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Abstract

In this dissertation we present the main features of a new nuclear reaction network
evolution code. This new code allows nucleosynthesis calculations for large numbers of
nuclides. The main results in this dissertation are all obtained using this new code.

The strength of standard big bang nucleosynthesis is, that all primordial abundances
are determined by only one free parameter, the baryon-to-photon ratio η. We perform
self consistent nucleosynthesis calculations for the latest WMAP value η = (6.16±0.15)×
10−10. We predict primordial light element abundances: D/H = (2.84± 0.23)× 10−5,
3He/H = (1.07± 0.09)×10−5, Yp = 0.2490±0.0005 and 7Li/H = (4.57± 0.55)×10−10,
in agreement with current observations and other predictions. We investigate the
influence of the main production rate on the 6Li abundance, but find no significant
increase of the predicted value, which is known to be orders of magnitude lower than
the observed.

The r-process is responsible for the formation of about half of the elements heav-
ier than iron in our solar system. This neutron capture process requires explosive
environments with large neutron densities. The exact astrophysical site where the
r-process occurs has not yet been identified. We explore jets from magnetorotational
core collapse supernovae (MHD jets) as possible r-process site. In a parametric study,
assuming adiabatic expansion, we find good agreement with solar system abundances
for a superposition of components with different electron fraction (Ye), ranging from
Ye = 0.1 to Ye = 0.3. Fission is found to be important only for Ye ≤ 0.17.

The first postprocessing calculations with data from 3D MHD core collapse super-
nova simulations are performed for two different simulations. Calculations are based on
two different methods to extract data from the simulation: tracer particles and a two
dimensional, mass weighted histogram. Both results yield almost identical results. We
find that both simulations can reproduce the global solar r-process abundance pattern.
The ejected mass is found to be in agreement with galactic chemical evolution for a
rare event rate of one MHD jet every hundredth to thousandth supernova.
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Chapter 1

Introduction

One of the fundamental questions of mankind, is the question, where we come from. I
am aware that this question can neither be answered by physics alone, nor within the
scope of this thesis. Nevertheless, it is the driving force behind science, to search for
our own origin by studying the state and the formation of our surroundings.

Whenever someone asked me what my thesis is about, I answered, that I am trying
to explain the origin of elements in our solar system and their distribution. The solar
photosphere and meteorites reflect the chemical signature of the gas cloud, from which
our sun formed (see Figure 1.1). The abundance distribution contains the footprints of
astrophysical processes, that occurred long before our sun was born.

The lightest elements (the yellow area in Figure 1.1) are produced in the big bang.
The primordial gas consists (in mass) of ∼ 75% 1H, ∼ 25% 4He and traces of deuterium
(2H), 3He, and lithium. From these basic building blocks, the elements up to iron (the
green area in Figure 1.1) are mostly synthesized by fusion reactions of charged nuclei
in hydrostatic burning phases of massive stars. The production of elements beyond
the iron peak is hindered by the increasing Coulomb barrier (with increasing proton
number). Reactions with neutrons are the main mechanism for the formation of most
elements heavier than iron.

Two processes have been identified by the double peak structure in solar abundances,
each of which contributes to about half of the synthesis of heavy elements (red and
blue areas in Figure 1.1). Depending on whether neutron captures are slow or rapid,
compared to the β-decay timescale, the process is called slow process or rapid process
(hereafter s-process and r-process)[20, 22]. While the s-process and its astrophysical
sites are quite well understood, the r-process still poses some problems. Although the
astrophysical site of the r-process has not yet been unambiguously identified, there are
indications that point to core collapse supernovae (CCSN) as the best candidate.

Numerical models are necessary to simulate these spectacular events in order
to determine which elements are produced and in what quantities. Current multi-
dimensional simulations of CCSN can only be carried out on powerful supercomputers.
Detailed nucleosynthesis calculations, that determine the composition of ejected matter,
are performed in a postprocessing manner. Here, we finally arrive at the general topic
of my Ph.D. thesis: Nucleosynthesis in explosive scenarios.

Nucleosynthesis calculations are an interesting combination of nuclear physics and
computer science, embedded in an astrophysical scenario. To keep up with the fast
developments in information technology, I decided to rewrite the nuclear reaction
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Figure 1.1: Solar system abundances of [13], with silicon normalized to 106

network code, that has been used for many years in our research group, from scratch.
The main goal I pursued was to create a fast and versatile modern version of the old
program.

Chapter 2 is dedicated to the theory of nuclear reaction network calculations. In a
first part, thermonuclear reaction rates are derived and the nuclear reaction network
equations are described. In a second part, the numerical methods to solve these
equations are discussed in detail, and the main new features of the network code
are introduced and their benefits discussed. In the final part of this chapter, the
implementation of different kinds of reaction rates in the new code is presented.

In Chapter 3 the physics of the big bang and primordial nucleosynthesis are
explained. The nucleosynthesis code is then used to perform self-consistent calculations
of big-bang nucleosynthesis. Results are compared against observations and different
nucleosynthesis predictions. The huge discrepancy between predicted and observed
primordial lithium abundances is also discussed. The influence of different 2H(α, γ)6Li
reaction rates on the primordial 6Li abundance is explored and the chapter ends with
a short presentation of nucleosynthesis in inhomogeneous big-bang scenarios.

In Chapter 4 the main processes responsible for the formation of heavy elements are
explained, together with a discussion of observational informations and astrophysical
parameters for the r-process. Possible astrophysical sites for the r-process are also
studied.

In Chapter 5 the focus will be set on MHD Jets from core collapse supernovae
as possible r-process site. The influence of initial conditions on the final abundance
distribution is qualitatively explored in a short parameter study. For the first time,
data from 3D simulations of jets from core collapse supernovae is used as input for
nucleosynthesis calculations. Two different methods to extract data from the simulation
are investigated and qualitatively compared with results from lower dimensional simu-
lations. A preliminary exploration of the consistency with galactic chemical evolution
closes the chapter.

The thesis concludes with a summary of the results and an outlook on future
projects and improvements in Chapter 6.



Chapter 2

Nuclear Reaction Network
Calculations

In this section we introduce the formalism and techniques used in nuclear reaction
network calculations. The purpose of a nuclear reaction network is to follow the
evolution of nuclear abundances in astrophysical events. Such a network basically
consists of a system of coupled first-order differential equations, one for each nuclide
under investigation. The differential equations contain terms for individual nuclear
reactions. Nuclear reactions are governed by three of the four fundamental forces: the
electromagnetic force (emission and absorption of photons), the strong force (emission
and absorption of nucleons and nuclei) and the weak force (emission and absorption of
leptons such as electrons, positrons, neutrinos and antineutrinos). In Section 2.1 we
will derive reaction rate expressions for the different interactions at work, following the
(still) unpublished book by Cowan, Truran & Thielemann [29], starting from the most
basic information about a reaction, the nuclear cross section. With this information,
the basic concepts of reaction networks are introduced in Section 2.2. To evolve the
system of differential equations over time, we have to rely on numerical methods. In
Section 2.3 a detailed description of the numerical methods is given. Depending on the
astrophysical scenario under investigation, the number of differential equations that
have to be solved simultaneously can range from a few to several thousands. Solving
large systems of coupled differential equations is usually pretty involved. In Section
2.4 we discuss some details of the computer program we developed in the course of
this thesis, that take advantage of the characteristics of nuclear reaction networks.
Under certain conditions, nuclear abundances do not depend on individual reaction
rates anymore, but only on the given thermodynamic conditions. In Section 2.5 we
present the common method to determine individual abundances under such conditions.
Finally, in Section 2.6 the detailed implementation of certain reactions in the computer
code is discussed.

2.1 General Formalism

The most basic piece of information about a nuclear reaction is the nuclear cross section.
In the simple case of two colliding particles i and j, with number densities ni, nj and
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relative velocity v = |vi − vj |, the interaction cross section σ is defined by

σ =
number of reactions target−1sec−1

flux of incoming projectiles
=
r/ni
njv

. (2.1)

The second equality only holds when the relative velocity between targets and projectiles
is constant, and has the value v. Then, r, the number of reactions per cm3 and sec,
can be expressed as r = σvninj .

More generally, the targets and projectiles have specific distributions of velocities,
in which case r is given by

ri;j =

∫
σ (|vi − vj |) · |vi − vj | dnidnj . (2.2)

The evaluation of this integral depends on the type of particles that are involved,
and the distributions they obey. In the general case, where both i and j are nuclei
in an astrophysical plasma, target and projectiles both obey a Maxwell-Boltzmann
distribution, and with

dnj = nj

(
mj

2πkBT

)3/2

exp

(
−
mjv

2
j

2kBT

)
d3vj = njφ (vj) d

3vj (2.3)

we find

ri;j = ninj

∫
σ (|vi − vj |) |vi − vj |φ (vi)φ (vj) d

3vid
3vj (2.4)

= ninj 〈σv〉i;j . (2.5)

The velocity distributions φ are those of a Boltzmann gas for a given number density
and temperature

φ (vi) =

(
mi

2πkBT

)3/2

exp

(
− mivi

2kBT

)
(2.6)

The velocity integrated cross section 〈σv〉i;j is often also referred to as reactivity. Using
center of mass and relative coordinates rather than individual ones, the reactivity can
be expressed as a function of relative velocity v and reduced mass µ = mimj/ (mi +mj)
(see e.g. [23] for a more detailed derivation)

〈σv〉i;j =

(
µ

2πkBT

)3/2 ∫
σ (v) v exp

(
− µv2

2kBT

)
d3v. (2.7)

With d3v = 4πv2dv and E = 1
2µv

2 we can finally express Eq.(2.7) as an energy integral

〈σv〉i;j =

(
8

µπ

)1/2

(kBT )−3/2
∫ ∞

0
Eσ (E) exp

(
− E

kBT

)
dE. (2.8)

It is obvious that the reactivity only depends on the temperature and, knowing σ (E)
of a nuclear reaction, can easily be calculated, provided that the participating nuclei
obey Maxwell-Boltzmann statistics.
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Using Eq.(2.5) we can define a mean lifetime of nuclide i against destruction through
projectile j:

τj (i) =
1

〈σv〉i;j nj
. (2.9)

The cross sections needed to calculate the reaction rates are provided by experimental
measurements (where feasible) and theoretical predictions. However, not all cross
sections have to be determined explicitly. There exists a relation between the cross
section of a reaction i (j, o)m and its inverse reaction m (o, j) i. Using the Hauser-
Feshbach formalism [51] one can derive an expression for the ratio of the two cross
sections [19]

σi (j, o)J
σm (o, j)J

=
1 + δij
1 + δom

gogm
gigj

k2
o

k2
j

, (2.10)

where the k are wave numbers with ko = po/~ =
√

2µomEom/~ (kj is defined anal-
ogously), the g are the degeneracy factors of the ground state, gi =

(
2J0

i + 1
)
, and

the δ are Kronecker deltas. The subscript J indicates a single populated state in the
compound nucleus with spin J . The relation in Eq.(2.10) is also known and referred
to as detailed balance. This relation holds for all individual transitions summed over
compound states J . Thus we obtain a similar relation for the total cross section

σi (j, o;Eij)

σm (o, j;Eom)
=

1 + δij
1 + δom

gogm
gigj

k2
o

k2
j

, (2.11)

at corresponding energies Eij = Eom +Qo,j , where Qo,j is the Q-value of the reaction
m (o, j) i. For reactions in an astrophysical plasma the excited states of nuclei i and
m are thermally populated, i.e. gi and gm have to be replaced by Gi and Gm, with
Gx =

∑
n (2Jn + 1) exp (−En/kBT ). Using Eq.(2.8) for the reactivity 〈σv〉 and the

above relation for the cross sections, we obtain

〈σv〉i;j,o =
1 + δij
1 + δom

Gmgo
Gigj

(
µom
µij

)3/2

exp (−Qo,j/kBT ) 〈σv〉m;o,j . (2.12)

Here µ again denotes the reduced mass (see above).

We note that the above relation is not only convenient but in fact very important
for the application of reaction rates in reaction networks. Using detailed balance one
avoids numerical inconsistencies in network calculations, which may arise when forward
and reverse rates are calculated separately, or even worse, from different sources. The
proper balance between the two directions can only be achieved in employing detailed
balance [108].

In the following subsections we will derive similar expressions for reactions, where
particles other than nuclei participate, and thus different statistics apply.

2.1.1 Photodisintegrations

The treatment of reactions with photons, leptons or simple decays is very similar.
Nevertheless, we will discuss each quickly in detail. Again, we follow the general
definition of ri;j given in Eq.(2.2). For a reaction with a photon, projectile j is replaced
by the photon, resulting in a reaction of the type i(γ, o)m. The relative velocity is the
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speed of light, c, and the distribution dnj is the Planck distribution of photons

dnγ =
8π

c3

νdν

exp(hν/kBT )− 1
=

1

π2 (c~)3

E2
γdEγ

exp(Eγ/kBT )− 1
. (2.13)

The target i is a nucleus and thus the distribution dni is a Boltzmann distribution with∫
dni = ni. Since the relative velocity between the nucleus and the photon is constant,

and the photodisintegration cross section is only dependent on the photon energy Eγ ,
the integration over dni can easily be performed, resulting in

ri;γ = niλi;γ,o(T ) (2.14)

with

λi;γ,o(T ) =
1

π2c2~3

∫ ∞
0

σi(γ, o;Eγ)E2
γ

exp(Eγ/kBT )− 1
dEγ . (2.15)

Contrary to reactions where both reaction partners are following a Boltzmann distri-
bution, resulting in Eq.(2.5), Eq.(2.14) only has a linear dependence on the number
density of the nucleon. Thus the integral acts like an effective (temperature dependent)
”decay constant” of nucleus i.

In practice, the photodisintegration cross section does not have to be measured,
because it is related to the capture cross section of the reverse reaction m (o, γ) i by
detailed balance. Using the detailed balance relation in Eq.(2.10), we can rewrite
Eq.(2.15) as

λi;γ,o(T ) =
goGm

(1 + δom)Gi

(
µomkBT

2π~2

)3/2

exp (−Qo,γ/kBT ) 〈σv〉m;o,γ , (2.16)

using kγ = Eγ/~c, gγ = 2 and Eγ = Eom + Qo,γ . When deriving this relation it
must be assumed, that the denominator (exp (E/kBT )− 1) of the Planck distribution,
appearing in Eq.(2.15), can be replaced by exp (E/kBT ). Although this approximation
is mathematically unsound, it turns out that it introduces an error of less than a few
percent for astrophysically relevant temperatures and rate values [108].

2.1.2 Electron and Positron Captures

For nuclear electron capture reactions

e− + (A,Z)→ (A,Z − 1) + νe, (2.17)

we can apply a similar procedure as for photodisintegration reactions. Due to the vast
mass difference between electrons (me = 0.511 MeV/c2) and nuclei (mA ≈ 931 MeV/c2)
we can assume that nucleus i is at rest at the center of mass and the relative velocity
v, determining the cross section and the rate, is entirely due to the electron velocity.
In that case, similar to photodisintegrations, where the relative velocity was c, the rate
integral in Eq.(2.2) is independent of nucleus i and dni and the integration can easily
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be performed, to give

ri;e = ni

∫
σe (ve) vedne

= niλi;e (ρYe, T ) . (2.18)

This expression is very similar to Eq.(2.14), but this time the ”decay constant” depends
on temperature and on density. Once the electron capture cross sections are known,
temperature and density will determine, whether dne represents a Maxwell-Boltzmann
or a Fermi distribution, which can be partially or fully degenerate or relativistic. This
treatment has been extended to the capture of positrons [47, 48, 49]

e+ + (A,Z)→ (A,Z + 1) + ν̄e, (2.19)

which are in thermal equilibrium with photons and electrons once the temperature is
high enough for photons to produce electron-positron pairs.

2.1.3 Decays

For normal decays, like α- or β-decays, with a half life τ1/2, we obtain an equation
similar to Eq.(2.14) and (2.18), with a decay constant λi = ln 2/τ1/2,i and

ri = niλi. (2.20)

For the ground state, the half life is constant. However, at higher temperatures, excited
states n can also be thermally populated and have different decay constants λi,n. The
total temperature dependent decay constant for nucleus i then becomes

λi (T ) =

∑
n λi,n (2Jn + 1) exp (−En/kBT )

Gi (T )
(2.21)

where Gi (T ) =
∑

(2Jn + 1) exp (−En/kBT ).

2.2 Nuclear Reaction Networks

In the previous section we derived two expressions for r, the number of reactions per
cm3 per sec: (i) ri,j = ninj < σv >i,j for two-particle reactions and (ii) ri = niλi for
photodisintegrations, decays and capture reactions. In the first term, we neglected a
correction for a gas of identical particles. In such a gas, every particle would be counted
twice, since it would act once as a target and once as a projectile. Thus the general
form of ri,j is given by

ri,j =
1

1 + δij
ninj < σv >i,j . (2.22)

Without detailed derivation, we introduce a similar formula for three-body reactions:

ri,j,k =
1

1 + ∆ijk
ninjnk < σv >i,j,k, (2.23)
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where ∆ijk = δij + δjk + δik + 2δijk is the factor that prevents double counting in three
body reactions [40].

For a single reaction i(j, o)m, the changes in number densities due to nuclear
reactions rather than density changes are given by(

∂ni
∂t

)
ρ

=

(
∂nj
∂t

)
ρ

= −ri;j(
∂no
∂t

)
ρ

=

(
∂nm
∂t

)
ρ

= +ri;j .

In an astrophysical plasma a whole variety of different reactions, producing and
destroying a nucleus i, can occur simultaneously, leading to(

∂ni
∂t

)
ρ=const

=
∑
j

N i
jrj +

∑
j,k

N i
j,k

1 + δjk
rj,k +

∑
j,k,l

N i
j,k,l

1 + ∆jkl
rj,k,l. (2.24)

The three sums on the right hand side of the equation are over reactions which produce
or destroy a nucleus of species i with one, two or three reactant nuclei respectively.
The individual N is are positive or negative integers and specify how many particles of
species i are created (+) or destroyed (-) in a reaction. To avoid changes which are
only due to density changes we use abundances rather than number densities. The
abundance Yi of a nucleus i is defined as

Yi =
ni
ρNA

and Ẏi =
ṅi
ρNA

− ni
ρNA

ρ̇

ρ
. (2.25)

The origin of this relation is the definition of the mass fraction Xi of a nuclide i with
mass mi

Xi =
ρi
ρ

=
ni
ρNA

miNA = YiAi. (2.26)

Mass fraction and abundance of a nuclide are related via atomic weight. From the
definition of the mass fractions it is also clear that they fulfill the relation

∑
iXi = 1.

Rewriting Eq.(2.24) in terms of nuclear abundances yields the following set of differential
equations

Ẏi =
∑
j

N i
jλjYj +

∑
j,k

N i
j,k

1 + δjk
ρNA 〈σv〉j,k YjYk

+
∑
j,k

N i
j,k,l

1 + ∆jkl
ρ2N2

A 〈σv〉j,k,l YjYkYl. (2.27)

This set of equations is usually referred to as reaction network. In the next section
we will discuss how such a system of coupled differential equations can be solved and
which details have to be accounted for.
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2.3 Numerical Integration

The nuclear reaction network (Eq.(2.27)) we derived in the previous section, consists of
a system of coupled ordinary first-order differential equations (ODE). We can rewrite
it in a more compact and general form for the functions yi, i = 1, 2, . . . , N

dyi
dt

= fi(t, y1, . . . , yN ), (2.28)

where the functions fi on the right-hand side are usually known and in our case are
given by the change in abundances due to reaction rates.

A problem which involves the solution of ODEs is not completely specified by its
equations. In order to solve the problem, we also need boundary conditions. Boundary
conditions are algebraic expressions of the values of the functions yi in (2.28). The
nature of these boundary conditions is crucial in determining how to tackle the problem
numerically. In general they can be satisfied at specified discrete points, but do not
hold between those points, i.e. the differential equations do not automatically preserve
them. The differential equations of the reaction network constitute a typical initial
value problem.

The boundary conditions are such, that all the yi are given at some initial time ts
and it is desired to find the yi at some final time tf , or at some discrete series of points.
In postprocessing nucleosynthesis calculations it is very common to use a discrete list
of the time evolution of hydrodynamic variables, like temperature and density, and a
single initial composition. The integration of the network equations is then performed
along these data points.

2.3.1 Euler’s Method

The main idea underlying any method for solving an initial value problem is this: rewrite
the dy and dt in Eq.(2.28) as finite steps ∆y and ∆t, and multiply the equations by
∆t. This gives algebraic expressions for the functions yi when the independent variable
is stepped by one stepsize ∆t. In the limit of very small steps a good approximation
to the underlying differential equation is achieved. The literal implementation of this
method results in Euler’s method

yn+1
i = yni + hf(tn, yni ), (2.29)

which advances a solution yi from tn to tn+1 ≡ tn + h. The superscript is not to be
interpreted as power, but as numbering of the iteration steps. This method is also
called explicit or forward Euler method because the solution yn+1 is an explicit function
of yn.

This method, however, is not recommended for practical use, but is conceptually
important. Because one way or another, all practical methods come down to this
same idea: Add small increments, corresponding to derivatives (right-hand sides of the
equations) multiplied by stepsizes, to your functions [104].

The formula in Eq.(2.29) is unsymmetric: it advances the solution over an interval
h, but the derivative is evaluated only at the beginning of that interval. Thus the step’s
error is only one power of h smaller than the correction (O(h2), whereas the correction
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is O(h)), making it first order accurate. A method is conventionally called nth order if
its error term is O(hn+1).

2.3.2 Stiff Equations

Euler’s method has several deficiencies that do not recommend it for practical use.
Among them: (i) it is not very accurate when compared to other, fancier methods run
at the same stepsize and (ii) it is not very stable if the coefficients in the equations
are of very different scales. This is a major problem if we want to solve nuclear
network equations, since the coefficients of these equations usually span many orders
of magnitude. This is because reaction rates have highly nonlinear dependencies on
temperature, and because the abundances themselves typically range over many orders
of magnitude (which can also be seen in the solar abundances in Figure 1.1). Such a
system of differential equations is called stiff. From a mathematical point of view, a set
of differential equations ẏ = f(y) is stiff, if the eigenvalues λj of the Jacobian ∂f/∂y
obey the criterion that for negative R(λj) (the real part of the eigenvalues λj)

S =
max|R(λj)|
min|R(λj)|

� 1 (2.30)

for j = 1, . . . , N [56]. In astrophysics, S > 1015 is not uncommon. A definition of stiff
more closely related to physics would be that the abundance of at least one nuclide
changes on a much faster timescale (see Eq.(2.9)) than the abundance of another isotope.
From that argument arises one of the major problems relating to stiff equations: in
order to ensure stability we have to follow the variation in the solution on the shortest
timescale, whereas accuracy requirements would allow a much bigger timestep. Or
in other words, the size of the timestep is limited by numerical stability rather than
accuracy.

A simple modification of the explicit Euler method helps us bypass this limitation.
If we evaluate the derivative at the new timestep tn+1, instead of tn, the explicit Euler
method Eq.(2.29) turns into

yn+1
i = yni + hf(tn+1, yn+1

i ). (2.31)

This method is also called the implicit or backward Euler method. To illustrate how
this cures the problem, consider the single equation

f(y) = −cy, (2.32)

where c > 0 is a constant. The explicit Euler scheme to integrate this equation with
stepsize h is

yn+1 = yn + hf(yn) = (1− ch)yn. (2.33)

The method is clearly unstable if h > 2/c, because then |yn| → ∞ as n→∞. Whereas
for h = 2/c the solution oscillates between +y0 and −y0 where y0 denotes the initial
value and the sign is given by (−1)n (here the superscript refers to the power). Only
for h < 2/c the correct solution yn = 0 is achieved for n→∞.
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Applying the implicit Euler method with timestep h to Eq.(2.32) yields

yn+1 = yn + hf(yn+1) =
yn

(1 + ch)
. (2.34)

This method is absolutely stable. Even as h → ∞, yn+1 → 0, which is in fact the
correct solution of the differential equation. In case of time integration, the implicit
method converges to the true equilibrium solution (i.e. the solution at late times)
for large stepsizes. This nice feature of implicit methods only holds for systems with
linear coefficients. But even in the general case, implicit methods give better stability.
Of course, we give up accuracy in following the solution towards equilibrium, but we
maintain stability.

Even though we eliminated the stability issues by using an implicit method, the
backward Euler method is still only first order accurate. We will discuss this flaw when
applying the integration scheme to the nuclear network equation and argue why this
method is nevertheless our method of choice.

2.3.3 Newton-Raphson Iteration

For a general system of differential equations with nonlinear and non-constant coeffi-
cients we can rewrite Eq.(2.28) as

dy

dt
= f(y). (2.35)

Implict differencing results in rewriting Eq.(2.31) in vector notation

yn+1 = yn + hf(yn+1). (2.36)

(We resort to indicate the timesteps as subscripts in order not to be confused with
powers). In general this is some nasty set of nonlinear equations that has to be solved
iteratively at each timestep. By moving all terms of this equation to the left-hand side,
we can translate Eq.(2.36) into finding the root of

yn+1 − yn
h

− f(yn+1) = 0. (2.37)

Probably the simplest and most popular root finding algorithm for a nonlinear set of
equations is the Newton-Raphson method (see e.g. [104]). A typical multidimensional
root finding problem gives N functional relations to be zeroed, involving variables xi,
for i = 1, . . . , N

Gi(x1, x2, . . . , N) = 0 i = 1, . . . , N (2.38)

In the neighborhood of the variable vector x we can expand each of the functions Gi in
a Taylor series

Gi(x + δx) = Gi(x) +

N∑
j=1

∂Gi
∂xj

δxj +O(δx2). (2.39)
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The matrix of partial derivatives appearing in the sum is the Jacobian matrix J, with
entries

Jij ≡
∂Gi
∂xj

. (2.40)

Rewriting (2.39) in matrix notation and neglecting terms of order δx2 gives

G(x + δx) = G(x) + Jδx. (2.41)

From this we can derive a set of linear equations for the corrections δx, by setting
G(x + δx) = 0, that move each function to zero simultaneously. This corrections are
then added to the solution vector

xnew = xold + δxold = xold −G(xold) · J(xold)
−1 (2.42)

and the process is iterated until convergence is reached.

When applying this to Eq.(2.37) we have to be careful with the subscripts, because
we are basically using an iterative method (Newton-Raphson) inside an other iterative
method (implicit Euler), and the individual iteration steps of both are usually denoted
by subscripts. Thus we will end up with a nested series of iterations. In order to avoid
misconceptions we will keep the subscripts n and n+ 1 for the timesteps of the implicit
integration and use superscripts new and old for subsequent Newton-Raphson iteration
steps. Rewriting Eq.(2.42) for the desired solution vector ynewn+1 yields

ynewn+1 = yoldn+1 −

(
yoldn+1 − yn

h
− f(yoldn+1)

)
· J(yoldn+1)−1 (2.43)

where the Jacobian J(yoldn+1) is the derivative of Eq.(2.37) with respect to yoldn+1

J(yoldn+1) ≡ 1

h
−
∂f(yoldn+1)

∂yoldn+1

(2.44)

which itself contains the Jacobian of the functional of time integration.

The Newton-Raphson method provides a very efficient mean of converging to a
root, given that the initial guess is sufficiently good. If the timestep is not too big ,or
in other words sufficiently small, already one iteration of the Newton-Raphson method
may be enough to reach the desired convergence level. In other words, at each timestep
we have to invert the Jacobian in order to find yn+1. We will see below how we can
ensure stability and accuracy by choosing an appropriate timestep and a good initial
guess.

2.3.4 Solving the Reaction Network Equations

We will now apply the implicit Euler method to our problem of a nuclear reaction
network, and explain our motivation to use this scheme. For a given set of nuclear
abundances Y the time-derivative Ẏ can be calculated using Eq.(2.27). The desired
solution is the abundance at a future time, Y(t+∆t), where ∆t is the network timestep
(we also denote this as h). By doing this, the implicit Euler method Eq.(2.31) translates
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into
Y(t+ ∆t) = Y(t) + ∆tẎ(t+ ∆t). (2.45)

Following the prescription above, we solve this by transforming it into a root-finding
problem and applying the Newton-Raphson scheme. Thus Eq.(2.43) can be written as

Ynew(t+ ∆t) = Yold(t+ ∆t)−
(

Yold(t+ ∆t)−Y(t)

∆t
− Ẏold(t+ ∆t)

)
· J̃−1. (2.46)

In order to solve this equation we have to invert the Jacobian J̃

J̃ ≡ 1

∆t
− ∂Ẏ(t+ ∆t)

∂Y(t+ ∆t)
(2.47)

at each iteration step. We will discuss the detailed structure of the Jacobian and how
we can take advantage of it in the next section. For now we put the focus on how to
ensure stability and accuracy.

The relatively simple implicit Euler scheme has a comparably low computational
cost per timestep [130]. In order to get a solution within an iteration we only need one
evaluation of the right-hand side, one matrix inversion and on backsubstitution. This
makes it the preferred method for cost efficient calculations. Higher order methods are
always computationally more involved, but have the advantage that we get an estimate
of the accuracy of a timestep, which is not the case for our first order method. In order
to compensate for that shortcoming, we check at every iteration for mass conservation

n∑
i=1

Xi = 1, (2.48)

where the Xi are the dimensionless mass fractions (Eq.(2.48)). In practice, we demand
that the difference between the sum over all massfractions and 1 is less then a certain
threshold (usually 10−7). If Eq.(2.48) is violated, an additional Newton-Raphson step
is performed, or, if convergence is not reached within 3-4 iterations, the time step is cut
in half and the time integration restarted with the new timestep. Satisfying Eq.(2.48)
also prevents an unphysical buildup (or decay) of abundances over long timescales.

Since every rejection of a timestep results in additional computational effort, we
are encouraged to choose the timestep in such a way, that convergence is reached as
fast as possible. We implemented the adaptive timestep calculation proposed in [12]

∆t ≤ η Yi
dYi/dt

, (2.49)

η is a constant less than unity (we used η = 0.1 for all calculations) and only nuclei,
whose abundance is bigger than 10−10 are taken into account. Additionally, we make
sure, that the thermodynamic variables do not change more than 5% within a timestep.
Furthermore, the growth of the timestep is limited to a factor of two for subsequent
steps.

The convergence of the Newton-Raphson scheme depends strongly on the initial
guess. Choosing the abundances from the previous timestep Y(t) as an initial guess
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for the desired abundances, Eq.(2.46) turns into

Y0(t+ ∆t) = Y(t) + Ẏ(t+ ∆t) · J̃−1. (2.50)

For the evaluation of the time derivative at t+ ∆t, density and temperature (needed
to calculate the reaction rates in Eq.(2.27) are taken at the new timestep whereas the
abundances correspond to the previous timestep. This method is very common in
nucleosynthesis calculations and using an appropriate solver usually converges using
only one Newton-Raphson iteration step. A discussion and comparison of different
solvers and their application in nucleosynthesis calculation can be found in [130].

2.4 Taking Advantage of Matrix Sparseness

A we have seen in the previous section, our numerical integration scheme involves at least
one inversion of a N ×N Matrix. Since the inversion of a dense matrix scales as O(N3)
solving our system of differential equations gets more and more involved as N gets
bigger. For r-process calculations we can easily reach network sizes of N ∼ 6000− 7000.
Furthermore, the Jacobian matrices that arise from nuclear reaction networks are not
positive definite or symmetric, since the forward and backward reactions are in general
not equal.

In theory, the matrix should be completely dense, since every nuclide can react with
itself and each of the hundreds or thousands of others. But in practice it is possible
to neglect most of this reactions. Because of the ZiZj dependence of the repulsive
Coulomb term in the nuclear potential, reactions with free neutrons or isotopes of
Hydrogen and Helium on heavy nuclei occur on much faster timescales than fusion of
heavier nuclei. Additionally, since the kinetic energy needed for nuclei to overcome the
Coulomb barrier increases with growing charge number, heavy nuclei would actually
be photodisintegrated much faster than heavy ion fusion would occur. For example,
at temperatures of ∼ 5 · 109K, where the kinetic energy of 28Si nuclei would be
sufficiently high for 28Si +28 Si-fusion to occur, it is far more likely that the silicon
nuclei are photodisintegrated. In the same manner, photodisintegrations tend to eject
free nucleons or α-particles. Thus, with a few exceptions, for each nuclide we only have
to consider 12 reactions linking it to its neighbors via capture of a n, p, α or γ, and
release of a different one of these four. The exceptions are the few reactions with heavy
ions, important for stellar burning phases like carbon or oxygen burning, where the
lack of light elements causes heavy ion fusion reactions to dominate.

For the example case of a 300 nuclei network (consisting of all isotopes from hydrogen
to chloride, ranging from the proton to the neutron dripline) Figure (2.1) illustrates
the sparseness pattern of the resulting Jacobian matrix. Of the 90000 entries, less than
5000 are nonzero. It is obvious, that entries are predominantly located at borders and
the diagonal. In the standard classification of sparse matrices, this matrix could best be
described as doubly bordered band diagonal. The width of the side and diagonal bands
depends strongly on the choice of network. Since the nuclides are ordered by element
and since reactions involving α-particles link next but one neighboring elements, the
width of the diagonal ∆D is approximately 4 times the mean number of isotopes per
element. In our example, ∆D is 136, but for large networks it can also reach values of
∼ 400. The width of the sideband ∆B is given by the location of the heaviest fusion
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Figure 2.1: Graphical representation of the sparseness of the Jacobian Matrix. The dots indicate
nonzero elements.

partner in the series of nuclei that comprise the network (here ∆B = 72). For larger
networks, the value of ∆B does not increase by much, because heavy ion fusion is only
possible for a limited number of elements.

2.4.1 Sparse Matrix Solver

The inversion of the Jacobian consumes most of the computational time, so there is
clearly a need for custom tailored solvers that take advantage of the sparseness of the
matrix. For small networks (N < 100), the best results are obtained with machine
optimized dense solvers (e.g. LAPACK), since the sparseness is less pronounced. For
larger matrices, there is a variety of solvers available (see e.g. [130]). In an intermediate
regime (N ≤ 2000), good results are achieved with a solver taking advantage of the
doubly bordered band diagonal structure, which is getting more and more inefficient
as the density of entries decreases with increasing network size. Already for the small
example above, the bands contain almost 40000 entries, of which only ∼5000 are nonzero.
In order to perform large scale calculations we had to use a different solver. We decided
to use PARDISO [115, 116] a thread-safe, high-performance, robust, memory efficient
and easy to use software for solving large sparse symmetric and unsymmetric linear
systems of equations on shared-memory and distributed-memory multiprocessors [1]. We
will not go into the details of how the solver works but an additional benefit comes
from the fact that it uses an efficient sparse matrix storage format.
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2.4.2 Compressed Sparse Column Format

For an efficient computation it is not only important which solver to use, even though
this accounts for the main part of computational time, but also how the Jacobian
matrix is stored throughout the program. We have to consider that the Jacobian has
to be set to zero at the beginning of each iteration step, since the nonzero entries are
added one by one. For a sparse matrix, where usually less than 1% of the entries are
nonzero, most of the assignments are unnecessary. The easiest way to counteract this
waste of computational time would be to store only the nonzero entries. In [113] we
can find different storage schemes to achieve this. One of the most popular, which is
also used by PARDISO, is the compressed sparse column format (cscf).

We will demonstrate the scheme, following the example in [113]: The matrix

A =


1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.


with Nz nonzero elements, can be stored in three arrays

AA 1. 3. 6. 4. 7. 10. 2. 5. 8. 11. 9. 12.

JA 1 2 3 2 3 4 1 2 3 4 3 5

IA 1 4 5 7 11 13

with the following functions:

• The real array AA contains the real values aij stored column by column, from
column 1 to n. The length of AA is Nz

• The integer array JA contains the row indices i of the elements aij as stored in
the array AA. The length of JA is Nz.

• The integer array IA contains the pointers to the beginning of each column in
the arrays AA and JA. Thus, the content of IA(i) is the position in arrays AA
and JA where the i-th column starts. The length of IA is n+ 1 with IA(n+ 1)
containing the number IA(1)+Nz, i.e. the address in AA and JA of the beginning
of a fictitious column number n+ 1.

Using this scheme, the process of setting the full Jacobian to zero at every iteration
is reduced to Nz assignments. Since the nonzero pattern of the Jacobian does not
change much over time, the arrays JA and IA only need small modifications. To get
an estimate of the computational savings, we can compare the time needed to set a
6500× 6500 matrix to zero and, assuming that 1% of the entries are nonzero, the time
it takes to set an array of length 422500 to zero. The computational time needed is a
factor 100 lower in the latter case, which means that the time needed to set an array
or a matrix to zero depends linearly on the number of assignments that have to be
performed.
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When switching from a full matrix representation to a compressed storage format,
it is necessary to know for every reaction, which entries in AA have to be modified, i.e.
which position in AA represents ∂Ẏi/∂Yj for given i and j. We solve this problem by
creating once, in the beginning, the full Jacobian, where every possible nonzero entry
is set to one. This matrix is then translated into cscf and we assign to every nonzero
entry in the Jacobian its position in AA. Simultaneously the position of the diagonal
elements in AA are stored in a separate array. In a last step we assign to every nuclide
in a reaction the positions in AA where its Jacobian entries are located. For example
considering the reaction k + l → o+ p we have to store for the target k the position
of ∂Ẏk/∂Yk and ∂Ẏk/∂Yl. In the same manner the locations of the derivatives of the
other nuclides with respect to Yk and Yl have to be known. Despite the additional
memory needed to store this information, using a compressed sparse storage format is
much more memory saving and computationally efficient.

2.5 Nuclear Statistical Equilibrium

We can also take advantage of nuclear properties (rather than computational), to simplify
the solution of the network equations (Eq.(2.27)). At temperatures high enough, every
nucleus in an astrophysical plasma is connected to every other by bidirectional reaction
links. Capture reactions can take place, because the temperature is high enough to
overcome coulomb barriers. In the inverse direction, photodisintegrations occur due to
the high-energy tail of photons in a Planck distribution at high temperatures. Under
such conditions a complete chemical equilibrium is established. In such an equilibrium,
also called nuclear statistical equilibrium (NSE), the chemical potentials fulfill

µ̄ (Z,N) + µ̄n = µ̄ (Z,N + 1)

µ̄ (Z,N) + µ̄p = µ̄ (Z + 1, N)
(2.51)

for individual proton and neutron captures. In the same manner we can create a nucleus
(Z,N) via N neutron and Z proton captures equivalent to

Nµ̄n + Zµ̄p = µ̄ (Z,N) = µ̄Z,N . (2.52)

Assuming once again, that nuclei and nucleons obey Maxwell-Boltzmann statistics, the
chemical potentials given as

µ̄i = kBT ln

(
ρNAYi
Gi

(
2π~2

mikBT

)3/2
)

+mic
2. (2.53)

Putting this into Eq.(2.52) and solving for the abundance Y (Z,N) we get

Y (Z,N) = GZ,N (ρNA)A−1 A
3/2

2A

(
2π~2

mukBT

) 3
2

(A−1)

exp

(
BZ,N
kBT

)
Y N
n Y Z

p , (2.54)

where GA,Z is the partition function and BA,Z = (Nmn + Zmp −mZ,N ) c2 the binding
energy of nucleus (Z,N). Additionally, we assume that A = N + Z, mn ≈ mp ≈ mu

and mZ,n ≈ Amu. The same equation can also be derived using detailed balance
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Eq.(2.10) for a series of N neutron captures and Z proton captures (see e.g. [23]).

We see that the nuclear abundances in Eq.(2.54) do not depend on individual
reaction rates, but only on temperature, density, partition functions and binding
energies. Quantities which are better known than many reaction rates [55]. From this
equation we can already guess the abundance distribution at certain conditions. At

high temperatures, the term (kBT )−
3
2

(A−1) dominates, and free nucleons and small
nuclei are favored, since the Planck distribution contains high-energy photons, which
photodisintegrate heavier nuclei. At high densities, due to the (ρNA)A−1 term, large
nuclei are favored, since for a given cross section, the number of collisions is enhanced.

Under intermediate conditions, where exp
(
BZ,N
kBT

)
dominates, tightly bound nuclei are

most abundant. These nuclei are found in the vicinity of 56Fe, where the binding energy
per nucleon is at its maximum (see Figure 2.2).

In order to solve Eq.(2.54) for the detailed NSE abundances, we need two additional
constraints for the determination of the free proton and neutron abundances Yn and
Yp. These are the total mass conservation Eq.(2.48) and the definition of the electron
fraction Ye

Ye =
∑
i

ZiYi. (2.55)

We solve these equations for free neutron and proton abundances using a 2 dimensional
Newton-Raphson iteration scheme similar to the one derived in Section (2.3.3). We
can rewrite Eqs.(2.48) and (2.55) using the abundances Y (Yn, Yp) from Eq.(2.54)

f (Yn, Yp) =
∑
i

ZiYi (Yn, Yp)− Ye

g (Yn, Yp) =
∑
i

AiYi (Yn, Yp)− 1
(2.56)

which both should be equal to zero. The abundances Y
(n+1)
n and Y

(n+1)
p at iteration

step n+ 1 are then given by [104]

(
Y

(n+1)
n

Y
(n+1)
p

)
=

(
Y

(n)
n

Y
(n)
p

)
−

 ∂f (n)

∂Y
(n)
n

∂f (n)

∂Y
(n)
p

∂g(n)

∂Y
(n)
n

∂g(n)

∂Y
(n)
p

−1(
f (n)

g(n)

)
. (2.57)

For better readability we replaced f
(
Y

(n)
n , Y

(n)
p

)
and g

(
Y

(n)
n , Y

(n)
p

)
with f (n) and g(n).

The derivatives needed for the Jacobian can be calculated straightforwardly

∂f

∂Yn
=

∑
i YiZiNi

Yn
,
∂f

∂Yp
=

∑
i YiZ

2
i

Yp

∂g

∂Yn
=

∑
i YiAiNi

Yn
,
∂g

∂Yp
=

∑
i YiAiZi
Yp

. (2.58)

Using the well known algebraic formula to calculate the inverse of a 2× 2 matrix we
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Figure 2.2: Average nuclear binding energy per nucleon of stable isotopes, based on data from [15].
Courtesy of U. Frischknecht.

can easily solve Eq.(2.57) to give

Y (n+1)
n = Y (n)

n − 1

D

(
∂f (n)

∂Y
(n)
p

g(n) − ∂g(n)

∂Y
(n)
p

f (n)

)

Y (n+1)
p = Y (n)

p − 1

D

(
∂g(n)

∂Y
(n)
n

f (n) − ∂f (n)

∂Y
(n)
n

g(n)

), (2.59)

where D = ∂f
∂Yn

∂g
∂Yp
− ∂f
∂Yp

∂g
∂Yn

is the determinant of the Jacobian. Convergence is reached,

when both equations in Eq.(2.56), as well as the change in free neutron and proton
abundance over one iteration step are smaller than a certain tolerance level (usually
around 10−6).

We note, that in most cases where the fast reactions governed by the strong and
electromagnetic force reach equilibrium, the reactions governed by the weak force do
not. Since these reactions are the only ones to change Y e, i.e. the electron fraction
or equivalently, the total (not the free) proton fraction, they have to be considered
explicitly, even in NSE. Thus, a limited reaction network consisting only of reactions
described by Eqs.(2.18) and (2.20) has to be solved alongside the NSE equations.

In general it is assumed that complete NSE is established at temperatures T & 6 GK
[56, 79]. At lower temperatures, NSE breaks down, as soon as the slowest reactions are
not in equilibrium anymore. Then, a quasi-statistical equilibrium (QSE) is established,
where different regions on the nuclear chart are still in equilibrium, but connected via
reactions that are not in equilibrium anymore (for more information about QSE see
e.g. [29, 56, 79]). We do not use the QSE approximation in our code but switch from
NSE directly to the full network. For our calculations we will use a rather conservative
limit of T = 9 GK. Since we use reaction rates where forward and inverse direction
are connected via detailed balance, equilibrium is also maintained when solving the
network equation Eq.(2.27). Besides being computationally less costly, there are further



20 Chapter 2. Nuclear Reaction Network Calculations

benefits from NSE. It gives us the possibility to follow the abundance evolution at
temperatures beyond 10 GK (this limit is imposed by the reaction rate fits, which are
only valid up to this temperature (see Section 2.6.1). Additionally, assuming NSE, we
can calculate an abundance distribution for a given set of temperature, density and Ye
using Yp = Ye and Yn = 1− Yp as initial values.

2.6 Implementation of Reaction Rates

In section 2.1 we presented the theoretical background for the various kinds of reactions
occuring in an astrophysical plasma. The expressions that were derived are usually not
calculated within reaction network calculation. Instead, depending on the character of
a reaction, one uses directly reaction rates, half-lives or transition probabilities. The
combination of different reaction channels is not always trivial, and some reactions, in
fact, even require a special treatment in order to be applicable in network calculations.
In this section we first present the standard method how reaction rates are implemented,
as well as the implementation of the more involved types of reactions.

2.6.1 Reaclib

In general, reaction rates, experimental as well as theoretical ones, are published in
tables as function of temperature. In course of a nucleosynthesis calculation these
reaction rates have to be evaluated thousands of times at varying temperatures, which
would make interpolating in these tables a rather cumbersome task. In order to
facilitate the calculation of reaction rates, we will use the well accepted and widespread
REACLIB parametrization [129]

NA 〈συ〉
λγ

}
= exp(a0 + a1T

−1
9 + a2T

−1/3
9 + a3T

1/3
9 + a4T9

+ a5T
5/3
9 + a6ln(T9)),

(2.60)

with seven open parameters a0 − a6, and temperature T9 given in units of 109 K. The
parametrization proves to be flexible enough to accommodate the different temperature
dependencies of the various reaction types across the fitted temperature range 0.01 ≤
T9 ≤ 10 [129]. Whenever possible we use reaction rates from compilations, which are
already in this parametrization, e.g. [110, 99] or convert those, which are not, like [86].
In this thesis, we only do this for constant decay rates, for which the conversion reduces
to

a0 = ln

(
ln (2)

τ1/2

)
(2.61)

a1 − a6 = 0. (2.62)

Another integral part of any REACLIB reaction rate compilation are partition functions
for all involved nuclei. As we already pointed out in Section 2.1, reverse reactions are
calculated using detailed balance. Using temperature dependent partition functions
G̃i (T ) normalized to the ground state degeneracy gi =

(
2J0

i + 1
)

we can rewrite
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Eq.(2.12) for the inverse direction

NA 〈σv〉m;o,j =

(
AiAj
AoAm

)3/2 gigj
gogm

G̃i (T )

G̃m (T )
e−Qi;j,o/kBTNA 〈σv〉i;j,o . (2.63)

The spin and mass factors, and the exponential factor are accounted for in the parameters
arev0 and arev1 of the reverse rate respectively. The only factor which has to be taken
into account explicitly, is the ratio of the partition functions of the final nucleus and
the target. To calculate the actual (endoergic) reaction rate, the reverse fit has to be
multiplied by G̃i (T ) /G̃m (T ) at the appropriate temperature. Normalized partition
functions are available in tabular form at 20 temperatures in the range 0.1 ≤ T9 ≤ 10
[110] and at higher temperatures on a grid of 48 temperatures in the range 12 ≤ T9 ≤ 275
[106]. To get consistent results, the same partition functions have to be used in NSE
as well.

2.6.2 Electron and Positron Captures

Electron and positron capture calculations have been performed by [47, 48, 49] for
nuclei with A ≤ 45 (sd -shell) and by [70] for 45 < A ≤ 65 (pf -shell). Initially (in
[47, 48]) the rates, the capture rates as well as the corresponding β decays, have been
calculated on a grid of temperature and ρYe (in gcm−3) points, i.e. for temperatures (in
109 K) 0.01, 0.1, 0.2, 0.4, 0.7, 1, 1.5, 2, 3, 5, 10, 30 and 100, and for all integer values of
log (ρYe) between 1 and 11. Unfortunately, the extreme sensitivity of the capture rates
to variations of temperature or density makes interpolation between this grid points
rather inaccurate. In the newer tables [49, 70], the capture rates are replaced by so
called effective log-ft values, which are defined by introducing an effective phase space
integral I for ground-state to ground-state transitions, which approximates to first
order the temperature and density dependence of the rates [70]. The ”decay constant”
in Eq.(2.18) is then given by

λ = ln (2)
I

〈ft〉
(2.64)

where 〈ft〉 is the tabulated effective rate. The phase space integral is defined as

I =

∫ ∞
w0

w2 (Q00 + w)2 S (w) dw. (2.65)

Q00 is the ground-state to ground-state transition energy or Q-value of the reaction and
w0 is the maximum of 1 and −Q00. Depending on the reaction, S is the Fermi-Dirac
distribution of the electron (Se) or of the positron (Sp), with Temperature T and
chemical potential µ. For electrons

Se =
1

exp
(
wmec2−µe

kBT

)
+ 1

, (2.66)

and the positron distribution is defined similarly with µp = −µe. The chemical
potentials are calculated using a table based on the Helmholtz equation of state [131]
(The table and a helpful subroutine can be found in [2]). The integral is evaluated
using a numerical method provided by the numerical algorithms group [3].
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2.6.3 β-delayed Neutron Emission

In the β transition of a neutron-rich precursor nucleus, a neutron-unbound excited state
in the daughter nucleus can be populated. The decay of this unbound state can result
in emission of either a neutron, a gamma-ray or even a conversion electron. In the
case of a neutron, the process is called β-delayed neutron emission. The corresponding
energy window is given by

∆E = Qβ − Sn,

where Qβ is the precursor β decay energy and Sn is the neutron separation energy in the
daughter nucleus. Move away from stability, towards neutron-rich nuclei, Qβ typically
gets larger and Sn typically gets smaller. As the energy window increases so does
the probability for delayed neutron emission. For nuclei very far from stability, other
decay channels like β-delayed two or even three neutron emission become energetically
possible. The neutron emission follows promptly after the decay, thus delayed does not
mean that the neutron emission channel occurs on a different timescale than the pure
decay.

From experiments [15] and theoretical calculations [86], we know the half life τ1/2

and the probabilities p0, p1, p2 and p3 for the pure decay and β-delayed one, two or
three neutron emission respectively. As we have seen in Section 2.1.3 the total β decay
rate is determined by the decay constant

λtot =
ln (2)

τ1/2
. (2.67)

Including the probabilities for the different decay channels, we can calculate individual
decay constants for each channel

λβ = λtotp0

λβ1n = λtotp1

λβ2n = λtotp2

λβ3n = λtotp3

(2.68)

The corresponding reactions are simply

(A,Z)→ (A− η, Z + 1) + ηn (2.69)

where η is the number of beta-delayed neutrons.

2.6.4 Fission

The implementation of fission rates into the network code focuses on two different
challenges: The different kinds of fission have to be treated differently depending on
their origin and the fission fragment mass distribution has to be accounted for. We will
first discuss the treatment of the different types of fission and then our simplified model
for the fission fragment mass distribution, since this is the same for all fission reactions.

The different kinds of fission, which can be incorporated in the network, are
spontaneous fission (SF), β-delayed fission (BF) and neutron-induced fission (NF):
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Figure 2.3: The final mass distributions of fission fragments for the compound nuclei (after neutron
capture or β-decay) 238U, 260Pu and 282Cm. The blue dots show the distribution and probabilities
calculated with the parametrisation from [66], the red dots represent the parametrisation from [98]
where the probabilities are set to 7% for illustration.

• SF: (A,Z)→ (A1,Z1) + (A2,Z2) + ηn

• BF: (A,Z)→ (A,Z + 1)→ (A1,Z1) + (A2,Z2) + ηn

• NF: n + (A,Z)→ (A + 1,Z)→ (A1,Z1) + (A2,Z2) + ηn

where ηn represents the neutrons, which are emitted during the fission process. The
intermediate nuclei in the case of neutron-induced and β-delayed fission are just for
illustration and not explicitly taken into account in the implementation. We will refer
to the nucleus (A,Z) on the left-hand side of the arrow as mother nucleus and the ones
on the right-hand side as daughter nuclei.

In the case of spontaneous fission the reaction rate can simply be treated as a decay
rate, which is derived from a half life. The change in abundance of the mother nucleus
is then given as

Ẏ (A,Z) = −λSFY (A,Z) = − ln(2)

τSF1/2

Y (A,Z). (2.70)

For β-delayed fission, the calculation is a little more involved. The mother nucleus first
undergoes a β-decay into an intermediate nucleus which then fissions into the daughter
nuclei. Thus the fission channel competes with the other decay channels like β-delayed
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(1-, 2-, 3-) neutron emission, β-delayed α-emission or the pure β decay. The BF rates
are usually not given as half lifes but only as branching ratios PBF . That means that
they have to be incorporated into the already present beta decay rates. We do this by
replacing the total rate in Eq.(2.67) by an effective rate

λeff = λtot − λBF , (2.71)

with
λBF = λtot · PBF . (2.72)

We point out, that by doing this, the β-decay rates in Eq.(2.68) are reduced.

In neutron-induced fission, the fission process is preceded by a neutron capture. Like
in regular neutron captures, the reaction rate NA 〈συ〉NF is temperature dependent and
given in the Reaclib parametrization (Eq. (2.60)). The resulting change in abundance
of the mother nucleus is thus given as

Ẏ (A,Z) = −ρNA 〈συ〉NF Y (A,Z)Yn. (2.73)

The proper inclusion of fission in a network code also requires the knowledge of the
mass distribution of the fission fragments, which enter the network as reaction products.
In principle, such distributions are complicated functions, depending on the properties
of the involved nuclei, and have to be calculated for each nuclide individually. Since
the realistic calculation of fission fragment mass distributions would go beyond the
scope of this thesis we resort to two different empirical parametrizations.

The first, much simpler parametrization was described in [98]:

There it is considered, that 100% symmetric fission only occurs for a small region
of nuclei [57] with 255 < A < 265. For symmetric fission the mass and charge number
of the heavy fragment are given as

A1 =
A

2
, Z1 =

Z

2
. (2.74)

The light fragment can be determined from mass and charge conservation

A2 = A−A1 , Z2 = Z− Z1. (2.75)

All other fission processes occur asymmetrically, and the fission products are distributed
as in [58], where it is assumed, that the most probable fragment has mass A=130 and
is close in nucleon composition to the double-magic 132Sn (Z=52, N=80):

A1 = 130 , Z1 = 52− Z− 80

10
(2.76)

A2 = A−A1 , Z2 = Z− Z1.

We plotted the resulting distribution in Figure (2.3) as red dots. We set the probability
to 7% in order to be able to compare the distributions, in reality, however, the probability
in this parametrization is always 100%. The main advantage of this parametrisation
is, that for every fissioning nuclide we get a distinct pair of daughter nuclei, which is
easy to implement and computationally very cheap. On the other hand, it might be an
over-simplification of the problem. We also have to note, that with the requirement for
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one fragment (A1) to be close to 132Sn, the complication arises, that for heavy nuclides
(A > 265) the second fragment is heavier (A2 > A1) but less charged (Z1 < Z2). This
can be seen in Figure 2.3 in the bottom panel. Very neutron rich nuclides are produced,
which can release many fission neutrons (see below).

The second parametrization was proposed in [66], where the double-humped mass
distribution is approximated by Gaussian functions around the light and heavy peaks
(AL and AH respectively), and the charge distribution by that around the most probable
charge for each A-chain, ZA. The probability, that nucleus (A,Z) is a fragment in the
fissioning of (Afis,Zfis) is given by

PAfis,Zfis(A,Z) =
exp

{
− (Z − ZA)2 /cZ

}
2π
√
cZcA

(2.77)

×
[
exp

{
− (A−AL)2 cA

}
+ exp

{
− (A−AH)2 cA

}]
,

where they assume AL = 0.85Afis − 104.98, AH = 0.15Afis + 103.87, ZA = Zfis(A+
0.6)/Afis, cZ = 0.8 and cA = 78. For all possible combinations of A and Z,

∑
P (A,Z) =

1 is satisfied. For practical use, we set a lower limit for the probabilities (usually 10−2)
and in that case the probabilities have to be renormalized in order to fulfill the unity
equality. The second fission fragment is determined from mass and charge conservation
as above.

This parametrization is computationally very costly since for every fission reaction
several tens of different fragment pairs have to be included into the calculation as indi-
vidual reactions where the reaction rate is multiplied by the corresponding probability.
Already for an optimistic lower limit of 10−2, the number of fission reactions can easily
outnumber all other reactions by a factor of two. Moving the lower limit to even smaller
numbers this factor will increase further since more reactions per fission reaction have
to be considered. A qualitative analysis of the influence of differnet fission channels
and fragment mass distributions on the outcome of reaction network calculations will
be given in Section 5.2.

When implementing any fragment mass distribution into the network code, we
have to make sure, that the fission products are actually within the boundaries of the
selected part of the nuclide chart. In case the fragment lies outside this boundary we
replace it with the heaviest isotope of the fragment, which is within the boundary. The
difference in mass is assumed to be overcome with emission of the same amount of
neutrons. The sum of released neutrons from both fragments constitutes ηn. Depending
on the choice of network as many as ∼ 20 neutrons can be emitted in a single fission
reaction.
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Chapter 3

The Big Bang

The big bang theory, stating that our universe began roughly fifteen billion years ago
in an extremely hot and dense state, is, at least among scientists, widely accepted
today. The three key observational features supporting this theory are the expansion
of the universe, the cosmic microwave background radiation (CMB) and big bang
nucleosynthesis (BBN). In the early years of the twentieth century Edwin Hubble
discovered that galaxies are receding from us in every direction. Projecting galaxy
trajectories backwards in time shows that they converge in a single, dense location. As
a direct consequence of the expansion Ralph Alpher and George Gamow formulated
in 1948 a first theory on the origin of elements [7] also known as the Alpher-Bethe-
Gamow theory (αβγ-theory), indicating that as the universe expands and cools down
from an initial state, where photons and matter were in thermal equilibrium, all free
electrons and ions would recombine to form neutral atoms. Since photons only scatter
infrequently from neutral atoms, photons decoupled from matter and the universe
became transparent to radiation. Subsequently, the energy of the photons was redshifted
by the expansion of the universe, conserving the power spectrum, but lowering the
temperature from an initial value of ∼ 104K down to ∼ 3K. Only a few years later in
the sixties Arno Penzias and Robert Wilson accidentally discovered a highly isotropic
background radiation in the microwave region of the electromagnetic spectrum. The
radiation appeared as perfect black body spectrum with Planckian power distribution
at a temperature of 2.725± 0.001K, thus consolidating the big bang theory.

Big bang nucleosynthesis, the third pillar on which the big bang theory is based, is
the topic of this chapter. The abundance evolution in BBN only follows a few nuclides
and only depends on a relatively small number of key reactions. This makes it one of
the most computationally simple in all of astrophysics and hence presents us with the
opportunity to calculate abundances with a precision and accuracy which is unique.

In Section 3.1 we present the physical description of the expansion and the evolution
of key quantities. The description is largely based on the explanations in chapter 5
of [29]. Section 3.2 is a qualitative discussion of primordial nucleosynthesis. Section
3.3 is the main part of this chapter where we present the results of our calculations
(3.3.1), compare them to observations recently published results (3.3.2) and discuss the
lithium problem (3.3.3). Furthermore, we present an alternative to the standard big
bang model and discuss the implications for primordial nucleosynthesis (3.3.4).
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3.1 Physics of the Expansion

The standard model of a hot big bang describes the adiabatic expansion of an isotropic
and homogeneous universe without degenerate or exotic particles. The evolution of
such an universe is described by the three Friedmann equations:

R̈ = − 4π

3c2
(ρε + 3P )GR+

1

3c2
ΛR (3.1)

(
Ṙ

R

)2

= H(t)2 =
8πG

3c2
ρε −

kc2

R2
+

1

3c2
Λ (3.2)

d
(
ρεR

3
)

dt
+ P

dR3

dt
= 0. (3.3)

ρε denotes the total relativistic energy density ρε = u + ρc2 and ρ the mass density.
We can interpret Eq.(3.3) as the first law of thermodynamics dQ = dU + PdV = 0
for an adiabatic expansion of an ultra-relativistic gas where the chemical potentials
of all particles vanish. In this very early and hot phase of an expanding universe the
temperature is so high that the rest mass is negligible in comparison to the kinetic
energies, thus ρε = u. In the relativistic limit kT � mc2, which is the case for the
whole early radiation-dominated phase, the equation of state (EoS) is given as

P =
u

3
=
ρε
3
. (3.4)

After the quark-hadron phase transition (where quarks and gluons combined into
nucleons) no free quarks and gluons exist anymore. At temperatures kBT > 1MeV
the plasma is composed of neutrons, protons, electrons, positrons, photons and the
electron-, muon- and tau-neutrinos and their antiparticles. Basically all particles with
2m < kBT/c

2 exist because the respective particle-antiparticle pairs can be created in
photon collisions. Scattering reactions thermalize all plasma constituents to the same
temperature and reactions like γ + γ 
 e+ + e−, νe + νe 
 e+ + e−, p+ e− 
 νe + n
and n+ e+ 
 ν̄e + p are all in chemical equilibrium.

All of the aforementioned particles are highly relativistic, except for nucleons which
are slower due to their large mass. At temperatures of about 1MeV, nucleons follow a
Maxwell-Boltzmann distribution and their pressure contribution will be nkBT . The
linear temperature dependence is negligible compared to the T 4 dependence of the
pressure of ultra-relativistic particles and thus the pressure contribution of nucleons
is not important in a radiation dominated regime. The EoS Eq.(3.4) for the above
mixture of particles calculates as

P =
ρε
3

=
1

3

g

2
aT 4

g =
∑
bosons

gi +
7

8

∑
fermions

gi
(3.5)

with a = 8π5k4
B/(15c3h3) and the relativistic degrees of freedom g. With this result

we can derive a time-temperature relation as a measure for the expansion. Putting
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Eq.(3.4) in Eq.(3.3) leads to d
(
ρεR

4
)
/dt = R×Eq.(3.3) and therefore ρεR

4=const. In
a flat universe with k = 0 and a vanishing cosmological constant Λ = 0, Eq.(3.2) yields
Ṙ ∝ R−1 with the solution R (t) = αt1/2 and Ṙ/R = 1/ (2t). On the other hand we
get from Eq.(3.5) ρε = (g/2) aT 4. Thus we can derive from Eq.(3.2) a relation between
1/t2 and T 4 as a function of g, with its precise form being

t =

(
3c2

16πGa

)1/2

g−1/2 1

T 2
. (3.6)

As gγ = ge− = ge+ = 2 and gν = gν̄ = 1 (for all neutrino flavours), and since all particles
except the photons are fermions we can calculate the total or effective relativistic degrees
of freedom [124] and obtain

g = 2 +
7

8
(2 + 2 + 6) =

43

4
. (3.7)

With this and Eq.(3.6) the temperature evolution is given by

T9 ≈ 10.15
1

t1/2
. (3.8)

Since all ultra-relativistic particles have µ̄i = 0 the electron and positron captures on
protons and neutrons lead to µ̄n = µ̄p. Using the Maxwell Boltzmann expression for
the chemical potentials, Eq.(2.53), results in

nn
np

=
Xn

Xp
= exp

(
−∆mc2

kBT

)
, (3.9)

where ∆m is the mass difference between proton and neutron.

As the universe expands and cools to reach kBT ≈ 1 MeV (at T ≈ 1010K or
slightly lower due to the high energy tails of the thermal distributions), electrons are
not energetic enough anymore to overcome the mass difference between protons and
neutrons via electron capture. Also, photons are not energetic enough anymore to
produce positrons in pair-production processes to support positron capture on neutrons.
Therefore, these weak reactions will cease to exist. These reactions are also the
channel through which neutrinos communicate thermally with the other constituents.
We call this phase weak freeze-out and weak decoupling because the neutrinos are
from this time forward decoupled and can have different temperatures from the other
particles. Also the neutron to proton ratio is frozen out at exp

(
−∆mc2/kBTweak

)
. For

kBTweak ' 0.8MeV [37] this results in n/p ' 1/6 and from this point on this ratio can
only change via beta-decay of the neutron.

The entropy of ultra-relativistic particles is given by

S =
4

3

g

2
aT 3V, (3.10)

with the same definition of g as in Eq.(3.5). After weak decoupling, positrons do not
exist anymore and the electrons are no longer ultra-relativistic and therefore have
a negligible pressure (and entropy) contribution. Hence, only photon and neutrino
contributions have to be considered. The annihilation of electrons and positrons
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Figure 3.1: Temperature evolution during weak freeze-out. The red and blue line denote the analytic
solution before and after weak freeze-out respectively (see text).

produced energetic photons, thus heating up the photon gas. Meanwhile, the neutrinos
expand without interaction, based on the original temperature. Since the expansion is
adiabatic, the entropy in an expanding volume has to stay constant through the phase
of weak decoupling. Therefore, ignoring the common factor 4/3

43

8
aT 3V = aT 3

γV +
7

8
· 6

2
aT 3V (3.11)

⇒ Tγ
T

=

(
11

4

)1/3

, (3.12)

where Tγ is the photon temperature. Additionally, we can calculate the relativistic
degrees of freedom by expressing the right hand side of Eq.(3.5) as function of Tγ ,
leading to

g = 2 +
7

8
· 6
(

4

11

)4/3

≈ 3.3626. (3.13)

During weak decoupling the overall g changes from 43/4 = 10.75 to 3.3626 when we
express the Pressure in terms of the photon temperature. Due to thermalization this is
also the nucleon temperature which, at a later phase, will determine nuclear reactions.
Furthermore, the temperature evolution changes after weak decoupling, Eq.(3.6) now
yields

T9 ≈ 13.336
1

t1/2
. (3.14)
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In Figure 3.1 we plotted the time evolution (black line) of the temperature as it is
calculated from the self-consistent prescription (see Appendix A) as well as Eq.(3.8)
(red line) and Eq.(3.14) (blue line). One can clearly see that the weak freeze-out is not
a sharp transition but a gradual process which occurs in the region 5 & T9 & 1.

Another quantity we want to discuss is the ratio of baryon density to photon density
η = nb/nγ . The photon density, like that of all ultra-relativistic particles, only depends
on the temperature

nγ =
2.404

π2

(
kBT

~c

)3

. (3.15)

The baryon (or nucleon) density, however, depends on temperature and density. Thus
the global η ∝ ρ/T 3 provides a relation between temperature and density. Once such a
relation is known, Eqs.(3.2) and (3.3) provide a unique solution of the expanding early
universe. From Eq.(3.10) we can also infer η ∝ 1/S and thus that η has to remain
constant in an adiabatic expansion. In our computations the evolution of (photon)
temperature and density does not depend on η but we need eta to determine the initial
density as a function of temperature. Therefore we have to make sure that η has the
right Tγ dependence. Since the photon temperature changes during weak decoupling,
Eq.(3.12), and thus also η changes like 1/T 3

γ . Hence

η =
11

4
η0, (3.16)

where η0 denotes the value after weak decoupling, which has remained constant until
today [135]. With a global baryon to photon ratio we can now express the baryon
density as a function of temperature

nb = ηnγ =
2.404η

π2

(
kBT

~c

)3

. (3.17)

With all of the above relations we now have a complete theoretical description of the
expansion which only depends on one single parameter, η. The time evolution of
temperature and density has to be calculated self-consistently without introducing
more free parameters. Our prescription for the self-consistent calculation closely follows
the explanations in Appendix D of [65]. A detailed description of the physics and the
implementation is provided in Appendix A.

3.2 Building the Elements

After weak decoupling, the plasma is still very hot and consists of photons, electrons,
neutrons and protons. The nucleons collide among themselves to produce deuterons
(D = 2H) via n+p
 D+γ. However, the density and average energy of the background
photons is very high and the deuterons are almost instantly photodisintegrated. We
can estimate the temperature at which deuterium starts to be produced in reasonable
amounts by comparing the production rates Γp and the destruction rates Γd (from
detailed balance) [37]

Γp ≈ nB 〈σv〉
Γd ≈ nγ 〈σv〉 e−BD/kBT .

(3.18)



32 Chapter 3. The Big Bang

Figure 3.2: An example of the time and temperature evolution of light element mass fractions computed
with our self-consistent network evolution code and a baryon to photon ratio of η = 6.1 × 10−10. The
main part of nucleosynthesis takes place around T9 = 1 as soon as deuterium is produced in significant
amounts. The synthesis of elements is completed after about 25 minutes except for the decay of
neutrons, 3H and 7Be.

As soon as η exp (BD/kBT ) ∼ 1 the destruction rate falls below the production rate
and the nuclear reaction chain sets in. With the binding energy of the deuteron
BD = 2.23MeV and 10−11 ≤ η ≤ 10−7 this happens at kBT ' 0.1MeV (or T9 ' 1).
Once the deuterium bottleneck is overcome, neutrons and protons quickly combine
to form D, 3H, 3He and 4He. The fact that there is no stable nuclide with mass
A=5 prevents this chain from going further via neutron and proton captures. This
bottleneck is resolved by 3H and 3He captures on 4He. The Coulomb repulsion between
these colliding nuclei reduces the reaction rates ensuring that virtually all neutrons are
incorporated into the most stable of the light nuclides, 4He and that the abundances of
heavier nuclides are dramatically lower than that of 4He. The primordial mass fraction
of 4He can be estimated by Xα = 4Yα = 2Xn with Xn = Xn/ (Xn +Xp). By the time
nucleosynthesis starts (at around 130s), the n/p-ratio has dropped from 1/6 at weak
freeze-out to ∼ 1/7 because of neutron decays. It follows, that

Xα ≈
2Xn/Xp

1 + (Xn/Xp)
= 0.25. (3.19)

The few reactions which manage to jump the A=5 mass gap mainly lead to mass-7
nuclides (7Li and 7Be, which will later decay to 7Li). The abundance of 6Li is below
that of the more tightly bound 7Li by one or two orders of magnitude. Another mass
gap at A=8 inhibits 4He + 4He reactions and prevents any astrophysically interesting
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Figure 3.3: The 4He mass fraction, Y, inferred from observations of low-metallicity, extragalactic HII

regions versus the oxygen abundance in these regions (figure adopted from [124]).

production of heavier nuclides.

Because of decreasing temperatures and the presence of Coulomb barriers, nuclear
reactions cease as soon as the temperature drops below ∼ 30keV, when the universe
is about 25 minutes old. As a result, there is a ”nuclear freeze-out” since no already
existing nuclides are destroyed (except for those that are unstable and decay) and no
new nuclides are created [124].

At one point in history, big bang nucleosynthesis as a theory to explain the observed
element abundances was nearly abandoned, because it fails to explain all element
abundances. In their seminal paper Burbidge, Burbidge, Fowler and Hoyle [20] crowned
stellar nucleosynthesis as leading theory for element production. However, two key
demands could not be met. 1) The abundance of 4He as a function of metallicity is
nearly flat. In Figure 3.3 is shown a compilation of observational data [93, 94, 60, 59],
the figure is taken from [124]. The key feature of Figure 3.3 is that even in systems in
which an element as oxygen, which traces stellar activity, is observed at extremely low
values (compared with the solar value of O/H = 5× 10−4 [105]), the 4He abundance
is nearly constant. This is very different from the abundances of elements which are
produced in stellar nucleosynthesis where the abundance goes to zero as O/H goes to
zero. 2) The observed abundance of deuterium cannot come from stellar sources. In
fact stars actually destroy deuterium and there is no astrophysical site known for the
production of significant amounts of deuterium other than the big bang[35].

Having sketched the basic physics of big bang nucleosynthesis, we now turn to the
detailed description of how to model the big bang to get predictions for all relevant
elements.
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3.3 Nucleosynthesis

The strength of the standard big bang scenario is, as we have pointed out before, that
all primordial abundances, ranging over several orders of magnitude, are determined
by only one free parameter, the baryon-to-photon ratio η = nb/nγ . This cosmological
parameter is related to ΩB, the present-Universe ratio of the baryon mass density to
the critical mass–energy density [126]

η10 = 1010nB
nγ

= 273.9ΩBh
2, (3.20)

where h is the present value of the Hubble parameter in units of 100 km s−1 Mpc−1.
Basically there are two complementary approaches to testing standard big bang nucle-
osynthesis (SBBN):

1. Primordial abundances inferred from observations should be consistent with the
SBBN predictions for a unique value or a range of values of η. Since the baryon-to-
photon ratio can not yet be determined from basic principles, it can be obtained
from a best fit of observed to calculated abundances. In Figure 3.4 we show the
abundances of 4He (mass fraction), 2H, 3He and 7Li (by number relative to H) as
a function of η, as well as primordial abundances deduced from observations. It is
obvious that there is no single value of η, for which all abundance predictions fit
observations. Still it is an impressive confirmation of the standard cosmological
model that the baryon densities inferred from abundances, which range over some
nine orders of magnitude, lie within a factor of three of each other. We will
discuss the observational constraints on each element in detail in the next section.

2. If there is a non-BBN constraint on η we can make definitive predictions for
light element abundances which can then be compared to observations. The
Wilkinson microwave anisotropy probe (WMAP), measuring the cosmic microwave
background radiation with very high precision, provides such a constraint. The
seven year WMAP data [67] gives ΩBh

2 = 0.02249± 0.00056, corresponding to
η = 6.16± 0.15× 10−10. The vertical line in Figure 3.4 labelled WMAP7 marks
this value. The resulting differences between calculation and observation can
be due to inaccurate data and/or unidentified systematics in the observations,
incorrect models for analysing the data and/or extrapolating from abundances
determined at present to primordial values or the fact that the standard models
of particle physics and cosmology are incomplete and need to be revised. They
also shed new light on the nucleosynthesis after the big bang.

Having a closer look at Figure 3.4 we note that the light elements show quite different
dependencies on η. The primordial abundance of 4He is relatively insensitive to the
baryon density (note the linear scale compared to the logarithmic scale for the other
elements). Since virtually all neutrons available in BBN are incorporated in 4He, it
does depend on the competition between the weak interaction rate (largely fixed by
the neutron lifetime) and the expansion rate of the universe (which depends on geff ).
This makes 4He a cosmological chronometer [125]. The higher the nucleon density,
the earlier the deuterium-bottleneck can be breached. At earlier times there are more
neutrons (since they had less time to decay) and therefore more 4He will be synthesized.
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Figure 3.4: Abundances of 4He (mass fraction), 2H, 3He and 7Li (by number relative to H) as a function
of the baryon over photon ratio η (or Ωbh

2). The hatched bands represent the primordial abundances
deduced from observations (see text). The vertical stripe is the WMAP7 value η = 6.16±0.15×10−10[67].

The latter effect is responsible for the very slow (logarithmic) increase in 4He with
η. Similarly, the faster the universe expands, the less time there is for the neutrons
to decay, resulting in more neutrons and thus more 4He. In contrast to 4He, the
abundances of the other light elements (2H, 3He and 7Li) are rate limited and depend
strongly on the baryon density. Thus 2H, 3He and 7Li are potential baryometers. The
trends in the abundances of 2H and 3He can be understood as follows: 2H and 3He
are burned to 4He. The higher the baryon density, the faster this occurs, leaving
behind less 2H and 3He. At lower baryon densities the burning is slower, resulting in a
less complete burning and therefore more 2H and 3He. The behaviour of 7Li is more
complicated. At relatively low values of η . 3, 7Li is mainly synthesized directly as
7Li (Figure 3.5), via 3H (α, γ) 7Li reactions, which is easily destroyed in collisions with
protons (7Li(p, α)4He). Hence, as η increases at low values, 7Li/H decreases until it
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Figure 3.5: Evolution of mass fractions for 7Li (red) and 7Be (dark green) for different values of
η. The dashed, solid and dotted lines represent low (η = 10−10), intermediate (η = 3 × 10−10) and
high (η = 10−9) values of the baryon-to-photon ratio. For low baryon densities the synthesis of 7Li
dominates the final 7Li mass fraction, for intermediate values of η, which represent the minimum of the
7Li curve in Figure 3.4, the contribution to the final mass fraction is about equal and for high baryon
densities the main contribution comes from the synthesis of 7Be, which later decays to 7Li.

reaches a minimum at η ∼ 3 (Figure 3.4). At higher values of η & 3, 7Li is mainly
synthesized as 7Be (Figure 3.5), via 3He (α, γ) 7Be reactions, which is more tightly
bound and therefore harder to destroy. As η increases at high values, the abundance of
7Be increases and with it the late-time abundance of 7Li (Figure 3.4)[124].

3.3.1 SBBN Predictions

SBBN calculations are performed with the nuclear reaction network introduced in
chapter 2 and the self-consistent evolution of temperature and density presented in
appendix A. The network itself consists of 26 nuclides, ranging from free neutrons and
protons to 16O. In table 3.1 we list all nuclides in the network. The thermonuclear
reaction rates are taken from the latest compilation of the JINA reaclib database [30].
The weak reactions transforming n
 p, which determine the n/p-ratio at the onset of
BBN and thus the 4He abundance, are taken from [117]. The authors present a numerical
fit to the improved Born rates, considering electromagnetic radiative corrections, finite
nucleon mass corrections, thermal/radiative effects and non instantaneous neutrino
decoupling effects. The accuracy of the fit is claimed to be better than 0.06% and
satisfies the detailed balance condition

λn→pnn
λp→nnp

= 1 (3.21)
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better than the 1% level for kBT > mec
2.The fit is given as a function of z = mec

2/kBT
and the neutron lifetime τn

λn→p =
1

τn
exp (−qnp/z)

13∑
l=0

alz
−l 0.01 ≤ kBT ≤ 10 (3.22)

λp→n =

{
1
τn

exp (−qpnz)
∑10

l=0 blz
−l 0.1 ≤ kBT ≤ 10

0 0.01 ≤ kBT < 0.1
(3.23)

The fit coefficients are listed in appendix B.1. We also made use of the current value
for the neutron lifetime τn = 881.5± 1.5s [87].

In order to ensure full equilibrium, even for neutrinos, all calculations were started
at T9 = 100. At temperatures this high we can safely assume that baryonic matter
consists only of neutrons and protons and their initial abundances can be calculated
from Eq.(3.9) and mass conservation Eq.(2.48), hence

Yn =
1

1 + exp (∆mc2/kBT )
(3.24)

Yp =
1

1 + exp (−∆mc2/kBT )
. (3.25)

The baryon-to-photon ratio was either set as a free parameter to check the dependence
of light element abundances on the baryon density (Figure 3.4), or to the seven year
WMAP value η = 6.16± 0.15× 10−10 to make abundance predictions which will later
be compared to observations and other SBBN calculations. The SBBN predicted
abundances resulting from our calculations are

D/H = (2.84± 0.23)× 10−5

3He/H = (1.07± 0.09)× 10−5

Yp = 0.2490± 0.0005
7Li/H = (4.57± 0.55)× 10−10.

We use Yp to denote the primordial 4He mass fraction following the astronomical
notation where X, Y and Z represent the mass fractions of H, 4He and metals. The
given uncertainties are adopted from [124] where they give theoretical uncertainties
at the ∼ 8% level for D/H and 3He/H, ∼ 12% for 7Li/H and ∼ 0.2% for 4He. In the
following sections we will discuss the observational status of these elements individually
and compare our results with observations and different calculations found in the
literature.

3.3.2 Testing the Consistency of SBBN

The SBBN predicts abundances which are essentially determined at the end of nucle-
osynthesis, when the universe is ∼20 minutes old. Observations, however,are made at a
much later time, after stellar nucleosynthesis has started. The ejected matter which has
been processed in stars can alter the primordial abundances of light elements but also
produce heavier elements such as C, N, O and Fe, which are astronomically all metals.
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Nuclide A Nuclide A

n 1 B 8, 10, 11, 12
H 1, 2, 3 C 11, 12, 13, 14
He 3, 4 N 12, 13, 14, 15
Li 6, 7, 8 O 14, 15, 16
Be 7, 9

Table 3.1: The 26 nuclides considered in BBN calculations.

In order to minimize the polluting effects of stellar activity, one seeks astrophysical
sites with low metal abundances to measure light element abundances, which are close
to their primordial value. We will briefly discuss possible sites where one expects to
measure primordial D, 3He and 4He and the difficulties in observing them. A much
more thorough discussion can be found in [124].

3.3.2.1 Deuterium

It is a widely accepted fact that there is no astrophysical process other than the big bang
where D is produced in interesting amounts [35]. The predicted primordial abundance
is sensitive to baryon density (D/H ∝ η−1.6)[124]. Furthermore, the loosely bound
deuterium is only destroyed and not produced, as gas is cycled through stars. Thus
all observations can provide at least a lower limit for the primordial value. All of the
above make deuterium the baryometer of choice.

Whereas there are plenty of measurements of D abundances in our solar system and
the local interstellar medium, there is only a handful of observations at high redshift
and low metallicity where conventional models of galactic chemical evolution do not
predict significant D/H depletion. The most promising candidates are so called quasar
absorption-line systems (QSOALS) where clouds at high redshift are in the line of
sight of distant quasars, thus producing absorption lines in the quasar spectra. The
identification of the deuterium lines in the spectra are far from trivial, since there are
identical lines in DI and HI except for a wavelength/velocity shift.

The most recent analysis of available data [102] lists seven objects where the
deuterium abundance is clearly resolved from nearby spectral features. The author of
[125] calls it very nearly a sin to claim that the primordial abundance of a cosmologically
key light nuclide is determined by five (now seven) data points. Additionally, the data
points do not agree within statistical errors but show a wide dispersion with a χ2 about
the mean & 16, suggesting either that the uncertainties have been underestimated or
that some of the data may be contaminated by unidentified systematic errors.

In Figure 3.6 D/H is plotted as function of η. To check the consistency with
observations, we plotted the primordial estimates from recent publications. An analysis
of six QSOALS [95] yields

D/H =
(
2.82+0.27

−0.25

)
× 10−5, (3.26)
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Figure 3.6: The diagonal band is the SBBN-predicted deuterium abundance (relative to hydrogen) as a
function of the baryon-to-photon ratio (the width of the band accounts for the theoretical uncertainties).
The horizontal bands are the adopted primordial ranges from two recent observational analyses [95, 102].
The datapoints with errorbars are from recent SBBN calculations [24, 26, 31, 32].

a more recent analysis, where an additional data point was available [102], gives

D/H =
(
2.82+0.20

−0.19

)
× 10−5. (3.27)

Our predicted value of D/H = (2.84± 0.23)× 10−5 shows a very nice agreement with
these observations for the WMAP7 value of η. For comparison we also plotted recent
SBBN predictions from recent calculations. In [26] a value of D/H = (2.68± 0.15)×
10−5(navy cross) is calculated using updated nuclear data and an older value of
η = (6.28± 0.17) × 10−10. A more recent work of the same authors [24] with even
newer reaction rates and the current WMAP7 value for the baryon density yields
D/H = 2.64× 10−5 (purple circle). From the people providing the reaction rates we
utilized, comes another prediction [31] of D/H = (2.52± 0.17)× 10−5 (green triangles).
We also added an older result from the same authors [32] where they used an older
value η = 6.23± 0.17 to yield D/H = (2.49± 0.17)× 10−5 (lime green triangles) The
theoretical predictions are all lower than our predicted value and close to the lower limit
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Figure 3.7: The solid line is the SBBN-predicted 3He abundance (relative to hydrogen) as a function
of the deuterium abundance (relative to hydrogen). The dotted lines account for the theoretical
uncertainties. The vertical bands are the values of D/H consistent with the WMAP7 value of the
baryon density (the dark yellow region corresponds to the variation of the mean value with η, the
light yellow region includes the theoretical error ∼ 8%). The red square with errorbars represents
observations of 3He in the milky way [17]. The other datapoints are from recent SBBN calculations
[26, 24, 32].

of observational constraints, but the overall agreement is good and within statistical
errors. The predicted values of the other light elements will be tested against the D/H
abundance to check overall consistency.

3.3.2.2 3He

The post-BBN evolution of 3He is much more complicated than that of D. D that
is incorporated into stars is rapidly burned to 3He, increasing the 3He abundance.
Compared to D, 3He is much more tightly bound and has a higher coulomb barrier.
Therefore it is more resistant to nuclear burning. Nevertheless, 3He is burned in the
hot interiors of most stars to 4He and beyond. In the cooler regions (for most stars
these are only the outer layers, for lower mass stars it is most of the volume), however,
3He is not processed. Since in all stars D is burned to increase 3He, but not all of this
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newly synthesized 3He is further processed, one would expect an increase of 3He with
time (and metallicity).

Unfortunately, observations of 3He are limited to the solar system and our galaxy.
But since there is a clear gradient of metallicity in the milky way, one would also expect
a gradient in 3He abundance. But no such trend is visible in the data [17], which shows
no gradient within the galaxy. Whatever the explanation, there seems to be a delicate
balance between production and destruction in stellar interiors. The model-dependent
uncertainties in extrapolating from present data to primordial values are large, thus
limiting the value of 3He as a baryometer. We will still use the recommended value
from [17]

3He/H = (1.1± 0.2)× 10−5 (3.28)

to check consistency between D and 3He. Figure 3.7 shows the 3He/H abundance as a
function of D/H. The yellow shaded region represents the D/H values corresponding to
the WMAP7 value of η. Our SBBN predicted value lies very well within the error bars
of the observed 3He thus showing excellent consistency between the mean values of D
and 3He. We also plotted the SBBN predicted values of recent calculations together
with their respective D/H abundance, 3He/H = (1.00± 0.07)× 10−5 [32] (lime green
triangle), 3He/H = (1.05± 0.04) × 10−5 [26] (blue cross) and 3He/H = 1.04 × 10−5

[24] (purple dot). Also the theoretical predicted values are in good agreement within
theoretical errors, indicating a good consistency between D and 3He.

3.3.2.3 4He

4He is the second most abundant nuclide in the universe after hydrogen. As gas is
processed in stars, hydrogen is burned to helium, thus increasing the 4He abundance
over generations of stars. At very low metallicity (looking back to a time when the
contribution from stellar nucleosynthesis was very small) one expects the 4He abundance
to stagnate at its primordial value thus forming a plateau. The most relevant data for
inferring this plateau value is from observations of helium and hydrogen recombination
lines in low-metallicity, extragalactic clouds of ionized hydrogen (HII regions). Unlike
observations of primordial deuterium, observations of primordial helium are numerous
(∼ 100), leading to a small statistical uncertainty. The data also shows the expected
plateau at low metallicity (Figure 3.3).

Unfortunately, abundance determinations do not only depend on the strength of
helium emission lines, but also on a number of physical parameters associated with the
HII region. These include temperature, electron density, optical depth and the degree
of underlying absorption [37]. Accounting for all these effects is a very difficult task
resulting in large systematic errors and different results depending on the method of
analysis. We will not go further into detail but refer to [101] and references therein for
a review on the determination of the primordial helium abundance.

To check the consistency of our Yp prediction we compare it to the adopted values
of recent evaluations (Figure 3.8). Using new atomic physics computations of the
recombination coefficients of HeI and of the collisional excitation of the HI Balmer lines,
the authors of [100] determine

Yp = 0.2477± 0.0029 (3.29)
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Figure 3.8: The solid line is the SBBN-predicted 4He mass fraction as a function of the deuterium
abundance (relative to hydrogen). The dashed lines account for the theoretical uncertainties (0.2%),
the dotted lines illustrate an error of 1%. The vertical bands are the values of D/H consistent with the
WMAP7 value of the baryon density (the dark yellow region corresponds to the variation of the mean
value with η, the light yellow region includes the theoretical error ∼ 8%). The red square and dark red
diamond with errorbars represent recent analysis of 4He observations by [100] and [16] respectively.
The points are slightly shifted in D/H for better readability. The other datapoints are from recent
SBBN calculations [24, 26, 31, 32].

as best fit for the primordial helium. A different evaluation with a new approach to
systematic uncertainties and self-consistency in helium abundance determinations, [16],
leads to

Yp = 0.2561± 0.0108, (3.30)

which is, aside from the larger errorbars, identical to the result of [61]. Our predicted
value for the WMAP7 value of η is certainly consistent with both determinations from
observation. But the large errorbars prevent 4He from being a sensitive probe of the
primordial baryon density. Again we also compare our result to recent calculations
that give Yp = 0.2486 ± 0.0002 [32], Yp = 0.2487 ± 0.0002 [31], Yp = 0.2476 ± 0.0004
[26] and Yp = 0.2475 [24]. All these theoretical predictions are lower than our predicted
value, outside the estimated theoretical error, indicating a systematic difference. The
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Figure 3.9: Contributions to the total predicted lithium abundance from the galactic chemical
evolution model of [38] with 7Li/H = (1.23 ± 0.06) × 10−10, compared with low-metallicity stars and
high-metallicity stars. The solid curve is the sum of all components (figure adopted from [112]).

most likely source for this difference is the n↔ p conversion rate which determines the
n/p ratio at weak decoupling and thus Yp. Unfortunately none of the authors provide
the actual rates they used and we can not definitely find the reason for the higher Yp.

3.3.3 The Lithium Problem

So far the consistency of our abundance predictions for D, 3He and 4He with observations
was excellent and in good agreement with other calculations. Looking at Figure 3.4
this does not come as much of a surprise. But what we can also see is that the 7Li
abundance prediction for the WMAP7 value of η seems not to agree with observations.
Even though 7Li has lost its importance as a baryometer with the advent of more
reliable measurements of D and the high precision determinations of η, we will still
discuss the lithium problem, which remains unsolved to this day.

3.3.3.1 The Missing 7Li

7Li is a very fragile isotope which is burning in stars at relatively low temperature.
Consequently, most of the interstellar lithium cycled through stars is destroyed and
it is difficult for stars to synthesize 7Li and return it to the ISM before it is burned.
7Li and other intermediate nuclei as 6Li, 9Be, 10B and 11B, can be synthesized via
cosmic-ray nucleosynthesis, either by alpha-alpha fusion reactions or by spallation
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Figure 3.10: The solid line is the SBBN-predicted 7Li abundance (relative to hydrogen) as a function
of the deuterium abundance (relative to hydrogen). The dashed lines account for the improved
theoretical uncertainties [31] (7.4%), the dotted lines for the adopted uncertainty of 12%. The vertical
bands are the values of D/H consistent with the WMAP7 value of the baryon density (the dark yellow
region corresponds to the variation of the mean value with η, the light yellow region includes the
theoretical error ∼ 8%). The red square and dark red diamond with errorbars represent recent analysis
of 7Li observations by [112] and [103] respectively. The points are slightly shifted in D/H for better
readability. The other datapoints are from recent SBBN calculations [24, 26, 31, 32].

reactions (nuclear breakup). However, in the early universe, when metallicity is low, the
post-BBN production of lithium is expected to be subdominant to the BBN abundance.
Hence, we would expect a lithium plateau at low metallicity (called ”Spite plateau”
after the authors of [122] who first discovered this plateau). The systems best suited for
the observation of primordial 7Li are warm metal-poor dwarf stars in the galactic halo.
The observational data in Figure 3.9 confirms that lithium does not vary significantly
for metallicities [Fe/H] 1 < −2. This plateau is a clear signal of the primordial origin of
the low-metallicity lithium abundance. Extrapolation to zero metallicity found in a

1[Fe/H] ≡ log10 (YFe/YH) − log10 (YFe/YH)�, where the subscript � denotes the solar value.
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recent analysis [114] gives

7Li/H = (1.58± 0.31)× 10−10 (3.31)

which is a factor 3-4 times smaller than our predicted value. Over the last decades
many attempts have been made to explain the reason for this difference. There are
basically three different problems to tackle. The first is to infer from observations the
amount of lithium in a star, the second is to relate the observed value to the primordial
one and the third is to correctly model the SBBN of lithium. We will quickly discuss
the problems in each field, for a much more detailed discussion see [111, 123] and
references therein.

• How much 7Li do we observe?
The lithium abundance of metal-poor halo stars can not be observed directly, but
is inferred from an absorption line strength and a model of the stellar atmosphere.
The biggest difficulty in these models is to reproduce the temperature structure
of the star whose spectrum is observed. The most important source of error
is the surface temperature, differences as large as 150-200K between different
calibrations are not uncommon. Higher temperatures would result in Li estimates
higher by ∼ 0.08 dex per 100K. Thus, accounting for a difference of ∼ 0.5 dex
would require a large offset of the stellar temperature. Another possible source of
inaccuracies is the fact that the stellar atmosphere is modelled in 1D only.

• Is the observed 7Li primordial?
Another important source of systematic uncertainty comes from the possible
destruction of 7Li over the age of the observed stars. If there is some mixing
between the outer layers of the star and the hot interior, lithium is destroyed
little by little and disappears from the atmosphere of the star (depletion). There
are various mechanisms which could cause such mixing like convection, rotational
mixing or diffusion, but the relatively small scatter in the sample of stars that
build the Spite plateau constrains the effect of depletion caused by mechanisms
which vary from star to star to ∼ 0.1 dex. A recent analysis based on both the
observed abundance and a theoretical determination of the depletion [103] gives

7Li/H =
(
2.51+1.47

−0.93

)
× 10−10 (3.32)

which is already a factor two bigger than the previous value but also equipped
with large errors.

• Are the predicted values reliable?
As we already pointed out earlier, the 7Li prediction carries the largest uncertainty.
The most important reaction at the WMAP7 value for the baryon density is
3He (α, γ) 7Be. A recent analysis of new experimental data [32] concludes that
not only is the uncertainty on the 7Li prediction reduced to ∼ 7.4%, but also
that the predicted abundance is in fact increased. Thus the ”nuclear fix” to the
lithium problem is rather unlikely [37]. The discrepancy could also indicate that
the standard big bang scenario is incomplete and non-standard effects based on
new physics or exotic particles play an important role [25, 31, 64].
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All three of these questions can not yet be answered convincingly and without doubt.
Hence, the lithium problem remains unsolved for the moment. Nevertheless, in Figure
3.10 we compare our prediction to the above mentioned observations and recent
calculations. As expected the agreement between calculation and observation is very
poor. Predicted values from recent calculations, 7Li/H =

(
5.24+0.71

−0.62

)
× 10−10 [32],

7Li/H =
(
5.12+0.71

−0.62

)
× 10−10 [31], 7Li/H = (5.14± 0.5) × 10−10 [26], 7Li/H = 5.2 ×

10−10 [24], however, are in excellent agreement with our results indicating an overall
consistency between SBBN calculations.

3.3.3.2 The Mysterious 6Li

The lighter stable lithium isotope, 6Li, is even more fragile than 7Li and destroyed at
lower temperatures. Its importance for BBN is small since it is only produced in tiny
amounts. Calculations (including ours) yield an isotopic ratio 6Li/7Li ∼ 10−5. It is
thought to be produced predominantly by spallation. Since this mechanism requires
cosmic rays, that are thought to be produced mainly by supernovae, elements produced
by spallation should cumulate with star formation and thus be roughly proportional to
metallicity. However, recent high-resolution observations of metal-poor halo stars [14]
suggest the presence of a 6Li plateau similar to the Spite-plateau for 7Li, indicating a
primordial origin. The observed isotopic ratios of 6Li/7Li ∼ (5− 10)× 10−2 are three
to four orders of magnitude higher than what is currently predicted in SBBN. If this
large difference is to be explained by nucleosynthesis, we have to turn our attention to
the key production reaction 2H (α, γ) 6Li.

Recent measurements of the low energy cross section [52] have raised our hope for
an increase of the SBBN predicted 6Li abundance. The reaction rates provided in the
original publication [52] as well as in a re-examination of their data [82] have been
fitted in the REACLIB parametrization Eq.(2.60) [44]. The resulting fit parameters for
the forward and backward reaction are presented in table B.1 and B.2.

The abundance predictions from calculations with these new reaction rates do not
differ significantly from the original value, labelled JINA in table 3.2. While the 7Li
abundance (as well as all other abundances) is unaffected by the 2H (α, γ) 6Li rate, the
6Li abundance does change, but not more than ∼ 20%. Interestingly, the reaction rate
from the experimental group [52] leads to an increase of 6Li, whereas the re-evaluated
reaction rate of [82] actually reduces the final abundance.

Even with recent reaction cross sections we can not explain the amount of 6Li which
is claimed to be observed in metal-poor halo stars. If these observations are confirmed,
sources other than SBBN would be required to reproduce these findings. Non-standard
effects like annihilation of neutralinos [62] or decay of gravitinos [34] could provide
alternative explanations. On the other hand, the detection of 6Li is very difficult and it
has only been observed in a handful of stars, so systematic errors cannot be completely
excluded.

3.3.4 Nonstandard Big Bang

The standard model for the big bang, assuming a homogeneous and isotropic expan-
sion, is very successful in explaining light element abundances and shows excellent
agreement with observations (aside from the problems with lithium isotopes). However,
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JINA [52] [82]

6Li/H
(
×10−14

)
1.31 1.43 1.06

7Li/H
(
×10−10

)
4.58 4.58 4.58

6Li/7Li
(
×10−5

)
2.87 3.12 2.32

Table 3.2: Primordial isotopic lithium abundances for η = 6.16 × 10−10 and different 2H (α, γ) 6Li
cross sections.

among the many extensions to the framework of SBBN we find nonstandard big bang
nucleosynthesis (NSBBN) where the early universe is not assumed to be homogeneous,
but displaying density fluctuations. Some calculations of such models show increased
abundances of heavy elements [63, 76, 88, 109], while SBBN is not able to produce
heavy elements at significant amounts. We studied the possibility for an enrichment of
heavy elements (C,N,O and F) in NSBBN which would later form molecules important
for stellar formation [134].

3.3.4.1 The Model

The model we use depends on small scale density perturbations which could be induced
by baryogenesis [76] or some phase-transitions like the quark-hadron phase transition
[50]. While the detailed origin is not of importance for our purposes we just assume
the occurrence of such fluctuations and use the geometry as open parameter. We apply
the two-zone model used in [109] where the densities ρh and ρl of two zones, with high
and low density respectively, are related by the density ratio R = ρh/ρl = ηh/ηl and
the volume fraction 0 ≤ fv ≤ 1 of zone 1. While fv and R are free parameters they are
constrained by the demand that the averaged density has to reproduce the global value
ρ = fvρ

h + (1− fv) ρl, leading to

ρh

ρ
=

R

Rfv + (1− fv)
and

ρl

ρ
=

1

Rfv + (1− fv)
(3.33)

Since the high temperature evolution (until weak freeze-out) is independent of density,
the n/p-ratio (and thus the mass fractions of protons and neutrons) in both zones is
given by the global value which is the same as in SBBN. From this initial condition the
neutrons are assumed to diffuse out leading to an uniform neutron density, whereas the
protons remain in place because of the short mean free path resulting from their charge.
This will change the density contrast and the neutron density in both regions. Using
superscripts 1 and 2 for this new situation while h and l indicate values before neutron
diffusion this translates into X1

nρ
1 = X2

nρ
2 = Xnρ and X1

pρ
1 = Xpρ

h, X2
pρ

2 = Xpρ
l.

We can now express local densities by the global quantities Xn, ρ and the parameters
R and fv

ρ1 = X1
nρ

1 +X1
pρ

1 = Xnρ+ (1−Xp) ρ
h (3.34)

ρ2 = X2
nρ

2 +X2
pρ

2 = Xnρ+ (1−Xp) ρ
l. (3.35)
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Together with Eq.(3.33) the ratios ρ1/rho and ρ2/rho can easily be determined:

ρ1

ρ
= Xn +

(1−Xn)R

fvR+ (1− fv)
and

ρ2

ρ
= Xn +

(1−Xn)

fvR+ (1− fv)
. (3.36)

This relations now allow us to express the neutron and proton mass fractions in regions
1 and 2 as a function of the global freeze-out mass fractions and the parameters R and
fv

X1
n = Xn

ρ

ρ1
=

Xn

Xn + (1−Xn)R/ (fvR+ (1− fv))

X1
p = Xp

ρh

ρ1
=

(1−Xn)R/ (fvR+ (1− fv))
Xn + (1−Xn)R/ (fvR+ (1− fv))

(3.37)

X2
n = Xn

ρ

ρ2
=

Xn

Xn + (1−Xn) / (fvR+ (1− fv))

X2
p = Xp

ρh

ρ2
=

(1−Xn) / (fvR+ (1− fv))
Xn + (1−Xn) / (fvR+ (1− fv))

.

(3.38)

These relations now allow us to perform nucleosynthesis calculations for each zone
individually, assuming global SBBN values for ρ and Xn at an initial temperature
(T9 = 10 in our case). We are aware that this model is an oversimplification, assuming
two regions with uniform densities and complete neutron diffusion before the onset of
nucleosynthesis, while proton diffusion is treated as negligible. Furthermore, we do not
account for neutron (back-) diffusion into the proton rich zones during nucleosynthesis.
These effects are discussed in detail in [109].

3.3.4.2 Results

Calculations have been performed for a network containing ∼ 150 nuclides, ranging from
free nucleons to magnesium. The reaction rates are taken from a recent compilation
[4] where reaction rates important for BBN have been updated. At the time when
these calculations have been performed the current WMAP value for the baryon to
photon ratio was slightly higher than today η = 6.22× 10−10. Table 3.3 gives relative
abundances for a SBBN calculation and two selected NSBBN cases (the table is the
same as in [134]). Relative abundances

[ξ] = nξ/nb, (3.39)

where nξ is the number density of species ξ and nb the total number density, were
chosen because it is the format needed as input for subsequent big bang chemistry
calculations. The NSBBN abundances in the table are final abundances, already mixed
from both zones in each model following

[ξ] =
fvρ

1 [ξ]1 + (1− fv) ρ2 [ξ]2

ρ
. (3.40)

The SBBN light element abundances in Table 3.3, corresponding to D/H = 2.35×10−10,
Yp = 0.2498 and 7Li/H = 8.02 × 10−10, are in good agreement with observations as
presented in the previous section, except for 7Li, which shows an even higher abundance.
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SBBN NSBBN

(fv = 0.8; R = 10)
(
fv = 1× 10−5; R = 1000

)
[H] 0.889 0.889 0.888

[D] 2.092× 10−5 2.45× 10−5 2.13× 10−5

[He] 0.111 0.111 0.112

[Li] 1.77× 10−9 1.97× 10−9 2.30× 10−9

[C] 2.51× 10−15 4.00× 10−15 8.45× 10−14

[N] 2.32× 10−16 2.46× 10−16 3.44× 10−14

[O] 3.22× 10−19 3.37× 10−19 8.20× 10−17

[F] 3.28× 10−27 3.61× 10−27 1.63× 10−24

Table 3.3: Relative abundances [ξ] = nξ/nb of the elements at the end of Big Bang nucleosynthesis
for the SBBN and for two NSBBN scenarios.

This most likely results from an overestimation of the 3He (α, γ)7 Be rate.

The values of fv and R represent two extreme cases discussed below and were
chosen in order to achieve the case, where the final NSBBN abundances of protons,
deuterium and helium are as close as possible to the SBBN values and thus are still in
accordance with observations.

The discussion of the different results follows the explanations given in [134]. The
first case (fv = 0.8, R = 10) is similar to the scenario discussed in [109]. The density
ρ1 has to stay close to the global value ρ, while ρ2 is ten times lower. Assuming
complete diffusion of free neutrons out of the high density region will lead to a large
increase of the neutron abundance in the low density region. In the high density
region nucleosynthesis will occur very similar to the standard case and all neutrons are
consumed to form 4He. However, in the low-density region neutrons are more abundant
than protons, which will result in all protons being incorporated into 4He with free
neutrons left over. Neutron captures can then produce neutron-rich isotopes, bypassing
the slow triple-alpha reaction and leading to heavy elements. We see, that while the
heavy element abundances for this case are slightly higher than for the SBBN case,
they remain almost at the same level. This was already pointed out in [109], where the
finding occured, that light element constraints prevent considerable formation of heavy
nuclei.

The second case we investigated (fv = 10−5, R = 1000) represents the inverted
scenario, where pockets of extremely high density are embedded in a background of
almost standard density. It was similarly introduced in [63] and later also discussed
(for even more extreme cases) in [76, 88]. In the high density pockets, the path to
heavy elements is opened by an efficient triple-α reaction (∝ ρ2). At the same time 7Li
is destroyed more effectively which keeps its abundance relatively low. Therefore, this
model considerably enhances heavy element production while light element abundances
remain in accordance with SBBN. However, due to the small volume fraction of the
high density region (which is necessary to reproduce the proper global density) the final
heavy element abundances after mixing remain low, although two orders of magnitude
higher than in the standard case. The possibility for considerable heavy element
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production in NSBBN scenarios has been discussed recently in [76]. However, the
authors did not specify, whether their model reproduces the light element abundances
correctly, leading to follow-up discussions [107, 75]. A recent preprint [88] indicates
that appreciable amounts of heavy elements can be produced in an inhomogeneous big
bang while retaining light element concordance.



Chapter 4

Formation of Heavy Elements

The term heavy elements refers to elements heavier than iron. Heavy elements are rare
compared to the lighter elements (see Figure 1.1). But among them are all the elements
one can find at the jeweller’s: gold, platinum and silver. The question: ”How were
the heavy elements from iron to uranium made?” was chosen as one of Eleven Science
Questions for the New Century by the Committee on the Physics of the Universe [27].
In this Chapter we try to shed some light on the problems we encounter, regarding the
formation of heavy elements.

In Section 4.1 we will give a short description of stellar burning and the death
of massive stars. The basic processes responsible for the production of the bulk of
heavy elements, the s-process and the r-process are introduced in Section 4.2. After a
general introduction on both processes, the r-process is put into focus and we discuss
observational indications for the r-process (Section 4.2.1) as well as the conditions
under which the r-process operates (Section 4.2.2). The rest of the chapter is dedicated
to possible r-process sites (Section 4.2.3), and one scenario in particular, core collapse
supernovae with strong magnetic field and rotation, that can form jets during the
explosion (Section 4.3).

4.1 The Life and Death of Massive Stars

At the beginning of the life of every star is the gravitational collapse of molecular
gas. Due to gravitational contraction, the temperature in the interior of the protostar
increases until the central temperature is high enough to fusion hydrogen to helium.
Due to the energy released by this fusion process, internal pressure increases and
counterbalances the gravitational contraction. This allows for hydrostatic equilibrium
in the star. Once hydrogen at the centre is exhausted,thermal pressure decreases and
the star undergoes gravitational contraction. Due to this contraction, the central
temperature rises until it reaches a critical value, where helium burning is ignited and
the star is again in hydrostatic equilibrium. Hydrogen burning continues in a thin shell
around the core. This sequence of nuclear burning, fuel exhaustion, contraction and
ignition of the next burning stage is repeated a number of times, depending on the
mass of the star. In each burning stage, the ashes of the previous stage are burnt. A
massive star (≥ 11M�

2), remains during all burning stages (from hydrogen burning

2M� = solar mass = 1.9884 × 1033g
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through helium, carbon, neon, oxygen, magnesium to silicon burning) in hydrostatic
equilibrium. At the end of core silicon burning, the star has an onion-like structure,
with a core consisting mostly of iron and nickel and alternating layers of nuclear burning
shells and the accumulated ashes of each burning shell (Figure 4.1). The iron core
does not undergo any further nuclear burning because no more energy can be gained
from fusion of iron nuclei. This is due to the fact that iron nuclei are the most tightly
bound nuclei (with a binding energy of ∼8 MeV per nucleon see Figure 2.2). The core
is instead supported by the pressure of degenerate electrons. The silicon burning shell
continuously produces iron nuclei and the mass of the core steadily increases. Once the
core mass exceeds the Chandrasekhar mass limit

MCh ' 1.44 (2Ye)
2, (4.1)

which is the maximum mass of a self-gravitating sphere which can be supported by the
pressure of a degenerate electron gas, it is no longer stabilized against gravitation and
starts to contract.

The contraction leads to an increase in density and temperature, hence also the
electron chemical potential and the electron Fermi energy increase. This facilitates
electron captures on iron group nuclei and consequently a reduction of the electron
pressure occurs, turning the contraction into a collapse. Additionally, small amounts of
photodisintegrations of iron group nuclei convert internal energy into mass and reduce
the radiation pressure which further accelerates the collapse. The continuous electron
captures reduce Ye, and MCh declines as a function of time, becoming a smaller fraction
of the initial iron core. The fraction of the core with mass MCh is called inner core
while the rest of the iron core is referred to as outer core.

The inner core collapses homologously, i.e. all layers at all radii collapse at the
same rate causing the density to increase uniformly everywhere. The local sound speed
is larger than the infall velocity which is proportional to the radius. At the edge of the
homologous core the infall velocity reaches sound speed and is supersonic beyond that
point (the sonic point). Thus the inner core, falling at subsonic velocities where matter
can communicate (with sound speed), cannot communicate with the outer free falling
envelope beyond the sonic point.

When the density in the inner core reaches values of the order of the nuclear density
∼ 1014 g/cm3 the nuclei and free nucleons start to feel the nuclear force, which is
repulsive at very short distances. The nuclear potential acts as a stiff spring that stores
energy in the compressive phase until it becomes incompressible and rebounds. This
creates a pressure wave which accelerates into a shock wave at the sonic point, moving
outward with supersonic velocities. Typical kinetic energies in the shock after rebound
are of the order of a few times 1051 erg. Meanwhile the outer core is still collapsing
supersonically.

Unfortunately this so called prompt shock mechanism cannot explain why stars
explode. As the shock wave moves outward it ploughs through the outer core consisting
of iron group material. The temperature beyond the shock wave is high enough to
photodisintegrate iron nuclei. The shock wave looses about 8× 1018 erg per gram of
matter which is dissociated. Based on the initial explosion energy only 0.25− 0.5 M�
can be penetrated until the shock stalls. Taking into account energy loss via neutrinos,
leaking out energy from behind the shock, further reduces the amount of matter the
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Figure 4.1: Schematic structure of the different shells of a fully evolved massive star (not to scale).
The upper right part shows the most prominent constituents of each layer. Between the layers of
different composition nuclear burning continues in thin shells. The burning shells are labelled in the
lower right part with the corresponding fuel. The iron core at the centre has been accumulated in
silicon burning and does not provide any further energy.

shock can pass before losing all its kinetic energy.
How exactly the shock is revived and how it will ultimately propagate through the

stellar layers beyond the iron core and disrupt the star in a core collapse supernova
explosion is still unknown. A promising scenario is the delayed neutrino heating
mechanism[18] where the shock is revived by neutrinos emitted by the nascent neutron
star at the centre. The collapse of the inner core into a proto-neutron star released a
few times 1053 erg in gravitational energy which is radiated away by neutrinos. If only
∼ 1% of this energy could somehow be transformed into kinetic energy of the baryonic
matter, the typical supernova energy would emerge.

Supernovae are considered to be the main contributors to nucleosynthesis in galaxies.
The explosive destruction of a star does not only enrich the interstellar medium with
the products of stellar nucleosynthesis but also provide conditions necessary for the
synthesis of elements heavier than iron. We will discuss core collapse supernovae as
possible r-process site in Section 4.2.3.

4.2 The s- and r-Process

We have seen in the previous section that in stars only elements up to the iron group
are synthesized. Because the binding energy per nucleon reaches its maximum in the
iron group, the production of heavier elements by direct fusion is endothermic. Another
obstacle to the production of heavy elements is the growth of the Coulomb barrier with
increasing proton number Z. At sufficiently large Z the energy needed to overcome this



54 Chapter 4. Formation of Heavy Elements

Figure 4.2: Breakdown of solar system heavy element abundances into r-process and s-process
contributions. The values are based upon the Si=106 (meteoritic) scale (adopted from [119]). The
annotated names denote the most prominent element(s) in the individual peaks.

barrier is so high that the synthesized nuclei will be photodisintegrated immediately
and reactions with charged particles become impossible. The neutrons, however, are not
affected by the Coulomb repulsion and therefore the isotopes of elements beyond Fe are
almost exclusively produced in neutron capture processes. In an interplay of neutron
captures and β-decays, element production progresses from the Fe group to the heaviest
elements of the periodic table [20, 22]. This process can be characterized by the relation
between the time it takes for a nucleus to capture a neutron, i.e. the neutron capture
timescale τn, and the competing timescale τβ for the nucleus to undergo β-decay. It is
important to note that τβ only depends on the nuclear species, whereas τn depends
crucially on the neutron density.

If neutron captures are slow, compared to the competing β-decays (τβ � τn), the
process is called slow neutron capture process or s-process. In this case, a seed nucleus
captures neutrons until a β-unstable nucleus is formed. This nucleus β-decays, before it
can capture another neutron, into the isobar with charge Z+1. Thus the path to heavy
elements remains close to stability in the s-process. The involved nuclei are in general
sufficiently long-lived to be studied in the laboratory. The nature of the s-process is
also expressed in the final abundance distribution. For nuclei with closed neutron shells,
at N=50, 82 and 126, the neutron capture cross-sections are much smaller than for
neighbouring nuclei with different neutron numbers. Therefore, isotopes with magic
neutron numbers will be considerably more abundant. This results in three prominent
peaks in the solar s-element abundance distribution (Figure 4.2), around A=90, 140
and 208.
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Figure 4.3: Features of the r-process: Black squares denote β-stable nuclei. Where available,
experimental masses were used to determine the location of stable nuclei; otherwise, calculated masses
were used. The coloured region in the main graph shows calculated half-life with respect to β-decay.
The jagged black line gives the right-hand boundary of the region of known nuclei. The thick magenta
line corresponds to S1n = 2.4 MeV, which is the approximate location of the r-process path for a
particular set of stellar conditions. The magenta squares in the region of β-stable nuclei show nuclei
that are created in decay from the r-process line. The observed solar r-process abundance is plotted
versus the mass number A in the inset (figure adopted from [84]).

In the other extreme case, τn � τβ, the timescale for neutron capture is rapid on
the competing timescale for β-decay. Thus, the process is called the rapid neutron
capture process or simply r-process. A nucleus will capture many neutrons before an
isotope is reached that β-decays before another neutron is captured. This allows to
reach nuclei very far from stability and to enter regions where no experimental data
exists (see Figure 4.3). Therefore, one has to rely on theoretical models for the nuclear
properties of neutron rich nuclei that participate in the r-process.

The high neutron fluxes under which the neutron capture timescale becomes
sufficiently short, are usually accompanied by high temperatures (∼1 GK) and therefore
large quantities of high energy photons causing photodisintegration. If the timescale for
photodisintegrations is of the order of τn, an equilibrium, the so called (n, γ)− (γ, n)
equilibrium, is established between neutron captures and photodisintegrations. The
farther away a nuclide is from stability, i.e. the more neutrons a nucleus has captured,
the lower its neutron separation energy, i.e. the energy needed to remove one neutron,
becomes and the easier it can be photodisintegrated. Within an isotopic chain in
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equilibrium, there are usually one or two isotopes which dominate the abundance
distribution. These isotopes are called waiting point nuclei, because the whole process
has to wait until these nuclei β-decay before it can proceed in the next isotopic chain.
The line connecting the waiting points of all isotopic chains is referred to as the r-
process path. The r-process path is located far away from stability in the very neutron
rich region of the nuclide chart, typically at nuclei with neutron separation energies
around 2-3 MeV (see Figure 4.3). Waiting point nuclei with magic neutron numbers,
corresponding to closed neutron shells as in the s-process, are bottlenecks on the
r-process path. Their β-decay halflives are considerably longer, typically one or two
orders of magnitude, than those of the waiting points between them. Therefore, these
nuclei will be by far the most abundant. Once the flux of neutrons is exhausted, the
unstable, neutron rich nuclei are not supported by the equilibrium anymore and will
decay until they reach the valley of stability. The bulk of matter, concentrated in
the waiting point nuclei with magic neutron numbers, will form peaks in the final
abundance distribution. Compared to the s-process peaks they are located at lower
mass because magic neutron numbers are reached at smaller proton numbers in the
r-process.

The s- and r-process contribute almost equally to the total solar system abundance
of heavy isotopes. Figure 4.2 shows a decomposition of solar system abundances into
s-process and r-process contributions given in [119]. Such a breakdown is done by first
determining the s-process contribution from model calculations and then attributing
the residual abundances to the r-process.

In general, the s-process is much better understood than the r-process. Not only are
the model calculations more reliable, because of the experimentally determined nuclear
properties, but also the primary sites where the s-process operates are identified. It
could also be seen to operate in situ by detecting the radioactive s-process isotope 99Tc
(τ1/2 = 2.1× 105 years) in quiescently evolving stars [77]. For the r-process, however,
neither the specific physical conditions and nuclear properties nor its astrophysical sites
have been unambiguously identified.

4.2.1 Clues from Abundance Observations

The abundance distribution on the surface of a star does not change much during its
evolution. Hence, it reflects the composition of the interstellar matter from which the
star formed. Much of the knowledge we have, regarding the formation of the heaviest
elements has been gained from high-resolution spectroscopic observations of stars in
our galaxy, especially of the so-called ultra metal-poor halo stars. These halo stars
are circling the galaxy in highly eccentric orbits and are among its very oldest stars.
Compared to the sun, their Fe abundances are orders of magnitude lower, but they do
already have clear signatures of elements made in the r-process. However, no indication
for the presence of s-process elements has been found. This implies that no significant
amounts of s-process material had been ejected into the interstellar medium when the
very old halo stars formed. Meaning, that the r-process predates the s-process.

One of the most famous and best studied of these halo stars is CS 22982-052. Its
metallicity, [Fe/H] ∼ −3.1, is less than a thousandth that of the sun. Abundances
or significant upper limits are reported for 57 elements in this star, more than for
any other star except for our sun [120]. Figure 4.4 shows relative abundances of the
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Figure 4.4: Comparison of CS 22892-052 Z≥ 56 abundances with solar-system s-process (pur-
ple dashed line, normalized to CS 22892-052 Ba) and r-process (solid blue line normalized to CS
22892-052 Eu) elemental abundance distributions. Abundances are given relative to hydrogen:
log ε(A) = log10(YA/YH) + 12.0 (figure adopted from [119]).

measured CS 22982-052 data[121] compared to solar system s- and r-process abundances
[28, 118]. The solar system abundances are scaled to compensate for the sun’s greater
metallicity. The s-process curve clearly does not fit the data at all, whereas the r-process
curve shows a remarkable agreement with the measured abundances from Ba (Z=56)
through the third r-process peak. Therefore, r-process production must have occurred
already at very early galactic epochs. Assuming a relatively short time between the
formation of the galaxy and the formation of these stars, the r-process production
sites must have been short-lived. This suggests that the first stars, progenitors of
the observed halo stars, were massive and evolved quickly. These objects needed to
synthesize, eject and mix the r-process material into the interstellar medium prior to
the formation of the ultra metal-poor halo stars. This points to a well-confined set of
astrophysical and nuclear conditions, that are responsible for r-process nucleosynthesis,
and suggests a relatively narrow range of masses for the astrophysical sites; presumably
supernovae.[119]

Observations of further ultra metal-poor stars have confirmed the agreement with
scaled solar system abundances for elements between barium and lead (56 < Z < 82).
This indicates that these elements are always produced in the same way by a robust
process, often referred to as main r-process. For elements between strontium and silver
(38 < Z < 47), there is a large star-to-star scatter with respect to the heavier elements.
This indicates an additional contribution for the production of those lighter heavy
elements. This contribution may be associated with an additional process, the so-called
light element primary process (LEPP) [81, 132].
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It is still unclear whether different sites are required for r-process nucleosynthesis or
even what the sites for these various mass ranges of neutron capture elements observed
in the ultra metal-poor halo stars might be. In the next section we will discuss the
requirements for a successful r-process and possible candidates that fulfil these. We
will, however, only focus on the main r-process and simply refer to it as r-process.

As an additional observational constraint we can consider the mass of r-process
material in the galaxy. From meteoritic data and observed abundances in the sun,
we can infer that the mass fraction of r-nuclei in the Galaxy is ∼ 2× 10−7 [8]. If
the mass of our galaxy is about 1.5× 1011 M�, the mass of r-process material in our
galaxy is about 104 M�. Now let’s assume that the r-process site is somehow related
to core collapse supernovae. The rate of supernovae in our galaxy is between 0.1 yr−1

and 0.01 yr−1 [127, 133] and the galaxy is about 1010 years old. Therefore, there have
been some 108 to 109 supernovae in our galaxy’s history. If each of these supernovae
produced r-process material, we expect each supernova to make 10−5 to 10−4 M� of
r-process nuclei. This is only a small amount of the total mass ejected in a supernova,
and it’s smallness provides an important constraint on the site of the r-process.

4.2.2 Conditions for the r-Process

Regardless of the astrophysical site there are two key ingredients for the r-process to
operate (1) a strong flux of free neutrons and (2) an abundance of so called seed nuclei
(usually Fe group nuclei) to capture them. To synthesize nuclei with A above 200 a
seed nucleus needs to capture 100-150 neutrons. The neutron-to-seed ratio at the onset
of the r-process is therefore a critical parameter to determine how far it will reach. The
large neutron densities that are required (typically 1024 − 1028 cm−3) and the fact that
the neutrons have to be utilized before decaying with a halflive of 10 min, both point
towards explosive environments.

To discuss the detailed conditions for the r-process we will assume a generic scenario
of expanding and cooling hot matter, originating from some explosive event (e.g. a
supernova). Initially the matter is assumed to be hot and dense enough to be in NSE.
The abundance distribution in NSE, Eq.(2.54), depends on temperature, density and
the abundance of neutrons and protons. To reduce the number of variables we will
rather use entropy (instead of temperature and density) and electron fraction (instead
of neutron and proton abundance) to discuss different scenarios. Thus for different
values of entropy, the NSE abundance of some heavy nucleus with mass A depends
on S1−A [78]. The recombination temperature, i.e. the temperature at which the
NSE abundance distribution shifts to heavy nuclei, depends only weakly on density.
Therefore, the density at which this temperature is reached is given by the entropy of
the material. Nucleons expanding at low entropy will combine to heavy nuclei already
at high densities, whereas nucleons expanding at high entropy will combine to form
heavy nuclei at low densities. This difference gives rise to two very different r-process
scenarios.

If the entropy is low, NSE favours iron-group nuclei and by the time the charged
particle reactions freeze-out, all protons are bound into seed-nuclei. Because the r-
process needs around 100 free neutrons per seed, a typical seed nucleus in a low-entropy
freeze-out like 78Ni requires a total neutron to proton ratio of ∼ 5− 6 which translates
into an electron fraction of Ye ≈ 0.15, which is quite neutron rich. This scenario is
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often called the low entropy low Ye scenario.

For high entropies NSE favours 4He at high temperatures. Heavier nuclei can only
be formed once the temperature is low enough that 12C can be synthesized in significant
amounts, mostly via the triple-α reaction. As we have already seen in the previous
sections, three-body reactions depend strongly on the density. The higher the entropy
at a given temperature the lower the density and therefore the slower the three body
reactions. Eventually the three-body reactions are too slow to maintain NSE and
freeze-out of equilibrium. Thus the higher the entropy, the higher the temperature at
which three-body reactions freeze-out and the lower the abundance of heavy nuclei. At
the moment NSE breaks down, there will be a lot of α-particles. Some of those are
rapidly captured on 12C and heavier nuclei to build up seed nuclei in the mass range
A ≈ 100. Once these reaction also freeze-out the system is left with free neutrons,
some seed nuclei and many 4He nuclei. The remaining neutrons will be captured by
the seed nuclei but not by the 4He nuclei and an r-process can occur. Because seed
nuclei are scarce less free neutrons are needed than in the low entropy case and an
electron fraction only slightly below Ye = 0.5 might be sufficient for an r-process to
occur. This scenario is called the high entropy, moderate Ye scenario.

The question is, where in nature does on find the appropriate conditions, either
very neutron rich matter at low entropies or moderately neutron rich matter at very
high entropies.

4.2.3 Possible Candidates

The most promising candidate for the high entropy scenario is the so-called high-
entropy neutrino wind [136] of core collapse supernovae. After collapse, core bounce
and successful launch of a shockwave, the newly formed neutron star at the centre of
the supernova is still very hot. It can solely loose energy and cool by the release of
copious amounts of neutrinos. These neutrinos interact with the outermost neutron
star layers which are heated and ejected in a continuous wind of matter. In the region
behind the shock, densities are relatively low because matter is mostly pushed outwards.
This cavity is heated by neutrinos, leading to the high entropies that are needed for
the r-process. Furthermore, the interaction of neutrinos with free neutrons and protons
is supposed to drive matter slightly neutron rich. The mass loss rate in the wind is
estimated to be of order 10−5 M� s−1 [33]. If the wind lasts for the early cooling time of
the neutron star (∼ 10s) and the material forms r-process matter, this would naturally
give the correct amount of 10−4 M� of ejected r-process material.

Large scale parameter studies based on this scenario have been undertaken by
many groups (see e.g. [10, 36, 42] or [128] for a recent review) and the solar r-process
distribution could be very well reproduced by a superposition of different entropy
contributions. Unfortunately, the very high entropies needed for the production of the
heaviest elements could not be reproduced in simulations so far. Additional models
like the formation of reverse shock in the late phase of the neutrino wind [9] or the
triggering of the explosion by a quark-hadron phase transition after the first bounce
[39] are currently being investigated. In this thesis, however, we will wander off the
beaten track and focus on a candidate of the group of low entropy scenarios.

A possible alternative to supernovae as r-process site are neutron star mergers. The
ejecta from the last seconds of a merger between a neutron star and a compact binary
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Figure 4.5: Evolution of [EU/Fe] and [Bar/Fe] abundances as a function of metallicity [Fe/H]. Neutron
star mergers with a rate of 2 × 10−4 y−1, a coalescence timescale of 106 y and 10−3 M� of ejected
r-process matter are assumed to be the dominating r-process sources. Black dots denote model stars,
observations are marked by filled squares and diamonds. Average ISM abundances are marked by a
yellow line. Filled circles with error bars denote average abundances of model stars and their standard
deviation in [Fe/H] bins with binsize 0.1 dex (figure adopted from [11]).

partner (either another neutron star or a black hole) could be so neutron rich that
a low-entropy r-process could take place [71]. Such a compact binary pair gradually
loses energy by gravitational radiation and tidal interaction over billions of years before
its cataclysmic merger. The rate of such mergers in the galaxy is, at most, one every
104 years. The enormous density of free neutrons available in these scenarios (about
1033 cm−3) leads to the buildup of the heaviest elements and also to fission on very
short time scales. That, in turn, leads to a recycling of fission products back to the
heaviest nuclei via subsequent neutron captures. The abundance distribution after
this so-called fission-cycling depends strongly on uncertain fission details and lacks
any r-process nuclei lighter than , A ≈ 130. Nevertheless, the solar-system r-process
distribution can be reproduced very well[43, 92]. The amount of neutron rich matter
that is ejected has been estimated in simulations with approximated general relativity
[91] to be between 10−3 M� and a few times 10−2 M�.

Neutron star mergers seem to be the perfect candidate to explain the r-process
element abundances in the universe. Unfortunately studies of chemical evolution seem
to rule out neutron star mergers as a major r-process source [11]. Even with a timescale
for the mergers which is orders of magnitude lower than the classical estimate (106 y
instead of 108 to 109 y) the injection of r-process elements into the interstellar medium
would occur very late during galaxy formation ([Fe/H] ≈ −2.5), whereas r-process
elements are already observed at [Fe/H] = −3 and lower (see Figure 4.5). We will now
revert to core collapse supernovae as possible r-process site, but focus on those with
high magnetic fields and rotation rates.
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4.3 MHD-Jets from Core Collapse Supernovae

An additional explosion mechanism to the ones presented in the first section of this
chapter, is to include effects of rotation and magnetic fields. This magnetohydrodynamic
(MHD) mechanism [73] results in aspherical supernovae with collimated jets in polar
direction along the rotational axis. The neutron rich material inside the jets is expanding
at high velocities from an initially dense state and could thus provide the high neutron
densities, low entropies and short timescales needed for a successful r-process.

The basic idea behind the MHD mechanism is to extract the free energy, available
in differential rotation of the proto-neutron star, with the help of magnetic fields, which
in turn power the explosion. The free energy in differential rotation is the difference
between the rotational kinetic energy and the kinetic energy for solid body rotation at
the same total angular momentum. Depending on the initial spin profile, the free energy
available in differential rotation to be tapped to generate strong magnetic fields and
MHD jets varies from insignificance (∼ 0.01 B3) to supernova (∼ 1 B) and hypernova
(& 10 B) magnitudes [96].

The collapse of the stellar core leads to matter compression. Magnetic flux conserva-
tion would then amplify both the toroidal (BΦ) and the poloidal (BP) fields. Differential
rotation in the region between the stalled shock and the inner proto-neutron star leads
to a winding and stretching of the poloidal field into a toroidal field, thus driving
the latter to higher and higher values. Eventually, magnetic pressure reaches high
enough values and a magnetically driven jet punches through the stalled shock along
the poles, powering a bipolar explosion. The structure of the magnetic field in the
jets is that of a tightly coiled spring. Matter moves along the field lines like a bead
on a spring, revolving around the poles and thereby being accelerated upwards in a
corkscrew motion.

Matter which is accreted along the equator first passes through a shock surface
where temperature suddenly rises and iron group nuclei are dissociated almost entirely
into free neutrons and protons. During the very short infall near the proto-neutron star
the electron fraction decreases through electron captures on protons, which occur on a
much shorter timescale than electron captures on iron group nuclei. High temperature
and density further facilitate electron captures. Because of the spiralling motion inside
the jets, matter stays in the hot and dense region close to the neutron star in the first
moments of ejection and additional electron captures decrease Ye even further. During
ejection, temperature and density quickly decrease due to fast expansion, thus possibly
providing conditions suitable for the r-process.

31B = 1051 ergs = 1044 J
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Chapter 5

Results

Nucleosynthesis calculations investigating the r-process are computationally involved.
As we have seen in Section 2.3.4 the solution of the reaction network equations requires
the inversion of a matrix, where the number of lines and columns equals the number of
nuclides considered in the network. For r-process calculations, the number of involved
nuclei is typically ∼ 5000− 6000. We performed all calculations in this section with
a network code, which was developed in the course of this thesis. The code is a
modernized version of the network code by F.-K. Thielemann, based on the same
numerical methods, but written entirely new. We have made use of some new features
of Fortran 90, that were not available in Fortran 77, like allocatable arrays and modules.
Also, the combination of a fast sparse matrix solver and a compressed storage format
rendered the code fast enough, that we can follow the evolution of all nuclei throughout
the whole calculation. This was not possible with the old version, where the computation
was split into a charged-particle part at high temperatures, and a specialized r-process
part at lower temperatures (see e.g. [10, 36, 80] for details). The computation time for
a calculation evolving the abundances over 106 s is typically less than 10 minutes.

The theoretical reaction rates and nuclear properties of all nucleosynthesis cal-
culations in this section are based on the finite range droplet model (FRDM) mass
formula [85]. The basic REACLIB, containing neutral and charged particle reactions
and decays (theoretical as well as experimental) for Z ≤ 83 is taken from [110]. For
weak interaction rates (electron/positron captures and β-decays) we use the rates of
[49] for nuclei with A ≤ 45 and those of [70] for 45 < A ≤ 65. Neutron capture rates
and their inverses, based on FRDM, for nuclei with Z > 83 are taken from [99]. Where
available we used experimental β- and α-decay halflives from [5]. Theoretical β-decay
halflives as well as β-delayed neutron and α-emission probabilities are taken from
[86] and theoretical α-decay rates from [85]. We also include neutron induced fission
rates from [99] and β-delayed fission probabilities from [97] based on the fission barrier
predictions from [83].

This chapter is organized as follows: In Section 5.1 we present results from
parametrized calculations and discuss the influence of Ye, density and expansion
velocity on the final abundance distribution. The influence of different fission chanels
and fragment mass distributions is explored in Section 5.2. The main results of this
thesis are presented throughout Section 5.3. Two different methods to extract initial
conditions from 3D simulations are employed. The first is based on Lagrangian tracer
particles (Section 5.3.2), the second makes use of the full 3D data from the simulation
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Nuclide A Nuclide A Nuclide A Nuclide A Nuclide A

n 1 V 43-83 Pd 102-156 Tm 167-230 U 232-299

H 1-3 Cr 44-86 Ag 105-160 Yb 168-234 Np 235-302

He 3-6 Mn 46-89 Cd 106-163 Lu 173-237 Pu 238-305

Li 6-9 Fe 47-92 In 111-166 Hf 174-240 Am 241-308

Be 7-12 Co 50-96 Sn 112-169 Ta 179-243 Cm 244-311

B 8-14 Ni 51-99 Sb 119-172 W 180-247 Bk 247-314

C 9-18 Cu 57-102 Te 120-176 Re 183-250 Cf 250-319

N 12-21 Zn 57-105 I 123-179 Os 184-253 Es 253-322

O 13-22 Ga 60-108 Xe 124-182 Ir 189-256 Fm 256-325

F 17-26 Ge 61-112 Cs 129-185 Pt 190-260 Md 258-328

Ne 17-41 As 64-115 Ba 130-189 Au 195-263 No 259-331

Na 20-44 Se 65-118 La 135-192 Hg 196-266 Lr 261-334

Mg 20-47 Br 68-121 Ce 136-195 Tl 203-269 Rf 265-337

Al 22-51 Kr 69-124 Pr 141-198 Pb 204-273 Db 267-336

Si 24-54 Rb 74-128 Nd 142-201 Bi 209-276 Sg 271-337

P 26-57 Sr 77-131 Pm 143-205 Po 210-276 Bh 274-337

S 27-60 Y 79-134 Sm 144-208 At 211-279 Hs 278-337

Cl 31-63 Zr 81-137 Eu 151-211 Rn 215-269 Mt 280-337

Ar 31-67 Nb 83-140 Gd 152-214 Fr 218-280 Ds 284-337

K 35-70 Mo 86-144 Tb 155-218 Ra 222-283 Rg 288-337

Ca 35-73 Tc 90-147 Dy 156-221 Ac 224-288

Sc 39-76 Ru 96-150 Ho 161-224 Th 227-293

Ti 40-80 Rh 101-153 Er 162-227 Pa 230-296

Table 5.1: Nuclei contained in the r-process network, the range of mass number (A) is determined by
the mass formula FRDM for each element. The total number of nuclides adds up to 5831.

(Sections 5.3.3 and 5.3.4). In Section 5.3.5, the results of both methods are compared,
and contrasted with results from literature. Finally, in Section 5.3.6 we present a
preliminary exploration of the influence of our results on galactic chemical evolution.

5.1 Results from Standard Calculations

To study the effects of different input parameters on the r-process abundance distribution
we performed a series of parametrized calculations. The main goal was to test whether
the conditions we expect inside the jets from CCSN are suitable for a successful r-process.
We assume that matter inside the jets is expanding adiabatically once it has reached a
certain distance from the proto-neutron star. We also assume that the jet traverses
the outer layers with approximately constant velocity v0. The position, density and



5.1. Results from Standard Calculations 65

Figure 5.1: Results of standard calculation (see text) with different values of the initial electron
fraction. Scaled solar r-process abundances from [119] are plotted for comparison (black dots).

temperature of a particle are then set to be [45]

R(t) = R0 + v0t

ρ(t) = ρ0

[
R0

R(t)

]3

T (t) = T0
R0

R(t)
.

(5.1)

We set the reference initial values for these parameters to

v0 R0 T9,0 ρ0

30000 km/s 350 km 10 2× 109 g/cm3

corresponding to a dense MHD Jet with a radial velocity of 0.1 c. The initial temperature
is sufficiently high that it is safe to assume that matter is in NSE. In that case the
abundance distribution depends only on the thermodynamic conditions, the electron
fraction and the abundance of neutrons and protons. The initial composition can then
be calculated from NSE by assuming that only free neutrons and protons exist. Their
initial abundances are defined by charge neutrality Yp = Ye and mass conservation
Yn = 1 − Yp. Once the temperature has dropped below 9 GK we switch from the
simplified NSE calculation to the full network calculation. At such a high temperature
we can assure a smooth transition from NSE to the network. The physical breakdown of
NSE occurs only later at temperatures around 6 GK. Using the full network calculations,
the freeze-out proceeds consistently as soon as the first reactions fall out of equilibrium.
Calculations are performed over a time of 107 s, after which the remaining unstable
nuclei with a halflive of less than 109 y instantaneously decay to stability.
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Figure 5.2: Results of standard calculation (see text) for different initial values of the density. Scaled
solar r-process abundances from [119] are plotted for comparison (black dots).

Figure 5.1 shows the results of standard calculations for initial electron fractions
of 0.1, 0.15, 0.2, 0.25 and 0.3. The outcome of the calculations depends strongly on
the value of Ye. In the three most neutron rich scenarios the full range of r-process
elements over the second (A ∼ 130) and third peak (A ∼ 195) are produced. Under less
neutron rich conditions (Ye = 0.25) only the second peak can be reproduced, including
some material with higher mass. For the least neutron rich calculation only lighter
heavy elements with mass lower than 130 are synthesized. The crucial quantity in
determining how far in mass the r-process can proceed is the neutron-to-seed ratio
which is directly related to the electron fraction.

Under the most neutron rich conditions the solar r-process peaks are well reproduced
in size, but slightly shifted to the right, to higher mass numbers. Values for the electron
fraction as low as 0.1 resemble the conditions expected in neutron star mergers [43].
The neutron-to-seed ratio in this extreme scenario reaches values of over 200, due to
the large neutron densities nn > 1031 cm−3. With so many neutrons available, the
r-process reaches regions in the nuclide chart where fission becomes the dominant
reaction channel. Simultaneously the iron group nuclei are almost completely consumed
in this process and the supply of material from the low mass range dries up before
neutrons are exhausted. This results in an abundance distribution devoid of almost
any nuclei below A ∼110. The fission products typically populate the A=130 region
and continue capturing the still abundant neutrons until they again reach mass regions
where fission occurs. Even after freeze-out (Yn/Yseed = 1), neutron density remains
high and neutrons are continuously being captured. Thus the abundance distribution
is shifted to heavier masses. This effect was also observed in nucleosynthesis studies
based on neutron star mergers [43]. We will further discuss the influence of fission on
the final abundance pattern in the next section.
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Figure 5.3: Results of standard calculation (see text) for different values of the expansion velocity.
Scaled solar r-process abundances from [119] are plotted for comparison (black dots).

Only for the slightly less neutron rich conditions with Ye = 0.15, the heaviest stable
isotopes around Pb are produced in large amounts. At the onset of the r-process the
neutron-to-seed ration adds up to ∼ 110 which is enough to synthesize the heaviest
elements from seed nuclei, which are typically around 80Ni and heavier, but not quite
enough for fission to have a strong effect.

The best overall agreement with solar abundances is achieved with an initial electron
fraction of Ye = 0.2. A neutron-to-seed ratio of only about 60 seems to be sufficient to
reproduce both r-process peaks and also the region between the peaks. We therefore
take Ye = 0.2 as reference value for further parametric calculations to study the influence
of density and expansion velocity.

With an initial Ye around 0.25 there are only very little neutron captures occurring,
not enough to build up material beyond A=130 in appreciable amounts. However,
the second r-process peak is well populated. With even larger electron fractions and
consequently only around 15 neutrons per seed nuclei the reaction flow does not proceed
beyond A=130.

Comparing the results from our model calculation with the solar system r-process
abundances we notice that the peaks, with the exception of the one corresponding to
the calculation with the lowest Ye value, are slightly shifted to the left, to lower mass
numbers. This indicates that the r-process path lies very far from stability, maybe too
far to exactly reproduce the solar abundances. The location of the path in (n, γ)−(γ, n)
equilibrium is determined by the relation between photodisintegrations and neutron
captures and therefore between temperature and neutron density.

Fixing the electron fraction to a value of Ye = 0.2, we performed further calculations
to invesitgate the influence of density on the final abundance distribution. The results of
these calculations are presented in Figure 5.2. An increase in the initial density results
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in a slightly lower entropy. Neutron capture rates depend strongly on the neutron
density. At the same time photodisintegrations only depend on the temperature and
therefore, capture reactions are slightly favoured at higher density. This is particularly
important for the reaction flow at waiting point nuclei with closed neutron shells. Once
the r-process flow reaches a nuclide with magic neutron number far from stability it
can not continue via neutron captures because the isotope with N+1 neutrons has a
very low neutron separation energy and is almost instantly photodisintegrated. By
subsequent β-decays and neutron captures, matter accumulates in a sequence of nuclei
with magic neutron number. Consequently, the r-process path moves closer to stability
until eventually a nuclide is reached, where neutron capture is more efficient than
photodisintegration of its neighbour. Once this bottleneck is breached, the r-process
proceeds very quickly, until the next magic neutron number is reached. For which
nuclide a magic neutron number barrier is surpassed depends strongly on temperature
and neutron density. Already a small increase in the neutron capture rate allows the
flow to continue earlier and at higher temperature and thus to reach higher mass
regions. In Figure 5.2 this is expressed by a slight enhancement, with increasing density,
of the mass regions following a r-process peak. In case of initial densities around
2 × 108 g/cm3, the r-process does not operate properly. Because of the low density,
the reaction flow can only proceed beyond the N=82 closed neutron shell at lower
temperature and closer to stability. However, the abundance flow through closed shell
waiting points quickly ceases due to the decreasing density. Thus leaving a large amount
of free neutrons unprocessed. These neutrons are captured on nuclei in the mass range
140 < A < 160, moving them to higher mass numbers. Without the fresh supply from
the mass range below the magic neutron number this results in a trough in the mass
range A = 140− 160, while the higher mass region differs less from calculations with
higher initial densities. In general the r-process abundance pattern is very similar for
densities above 8× 108 g/cm3. We also note that the shift of peaks towards lower mass
numbers is decreasing for lower initial densities, indicating that the r-process path is
moving closer to stability.

The differences in the abundance distributions in Figure 5.3 can be explained in
a similar manner. Shown are final abundances for standard calculations, where only
the expansion velocity was varied. The higher the expansion velocity, the faster the
density decreases. Therefore, there is less time for waiting point nuclei to capture a
neutron or to decay into the next isotopic chain while the strong neutron flux sustains
the r-process. This results in a dip in the abundances behind the peaks that grows
with increasing velocity, indicating that the abundace flow through nuclei with magic
neutron numbers is less effective. Again we see a relatively robust abundance pattern
for expansion velocities in the investigated value range.

Variation of the initial radius has the inverse effect on the expansion as variation
of the velocity. The expansion factor R0/R(t) in Eq.(5.1) can also be expressed in
terms of the initial radius and the expansion velocity 1/(1 + t(v/R0)). Increasing the
initial radius by some factor has the same effect on the expansion and therefore on the
outcome of the r-process calculation as reducing the velocity by the same factor.

From these calculations we can draw the conclusion that, if the approximation of
adiabatically expanding matter at constant velocity is valid, the jets from MHD core-
collapse supernovae could provide the conditions for a successful r-process. Variations on
either density or velocity alone only have a weak effect on the outcome of the r-process
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Figure 5.4: Linear superposition (solid black) of the different electron fraction components in Figure
5.1 (dashed lines with corresponding colours). Scaled solar r-process abundances from [119] are plotted
for comparison (black dots).

in the given parameter range, indicating a rather robust mechanism. The dominant
parameter in determining the final abundance pattern is clearly the electron fraction
and with it the neutron-to-seed ratio. The solar r-process abundance distribution could
then be reproduced by a superposition of different Ye components. Already the linear
superposition of the different Ye components presented in Figure 5.1 shows an almost
perfect fit to the solar r-process abundance distribution (Figure 5.4). To test this
hypothesis with more sophisticated input, we will perform postprocessing calculations
on data from 3D simulations of MHD core collapse supernovae [68] in section 5.3.

5.2 The Influence of Fission

We have seen in the previous section that fission plays an important role in determining
the final abundance distribution under very neutron rich conditions. In this section we
will give a short discussion of the influence of different fission modes and fission fragment
distributions on the final abundances. A detailed quantitative analysis, however, is
beyond the scope of this thesis. We performed four sets of calculations in the framework
of our parametrized expansion, for two initial values of the electron fraction (0.1 and
0.15) and two models for the fission fragment mass distribution discussed in Section
2.6.4: one from Panov et al. [98](Panov), the other from Kodama&Takahashi [66]
(Kodama). For each combination of Ye and distribution model final abundances were
calculated including different types of fission reactions: no fission (nofiss), neutron-
induced fission only (nf ), β-delayed fission only (bf) or both (nf+bf ). Results of these
calculations are presented in Figures 5.5 and 5.6 for Ye = 0.1 and Ye = 0.15 respectively.

In the extremely neutron rich scenario of Ye = 0.1 fission reactions play an important
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Figure 5.5: Final abundance pattern for standard calculations with Ye = 0.1. Plotted are the
results of 4 calculations including different fission modes, no fission (nofiss), neutron-induced fission
only (nf), β-delayed fission only (bf), neutron-induced and β-delayed fission (nf+bf). Scaled solar
r-process abundances from [119] are plotted for comparison (black dots). Two different fission fragment
distributions were employed, Panov et al.[98] (left side) and Kodama&Takahashi [66].

role in preventing the reaction flux from converting basically all seed nuclei into heavy
nuclei with mass numbers A > 200. What happens if this limiting factor is missing,
is illustrated by the red line in Figure 5.5 representing a calculation not including
any fission reactions. With the exception of two small peaks in the region of the
solar r-process peaks, all material is accumulated in nuclei with mass larger than 200.
Including neutron induced fission rates prevents the reaction flux from proceeding
beyond nuclei in the region Z = 93−95. When neutrons are still abundant, these nuclei
are reached at neutron numbers N > 180, populating the mass numbers A = 132 and
A = 140−150 via asymmetric fission in the Panov model. During the decay to stability
delayed neutrons from β-decays, as well as neutrons from previous fission reactions and
some left-over neutrons, induce further fission reactions on nuclei in the mass range
A = 250− 270 leading to two characteristic peaks in the green line in Figure 5.5 (left).
The first peak around A = 120 is fed by the lighter product of asymmetric fission of
nuclei with A < 255, the second peak around A = 130 results from symmetric fission in
the mass range A = 255− 265 and from the heavy fragment of fission in the A < 255
region. The abundances of nuclei with A > 210 are enhanced in the case where only
neutron induced fission is considered. Without β-delayed fission reactions present, the
very heavy nuclei can decay almost unhindered towards the N = Z region. From there
they finaly decay back to stable nuclei via alpha-decays, thus effectively increasing the
final abundance of nuclei with A > 210.

If only β-delayed fission is taken into account the reaction flow can initially pass
almost unhindered to the heavy mass region. As soon as nuclei start to decay, β-delayed
fission reactions begin to effectively populate the same mass ranges as neutron induced
fission in the previous case. However, the heavier nuclei with Z = 95−100 and A > 265,
which can not be reached in the cases where neutron induced fission is present, decay
asymmetrically with the heavier fragment lying in the mass range A = 140 − 170.
This leads to increased final abundances in this mass region compared to the other
calculations in Figure 5.5 assuming Panov fission fragment distribution. β-delayed
fission is also more prominent than neutron induced fission in the lower mass region.
This leads to effectively increased abundances in the A = 110− 120 region.

Combining both fission channels results in an enlarged peak around A = 120,
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Figure 5.6: Final abundance pattern for standard calculations with Ye = 0.15. Plotted are the
results of 4 calculations including different fission modes, no fission (nofiss), neutron-induced fission
only (nf), β-delayed fission only (bf), neutron-induced and β-delayed fission (nf+bf). Scaled solar
r-process abundances from [119] are plotted for comparison (black dots). Two different fission fragment
distributions were employed, Panov et al.[98] (left side) and Kodama & Takahashi [66].

which is mostly populated by β-delayed fission during decay to stability, but lacks
the enrichment in nuclei with A = 140 − 160, because the heavy nuclei with fission
fragments in this region are not reached with neutron-induced fission effectively blocking
the reaction path. When employing the Kodama fission fragment mass distribution
(Figure 5.5, right) the effects of different fission reaction channels are less pronounced,
because the distribution is much more smeared out than the binary Panov distribution.
The only visible effects are enhanced actinide abundances, and less nuclei with A < 120
in the case where only neutron induced fission is considered. The enhancement of
abundances in the A = 140 − 160 region in the case where only β-delayed fission is
included is less pronounced. In any case, this mass region is generally overproduced
utilizing the Kodama fragment distribution.

For the calculations starting at Ye = 0.15, fission is much less important than in the
previous case. Even with no fission reactions present, the abundance distribution shows
the same peak structure for all calculations. When using the Panov fission fragment
distribution abundances in the A=120 mass region are only slightly enhanced when
only neutron induced fission is considerd. In the case where only β-delayed fission is
included, this effect is much stronger. The fact that the mass region beyond A = 130 is
not affected by fission indicates that the reaction flux does not reach the region where
neutron induced fission becomes a limiting factor. Again the Kodama fission fragment
distribution shows a much broader distribution around the A = 130 peak.

For an initial Ye & 0.17 fission reactions do not change the final abundance distri-
bution noticeably. We will consider the different fission fragment distributions when
calculating ejecta compositions in Section 5.3.4.

5.3 3D MHD CCSN Simulations

To further investigate Jets from MHD CCSN as possible r-process site, apart from
the parametric study in the previous section, we have to rely on input data from
Simulations. Studies of heavy element nucleosynthesis in MHD jets have already been
performed in 2D for collapsar models [45, 46] and CCSN [89]. In both scenarios the
r-process was seen to operate successfully in the jets. With the recent advent of 3D
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Resolution 3D domain(max) B0 Ω0

Model [km] (x× y × z) [km] [G] [rad/s]

1 2 600× 600× 1000 1× 1013 π

2 1 700× 700× 1400 5× 1012 π

Table 5.2: Parameters of the computational setup

MHD CCSN simulations [68] we are in the fortunate position to extend the analysis of
this promising r-process candidate.

5.3.1 Simulation Setup

The data presented throughout this section originates from two different 3D simulations
performed by R. Käppeli [68]. The ideal MHD equations are solved with the three-
dimensional parallel magnetohydrodynamics code FISH [69]. To close the system of
equations the equation of state (EoS) table of Lattimer & Swesty [72] is included. A
spectral neutrino leakage scheme by A. Perego is used to approximate the effect of
neutrino cooling by electron neutrinos and anti-neutrinos. Heating effects from neutrino
interactions are not considered. However, in the most microphysically complete study
of magneto-rotational CCSN in 2D axisymmetry to date [21] it was shown that the
contribution from neutrino heating accounts only for 15-25% of the total explosion
energy. All calculations are based on the presupernova model of a 15M� star from
Heger et al [53]. For a detailed description of the numerical methods employed in this
simulations, we refer to [68].

The 3D computational domain consists of a central cube of 6003 km3, covering
the innermost regions of the massive star where the explosion is supposed to set in.
To follow the fast expansion of the jets for longer timescales, the 3D domain can be
enlarged dynamically during the calculation. The 3D domain is embedded in a larger
spherical symmetric domain, encompassing the iron core and parts of the silicon shell,
treated by the time-implicit hydrodynamics code AGILE [74].

In Table 5.2 we give a summary of initial conditions and Table 5.3 lists some
resulting quantities of the simulation and the postprocessing for the two models. Model
1 represents an early model with a lower resolution of 2 km but larger initial magnetic
field (1013 G). The computation was performed until the jet reached the border of the
enlarged 3D domain of 600× 600× 1000 km3 (in x- ,y- and z-direction respectively)

tf,pb tracers Mej Mr,ej

Model [ms] ejected/total M� M�

1 12 294/9852 2.87× 10−2 1.59× 10−2

2 33 136/20005 6.72× 10−3 5.64× 10−3

Table 5.3: Combined results from the simulation and the postprocessing. tf,pb indicates the final time
relative to core bounce at which simulation was stopped. Mej is the sum of the masses of all ejected
zones, Mr,ej is the integrated mass of r-process elements (A ≥ 63) which are ejected.
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corresponding to ∼12 ms after core bounce. Model 2 is a high resolution calculation
where the evolution of the explosion was followed until ∼33 ms post bounce. The 3D
domain was extended to 700× 700× 1400 km3. The initial magnetic field was reduced
by a factor of two compared to model 1. In order to reduce the computational time
the initial magnetic fields are set to be about 3 orders of magnitude higher than the
prediction for the presupernova model [54]. To reach the same grade of amplification
with flux compression and field winding alone would require a much longer simulation
time and hence dramatically increase the computational time.

5.3.2 Postprocessing of Tracer Data

To follow the time evolution of physical quantities like temperature, density and electron
fraction, a Lagrangian component in the form of tracer particles was added to the
models. In the following we will refer to tracer particles simply as tracers. These virtual,
massless particles do not influence the calculations, but are advected with the fluid and
thus follow the effective motion of matter during all stages of the explosion. Desired
quantities are calculated at each timestep by interpolating the 3D data according to
the position of the tracer. Tracers are initially distributed homogeneously within a
sphere of radius 1000 km. The huge task of efficiently implementing the tracers into
the parallelized 3D MHD code was accomplished by R. Käppeli as part of his PhD
thesis [68].

Figures 5.7 and 5.8 show the time evolution of Ye, density, radial velocity and
temperature for selected ejected tracers of model 1 and 2 respectively. Following the
solid black line in Figure 5.7 we can discuss general effects, observable in all tracers.
In the initial phase (t < 0.5ms) the tracer is still infalling, indicated by the negative
radial velocity. Once it reaches the shock front, the velocity turns positive but initially
remains at relatively low value. At the same time, temperature and density increase
quickly by about an order of magnitude and reach values over 100GK and 1012 g/cm3

respectively. The electron fraction drops rapidly as a result of electron captures first
on Fe nuclei, and as those are dissociated even more efficiently by electron captures on
free protons. During the next ∼ 4ms the particle is accelerated inside the jets, until
its velocity reaches a value of ∼ 3× 104 km/s, corresponding to 10% the speed of light.
Density and temperature decrease exponentially to more and more moderate values.
Simultaneously, the electron fraction keeps decreasing as long as electron captures are
permitted by the local conditions. After ∼ 5ms the radial velocity of the particle stays
approximately constant, thus supporting the assumptions we made in the parametric
calculations. Temperature and density keep decreasing, slowly approaching values
where matter is not in NSE anymore and the composition has to be determined from
nucleosynthesis calculations. Once the electron fraction has reached its minimum,
around Ye = 0.2, it can not change anymore in the simulation because neutrino heating
is not considered at the moment, as the influence on the dynamics is negligible. Future
nucleosynthesis calculations will show whether the inclusion of neutrino heating in
the postprocessing has a significant influence on the composition. However, for all
nucleosynthesis calculations in this thesis we did not consider neutrino capture reactions.

The evolution of tracers in model 2 is analogous to the one in model 1. We have to
note however, that the density reaches maximum values about an order of magnitude
higher than in model 1, and consequently, the electron fraction drops to lower values.
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Figure 5.7: Evolution of the electron fraction (top left), density (top right), velocity (bottom left)
and temperature (bottom right) for selected ejected particles of model 1.

Figure 5.8: Evolution of the electron fraction (top left), density (top right), velocity (bottom left)
and temperature (bottom right) for selected ejected particles of model 2.
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Figure 5.9: Histogram of the Ye distribution in tracers of model 1 (left) and model 2 (right). The
total number of particles in model 1 (model 2) is 294 (136).

Also, the whole process is considerably slower, due to the weaker initial magnetic field.
The tracers stay longer in the dense region close to the proto-neutronstar, revolting
around the polar axis where the jets are formed. This is expressed by the oscillations
of the radial velocity in the initial phase. Velocities around ∼ 3× 104 km/s are only
reached after ∼ 25ms. Owing to the longer simulation time, the temperature reaches
values below 10 GK, where nuclear reactions become important for nucleosynthesis.

To determine whether a particle is ejected, we demand that its total energy, i.e.
the sum of the kinetic and internal energy of the particle, the gravitational potential
and magnetic pressure, at its current location is bigger than zero [90]. In addition we
only consider particles that are actually moving outwards, i.e. with a radial velocity
bigger than zero. Therefore, the combined ejection criterion in terms of specific energy
is given by

ε =
1

2
v2
r + εint + Φ +

B2

8πρ
> 0

vr > 0.

(5.2)

In model 1, the above criterion is met by 294 of the 9852 tracers that were initially
positioned in the simulation. In model 2 the number of ejected particles, 136, is
considerably lower than in model 1, even more so bearing in mind that twice as much
particles were initial put into the simulation (see Table 5.3). To perform nucleosynthesis
calculations, in particular r-process calculations, the temperatures at the end of tracer
evolution (at tf ) are still too high. Hence, after tf we assume that temperature and
density evolve according to the expansion we introduced for the parametric calculations
(Eq.(5.1)). It was shown that the exact form of the expansion does not affect the
abundance changes in the expansion phase dramatically [45, 89]. Figure 5.16 shows a
comparison of expansions with different initial conditions and the influence on the final
abundance distribution. It will be discussed in more detail in the next section.

Figure 5.10 shows a superposition of mass fractions for all 294 tracers ejected in
model 1. The agreement with the solar r-process element distribution is very good.
Both r-process peaks are well reproduced, even though they are slightly shifted to the
left. In general the curve is very similar to the abundance distribution, obtained in
the parametric calculations, for an initial Ye = 0.2 (Figure 5.1, blue line). This can be
easily explained by looking at the Ye-histogram in the left panel of Figure 5.9. About
half of the tracers are accumulated in the range 0.19 ≤ Ye ≤ 0.21, making this the
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Figure 5.10: Integrated mass fractions of all 294 ejected tracer partricles of model 1. Black dots
represent the solar r-process element distribution [119], scaled to fit the graph at A=162.

dominant contribution in the superposition. It was also shown in the parametric study,
that calculations with Ye > 0.25 do not contribute much to the abundances in the mass
region A > 130.

The Ye histogram of model 2 looks very different compared to the one from model
1. The distribution of the electron fraction somehow resembles a Planck distribution
with a maximum at Ye = 0.15 and a high-Ye tail up to values of Ye = 0.27. Compared
to the results from model 1 the maximum is shifted to lower values and the region with
Ye > 0.27 is completely missing. Judging from this distribution we would expect a
resulting abundance distribution similar to the green line in Figure 5.1, corresponding
to an initial Ye = 0.15. The superposition of the final mass fractions of all 136 tracers of
model 2, shown in Figure 5.11, confirms our prediction. The third r-process peak and
the Pb region agree very well with the solar r-process element distribution. Because of
the lack of significant contributions with Ye = 0.2− 0.25, the region of mass numbers
between the r-process peaks is significantly underproduced. At low mass numbers, the
distribution drops to very low values because there are no contributions from initially
high electron fractions which contribute almost entirely to this region.

In summary, the results obtained from postprocessing of tracers look promising and
agree well with solar abundances. In order to make sure that the tracers provide a
representative sample of the ejecta, we will discuss an alternative method to get input
data for nucleosynthesis directly from the 3D data of the simulation in the next section.

5.3.3 Extraction of 3D Data

In addition to using tracers as input for the postprocessing calculations, we decided
to extract initial conditions directly from the 3D data at the last time step of the



5.3. 3D MHD CCSN Simulations 77

Figure 5.11: Integrated mass fractions of all 136 ejected tracer partricles of model 2. Black dots
represent the solar r-process element distribution [119], scaled to fit the graph at A=195.

simulations. These initial values are then time evolved using the adiabatic expansion
that was already used for the parametrized calculations and the expansion of tracer
trajectories. This data should yield a complete picture of the composition of the ejecta,
and any potential bias in the tracers would be detected. As an additional benefit, the
mass of the ejecta appears naturally in this method.

For the MHD simulations the 3D domain is subdivided into cubes (we also refer
to this cubes as zones) with side length according to the resolution (2km in model
1, 1km in model 2). To determine whether matter in such a cube is ejected or not,
we use the same criterion as for the tracers (Eq.(5.2)). The number of zones fulfilling
this criterion is approximately 5 × 106 for model 1 and 5 × 107 for model 2. This
corresponds to roughly 10% of the computational domain in both models. Figures 5.12
and 5.13 illustrate the spatial distribution of the ejecta in the yz-plane, color coded in
the electron fraction, for model 1 and 2 respectively. In Figure 5.12 the distribution of
the electron fraction inside the jets is rather homogeneously at a value of 0.2-0.25 and
without turbulent effects. This is mostly due to the strong magnetic pressure which
is pushing the jets outwards at high velocities, thus effectively rendering convection
impossible at this stage. The ejected section consists mainly of the neutron rich tip of
the jet carrying with it some of the material it is ploughing through. This results in a
bow shock with Ye ∼ 0.45− 0.5. The bottom of the jet is located at a distance of about
200 km from the center of the core. Figure 5.13 shows large fluctuations of the electron
fraction and strong turbulent effects. The electron fraction is generally lower than in
model 1 and larger regions with very low Ye are encountered. The ejected part has a
droplike shape emerging from the vicinity of the proto-neutronstar. A region with high
Ye is formed at the tip of the jet, where it pushes through the outlying matter.

To extract initial conditions from the large number of ejected zones, we basically
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Figure 5.12: Colour map of the electron fraction
for all computational zones (left) and the ejected
zones(right) of model 1. Note that the time indi-
cated is the total simulation time, not the time since
core bounce.

Figure 5.13: Colour map of the electron fraction
for all computational zones (left) and the ejected
zones(right) of model 2.

generate a two-dimensional histogram for each relevant quantity with respect to the
electron fraction, weighted by the mass of the individual zones. We will discuss the
exact procedure on the example of density. The range of electron fractions is divided
into equidistant bins with a width of 0.01. The center of each bin is located at
integer multiples of 0.01. The density range is also subdivided, but this time into 100
exponentially spaced bins. Because of the different data ranges we decided to divide
temperature and radius into 100 equidistant bins, but density and velocity in 100
exponentially spaced bins. The mass of each ejected zone is then added to the bin that
corresponds to the combination of Ye and density that prevails in this zone. Once this
is done for all zones, the density bin that accumulates the most mass for a given Ye is
taken as initial density for the corresponding Ye. This results in a single combination of
density, temperature, radius and expansion velocity for each Ye bin. This combination
is then taken as representative for the total mass contained in this Ye bin.

The resulting histograms are presented in Figures 5.14 and 5.15 for model 1 and
model 2 respectively. The colour map represents the mass of each bin. Black crosses
denote the initial conditions that are extracted from each figure. One can clearly see
that the spread in the data from model 1 is much smaller than for the corresponding
data from model 2, indicating much more homogeneous ejecta. In general, density,
temperature and radial velocity are at higher values in model 1. On the other hand the
electron fraction does certainly reach lower values in model 2. We also have to point
out that the calculated initial temperatures for the three lowest Ye bins in model 2 are
below 10 GK. Because we rely on an initial temperature above 9 GK to infer the initial
composition in the postprocessing from NSE, we need to extrapolate backwards to
higher temperatures and density. To check whether such an extrapolation changes the
final abundance distribution, we performed calculations with different initial values for
the extrapolation, based on data from a tracer (the one labelled Ye = 0.116 in Figure
5.8). The results of this comparison are presented in Figure 5.16. Starting at an initial
temperature of 10 GK we first followed the time evolution given in the tracer data
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Figure 5.14: Mass weighted histogram of density (top left), temperature (top right), velocity (bottom
left) and radius (bottom right) with respect to the electron fraction for the ejected zones of model
1. Black crosses denote the most massive data bin for each Ye-bin. The corresponding value of the
respective quantity is then taken as input value for the postprocessing calculation.

Figure 5.15: Mass weighted histogram of density (top left), temperature (top right), velocity (bottom
left) and radius (bottom right) with respect to the electron fraction for the ejected zones of model
2. Black crosses denote the most massive data bin for each Ye-bin. The corresponding value of the
respective quantity is then taken as input value for the postprocessing calculation.
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Figure 5.16: Comparison of different extrapolations of density (top left), temperature (bottom left),
electron fraction (top right) and the final abundance distribution (bottom right). The tracer data
(solid line) is extrapolated either from the last tracer data point (dash-dotted line) or from a time
t(T9 = 10) with temperature, Ye, radius and velocity corresponding to this time step (dashed line) or
extrapolated back from the last tracer data point (dotted line) (see text for more details).

(solid line) until the end. From there on we performed an extrapolation based on the
final values of temperature, density, radius and velocity from the tracer (dash-dotted
line). A second calculation was performed, again starting at a temperature of 10 GK,
but this time directly extrapolating based on the conditions given in the tracer data
corresponding to this temperature (dashed line). The final calculation (dotted line),
representing the method we apply in the postprocessing calculations, was again started
at an initial temperature of 10 GK, however, the initial values for the expansion are
extrapolated backwards starting from the tracer data at the final timestep. From
Eq.(5.1) follows that initial radius and density are calculated as

R0 = Rf
Tf

10
and ρ0 = ρf

(
10

Tf

)3

, (5.3)

where the subscript f denotes the final values from the tracer. We assume that the
electron fraction does not change during the time of this backwards extrapolation.
Comparing the final abundance distribution of the different calculations, we see that
the influence of the approximation is negligible.

5.3.4 Postprocessing of 3D Data

Based on the initial values, extracted from the 3D data and presented in the previous
section, we performed nucleosynthesis calculations for both models. We used the
same network and reaction rates as for the parametrized standard calculations and
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Figure 5.17: Mass distribution with respect to the initial Ye for the nucleosynthesis calculations for
model 1 (green) and model 2 (blue).

postprocessing of tracers. The final mass fractions, resulting from individual calculations
for each Ye bin within a model, are weighted with the respective mass as shown in
Figure 5.17 and summed up to represent the integrated composition of the ejecta.

Figure 5.18 shows the final abundance distribution integrated over all calculated
Ye zones for model 1. The solar r-process element distribution is well reproduced,
however, the peaks are slightly shifted to the left. From Figure 5.17 we can infer that
the dominant mass contribution comes from regions with Ye = 0.2. As it was the case
for the tracer results, the peak structure of the integrated distribution shows a striking
resemblance with the one presented in Figure 5.1 for an initial Ye = 0.2 (blue line).
In Figure 5.17 one can clearly see that bins with 0.22 . Ye . 0.4 are about an order
of magnitude less massive compared to the outlying regions. Therefore, we do not
expect large contributions from this region to the final abundances. We have also seen
in the parametrized calculations, that only for Ye ≤ 0.25 elements with A> 130 can be
produced. Hence, zones with Ye ≥ 0.25 only contribute to the mass range below A=130.
We note, that the zones with initial Ye & 0.4 accumulate quite a lot of mass. But under
these conditions, mostly Fe-group nuclei are produced, which results in the staggerd
line at the low-mass end of Figure 5.18. The influence of fission in these calculations is
negligible, since the electron fraction does not reach low enough values for the r-process
to proceed to the very heavy mass region where fission becomes relevant.

In Figure 5.17 one can see that the mass distribution for model 2 is shifted to
lower values of Ye, and that the range 0.3 < Ye < 0.45 is significantly suppressed. The
most prominent structure is located around Ye = 0.15. In Figure 5.19 the integrated
abundance distribution of model 2 for two calculations with different fission fragment
distribution is shown. In both cases the third r-process peak around A=195 and the Pb
region provide an almost perfect fit to the scaled solar distribution. The overall peak
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Figure 5.18: Integrated abundances of the ejecta of model 1. Black dots represent the solar r-process
element distribution [119], scaled to fit the graph at A=162.

structure looks very similar to the green line in Figure 5.1 corresponding to Ye = 0.15.
As in model 1, this can clearly be attributed to the fact, that the dominant mass
contribution is located at this value. Using the Kodama fission fragment distribution,
the hole in the A = 140− 160 region is filled up at the cost of a slightly lower A = 130
peak. The mass region around A = 160− 180 is clearly underproduced, independent
of the fragment distribution. To increase the abundances in this mass regions would
require larger contributions from either very neutron rich zones with Ye ∼ 0.1 or slightly
less neutron rich zones with Ye ∼ 0.2. The relatively large mass of ejecta with high
values of Ye ∼ 0.5 results in the same oscillating line at low mass as was observed in
model 1, but does not contribute to the abundances in the mass region of the r-process.

5.3.5 Discussion

In the previous sections we have presented results for two different methods to extract
initial conditions for postprocessing calculations from the data obtained in 3D MHD
simulations. The first is based on so called tracers, that are advected with the fluid
and provide a time evolution of local quantities. The latter extracts initial conditions
directly from a single snapshot in time of the full 3D computational domain. Figure 5.20
shows a comparison of these results for both models considered in the calculations. The
mass fractions resulting from the tracer calculations were scaled to fit the integrated
mass distribution. One can clearly see that the results agree in both models almost
perfectly for the mass range relevant for the r-process. Only the mass region below
A = 80 is underproduced in the results from calculations based on tracer data. This
can be explained by a lack of tracers with Ye ∼ 0.5, which can be seen by comparing
Figure 5.9 with Figure 5.17. The reason for this difference can be explained by looking
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Figure 5.19: Integrated abundances of the ejecta of model 1. Plotted are the results for two fission
fragment mass distributions: Panov (red) and Kodama (green) (see text for references). Black dots
represent the solar r-process element distribution [119], scaled to fit the Panov graph at A=195.

at the Ye distribution in the ejecta (Figures 5.12 and 5.13). The matter with high
values of the electron fraction is mostly located at the tip of the jet and represents
matter that was still infalling when the jet formed, and is now simply pushed by the
jet. The tracers, however, were located in a sphere with radius 1000 km at the onset of
core collapse. During collapse and jet formation the tracers move closer to the center
and are mostly located inside the shock front. Once the jet is moving outwards there
are no more tracers infalling and therefore the region in front of the jet is not sampled
by the tracers. For the prediciton of r-process abundances this is negligible, since this
region does not contribute to the mass range produced by the r-process.

From these results we conclude that the tracers used in the presented simulations
provide a representative sample of matter inside the jets. A superposition of contribu-
tions from all tracers yields the same qualitative result as calculations of representative
conditions based on the full 3D data. We will now compare our predictions with result
obtained in previous calculations.

In summary we find that the abundance distribution in the ejecta from model
1 fits the solar abundances very well in the mass region 120 < A < 200. However,
heavier nuclides with A > 200 are underproduced. The results based on the data from
model 1 also agree with results presented in [89]. Their model 4 also has a dominant
contribution from tracers with Ye = 0.2, resulting in an abundance distribution very
similar to the one we present for model 1. The final abundance pattern for the ejecta
in model 2 are characterized by a dominant contribution from Ye = 0.15. Due to the
strong influence of fission, the mass range 100 < A < 160 depends heavily on the fission
modes which are included and the fission fragment distribution. Independent of the
treatment of fission reactions, the mass range 160 < A < 180 is underproduced which
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Figure 5.20: Comparison of results from tracer calculations (green) with integrated abundances
obtained from 3D data extraction (red). The left frame corresponds to model 1, the right frame to
model 2. Mass fractions from tracer calculations are scaled to match the 3D data results at A=162
(model 1) or A=195 (model 2). Black dots represent the solar r-process element distribution [119],
scaled to fit the abundance curves at A=162 and A=195 for model 1 and model 2 respectively.

was also seen in the calculations in [45]. The third r-process peak, however, almost
perfectly fits the scaled solar abundance distribution which could not be seen in the
calculations in [89].

The total mass of the ejected matter is obtained by simply summing up the mass
of all zones which fulfill Eq.(5.2). For model 1 (model 2) this results in 2.87× 10−2M�
(6.72× 10−3M�). The stronger magnetic field in model 1 leads to an increase in the
amount of ejected matter by about a factor of four compared to model 2, even though
the mass of ejecta for the latter was calculated at later times. However, we have already
seen before that the MHD mechanism is operating slower in model 2. Due to the
expected continuous ejection of matter in the MHD jets, the total mass which is ejected
is most likely to grow with time. Hence, the numbers we present should be taken
with care. In any case, they provide a lower limit to what can expected from long
time simulations. Comparing our results with those from [89] and [45] we first have
to note that the progenitor model used in both references represents a 13M� which
is slightly less massive than the one used in our models. Nevertheless, the amount of
ejected matter, 1.65 × 10−2M� ([89]) and 8.1 × 10−2M� ([45]) is comparable to our
model 1 or larger. Whether this is an effect of the longer simulation time (hundreds of
milliseconds) or the computational setup (2D instead of 3D, different rotation rates,
different initial magnetic field) is still to be investigated.

In addition to the total amount of matter which is ejected, we are also, or even
more, interested in the amount of r-process elements which can be fed to the interstellar
medium by a MHD CCSN. Following the notation in [89] we consider all nuclei with
A ≥ 63 as r-process elements. The amount of r-process elements ejected in model 1
(model 2) calculates to 1.59 × 10−2M� (5.64 × 10−3M�) accounting for 55% (83%)
of the total ejecta. The relative amount of r-process material is considerably higher
than in [89], where r-process elements make up only about 10% of the total mass of
ejecta. This huge difference can be explained by the very different mass distribution
with respect to Ye. In our models the mass distribution shows a similar structure for
both models (Figure 5.17), with pronounced peaks at very low values of Ye ∼ 0.15− 0.2
as well as around Ye ∼ 0.45− 0.5. In zones with initial Ye < 0.35 we find the fraction
of nuclei with A ≥ 63 to be > 90%. At higher Ye the fraction quickly drops to less than
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Figure 5.21: [Mg/Fe] and [Eu/Fe] abundances as function of metallicity [Fe/H] for halo and disk
stars the red and blue dots are data from different large-sample surveys (see [119] for references). The
thin dashed line represents the solar abundance ratios. In panel b, the solid red line is a least-square fit
to the Eu data, and the two dashed black lines indicate the approximate extent of the Eu/Fe data
(figure adopted from [119]).

1%. Therefore, we can simply estimate the ratio of ejected r-process elements to the
total ejected mass by simply looking at the mass distribution with respect to Ye and
then take the ratio of the mass of zones with Ye < 0.35 to zones with Ye ≥ 0.35. From
Figure 5.17, an estimate of the r-process element fraction yields ∼ 50% for model 1
and ∼ 80% for model 2. In [45] the mass distribution with respect to electron fraction
shows a strong peak at Ye = 0.45− 0.5 but lacks the large contribution from very low
Ye (their figs 9. and 16.), consistently resulting in a r-process element contribution of
∼ 10% of the total mass. In [89] the mass distribution for the model whose results
look similar to our model 1 is almost flat (their Figure 4, bottom right), and we would
predict a r-process element mass ∼ 50%− 60% of the total mass. Which does not agree
with the author’s statement of ∼ 10%.

5.3.6 Implications for Galactic Chemical Evolution

In this section we will make a preliminary exploration of the influence of our results
on galactic chemical evolution. If we assume, that the process by which all r-process
elements in our galaxy are produced, is somehow related to CCSN, then each CCSN
would need to eject 10−5M� to 10−4M� of r-material (see Section 4.2.1). If we assume,
that in MHD Jets 10−2M� to 10−1M� of r-process elements are fed into the interstellar
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medium, then it would be sufficient if only every hundredth or thousandth CCSN
actually produces a jet. This low event rate could also explain a particularity of
observed r-process element abundances at low metallicity. While the abundance pattern
of r-process elements in very old stars is almost identical to the one observed in the solar
system, the relative abundances of typical r-process elements as Eu compared to the Fe
abundance shows a huge scatter which is not observed in elements that are produced in
stellar nucleosynthesis like Mg. In Figure 5.21 this effect is illustrated for both Eu and
Mg relative to Fe as function of metallicity. One can clearly see that in panel b the
data points are widely spread at low metalicites. With increasing [Fe/H] this spread is
reduced (indicated by the black dashed lines). This observation is consistent with an
early chemically unmixed galaxy, with individual nucleosynthetic events (e.g. CCSN)
being widely spread. At later times this abundance scatter diminishes as the galaxy
becomes more chemically homogeneous. It further suggests that r-process element
production was rare in the early galaxy, i.e. only a few stars synthesized elements such
as Eu, and that Mg and Fe production was not strongly coupled to r-process production.
Therefore, Eu abundances observed in very metal-poor stars are most likely the result
of only a single or very few r-process element producing events. Occurring only once in
hundred or thousand supernovae, MHD Jets would naturally meet this requirement for
a rare r-process event in the early galaxy.
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Summary and Outlook

Nuclear network evolution codes are an essential tool to explore nucleosynthesis in
astrophysical processes. In course of this Ph.D. we developed a modernized version
of the widespread network code of F.-K. Thielemann. The main novelties are the
implementation of a powerful sparse matrix solver and a memory and computationally
efficient representation of sparse matrices. The new program allows to perform nucle-
osynthesis calculations even for large network sizes. We also implement the treatment
of β-delayed neutron emission and fission, including two different empirical fission
fragment distributions. Therefore, all kinds of reactions can be included in calculations,
with the exception of neutrino induced reactions (see outlook).

In the first part of this dissertation we present self-consistent standard big bang
nucleosynthesis (SBBN) calculations. Using a recent reaction rate compilation [30] and
a parametrized n↔ p interconversion rate [117], our light element predictions for the
latest WMAP [67] value for the baryon-to-photon ratio η = 6.16± 0.15× 10−10 yield:

D/H = (2.84± 0.23)× 10−5

3He/H = (1.07± 0.09)× 10−5

Yp = 0.2490± 0.0005
7Li/H = (4.57± 0.55)× 10−10.

We find these values to be in good agreement with observations (except for 7Li)
and theoretical predictions. The SBBN predicted overabundance of primordial 7Li
compared to observations is a well known problem and appears consistently in all SBBN
calculations. The results for 3He, 4He and 7Li are also found to be consistent with the
calculated deuterium abundance. Another shortcoming of current SBBN calculations
is that the predicted isotopic ratio 6Li/7Li is three to four orders of magnitude lower
than what is observed. We investigate the influence of recent evaluations [52, 82] of the
main production reaction 2H (α, γ) 6Li on the predicted 6Li abundance. The results
show no significant increase of the 6Li abundance, on the contrary, in one case (using
the rate of [82]) the final abundance is actually reduced. Calculations based on an
inhomogeneous big bang scenario yield a slight increase on the abundances of C, N, O
and F, but no significant production of heavy elements.

In the second part of the thesis we explore magnetically driven jets from core
collapse supernovae as possible site for the production of heavy elements via the r-
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process. We first study the influence of different initial parameters and of fission on the
final abundance distribution in a parameter study, based on an adiabatic expansion.
We find that the electron fraction, Ye, is the key quantity to determine whether an
r-process occurs. A superposition of five calculations for Y e = 0.1, 0.15, 0.2, 0.25, 0.3
yields an almost perfect reproduction of solar system abundances in the mass range
120 ≤ A ≤ 210. Fission reactions are found to be important only in calculations
with Ye ≤ 0.17. The choice of fission fragment distribution has a strong influence on
abundances in the mass range 100 ≤ A ≤ 160.

The main results of this thesis are the first postprocessing calculations based on data
from 3D magneto-hydrodynamic simulations of core collapse supernova simulations.
The calculations are based on two simulations with different resolution, initial magnetic
field and simulation duration [68]. We present results for two different methods to
extract data from the simulation. The first is based on built-in Lagrangian tracer
particles that record the time evolution of relevant quantities. The second is based on
the full 3D data at the last timestep of the simulation, from where we extract data via
a 2-dimensional, mass-weighted histogram. For both methods the same extrapolation
as in the parametric study has to be employed to simulate the long term evolution.
Results of both methods are found to be nearly identical within each model.

The results for both models show a good qualitative agreement with the global solar
system abundances pattern and results obtained from 2D simulations [89]. However, the
detailed distributions obtained from the two models show some differences. Whether
these are due to our method of data extraction, or different initial conditions, spatial
resolution or simulation time of the simulations can not be resolved at the moment.
We also calculate the ejected mass in both models, which is found to be consistent
with galactic chemical evolution, assuming that only 0.1% − 1% of all core collapse
supernovae form a jet. This in turn naturally meets the requirement for a rare r-process
event in the early galaxy, explaining the large star-to-star scatter of r-process element
abundances in very old halo stars.

Our results indicate, that MHD jets from core collapse supernovae are a promising
r-process site candidate. However, it would be premature to claim that it is the r-process
site. Nevertheless, we claim it worthwhile to further investigate this scenario.

As projects for the near future we plan to investigate the effect of neutrino heating
by including neutrino capture reactions into the postprocessing calculations. Also the
influence of the theoretical mass model should be studied. A quantitative analysis of
the ejecta will provide further insight on the detailed composition.

The new reaction network is already being used in different projects, and the
demand is steadily increasing. Still, there are a few rough edges to be removed before
it can be made available for the broad scientific community.



Appendix A

Self-Consistent Big Bang
Evolution

As we have seen in section 3.1 the expansion only depends on one single parameter,
η. Thus, the time evolution of temperature and density has to be calculated self-
consistently without introducing more free parameters. Our prescription for the
self-consistent calculation closely follows the explanations in Appendix D of [65] using
the same terminology. The implementation of this scheme was already done as part of
a masterthesis, but we will repeat the theoretical details for completeness.
There are three interdependent quantities to be evolved in order to get the desired
time evolution of the temperature and the baryon density. These quantities are the
temperature T9 (in units of 109K), the electron chemical potential φe, and the quantity
h defined by

h ≡ Munb
T 3

9

= Mu
nγ
T 3

9

η (A.1)

where Mb is the unit of atomic mass ([135] Eq.4) and η the cosmological parameter. In
addition we need the nuclide abundances Yi along with their time derivatives Ẏi. The
baryon density and the electron chemical potential are calculated using h and T9

ρb ∼ hT 3
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with C = (π2/2)NA(~c/kB)3, z = mec
2/kBT9 and L(z) is given by Eq.(A.10). Initially

we will determine some other quantities and derivatives which will be needed to
calculate the sought-after derivatives. The photon energy density depends only on the
temperature

ργ =
π

15

k4
B

(c~)3
T 4, (A.4)

and it’s derivative dργ/dT9 can be calculated easily. The photon pressure is that of an
ultrarelativistic particle, Eq.(3.5)

pγ
c2

=
1

3
ργ . (A.5)
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Furthermore, we need the sum of electron and positron densities (see [41] Eq.B44) and
it’s partial derivatives with respect to T9 and φe

ρe− + ρe+ =
2

π2

(mec
2)4

(~c)3

∞∑
n=1

(−)n+1 cosh(nφe)M(nz) (A.6)

∂(ρe− + ρe+)

∂φe
=

2

π2

(mec
2)4

(~c)3

∞∑
n=1

(−)n+1n sinh(nφe)M(nz) (A.7)

∂(ρe− + ρe+)

∂T9
=

2

π2

(mec
2)4

(~c)3

∞∑
n=1

(−)n+1n cosh(nφe)N(nz), (A.8)

as well as the sum of electron and positron pressures (see [41] Eq.B27)

pe− + pe+

c2
=

2

π2

(mec
2)4

(~c)3

∞∑
n=1

(−)n+1

nz
cosh(nφe)L(nz). (A.9)

The functions L(z), M(z) and N(z) are defined as

L(z) =
K2(z)

z
(A.10)

M(z) =
1

z

[
3

4
K3(z) +

1

4
K1(z)

]
(A.11)

N(z) =
1

z

[
1

2
K4(z) +

1

2
K2(z)

]
(A.12)

where Kn(z) are modified Bessel functions. Information about Bessel functions, their
derivatives and addition theorems can be found in [6].
Finally, we also need the difference of the electron and positron number densities (see
[41] Eq.B6) and again the partial derivatives ∂/∂T9 and ∂/∂φe

π2

2

[
~c
mec2

]3

z3 (ne− − ne+) = z3
∞∑
n=1

(−)n+1 sinh (nφe)L (nz) (A.13)

∂

∂φe
(...) = z3

∞∑
n=1

(−)n+1n cosh (nφe)L (nz) (A.14)

∂

∂T9
(...) = − z

3

T9

∞∑
n=1

(−)n+1 sinh (nφe) [3L(nz)− nzM(nz)] .

(A.15)

The form of the equations may look strange at first sight but will eventually make
sense in the context where they will be applied.
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Ultimately, we are now able to calculate the derivatives of T9, h, and φe from

dT9

dt
=
dr

dt
/
dr

dT9
(A.16)

dh

dt
= −3h

[
1

R

dR

dt
+

1

T9

dT9

dt

]
(A.17)

dφe
dt

=
∂φe
∂T9

dT9

dt
+
∂φe
∂r

dr

dt
+
∂φe
∂S

dS

dt
, (A.18)

where R is the scale factor, r = ln
(
R3
)
, and S =

∑
i ZiYi. We will discuss these three

expressions separately in detail.

dT9/dt :

The numerator of Eq.(A.16) can be calculated straightforward, using the second
Friedman equation Eq.(3.2)

H2 ≡

(
Ṙ

R

)2

=
8πGρ+ Λ

3c2
− kc2

R2
. (A.19)

Assuming a flat universe (k = 0) and a vanishing cosmological constant Λ = 0 yields

dr

dt
=

d

dt
ln(R3) = 3 · 1

R

dR

dt
= 3 ·H. (A.20)

For the denominator of Eq.(A.16), dr/dT9, we have to start from the conservation of
Energy (Eq.10 in [135])

d

dt

(
ρR3

)
+
p

c2

d

dt

(
R3
)

+R3 dρ

dt

∣∣∣∣
T9=const

= 0 (A.21)

where the third term is taking into account the energy changes introduced by nucle-
osynthesis. Expanding the first term, substituting R3 = exp(r) and dR3 = exp(r)dr
and regrouping yields (

ρ+
p

c2

) dr
dt

+
dρ

dt
+
dρ

dt

∣∣∣∣
T9=const

= 0. (A.22)

We can now convert this into an equation for dr/dT9

dr

dT9
= −

dρ
dT9

ρ+ p
c2

+
(

1
dr/dt

)
dρ
dt

∣∣∣
T9=const

(A.23)
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and using ρe to express (ρe− + ρe+), pe for (pe− + pe+) and expanding ρ = ργ + ρe + ρb
and p = pγ + pe + pb, this can be written in more detail

dr

dT9
= −

dργ
dT9

+ dρe
dT9

+ dρb
dT9

ργ +
pγ
c2

+ ρe + pe
c2

+ pb
c2

+ 1
dr/dt

(
dρb
dt

∣∣∣
T9

+ dρe
dt

∣∣∣
T9

) . (A.24)

Since the photon density depends only on the temperature, the derivative dργ/dt|T9vanishes.
The remaining photon terms are straightforward and given by Eqs.(A.4) and (A.5).
For the electrons and positrons, the term dρe/dT9 is given as

dρe
dT9

=
∂ρe
∂T9

+
∂ρe
∂φe

∂φe
∂T9

, (A.25)

where the derivatives of the density are given in Eqs.(A.7) and (A.25), and the derivative
∂φe/∂T9 will be calculated further down in Eq.(A.33). The terms for the electron and
positron density and pressure come from Eqs.(A.6) and (A.9). The baryon density, as
given by Eq.(A.2), would go strictly as 1/R3 and thus drop out of equation (A.24).
However, if we use a more detailed equation for the baryon density ([135] Eq.2)

ρb = nb[Mu +
∑
i

(
∆Mi +

3kBT

2c2

)
Yi]

= hT 3
9

[
1 +

∑
i

(
∆Mi

Mu
+ ζT9

)
Yi

]
, (A.26)

where ζ is just a constant, there is one derivative term remaining which would not drop
out

dρb
dT9

= hT 3
9 ζ
∑
i

Yi. (A.27)

The baryon pressure is given by

pb = nbkBT
∑
i

Yi

= hT 3
9

(
2

3
ζT9

∑
i

Yi

)
. (A.28)

The last remaining terms in the denominator of Eq.(A.24) are the time derivative of
the baryon density, given as

dρb
dt

∣∣∣∣
T9=const

= hT 3
9

∑
i

(
∆Mi

Mu
+ ζT9

)
dYi
dt
, (A.29)

and the time derivative of the electron-positron density,

1

(dr/dt)

dρe
dt

∣∣∣∣
T9=const

=
∂ρe
∂φe

(
∂φe
∂r

+
∂φe
∂S

∂S

∂t

1

(dr/dt)

)
. (A.30)
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The derivatives of φe are calculated below in Eqs.(A.34) and (A.35), and the derivative
of S follows straightforward from its definition.

dh/dt :

Equation (A.17) follows directly from Eq.(A.2): h ∼ ρb/T 3
9 ∼ 1/R3T 3

9 . The first term
represents the Friedman equation (A.19), and the second term has been evaluated in
the previous paragraph.

dφe/dt :

In order to calculate the partial derivatives for Eq.(A.18) we will start with the equation
for charge conservation

ne− − ne+ = NAhT
3
9 S. (A.31)

This equation can be rewritten so that the left-hand side is identical to the left-hand
side of Eq.(A.13)

π2

2

[
~c
mec2

]3

z3 (ne− − ne+) =
π2

2

[
NA

(
~c
kB

)3

hS

]
. (A.32)

We can now call the left-hand side function N = N(T9, φe) and the right-hand side
function M = M(T9, r, S). Taking derivatives of both sides with respect to T9, r and
S, we get the needed partial derivatives:

∂M

∂T9

∣∣∣∣
r,S

=
∂N

∂T9
+
∂N

∂φe

∂φe
∂T9

=⇒ ∂φe
∂T9

=

(
∂N

∂φe

)−1 [∂M
∂T9
− ∂N

∂T9

]
(A.33)

∂M

∂r

∣∣∣∣
T9,S

=
∂N

∂φe

∂φe
∂r

=⇒ ∂φe
∂r

=

(
∂N

∂φe

)−1 ∂M

∂r
(A.34)

∂M

∂S

∣∣∣∣
T9,r

=
∂N

∂φe

∂φe
∂S

=⇒ ∂φe
∂S

=

(
∂N

∂φe

)−1 ∂M

∂S
(A.35)

The partial derivatives for N are given in Eqs.(A.14) and (A.15) and the partial
derivatives of M are straightforward.
With the time derivatives from Eqs.(A.16), (A.17) and (A.18), the corresponding
quantities are evolved using a second order Runge-Kutta method. The easiest way to
time-evolve a quantitiy x(t) from time t1 to a time t2 = t1 + ∆t would be to use Euler’s
method

x(t2) = x(t1) + ∆t
dx(t1)

dt
. (A.36)

Unfortunately, as we have already demonstrated in Section 2.3.2, this method is neither
very accurate nor stable. To achieve higher accuracy and stability, we symmetrize the
method by evaluating the derivatives at both times, t1 and t2, and averaging to get a
final solution. We begin by using Euler’s method Eq.(A.36) to get an initial trial value
x̃(t2). With this trial value the time derivative dx̃(t2)/dt and averaging over the two
derivatives yields

dx̃(t1)

dt
=

1

2

(
dx(t1)

dt
+
dx̃(t2)

dt

)
. (A.37)
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From there the final value can be extrapolated as

x(t2) = x(t1) + ∆t
dx̃(t1)

dt
. (A.38)

For a more detailed description of this and other integration methods we refer the
reader to [104].



Appendix B

Reaction Rate Fit Coefficients

B.1 n↔ p

a0 = 1 a1 = 0.15735 a2 = 4.6172
a3 = −0.40520× 102 a4 = 0.13875× 103 a5 = −0.59898× 102

a6 = 0.66752× 102 a7 = −0.16705× 102 a8 = 3.8071
a9 = −0.39140 a10 = 0.023590 a11 = −0.83696× 10−4

a12 = −0.42095× 10−4 a13 = 0.17675× 10−5 qnp = 0.33979

and

b0 = −0.62173 b1 = 0.22211× 102 b2 = −0.72798× 102

b3 = 0.11571× 103 b4 = −0.11763× 102 b5 = 0.45521× 102

b6 = −3.7973 b7 = 0.41266 b8 = −0.026210
b9 = 0.87934× 10−3 b10 = −0.12016× 10−4 qpn = 2.8602.
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B.2 2H(α, γ) 6Li

2H (α, γ) 6Li a0 a1 a2 a3

a4 a5 a6

[52] 3.934273× 101 -1.673753× 101 5.196860× 102 -5.682702× 102

2.485785× 101 -1.137492× 100 3.265960× 102

8.306788× 103 -7.541123× 100 1.542034× 103 -1.298640× 104

5.289529× 103 -2.587906× 103 2.610200× 103

1.012455× 103 -5.707879× 10−2 5.009761× 101 -1.810205× 103

1.959306× 103 -2.085059× 103 1.945842× 102

[82] -2.398840× 100 2.164957× 10−3 -8.117467× 100 8.242741× 100

-5.530047× 10−1 1.514094× 10−2 -2.003651× 100

-2.760158× 102 -1.819156× 102 3.929411× 103 -3.629167× 103

1.626086× 102 -8.808753× 100 2.196422× 103

Table B.1: Reaclib fit parameters for the 2H (α, γ) 6Li reaction. The tabulated data in [52] and [82]
is reproduced with a relative error < 5% [44].

B.3 6Li (γ, α) 2H

6Li (γ, α) 2H a0 a1 a2 a3

a4 a5 a6

[52] 0.627868× 102 -0.338433× 102 0.519686× 103 -0.568270× 103

0.248578× 102 -0.113749× 101 0.328096× 103

0.833023× 104 -0.246469× 102 0.154203× 104 -0.129864× 105

0.528953× 104 -0.258791× 104 0.261170× 104

0.103590× 104 -0.171628× 102 0.500976× 102 -0.181020× 104

0.195931× 104 -0.208506× 104 0.196084× 103

[82] 0.210452× 102 -0.171036× 102 -0.811747× 101 0.824274× 101

-0.553005× 100 0.151409× 10−1 -0.503651× 100

-0.252572× 103 -0.199021× 103 0.392941× 104 -0.362917× 104

0.162609× 103 -0.880875× 101 0.219792× 104

Table B.2: Reaclib fit parameters for the 6Li (γ, α) 2H reaction. The photodisintegration reaction
rate is obtained via detailed balance [44].
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G., and Liebendörfer, M. Core-collapse Supernova Explosions Triggered by
a Quark-Hadron Phase Transition During the Early Post-bounce Phase. ApJS
194, 2 (2011), 39.

[40] Fowler, W. A., Caughlan, G. R., and Zimmerman, B. A. Thermonuclear
Reaction Rates. ARA&A 5 (1967), 525–570.

[41] Fowler, W. A., and Hoyle, F. Neutrino Processes and Pair Formation in
Massive Stars and Supernovae. ApJS 9 (1964), 201–319.

[42] Freiburghaus, C., Rembges, J.-F., Rauscher, T., Kolbe, E., Thiele-
mann, F.-K., Kratz, K.-L., Pfeiffer, B., and Cowan, J. J. The Astro-
physical r-Process: A Comparison of Calculations following Adiabatic Expansion
with Classical Calculations Based on Neutron Densities and Temperatures. ApJ
516, 1 (1999), 381–398.



100 BIBLIOGRAPHY

[43] Freiburghaus, C., Rosswog, S., and Thielemann, F.-K. r-Process in
Neutron Star Mergers. ApJL 525, 2 (1999), L121–L124.

[44] Frischknecht, U. private communication.

[45] Fujimoto, S.-i., Hashimoto, M.-a., Kotake, K., and Yamada, S. Heavy-
Element Nucleosynthesis in a Collapsar. ApJ 656, 1 (2007), 382–392.

[46] Fujimoto, S.-i., Nishimura, N., and Hashimoto, M.-a. Nucleosynthesis in
Magnetically Driven Jets from Collapsars. ApJ 680, 2 (2008), 1350–1358.

[47] Fuller, G. M., Fowler, W. A., and Newman, M. J. Stellar weak-interaction
rates for sd-shell nuclei. I - Nuclear matrix element systematics with application
to Al-26 and selected nuclei of importance to the supernova problem. ApJS 42
(1980), 447–473.

[48] Fuller, G. M., Fowler, W. A., and Newman, M. J. Stellar weak interaction
rates for intermediate mass nuclei. III - Rate tables for the free nucleons and
nuclei with A = 21 to A = 60. ApJS 48 (1982), 279–319.

[49] Fuller, G. M., Fowler, W. A., and Newman, M. J. Stellar weak interaction
rates for intermediate-mass nuclei. IV - Interpolation procedures for rapidly
varying lepton capture rates using effective log (ft)-values. ApJ 293 (1985), 1–16.

[50] Fuller, G. M., Mathews, G. J., and Alcock, C. R. Quark-hadron phase
transition in the early Universe: Isothermal baryon-number fluctuations and
primordial nucleosynthesis. PhRvD 37 (1988), 1380–1400.

[51] Gadioli, E., and Hodgson, P. E. Pre-Equilibrium Nuclear Reactions (Oxford
Studies in Nuclear Physics). Oxford University Press, USA, 1992.

[52] Hammache, F., Heil, M., Typel, S., Galaviz, D., Sümmerer, K., Coc,
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O., Tatischeff, V., Thibaud, J. P., Vangioni, E., Wagner, A., and
Walus, W. High-energy breakup of 6Li as a tool to study the Big Bang
nucleosynthesis reaction 2H(α,γ)6Li. PhRvC 82, 6 (2010), 065803.

[53] Heger, A., Langer, N., and Woosley, S. E. Presupernova Evolution of
Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar
Structure. ApJ 528, 1 (2000), 368–396.

[54] Heger, A., Woosley, S. E., and Spruit, H. C. Presupernova Evolution
of Differentially Rotating Massive Stars Including Magnetic Fields. ApJ 626, 1
(2005), 350–363.

[55] Hix, W. R., and Meyer, B. S. Thermonuclear kinetics in astrophysics. NuPhA
777 (2006), 188–207. Special Issue on Nuclear Astrophysics.

[56] Hix, W. R., and Thielemann, F.-K. Computational methods for nucleosyn-
thesis and nuclear energy generation. JCoAM 109, 1-2 (1999), 321–351.



BIBLIOGRAPHY 101

[57] Itkis, M. G., Kondratiev, N. A., Kozulin, E. M., Oganessian, Y. T.,
Pokrovsky, I. V., Prokhorova, E. V., and Rusanov, A. Y. Bimodal
fission of 270Sg (Z = 106) in the sub-barrier fusion of 22Ne and 248Cm. PhRvC
59, 6 (1999), 3172–3176.

[58] Itkis, M. G., Okolovich, V. N., and Smirenkin, G. N. Symmetric and
asymmetric fission of nuclei lighter than radium. NuPhA 502 (1989), 243–260.

[59] Izotov, Y. I., and Thuan, T. X. The Primordial Abundance of 4He Revisited.
ApJ 500, 1 (1998), 188–216.

[60] Izotov, Y. I., Thuan, T. X., and Lipovetsky, V. A. The Primordial Helium
Abundance: Systematic Effects and a New Determination. ApJS 108, 1 (1997),
1–39.

[61] Izotov, Y. I., Thuan, T. X., and Stasińska, G. The Primordial Abundance
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