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Abstract 

Activation of AMP-activated kinase (AMPK) in skeletal muscle increases glucose 

uptake, fatty acid oxidation and mitochondrial biogenesis by increasing gene 

expression in these pathways. However, the transcriptional components that are 

directly targeted by AMPK are still elusive. The peroxisome-proliferator-activated 

receptor-γ  coactivator 1α  (PGC-1α) has emerged as a master regulator of 

mitochondrial biogenesis; furthermore, it has been shown that PGC-1α  gene 

expression is induced by exercise and by chemical activation of AMPK in skeletal 

muscle. Using primary muscle cells and mice deficient in PGC-1α, we found that the 

effects of AMPK on gene expression of glucose transporter 4 (GLUT4), 

mitochondrial genes and PGC-1α  itself are almost entirely dependent on the 

presence of PGC-1α  protein. Furthermore, AMPK phosphorylates PGC-1α  directly 

both in vitro and in cells. These direct phosphorylations of the PGC-1α  protein at 

threonine 177 and serine 538 are required for the PGC-1α-dependent induction of 

the PGC-1α  promoter. These data indicate that AMPK phosphorylation of PGC-1α  

initiates many of the important gene regulatory functions of AMPK in skeletal 

muscle.  

Introduction 

Organisms at all levels of the evolutionary scale have found ways to translate changes in 

environmental conditions into fine metabolic adjustments. The cellular energy charge is 

determined by a combination of catabolic and anabolic reactions. Since the cellular 

concentrations of AMP changes more dramatically than that of ATP or ADP, AMP is a 

key monitor of the cellular energy status (1). The major molecular sensor for AMP level 

in cells is AMP-activated protein kinase (AMPK), an enzyme that is activated by cellular 

stresses that result in ATP depletion. Stimuli of AMPK are generally either processes that 

inhibit ATP production (e.g. metabolic poisons, hypoxia or glucose deprivation) or 

accelerate ATP consumption (e.g. rapid contraction in muscle) (2-5). AMPK is also 

activated by the adipokines leptin and adiponectin, important regulators of whole body 

energy metabolism (2-5). Furthermore, the finding that AMPK is an indirect target of 
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metformin (6-9), a widely used antidiabetic drug, has led to growing interest in AMPK as 

a potential target for the treatment of type 2 diabetes. The stimulation of AMPK results in 

the repression of many anabolic processes (such as fatty acid and cholesterol synthesis, 

gluconeogenesis) and activation of several catabolic processes (such as fatty acid uptake 

and oxidation, glucose uptake) (2-5). 

Much of the progress in knowledge about the downstream targets of AMPK has come 

from the use of the chemical compound 5-aminoimidazole-4-carboxamide riboside 

(AICAR) (10), an AMP analogue. Several in vivo studies using AICAR to activate 

AMPK determined that mitochondrial enzymes (e.g. cytochrome c, UCP3) (11-14) and 

proteins involved in glucose uptake (GLUT4) (14-16) are increased at the transcriptional 

level in skeletal muscle. Interestingly, these genes are also downstream targets of PGC-

1α (PPARγ coactivator-1α), a highly regulated coactivator of nuclear receptors and many 

other transcription factors outside of the nuclear receptor family (17). PGC-1α is a key 

player in the oxidative metabolism of brown fat and muscle by increasing mitochondrial 

biogenesis, and augmenting the expression of enzymes of the electron transport system 

and uncoupling proteins (18, 19). In addition, ectopic expression of PGC-1α in muscle 

cells increases expression of the GLUT4 glucose transporter, resulting in increased 

glucose uptake (20). 

PGC-1α is preferentially expressed in oxidative muscle fibers, and transgenic mice 

ectopically expressing PGC-1α in muscle tissue show conversion of type IIb (glycolytic) 

fibers into mitochondria rich type IIa and I fibers (21). Interestingly, PGC-1α expression 

and PGC-1α responsive genes involved in oxidative phosphorylation are down-regulated 

in skeletal muscle of human type 2 diabetics (22, 23). Since PGC-1α gene expression in 

muscle is increased in vivo with exercise, AICAR and metformin treatment (24-30), these 

results suggest the important role of PGC-1α in whole body energy metabolism; they 

further suggest that PGC-1α is likely a very important downstream target of AMPK.  

The mechanisms by which activated AMPK induces gene expression are not yet clear. As 

different subunits of AMPK are preferentially located in the nucleus (31), it has been 

proposed that it directly regulates gene expression by phosphorylating certain 

transcription factors (32). Indeed, AMPK has been shown previously to directly 

phosphorylate transcription factors and coactivators like p53, p300, TRIP6 and TORC2 
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(32-35). We show here that many effects of activated AMPK on gene expression in 

skeletal muscle, including the inductions of the PGC-1α, GLUT4 and mitochondrial 

genes, requires the presence of the coactivator PGC-1α protein. Furthermore, AMPK 

directly phosphorylates PGC-1α and this phosphorylation mediates the increase of the 

PGC-1α protein action on the PGC-1α promoter.  

Results 

PGC-1α  protein is required for AMPK action on gene expression and on 

mitochondrial function. We investigated whether the presence of PGC-1α is required 

for the effects of AMPK activation on gene expression in catabolic pathways. Primary 

muscle cells isolated from wild type and PGC-1α -/- mice (36) were differentiated into 

myotubes and subsequently treated with either 500 µM AICAR,  1 mM metformin or 

vehicle for 16 hours. That AMPK was activated under these conditions in both cell types 

was shown by Western blotting with anti-pACC and anti-pAMPKα antibodies (Fig. 1A). 

These treatments induced a significant increase in the expression of mRNAs encoding 

PGC-1α (measured within exon 2, which is still present in the PGC-1α -/- (36)), GLUT4 

and several mitochondrial target genes of AMPK, such as cytochrome c, UCP-2 and 

UCP-3 (Fig. 1B and C, 2A-C). Strikingly, cells lacking PGC-1α showed a complete 

ablation of this induction (Fig. 1B and C, 2A-C). Additionally, these increases in gene 

expression were almost completely blocked in cells that were pre-incubated with the 

AMPK inhibitor 8-Br AMP (1mM) (37) (Fig. 1B and C, 2A-C). The expression of PGC-

1β did not change upon AMPK activation, showing that active AMPK specifically 

induces PGC-1α (Fig. 1D). This indicates that PGC-1α is absolutely required for the 

induction of GLUT4 and mitochondrial genes via AMPK activation.  

To determine whether this PGC-1α mediated increase in mitochondrial genes stimulated 

by AMPK is reflected in mitochondrial function, we measured respiration in wild type 

and PGC-1α -/- myotubes. As shown in Fig. 2E, wild type cells had a 15 % increase in 

total respiration and a 40 % increase in uncoupled respiration upon AICAR treatment. 

However, total respiration did not increase with AICAR treatment of the PGC-1α -/- 

cells; the effect in uncoupled respiration was reduced to 24%. These data show that PGC-
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1α is required for the positive effects of AMPK activation on mitochondrial function in 

muscle cells. 

 

PGC-1α  protein is required for AMPK action on gene expression of PGC-1α, 

GLUT4 and cytochrome c in vivo. Mice lacking PGC-1α specifically in skeletal muscle 

have been developed (38). To determine whether AMPK action on the expression of the 

PGC-1α gene and some of its key target genes in vivo also requires PGC-1α, wild type 

and skeletal muscle-specific PGC-1α -/- mice were treated with 250 mg/kg AICAR for 6 

hours. AMPK was activated in both genotypes, as determined by Western blotting with 

anti-pACC antibodies (Fig. 3A). AICAR increased the expression of PGC-1α mRNA 

(exon 2) and GLUT4 mRNA about 2.5- fold in the muscle of wild type mice, while PGC-

1β gene expression did not change (Fig. 3B and C). Cytochrome c mRNA increased 1.7 

fold (Fig. 3B). The mice lacking PGC-1α in skeletal muscle completely failed to induce 

PGC-1α (exon 2), cytochrome c and GLUT4 mRNA in response to AICAR (Fig. 3B and 

C). Interestingly, UCP-3 mRNA was induced about 4 fold in skeletal muscle of both 

genotypes (Fig. 3B), indicating that this gene did not require PGC-1α for AMPK action. 

In addition to GLUT4, we examined two other genes involved in glucose metabolism 

(hexokinase and PDK4) that have been reported to be induced by AMPK (16, 26, 39). 

Hexokinase expression did not change with this AICAR treatment, in either WT or in the 

skeletal muscle-specific PGC-1α -/- mice (Fig. 3C). In contrast, gene expression of the 

PGC-1α target PDK4 (40, 41) was slightly induced in wild type and in the skeletal 

muscle-KOs (Fig. 3C). These data indicate that AMPK activation in vivo induces PGC-

1α, GLUT4 and cytochrome c in a PGC-1α-dependent way. However an alternative 

pathway clearly exists in vivo for the AMPK-mediated induction of UCP-3 and PDK4.  

 

AMPK directly phosphorylates PGC-1α  protein on threonine 177 and serine 538.  

PGC-1α protein is involved in the induction of the PGC-1α gene in a feed-forward loop 

in skeletal muscle (42). Thus the data above suggests that AMPK could directly pactivate 

the  PGC-1α protein , perhaps by a direct phosphorylation. We first asked whether 

AMPK and PGC-1α interact directly. As shown in Fig. 4A, co-immunoprecipitation 
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experiments indicate that AMPK and PGC-1α form a complex in cells. We next tested 

whether AMPK directly phosphorylates PGC-1α in cells. As shown in Fig. 4B (left 

panels), AICAR stimulated an increased phosphorylation of the PGC-1α protein in 

primary myotubes. AMPK also phosphorylates PGC-1α in vitro, as shown in Fig. 4C. 

Using full-length protein and various fragments purified from bacteria, this 

phosphorylation was robust and increased by the presence of AMP. Fragments of PGC-

1α from aa 1-190 and 395-565 were phosphorylated, while those encoding aa 200-400 

and 551-797 were not. Mass spectrometry analysis indicated that phosphorylations 

occurred on threonine 177 and serine 538. Mutations of these sites completely ablated 

these AMPK-mediated phosphorylations in vitro (Fig. 4D) and in primary myotubes (Fig. 

4B, right panels)  

 

Phosphorylation by AMPK increases PGC-1α−dependent activation of its own 

promoter.  Finally we asked whether the induction of the PGC-1α promoter by AMPK 

requires AMPK-mediated  phosphorylation of the PGC-1α protein. Fig. 4E illustrates 

that, as shown previously(42), the PGC-1α protein has a significant effect on the -2kb 

PGC-1α promoter. This effect is greatly augmented by AICAR treatment of cells. A 

PGC-1α protein with alanine replacements at the two direct AMPK sites (T177 and 

S538) is completely resistant to this effect of AICAR. These data strongly suggest that 

direct phosphorylation of the PGC-1α coactivator by AMPK initiates a cascade of gene 

expression that controls many mitochondrial target genes and genes of glucose and 

oxidative metabolism in muscle.  

Discussion 

AMPK and PGC-1α have both been shown to play important roles in energy 

homeostasis. AMPK is an important sensor of decreased energy charge in cells, and 

subsequently acts to increase catabolic reactions and decrease anabolic reactions. PGC-

1α is a critical regulator of transcription of many genes of energy homeostasis, and  is 

particularly involved in fuel oxidation and mitochondrial biology. A functional 

relationship between these two proteins is therefore not surprising. Earlier work showed 
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that activated AMPK increases PGC-1α gene expression in cultured muscle cells, in 

umbilical vein endothelial cells, and skeletal muscle (26-29, 43-49) Moreover, the use of 

RNAi against PGC-1α has suggested that PGC-1α mediates certain of these effects of 

AMPK, particularly in fatty acid oxidation (25). In this paper we demonstrate two 

important points: first, that AMPK requires PGC-1α for many of its most important 

effects on GLUT4 and mitochondrial gene expression in skeletal muscle, both in culture 

and in vivo. Second, AMPK binds to and activates PGC-1α  in muscle by direct 

phosphorylation on two critical residues, threonine 177 and serine 538.  

Previouswork has demonstrated that PGC-1α can function as a regulator of its own gene 

expression in muscle, in a feed-forward loop (42). Therefore, it was possible that the 

AMPK-phosphorylated PGC-1α was involved in the induction of the PGC-1α gene, with 

many subsequent effects of AMPK secondary to this induction of PGC-1α. As shown in 

Fig. 4, work with the isolated PGC-1α promoter supports this idea. AMPK robustly 

increases the action of PGC-1α on the 2 kb promoter. Mutation of the two AMPK 

phosphorylation sites in the PGC-1α protein completely ablated the effect of AICAR on 

this promoter. These data also suggest that the phosphorylation of PGC-1α will likely 

affect the action of this protein on other promoters, either positively or negatively. It is 

worth noting that PGC-1α is a potent activator of gluconeogenic gene expression in the 

liver, while AMPK activators like AICAR and metformin suppress gluconeogenic gene 

expression. It has been shown in liver that activated AMPK prevents the nuclear import 

of TORC2, the transcriptional coactivator of CREB, and therefore blocks the fasting 

induced induction of PGC-1α (35); it remains to be determined whether the 

phosphorylation at threonine 177 and serine 538 occurs in liver and whether these 

phosphorylations  are activating or inhibiting in this tissue.  

Mechanistically, these AMPK-mediated phosphorylations could modulate the ability of 

PGC-1α to dock on certain transcription factors or affect the binding or function of other 

cofactors in the PGC-1α coactivator complex. The modulation of PGC-1α docking on 

certain transcription factors by AMPK might provide a simple explanation by which this 

enzyme could activate certain PGC-1α functions in muscle (such as GLUT4 gene 

expression), while inhibiting PGC-1α functions in liver (such as gluconeogenic gene 
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expression). More specific research into mechanisms affected by the AMPK-mediated 

phosphorylation of PGC-1α is warranted. 
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Materials and Methods 

Reagents.  AICAR (5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside) was 

obtained from Calbiochem (animal experiments) or Toronto Chemicals (cell 

experiments). 8-Bromo AMP and metformin were purchased from Sigma. bFGF (basic 

Fibroblast Growth Factor) was obtained from Invitrogen. Antibodies against pACC, 

pAMPK, AMPK, and γ-tubulin were purchased from Cell Signaling. Active AMPK was 

obtained from Upstate Biotechnology. The 2 kb PGC-1α promoter has been previously 

described (42). PGC-1α mutant constructs encoding PGC-1α T177A S538A were 

generated using a Quick Change Site Directed Mutagenesis Kit (Stratagene) 

Cell Culture, transfection, reporter gene assays, and co-immunoprecipitations.  

C2C12 myotubes were grown in DMEM supplemented with 10% FBS and differentiated 

into myotubes in DMEM supplemented with 2% HS. Primary muscle cells were isolated 

from PGC-1α wild type and -/- mice as described previously (50). Myoblast were 

cultured in F10-HAM medium supplemented with 20% FBS and bFGF. For 

differentiation into myotubes, cells were shifted to DMEM supplemented with 5% HS for 

two days. The myotubes were treated with 500 µM AICAR or 1 mM metformin in 

DMEM supplemented with 0.5% BSA for 16 hs. For the inhibitor studies, the myotubes 

were pre-treated for 30 min with 1 mM 8-Bromo AMP. Reporter gene assays were 

performed in a C2C12 muscle cell line. Myoblast were transfected with SuperFect 

(Qiagen) and subsequently differentiated for 36 hours before treatment with 500 µM 

AICAR for 7.5 hours. Firefly luciferase activity was measured and normalized to Renilla 

luciferase expression (Dual Luciferase Reporter Assay System, Promega). Empty 

pGL3basic reporter gene vector and pCDNA.3 vector served as the control for the PGC-

1α 2 kb promoter and PGC-1α constructs, respectively. For co-immunoprecipitations 

experiments, cells were transformed with the corresponding plasmids (pCMV-myc-

AMPKα2 gift of P. Sanz (34) and pCMV-Flag-PGC-1α) with Superfect (Quiagen). 48 

hrs after transfection cells were lysed (50 mM Tris-HCl ph 7.8, 137 mM NaCl, 1 mM 

EDTA, 0.2% Sarkosyl, 1% Triton-X100, 1 mM DTT, 10% Glycerol) and 500 µM total 

protein was subjected to immunoprecipitation with an M2 agarose anti-FLAG resin 

(Sigma) for 2 hrs at 4 °C. Proteins were separated by SDS/PAGE and transferred to 
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PVDF membrane. PGC-1α was detected with anti-PGC-1α antibodies (51) and the Myc-

AMPKα2 was detected with anti-C-Myc (A 14) antbodies (Santa Cruz). 

Phosphorylation Analyses In Vitro and In Vivo. GST-PGC-1α fragments wild type and 

mutants were expressed in bacteria (BL21 strain, Invitrogene) and purified using 

glutathione sepharose beads (GE Healthcare Bio-Sciences AB). Recombinant proteins 

were used as a substrate for in vitro phosphorylation reaction with activated AMPK, as 

per manufacturer's instructions (Upstate Biotechnology). After the phosphorylation 

reactions, the glutathione beads were extensively washed and eluted proteins were 

analyzed by SDS-PAGE and autoradiography. Protein levels were monitored by 

Coomassie blue staining. For in vivo phosphorylation, primary PGC-1α -/- myotubes 

were infected with retroviruses expressing a Flag PGC-1α wild-type or mutant protein, 

respectively. Stable cell lines were established by selection with puromycin (pMSCVpuro 

Clontech). Cells were differentiated and treated with 250 µM AICAR and labeled for 1 hr 

with [32P] ortophosphate (Amersham Biosciences). Cells were harvested and lysed ((50 

mM Tris-HCl ph 7.8, 137 mM NaCl, 1 mM EDTA, 0.2% Sarkosyl, 1% Triton-X100, 1 

mM DTT, 10% Glycerol) and subjected to immunoprecipitation with an M2 agarose anti-

FLAG resin (Sigma) for 2 hrs at 4 °C. Immunprecipitates were subjected to SDS-PAGE 

and transferred to a PVDF membrane: 32P incorporation was visualized by 

autoradiography. PGC-1α protein levels were analyzed by Western blot using M2 anti-

FLAG antibodies (Sigma). 

Oxygen Consumption Measurements. Primary muscle cells from PGC-1α wild type 

and -/- mice were differentiated for two days in DMEM supplemented with 5% HS with 

or without 500 µM AICAR. Myotubes were treated for another 16 hours with AICAR in 

DMEM supplemented with 0.5% BSA. Four days after differentiation, cells were washed 

with PBS at room temperature and trypsinized from the plates. After centrifugation, cells 

were resuspended in PBS and transferred to a 1 ml Clark-type oxygen electrode chamber. 

After recording the basal respiration rate, the uncoupled respiration was measured in the 

presence of the ATP synthase inhibitor, oligomycin (2.5 μg/ml). Rates of oxygen 

consumption were normalized to cell counts. 
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Analysis of gene expression. Total RNA was isolated from cells using Trizol 

(Invitrogen). For real time PCR analysis, RNA was treated with DNAse and subsequently 

reverse transcribed using iSCRIPT (Bio-Rad). Using semiquantitative PCR (Applied 

Biosystems) and SYBRGreen (Applied Biosystems), mRNA levels were first normalized 

to TBP mRNA, and then relative mRNA levels were determined using the ΔΔCt.   

Animal experiments.  All animal experiments were performed according to a protocol 

approved by the Institutional Animal Care and Use Committee. Mice with a muscle-

specific mutation in PGC-1α are described elsewhere (38). 5-7 weeks old female mice 

were injected intraperitoneally with 250 mg/kg AICAR in sterile 0.9% NaCl or with 

0.9% NaCl. Mice were sacrificed 6 hours later, and the gastrocnemius muscle was 

harvested for RNA analysis and Western analysis. 

Statistical analysis.  Results are expressed as +/-SD for cell experiments and +/- SEM 

for animal experiments. Two-tailed student’s t-tests were used to determine p values. 
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Fig. 1. AMPK-driven increase in PGC-1α and GLUT4 gene expression requires PGC-1α 

protein. A) AMPK is activated in AICAR and metformin-treated primary myotubes. 

Comparison of AMPKα protein phosphorylated at threonine 172 (pT172) to total levels 

of AMPKα protein in WT and PGC-1α KO primary myotubes treated with vehicle, 

AICAR or Metformin for 1h. A also shows the levels of ACC protein phosphorylated at 

serine 79: loading control (γ-tubulin) B) AICAR and metformin treatments elevate the 

expression of PGC-1α in WT but not in PGC-1α -/- cells. The inhibitor of AMPK, 8-Br 

AMP blocks this increase. C) mRNA levels of glucose transporter 4 (GLUT4), B) the 

relative gene expression of PGC-1β does not change under the same conditions. Primary 

myotubes were treated with vehicle, 500 µM AICAR, 1 mM metformin, 1mM 8-BrAMP, 

8-Br AMP/AICAR and 8-Br AMP/metformin in DMEM supplemented with 0.5% BSA 

for 16hs. The relative PGC-1α mRNA levels were determined with primers in exon2, 

which is present in WT and PGC-1α -/- cells, using semiquantitative PCR.  

 

Fig. 2. AMPK-driven increase in expression of mitochondrial genes and in respiration 

requires PGC-1α. Primary myotubes were treated as in Figure 1 and mRNA levels of A) 

cytochrome c, B) uncoupling protein 3 (UCP-3), and C) uncoupling protein 2 (UCP-2) 

were determined using semiquantitative PCR. D) WT and PGC-1 α -/- primary myotubes 

were treated with AICAR in DMEM supplemented with 5%HS for two days. At day 

three, cells were shifted to DMEM 0.5% BSA and treated for an additional 16 hrs before 

oxygen consumption was measured as described in Materials and Methods. 
 

Fig. 3. AMPK-driven increase in PGC-10α, GLUT4 and cytochrome c gene expression 

requires PGC-1α protein in vivo. A) AMPK is activated in skeletal muscle of AICAR 

injected mice. The upper blot shows the levels of ACC protein phosphorylated at S79 in 

gastrocnemeus muscle from WT and PGC-1α muscle-specific KO mice, injected with 

saline or AICAR. B) Injection of AICAR induces the mRNA expression of PGC-1α, 

cytochrome c but not PGC-1β in the skeletal muscle of wild type mice (*p < 0.01); this 

induction does not occur in the skeletal muscle of the muscle-specific PGC-1α -/- mice. 

UCP-3 gene expression is also increased in the muscle-specific PGC-1α -/- mice (∗∗ p < 
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0.05). C) Injection of AICAR induces the mRNA expression of GLUT4 (* p < 0.01), 

PDK4 (** p < 0.1) but not of hexokinase in the skeletal muscle of wild type mice. PDK4 

gene expression increases also in the muscle-specific PGC-1α -/- mice: Female mice 

were injected with either saline or 250 mg/kg AICAR. Skeletal muscle was harvested 

after 6 hrs, and gene expression was measured using semiquantitative PCR (n = 5-7).  

 

Fig. 4. AMPK phosphorylates PGC-1α at threonine residue 177 and serine residue 538 in 

vitro and in cells. A) PGC-1α interacts with AMPKα2 in cells. Expression vectors for 

Flag-PGC-1α and Myc-AMPKα2 were transfected into BOSC cells, as indicated. Co-

immunoprecipitation was performed as described in Materials and Methods. B) Primary 

PGC-1α -/- myotubes stably expressing PGC-1α and PGC-1α T177A S538A, 

respectively, were treated with vehicle or AICAR for 1hr in the presence of 32P. C) 

Purified recombinant GST-PGC-1α fragments (full length 1-797, 1-190, 200-400, 395-

565, 551-797) were incubated with purified AMPK and phosphorylation was determined 

by incorporation of γ-32P ATP. D) Mass spectrometry identified threonine 177 and serine 

538 as phosphorylated residues. The GST-PGC-1α fragment containing amino acid 1-

190 T177A and the GST-PGC-1α fragment containing amino acids 395-565 S538A are 

not phosphorylated by AMPK. E) The phosphorylation of PGC-1α protein by AMPK is 

required for elevated PGC-1α dependent activity of the PGC-1α promoter. C2C12 

muscle cells were transfected with a 2 kb PGC-1α promoter construct and expression 

plasmids for PGC-1α or PGC-1α T177A S538A, respectively. After transfection, cells 

were differentiated for one day and treated with AICAR for 7.5 hrs before reporter-gene 

levels were determined (* p < 0.01). 
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