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Inadequate physical activity is linked to many chronic diseases. However, the 

mechanisms that tie muscle activity to health are unclear. The peroxisome 

proliferator-activated receptor γ co-activator 1α (PGC-1α) controls several 

exercise-related aspects of muscle function. We propose here mechanisms by which 

this protein controls muscle plasticity, suppresses a broad inflammatory response 

and mediates the beneficial effects of exercise. 

The reduction in physical activity, resulting from shifts in the nature of work and the 

replacement of muscle with machine in the developed world, has driven a dramatic 

increase in the incidence of many chronic diseases. In addition to the more obvious 

consequences associated with reduced activity, such as obesity, cardiovascular diseases, 

hypertension and type 2 diabetes, lack of sufficient exercise has also been linked to 

certain important types of cancer, pulmonary diseases, immune dysfunction, 

musculoskeletal diseases and several types of neurodegenerative disorders1 (Fig. 1). In 

fact, a sedentary lifestyle is a major risk factor for many chronic pathologies and it has 

been shown unequivocally that inactivity increases the morbidity and mortality of these 

diseases2,3. Exercise capacity is a strong predictor of overall mortality, regardless of 

health and race4. Unfortunately, more than 50% of US adults do not exercise enough to 

achieve health benefits and 25% of adults shun any form of physical activity in their 
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leisure time (Source: Center for Disease Control and Prevention, www.cdc.gov)5; 

especially alarming is the rising trend of physical inactivity among young people6. 

Devastating effects of insufficient physical activity are likewise observed in the elderly7. 

Decreased muscle function in this population is not only directly linked to sarcopenia 

and the prevalence of a number of chronic diseases, but contributes enormously to the 

overall quality of life by diminishing strength, the ability to perform daily chores and 

social interactions, mobility, cognitive performance and life expectancy7. Even in the 

early elderly years, changes in physical activity have drastic consequences for health 

and lifespan. For example, sedentary behaviour in a 70-year-old man reduces the 

probability of survival to age 90 from 54% to 44%8. In contrast, increasing physical 

activity is an effective preventative measure for many chronic disorders. Furthermore, 

exercise is an excellent therapeutic intervention for pathologies such as obesity, type 2 

diabetes, neurodegeneration, osteoporosis and sarcopenia1; in terms of efficacy, exercise 

can rival the effects of drugs that are prescribed for many of these diseases, e.g. type 2 

diabetes9. 

Inactivity, inflammation and chronic disease 

Many chronic diseases have been found to be associated with a sterile, persistent, low-

grade inflammation (Fig. 2). For example, the development of insulin resistance and 

type 2 diabetes tissue is closely correlated with immune cell infiltration and 

inflammation in white adipose tissue10. In cardiovascular diseases, activated immune 

cells and inflammation play a major role, particularly in the etiology of 

atherosclerosis11,12. Importantly, tumor initiation, promotion, and progression is 

stimulated by systemic elevation of pro-inflammatory cytokines13. 

A number of neurodegenerative diseases are linked to a local inflammatory 

response in the brain (neuroinflammation). For example, neuroinflammation influences 

activation of glia cells and subsequent release of pro-inflammatory cytokines such as 
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tumor necrosis factor α (TNFα); these are thought to promote the death of 

dopaminergic neurons in the substantia nigra and thereby contribute to the pathology of 

Parkinson’s disease14,15. Similarly, interleukin-1β (IL-1β), TNF-related apoptosis-

inducing ligand (TRAIL) and other cytokines have been postulated to be involved in the 

etiology of Alzheimer’s disease16, as has amyloid-β, itself exhibiting pro-inflammatory 

effects17. It is important to note that in addition to the neuroinflammation found in many 

neurodegenerative disorders, systemic inflammation further exacerbates these diseases 

and promotes the progression of neurodegeneration18. 

Physical activity, inflammation and immunity are tightly linked in an interesting 

and complex way19. Regular, moderate exercise reduces systemic inflammation20. The 

mediators of this beneficial effect of exercise are unclear; however, several candidate 

mechanisms have been identified. First, exercise increases the release of epinephrine, 

cortisol, growth hormone, prolactin and other factors that have immunomodulatory 

effects21. Furthermore, exercise results in decreased expression of Toll-like receptor on 

monocytes suggested to be involved in mediating whole body inflammation22. In 

contrast to the reduction of chronic inflammation by regular, moderate exercise, 

prolonged, high intensity training results in increased systemic inflammation and 

elevated risk of infection20. In fact, subsequent to this type of exercise, athletes exhibit a 

transient exercise-induced immunodepression23. 

The recent discovery of “myokines”, cytokines produced and secreted from 

skeletal muscle, analogous to “adipokines” made from fat tissue, shed light on this 

bivalent association between exercise and inflammation19. The first myokine to be 

described was interleukin-6 (IL-6); similar factors synthesized and secreted upon 

contraction of muscle fibers include IL-8 and IL-1524. In addition to these muscle-

derived cytokines, increased IL-1 receptor antagonist (IL-1ra), IL-10 and TNFα are 

found in the circulation after exercise24. However, systemic elevation of TNFα is 
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restricted to physical activity of extremely high intensity and therefore could be 

responsible for the elevated inflammatory state upon prolonged, intense exercise. 

Once released transiently into the blood stream, myokines mediate some of the 

systemic and beneficial effects of exercise in non-muscle tissue, e.g. modulation of 

hepatic glucose production through IL-6. Some of these cytokines are clearly pro- (e.g. 

IL-1, TNFα) or anti-inflammatory (e.g. IL-10, IL-1ra). Paradoxically, both pro- and 

anti-inflammatory effects have been attributed to others25. For example, chronically 

elevated serum IL-6 levels have a predictive value for obesity and type 2 diabetes. In 

addition, chronically elevated levels of systemic IL-6, IL-8, IL-10, IL-1 and TNFα have 

been linked to the development of many diseases associated with inflammation 

including cancer, and other age-associated diseases, such as sarcopenia, 

neurodegeneration and depression10,11,13,26-28. Finally, chronic elevation of IL-6 and 

TNFα results in skeletal muscle atrophy and inhibition of muscle regeneration, 

respectively29,30. Thus, the transient fluctuations of myokines following physical activity 

might contribute to the beneficial effects of exercise on organs other than muscle in a 

hormone-like fashion, whereas chronic elevation of many of these same molecules is 

almost certainly pro-inflammatory and detrimental. Obviously, then, the increase of IL-

6 and other cytokines secreted from muscle in exercise and their subsequent return to 

basal levels must be tightly regulated. 

Effects of endurance and strength training 

Distinct exercise regimens are useful for the prevention and treatment of different 

pathologies. For example, endurance training improves cardiovascular parameters31, 

strength training reduces sarcopenia32, and the combination of both training regiments 

was recently reported to be the most beneficial paradigm for type 2 diabetic patients33. 

For other diseases, the optimal training form remains to be defined. It is clear that 
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sedentary behaviour increases the risk for developing certain types of cancer1,34. 

Likewise, the type of exercise that confers the greatest protection against 

neurodegenerative diseases is unknown. Interestingly, moderate exercise (e.g. walking) 

is sufficient to reduce the risk of developing dementia, as shown in a prospective study 

with persons 65 years of age or older35. 

Mechanistically, resistance training and endurance exercise activate distinct 

signalling pathways and result in specific adaptations of skeletal muscle. A significant 

proportion of the capacity for adaptations of skeletal muscle is determined by the 

relative number and cross-sectional area of different muscle fiber types within a 

particular muscle bed36. Endurance is improved with increased numbers of type I and 

type IIa fibers and endurance training increases the number of these fibers. Type I and 

type IIa fibers are red in appearance and are characterized by a high number of 

mitochondria, elevated myoglobin and vascularization, and express a specific set of 

myofibrillar proteins. As a result, they display resistance to fatigue and slow 

contractions with low peak force generation37. The main source of ATP is the oxidative 

phosphorylation of glucose and fatty acids. In contrast, the white type IIb fibers (type 

IIx fibers in humans) have a relatively low number of mitochondria and mainly use 

anaerobic phosphocreatine and glucose metabolism to generate ATP. These fibers 

fatigue rapidly, but are able to generate fast contractions with a high peak force37. When 

stimulated by strength training, type IIb muscle fibers can undergo substantial 

hypertrophy38. 

Regulation and role of the PGC-1 coactivators in skeletal muscle physiology 

Contraction of skeletal muscle is initiated by motor neuron-induced calcium signalling. 

The adaptation of muscle fibers to endurance vs. strength training is mediated by 

different firing patterns of their respective motor neurons39. Type I and IIa-specific gene 

expression patterns are achieved by frequent bursts of sarcoplasmic calcium with low 
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amplitude, as seen in endurance training. Strength training results in intermittent rises in 

sarcoplasmic calcium with high amplitude; this promotes transcription of the genes that 

mediate a type IIb-specific response and fiber hypertrophy39. Elevated sarcoplasmic 

calcium, in turn, activates the protein phosphatase calcineurin A (CnA) and the 

calcium/calmodulin-dependent protein kinases (CaMK), which then alter the 

phosphorylation state of multiple transcription factors and coactivators40. 

This heightened calcium signalling activates several important transcription 

factors: cAMP responsive element binding protein (CREB), the myocyte enhancer 

factors 2 (MEF2C and MEF2D) and the nuclear factor of activated T cells (NFAT). 

This results in altered expression of exercise-regulated muscle genes, particularly the 

powerful transcriptional coactivator PGC-1α41. Accordingly, PGC-1α expression is 

rapidly induced by these proteins following a single bout of endurance exercise in 

vivo42. When physical activity is stopped, PGC-1α mRNA and protein levels quickly 

revert to the pre-exercised quantity42. In acute bouts of exercise, it is likely that  

increased expression of PGC-1α is primarily a mechanism for modulating metabolic 

fluxes in skeletal muscle as a response to decreased ATP and altered fuel demands43. 

The multi-faceted interaction of PGC-1α with the AMP-activated protein kinase 

(AMPK) is likely to play a major role in this process44. In contrast, PGC-1α is found at 

an elevated level in chronically exercised skeletal muscle, even between individual 

bouts of exercise, when compared to untrained muscle45. This reflects short term vs. 

long term adaptation of skeletal muscle to endurance exercise.  

Thus, changes in muscle plasticity induced by chronic exercise, for example fiber-

type switching towards the more oxidative and high endurance type IIa and type I 

fibers, correlate with an increased basal expression of PGC-1α45. Furthermore, higher 

levels of PGC-1α are found in oxidative fibers compared to glycolytic fibers, even in a 

rested state46. Transgenic elevation of PGC-1α in the skeletal muscle of animals up to 
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the levels seen in type I fibers results in a stable and robust fiber-type switch towards 

both type IIa and type I oxidative fibers46. Individual muscle fibers from these mice are 

more fatigue resistant, compared to fibers from wild type animals, and transgenic 

animals perform better in endurance exercise indicating that chronic elevation of PGC-

1α mediates many, if not all of the phenotypic changes seen in endurance-trained 

muscle46,47. The fiber switch promoted by PGC-1α is characterized by increased 

mitochondrial density and function, increased oxidative metabolism, elevated 

expression of myofibrillar proteins characteristic of type I and type IIa muscle fibers 

and a switch in substrate fuel usage46,48. Conversely, animals with PGC-1α specifically 

ablated from skeletal muscle exhibit a higher number of glycolytic muscle fibers and 

have a reduced endurance exercise capacity49. Taken together, it is clear that PGC-1α is 

a key mediator of many of the known beneficial effects of physical activity on skeletal 

muscle physiology50,51. 

Protective effects of PGC-1α in muscle biology: Suppression of chronic 

inflammation and muscle catabolism 

One of the most important effects of exercise in human health is to prevent muscle 

catabolism and muscle wasting. Limb immobilization, prolonged hospitalization and 

various muscular dystrophies are conditions where developing an exercised muscle 

phenotype by the patient would improve the disease and the overall quality of life - but 

these patients often cannot train effectively. Several studies indicate that PGC-1α 

prevents protein catabolism and muscle wasting in a number of different contexts. 

Denervation-induced muscle atrophy, Duchenne muscular dystrophy and muscle 

damage via treatment with statin drugs are all greatly ameliorated when PGC-1α levels 

are maintained or elevated52-54. 

The precise mechanisms by which PGC-1α mediates these beneficial effects are 

not yet clear, but several possibilities exist (Fig. 3). Elevation of mitochondrial and 
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other metabolic genes, and the resulting correction of the energy crisis associated with 

muscular dystrophies44,55 are obvious and plausible mechanisms. In addition, reduction 

of atrophy-specific gene transcription by inhibition of FoxO3 activity54, increase in the 

gene program for protein synthesis54,56, and stabilization of the postsynaptic side of the 

neuromuscular junction (NMJ)53 also are likely to contribute to the anti-muscle wasting 

effect of PGC-1α. In particular, regulation of genes that encode the post-synaptic NMJ 

by PGC-1α has the potential to ameliorate the pathologies of neuromuscular diseases 

with decreased NMJ functionality, even those based on primary defects in the motor 

neuron. 

A key observation with potential relevance to a much broader set of chronic 

diseases arose from detailed studies of the animals with muscle-specific ablation of 

PGC-1α49,57. These showed that loss of PGC-1α specifically in muscle causes a 

transcriptional induction in muscle for many genes that can be part of local or systemic 

inflammation49,57. In particular, increased expression of inflammatory marker genes 

such as IL-6, TNFα, suppressor of cytokine signalling 1 (SOCS1), SOCS3 and CD68 

was observed in skeletal muscle of muscle-specific PGC-1α knockout animals in 

vivo49,57. Mice heterozygous for PGC-1α showed a smaller but significantly elevation 

expression of many of these same pro-inflammatory genes57. In both cases, chronic 

elevation of circulating IL-6 was observed57. Primary muscle cells with a genetic 

ablation of PGC-1α exhibit higher levels of TNF-α and IL-6 mRNA than wild type 

myotubes57 and elevated IL-6 protein was observed in the culture medium of the PGC-

1α knockout cells compared to control cells57. Conversely, adenoviral expression of 

PGC-1α in C2C12 myotubes in culture reduced the expression of TNFα and IL-6 

mRNA57. These data strongly suggest that at least part of the circulating pro-

inflammatory cytokines in vivo with ablation of PGC-1α is originating from the muscle 

cells themselves. Of course, amplification of this program may well involve subsequent 
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recruitment to muscle of immune cells that are “specialists” at amplifying a pro-

inflammatory response. 

Importantly, mice with a heterozygous mutation in PGC-1α in muscle have a 

reduction in mRNA expression of this coactivator that is quantitatively comparable to 

the transcriptional dysregulation of 36% observed in muscle of type 2 diabetic humans 

compared to healthy volunteers58,59. Furthermore, the drop in PGC-1α expression in 

muscle-specific heterozygous animals57 and skeletal muscle of type 2 diabetic 

patients59, respectively, corresponds quantitatively to the decreased expression of PGC-

1α in an inactive vs. an active muscle in mice54. Although the establishment of causality 

between these reduced expression of PGC-1α and the expression of pro-inflammatory 

genes is not possible in humans, these patients do also exhibit increased transcription of 

pro-inflammatory genes such as IL-6 and TNFα in skeletal muscle, as well as elevated 

IL-6 serum concentration57. Thus, the reduction of PGC-1α mRNA in skeletal muscle 

of type 2 diabetics is likely to be closely linked to the chronic, low-grade inflammation 

present in these patients. Finally, the lower PGC-1α levels observed in the muscle of 

pre-diabetic individuals likely contributes to increases in systemic IL-6, a strong 

predictor for the development of type 2 diabetes60. Indeed, skeletal muscle PGC-1α 

levels correlate inversely with expression of IL-6 and TNFα in individuals with normal 

glucose tolerance and in type 2 diabetic patients57. In contrast, body mass index, fasting 

glucose and fasting insulin levels exhibit no significant correlation to these 

inflammatory markers in this population57. Taken together, these finding also strongly 

suggest a causal relationship between the increases in PGC-1α expression  observed in 

human skeletal muscle following physical activity and the reduction of cytokine release 

from skeletal muscle known to occur with moderate exercise. Conversely, the effects of 

loss of even one allele of the PGC-1α gene in mice, which stimulates the expression of 

a broad program of cytokine expression and release, strongly suggests that something 

very similar is occurring in humans who engage in chronically sedentary behavior. 



10 

Accordingly, PGC-1α muscle-specific knockout animals exhibit decreased exercise 

capacity and a fiber-type switch towards glycolytic muscle fibers49. 

The molecular mechanisms that link PGC-1α and inflammatory gene expression 

in muscle are unknown, but they may reflect the role of PGC-1α in the control of 

reactive oxygen species (ROS). It has previously been shown that PGC-1α has a 

powerful suppressive effect on ROS production, in parallel to its effects in elevating 

mitochondrial respiration. This occurs through the PGC-1α-mediated expression of 

genes involved in ROS detoxification, as well as the expression of uncoupling proteins 

that can attenuate ROS production61,62. In fact, increased oxidative stress and 

inflammation are well-known to go hand in hand in many skeletal muscle-associated 

diseases63. Specifically, ROS have been shown to induce pro-inflammatory cytokine 

production in skeletal muscle64. Thus, the decreased expression of the anti-ROS genes 

in muscle-specific PGC-1α knockouts57 are very likely to make a substantial 

contribution to the increases seen in cytokine expression. Obviously though, there may 

be additional, more directs effects of PGC-1α on the expression of genes with either 

pro- or anti-inflammatory action. 

Analysis of muscle-specific PGC-1α knockout animals revealed that 

dysregulation of PGC-1α in skeletal muscle does not cause insulin resistance in this 

tissue per se, but precipitates abnormal whole body glucose and insulin homeostasis due 

to reduced insulin levels and abnormal pancreatic islet morphology. This unexpected, 

distal signalling apparently results from a noxious cross-talk between skeletal muscle 

and pancreatic β-cells in these animals57. Elevation of systemic inflammation is one 

likely mechanism by which skeletal muscle with dysregulated PGC-1α expression 

modulates β-cell function: elevation of IL-6 in the blood of PGC-1α muscle-specific 

knockout animals correlates with the ability of IL-6 to suppress glucose-stimulated 

insulin secretion in isolated islets57. These data indicate unambiguously that the levels 



11 

of skeletal muscle PGC-1α can powerfully influence the function of pancreatic islets; 

inescapably, these same data also suggest that muscle PGC-1α levels likely affect the 

structure and functions of other tissues and organs too. 

Systemic effects of exercise and PGC-1α 

We suggest here that the decrease in PGC-1α gene expression in skeletal muscle due to 

sedentary behavior can set off a low level but chronic pro-inflammatory response that 

impacts many other tissues negatively. As noted above, many if not most chronic 

diseases of aging, including heart disease, cancer and neurodegeneration are associated 

with chronic inflammation. In many cases that association has been shown to be causal 

in defined experimental systems. The suppression of chronic inflammation in muscle 

via exercise-mediated induction of PGC-1α gene expression would be expected to 

lower the frequency and/or severity of these very same disorders. In terms of clinical 

data, exercise has many neurological benefits, most notably improvement of learning 

and memory, protection against neurodegeneration and amelioration of depression as 

well as other mood disorders17. Cancer of the colon, breast, prostate, endometrium, 

pancreas and skin all exhibit an increased incidence in inactive individuals, compared to 

those who exercise1,65. Thus, multi-organ health and plasticity as a result of exercise 

might be strongly influenced by altered systemic inflammation controlled by skeletal 

muscle PGC-1α activity. 

It is important to note that it is very unlikely that any of the chronic diseases being 

discussed here are caused by reduced PGC-1α alone. Rather, these are multi-factorial 

diseases requiring multiple hits to yield full-blown disease. The multi-hit nature of 

human cancer now serves as useful conceptual model for most chronic diseases. These 

multiple insults may originate in the genetic heritage of an individual patient, may be 

acquired due to spontaneous somatic mutations, and may also be brought about by 

environmental or lifestyle factors. Thus, variables such as sedentary behavior and 
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reduced PGC-1α levels in muscle may be viewed, on a population basis, as shifting the 

likelihood of disease to the left on a standard plot of incidence vs. age, compared to 

individuals with average exercise/physical activity (Fig 4). For any given individual, it 

is difficult or impossible to know what impact sedentary behaviour had on their risk for 

cancer or brain disease, for example. But that it does have an impact on the total 

population is a certainty. Conversely, populations with above average physical activity 

and thus increased PGC-1α levels experience a reduced incidence of disease, relative to 

those with average activity and PGC-1α. 

Obesity: A most dangerous co-conspirator 

Sedentary behavior often coexists with and is a contributing factor in the development 

of obesity1,66,67. Conversely, obese individuals are less likely to exercise66,67. 

Furthermore, inactivity and obesity are independent risk factors for many of the same 

chronic diseases. In fact, inactivity worsens the prevalence of chronic diseases in 

individuals regardless of their BMI. Thus, being an independent risk factor, inadequate 

physical activity exacerbates the detrimental effects of obesity1. In keeping with the 

mechanisms discussed above, we predict a negative interaction between the lack of 

exercise and obesity in the specific molecular programs discussed here. Obesity has 

been strongly associated with the expression of a pro-inflammatory program of gene 

expression including TNFα, IL-1 and IL-610. More precisely, it has been known for 

more than a decade that adipose tissue, in the context of obesity, begins to secrete 

elevated levels of these “adipokines”68,69. This is true in both rodents and humans70,71. 

Moreover, a functional role for TNFα and other adipokines has been shown in the 

insulin-resistance of obese mice10. If we assume that there is a quantitative threshold of 

cytokines required both chronically and systemically to bring about pathology in other 

(non-adipose, non-muscle) tissues, then inactivity combined with obesity is much more 

likely to reach such a threshold (Fig 4). Furthermore, if the age of onset of a particular 
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disease, or the extent of disease is dose-responsive with respect to the levels of systemic 

pro-inflammatory molecules, obesity with sedentary behavior would be expected to 

bring about earlier and/or more severe disease72. Lastly, we do not know the full array 

of specific cytokines necessary to contribute to the onset of any particular disease, but 

obesity and sedentary behavior may interact in ways that are not just quantitative. 

Indeed, they may bring together a particular combination of adipokines/myokines that 

act synergistically in the causation of disease. How big are the synergistic effects of 

obesity and sedentary behavior in humans? Like other modifiable factors such as 

smoking, diabetes and hypertension, obesity is predicted to reduce life expectancy 

between 1 to 5 years. In contrast, physical activity is estimated to add up to 5 years. 

Importantly, a composite lifestyle of healthy behaviours has been proposed to 

potentially add 10 years to the average life expectancy8,73. 

Conclusion and perspectives: testing the Hypothesis 

It is obvious from the hypotheses presented here that many aspects of the 

physiological and pathophysiological effects of modulating PGC-1α in skeletal muscle 

and other organs remain enigmatic. Even less is known about the functions and 

therapeutic potential of the other two members of this gene family, PGC-1β and PGC-1-

related coactivator (PRC). Similar to PGC-1α muscle-specific transgenic animals, 

ectopic expression of PGC-1β increases endurance exercise capacity; however, different 

mechanisms seem to control the exercise-like phenotype in these two animal models74. 

Alterations in the amount and/or activity of PGC-1α protein in muscle are likely to have 

future applications in the prevention and treatment of a number of diseases. 

Amelioration of disuse-induced muscle atrophy54, DMD53 and statin-mediated muscle 

wasting52 through PGC-1α has already been described in animal models. The potential 

role of skeletal muscle PGC-1α as a modulator of non-muscular diseases, as discussed 

here, is not known but these ideas are readily testable in experimental animal models. It 
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is hypothesized here that mice lacking one or both copies of the PGC-1α gene 

specifically in skeletal muscle will be more susceptible to cancer, heart and brain 

disease. For example, mutant mice can be treated with chemical carcinogens that cause 

cancer of the breast, colon and other tissues and the rate of tumor formation and 

progression can be determined quantitatively. Likewise, the same mutant strains of mice 

can be given challenges that induce heart failure, or certain kinds of neurodegeneration 

that model Parkinson’s disease or Alzheimer’s disease, and the rates of disease 

incidence and progression can be carefully monitored. 

Determination of the proper exercise regimens to protect from diseases linked to 

muscle-based inflammation will be important. But chemical modulation of the PGC-1α 

pathway in skeletal muscle is also of obvious significance. That PGC-1α gene 

expression can be modulated by drugs and drug-like compounds has been 

demonstrated56,75,76. In addition, a number of transcription factors that complex with 

PGC-1α in controlling skeletal muscle gene transcription are already known50,51 and 

may represent therapeutic targets. Co-activation of the estrogen-related receptor α 

(ERRα, official nomenclature NR3B1) specifies PGC-1α to induce the same 

mitochondrial oxidative phosphorylation genes that are dysregulated in muscle of type 2 

diabetic patients56. Pharmacological disruption of the interaction between these two 

proteins provokes a metabolic phenotype in cultured muscle cells resembling that of 

type 2 diabetic muscle in vivo56. These findings provide a lead as to how selectivity in 

targeting PGC-1α could be achieved77. If successful, therapeutic modulation of PGC-1α 

has a huge clinical potential for muscle wasting, sarcopenia, type 2 diabetes, muscular 

dystrophies and other very serious non-muscular chronic diseases. 
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Figure 1. Clinical consequences of a sedentary lifestyle. Inactivity is an 

independent risk factor for a number of chronic diseases regardless of age, 

gender, race and health. 
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Figure 2. Inflammation and chronic diseases. A persistent, low-grade 

inflammatory state of different tissues is linked to the development of  many 

chronic diseases. 

Figure 3. Protective effect of PGC-1α on skeletal muscle. The relative level 

of PGC-1α in skeletal muscle is determined by physical activity. PGC-1α, in 

turn, controls muscle fiber adaptation to exercise and confers a number of 

beneficial changes. As a result, a reduction of systemic inflammation is 

observed in exercised individuals, possibly mediated through elevation of PGC-

1α. In contrast, inactivity, and thus low skeletal muscle PGC-1α, results in a 

chronic inflammatory state and thereby causes serious pathological 

consequences. This inactivity-driven systemic inflammation is further 

exacerbated by obesity. 

Figure 4. Inactivity and obesity are independent risk factors in the etiology 

of chronic diseases. A theoretical depiction of how sedentary lifestyle and 

obesity lower the threshold for age of onset and disease incidence. Together, 

inactivity and obesity worsen the relative risk for developing chronic diseases. 
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