and Kr ä mer (1992) although we have reduced many of the 

parameter values for the sake of obtaining an almost inter-

active example. 

 In the supplementary material to this article, we 

explore several variations of this simulation setup. In par-

ticular, we investigate the following: 

1.     Running the simulation with the same parameters 

as Ploberger and Kr ä mer (1992), i.e., simulation

(nobs = 120, nrep = 1000, intensity = seq(4.8, 

12, by = 2.4), timing = seq(0.1, 0.9, 

by = 0.2),angle = seq(0, 90, by = 18), test = c

(" Rec-CUSUM", "OLS-CUSUM")).  

2.    Increasing the number of replications to 

nrep = 100000 to obtain more precise power 

estimates.  

3.    Changing the random number generator for normal 

random numbers. The default used above is to employ 

the Mersenne Twister for generating uniform random 

numbers and then apply the inversion method. An 

alternative would be one of the many generators 

specifically designed for providing standard normal 

data such as the Kinderman-Ramage generator. In R 

this is used by setting RNGkind(normal.kind = 

"Kinderman-Ramage").   

 Unsurprisingly, the results are never exactly identi-

cal, but fortunately all very similar. More precisely, 

we compute point-wise asymptotic 95% confidence 

intervals for the difference of simulated powers. The 

empirical coverage proportions for zero are: 95.0% for 

the pairwise differences of (1) and (2), 93.6% for the 

pairwise differences of (2) and (3), and 90.8% for the 

pairwise differences of (1) and the original table in 

Ploberger and Kr ä mer (1992). Hence, the agreement 

between the results is always fairly large. Only the origi-

nal study deviates somewhat, but it still leads to quali-

tatively equivalent conclusions. In the supplements to 

this paper, the exact simulation results are provided 

along with replication files.  

4 These findings are not simply artefacts of using  N  = 100 replica-

tions. The results from a larger,  N  = 10,000, experiment that we con-

ducted reveal them even more clearly and additionally show that the 

OLS-based CUSUM test is somewhat conservative while the Nyblom-

Hansen test is not.
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 Figure 1      Simulated Size and Power for OLS-Based CUSUM Test (solid) and Nyblom-Hansen Test (dashed).    
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6    Conclusions 
 Scientific progress depends on the possibility to verify 

or falsify results. In the case of computer experiments 

in econometrics, verification or falsification of results is 

currently virtually impossible because the available infor-

mation on computational detail in such experiments is 

often insufficient. To improve this unfortunate situation, 

a combination of measures is likely necessary: As a first 

step, authors need to be informed about requirements for 

reproducibility, i.e., availability of replication code along 

with results of the experiments. As a second step, jour-

nals need to support this by providing archives for code 

in addition to data. Ideally, these archives are integrated 

into the editorial process so that their content is checked 

and well arranged. We hope that the guidelines presented 

above will be useful in implementing such measures. 

 It should also be borne in mind that users are 

 responsible for their tools. Thus, in addition to the docu-

mentation issues, some attention to the quality of the com-

putational tools is advisable. It is worth noting that there 

are still many inferior RNGs around, or poor implementa-

tions, even in widely used software packages. Ripley (1990) 

and Hellekalek (1998) are (still) useful starting points for 

the main issues. A more recent source is L ’ Ecuyer (2006). 

Users of simulation software should therefore consult the 

relevant software reviews. In econometrics, the JAE pub-

lishes such reviews, in statistics,  Computational Statistics 
& Data Analysis  (CSDA) is one of the journals that do. 

 Traditionally, the branch of statistics known as experi-

mental design has received limited attention in economet-

rics, presumably because in the social sciences true exper-

iments are more an exception than the rule. However, 

computer experiments can, and should, be treated just 

like experiments typically associated with the hard sci-

ences, hence the principles of experimental design apply. 

Not surprisingly, the statistical literature offers a number 

of suggestions regarding the design of computational 

experiments, see e.g., Santner, Williams, and Notz (2003). 

 Quite apart from the main topic of this paper, a further 

important lesson appears to emerge from a comparison of 

the two journals we examined: some 30% of the JAE papers 

have supplements including (some) codes, although the 

JAE archive currently only requires submission of data. 

This is rather encouraging and suggests that even partial 

(in the sense of data-only) archives sometimes succeed in 

collecting crucial supplementary materials. Nonetheless, 

given that only one paper out of an entire volume of the JoE 

provides complete details on simulations a much higher 

compliance rate is needed, and hence our findings would 

seem to reiterate the need for code archives in addition to 

the recently adopted data archives. For further elabora-

tion on the benefits of data and code archives we refer to 

to Anderson et al. (2008) and the references therein. 

7    Computational Details 
 Our results were obtained using R 2.15.0  –  with the pack-

ages strucchange 1.4-6, and lattice 0.20-6  –  and were 

identical on various platforms including PCs running 

Debian GNU/Linux (with a 3.2.0-1-amd64 kernel) and Mac 

OS X, version 10.6.8. Normal random variables were gen-

erated from uniform random numbers obtained by the 

Mersenne Twister  –  currently R ’ s default generator  –  by 

means of the inversion method. The random seed and 

further technical details are available in the code supple-

menting this paper.    
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