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• Abstract 

Alterations of Ca2+ signaling have been linked to several genetic neuromuscular 

diseases, thus it is important to uncover the toolkit components and intracellular 

pathways involved in Ca2+ signaling under normal and pathological conditions. 

  

Calcium homeostasis in striated muscles 

Over the decades, the role(s) played by Ca2+ in skeletal muscle have been 

unveiled and it is now clearly established that it is the key molecule underlying muscle 

contraction. Its importance is given by the fact that movement of the contractile proteins 

is dependent on the Ca2+ released from the sarcoplasmic reticulum (SR), an organelle 

constituting approximately 10% of the cell’s volume and fully dedicated to uptake and 

release of Ca2+ (Peachey, 1965; Volpe, 1991). The SR can be structurally divided into 

two distinct portions: the terminal cisternae, which face the transverse tubules (an 

invagination of the plasma membrane) and the longitudinal sarcoplasmic reticulum, 

connecting two terminal cisternae. The terminal cisternae can be further divided into 

junctional face membrane (the domain facing the transverse tubules) and non junctional 

membrane (Saito, 1984; Costello, 1986).  

Depolarization of the plasma membrane of skeletal muscle leads to release of 

Ca2+ from the SR resulting in muscle contraction, by a process known as excitation-

contraction coupling (Schneider, 1972; Melzer, 1995; Berchtold, 2000). Excitation-

contraction coupling (EC coupling) occurs at the triad, a structure composed of the two 

membrane compartments, transverse tubules containing the voltage sensing 

dihydropyridine receptor (DHPR, an L-type Ca2+ channel) and terminal cisternae on 

which ryanodine receptor (RyR) Ca2+ release channels are localized (Mitchell, 1983; Rios 

1991). The disposition of DHPRs and RyRs on their respective membranes is highly 

ordered and each RyR tetramer faces alternative rows of DHPRs (figure 1) (Block, 1988; 

Franzini-Armstrong, 1994; Paolini, 2004). These two Ca2+ channels are the basic unit 

underlying excitation-contraction coupling but they do not function alone, but rather can 

be thought of as macromolecular structures, composed of a number of accessory proteins 

involved in their fine regulation. 

 



Major and minor protein components of the sarcoplasmic reticulum 

One of the major advances in the field of excitation-contraction coupling was the 

development of reproducible procedures enabling the fractionation of SR membranes 

enriched in proteins involved in calcium handling (Campbell, 1980; Meissner, 1973; 

Saito, 1984). This revealed that protein components of the longitudinal SR (LSR) and 

terminal cisternae are different, reflecting the functional subspecialization of these 

membrane fractions, which are respectively, Ca2+ uptake and Ca2+ release. Figure 2 

shows a 5-15% SDS PAG stained with Coomassie Brilliant Blue of the protein 

components of LSR, terminal cisternae and junctional face membrane. The major 

component of the LSR constituting approximately 80% of the total proteins present, is the 

110 kDa CaATPase (SERCA), i.e. the pump responsible for pumping the Ca2+ released 

by the RyR1s back into the SR. The 22kDa protein band present in the longitudinal SR 

fraction is phospholamban, a protein involved in regulating the activity of the SERCA 

pump in heart and slow twitch muscle fibers. When phospholamban is de-

phosphorylated, it inhibits the activity of SERCA, whereas in its phosphorylated state, 

inhibition is relieved (Slack, 1997; Liu, 1997; MacLennan, 2003). Ablation of 

phospholamban causes a significant (25%) decrease in the time to half relaxation of 

isolated solei with no change in the contraction time (Jay, 1997), supporting its important 

role in regulating of SERCA activity. 

Two glycoproteins of 160 kDa (sarcalumenin) and 53 kDa (53 kDa glycoprotein) 

represent minor protein constituents of the LSR membrane fraction and are generated by 

alternative splicing of the same transcript, which is expressed both in heart and skeletal 

muscle. The large transcript (sarcalumenin) is a low affinity (kD= 0.6 mM) high capacity 

(35 mol/mol protein) Ca2+ binding protein, while the shorter product of 53 kDa, lacks the 

NH2 and thus the Ca2+ binding domain. Sarcalumenin is involved in the maintenance of 

the SERCA protein as illustrated by the fact that sarcalumenin KO animals exhibit 

significant decreased SERCA activity and SERCA protein content (Leberer, 1990; 

Yoshida, 2005).  

As shown in figure 2, the protein composition of the JFM is far more complex 

than that of the LSR (Costello, 1986); aside the most abundant components, including the 

ryanodine receptor (RyR), calsequestrin (CsQ), histidine rich Ca2+ binding protein and 



traidin(s) (TRISK) which will not be discussed in this review, there are a number of other 

minor protein components whose function has recently been unraveled or that still await 

functional characterization. Much work has focused on the identification of the full set of 

protein constituents of the junctional face membrane (JFM) and on understanding their 

functional role in excitation-contraction coupling. Two main approaches have been used 

to characterize the minor membrane-protein components at the molecular, cellular and 

functional level: (i) the immuno-proteomic approach utilized by Takeshima’s lab, which 

combines production of monoclonal Abs against membrane proteins selected on the base 

of specific triadic immunostaining of muscle sections, cDNA cloning, expression and 

biochemical analysis of identified proteins to gene knock out techniques (Weisleder, 

2008). (ii) Junctional face membrane purification or heparin agarose chromatography and 

identification of proteins co-eluting with the RyR, combined with Western blotting, Mass 

Spec analysis and peptide sequencing (Divet, 2005). These approaches have been 

relatively successful and at least 5 minor membrane protein components that will be 

described in the next section, have been identified and characterized. 

 

Mitsugumin-29:  

This is a 29 kDa membrane protein related to the synaptophysin-family, originally 

identified in the SR of skeletal muscle and in the endoplasmic reticulum of kidney renal 

tubules (Shimuta, 1998). Analysis of its primary sequence, as well as biochemical and 

ultrastructural evidence suggest that mitsugumin-29 contains 4 transmembrane spanning 

domains and that it is localized in the transverse tubules of mature skeletal muscles where 

it self-associates as hexamers (Shimuta, 1998; Brandt, 2001). Though mitsugumin-29 

does not tightly associate with other proteins, experimental evidence suggests that it can 

functionally interact with the RyR1, whereby it increases RyR1 open probability without 

affecting channel current amplitude (Pan, 2004). Muscles isolated from mitsugumin-29 

KO mice exhibit swollen transverse tubules, vacuolated SR and misaligned triadic 

structures. These ultrastructural changes are accompanied by dysfunctional Ca2+ 

handling; specifically, the intracellular Ca2+ stores of myotubes from mitsugumin-29 KO 

mice deplete more rapidly and refill more slowly after depolarization than myotubes from 

control mice (Pan, 2002). Such alterations lead to “global” functional changes, so that 



muscles from mitsugumin-29 KO mice fatigue more rapidly than their wild type 

counterpart (Nagaraj, 2000). Taken together these results suggest that mitsugumin-29 

functions as a tethering structure, forcing the transverse tubules into a conformation, 

which favors the formation of triadic structures. Lack of integral triads then leads to 

altered Ca2+ handling and defective SOC-dependent Ca2+ influx. 

Junctophilin-1: 

Junctophilins are membrane spanning proteins with a large cytoplasmic region 

containing a 14 amino acid repeat motif (MORN motif) with selective binding affinity for 

the plasma membrane and a carboxy-terminal transmembrane segment spanning the 

ER/SR (Takeshima, 2000). At least three isoforms encoded by distinct genes, exist: 

junctophilin-1 is specifically expressed in skeletal muscle, junctophilin-2 is expressed in 

the heart, in skeletal muscles and in smooth muscles and junctophilin-3 is expressed in 

the brain (Nishi, 2000). In skeletal muscle junctophilin-1 (72 kDa protein) is involved in 

physically linking the transverse tubules to the SR membrane. Protein overlay and 

surface plasmon assays suggest that it achieves this by interacting with phospholipids, 

especially with sphingomyelin and phosphatidylchloine, rather than through protein-

protein interactions (Weisler, 2008). Ablation of junctophilin-1 severely affects muscle 

function leading homozygous KO mice to premature death within 20 h after birth. 

Ultrastructural examination of the skeletal muscles of junctophilin-1 KO mice shows 

morphological abnormalities, including incomplete formation of the junctional 

complexes between transverse tubules and the SR, swollen terminal cisternae and 

reduced numbers of triads. As a consequence muscles develop less contractile force after 

electrical stimulation and show abnormal sensitivity to extracellular Ca2+ (Ito, 2001; 

Komazaki, 2002). 

 

SRP-27/TRIC-A: 

Mitsugumin-33 or TRIC-A (trimeric intracellular cation-selective channel) 

(Yazawa, 2007) also known as SRP-27 (sarcoplasmic reticulum protein of 27 kDa) 

(Bleunven, 2008) is expressed in excitable tissues and is particularly enriched in fast 

twitch skeletal muscles, where its expression level peaks after 2 months of post-natal 

development. Mice lacking TRIC/SRP-27 are viable and display no overt phenotype. 



Double-labeling immunocytochemistry experiments of mouse muscle fibers indicate that 

SRP-27 is localized in the perinuclear endoplasmic reticulum as well as in a SR 

subcompartment, which is adjacent to, but distinct from, that containing the RyR1 and 

SERCA (Bleunven, 2008). Interestingly, SRP-27/TRIC-A could be pulled-down by beads 

coated with maurocalcine and RyR1, but not with maurocalcine alone, raising the 

possibility that SRP-27/TRIC-A is part of the RyR1 macromolecular complex (Bleunven, 

2008). Hydrophobicity plots and biochemical analysis also revealed that TRIC-A/SRP-27 

is an integral ER/SR protein containing up to three membrane spanning domains, whose 

amino-terminus is located in the lumen of the ER/SR and whose carboxy terminus is 

exposed to the cytoplasm. Sequence comparison also predicts the presence of an ion-

conducting pore between the first and second transmembrane domains and cross-linking 

experiments demonstrate that TRIC-A/SRP-27 tends to form homo-oligomers (dimers 

and trimers). Three dimensional reconstruction studies of the native protein suggest that it 

acquires a pyramidal elongated structure, similar to that of bacterial porin channels 

(Yazawa, 2007). Interestingly, reconstitution in lipid bilayers, suggest that TRIC-A/SRP-

27 is a cation channel, with a selectivity of K+ over Na+ (permeability ratio PK/PNa =1.5) 

(Yazawa, 2007). To gain more insight into the function of this channel, Yazawa (2007) 

followed changes in the membrane potential of isolated muscle fibers from control and 

TRIC-A/SRP-27 KO mice. The lack of TRIC-A/SRP-27 reduced the K+ permeability 

accompanying thapsigargin-induced Ca2+ efflux, without affecting Ca2+ permeability, 

suggesting that this protein may act as a monovalent-cation channel.  Such a channel 

could be activated physiologically during RyR1-mediated Ca2+ release to counter-balance 

the charge movement due to efflux of Ca2+ (Somlyo, 1981), which would otherwise leave 

the SR lumen with a negative charge. However, the role of TRIC-A/SRP-27 as a 

monovalent-cation contercurrent channel during Ca2+ release has been challenged by data 

of Gillespie and Fill (Gillespie, 2008) which indicates that the RyR1 channel mediates its 

own potassium countercurrent during SR Ca2+ release. This would obviate the need of an 

additional countercurrent carrier during SR Ca2+ release, leaving the exact functional role 

of TRIC-A/SRP-27 controversial. 

JP-45 



JP-45 is a 45 kDa polypeptide containing a single transmembrane segment, which 

is highly enriched in skeletal muscle junctional face membrane where its expression is 

developmentally regulated, reaching maximal levels during the second month of post-

natal development (Anderson, 2003). Originally JP-45 was identified as a protein weakly 

phosphorylated by cAMP dependent protein kinase and co-eluting with the RyR1 and 

DHPR from a heparin-agarose column (Zorzato, 2000). Surprisingly however, co-

immunoprecipitation experiments revealed that JP-45 is not part of the RyR1 

macromolecular complex, but rather it interacts with calsequestrin via its luminal carboxy 

–terminal domain and with Cav1.1, through its cytoplasmic amino terminus (Anderson, 

2003). Extensive pulldown and co-immunoprecipitation experiments, revealed that JP-45 

binds to different regions on the Cav1.1, namely to its carboxy- terminus and to a region 

within the I-II loop referred to as AID, where the ß1a subunit also binds (Anderson, 

2006). The interaction between Cav1.1 and ß1a is thought to be essential for targeting or 

stabilizing Cav1.1 on the plasma membrane (Flucher, 2002).  

Several approaches have been exploited to unravel the function of JP-45 in skeletal 

muscle: (i) acute over-expression and depletion of JP-45 in differentiated C2C12 

myotubes (Anderson, 2006; Gouadon, 2006) and (ii) chronic depletion in JP-45 knock 

out mice (Delbono, 2007). Interestingly both over-expression and ablation of JP-45 result 

in a decrease of voltage-dependent Ca2+ release. This effect could be due to a decrease of 

functional expression of the Cav1.1 on the transverse tubules (Anderson, 2006; Delbono, 

2007). Alternatively, the effect on Ca2+ release may be linked to alterations of the 

interaction of JP-45 with calsequestrin. Gouadon (2006) showed that low levels of JP-45 

over-expression affect the permeability of the Ca2+ release unit by altering excitation-

contraction coupling transfer function (Gouadon, 2006). Given that the lumenal carboxy–

terminus of JP-45 binds to calsequestrin, it is possible that JP-45 constitutes a key protein 

for a signalling pathway between calsequestrin and Cav1.1. Over-expression of JP-45 

may result in the accumulation of JP-45 molecules which are not associated with 

calsequestrin, and this in turn may send an inhibitory signal to the Cav1.1  

Interestingly the skeletal muscle phenotype of young JP-45 KO mice, is reminiscent of 

that of aged mice. During mouse ageing, the membrane density of the voltage sensor 

(Cav1.1), the SR membrane content of JP-45 and the Ca2+ currents of muscle membranes 



are significantly lower compared to those of young animals (Anderson, 2006; Delbono, 

1995; Gonzales, 2003; Renganathan 1997, 1998).  These data suggest that both Cav1.1 

and JP-45 may be important for the maintenance of muscle strength, and indicate that JP-

45 KO mice may be a useful experimental model to investigate alteration of excitation 

contraction coupling linked to ageing.  

 

Junctate/ humbug 

 Junctate is a 33 kDa protein with a single ER/SR membrane spanning domain, 

expressed in a variety of excitable and non-excitable tissues (Treves, 2000; Dinchuk, 

2000; Hong, 2001). Figure 3A shows how transcripts deriving from the same gene (BAH 

or AßH-J-J locus) located on human chromosome 8q12.1 can give rise to four distinct 

classes of proteins via a complex pattern of alternative splicing. Though the complexity 

of  AßH-J-J locus is more the exception than the rule, it illustrates how important it is to 

precisely establish the number and type of gene products when deciding to create knock 

out animal models of protein(s) encoded by the BAH gene. 

 Figure 3B illustrates schematically how the different polypeptides are assembled to 

yield: (i) junctin, a structural calsequestrin binding protein present in cardiac and skeletal 

muscle SR that forms a quaternary complex with triadin, RyR1 and calsequestrin (Jones, 

1995; Kagari, 1996; Zhang, 1997). (ii) Aspartyl-ß-hydroxylase an enzyme catalyzing 

posttranslational hydroxylation of aspartate and asparagine residues within epidermal 

growth factor-like domains present in receptors and receptor ligands involved in cell 

growth and differentiation, and extracellular matrix molecules (Stenflo, 1989; Gronke 

1989; Monkovic, 1992). (iii) Junctate, a moderate affinity (kD 217 µM), high capacity (21 

moles Ca2+/mole protein) Ca2+ binding protein (Treves, 2000). (iv) Humbug, a truncated 

version of aspartyl-ß-hydroxylase, lacking its catalytic domain, which shares with 

junctate the high capacity moderate affinity Ca2+ binding domain (Dinchuk, 2000; 

Treves, 2000; Hong, 2001). Analysis of the genomic organization of the AßH-J-J locus 

has revealed the presence of two distinct promoters P1 and P2 (Feriotto, 2006) that are 

regulated by specific transcription factors, giving rise to polypeptides with distinct 

amino-termini and tissue distribution. Transcripts starting from exon 1 (green box in 

fig.3A), which is under the control of the P1 promoter, are expressed in most tissues and 



share their NH2 terminus with aspartyl-ß-hydroxylase (Treves, 2000; Dinchuk, 2000; 

Feriotto, 2007). Exon 1a (blue box in fig. 3A) is approximately 8 kb downstream from 

exon 1 and is under the control of the P2 promoter whose induction is controlled by the 

muscle specific transcription factor MEF-2 (Feriotto, 2005). Transcripts starting from this 

exon are expressed in striated muscles and share their NH2 termini with junctin/junctate 

(Treves, 2000; Dinchuk, 2000). Exon 2 encodes the transmembrane domain (yellow box 

in fig.3A) and together with exon 3, is shared by all family members deriving from the 

AßH-J-J locus. The carboxy-terminal portion of the proteins depends on which exons are 

transcribed: junctin results from transcription of exons 4a and 5a, while all other products 

are generated via transcription of exons 4-24 and result in a variety of products of 

different sizes. The longer transcripts give rise to the enzyme aspartyl-ß-hydroxylase with 

an apparent molecular mass of approximately 120 kDa. The shorter transcripts generate 

proteins with molecular masses ranging from 40 to 53 kDa which share the acidic Ca2+ 

binding domain (Treves, 2000; Dinchuk, 2000; Hong, 2001). Heart  expresses junctin and 

junctate, as well as humbug and aspartyl-ß-hydroxylase (Treves, 2000; Dinchuk, 2000; 

Hong, 2001). Interestingly, humbug is also highly expressed in a variety of invasive 

human tumors and its level of expression has been suggested to be useful as a prognostic 

marker for cancer progression (Ince, 2000; Palumbo, 2002; Maeda, 2004; Xian, 2006; 

Wang, 2007; Lee, 2008).  

 In the rest of this section only the functional properties of junctate will be 

discussed, and the reader is referred to other articles describing the function of aspartyl-ß-

hydroxylase and junctin (Gronke, 1989; Wang, 2007; Jones, 1995; Kagari, 1996; Zhang, 

1997). Because of its calcium binding properties, a number of approaches were 

undertaken to define the potential role of junctate in Ca2+ homeostasis: (i) acute over-

expression and depletion junctate from cultured cells (Treves, 2000; Treves, 2004) and 

(ii) chronic over-expression of junctate in skeletal muscles (Divet, 2007) and heart 

(Hong, 2008). Acute over-expression of junctate in COS-7 and HEK293 cells is 

accompanied by significant functional and structural changes of the ER membrane. 

Specifically, in HEK cells over-expressing TRPC3 channels (HEKT3) over-expression of 

junctate induces extensive proliferation of the ER resulting in significantly larger and 

more frequent couplings between the ER and the plasma membrane (Treves, 2004). The 



induction of ER plasma membrane couplings by junctate is in agreement with co-

immunoprecipitation data showing that junctate forms a supramolecular complex with 

InsP3R and TRPC channels.  These structural changes are paralleled by alterations of 

Ca2+ homeostasis, specifically by increased peak Ca2+ release and store-depletion 

activated Ca2+ influx; on the other hand, knocking down junctate results in diminished 

agonist induced peak [Ca2+]i transients and store depletion activated Ca2+ influx (Treves, 

2000, 2004). The increase of store depletion-activated Ca2+ influx is mediated by the 

short cytoplasmic NH2-terminal domain of the protein, while the luminal carboxy-

terminus Ca2+binding domain of junctate (and thus also of humbug) increases the Ca2+ 

content of ER/SR stores and affects calcium transients evoked by SERCA inhibitors.   

 As to the effect of chronic over-expression of junctate, some discrepancies have 

arisen from the transgenic mouse models. Over-expression in skeletal muscles does not 

lead to an overt phenotype but is accompanied by a small increase in Ca2+ loading and 

Ca2+ storage of the SR resulting in a significant increase in RyR1 mediated Ca2+ release 

and an increased Ca2+ influx following depletion of intracellular Ca2+ stores (Divet, 

2007). These changes were attributed to the over-expression of junctate’s Ca2+ binding 

sites since the expression levels of other SR Ca2+ handling proteins such as SERCA, 

calsequestrin or sarcalumenin were not changed. Interestingly, the increased Ca2+ cycling 

across the SR membrane was accompanied by an adaptive increase in the number of 

mitochondria in fast fibres of EDL (but not soleus) muscles, which was not due to fast-to 

slow fibre type transition (Divet, 2007). Junctate over-expression in the heart on the other 

hand, leads to severe cardiac hypertrophy, bradycardia and arrythmias as well alterations 

in the expression level of the SR proteins SERCA2, calsequestrin-2 and calreticulin. This 

decreased SR content of Ca2+ handling proteins is accompanied by an up-regulation of the 

Na+/Ca2+ exchanger and plasmalemma calcium pump, two component of the cardiac 

sarcolemma involved in extrusion of Ca2+ from the cytoplasm. The decrease of the major 

calcium binding proteins of cardiac SR is paralleled by a decrease in caffeine induced 

Ca2+ release indicating a lower cardiac Ca2+ SR loading. At the moment the reasons for 

these apparent opposite effects of junctate over-expression in the heart and in skeletal 

muscle have not yet been elucidated.  

   



Conclusions 

 The past three decades have seen major advancements in our understanding the role 

of skeletal muscle SR proteins in excitation-contraction coupling. The use of genetically 

modified animal models has also taught us that few of these proteins, namely the 

ryanodine receptor, Cav1.1 and junctophyllin, are essential for EC coupling. On the other 

hand, the minor protein components seem to be important for the regulation of the EC 

coupling machinery. Mouse and cellular models have also shown that acute and/or 

chronic over-expression/depletion of a variety of minor components do not result in lethal 

phenotypes and/or in severe damage of to the EC coupling machinery, suggesting that its 

fine regulation is provided by functionally redundant minor components. The 

comprehension of EC coupling and its involvement in the pathophysiology of 

neuromuscular disorders awaits the identification and functional characterisation of the 

complete array of proteins of the transverse tubule and junctional face membrane 

compartments. 
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FIGURE LEGENDS: 

Figure 1: Schematic representation of the protein components of skeletal muscle 

sarcoplasmic reticulum. 

 

Figure 2: Coomassie Brilliant Blue stained gradient (5-15%) SDS PAGE of protein 

components present in the longitudinal sarcoplasmic reticulum (LSR), in terminal 

cisternae (TC) and in the junctional face membrane (JFM) fractions obtained from 

rabbit SR. (reproduced from figure 2, Zorzato 1986). 

 

Figure 3: Genomic organization, splicing pattern and main protein products 

deriving from of the A-ß-J-J locus. Panel A: (reproduced from figure 4, Dinchunk, 

2000). Coloured boxes represent different exons. Products deriving from exon 1 (green 

box) give rise to ß-aspartyl-hydroxylase/humbug; products deriving from exon 1b (light 

blue) give rise to junctin/junctate. Yellow box encodes the transmembrane domain. Panel 

B: schematic representation of the 4 main proteins (junctin, junctate, aspartyl-ß-

hydroxylase and humbug) derived by assembling the different exons (colors of the 

protein domains match those of the exons from which they are derived). 
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