Sandri, M. and Lin, J. and Handschin, C. and Yang, W. and Arany, Z. P. and Lecker, S. H. and Goldberg, A. L. and Spiegelman, B. M.. (2006) PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, H. 44. pp. 16260-16265.
|
PDF
- Accepted Version
1807Kb |
Official URL: http://edoc.unibas.ch/dok/A5258718
Downloads: Statistics Overview
Abstract
Maintaining muscle size and fiber composition requires contractile activity. Increased activity stimulates expression of the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), which promotes fiber-type switching from glycolytic toward more oxidative fibers. In response to disuse or denervation, but also in fasting and many systemic diseases, muscles undergo marked atrophy through a common set of transcriptional changes. FoxO family transcription factors play a critical role in this loss of cell protein, and when activated, FoxO3 causes expression of the atrophy-related ubiquitin ligases atrogin-1 and MuRF-1 and profound loss of muscle mass. To understand how exercise might retard muscle atrophy, we investigated the possible interplay between PGC-1α and the FoxO family in regulation of muscle size. Rodent muscles showed a large decrease in PGC-1α mRNA during atrophy induced by denervation as well as by cancer cachexia, diabetes, and renal failure. Furthermore, in transgenic mice overexpressing PGC-1α, denervation and fasting caused a much smaller decrease in muscle fiber diameter and a smaller induction of atrogin-1 and MuRF-1 than in control mice. Increased expression of PGC-1α also increased mRNA for several genes involved in energy metabolism whose expression decreases during atrophy. Transfection of PGC-1α into adult fibers reduced the capacity of FoxO3 to cause fiber atrophy and to bind to and transcribe from the atrogin-1 promoter. Thus, the high levels of PGC-1α in dark and exercising muscles can explain their resistance to atrophy, and the rapid fall in PGC-1α during atrophy should enhance the FoxO-dependent loss of muscle mass.
Faculties and Departments: | 05 Faculty of Science > Departement Biozentrum > Growth & Development > Growth & Development (Handschin) 03 Faculty of Medicine > Departement Biomedizin > Associated Research Groups > Pharmakologie (Handschin) |
---|---|
UniBasel Contributors: | Handschin, Christoph |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | National Academy of Sciences |
ISSN: | 0027-8424 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Identification Number: | |
edoc DOI: | |
Last Modified: | 31 Dec 2015 10:42 |
Deposited On: | 22 Mar 2012 13:20 |
Repository Staff Only: item control page