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Summary 

Dysregulation of calcium signals due to defects of the skeletal muscle sarcoplasmic 

reticulum calcium release channel (ryanodine receptor; RyR1) is causative of several congenital 

muscle disorders including malignant hyperthermia (MH; MIM #145600), Central Core Disease 

(CCD; MIM #11700), specific forms of Multi-minicore Disease (MmD; MIM # 255320) and 

Centronuclear myopathy (CNM).  Experimental data have shown that RYR1 mutations result 

mainly in four types of channel defects: one class of RYR1 mutations (MH) cause the channels to 

become hypersensitive to activation by electrical and pharmacological stimuli. The second class 

of RYR1 mutations (CCD) result in leaky channels leading to depletion of Ca2+ from SR stores. A 

third class of RYR1 mutations linked to CCD causes excitation-contraction uncoupling, whereby 

activation of the voltage sensor Cav1.1 is unable to release calcium from the SR. The fourth class 

of mutations are unveiled by wild type allele silencing, and cause a decrease of mutant RyR1 

channels expression on SR membranes. In this review, we discuss the classes of RYR1 mutations 

which have been associated with CCD, MmD and  related neuromuscular phenotypes. 

 

Introduction 

Although 5 decades of research into the mechanisms involved in cytosolic Ca2+ 

regulation have advanced our understanding of fundamental cellular processes ranging from 



muscle contraction to gene expression [1], the precise impact of altered Ca2+ signalling on 

human disease has remained elusive for a long time. The discovery of genes encoding key 

proteins involved in Ca2+ homeostasis was fundamental in bridging the gap between 

understanding the role of Ca2+ in basic physiological processes and the pathophysiology of 

human diseases. The identification of the Ca2+ release channel protein (ryanodine receptor, 

RyR1) of striated muscle [2] and the identification of mutations in its gene, RYR1 [3], allowed 

for the first time a direct correlation between altered Ca2+ homeostasis and muscle disease 

(Fig.1), in particular Malignant Hyperthermia (MH) [4-6], Central Core Disease (CDD) [7], 

specific forms of Multi-minicore disease (MmD) [8-10] and centronuclear myopathy (CNM) 

[11] (Tab.1). The overall population frequency of RYR1 mutations (about 1:50000) is likely to 

have been underestimated as suggested by the finding of compound heterozygosity or 

homozygosity for RYR1 mutations in some patients within extensively analyzed MH and CCD 

pedigrees and other rare disorders including MmD [8-10], exercise-induced rhabdomyolysis 

[12], and some forms of exercise-induced hyperthermia [13]. 

 

The Ryanodine Receptor calcium channels 

Ryanodine receptors are members of a family of intracellular Ca2+ release channel proteins 

present on ER/SR membranes [14]. Type 1 RyR is encoded by a gene on human chromosome 

19q13.1 [15], and is mainly expressed in skeletal muscle and to a lower level in Purkinje cells 

[16], human B-lymphocytes [17,18], and dendritic cells [19-22]; this implies that mutations in the 

RYR1 might affect not only excitable cells but also the immune system and other tissues. The 

functional calcium release channel is made up of four protomers forming a large macromolecular 

complex of approx. 2,500,000 Da. The complex contains a large hydrophilic domain and a 

relatively small hydrophobic COOH-terminal domain containing several transmembrane (TM) 

segments [23-25]. The RYR1 displays three mutation hot spot regions, of which two are localised 

in the large hydrophilic region and the third in the COOH-terminal TM domain [5,26] (Fig. 2). 



Most of the CCD linked mutations are localised within and around a short hydrophobic segment 

between the last two transmembrane segments, a region which is thought to form the pore helix 

and the selectivity filter of the RyR channels [25,27,28], whereas MmD (and CNM) linked RYR1-

mutations are distributed along the entire coding sequence. 

Central Core Disease  

CCD is usually inherited as an autosomal dominant (AD) trait [7] but recessive 

inheritance has been recently described in few families [29-32]. The clinical phenotype of 

dominantly inherited CCD is variable but usually mild and non-progressive; however, more 

severe forms including the foetal akinesia syndrome have also been reported [33] associated with 

recessive or de novo dominant mutations. Type I fibre predominance and hypotrophy are 

common; cores are typically centrally located, cover a considerable length of the fibre and lack 

mitochondria and oxidative enzymes. Electron microscopy reveals variable degrees of 

disintegration of the contractile apparatus within the core region, from Z line streaming to total 

loss of myofibrillar structure. In most cases, patients with dominant CCD carry mutations in the 

RYR1 gene; with few exceptions these are clustered in the hydrophobic COOH-terminal pore-

forming region of the molecule (domain 3) [5,26,30].  

Functional effects of RYR1 mutations linked to CCD.  

Two hypotheses have been suggested to explain the functional effect of CCD-linked RYR1 

mutations: the first one suggests that these mutations lead to leaky channels, depletion of SR 

Ca2+ stores and consequently muscle weakness [26, 34-37].  This “leaky channel” hypothesis has 

been challenged by data obtained using myotubes from the RyR1 knock out animals 

reconstituted with recombinant RyR1 cDNA carrying mutations in the COOH-terminal domain 

which have suggested an alternative “E-C uncoupling” hypothesis [34,38]. According to the 

latter hypothesis, CCD mutations in the hot spot domain #3 lead to functional uncoupling of 

sarcolemma depolarisation from release of Ca2+ from the SR Ca2+ stores [34]. The kernel of the 

two hypothesis concerns the extent of the Ca2+ load in the lumen of the SR from CCD muscles 



[26]: the uncompensated Ca2+ leak hypothesis predicts a decrease of the SR Ca2+ load, while the 

E-C uncoupling hypothesis predicts that the muscle weakness does not result from major 

changes in the SR Ca2+ levels, but rather is due to a defect in excitation contraction coupling 

(ECC), the molecular mechanism underlying the transmission of the signal from sarcolemma 

depolarisation to the RyR.  To discriminate between these two pathogenetic hypotheses it is 

crucial to define (i) SR Ca2+ content in muscle cells from CCD patients carrying mutation in the 

COOH-terminal domain, and (ii) clearly establish the role of SR Ca2+ load in the regulation of 

Ca2+ release in mammalian fibres [39]. If the Ca2+ leak hypothesis is correct, the prevalent 

involvement of type I fibres suggests that the extent of Ca2+ leak via mutated RyR is higher in 

slow fibres compared to fast fibres, and likely reflects larger SR Ca2+ load of slow twitch 

muscles [40].  A knock-in CCD mouse model carrying the heterozygous RyR1 I4895T mutation 

does not reconstitute the severe CCD skeletal muscle phenotype of humans harbouring 

homologous heterozygous RYR1 mutations [41]. It appears that the CCD knock-in mice 

phenotype is somehow different from its human counterpart since, in addition to dysfunctional 

RyR1, homozygous mice display perinatal death, embryonic developmental defect of the skin, 

bones and cardiovascular system. 

Multi-minicore Disease 

 MmD disease is an autosomal recessive early onset congenital myopathy [42]. Muscle 

biopsies from MmD patients show multiple small areas (cores) of sarcomeric disorganization 

lacking oxidative enzymes and mitochondria, which typically do not run the length of the muscle 

fibre. MmD is clinically highly variable (Tab. 1) and genetically heterogeneous having been 

linked to recessive mutations both in the selenoprotein 1 (SEPN1)(Tab.2) gene and the skeletal 

muscle RYR1 gene [43-46]. Although genotype-phenotype correlations have not been fully 

established, it appears that extra-ocular muscle involvement is exclusive to the RYR1-related 

form of MmD, whilst severe scoliosis and respiratory impairment requiring ventilatory support 

are more prevalent in SEPN1-related “classical” MmD [44,45,47]. 



Selenoprotein N (SEPN1) mutations  

The selenoproteins are a family of proteins characterised by the presence of the 21st amino acid 

selenocysteine in their primary structure. Selenocysteine represents the main biological form of 

selenium [48]. The selenoprotein SEPN1, which is encoded by a gene (SEPN1; MIM#606210) 

on human chromosome 1p36 (RSMD1 locus), is a 70 kDa integral membrane glycoprotein 

localized in the endoplasmic reticulum of many tissues, including pancreas, kidney, heart, liver, 

lung, brain and skeletal muscle [49]. Approximately 20 mutations have been identified within the 

coding sequence of the SEPN1 gene (Tab. 2), and half of the mutations identified in patients with 

the classical form of MmD give rise to a truncated SEPN1 protein. It has recently been shown 

that selective down regulation of SEPN-1 in zebra fish muscles causes alterations (i) in the 

organization and attachment of the myofibrils and (ii) in the formation of myoseptum, a structure 

homologous to the human myotendineuos junction [50]. The decrease of SEPN1 synthesis might 

be associated with an intracellular accumulation of selenite, a precursor of the selenocysteine 

synthetase [51]; the intracellular accumulation of selenite might in turn alter the redox 

modulation of the RyR1 [52,53]. 

RYR1 mutations  

A consistent number of MmD patients, particularly those with associated extra-ocular 

involvement, harbour recessive mutations in RYR1 [45,54]. The first functional study of MmD-

related RYR1 mutations demonstrated that the p.P3527S and p.V4849I substitutions are 

associated with a slightly elevated resting Ca2+ concentration, but not depleted intracellular 

stores [55]. Interestingly, cells carrying the homozygous P3527S RYR1 mutation were found to 

release significantly less Ca2+after pharmacological activation. Similarly, in another study it was 

shown that RyR macromolecular complexes carrying the p.S71Y+p.N2283H compound 

heterozygous mutations did not exhibit reduced Ca2+ release after pharmacological stimulation 

[31]. On the other hand, one of the mutations (p-N2283H) actually increased the sensitivity of 

the RyR1 activation by KCl and caffeine and is probably also linked to the MHS phenotype. In 



some MmD patients, particularly those with ophthalmoplegia, the clinical phenotype may be at 

least partly explained by a decrease of the RyR1 channel density in the junctional sarcoplasmic 

reticulum membrane, as demonstrated by Western blot analysis with anti-RyR Ab of muscles 

obtained from patients carrying the p.R109W+p.M485V as well as other recessive mutations 

[31,32,56], and the homozygous 14646+2.99 kb intronic splicing variant [47]. In some of these 

patients with recessive core myopathies, heterozygosity for the RYR1 mutation at the genomic 

level but apparent monoallelic expression in muscle (mimicking homozygosity), suggested that 

the RyR1 decrease resulted from muscle specific RYR1 gene silencing [56]. In fact, in these 

patients, the only allele transcribed in skeletal muscle carried the mutation and was paternally 

inherited [56]. One of the families where wild type allele silencing occurred carried the 

p.R109W+p.M485V substitutions. The p.M485V substitution did not affect the function of the 

RyR in a discernable way [31], whereas the p.R109W homozygous mutation was associated with 

(i) very low levels of RyR1 in the muscle from the affected patient, and (ii) a significant decrease 

of ryanodine binding and inability to transport calcium by the recombinant mutant channel 

expressed in HEK293 cells. 

Centronuclear myopathy 

Centronuclear myopathy (CNM) is a rare, genetically heterogeneous congenital 

myopathy characterized by numerous centrally located nuclei; additional but inconsistent 

histopathological features comprise a central zone either devoid of oxidative enzyme activity or 

with oxidative enzyme accumulation, radial strands surrounding the central area, type 1 fibre 

predominance and hypotrophy. CNM exists in X-linked, autosomal-dominant and recessive 

forms and mutations in several genes whose products play a role in membrane trafficking have 

been identified (Tab.3). The most severe and often fatal X-linked form (“myotubular myopathy”) 

is associated with mutations in the myotubularin MTM1 gene [57,58], whereas autosomal 

dominant and autosomal recessive forms have been attributed to mutations in a number of genes 

including DNM2 and amphiphysin (BIN1) (Tab. 3) [59-61]. In a recent report, a dominant de 



novo RYR1 mutation was identified in a patient with histopathologic and clinical features of 

CNM and a pattern of selective muscle involvement on MR imaging suggestive of RYR1 

involvement [11]. Nevertheless, the overall frequency of RYR1 mutations in this phenotype is 

currently unknown. Mutation analysis identified the p.S4112L RYR1 substitution  (c12335C>T) 

which lies within MH/CCD domain 3 in a region lying on the myoplasmic loop adjacent to the 

first putative transmembrane domain.  

Imaging of Ca2+ fluxes in primary cultured myotubes from the CNM patient carrying the 

p.S4112L RYR1 mutation in the COOH domain revealed an increased sensitivity to 

depolarization-induced Ca2+ release [11], suggesting that this mutation might affect long range 

interactions between the transmembrane COOH terminal domain and the region involved in the 

RyR1/Cav.1.1 intermolecular signalling [62]. Alterations of such long range interactions would 

result in a more sensitive calcium release induced by the activation of the Cav1.1 voltage sensor, 

but it is unclear how these alterations would determine the clinical phenotype of CNM.  

These data suggest that in the future, RYR1 screening ought to be considered in CNM 

patients with suggestive clinical and radiological features, in whom other genetic defects have 

been excluded. 

 

Conclusions. 

During the last few years the general understanding of congenital muscle disorders has 

greatly improved thanks to the identification of causative mutations in the RYR1 gene. However, 

the development of therapeutic treatments for affected patients has been hampered by the poor 

understanding of the molecular pathological mechanisms of the RyR1 defects. Understanding the 

mechanism(s) responsible for RYR1 allele silencing, discriminating between Ca2+ leak and EC 

uncoupling are important not only to improve our basic knowledge of the “ryanodinopathies”, 

but also to develop effective therapeutic strategies aimed at treating the muscle weakness in 

patients with these conditions.  
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Figure Legends 

Figure 1: Classification of RyR1 channelopathies based on the functional effect of 

mutations. 

 

 

 

 

 

 

 

 

 

Figure 2: Cartoon depicting the ryanodine receptor tetramer inserted into a lipid bilayer. 

The mutations identified in the different domains, their mode of transmission (D= 

dominant; r= recessive) as well as their association with CCD and MmD are indicated. 
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