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ABSTRACT 

 JP-45 is an integral protein constituent of the skeletal muscle sarcoplasmic reticulum 

junctional face membrane interacting with Cav1.1 (the α.1 subunit of the voltage sensing 

dihydropyridine receptor) and the luminal calcium-binding protein calsequestrin. Two JSRP1 

variants have been found in the human population: c.323C>T (p.P108L) in exon 5 and c.449G>C 

(p.G150A) in exon 6, but nothing is known concerning the incidence of these polymorphisms in 

the general population or in patients with neuromuscular diseases nor the impact of the 

polymorphisms on excitation-contraction coupling. In the present report we investigated the 

frequencies of these two JSRP1 polymorphisms in the Swiss Malignant Hyperthermia population 

and studied the functional impact of the variants on excitation -contraction coupling. Our results 

show that the polymorphisms are equally distributed among Malignant Hyperthermia Negative, 

Malignant Hyperthermia Equivocal and Malignant Hyperthermia Susceptible individuals. 

Interestingly however, the presence of either one of these JP-45 variants decreased the sensitivity 

of the dihydropyridine receptor to activation. The presence of a JSRP1 variant may explain the 

variable phenotype seen in patients with malignant hyperthermia carrying the same mutation and 

more importantly, may counteract the hypersensitivity of excitation-contraction coupling caused 

by mutations in the RYR1 gene. 

 

Key Words: JP-45, dihydropyridine receptor, excitation-contraction coupling, polymorphisms, 

down regulation, skeletal muscle. 
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INTRODUCTION 

 Skeletal muscle excitation-contraction (EC) coupling is a physiological process whereby 

an electrical signal (depolarization of the plasma membrane) is converted into a chemical signal, 

i.e. a calcium gradient, by the opening of ryanodine receptor (RyR1) Ca2+ release channels 

located on the sarcoplasmic reticulum (SR) terminal cisternae. The Ca2+ then binds to the 

contractile proteins to initiate muscle contraction; muscle relaxation occurs when the 

myoplasmic Ca2+ is pumped back into the SR by the activity of the SERCA CaATPases 

(Fleischer and Inui, 1989; Rios and Pizarro, 1991; Franzini-Armstrong and Jorgensen, 1994). 

The two core components of the EC coupling machinery are the voltage sensing dihydropyridine 

receptor (DHPR) Ca2+ channel located on the transverse tubules and the RyR1. Upon sensing a 

change in voltage the DHPR undergoes a conformational change whereby it directly interacts 

with and activates the RyR1, causing Ca2+ release from the SR ((Nakai et al., 1996; Sutko and 

Airey, 1996). The activity of the DHPR can be measured electrophysiologically and is 

accompanied by a measurable intermembrane current, which is proportional to the movement of 

charged ions across the transverse tubular membrane (Schneider and Chandler, 1973; Adams et 

al., 1990). 

 Several congenital neuromuscular disorders are linked to dysregulation of calcium 

homeostasis among which the subclinical myopathy Malignant Hyperthermia (MH; MIM# 

145600), the congenital core myopathy Central core disease (CCD; MIM# 117000) and some 

forms of Multiminicore disease (MmD; MIM# 255320) Centronuclear myopathy (CNM; MIM# 

160150) and Congenital fiber type disproportion (Treves et al., 2008, Jungbluth et al., 2011; 

Wilmhurst et al., 2011; Clarke et al., 2010). Though more than 200 mutations in the RYR1 gene 

have been identified in patients belonging to these disease categories (Robinson et al., 2006; 
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Jungbluth et al., 2011; Duarte et al., 2011), analysis of other genes encoding proteins involved in 

EC coupling have so far identified only mutations in CACNA1S, the gene encoding the α1 

subunit (Cav1.1) of the skeletal muscle dihydropyridine receptor (DHPR) to be causatively 

linked to the pharmacogenetic disorder MH (Monnier et al., 1997; Stewart et al., 2001; Pirone et 

al., 2010; Toppin et al., 2010). However mutations in these genes only accounts for 

approximately 70-80 % of the human cases and the search for mutations in other genes encoding 

proteins involved in EC coupling has so far yielded few if any true positive candidates.  

Malignant Hyperthermia is a subtle pharmacogenetic disorder triggered by halogenated 

anesthetics and the muscle relaxant succinylcholine in genetically predisposed individuals 

(Glahn et al., 2010; Robinson et al., 2006; Treves et al., 2008). In their everyday life such 

individuals are unaware of their condition though a small number of them may suffer from heat 

intolerance, muscle cramping after intense exercise and rhabdomyolysis; however, once such 

individuals come in contact with a trigger agent they undergo a rapid hypermetabolic reaction 

which is often fatal if left untreated.  Thus, identifying potentially susceptible patients and their 

relatives prior to contact with a anesthesia is of utmost importance and the aim of clinical MH-

related research for non-invasive testing. In the past few years novel proteins of the SR have 

been identified and in many cases their ablation has been shown to affect Ca2+ homeostasis 

and/or muscle performance. In previous studies we identified JP-45, an integral membrane 

protein of skeletal muscle SR junctional face membrane which interacts via its amino terminal 

with Cav1.1 and via its carboxy terminal, with the luminal calcium binding protein calsequestrin 

(Anderson et al., 2003, 2006). Three months old JP-45 mice showed decreased muscle strength, 

a decrease of the functional expression of the Cav1.1 and a decrease of depolarization-induced 

Ca2+ release (Delbono et al., 2007). These changes however, were no longer evident in old (>12 
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month old) JP-45 KO mice (Delbono et al., 2012). An initial study aimed at screening the JSRP1 

gene (MIM# 608743), the gene encoding JP-45, showed the existence of two JP-45 variants 

(dbSNP and Exome Variant Server NHLBI Exome Sequencing Project databases): c.323C>T 

(exon 5) resulting in the p.P108L substitution (dbSNP database accession NM144616.3 and NP 

653217.1; rs74521370) and c.449G>C resulting in the p.G150A substitution (exon 6) (dbSNP 

data accession NM 144616.3 and NP653217.1; rs 80043033) (Althobiti et al. 2009); because of 

the prevalence of the latter polymorphism in MH susceptible individuals it was hypothesized that 

such variants may serve as “function modifiers”, but no information as to how this could be 

accomplished was provided. 

 In the present study we investigated (i) the frequency of the two JP-45 variants in the 

Swiss MH population and (ii) the effect of the polymorphisms on EC coupling. Our results show 

that though the distribution does not vary significantly between MH negative (MHN), MH 

equivocal (MHE) and MH susceptible (MHS) individuals, the presence of either the p.P108L or 

the p.G150A variant affects the functional properties of the voltage sensor, without directly 

affecting the functional properties of the RyR1. Thus the presence of JSRP1 variants may 

downregulate the activity of the EC coupling machinery and may account for some of the 

phenotypic differences seen in individuals carrying the same RYR1 mutation. 
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MATERIALS AND METHODS 

Patient selection and genomic DNA isolation 

Patients referred to the Swiss MH investigation unit (Department of Anesthesia, University 

Hospital Basel, Switzerland) for MH screening using an open muscle biopsy were included in 

this study. All patients gave their written informed consent for storing their muscle tissue, 

establishing primary muscle cell cultures and using DNA obtained from a blood sample for 

research projects specifically focusing on MH. This procedure was approved by the Ethics 

Committee of the University Hospital Basel. The patients were classified into MHN (Malignant 

hyperthermia negative), MHE (MH equivocal) and MHS (MH susceptible) by the vitro 

contracture test (IVCT) on isolated muscle strips of the open muscle biopsy obtained from the 

vastus medialis or lateralis muscles under regional anesthesia. The IVCT was performed 

according to the protocol of the European MH Group (EMHG, 1984). Individuals were 

diagnosed as MHS if a contracture of 0.2 g or greater occurred at 2 mM  caffeine or less and 2% 

halothane or less. An MHN diagnosis was established if a contracture of 0.2 g was not reached 

by 2 mM caffeine and 2% halothane. An MH equivocal (MHE) diagnosis was made if a 

contracture of 0.2 g or greater occurred only at 2 mM caffeine or less (MHEc) or 2% halothane 

or less (MHEh) but not with both testing substances. Patients were also screened for the presence 

of RYR1 mutations included in the EMHG guidelines as previously described (Girard et al. 

2001). MH testing was approved by the ethical board of the Basel University Hospital. The 

presence of the JSRP1 polymorphic variants was assayed on genomic DNA isolated either from 

whole blood or untreated muscle tissue using QIAamp DNA mini kit (Qiagen AG) following the 

manufacturers recommendations. 
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Identification of JSRP1 variants 

The following primers and conditions were used to amplify JP-45 from genomic DNA: exon F 

5’-ACAGAGCCAGTGACCACAGC-3’ and R 5’ –GAGGAATAGGCGCACAGGT-3’; exon 6  

F 5’-GAGGGATGGACAGTGTGGAC-3’ and R 5’-CTTTCCTTGGGGATGAAGGT-3’. 

Amplification conditions were 1 cycle 95°C 4 min followed by 35 cycles annealing (65°C 

c.323C>T and 63°C for c.449G>C, 45 sec), extension (72°C, 40 sec), denaturation (95°C, 30 

sec), followed by a 5 min extension cycle at 72°C. The PCR-amplified DNA fragments were 

purified using Qiagen PCR purification columns, digested with MspA1l (c.323C>T in exon 5) or 

AciI (c.449G>C in exon 6) run on a 15% acrylamide gel and visualized by ethidium bromide 

staining. The DNA mutation numbering system is based on the cDNA reference sequence, with 

+1 as the A of the initiator ATG codon.. 

 

Human myotube cultures and intracellular Ca2+ measurements 

primary skeletal muscle cultures were established from fragments of muscle biopsies obtained 

from patients undergoing diagnostic testing, as previously described (Ducreux et al., 2004). Cells 

were cultured on 0.17 mm thick glass coverslips in growth medium and induced to differentiate 

into myotubes by culturing them in DMEM plus 4.5 mg/ml glucose, 0.5% BSA, 10 ng/ml EGF, 

0.15 mg/ml creatine, 5 ng/ml insulin, 200 mM glutamine, 600 ng/ml penicillin G and 

streptomycin, and 7 mM HEPES, pH 7.4 for 7-10 days. 

 For cytoplasmic calcium measurements, coverslip grown myotubes were either loaded with the 

ratiometric fluorescent Ca2+ indicator fura-2-AM or Fluo-4 AM (final concentration 5 µM) in 

differentiation medium for 30 min at 37°C, after which the coverslips were mounted onto a 37°C 

thermostatically controlled chamber which was continuously perfused with Krebs-Ringer 
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medium. On-line measurements were recorded using a fluorescent Axiovert S100 TV inverted 

microscope (Carl Zeiss GmbH, Jena, Germany) equipped with a 20x water-immersion FLUAR 

objective (0.17 NA), filters (BP 340/380, FT 425, BP 500/530) and attached to a Cascade 125+ 

CCD camera or with a Nikon TE2000 TIRF microscope equipped with a dry 20x Plan Fluor 

objective (0.17 N.A.), filters (ex 472/3; em 488, BP 525/30) and an electron multiplier 

Hamamatsu CCD C9100-13 camera as previously described (Treves et al., 2010). Changes in 

fluorescence were analyzed using Metamorph imaging system and the average pixel value for 

each cell was measured as previously described (Ducreux et al., 2004, Treves et al., 2010). 

Individual cells were stimulated by means of a 12- or 8-way 100 mm diameter quartz 

micromanifold computer controlled microperfuser (ALA Scientific instruments, Westbury N.Y. 

U.S.A.), as previously described (Ducreux et al., 2004).  

 

Electroporation of muscles from JP-45 KO mice with the cDNA carrying the variants in 

exon 5 or exon 6 

JP-45KO mice were used for plasmid electroporation according to DiFranco et al. (2006). 

Briefly, flexor digitorum brevis (FDB) muscles were injected with 5 µl of 2mg/ml hyaluronidase 

and injected 1 hour later with 20 µg DsRed-conjugated JP-45 mutants or wild-type cDNAs. Ten 

minutes later, two sterile, gold-plated acupuncture needles were placed under the skin on 

adjacent sides of the muscle. Twenty 100 V/cm, 20-ms square-wave pulses of 1-Hz frequency 

were applied to the muscle for one second each using a Grass stimulator (Grass S48; W. 

Warwick, RI, USA).  

 

Charge movement and calcium current recordings 
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FDB muscle fibers were transferred to a small flow-through Lucite chamber positioned on a 

microscope stage. Fibers were continuously perfused with the external solution (see below) using 

a push-pull syringe pump. Only fibers exhibiting clean surface and lack of evidence of 

contracture were used for electrophysiological recordings. Muscle fibers were voltage-clamped 

using an Axopatch-200B amplifier (Molecular Devices) in the whole-cell configuration of the 

patch-clamp technique (Hamill et al., 1981;  Delbono et al., 2007). Patch pipettes were pulled 

from borosilicate glass (Boralex) using a Flaming Brown micropipette puller (P97, Sutter 

Instrument Co., Novato, CA) and then fire-polished to obtain electrode resistance ranging from 

450 to 650 kΩ. In cell-attached the seal resistance was in the range of 1 to 4.5 GΩ (n = 50) and 

in the whole-cell configuration the values were between ~100 MΩ.  Only experiments with 

resistance more than 100 MΩ were included in the analysis.  The pipette was filled with the 

following solution (mM): 140 Cs-aspartate; 2 Mg-aspartate2, 0.2 or 10 Cs2EGTA (ethylene 

glycol-bis(α-aminoethyl ether)-N,N,N’N’-tetraacetic acid), 10 HEPES (N-[2-

hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid]), pH was adjusted to 7.4 with CsOH (Adams 

et al., 1990).  The external solution used for Ca2+ current recording contained (mM): 150 

TEA(tetraethylammonium hydroxide)-CH3SO3, 2 MgCl2, 2 CaCl2, 10 Na-HEPES and 0.001 

tetrodotoxin (Delbono, 1992). Solution pH was adjusted to 7.4 with CsOH.  Both, the pipette and 

the bath solution, were selected based on the ease of membrane seal formation and cell stability 

over time. For charge movement recording, Ca2+ current was blocked with the external solution 

containing 0.5 mM Cd2+ and 0.3 mM La3+ (Adams et al., 1990).  

Whole-cell currents were acquired and filtered at 5 kHz with pCLAMP 10 software 

(Molecular Devices). A Digidata 1440A interface (Molecular Devices) was used for A-D 

conversion. Membrane current during a voltage pulse, P, was initially corrected by analog 



 11 

subtraction of linear components. The remaining linear components were digitally subtracted on-

line using hyperpolarizing control pulses of one-quarter test pulse amplitude (-P/4 procedure) as 

previously described for mouse muscle fibers (Delbono, 1992). Four control pulses were applied 

before the test pulse.  Charge movements were evoked by 25 ms depolarizing pulses from the 

holding potential (-80 mV) to command potentials ranging from –70 to 60 mV with 10mV 

interval. Intramembrane charge movement was calculated as the integral of the current in 

response to depolarizing pulses (charge on, Qon) and is expressed per membrane capacitance 

(coulombs per farad). The complete blockade of the inward Ca2+ current was verified by the Qon 

– Qoff linear relationship. For analysis of the relationship between charge movement and 

membrane voltage, data points were fitted to a Boltzmann equation of the form Q = Qmax ⁄ [1 + 

exp(V1 ⁄2) Vm) ⁄ K], where Qmax is the maximal charge; V1⁄2 is the charge half-activation 

potential; Vm is the membrane potential; and k is the steepness of the curve. For calcium 

currents, normalized data points to the maximum current amplitude were fitted to the following 

equation: ICa = Gmax(V−Vr)/{1+ exp[zF(V1/2−V)/RT]}, where Gmax is the maximum 

conductance, V is the membrane potential, Vr is the reversal potential, and V1/2 is the half-

activation potential, z is the effective valence, F is the Faraday constant, R is the gas constant, 

and T is the absolute temperature. 

 

Sarcoplasmic reticulum Ca2+ release 

Dissociated FDB fibers were loaded with Oregon Greeen Bapta-5N (OGB-5N) via the patch 

pipette as described (Jimenez-Moreno et al., 2008). The dye was allowed to diffuse for 20–

30 min before fiber stimulation and after attaining the whole-cell voltage-clamp configuration. 

Intracellular OGB-5N transients were recorded using a Bio-Rad Radiance 2100 laser scanning 
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confocal microscope (Zeiss, Oberkochen, Germany). Confocal microscopy allowed us to 

improve the signal/noise ratio under experimental conditions in which myoplasmic Ca2+ 

concentration was strongly buffered by 20 mM EGTA. This experimental manipulation also 

ensured a more accurate estimation of the Ca2+ release flux. Fibers were imaged through a C-

Apochromat 40× water-immersion objective (NA 1.2, Zeiss) or a 20× Fluar (NA 0.75) using an 

argon laser at 488-nm excitation wavelength. The fluorescence emission was measured at 

528 ± 25 nm wavelength. For most experiments, the laser was attenuated to 6–12% with a 

neutral density filter. Fibers were imaged in line-scan (x-t) mode. The fiber was always oriented 

parallel to the x scan direction. Linescan images were acquired with 256 pixels (0.236 µm/pixel) 

in the x- and 512 pixels (0.833 ms/pixel) in the t-direction. For image acquisition, we used 

LaserSharp 2000 software (Bio-Rad, Zeiss), and for the analysis of the image intensity profile, 

Image J software (NIH, Bethesda, MD). For analysis of the relationship between fluorescence 

and membrane voltage, data points were fitted to a Boltzmann equation of the form ΔF/F= 

ΔF/Fmax⁄[1+exp(V1 ⁄2) Vm) ⁄K, where ΔF/F max is the maximal normalized fluorescence; V1⁄2 is 

the ΔF/F half-activation potential; Vm is the membrane potential; and k is the steepness of the 

curve. 

 

Statistical analysis 

Statistical analysis was performed using the Student’s t test for paired samples; means were 

considered statistically significant when the P value was <0.05. The Origin computer program 

(Microcal Software, Inc., Northampton, MA, USA) was used for statistical analysis. 
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RESULTS 

Figure 1 shows the human and mouse JP-45 amino acid sequences and the location of the 

JSRP1 polymorphic variants. We first assessed the frequency of the JP-45 polymorphism in exon 

5 and exon 6 in the Swiss MH population, by screening the genomic DNA of patients that had 

been tested genetically and phenotypically and classified as either MHN (MH negative), MHEh 

(MH equivocal with abnormal response to halothane) with mutation in RYR1, MHEh, with no 

identified mutation in RYR1 or MHS (MH susceptible) with a causative RYR1 mutation. Figure 2 

(left panels) shows a schematic representation of the restriction sites generated by the presence of 

the c.323C>T substitution (top) and of the c.449G>C 6 (bottom). The panels on the right show 

PCR amplified DNA from individuals with and without the polymorphisms, after digestion with 

MspA1l (c.323C>T, exon 5) and Acil (c.449G>C exon 6) while the frequency distribution of the 

polymorphisms among the different individuals is shown in Table 1. As indicated (i) the 

frequency of the two SNP is not different between individuals belonging to different groups and 

(ii) the SNP in exon 6 is more frequent compared to that in exon 5. We also identified one MHN 

individual carrying both polymorphisms. 

 In order to verify if the JSRP1 variants influence the resting [Ca2+] and sensitivity of the 

ryanodine receptor to KCl-induced Ca2+ release, we loaded myotubes from MHN/MHE 

individuals with no RYR1 mutation, carrying either the p.P108L polymorphism (2 individuals), 

the p.G150A polymorphism (3 MHN and 3 MHE individuals), with either fura-2 or fluo-4 and 

studied general aspects of calcium homeostasis. Figure 3A shows that the resting [Ca2+]i of 

individuals carrying the p.G150A polymorphism were slightly lower than those carrying either 

no polymorphism or the p.P108L. It is difficult to interpret if such small changes (<10% of the 

fura-2 fluorescence value) though statistically significant, could be the consequence of altered 
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EC coupling, in particular due to fine alterations of Cav1.1 function. We next assessed the 

response of these myotubes to different concentrations of KCl. As shown in Figure 3B the 

sensitivity to KCl was very similar in myotubes carrying the p.P108L and p.G150A 

polymorphism, with an EC50 of 36.5±2.5 and 30.5±1.0, respectively but this was shifted to 

higher KCl concentrations compared to myotubes carrying no polymorphisms (EC50 11.3±6.8), 

however the peak calcium release induced by KCl or via direct pharmacological activation of the 

RyR1 with 600 µM 4-chloro-m-cresol, were not different (Figure 3C). 

 Since JP-45 interacts with Cav1.1 we investigated in greater detail if the fine functions of 

the DHPR voltage sensor were affected by the polymorphisms. To this end, we reconstituted 

FDB muscles from JP-45 KO mice with constructs carrying wild type JP-45 or constructs in 

which each of the single variants had been inserted, and studied the charge movement, Ca2+ 

currents, and intracellular calcium. Figure 4 (panels A and B) shows the electrophysiological 

properties of single FDB fibers carrying the different variants. Fibers reconstituted with the 

cDNA carrying the p.P108L or p.G150A variants showed ~18 mV or more than 20mV 

displacement of the charge movement-membrane voltage curve toward more positive potentials 

compared to wild type JP-45 (Table 2). These changes in charge movement were accompanied 

by significant changes in the voltage-dependence of the calcium current (Fig. 4B). Half 

activation potential for p.P108L (22 ± 2.8 mV) and p.G150A (23 ± 3.1 mV) was found at more 

depolarized potentials than wild type JP-45 (2.2 ± 0.41). As the shift in charge movement and 

calcium current activation for the p.G150A and p.P108L variants was significantly shifted 

toward more positive potentials compared to wild type JP-45, we examined the voltage-

dependence of SR Ca2+ release. Consistently, SR Ca2+ release shows a ~18 mV shift toward 

more depolarized potentials induced by both JP-45 variants compared to JP-45 wild type (Fig. 



 15 

4C and Table 2).  

 

DISCUSSION 

 In the present paper we investigated the impact of two naturally occurring variants of 

JSRP1 on EC coupling and report that their presence downregulates the activity of the 

dihydropyridine receptor leading to a shift in its sensitivity to activation; thus the presence of 

polymorphic variants of JSRP1 and potentially in other genes encoding SR proteins may fine 

tune skeletal muscle EC coupling and explain the variable phenotypes observed in MHS patients 

from different genetic backgrounds, with the same RYR1 mutation. 

While analyzing the MHS population, Althobiti et al. (2009) identified two genetic 

variants of the JSRP1, the gene encoding the sarcoplasmic reticulum junctional face membrane 

protein JP-45, but concluded that it was unlikely that either polymorphism on their own could be 

causative of malignant hyperthermia and rather such variants may act as modifiers in MH 

susceptibility. The results of the present study support and extend these findings; analyzing DNA 

samples collected from 140 individuals of the Swiss population undergoing genetic or functional 

testing for MH susceptibility, we found that approximately 50% of the population (MHN, MHE 

and MHS) carried the p.G150A polymorphism, and it is equally distributed among the different 

MH subgroups. On the other hand the p.P108L polymorphism is much less frequent, being 

present in only approximately 5% of the total population with no significant difference in its 

distribution among the different MH subgroups. Nevertheless, the absence of a direct impact of 

genetic variants on the predisposition to MH as determined by the in vitro contracture test (the 

gold standard used to determine MH susceptibility) does not exclude an indirect modulatory 

effect of JP-45 on the fine tuning of EC coupling.  
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 In order to study the functional effects of the JP-45 polymorphisms we used two 

complementary approaches: (i) we studied calcium homeostasis in myotubes from MHN/MHE 

individuals negative for RYR1 mutations and endogenously expressing the variants and (ii) 

reconstituted skeletal muscles from JP-45 KO mice (Delbono et al., 2007) with either wild type 

cDNA or the cDNA carrying either variant of JP-45 and studied the electrophysiological 

characteristics of the DHPR from isolated FDB fibres. Both approaches gave similar results in 

that the sensitivity of the voltage sensor was shifted to higher depolarizing voltages/KCl 

concentrations in cells carrying either variant. This result is not totally unexpected as: (i) JP-45 

binds directly to the Cav1.1 through its NH2-terminal domain and to calsequestrin via its COOH-

terminus (Anderson et al., 2006); (ii) over-expression of JP-45 in C2C12 myotubes leads to a 

reduction of Ca2+ permeability per voltage-sensor charge (Gouadon et al., 2006) suggesting that 

JP-45 down regulates the activity of the EC coupling machinery; (iii) ablation of JP-45 leads to 

loss of skeletal muscle strength in three months old mice. Interestingly, in an MH mouse animal 

model (RYR1Y522S) Andronache et al. (2009) showed voltage dependence of inactivation of 

DHPR-mediated Ca2+ release were shifted to more negative potentials, indicating that the mice 

had activated compensatory mechanisms acting on the DHPR to counterbalance the activation of 

Ca2+ release via mutated RyR1 at more negative membrane potentials. We believe that the 

expression of JP-45 variants represents an additional mechanism counteracting Ca2+ release via 

the RyR1 channel. Indeed in myotubes and reconstituted FDB fibres peak Ca2+ release was 

similar in cells carrying WT or JP-45 variants, but the EC50 for depolarization-induced Ca2+–

release was shifted by about 20 mM KCl to higher KCl concentrations. Similarly, 

electrophysiological measurements of fibres reconstituted with JP-45 variants showed that half 

of the maximal charge movement and Ca2+ currents were recorded at more positive potentials 
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than in fibres reconstituted with wild type JP-45. 

Figure 1 shows the human and mouse JP-45 amino acid sequences and the location of the 

polymorphic variants in a cartoon model. The p.P108L variant falls within a stretch of conserved 

proline residues which are present in the NH2 - domain of JP-45; substitution of the helix 

breaking proline residue for the hydrophobic amino acid leucine may change the structure of the 

domains interacting with the Cav1.1 subunit of the DHPR leading to the observed desensitization 

of the voltage sensor.  On the other hand the effect of the more common p.G150A which lies 

right after the predicted transmembrane domain is more difficult to envisage as both glycine and 

alanine are neutral nonpolar residues, have a similar isoelectric point (5.95 and 6.0 respectively) 

but differ in the size of their side-chains (Voet and Voet, 2004). Thus the subsitution of the H+ 

side chain on glycine for the CH3 side group on alanine immediately after the hydrophobic 

domain may cause conformational changes and/or affect posttranscriptional modifications.  

 In conclusion we show that the presence of genetic variants of JP-45 affects the function 

of the voltage sensing dihydropyridine receptor suggesting that variants of other proteins present 

in the sarcoplasmic reticulum interacting with the RyR1 and /or with the DHPR may similarly 

affect EC coupling and thus will impact not only the severity of an individual’s MH phenotype 

but potentially also the severity of neuromuscular disorders particularly of the core myopathies.  
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FIGURE LEGENDS 

Figure 1: Comparison of the amino acid sequences of human and mouse JP-45 and location 

of the polymorphic variants. 

 

Figure 2: Left - schematic representation of DNA fragments from wild type and polymorphic 

variants of JP-45 showing size of fragments and location of restriction sites. Right- 

representative polyacrylamide gel from a wild type (-) and carrier of JP-45 variants after PCR 

amplification and restriction enzyme digestion. PCR conditions and primers were as described in 

the Materials and Methods section.  

 

Figure 3: Calcium regulation in myotubes from individuals carrying wild type or 

polymorphic variants of JP-45. A- resting fura-2 fluorescent ratio. The resting [Ca2+]i 

concentration was slightly but significantly reduced in cells from individuals carrying the 

p.G150A polymorphism. B- KCl induced Ca2+ release curves in myotubes from control 

individuals (pooled from 3 MHN individuals; *_____*), from individuals carrying the p.P108L 

JP-45  variant (pooled from 2 MHN individuals O - - - O); and from individuals carrying the 

p.G150A JP-45  variant (pooled values from 3 MHN and 3 MHEh with no RYR1 mutation -.-.-

.-.). Each point represents the mean (±S.E.M.) percent increase in fluo-4 fluorescence obtained 

at the indicated KCl concentration calculated with respect to the value obtained by stimulating 
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myotubes with 100 mM KCl (n=5-12 averaged values per point). C- peak increase in fura-2 

fluorescence ratio induced by 60 mM KCl (light grey boxes) and 600 µM 4-chloro-m-cresol 

(dark boxes); results are the mean (± SEM) of 9-12 measurements. 

 

Figure 4: Charge movement, calcium current, and SR Ca2+ release in wild type JP-45 and 

JP-45 variants. A. Normalized charge movement to maximal charge (Qmax)-Vm relationship. 

Data points were fitted to a Boltzmann equation (Methods) and best fitting parameters are 

included in Table 2 (n = 8-14 fibers from 4-5 mice per group). B. Normalized Calcium current 

(Ica)-Vm. Data points were normalized to peak current as described (Methods) (n = 7-13 fibers 

per group from 4 mice per group). C. Normalized Oregon Green Bapta (OGB)-5N-Vm 

relationship (n = 8-11 fibers from 3-4 mice per group).   
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Table 1:  

 
 
 
 
Table 2: 
 

Table 2 
 

Best fitting parameters describing the voltage-dependence of charge movement and 
changes in the [Ca2+]i in FDB fibers 

 
 

Q: charge movement, F: fluorescence; V1/2: half-activation potential; K: curve steepness.  * P < 
0.01 for p.G150A or p.P108L vs wild type (WT). Charge movement, n = 8-14 fibers from 4-5 
mice per group; calcium current, n = 7-13 fibers per group from 4 mice per group; and 
intracellular calcium, n = 8-11 fibers from 3-4 mice per group). 

 Charge Movement 
 Maximal Q 

(nC/µF) 
V1/2  (mV) K 

WT JP-45  26 ± 2.9 -8.6 ± 1.1 18 ± 1.2 
p.P108L  24 ± 2.6 9.7±0.9 * 16 ±1.3 
p.G150A  26 ± 3.1 18 ± 2.1 * 20 ± 1.6 
 Intracellular Calcium 
 Maximal ΔF/F FV1/2   (mV) K 
WT JP-45  0.61 ± 0.07 -2.3 ± 0.33 10 ± 2.1 
p.P108L  0.58 ± 0.03 14 ± 3.1* 8.8 ± 2.6 
p.G150A  0.55 ± 0.06 16 ± 2.8 * 9.3 ± 1.9 


