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Abstract

Life is an ensemble of countless emerging properties arising through

self-assembly and self-organization phenomena, manifesting at the

cellular, the tissue and the organismal level. The mechanical integrity

of a cell is orchestrated by the cytoskeleton, a dynamic system com-

prised of three biopolymers, actin, microtubules and intermediate fila-

ments, acting in symphony, facilitated by a plethora of accessory pro-

teins. Understanding the cytoskeletal functionality and its relation to

other cellular components and properties is a prominent question in

biophysics. Actin, a dynamic and polymorphic component, forms a

variety of structures such as filaments, bundles, and their networks.

The unique viscoelastic properties shown by actin-based structures

have been extensively probed via rheological means. On the contrary,

the underlying microstructural dynamics remain mostly uncovered.

Actin bundles are crucial for eukaryotic cells; they are involved in the

intracellular transport, contractive forces, mechanical stability, cell

motility and environment exploration. This thesis takes a step for-

ward to fathom the rich dynamics and emergent properties exhibited

by actin bundles within flow-free confinements, a prerequisite for the

study.

To study a reversible reaction sequence in a step-by-step manner, one

needs an open system. As a result, there have been relatively few stud-

ies in this direction, as most of the experimental systems are closed, for

instance, sealed coverslips or liposomes. We created a straightforward

microfluidic system, consisting of quasi two-dimensional, cell-sized

compartments, enclosing sub-picolitre volumes. These ‘microcham-

bers’ are connected to the controlling channel (the reservoir) via nar-

row connecting channels, allowing exclusive diffusive transport into



and out of the microchambers. The system represents an ideal envi-

ronment to form an entangled network of actin filaments in a steady-

state and is manipulable in a step-by-step fashion.

We induce bundling of actin filaments in three ways: counterion con-

densation aided by Mg2+ ions, depletion interactions mimicked by

polyethylene glycol, acting as a crowding agent, and specific interac-

tions with actin exhibited by filamin, an actin binding protein. Above

the critical concentration of bundling agents, actin filaments trans-

form into an emerging network of actin bundles, a process associated

with percolation, leading to a single connected entity. Sharing of

filaments is an important parameter for the observed behaviour, as

reducing the actin filament length exclusively forms bundles without

percolation. We encounter a hierarchical process of bundling: fila-

ments coalesce into small bundles that further fuse to form bigger

bundles. Disassembly involves a similar hierarchy, additionally in-

volving peeling-off of single filaments. We explore the reactions using

time-lapse image analyses and apply kinetic models.

Counterion condensation forms a network comprising of straight, rigid

bundles facilitated by a zipping process (v ∼ 12 µms−1), generating

tension within the network. Disassembly leads to the release of the

stored energy, utilized in the buckling of bundles, enabling us to esti-

mate ∼ 100 − 200 kBT of stored energy. Crowding agents force the

actin filaments to form an intriguing spindle-like structure, consisting

of poles with sets of aligned filaments shared and stretched between

them, which further transforms into a network of bundles. The disas-

sembly constitutes the reversal of the process. Filamin forms ring-like

networks, containing intrinsically curved bundles. Owing to the highly

specific interactions, the network does not disassemble, even after 12

hours.

In essence, using a bottom-up approach, we explore the emerging

properties of actin bundles, with an emphasis on their dynamics.
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Chapter 1

Introduction

1.1 Life: an emergent property

Emergence can be described as a property of a system that is neither reducible

to nor easily predictable from the properties of individual components of the

system [1]. Life exists far from thermodynamic equilibrium, by constant energy

dissipation, and displays numerous self-assembly and self-orgnization phenom-

ena on multiple scales. Thousands of different molecules self-assemble and self-

organize, sharing innumerable interactions between them to form a living cell.

The cell, a fundamental unit of life, can be seen as a confined micro-environment,

which is able to harvest energy from the environment and replicate itself. Life

is thus a highly complex emergent property, evolved as the epitome of physics,

chemistry and the ‘magical touch’, which we, as scientists, strive to understand.

Fig. 1.1 shows a realistic painting of a Mycoplasma mycoides cell, a bacterium

that lacks a cell wall and is a parasite living in ruminants. All macromolecules in

the illustration are at reasonable locations and concentrations, with the relative

shapes and sizes. One can easily appreciate the formidable complexity even for

such a unicellular organism, amongst the smallest living cells known.

All living cells are enclosed by a plasma membrane, incorporate deoxyribonu-

cleic acid (DNA) as the genetic material, possess similar transcription and trans-

lation machineries, contain proteins (enzymes) for catalyzing chemical reactions,

convert nutrient molecules into cellular components, leading to cell growth and

1



1. INTRODUCTION

Figure 1.1: Painting of a Mycoplasma mycoides cell (diameter ∼ 250 nm). Illus-
tration by David S. Goodsell, the Scripps Research Institute.

cell division, and are self-regulating systems that respond to external stimuli [2].

Of all the fascinating and essential systems comprising the cell, we are interested

in one particular intracellular structure that is crucial for the mechanical stability

and integrity of living matter: ‘the cytoskeleton’.

1.2 Cytoskeleton

The cytoskeleton and its emergent organization is imperative for the structural

and functional organization of the cell. Even within a single cell, there exists a

number of diverse cytoskeleton-induced morphologies, due to its highly dynamic

and adaptive character [3]. Filamentous actin (F-actin), microtubules (MTs)

and intermediate filaments (IFs) are the three main biopolymers that form the

cytoskeletal meshwork (Fig. 1.2). Together with hundreds of accessory proteins

(actin binding proteins, ABPs and microtubule associated proteins, MAPs), these

three biopolymers assemble to form manifold structures, such as bundles and

2



1. Introduction

networks, that physically link the cell interior to the plasma membrane and give

rise to the viscoelastic properties of cells. Actin filaments provide mechanical

support and motility in amoeboid and animal cells; microtubules are essential for

separating chromosomes and long-range transport of particles in all eukaryotes;

intermediate filaments mainly function as intracellular ligaments and tendons to

resist mechanical forces in vertebrates [4].

Figure 1.2: (a) The cytoskeleton visualized in Rat-2 fibroblasts showing three
biopolymers: (b) actin filaments, (c) intermediate filaments and (d) microtubules.
Imaged by R. Suetterlin, courtesy of C.-A. Schoenenberger, Biozentrum, Univer-
sity of Basel.

Motility in living cells has generated considerable interest over time. The

role of actin-based motile structures including the extension and the retraction

of surface protrusions in fibroblasts [5], the filopodia in neural growth cones [6],

the extension and the retraction of pseudopods in amoeba [7] and the forma-

tion of contractile rings during cell division [8] has been keenly studied. F-actin

forms dynamic cytoskeletal structures, permitting actin networks to undergo

rapid transitions [3]. In this thesis, we investigate the dynamics of F-actin-based

3



1. INTRODUCTION

structures in vitro.

1.3 Actin

Actin is highly conserved and one of the most abundant proteins in eukary-

otic cells [9]. The actin monomer is a 42 kDa, 375 amino acids long polypep-

tide chain folded as a flattened structure with dimensions measuring 5.5 nm x

5.5 nm x 3.5 nm [10] (Fig. 1.3(a)). The monomers join in the adenosine triphos-

phate (ATP)-bound state to form polar filaments, meaning that the two fila-

ment ends have different polymerization properties and are thermodynamically

inequivalent (Fig. 1.3(b)). Each F-actin subunit has one high affinity divalent

cation binding site, which is usually occupied by Mg2+ in vivo [11]. The criti-

cal concentration, or the G-actin concentration at which the polymerization rate

is equal to the depolymerization rate, is significantly lower at the fast growing

barbed (+) end ([Ac,+] = 0.1 µM) than at the slow growing pointed (−) end

([Ac,−] = 0.6 µM) [12]. The molecules are arranged in a left-handed helix with 13

molecules repeating in almost exactly six turns. The rise per molecule is 2.76 nm,

the pitch length is 5.9 nm and the twist per molecule is −166.6◦ [9, 10]. Because

of the high negative twist value per molecule, F-actin has the appearance of a

two-start, right-handed, long-pitch helix. F-actin is a much more effective ATP-

ase than G-actin, resulting in ATP hydrolysis in the filament and dissociation of

ADP-actin monomers mainly from the pointed (−) end. Given constant energy

input (ATP), a polymerization/depolymerization chain reaction known as ‘tread-

milling’ results, wherein newly added monomers travel through the filament as if

on a treadmill to reach the pointed end and dissociate.

The polymorphic nature of actin (monomeric globular form, G-actin and poly-

meric filamentous form, F-actin) is controlled by nucleotide hydrolysis, ions and

a large number of actin binding proteins (ABPs). These ABPs can nucleate, se-

vere, stabilize, cross-link or bundle individual actin filaments. F-actin can further

give rise to several different structures such as entangled filaments, cross-linked

networks of filaments, tight parallel bundles, networks of bundles and composite

networks of filaments and bundles with the help of numerous ABPs [13] (Fig. 1.4).

F-actin is a major component of several distinct structures in metazoan cells.

4



1. Introduction

Figure 1.3: (a) Space filling model of actin with bound ATP (represented as ball
and stick model). Image is taken and modified from [4]. (b) Structure of F-actin
derived from cryo-electron microscopy. Image is taken and modified from [10].

Figure 1.4: Polymorphism displayed by actin filaments. Figure taken and modi-
fied from [14].

Though F-actin is generated from a common pool of G-actin, the filaments as-

semble at different times, locations and in response to different stimuli. Some of

the commonly found structures of F-actin are listed below.

1. Lamellipodium and lamellum: these are surface-attached sheet-like mem-

brane protrusions formed during cell spreading, motility, and are also in-

volved in interactions with other cells. Lamellipodium is the thinner (100−
160 nm) distal part, starting at the leading edge and extending several

micrometres back, after which the thicker (> 200 nm) lamellum begins ex-

5



1. INTRODUCTION

tending towards the cell body [15]. There is a strong evidence that lamel-

lopodial dynamics are Arp2/3 complex-dependent; Arp2/3 is a protein com-

plex which nucleates dendritically branched filaments [15, 16].

2. Ruffles: they are transient sheet-like membrane protrusions that are com-

pletely unattached to the substratum, existing in two distinct varieties:

peripheral ruffles and circular dorsal ruffles [15]. Peripheral ruffles are as-

sociated with crawling cell motility; assembling at the leading edge and then

moving rearward, similar to the assembly mechanism of lamellipodia [17, 18].

Circular dorsal ruffles/waves assemble on the dorsal surface and constrict

into a circular structure before disappearing in 5−20 min (Fig. 1.5(a)); they

affect receptor internalization and possibly macropinocytosis along with

crawling cell motility [15, 17].

Figure 1.5: Different structures of F-actin found inside the cell: (a) circular
dorsal ruffles (indicated by arrow heads) in NIH 3T3 fibroblasts (image taken
and modified from [17]), (b) podosomes (bright yellow spots) in a macrophage
(image taken and modified from [19]) and (c) stress fibers (red bands) in vascular
smooth muscle cells (image taken and modified from [20]).

3. Podosomes and invadopodia: these are actin-rich transient adhesions estab-

lishing close contact to the substratum. They can also degrade the extracel-

lular matrix (ECM) components. Podosomes are small dot-like structures

(20 − 100 per cell, max. 1 µm in diameter) with a core of actin and as-

sociated proteins like vinculin and talin, found in monocytes, endothelial

and smooth muscle cells [19, 21, 22] (Fig. 1.5(b)). Invadopodia are small

clusters of a few large actin-rich dots (1 − 10 per cell, maximum 8 µm in

diameter) with a deeper root-like extension into the ECM that are mostly
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observed in carcinoma cells [19].

4. Finger-like protrusive structures: there is an immense variety of finger-

like protrusions observed in metazoan cells, filopodia and microvilli being

the most common of them. They are thin protrusions, containing para-

llel bundles of actin filaments, running lengthwise, with their plus ends

oriented towards the membrane [15]. Filopodia protrude from the leading

edge of many motile cells, including fibroblasts and nerve growth cones [23].

Microvilli and similar structures are seen in polarized cells such as intestinal

epithelial cells, kidney cells, hepatocytes and Schwann cells (supporting cells

of peripheral nervous system) and also in lymphocytes [24].

5. Stress fibers: they consist of parallel bundles made up of actin filaments,

myosin motors and ABPs (Fig. 1.5(c)). They play a major role in cell

contraction and can be compared to highly organized actomyosin arrays in

muscle cells [25].

6. Phagocytic cups and pits: phagocytosis is the cellular uptake of particles

(> 0.5 µm in diameter) and is usually conducted by macrophages, assisted

by actin-based structures, involving membrane fusion and the possible role

of Arp2/3 complex [15].

7. Adhesion structures: immunological synapse is the extensive interaction

surface between a lymphocyte and an antigen presenting cell [26]. Adherans

junctions are cell-cell adhesions mediated by homophilic interactions of cad-

herins [15]. Each adhesion structure involves multiple actin-based compo-

nents [15].

8. Blebs: they are spherical membrane protrusions formed by contraction of

actomyosin cortex. Their growth is pressure-driven in contrast to other

cellular protrusions such as lamellipodia or filopodia; they are commonly

observed during cytokinesis and cell migration in three-dimensional cultures

and in vivo [27].

This brief list of F-actin structures conveys the importance of actin in a

healthy cell. Altered cell morphology is often linked to a decreased expression of

7



1. INTRODUCTION

actin-associated proteins [28]. For example, poorly motile melanoma cells lacking

filamin (an ABP) gave the first direct evidence that actin gelation is essential for

cell motility [29].

Interactions between proteins depend on their primary (amino acid sequence),

secondary (α-helices, β-sheets) and tertiary (three-dimensional folding) struc-

tures, allowing complementary surfaces to permit specific bonds. As a result,

only a few physiologically relevant protein-protein interactions exist for a typical

protein [30]. However, compared to the much smaller number of proteins that

bind to G-actin, F-actin has numerous protein partners, which is quite surpris-

ing, considering the decreased available surface area on each F-actin subunit, due

to actin-actin bonds [30]. F-actin participates in numerous protein-protein in-

teractions and is one of the central players in many cellular functions, from cell

motility to transcriptional regulation, to cite two extremes [10]. Below is a list of

key functions carried out by actin in the cell.

1. Motility: cellular motility is a prominent feature of animal cells. Some of

the examples are migratory immune cells, movement of cells in develop-

ing embryos, growth of nerve cells up to 1 m (this gives an estimate of

1.5 million km of such cellular extensions in a human brain) [4]. Actin

filaments are essential for cell locomotion: the assembly of F-actin from G-

actin suffices to change the cell shape and produces protrusions that initiate

locomotion [4, 31]. After invading a host cell, some parasitic bacteria can

use the machinery from the host cell to form a comet tail of actin filaments

for propulsion through the cytoplasm [4]. Muscle cells are specialized tis-

sues capable of producing macroscopic movements by having highly regular

arrays of actin and myosin that contract and relax.

2. Endocytosis: in budding and fission yeast, actin filaments assemble at the

site of plasma membrane internalization and provide the necessary force to

form and internalize an endocytic vesicle from the membrane [4, 32, 33].

3. Cytokinesis: it is the physical separation of a mother cell into two daughter

cells. In amoebas, fungi and animals, a contractile ring of actin filaments

and myosin motors forms and facilitates the pinching of the mother cell into

two daughter cells [4].
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4. Transport: actin bundles can be used as tracks, along with the participation

of myosin for intracellular transport [4, 34, 35]. For example, in budding

yeast, class V myosin motors use actin cables to transport various organelles

such as peroxisomes, portions of endoplasmic reticulum, Golgi complex and

vacuole to the daughter cell [36].

In this thesis, we mainly focus on the dynamics and structure formation of actin

bundles.

1.4 Actin bundles

Bundling is a process in which two or more actin filaments join together along

their longitudinal axes to form a thicker and more rigid rod-like structure known

as ‘a bundle’. The process takes place in the presence of so-called bundling agents

which can be of diverse nature, from ABPs to crowding agents (see Section 1.6).

Fig. 1.6(a) shows a sketch of the bundling process with an analogy in which actin

filaments are compared to single threads, while actin bundles are compared to a

thicker rope made up of many threads. The cross sectional area A of a bundle is

proportional to the number of filaments n present inside the bundles and also to

the square of the bundle radius a.

A ∝ n ∝ a2 (1.1)

Depending on the interaction of bundling agents with actin filaments (uncoupled

or fully coupled case, see Eq. 7.13 and Eq. 7.14), the stiffness or the bending

rigidity κ (see Section 4.4) of bundles is proportional to a2 or a4. Thus, the

rigidity of a bundle increases in a non-linear fashion. Bundling is a reversible

process and the removal of bundling agents leads to the disassembly of bundles

into single actin filaments; we refer to this process as ‘de-bundling’.

Actin bundles are found in specialized structures in cells, serving key functions

such as generating contractile forces in stress fibers and probing the environment

via filopodia. There is a variety of other finger-like protrusive structures, be-

sides filopodia, where bundle-based structures are found, viz., bristles, microvilli,

stereocilia (Fig. 1.6(b)). Bristle is a neurosensory structure found in Drosophila
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melanogaster and is supported by 11 membrane-associated actin bundles; intesti-

nal microvilli are 1−2 µm long, 0.1 µm wide and consist of 20−30 bundled actin

filaments; stereocilia are arranged into rows of increasing height in the inner ear

ranging from 1.5 − 5.5 µm in height, containing up to 900 actin filaments [24].

There are several other actin bundle−based structures such as microvilli-like pro-

trusions in sea urchin eggs, nurse-cell strut bundles in Drosophila melanogaster

and ectoplasmic specializations of Sertoli cells [37]. Furthermore, actin bundles

are present in the growth cones of axons and dendrites in the form of finger-like

protrusions [38]. All the mentioned bundles contain at least two non-redundant

actin-bundling proteins such as fascin, villin, fimbrin, espin and α-actinin.

Figure 1.6: (a) Actin filaments (analogous to single threads) can reversibly form
rigid bundles (analogous to a rigid rope) which can be induced by a variety of
bundling agents (B). (b) Bundles are found in specialized regions within cells
such as filopodia, bristles, stereocilia and microvilli. Figure taken and modified
from [24].

Actin bundles are also very common in most of the mature plant cells includ-

ing tip growing cells, such as pollen tubes and root hairs, which perform diverse
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Figure 1.7: Typical actin bundle patterns seen in (a) tobacco BY2 cells (image
taken and modified from [39]) and (b) N. benthamiana leaf cells (image taken
and modified from [40]).

functions such as assisting cytoplasmic streaming, serving as long-distance tracks

for intracellular transport, creating and/or maintaining cell polarity and control-

ling nuclear positioning and movement [41]. Fig. 1.7 shows two examples of

actin bundle patterns found in plant cells. Note that the bundles can be several

micrometres long and form networks.

1.5 Bundling mechanisms

Actin filaments are overall negatively charged, thus repelling by each other at

close distances. And, as a semi-flexible polymer (see Section 4.4), thermal forces

give rise to constant filament fluctuations (Fig. 1.8(a)). Hence, actin filaments

do not possess a natural tendency to form bundles as they need to overcome

the electrostatic repulsion and lose entropic freedom. However, actin bundles are

frequently found in eukaryotic cells in specialized regions and in specific forms.

Though all the bundle-containing structures seem to require ABPs in vivo, it has

been realized that proteins are not always necessary to induce actin bundling and

in vitro bundling can be induced by a variety of other non-specific agents such

as multivalent cations, crowding agents and membranes [42]. Below, we discuss

three prominent mechanisms to induce bundling of actin filaments.
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1.5.1 Counterion condensation

Many biological macromolecules such as DNA, ribonucleic acid (RNA), F-actin,

MTs, IFs and charged polysaccharides are polyelectrolytes. Of all the cytoskeletal

filaments, F-actin has the lowest surface charge density of ∼ 0.13 e/nm2 (MTs:

∼ 0.8 e/nm2, vimentin: ∼ 0.5 e/nm2) [43] and has a linear charge spacing of

b = 0.25 nm [44]. According to Manning counterion condensation (CC) theory,

the charge density on a polyelectrolyte can be neutralized by counterions in its

immediate environment [45] (Fig. 1.8(b)). The fraction of the neutralized charge

θ by these condensed counterions is given by

θ = 1− 1

Nζ
, (1.2)

where N is the valency of the counterions and ζ = λB/b. The Bjerrum length λB

is given by the relation

λB =
e2

4πǫǫ0kBT
, (1.3)

where e = 1.6 × 10−19 C is the elementary charge, ǫ0 = 8.85 × 10−12 F/m is

the vacuum permittivity, ǫ = 80 is the relative permittivity in water, kB = 1.38

×10−23 JK−1 is Boltzmann constant and T is the temperature. λB gives the

distance at which the electrostatic interaction between two elementary charges

equals the thermal energy (kBT ) and is 0.71 nm in water at 20◦C. According to the

CC theory, there exists a critical charge density ζ = 1, above which counterions

condense or adsorb around polyelectrolytes in a thin layer. Since ζ > 1 for F-actin,

the CC theory is relevant and counterion condensation is possible. Magnesium is

used as the counterion (θ = 0.82) to induce actin bundling in our experiments.

Actin bundling takes place at > 10 mM of Mg2+ ions [11]. The bundling transition

is caused by the interplay between the counterion binding energy and the repulsive

interaction between actin filaments that occurs over a narrow range [44, 46]. The

entropy gain associated with the exchange of monovalent ions (K+) bound to

F-actin for multivalent ions (Mg2+) also plays a major part in stabilizing Mg2+-

F-actin interactions, similar to DNA-polycation interactions [47].

It should be noted that Mg2+ ions are simply trapped in the immediate vicin-

ity and are not attached to any particular site of F-actin, allowing them to freely
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Figure 1.8: (a) Actin does not spontaneously form bundles owing to the electro-
static repulsion (shown by dotted arrows) and the loss of entropic fluctuations
(shown by curved arrows). Three different mechanisms to bundle actin filaments;
(b) counterion condensation, (c) depletion forces and (d) specific interactions by
ABPs.

diffuse along the filaments [11]. Commonly bound in a loose, non-specific man-

ner, Mg2+ ions can be displaced by other cations. Hence, changing the K+/Mg2+

ratio can lead to de-bundling as will be seen in the following chapters. Molecular

dynamic simulations of salt-induced aggregation of stiff polyelectrolytes suggest

that electrostatic correlations are enough to bring about bundling in the ab-

sence of additional structural features; furthermore, the time required to form

the aggregates is not limited by large kinetic energy barriers, but simply by the

diffusion-limited component of the aggregation kinetics [48].
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1.5.2 Depletion interaction

Depletion interaction is a non-specific interaction, which tends to bring two ob-

jects together in a crowded environment, i.e., when they are surrounded by lots

of small objects. The intracellular environment presents a substantially crowded

environment where 20− 30 % of the volume is occupied by soluble proteins and

other macromolecules [49, 50]. Asakura and Oosawa first developed a physical

interpretation of the depletion interaction, which is primarily entropic in origin,

outlined in their AO theory [51]. Consider Fig. 1.9, exhibiting the interactions

between few large spheres surrounded by many small spheres of radius RAO in a

confinement. Both types of spheres are hard and non-interacting.

Figure 1.9: (a) Osmotic pressure exerted by small spheres keeps large spheres
together. (b) When two spheres come together, their excluded volumes overlap
and the volume available to small spheres increases, increasing the entropy of the
system. Figure taken and modified from [52].

Small spheres are constantly bombarding with the large spheres. When two

large spheres meet by accident, the osmotic pressure exerted by the small spheres

keeps them together. The osmotic pressure is given by

p = ckBT, (1.4)

where c is the particle concentration (number of particles/volume). Small spheres

are excluded from the surfaces of large ones by a layer of thickness RAO. This

shell creates a positive free energy difference [51]

∆E = pV = pRAOAc, (1.5)

where Ac is the surface area of the large sphere and p is the osmotic pressure
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exerted by small spheres. Additionally, when two large spheres approach one

another by chance, the volume accessible to small spheres increases (Fig. 1.9(b)).

Although, the entropy of large spheres decreases due to aggregation, paradoxi-

cally, it increases the total entropy of the system. As a consequence, the free

energy of the system decreases. In terms of Helmholtz free energy,

∆E(V, T ) =
∂E

∂V
∂V = p∆V, (1.6)

where ∆V is the overlap volume in Fig 1.9(b). For an ideal gas,

∂S

∂V
=

p

T
. (1.7)

Thus, it can be concluded that AO interactions are entropically driven [53].

Hence, given a high enough concentration of small molecules present in the so-

lution, actin filaments can align with each other to form bundles via depletion

interactions (Fig. 1.8(b)). Though AO theory was originally derived for colloidal

suspensions, it can be modified for a solution of actin filaments and small flexible

polymers like polyethylene glycol (PEG). For flexible PEG polymers, RAO can be

calculated as [54]

RAO =
2Rg√
π
, (1.8)

where Rg is the radius of gyration. However, actin is overall negatively charged

and hence there will be repulsive interactions between two filaments as they come

close enough. Therefore, the bundling process is a balance between attractive

depletion interactions and repulsive electrostatic interactions. Mathematically,

this situation can be described by considering the interaction potential between

two parallel filaments as [55]

V (r) = kBT

(

λB

b2

)

K0

(

r

λD

)

+ Vd(r), (1.9)

where K0 is the zeroth-order Bessel function of the second kind, r is the distance
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between the filaments and λD is the Debye screening length. λD is given by [56]

λD =
1√

8πλBc
nm, (1.10)

where c is the value of ionic strength in moles/L. The actin solution used in our

experiements contains ∼ 0.1 M salts (mainly KCl, see Section 2.1.1.1) which gives

a Debye screening length, λD ∼ 0.75 nm. The second term on the right hand side

of Eq. 1.9 is a depletion interaction given by [55]

Vd(r) = 2kBTc

[

r
√
d2 − r2 − d2 tan−1

(
√
d2 − r2

r

)]

, (1.11)

where d = a + Rg, a being the radius of actin filament. We use PEG polymers

(5 % w/v, MW 8000, Rg = 4.7 nm) as crowding agents in our experiments.

Plugging in the necessary values, we find the equilibrium distance (r∗ ∼ 4 nm)

at which dV (r)/dr = 0, resulting in an interfilament distance of ∼ 4 nm for

PEG-induced bundles.

It should be noted that depletion interactions are of short range; regardless of

how precisely two surfaces match, they will join together as long as their shapes

are similar on the length scale of the small particles [56]. According to AO theory,

the depletion force arises only when the distance between the two solute particles

(filaments in our case) is less than the diameter of a solvent particle (crowding

agents in our case) [51]. The free energy gain from depletion interactions can be

up to several kBT , and is thus comparable to attractive forces like van der Waals,

screened electrostatic and hydrogen bonding [52, 57].

1.5.3 Actin binding proteins

As seen in Section 1.4, numerous ABPs can induce actin bundling. The specific

network structure highly depends on the size of ABPs and their concentrations

with respect to the actin concentration [13], as shown in Fig. 1.10. Small ABPs

like espin, fascin and scruin tend to from parallel bundles, while bigger ABPs like

α-actinin and filamin display a more complex behaviour. The binding energies be-

tween ABPs and actin are typically ≥ 10 kBT under physiological conditions [58].
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Figure 1.10: Structural polymorphism observed in actin networks formed by dif-
ferent ABPs at different concentrations. We use filamin at a specific concentration
so that it forms networks of bundles, highlighted by the green box. Figure taken
from [13]. HMM: heavy meromyosin.

We use filamin as a specific actin binding agent to induce actin bundling. Fil-

amin is a large, 280 kDa actin binding protein, playing a crucial role in cell

architecture, signalling, fetal development, and cell motility [59]. Apart from

its interactions with actin, filamin interacts with a variety of partners such as

protein channels, receptors, intracellular signalling molecules and transcription

factors [60]. Two filamin monomers join together to form a homodimer, creat-

ing two binding sites per dimer, available to link two actin filaments together

(Fig. 1.8(c)). The interaction between filamin and actin is contingent on their

molar ratio, R = [actin]/[filamin]. At low R, filamin cross-links actin filaments,

while at high R, it forms networks of actin bundles [13]. For 3 µM actin so-

lutions, cross-linked networks are obtained when R ≤ 0.02, while networks of
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bundles are formed for R ≥ 0.1, but not all binding sites are occupied even at

high filamin concentration [61]. We use R = 0.1 for our experiments, in order to

obtain networks of actin bundles.

1.6 Microfluidics

Microfluidics can be described as the science and technology of systems that pro-

cess or manipulate small (10−9 to 10−18 L) amounts of fluids using channels with

dimensions ranging from one to a few hundred micrometres [62]. Microfluidics

provides many advantages, including, very small sample and reagent quantities,

separation and detection with high resolution and sensitivity as well as low cost

and short analysis time [62, 63]. These assets stem directly from the small device

size and its direct consequence: laminar flow.

The continuity equation in fluid dynamics expressing the conservation of mass

can be expressed as

∂tρ = −∇ · (ρv), (1.12)

where ρ is the density and v is the velocity field of the fluid. However, in

case of microfluidics, fluid velocities are significantly smaller than the velocity

of pressure waves in the liquid and consequently, the fluid can be considered

incompressible [64]. This reduces Eq. 1.12 to

∇ ·v = 0. (1.13)

In the case of incompressible fluids, the Navier-Stokes equation is expressed as [64]

ρ [∂tv + (v ·∇)v] = −∇p + η∇2v + ρg + ρelE, (1.14)

where p is the pressure, η is the fluid viscosity, g is the acceleration due to gravity,

ρel is the charge density and E is an external electric field. The left hand side

of the equation represents inertial forces, while the right hand side represents

intrinsic and applied forces.

To determine whether inertial forces or viscous forces are dominating in a
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system, one can calculate its Reynolds number Re, which is defined as

Re ≡ ρvl

η
, (1.15)

where v is the characteristic velocity and l is the chararcteristic system length.

When Re ≪ 1, the viscosity dominates, whereas when Re ≫ 1, the inertial term

dominates. Microfluidic systems are characterized by very low Re, due to their

size and low flow velocities; as a result, the inertial terms on the left-hand side of

Eq. 1.14 can be neglected. An electrical force is absent if there is no electric field

involved, which is the case in our experiments. In addition, the gravitational

force is negligible, as microfluidics deals with extremely small volumes. Thus,

within the limit of low Re and absence of any external forces, the non-linear

Navier-Stokes equation is reduced to a linear Stokes equation,

0 = −∇p + η∇2v. (1.16)

The presence of a truly unique environment within microfluidic systems offers

innovative possibilities to control the concentration of molecules in space and

time.

Fig. 1.11 shows four major microfluidic interfaces that offer unique ways of

controlling chemical reactions.

1. Floating interfaces: an efficient microfluidic design can be employed to form

droplets of precise volumes, followed by subsequent manipulation of the

droplets, including coalescence, mixing of their contents and sorting, with

the possibility to carry out certain chemical reactions depending on pre-

defined conditions [66] (Fig. 1.11(a)). Droplets act as microscale containers

with applications ranging from rapid analytical systems and material syn-

thesis to protein crystallization and biological assays for living cells [65, 66].

2. Pinned interfaces: at microscale, capillary forces can overcome gravita-

tion, allowing for the precise creation of ‘pinned’ interfaces or virtual walls

between water and air (or also between two immiscible liquids) as a re-

sult of patterning the microchannel with different wettabilities [65, 67]
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Figure 1.11: Four different functionalities offered by microfluidics devices: (a)
floating interfaces (droplets), (b) pinned interfaces (immiscible liquids), (c) mov-
ing interfaces (miscible liquids) and (d) diffusion-limited transport (convection-
free environements). Figure is taken and modified from [65].

(Fig. 1.11(b)). Such pinned interfaces have a large surface area to volume

ratio that can be utilized as sites for interfacial reactions, with can be ap-

plied to sensors or material construction [65].

3. Moving interfaces: laminar flow in microfluidic systems ensures that mixing

between two parallel streams is controlled strictly by diffusion. The diffu-

sive interface is sharply defined at the start and then broadens downstream

(Fig. 1.11(c)). Interfaces between two aqueous streams prove to be advan-

tageous in a variety of applications such as protein fractionation, H-filters,

which can selectively filter out smaller particles, T-sensors, which determine

diffusion coefficients, to build concentration gradients with complex profiles

and even as a microfabrication tool [65].
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4. Secondary interfaces: laminar flow and viscous forces dominate microfluidic

systems, enabling the creation of convection-free environments, a formidable

task to achieve in macroscopic systems. Given these conditions, solutes will

diffuse from the source to form a diffusive layer or a ‘secondary interface’,

the extent of which depends on their diffusion coefficients and the boundary

conditions (Fig. 1.11(d)). Such flow-free systems offer great advantages

to study cell division, cell migration, intracellular communication and cell

polarity [65].

We have created microfluidic devices that utilize the secondary interfaces

formed in zero-flow environment and we will discuss them in detail in Chapter 3.

1.7 Bottom-up approach

The famous quote by physicist Richard Feynman,“What I cannot create, I do not

understand”, succinctly describes the ‘bottom-up’ approach. The quote suggests

only a real understanding of the system enables one to create the system, thus,

for example, if we want to understand the living cell, we should attempt to create

it.

A bottom-up approach involves re-constructing a system or a particular part

of the system starting with only a few essential components and then increasing

the level of complexity in a step-by-step manner. If one understands the charac-

teristics of each individual component, it becomes easier to connect the dynamics

between different components that constitute the system. A high level of com-

plexity associated with the cytoskeleton yields a formidable task to study the

system as a whole, while, a bottom-up approach, examining isolated cytoskeletal

domains with sufficient degree of complexity proves to be quite practical. Simply

combining a few interacting elements can lead to a cooperative behaviour that

incites self-assembly, self-organization and emergence.

In this thesis, we study the actin cytoskeleton with an emphasis on the dynam-

ics of actin bundles, using a bottom-up approach. We chose three components as

the key players in our experiments: confinements, actin filaments and bundling

mechanisms (Fig. 1.12). The confinements we use are cell-sized, free from any
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Figure 1.12: A bottom-up approach to study dynamics of actin bundling in-
volving three key componenets: quasi two-dimensional confinements of various
geometries, actin filaments of different lengths and different bundling agents with
distinct mechanisms.

convective flow and fabricated using soft lithography. Actin filaments are ei-

ther long or short. We use three distinct bundling mechanisms to induce actin

bundling, counterion condensation, depletion interactions and specific binding by

ABPs. We find that even with only a few key components, F-actin exhibits a rich

dynamic and emergent behaviour. Using minimal causative agents, we explain

the observed complex behaviour. The hierarchical structure of our experiments

is shown below:

monomers → filaments → bundles → networks

Each higher level is composed of lower level components, new properties

emerging at each level. Coarse-grained at the filament level, we do not con-
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sider the dynamics of monomers within the system. The spatial ordering and the

mechanical properties are deemed to emerge from the filament level [3], validating

our experimental approach for F-actin solutions.

1.8 Outline of the thesis

This dissertation deals with in vitro experiments concerning the self-assembly and

self-organization of actin filaments into bundles and the subsequent disassembly

of bundles back to filaments. The microfluidic setup is designed to achieve a

controlled environment necessary in the context of our experiments and for the

visualization of actin structures using epifluorescence microscopy.

Chapter 2 constitutes the materials and methods section. We first describe

the biomaterials used in the experiments and then outline the soft lithography

process, utilized to fabricate microfluidic devices, a key component in our ex-

periemental design. Lastly, we briefly discuss fluorescence microscopy and image

processing.

In Chapter 3, we express our motivation to create flow-free and diffusion-

controlled micro-confinements to carry out step-by-step reaction sequences. Then

we describe the concept of microchambers acting as quasi two-dimensional pico-

litre confinements, enabling the enclosure of actin filaments for dynamic studies.

In Chapter 4, we study several important properties of fluctuating actin fil-

aments in micro-confinements, including their average length, their persistence

length and their diffusive behaviour. Following the discussion of individual fila-

ment properties, we look at their collective behaviour and its dependence on the

confinement size as well as the filament length.

Chapter 5 deals with a passive way of bundle induction of F-actin in confined

environments, using evaporation-assisted concentration method. These experi-

ments give us emerging networks of actin bundles whose properties depend on

the confinement geometry.

In Chapter 6 we use three distinct bundling mechanisms, as explained in

Section 1.5, to actively bundle actin filaments, followed by a de-bundling process,

to return them to the original state of entangled actin filaments. We obtain

emerging networks and their formation can be repressed by shortening the F-
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actin length. Thus we find two distinct regimes: one is an exclusive bundling

process while the other is a network formation of bundles.

In Chapter 7, we study the evolution and the dynamics of these emerging net-

works in detail and give our interpretation of the underlying mechanisms involved

in each of the bundling schemes.

Chapter 8 discusses the obtained results and puts them in a perspective. We

also discuss the biological relevance of our studies and conclude.
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Chapter 2

Materials and methods

2.1 Materials

2.1.1 Biological materials

2.1.1.1 Actin

Actin from rabbit skeletal muscle is purchased as a lyophilized powder (Hypermol

EK, Bielefeld, Germany) and is reconstituted in millipore water to a stock concen-

tration of 4 mg/mL. The stock solution contains 95.2 µM actin, 8 mM Tris-Cl

(pH 8.2), 1.6 mM ATP, 2 mM dithiotreitol (DTT), 0.4 mM CaCl2 and 0.8 %

disaccharides. It is spun at 15,000 x g for 10 min to remove possible aggregates

and then kept on ice or alternatively stored at −80◦C in small aliquots, as freezing

can preserve the properties of G-actin during storage [68]. To visualize the actin

filaments using fluorescence microscopy, fluorescent Atto488-actin is mixed with

non-fluorescent actin solution before the experiments. Atto488-actin is a chem-

ically modified G-actin in which the lysine residues present on native G-actin

are coupled to NHS-Atto488 (N-HydroxySuccinimide-Atto488), making it fluo-

rescent. The protein to dye molar ratio is 1:0.9. The ratio of actin:Atto488-actin

is 10:1, unless specified otherwise. Fluorescent Atto488-actin from rabbit skeletal

muscle is purchased as a lyophilized powder (Hypermol EK, Bielefeld, Germany)

and is reconstituted in millipore water to a stock concentration of 1 mg/mL. The

stock solution contains 23.8 µM Atto488-actin, 2 mM Tris-Cl (pH 8.2), 0.4 mM
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ATP, 0.1 mM DTT, 0.2 mM CaCl2 and 0.4 % disaccharides. It is spun at 15,000

x g for 10 min to remove possible aggregates and then kept on ice or alternatively

stored at −80◦C in small aliquots.

Monomix (Hypermol EK, Bielefeld, Germany) is used as a dilution buffer to

obtain the required actin concentration. Small aliquots of the dilution buffer are

stored at −80◦C in concentrated (50 x) form, thawed when needed and diluted (to

1 x) with millipore water for use. It consists of 2 mM Tris-Cl (pH 8.2), 0.4 mM

ATP, 0.1 mM CaCl2 and 0.5 mM DTT.

Polymix (Hypermol EK, Bielefeld, Germany) is used as a polymerization

buffer to induce actin polymerization. It consists of 1 M KCl, 0.1 M imida-

zole (pH 7.4), 10 mM ATP and 20 mM MgCl2 and is stored in small aliquots at

−80◦C. To induce actin polymerization, polymerization buffer is thawed, kept on

ice and is added to the actin solution in 1:9 ratio.

In general, the final composition of actin solution used in experiments is 3 µM

actin, 1.4 − 1.5 mM ATP, 100 mM KCl, 2 mM MgCl2, 0.1 − 0.2 mM CaCl2,

0.5−0.6 mM DTT, 10 mM imidazole, 2−2.4 mM Tris-Cl (pH 7.4) and 0.1− 0.2 %

disaccharides.

2.1.1.2 Gelsolin

Gelsolin is a 80 kDa, Ca2+-regulated actin-severing and actin-capping protein

consisting of six homologous subdomains [10]. Cytoplasmic gelsolin is purchased

(Hypermol EK, Bielefeld, Germany) as a lyophilized powder and then reconsti-

tuted in millipore water to get a stock concentration of 1 mg/mL. This stock

solution contains 12.5 µM gelsolin, 10 mM imidazole (pH 7.0), 0.2 mM DTT,

0.2 mM ethylene glycol tetraacetic acid (EGTA), 2 mM NaN3 and 1 % disaccha-

rides and can be kept on ice for several weeks. Gelsolin is used to control the actin

filament length since the mean filament length (lavg) decreases as the gelsolin to

actin molar ratio (RGA) increases according to the relation [69, 70],

lavg =
1

370 ·RGA

µm. (2.1)

Appropriate amount of gelsolin is added to the actin solution to get the required

mean actin filament length (usually 1 µm or 10 µm). The final concentration of
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CaCl2 in the actin solution is increased to at least 0.2 mM before the addition of

gelsolin.

2.1.1.3 Filamin

Filamin is a large, 280 kDa actin binding protein, playing a crucial role in cell

architecture and signalling [59]. Filamin from turkey smooth muscle is purchased

(Hypermol EK, Bielefeld, Germany) as a lyophilized powder and then reconsti-

tuted in millipore water to get a stock concentration of 4 mg/mL. This stock

solution contains 7.2 µM filamin, 0.4 M KCl, 40 mM imidazole (pH 7.4), 2 mM

MgCl2, 0.8 mM DTT, 1.2 % disaccharides and trace amounts of protease in-

hibitors (4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF), leu-

peptin, E64). It is spun at 16,000 x g for 30 min to remove possible aggregates,

kept on ice and can be used over several weeks.

2.1.2 Chemicals and other materials

Anhydrous MgCl2 and polyethylene glycol (PEG, M.W. 8000) are purchased from

Sigma-Aldrich (St. Louis, USA). Multi-fluorescent microspheres are purchased

from Polysciences Europe GmbH (Eppelheim, Germany).

2.2 Soft lithography

Soft lithography is a process of producing and replicating structures using elas-

tomeric stamps, in our case, using polydimethylsiloxane (PDMS). Fig. 2.1 shows

the overall procedure of soft lithography; the parameters are provided to give a

general idea for producing structures with a height up to 10 µm, actual values

vary on the used photoresist and the required height of the structure. It is a

crucial step in the experimental procedure and can be mainly divided into the

following two parts.
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Figure 2.1: Overview of the soft lithography procedure, which can be divided into
(a) master preparation (lithography) and (b) production of microfluidic devices.

2.2.1 Master preparation (lithography)

Master refers to a stable structure which acts as a stamp over which PDMS can

be cured and then peeled off to prepare microfluidic devices and can be used

repeatedly as long as it stays intact. The important steps in master preparation

are highlighted in Fig. 2.1(a). Masters are produced in the clean room facility

(Department of Physics, University of Basel) via standard lithography processes.
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2.2.1.1 Process flow

A clean silicon wafer (Si-Mat, Kaufering, Germany) is baked at 200◦C for at least

10 min on a hot plate. Suitable SU8 negative resist (Microchem, Newton, MA,

USA) is then applied by spin coating. The wafer is then soft baked and exposed to

UV light (365 nm, ∼ 33 mW/cm2) through an appropriate chromium mask (JD

Photo-Tools, Oldham, UK; ML&C GmbH, Jena, Germany) using a MJB4 mask

aligner (SUSS MicroTec AG, Garching, Germany). The wafer is baked a second

time (post exposure baking, PEB) and developed with SU8 developer, rinsed

with isopropanol and finally dried with nitrogen. The parameters used for spin

coating, baking, exposing and developing vary according to the used photoresist

as well as the preferred height of the structure and are followed according to the

manufacturer’s guidelines.

2.2.1.2 Multi-height structures

Multi-height structures have variable heights for different substructures within

a single structure. In order to produce multi-height devices, it is necessary to

have more than one cycle of spin-coating, soft-baking, exposing and PEB using

appropriate chromium masks. For example, to produce a master with a control-

ling channel 4 µm in height and the microchambers 2 µm in height, two layers of

SU8-2002 are used. To produce a master with a controlling channel 10.5 µm in

height and the microchambers 0.5 µm in height, the first layer is of SU8-2000.5

and the second is of SU8-3005. The crucial and the most difficult part in such

a process is aligning the common structures and is carried out using the mask

aligner. Appropriate SU8 photoresists are chosen for each layer to achieve the

required height. A typical alignment procedure consists of following steps:

1. Performing contact wedge error compensation (WEC) which makes sure

that the wafer is perfectly parallel to the mask.

2. Removing the mask and focussing on the appropriate ‘cross’ on the wafer

(Fig. 2.2(a)) which is a structure drawn for the sole purpose of alignment.

3. Putting back the mask and manually moving it until the complementary

‘plus’ (Fig. 2.2(b)) on the mask (corresponding to the ‘cross’ on the wafer)
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is seen, which is again a structure drawn for the alignment purpose.

4. Aligning the cross and the plus using optical microscope and micrometre

screws in such a way that the ‘cross’ and the ‘plus’ perfectly come together

to form a complete square 2.2(c)).

5. Checking the alignment of the actual structure and then proceeding with

exposure. There is an optional final check (using alignment check) before

continuing with exposure.

Figure 2.2: Alignment structures used in multi-height soft lithography process.
(a) The cross is present in the first layer, (b) the plus is present in the second
layer; (c) together they form a perfect square.

Protocols for producing different multi-height masters are given in Appendix A.

2.2.2 Fabrication of microfluidic devices

Steps involved in the fabrication of microfluidic devices from the master are shown

in Fig. 2.1(b). PDMS and cross-linker (Sylgard 184, Dow Corning GmbH, Wies-

baden, Germany) are mixed in the mass ratio 10:1, degassed and poured on the

master followed by baking at 80◦C for at least 4 hours. Cured PDMS is peeled off

from the wafer, punched with multipurpose sampling tool (Harris Unicore, diam-

eter 0.75 mm) to make holes where the tubings (polytetrafluoroethylene (PTFE)

microtube, outer diameter 1.07 mm) can be inserted, subsequently cleaned with
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isopropanol and dried with nitrogen. The PDMS block and a clean glass slide

is subjected to a plasma treatment at 2 mbar for 30 − 40 s in a plasma cleaner

(Harrick Plasma, NY, USA). Plasma treatment results in the dissociation of gases

which react with substrate surfaces to form chemically functional groups [71]. The

PDMS block is brought in contact with the glass slide in the correct orientation,

resulting in a covalent linkage between the PDMS and the glass.

2.3 Surface coating of microfluidic devices

2.3.1 Importance

While performing the experiments in microfluidic devices, it is very important

to take into account the possible interactions of the reactants with PDMS and

glass, which constitute the device walls. Biological materials, especially proteins,

normally have a tendency to adsorb to surfaces through non-specific interactions.

Actin, for example, readily sticks to PDMS as well as glass. Such adsorption is

obviously unwanted as it adversely affects the results of the experiments. Also, in

case of experiments involving fluorescent molecules, the image quality is severely

affected. Thus, it is essential to coat the walls of the device with an inert material

which has minimum interactions with the materials under study.

2.3.2 Coating agents and procedure

Bovine serum albumin (BSA, 1−4 mg/mL) was initially used as a coating agent.

BSA solution was injected into the device through the tubings and flushed for at

least half an hour before subsequently rinsing with water. The surface coating,

however, was not very satisfying. PerfectBlock (MoBiTec GmbH, Göttingen,

Germany, 1 mg/mL) gave better but still unacceptable results.

Polyethylene glycol (PEG) layers are widely used to prevent protein adsorp-

tion and cell attachment [72]. For a protein to adsorb to a dense PEG-coated

surface, water surrounding the polymers would have to be removed. Also, the

entropy of the polymer chains would be reduced, both of which are energetically

unfavourable. Thus, PEG layer acts as a steric barrier agaist protein adsorption.
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Grafting of PEG (MW 8000) to the surface using ceric ammonium nitrate (CAN)

as an initiator was attempted. Equal volumes of 0.1 M PEG and 0.01 M CAN

were mixed and injected into a freshly prepared (immediately after the plasma

treatment) device, bearing chemically functional groups on the surface [71, 73].

However, it proved difficult to rinse such a device afterwards and sometimes the

microchambers were left with a gel-like mixture inside.

Rinsing a freshly prepared device with 1 mg/mL PLL(20)-g[3.5]-PEG(2), i.e.,

polylysine (PLL, 20 kDa) grafted with PEG (2 kDa) (SuSoS AG, Dübendorf,

Switzerland) for ∼ 30 min and then flushing with water provided the best pre-

treatment for further experiments. Since the surfaces are still chemically active

after the pre-treatment, experiments are started 2− 3 hours after the pretreat-

ment.

2.4 Equilibration of microfluidic devices

2.4.1 Importance

PDMS is permeable to water which results in permeation-driven flow as well as

an increase in the concentration of confined materials, typically leading to vari-

ous problems. Due to the concentration increase, salt crystals may form inside

the device, making the device completely unusable (Fig. 2.3(a)). As a result

of permeation-driven flow, unwanted and non-controllable gradients of materi-

als can form across the micro-confinements rather than uniform concentrations

(Fig. 2.3(b)). Thus, it is essential to overcome PDMS permeability to water.

2.4.2 Method

The simplest way to avoid the mentioned problems is to constantly equilibrate

the device with water during the experiments. For this, 50 mL falcon tubes are

cut into rings about 1 cm in height. The ring is glued to a clean glass coverslip

by dipping one side into a degassed PDMS cross-linker mixture and curing the

PDMS at 80◦C for at least 4 hours . The PDMS block is then bonded to the glass

inside the cylindrical confinement, formed by the plastic ring (Fig. 2.4). Water
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Figure 2.3: Two main issues of using non-equilibrated microfluidic devices, al-
lowing evaporation of water are (a) crystal formation inside the device and (b)
gradient of actin across the microchamber (3 µM actin after 24 hours).

can then be poured in the confinement to achieve equilibration.

Figure 2.4: A microfluidic device enclosed by a plastic ring which serves as a
water reservoir to achieve equilibration.

We have also taken advantage of the evaporation-asssisted water loss in some

of the experiments, in order to gradually increase the concentration of actin and
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salts (see Chapter 5). In this case, the device is not saturated with water to

facilitate evaporation.

2.5 Microscopy

An Olympus IX81 inverted microscope equipped with fluorescence illumination

(X-Cite Series 120 Q) is used to perform experiments. Used objectives are 40x

(N.A. 1.30) UPlanFL N oil immersion and 100x (N.A. 1.49) UApo N oil immersion

(Olympus, Tokyo, Japan). The images are recorded with a SensiCam or pco.edge

camera (PCO AG, Kelheim, Germany) using pco.camware software with exposure

times of 10− 100 ms depending on the experiment.

For Atto488-actin, the excitation maximum is at 501 nm and the emission

maximum is at 523 nm (Fig. 2.5(a)). Thus, an appropriate filter set (Olympus,

Tokyo, Japan) is used to conduct all fluorescence experiments (Fig. 2.5(b)). It

has a bandpass filter, BP470-490 as the excitation filter; a long pass interference

type filter, BA520IF as the emission filter and DM500 as the dichroic mirror.

Figure 2.5: (a) Excitation and emission spectra of Atto488. (b) Appropriate filter
set for Atto488 fluorescence visualization.
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2.6 Software

Designs for the microfluidic devices are drawn in AutoCAD (Autodesk Inc.) or

QCAD (RibbonSoft GmbH). Image processing and further analyses are done

using a combination of ImageJ (1.47k, Wayne Rasband, National Institute of

Health, USA) and MATLAB (R2009a, R2012a, The MathWorks Inc.). All scripts

are self-written in MATLAB.

2.7 Image processing

Image processing is done using ImageJ and MATLAB (self-written scripts). Some

of the common procedures used in imageJ are Gaussian blurring (radius, σ = 2),

background subtraction (rolling ball radius = 5 pixels, smoothing disabled), en-

hance local contrast (blocksize = 127, histogram bins = 256, maximum slope = 3),

threshold, despeckle, binarize and skeletonize.

To study the static network properties, i.e, the properties of links, nodes and

meshes (see Chapter 5 and Chapter 6), networks are appropriately thresholded,

binarized and further skeletonized. The skeletonized images are further cleaned to

remove any spurious pixels. These images are then further analyzed in MATLAB

to obtain the properties of links, nodes and meshes. In case of evaporation-

induced networks, nodes are not analysed because of their complex architecture

(see Chapter 5).

For the estimation of number of filaments present inside the bundles, im-

ages are first Gaussian blurred, background subtracted and further analysed (see

Section 6.5.1). For the analyses concerned with network dynamics, tiff stacks are

background subtracted, any possible artefacts are removed and then anaysed with

MATLAB (see Chapter 7).
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Chapter 3

Microchambers

3.1 Motivation

Hierarchical self-assembly and self-organization are common phenomena in bio-

logical systems. An ideal example is the highly polymorphic actin, one of the

three types of cytoskeletal filaments. Actin can exist in different states such as

monomers, filaments, bundles and networks of filaments or bundles. For studying

the dynamics of the interconversion between these forms, it is essential to have a

flow-free environment in order to eliminate any possible effects on the structure

formation due to induced flow fields. Some of the common procedures to elimi-

nate possible flows are confining actin solutions in between two glass slides sealed

with vacuum grease [74, 75], in hermetically sealed chambers [76], in emulsion

droplets [77] or in liposomes (closed vesicles with a lipid bilayer membrane) [78].

However, with such systems, the composition remains fixed as it is not possible

to add or deplete materials from the system without physically (mainly induced

flow fields) affecting it. Thus, it is essential to use a different system in order to

study hierarchical reactions in a step-by-step manner.

An ideal experimental system is represented in Fig. 3.1. The system consists

This chapter is taken and modified from the following publication: S Deshpande and T
Pfohl. Hierarchical self-assembly of actin in micro-confinements using microfluidics. BIOMI-

CROFLUIDICS, 6(3), SEP 2012.
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of a micro-confinement of a suitable geometry which is in contact with the source

in a diffusion-controlled manner, accessible only for molecules below a certain size,

i.e., only ions, G-actin and bundling agents can diffuse in and out of the system.

When the source is filled with actin monomers, the system likewise attains the

same concentration of actin monomers at equilibrium, based on diffusion. When

ATP and K+ ions are added to the source, actin polymerization is initiated. Poly-

merized actin filaments within the micro-confinement, however, remain restricted

within, due to their increased size. When bundling agents (B) are added to the

source, they diffuse into the micro-confinement, to induce the bundling of the

enclosed filaments. Depleting the bundling agents from the source reverts the

system back to confined filaments, allowing them to diffuse out of the system.

Further depleting the ATP and K+ ions from the source drives the system back

to its original state. We aim to create a system using a microfluidic setup with

similar attributes.

3.2 Design

It is very important to have a force-free environment in order to study the biopoly-

mer networks. It is easy to emphasize this point by pointing out the fact that

the forces needed to break actin filaments in vitro are less than 1 nN [79], and

can be easily applied while pipetting. Microfluidics has been a fantastic tool to

study biological systems in a well-controlled manner. For example, micro-habitat

patches of bacteria in microfluidic devices have been successfully employed to

study the emergence of antibiotic resistance [80] and the dynamics of bacterial

metapopulations [81]. The dynamics of single actin filaments in flow and confine-

ment using microchannels of various dimensions have been investigated as well

[82, 83, 84]. Controlling the actin network architecture using functionalized sur-

faces such as arrays of microfabricated pillars, can be effectively used to assemble

biopolymers [85]. Another technique involves micropatterning the substrate to

have a spatial control of actin nucleation sites (shape, orientation and distance),

which in itself proves to be a strong determining factor affecting the self-organized

actin architecture [86]. Additionally, the self-assembly of actin bundles in confined

geometries has been reported using narrow microfluidic channels [87]. Composite
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Figure 3.1: Conceptual drawing of a system which is in contact with the source in
a diffusion-controlled manner. Addition (and depletion) of polymerizing agents
(ATP, K+) and bundling agents (B) makes it possible to switch the system con-
figuration in a step-by-step manner.

microfluidic devices, consisting of a membrane between two fluid streams, allowing

diffusive mass transport, can be designed [88]. However, small membrane pores

can cause serious problems for polymer systems, especially membrane clogging,

while bigger membrane pores increase advective transport across the membrane.

Liposomes can also be used as confining environments to study the self-assembly

of F-actin, where confined G-actin (with or without additional cross-linking pro-

teins) can be polymerized into F-actin by raising the temperature of the system

[89]. Efforts have been made to achieve step-by-step reaction schemes in cell-sized

liposomes, by embedding protein pores in the membrane [78] or by ionophore-

mediated influx of Mg2+ [90, 91]. However, these systems are limited to the
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transport of small molecules, and it is impossible for the system to revert back

to its original state. Two separate ways of self-assembly, viz., simultaneous poly-

merization and cross-linking of actin or polymerization followed by cross-linking

have been realized, but the latter was not executed [92].

We have designed a straightforward microfluidics system consisting of micro-

confinements of different geometries, enabling the addition and subtraction of ma-

terials in a diffusion-controlled fashion. The micro-confinements or ‘microcham-

bers’ are connected to a main controlling channel via narrow connecting channels,

as seen in Fig. 3.2. The fluid of interest flows by advection through the controlling

channel, which is rectangular in cross-section. As one approaches the wall, the

velocity decays to zero according to the no-slip boundary condition and obeys the

following equation for the velocity field in a channel with rectangular cross-section

and a low aspect ratio (height to width, h < w/2) [64]:

vx(y, z) =
4h2∆p

π3ηL

∞
∑

n,odd

1

n3

[

1− cosh(nπ y

h
)

cosh(nπ w
2h
)

]

sin(nπ
z

h
), (3.1)

where ∆p is the pressure difference between the two ends of the controlling chan-

nel, L is the controlling channel length and η is the viscosity of the liquid. Note

that the flow profile is a plug flow along the width (Fig. 3.2) and a parabolic flow

along the height owing to the low aspect ratio (h/w) of the channel. In addition,

the height and the width of the connecting channels are much less than that of

the controlling channel, causing the velocity field to be virtually unaffected by

protrusions, i.e., the connecting channels at the side walls. As a result, material

transport from the controlling channel into the microchambers and vice versa is

governed by diffusion.

Any possible advective transport into the microchambers is further prevented

by a multi-height design. The master is produced using multi-layer photolithog-

raphy (see section 2.2.1.2) such that the height of the controlling channel is

substantially higher than that of the microchambers and connecting channels

(Fig. 3.3(a)). This height difference minimizes any possible microflow into the

microchamber to a great extent, since the hydraulic resistance (Rhyd) of a chan-

nel is inversely proportional to the third power of the channel height (h) [64].
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Figure 3.2: Schematic representation of a microfluidic device consisting of
microchambers attached to the controlling channel via narrow connecting
channels [93].

Rhyd =
12ηL

1− 0.63(h/w)

1

h3w
(3.2)

A part of the master showing an array of square microchambers is shown

in Fig. 3.3(b). The device shown has a 40 µm wide controlling channel, linked

with microchambers via small connecting channels. The multi-height aspect of

the device is made evident by the different colours associated with the control-

ling channel (h = 10.5 µm) and the microchambers and the connecting chan-

nels (h = 0.5 µm), arising from thin-film interference. The small height (h =

0.5−2 µm) of microchambers suggests that they can be considered as quasi two-

dimensional systems. In summary, the system consists of an advection-dominated

controlling channel to which diffusion-dominated microchambers are attached.

Different versions of the complete microfluidic device can be seen in Fig. 3.4.

The basic design consists of an inlet and an outlet, which are connected by one or

more controlling channels (number n = 1−4), that are linked to the microcham-
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Figure 3.3: (a) Sketch of a multi-height microfluidic device with a quasi two-
dimensional microchamber connected to a controlling channel by a narrow con-
necting channel. (b) Bright-field image of a master prepared using multi-layer
soft lithography showing an array of square microchambers.

bers by small connecting channels. Improvements were made in successive steps,

including, the prevention of the possible collapse of the inlet and outlet by chang-

ing the pillar geometry and increasing the pillar density [94], increased design

compaction, different microchamber geometries, and narrower connecting chan-

nels to reduce any possible flow into the microchambers. The main features of

each version are tabulated in Table 3.1. A magnified view of a master with the

latest design parameters, showing circular, ringlike and serpentine microchambers

can be seen in Fig. 3.5.

Table 3.1: Different versions of microchambers

Ver. Controlling channel Pillars Microchambers
n w L h w ρ shape L h

(µm) (cm) (µm) (µm) (mm−2) (µm) (µm)

a 1 50 2 5− 17 100 22.6 c, s, r 10− 100 2, 5

b 2 40 1 5− 10 100 42.3 c, s, r 10− 100 0.5, 2

c 2, 4 40 0.3 5− 10 100 42.3 c, s, r 5− 50 0.5
t, ri, s

c: circle, s: square, r: rectangle, t: triangle, ri: ring, s: serpentine

42



3. Microchambers

Figure 3.4: Different versions of microchambers (a − c) with subsequent changes
to improve the performance of the devices. Arrays of microchambers can be seen
as protrusions along the controlling channel.

Figure 3.5: Zoomed in view of a master showing circular and ringlike microcham-
bers in the upper image and serpentine-like microchambers in the lower image.
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3.3 Diffusive behaviour in microchambers

Advection in the controlling channel and diffusion in microchambers can be

clearly seen when multi-fluorescent microspheres (diameter d = 0.2 µm) are

injected in the device and their trajectories are recorded by time-lapse fluores-

cence microscopy (Fig. 3.6(a)). White streaks in the controlling channel are

microspheres flowing by advection, while the trajectory inside the microchamber

shows a typical displacement of a single diffusing microsphere. The microsphere

has a diffusion coefficient of D = 2.2 µm2/s, which is calculated according to the

Einstein relation,

D =
kBT

3πηd
. (3.3)

Mean square displacement (m.s.d., 〈x2〉) of a trajectory linearly increases with

time for diffusion,

〈(x(t+ τ)− x(t))2〉 ∝ τ, (3.4)

where τ is the increment in time. Fig. 3.6(b) shows a plot of 〈x2〉/4D of several

microspheres fluctuating in the microchambers of different geometries against

time. A slope of ∼ 1 strongly indicates diffusive behaviour in the microchambers.

The minute impact of bead collisions with the microchamber walls can be seen

for longer observation times.

3.4 Proof of principle

Fig. 3.7 shows that the aforementioned working principle can be experimentally

realized inside microchambers. Actin solution along with the polymerization

buffer is injected in the controlling channel of a pre-coated and water equili-

brated device (see Section 2.3 and Section 2.4) by a syringe pump (cetoni GmbH,

Korbussen, Germany). Actin monomers (G-actin) diffuse into the microchambers

along with K+ ions. Once actin polymerization is initiated, the filaments continue

to be confined within the microchambers due to their increasing size, which lowers

their diffusion coefficient in comparison to the monomers, hindering their transit

through the narrow connecting channels. Polymerized filaments freely fluctuate

inside the microchambers and do not stick to the walls, forming an entangled

44



3. Microchambers

Figure 3.6: (a) Time overlay of a freely fluctuating fluorescent microsphere
(d = 0.2 µm) in a square microchamber (h = 2 µm). The microchamber bound-
ary is shown by a solid line. (b) Log-log plot of 〈x2〉/4D against time for several
microspheres fluctuating inside microchambers of different geometries.

mesh of single actin filaments in the microchambers. Actin also polymerizes in

the controlling channel, but these filaments are washed away to the outlet via

advection. As the microchambers are in contact with the controlling channel,

G-actin and ions can freely diffuse into and out of the microchambers, and their

concentrations throughout the entire device remains essentially the same. The

concentration of filaments inside the microchambers reaches a steady-state result-

ing in an entangled mesh of actin filaments which can be followed by a constant

mean fluorescence intensity in the microchambers.

This steady-state of entangled actin filaments can be further manipulated as

desired. For instance, bundling and de-bundling of actin filaments by Mg2+ ions

is shown. When 50 mM MgCl2 is added to the actin solution in the controlling

channel, confined actin filaments undergo a bundling transition to form several

bundles, which ultimately fuse together and a network of actin bundles emerges.

Actually, anionic ATP, in excess, can compete with F-actin for binding to Mg2+

ions [11]. However, since we have a very low value of [ATP] /
[

Mg2+
]

= 0.03

in our system, the bundling process is not hampered by the presence of ATP.
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Figure 3.7: Two consecutive cycles of bundling and de-bundling of confined en-
tangled actin filaments inside a microchamber (h = 0.5 µm) by addition and
subsequent depletion of MgCl2. The microchamber walls and the connecting
channel are highlighted by dashed lines. Figure is taken and modified from [93].

The bundling transition is sudden, in the order of several seconds. The network

of bundles does not stick to the walls but fluctuates as a single entity. Since

the transport into and out of microchambers is diffusion controlled, added salts

can also be depleted from the system. Lowering the Mg2+ concentration to a

residual concentration of 2 mM ([K+] /
[

Mg2+
]

= 50, see Section 1.5.1) leads to

displacement of loosely bound Mg2+ ions by K+ ions resulting in de-bundling,

restoring the system to entangled actin filaments. De-bundling is a slower pro-

cess than bundling and brings the system back to the original configuration of

entangled actin filaments. These entangled filaments can be bundled again by

adding 50 mM MgCl2 to the actin solution in the controlling channel. Thus, the

bundling−de-bundling cycle can be efficiently repeated. In this way, confined

actin filaments can be manipulated simply by changing the composition of the

fluid stream in the controlling channel.

3.5 Discussion

We have created a straightforward microfluidic system consisting of microcham-

bers, which act as diffusion-controlled micro-confinements. Their chemical com-

positions can be tuned via the controlling channel, enabling a stepwise addition
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and/or depletion of materials within the microchambers. We show the func-

tionality of the device by demonstrating the hierarchical self-assembly of actin

monomers to entangled networks of actin filaments in presence of ATP and K+

ions. The addition of Mg2+ ions further induces bundling to form networks of

bundles. A subsequent de-bundling step occurs by depleting the Mg2+ ions which

brings the system back to its original state of entangled filaments. We realize the

potential of such a confined system to study the spatio-temporal evolution of actin

networks and bundles. The same setup may be used to study the dynamics of

other biopolymers such as fibrin, DNA, microtubules and intermediate filaments.

Our microfluidic system is particularly useful for studying in situ dynamics of

systems with hierarchical assembly steps. It is also advantageous in cases where

flow-free environments with tunable chemical compositions are needed since the

added materials can also be depleted from the system in the case of reversible

reactions. The system can be used to mimic the cytoskeletal structures of the cell,

with varying degrees of complexity. Furthermore, it may be suitable to study the

dynamics of cells in the extracellular matrix (ECM), by first generating an ECM

inside the microchambers, and then bringing in cells, for example, by optical

tweezers.

To summarize, microchambers can be described as diffusion-controlled, flow-

free systems suitable for studying self-assembling and self-organizing systems in

a step-by-step manner within confined volumes.
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Chapter 4

Confined actin filaments

4.1 Introduction

To perform step-by-step experiments, we first form a steady-state of actin fila-

ments within a microchamber. A steady-state of actin filaments enclosed within

quasi two-dimensional micro-confinements presents an interesting system. Dy-

namics of single actin filaments in flow and confinements using microfluidic sys-

tems have received considerable attention [82, 83, 84]. A polymer in confinement

can behave differently compared to when it fluctuates freely in an unbound so-

lution. In this chapter, we discuss several important properties of single actin

filaments such as their average length, persistence length and diffusion coefficient.

Lastly, we also discuss their spatial distributions, i.e., their collective behaviour

within confinements of different sizes.

4.2 Diffusion of G-actin and bundling agents

It is essential to estimate the diffusion times required for G-actin and the bundling

agents to homogenously distribute within the microchambers. The importance

lies with our analysis of the dynamics of bundle formation (see Chapter 7), where

it is necessary to determine whether the time required to establish homogenous

distributions in the microchambers affects the rate of the actual process under

study. The largest distance these molecules have to cover is ∼ 45 µm, since the
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largest microchambers we consider in the analyses are 35 µm in diameter and the

connecting channels are maximum 10 µm in length.

One can derive how the concentration distribution evolves with time for a

particular molecular species along a line (one dimension). Consider an initial

homogenous distribution given as

C(x, t0) = C0 if x ≤ 0, (4.1)

C(x, t0) = 0 if x > 0. (4.2)

The concentration at any point along the line at a given time is given by

C(x, t) =
C0

2

(

1− erf

(

x√
4Dt

))

, (4.3)

where D is the diffusion coefficient of the molecule and erf is called the error

function and is defined as

erf(x) =
2√
π

∫ x

0

exp(−t2)dt. (4.4)

However in our experiments, the concentration at x = 0 never changes and always

remains C0, since the solution in the controlling channel is constantly getting

renewed. For a fixed concentration at x = 0, Eq. 4.3 changes to

C(x, t) = C0

(

1− erf

(

x√
4Dt

))

, (4.5)

We have to make one more correction because we have a fixed, no-flux bound-

ary condition, the microchamber wall, meaning after a sufficient period of time,

C(x,∞) = C0. We can use a superposition solution by adding an image source

at x = 2xmax where xmax = 50 µm, yielding the equation for concentration dis-

tribution along a line with fixed concentration C0 at x = 0 and a fixed, no-flux

boundary at the end x = xmax,

C(x, t) = C0

(

1 + erf

(

2xmax√
4Dt

)

− erf

(

x√
4Dt

)

− erf

(

2xmax − x√
4Dt

))

. (4.6)
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Fig. 4.1 shows how the concentration distributions for G-actin and different

bundling agents evolve and finally converge with time. The used diffusion co-

efficients are Dactin ∼ 91 µm2/s, DMg ∼ 2000 µm2/s, DPEG ∼ 46 µm2/s and

Dfilamin ∼ 39 µm2/s. The uppermost (magenta) profiles in each of the plots

correspond to the time t0.95, when C(xmax, t0.95) ≈ 0.95C0.

Figure 4.1: Concentration distributions of (a) G-actin, (b) Mg2+ ions, (c) PEG
polymers and (d) filamin dimers, along a line with a fixed concentration at x = 0
and a fix, no-flux boundary at xmax = 50 µm. The plots are calculated according
to Eq. 4.6.

It will become clear in Chapter 6 that these diffusion times are low enough

not to affect the corresponding reaction rates.
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4.3 Average length of confined actin filaments

In the microchambers, the average length of actin filaments is observed to be

(56.7 ± 19.1) µm for 2 µM actin solutions, when the filament length is not con-

trolled (Fig. 4.2(a)). Also, we obtain a Gaussian-like length distribution. The

average filament lengths do not depend on the confinement size, as can be seen

in (Fig. 4.2(b)) as well as on the confinement geometry, as given data includes

both circular and square microchambers.

Figure 4.2: (a) Histogram showing the length distribution of 2 µM solutions of
F-actin in microchambers. The dashed line indicates the mean filament length.
(b) Average length of actin filaments formed within confinements of different
sizes.

The obtained mean filament length as well as the length distribution varies

drastically from a prior scientific publication, where the authors found an expo-

nential distribution of phalloidin-stabilized actin filaments with an average length

of 4.9 µm [69]. Such a variation is most likely due to the fact that previous ex-

periments were performed by polymerizing the actin solution and then confining

the solution between a glass slide and a cover slip. Such a procedure inevitably

induces flow fields and shear forces (caused by pipeting, for example) which can

cause the actin filaments to break. On the other hand, the actin filaments growing

in microchambers are not subjected to any shear forces and the only constraints

on their growth rates are the monomer concentration and the spatial hindrance

provided by the other growing filaments. This argument is further strengthened
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by the fact that when care is taken to avoid filament shearing and breakage by

cutting the pipette tip, followed by slow pipetting, an average length of 20 µm is

observed [95].

The simplest model explaining actin filament dynamics is that of an equilib-

rium model, in which the dynamics (length fluctuations for example) result from

the statistical fluctuations at both ends of a multistranded filament [12, 96]. The

distribution of different lengths is assumed to be stationary and the equilibrium

is characterized by

Pn + P1

Ka⇀↽ Pn+1, (4.7)

where n is the number of monomers and Ka is the association constant, which is

assumed to be constant irrespective of n, except when n = 1. Eq. 4.7 can further

be written as

Kd =
[Pn][P1]

[Pn+1]
, (4.8)

whre Kd = 1/Ka is the dissociation constant. Similarly, the nucleation reaction

is characterized as

K1 =
[P1][P1]

[P2]
(4.9)

Such a model predicts that the distribution of polymer lengths will be exponential.

However, our experimental observations do not agree with this prediction and give

a Gaussian-like distribution (Fig. 4.2(a)). The model also predicts the average

polymer length as

navg =

√

K1

Kd

√

[P1]

Kd

(4.10)

At physiological salt concentrations, i.e., at 100 mM KCl and 1 − 2 mM MgCl2,

which is similar to the actin solution composition used in our experiments (see

Section 2.1.1.1), kon ∼ 10 µM−1s−1, koff ∼ 1 s−1 [12, 96, 97, 98]. Hence, Kd is

about 0.1 µM. Knowing K1 ∼ 0.1 M [12], we calculate a value for average actin

filament length of navg ∼ 4500 which corresponds to a length of ∼ 12 µm (370

monomers per µm) for a 2 µM actin solution. Thus, the predicted length and

the observed length are within an order of magnitude.

In the experiments, along with using unrestricted long filaments, we can also

restrict the filament length to a required value using gelsolin, an actin-capping
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and severing protein (see Section 2.1.1.2). In particular, we use two regimes:

10 µm long filaments behaving as semi-flexible rods similar to the unrestricted

filaments and short 1 µm filaments which behave as stiff rods, as will be explained

in the next section.

4.4 Persistence length of F-actin

Persistence length (lp) is a measure of the stiffness of a polymer and is defined

as the length scale for the decay of the tangent-tangent correlation along the

filament [43]. Mathematically, it can be expressed as

〈t0 · ts〉 ∝ exp

(

s

lp

)

, (4.11)

where ts = ∂t(s)/∂s is the tangent vector at the arc with length s. To have

a temperature-independent parameter, the stiffness of a polymer is commonly

calculated in terms of the bending rigidity (κ) which is obtained by multiplying

lp with the thermal energy kBT ,

κ = lpkBT. (4.12)

Polymers are usually differentiated into three regimes based on the ratio be-

tween their contour length (lc) and the persistence length. When lc ≫ lp, poly-

mers are flexible enough that the thermal energy can cause large transverse fluc-

tuations, allowing the polymers to behave like Gaussian polymer chains with a

Kuhn length of 2lp. When lc ≪ lp, polymers are very stiff, exhibiting no trans-

verse fluctuations due to thermal energy, causing the polymers to behave like

rigid rods in a solution. In the intermediate case when lc and lp have the same

order of magnitude, polymers are said to be semi-flexible. Actin filaments are

known to have lp ∼ 10 µm [43].

lp can also be calculated using the Kratky-Porod model if the end-to-end

distance R of the filament is known [99],

〈R2〉 = 4l2p

[

2 exp

(

− lc
lp

)

− 2 +
lc
lp

]

. (4.13)
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The factor 4 is valid for polymers confined in two dimensions and is thus ap-

plicable in our case [100, 101]. Based on the analysis of confined filaments in

microchambers and using Eq. 4.13, we obtain lp = (16.8 ± 4.2) µm. Thus, for

long filaments (lavg = 10 − 60 µm), F-actin can be considered as a semi-flexible

polymer, while for short (lavg ∼ 1 µm) filaments, it is better modeled as a stiff

rod.

Using Eq. 4.12, where lp = 16.8 µm and kBT = 4.1×10−21 J, we calculate the

value of the bending rigidity of a single actin filament as κ = 6.9 × 10−26 Nm2.

We use this value in the next sections.

4.5 Diffusion of actin filaments

In a convection-free environment, diffusion is the only means for displacing actin

filaments. For a cylinder of length l and diameter d, the translational diffusion

coefficient for a lengthwise motion can be expressed as [102]

D‖ =
kBT (ln p+ v‖)

2πηl
, (4.14)

where p = l/d. The translational diffusion coefficient for a sideways motion is

given as [102]

D⊥ =
kBT (ln p+ v⊥)

4πηl
. (4.15)

The diffusion coefficient, Dt, corresponding to the cylinder motion in a random

direction is in turn given by [102]

Dt =
kBT (ln p+ v)

3πηl
. (4.16)

Finally, the rotational diffusion coefficient for a cylinder is expressed as [102]

Dr =
3kBT (ln p+ δ⊥)

πηl3
. (4.17)

In the above equations, the terms on the right hand side adding to ln p, viz.,

v‖, v⊥, v and δ⊥, are called the end-effect correction coefficients. For p > 4.6,
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which is the case for the actin filaments in our experiments (p ∼ 125, when lavg =

1 µm), these coefficients can be expressed in the form of polynomials [103]:

v‖ = −0.114− 0.15

ln 2p
− 13.5

(ln 2p)2
+

37

(ln 2p)3
− 22

(ln 2p)4
, (4.18)

v⊥ = 0.866− 0.15

ln 2p
− 8.1

(ln 2p)2
+

18

(ln 2p)3
− 9

(ln 2p)4
, (4.19)

δ⊥ = −0.446− 0.2

ln 2p
− 16

(ln 2p)2
+

63

(ln 2p)3
− 62

(ln 2p)4
. (4.20)

The correction coefficient v is given by [102]

v =
v‖ + v⊥

2
. (4.21)

For short actin filaments, these equations are fully applicable, as they behave like

stiff rods. For long actin filaments, acting as semi-flexible rods, we can still use

these equations to approximate their diffusion coefficients. Using Eq. 4.16 and

Eq. 4.17, we get Dt = 2.16 µm2/s and Dr = 16.17 rad2/s for 1 µm long filaments,

while Dt = 0.32 µm2/s and Dr = 0.03 rad2/s for 10 µm long filaments. In quasi

two-dimensional environments (bounded solutions), the diffusion coefficients are

found to be lower by a factor of at least two, since the filaments experience a

larger drag when they are closer to the wall [104].

Which diffusional mode (translational or rotational) has a greater effect on

a diffusing actin filament in a micro-confinement? A short (l ∼ 1 µm) actin

filament diffuses ∼ 519 µm2 in a minute, while a long (l ∼ 10 µm) filament

diffuses only 77 µm2 in the same time. Similarly, a short filament rotates ≫ 4π2

rad2 (2π corresponding to a complete rotation) in a minute compared to a rotation

of ∼ 3 rad2 for a long filament in the same time. However, the short filament

covers an area of only ∼ 0.8 µm2 upon a complete rotation. On the other hand,

the long filament covers about ∼ 27 µm2, even when it moves only ∼ 3 rad2.

Therefore, one can say that the translational diffusion may be dominating for

short filaments while the rotational diffusion might be more effective for long

filaments. Although, when there are many filaments in a confinement forming

an entangled solution, the scenario changes substantially and is explained in the

next section.

56



4. Confined actin filaments

4.6 Semi-dilute solutions

Rod-like polymer dynamics in a solution can be distinguished in three regimes,

depending on the solution concentration (c, number of particles/volume), the

filament length (l) and the rod diameter (d) [99]:

c ≪ 1

l3
(dilute solution), (4.22)

1

l3
≪ c ≪ 1

dl2
(semi− dilute solution), (4.23)

c ≫ 1

dl2
(nematic liquid crystalline). (4.24)

The range of semi-dilute actin concentrations is 0.6− 60 µM when l ∼ 1 µm, and

0.006−6 µM when l ∼ 10 µm. For all the experiments described in the thesis, we

use 3 µM actin solution (unless specified), thus concerning both long and short

filaments we are in the semi-dilute regime.

For dilute solutions, the filaments mainly interact with the solvent and not

with each other, facilitating all forms of translational and rotational motions. In

a semi-dilute state, filaments start to overlap and sterically hinder each other,

inhibiting free rotation perpendicular to their long axis. However, the rotational

and the translational diffusion along their axes is unimpeded [105]. The model

used to describe the limited filament motions involves the filament moving as

though trapped in an open-ended tube, formed by the contributions of other

filaments with which the filament is sterically interacting (Fig. 4.3). Hence, the

filament shows transverse fluctuations and moves by diffusion along the long axis,

a process termed reptation [99, 106].

The filament diffuses mainly by reptation and the corresponding reptation

time (τD), the time a filament needs to completely leave its original tube is given

by [95]

τD =
l2

π2D‖

, (4.25)

where D‖ is the diffusion coefficient of the filament along the tube (Eq. 4.14).

Calculations give us τD ∼ 23 s for a 10 µm long filament, with D‖ = 0.45 µm2/s.
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Figure 4.3: A polymer CL is confined by other polymers (C1− C6) in an entangled
solution. The polymer can be thought of being trapped in an open-ended tube
and can move only along the tube. Image taken from [106].

4.7 Spatial distribution of filaments within con-

finements

Now we turn our attention to the collective behaviour of filaments in confine-

ments, in other words, any possible emergent property displayed by the actin

filaments confined within a quasi two-dimensional space. We observe how actin

filaments of varying lengths are distributed within circular confinements of dif-

ferent diameters (d = 5− 30 µm).

Fig. 4.4 shows the radial distributions of long (lavg ∼ 57 µm) and short

(lavg ∼ 1 µm) filaments within microchambers of different diameters. The x-axis

in each of the graphs exhibits a normalized radius: a value of 0 refers to the centre

of the confinement and a value of 1 refers to the confinement boundary. As can be

seen, long filaments demonstrate a biased distribution, where there are very few

filaments around the centre, validated by a rapidly rising frequency that forms a

prominent peak at ∼ 0.8, and then rapidly decays upon approching the bound-

ary. According to this distribution, filaments tend to bend along the boundaries

of the microchambers, preferring the highest radii of curvature possible, in order

to reduce energy. In particular, this effect is stronger for smaller confinements

where actin filaments attain semicircular conformations leading to cortex forma-

tion (Fig. 4.5(a).) Such cortex formation has been previously observed in small

vesicles as well [91, 107].

Thus, when lp and d have the same order of magnitude, filaments are inclined
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Figure 4.4: Mean normalized radial distributions of (a) long (lavg ∼ 57 µm) and
(b) short filaments (lavg ∼ 1 µm) in different circular confinements. The mean
distributions for long and short filaments for all the confinement sizes is shown
in (c) and (d) respectively. The shaded areas indicate the errors (± standard
deviation).

to localize at the walls and form a cortex. This effect becomes less pronounced

with increasing confinement diameter. A similar propensity also applies to long

filaments whose length is restricted to ∼ 10 µm, though to a lesser extent (the

dashed line in Fig. 4.4(a)). Short filaments on the other hand, have a fairly

uniform distribution throughout the microchambers without any cortex forma-

tion, the frequency then rapidly decays to zero near the wall (Fig. 4.4(b,d)). The

reason for decaying frequency at the walls is that filament rigidity hinders its

approach towards the wall, with entropy acting as the thermodynamic driving

force for the observed depletion [108].
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Figure 4.5: (a) Cortex forms when actin filaments are long. (b) Short actin
filaments do not form a cortex and show a homogenous distribution.

Bending an actin filament requires energy. The Hamiltonian describing the

bending of a filament is given by

H =

∫ lc

0

κ

2

ds

R2
c

, (4.26)

where Rc is the radius of curvature. Hence, the lowest energy conformation

corresponds to the one with highest radius of curvature. Fig. 4.6 shows the

bending energies (normalized by thermal energy) required for actin filaments of

different lengths to bend into arcs of different radii of curvature.

As illustrated, the bending energy is ≤ kBT as long as Rc ≥ lp. Since the

smallest confinements we experiment on are with d = 5 µm, short filaments do

not have to bend. Therefore, we should expect a homogenous distribution of

small filaments irrespective of the confinement size and that is precisely what we

observe, except the low frequency at the walls which is an entropic effect. On the

other hand, long filaments (lavg ∼ 57 µm) require ∼ 5kBT to bend into an arc

with Rc = 10 µm. Thus we expect an inhomogenous distribution of long filaments

within the microchambers; especially those with smaller diameters, which is what

we find.
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Figure 4.6: A plot of energy (normalized by thermal energy) required to bend
actin filaments of a particular length into arcs with different radii of curvature,
Rc.

4.8 Discussion

We began with the estimation of diffusion times (t0.95) required for G-actin and

bundling agents to uniformly distribute inside the microchambers, and calculated

t0.95,actin ∼ 80 s, t0.95,Mg ∼ 4 s, t0.95,PEG ∼ 160 s and t0.95,filamin ∼ 180 s. Then we

discussed several important properties of single actin filaments. We calculated the

average unrestricted actin filament length, lavg ∼ 57 µm. Afterwards, we obtained

the persistence length, lp ∼ 17 µm and the corresponding bending rigidity, κ ∼
7 × 10−26 Nm2. It was followed by a discussion about the diffusive behaviour

of filaments and the effect of semi-dilute solutions. Lastly, analysis of spatial

distribution of confined filaments revealed an inhomogenous distribution of long

filaments, explainable on the basis of energy minimization. All these properties

are very much essential to understand the emerging behaviour shown by actin

bundles to which we turn our attention in the next chapters.
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Chapter 5

Evaporation induced emerging

networks

5.1 Concept

The permeability of PDMS to water is a nuisance for the proper functioning of

microfluidic devices, nevertheless, it has been successfully employed to achieve

evaporation-driven pumping [109], sample concentrator [110, 111] or even crys-

tallization [112]. Here we use the permeability of PDMS to water as means to

concentrate the actin solution by not equilibrating the device with water before

or during the experiments (Fig. 5.1), leading to a gradual evaporation of water

throughout the device - controlling channels as well as the microchambers. The

increased concentration of actin and divalent cations (Ca2+ and Mg2+) induces

actin bundling.

This chapter is taken and modified from the following publication: S Deshpande and T
Pfohl. Hierarchical self-assembly of actin in micro-confinements using microfluidics. BIOMI-

CROFLUIDICS, 6(3), SEP 2012.
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Figure 5.1: Sketch showing the evaporation of water (dashed arrows) from a
non-equilbrated device leading to an emerging network of actin bundles in the
microchamber over time.

5.2 Results

Indeed, the gradual evaporation not only induces bundle formation, but fasci-

nating and complex networks of actin bundles emerge inside the microchambers

in about 20 hours (Fig. 5.2). These emerging networks are formed without

any cross-linking proteins and the bundling is mainly induced by Mg2+, since

the initial Mg2+ concentration is much higher than the initial Ca2+ concentra-

tion ([Mg2+
initial

] = 2 mM, [Ca2+
initial

] = 0.1 mM, [Mg2+
initial

]/[Ca2+
initial

] = 20). Though

water loss occurs throughout the entire device, the confined and flow-free environ-

ment of microchambers strongly favours the formation of regular actin networks.

Bundles are also formed in the controlling channel, possibly connecting with the

networks in microchambers (the bright actin bundle patches at the periphery of

some of the circular microchambers in Fig. 5.2), but without severely affecting

the network geometry. The increase in the concentration of actin and salts due

to the evaporation is estimated by carrying out the experiments with the same

setup using fluorescent microspheres (d = 0.2 µm), rather than actin. We observe

a 50−100 fold increase in the concentration of actin and salts due to evaporation

during a 20 hour period.

Actin networks are made up of links, which join together, to form nodes

(Fig. 5.2). The links are made up of actin bundles of varying thicknesses. The
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Figure 5.2: Networks of actin bundles formed inside square and circular mi-
crochambers of different sizes (h = 2 µm). Each image is a two-dimensional
projection of a z-stack of 40 images with a step size of 50 nm. Figure is taken
and modified from [93].

number of links increases approximately linearly along with the increase in the

volume of microchambers, indicating that the concentration of materials in all the

microchambers is essentially the same. Nodes are formed when two or more actin

bundles fuse with each other. A detailed look at the nodes reveals a complex

architecture (Fig. 5.3). Nodes are not just single points but rather elaborate

structures, consisting of numerous short actin bundles and single actin filaments

fusing with thicker main links to form a fine mesh.

An important factor in the formation process of such networks is that a steady-

state of entangled actin filaments should be formed before the bundling is initiated
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Figure 5.3: 25 % of the central area in a 100 µm x 100 µm square
microchamber (a) is enlarged in the next images (in (b), (c) and (d) respectively)
to reveal the complex architecture at the nodes. Figure is taken and modified
from [93].

by an increase in the actin and Mg2+ concentrations. If a high, bundling inducing

concentration of Mg2+ is present from the beginning, bundling is induced imme-

diately and networks with only a few links are formed that do not evolve further

(Fig. 5.4). In conclusion, an initial formation of entangled actin filaments is

necessary prior to the bundling process in order to generate actin networks with

higher complexity.

5.3 Network properties

We analyze the network meshes in terms of their areas and their shapes as well as

the link lengths and the orientations. Networks in square and circular microcham-

bers are different (Fig. 5.2), as shown by our comparison of these properties for

the two confinement geometries.

5.3.1 Shape and area of meshes

Meshes formed by the networks in square microchambers are different from those

formed by the networks in circular microchambers, especially with respect to

their architecture and symmetry. The mean mesh area is (9.7 ± 8.0) µm2 in

circular microchambers and (10.9 ± 9.7) µm2 in square microchambers, making

them comparable. This is an indication of equal actin bundle density in all the
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Figure 5.4: Stable networks of actin bundles obtained in (a) a square and (b) a cir-
cular microchamber (h = 0.5 µm) after injecting 6 µM actin along with 100 mM
MgCl2. The images are taken after about 15 hours.

microchambers irrespective of their geometry. In square confinements, meshes are

in general elongated and have a rectangular geometry whereas meshes in circular

confinements have a triangular geometry and are less elongated. To quantify these

observations, we fit the meshes with ellipses, which have the same normalized

second moments. We use the ratio of major axis length a to the minor axis length b

of the ellipse as a shape parameter for the corresponding mesh (a ≥ b). Frequency

distributions of a/b for meshes formed in square and circular microchambers are

shown in Fig. 5.5. As can be seen, the a/b value has a peak around two for meshes

in circular microchambers suggesting less elongated, triangular geometries, while

a peak occurs around five for meshes in square microchambers suggesting more

elongated, rectangular geometries.

5.3.2 Link lengths

Link lengths (l) are defined as the lengths of actin bundles before they join other

actin bundles to form nodes. Fig. 5.6 shows the average link lengths for square

and circular microchambers of different sizes. The link lengths show only small

variations with respect to the confinement sizes. The average link length in
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Figure 5.5: Frequency distributions of a/b, where a is the length of major axis
and b is the length of minor axis of an ellipse having the same normalized second
moment as the corresponding mesh. The insets show typical mesh geometries in
circular and square microchambers. Figure is taken and modified from [93].

square microchambers is lsavg = 8.4 µm while the average link length in circular

microchambers is lcavg = 7.3 µm. Therefore, the link lengths are similar for both

the confinement geometries, suggesting that the link length (l) is a characteristic

of the system independent of the confinement geometry, depending solely on the

composition of the system.

5.3.3 Link orientations

The angle subtended by links with respect to a reference line refers to the link

orientations. We define the long axis of the controlling channel as the fixed line

and accordingly calculate the link orientations. The obtained orientations range

from 0◦ to 180◦, which are mirrored to acquire the whole angle spectrum from 0◦

to 360◦, giving us an idea about the possible symmetry patterns formed by the

networks.

In general, links in square microchambers are predominantly aligned parallel

to the microchamber boundaries, showing four maxima in the orientation distri-
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Figure 5.6: Average link lengths (lavg) of actin bundle networks formed in (a)
square and (b) circular microchambers of different sizes. Dashed horizontal lines
in each of the plots represent the corresponding average link lengths (all the
sizes included). The error bars indicate ± standard deviation. Figure is taken
from [93].

bution (Fig. 5.7(a)). This tendency becomes stronger as the microchamber size

increases. Links in square confinements display a 4-fold rotational symmetry,

meaning rotation of 90◦ results in the same symmetry pattern as the original

one. This reflects the tendency of links to become oriented along the boundaries

of the confinements. The distribution is a bit broader around 0◦ and 180◦, possi-

bly due to the partial ‘arch-like’ structures of the links observed for some of the

bigger square microchambers (Fig. 5.2).

On the other hand, link orientations in circular microchambers show different

geometrical patterns. Their orientations strongly depend on the diameter of

the confining circular chambers, some of which are shown in Fig. 5.7(b). The

orientation distributions portray higher rotational symmetries with increasing

diameter: 10 µm diameter microchambers show a strong polar character with

a 2-fold symmetry; 20 µm and 30 µm microchambers have a polar distribution

with a possible 6-fold rotational symmetry; 40 µm a 12-fold rotational symmetry;

50 µm an 18-fold rotational symmetry; as well as 60 µm and 70 µm a possible

24-fold rotational symmetry. Thereby, 6-fold and multiples of 6-fold rotational

symmetries are favoured in circular microchambers. It should be noted that there

is no impact of the connecting channel on the observed rotational symmetries
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(see for example the orientation distribution of 20 µm diameter microchamber in

Fig. 5.7(b).

Figure 5.7: (a) Orientation distributions of links in square microchambers, com-
bined for all the sizes. (b) Orientation distributions of links in circular microcham-
bers for different sizes as indicated. Dashed lines are drawn for better visualization
of the rotational symmetries. Bin width is 5◦. Figure is taken from [93].

As the link length stays constant and the rotational symmetries in circular

microchambers increase with increasing diameter d, one can suggest that the

microchamber size plays an important role in determining the rotational symme-

try. The length of a chord l on a circle with diameter d depends on the angle α

it subtends at the centre as

l = d · sin
(α

2

)

. (5.1)

Given the rotational symmetry (S), the angle between the chords is expected to

be

α =
360◦

S
. (5.2)

This gives us an equation for the expected link length based on the observed

rotational symmetries as

l = d · sin
(

180◦

S

)

. (5.3)
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Fig. 5.8 shows the calculated chord lengths l for the observed rotational symme-

tries in circular chambers of different sizes. As shown, values of l mostly vary

between 8− 10 µm, displaying the same tendency to maintain a constant value,

though it is slightly higher than the average link length in circular microchambers

(lcavg = 7.3 µm).

Figure 5.8: A plot of calculated link lengths (l = d · sin(180◦/S)) for the observed
rotational symmetries (S) in circular microchambers of different diameters. The
horizontal dashed line represents the average link length in circular microcham-
bers, lcavg = 7.3 µm. Figure is taken from [93].

The growth of the actin bundles parallel to the boundaries in square mi-

crochambers, explains the observed 4-fold rotational symmetry. Likewise, the de-

pendence of the rotational symmetry on the diameter of the circular microcham-

bers, justifies the almost matching calculated chord and measured link lengths,

indicating that the bundling process emerges from the chamber walls. The im-

pact of the walls on the bundling process is observed in the case of evaporation-

induced network formation. In microchambers, the evaporation rate is higher at

the boundaries than in the interior, due to the extra surface area at the edge.

Ergo, it is more probable that the bundling process starts at the boundaries and

eventually spreads to the interior (Fig. 5.9). Indeed, we observe that the first
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bundles are formed near the boundaries. As the bundle forms, the concentra-

tion of F-actin in its vicinity suddenly drops, as filaments are used up in forming

the bundle. This may set a specific distance for the next bundle to form, which

should be only dependent on the concentration of materials, a value that is the

same in all the confining geometries. Since bundling can simultaneously start

from different positions along the walls, growing bundles will ultimately meet,

giving rise to nodes and resulting in a consistent link length. Due to the different

chamber geometries, elongated rectangular meshes are predominantly found in

square microchambers, whereas triangular meshes are predominantly found in

circular microchambers.

Figure 5.9: The bundling process starts from the walls and then proceeds to the
interior of the microchamber to give rise to (a) 4-fold rotational symmetry in a
square confinement and (b) 6-fold or multiple of 6-fold symmetry in a circular
confinement.
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5.4 Discussion

5.4.1 Confinement geometry−dependent networks

By gradually increasing the actin and Mg2+ concentrations inside microchambers,

facilitated by evaporation, we obtain emerging networks of actin bundles. We note

that for the formation of the observed networks, it is necessary to start with a

pre-formed entangled network of single actin filaments in order to separate the

polymerization regime from the cross-linking regime. Formation of bundles is

observed to be strongly impeded for long filaments (lavg > ζ , where ζ is the

average distance between the filaments) as compared to short filaments (lavg ≈ ζ)

[113, 114], when all the constituents are mixed together and not added step-by-

step. Indeed, we also find that when polymerization and bundling reactions are

induced simultneously, networks with only few links form and do not evolove

further (Section 5.2). However, in all the other experiments, the bundling regime

is strictly followed after the polymerization regime, which yields entirely different

results. Furthermore, the properties of these networks are determined by the

geometry of the confinement. Although the mesh sizes and the link lengths of the

networks formed in square and circular microchambers have similar values, we

find distinct mesh architectures in the different confining geometries (rectangular

in square, triangular in circular confinements) as well as different link orientations

(4-fold rotational symmetry in squares and 6-fold rotational symmetry in circles).

We explain the varying network properties according to the bundling process that

is predominantly initiated at the chamber walls.

5.4.2 Biological relevance

These confinement geometry specific network properties are biologically relevant

to various cells of different shapes or to specialized parts of cells containing differ-

ent kinds of actin bundles and networks. In metazoan cells, actin bundles appear

in specialized regions such as filopodia and microvilli [15] as well as in the growth

cones of axons and dendrites [38]. Actin bundles are also commonly found in

plant cells and assist in a variety of functions including cytoplasmic streaming,

serving as long-distance tracks and maintaining cell polarity [41] (see Section 1.4).
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Mechanical properties of networks, such as elasticity and stability, depend on

the structural arrangement of their components (which is reflected in the proper-

ties of links, nodes and meshes) and the distribution of tension within them [115].

Actin has been an excellent model system to study semiflexible polymers, with

its network mechanics and dynamics being extensively studied [13, 76, 95, 116].

The elasticity of cross-linked and bundled actin networks crucially depends on

the concentrations of actin as well as actin cross-linkers [117]. In this context, it

will be challenging and important to see the possible impact of the confinement

geometry on the mechanical properties of the networks.

5.4.3 Importance of flow-free environment

The ‘arch-like’ structures found in some of the bigger microchambers (Fig. 5.2)

are probably formed due to a possible microflow through the connecting channel

or an evaporation-driven microflow. This observation illustrates that the networks

can be easily manipulated by shear forces, similar to a moving cell, where the

network structure might be influenced by the cytoplasmic flow. It has been shown

that mechanical perturbations to F-actin solutions in confined geometries can

indeed produce regular patterns like zebra stripes [118]. Cytoplasmic streaming

in cells could also act on the cytoskeletal elements in a similar manner. F-actin

flows are observed at different stages in the cell cycle and are important in various

developmental processes such as asymmetric divisions in vertebrate oocytes, cell

migration and wound healing; furthermore, the spatial localization of F-actin

nucleators and actin turnover play a decisive role in flow generation [119]. Due to

the significant impact of the flow, it is extremely important to have a flow-free or

a flow-controlled (where one is aware of the flow-fields) environment, if one wants

to study the network architecture and dynamics. In the next chapter, we do

not rely on evaporation-induced bundling, but instead switch to more controlled

experiments with further reduction in flow within the microchambers that might

affect the dynamics and the network structure.
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Chapter 6

Emergence and disassembly of

actin networks

6.1 Motivation

The polymorphic nature of actin facilitates the formation of filaments, cross-

linked networks of filaments, bundles and networks of bundles. Bundles of F-actin

act as rigid, but still dynamic structures, supporting specific regions in eukary-

otic cells (see Section 1.4). For instance, filopodia are highly dynamic, where a

constant assembly-disassembly of bundles is occuring and generating forces up to

a few pN [120]. Actin networks have been extensively probed using microrheol-

ogy to study their mechanical properties. However, there is comparatively less

attention given to the actual microstructure dynamics of actin bundles [3, 121].

Furthermore, little has been done on the bundling disassembly or ‘de-bundling’

of actin bundles and their networks in simplified systems in vitro. This is likely

due to the previous experimental setups, which involved sealed confinements such

as liposomes or sealed glass coverslips, where the composition of the system re-

mains fixed. Thus, the further addition or the removal of materials is not possible

without inducing flow fields that affect the network structure and dynamics.

In this chapter, we study the dynamic processes of bundling and de-bundling

of entangled actin filaments, carried out in a step-by-step manner. We use the

already described microfluidic setup consisting of microchambers, i.e., cell-sized
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quasi two-dimenstional confinements (see Chapter 3), to study the mentioned

hierarchical self-assemblies. In Section 3.4, we demonstrated the bundling and

subsequent de-bundling process of actin filaments as a proof of principle. Here

we study these processes in more detail through the observation of real-time

dynamics with time-lapse epifluorescence microscopy. We add specific bundling

agents to a steady-state of actin filaments to induce bundling and subsequently

remove them to initiate the de-bundling process.

6.2 Experimentation

To conduct the experiments, we use flow-free diffusion-controlled microchambers

that we have developed (see Chapter 3). We implement quasi two-dimensional

(h = 0.5 µm) circular microchambers ranging from 5− 30 µm in diameter. Each

microfluidic device consists of multiple arrays of microchambers, each connected

by a narrow connecting channel (l = 10 µm, w = 0.5 µm, h = 0.5 µm) to the

controlling channel (l = 3 mm, w = 40 µm, h = 5.5 µm), allowing simultaneous

visualization of 3−5 microchambers. Time-lapse microscopy is performed (0.1−20

frames per second, 20 − 50 ms exposure times depending on the type of the

experiment).

To start the experiment, actin solution, along with polymerization buffer, is

injected in the controlling channel of a pre-treated device (see Section 2.3) with

the appropriate tubings and syringe pumps, permitting the flow velocity to be

between 2 − 20 mm/s. The flow rate does not affect the experiment since the

transport of materials into and out of the microchambers is governed by diffusion,

and the controlling channel acts as an almost infinite reservoir. As explained in

Section 3.4, polymerizing filaments become confined within the microchambers

due to their lowered diffusion coefficient in comparison to monomers and the

additional hinderance during the transit through the narrow connecting channels.

Eventually, equilibrium is reached and a network of fluctuating actin filaments

is formed in the microchambers. To start the bundling process, a solution with

the same G-actin composition plus the required concentration of the bundling

agent is introduced into the controlling channel (Fig. 6.1). As the bundling agent

enters the microchambers through connecting channels by diffusion, the bundling
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process starts and is recorded by time-lapse microscopy. To start the de-bundling

process, the solution in the controlling channel is again changed back to the

original solution without any bundling agent, leading to de-bundling. The process

of bundling and de-bundling can be repeated over and over again, although here

we restrict ourselves only to the first cycle. For all the experiments described in

this section, we use semi-dilute (3 µM) actin solutions (see Section 4.6).

Figure 6.1: Sketch of a step-by-step reaction sequence, where addition of bundling
agents (B) to a steady-state of actin filaments starts the bundling reaction while
their subsequent depletion brings back the system to the original state.

6.3 Bundling mechanisms

Three distinct mechanisms to bundle actin filaments have been described in Sec-

tion 1.5.

6.3.1 Counterion condensation

According to the Manning counterion condensation theory, divalent and multi-

valent cations can induce F-actin bundling (see Section 1.5.1). We use Mg2+ as

a divalent counterion to instigate actin bundling. We mainly use 50 mM MgCl2

for our experiments; using 100 mM MgCl2 gives similar results.
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6.3.2 Depletion interaction

Bundling of actin filaments by depletion interactions is essentially entropic in

nature (see Section 1.5.2). We use polyethylene glycol (PEG) polymers (5 % w/v,

MW 8000, Rg = 4.7 nm) as the crowding agents to promote F-actin bundling.

6.3.3 Actin binding proteins

Several different ABPs can induce actin bundling, each with its unique properties

(see Section 1.5.3). We use filamin as a specific binding agent to initiate F-actin

bundling. We use R = 0.1, a bundling regime, for our experiments.

6.4 Emerging actin networks and their repres-

sion

Interestingly, the addition of bundling agents to the confined entangled actin fil-

aments (lavg ≥ 10 µm) does not form individual bundles, but rather, a single

network of actin bundles emerges. Nodes form when two (or more) bundles are

forced to join each other due to the presence of shared filament(s) between them.

This sharing of filaments appears to be the key factor in forming networks. Rep-

resentative examples of the network formation after addition of bundling agents

can be seen in Fig. 6.2. Removal of the corresponding bundling agents leads

to the disassembly of networks (except in the case of filamin-induced networks),

causing a return to the state of entangled actin filaments.

To test whether actin filament length is a parameter responsible for the emerg-

ing networks, we shorten the mean actin filament length to 1 µm using gelsolin

(see Section 2.1.1.2), which represses the network formation dramatically and re-

sults in isolated clusters of bundles. Figure 6.3 shows the time-lapse images of

bundling processes of short actin filaments by different bundling agents resulting

in individual clusters of bundles. Since the filaments are not long enough to be

shared between two or more bundles, the bundles fail to connect with each other.

Thus, filament length plays a major role in network formation, as they must be

long enough to be shared. Removal of the corresponding bundling agents again
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Figure 6.2: Time-lapse images of emerging networks of actin bundles from semi-
dilute solutions of confined actin filaments (3 µM, lavg ≥ 10 µm) by (a) Mg2+

ions (50 mM), (b) PEG polymers (5 % w/v, MW 8000) and (c) filamin dimers
(R = 0.1). Images (i-iv) show formation of networks while images (v-viii) show
their disassembly upon addition and depletion of bundling agents respectively.
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leads to the disassembly of the clusters (except in the case of filamin-induced

networks), replenishing the actin filaments.

We refer to the structures formed by bundling of long filaments as ‘networks’

(a single connected component), while the structures formed by the bundling of

short filaments as ‘clusters’ (isolated bundles) in the text that follows.

6.5 Network properties

We study several properties of stable networks formed after the bundling pro-

cesses. Three main attributes are studied in detail: links, nodes and meshes. We

analyze the networks formed in confinements of different diameters (5 − 30 µm)

and compare the networks obtained by different bundling mechanisms and from

different filament lengths.

6.5.1 Filament density inside the bundles

We begin with the estimation of the number of filaments present inside differ-

ent bundles by taking intensity profiles along their long axes, building a his-

togram of the greyscale values representing bundles. Fig. 6.4 shows the frequency

histograms of the bundle intensities induced by Mg2+ ions, PEG polymers and

filamin dimers, in the case of short as well as long actin filaments. The presence

of a few single filaments gives rise to the reference or the base intensity. Assuming

that the intensities of bundles increase linearly with the number of filaments per

bundle, we can then estimate the number of filaments in different bundles. The

estimation of the number of filaments per bundle is also shown in each graph

(lower x-axes) in Fig. 6.4. A similar fluorescent intensity profile approach has

been used before to estimate the number of filaments within a bundle [122].

We find that the bundles within networks do not show homogenous histograms

but instead show several discernible peaks (Fig. 6.4(a, c, e), indicated by arrows).

The solid line is a polynomial fit for each histogram as a guide to locate the

peaks denoted by arrows. For Mg2+-induced bundles, the histogram displays

peaks around 4 and 12 (Fig. 6.4(a)), while PEG-induced bundles exhibit a peak

around 3 and 7 (Fig. 6.4(c)). For filamin-induced bundles, several peaks are
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Figure 6.3: Time-lapse images of formation of actin bundles from semi-dilute so-
lutions of confined actin filaments (3 µM, lavg = 1 µm) by (a) Mg2+ ions (50 mM),
(b) PEG polymers (5 % w/v, MW 8000) and (c) filamin dimers (R = 0.1). Im-
ages (i-iv) show formation of clusters while (v-viii) show their disassembly upon
addition and depletion of bundling agents respectively.
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Figure 6.4: Frequency histograms of the greyscale values representing bundles
induced by Mg2+ ions (a, b), PEG polymers (c, d) and filamin dimers (e, f). (a),
(c) and (e) refer to bundles of long filaments (≥ 10 µm) while (b), (d) and (f)
refer to bundles of short filaments (1 µm).
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obtained around 4, 8, 12 and 16 (Fig. 6.4(e)). This data suggests that bundles

with a specific number of filaments (3−4, 7−8, 12, 16) are more stable than others

and different bundling mechanisms prefer a specific number of filaments to form

bundles. For hexagonal packing, a particular number of filaments per bundle, n,

termed as magic numbers, are favoured because they tend to minimize the surface

energy per unit length for a bundle [123]. These magic numbers are 7, 10, 12, 14,

16, 19, 21, ... and match quite well with the numbers we obtain. In our case, the

magic number seems to be 4 and multiples of 4. The bundles of magic numbers

are more stable and act as preferred states as shown in the case of DNA [124]

and in a theoretical study of semi-flexible polymers [123]. The inclination towards

particular numbers also suggests that bundling is a hierarchical process, where

filaments join together to form small bundles which in turn form bigger bundles.

In all the cases, the maximum number of filaments per bundle is ∼ 24 which is in

agreement with the previous observations for bundles induced by actin binding

proteins [77, 122].

Bundles within clusters, on the other hand, show histograms with less obvious

peaks. Mg2+- and PEG-induced clusters show distributions that continue decay-

ing as the filament density increases (Fig. 6.4(b, d)). Filamin-induced clusters,

on the other hand, exhibit a more homogenous distribution (Fig. 6.4(f)). The

lack of prominent peaks for bundles consisting of short filaments might hint to a

more random arrangement of filaments within bundles. Since lavg ∼ 1 µm, it is

possible that the filaments are not only arranged in a parallel fashion, but in a

more isotropic manner. The maximum number of filaments per bundle is much

higher, up to ∼ 36.

To assist the intensity profile−based analysis and the possible role of hier-

archical assembly during the bundling process, we observe how bundles with

different filament densities are distributed within the networks. We divide the

bundles into two categories: small bundles (b) and big bundles (bb). The approx-

imate regions chosen for these two categories for each of the six histograms are

shown in Fig. 6.4. The regions are selected based on the individual nature of the

histograms. For example, in the case of Mg2+-induced networks, we divide the

bundles into b when n ≤ 8 and into bb when n > 8. However, for PEG-induced

networks, the frequency histogram decays rapidly to zero around a greyscale value
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of 100. Hence, we categorize bundles into b when n ≤ 4 and into bb when n > 4.

It should be noted that this categorization of bundles into b and bb is performed

in order to convey the hierarchical nature of the bundling process. Fig. 6.5 shows

color-coded bundles formed by long as well as short filaments. As illustrated,

small and big bundles are seggregated in the emerging networks. Each of the

links have distinct regions of small and big bundles, suggesting that the emerging

networks are formed in a hierarchical process. This seggregation is observed for

networks formed in all confinement sizes, though the seggregation is less clear in

the case of clusters.

Figure 6.5: Distribution of small and big bundles within networks formed by long
filaments and clusters formed by short filaments.

Noticing the extent of greyscale distribution in different histograms from

Fig. 6.4, we infere that

wPEG < wMg < wfilamin, (6.1)

where wPEG, wMg and wfilamin are the average widths of actin bundles (propor-

tional to the number of filaments within the bundles) induced by PEG polymers,
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Mg2+ ions and filamin dimers respectively, which agrees with a previous obser-

vation that PEG-induced bundles are thinner than Mg2+-induced bundles [125].

The highest width of filamin-induced bundles complements the fact that only one

or two links are formed, thus all the actin filaments go into these few links in-

creasing their width. Another reason might be that the contour length of filamin

is about 180 nm [126], possibly increasing the interfilament distance in filamin-

induced bundles in comparison with Mg2+- and PEG-induced bundles. Since the

maximum bundle width (< 100 nm) is still less than the optical resolution (∼ 200

nm), we do not quantitate the bundle widths, but instead rely on the fluorescence

intensity distributions.

6.5.2 Links

Next, we analyze the number of links in the emerging networks and their average

lengths. For the smallest confinements (d = 5 µm), a closed actin bundle ring

forms, as presented in Fig. 6.6. In the case of counterion-induced rings, kinks

are formed in the ring, due to the disruption in the lattice spacing of counterions

and the unfavourable interactions between charges [127]. Thus, the smallest

confinement has the simplest network: a single link without any nodes.

Fig. 6.7(a) shows the number of links versus the confinement volume. Note

that the height of the microchambers is 0.5 µm for all the sizes, and hence the

increase in the volume is proportional to the square of the confinement diameter.

The smallest confinements have the highest average link length due to the absence

of nodes. As the confinement area increases, bundling starts at several positions

simultaneously, the filaments are shared, more and more nodes begin forming

and the number of links increases (Fig. 6.6). For all three bundling mechanisms,

the number of links increases linearly with the increase in the microchamber

area. A linear fit, including all the three data sets, is shown by a solid line

in Fig. 6.7(a). The average link length suddenly drops for confinements bigger

than d = 5 µm, due to the formation of nodes (Fig. 6.7(b)), and then stays

approximately constant at ∼ 5 µm. The mean average link length, including all

three data sets, is displayed as a solid line.

The clusters of bundles formed from short actin filaments reveal quite a dif-
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Figure 6.6: Representative examples of rings of bundles in small confinements
and networks of bundles in bigger confinements induced by different bundling
agents (lavg ≥ 10 µm).

ferent scenario. No ring formation occurs in the smallest confinements. The

number of links slowly increases for Mg2+- and PEG-induced bundles. In the

case of filamin-induced bundles, there is hardly any increase, as only one or two

separate links form irrespective of the confinement size. Linear fits to the in-

dividual data sets are represented by dashed lines in Fig. 6.7(c). The average

link length increases considerably as one goes to higher confinement areas for

Mg2+- and filamin-induced bundles; Fig. 6.7(d) shows a linear fit for both data

sets combined (dashed line). The average link length of PEG-induced bundles,

however, remains at ∼ 2.2 µm, shown by a horizontal dashed line.

6.5.3 Nodes

Nodes refer to the junctions where two or more links meet. Fig. 6.8(a) portrays

the number of nodes in networks formed within different confinements. As can

be seen, the number of nodes grows linearly with the increase in the confinement
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Figure 6.7: Link properties in networks and clusters induced by Mg2+ ions (blue),
PEG polymers (red) and filamin dimers (green): (a, c) number of links, (b, d) link
lengths. Error bars indicate ± standard deviation.

area; a linear fit, incorporating all three data sets, corresponds to the solid line.

Node degree is the number of links incident at a specific node. Fig. 6.8(b) shows

the average degree of nodes for each kind of networks, which remains constant

around three, displayed as a horizontal solid line. Note that for rings formed in

the smallest confinements, no node is formed and thus the node degree is zero.

Higher degrees suggest more sharing of filaments within different bundles to form

a single, joint structure.

When considering the clusters formed by Mg2+ and filamin, the number of

nodes do not increase substantially, simply because the number of links does

not increase. However, for PEG-induced bundling, many distinct links manifest,
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Figure 6.8: Node properties in networks and clusters induced by Mg2+ ions
(blue), PEG polymers (red) and filamin dimers (green): (a, c) number of nodes,
(b, d) node degree. Error bars indicate ± standard deviation.

giving rise to a large number of nodes. Fig. 6.8(c) shows linear fits (dashed

lines) for the individual data sets. For PEG- and filamin-induced clusters, the

degree of nodes persists at one, since most of the nodes are isolated. Mg2+-induced

clusters often come together, resulting in nodes with higher degrees. Nevertheless,

the average node degree for clusters remains close to one (the dashed line in

Fig 6.8(d)), meaning the links continue to be separated.

6.5.4 Meshes

Meshes are the areas enclosed by the links. For networks, the number of meshes

follow a similar trend as the number of links and nodes, i.e., their number increases
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with increasing confinement area for all bundling agents studied. Fig. 6.9(a) gives

a linear fit, encompassing three data sets, represented by a solid line. The average

mesh area increases slowly as one goes to bigger confinenement areas, for Mg2+-

and PEG-induced networks (linear fit shown for combined data). For filamin-

induced networks, the average mesh area stays constant (shown by a horizontal

solid line).

Figure 6.9: Mesh properties in networks and clusters induced by Mg2+ ions
(blue), PEG polymers (red) and filamin dimers (green): (a, c) number of meshes,
(b, d) mesh area. Error bars indicate ± standard deviation.

For PEG- and filamin-induced bundling of short filaments, not a single mesh

forms, as all the links are isolated from each other (Fig 6.9(c)). For Mg2+-induced

short filament bundling, occasionally a few meshes form with a similar range for

mesh area as with the networks (Fig 6.9(d)).
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6.5.5 Radial distribution of bundles within confinements

We study the spatial (radial) distribution of bundles within circular confinements,

similar to the study of the spatial distribution of filaments within confinements

in Section 4.7.

Fig. 6.10 shows the radial distributions of networks and clusters induced by

the three bundling mechanisms. The x-axis in each graph displays a normalized

radius: a value of 0 refers to the centre of the confinement and a value of 1 refers

to the confinement boundary. The radial distribution of bundles (links) in the

emerged networks is not homogenous, especially for PEG- and filamin-induced

networks, resulting in a peak around 0.75 (Fig. 6.10(a)). The already biased

distribution of long filaments is definitely responsible for such an inhomogenous

distribution, but there are other reasons contributing to this effect as well, such as

spindle-like structure formation (PEG-induced) and ring-like structure formation

(filamin-induced), concepts expanded in the next chapter.

Figure 6.10: Mean normalized radial distributions of bundles induced by (a) long
and (b) short filaments, averaged over confinements of different sizes. Shaded
areas indicate the errors (± standard deviation).

On the other hand, for the case of clusters, there is no sharing of filaments

or subsequent network formation. The established bundles are rigid, hampering

their approach towards the wall, which is justified by the observed decay in the

frequency at the wall, due to entropic effects. For that reason, bundles have a
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higher probability to exist near the centre than at the boundary (Fig. 6.10(b)), an

exception being the high frequency of PEG-induced bundles at the walls formed

due to depletion interactions with the them.

6.6 Discussion

Intriguingly, we find that upon addition of bundling agents, a single network of

actin bundles emerges instead of isolated scattered bundles, a phenomenon sim-

ilar to the evaporation-induced emerging networks. However, in contrast to the

evaporation-triggered bundling, we inject the bundling agents in the controlling

channel from which they enter the microchambers in a diffusion-controlled way,

making the whole process faster and more controllable. As a result, we are able

to observe the entire process with more detail, enabling us to understand its dy-

namics. Bundles of varying lengths and thicknesses form links, while sharing of

filaments within two or more bundles leads to the formation of nodes. Shortening

the actin filament length down to 1 µm dramatically represses the network forma-

tion and rather causes the manifestation of isolated clusters of bundles. We use

three distinct bundling mechanisms, each possessing a biological relevance: coun-

terion condensation (Mg2+ ions), depletion interactions (polyethylene glycol) and

specific binding interactions (filamin). We quantitatively analyzed the properties

of the networks formed by each of these mechanisms. To begin, we estimated the

number of filaments present inside different types of bundles. Then we compared

different network properties such as link length and the spatial distribution of

links within confinements, the density and the degree of nodes, along with the

density and the area of meshes.

In the following chapter, we will focus on the dynamics of these emerging

properties through time-lapse image analyses.

91



6. EMERGENCE AND DISASSEMBLY OF ACTIN NETWORKS

92



Chapter 7

Dynamics of actin networks

7.1 Motivation

The microstructure dynamics that are responsible for the mechanical properties

of actin networks have received less attention, especially the disassembly of actin

networks [3]. We study the network formation and disassembly, i.e., the evolution

of filaments and bundles, using time-lapse image analyses. The three bundling

mechanisms that are the focus of our research, lead to different kinds of networks

(see Section 6) and involve distinct kinetics. Still, there is a common thread in

the form of a hierarchical process where filaments fuse together to form ‘small

bundles’ which further coalesce to form ‘bigger bundles’, during network and

cluster formation. The evolution of filaments, small bundles and bigger bundles

over entire reactions guide us to the reaction kinetics and the involved mecha-

nisms. Based on the data, we build kinetic models which satisfactorily explain

the observed dynamics.

7.2 Time-lapse image analyses

To understand the bundling assembly and disassembly of actin networks (and

clusters) in detail, knowing the change in the concentrations of filaments and

bundles over time proves very helpful. Knowing the evolution of individual com-

ponents in the reaction leads to an improved understanding of the reaction mech-

93



7. DYNAMICS OF ACTIN NETWORKS

anisms. The main difference, separating a fluorescence image consisting of single

actin filaments from one of a network of actin bundles, is the higher number of

brighter pixels in the latter image (Fig. 7.1(a)). These bright pixels, or higher

greyscale values, correspond to actin bundles which have higher intensities than

actin filaments. Fig. 7.1(b) shows several frequency histograms of the greyscale

values of the fluorescence images during the bundling process; from filaments

(blue profile) to a network of bundles (red profile). It can be observed that the

latter histograms have a broader range of greyscale values, with higher values

correlating to bundles.

For each of the individual bundling and de-bundling events, we divide the

entire greyscale range into several equal slices as shown in Fig. 7.1(b) and sum

up the frequencies within each slice. The choice to divide the greyscale range into

eight parts is found to be an optimum compromise between losing information

and having redundant information. Ultimately, we obtain the frequency evolution

of eight greyscale slices for the entire process. The aim of such a procedure is to

find possible ranges of greyscale values that represent a particular element, i.e.,

filaments or bundles. For instance, Fig. 7.1(b) shows eight slices obtained after

processing the time-lapse images for Mg2+-induced bundling of long filaments.

As illustrated by the plot, with increasing time, the frequency of the first slice

increases, frequency of the second and the third slice decreases continuously,

frequency of the fourth slice first increases and then decreases, while the frequency

of each of the last four slices continuously increases. This information can be

interpreted as follows: the first slice represents background since it increases as

the network forms. The second and the third slice overall represent filaments

since it continuously decays as more and more filaments are incorporated into

bundles. The fourth slice, in general, represents the small bundles which rapidly

form at first but then coalesce into bigger bundles. The last four slices represent

the bigger bundles and form a major fraction at the end of the bundling process.

In this fashion, we select appropriate sets of greyscale values representing fil-

aments, small bundles and bigger bundles. Fig. 7.2, Fig. 7.7, Fig. 7.9, Fig. 7.12,

Fig. 7.13 and Fig. 7.14 show the evolution of filaments, small bundles and big

bundles for the three bundling mechanisms during the formation of networks (or

clusters) and their possible disassembly back into filaments. Each subset of the
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Figure 7.1: (a) Fluorescence images showing filaments and bundles. (b) Typ-
ical frequency histograms of greyscale values during a bundling process. The
greyscale is divided into eight equal slices (coloured stripes) for further analyses.
(c) Frequency evolution of the eight slices obtained from such a histogram for
Mg2+-induced networks of bundles.

graph is normalized so that the minimum is at zero and the maximum is at one.

Therefore, they do not represent the actual concentrations within the reaction.

As a general guide, graphs (a) and (b) from each of the figures show the respec-

tive processes analysed in confinements of different diameters (d = 5 − 30 µm).

It can be seen that different confinements do not have a drastic effect on the re-

actions and show similar trends for the evolution of filaments, small bundles and

big bundles. Hence, we combined the data obtained from different confinements

in each case for further analyses which are shown in graphs (c) and (d) in each

figure.
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It should also be noted that the time point zero in each of these graphs corre-

sponds to the onset of bundling or de-bundling; it does not correspond to the time

when a particular bundling agent is added to (or removed from) the system. For

example, in the case of bundling, the bundling agent is already added to the sys-

tem and starts to diffuse into the microchambers; bundling commences only after

a critical concentration of bundling agents is reached within the microchambers

and that is considered as the time point zero. This makes it possible to average

the data obtained from different confinement volumes as explained above. The

time taken for the specific bundling agents to homogenously distribute in the

microchambers (we are referring to t0.95, which is the time after which the con-

centration of bundling agents in the microchambers is almost equal to the their

concentration in the controlling channel, see Section 4.2) is not the rate limiting

factor for the corresponding reactions.

7.3 Evolution of counterion-induced networks

7.3.1 Network formation

Addition of Mg2+ ions to long actin filaments (lavg ≥ 10 µm) results in networks

comprising of straight and rigid bundles of various lengths and thicknesses that

form links (Fig. 6.2(a)). The bundling process is very fast and is completed within

a minute with most of the links already forming in ∼ 10 s. For Mg2+ ions, t0.95

is about 4 s. If one of the filaments is involved in two or more bundling processes

simultaneously, then a node forms. The concentration of filaments decays with

a concomitant increase in the concentration of small bundles. Likewise, the big

bundles start forming as the small bundles coalesce together, albeit at a lower rate.

Once all the filaments have been converted to small bundles, some of the small

bundles further coalesce into big bundles. As a result, the proportion of small

bundles decreases as the big bundles reach dominance. Finally, the concentration

of big bundles reaches a plateau, which marks the end of the bundling and the

network formation.
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Figure 7.2: Evolution of filaments, small bundles and big bundles during (a, c)
network formation induced by Mg2+ ions and (b, d) subsequent network dis-
assembly (actin: 3 µM, lavg ≥ 10µm). The shaded areas indicate the errors
(± standard deviation).

7.3.1.1 Zipping

Once two filaments, two small bundles or a filament and a small bundle come in

contact with each other, they zip along their entire length, usually in less than

a second (Fig. 7.3(a)). This results in a very fast bundling process, much faster

than diffusion-limited bundling, assuming that bundling will take place only at
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the location where two filaments come in contact with each other by diffusion.

Since the filaments are in a semi-dilute regime, they move by reptation (see

Section 4.6). Still, any transverse fluctuations within the tube and the rotational

diffusion provide many possibilities for initial filament-filament contact to start

the zipping process (see Section 4.5). By calculating the average zipping velocity

v of two filaments forming a bundle, the drag force Fd acting on each of the

filaments during the bundling process can be calculated according to the relation

Fd = γ⊥v, (7.1)

where γ⊥ is the drag coefficient of a cylinder in the direction perpendicular to its

long axis, given by [12]

γ⊥ =
4πηlc

ln(2h/r)
, (7.2)

where h is the height of the filament above the surface and r is the filament

radius. We take h = 0.25 µm for our measurements. As the filament overcomes

the drag force, it directly gives us the minimum force generated during bundling,

as sketched in Fig. 7.3(b). The zipping velocities are similar for zipping of

single filaments (∼ 10.7 µms−1) and zipping of small bundles (∼ 13.2 µms−1), as

shown in Fig. 7.3(c). Even though the total radius of a small bundle increases

at most by a factor of 3 (considering hexagonal closed packing) compared to

the radius of a single filament, γ⊥ increases only by a factor of 1.2. Table 7.1

gives the average values of zipping forces obtained between two filaments and

between two bundles. Combining the zipping data of single filaments as well as

Table 7.1: Forces generated during zipping

zipping of force (pN)

filaments 0.18± 0.07
bundles 0.24± 0.03

small bundles, (Fig. 7.3(c)) we obtain a value of (0.21 ± 0.05) pN for the force

generated during the zipping process. Forces generated during bundling of single

actin filaments have been measured using holographic optical tweezers, integrated
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on a microfluidic platform, with a reported value of (0.18±0.06) pN [128]. With a

less complex experimental setup, we obtain a similar value using straightforward

image analyses of controlled bundling processes.

Figure 7.3: (a) Time-lapse images of two single actin filaments zipping together
to form an actin bundle. (b) Sketch of the zipping process showing that the
filaments have to overcome the drag force. (c) Plot of zipped length against time.
The shaded areas indicate the errors (± standard deviation). The dashed lines
are linear fits to the data.

7.3.1.2 Kinetic models

In the simplest terms, we can describe the bundling process as follows:

f
k1−→ b

k2−→ bb, (7.3)

where f denotes filaments, b denotes small bundles and bb denotes big bundles,

with k1 and k2 as the corresponding rate constants. Approximating as a first-
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order reaction sequence, the differential equations are as follows:

d[f ]

dt
= −k1[f ], (7.4)

d[b]

dt
= k1[f ]− k2[b], (7.5)

d[bb]

dt
= k2[b]. (7.6)

Integration of Eq. 7.4 gives the time-dependent concentration of f as follows:

[ft] = [f0] e
−k1t. (7.7)

Substituting this solution in Eq. 7.5 leads to the time-dependent concentration

of b as [129]

[bt] =
k1

k2 − k1
[f0]

(

e−k1t − e−k2t
)

. (7.8)

Finally, by mass balance, the time dependence of bb can be calculated:

[bbt] = [f0]

[

1− k1
k2 − k1

(

e−k1t − e−k2t
)

− e−k1t

]

. (7.9)

The dashed lines in Fig. 7.2(c) are the fits obtained using Eq. 7.7 and

Eq. 7.9 for the evolution of filaments and big bundles, respectively. We ob-

tain k1 = 0.21 s−1 and k2 = 0.13 s−1. Substituting these values in Eq. 7.5, we

are satisfactorily able to reproduce the evolution of small bundles (solid line).

Though, the fit does not span the entire data, this is not very surprising because

the reaction model we consider is far too simple to take into account all the kinet-

ics of the network formation. For example, the model assumes that [b∞] = 0, i.e.,

all of b gets converted to bb. This is certainly not the case for our data; though

some of the small bundles coalesce to form bigger bundles, many of them stay

intact in the final network.

We also build a more complex kinetic model where we consider that the bun-

dles are produced by an ensemble of reactions and that the bundles with a specific

number of filaments (mn) are more stable. Depending on the number of filaments

inside the bundles (i+ j), we obtain two sets of reactions with different rate con-
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stants:

fi + fj
k1−−⇀↽−−
k
−1

fi+j i+ j 6= mn, (7.10)

fi + fj
k2−−⇀↽−−
k
−2

fi+j i+ j = mn, (7.11)

where k1 ≫ k−1 and k2 ≫ k−2. For our model, we take i+ j = 1, 2 for filaments,

i+ j = 3, 4, 5 for small bundles and i+ j = 6, 7, 8 for big bundles. The ensemble

of reactions and the involved differential equations are given in Appendix B. We

obtain k1 = 0.2 s−1, k−1 = 0.04 s−1, k2 = 0.4 s−1 and k−2 = 0.01 s−1. The

simulated evolutions of f , b and bb (the dashed cyan lines), calculated using

COMSOL Multiphysics (COMSOL inc.) reasonably coincide with the data.

7.3.2 Network disassembly

As mentioned in Section 1.5.1, Mg2+ ions are simply trapped in the vicinity of

F-actin in a loose, non-specific manner and can be displaced by other cations,

for example, by changing the K+/Mg2+ ratio. Increasing the K+/Mg2+ value

to 50 and maintaining only a residual Mg2+ concentration of 2 mM induces the

de-bundling process as K+ ions start competing with Mg2+ ions.

Fig. 7.2(d) shows the evolution of filaments, small bundles and bigger bundles

over the entire de-bundling process. The de-bundling process is much slower

(∼ 30 min) compared to the bundling process. It is observed that the big bundles

dissociate into small bundles as well as directly to single filaments. K+ ions

have a higher probability to compete with Mg2+ ions in the outermost regions

of bundles, leading to peeling of single filaments from the bundles. Both small

and big bundles decay simultaneously, though small bundles have a slower decay.

As the big bundles start shedding the filaments, they are inevitably converted

to small bundles. The bundles slowly become less rigid, the individual filaments

begin fluctuating, finally diffusing away from the bundles. Concomitantly, the

filament concentration increases.
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7.3.2.1 Stored energy in networks

Sharing of filaments between bundles causes a tension at the nodes, since the

shared filaments are stretched, which suppresses their thermal fluctuations and

additionally are acutely bent at the nodes, as sketched in Fig. 7.4(a). Thus,

as the network forms, energy is stored inside, resulting in a self-generated pre-

stress. At the start of the de-bundling process, Mg2+ ions begin to diffuse out

of the network, including the links as well as the nodes, decreasing the bending

rigidity of bundles that are not bound together as tightly as before. The tension

present at the nodes is also getting released as more and more bundling agents are

released from them. At one point, the tension released from the nodes generates

enough force (> Fcrit, the critical force) to buckle the more loosely bound bundles.

This release of tension is seen very clearly at the start of the de-bundling process,

where the whole network suddenly relaxes, links are buckled and the tension is

redistributed (Fig. 7.4(b), Fig. 6.2(a-v)), marking the onset of de-bundling.

The energy required to buckle a rod of length L with a bending rigidity κ

into an arc with a radius of curvature Rc is given by Eq. 4.26; a sketch of a

buckled rod can be seen in Fig. 7.4(c). Each of the links in the network may be

represented as a homogenous rod made up of a definite number of filaments n.

By calculating the energies required to bend each of the links and then summing

them up, we can estimate the minimum energy stored in the network as

Htotal =

k
∑

i=0

Hi =

k
∑

i=0

∫ Li

0

κn,i

2

ds

R2
c,i

, (7.12)

where k is the number of buckled bundles in the network. There are two limiting

types of F-actin bundle bending. In the decoupled case, bending does not involve

interfilament shearing as the intervening crosslinks do not resist shear. As a

result, the bending rigidity of a bundle κn depends on the number of filaments

n present inside the bundle and the bending rigidity κ of single filaments and is

expressed as

κn = nκ. (7.13)

In the fully coupled case, crosslinks strongly resist shear and give a quadratic

102



7. Dynamics of actin networks

Figure 7.4: (a) Sketch depicting the energy released during the disassembly of
networks used in buckling of bundles. Arrows indicate the direction of forces
acting on the network. (b) Network relaxation color-coded in time (from yellow to
blue) showing the buckling of bundles (indicated by arrows) during de-bundling.
Dashed circle represents the confinement boundary. (c) Sketch of a buckled rod.

dependence, similar to the bending of a homogenous mechanical beam,

κn ≈ n2κ. (7.14)

Interestingly, Ca2+-induced bundles seem to be partly coupled as

κCa
n ≈ n1.3κ, (7.15)
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most likely due to an optimization of the charge distribution inside the bundles

[130]. Both Ca2+ and Mg2+ ions bundle actin filaments by counterion condensa-

tion, hence, we assume the same partly coupled case for Mg2+-induced bundles.

However, since a considerable amount of Mg2+ ions have diffused out of the bun-

dle causing it to finally buckle, we surmise that these loose bundles now belong

to the decoupled case. We take n = 7 for small bundles and n = 14 for the big

bundles. The minimum energy stored in the networks is then estimated using

Eq. 7.12. Fig. 7.5(a) shows a graph of the minimum stored energy (relative to

thermal energy) for networks in different confinement volumes. As can be seen,

the stored energy linearly increases with the confinement area (since h = 0.5 µm

is constant) in which the networks are formed. Stored energies of 100− 200 kBT

indicate that a substantial amount of internal stress is generated during network

formation.

Figure 7.5: (a) The minimum energy stored in the networks formed in different
confinement areas. The solid line shows a linear fit. (b) Histograms of the minimal
force (Fcrit) required to buckle small and big bundles.

The critical force generated at the nodes to buckle each of these bundles can

be estimated as follows. The total energy involved in bending a rod is the sum

of the elastic energy of the rod and the force applied, as written below [96],

Etot

kBT
=

κθ2

2kBTL
− FL

kBT

(

1− 2

θ
sin

θ

2

)

, (7.16)
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where θ = L/R. For small θ,

Etot

kBT
=

κθ2

2kBTL
− FLθ2

24kBT
. (7.17)

Furthemore, the critical force (Fcrit) required to bend a rod can be calculated by

differentiating Eq. 7.17 with respect to θ and finding the minimal force required

to bend the rod.

∂ Etot

kBT

∂θ
=

κθ

kBTL
− FLθ

12kBT
= 0 (7.18)

⇒ Fcrit =
12κ

L2
(7.19)

Histograms of Fcrit required to bend individual small and big bundles can be seen

in Fig. 7.5(b). For small bundles, Fcrit displays the highest frequency around

0.1 pN and then rapidly decays. For big bundles, Fcrit shows a wider distribution,

up to 2 pN though the highest frequency is again observed at∼ 0.1 pN. The reason

is many of the big bundles are long and thus, easier to buckle (Eq. 7.19). Thus,

to buckle bundles, Fcrit needs to be approxiamtely an order of magnitude higher

than the Fcrit required to buckle a single actin filament (Fcrit ∼ 10 fN). Fig. 7.6

shows networks with the links color-coded for the minimum energy stored in

them. One can see that the energy distribution is heterogenous, depending both

on the length of the link and whether it is made up of small or big bundles.

It has been shown that the formation of actin networks via cross-linking pro-

teins builds up an internal stress, resulting in kinetically trapped networks and

dissipating stress through the transient unbinding events of the cross-linking

molecules [131, 132, 133]. In such a cross-linked governed dynamics model,

the network relaxes on longer time scales compared to the off-rate of the cross-

linking molecules (τ > τoff ) due to numerous independent unbinding/rebinding

events [134]. Here, we directly observe the stored stress in the networks as it is

released and depleted in the buckling of bundles during the de-bundling process.

The evidence is direct, without any active damage to the network, for instance, lo-

cal link cutting using lasers. Moreover, we demonstrate that non-specific binding

by Mg2+ ions, aided by sharing of filaments, is sufficient to generate an internal
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Figure 7.6: Two networks color-coded for the minimum energy stored in each of
the links.

stress within a network without entailing any specific cross-linking proteins.

7.3.2.2 Kinetic model

A simplistic reaction sequence of the de-bundling process can be written as fol-

lows:

bb
k3−→ b

k4−→ f, (7.20)

bb
k5−→ f (7.21)

Here we have an additional reaction along with the hierarchical de-bundling,

where bigger bundles can directly dissociate into filaments. However, in the

model, we do not take this reaction into account because the fraction of big

bundles is low enough to ignore their conversion to filaments, simplifying the

model. The differential equations are as follows:

d[bb]

dt
= −k3[bb], (7.22)

d[b]

dt
= k3[bb] − k4[b], (7.23)

d[f ]

dt
= k4[b] (7.24)
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Integration of Eq. 7.22 gives the time-dependent concentration of bb as follows:

[bbt] = [bb0] e
−k3t. (7.25)

Substituting this solution in Eq. 7.23 and solving the differential equation using

Laplace transformation (see Appendix C) gives us the time-dependent concen-

tration of b as

[bt] =
([b0] k3 − [b0] k4 + [bb0] k3)e

−k4t

k3 − k4
− [bb0] k3e

−k3t

k3 − k4
. (7.26)

Finally, by mass balance, time dependence of f can be found:

[ft] = [bb0] + [b0]−
([b0] k3 − [b0] k4 + [bb0] k3)e

−k4t

k3 − k4
(7.27)

+
[bb0] k3e

−k3t

k3 − k4
− [bb0] e

−k3t.

The dashed lines in Fig. 7.2(d) are the fits obtained using Eq. 7.26 and

Eq. 7.25 for the evolution of small and big bundles, respectively. We obtain k3

= 0.032 s−1 and k4 = 0.003 s−1. Plugging these rate constants in Eq. 7.27 nicely

replicates the evolution of f (solid line).

7.3.3 Bundling of short filaments and network repression

Bundling of short filaments commences at several places simultaneously and is

fundamentally different from that of long filaments. Since there is no inter-bundle

sharing of filaments, isolated clusters of bundles emerge due to the aggregation of

bundles. These bundles, occasionally come into contact with each other, forming

nodes, but no filaments are shared between them, as is the case with bundles

forming from long filaments.

Fig. 7.7(a) shows the evolution of filaments and bundles during the bundling

process, leading to the formation of clusters. The increase of small as well as big

bundles is slower than that seen in the case of the bundling of long filaments. This

is probably due to the lack of filament sharing and the rapid network formation,

attributed to the zipping process. Another reason may be the scarcity of large
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area coverage by rotational diffusion unlike long filaments (see Section 4.5). We

build a similar model with the same set of equations (Eq. 7.7, Eq. 7.8, Eq. 7.9)

as for the model used to explain the network formation by long filaments. The

dashed lines in Fig. 7.7(c) are the fits obtained using Eq. 7.7 and Eq. 7.9 for

evolution of filaments and big bundles, respectively. We calculate k1 = 0.05 s−1

and k2 = 0.1 s−1. Plugging these rate constants in Eq. 7.8, we deduce that the

evolution of small bundles (solid line) adequately coincides with the actual data.

De-bundling is considerably faster in comparison to that of long filaments since

the filaments are not entangled in several bundles, and more freely diffuse apart

upon depletion of Mg2+ ions from the system. Fig. 7.7(d) shows the evolution

of cluster disassembly back to the short filaments. We use the same model, as

applied to the disassembly of networks (Eq. 7.25, Eq. 7.26, Eq. 7.27) and obtain

the two rate constants, k3 = 0.04 s−1 and k4 = 0.01 s−1, after fitting the evolution

of big and small bundles, respectively (dashed lines). Using these rate constants

and Eq. 7.27, we can satisfactorily simulate the evolution of filaments, proving

the validity of the model (solid line).

7.3.3.1 Finite width of bundles

An interesting fact we observe is that there is rarely a side-by-side fusion of two

bundles, but, rather an end-to-end fusion (Fig. 7.8). Even when two bundles,

made up of short filaments, overlap entirely along their length, they do not neces-

sarily bundle (Fig. 7.8(a)). This trend becomes stronger for bigger bundles. On

the other hand, if the brush-like end of a bundle consisting of loose single filaments

approaches the end of a similar bundle, they almost always bundle (Fig. 7.8(b)).

Thus, bundles increase in their lengths, rather than their widths.

The finite width of actin bundles has been experimentally observed before

[122, 135]. The mean bundle width saturates at ∼ 40 nm, independent of the

Mg2+ concentration (∼ 25 mM − 1.1 M) as well as the actin concentration

(0.71 µM − 2.4 µM) and not limited by the high activation barrier and the ki-

netics [135]. Small-angle X-ray scattering (SAXS) studies of Ba2+-induced actin

bundles show that the counterions do not form a regular lattice following the

helical symmetry of F-actin, but conversely organize into frozen ripples (similar
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Figure 7.7: Evolution of filaments, small bundles and big bundles during (a, c)
cluster formation induced by Mg2+ ions and (b, d) subsequent cluster disassembly
(actin: 3 µM, lavg ∼ 1µm). The shaded areas indicate the errors (± standard
deviation).

to charge density waves, CDW) parallel to the actin filaments; CDW overtwist F-

actin by −3.8◦/monomer subsequently changing the helix symmetry from −13/6

(13 monomers in six turns) to −36/17 [136, 137]. These observations are sup-

ported by a theoretical study demostrating that finite bundle width is a result

of intrinsic torques, i.e., twisting of individual actin filaments within the bundle,

restricting their lateral size and establishing a preferrable radius [138]. Another
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Figure 7.8: Time-lapse images of fluctuating bundles of short filaments showing
that (a) side-by-side fusion is not as commonly observed as (b) end-to-end to
fusion (b).

theoretical study corroborates that the finite bundle width is a consequence of

long-range effects of charge instability, arising from the inhomogenous neutral-

ization of F-actin charges inside the bundles [139].

7.4 Evolution of depletion interaction−induced

networks

7.4.1 Network formation

Addition of PEG polymers (5 % w/v, MW 8000, Rg = 4.7 nm) to the actin

solution (lavg ≥ 10 µm) creates a crowded environment, inducing depletion in-

teractions among actin filaments, leading to emerging networks of bundles. The

involved dynamics are fundamentally different from those of Mg2+-induced net-

works and consist of very interesting intermediate steps, involving pole formation

and aligned filaments. Fig. 7.9(c) illustrates the evolution of filaments, poles,

small and big bundles. The process is initiated by the rearrangement of fila-

ments into a few aster-like structures, which we term ‘poles’, with sets of aligned

filaments shared between them, giving the whole structure a spindle-like appear-
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ance. The pole formation results in an exponential decay of filaments fitted

using Eq. 7.7 to give k1 = 0.01 s−1 (dashed line). The pole formation process is

described below in detail (Section 7.4.1.1). This spindle-like structure then trans-

forms into a network of bundles after a lag period of ∼ 8 min. As the forming

bundles meet, nodes are formed, and consequently, a single filament becomes a

part of two or more bundles. Sharing of links ensures that the network is formed

as a single entity. t0.95 is about 160 s for PEG polymers.

The bundling process is slower than Mg2+-induced bundling and can be at-

tributed to the following reasons. First, the diffusion coefficient of PEG molecules

is considerably lower than that of Mg2+ ions (DPEG ∼ 46 µm2/s, DMg ∼ 2000

µm2/s). Second, in the case of depletion interactions the bundling (crowding)

agents are not present inside the bundles [53]; therefore, there are no attractive

interactions between PEG polymers with F-actin. Third, the presence of PEG

polymers increases the viscosity of the solution, by a factor of 2 [140, 141], slowing

the bundling process.

7.4.1.1 Pole formation and aligned filaments

Upon addition of crowding agents, several filaments cluster at a few positions to

produce an aster-like appearance, which we call poles, where the filaments are

shared between these poles. Poles can be considered as tiny patches of small

bundles and are normally situated near the confinement boundary. Although

the number of poles formed can be larger in bigger confinements, the average

value is 2. Simultaneously, the shared filaments become aligned along their long

axes, in between the poles. These sets of aligned filaments are stretched across

the microchamber. Due to the stretched conformations, filament fluctuations

are reduced. Poles can be visualized as bright spots at the crossing of aligned

filaments sets. The process is sketched in Fig. 7.10(a) and displayed in the form

of time-lapse images in Fig. 7.10(b). The process appears similar to the spindle

formation by microtubules during cell division, whose understanding is crucial in

gaining more insight into the cell division process.

This stage lasts for ∼ 8 min, followed by a bundling transition, in which the

aligned filaments finally come together, forming straight, rigid bundles. Since the
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Figure 7.9: Evolution of filaments, poles, small bundles and big bundles during
(a, c) network formation induced by PEG polymers and (b, d) subsequent network
disassembly (actin: 3 µM, lavg ≥ 10µm). The shaded areas indicate the errors
(± standard deviation).

filaments are stretched between the poles, the process can start from both the

directions. Fig. 7.10(c) shows the intensity profiles across the microchambers

perpendicular to the pole axis at various stages, viz., fluctuating filaments (blue),

aligned filaments (green) and bundles (red). The green profile exhibits small,

but definite, perturbations associated with the sets of aligned filaments. These

perturbations further develop into the sharp spikes, corresponding to bundles
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Figure 7.10: (a) Sketch of network formation by depletion interactions. (b) Time-
lapse images showing the network formation induced by crowding agents (PEG).
Mean intensity distribution through the shaded area showing the spatial distri-
bution of fluctuating filaments (blue), aligned filaments (green) and bundles (red)
during (c) network formation and (d) disassembly.

(seen in the red profile). Thus, aligned filaments act as preliminary structures that

continue to evolve into bundles. During the de-bundling process, the transition

from bundles back to aligned filaments, before they start fluctuating freely, is

clearly seen (Fig. 7.10(b, d)).
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7.4.1.2 Depletion interactions with the wall

Another unique feature of PEG-induced networks involves bundling at the walls.

Due to a depletion zone at the microchamber wall of thickness RAO (RAO =

2Rg/
√
π, see Section 1.5.2), actin filaments can come in contact with the wall,

forming bundles that take the boundary shape, in this circumstance, circular

(Fig. 7.11(a)). Formation of curved bundles is unusual because PEG-induced

bundles are fully coupled (Eq. 7.14) and resist interfilament shearing [77]. These

bundles can also become a part of the network.

Figure 7.11: (a) Formation and (b) disassembly of bundles at the walls.

7.4.2 Network disassembly

In essence, the de-bundling process represents the reversal of the bundling process

(Fig. 7.9(d)), contrary to Mg2+-induced bundling, where the bundling process is

significantly faster than the de-bundling process. As noted earlier, PEG molecules

are not present inside the bundles and do not have any interactions with F-actin.

Thus, they are readily removed from the system, unlike Mg2+ ions, which are

trapped inside the bundles. The big and small bundles loosen up and decay, at

approximately the same rate, with a concomitant formation of poles, with aligned

filament sets stretched between them. Bundles formed at the walls also dissociate

into filaments (Fig. 7.11(b)). Finally, the poles disintegrate, the filaments lose

their alignment and form an entangled network.
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7.4.2.1 Kinetic model

The disassembly process can be written as follows:

bb
k3−→ p, b

k3−→ p, p
k4−→ f, bb

k5−→ b (7.28)

where p denotes the poles (including the aligned filaments). It can be seen from

Fig. 7.9(d) that the small and big bundles decay at the same rate. Without

differentiating the bundles into small and big, but treating them together as

bundles bt, we can rewrite Eq. 7.28 as

bt
k3−→ p

k4−→ f (7.29)

Now we can write the involved differential equations for the de-bundling process:

d[bt]

dt
= −k3[bt], (7.30)

d[p]

dt
= k3[bt]− k4[p], (7.31)

d[f ]

dt
= k4[p] (7.32)

Integration of Eq. 7.30 gives the time-dependent concentration of bt as follows:

[btt] = [bt0] e
−k3t. (7.33)

Substituting this solution in Eq. 7.31 leads to the time-dependent concentration

of p as [129]

[pt] =
k3

k4 − k3
[bt0]

(

e−k3t − e−k4t
)

. (7.34)

Finally, by mass balance, time dependence of f can be found:

[ft] = [bt0]

[

1− k3
k4 − k3

(

e−k3t − e−k4t
)

− e−k3t

]

. (7.35)

Using Eq. 7.33 and Eq. 7.35, we obtain k3 = 0.005 s−1 and k4 = 0.007 s−1. Sub-

stituting these values in Eq. 7.31, we obtain a similar evolution of the poles (solid

line), i.e., first the pole formation, followed by their dissociation into entangled
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filaments.

7.4.3 Bundling of short filaments and network repression

Depletion interaction−induced bundling of short filaments differs in several as-

pects from that of long filaments. The bundles formed are thicker and go on

tapering towards the ends. Also, many separate patches of bundles are formed

at the walls. The process is comparatively slower than that for long filaments

(Fig. 7.12(c)). Furthermore, there is no intermediate step of pole formation and

filament alignment. The concentration of filaments decays with a concomitant

rise in the concentration of small bundles. Small bundles do not fuse together

to form bigger bundles, as is the case with counterion condensation. Instead,

addition of actin filaments along the width converts some of the small bundles to

big bundles. Hence, a lag period is observed prior to big bundle formation.

7.4.3.1 Kinetic model

In simple terms, PEG-induced cluster formation of short filaments can be written

as:

f
k1−→ b, (7.36)

f
k2−→ bb. (7.37)

Thus, there are two parallel reactions taking place. The differential equations are

as follows:

d[f ]

dt
= −k1[f ]− k2[f ] = −(k1 + k2)[f ], (7.38)

d[b]

dt
= k1[f ], (7.39)

d[bb]

dt
= k2[f ]. (7.40)

Integration of Eq. 7.38 gives the time-dependent concentration of f as shown

below:

[ft] = [f0] e
(−(k1+k2)t). (7.41)
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Figure 7.12: Evolution of filaments, small bundles and big bundles during (a, c)
cluster formation induced by PEG polymers and (b, d) subsequent cluster dis-
assembly (actin: 3 µM, lavg ∼ 1µm). The shaded areas indicate the errors
(± standard deviation).

Substituting this solution in Eq. 7.39 leads to the time-dependent concentration

of b [129]:

[bt] =
k1

k1 + k2
[f0]

(

1− e−(k1+k2)t
)

. (7.42)
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Similarly, the time-dependent concentration of bb is

[bbt] =
k2

k1 + k2
[f0]

(

1− e−(k1+k2)t
)

. (7.43)

Using Eq. 7.41 and Eq. 7.43, we obtain k1 = 0.001 s−1 and k2 = 0.0008 s−1 (the

fits are shown by dashed lines). Plugging the values in Eq. 7.42 nicely traces the

evolution of small bundles (solid line).

7.4.4 Cluster disassembly

During de-bundling, as the PEGmolecules gradually diffuse out of the microcham-

bers, the bundles simply dissolve back to freely fluctuating filaments (Fig. 7.12(d)).

Since each filament is short, it can diffuse out of the bundle without affecting the

other bundled filaments. As the big bundles disassemble, they are converted

to small bundles. The decay is exponential, shown by a fit represented by a

dashed line obtained using Eq. 7.25 (k1 = 0.006 s−1). Hence, the proportion

of small bundles does not drop but plateaus until nearly all the big bundles

are disassembled. The small bundles gradually become thinner and shorter as the

filaments in the outermost region of bundles diffuse out and finally completely dis-

assemble. Consequently, the concentration of filaments increases until it reaches

a plateau, marking the end of the de-bundling process.

7.5 Evolution of filamin-induced networks

7.5.1 Network formation

When filamin dimers (R = 0.1) are added to the entangled actin filaments, specific

interactions between filamin and F-actin lead to the bundling of actin filaments.

The reaction is the slowest of the three mechanisms and takes about an hour

for completion. The decreased reaction rate can be accounted for by the low

diffusion coefficient of filamin (∼ 40 µm2/s) and more importantly, by the highly

specific interactions between F-actin and filamin, as opposed to the non-specific

interactions between F-actin and Mg2+ ions or PEG polymers. Unlike the other

two bundling agents, filamin is present at a lower concentration, viz., 0.3 µM
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(Mg2+: 50 mM, PEG: 6.3 mM), possibly impacting the rate of network formation.

t0.95 is about 3 min for filamin dimers.

Figure 7.13: Evolution of filaments, small bundles and big bundles during (a, c)
network formation induced by filamin dimers and (b, d) subsequent network
disassembly (actin: 3 µM, lavg ≥ 10µm). The shaded areas indicate the errors
(± standard deviation).

At the onset of the bundling process, small bundles form, as the filament

concentration concurrently decays (Fig. 7.13(c)). Bundles are assembled by a

zipping-like process, proceeding at a substantially lower rate than Mg2+-induced

zipping and the formed bundles are not forced to be rigid and straight. Initially,
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the big bundles grow slowly until the concentration of small bundles reaches

the maximum. The concentration of big bundles then increases rapidly due to

increasing coalescence between small bundles, whose concentration decreases after

the reaction.

We use the same model as for the Mg2+-induced networks (Eq. 7.7, Eq. 7.8,

Eq. 7.9) and obtain k1 = 0.001 s−1 and k2 = 0.002 s−1 (the dashed lines show the

fits). Applying these values to Eq. 7.8, we can satisfactorily mimic the evolution

of small bundles (solid line).

7.5.1.1 Curved bundles induced by filamin

The striking difference between the networks formed by filamin and those formed

by counterions or crowding agents is that the links (bundles) are mostly curved

rather than straight. The circular walls of the confinements are not responsible

for the curved bundles, as the same scenario is obtained in square or triangular

microchambers. One reason might be that the long filaments are often present

in bent conformations within confinements (Section 4.7). Owing to the intrinsic

flexibility of the filamin molecule due to the presence of two hinge-like structures

in each of the rod segments [142], filamin is able to mediate flexible and large-

angle linking between adjacent filaments [89]. Thus, it is conceivable that filamin

is able to bind two filaments in their curved conformations, forming bundles with

an intrinsic curvature. The curved nature of bundles seems to be a consequence

of filamin flexibility and bent filaments. This logic is further strengthened by the

case of short filaments (which act as stiff rods), where straight bundles are ob-

served. Normally, upon bundle deformation, cross-linker occupation is expected

to decrease, leading to a mismatch between the binding sites and hence an elastic

energy cost for binding [143]. Yet, upon bundle deformation for longer times,

the bent shape is stabilized by rebinding of cross-linkers to more favourable po-

sitions that avoid cross-link straining, as shown in α-actinin cross-linked F-actin

bundles [75]. In the case of filamin-induced bundles, however, the deformed bun-

dles are not pre-stressed, but seem to exist in their natural conformation. The

curved bundles ultimately meet to form closed rings with additional fusing links.

Such closed rings have been previously observed for filamin-induced bundle for-
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mation in vesicles [90]. Filamin has also been associated with ringlike bundles

during Drosophila oogenesis [144].

7.5.2 Network disassembly

Surprisingly, the obtained networks cannot be dissolved back to entangled fila-

ments (Fig. 7.13(d)). Even after 12 hours of continuous flow of filamin-free solu-

tion in the controlling channel, networks are clearly visible and intact, though the

links look less distinct, which is probably due to photobleaching effects. Filamin

has a higher binding affinity to F-actin compared to other ABPs such as fascin

and α-actinin [89]. It has been reported that the extreme stability of bundles,

induced by fascin and α-actinin, endures for over half an hour with continuous

protein-free wash [145], making it likely that filamin-induced bundles will be at

least that stable. An important factor conferring such a stability are the two

(and not just one) binding sites present on a filamin dimer. Even when one

binding site is released from the filament, filamin cannot diffuse away unless the

second binding site is also released. Apparently, the on-rate of the free domain

is higher than the off-rate of the bound domain, resulting in very stable filamin-

induced bundles. SAXS studies on filamin-induced bundles (R = 0.1) reveal a

tight bundling structure, with low interfilament spacing [146]. It is possible that

in vivo, some other competitive proteins, or even the free filamin itself might aid

in the de-bundling process. In fact, there are more than 20 proteins known to

affect the F-actin binding affinity of filamin [13].

7.5.3 Bundling of short filaments and network repression

Filamin-induced bundling of short filaments results in only one or two thick,

straight bundles which taper towards the ends. Fig. 7.14(b) shows the evolution

of filaments, small and big bundles, during the bundle formation. One can observe

the exponential decay of filaments, leading to the rapid growth of a few small

bundles. The small bundles first grow in length and that is why big bundles

remain absent. Only after the bundle reaches a certain length, does it increase in

width and converts to a big bundle. The bundles are significantly thicker in the

centre but taper towards the end, preserving the small bundle fraction.
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Figure 7.14: Evolution of filaments, small bundles and big bundles during (a, c)
cluster formation induced by filamin dimers and (b, d) subsequent cluster dis-
assembly (actin: 3 µM, lavg ∼ 1µm). The shaded areas indicate the errors
(± standard deviation).

The bundling process is similar to PEG-induced cluster formation, involving

the assembly of filaments into small and big bundles in parallel reactions; therefore

we implement the same kinetic model (Eq. 7.41, Eq. 7.42, Eq. 7.43). We

obtain k1 = 0.0042 s−1 for the formation of small bundles and k2 = 0.0023 s−1

for the formation of big bundles, according to the fits (shown by dashed lines).

Combining Eq. 7.42 and the obtained values of k1 and k2, we can trace the
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evolution of small bundles, confirming the validity of the model (solid line).

No de-bundling is observed for short filaments either, on the time scale of our

experiments (Fig. 7.14(d)).

7.6 Discussion

We analysed the evolution of filaments and bundles (categorized into small and

big) for different bundling mechanisms and with respect to the actin filament

length, finding rich dynamics in these hierarchical processes. We tried to explain

many of the reactions using simple kinetic models as well as simulations. For some

reactions, PEG-induced networks for example, a simple model may not suffice

and requires a more sophisticated approach to understand it. Nevertheless, our

straightforward time-lapse image analyses satisfactorily revealed very interesting

dynamics underlying the bundling and de-bundling processes.
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Chapter 8

Discussion and perspective

8.1 Emerging networks

Using quasi two-dimensional micro-confinements, we successfully bundle confined

actin filaments, followed by de-bundling, in a controlled and step-by-step man-

ner. We find that for long actin filaments (lavg ≥ 10 µm), a network of actin

bundles emerges, and the sharing of filaments between two or more bundles is

a key factor responsible for the network formation. If this sharing of filaments

is eliminated by shortening the actin filaments down to 1 µm, the network for-

mation is dramatically suppressed and isolated clusters of bundles form instead.

Thus, we find two distinct length regimes: short filaments (lavg ∼ 1 µm), where

an exclusive bundling process is observed, and longer filaments (lavg ≥ 10 µm),

where bundling is accompanied by network formation.

For an entangled network of actin filaments, the typical mesh size or the

average distance between the filaments (ξ) is dependent on the actin concentration

(ca, gL
−1) [77, 147]:

ξ ∼ 0.3√
ca

µm (8.1)

For a 3 µM (0.13 gL−1) actin solution, ξ ∼ 0.9 µm. Therefore, we conclude that

the network formation occurs if the average distance between the filaments (ξ)
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remains substantially smaller than the average filament length (lavg).

ζ ≪ lavg (percolation) (8.2)

ζ ≥ lavg (no percolation) (8.3)

Percolation refers to the long-range connectivity in systems, i.e., the formation

of a giant connected component (a single network). As the network develops,

the bundles formed at different positions start linking together, in other words,

from the initially formed components, a singular component emerges. Thus,

percolation describes the observed phenomenon of emerging networks concisely.

A simple relation between ξ and lavg determines whether the percolation of actin

bundles will take place to yield an emerging network. It also has a dramatic

effect on the architecture and kinetics of the formed structures, i.e., networks and

clusters.

8.2 Reaction mechanisms

We use three distinct bundling mechanisms, viz., counterion condensation, de-

pletion interaction and specific binding by ABPs, to induce F-actin bundling.

Though each of these processes have distinct characteristics, they share a notion

of involved hierarchy, where filaments first form small bundles which later join

to form bigger bundles. A step-by-step bundling process has also been observed

with fascin-induced bundling [148]. The de-bundling process is not the exact re-

versal of the bundling process, it includes the dissociation into small bundles, and

peeling of individual filaments from the outermost regions of bundles, to finally

form a network of entangled filaments. We discussed these dynamics in detail

in Chapter 7 and built kinetic models to explain the observed behaviours. Here

we summarize the major aspects of network and cluster formation by the three

bundling mechanisms.

Fig. 8.1(a) shows a schematic representation of the formation of a network

of actin bundles from long actin filaments and its subsequent disassembly back

to the entangled filaments. The bundling mechanism used is counterion conden-

sation, using Mg2+ ions. The rate constants for the respective reactions are also
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Figure 8.1: Schematic overview of (a) network formation-disassembly, and
(b) cluster formation-disassembly, induced by counterion condensation (Mg2+).
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shown. Filaments show a zipping (they join together lengthwise) behaviour to

form bundles; the zipping velocity is up to 12 µms−1 and the force generated dur-

ing the zipping process is in the order of 0.2 pN. The sharing of filaments between

the bundles results in a single network that generates stress within it. Depleting

the bundling agents releases the stress in the network, allowing us to estimate

the energy stored in the networks to be about 100 − 200 kBT . Afterwards, the

network disassembles into smaller bundles and finally completely dissociates to

single filaments.

Using the same bundling mechanism, shorter actin filaments form seggregated

actin bundles without any singular network formation (Fig. 8.1(b)). The small

bundles grow in size and fuse together to form bigger bundles. As the bundles

grow, end-to-end fusion of bundles becomes much more common than side-by-

side fusion. De-bundling follows the reverse process where big bundles separate

into small bundles which further dissociate into filaments.

A sketch of the network formation of actin bundles from F-actin using deple-

tion interactions is shown in Fig. 8.2(a). The crowding agents induce formation

of poles, where several actin filaments form a few aster-like structures with shared

sets of aligned filaments stretched between them. This spindle-like structure then

transforms into a network of bundles. Depleting the crowding agents reverses the

process, the formation of poles and the aligned filaments is observed again, leading

back to the freely fluctuating filaments.

Fig. 8.2(b) exhibits depletion interaction−induced clusters of bundles of short

actin filaments. Small individual clusters form in the microchamber, a part of

them developing into big clusters. Clusters also arise at the walls. Essentially,

the disassembly constitutes the reversal of the assembly process.

Fig. 8.3(a) shows an overview of the formation of a network of intrinsically

curved bundles induced by filamin, when it interacts with long actin filaments.

The networks consist of both small and big bundles and possess a ring-like struc-

ture with many bifurcations. The network does not disassemble into filaments,

even after 12 hours, due to the higly specific interactions between F-actin and

filamin.

When filamin interacts with short filaments, a singular cluster (rarely two) of

bundles forms, as sketched in Fig. 8.3(b). The cluster has a big bundle region
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Figure 8.2: Schematic overview of (a) network formation-disassembly, and
(b) cluster formation-disassembly, induced by depletion interactions (PEG).
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in the thicker, middle part and the small bundles form the tapering ends. The

cluster did not dissociate into single actin filaments within the time frame we

observed.

8.3 Self-assembly and self-organization

Are the emerging networks we observed examples of self-organization or self-

assembly? Self-organization has been defined [149] as ‘a dissipative nonequilib-

rium order at macroscopic levels, because of collective non-linear interactions

between multiple microscopic components. This order is induced by interplay

between intrinsic and extrinsic factors, and decays upon removal of the energy

source.’ The same authors [149] also give a definition of self-assembly as ‘a non-

dissipative structural order on a macroscopic level, because of collective inter-

actions between multiple (usually microscopic) components that do not change

their character upon integration into the self-assembled structure. This process

is spontaneous because the energy of unassembled components is higher than the

self-assembled structure, which is in static equilibrium, persisting without the

need for energy input.’

The emerging networks of actin bundles are far away from thermodynamic

equilibrium. The energy dissipation is involved in the form of viscous dissipation,

i.e., frictional loss of energy by filament and bundle fluctuations. ATP consump-

tion is not directly needed for the network formation. Nevertheless, it is needed

for actin polymerization in order to form a steady-state of F-actin, which is a

prerequisite for network formation. Yet, depletion of the energy source (ATP)

after structure formation does not affect the structure. For example, evaporation-

induced networks were found to be stable for months after their formation. Hence,

in some ways, network formation resembles self-organization, though it does not

completely agree with the given definition. On the other hand, the networks

under consideration also resemble self-assembled structures. Actin filaments as-

semble into networks of bundles because they represent a lower energy structure.

A prominent example is the entropically driven network formation by crowding

agents. Furthermore, the character of F-actin does not diminish upon network

assembly and is fully replenished after network disassembly. Thus, it can be
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Figure 8.3: Schematic overview of (a) network formation, and (b) cluster forma-
tion, induced by specific binding (filamin).
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concluded that the emerging networks have properties of both self-organized and

self-assembled structures.

8.4 Biological relevance

The importance of dynamics and structure formation of actin networks, especially

network disassembly, has been overlooked; also most experiments and theoreti-

cal models tend to ignore the polyelectrolyte nature of F-actin and molecular

crowding [3]. Here we outline the biological relevance of our in vitro experiments.

8.4.1 Length scales

Typical sizes of eukaryotic cells range from ∼ 10 µm for yeast cells up to ∼ 50 µm

for plant and animal cells [150]. The micro-confinements, in which we perform

the experiements, have a similar size range. Though, in reality, cellular structures

extend over three dimensions, the quasi two-dimensionality of the microchambers

greatly enhances the structural visualization necessary for further analyses.

Average actin filament length and the mesh size in cell extracts, along with

reconstituted cytoskeletal networks, is in the order of several hundred nanometers

[151, 152, 153, 154]. The distribution of F-actin lengths can be quite broad, up

to 13 µm [152]. Images of actin bundles in plant cells (see Section 1.4) and stress

fibers in animal cells indicate the presence of several µm−long filaments in vivo.

Thus, the short and long actin filament lengths we choose are comparable to in

vivo length distributions.

It should be noted that we use lower actin concentrations (at least 10 times

lower) than those observed in vivo. For example, F-actin concentration in Dic-

tyostellium cells is in the range of 70 − 150 µM [154, 155]. We choose a low

concentration (3 µM) in order to visualize and analyse individual dynamic events

such as zipping. Higher intracellular concentration means that network forma-

tion is likely even for shorter filaments (∼ 1 µm) since the mesh size will be of

the same order of magnitude (∼ 100 nm), concluding that, network formation is

highly relevant in cells.
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8.4.2 Counterions in the cell

Metal ions play a vital structural and functional role in biological cells and tis-

sues. Mg2+ is an essential factor for the functioning of several hundred enzymes.

The concentration of divalent cations such as Mg2+ is a few mM in vivo [78].

Actually, total Mg2+ levels in the cell can be as high as 10 mM, though much

of it is incorporated in various intracellular structures [156]. Both relatively sta-

ble (stress fibers) and more dynamic (filopodia) structures are stongly affected by

changes in ionic conditions, including pH, free Ca2+ and Mg2+ concentrations and

anionic phosphate (e.g. ATP) concentrations [30]. For instance, ATP depletion

during cellular oxidant injury is accompanied by actin bundle formation [157]. It

has been observed that, before condensing into a bundled phase, actin filaments

can condense into lamellar phases of cross-linked rafts, with an inverse relation

between their length and the ionic concentration; this lamellar phase can be ob-

served for low concentrations of divalent cations, even at 3 mM [158]. Thus, the

contribution of counterion condensation inducing F-actin bundling is plausible in

the cell, especially in a local environment (e.g. endoplasmic reticulum) where the

divalent concentration may be sufficiently high.

8.4.3 Crowding agents in the cell

The interior of the cell is a highly crowded environment with 20 − 30 % of the

volume being occupied by different macromolecules [49, 50] (see Fig. 1.1). Under

such conditions, bundling of actin filaments by depletion interactions becomes

quite relevant.

The pole formation and the aligned filaments as the intermediate structures

during the network formation in crowded environments is very interesting. Al-

though the components of spindle formation during cell division are completely

different and involve microtubules, the similarity in the structures is indeed strik-

ing, further emphasizing the fact that though specific components are required

for complex cellular processes, the contribution of non-specific interactions is in-

evitable and even necessary.
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8.4.4 ABPs in the cell

The relevance of bundling and network formation via actin binding proteins is

obvious owing to their sheer number inside the cell. Each of the proteins is highly

specific and has evolved to perform a certain task. The specific nature of protein-

mediated bundling is seen from the inability to reverse the network (and cluster)

formation in the case of filamin; in vivo, other accessory proteins must be playing

a major role during the de-bundling process.

We would like to emphasis that cells as well as the actin bundles inside them

are highly dynamic structures. Filopodia are highly dynamic as they elongate,

turn and retract, for which they need to be flexible enough, allowing environment

exploration. Yet, at the same time, they are rigid enough to overcome the cell

membrane stiffness. Fascin shows a highly dynamic exchange in filopodia: it dis-

sociates with an off-rate of 0.12 s−1 and is activated by phosphorylation, ensuring

efficient filopodium remodelling [159]. The dynamic emergence of filopodia from

a branched actin network present in the lamellipodia has been extensively studied

[160]. One of the proposed models to explain the phenomenon suggests elonga-

tion of filaments on the surface (which might result in an entangled mesh) and

their subsequent cross-linking with each other to form bundles, which gradually

increase in thickness and width to produce filopodia [161]. In the case of stress

fibers, α-actinin plays a dynamic role and its dissociation rate contributes to the

mechanical properties of the bundles [162, 163]. Within this context, our in vitro

experiments of step-by-step assembly and disassembly of actin bundles are highly

relevant, shedding more light on the bundling, and particularly, the de-bundling

processes.

Moreover, we study the dynamics of exclusive bundling processes as well

as emerging networks, employing biologically relevant bundling mechanisms. It

should be noted that in vivo it is highly probable that these mechanisms work

together in a consortium. For example, counterion condensation may be aided

by depletion interactions to bring about F-actin bundling even though the overall

intracellular divalent concentration is below the bundling threshold.

134



8. Discussion and perspective

8.4.5 Relation to tensegrity

An architecture that utilizes tension balanced by internal compression elements to

create a self-equilibrated stable mechanical structure is known as tensegrity [115].

Such structures consist of tension elements and compression-resistant (load bear-

ing) struts, which support each other locally (Fig. 8.4(a)).

Figure 8.4: (a) A simple self-stabilizing tensegrity network. (c) Sketch of a spread
cell on ECM with radially oriented MTs (red solid lines) which oppose the inward-
directed forces generated by actomyosin network (black lattice). Figure taken and
modified from [115].

It is proposed that the cytoskeleton acts as a tensegrity-based structure with

F-actin acting as tension elements and MTs acting as compression-resistant struts

[164] (Fig. 8.4(b)). Indeed, aligned stress fibers are shown to buckle in vivo when

they are rapidly compressed beyond their unloaded slack length [165]. Also,

intracellular MTs can bear large-scale compressive loads (up to 100 pN) [166].

The forces generated by internal tension are proposed to be further converted

into biochemical changes; such as modification of stress-sensitive ion channels,

G-proteins or other signalling molecules [167].

The pre-stressed Mg2+-induced networks are comparable to the tensegrity

model of the cell, where internal tension is generated during percolation and then

released when the network disassembles. The process does not require an ex-
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ternal energy source nor any specific protein-protein interactions. Both internal

(self-generated pre-stress) and external (environment-dependent) mechanical sig-

nals influence the behaviour of adherent cells [3], yielding the stress-generating

phenomena important.

8.4.6 Structure-function relationship

The network architecture naturally affects its mechanical properties, and ulti-

mately its function. The microstructure of actin gels or networks is responsible

for the viscoelastic behaviour. It has been predicted that the filament length with

respect to the mesh size is crucial in determining the viscoelastic properties of

semi-flexible networks [168]. In vitro rheological studies have revealed how dif-

ferent ABPs like plastin, fascin, α-actinin, filamin and scruin can entail distinct

linear and non-linear viscoelastic properties to actin bundles and their networks

depending on the concentration of actin and ABPs [61, 75, 77, 116, 117, 169].

Yet, in order to understand these mechanical properties, one needs to under-

stand the underlying microstructure dynamics. This thesis focuses on the mi-

crostructure dynamics, complementing the rheological data obtained by probing

the viscoelastic properties. Observing the bundling and de-bundling processes

with high spatiotemporal resolution, we find many emerging properties exhibited

by F-actin such as network formation, stress generation and spindle-like structure

development within confined environments.

8.5 Outlook

Microchambers are versatile tools that can be utilized in a wider variety of ways

than encompassed within this thesis. One can create a range of structures involv-

ing anisotropies and interesting topological features (for example, see Fig. 3.5).

Likewise, it is possible to use other biopolymers, including DNA, MTs, IFs and

fibrin. Our preliminary experiments with fibrin network dynamics inside the

microchambers show interesting results. We are also keen on developing con-

centration gradients inside microchambers, by constructing connecting channels

which attach to two different controlling channels.
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Microchambers are not only limited to reconstituted biopolymer networks, but

can also be used to study single cells. The flow-free environment of microchambers

is very suitable to observe the motile as well as sessile behaviour of bacteria (e.g.

we are currently studying the surface sensing behaviour of Caulobacter crescentus,

in collaboration with Prof. Dr. Urs Jenal, Biozentrum, University of Basel).

The emergent properties exhibited by actin are novel and emphasize its po-

tential to generate a wide range of structures, which are crucial for cell function.

Thus, it is important to realize that the confined and highly crowded cellular en-

vironment can have a dramatic effect on the bundling of actin filaments, thereby

crucially impacting the mechanics and the integrity of the cell.
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Protocols for producing multi-height masters are given below.

Table 1: first layer h = 0.5 µm, second layer h = 5 µm

Procedure Parameters

First layer: SU8 2000.5
substrate pretreat 200◦C, ≥ 10 min
spin coat 3000 rpm, 30 s
soft bake 95◦C, 1 min
exposure 2 s (hard contact 1.2− 1.4 Pa, 5 s)
post exposure bake 95◦C, 1 min

Second layer: SU8 3005
spin coat 4000 rpm, 30 s
soft bake 95◦C, 2.2 min
exposure 3.5 s (soft contact)
post exposure bake 95◦C, 1.2 min
development 1 min
hard bake 200◦C, ≥ 10 min
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Table 2: first layer h = 0.5 µm, second layer h = 10 µm

Procedure Parameters

First layer: SU8 2000.5
substrate pretreat 200◦C, ≥ 10 min
spin coat 3000 rpm, 30 s
soft bake 95◦C, 1 min
exposure 2 s (hard contact 1.2− 1.4 Pa, 5 s)
post exposure bake 95◦C, 1 min

Second layer: SU8 3005
spin coat 1000 rpm, 30 s
soft bake 95◦C, 3 min
exposure 6 s (soft contact)
post exposure bake 95◦C, 2 min
development 2 min
hard bake 200◦C, ≥ 10 min

Table 3: first layer h = 2 µm, second layer h = 2 µm

Procedure Parameters

First layer: SU8 2002
substrate pretreat 200◦C, ≥ 10 min
spin coat 3000 rpm, 30 s
soft bake 95◦C, 1 min
exposure 2.5 s (hard contact 1.2− 1.4 Pa, 5 s)
post exposure bake 95◦C, 2 min

Second layer: SU8 2002
spin coat 3000 rpm, 30 s
soft bake 95◦C, 1 min
exposure 2.5 s (soft contact)
post exposure bake 95◦C, 2 min
development 1 min
hard bake 200◦C, ≥ 10 min
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Table 4: first layer h = 2 µm, second layer h = 15 µm

Procedure Parameters

First layer: SU8 2002
substrate pretreat 200◦C, ≥ 10 min
spin coat 3000 rpm, 30 s
soft bake 95◦C, 1 min
exposure 2.5 s (hard contact 1.2− 1.4 Pa, 5 s)
post exposure bake 95◦C, 2 min

Second layer: SU8 3010
spin coat 1000 rpm, 30 s
soft bake 95◦C, 10 min
exposure 6.1 s (soft contact)
post exposure bake 95◦C, 4 min
development > 2 min
hard bake 200◦C, ≥ 10 min

141



. APPENDIX A

142



Appendix B

An ensemble of reactions forming small bundles (f3−f5) and big bundles (f6−f8)

are given below:

f + f
k1−−⇀↽−−
k
−1

f2, f + f2
k1−−⇀↽−−
k
−1

f3, f + f4
k1−−⇀↽−−
k
−1

f5, f2 + f3
k1−−⇀↽−−
k
−1

f5, f + f5
k1−−⇀↽−−
k
−1

f6,

f2 + f4
k1−−⇀↽−−
k
−1

f6, f3 + f3
k1−−⇀↽−−
k
−1

f6, f + f6
k1−−⇀↽−−
k
−1

f7, f2 + f5
k1−−⇀↽−−
k
−1

f7, f3 + f4
k1−−⇀↽−−
k
−1

f7,

f + f3
k2−−⇀↽−−
k
−2

f4, f2 + f2
k2−−⇀↽−−
k
−2

f4, f + f7
k2−−⇀↽−−
k
−2

f8,

f2 + f6
k2−−⇀↽−−
k
−2

f8, f3 + f5
k2−−⇀↽−−
k
−2

f8, f4 + f4
k2−−⇀↽−−
k
−2

f8.

The differential equations used to obtain the time-dependent concentrations

of f , b and bb and further used in COMSOL simulations (see Section 7.3.1.2) are

as follows:

d[f ]

dt
= −k1[f ](2[f ] + [f2] + [f4] + [f5] + [f6])− k2[f ]([f3] + [f7])

+k−1(2[f2] + [f3] + [f5] + [f6] + [f7]) + k−2([f4] + [f8]).

d[f2]

dt
= k1([f ][f ]− [f ][f2]− [f2][f3]− [f2][f4]− [f2][f5])

−k2[f2](2[f2] + [f6]) + k−1(−[f2] + [f3] + [f5] + [f6] + [f7])− k−2(2[f4] + [f8]).

d[f3]

dt
= k1([f ][f2]− [f2][f3]− 2[f3][f3]− [f3][f4])− k2[f3]([f1] + [f5])

+k−1(−[f3] + [f5] + 2[f6] + [f7]) + k−2([f4] + [f8]).

143



. APPENDIX B

d[f4]

dt
= −k1([f ][f4] + [f2][f4] + [f3][f4]) + k2([f1][f3] + [f2][f2]− 2[f4][f4])

+k−1([f5] + [f6] + [f7]) + 2k−2([f8]− [f4]).

d[f5]

dt
= k1([f ][f4] + [f2][f3]− [f ][f5]− [f2][f5])− k2[f3][f5]

−k−1(2[f5]− [f6]− [f7]) + k−2[f8].

d[f6]

dt
= k1([f ][f5] + [f2][f4] + [f3][f3]− [f ][f6])− k2[f2][f6]

−k−1(3[f6]− [f7]) + k−2[f8].

d[f7]

dt
= k1([f ][f6] + [f2][f5] + [f3][f4])− k2[f ][f7]− 3k−1[f7] + k−2[f8].

d[f8]

dt
= k2([f ][f7] + [f2][f6] + [f3][f5] + [f4][f4])− 4k−2[f8].
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The time dependent concentration of small bundles b during the disassembly of

networks induced by Mg2+ ions is derived as follows. The differential equation is:

d[b]

dt
= k3[f0]e

−k3t − k4[b].

Taking the laplace transform,

sb(s)− [b0] =
k3[bb0]

s+ k3
− k4b(s).

Solving the algebric equation,

sb(s) + k4b(s) =
k3[bb0]

s + k3
+ [b0].

b(s)(s+ k4)) =
k3[bb0]

s+ k3
+ [b0].

b(s) =
k3[bb0]

(s+ k3)(s+ k4)
+

b0
s+ k4

.

Taking the inverse Laplace transform on both sides, we obtain

[bt] =
([b0] k3 − [b0] k4 + [bb0] k3)e

−k4t

k1 − k4
− [bb0] k3e

−k3t

k3 − k4
.
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have you in the lab! Alex, I am sure you were as excited as me when

we saw the beautiful fibrin networks forming in the microchambers

for the first time. Etienne and Benni, my caulo-buddies, it was a nice

time wiht you. Alex (the SJF one), it was really nice to see someone

so enthusiastic about science, and I am quite sure you are going to

end up doing a PhD one day! Hermeto, though I had nothing to do

with your project, we somehow ended up going for Hiromi concert

(just in time, thanks to my complete lack of any directional help to

you, but believe me, if I had tried to help, we wouldn’t have made it!).

And lastly Zoe, it has been absolute fun teaching you the secrets of

microfluidics and I am very happy that you will keep on working with

my beloved chambers after I leave! Additionally, many many thanks

for proofreading the thesis, there were more than ‘a few ’ mistakes in

it, and you have made it look so much better!



Here goes a special mention of Sue from Hypermol! Sue, I am of

course thankful for all the instant help you provided with actin et

al., but I am more grateful for the wonderful rapport that developed

between us. It is always nice when you can just write an informal

mail (which can only include telling you that Ronnie won the world

championship!) instead of those routine and boring, formal mails! I

have to say I was quite pampered by your constant replenishment of

sweets, stationaries and what not, and I thoroughly enjoyed it!

Basel, I love this city! I have enjoyed my stay immensely, and Switzer-

land in general. There are just too many good things here not to like

it, Montreux Jazz and Locarno Film Festival, just to mention the key

ones. I also want to thank all the people I met here; Stefan, Anouk, Fa-

bienne, Prince, Stephanie, Elisa, Phil, Brigitta. Special thanks to my

Badminton colleagues: Sebastian, Daniela, Simon, Tilman and Paula,

it’s time for me to ‘leave!!’. Special thanks to the Basel Snooker Club,

the weekends were incredible because of the green baize! I am very

grateful to Krishna and MamaEat (it’s a weird name I agree, but they

serve great Thai food), especially after the overdose of Pommes by the

Mensa. Thanks to the ω © ∩ ∂ Σ ℜ
∫

∪ ⌊ LATEX! Though Thomas

thinks it’s only for nerds, I strongly disagree... well, maybe I agree a

bit :-P.

There are two people I have never met but have read enough by

them to consider them as my friends; Carlos Castaneda and Haruki

Murakami! Your books have had a permanent impact on me, the

damage is done! Haruki, I just hope you never stop writing, just keep

up your magic.

Himya, Aniket, Swapnil, Mukta and Abha, I sincerely don’t under-

stand how you tolerate me (though I am extremely grateful for that)

not replying to your e-mails, literally for months! Well, keep it going!

Arpita, that was an unforgettable week in Croatia! Minu... I do have

a special bond with you and I really cherish it.

Let me turn back to India now. There are just too many people I want



to mention here I had so much fun with and here goes a very mod-

est attempt: Satish, Mrunal, Pushkya, Tanu, Payal, Shekharkaka,

Srikaka, Rashmimawshi, Sandeepkaka, Akku, Sanjumawshi, Tanu-

mawshi, Guddi, Papu, Preetimawshi, Seemamawshi, Ramkaka. You

know, we might not have met very often, but I fondly remember you

all from time to time. Abha, Kukya, Premu and Rajukaka, you are

just unavoidable (not that I want to avoid you) in my life, as soon as I

land in Mumbai, visit to Vashi is a must! Premu, I totally accept my

defeat, you are the winner of the PhD race and as a prize, it would

be great if you could serve me some ‘talalele bombil ani sabudanyachi

khichdi’ for breakfast, the next time I am at your place! Abha, your

mile-long e-mails, which I am always eager to receive, could just be

the culprit for this rather lengthy acknowledgement business.

I love cats, and I strongly believe that they know everything. I think

I like them so much, that I tend not to think about them, not bring

them out of my memory, just keep them a secret, with me. But he

deserves a special mention: Busca, you were my beloved cat and you’ll

always be mine.

Aai, I know how much you miss me, and I miss you too. Baba, it’s

simply great to be your friend. Sanu, though I don’t remember you

when you were little, I guess it has changed now. I have missed you

a lot and we need to compensate for that in the future! By the way,

I always liked Surfanika the most. Aaji, I immensely enjoy our fights

and chats (?), and I wish we can have more time to spend. Nana,

you are very special to me, it’s a strange bond that I share with you,

and I love it. Sakya, we are definitely at our worst, trying to keep in

touch, but the nice thing is, we don’t need to! We can meet after 20

years (I really hope it doesn’t take so much time), and it will be just

like meeting the next day!

So many times I have wished that I could flip Germany upside down,

Bremen will be just across the border then! An extraordinarily high

affinity to Bremen comes from a highly specific interaction with a girl



doing her PhD there, she is very very special to me, our bond has

lasted (no wait, strengthened!) over the last four years and across

the whole Germany, there goes the spatiotemporal proof of love, and

finally, it’s time to close that gap. Gitanjali, I can’t take it no more,

I don’t want to take it no more, I am done with my ‘Einzelzimmer’,

I had enough of one-man-cooking-show, hats off to Google+ but no

thanks, all I want now, is you, not staring at me through some webcam

a country away and demanding an exaplanation for wearing the same

shirt fifth time in a row and the mess my hair is in, but I want you

physically besides me, close enough to tidy up my hair, throw a new

shirt at me, laugh and cry, and be together.

I wish all of you (and myself) a happy and healthy life!


	Contents
	1 Introduction
	1.1 Life: an emergent property
	1.2 Cytoskeleton
	1.3 Actin
	1.4 Actin bundles
	1.5 Bundling mechanisms
	1.5.1 Counterion condensation
	1.5.2 Depletion interaction
	1.5.3 Actin binding proteins

	1.6 Microfluidics
	1.7 Bottom-up approach
	1.8 Outline of the thesis

	2 Materials and methods
	2.1 Materials
	2.1.1 Biological materials
	2.1.1.1 Actin
	2.1.1.2 Gelsolin
	2.1.1.3 Filamin

	2.1.2 Chemicals and other materials

	2.2 Soft lithography
	2.2.1 Master preparation (lithography)
	2.2.1.1 Process flow
	2.2.1.2 Multi-height structures

	2.2.2 Fabrication of microfluidic devices

	2.3 Surface coating of microfluidic devices
	2.3.1 Importance
	2.3.2 Coating agents and procedure

	2.4 Equilibration of microfluidic devices
	2.4.1 Importance
	2.4.2 Method

	2.5 Microscopy
	2.6 Software
	2.7 Image processing

	3 Microchambers
	3.1 Motivation
	3.2 Design
	3.3 Diffusive behaviour in microchambers
	3.4 Proof of principle
	3.5 Discussion

	4 Confined actin filaments
	4.1 Introduction
	4.2 Diffusion of G-actin and bundling agents
	4.3 Average length of confined actin filaments
	4.4 Persistence length of F-actin
	4.5 Diffusion of actin filaments
	4.6 Semi-dilute solutions
	4.7 Spatial distribution of filaments within confinements
	4.8 Discussion

	5 Evaporation induced emerging networks
	5.1 Concept
	5.2 Results
	5.3 Network properties
	5.3.1 Shape and area of meshes
	5.3.2 Link lengths
	5.3.3 Link orientations

	5.4 Discussion
	5.4.1 Confinement geometry-dependent networks
	5.4.2 Biological relevance
	5.4.3 Importance of flow-free environment


	6 Emergence and disassembly of actin networks
	6.1 Motivation
	6.2 Experimentation
	6.3 Bundling mechanisms
	6.3.1 Counterion condensation
	6.3.2 Depletion interaction
	6.3.3 Actin binding proteins

	6.4 Emerging actin networks and their repression
	6.5 Network properties
	6.5.1 Filament density inside the bundles
	6.5.2 Links
	6.5.3 Nodes
	6.5.4 Meshes
	6.5.5 Radial distribution of bundles within confinements

	6.6 Discussion

	7 Dynamics of actin networks
	7.1 Motivation
	7.2 Time-lapse image analyses
	7.3 Evolution of counterion-induced networks
	7.3.1 Network formation
	7.3.1.1 Zipping
	7.3.1.2 Kinetic models

	7.3.2 Network disassembly
	7.3.2.1 Stored energy in networks
	7.3.2.2 Kinetic model

	7.3.3 Bundling of short filaments and network repression
	7.3.3.1 Finite width of bundles


	7.4 Evolution of depletion interaction-induced networks
	7.4.1 Network formation
	7.4.1.1 Pole formation and aligned filaments
	7.4.1.2 Depletion interactions with the wall

	7.4.2 Network disassembly
	7.4.2.1 Kinetic model

	7.4.3 Bundling of short filaments and network repression
	7.4.3.1 Kinetic model

	7.4.4 Cluster disassembly

	7.5 Evolution of filamin-induced networks
	7.5.1 Network formation
	7.5.1.1 Curved bundles induced by filamin

	7.5.2 Network disassembly
	7.5.3 Bundling of short filaments and network repression

	7.6 Discussion

	8 Discussion and perspective
	8.1 Emerging networks
	8.2 Reaction mechanisms
	8.3 Self-assembly and self-organization
	8.4 Biological relevance
	8.4.1 Length scales
	8.4.2 Counterions in the cell
	8.4.3 Crowding agents in the cell
	8.4.4 ABPs in the cell
	8.4.5 Relation to tensegrity
	8.4.6 Structure-function relationship

	8.5 Outlook

	Appendix A
	Appendix B
	Appendix C
	References
	Publications and meetings
	Curriculum Vitae

