
Institutional Repository of the University of Basel 

University Library

Schoenbeinstrasse 18-20

CH-4056 Basel, Switzerland 

http://edoc.unibas.ch/

Year: 2009 

The biology of PGC-1α and its therapeutic potential 

Handschin, C. 

Posted at edoc, University of Basel 

Official URL: http://edoc.unibas.ch/dok/A5258706 

Originally published as: 

Handschin, C.. (2009) The biology of PGC-1α and its therapeutic potential. Trends in pharmacological 
sciences, Vol. 30, H. 6. S. 322-329. 



The biology of PGC-1α and its therapeutic potential 

Christoph Handschin1,2

1Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, 
Switzerland 
2Institute of Physiology and Zurich Center for Integrative Human Physiology 
(ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, 
Switzerland 

Published in Trends Pharmacol Sci. 2009 Jun;30(6):322-9. PMID: 19446346doi: 
10.1016/j.tips.2009.03.006 

Copyright © Elsevier; Trends in Pharmacological Sciences 



 - 1 - 

The biology of PGC-1α and its therapeutic potential 1 

 2 

Christoph Handschin1,2 3 

 4 

1Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, 5 

Switzerland 6 

2Institute of Physiology and Zurich Center for Integrative Human Physiology 7 

(ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, 8 

Switzerland 9 

 10 

Corresponding author: Handschin, C. (christoph.handschin@unibas.ch) 11 



 - 2 - 

Abstract 1 

In eukaryotes, cellular and systemic metabolism is primarily controlled by 2 

mitochondrial activity. The peroxisome proliferator-activated receptor γ 3 

coactivator 1α (PGC-1α) is a major regulator of mitochondrial biogenesis and 4 

function. Furthermore, PGC-1α controls many of the phenotypic adaptations of 5 

oxidative tissues to external and internal perturbations. In contrast, dysregulated 6 

metabolic plasticity is involved in the etiology of numerous diseases. Accordingly, 7 

modulation of PGC-1α levels and activity has recently been proposed as a 8 

therapeutic option for several pathologies. However, pharmacological 9 

interventions aimed at PGC-1α have to overcome inherent limitations of targeting 10 

a coactivator protein. This review focuses on the recent breakthroughs in the 11 

identification of physiological and pathophysiological contexts involving PGC-1α. 12 

In addition, perspectives regarding the therapeutic importance of PGC-1α-13 

controlled cellular and systemic metabolism are outlined. 14 

 15 
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Introduction 1 

 2 

Transcriptional changes in gene expression underlie the coordinated regulation 3 

of biological programs. These changes are initiated and maintained by the 4 

binding of regulatory protein complexes to DNA elements in the enhancer and 5 

promoter regions of target genes. Traditionally, DNA-binding transcription factors 6 

were thought to be the main regulators of gene expression. However, in recent 7 

years, the importance of transcriptional coregulators in the coordination of the 8 

expression of genetic programs has been appreciated [1, 2]. The family of 9 

peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) genes 10 

illustrates how coactivators respond to environmental cues and subsequently 11 

regulate biological processes in a tissue-specific and highly coordinated manner 12 

[3-5]. All three members of this small gene family, PGC-1α, PGC-1β and PGC-13 

related coactivator (PRC) are strong promoters of mitochondrial biogenesis and 14 

oxidative metabolism [6-8]. In contrast to PRC that is ubiquitously expressed, 15 

PGC-1α and PGC-1β are primarily found in oxidative tissues, including brain, 16 

heart, kidney, muscle, liver, brown adipose tissue (BAT) and pancreas. In these 17 

organs, PGC-1α and PGC-1β have overlapping as well as clearly distinct 18 

functions [9]. Moreover, these two coactivators are differently regulated in 19 

development and in response to nutritional and other challenges [8, 10]. 20 

However, whereas our understanding of the physiological role of PGC-1β 21 

remains rudimentary, significant progress in the study of PGC-1α has been made 22 

since its discovery more than a decade ago [11]. This review aims at 23 
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summarizing recent findings and at highlighting the potential therapeutic 1 

applications of PGC-1α. 2 

 3 

PGC-1α regulates tissue-specific gene expression in health and disease 4 

 5 

The PGC-1α protein is very versatile and coactivates many transcription factors 6 

[3-5]. Binding to different partners enables PGC-1α to regulate distinct biological 7 

programs. For example, a combination of coactivation events among PGC-1α, 8 

the hepatic nuclear factor 4α (HNF4α) and the forkhead transcription factor 9 

Foxo1 determines the rate of fasting-induced hepatic gluconeogenesis [12, 13]. 10 

In skeletal muscle, myofibrillar genes are controlled by PGC-1α-mediated 11 

coactivation of myocyte enhancer factor 2 (MEF2) proteins [14]. In most tissues, 12 

abnormal regulation of PGC-1α expression and protein activity results in 13 

pathological consequences. Furthermore, single nucleotide polymorphisms 14 

(SNP) of PPARGC1A, the PGC-1α gene, have been associated with a diverse 15 

set of human diseases (http://www.geneticassociationdb.nih.gov). PGC-1α SNPs 16 

are found throughout the protein coding region as well as in the promoter, introns 17 

and the 3’ untranslated region (3’ UTR). The functional consequences of the 18 

SNPs are not clearly understood and disease-association of individual SNPs 19 

seems highly population- and context-dependent. 20 

 21 

Adipose tissue 22 

 23 
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In BAT, PGC-1α expression is regulated by cold exposure and β-adrenoreceptor 1 

agonists [11]. Subsequently, PGC-1α coactivates PPARγ and the thyroid 2 

hormone receptor (TR) on the uncoupling protein 1 (UCP-1), type 2 deiodinase 3 

(DIO2) and other BAT-specific gene promoters [11]. BAT vs. white adipose tissue 4 

(WAT) selectivity of gene expression is controlled by the distinct assembly of 5 

PGC-1α / PR(PRD1-BF1-RIZ1 homologous)-domain-containing protein (Prdm16) 6 

/ C-terminal binding protein-1 (CtBP1) protein complexes in these two tissues 7 

[15]. PGC-1α function is essential for BAT-mediated adaptive thermogenesis in 8 

vitro and in vivo [9, 16, 17]. Thus, when exposed to cold, PGC-1α knockout mice 9 

rapidly become hypothermic and die after prolonged exposure [16, 17]. 10 

 11 

Levels of PGC-1α in WAT are much lower than those in BAT and the 12 

physiological role of PGC-1α in this tissue is unclear [11]. PGC-1α expression is 13 

further reduced in the subcutaneous fat of morbidly obese and of insulin resistant 14 

patients, respectively [18, 19]. In contrast, thiazoledinedione treatment and 15 

hyperleptinemia elevate PGC-1α transcription in WAT; this induction mediates 16 

some of the beneficial effects of this class of anti-diabetic drugs and of leptin, 17 

respectively [20, 21]. Ectopic expression of PGC-1α in a WAT context results in 18 

the induction of BAT-specific genes such as UCP-1 and an increase in 19 

mitochondrial activity [11, 22]. 20 

 21 

Therapeutic potential: Augmenting the function of the remaining BAT in adult 22 

humans or pushing WAT towards BAT-specific gene expression by elevating 23 
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PGC-1α could tilt energy balance towards expenditure and thereby reduce 1 

obesity (Fig. 1). Proof-of-concept for a therapeutic effect of augmented BAT 2 

content is provided by chronic β3-adrenoreceptor stimulation resulting in a lean 3 

and healthy phenotype in animal models [23]. However, it remains to be tested 4 

whether the limited capacity of PGC-1α to increase BAT gene expression in WAT 5 

is sufficient or if other factors such as Prdm16 are required to achieve a 6 

therapeutic effect [24]. 7 

 8 

Liver 9 

 10 

The first peak of PGC-1α gene expression is observed in the liver at birth [10]. In 11 

the adult, fasting and glucagon are the main drivers of hepatic PGC-1α 12 

transcription [12, 25]. PGC-1α regulates most of the metabolic changes that 13 

occur during the transition of a fed to a fasted liver, including gluconeogenesis, 14 

fatty acid β-oxidation, ketogenesis and heme biosynthesis [12, 13, 26, 27]. 15 

Studies with knockout animals and adenovirally delivered shRNA constructs 16 

revealed a blunted hepatic fasting response in the absence of adequate levels of 17 

PGC-1α [17, 27, 28]. Accordingly, these mice develop a fasting hypoglycemia 18 

and hepatic steatosis [17, 28]. 19 

 20 

Therapeutic potential: An increase in PGC-1α levels in the liver might obviously 21 

alleviate hypoglycemia and hepatic steatosis. However, in contrast to the 22 

induction sought after in most other tissues, a repression of PGC-1α activity 23 
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holds more promise for therapy in the liver. First, hepatic PGC-1α expression is 1 

elevated in mouse models for type 1 and type 2 diabetes and probably 2 

contributes to the unchecked glucose production and hyperglycemia in diabetes 3 

[12]. Normalization of PGC-1α levels might thus help to control hepatic 4 

gluconeogenesis in these patients. Individuals with acute hepatic porphyrias, 5 

diseases caused by mutations in the heme biosynthetic pathway, often suffer 6 

from fasting-induced acute attacks that can be alleviated by glucose and heme 7 

administration [29]. PGC-1α has been identified as one of the main culprits in the 8 

precipitation of acute porphyric attacks in fasting [27]. These attacks might be 9 

prevented by pharmacological interventions that thwart the induction or activity of 10 

PGC-1α [29, 30]. Furthermore, PGC-1α regulates the genes encoding 11 

homocysteine synthesis enzymes in the fasted liver [31]. High plasma 12 

homocysteine is an independent risk factor for the development of cardiovascular 13 

diseases. Accordingly, inhibition of PGC-1α could result in a drop of plasma 14 

homocysteine levels and thereby a reduction of the risk for cardiovascular 15 

diseases [31]. Finally, the hepatitis B virus (HBV) uses the transcriptional 16 

machinery that regulates the hepatic fasting response for amplification [32]. 17 

Accordingly, HBV gene expression and life cycle, and thus the viral-host 18 

interaction, are under the control of PGC-1α [32]. Repression of PGC-1α activity 19 

might present a new anti-viral therapy for hepatitis B and help to restrict the viral 20 

load in this disease. 21 

 22 

Brain 23 
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 1 

In the developing brain, PGC-1α transcription peaks two weeks postnatally in 2 

many regions, a period of significant metabolic changes, mitochondrial 3 

biogenesis and synaptic remodeling [33]. The highest PGC-1α concentrations 4 

are found in γ-aminobutyric acid (GABA)-positive neurons in the cortex, 5 

hippocampus and cerebellum [33]. One of the existing global PGC-1α knockout 6 

line exhibits increased anxiety [17], whereas a second model shows a profound 7 

hyperactivity [16]. Other behavioral changes include hind limb clasping, dystonic 8 

posturing, an exaggerated startling response and stimulus-induced myoclonus 9 

[16]. Besides the behavioral abnormalities, spongiform-like vacuolization events 10 

are observed in the dorsolateral striatum [16], the vicinity of pyramidal neurons 11 

[17], and more sporadically, in other regions of the brain of PGC-1α knockout 12 

mice [16]. Furthermore, the substantia nigra and the CA1 neurons of the 13 

hippocampus are more susceptible to degenerative events triggered by the 14 

reactive oxygen species (ROS)-generating 1-methyl-4-phenyl-1,2,3,6-15 

tetrahydropyridine (MPTP) and kainic acid, respectively, in these animals [34]. 16 

These findings suggest an important involvement of PGC-1α in neuronal 17 

maintenance and function. 18 

 19 

Therapeutic potential: Mitochondrial dysfunction and oxidative stress are 20 

associated with many neurodegenerative disorders, including Parkinson’s, 21 

Alzheimer’s, Huntington’s, Friedreich’s ataxia and amyotrophic lateral disorder 22 

(ALS) [35, 36]. PGC-1α coordinately regulates the entire mitochondrial program 23 
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concomitant with an increase in the ROS detoxification system [34]. Reduced 1 

PGC-1α expression in Huntington’s patients, the association of PGC-1α SNPs 2 

with the age of onset of Huntington’s [37] and the Huntington’s-like phenotype in 3 

PGC-1α knockout suggest that PGC-1α is crucial for the maintenance of proper 4 

striatal function [16, 38, 39]. A normalization of PGC-1α expression in the 5 

striatum of Huntington’s patients might thus constitute a promising therapeutic 6 

option [40-42]. In addition, the wide-spread neuronal lesions and the 7 

susceptibility to chemically-induced neurodegeneration in different regions of the 8 

brain of PGC-1α knockout animals imply that PGC-1α has a broader role in 9 

neuroprotection beyond that related to Huntington’s disease [16, 34]. 10 

 11 

Skeletal muscle 12 

 13 

In the contracting muscle fiber, the main signaling pathways converge on PGC-14 

1α to increase expression levels and the activity of this coactivator [3, 43, 44]. 15 

For example, p38 mitogen-activated protein kinase (p38 MAPK) and AMP-16 

dependent kinase (AMPK) are rapidly activated in exercise and subsequently 17 

phosphorylate the PGC-1α protein. In addition, PGC-1α transcription is regulated 18 

by the motor neuron-induced rise in intracellular calcium, AMPK, β2-19 

adrenoreceptor signaling, nitric oxide and thyroid hormone [5]. As a 20 

consequence, PGC-1α levels in skeletal muscle are elevated following bouts of 21 

endurance exercise. PGC-1α is primarily found in type I and IIa slow-twitch, high 22 

endurance muscle fibers and regulates the adaptations to exercise [14]. In fact, 23 
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ectopic expression of PGC-1α in skeletal muscle is sufficient to promote a fiber-1 

type switching towards oxidative muscle fibers and bestow a trained phenotype 2 

onto mice [14, 45]. 3 

 4 

Abnormally low PGC-1α levels have been described in skeletal muscle of type 2 5 

diabetic patients and physically inactive individuals [46, 47]. Mice with reduced or 6 

ablated PGC-1α gene expression suffer from a decreased exercise capacity, 7 

abnormal systemic glucose and insulin homeostases, systemic inflammation and 8 

activity-dependent fiber damage [48, 49]. Paradoxically, transgenic mice with 9 

elevated PGC-1α levels in muscle are prone to develop peripheral insulin 10 

resistance on a high fat-containing diet [50]. 11 

 12 

Therapeutic potential: Many diseases are associated with inactive skeletal 13 

muscle [51]. In animal models, transgenic elevation of PGC-1α in muscle blunts 14 

inactivity-induced fiber atrophy [52], reduces muscle wasting triggered by the 15 

statin class of drugs [53], ameliorates Duchenne muscular dystrophy [54] and a 16 

specific form of mitochondrial myopathy [55]. Since PGC-1α promotes an 17 

exercised phenotype in muscle, the therapeutic potential of PGC-1α against 18 

diseases that are associated with dysregulated muscle function is extremely 19 

broad. 20 

 21 

PGC-1α controls the transcription of several genes encoding oxidative 22 

phosphorylation (OXPHOS) genes that are dysregulated in muscle of type 2 23 
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diabetic patients [46, 47]. The specific disruption of the interaction between PGC-1 

1α and the estrogen-related receptor α (ERRα) using an inverse agonist in 2 

muscle cells in culture promotes a change in gene expression similar to that 3 

observed in muscle of diabetic patients [56]. Activation of the PGC-1α/ERRα axis 4 

could thus be a novel therapeutic approach against insulin resistance and type 2 5 

diabetes [57]. However, the data from gain- and loss-of-function animal models of 6 

PGC-1α in muscle imply a complicated relationship between the expression of 7 

this coactivator and systemic glucose and insulin levels that has yet to be 8 

clarified [49, 50]. 9 

 10 

Heart 11 

 12 

In the heart, PGC-1α transcription is induced at birth and correlates with 13 

metabolic maturation and remodeling [58]. As in other tissues, cardiac PGC-1α 14 

strongly promotes mitochondrial function and fatty acid β-oxidation [59]. In 15 

several mouse models for heart disease accompanied with a substrate switch 16 

from fatty acid to glucose utilization, expression of PGC-1α is reduced [60]. At 17 

baseline, heart function of PGC-1α knockout mice appears normal [17, 61]. 18 

However, the cardiac reserve under stress conditions is impaired in mice with an 19 

ablated PGC-1α gene [61] and accordingly, these mice have a diminished 20 

cardiac capacity in exercise [17]. In addition, prolonged pressure overload by 21 

transverse aortic constriction precipitates ventricular dysfunction and clinical 22 

signs of heart failure in PGC-1α knockout animals [62]. Interestingly, ectopic 23 
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expression of PGC-1α in the heart at superphysiological levels also results in 1 

cardiomyopathy and heart failure in mice [58]. 2 

 3 

Therapeutic potential: Moderate elevation or normalization of PGC-1α expression 4 

in the failing heart might be sufficient to switch substrate usage from glucose 5 

back to fatty acids and restore adequate energy production [62]. Thereby, PGC-6 

1α could be cardioprotective against certain insults [60]. In contrast, insulin-7 

resistant hearts rely heavily on fatty acid oxidation and there, PGC-1α levels are 8 

elevated [63]. It is unclear if upregulation of cardiac PGC-1α in insulin resistance 9 

is an adaptive or a maladaptive process. In the former case, a reduction of PGC-10 

1α expression should be the therapeutic goal. However, if the increase of PGC-11 

1α is an adaptive process to cope with the excess amount of fatty acids, a further 12 

elevation might be therapeutically beneficial [3, 60]. 13 

 14 

Pancreas 15 

 16 

In obese mice, insulin resistant animal models and in a partial pancreatectomy as 17 

a model for β cell decompensation, the transcriptional rate of the PGC-1α gene in 18 

the pancreas is increased over the normally low basal levels [64]. In pancreatic 19 

islets, PGC-1α prevents membrane polarization and induces glucose-6-20 

phosphatase and thereby reduces insulin secretion [64]. Notably, a second study 21 

of PGC-1α in human pancreatic islets resulted in opposite findings [65]. A 22 

common PGC-1α SNP was associated with reduced PGC-1α expression and 23 
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insulin secretion in islets of tissue donors [65]. In addition, silencing of PGC-1α 1 

gene expression in isolated human islets likewise led to impaired insulin 2 

secretion [65]. 3 

 4 

Therapeutic potential: At the moment, the diametrically opposed results of these 5 

two studies are difficult to accommodate. Until these issues are resolved, it is 6 

unclear whether a suppression or an induction of PGC-1α activity in pancreatic 7 

islets is the more promising avenue to restore insulin secretion in type 1 and type 8 

2 diabetes. 9 

 10 

Bone and cartilage 11 

 12 

Parathyroid hormone-induced cAMP signaling is a major pathway in osteoclast 13 

activation [66]. PGC-1α is a primary target gene of this signaling cascade and 14 

synergistically with Nurr1, a cAMP-induced orphan nuclear receptor, increases 15 

the transcription of osteopontin and osteocalcin, two key genes in bone formation 16 

[66]. Given the significant role of ERRα, one of the strongest interaction partners 17 

of PGC-1α, in osteoblasts and osteoclasts [67] and the coactivation of the 18 

vitamin D receptor by PGC-1α [68], an important function for PGC-1α in 19 

osteogenesis seems likely. These findings are intriguing in regard to a report 20 

showing a role of PGC-1α in chondrogenesis [69] suggesting an even broader 21 

implication for PGC-1α in the developing skeleton. 22 

 23 
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Therapeutic options: An activation of PGC-1α might be useful in osteoporosis or 1 

other disease associated with reduced bone density and morphology [66]. 2 

Similarly, PGC-1α could be a promising target for molecular engineering of 3 

cartilage in the clinical setting, e.g., osteoarthritis and other chondrodystrophies 4 

[69]. 5 

 6 

Problems, pitfalls and opportunities 7 

 8 

As a transcriptional coactivator, PGC-1α lacks functional DNA- and ligand-9 

binding domains and therefore is not amenable to direct pharmacological 10 

intervention. Strategies to alter the availability of PGC-1α thus have to aim at 11 

transcriptional regulation of the gene, modifications of the protein or the 12 

interaction with binding partners. Modulation of PGC-1α transcription is 13 

hampered by the tight regulation of cellular metabolism. Accordingly, despite 14 

different screening efforts [70, 71], clinically interesting compounds that 15 

persistently induce PGC-1α transcription are elusive. Optimally, such drugs 16 

would act in a tissue-specific manner to circumvent unwanted side-effects by 17 

elevating PGC-1α in non-target tissues. For example, an elevation of PGC-1a in 18 

WAT by thiazoledinedione drugs has been reported [20]; however, it is unclear 19 

whether this induction is direct, secondary to other events or even sufficient to 20 

contribute to the therapeutic effect of this class of drugs. 21 

 22 
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Posttranslational modifications of the PGC-1α protein alter the half-life and the 1 

specificity towards binding partners (Fig. 2). For example, PGC-1α is 2 

phosphorylated by AMPK at two different sites [44]. Metformin, a clinically used 3 

anti-diabetic drug mediates at least some of its therapeutic effect through 4 

activation of AMPK. Furthermore, deacetylation of 13 lysine residues on PGC-1α 5 

by the mammalian silencing information regulator 2-ortholog SIRT1 increases 6 

PGC-1α activity and thereby targets gene expression in muscle and liver [72, 73]. 7 

Resveratrol and other, more specific SIRT1 activators are promising drugs 8 

against aging and aging-related diseases acting partially through PGC-1α [74]. 9 

Other known modifications of PGC-1α include phosphorylations by p38 MAPK 10 

[75, 76] and Akt2/protein kinase B [77], methylation by protein arginine 11 

methyltransferase 1 (PRMT1) [78], ubiquitination [79] and O-linked β-N-12 

acetylglucosamination [80]. Proteins with such enzymatic activities are attractive 13 

drug targets for which specific activators and inhibitors can be designed. 14 

Following the posttranslational modifications that modify the specificity of PGC-15 

1α, the transcription of selective groups of target genes is altered (Fig. 2). Thus, 16 

pharmacological manipulation of these enzymes upstream of PGC-1α might 17 

result in a fine-tuned modulation of PGC-1α activity in a tissue- and target gene-18 

specific manner [5]. 19 

 20 

PGC-1α regulates biological programs by interacting with different transcriptional 21 

complexes. For instance, the strong potentiation of the transcriptional activity of 22 

ERRα by PGC-1α is responsible for mitochondrial OXPHOS gene expression in 23 
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muscle and other tissues and a specific disruption of this interaction selectively 1 

reduces the expression of these, but not other PGC-1α target genes [56]. The 2 

use of partial agonists for ligand-binding transcription factors that modulate the 3 

binding of individual coactivators [81] or of compounds that selectively disrupt or 4 

enhance protein-protein interactions [56] could thus be another approach for a 5 

specific modulation of PGC-1α activity. Furthermore, pharmacological 6 

interventions targeting the assembly of the PGC-1α–containing transcriptional 7 

complex that includes the p160 myb-binding protein [82], histone acetyl-8 

transferase enzymes (HAT) [83], members of the TRAP/DRIP/mediator complex 9 

[84] and other proteins [85] are alternative strategies with therapeutic potential. 10 

 11 

Finally, indiscriminate changes in the level of PGC-1α in either direction are most 12 

likely equally detrimental (Fig. 3). For example, cardiomyopathy and heart failure 13 

develop with sub- and superphysiological levels of PGC-1α [58, 62]. In skeletal 14 

muscle, an increased exercise capacity was observed in a mouse line with 15 

moderate transgenic expression of PGC-1α [14]. However, the roughly ten-fold 16 

increase in PGC-1α transcript levels in these animals might already be excessive 17 

for normal insulin sensitivity [50]. In contrast, an even more modest elevation of 18 

PGC-1α as demonstrated in an in vivo transfection experiment clearly increased 19 

insulin sensitivity in skeletal muscle [86]. Higher expressing mouse lines suffer 20 

from displacement of the contractile apparatus by excess mitochondria, weight 21 

loss, fiber atrophy and muscle wasting [14, 87], reminiscent of the fiber damage 22 

of muscle-specific knockout animals [48, 49]. Modulation of PGC-1α thus has to 23 
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aim at either a moderate alteration or a normalization of PGC-1α activity within a 1 

therapeutically beneficial window that might be tissue- and context-dependent. 2 

 3 

Perspectives 4 

 5 

The transcriptional coactivator PGC-1α plays a key role in maintaining cellular 6 

metabolism. Dysregulation of gene expression and gene polymorphisms of PGC-7 

1α have accordingly been found in a wide variety of different pathological 8 

contexts. Furthermore, therapeutic efficacy of PGC-1α modulation has been 9 

demonstrated in animal models for different diseases. Thus, pharmacological 10 

regulation of PGC-1α expression and activity might be a promising novel 11 

approach for the prevention and therapy of a number of pathologies despite the 12 

inherent difficulties of targeting a coactivator. On the other hand, coactivators 13 

exhibit some features that could be exploited for clinical use. By coordinating 14 

different steps in biological programs through the integration of the activity of 15 

many transcription factors, coactivators have kinetic advantages in controlling 16 

biological programs over transcription factor-mediated regulation [1]. 17 

Furthermore, combinatorial combinations of posttranslational modifications of 18 

coregulators exponentially increase the degree of specification of these proteins 19 

[2, 5]. Thus, a selective targeting of PGC-1α could potentially result in a fine-20 

tuned and highly specific response, which is unattainable by modulation of 21 

transcription factors. Finally, modulation of PGC-1α in one tissue might trigger 22 

distal effects in other organs. For example, observations from muscle-specific 23 
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loss-of-function mouse lines suggest that PGC-1α links muscle function to 1 

systemic inflammation and ultimately, the risk of developing many chronic 2 

diseases [48, 49, 51]. If these findings are substantiated, then modulation of 3 

PGC-1α might have a much broader therapeutic applicability [51]. Obviously, big 4 

gaps of knowledge about the function of PGC-1α, and even more about PGC-1β 5 

and PRC exist. Hopefully, a more comprehensive understanding of the 6 

therapeutic potential of the PGC-1 family of coactivators will emerge from future 7 

studies addressing mechanistic and physiological aspects of these intriguing 8 

proteins. 9 
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Figure Legends 1 

 2 

Fig. 1. Therapeutic potential of PGC-1α. For a number of tissues, different 3 

functions of PGC-1α have been described. A modulation of PGC-1α expression 4 

and activity could have therapeutic implications in the diseases listed for each of 5 

these organs. Abbreviations: BAT, brown adipose tissue; CVD, cardiovascular 6 

diseases. 7 

 8 

Fig. 2. Posttranslational modifications alter the specificity of PGC-1α. The 9 

specificity of PGC-1α to interact with its binding partners is altered by 10 

posttranslational modifications of the PGC-1α protein. For example, 11 

phosphorylation of PGC-1α by the AMP-dependent kinase (AMPK) primarily 12 

affects PGC-1α target genes that are involved in cellular metabolism. Selective 13 

activation of neuromuscular junction (NMJ) genes in synaptic nuclei of the 14 

muscle fiber is achieved by different phosphorylations of PGC-1α through motor 15 

neuron-derived signals. Abbreviations: OXPHOS, oxidative phosphorylation. 16 

 17 

Fig. 3. Clinical modulation of PGC-1α has to occur in a therapeutically 18 

beneficial window. Super- and subphysiological expression of PGC-1α cause 19 

detrimental effects as described for heart and skeletal muscle. A pharmacological 20 

modulation should thus aim at a moderate increase or a normalization of 21 

pathologically dysregulated PGC-1α. The therapeutic window might differ 22 

between tissues and contexts. 23 
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