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A - Introduction 

The expression „Coordination Polymer“ was first used by J.C. Bailar in 1967, when he 

compared organic polymers with inorganic compounds which can be considered as 

polymeric species. In comparison he established rules for the building and the required 

properties of new species involving metal ions and organic ligands. [4] During the last 

fifteen years the number of publications concerning coordination polymers has 

dramatically increased from 100 articles per year to 1000 in 2004. What really are 

coordination polymers? Why do these huge developments happen? 

 

I - About coordination polymers?  

Polymers are defined as high molecular weight molecules formed by the repetition of 

monomeric units linked with covalent bonds. In comparison, coordination polymers are 

infinite systems build up with metal ions and organic ligands as main elementary units 

linked via coordination bonds and other weak chemical bonds. These compounds are also 

named metal-organic coordination networks or metal-organic frameworks (MOF). [5] 

 

Polymeric coordination networks syntheses could be considered as “construction games”: 

the final architecture depends on the building modules (organic ligands, metal centres, 

their counter ions, solvent molecules) and their compatibilities. Analyses of the final 

geometries, of the diverse interactions and optimization of the growth processes are 

described as crystal engineering. In appropriate circumstances, crystals can be considered 

as the sum of a series of reproducible molecular recognition events. This means that 

control of the overall arrangement of the modules can be conceivable with prediction of 

topology and dimensionality, but not of the exact crystal structure (cell parameters). This 

approach could be compared to the supramolecular chemistry and self-assembly feature, 

if crystals are regarded as single chemical entities [6]. Self assembly is based on 

complementary and explicit interactions between the building blocks in order to generate 

the final product. [7]  

 

The arrangement of the components in coordination polymers mostly only exist in the solid 

state [5]: the building blocks interact through coordination interactions and weaker forces 

such as hydrogen bonds, �-� stacking or Van der Waals interactions in solution giving 

some small molecular units, and then, thanks to self-assembly processes coordination 

polymers grow based on the same interactions. (Figure A-1) [8] We can speak of 
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reversible arrangements due to non covalent bonds. Metal ions are generally called nodes 

whereas the ligands are the linkers. 

 

Figure A-1: Formation of coordination polymers [9, 10] 

The solid products are generally insoluble or degrade upon dissolution. Structures of 

coordination polymers can only be determined by X-ray crystallographic methods and 

characterizations in solution only prove the existence of oligomeric fragments. 

 

I.1 - Interests 

The numerous literature contributions in the field of coordination polymers are due to 

several points: 

- Incorporating metal ions in supramolecular networks permits the control of the metal 

atoms position in the materials, giving them some desired properties. Types of metal 

centres and distances between them can be chosen so that stable functional solid 

materials can be tuned. 

- The variety of “nodes and linkers” offers to the chemists infinite possibilities for building 

new species with intriguing architectures and topologies. Moreover, the studies of crystals 

become much easier thanks to the technologic improvements in the field of X-ray 

measurements and computational resolution techniques. 

 

Metal ion 

Organic ligand 

Solution 
Solid 
state 
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I.2 - Interactions 

The coordination polymer building is principally directed by the coordination bonding. 

Coordination bonds are the donation of a lone electron pair of the ligand (Lewis base) to 

the metal cation (Lewis acid). The energy of such interactions is usually evaluated around 

50 kJ.mol-1 [11]. Weaker interactions also strongly influence the formation of coordination 

polymers. 

Hydrogen bonds are defined by Steiner [12] as follows: An D-H���A interaction is called a 

“hydrogen bond”, if 1. it constitutes a local bond, and 2. D-H acts as proton donor to A. For 

hydrogen bonds of weak to intermediate strengths, hydrogen bonds may be described with 

an “electrostatic plus Van der Waals” model. For the strongest types of hydrogen bonds 

(rarely found in coordination polymers), their quasi-covalent nature has to be fully 

considered. Some systematic studies have been performed, with the use of structural 

database (especially the Cambridge Structural Database), in order to understanding the 

strength and the directional preferences of hydrogen bonds [12-15]. The H���A distance, 

should be, for instance, in the range 1.5-2.2 Å for strong O-H���O/N hydrogen bonds (with 

D-H���A angle in the range 140-180°) and 2.0-3.0 Å for weak C-H���O/N contacts (with D-

H���A angle in the range 120-180°). The energy of such interactions varies from 15 to 40 

kJ.mol-1 for moderate hydrogen bonds. 

-  interactions can be of predominant importance during the coordination polymer 

formation. Janiack reviews this kind of interactions in metal complexes with aromatic 

nitrogen-containing ligands [16]. Aromatic-aromatic interactions involve face-to-face  

alignment (with or without offset) and edge-to-face orientations (C-H���� interactions). 

These interactions are the sum of a lot of contributions (electrostatic, Van der Waals 

interactions, repulsion, charge transfer), and the aromatic rings stack in an optimal way to 

minimize all the interaction components. In Figure A-2 and Figure A-3, the geometrical 

parameters of aromatic-aromatic stacking are defined. 

 

Figure A-2: schematic representation of aromatic-aromatic interactions (face-to-face) (the 

designation of distances and angles will be used during this work) 

distance geometrical center-geometrical center of the two ring: dH-R 

perpendicular distance of a center ring on the other ring: pdH-R 

“shift angle”: 
�

 

inclination angle between the two ring planes: � 

offset 

�
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Figure A-3: schematic representation of aromatic-aromatic interactions (edge-to-face) (the 

designation of distances and angles will be used during this work) 

The investigation of the Cambridge Structural Database allows to determine the main 

parameters for �-� stacking in metal complexes with aromatic nitrogen-containing ligands 

[16]. For face-to-face interactions, the centroid-centroid distance is found between 3.4 and 

3.8 Å (with an inclination angle between the two ring planes as short as possible) and an 

offset angle ranged between 16 and 40°. Their energy is estimated at 5-10 kJ.mol-1. 

Metal-metal interactions can be discussed in some coordination polymers based on d10 

metal cations (see chapter IV.3 -). The energy of these bonds was roughly estimated at ca. 

5 kJ.mol-1 for a silver-silver interaction [17]. 

Metal-aromatic interactions can be formed when metal cations accept �-electrons from 

unsaturated organic molecules. The geometrical parameters of this interaction are given in 

Figure A-4. For AgI, the main distances Ag-ring are ranged from 2.8 to 3.3 Å [11]. The 

energy of metal-aromatic interactions is not well-known, but evaluated around 5-10 

kJ.mol-1. 

 

Figure A-4: schematic representation of aromatic-metal interactions (the designation of distances 

and angles will be used during this work) 

 

I.3 - Synthetic methods 

Four main synthetic methods of coordination polymers are known from the literature. [8, 

18] Improvement of the synthesis is essential in order to get good quality single crystals 

suitable for X-ray measurement. It’s important to remind that several processes can be 

investigated for the same starting materials, leading sometimes to different products: 

isomeric or polymorphic species will be discussed later. 

M 

C 

distance Metal-geometrical center of the ring: dM-R 

perpendicular distance of M on the ring: pdM-R 

“shift angle”: 
�

 

distance H-geometrical center of the second ring: dH-R 

perpendicular distance of H on the ring: pdH-R 

“shift angle”: 
�

 

inclination angle between the two rings: � 

Cycle 2 

Centre du 

cycle 2 

H 

Cycle 1 

�
 

� 
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Self-assembly occurs, as written before, when the reagents are mixed together. 

Molecular recognition permits the construction of products following pre-determined rules. 

This technique needs convenient conditions:  

- Crystals grow in saturated solutions. Good concentration can be achieved by slow 

evaporation of the mother liquor. 

- Solubility increases with temperature and crystals could appear during the cooling step, 

which has to be well controlled: speed of cooling, final temperature. 

Diffusion methods are preferential methods to get single crystals suitable for X-ray 

diffraction analysis instead of non- or poly-crystalline products, especially if products are 

poorly soluble. The principle of this method is to slowly bring into contact the different 

species: 

- One approach can be the solvent liquid diffusion: layers are formed; one contains the 

product in an adequate solvent, another is the precipitant solvent and both are separated 

with a solvent layer. The precipitant solvent slowly moves into the separate layer and 

crystal growth occurs at the interface. 

- The other approach always concerning diffusion of compounds in solution is the slow 

diffusion of reactants. This technique is similar to the one before, the only difference is that 

the reactants are dissolved each in one of the two solutions; the separation between both 

solutions can be a solution layer and/or physical barriers. 

Hydro(solvo)thermal methods are originally used for the synthesis of zeolithes, but have 

been adopted for the formation of coordination polymers. They exploit the self-assembly of 

products from soluble precursors. The running temperature range is usually 120-260°C 

inside a closed space (autoclave) under autogenous pressure. Under these conditions the 

reduced viscosity of water enhances the diffusion process and thus extraction of solids 

and crystal growth from solution are favoured. As the difference of solubility between 

organic and inorganic components in the same solvent is often a barrier in the formation of 

single crystals, hydrothermal experiments can be a good alternative. This crystallization 

technique way is a non-equilibrium synthesis and may lead to metastable products.  

Microwave and Ultrasonic methods are less used methods for the coordination polymer 

formation. These methods are also based on the improvement of solubilities in order to 

better react or crystallize the involved species and products. 
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II - Overview of the diversity of coordination polymers 

II.1 - Building blocks 

There are four different kinds of building bricks used for the formation of infinite metal-

organic frameworks: 

Organic ligands act as bridging organic groups between the metal ions. Typical organic 

ligand molecules are shown on Figure A-5. For possible infinite expansion, ligand 

molecules have to be multidentate with at least two donor atoms, mostly N-donors, O-

donors, S-donors or cyano donors. Ligand molecules may differ from each other in their 

charges: most used ligands are neutral and anionic. Another determining point is the 

“body” of the organic ligands: their shapes (rigid or not); their lengths (distance between 

the coordination functions will be important); their functionalities (further presence of 

heteroatoms, aromatic rings, alkyl chains…). And finally the ligand molecules can be 

symmetric, chiral or not, i.e. with different donor functions on the same molecule. 

 

Metal ions will be involved in the structure depending on their size, hardness/softness, 

ligand-field stabilization energy and coordination geometries (linear, trigonal-planar, T-

shaped, tetrahedral, square-planar, square-pyramidal, octahedral, trigonal-prismatic, 

pentagonal-bipyramidal or trigonal-bipyramidal). Different kind of metal atoms have been 

studied: transition metal ions, lanthanide ions. 

Transition metal ions are mostly used: choosing one or another metal element means 

choosing the coordination geometry i.e. the node shape, as well as choosing the 

potentially required properties of the future materials. AgI and CuI ions have a d10 

electronic configuration and thus are more “flexible”: their coordination sphere can change 

depending on the synthesis conditions. Thus AgI is found in a wide range of coordination 

environments: linear, trigonal, tetrahedral, square-planar, square pyramidal and 

octahedral; for CuI, it is usually tetrahedral or trigonal. The transition metals with other 

electronic configurations have defined coordination environments, for instance, NiII is 

tetrahedrally coordinated, CuII has octahedral coordination geometry (and eventually 

square planar or square pyramidal), CoII an octahedral geometry , PtII an square planar 

geometry, so that a large number of combinations are possible. 

Lanthanide ions are less used because of the too important flexibility of their coordination 

environments. Their coordination numbers can vary from 7 to 10. But with these 

connectors some original topology can be formed and particular applications become 

conceivable. 
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Counter ions are present in the structure when neutral ligands are used. They can 

influence the metal ion environment (more or less coordinating counter ions) but also the 

overall structure, being involved in weak interactions or acting as guest molecules in void 

spaces in the solid state. 

 

Solvent molecules may co-crystallize, increasing the number of possible weak 

interactions in the final packing, and can also act as guest molecules in the vacant space 

between the polymer construct. 

 

Figure A-5: Typical used organic molecules as organic linkers in coordination polymers [8] 
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II.2 - Dimensionality and motifs 

The organisation of the building blocks together can lead to metal-organic frameworks of 

different dimensionality: one-, two-, or three-dimensional architectures. The Figure A-6 

represents the simplest ways of organisation in order to construct these three architecture 

types. Linear organic ligands with two donors systems (D) and the spacer (S) are here 

schematized in red, metal ions are shown in blue, and only the coordination interactions 

are considered. Dimensionality is often determined by the nodes (metal centres): in one-

dimensional motifs the metal ion is coordinated with two ligand molecules, metal ions and 

organic ligands alternate “infinitely”, leading to a chain; two-dimensional compounds are 

obtained with three or four ligand molecules coordinating around the metal ion and the 

elementary motif expands now in two directions; with metal ions of higher coordination 

number (tetrahedral or octahedral nodes), three-dimensional structures can be built. 

 

       

Figure A-6: Dimensionality of the metal-organic frameworks (M: metal ions, D: donor groups of the 

ligand, S: spacer inside the ligand) [5] 

Obviously the elementary units are not always so simple and there are a lot of one-, two-, 

or three-dimensional architectural types depending on the building blocks and the 

experimental conditions. These architectures can be schematized only using nodes and 

links: Figure A-7, Figure A-8 and Figure A-9 [8] represent respectively some of the most 

important known motifs. Along this thesis, we will often discuss and refer to these network 

motifs. 
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Figure A-7: 1D coordination polymer motifs 

 

Figure A-8: 2D coordination polymer motifs 
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Figure A-9: 3D coordination polymer motifs 

One other important feature concerning the analyses of coordination polymers 

architectures is the interpenetration, in which two- or three-dimensional motifs are 

interweaving. [19] Some examples are shown on the Figure A-10. 

   

Figure A-10: Two examples of interpenetrated systems 

 

Considering the huge choice of possible building units, we can easily imagine the diversity 

of new synthesizable materials. In order to illustrate the wild diversity of related 

coordination polymers, some examples of metal-organic frameworks will be presented; the 

aim of the following paragraphs is not to make an exhaustive list but only to present an 

overview of the coordination polymer features. They are classified along their 
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dimensionalities. The shown motifs are the most typical ones and are based on 

coordination interactions between ligand molecules and metal ions. It is clear that other 

interactions play also an important role during the formation of the crystals, but the 

definition of the final compounds dimensionality is based on the metal complexation. Due 

to the abundance of metal-organic known systems, we will only report the systems 

containing one type of ligand and one type of metal ions. 

 

II.3 - One-dimensional motifs 

Mind will implicitly associate one-dimensional motifs with linear chains, like a regular 

bicolour necklace. This simplest one-dimensional motif exists obviously. 

 

Figure A-11: One-dimensional polymer chain of {[Co(H2O)4(pyrazine)](NO3)2·2H2O}n 

For instance crystals of {[Co(H2O)4(pyrazine)](NO3)2·2H2O}n appear from a heated mixture 

of pyrazine in acetonitrile and Co(NO3)2·6H2O in ethanol [20]. They show a one-

dimensional linear chain structure alternating pyrazine molecules and Co(H2O)4 units. 

(Figure A-11) Cobalt atoms are hexa-coordinated, the oxygen atoms of the four 

coordinated water molecules occupying the equatorial positions and the nitrogen atoms of 

two different ligand molecules the axial positions. 

   

Figure A-12: one-dimensional polymer {[Ni(C12H30N6O2)(C8H4O4)]·4H2O}n 

This arrangement is due to the coordination site occupation of the hexa-coordinating metal 

ions (trans-arrangement of two different ligand molecules in axial positions, and the 

equatorial positions occupied with counter anions, solvents molecules or other co-

crystallizing molecules) and to the fact that the ligand is linear and symmetric. We can 

observe analogous arrangements in {[Ni(C12H30N6O2)(C8H4O4)]·4H2O}n [21] where the 

ligand molecule is the terephthalate dianion and the equatorial positions are occupied by a 

macrocycle (Figure A-12) or in {[Mn(C12N2H10)(NCS)2(CH3OH)2]}n [22] in which MnII is 
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coordinated by two trans-1,2-bis(4-pyridyl)ethane, two isothiocyanate ions and two 

methanol molecules (Figure A-13). 

 

Figure A-13: Coordination mode of Mn II in {[Mn(C12N2H10)(NCS)2(CH3OH)2]}n 

Some other linear chain motifs can be achieved by a more original organisation of the 

ligand molecules with the metal ions. The compound {[Cu3(cpida)2(H2O)4]·4H2O}n [23] for 

instance shows N-(4-carboxyphenyl)iminodiacetic acid molecules (H3cpida) alternating 

with CuII units. (Figure A-14) 

 

Figure A-14: One-dimensional motif of Cu3(cpida)2(H2O)4]·4H2O}n (Copper atoms are represented with 

black circles) 

Although the one-dimensional chain organisation seems to be simple, there are many 

possible permutations in the packing taking into account the interactions during the crystal 

formation. Janiak et al. have reported two one-dimensional chains based on terephthalate 

dianions: {[M(�-C12H30N6O2)(NH3)2]}n (M=CuII, CdII) obtained by slow evaporation. [24] 

While the two systems seem to be similar, they differ from the coordination sphere of the 

cations. In the copper compound, CuII (Figure A-15a/b) is square-planar coordinated by 

two ammin and two ligand molecules in a monodentate way, leading to a trans-

arrangement of the ligand molecules and linear chains, whereas in the second compound 

the ligand acts as a bidentate pincer. (Figure A-15c/d) The CdII ion is thus coordinated with 

six atoms in a trigonal-prismatic way; the ligand molecules are in cis-position on one side 

of the cadmium ion, and the ammin molecules on the other. Some zig-zag chains are 

thus formed in this second case due to the difference in the coordination orientations of the 

two metal ions. 
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a)         c)  

b)                     d)  

Figure A-15: a) and b) {[Cu( � -C12H30N6O2)(NH3)2]}n; c) and d) {[Cd( � -C12H30N6O2)(NH3)2]}n 

A similar arrangement of cadmium cations with terephthalate dianions as connecting 

ligands is reported by Qiu [25] with phenantroline molecules instead of ammin ones. 

The formation of zig-zag chains can be explained by the shape of the ligand molecules. A 

first simple example will rationalize this fact: in comparison of the coordination polymers 

obtained from Cu(HCO2)2·yH2O and pyrazine (pyz) or pyrimidine (pym) [26]. The 

difference of these two ligands is the relative position of the two N-donor atoms on the 

ring. As shown on Figure A-16 pyrazine ligand molecules lead to linear chains whereas 

zig-zag chains occur by use of pyrimidine ligand molecules. 

 

Figure A-16: Schematic representation of the skeleton of one dimensional coordination polymers 

{[Cu(L)(HCO2)2]}n (L=pyz, pym) 

This second example shows the similar influence of the position of the two N-donor atoms 

on the ring. Under similar experimental conditions acetylene-bridged N,N’-bidentate 

ligands with different positions of the nitrogen atoms on the rings (N,N’-dpa) coordinate 

with cobalt ions. The coordination polymer containing 3,3’-dpa shows a zig-zag chain motif 

(Figure A-17a) whereas the compound with 4,4’-dpa shows a one-dimensional ladder-like 

organisation (Figure A-17b). [27, 28] 
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a) b)  

Figure A-17:a) {[Cd(3,3’-dpa)(NO3)2(H2O)2]}n; b) {[Cd(NO3)2(4,4’-dpa)1.5]}n 

Comparable zig-zag chains can be also obtained with longer bent ligand molecules or with 

flexible ligand molecules. The coordination polymer {[Cu(dtmp)(dmf)Cl2]dmf}n (dtmp = 1,6-

di(triazole-1-yl-methyl)-4-methylphenol) self-assembles in the reaction mixture and shows 

a zig-zag chain motif. (Figure A-18) [29] The flexibility of the ligand allows its cis 

conformation. CuII ions are five coordinated with two nitrogen atoms of two different ligand 

molecules, two terminal chloride anions and one oxygen atom of the coordinated dmf 

molecules. 

 

Figure A-18: zig-zag coordination polymers {[Cu(dtmp)(dmf)Cl2]dmf}n 

A solution of 2,2’-bis(4-pyridylmethyleneoxy)-1,1’-biphenylene (4,4’-bpp) in methanol 

diffuses into an aqueous solution of ZnCl2 or ZnBr2 in order to lead to crystals showing zig-

zag chains: the Zn atoms are tetra-coordinated with two different bend ligand molecules 

and with two terminal halide atoms as shown on Figure A-19 [30]. 

 

Figure A-19: one-dimensional polymeric chain of {[Zn(4,4’-bpp)Br2]}n 

From a high-dilution synthesis, crystals [Cu(2,3-pydcH)2] are obtained. [31] The ligand 2,3-

pyridine dicarboxylic acid (2,3-pydcH2) is a bidentate asymmetric molecule. The repeating 

units of this coordination polymer are metallacycles: two ligand molecules bridge two 

closest copper atoms in the chain. (Figure A-20) Each CuII atom has a distorted octahedral 
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coordination sphere; the apical positions are occupied by the oxygen atoms of the non-

deprotonated 3-carboxyl groups; the equatorial ones with two nitrogen atoms and two 

oxygen atoms of the deprotonated 2-carboxyl groups. This motif is called a double chain 

motif. 

 

Figure A-20: double chain motifs in [Cu(2,3-pydcH)2] 

Recrystallization of ZnII salts and 4,4’-dipyridyl disulfide (4pds) coordination polymers in 

different solvents leads to double chain structural motifs [32]. ZnII is hexa-coordinated and 

the equatorial positions are occupied with four nitrogen atoms of four different ligand 

molecules and the apical ones with counter anions or solvent molecules. The repeating 

unit is a Zn2L2 ring. Figure A-21 shows for instance the compound 

{[Zn(SCN)2(4pds)2](dmf)2}n. The torsion angle C-S-S-C is of ca. 90°, thus the bend shape 

of the ligand molecules explains the rhombohedral chains. In this series of ZnII 

coordination polymers derived from 4dps ligands, an important additional feature appears, 

as the ligand can adopt two forms of enantiomers. The double chains can be achiral or 

chiral. 

 

Figure A-21: The loop Zn2L2 in {[Zn(SCN)2(4pds)2](dmf)2}n 

Double chain motif can also be found in compounds based on polydentate ligand 

molecules. 1,2,7,8-benzenetetracarboxylic acid molecules (H4bta) self-assemble with MnII 

ions in presence of 4,4’-bipyridine (bpy) in a basic solution affording crystals with a double 

chain structural motif. (Figure A-22) The Hbta molecules act as tridentate ligand molecules 

on an octahedral MnII ion, the coordination sphere of MnII ion being completed with two 
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water molecules and one Hbyp molecule [33]. Double chain motifs can also appear with 

flexible or well-shaped ligand molecules in association with a large variety of metal 

centers. 

 

Figure A-22: double chain motif in {[Mn(Hbta)(Hbyp)(H2O)2]}n 

Ladder-like one-dimensional motifs can also be formed. A great example is shown on 

Figure A-17b. The hepta-coordinated cadmium ions are coordinated with three different 

ligand molecules leading to a “T-shape” organisation of the ligand molecules around the 

metal center; the other sites of the coordination sphere are blocked with the counter 

anions avoiding the extension of the structure in further direction. Another ladder-like 

organisation is found in the compound {[Cu(2,3-dimethylpyrazine)Br2]}n [34]. This 

compound co-crystallises as main product of the slow diffusion between methanolic 

solutions of the ligand and CuBr2. In this case two “rails” formed by bridging 2,3-

dimethylpyrazine between the CuII ions are linked together by bridging bromide ions. 

(Figure A-23) The additional bromide anions are terminal ones. 

 

Figure A-23: ladder-like arrangement in the compound {[Cu(2,3-dimethylpyrazine)Br2]}n 

Mn 

Hbpy 
Hbta 
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a) b)  

Figure A-24: {[HgBr2(2,5-bis(3-pyridyl)-1,3,4-oxadiazole)]}n a) helical chain; b) coordination of Hg II and 

shape of the ligand 

The least common one-dimensional motif is the helical chain. {[HgBr2(2,5-bis(3-pyridyl)-

1,3,4-oxadiazole)]}n crystals appear after the slow diffusion of the ligand solution in 

methanol into an aqueous solution of HgBr2. [35] The HgII has a distorted tetrahedral 

environment consisting of two nitrogen atoms of two ligand molecules and of two terminal 

bromide atoms. The HgBr2 and the ligand units alternate in order to form a one-

dimensional chain. The bent shape of the ligand molecules and its coordination at the HgII 

centers give a helical twist to the chain. (Figure A-24) In comparison, the coordination 

polymer obtained with HgI2 and the similar 2,5-bis(4-pyridyl)-1,3,4-oxadiazole ligand 

(except for the position of the nitrogen atoms on the ring) shows a one-dimensional zig-

zag motif, as the ligand coordination orientation is different. Some other examples of 

helical chains can be found [36], for instance the anion bis[3-(2-pyridyl)pyrazol-1-

yl)]phosphinate crystallizes with AgI or TlI in order to form helical strands (Figure A-25) 

[37]; the complex {[Ag(N,N’-di(2-pyridyl)oxamide)]NO3}n crystallizes also in single-twist 

helices. [38]  

 

Figure A-25: Crystal structure of the one-dimensional helical chain of 

{[Tl(bis[3-(2-pyridyl)pyrazol-1-yl)]phosphinate)]·MeOH}n 

Some few double helical motifs are related, especially if there are several kinds of donor 

groups in the ligand molecule or with flexible ligands. For instance, the ligand 1,3-bis(4-

pyridyl)propane (bpp) reacts with AgCF3SO3 by diffusion technique. [39] The structure of 

the resulting product show double helical chains, as one-dimensional chains are 
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intertwined. The contacts between the two chains are Ag-Ag interactions and �-stacking 

as shown on Figure A-26. 

 

Figure A-26: double helical motif in the compound {[Ag(bpp)](CF3SO3)}n 

In the one-dimensional chain motif, ligand and node centers alternate in one direction so 

that the repeating unit is form with one node and one ligand and the proportion metal to 

ligand is 1:1 (except for the double chain motifs). 

 

II.4 - Two-dimensional motifs 

Square grid networks are the simplest example of the two-dimensional motifs. In these 

coordination polymers the proportion metal to ligand usually is 1:2. The metal centers are 

coordinated with four different ligand molecules and the repetition of this unit allows the 

propagation of the structure in two dimensions. 

 

Figure A-27: square grid network in {[Mn(N3)2(bix)2]}n 

The ligand 1,4-bis(imidazol-1-ylmethyl)benzene (bix) molecules react with MnII ions in 

order to form single crystals in which the motifs are perfect square grid layers. (Figure 

A-27) [40] The metal ions have an octahedral environment: the equatorial positions are 

occupied by the nitrogen atoms of four ligand molecules and the apical ones by the 

counter anions (azide or dicyanamide anions). A similar example affords a square grid 

motif [41]: the metal node is an UranylVI ion and the bridging ligand is 1-oxo-4-
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pyridylcarboxylate (opyca). Single crystals appear during the hydrolysis reaction of 

UO2(NO3)2 with the 1-oxo-4-cyanopyridine under hydrothermal conditions. (Figure A-28) 

 

Figure A-28: 2D square grid motif in {[UO2(opca)2]}n 

A lot of two-dimensional networks based on square grid motifs can be found in the 

literature, but also a lot of derived motifs such as rhombic or rectangular grids. [41-44] In 

these cases, the metal centers are also linked with four ligand molecules.  

In the other hand, if the metal ions are only coordinated with three ligand molecules giving 

a “T-shape” around the node, layers are formed and the motifs are called honeycomb 

grid, brick wall, herringbone motifs or other parquet floor architectures. Some of these 

motifs are shown by Necas et al. [45] with coordination polymers containing lanthanides 

centers and the ligand Ph2P(O)-CH2CH2-P(O)Ph2 (dppeO2). (Figure A-29) In these cases 

the proportion metal:ligand is 1:1,5. To generate “T-shaped” connectors, some 

coordination sites of the metal center have to be blocked by highly coordinating counter 

anions such as halide anions or sometimes nitrate anions or by additional terminal ligand 

molecules. 

 

Figure A-29: from left to right: brick wall motif in {[NdCl3(dppeO2)1.5]}n; parquet floor motif in 

{[Nd(NO3)3(dppeO2)1.5]}n; pseudo-honeycomb motif in {[Pr(NO3)3(dppeO2)1.5]}n 
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Another motif containing “T-shaped” metal centers is the bilayer one. 

{[Cu(bipy)2.5(H2O)](ClO4)2·(H2O)·(CH3OH)1.5}n presents this structural motif. [46] Each CuII 

center has a distorted square planar geometry surrounded by four nitrogen atoms in the 

equatorial positions: three of the bidentate bridging bipyridine molecules and one of the 

monodentate terminal ligand connector, the apical coordination sites being occupied with 

weakly coordinated water molecules. (Figure A-30) The proportion metal:ligand is now 

1:2,5. 

a)    b)  

Figure A-30: bilayer structural motif in {[Cu(bipy)2.5(H2O)](ClO4)2·(H2O)·(CH3OH)1.5}n (water, perchlorate 

and methanol molecules are omitted for clarity): a)coordination mode of the Cu II ion; b)bilayer 

architecture (terminal ligands are omitted, solid lines-“ chain makers” -, dashed lines-“ linker between 

the chains” - symbolized the bridging ligands and black circles the Cu II centers) 

Thus, the two-dimensional structures are reached when three or four ligand molecules act 

as connectors between the node centers. The potential remaining coordination sites of the 

centers are occupied with other building blocks (counter-ions, solvent molecules or 

additional organic molecules). The proportions metal to ligand are no more 1:1 as in the 

one-dimensional networks (except for double chain motifs), but ML1,5, ML2 or ML2,5. A 

large variety of nodes can be found in such complexes. These kinds of constructions show 

cavities; the remaining space is filled with guest molecules (counter ions or solvent 

molecules), by adequate stacking of the sheets or thanks to interpenetration. 

 

II.5 - Three-dimensional motifs 

Now, this is quite easy to imagine the requirements to build three-dimensional complexes. 

The extension has to occur in the tree dimensions from the nodes and thanks to the ligand 

connectors. The geometry of such compounds is more complex. 
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One of the well-known and frequently found three-dimensional motifs is the diamondoid 

network. Each node is connected to four bridging ligands in a tetrahedral way, leading to a 

three-dimensional diamond-like network. This motif can be found in the structure obtained 

from CdII centers as node and the dicarboxylate 3,3’-azodibenzoate (3,3’-azdb) as 

connector. [47] The cadmium ions are eight-coordinate but they act as four-connecting 

nodes, as the carboxylate groups are bidentate. On Figure A-31, it can be noted that this 

arrangement creates large cavities (in this case, the average distances between the 

cadmium atoms are 15 Å inside a cavity). When the intraframework voids are relatively 

large, interpenetration of a network by other independent networks is a common 

phenomenon. The degree of interpenetration depends on the length of the cavity’s edge 

i.e. of the ligand molecule. In this structure, six independent interwoven diamondoid 

networks coexist. 

a)    b)  

Figure A-31: a) adamantine unit in {[Cd(3,3’-azdb)2](H2NMe2)(NH4)}n; b) schematic representation of 

the diamondoid network in {[Cd(3,3’-azdb)2](H2NMe2)(NH4)}n. 

Examples affording this motif are numerous. Lin’s group relates two examples of 

diamondoid structures formed of ZnII or CdII ions linked by the asymmetric ligand (4-[2-(4-

pyridyl)ethenyl]benzoate = L). [48] The metal ions have a distorted octahedral or 

tetrahedral environment so that the diamondoid structure can appear. In this case, the 

number of interpenetration is eight. (Figure A-32) 
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a)           b)  

Figure A-32: {[Zn(L)2]}n a) the diamondoid structure; b) schematic 8-fold interpenetration 

This motif is sometimes distorted in correlation with the coordination way of the nodes 

centers. For instance the crystal structure obtained from the octahedral CuII associated 

with the ligand 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (L) presents 

a distorted diamondoid motif. [49] The adamantane cages are 

elongated in one direction as shown on Figure A-33, as the four 

molecules coordinate the copper center in the equatorial 

positions. 

 

Figure A-33: a) coordination geometry around the Cu II center and b) the distorted adamantine cages 

in {[Cu(L)2(H2O)2](ClO4)(OH)(H2O)2,5]}n 

Some other diamondoid metal-organic frameworks based on AgI as well as 

interpenetration structures are presented by Ciani et al. [50]. 

 

Octahedral motifs are based on the extension of the framework in the three directions 

from the octahedral nodes. It is very difficult to coordinate six ligand molecules around one 

metal center and generally the apical positions of the octahedral metal centers are 

occupied by water molecules, other solvent molecules or counter ions, and the resulting 

network is of lowest dimensionality. Indeed the apical positions are less often coordinated 

bond sites (Jahn-Teller distortion). 

One of the strategies is to use two different molecules in order to build the edge of the 

cubical unit. SiF6
2- anions for instance can link the metal atoms more easily than water 

b) 

a) 
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molecules. These anions act thus as linkers between square-grid layers made with the 

metal ions and the ligand molecules as seen in the former chapter. Moreover the resulting 

three-dimensional framework is more robust as there is no uncoordinated counter anion in 

the structure. 

The compound {[Cu(SiF6)(4,4’-bpy)2]�8H2O}n shows this organisation. [51] This compound 

was obtained thanks to slow diffusion of the ligand solution (in ethylene glycol) into an 

aqueous ethylene glycol solution containing a mixture of Cu(BF4)2�6H2O and (NH4)2SiF6. 

The CuII center is coordinated to four ligand molecules in the equatorial positions leading 

to a square-grid layer. The layers are stacked together thanks to the bridging bidentate 

SiF6
2- anions, F atoms occupying the apical sites of the CuII ions. (Figure A-34-a) There is 

no possible interpenetration in this case; channels are formed and filled with 

uncoordinated water molecules. (Figure A-34-b) This framework is very robust and 

remains organised even after removal of the water molecules under strong conditions 

(373K, reduced pressure). 

a)   b)  

Figure A-34: a) cubical unit in {[Cu(SiF6)(4,4’-bpy)2] � 8H2O}n; b) view of the cavities in {[Cu(SiF6)(4,4’-

bpy)2] � 8H2O}n (water molecules omitted for clarity) (Cu ions in blue, Si atom in green and nitrogen 

atoms in red) 

The construction of octahedral motifs is also possible if the nodes are made with binuclear 

subunits. For example in the compound {[Co(terephthalate)(4,4’-bipy)]}n [52] one layer is 

formed with terephthalate dianions capping the cobalt binuclear unit as shown on Figure 

A-35-a/b (the carboxylate groups are coordinated to the cobalt ions in the equatorial sites). 

The bipyridine molecules are linked to the cobalt anions through the apical positions for 

the expansion of the structure in the third direction (Figure A-35-c). This system is twofold 

interpenetrated. 
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Figure A-35: Coordination polymers {[Co(terephthalate)(4,4’-bipy)]}n: a) coordination environment of 

the cobalt binuclear unit; b) Co(terephthalate) sheet; c) perceptive view of the three dimensional 

motif. 

Another approach to build such three dimensional octahedral coordination polymers is to 

introduce metal clusters as connecting 

nodes. For instance Yaghi et al. present of 

lot of cuboidal frameworks {[Zn4O(L)3]}n in 

which the ligand molecules are 

dicarboxylate anions. [53, 54] The nodes are tetranuclear supertetrahedral cluster motifs 

Zn4O, these oxide centred clusters appear by combination of metal cations with carboxylic 

acids in appropriate conditions. This synthetic path was successfully extended to 

dicarboxylic acids. In the compound {[Zn4O(bdc)3](dmf)8(C6H5Cl)}n the core of the cluster 

consists of one oxygen atom bonded to four Zn atoms. Each edge of the Zn4O tetrahedron 

is then capped by –CO2 groups of a bridging ligand molecule (1,4-benzenedicarboxylate: 

bdc) (Figure A-36). This core represents a secondary building block unit (SBU) 

interconnected thanks to the ligands leading to the octahedral three-dimensional network. 

Here as well, the framework maintains its morphology and crystallinity after heating to 

300°C for one day and thus desolvatation of the crystal. 

 

Figure A-36: cubical unit in {[Zn4O(bdc)3](dmf)8(C6H5Cl)}n the corners are the Zn4O clusters and the 

edges the ligand molecules. The yellow sphere represents the internal volume; the available space in 

the crystal is 80% of the crystal volume. 
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An important number of other three dimensional motifs have been observed: NbO-, ThSi2-, 

PtS-, SrSi2-, CdSO4-like motifs or some intriguing and unique architectures with amazing 

names like ribbon-candy-like, chicken-wire-like, wave-like, accordion-like cages or other 

pipe-like architectures. All of these coordination polymers show a high stability; they 

present more or less large cavities filled with non coordinating solvent molecules and/or 

with other similar networks by interpenetration. 

 

III - Polymorphism and other isomerism 

Crystallization and crystallization product studies have allowed the description of various 

solid-state forms achieved from the same and/or different building blocks. The solids can 

be classified towards their composition and structure: they are defined by the repeating 

molecular patterns and the long-range order. This is true for the supramolecular chemistry 

field from pharmaceutical solids to coordination polymers ones. Some definitions for 

polymorphism and supramolecular isomerism were proposed in the literature for 

assemblies governed by molecular recognition [6, 13, 55-57]. The classification is not 

always well-defined and the following definition will be used in this thesis. 

If the composition of several supramolecular networks is the same, the different structures 

are supramolecular isomers (by comparison to molecular isomerism). Different subsets of 

supramolecular isomerism can be found. In the other hand, if differences in the nature and 

stoechiometry of included molecules in the networks (obtained from the same ligand, 

metal ion and counter anion) contribute to the formation of several metal-organic 

frameworks, the term pseudo-polymorphism is used. 

Supramolecular isomerism is the ability of a substance to exist in more than one type of 

network superstructure for the same molecular building blocks. Networks are generated by 

different supramolecular synthons or molecular assemblies. The metal moiety and the 

exofunctional organic ligands remain the same but combine to give a different 

superstructure. There is a lot of subsets to supramolecular isomerism. 

Conformational supramolecular isomerism occurs when flexible molecular components are 

used. The change of ligand conformation can lead to similar motifs in which the 

conformation of the ligand is different from one structure to the other. For instance, Hanton 

and co-workers report two [Cd(L)(NO3)2] (L = 1,4-bis(2-

pyridylmethylsulfanylmethyl)benzene) compounds showing one-dimensional chain motifs 

[58]. They differ in the conformation of the ligand (Figure A-37), the inclusion solvent 

molecules not being the same in both cases. The coordination sphere of the metal ion 

remains the same in the two networks. 
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a) b)  

Figure A-37: one-dimensional motif in a) {[Cd(L)(NO3)2] � CH2Cl2}n and b) {[Cd(L)(NO3)2] � 4/3CH3CN}n (L = 

1,4-bis(2-pyridylmethylsulfanylmethyl)benzene) 

Structural supramolecular isomers are different long-ranged organisations of the same 

synthons. For instance, {[Cu2(
�

2-(p-benzoquinone))(�
2-Oac)2]}n can be found under three 

different phases [59], the coordination of the ligands around CuII remaining the same but 

these synthons interacting differently (Figure A-38). 

 

Figure A-38: the schematic representation of the three structural supramolecular isomers of {[Cu2(� 2-

(p-benzoquinone))(� 2-Oac)2]}n (each synthon is represented by the “rectangular” form) 

Structural isomerism is the most widely found isomerism in which the coordination sphere 

of the metal cation differs between the two isomers [60-64] The two compounds {[Co(1-

methyl-1’-(3-pyridyl)-2-(4-pyridyl)ethene)2(NCS)2]}n can grow concomitantly or not during 

the slow diffusion of two solutions of each reagent, depending on the used solvents [64]. 

The motif of both coordination polymers is different: one-dimensional double chain in one 

case and two-dimensional sheet in the other (Figure A-39). 

a) b)  

Figure A-39: the two structural supramolecular isomers of {[Co(1-methyl-1’-(3-pyridyl)-2-(4-

pyridyl)ethene)2(NCS)2]}n: a) double chain and b) sheet 
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Polymorphism is the existence of the same chemical substance in more than one 

crystalline modification for molecular crystals. Polymorphism is scarce in coordination 

chemistry field [65] and is regarded as a subset of supramolecular isomerism: the same 

molecular components generate different supramolecular synthons, in other words, 

materials with the same chemical composition differ in the lattice structures and/or 

molecular conformation. 

Pseudo-polymorphism is a term that refers to crystalline forms with solvent molecules as 

an integral part of the structure (isolated lattice sites, lattice channels or metal-ion 

coordinated solvates) [66-70]. The pseudo-polymorphs are obtained in crystalline forms 

that differ in nature or stoechiometry of included solvent molecules. Unlike polymorphs, 

pseudo-polymorphs are distinct chemical and structural entities. Zaworotko et al. present 

pseudo-polymorphs of [Zn(nicotinate)2] obtained under different conditions (solvent and 

crystallization techniques) [71]. They differ in the included solvent molecules: 

methanol/water or naphthalene or nitrobenzene. The motifs and dimensionalities of these 

compounds are very different and influenced by the reaction conditions. 

During crystallization the traditional thermodynamic vs. kinetic game plays an important 

role. The different solid-state forms can appear under different conditions [60, 62, 64, 66-

68, 71, 72] or as a mixture in the same batch [61, 64, 70, 73]. In some examples, isomers 

are found in the same crystal with two concomitant motifs [74]. 

Such phenomena could be regarded as drawback and one more difficulty in the prediction 

of molecular recognition, but they should be seen as a better understanding of the building 

blocks, the self-assembly process. They allow us to know the finite number of possible 

structures. These phenomena appear also quite frequently with more flexible systems and 

more functionalized groups. 

 

IV - Possible Applications 

One of the interests in building coordination polymers is the creation of new tuneable 

functional materials. In this part, we will see how metal-organic frameworks are promising 

as materials for applications in gas storage, anion exchange (due to the porosity and 

zeolitic-like behaviour), catalysis, conductivity, luminescence, chirality, magnetism, spin 

transition behaviour, NLO or deposition of thin films. 
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IV.1 - Porous materials 

Controlled porosity in materials is a widely studied topic in chemistry, as open frameworks 

with micro-, or nanometre-sized spaces can be used in gas and liquid separation, gas 

storage, sensors, molecular recognition, anions/cations exchange, heterogeneous 

catalysis... [75] Indeed porous materials allow the reversible passage of host molecules 

through the guest materials via the surface holes. Some inorganic materials are commonly 

used such as zeolites and activated carbons. Zeolites are microporous crystalline solids 

containing generally silicon and aluminium oxides. They are extensively used in a lot of 

industrial processes. Activated carbons are twisted networks of defective hexagonal 

carbon layers, cross linked by aliphatic bridging groups showing a high open porosity and 

a high specific surface area. The advantage of introducing organic molecules in such 

frameworks is the control of the material design: architecture choice, functionality of the 

pores, increasing selectivity.  

The coordination polymers have to be highly crystalline and porous, but it is well known 

that free space is against nature in crystals. When cavities appear in these frameworks, 

they are filled with counter anions, solvents molecules or additional co-crystallized organic 

molecules (or interpenetration). These molecules can be regarded as template molecules 

determining the pore shapes and sizes. As the metal-organic frameworks bonds are non-

covalent bonds, the removal of the template molecules can lead to structure collapsing. 

That’s why scientist research metal-organic frameworks with permanent crystalline 

structures even after the removal or exchange of the guest molecules. 

Porous coordination materials can be divided in three categories: 

- the first generation porous materials contain cavities, and/or channels but these 

structures lose their crystallinity after removal of the guest molecules (collapsing) and are 

not useful for the following applications. (see further) 

- the second generation metal-organic frameworks remain crystalline and stable as they 

are totally desolvated and they have a zeolitic behaviour. 

- the third generation frameworks are dynamic and flexible ones which respond to 

external stimuli (like light, electric field, magnetic field, guest molecules) in changing their 

structures. 

The transformation during the removal of the guest molecules is regarded as a “crystal-to-

amorphous transformation” in the first generation metal-organic frameworks, whereas the 

transformations in the two other cases are named “crystal-to-crystal” ones. [76] 
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Gas storage is one of the applications for these materials. As seen previously the 

compound {[Zn4O(dcx)3]}n (dcx=dicarboxylate) [53] shows large channels. The channel 

sizes can be choosen by the use of convenient ligand molecules. In the compound 

{[Zn4O(bdc)3](dmf)8(C6H5Cl)}n obtained with 1,4-benzenedicarboxylate (bdc) molecules as 

ligands, the dmf and chlorobenzene molecules can be removed. The total crystal 

desolvation and desolvated crystal stability was proven; the sorption behaviour was 

studied with nitrogen, argon and organic vapours of molecules such as CH2Cl2, CHCl3, 

CCl4, C6H6 and C6H12. Yaghi et al. report also other coordination polymers based on bis-, 

and tris-bidentate carboxylate linkers copolymerized with ZnII. In these compounds the 

nodes are rigid metal carboxylate clusters, which allow the stability of the porous materials. 

The sorption processes are well studied affording efficient and robust materials for gas 

storage or liquid separation. [54, 77-79] 

The compound {[Cu(SiF6)(4,4’-bpy)2]�8H2O}n described below (Figure A-34) presents 

similarly a robust three-dimensional network. The methane absorption experiments show 

high adsorption ability and good morphology/crystallinity retention [51]. 

 

Figure A-40: 3D view of the layers, pillars and channels in {[Cu2(pzdc)2(dpyg)]8H2O}n (water 

molecules omitted for clarity) 

Kitagawa et al. report a third generation pillared-layer coordination polymer able of solvent 

removal and specific guest molecule re-inclusion. [80] The structure of this compound is 

made by two-dimensional layers Cu2(pzdc)2 (pzdc = pyrazine-2,3-dicarboxylate) 

connected with additional dpyg molecules (dpyg = 1,2-dipyridylglycol) in order to build a 

porous three-dimensional coordination polymer, the free space being initially filled with 

water molecules. (Figure A-40) The material is able to loose the co-crystallized water 

molecules (at 60°C) and a X-Ray Powder Diffraction (XRPD) study shows two guest-free 

phases: the anhydrous one I (same structure without the water molecules) and the 

apohost II (in which the inter-layer distances are smaller). Adsorption isotherm 

measurements prove that phase II can selectively adsorb CH3OH and H2O but not CCl4, 

and that the final product (including the guest molecules) has the initial structure. In the 
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absence of guest molecules, the layers get also closer to each other, the material 

adjusting to avoid the free space. 

 

Figure A-41: schematic representation of the responsible coordination polymer networks 

The Kitagawa group works on materials capable of structural changes in response to the 

guest-molecules: the cavities or channels adapt their shapes in order to fit around the 

guest-molecules. [81, 82] A schematic representation is shown on Figure A-41. These 

materials do not lose their robustness and are potential candidates for target molecule 

recognition or separation. 

Another type of third generation metal-organic framework is presented by Wright et al. with 

compounds made from zincII benzene-dicarboxylates. [83] A series of [Zn(bdc)] 

coordination polymers is reported with solid-state transformations by removal or 

replacement of strongly hydrogen-bonded molecules: DMF, methanol, ethanol or water as 

resumed on the Figure A-42. All of these compounds have characteristic structures 

implying a lot of structural changes during the transformations. 

 

Figure A-42: desolvation and re-solvation reaction summary for the zincII benzenedicarboxylates 
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Soldatov and Ripmeester report species able of gas inclusion. [84, 85] The {[Cu(L)2]}n (L = 

CF3COCHCOC(OMe)Me2) complex exists in two forms: the �-form containing no pores in 

the structure and the �-one having channels of about 6 Å in diameter. (Figure A-43) 

a)   b)  

Figure A-43: a) � -form (there is two crystallographically independent complex units) and b) 
�

-form of 

{[Cu(CF3COCHCOC(OMe)Me2)2]}n 

Exposed to alcohol vapors, the � -form can transform itself simultaneously with the 

inclusion of the alcoholic guest molecules, although this form does not have any pores. 

Two phenomena are observed: in the case of methanol and ethanol exposures, new 

compounds appear in which the guest molecules coordinate the unsaturated copper atoms 

leading respectively to the compounds [Cu(L)2(MeOH)2] and {[Cu(L)2(MeOH)]2[Cu(L)2]}n. 

(Figure A-44) There are no free voids in these structures. 

a)     b)  

Figure A-44: a) the molecule [Cu(L)2(MeOH)2], the overall structure is a two-dimensional structure 

achieved trough hydrogen bonds; b) the trinuclear unit of one-dimensional coordination polymer 

{[Cu(L)2(MeOH)]2[Cu(L)2]}n 

Under longer alcohol gas exposure, the � -form transforms into the cavities containing � -

form with inclusion of the alcohol molecules in the free spaces. The two phenomena are 

described as chemical or physical inclusions depending on the role of the hydrophobic part 

in the alcohol molecules able of more or less strong Van der Waals interactions with the 

wall cavities. The material can catalytically switch between dense or open forms. The 

same observation is made in wetting the � -form in different saturated solutions of guest 

molecules. Depending on the guest molecules the � -to- �  transformations is observed, or 

new [CuL2Guest2] compounds appear. 
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Upon the few examples of dynamic systems the following example is interesting. Ciani et 

al. synthesize a three-dimensional coordination polymer thanks to the self-assembly of CuII 

sulphate salt and 1,3-bis(4-pyridyl)propane (bpp) ligand molecules: 

{[Cu5(bpp)8(SO4)4(EtOH)(H2O)5](SO4) � EtOH � 25,5H2O}n. [86] The three-dimensional 

structure is achieved with the entanglement of a one-dimensional motif within a two-

dimensional one. (Figure A-45a) 

a)                            b)  

Figure A-45: {[Cu5(bpp)8(SO4)4(EtOH)(H2O)5](SO4) � EtOH � 25,5H2O}n: a) schematic view of the 

entanglement of the 1D motif (in black) and the 2D motif (in white); b) distribution of the empty 

cavities (their limiting surface are show in grey) 

About ¼ of the cell volume is constituted of large voids containing the solvated molecules 

of ethanol and water. (Figure A-45b) The loss of these solvent molecules was followed by 

thermogravimetric analysis (TGA). The desolvation is accompanied with a loss of order, 

but in presence of water vapors the crystallinity reappears. The process is also reversible. 

The re-hydration was followed by observation of the crystal surfaces (atomic force 

microscopy-AFM). 

 

Another type of exchange is related by Navarro et al. [87]. The compound {[Cu(pymo-

N1,N3)2] � NH4ClO4 = 1 � NH4ClO4 (Hpymo = 2-hydroxypyrimidine) shows an open 

framework. The free voids are organized in order to form a diamondoid network containing 

water, ammoniac and perchlorate molecules. (Figure A-46) 

 

Figure A-46: View of the three-dimensional void network in {[Cu(pymo-N1,N3)2] � NH4ClO4 
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By heating, the crystals can lose NH3 molecules leading to the crystalline 1 � HClO4 and are 

recovered by exposure to gaseous NH3. A salt inclusion is possible too. Indeed, if the 

isolated compound 1 is exposed to AClO4 aqueous solutions (A = NH4
+, Li+, Na+, K+ and 

Rb+), 1 � AClO4 is formed undergoing phase changes. This compound belongs to the third 

generation open metal-organic frameworks and is a rare example of salt sorption. 

Finally exchange of anions can be performed as well using these open metal-organic 

frameworks. Zeolites are anionic frameworks and can only be used as cations exchangers. 

By using cationic ions and neutral ligand molecules, it is however possible to get cationic 

networks and to create anionic exchangers. 

The process of anion exchange takes place at a solid-liquid interface and is a solid-state 

transformation. In this context, Min and Shu report coordination polymers based on 

ethylenediaminetetrapropionitrile ligand molecules (EDTPN) and silver salts (nitrate, 

perchlorate and triflate). [88] Some anion exchanges happen during the immersion of the 

crystals in appropriate aqueous solutions of NaNO3, NaClO4 or LiCF3SO3. As shown on 

the Figure A-47, the triflate anions can be quantitatively and reversibly exchanged with the 

nitrate anions. The triflate anions can also be exchanged with the perchlorate anions, and 

the nitrate compound can change its structure in including perchlorate anions. It is worth 

noting that these exchanges and structural transformations occur in the solid state. They 

were followed by XRPD and IR measurements. 

 

Figure A-47 

{[AgL]CF3SO3}n 

{[AgL]ClO4}n 

NaClO4 aq. 

NaClO4 aq. 

LiCF3ClO3 aq. LiCF3ClO3 aq. 

NaNO3 aq. 

NaNO3 aq. 

{[AgL(NO3)]}n 
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An important application of the metal-organic frameworks is the catalysis. The 

coordination polymers may be helpful as 1) they can be porous; 2) they can contain 

catalytically active transition metal centers; 3) they can be designed in order to offer metal 

centers and specific organic groups to the reagents. Some non-porous coordination 

polymers are nevertheless also known for their catalytical properties. Heterogeneous 

catalysis is obviously considered with the use of the coordination polymer in crystalline 

form. A notable drawback in the use of these compounds for heterogeneous catalysis is 

their stability in the liquid phase: they should not dissolve or degrade at all during the 

catalytic cycle; otherwise ligand molecules and metal centers would react or interact. 

Only few examples of such materials with an efficient catalytic activity can be found in the 

literature. Coordination polymers based on anthracenebisresorcinol 

(H4L) treated with Al(CH3)3, Ti(OiPr)2Cl2, Zr(OtBu)4 or La(OiPr)3 are 

studied by Aoyama et al. and show catalytic activies. [89-92] For 

instance the Zr host compound {[Zr2(L)(OtBu)2]}n, whose structure 

is unknown (as it is insoluble in all common organic solvents), is described as a 

microporous framework. It can act as a reversible guest molecule acceptor (ethylacetate, 

benzene, hexane...) and as catalyst for Diels-Alder reactions (Equation A-1) with a good 

selectivity (endo:exo = 95:5), and there is no contamination of the catalytic solution.  

O
O

O

{[Zr2(L)(OtBu)2]}n 

25°C

exo endo

 

Equation A-1 

Recently several groups discovered metal-organic frameworks suitable for heterogeneous 

asymmetric catalysis. [93] The aim of these materials is to provide cavities walled with 

chiral environments for enantioselective control and with available metal ions as catalytic 

active centers. The groups of Sasai and Ding [94, 95] 

generate chiral metal-organic coordination polymers thanks to 

the self-assembly of a chiral ligand containing two 1,1’-2,2’-

binaphtol units and Al3+, Ti2+ ions. These compounds are 

highly insoluble in common organic solvents. The compound 

{[Ti2(
� -O)2(binol)]}n (Figure A-48) is employed as catalyst in 

the asymmetric carbonyl-ene reaction shown on Equation A-2. The product was obtained 

with results comparable to those reached with the classical homogeneous catalyst. 
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Equation A-2 

 

Figure A-48: coordination mode of {[Ti2( � -O)2(binol)]}n obtained with the reaction of the ligand in 

which the linker is a single bond with Ti(OiPr)4. 

The non-porous coordination polymer {[In2(OH)3(bdc)1,5]}n (Figure A-49) shows a catalytic 

activity for the hydrogenation of nitroaromatics (Equation A-3a) and oxidation of sulfide 

reactions (Equation A-3b). Although the catalytic mechanism is not totally understood, it 

must take place at the surface and involves coordinative unsaturations either with ligand 

dissociation or with increase in the coordination number of indium. [96] 

a)  

b)  

Equation A-3 

 

Figure A-49: The three-dimensional network of {[In2(OH)3(bdc)1,5]}n is made of two-dimensional 

{[In2(OH)3]
2+}n sheets pillared with the bdc ligand molecules. 
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IV.2 - Conductivity 

Conductivity may be an interesting research topic providing that short inorganic or 

conjugated organic bridges exist in the metal-organic framework. 

Some one-dimensional coordination polymers {[ML( � -L’)]}n built as shown on Figure A-50 

with or without doping with iodine exhibit conductivity in a range of 1.10-6 S.cm-1 to 2.10-1 

S.cm-1 [97]. (Conductivity of metals is 104-105 S.cm-1 and increases with decreasing 

temperature.) The conductivity is due to the interaction between the metal d-orbital and the 
� * level of the bridging ligand L’. 

 

Figure A-50: {[ML( � -L’)]}n coordination polymers with M = Fe, Ru, Os; L = octaethylporphyrinato 

(oep), phthalocyaninato (pc); L’ = pyrazine (pyz), 4,4’-bipyridine, dabco. 

In some cases coordination polymers can have semi-conductor behaviour. The three-

dimensional polymer {[Ag(H2btc)2][Ag2(Hbtc)]}n (H3btc = benzene-1,3,5-tricarboxylate) [98] 

presents weak semi-conductivity (conductivity of 1,06.10-6 S.cm-1 and increase of 

conductivity with temperature) due to the presence short Ag-Ag contacts as the whole 

structure can be regarded as parallel Ag chains connected by the H2btc- and Hbtc2- 

molecules. (Figure A-51) The Ag-Ag contacts, ranging from 2.9626 to 3.2782 Å, are known 

for giving semi-conductivity properties to the materials. 

a) b)  

Figure A-51: the Ag chains in {[Ag(H2btc)2][Ag2(Hbtc)]}n (organic spacers omitted for clarity) 

The semi-conductivity is better for the compound Ag2.CA (CA = cyanuric acid, C3H3N3O3) 

being an organic-inorganic hybrid. It is composed of Ag sheets with the cyanuric acid as 

linkers between the sheets. The conductivity is furthermore anisotropic in this case: 5.10-3 

parallel to the sheets; 2.10-5 S.cm-1 perpendicular to the sheets. [99] 

Semi-conductivity was also found in the compound {[Ni2(pyrimidine-2-thiolate)]}n which 

exhibits two-dimensional motifs based on Ni2S2 units spaced out by the ligand molecules 

’ ’ 
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[100]. (Figure A-52) There are therefore short distances between the metal centers of 

3.774 Å. Its conductivity is of 5.10-3 S.cm-1 at 28°C and increases with temperature. The 

semi-conductivity provides evidence for nickel and pyridine ring interactions. 

 

Figure A-52: View of the lamellar structure of {[Ni2(pyrimidine-2-thiolate)]}n 

 

IV.3 - Luminescence 

Luminescent supramolecular architectures have recently attracted much interest because 

of their potential applications in optoelectronic devices or as fluorescent sensors and 

probes. Indeed inorganic-organic coordination polymers afford more stability (thermal-, 

solvent-resistant) than the pure organic ligands and may affect the emission wavelength of 

these organic molecules. 

Determination of the fluorescence is made in the solid state and mostly at room 

temperature. In some cases fluorescence measurements are also made in solution in 

order to prove the existence of oligomeric fragments. [101, 102] Different phenomena can 

explain the luminescence observed in related luminescent coordination polymers, they will 

be discussed in the following chapter. 

Emissions may be assigned in a significant number of examples to ligand-to-metal charge 

transfer (LMCT), if the luminescence is due to the metal-ligand complex formation. [98, 

103-109] The intense photoluminescence emission of these materials can be used in order 

to design potential candidates for emitting diode devices. The two compounds 

{[Tb(O2CPh)3(CH3OH)2(H2O)]}n and {[Tb2(O2CPh)6(4,4’-bipyridine)]}n (Figure A-53a/b) 

present strong bright green emission and their emission spectra are almost identical. 

(Figure A-53c/d) The emission is due to LMCT processes. [108] Indeed the emission 

bands of the ligand molecules don’t appear in the spectra. Thus, the ligand transfers the 

excitation energy efficiently to the TbIII ions, the four bands corresponding respectively 

(from left to right) to the transitions 5D4�
7F6, 

5D4�
7F5, 

5D4�
7F4 and 5D4�

7F3. 
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a)   c)  

b)   d)  

Figure A-53: a) 1D chain in {[Tb(O2CPh)3(CH3OH)2(H2O)]}n: the Tb ions are octa-coordinated by the 

benzoates, the methanol and the water molecules. b) 3D grid architecture in {[Tb2(O2CPh)6(4,4’-

bipyridine)]}n: Tb ions and benzoates molecules form 1D chains linked through the bipyridine 

molecules. c) excitation (triangles) and emission (solid line) of {[Tb(O2CPh)3(CH3OH)2(H2O)]}n; 

excitation at 300 or 368 nm. d) excitation (triangles) and emission (solid line) of {[Tb2(O2CPh)6(4,4’-

bipyridine)]}n; excitation at 300 nm. 

In some other cases the fluorescence intensity can be significantly enhanced in the 

polymeric compound in comparison to the one of the pure organic molecules without 

change in the emission wavelength [110-114]. It is only due to contribution of the organic 

part, the enhancement coming from the increase in the rigidity of the ligand molecules in 

the complexes and/or the decrease of the symmetry within the ligand molecules. 

Sometimes red-, or blue-shift is observed due to particular interactions (� -�  stacking) or to 

(de)protonation of the ligand. The emission of the compound 

{[Cd(terephthalato)(pyridine)]}n occurs at 464 nm while the terephthalato acid emits at 466 

nm. But the intensity of the complex emission is 100 times larger than that of the free 

ligand. The emission is due to intraligand � -� * transitions [110]. The same observation is 

made with the compound [Cu(PPh3)(N,N-(2-pyridyl)(4-pyridylmethyl)amine)1,5]-

� 0,5CHCl3 � ClO4}n: the free ligand emits at 460 nm whereas the complex emits at 490 nm 

with an intensity 10 times larger. The weak bathochromic shift is probably due to the 

increase of aromatic � -�  stacking in the crystalline metal-organic frameworks [113]. 

Silver coordination polymers displays scarcely intense luminescence at room temperature 

[115]. They are known to be greater emitting materials at low temperature [116], with an 

enhancement of the emitting intensity towards the ligand [72] and/or a shift of the emission 

wavelength [116]. In the particular case of coordination polymers containing silver-silver 

contacts, the luminescence properties may be assigned to the short metal-metal contacts. 
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[117-119] In the series of polymers based on AgX (X = PF6
-, ClO4

-, OTs-, NO3
-, BF4

-) and 

4,4’-dipyridylsulfide (4-PDS), only the compound {[Ag(4-PDS)]OTs}n has Ag-Ag 

interactions. No fluorescence is observed for the coordination polymers except for {[Ag(4-

PDS)]OTs}n. The band at 600 nm is attributed to the Ag-Ag contact [117]. 

 

IV.4 - Nonlinear Optical properties 

For the construction of nonlinear optical (NLO) materials, a noncentrosymmetric 

arrangement in the solid-state is required and this consists in an interesting challenge. 

These materials should also contain organic ligands with large molecular first 

hyperpolarizabilities, � , ideally chromophores with a good electron donor and a good 

electron acceptor connected through a conjugated bridge. Metal-organic framework 

building is used to order asymmetric chromophores which are highly dipolar and thus 

difficult to align in a noncentrosymmetric way. (dipole-dipole repulsions) Some examples of 

metal-organic frameworks showing frequency conversion (intensity modulation of light: 

second harmonic generation (SHG) processes) can be found in the literature [120-126]. 

The SHG is studied by the use of the 1064 nm fundamental wavelength of a Nd:YAG laser 

using the Kurtz-Perry powder method. 

 

Figure A-54: a) A example of 2D NLO network: {[Cd(3-(2-(4-pyridyl)ethenyl)benzoate)2]}n with the 

interweaving of three independent rhombohedral grids; b) {[Cd2(4,4’-bipy)2(H2O)3(SO4)2] � 3H2O}n: the 

three-dimensional interwoven network 

Lin et al. have outlined strategies to build noncentrosymmetric metal-organic frameworks 

[125]. They use p- or m-pyridinecarboxylate linear, rigid and nonsymmetric organic ligands 

as linkers between d10 metal centers (Zn2+, Cd2+: tetrahedral or pseudo-tetrahedral) in 

hydro(solvo)thermal conditions. The building blocks lead to the construction of three-

dimensional diamondoid networks or two-dimensional frameworks (Figure A-54a). Even 

b) a) 

{Cd2(H2O)3(SO4)2} 

chains 
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with weak electron donor/acceptor combinations, it is possible to obtain efficiently NLO 

properties, as the well chosen complexation can allow a good alignment and cooperation 

between the molecules. The powder SHG intensity of some compounds is comparable or 

higher than that of technologically important LiNbO3. Furthermore they get a relatively 

good thermal resistance and are optically transparent. Huang and co-workers synthesize a 

noncentrosymmetric coordination polymer including the symmetric 4,4’-bipyridine ligand. 

The compound {[Cd2(4,4’-bipy)2(H2O)3(SO4)2] � 3H2O}n crystallizes in the 

noncentrosymmetric space group C2. It consists of one-dimensional chains containing two 

types of Cd centers coordinated by �
2- and �

3-SO4
2- anions and water molecules in the 

equatorial coordination sites. The chains are connected together with the bipyridine 

ligands coordinated in the apical sites of the Cd centers. (Figure A-54b) This compound 

shows powder SHG intensity. 

A remaining problem in the use of such compounds is their poor stability in the laser light. 

 

IV.5 - Magnetism 

Coordination polymers strategy is furthermore employed for the design of molecular- 

based magnets. Indeed antiferromagnetism, ferrimagnetism and ferromagnetism are 

cooperative phenomena of the magnetic spins within a solid. They require an interaction or 

coupling between the spins of the paramagnetic centres. And the building of metal-organic 

frameworks allows the choice of the coupling parameters. 

The magnetic coordination polymer has to own a residual permanent magnetization at 

zero-field for an as high as possible Tc (critical temperature). Its structure should allow 

parallel coupling of the spins (
��
  

�
  

�
  

�
 , ferromagnetism) or an anti-parallel coupling of inequal 

spins (
���
 �  

�
 � , ferrimagnetism) of neighbouring paramagnetic spin carriers, so that a non-zero 

spin of the bulk material results. Some antiparallel couplings of spins (
�
 �  

�
 � , 

antiferromagnetism) are found in numerous examples as the state of low-spin multiplicity is 

often more stable than the state of high-spin multiplicity. 

An efficient coupling in magnetic materials occurs through open shell organic ligands. 

Materials with oxo, cyano or azido bridges show a strong coupling between the metal 

centres and these unpaired electrons. As example, the review of Batten and Murray 

focuses on the correlation between structures and magnetic properties of coordination 

polymers containing dicyanamide and tricyanomethanide [127]. 

Magnetic behaviour is found for coordination polymers built up with carboxylate group 

containing ligand [128-130]. Mixed metal (CuII, MnII or FeII) two-dimensional coordination 

polymers exhibit ferromagnetism due to the one-dimensional repeating motif (-M-O-C-O-
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Cu-O-C-O-M-) [128] (Figure A-55). With the use of such ligands, metal-carboxylate 

subunits are often formed reinforcing the framework stability and the coupling [131-134]. 

Zaworotko and co-workers present a scarce example of ferromagnetic coordination 

polymer ({[Cu2(pyridine)2(bdc)2)3]}n) even at room temperature [134]. 

      

Figure A-55: {[Mn([Cu(pyridine-2,4-dicarboxylate)])4(H2O)4] }n 

The examples of magnetic coordination polymers with polytopic nitrogen-based ligands 

exist but are much scarcer. For instance, the complex {[Fe2(trans-4,4’-

azopyridine)4(NCS)4] � EtOH}n presents a temperature dependant magnetic moment due to 

spin-crossover behaviour [135]. The long ligands avoid or lower the coupling between the 

metal centres. The complexes {[Cu(L)(H2O)(SO4)] � 2H2O}n and {[Co(L)2(NCS)2] � 2,5H2O}n (L 

= 2,5-bis(4-pyridyl)-1,3,4-thiadiazole) show very weak antiferromagnetic coupling [136]. 

Co-ligands (N,N-donors and carboxylic) are also used [26]. The carboxylic ligands are 

used as pillars between metal-N-N’-donors ligands motifs, allowing the required coupling. 

The {[M(oxalate)(4,4’-bipyridine)]}n (M = FeII, CoII or NiII) (Figure A-56) revealed 

spontaneous antiferromagnetic ordering, attributed to the strong exchange interactions 

between the one-dimensional bridged metal ions through oxalate organic ligands and 

weaker interchain magnetic interactions [137]. 

 

Figure A-56: {[M(oxalate)(4,4’-bipyridine)]}n 

Another example of mixed ligands coordination polymer can well illustrate the magnetic 

behaviour of metal-organic frameworks [138]. The complex {[Cu(N3)2((1-R)-6,6-dimethyl-

5,7-methano-2-(2-pyridinyl)-4,5,6,7-tetrahydroquinoline)]}n presents weak 

antiferromagnetic interactions between the CuII ions through the azide bridge. 
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V - Choice of the working conditions 

As previously seen, a large amount of coordination polymers involves bipyridyl (N-donors) 

ligands. They include pyrazine [20, 139, 140] and derivates [26, 34, 87, 141], 4,4’-

bipyridine [46, 51, 120, 121, 142-145] and longer bridged bipyridyl ligands [28-30, 32, 39, 

44, 49, 73, 102, 117, 146-154] as linkers with a large diversity of the metal centers as 

nodes. 

 

V.1 - Bidentate bipyridyl ligands 

The most important factors during the construction of coordination polymers are the 

coordination preferences of the metal center and the ligand functionality. 

The studies of bipyridine based coordination polymers started with the complexation of 

4,4’-bipyridine ligands with a large variety of metal centres changing also the experimental 

conditions. This ligand was widely and is still extensively studied, giving a lot of new 

materials (more than 300 articles relate coordination polymers built up with 4,4’-bipyridine 

among other building blocks). The 4,4’-bipyridine ligand can bridge a lot of metal centres in 

a numerous number of structural motifs: linear or zig-zag chains [9, 11, 155-159], ladder-

like chains [160], bilayers [46], square grid layers [161], hexagonal sheets [143], 

diamondoid [143, 162], other three-dimensional motifs [51, 120, 121, 142, 144]. The 

characteristic of this organic ligand is its rigidity, it bridges the metal ions spacing them out 

to ca. 10 Å. The main interactions in such coordination polymers are obviously the 

coordination bonding, as well as � -stacking (ring � � � ring, ring � � � M or C-H � � � ring). Depending 

on the experimental conditions (solvent, stoechiometry, counter anions...), some other 

hydrogen bonding can occur [145, 160]. 

The first derivative of 4,4’-bipyridine is bipyridine molecules in which the position of the 

nitrogen atoms in the rings differs. For instance, the use of 2,4’-bipyridine instead of 4,4’-

bipyridine with AgNO3 favours the formation of helical chains rather than linear ones [142, 

144, 150]. 

Research on bridging bidentate bipyridyl based complexes is also of interest. Indeed the 

introduction of linkers between the two N-donors groups allows a larger diversity, i.e. a 

larger potentiality in the resulting coordination polymer 

topologies. The bridging part of the ligands confers to the 

ligand some specificity: linearity, determined shape, rigidity/flexibility, specific functionality, 

increasing the ligand adaptability and the number of possible interactions. Due to the 

N N linker 
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attraction towards these systems, bipyridine based coordination polymers are widely 

reviewed [9-11, 145, 163, 164]. 

Firstly some ligands with alkyl chains as linkers were used, introducing flexibility and 

particularly the fact that the ligand may assume different conformations in the crystal 

packing [39, 165, 166]. New structural motifs appeared, for instance, the double helix in 

the {[Ag(1,3-bis(4-pyridyl)propane)](CF3SO3)}n (Figure A-26). The use of -CH=CH- or -

C � C- as linkers allows to conserve the rigidity of the ligand and at the same time to 

increase the distances between the nodes [152, 167]. This strategy combined with 

tetrahedral or octahedral metal centres is used in the elaboration of interpenetrated 

frameworks [168]. 

The next step in the studies of bipyridyl derivatives coordination polymers was the 

introduction of heteroatoms (N, S or O) in the bridging part. 

Functions like -CR=N-R’-N=CR- (R and R’ being other groups, for instance, -H, -CH3, -

(CH2)n-...) [102, 146, 169-173] confer to the ligands more N-donors sites as well as new 

hydrogen bond acceptors. The consequence on the final coordination polymers is the 

simultaneous coordination of the ligand to several metal ions, allowing the construction of 

less known supramolecular architectures with stabilization of the system. Bonding of 

organic guest molecules within framework cavities is also favoured, the imine functions 

offering sites for interactions with guest molecules. Reaction between N,N’-bis(4-

acetylpyridine)idene 1,3-diaminopropane (L) and AgClO4 in methanol gives crystals of the 

composition {[Ag3(L)2](ClO4)3}n [173] (Figure A-57). The high flexibility of the central propyl 

residue allows this ligand to bend and to optimize the metal coordination. There are two 

silver coordination environments: i) one AgI is coordinated by two outer nitrogen atoms 

(pyridyl ones) in a linear way; ii) the other AgI is coordinated by three nitrogen atoms (one 

outer nitrogen atom and two inner nitrogen atoms from the di-imino site in the bridge) in a 

nearly trigonal symmetry. In {[Co(1,4-bis(3-pyridyl)-2,3-diaza-1,3-

butadiene)(NCS)2](CH2Cl2)2}n, weak hydrogen bonds between dichloromethane and inner 

N atoms stabilize the overall structure [171]. 

    

Figure A-57: ligand and one-dimensional polymer with two coordination modes of Ag I in {[Ag3(N,N’-

bis(4-acetylpyridine)idene 1,3-diaminopropane)2](ClO4)3}n (silver in rose and ligand in gray) 

N N C N N C 

CH3 CH3 
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Some other kind of ligands are chosen to self-assemble coordination polymers with 

specific networks, among them bipyridyl ligands containing five-membered heterocyclic 

rings [174, 175] or S-donors groups [36, 176-178]. 

More recently, the design of coordination polymers with bridged bipyridyl ligands 

containing carbonyl [179], and amide [38, 153, 180, 181] groups have also started to be 

studied. Few examples of ligands with ester functions in the bridge have been employed 

[179, 182, 183]. 

 

V.2 - Influence of the conditions on coordination polymers 

Solvent All building blocks included in one coordination polymer have particular 

interactions with the solvents, according to their polarity, hydrophilic/hydrophobic groups.... 

The solvent can have a role as coordinating molecules [184] or template molecules [178]. 

Compounds {[Ag2(L)3(ClO4)2]}n and {[Ag2(L)3(ClO4)2·MeOH]}n (L = 1,4-

bis(phenylthio)butane) are able to crystallize by diffusion of a mixture of L and AgClO4 in 

acetone/chloroform into ether or methanol [184]. In the second compound, a methanol 

molecule coordinates the silver ions instead of a perchlorate anion as in the first one. 

{[Ag2(L)2](ClO4)2(CHCl3)}n and {[Ag(L)](ClO4)(C3H6O)}n (L = 1,4-bis(2-pyridylthio)butane ) 

complexes crystallize under the same conditions (diffusion of a solution of silver salt into a 

solution of ligand in chloroform) except that MeOH was used to obtain the first compound 

and acetone for the second [178]. All used solvents are not coordinating. The authors 

assume that the differences in size and shape affect the self-assembly and result in 

different two-dimensional frameworks. 

Counter-anions One example among numerous shows the influence of the counter ions 

on the final structure [38], via the achievement of four different coordination polymers by 

reaction between the ligand N,N’-di(2-pyridyl)oxamide with AgX (X = NO3
-, ClO4

-, PF6
- and 

BF4
-) under the same conditions (CH3CN solution of the products layered with diethyl 

ether). The coordination force of the counter anions avoids or allows Ag-N bond formation 

with the ligands or the solvent molecules (CH3CN). 

Stoechiometry In some examples, the reaction of same compounds (ligand and metal 

salts) in the same conditions by changing the reaction stoechiometry leads to compounds 

of different dimensionalities: a stoechiometry M:L 1:1 leading to one-dimensional motifs, a 

stoechiometry M:L 1:2 giving two-dimensional motifs [185]. 
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V.3 - Ethanediyl bis(isonicotinate) 

The work on coordination polymers in our group follows the synthesis of homo- and mixed 

compounds of group 1 and 2 metals with the aim to synthesise new precursors for CVD 

and sol-gel techniques used for oxide materials. [186-195] In order to obtain better 

performing and single source precursors, mixed metal compounds containing transition 

metal, as well as group 1 and 2 metal ions began to be investigated. The formation of 

coordination polymers is thus an efficient way to get a good distribution of the metals 

within the materials. 

With regard to the field of coordination polymers, the ligand ethanediyl bis(isonicotinate) 

(Figure A-58) was therefore chosen because it i) is flexible (structurally adaptative), ii) 

contains different functional groups allowing coordination of two different metal ions, and 

iii) can be prepared easily, which makes potential applications possible. 

 

Figure A-58: ethanediyl bis(isonicotinate) and its two conformations 

The ethanediyl bis(isonicotinate) can adopt two main conformations, gauche or anti, due to 

the free rotation around the ethlyl group C-C bond (Figure A-58). Obviously, different 

conformations of the ligand in the coordination polymers can drastically change the 

resulting framework architecture. Several ligands with the same flexibility have already 

been used [166, 170, 196]. In most cases, only one conformation per framework is 

observed. 

It is worthwhile to note that only one coordination polymer with a similar ligand to 

ethanediyl bis(isonicotinate) was related at the beginning of this work [183]. Since, Song et 

al. presented coordination polymers built up with ethanediyl bis(isonicotinate) and CuI or 

CoII [147, 197], while the Stang and Hosseini groups report the self-assembly of 

metallacycles with ethanediyl bis(isonicotinate) and respectively PdII, PtII [182] or ZnII, HgII, 

CoII [198]. The metallacycles are formed by two ligand molecules and two metal ions (two 

ligands coordinate each metal center through their nitrogen atoms). As the metal ions have 

a tetrahedral coordination geometry, the coordination sites not involved in M-N 

coordination bonds are occupied by additional ligand molecules (phosphine) [182] or 

coordinating anions (Cl) [198]. 

‚anti’ 

N

N
O

O
O

O
NN

O

O O

O

‚gauche’ 
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V.4 - Cu I 

The d10 metals (AgI, CuI, ZnII...) are generally used in the coordination polymer engineering 

as their coordination spheres are flexible, with less constraints around the metal centers. 

AgI, CuI
 based networks are attractive, as they readily coordinate to unsaturated, bidentate 

nitrogen ligands (soft-soft bonding preference). The combination of conjugated ligands, 

electron-rich metal centers and the high degree of covalency inherent in soft-soft bonding 

can produce low-energy electronic interactions between metal centers and ligands (with 

possible optical or electronic properties). 

A lot of coordination structures are obtained with CuX (X = Cl, Br, I) [139, 141, 143, 146-

148, 199-208]. This strategy allows mainly the formation of neutral networks, as halile 

counter anions are generally strongly coordinated to the CuI. These networks are quite 

stable, as there are no counter anions between the coordination polymer skeleton. 

Furthermore, combinations of Cu halide with bidentate bridging ligands result in one-

dimensional or two-dimensional networks, usually through the linking of Cu2X2 rings or 

(CuX)n chains by the ligand [204, 206]. 

 

V.5 - Ag I 

The coordination polymers derived from AgI with N-donor ligands are well-known for 

making simple one-dimensional motifs when the two-coordinate metal ion reacts with a 

bipyridine-type ligand [9, 11]. AgI has a preference for linear geometry in these cases. 

Nevertheless, as the coordination sphere of AgI is very flexible, it can adopt coordination 

number between two and six, the geometry changing from linear to octahedral. The 

coordination geometries of AgI are often distorted owing to the inherent lack of ligand field 

stabilization effects (Soft Lewis Acid). 

The reaction of silver salt with the linear 4,4’-bipyridine ligand affords either linear 

geometry [152, 209, 210] or tetrahedral geometry [162], depending upon the ratio of 4,4’-

bipyridine to silver, 1:1 or 2:1 respectively. The same compounds can also lead to other 

architecture with a “T-shaped” moiety by changing the reaction conditions. [142, 144] The 

number of N atoms coordinating the silver ions is a major factor for the motif construction. 

With other bridged bipyridine ligands, AgI has also demonstrated its ability to adopt several 

coordination modes: linear geometry [9, 11] (Figure A-59a), trigonal planar [36] (Figure 

A-59b), tetrahedral [146, 166, 168, 169, 174] (Figure A-59c) which can be highly distorted. 

The coordination of silver centers with N-donors ligands seems to avoid the high 

coordination number for AgI, unlike O-donors ligands [211] (Figure A-60). 
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Figure A-59: the three main coordination of N-donors ligands around Ag I : a) {[Ag(4,4’-

bipyridine)]BF4}n [9]; b) {[Ag2(1,2-bis((2-pyrimidinyl)sulfanylmethyl)-benzene))3](ClO4)2}n [36]; c) 

{[Ag(1,3-bis(4-pyridyl)propane)2]SbF6}n [166] 

This flexibility of the AgI ion is used to investigate the role played by the weak interactions 

(described in I.2 -) during the crystal formation. The lability of the silver-donor atom bonds 

allow furthermore to build totally reversible complexes, so that the process of coordination 

polymer formation is totally reversible. 

 

Figure A-60: five- and six-coordinated Ag in {[Ag2(HL)2(H2O)3] � H2O}n (H2L = 5-sulfosalicylic acid) 

 

V.6 - Cu II 

The CuII ion has a more rigid coordination sphere: octahedral [49, 212-215] (Figure 

A-61a), square pyramidal [27, 213, 216] (Figure A-61b), square planar [217], tetrahedral 

[218] (Figure A-61c), trigonal bipyramidal [164, 219] (Figure A-61d) or a mixed geometry in 

the same compound [86] can be found in the CuII coordination polymers. 

In these examples, the coordination sphere of CuII is usually occupied with two to four N-

donors groups, the other position being occupied with counter anions, water molecules or 

other organic molecules. More ligands around the copper ion are found in the cases of 

bifunctional ligands (for instance pyridine/carboxylate groups), the copper cations being 

coordinated with both ligand functions [216]. 

a) 

b) c) 
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a)  b)  

c)         d)  

Figure A-61: several motif built up with a) octahedral [214] b) (pseudo-) square pyramidal [27] c) 

tetrahedral [218] or d) trigonal [164] Cu II centres 

Polymeric complexes featuring paramagnetic transition metal ions such as CuII are of 

great importance for the development of magnetic materials such as molecule-based 

magnets [67] (see also the chapter about magnetism). 

 

V.7 - Aim of the thesis 

The aim of this thesis is first to optimize the synthesis of the ligand in order to improve its 

availability, and, secondly to use it for the synthesis of coordination polymers with CuI, AgI 

and CuII. The strategies are the use of d10 metals to investigate the driving interactions 

during the coordination polymer building (The higher the flexibility of the building blocks, 

the more subtle the role of weak interactions, inclusion molecules-templating effects-.), the 

possibility of constructing mixed metal compounds and the use of CuII to study the 

behavior of L toward a less flexible cation and to make the construction of magnetic 

materials possible. The influence of the experimental conditions such as solvents, 

temperature and counter ions as well as the ligand conformation in the formed polymeric 

structures will be studied in the contest of crystal engineering. 

 



B - I.1 - Ligand Adeline ROBIN 
 

Structural diversity of Cu(I), Ag(I) and Cu(II) coordination polymers with the ligand ethanediyl bis(isonicotinate) 55 

 

B - Results and discussion 

I - Ligand 

I.1 - Two synthetic pathways 

Synthetic pathways for L were described in the literature before [220-222], but did not give 

satisfactory yields. We therefore optimized the synthesis using either of the following 

reactions:  

- Reaction 1 (Equation B-1) Thionylchloride is carefully added to a stirred mixture of 

isonicotinic acid and DMF. After gas evolution (exothermic reaction with temperature 

increase from room temperature to 40°C), the solution is stirred for about 12 hours. Excess 

thionylchloride is then removed in vacuo. Dried ethylene glycol in stoechiometric ratio (1:2) 

is added to the isonicotinic acid chloride. The reaction is exothermic; after gas evolution, 

the mixture is heated to 150°C for a few hours to yield a white solid. The latter is then 

dissolved in a large amount of water, then NH4OH is added. The white precipitate is 

filtered off and recrystallized from ethyl acetate. 

 

N

O

OH
N

O

Cl

DMF / SOCl2 HO OH1)

2) H2O
3) NH4OH

N

O

O
N

O

O
 

Equation B-1 

- Reaction 2 (Equation B-2) Ethylene glycol is added to isonicotinic acid in 

dichloromethane in stoechiometric ratio (1:2). A solution of 1,3-Dimethyl-2-

chloroimidazolium chloride (DMC) in dichloromethane is added dropwise to the mixture. 

After a few minutes of stirring, pyridine as solvent is added in order to dissolve the crude 

solid white product. The reaction is refluxed for 2 hours and turns from yellow to dark 

yellow with the precipitation of a dark solid. The product remains in the liquid phase and is 

evaporated. It is then dissolved in dichloromethane and purified on a chromatography 

column with hexane:ethyl acetate (4:1) and ethyl acetate as eluents. 

N COOH OHOH N

O

O

N
O

O

+
DMC

Pyridine
Dichloromethane  

Equation B-2 
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I.2 - Crystallographic structure 

Recrystallizing the crude product from ethyl acetate yields single crystals of L. L 

crystallizes in the monoclinic space group P21/c (no.14) with two molecules (four 

asymmetric units) per unit cell. The asymmetric unit consists of half a molecule as an 

inversion center is found in the geometrical middle of L; that is between C7 and C7#1. 

(Figure B-1) The most important distances and angles are given in Table B-1. 

 

Figure B-1: Molecular structure of the ligand L (Color codes given for all following figures.) 

Within a molecule the two pyridine rings lie therefore in parallel planes that are at a 

distance of ca. 0.01 Å to each other. The carbonyl groups of a ligand molecule are in anti-

arrangement to each other, and the ethyl group is in a staggered conformation, featuring a 

dihedral angle of ca. 60°. The mean plane of the pyridine ring forms an angle of 4.56(3)° to 

the plane through C6, O1 and O2 of the neighbouring ester function.  

In the crystal the molecules lie parallel to each other with a distance of 3.468(4) Å, allowing 

thus a � -stacking contribution between the pyridine ring of one ligand and the ester group 

of the adjacent ligand. (Figure B-2) 

 

Figure B-2: packing in L and arrangement of the ligand molecules in chains and layers 

In addition, several different hydrogen bonding motifs can be found in the structure. The 

corresponding bond lengths are given in Table B-2. Inter-molecularly the nitrogen atoms of 

the pyridine ring and the protons H3 of the pyridine ring of two ligand molecules lying in the 

same plane form a six-membered H-bonded ring involving C3, H3 and N1 and leading to 

N1 

C3-H3 
C4-H4 

C5 
C6 
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C2-H2 
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chains of ligands. Complementary to the � -stacking, inter-chain hydrogen bonding occurs 

between O1 and H4 or H7B and between N1 and H7A of two parallel chains leading to 

sheets (Figure B-3a). H-bonding is also observed between the sheets involving O1 and the 

hydrogen atoms of C7#1 of the ethyl group as well as H4 of a pyridine ring. (Figure B-3b) 

The chains are thus interconnected to each other, perpendicular to the chain propagation. 

Similar hydrogen bonds (C-H···N) have been used throughout the literature in order to 

engineer organic assemblies between structurally compatible H-bond donors and 

acceptors, leading to very stable supramolecular constructions. [223-225] 

a)               b)  

Figure B-3: H-bonds in L a) inter-layers; b) between the sheets 

Table B-1: Most important bond lengths (Å) and angles (°) in L 

C-N 1.343(2), 1.332(2) C-N-C 116.8(1) 

 

Table B-2: Hydrogen bond data for L [lengths (Å) and angles (°)] 

D-H � � � A d(D-H) d(H � � � A) d(D � � � A) Angle D-H � � � A 

C3-H3� � � N1#1 0.93 2.76 3.598(2) 151.2 

C7-H7A � � � N1#2 0.97 2.85 3.571(2) 132.3 

C4-H4� � � O1#3 0.93 2.72 3.252(2) 117.3 

C7-H7B � � � O1#4 0.97 2.90 3.686(2) 139.2 

Symmetry transformations used to generate equivalent atoms: #1 -X+1, -Y+2, -Z+1; #2 -X, -Y+2, -Z; #3 X, 

-Y+3/2, Z+1/2; #4 X, -Y+3/2, Z-1/2. 
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II - CuI coordination polymers 

Our first attempts to make coordination polymers with the ligand ethanediyl 

bis(isonicotinate) was by using CuI metal compounds, i.e. CuCl. 

II.1 - Preparation 

CuCl was directly reacted with L in different solvents and proportions, leading to mostly 

orange insoluble powders of variable composition. (Table B-3) It was only possible with 

elemental analysis to find hints as to the composition of the precipitates, showing large 

excess of CuCl in some cases. The large amount of CuCl may be explained by the 

presence of mixtures of several compounds and/or compounds containing CuxClx clusters 

and polymers. Single crystals were obtained only in one case, for the reaction with the 

proportion metal to L 1:2 in acetonitrile, where yellow-orange crystals {[CuCl(L)]}n, 1, were 

obtained in very low yield. 

Table B-3: Resume of the reaction L/CuCl with the reaction stoechiometry, the experimental 

conditions, the products and their apparition speeds 

solvent M:

L  L CuCl 

Experiment Time Product 

1:2 Dry THF Dry ether Direct reaction Inst. Orange precipitate: {Cu4Cl4(L)} 

4:1 Dry THF Dry ether Direct reaction Inst. Orange precipitate: {Cu8Cl8(L)} 

1:2 Dry THF Dry THF Direct reaction Inst. Orange precipitate: {Cu23Cl23(L)(THF)} 

1:2 Dry CH3CN Dry CH3CN Direct reaction 3 months Yellow-orange crystals: {CuCl(L)} 

1:2 Dry THF Dry CH3CN “U-shaped” tube Few days Red crystals: {CuCl(L)(THF)0.5} 

1:1 Dry THF Dry CH3CN Direct reaction 2 H Red crystals: {CuCl(L)(THF)0.5} 

 

At the same time, we started to use another strategy to get single crystals in a “U-shaped” 

tube (Figure B-4): a solution of CuCl in dry acetonitrile was introduced in one arm of the 

tube and a solution of L in dry THF in the other (proportion M:L = 1:2). The solutions were 

thus allowed to slowly diffuse into each other through a fritt. The same experiment was 

made, but this time with frozen THF as separator between the two solutions. After 

warming, the two solutions diffuse through the THF. In both cases, red crystals of 

{[CuCl(L)] � 0.5THF}n 2 appear after a couple of days. The red crystals were suitable for 

single crystal X-rays diffraction. 

Taking account of these two results (proportions metal to ligand of 1:1 in the final 

compound and incorporation of THF molecules into one of the structures), direct self-

assembly of the L and CuCl was tested. We found that a mixture of L in dry THF and CuCl 

in dry acetonitrile in the proportion 1:1 and with the adequate concentration of 7.10-3 
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mol.L-1 allows us to obtain the red crystals 2 within two hours. An important observation 

was finally made: if these red crystals of 2 stay for several weeks in the mother liquor, they 

transform into the yellow-orange ones of 1. When isolated from the mother liquor, 2 is 

stable staying in air, although it contains unstable CuI. 

 

Figure B-4: “ U-tube”  

Both compounds were characterized in the solid-state (single crystal X-rays diffraction). 

Further characterization in the solid-state (elementary analysis, IR) was only possible for 2, 

because of the low yield of 1 and its poor stability in air. Electrospray-ionization mass 

spectroscopy was also performed with a solution of 2 in dichloromethane, and the 

oligomeric fragments [CuL]+; [CuL2]
+; [CuClLH]+; [Cu3Cl2L]+ and [Cu4Cl4LH]+ were found. 

The absorption wavelengths for 2 are 211 and 274 nm. Emission (solid state) is only 

observed when 2 is excited at 240 nm (see experimental part). The emission spectra of 2 

features almost unshifted bands compared to L but enhancement of bands. Mechanisms 

of absorption and emission are similar in both compounds and characteristic for the ligand. 

 

II.2 - Structure description 

II.2.a - {[CuCl(L)]}n 1 

{[CuCl(L)]}n 1 crystallizes in the monoclinic space group C2/c (no.15). The asymmetric unit 

consists of one half of a ligand molecule, one copper cation (50% occupation) and one 

chloride anion (50% occupation). (Figure B-5) There are four asymmetric units and thus 

two [CuCl(L)] moieties per unit cell. The most important distances and angles for 1 are 

reported in Table B-4. (The complete list can be found in the crystallographic data part.)  
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Figure B-5: asymmetric unit in 1 (Colors codes given for all following figures) 

Compound 1 forms one-dimensional chains of copper atoms linked via the ligand, the 

latter coordinating through the nitrogen donor atoms. (Figure B-6) The distance between to 

copper atoms within one chain is 17.2(1) Å. The copper ion, having a trigonal planar 

arrangement of ligands (angle sum = 360°), is coordinated by two nitrogen atoms of two 

different ligands and a chloride. The Cu-N bonds are identical due to symmetry and are 

1.955(3) Å long. The anion is bonded to the metal cation with a distance of 2.309(1) Å. 

This leads to an overall neutral one-dimensional coordination polymer. The copper atom 

as well as the chloride ion of a repeating unit are found on a crystallographic two fold axis 

(0, y, ¼ (e)). Additionally, an inversion center can be found in the geometrical middle of the 

C7-C7#1 bond of L. Each pyridine ring of one ligand molecule is therefore parallel to its 

symmetrical equivalent, in planes that are 0.30(1) Å apart. 

 

Figure B-6: One-dimensional chain in 1 

The pyridine units are in anti position of the ethyl linking units that are staggered with a 

torsion angle of ~60°, with the two carbonyl groups pointing alternatingly up and down. 

The conformation of the ligand in this compound is thus the same as in the crystalline free 

ligand L. Compared to L, the N-C bonds are slightly elongated by 0.01-0.02 Å, the other 

distances and angles in the pyridine ring are similar on average. 
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a) b)  

Figure B-7: a) view of the inter-chains � -stacking leading to the twist between the pyridine plans on 

each part of one copper atom in 1; b) View of the chains-sheet in 1 (Hydrogen atoms omitted for 

clarity) 

Whereas the two pyridine rings within one ligand are parallel, they are tilted by 12.4(1)° to 

each other from one ligand to the next within a chain. This is due to the � -stacking 

influence in the packing, where one pyridine unit of the ligand stacks with the ring of 

another chain on one side, whereas the second pyridine unit is packed parallel to the ring 

of a chain on the opposite side. (Figure B-7) The � -stacked rings are not fully superposed, 

the nitrogen atom of one being over the middle of the neighbour ring (offset of 2.168 Å), 

but the shortest distance between the mean planes of the two pyridine ring is 3.247 Å 

(Table B-6). These � -�  interactions lead to the formation of sheets constituted of the 

stacked chains. 

a) b)  

Figure B-8: View of the inter-sheet H-bonds between a) the chloride atom and protons of ligand 

molecules and b) between the ligand molecules in 1 

Another influence on the overall arrangement is the formation of six weak H-bonds 

between the chloride atom and protons of L surrounding the anion. These interactions are 

5.6 Å 

17.2 Å 

40° 

H4 

H3 

H5 



B - II.2 - CuI coordination polymers Adeline ROBIN 
 

Structural diversity of Cu(I), Ag(I) and Cu(II) coordination polymers with the ligand ethanediyl bis(isonicotinate) 63 

 

part of the linking forces between the sheets. Four contacts are found between the H3 of a 

pyridine unit and H5 of the ethyl group and their symmetry equivalents of the two closest 

neighbour chains, with distances of 2.81(5) (H5) and 2.88(6) (H3). The shortest contact Cl-

H is the one with H4 (2.80(5) Å) and its symmetrical equivalent, which belongs to pyridine 

units bonded to the same copper atom than the anion. (Figure B-8a) The chloride ion has 

thus a trigonal prismatic hydrogen coordination environment. Even though the contacts are 

rather long [226], the electrostatic attractive forces might still play a role in the formation of 

a structure, since it is usually the sum of all weak forces that contribute to a 

supramolecular array. 

Furthermore O1 has contacts with four pyridine H-atoms, H3, H4, as well as H1 of two 

different ligand molecules (2.76(5), 2.95(4), 2.65(5) and 2.85(5) Å respectively). This inter-

chain hydrogen-bonding strengthens the interconnection between the layers of chains. 

(Figure B-8b) 

The structure can also be described as layers of copper atoms that are linked diagonally 

via ligands at approximately 40° as shown on Figure B-7b. The distances between the 

copper atoms within these layers are 5.6 Å and the ones between two adjacent layers are 

ca. 17.2 Å. 

Table B-4: Most important bond lengths (Å) and angles (°) in 1 

Cu-Cl 2.309(1)   

Cu-N 1.955(3) N-Cu-N 141.6(2) 

C-N 1.350(4), 1.352(4) C-N-C 116.9(3) 

 

Table B-5: Hydrogen bond data for 1 [lengths (Å) and angles (°)] 

D-H � � � A d(D-H) d(H � � � A) d(D � � � A) Angle D-H � � � A 

CH � � � O Hydrogen interactions 

C4-H3� � � O1#1 0.92(6) 2.76(5) 3.248(4) 114(4) 

C5-H4� � � O1#1 1.00(4) 2.95(4) 3.353(4) 105(3) 

C1-H1� � � O1#2 0.96(5) 2.85(5) 3.506(4) 126(3) 

C1-H1� � � O1#3 0.96(5) 2.65(5) 3.533(4) 152(4) 

CH � � � Cl Hydrogen interactions 

C5-H4� � � Cl2 1.00(4) 2.80(5) 3.533(4) 131(3) 

C7-H5� � � Cl2#4 1.06(4) 2.81(5) 3.716(4) 143(3) 

C4-H4� � � Cl2#5 0.92(6) 2.88(6) 3.670(4) 145(4) 

Symmetry transformations used to generate equivalent atoms: #1 -X-1/2, Y+1/2, -Z+1/2; #2 -X-1/2, -Y-1/2, 

-Z; #3 X+1/2, -Y-1/2, -Z+1/2; #4 X-1/2, Y-1/2, Z-1; #5 X-1/2, -Y+1/2, -Z. 
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Table B-6: � -�  interactions lengths (Å) and angles (°) in 1 (definition of parameters given in A -I.2 -) 

� - �  interactions dR-R pdR-R 
�

 �  

Ring (N1, C1, C2, C3, C4, C5) � � �  Ring (N1, C1, C2, C3, C4, C5)#1 3.90 3.247 33.7 0 

Symmetry transformations used to generate equivalent atoms: #1 -X, -Y, -Z. 

 

No analogous structure is known from literature with CuI having a trigonal planar 

environment and Cl anions being terminal. Similar supramolecular compounds with 

trigonal arrangement around the copper atoms are also scarce. [199] 1 may best be 

compared to {[Cu(4,7-phenanthroline)(MeCN)]BF4}n, where the chloride has formally been 

replaced by MeCN and the ligand L by 4,7-phenanthroline [227]. The literature compound 

has all MeCN groups oriented to one side only of the chain, whereas in 1 the anions are 

arranged alternatingly up and down along the chain. In addition, the literature compound is 

charged, the anions not being bonded to the metal ion, while compound 1 is neutral. The 

distances Cu-N are however in the same order of magnitude in the two compounds. It is 

interesting to compare the angles at the copper ion. In 1, the N-Cu-N angles are rather 

large with 141.6(2)° compared to 107° in the literature compound. The N-Cu-Cl angles in 1 

are 109.2° and smaller than the corresponding ones in the literature compound (131 and 

122°). This can be explained by the different ligands used in the two compounds. A 

second example of coordination polymer with trigonal CuI is presented by Xiong and al. 

[200]: the chain is also charged with N,N-(2-pyridyl)(4-pyridylmethyl)amine as bridging 

ligand and triphenylphosphine as terminal ligand, the counter anions being perchlorate. 

 

II.2.b - {[CuCl(L)] 0.5THF}n 2 

{[CuCl(L)] � 0.5THF}n 2 crystallizes in the triclinic space group P-1 (no.2). Apart from the 

solvent molecule in the chemical formula, it seems in principle to be the same compound 

as 1. However, not only colour, but also the structure of 2 differs dramatically from 1. The 

most important distances and angles for 2 are listed in Table B-7.  

The asymmetric unit consists of one ligand molecule, one copper atom, one chloride atom 

and one half of a THF molecule. A one-dimensional compound is now obtained by 

repeating units of copper atoms that are, two by two, alternatingly bridged by two chloride 

anions and two ligands, respectively. (Figure B-9) Each copper cation is therefore 

tetrahedrally coordinated by two N-atoms of two different ligand molecules and two 

chloride ions. The Cu-N distances are with 1.998(2) and 2.033(3) Å slightly longer than in 

1. This is due to the higher coordination number of the copper atoms with four in 2 than in 

1 where it is three, which is also reflected in shorter N-C bonds in the pyridine ring in 2 



B - II.2 - CuI coordination polymers Adeline ROBIN 
 

Structural diversity of Cu(I), Ag(I) and Cu(II) coordination polymers with the ligand ethanediyl bis(isonicotinate) 65 

 

than in 1. The N-C bonds in 2 are thus in the same range than the ones in L, with a 

difference of less than 0.01 Å. The Cu-Cl bonds are very asymmetric with 2.3255(9) and 

2.546(1) Å. The shorter Cu-Cl bond is only by 0.025 Å longer than the terminal Cu-Cl in 1, 

indicating that the Cu( � -Cl)2Cu unit might be interpreted as a dimer of two Cu-Cl 

fragments. The plane through the copper atom and the two anions forms an angle of 

89.53(6)° with the plane formed by the copper atom and the two bonded nitrogen atoms. 

The N-Cu-N angle is 122.9(1)° wide, the Cl-Cu-Cl angle amounts to 109.74(3)°, whereas 

N-Cu-Cl angles are 119.10(8) and 104.50(8)° wide, resulting in a distorted tetrahedral 

environment for the cation. 

 

Figure B-9: View of the one-dimensional double chain in 2 showing the disorder of the THF molecule 

An inversion centre is situated in the geometrical middle of the Cu( � -Cl)2Cu ring as well as 

in the centre of the Cu( � -L)2Cu unit. The Cu–Cu distance between the two chloride-

bridged metal ions is with 2.809(1) Å rather short compared to what is known from 

literature [201] and is similar to the sum of the CuI Van der Waals radii (2.8 Å). 

The emission spectrum of 2 shows more intense emission bands than L, with a blue-shift 

of the band at 409 nm (L) to 385 nm (2). The existence of CuI-CuI interactions in Cu2X2 

cores is controversly discussed [228-230]: a two-dimensional coordination polymer sheet 

based on Cu2I2 cores linked with 4,4’-bipyridylsulfide has an enhanced emission intensity 

towards the ligand in addition to a red-shift of the emission maximum (both ligand and 

complex are excited at the same wavelengths) [72]. This phenomenon is attributed to 

cluster centred, a mixture of halide to copper charge transfer and metal centred d to s 

excited states. The Cu-Cu distances (2.647(1) Å) also support the cluster centred 

emission. In such complexes, low energy LMCT and MLCT transitions exist which can also 

mix with intraligand transitions, which adds more complexicity to the assignment. In 2, 
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where the Cu-Cu distance is longer (of about 0.15 Å), we observe the same differences 

between the emission spectra of L and 2 (see experimental part). 

The Cu( � -L)2Cu ring forms a cavity with a diameter of approximately 5 Å, the 

corresponding copper atoms being separated by 9.167(7) Å. This much shorter Cu–Cu 

distance than in 1 is due to the ligand conformation. The ligand has no longer a linear form 

with the isonicotinic groups in an anti conformation, but adopts a U-shape. The ethyl unit is 

still staggered, but the ester groups are now arranged syn to each other. The pyridine 

rings within a ligand molecule form an angle of 40.5° to each other. The planes of the ester 

groups are tilted by 7.4(2) and 11.1(4)°, respectively, to the plane of the neighbour pyridine 

ring. 

a) b)  

Figure B-10: View of the alignment of the chains in 2: b) View along the cavities containing the THF 

molecules; a) View of the stacking of the chains with the THF molecules in between the chains 

The so-formed chains are stacked on top of each other so that the cavities in the centre of 

the Cu( � -L)2Cu rings form channels in which the disordered solvent molecules (THF) are 

located. (Figure B-10a) The THF molecules are however not exactly in the middle of the 

Cu( � -L)2Cu unit, or, otherwise described, in the same plane as the copper atoms and the 

two ligand molecules, but are placed in between the chains. (Figure B-10b) Due to the 

presence of an inversion centre, the oxygen atom of the THF molecule is placed on two 

positions. So apparently, the presence of the THF molecules i) keeps the chains apart 

from each other, and ii) therefore, no � -stacking is observed in 2. 

However, hydrogen bonding can be observed between C–H and oxygen atoms of the 

ligand or solvent molecules. The H-bonding is shown on Figure B-11a, the bond lengths 

being cited in Table B-8. In addition to this type of H-bonding, close contacts are also 

found between H-atoms and chloride ions. This H-bonding motif in 2 is based on the 

chloride atom and H-atoms vicinal to the nitrogen atom of the pyridine rings, so no ethyl-

groups are involved as in compound 1 (Figure B-11b). 
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a) b)  

Figure B-11: H-bonding network in 2: a) C-H � � � O between two chains (view parallel to the chains); b) 

C-H � � � Cl between the chains (view of perpendicular the channels) 

Apparently, the presence of solvent in the structure also influences the conformation of the 

ligand. 2 slowly transforms into 1 when the crystals remain in the mother liquor, giving rise 

to the assumption that 1 is the thermodynamically more stable product obtained by 

diffusion of THF out of the structure and following reorganisation. Indeed, during the 

transformation, ‘‘zwitter’’ crystals are observed that possess a red core (2) surrounded by 

bushes of yellow crystals (1). Unfortunately, we could not take pictures of this process as 

the crystals were difficult to focus on in the mother solution, and crystals deteriorate after a 

while when taken out of solution and exposed to air. The poor stability of this compound 

can perhaps be due to the coordination number of CuI in 1. 

 

Table B-7: Most important bond lengths (Å) and angles (°) in 2 

Cu-Cu 2.809(1)   

Cu-Cl 2.3251(9) 

2.547(1) 

Cu-Cl-Cu 

Cl-Cu-Cl 

70.25(3) 

109.75(3) 

Cu-N 1.998(2), 2.033(3) N-Cu-N 122.9(1) 

C-N 1.342(4), 1.348(4) 

1.343(3), 1.347(4) 

C-N-C 117.0(2) 

116.6(3) 
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Table B-8: Hydrogen bond data for 2 [lengths (Å) and angles(°)] 

D-H � � � A d(D-H) d(H � � � A) d(D � � � A) Angle D-H � � � A 

C-H � � � O Hydrogen interactions 

C8-H8A � � � O4 0.97 2.31 2.708(4) 103.4 

C4-H4� � � O4 0.93 2.75 3.648(4) 162.2 

C14-H14� � � O5 0.93 2.45 3.239(6) 142.1 

C3-H3� � � O1#1 0.93 2.49 3.272(4) 141.8 

C13-H13� � � O1#2 0.93 2.82 3.737(5) 167.4 

C7-H7A � � � O4#3 0.97 2.87 3.579(4) 130.7 

C-H � � � Cl Hydrogen interactions 

C1-H1� � � Cl2 0.93 2.82 3.487(3) 129.4 

C12-H12� � � Cl2#1 0.93 2.94 3.653(3) 134.3 

C12-H12� � � Cl2#5 0.93 2.93 3.540(3) 124.3 

Symmetry transformations used to generate equivalent atoms: #1 X+1, Y, Z; #2 –X, -Y+1, -Z+1; #3 X-1, Y, 

Z; #4 X-1, Y-1, Z-1; #5 –X+1, -Y+1, -Z+2. 

 

Some examples of coordination polymers involving CuI cations with a tetrahedral 

environment, pyridine or similar nitrogen donor ligands [146, 231] and halide counter-

anions can be found in the literature. [143, 147, 202, 203] In the latter three compounds, 

Cu2(
� -Cl)2 cores in double chains or molecules are present. The distances Cu-N usually 

range from 1.90 to 2.10 Å. The distances in 2 are consistent with the literature data. 

Batten and co-workers report on {[Cu(4,4’-bipyridine)X]}n (X = Cl, Br, I) coordination 

polymers, one of them showing a similar Cu2(
� -Cl)2 core. Each Cu2(

� -Cl)2 core also 

coordinates four bipyridine ligands, and acts as a trigonal node of a two-dimensional net. 

The motif is thus a two-dimensional hexagonal sheet with larger cavities than in compound 

2, allowing interpenetration instead of solvent inclusion: each hexagonal ring is penetrated 

by three separate sheets. [143] 

After we determined the structure of 2, Song et al. published two CuI coordination 

polymers with the same ligand L but with bromide as counter ion: {[Cu2(� -Br)2(L)2]�2H2O}n 

and {[Cu2(� -Br)2(L)2]�0.5THF�0.5H2O}n [147]. The structure of these compounds is similar 

with to that of 2, i.e. possesses a double chain motif. The distances Cu-Br and Cu-Cu are 

on average longer that in 2, as expected for the larger bromine anions. These two 

compounds grew from acetone/DMSO or THF/DMSO systems, the solvents being used 

without further distillation. It is the reason why THF molecules but also water molecules 

are included in the structures by Song. The synthesis of 2 was therefore attempted using 

non dried solvents, but after only a few minutes, the oxidation of the mixture was 

observed, the solution turning green. 
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The same double chain motif as in 2 is found in the compound {[Cu(1,3-

benzotriazolyl)propane)Cl]}n with two bridging chloride alternating with two bridging ligand 

molecules between the copper atoms along the chain [203]. The distances Cu-Cl are more 

symmetric than in 2 with 2.372(1) and 2.429(1) Å whereas the Cu-Cu distances in both 

compounds are similar. In this compound there are no cavities and thus no inclusion 

solvent molecules due to the shape of the ligand molecules. There is furthermore �-

stacking between the chains, whereas the THF molecules avoid �-stacking in 2. 

 

II.3 - Ring opening process 

Copper halides are known to form {CuxXy}n polymeric and cluster structures [139, 141, 

148, 204-208, 232]. Associated to organic ligands, these {CuxXy}n polymers or part of them 

retain their structure and the ligands act as linkers between the {CuxXy}n motifs, ranging 

from mononuclear species through dinuclear and tetranuclear discrete molecular moieties 

to polymeric structures (chains, ladder-like motifs... (Figure B-12) [139, 141, 148, 204-206, 

232] or chains of clusters [207, 208]). The less sterically demanding the ligand is, the 

greater the complexity of the CuI halide architectures. In our crystalline compounds 1 and 

2 on the other hand, such behaviour is not observed. This is apparently due to the 

sterically more important and more flexible ligand L compared for instance to the simply 

functionalised pyridine ligands described by Aakeröy et al. [205], or the dipyridyl cations 

used by Place et al. [208]. Another reason for the absence of {CuxXy}n polymers is 

probably also the implication of the chloride ions in H-bonding as it occurs on our both 

compounds 1 and 2. However the existence of such species containing {CuxXy}n motifs in 

the orange powders obtained from the direct reaction of L and CuCl couldn’t be proven. 

The presence of clusters could explain the high proportion of CuCl in the precipitates. 

     

Figure B-12: Structural motifs observed for Cu I halides based coordination polymers (filled circles = 

Cu; empty circles = Cl) 

We are thus in presence of two pseudo-polymorphs built up from CuI cations, chloride 

counter-ions and L and eventually THF inclusion molecules as building blocks. As 
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described above, it seems that compound 1 is formed out of compound 2 after several 

days in the mother liquor. How can this transformation be accounted for? Even though the 

transformation relies on severe rearrangements taking place in solution, one can propose 

at least a structural relationship. Structurally speaking, one has to formally cut one Cu-L 

bond (Figure B-13). The ligand would then bend over to the other side in order to adopt a 

stretched out anti-conformation and displace a chloride at the next copper atom. One Cu-

Cl bond at each copper atom is thus formally cut as well, and the structure of 2 can thus 

be transformed into compound 1. It is clear, that very probably the longer Cu-Cl contact of 

the two will be broken, considering that we have a dimerisation point in the Cu(�-Cl)2Cu 

ring and that the shorter Cu-Cl bond is similar to the one in 1. Since the process takes 

place in solution and stops when the crystals are taken out of the mother liquor, the 

mechanism seems to be a solvent assisted one, as has been proposed for anion 

exchange in silver coordination compounds. [233] 

 

Figure B-13: Possible structural relationship between 2 and 1 

James et al. reports ring-opening polymerisation, mostly transformations in solution: 

ligands and metal ions form rings or cages in solution, and coordination polymers 

crystallize from these solutions thanks to ring or cage opening. [234] 

 

Figure B-14: potential equilibria involved in the formation of a coordination polymer 
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Ring opening polymerisations lead usually to kinetically stabilised compounds. In the case 

of coordination polymers, one has to remember that the formation of M-L bonds is always 

more or less reversible. It’s necessary to consider that the direct conversion of observed 

solution-based species into observed polymers (1 � 3) (Figure B-14) isn’t the unique 

pathway; indirect conversions can take place particularly between non-observed 

intermediates. [234, 235] In the case of the characterization of 1 and 2, only discrete 

species such as [CuL]+; [CuL2]
+; [CuClLH]+; [Cu3Cl2L]+ and [Cu4Cl4LH]+ species and two 

coordination polymers were observed as well as the solvent mediated reaction 3 � 4. 
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III - AgI coordination polymers 

AgI was the second metal ion used to build coordination polymers and to study the 

influence on the architecture of crystallization conditions (solvent influence, counter anions 

influence, temperature, crystallization techniques). Darkness is required for the silver 

compounds because silver is light sensitive. 

 

III.1 - Pseudo-polymorphism 

Coordination polymer synthesis and crystallization based on L and AgNO3 was first 

attempted in THF/water, using the “H-shaped” tube technique (Figure B-15). This method 

is convenient for making single crystals avoiding precipitation of insoluble powders: a 

solution of L in THF is introduced in one side of the tube, a solution of AgNO3 in water 

being introduced on the other side. Both solutions are frozen and the diffusion solvent THF 

is added to connect both. The tube stays then at room temperature in darkness and 

diffusion can occur. Under these conditions, crystals of {[Ag(L)](NO3)}n 3, 

{[Ag(L)](NO3)(H2O)}n 4 and {[Ag(L)](NO3)(H2O)2}n 5 are obtained in different sample, as 

well as a mixture of these compounds. The compounds 3, 4 and 5 apparently only differ by 

the number of inclusion water molecules. Nevertheless their crystallographic structures are 

different (cf. the crystal descriptions below). 

 

Figure B-15: “ H-shaped”  tube 

Compound 3 is obtained purely by crystallisation from an L/AgNO3 mixture in THF/water 

after slow evaporation of the solution. Elementary analysis for 3 shows a composition: 

Ag:NO3:L of 1:1:1. TGA/SDTA (Thermo-Gravimetric Analysis/ Scanning Differential 

Thermal Analysis) measurements were performed on a sample of 3. No loss/gain of 

weight and no phase transition before the decomposition of the product at 260°C are 

observed. The absorption bands of 3 in solution are found at 212 and 273 nm, the 

absorption spectrum is similar to the absorption spectrum of L. The luminescence 

spectrum is the same than the one for the ligand. The strongest emission occurs at 406 
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nm (409 nm for the ligand) when the sample is excited at 232 nm (234 nm for L), the 

measurement being done at 77K. The intensity in both spectra is similar. 

 

Picture B-1: crystals of 4 

Compound 4 appears as major product in one batch (“H-shaped” tube). The characteristic 

crystal shape of 4 (Picture B-1) allows sorting them out under microscope light. The 

TGA/SDTA curve shows an exothermal loss of one water molecule at 117°C (loss of 

weight: 3.2%; calculated: 3.9%). Between the starting temperature and the water loss 

temperature, weight loss (3%) is also observed corresponding to adsorbed solvent as 

crystals are not fully dried before the measurement for maintaining the structure and the 

inclusion molecules. (Graph B-1) The loss of weight was calculated taking into account the 

sample weight after desadsorption of the solvent molecules. An error on the measure was 

estimated for the weight loss: 0.08(2) mg. 

 

Graph B-1: DTA/SDTA analysis of 4: temperature ranged from 25 to 200°C. 

Compound 4 shows no particular emission. Its emission spectrum (excitation at 230nm) 

looks like the one of L at 77K. The signal intensity is enhanced in the silver compound and 

particularly in the region of 350 nm. (Graph B-2) The luminescence may be assigned to 

intra-ligand transitions, as the excitation wavelengths are unchanged between L and 4 [24, 

236]. The existence of the shoulder at 348 nm can be due to the stronger �-stacking in 4 

than in L allowing charge delocalisation. 
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Graph B-2: luminescence spectra of L (red) and 4 (blue) collected a 77K 

5 crystallizes in an “H-shaped” tube, but unfortunately it was not possible to isolate it in 

large amounts. Elementary analysis, IR measurement, TGA/SDTA analyses and 

luminescence measurement were performed in addition to single crystal X-rays diffraction. 

The luminescence signal of 5 is highly enhanced compared to L with similar excitation 

wavelengths. According to the TGA/SDTA measurement, an endothermal loss of two 

water molecules between 25 and 70°C (loss of weight: 7.44%; calculated: 7.52%) occurs. 

The compound decomposes at 220°C. 

Further tests were made to get the pure compounds 3, 4 and 5. A mixture of L and AgNO3 

in THF/water was heated and the cooling time was modified by putting the solution directly 

into the refrigerator for a fast cooling or by leaving the solution in the heating bath for a 

slow cooling. During the fast cooling, the highly polycrystalline compound was suitable for 

powder X-ray diffraction: the powder X-ray spectrum shows that it is pure compound 3. 

The solid-state reaction was also investigated by grinding solid ligand with solid AgNO3 in 

powder, but the powder X-rays diffraction shows only a mixture of the ligand and AgNO3 

structures. 

The crystal structure of each compound, 3, 4 and 5, are now described to show their 

differences, and to understand the different driving forces leading to one or another 

structure. 

 

III.1.a - {[Ag(L)](NO3)}n 3 

The crystal shapes of 3 are thin plates or trapezoidal prisms. 3 crystallizes in the 

monoclinic space group P21/n (no.14). There are four asymmetric units per unit cell, made 

of one ligand molecule, one silver atom and one nitrate anion. (Figure B-16) The pyridine 
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rings coordinate to the silver ions creating a one-dimensional motif: a chain with alternating 

silver ions and ligand molecules -Ag-L-Ag-L, the silver atoms being coordinated by two 

nitrogen atoms of two different ligand molecules. (Figure B-17) 

The important distances of the structure are reported in Table B-9. The distances C-N 

within the ligand are on average 1.339 Å and the angle C-N-C is 117.7(2)°. These 

distances are similar to the ones in L (1.337 Å). This difference can not be seen in the IR-

spectrum, where the band shift of the 	(ArC-C, C=N) are found at 1412 cm-1 for both L and 

3. 

 

Figure B-16: asymmetric unit in 3 (Color codes given for all following figures) 

The conformation of the ligand within the coordination polymer of 3 is the anti one, the 

same as in the crystalline ligand alone and as in compound 1. The chain has an undulating 

form because the direction of the ligand molecules changes after each silver cation, going 

"up-to-down" and then "down-to-up" (Figure B-17). The distance between two silver ions 

within the chain is 17.74(3) Å which is in accordance with the anti-conformation of the 

ligand and usual distances and angles within one ligand molecule. 

 

Figure B-17: chain motif in 3 

The silver-nitrogen distances are 2.232(2) and 2.239(2) Å long and the angle N-Ag-N is 

170.25(9)°. This non-180° angle at the silver cation is due to the asymmetric coordination 

of the nitrate counter anion. Each nitrate anion is connected with two silver atoms and 

each silver atom with two nitrate anions: the nitrate anions act as linkers between the 

silvers atoms, perpendicular to the chain propagation direction ···-Ag-L-Ag-L-··· (Figure 

B-18a). Each silver ion reaches thus a coordination number of five: the two nitrogen atoms 

occupy the axial positions of the distorted trigonal bipyramid, whereas three nitrate oxygen 
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atoms occupy the equatorial ones. (Figure B-18b) One of the nitrate anions is coordinated 

to the silver in an anisobidentate way with silver-oxygen distances of 2.669(2) and 

2.724(2) Å and the other nitrate anion is coordinated to the same silver atom in a 

monodentate way with silver-oxygen distances of 2.800(3) Å. The “silver-nitrate” distances 

are usually found from 2.3 to 2.6 Å, as the nitrate anion is a moderate good coordinating 

counter anion [9, 11]. The longer distances in 3 indicate a weaker coordinating effect. The 

delocalized charge allows generally a bridging or chelating action of the nitrate anion. The 

interaction nitrate-silver in 3 is however strong enough to deform the N-Ag-N angle 

(170.2°) to the side of the bidentate coordination. 

a)  b)  

Figure B-18: a) the nitrate anions acts as linkers between the chains in 3; b) coordination sphere of 

the silver atom in 3 

Another coordination polymer based on silver nitrate and the rigid ligand 1,2-bis(4-

pyridyl)ethane (bpe) affords a similar sheet with bridging nitrate between the linear chains. 

However the coordination geometry of the AgI nodes is slightly different with a {AgN2O2} 

unit instead of a {AgN2O3} silver coordination sphere in 3 [149]. 

Between so close chains, some other interactions appear. (Figure B-19) i) Hydrogen 

bonding occurs between the C=O groups of one chain and the CH2 moieties of the parallel 

ones with H⋅⋅⋅O contacts of 2.57 and 2.75 Å. (Figure B-19) The hydrogen bonds are listed 

in Table B-10. ii) The two closest pyridine rings seem to be tilted in order to generate C-

H⋅⋅⋅� interactions, also called "face-to-edge" interactions [16]. They occur between the 

tilted pyridine ring and the H1 atom of the next of pyridine group at 3.33 Å, offset by 0.47 

Å. (Table B-11) This interaction explains the bending within the ligand molecules: the 

pyridine planes are tilted with an angle of 50.25(7)°, and the planes containing the pyridine 

group and those of the corresponding ester function form angles of 16.5(3) and 20.9(2)°. 

The chains have thus a "bow-shaped" form if regarded along the propagation direction 

(Figure B-20) and the so-made sheets are not linear but undulating. 
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Figure B-19: other interactions between two chains in 3 (C-H···� : red arrow; H-bonds: yellow) 

Additionally to the already described interactions between the chains, other interactions 

complete the overall structure. i) Hydrogen bonding occurs between close ligand 

molecules (C11-H1���O4 and C12-H12���O4) and between the nitrate anions and pyridine 

hydrogen atoms or ethyl hydrogen atoms. (Table B-10) (Figure B-20) ii) �-stacking of rings 

at a distance of 3.62 Å and offset by 1.61 Å is also observed. (Table B-11) The closest 

distances between to silver atoms are 8.02(3) Å, so that no silver-silver contacts can be 

discussed. 

 

Figure B-20: View of the three-dimensional structure of 3 along the chain propagation (dashed lines: 

hydrogen bonds between the ligand molecules; full lines: hydrogen bonds involving nitrate anions) 

 

Table B-9: Most important bond lengths (Å) and angles (°) in 3 

Ag-N 2.232(2), 2.239(2) N-Ag-N 170.25(9) 

Ag-O(O2N) 2.669(2), 2.724(2) 

2.800 (3) 

O-Ag-O 47.05(6) 

149.70(7), 103.32(6) 

C-N 1.337(3), 1.343(4) 

1.340(3), 1.335(4) 

C-N-C 117.7(2) 

117.7(2) 
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Table B-10: Hydrogen bond data for 3 [lengths (Å) and angles (°)] 

D-H���A d(D-H) d(H���A) d(D���A) Angle D-H���A 

Inter-ligand hydrogen bonds 

C7-H7A���O1#1 0.97 2.75 3.543(4) 139.8 

C8-H8A���O4#2 0.97 2.57 3.457(4) 152.9 

C11-H11���O4#3 0.93 2.77 3.367(3) 122.8 

C12-H12���O4#3 0.93 2.68 3.337(3) 128.0 

hydrogen interactions between the nitrate anions and the ligand molecules 

C1-H1���O5 0.93 2.74 3.450(4) 133.9 

C12-H12���O5#4 0.93 2.80 3.496(4) 132.6 

C3-H3���O6#5 0.93 2.46 3.290(3) 148.4 

C14-H14��O6#2 0.93 2.51 3.333(3) 148.2 

C2-H2���O7#6 0.93 2.54 3.461(4) 172.5 

C8-H8B���O7#6 0.97 2.61 3.346(4) 133.1 

Symmetry transformations used to generate equivalent atoms: #1 -X+3, -Y, -Z+1; #2 -X+3, -Y+1, -Z+1; #3 -

X+7/2, Y-1/2, -Z+3/2; #4 X+3/2, -Y+1/2, Z+1/2; #5 -X+3/2, Y-1/2, -Z+1/2; #6 -X+2, -Y+1, -Z+1. 

 

Table B-11: pyridine ring interactions lengths (Å) and angles (°) in 3 (definition of parameters given in 
A -I.2 -) 

C-H···� interactions dH-R pdH-R � � 

Ring (N2, C10, C11, C12, C14, C14)���H1#1 3.33 3.30 8.2 123.3 

�-� interactions dR-R pdR-R � � 

Ring (N1, C1, C2, C3, C4, C5)��� Ring (N1, C1, C2, C3, C4, C5)#2 3.62 3.24 26.5 0.02 

Symmetry transformations used to generate equivalent atoms: #1 X+1/2, -Y+1/2, Z+1/2; #2 -X, -Y, -Z+1. 

 

III.1.b - {[Ag(L)](NO3)(H2O)}n 4 

Compound 4 crystallizes in the orthorhombic space group Ccca (no.68). The asymmetric 

unit is formed of one silver atom, one ligand molecule, one nitrate counter anion and one 

water molecule, and all atoms are found on general positions. (Figure B-21) The most 

important geometrical data are listed in Table B-12. 

 

Figure B-21: asymmetric unit in 4 (hydrogen atoms omitted for clarity) 
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The silver cation is coordinated by two different ligands through their nitrogen atoms 

leading to a one-dimensional chain. (Figure B-22) The ligand adopts the gauche-

conformation with a torsion angle between its two pyridine planes of 81.8(1)° giving to the 

strand an undulating zig-zag structure; the ester containing planes form angles of 8.1(6) 

and 14.7(8)° with the corresponding plane of the adjacent pyridine group. The distance 

between two silver atoms in a chain is 13.974(4) Å long in accordance with the strong 

bending of the ligand molecules and compared to the stretched out ligand with ca. 17.5 Å. 

The metal-metal distance is however longer than in 2 (9.167(7) Å), which presents the 

same ligand conformation but with a more important bending of L. The distances C-N in 

the pyridine ring are longer than in L and 3 (ca. 0.02 Å) which is reflected in the IR-

spectrum with a band shift at 1419 cm-1 in 4 compared to 1412 cm-1 in L. 

 

Figure B-22: chain motif in 4 

The distances silver-nitrate in 4 are 2.171(4) and 2.189(4) Å long, which is shorter than in 

the chains of 3. The N-Ag-N angle is with 161.1(2)° smaller than in 3. These differences 

are due to the different environment around the silver ions in the two structures. Indeed the 

coordination number of the silver cation in 4 is four with two nitrogen atoms and two 

oxygen atoms of the nitrate counter anions (silver oxygen distances: 2.671(8) and 2.874(5) 

Å). Furthermore silver-silver interactions are observed at a distance of 3.136(1) Å. (Figure 

B-23a) These contacts are the shortest distances between two chains which stack almost 

perfectly parallel giving pairs of chains (Figure B-23b). A crystallographic inversion center 

is found in the middle of the Ag-Ag contact. 

The arrangement in pairs is possible because the nitrate anions act as bridging linkers 

between the chains capping the silver-silver contacts. The distances silver-oxygen are 

longer than in 3 (by 0.04 Å) indicating a weaker coordination to the metal ions. 

Another difference with 3 is that the third oxygen atom O7 of the nitrate anion is not 

involved in coordination bonding to another silver atom. In 3, the negative charge of the 

anions is distributed over the three oxygen atoms. However in 4, the negative charge is 

only distributed over two oxygen atoms, which partially compensate for the positive charge 

on each silver ion. The silver cations are thus allowed to approach each other more 
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closely. This arrangement is finally reinforced by �-� interactions between the head-to-

head ligands on each side of the silver pair system, the centroid-centroid distances being 

3.79 Å and the offset 1.92 Å (Table B-14). 

a) b)  

Figure B-23: a) The silver environment in 4 b) leading to the formation of pair of chains (hydrogen 

atoms omitted for clarity 

The pairs of chains cross each other once in the solid-state structure of 4 at an angle of 

about 80° (Figure B-24a), one running in the (203)-direction, the other in the (-203)-

direction leading to an open three-dimensional framework (Figure B-24b). There are some 

�-stacking interactions (Table B-14) between the pairs as well as hydrogen bonds (Table 

B-13). 

 

      a)                b)  

Figure B-24: View a) of the two propagation directions in 4 and b) of the open three dimensional 

framework along the a-axis 

Local cavities are thus obtained along the direction of the a-axis in which four water 

molecules, i.e. O8, O9 and their symmetry equivalents, form discrete hydrogen-bonded 

clusters with O-O distances of 2.77(1) and 2.81(1) Å (Figure B-25). Unfortunately the 

positions of the water hydrogen atoms could not be located on the Fourier map. The 

square of water molecules is parallel to the bc-plane, and these water clusters are isolated 
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except for some interactions with O6 and O7 of the nitrate anion (3.329(9) and 3.243(9) Å), 

as well as weak interactions with O3 and O2 of the ester functions in the ligand (3.662(7) 

and 3.401(7) Å). Closest contacts of O8 to hydrogen atoms of the ligand are also 

observed: 2.79 and 2.63 Å to H11 and 2.92 Å to H4 of three pyridine groups. 

 

Figure B-25: View of the isolated water cluster in 4 with the nitrate anions 

Table B-12: Most important bond lengths (Å) and angles (°) in 4 

Ag-Ag 3.136(1)   

Ag-N 2.171(4), 2.189(4) N-Ag-N 161.1(2) 

Ag-O(O2N) 2.671(8), 2.874(5)   

C-N 1.357(6), 1.359(6) 

1.350(6), 1.332(7) 

C-N-C 117.1(4) 

117.2(4) 

O(H2)-O(H2) 2.77(1), 2.81(1)   

O(H2)-O(O2N) 3.329(9), 3.243(9)   

 

Table B-13: Hydrogen bond data for 4 [lengths (Å) and angles (°)] 

D-H���A d(D-H) d(H���A) d(D���A) Angle D-H���A 

Inter-ligand hydrogen bonds 

C2-H2���O4#1 0.93 2.27 3.075(6) 144.2 

C7-H7A���O1#2 0.97 2.96 3.781(6) 142.7 

Hydrogen bonding between water molecules and ligand molecules 

C11-H11���O8#3 0.93 2.79 3.587(7) 144.5 

C11-H11���O8 0.93 2.63 3.348(7) 134.1 

C4-H4���O8 0.93 2.92 3.334(6) 108.3 

hydrogen interactions between the nitrate anions and the ligand molecules 

C12-H12���O6 0.93 2.46 3.185(7) 134.8 

C7-H7B���O7#4 0.97 2.68 3.421(9) 133.5 

C4-H4���O7#5 0.93 2.31 3.224(6) 168.8 

C8-H8A��O5#6 0.97 2.82 3.563(7) 134.2 

C1-H1���O5 0.93 2.62 3.335(7) 134.2 

Symmetry transformations used to generate equivalent atoms: #1 X-1/2, Y-1/2, Z; #2 -X, Y, -Z+1/2; #3 

X+1/2, -Y+1/2, Z+1/2; #4 X, -Y, Z-1/2; #5 -X+1/2, Y, Z-1/2; #6 X+1/2, Y+1/2, Z. 
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Table B-14: pyridine ring interactions lengths (Å) and angles (°) in 4 

�-� interactions dR-R pdR-R � � 

intra-pairs     

Ring (N1, C1, C2, C3, C4, C5)���Ring (N2, C10, C11, C12, C13, C14)#1 3.79 3.26 30.4 6.25 

inter-pairs     

Ring (N1, C1, C2, C3, C4, C5)���Ring (N1, C1, C2, C3, C4, C5)#2 4.19 3.28 38.5 7.6 

Ring (N2, C10, C11, C12, C13, C14)���Ring (N2, C10, C11, C12, C13, C14)#3 3.62 3.24 26.5 0.02 

Symmetry transformations used to generate equivalent atoms: #1 -X, Y+1/2, -Z+1/2; #2 -X+1/2, -Y, Z; #3 -

X, -Y+1/2, Z. 

 

III.1.c - {[Ag(L)](NO3)(H2O)2}n 5 

The single crystals of 5 are plates or twinned plates. On Picture B-2, one can see a crystal 

of 5 as well as a damaged one: the crystal has lost its inclusion water molecules and only 

the sheets are retained. 

 

Picture B-2: View of one 5 crystal (left) and of one damaged crystal of 5 (right) 

Compound 5 crystallizes in the triclinic space group P-1 (no.2) The asymmetric unit (one 

ligand molecule, one silver ion, one nitrate counter anion and two water molecules for 

which the hydrogen atom positions could not be determined) is shown on the Figure B-26. 

 

Figure B-26: asymmetric unit in 5 
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The motif of 5 is a one-dimensional chain in which silver atoms and ligand molecules 

alternate, the silver ion being coordinated with two nitrogen atoms of two different ligand 

molecules. (Figure B-27) The characteristic distances and angles are listed in Table B-15. 

 

Figure B-27: the chain motif in 5 

The ligand molecules are in the anti-conformation as in 3, with the pyridine planes within a 

ligand lying in almost parallel planes (6.4(1)°). These two planes are shifted by 1.26(1) Å. 

The two angles between the plane containing the carbonyl group of the isonicotinic units 

and the plane of the corresponding mean pyridine ring are relatively different, 19.2(3)° and 

8.4(4)°. The distance from one silver atom to the next within one chain is determined by 

the ligand in the anti-conformation, and is, with 17.604(8) Å, compatible with the other one-

dimensional compounds with silver and copper (3 and 1). Contrary to 1 and 3, the direction 

of the ligand is always the same along the chain: “down-to-up” (Figure B-27). 

The coordination environment of silver in 5 is similar to the one in 4. However the angle N-

Ag-N is with 173.20(8)° larger, the distances Ag-N (2.150(2) and 2.154(2) Å) shorter and 

the silver-silver distance longer with 3.4079(6) Å than in 4. This is due to a decrease of 

coordination by the nitrate anions towards the cations. Indeed, the silver-oxygen distances 

are with 2.704(2) and 2.892(2) rather longer on average in 5 than in 4. The chains are also 

organised in pairs of chains with the nitrate anions acting as pincers between the chains. 

(Figure B-28) An inversion center is found in the middle of the silver-silver contact. This 

arrangement induces "head-to-head" �-� stacking with a spacing of 3.70 Å between two 

adjacent rings, taking into account the distances between the ring centers. The aromatic 

rings are not perfectly superposed, but offset by 1.42 Å to each other, allowing an 

energetically more efficient stacking (Table B-17) [16]. 

 

Figure B-28: organisation of the chains in 5 with the fourth-coordinated silver atoms and the nitrate 

bridging anions 

down-to-up 
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As in 4 the shortest distance between the two chains is the silver-silver contact, it is 

however longer in 5 with 3.4079(6) Å than in 4. The O5 oxygen atom of the nitrate counter-

anions is not involved in coordination bonds to silver, but in a hydrogen bonding network 

with the water molecules (Figure B-29), the distances between O5 and O8, O9 are 

respectively 2.827(3) and 3.196(3) Å. From these interactions results a nitrate-water 

network. The O5 atom also forms hydrogen bonds with H3 and H4 of neighbour pyridine 

rings and H7B of a close ethyl group. (Table B-16) The nitrate oxygen atoms O6 and O7 

are moreover involved in hydrogen bonding to O9 and O8 with distances of 2.974(3) and 

3.503(3) Å respectively. The presence of crystalline water molecules is confirmed by the 

IR-spectrum, with a broad band between 3540 and 3300 cm-1. 

 

Figure B-29: nitrate-water network in 5 

These nitrate-water ribbon-like networks are placed between the pairs of chains, which are 

stacked in a parallel fashion in the crystal lattice (Figure B-30) with the previously 

described interactions and additional hydrogen bonds between the ligand hydrogen atoms 

and the O6 and O7 nitrate oxygen atoms (Table B-16). The loss of the water molecules 

occurs between 25 and 70°C, whereas it happens at 117°C in 4. Indeed, the water 

molecules in 5 are localized in channels and can be more easily removed than in 4, in 

which they are located in local cavities. 

 

Figure B-30: three-dimensional arrangement in 5: the pairs are stacked parallel in the (-10 20 24)-

direction 
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Further interactions are observed between the pairs of chains in 5. i) Silver-aromatic ring 

interactions take place between the silver atom and the (N2, C10…C14) ring of the next 

pair of chains with a distance of 3.48 Å between silver atom and ring center (offset of 0.5 

Å). (Table B-17) This kind of interaction is found in other silver coordination polymers with 

a range of silver-centroid distances of 2.89-3.37 Å. In 5, the silver-ring interaction is thus 

weaker [11]. ii) The layers are also maintained by �-� interactions between two adjacent 

pairs (Table B-17). iii) Finally hydrogen interactions complete the weak interaction system 

between the pairs (Table B-16). The two interactions C13-H13���O1 and C2-H2���O4 take 

place where the ligand molecules are closer, separating the channels in 5 along the (17 1 

1)-direction (Figure B-31). 

 

Figure B-31: View of the channels along the (17 1 1)-direction in 5 

 

Table B-15: Most important bond lengths (Å) and angles (°) in 5 

Ag-Ag 3.4079(6)   

Ag-N 2.150(2), 2.154(2) N-Ag-N 173.2(8) 

Ag-O(O2N) 2.704(2), 2.892(2)   

C-N 1.343(3), 1.347(3) 

1.345(3), 1.350(3) 

C-N-C 117.7(2) 

118.1(2) 

O(H2)-O(H2) 2.761(3), 2.779(4)   

O(H2)-O(O2N) 2.827(3), 3.196(3) 

2.974(3), 3.503(3) 
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Table B-16: Hydrogen bond data for 5 [lengths (Å) and angles (°)] 

D-H���A d(D-H) d(H���A) d(D���A) Angle D-H���A 

Inter-pairs hydrogen bonds 

C13-H13���O1#1 0.93 2.49 3.257(3) 140.4 

C8-H8B���O2#2 0.97 2.70 3.632(3) 162.5 

C2-H2���O4#3 0.93 2.42 3.184(3) 139.6 

hydrogen interactions between the nitrate anions (O6, O7) and the ligand molecules 

C1-H1���O7#4 0.93 2.57 3.346(3) 141.7 

C12-H12���O7#5 0.93 2.67 3.410(3) 137.0 

C8-H8A���O6#6 0.97 2.95 3.712(3) 136.7 

C3-H3���O6 0.93 2.83 3.470(3) 127.3 

C14-H14���O6#7 0.93 2.50 3.192(3) 131.1 

hydrogen interactions between the nitrate anions (O5) and the ligand molecules 

C4-H4��O5#6 0.93 2.44 3.349(3) 167.1 

C3-H3��O5 0.93 2.88 3.555(3) 130.6 

C7-H7B��O5#8 0.97 2.60 3.486(4) 151.3 

Symmetry transformations used to generate equivalent atoms: #1 X, Y, Z+1; #2 -X+1, -Y+2, -Z+2; #3 X, Y, 

Z-1; #4 -X+1, -Y+1, -Z+1; #5 -X, -Y+2, -Z+2; #6 -X+1, -Y+1, -Z+2; #7 X-1, Y+1, Z+1; #8 X, Y+1, Z. 

 

Table B-17: pyridine ring interactions lengths (Å) and angles (°) in 5 

�-� interactions dR-R pdR-R � � 

intra-pairs     

Ring (N1, C1, C2, C3, C4, C5)���Ring (N2, C10, C11, C12, C13, C14)#1 3.70 3.40 22.5 6.4 

inter-pairs     

Ring (N1, C1, C2, C3, C4, C5)���Ring (N2, C10, C11, C12, C13, C14)#2 4.73 3.33 45.3 6.4 

Ag-� interactions dM-R pdM-R � 

Ring (N2, C10, C11, C12, C13, C14)���Ag1#3 3.48 3.44 8.4 

Symmetry transformations used to generate equivalent atoms: #1 -X, -Y, -Z; #2 –X+1, -Y, -Z; #3 -X+1, -Y, -

Z. 

 

III.1.d - Conclusion on compounds 3, 4 and 5 

The three compounds 3, 4 and 5, which can grow from the same batch, have different 

structures and the three compounds do not contain the same number of co-crystallized 

solvent molecules. They are pseudo-polymorphs. What are the main similarities and 

differences between them? 

Motif 

The three compounds have in principal one general structural feature in common: the 

presence of one-dimensional coordination polymer chains made of Ag and L. The silver-
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nitrogen distances evolve from the longer average values of 2.23(2) Å (in 3) to the shortest 

distance of 2.15(2) Å (in 5). This is in the range of the silver-nitrogen distances in other 

comparable compounds with similar coordination sphere for the silver cations. For 

instance, in {[Ag(pyrazine)]NO3}n the average silver-nitrogen distance is 2.21(1) Å [140], in 

{[Ag(2,4’-bipyridine)]NO3}n it is 2.19 Å long [150]. The smallest N-Ag-N angle is found in 4 

with 161.1(1)°, which is to our knowledge the second smallest angle for this type of 

coordination, only the one in {[Ag(pyrazine)]NO3}n is smaller by 2° [140]. 

Anion bonds 

Whereas in 3, all of the nitrate oxygen atoms are involved in coordination bonds, in 4 and 

5, each nitrate anion forms H-bonds towards water molecules: one of the nitrate oxygen 

atoms is completely involved in the hydrogen bonding system. From the examples stated 

in the literature, nitrate counter anions are generally rather strong coordinating anions 

towards the silver cation, with silver-oxygen distances in the range from 2.3 to 2.6 Å [237, 

238]. They can act as monodentate anions for one silver cation [151, 152, 180] or as 

bridging aniso- or iso-bidentate anion for two metal ions [142, 151]. In some cases, the 

nitrate anions are not coordinated to the silver atom and have apparently a template effect 

on the conformation of the silver polymer in comparison to the same polymer formed for 

instance with triflate anions. [73] 

Ag-Ag contact and nitrate anions as bidentate pincers 

It has also been stated that the nitrate anion is unable to delocalize the positive charges of 

two silver ions in an Ag-Ag pair in order to allow metal-metal interactions and thus closer 

contacts between the metal atoms. [152]  

In our compounds, the nitrate anion acts as tridentate ligand towards two silver atoms in 3, 

whereas it plays the role of bidentate ligand bridging two silver cations in 4 and 5. The 

latter coordination leads to a better delocalisation of the positive charge on silver and 

allows two metal ions to approach and form pairs of chains in 4 and 5. The two 

compounds are quite similar as far as the pincer role of the anions is concerned. The H-

bonding system in which the nitrate anions are involved leads to distortion of the nitrate 

anions in 5, weakening the bridging effect over the two silver cations. Thus the positive 

charge on the metal ions in 5 is probably less well compensated by the anions than in the 

case of 4, and the resulting Ag-Ag contact is therefore longer by 0.27 Å than that in 4. 

Although controversially debated, Ag-Ag contacts can be of considerable influence in the 

structure formation. Their energy has been roughly estimated to 5-12 kJ.mol-1 [11], 

sometimes more energetic than Ag���ring interactions. Compared to Ag-Ag distances 

known from literature (Table B-18), the one in 4 is among the shorter or medium strong 
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interactions, whereas the metal-metal contact in 5 is rather weak. Both are, however, 

shorter than the Van der Waals diameter for silver (3.44 Å). [239, 240]  

Table B-18: Ag-Ag contacts in silver coordination polymers with the Ag-Ag distances, the nature of 

the Ag-Ag contact, the motif built up with the Ag-Ag interaction and if known, the characterization of 

the Ag-Ag interaction thanks to luminescence (— if the luminescence spectrometry was not 

performed)  

Compound Ag���Ag (Å) Counter-anion supported? Motiv Lumin.? Ref. 

{[Ag2(4,5-diazospirobifluorene)2(ClO4)2](CH3CN)}n 2.776(1) non-bridging ClO4 chain no [241] 

{[Ag2(2,2’-bipyrazine)(NO3)2]}n 2.8754(7) ligand supported Layers yes [115] 

{[Ag(4,4’-bipyridine)]NO3}n 2.977(1) non-bridging NO3 3-D T-shaped MOF — [142] 

{[Ag(4-4’-dipyridyldisulfide)](p-toluenesulfonate)}n 3.044(2) bridging OTs 2-D sheet yes [117] 

{[Ag(OAc)(4-2,5-bis(4-pyridyl)pyrazine]}n 3.077(3) bridging acetate Double chain — [242] 

{[Ag(1,3-bis(4-pyridyl)propane)]PF6}n 3.0852(9) bridging PF6 Double chain — [165] 

{[Ag(1,3-bis(4-pyridyl)propane](CF3SO3)}n 3.089(1) non-bridging CF3SO3 Double helicate — [39] 

{[Ag4(3-cyanopyridine)8(SiF6)2(H2O)2}n 3.3072(5), 

3.0242(6) 

bridging SiF6 Tetranuclear cluster — [243] 

4 3.136(1) bridging NO3 Double chain no  

{[Ag(1,4-bis(4-pyridyl)butadiyne)MeCO2�2.5H2O}n 3.1371(5) bridging MeCO2 Double chain — [152] 

{[Ag(2,4’-bipyridine)]ClO4}n 3.1526(6) non-bridging ClO4 2-D sheet — [150] 

{[Ag(1,4-bis(4-pyridyl)butadiyne)PO2F2�MeCN}n 3.193(1) bridging PO2F2 Double chain — [152] 

{[Ag2(N-(4-pyridinylmethyl)-4-

pyridinecarboxamide)2(ox)](H2O)9}n 

3.202(1) bridging oxalate Double chain — [153] 

{[Ag(�-3,6-bis(pyridin-3-yl)-1,2,4,5-

tetrazine)]CF3SO3}n 

3.220(1) bridging triflate Double chain — [244] 

{[Ag(1,3-bis(4-pyridyl)propane)]ClO4}n 3.221(1) bridging ClO4 Double chain — [165] 

{[Ag2(4,4’-dipyridylsulfide)2](ClO4)2(MeCN)}n 3.240(1) bridging ClO4 Double chain no [72] 

{[Ag(1,1’-(4-dipyridinethio)ferrocene)]PF6}n 3.2670(8) non-bridging PF6 Double chain no [245] 

{[Ag(trans-4,4’-azopyridine)]NO3�MeOH�H2O}n 3.295 bridging NO3 Double chain — [246] 

5 3.4079(6) bridging NO3 Double chain no  

{[Ag(2,4’-bipyridine)]NO3}n 3.987 bridging NO3 Double helicate — [150] 

 

Concerning nitrate as bridging ligand for pairs of silver atoms, there are to our knowledge 

only three other examples: in the first one, metal-oxygen distances are asymmetric with 

2.66(0)-2.903(3) Å, bridging a relatively long Ag-Ag contact of 3.987 Å [150], all of the 

nitrate oxygen atoms being involved in silver-interactions. In the second, metal oxygen 

distances are similar to the ones in our compounds (2.878(3) and 2.966(3) Å) but the 

metal-metal distance (5.287 Å) is too long for attractive interactions. [143] The third 

example exhibits pairs of chains formed with silver cations and 4,4’-azopyridine. Metal-

oxygen distances are 2.923 Å and 2.797 Å allowing pair wise silver-silver interactions at a 

distance of 3.295 Å. [246] Some examples show Ag-Ag contacts with other bridging 

anions, such as triflate [244] (Ag-O: 2.740(4) and 2.839(4), Ag-Ag: 3.220(1) Å) or acetate 

[242] (Ag-O: 2.636(3) and 2.621 Å for a Ag-Ag separation of 3.077(3) Å). Some Ag-Ag 

contacts are known to be supported by strong coordinating anions such as MeCO2
- or 
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PF2CO2
- [11, 152]. In 4 and 5, the negative charge distribution on the nitrate anions can be 

compared to the one on the MeCO2
- or PF2CO2

- anions. This is due to the involvement of 

the nitrate anions in hydrogen bonding.  

The existence of attractive interactions is not unanimously recognized, since a Van der 

Waals radius of 1.33 Å for Ag+ is also stated, avoiding Ag-Ag interactions. [247, 248] 

It is extremely difficult to find an experimental evidence for Ag-Ag contacts in coordination 

polymers. The existence of metal-metal bonded excited state for d10 metals was proven by 

luminescence. The emission properties of M(d10)-M(d10) containing complexes are 

consistent with the presence of the nd
*�(n+1)p
 transitions. [249-252] Luminescence 

properties of coordination polymers showing Ag-Ag contacts are sometimes explained by 

the short contacts [115, 117-119], while other so-called argentophilic interactions can not 

be proven by luminescence measurements [72, 241, 245, 253]. The typical emission 

wavelengths for Ag-Ag interactions occurs usually around 600 nm [115, 117]. Additionally, 

the overall supramolecular interactions can influence and increase the emission intensity 

of the intraligand transitions [72]. Increase of the intensity is relevant for all coordination 

polymers [116, 236]. The emission spectroscopy of 3, 4 and 5 shows no new emission 

band or new excitation wavelength. In the case of 4, the emission spectrum is similar to 

the one of L, with only a shoulder at 348 nm (larger than in L) The same L-Ag compound 

emission differences is reported by Wang et al. [241] and the shoulder is attributed to a �-

stacking effect. In 5, the enhancement of the emission intensity compared to L is more 

important than in 3 and 4. 

Che et al. afford the first spectroscopic verification of the existence of Ag-Ag attractive 

interactions in coordination compounds, with identification of a silver-silver bonded excited 

state, using Raman and luminescence measurements. [249] 

Water clusters 

The presence and the number of water molecules in 4 and 5 lead to severe changes in the 

arrangement of the chains with respect to each other compared to 3, as well as in the 

ligand conformation as far as 4 is concerned. Thus, compounds 4 and 5 both feature short 

metal–metal distances, leading to pairs of chains. Weak interactions are, in their sum, 

responsible for their formation. Aromatic �-�-stacking is observed in all three compounds. 

However, two major facts can be found which are responsible for the formation of different 

solid state structures. One is evidenced in the ligand conformation. In 5, it adopts an anti-

conformation, whereas in 4, a gauche-arrangement is observed. The second point is the 

presence of different amounts of water molecules per asymmetric unit. Thus, the factor 

influencing the overall arrangement of the double-chains to each other in the crystal seems 
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to be the number of water molecules and the resulting number of possible hydrogen 

bonds. The H-bonds also influence the fact that the chains run parallel in 5, or cross each 

other in 4, and that the ligand adopts two different conformations in 4 and 5. However, the 

latter influence can be discussed in several ways, and it cannot be said if the ligand in 4 

adopts gauche-conformation because of the H-bonds or if the H-bonds result out of the 

ligand conformation. 

Some coordination polymers including non-coordinated water molecules can be found in 

the literature. The inclusion water molecules form mostly so-called water clusters with at 

least six water molecules. The water clusters can be regarded as “glue” which allows the 

assembly of low-dimensional motifs to a three-dimensional packing. [254-256] “Glue” 

means that the water molecules can adapt their structures and interactions in order to fit 

and optimize the attractive forces in the framework, the rigidity of the overall structure 

being enhanced. [257] This role is also found for water molecules permitting the 

agglomeration of motifs showing both hydrophobic and hydrophilic faces [37]. Liu et al. 

consider however that the water clusters not only fill the voids but also contribute to the 

total lattice energy. [112] Nonetheless, when the water molecules are evacuated from the 

structure [254-256], the overall arrangement is breaking down, showing the importance of 

water clusters in the packing. The water loss usually occurs between 60°C and 150°C, and 

at 117°C for 4. A similar nitrate-water-methanol network is found in {[Ag(trans-4,4’-

azopyridine)]NO3�MeOH�H2O}n between the double chains organized in layers as in 5. But 

no strong network forces are outlined. [246] 

Very probably, the Ag-� contacts in 5 are also responsible for inducing the parallel packing 

of the chains in this structure. Energies of such stacking interactions may be comparable 

to coordinate bond energies for some heavy metals such as Tl, Ag and Pb, and have 

roughly been estimated to up to 40 kJ.mol-1. [73, 258, 259] From the CuI coordination 

compounds 1 and 2 and from the AgI compounds 4, it can be concluded that the H-bonds 

toward solvent molecules such as THF or H2O may induce deformation of the ligand L, 

whereas in absence of solvent molecules, the ligand has so far always adopted the anti-

conformation as in the free ligand. 

Calculation 

To corroborate the findings, additional electronic structure calculations were carried out in 

collaboration with the group of Prof. Markus Meuwly, using the GAUSSIAN03 suite of 

programs [260]. The silver atoms were treated with a LANL2DZ effective core potential 

[261] while for all other atoms the basis set was 6-31G(d,p). Correlation was described 

with the B3LYP density functional. The total wave function was converged to better than 
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10-7
 and structural optimizations used the default values for convergence. The numerical 

integration of the functional was carried out with the grid = ultrafine option. 

For the ligand a gauche- and an anti-conformation are relevant. First, the structures of the 

two ligand conformations were optimized. Their energies differ weakly by 0.8 kcal mol-1. 

Consequently, the size of the model including the silver atoms and the counter ion could 

be reduced and only the part of the ligand directly ligated to the Ag atoms was retained. 

The reduced system is shown in Figure B-32. In the calculations for 4 and 5, the Ag–Ag 

and Ag–N bond lengths and the relevant angles were optimized. The positions of the NO3
- 

ions were kept fixed, as found in the single crystal structure. Structural optimizations 

establish that the Ag–Ag distance for fragment 5 is longer by 0.15 Å than for 4, in quite a 

good agreement with experiment (0.27 Å). However, the distances do not compare 

quantitatively; they are 3.34 Å for 4 and 3.49 Å for 5 compared with 3.136 and 3.408 Å 

from experiment, respectively. Most likely, correlation effects beyond the density functional 

theory would have to be included to better describe the interaction between the pyridine 

rings. The validity of B3LYP/LANL2DZ for the present approach was tested for isolated 

(Ag)2 and (Ag)2
+ : the optimized bond lengths are 2.62 Å and 2.82 Å which compares with 

2.69 Å and 2.84 Å from recent CCSD(T) calculations. [262] 

 

Figure B-32: Models used for calculations with relevant calculated bond lengths Å 

To further understand the difference in the total energy of 4 and 5, the potential energy 

was calculated while scanning the Ag-Ag distance. Figure B-33 shows the behaviour of the 

total energy as a function of the Ag-Ag separation. The equilibrium of each curve was 

shifted to 0 to allow more direct comparison of the curves. The repulsive wall for 

compound 5 is steeper, which indicates, together with the longer Ag-Ag interaction, that 

the repulsion between the �-stacked pyridine rings is likely to make the major contribution 

to the elongated Ag-Ag contact. Superimposed in Figure B-33 are the potential energy 

curves for (Ag)2 and (Ag)2
+. It is interesting to note that the (Ag)2 potential has a 

considerably larger curvature around the minimum than the one for (Ag)2
+ which, in turn, is 

rather similar to the curves for 4 and 5. This suggests that the Ag atoms should behave 

like (Ag)2
+ rather than (Ag)2. Indeed, calculating nuclear charges for the minimized 

structures of 4 and 5 using the natural bond orbital (NBO) method reveals that the Ag 

Compound 4 Compound 5 
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atoms carry 0.73e of nuclear charge. This rationalizes the even flatter potential energy 

curves for 4 and 5, compared to (Ag)2
+ in Figure B-33. 

 

Figure B-33: Behaviour of the total energy as a function of the Ag-Ag separation 

Computational calculations allow thus confirmation of structures 4 and 5, and explain 

qualitatively the impact of metal-metal and �-interactions. 

Pseudo-polymorphism 

The three coordination polymers 3, 4 and 5 with the same {Ag(L)(NO3)} components, but 

with different amounts of co-crystallizing water molecules ({[Ag(L)(NO3)]�xH2O}n, x = 0, 1, 

2) are pseudo-polymorphs. Without water in the crystal structure, simple 1-D chains are 

obtained in which the nitrate anions bridge the silver cations using all three oxygen atoms. 

As soon as water co-crystallizes, the good solvating capacity of water towards the nitrate 

anions is revealed by hydrogen-bonding interactions to at least one oxygen atom of the 

anion. Thus, the anion acts as bidentate pincer, bridging two metal ions and allowing the 

generation of pairs of chains. Metal-metal contacts and �-interactions play also a role in 

the construction of the structures and the arrangement of the pairs of chains with respect 

to each other. 

The three compounds can appear concomitantly, as often observed [72, 73, 166]. The 

flexibility of the building blocks can explain the presence of different compounds [73]. 

Indeed the resulting compounds have close potential energy (as seen in the calculations 

on 4 and 5) avoiding the formation of pure phases [56]. It is worthy to note that the 

compounds without inclusion water molecules (3) can be obtained purely. It must be the 

thermodynamically more stable compound. 
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III.2 - Solvent influence 

The coordination of L to AgNO3 was also studied for building other AgI coordination 

polymers under other conditions, particularly the change of the solvents.  

 

III.2.a - {[Ag2(NO3)2(L)]}n 6 

{[Ag2(NO3)2(L)]}n 6 grow in a “H-shaped” tube. (Figure B-15) With the proportion L:Ag = 

1:1, L in THF and silver nitrate in ethanol instead of water are put each in one arm of the 

tube, the solutions are frozen by immersion of the tube in liquid nitrogen and finally the 

diffusion solvent (THF) is added. The slow diffusion can take place in order to yield high 

quality crystals of 6 at the interface EtOH/THF after several months. Unfortunately the 

yield was not high enough to perform more characterizations than the crystallographic one. 

Only few crystals grow in each batch. The results of performed reactions in order to get 6 

in higher quantity are resumed in Table B-19. 

Table B-19: experiments and products of reaction L + AgNO3 (1:1) with ethanol 

ligand AgNO3 Experiment Diffusion 

solvent 

Product Concentration 

(mol.L-1) 

THF EtOH “H-shaped” tube THF 6 3.10-3 

THF EtOH “H-shaped” tube THF 6 1,5.10-3 

THF EtOH “H-shaped” tube THF cotton-like precipitate: {AgLNO3}  6.10-3 

EtOH EtOH “H-shaped” tube EtOH 3 3.10-3 

EtOH H2O “H-shaped” tube EtOH 5 3.10-3 

EtOH EtOH direct  White precipitate: {AgLNO3}  

 

Compound 6 crystallizes in the monoclinic space group C2/c (no.15). There are eight 

asymmetric units (one silver atom, one nitrate molecule and one half ligand) in each unit 

cell. (Figure B-34) There are thus two silver atoms for one ligand molecule. 

 

Figure B-34: asymmetric unit in 6 
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Ligand molecules, silver atoms and nitrate counter anions are organized so that a neutral 

two-dimensional motif appears. This motif is called “fishbone”-like layer. (Figure B-35a) 

a)  b)  

Figure B-35: a) the two-dimensional “ fishbone”  motif in 6; b) detail around the silver atoms 

It is evident that the motif is constituted by silver-nitrate chains (in the c direction), which 

are linked through the ligand molecules. Each silver atom is coordinated with one ligand 

molecule (the distance Ag-N is with 2.226(7) Å in the same range than in 3, 4 or 5) and 

with two nitrate counter anions (the distances Ag-O are 2.354(5) and 2.390(7) Å long) This 

corresponds to short silver nitrate distances showing a strong coordination bond (Figure 

B-35b). The silver-oxygen distances belong to the shortest ones known from the literature 

[184, 263, 264]. The ligand molecules are running in symmetric directions on both sides of 

the silver-nitrate chain, explaining the “fishbone” name. The main structure is made of -Ag-

NO3-Ag-NO3- chains, arrangement probably due to the poor solubility of AgNO3 in ethanol 

unable to completely dissolve the silver nitrate contacts. 

The conformation of the ligand is anti as in the free ligand. The pyridine planes within a 

ligand molecule are parallel as there is an inversion center in the middle of the C7-C7#1 

bond, the two planes being separated by 0.46(5) Å. The plane containing the pyridine ring 

and the plane containing the adjacent ester group form an angle of 10.1(8)°. There is one 

hydrogen bond between the oxygen atom O1 and the hydrogen atom H7B within a ligand 

molecule. (Table B-20) This intra-ligand hydrogen bond can appear as the ligand is highly 

distorted with a O2-C7-C7#1 angle of 77(3)°. (Figure B-36) The position of O2 is distorted: 

this atom position was spilt into two positions with 50% occupancy (O2A and O2B in the 

crystallographic data). In spite of this distortion, the distance silver-silver is 17.76 Å long, 

corresponding to the same silver-silver distance observed in the coordination polymers 
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with the anti-conformation of L, 3 and 5. The distortion is compensated by longer bonds 

oxygen-carbon of ca. 0.04 Å compared to 3 and 5. 

 

Figure B-36: top view of the ligand in 6 with the distortion 

Some other weak interactions can be observed within the layer (Figure B-37, Table B-21): 

i) There are hydrogen bonds between two parallel ligand molecules (2.38 Å). ii) 

Furthermore the nitrate anions are involved in hydrogen bonding to the surrounding pyridyl 

hydrogen atoms, ranging from 2.46 to 2.89 Å. 

 

Figure B-37: intra-sheets interactions in 6: hydrogen bonds between ligand molecules in yellow and 

hydrogen bonds involving the nitrate counter anions in blue 

The layers are stacked parallel to each other to form the overall three-dimensional 

structure. (Figure B-38a) The layers are flat; however the silver atoms don’t exactly lie in 

the mean plane of the layers. If one considers the three atoms around one silver atom (N1, 

O3 and O4), the sum of the three angles (O3-Ag-N1, N1-Ag-O4, O4-Ag-O3) is smaller that 

360° (358°) indicating a weak deformation of the trigonal planar coordination sphere of the 

silver atom. Indeed the silver atoms coordinate perpendicularly to the layer plane with 

nitrate O5 atoms at a distance of 2.72(1) Å. This distance Ag-O is longer than the ones 

with O3 and O4 but is in the range of those of weak coordinating nitrate anions. 
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a)                         b)  

Figure B-38: a) three-dimensional structure of 3 in the direction (11 0 10); b) coordination 

environment around silver atoms in 6 

Furthermore there is a metal-ring interaction on the other side of the silver atom. (Figure 

B-38b, Table B-22) No other interactions were found between two layers except these 

interactions involving silver atoms. 

Table B-20: Most important bond lengths (Å) and angles (°) in 6 

Ag-N 2.226(7) O-Ag-N 138.2(3), 135.3(2) 

  O-Ag-O 84.6(2) 

Ag-O(O2N) 2.354(5), 2.390(7) 

2.72(1) 

  

C-N 1.334(8), 1.35(1) C-N-C 118.6(6) 

 

Table B-21: Hydrogen bond data for 6 [lengths (Å) and angles (°)] 

D-H���A d(D-H) d(H���A) d(D���A) Angle D-H���A 

Intra-ligand 

C7-H7B���O1#1 0.97 2.37 2.98(3) 120.6 

Intra-sheets hydrogen interactions 

C2-H2���O1#2 0.93 2.38 3.27(1) 161.2 

C3-H3���O3#3 0.93 2.49 3.29(1) 143.7 

C3-H3���O4#3 0.93 2.46 3.167(9) 132.9 

C4-H4���O4#3 0.93 2.89 3.37(1) 113.0 

C1-H1���O5 0.93 2.80 3.55(1) 137.8 

Symmetry transformations used to generate equivalent atoms: #1 -X, -Y-1, -Z; #2 -X, -Y, -Z; #3 -X+1/2, Y-

1/2, -Z+3/2. 

 

 

O4 

O5 

O3 
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Table B-22: Ag � � � pyridine ring interactions lengths (Å) and angles (°) in 6 

 dM-R pdM-R � 

Ring (N1, C1, C2, C3, C4, C5)���Ag1#1 3.472 3.357 14.77 

Symmetry transformations used to generate equivalent atoms: #1 X, -Y, Z+1/2 

 

To our knowledge, this is the first example of two-dimensional neutral silver coordination 

polymer, with a trigonal planar coordination of silver {AgO2N} and this motif. Some [-Ag-

(NO3)-]n are found in the compound {[Ag(1,4-bis(phenylthio)butane)(NO3)]}n [184], in which 

the AgI center is tetrahedrally coordinated to two S atoms from the ligand and two O atoms 

from nitrate anions. The structure may be described as [-Ag-(NO3)-]n linked via the ligands 

as in 6, but with a different coordination environment for the silver ion and longer silver-

nitrate distances (2.452(6) and 2.557(6) Å). 

 

III.2.b - {[Ag(L)](NO3)}n 7 

The crystallization of silver polymers using silver nitrate was also performed in acetonitrile. 

Both solutions of L and silver nitrate in acetonitrile are mixed, stirred and then left at room 

temperature (C = 5.10-3 mol.L-1). Self-assembly between silver and L occurs in the 

darkness giving colorless single crystals of {[Ag(L)]NO3}n 7 suitable for X-ray diffraction. 

The quantity of crystals was not sufficient to perform other analyses on this sample. 

However the reaction of L and AgNO3 in dichloromethane gives a white polycrystalline 

precipitate. Its powder X-ray spectrum was compared to the calculated one (from single 

crystal data) showing that the precipitate is isostructural to 7. This precipitate was thus 

used for the further characterizations.  

 

In order to get information on the existence of coordination polymers or oligomers in 

solution, electrospray-ionization mass spectroscopy was performed. With a solution of 

compound Ag(L)NO3 in CH3CN, no species were detected, except [Ag(CH3CN)]+ and 

[Ag(CH3CN)2]
+ (149 and 190 m/z respectively). Acetonitrile can easily coordinate the silver 

ions and the main species in solution are silver-acetonitrile complexes. Nevertheless, if we 

use a solvent mixture CH3CN/CH2Cl2 (10/1) peaks are found at well identifiable m/z with a 

good isotopic resolution: 273.2, [LH]+; 379.1, [LAg]+; 549.9 [LAg2(NO3)]
+; 650.9 [L2Ag]+; 

718.6 [LAg3(NO3)2]
+; 821.7 [L2Ag2(NO3)]

+; 990 [L2Ag3(NO3)2]
+; 1161.3 [L2Ag4(NO3)3]

+; 

1262.2 [L3Ag3(NO3)2]
+; 1432.6 [L3Ag4(NO3)3]

+ m/z. 

Other electrospray ionization mass spectroscopy studies were performed in order to follow 

the evolution of the distribution of the above species in solution as a function of time and 
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ligand to metal proportion. Solutions with M2L, ML, ML2 proportions were prepared and 

measured just after mixing L and AgNO3 and after 24 hours. The results are shown in 

Table B-23. 

Table B-23: Resume of the detected peaks (the main peaks are presented with the relative abundance 

ratio (%)) for the three tested solutions at 0 and 24H. 

M2L ML ML2  

0 24 H 0 24 H 0 24 H 

[LH]+ ø ø �(2%) ø �(6%) �(11%) 

[LAg]+ �(11%) �(7%) �(3%) ø �(1%) �(4%) 

[LAg2(NO3)]
+ 

�
(100%) 

�
(100%) 

�
(34%) 

�
(37%) �(18%) �(26%) 

[L2Ag]+ ø ø �(9%) �(19%) �(18%) 
�
(69%) 

[LAg3(NO3)2]
+ 

�
(52%) 

�
(69%) �(14%) 

�
(37%) �(2%) �(5%) 

[L2Ag2(NO3)]
+ 

�
(80%) 

�
(31%) 

�
(100%) 

�
(100%) 

�
(100%) 

�
(100%) 

[L2Ag3(NO3)2]
+ 

�
(45%) �(24%) 

�
(30%) 

�
(60%) �(12%) �(19%) 

[L2Ag4(NO3)3]
+ 

�
(62%) 

�
(36%) �(18%) 

�
(60%) �(5%) �(7%) 

[L3Ag3(NO3)2]
+ ø ø �(2%) �(10%) �(3%) �(3%) 

[L3Ag4(NO3)3]
+ �(18%) �(8%) �(7%) 

�
(30%) �(3%) �(4%) 

 

Almost all species were found in each solution and a all times. For each solution, the main 

species are found whatever the reaction time: the distribution of the compounds in the 

solution is similar at t = 0 and t=24 H. In the solution M2L, the main species is [LAg2(NO3)]
+ 

and species containing more Ag than L are favoured; in the solution ML, a more important 

variety of species is observed; in the solution ML2, only compounds [L2Ag]+ and 

[L2Ag2(NO3)]
+ are mainly found.  

These results indicate that in all cases oligomeric fragments of coordination polymers are 

formed. This is in agreement with the fact that only the compound {[Ag(L)]NO3}n is 

obtained by changing the metal to ligand stoechiometry for the reaction. Indeed the fact 

that many species are present indicates a fast complexation exchange. The acetonitrile is 

in concurrence with the pyridine groups of the ligand for the complexation of silver. The 

peaks corresponding to [Ag(CH3CN)]+ and [Ag(CH3CN)2]
+ (149 and 190 m/z respectively) 

are in fact found in the mass spectra. 
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Compound 7 crystallizes in the triclinic space group P-1 (no.2). The asymmetric unit is 

composed of one ligand molecule, one silver atom and one nitrate anion (Figure B-39) and 

there are two of such moieties in the unit cell. The most important bond lengths and angles 

are listed in Table B-24. 

 

Figure B-39: asymmetric unit in 7 

In this case the silver atoms are coordinated by two different ligands through their nitrogen 

atoms. The ligand molecules act thus as connectors between the silver atoms, the final 

motif being a charged one-dimensional chain. (Figure B-40) The distances silver-nitrogen 

are 2.183(4) and 2.189(4) Å long and the N-Ag-N angle is 169.8(2)°. 

 

Figure B-40: The linear motif in 7 

The linearity in the chain is due to the anti-conformation adopted by the ligand molecules. 

The ligand molecules alternating with the silver atoms have all the same direction: “up-to-

down”. The distance silver-silver within the chain is thus 17.66 Å long as in 1, 3, 5 and 6 

where the ligand is in anti conformation. The coordination sphere of the silver atoms is 

completed thanks to interactions with the nitrate counter-anions. All three nitrate oxygen 

atoms are linked to silver atoms, that means that the nitrate anions stay as linkers in 

between the chains (Figure B-41). The silver-oxygen distances range from 2.599(5) to 

3.122(4) Å. These distances in 7 are by 0.25 Å longer on average than in 6 and smaller 

than in 3, 4 and 5. The N-Ag-N deformation from 180° is due to the stronger Ag1-O5 

interactions (2.599(5) Å). Some hydrogen bonds (C8-H8B···O1) allow the alignment of the 

chains and thus the formation of the neutral layer. The shortest distance between the silver 

atoms in the layer is 6.159(1) Å. 

Ag1 

O5 

O6/O7 

O1 

O2 
O3 

O4 

N3 

N1 

N2 

C6 

C5 

C9 C10 
C1-H1 C2-H2 

C3-H3 
C4-H4 

C12-H12 
C11-H11 

C14-H14 

C13-H13 

C7-H7A/B 

C8-H8A/B 

up-to-down 



B - III.2 - AgI coordination polymers Adeline ROBIN 
 

Structural diversity of Cu(I), Ag(I) and Cu(II) coordination polymers with the ligand ethanediyl bis(isonicotinate) 101 

 

 

Figure B-41: alignment of the chains in 7 with the nitrate as linkers and the hydrogen bond region in 

yellow 

As shown on Figure B-42a, the chains are ordered in the direction (-12 10 22) with a slight 

inclination of the molecular mean plane compared to this direction, the counter anions 

lying only on one side of the chains. Indeed the coordination of the nitrate molecules is not 

distributed all around the silver atoms but they are found only on one side. (Figure B-42b) 

In the three-dimensional structure of 7, the layers stack parallel together in alternating their 

orientations: the nitrate anions are pointing in one direction and in the next layer they are 

pointing in the opposite one. (Figure B-42c)  

 

Figure B-42: a) organisation of the chains and the nitrate anions within a layer; b) coordination of 

silver; c) stacking of the layers in the structure of 4 

Two types of inter-sheet areas are thus created: in the first one the anions are found, and 

in the next one the chains are simply parallel to each other, as described in the Figure 

B-43b. 
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Figure B-43: a) three-dimensional structure of 7 with the inter-sheets interactions (red arrows: � -

stacking in the empty inter-sheets; dashed lines: hydrogen bonds between ligands; full lines: 

hydrogen bonding involving the nitrate anions) b) View of the stacked layers in 7 

As there are two types of inter-sheets, there are various complementary interactions 

between the layers. (Figure B-43a) In the “empty” inter-sheets, the layers interact thanks to 

�-stacking (Table B-26) between the rings N1, C1…C5 and N2, C10…C14 with a center-

center distance of 3.82 Å and an offset of 1.5 Å. The silver-silver distances are 4.017(2) Å 

long and are not the shortest contact between two chains as in 4 and 5. The same pairs of 

chains than in 4 and 5 appear but as the counter ion role is different, only the �-stacking 

remains. The much shorter Ag-Ag distances of 4 and 5 need thus to be supported by the 

nitrate anions. 

The overall arrangement is strengthened with hydrogen bonds between the ligand 

molecules of two close layers and also between the nitrate anions and neighbouring ligand 

molecules (Figure B-43a). These interactions take place in the two kinds of inter-sheet 

layers (Table B-25). 

Table B-24: Most important bond lengths (Å) and angles (°) in 7 

Ag-Ag 4.017(2)   

Ag-N 2.183(4), 2.189(4) N-Ag-N 169.8(2) 

Ag-O(O2N) 2.599(5), 2.703(7) 

3.044(4), 3.122(4) 

  

C-N 1.342(5), 1.343(7) 

1.352(6), 1.347(5) 

C-N-C 117.5(4) 

116.6(4) 

 

 

 

 

a) b) 
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Table B-25: Hydrogen bond data for 7 [lengths (Å) and angles (°)] 

D-H���A d(D-H) d(H���A) d(D���A) Angle D-H���A 

Inter-chains interactions 

C8-H8B���O1#1 0.97 2.64 3.580(7) 163.4 

intra-sheets hydrogen interactions 

C11-H11���O1#2 0.93 2.79 3.648(7) 153.2 

C13-H13���O3#3 0.93 2.63 3.195(7) 119.3 

C14-H14���O4#3 0.93 2.85 3.316(6) 112.3 

C7-H7A���O4#4 0.97 2.50 3.436(7) 161.9 

Hydrogen bonds involving nitrate anions 

C1-H1���O7#4 0.93 2.65 3.403(7) 138.9 

C12-H12���O7#4 0.93 2.58 3.309(8) 135.3 

C1-H1���O7#5 0.93 2.80 3.38(1) 121.3 

C4-H4���O6#3 0.93 2.53 3.390(8) 154.7 

C8-H8A���O6#3 0.97 2.83 3.494(7) 126.5 

C14-H14���O5 0.93 2.65 3.308(9) 128.3 

Symmetry transformations used to generate equivalent atoms: #1 X+1, Y, Z; #2 -X, -Y+2, -Z+2; #3 -X+2, -

Y+1, Z+1; #4 X-1, Y, Z; #5 -X+1, -Y+2, -Z+2. 

 

Table B-26: ring interactions lengths (Å) and angles (°) in 7 

�-� interactions dR-R pdR-R � � 

Ring (N1, C1, C2, C3, C4, C5)���Ring (N2, C10, C11, C12, C13, C14)#1 3.82 3.49 24.0 2.1 

Symmetry transformations used to generate equivalent atoms: #1 -X+2, -Y+1, -Z+1. 

 

Compound 7 is a structural supramolecular isomer of 3 (same Ag-ligand-nitrate system), 

showing apparently the same arrangement: one-dimensional chain, nitrate anions in 

between the chains. But paradoxically, the structure of 7 is closer to the structure of 5. 

Both one-dimensional motifs are similar, the apparition of pairs of chains with �-stacking 

within the pairs, the parallel stacking of the pairs of chains with other �-stacking and the 

overall parallel stacking in order to build the three-dimensional network are also very 

similar. (Figure B-44) It seems that the presence of water molecules in 5 has just 

increased the separation between the layers, the structural changes in 5 and 7 may be 

compared to the swelling of clays in case of water infiltration. 
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Figure B-44: structural comparisons between 7 and 5 

It can be thus assumed that the interactions nitrate-water molecules are the only ones 

responsible for the structural differences in 7 and 5. However, the cell parameters for 5 

and 7 do not show any correlation which means that more than simple water elimination is 

necessary to explain the transformation of one to another. 

 

III.2.c - Solvent influence 

It has been stated that the silver coordination polymer one-dimensional motifs including 

linear ligands with a poor delocalized �-system and moderately coordinating counter 

anions (such as nitrate) tend to arrange themselves parallel in the structure and that the 

coulombic repulsion between the AgI centers cannot be compensated by a strong face-to-

face ligand stacking or by the coordination of the counter-anions to silver. [11] So, which is 

the behaviour of L in the AgNO3 coordination polymers when diverse solvent conditions 

are applied? 

It is worthy noting that silver nitrate has different solubilities in the used crystallization 

solvents, allowing more or less good solvatation of the ions. The comparison of the 
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average silver-nitrate distances in the solid and the solubility of the silver salt in the 

different solvents is shown on Graph B-3. 

 

Graph B-3: average distances Ag-O(NO2) in compounds 3 to 7 in function of AgNO3 solubility 

There is thus a link between these silver-nitrate distances and the solubility of silver nitrate 

in mother liquor. The worst solvent for silver nitrate is ethanol and the best is water. This 

bad solubility of AgNO3 in ethanol can explain the short distances Ag-nitrate in the solid 

state in 6 and also the existence of the silver nitrate chains. On the other hand, the good 

solubility of AgNO3 in water prevents Ag and nitrate to be so close. According to these 

results, it can be said that the solubility seems to be a major parameter for the 

crystallization. As far as we know this dependence has never been outlined in the 

literature. 

However the importance of the solvent choice is known, without being clearly studied. The 

solvents are usually classified in two categories: the coordinating and the non coordinating 

ones. In compounds 4 or 5, the solvent molecules co-crystallize without being cation 

coordinating solvents. Weak solvation of the anions by the solvent remains. 

In the literature, numerous examples of silver coordination polymers with solvent 

molecules in the first coordination sphere can be found. The coordinated solvent 

molecules are water [73, 151, 170, 265], acetonitrile [72, 154, 244, 266-270] or methanol 

[184]. Water molecules can be directly coordinated to silver ions even in the presence of 

nitrate as counter anion. In {[Ag(1,3-bis(2-pyridylethynyl)-2-methyl-benzene)(NO3)(H2O)]}n, 

there are two crystallographically and chemically different silver ions: both have a distorted 

tetrahedral coordination sphere containing two ligand nitrogen atoms in addition with either 

an anisobidentate nitrate anion or a monodentate nitrate anion and a water molecule. [151] 

This compound grows from mixture of a solution of ligand in acetone and a solution of 

silver nitrate in water, illustrating the possible competition in coordination between the 

water molecules and the nitrate anions. 
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Acetonitrile has a favourable affinity toward silver ions in the liquid phase, it is also more 

easily involved in the coordination sphere of silver in the resulting coordination polymer 

structure. Reger et al. state that if compounds are crystallized from the coordinating 

solvent acetonitrile, the anions have less effect on the structure. [268] For instance, the 

silver ion has a {AgN(pyridyl)2N(acetonitrile)O(nitrate)2} coordination sphere in the 

compound {[Ag(2,2’,3”-tripyridylamine)(NO3)(CH3CN)]n [270]. When crystals grow from the 

mixture L/AgNO3 in acetonitrile, we do not observe the formation of such compounds in 

the solid state. Crystals of 7 do not contain any acetonitrile molecule. 

The used solvents are not the unique important factor but also the crystallization 

techniques have to be carefully regarded. The “H-shaped” tubes allow the slow diffusion of 

the reagents, and mostly the crystals are of better quality. The drawbacks of this technique 

are the weak concentration and the non-homogeneous conditions depending on the 

localization in the tube. Indeed the crystallization can occur in one or the other arm, on the 

fritt if present, at the solvent/air interface, in the curved part etc... where the concentration 

and the ratio metal to ligand can be locally different. However, we always get pure phases 

during the direct mixing: 3 crystallizes in a THF/water solution of L and AgNO3; 7 is 

obtained in a solution of both reagents in acetonitrile. The comparison between the 

diffusion techniques and the direct self-assembly methods is made by Champness and 

Schröder [271]. Contrary to us, their recommended method is the diffusion technique. 

They obtained mixtures of products with direct methods. 

Another solvent influence in the formation of coordination polymers based on flexible 

organic ligand is the correlation between the presence of inclusion solvent molecules in 

the structures and the conformation of the ligand. In 2 and 4, the presence of respectively 

THF or water molecules coincide with the gauche-conformation. However in 5, water 

molecules co-crystallize and the ligand has the anti-conformation. In all other products, the 

ligand adopts the anti-conformation as in free L. It can be concluded that the presence of 

co-crystallized solvent molecules (not coordinating) may induce the change of 

conformation of the ligands in the crystallographic structures from anti to gauche. This 

confirms previous findings [196]. 
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III.3 - Counter ion influence 

After this variety of L and AgNO3 containing-coordination polymer structures, we also 

chose to vary the counter ions, using less coordinating ones than nitrate in order to 

investigate the differences and the similarities in the bond and interaction formation. 

 

III.3.a - {[Ag(L)]CF3SO3}n 8 

The coordination polymer based on silver triflate and L crystallizes in a “H-shaped” tube in 

the darkness at room temperature: a solution of L in THF diffuses into a solution of 

AgCF3SO3 in water through THF and a fritt. After one day, crystals of {[Ag(L)]CF3SO3}n 8 

appear at the interface THF/water. They are suitable for single crystal X-ray diffraction, 

and they are obtained in a relative good yield. 

8 are also obtained thanks to the direct reaction of L and AgCF3SO3 in dichloromethane. 

This mixture gives a white polycrystalline precipitate. Its powder X-ray spectrum and the 

theoretical spectrum for 8 (calculated from the single crystals X-ray data) show that the 

two compounds are isostructural (Figure B-45). The concordance between the two spectra 

is good, only a slight shift after 20° is observed. 
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Figure B-45: comparison between the single crystal X-ray and the powder X-ray spectra of 8 

 

8 crystallizes in a monoclinic space group P21/c (no.14) as thin and colorless plates. The 

asymmetric unit is formed by one silver atom, one ligand molecule and one triflate 

molecule, the unit cell containing four asymmetric units. As shown on Figure B-46 there 

are two types of ligand molecules in the structure: i) the one numbered from N1 to N1#1 

(symmetrical equivalent) called L1; ii) the second numbered from N1A to N1A#2 called L2. 

The important bond lengths and angles are listed in Table B-27. 
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Figure B-46: unite asymmetric in 8 (S in yellow and F in blue) 

The structural motif in 8 is a one-dimensional one: silver atoms and ligand molecules 

alternate in order to form a charged chain. (Figure B-47) The silver atoms are thus 

coordinated with two different ligand molecules. The angle N1-Ag1-N1A is 177.61(6) Å, 

and the distances Ag1-N1 and Ag1-N1A are similar with 2.159(2) Å. The counter anion 

triflate interacts only weakly with the silver atom via the O7 oxygen atom at a distance of 

2.804(2) Å, the deformation of the angle N-Ag-N around Ag is not attributed to this 

interaction. In the literature, the distances silver-triflate are mainly ranged from 2.4 to 2.8 Å 

[167, 169, 178, 180, 270]. The silver-triflate interactions in 8 belong thus to the weakest 

ones. The distances silver-oxygen(counter ion) are in the same range than in 5, in which 

the nitrate anions are the least coordinated of the AgNO3 coordination polymers. The 

charge on silver has to be more compensated by the nitrogen donor ligand in the cases of 

poor coordinating anions, as it happens in 8 and 5, in which the silver-nitrogen distances 

are the shortest. 

Along the chain, the ligand molecule direction is always the same: “up-to-down”. The 

distance between two silver atoms in a chain is 17.46 Å, as the ligand is in the anti-

conformation. 

 

Figure B-47: chain motif in 8 
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The pyridine units are in anti-position of the ethyl linking units with the two carbonyl groups 

pointing alternatingly up and down. This conformation is similar to the conformation of the 

molecules in the structure of free L. The pyridyl groups within a ligand lie in parallel planes 

due to the inversion center in the geometrical middle of the C7-C7#1 (C7A-C7A#2) bonds. 

However it’s worthy to note why two types of ligand are distinguished within the structure: 

in L1, the shift between the latter planes within a ligand is 0.299(8) Å, but in L2, it is 

1.242(9) Å. (Figure B-48) The silver atoms are thus not perfectly aligned with a slight 

undulation of the chain due to the important difference in the angles between the plane 

containing the pyridine group and the adjacent plane containing the ester group (5.3(4)° in 

L1; 12.0(3)° in L2). The all-over chain motif is -Ag-L1-Ag-L2-Ag-L1-. 

 

Figure B-48: chain motif in 8 with the deformation of L2 toward L1 

The chains interact together to give firstly a two dimensional motif (Figure B-49a). In these 

layers, the chains remain parallel to each other and are connected thanks to two 

interaction types: i) Hydrogen bonding takes place between a ligand L1 and a ligand L2: 

C2A-H2A���O1 (2.81 Å) and C2-H2���O1A (2.68 Å) and form a 10-membered hydrogen 

bonding system. ii) The triflate anions act as linkers between the chains: a triflate anion is 

coordinated to a silver atom through an oxygen atom of the -SO3 groups; this -SO3 oxygen 

atom forms hydrogen bounds with the hydrogen atoms of the two pyridines coordinated to 

the same silver atom (C3-H3���O7 and C1A-H1A���O7 with 2.48 and 2.58 Å); the fluorine 

atoms of the considered triflate anion are furthermore involved in C-H���F bonds with the 

ethyl hydrogen atom (H7A) and pyridine hydrogen atom (H4) of the adjacent chain, with 

distances of 2.72, 2.81 and 2.82 Å. The interactions between the -CF3 groups in the 

coordination polymers containing triflate ions are not well documented. In {[Ag(2,2’,3’’-

tripyridylamine)(CF3SO3)]}n, the triflate anions link two adjacent chains and the C(-H)���F 

distance is 3.60(2) Å long with an angle C-H���F of 136(1)° [270]. The H���F interaction 

parameters in 8 are in the same range (Table B-28). All hydrogen bond parameters are 

listed in the Table B-28. In the IR spectrum, the two 	(C-F) bands corresponding to the 

triflate molecule are shifted towards the bands in pure AgCF3SO3 salt (1249�1265 and 

1176�1140 cm-1), as well as the 	(S-O) band (1038�1026). 

L1 L2 
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Figure B-49: a) arrangement of the chains in layers in 8: the ligands L1 are in front of the triflate 

molecules whereas the ligands L2 stay in front of the sheets cavities; b) details of the hydrogen 

networks 

This weak interactions network creates some “cavities” in the layers whose size is ca. 6 Å 

× 15 Å. However this material is not porous, as the layers stack with triflate anions filling 

these cavities. Indeed, the layers stack parallel to each other and two adjacent layers are 

tilted by about 60°, the triflate anions of the first layer occupying the cavities of the next 

layer and so on. (Figure B-50a) The triflate anions do not lie in the plane of the sheets. 

(Figure B-51a) Each type of layers reappears after 4 superpositions. (Figure B-50b) 

a)  b)  

Figure B-50: a) two adjacent layers in 8, with the tilting angle and the position of the triflate anions in 

the cavities. b) Stacking of the layers in 8 (sheet S1 in red, sheets S2 in blue): S1A, S2B, S1C, S2D (A, 

B, C, D: stacking motifs of layers). 

L1 

L2 

a) 

b) 
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The average distance between two sheets is constant with 3.4 Å. There are several 

interactions between the layers: i) �-stacking takes place between a pyridine ring and a 

carbonyl group of the next layer (the average distance between the two groups is 3.5 Å). ii) 

Ag-pyridine ring interactions lead to the deformation of the N-Ag-N angle (Table B-29), the 

centroid-silver distances being ca. 3.5 Å long and the shift ca. 1.4 Å. iii) Weaker 

coordination bonds exist involving the O5 atom of a triflate anion (2.830(2) Å), the same 

triflate anion being already coordinated to a silver atom of another layer through its O7 

atom. The triflate anion acts thus as bridge between two silver atoms, the distance silver-

silver being however long (4.760(1) Å). The repulsion between the silver atoms avoids 

them to get closer to each other, as the triflate anion is not strongly coordinated to the 

silver ions as in the case of nitrate as counter anion in 4 and 5. iv) Several hydrogen bonds 

are localized between the layers (Table B-28). The O5 atom coordinating the silver cations 

forms hydrogen bonds with the hydrogen atoms localized on the pyridine rings on each 

side of the involved silver. The triflate anions are also involved in hydrogen bonding 

through the O6 oxygen atom (which does not interact with AgI ions) with two ethyl 

hydrogen (H7B/D) and one pyridine hydrogen (H4A) of close ligands. The hydrogen bond 

network is completed with hydrogen bonds between ligand molecules of different layers 

(C1-H1���O1). 

 

Figure B-51: a) View parallel to the layers in 8: the triflate anions stay in between the sheets; b) View 

of further interactions between the layers in 8 
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Table B-27: most important bond lengths (Å) and angles (°) in 8 

Ag-N 2.159(2), 2.159(2) N-Ag-N 177.61(6) 

Ag-O(SO2CF3) 2.804(2), 2.830(2)   

C-N 1.343(3), 1.344(3) C-N-C 118.2(2) 

 1.343(2), 1.350(3)  118.4(2) 

 

Table B-28: Hydrogen bond data for 8 [lengths (Å) and angles (°)] 

D-H���A d(D-H) d(H���A) d(D���A) Angle D-H���A 

intra-sheets hydrogen interactions  

C2-H2���O1A#1 0.93 2.68 3.579(3) 163.8 

C2A-H2A���O1#2 0.93 2.81 3.708(3) 163.2 

C7-H7A���F3#3 0.97 2.72 3.440(3) 131.2 

C4-H4���F1 0.93 2.81 3.501(3) 131.9 

C4-H4���F2 0.93 2.82 3.556(3) 136.9 

C3-H3���O7#1 0.93 2.48 3.235(3) 138.0 

C1A-H1A���O7#1 0.93 2.58 3.298(3) 134.7 

C-H���O hydrogen interactions between the sheets 

C1-H1���O5#4 0.93 2.66 3.368(3) 133.8 

C3A-H3A���O5#4 0.93 2.61 3.378(3) 140.4 

C7A-H7D���O6#5 0.97 2.77 3.517(3) 134.4 

C4A-H4A���O6#6 0.93 2.78 3.703(3) 173.6 

C7-H7B���O6#7 0.97 2.74 3.554(4) 142.0 

C1-H1���O1#8 0.93 2.70 3.239(3) 117.8 

Symmetry transformations used to generate equivalent atoms: #1 X-1, Y, Z+1; #2 X+1, Y, Z-1; #3 -X, -Y, -

Z+2; #4 –X+1, Y+1/2, -Z+3/2; #5 –X+2, Y+1/2, -Z+1/2; #6 X, -Y+1/2, Z-1/2 ; #7 -X+1, -Y, -Z+2 ; #8 X, -

Y+1/2, Z-1/2. 

 

Table B-29: Ag � � � pyridine rings interactions lengths (Å) and angles (°) in 8 

 dM-R pdM-R � 

Ring (N1, C1, C2, C3, C4, C5)���Ag1#1 3.317 3.159 17.55 

Ring (N1A, C1A, C2A, C3A, C4A, C5A)���Ag1#2 3.606 3.098 30.78 

Symmetry transformations used to generate equivalent atoms: #1 X, -Y+1/2, Z+1/2; #2 X, -Y+1/2, Z-1/2 

 

Triflate anions are regarded as “non-coordinating” anions, because the strong electron 

withdrawal of the -CF3 moiety lowers the Lewis basicity of the -SO3 group. 

Triflate anions can nonetheless weakly interact with AgI, due to its flexible 

coordination sphere [272]. The coordination mode for the sulfonate group in 

8 was expected, as it is one of the known sulfonate coordination modes. The 
S 

O 

O O 

F3C 

M M 
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solid-state compound [Ag(CF3SO3)(EtOH)0.5] shows two-dimensional motifs, with two 

crystallographically different silver ions, respectively seven coordinate and nine-coordinate 

[273]. The triflate anions support silver-silver contacts of 3.327(2) and 3.060(1) Å, the 

silver-triflate distances ranging from 2.381(5) to 2.588(5) Å. A silver-silver contact 

supported by triflate anions remains in the structure of {[Ag(�-3,6-bis(pyridin-3-yl)-1,2,4,5-

tetrazine)](CF3SO3)}n [244], the silver-triflate distances being 2.740(4) and 2.839(4) Å. 

Triflate as bidentate ligand is also found in {[Ag(1,4-bis(2-pyridyl)butadiyne)(CF3SO3)]}n, 

with silver-triflate distances of 2.445(4) and 2.572(4) Å in order to build a two-dimensional 

motif [167] without silver-silver contacts. 

According to the literature, the silver-triflate interactions occur with distances 

Ag���O(SO2CF3) ranging from 2.4 to 2.8 Å [167, 169, 178, 180, 270]. In these examples, 

triflate oxygen atoms are included in the coordination sphere of AgI, having a direct 

influence on the structural motif. Triflate anions have also an influence on the long range 

arrangement because of the -CF3 moieties, which can lead to the formation of F���H-C 

interactions [270]. The triflate anions can thus act as pillars between the motifs. In 8 

indeed, the triflate anions are linkers between the one-dimensional chains, even if the 

interactions with AgI is weak. 

The motif in 8 is similar to the motif in 5 and 7, but the long range organisation is rather 

different, due to the difference in size, shape and symmetry between nitrate and triflate. 

Yip and co-workers present two compounds {[Ag(N,N’-bis(3pyridinecarboxamide)-1,6-

hexane)](NO3)}n and {[Ag(N,N’-bis(3pyridinecarboxamide)-1,6-hexane)](CF3SO3)}n with 

similar zig-zag chains and similar packing in layers. The major difference between both 

coordination polymers is the inter-sheet distances, in correlation with the anion size. 

Nevertheless, triflate counter anions are usually used to simply balance the charge in the 

lattice, the triflate anions acting as template [268, 270, 274]. Particularly, when the silver 

ion is coordinated by four ligand molecules, the triflate anion can not approach the silver 

ion due to steric inherence [275]. 

 

III.3.b - {[Ag(L)]ClO4}n 9 

The slow diffusion of a solution of L in THF into a solution of silver perchlorate in water 

leads to the formation of colorless and plate-like crystals of {[Ag(L)]ClO4}n, 9. The crystals 

grow in the darkness after one day, they are suitable for single crystal X-ray diffraction. 

Caution! Although no problem in handling perchlorate salts occurs, these should be 

treated with great caution, due to their potential explosive nature. 
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The space group of the crystals of 9 is monoclinic I2/a (no.15). The obtained crystals are 

constituted of two inseparable twins. The measurement was performed on a twinned 

crystal and the collected data were separated, according to their belonging to one or the 

other. The resolution was made on one part of the data collection. 

The unit cell is constituted of four asymmetric units, consisting of one half silver atom, one 

half ligand molecule and one half of a perchlorate molecule. (Figure B-52) The silver atom 

is localized on an inversion center (0, ½, 0(b)) and the chlorine atoms on a two-fold axis 

(1/4, y, 0(e)). The most important bond lengths and angles are listed in Table B-30. 

 

Figure B-52: asymmetric unit in 9 

As an inversion center lies in the middle of the C7-C7#1, the pyridine rings within a ligand 

stay thus in parallel planes. They are separated by 1.49(3) Å as the ester groups are 

twisted towards the pyridine groups. The angle between the plane containing the pyridine 

and the one containing the ester groups is 16.0(8)°. 

The general motif is the same as for compound 8 with formation of a chain, the anti-

conformation of the ligand and the “up-to-down” direction of the ligand molecules along the 

chain (Figure B-53). The distances between two silver atoms in a chain is 17.47 Å. The 

distances Ag-N are 2.197(4) Å i.e. 0.04 Å longer than in 8. The N-Ag-N angle is 180°, due 

to the symmetric influence of the coordinating perchlorate anions on this angle. The 

distance Ag-O(perchlorate) is 2.698(8) Å. This distance indicates a weak interaction 

between silver and perchlorate [178], the silver-perchlorate distances usually ranging from 

2.50 to 2.80 Å. 

 

Figure B-53: one chain motif in 9 

In 9, the chains are parallel to each other with the counter anion between the chains. Two 

close chains are propagated in different directions tilted of about 30°. These two chains 
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cross each other only once (Figure B-54). The overall arrangement is stabilized with the 

perchlorate counter anion. Indeed, the two oxygen atoms O5 of one perchlorate interact 

both with one silver atom of each chain. The distance silver-silver is 4.5410(6) Å long, the 

counter-anion does not support silver-silver contacts, the silver-perchlorate interaction 

being too weak. There is a weak Ag���ring interaction between one silver atom and a 

pyridine ring of the second chain, the silver-centroid distance being 3.511 Å with an offset 

of ca. 2 Å. (Table B-32) 

 

Figure B-54: chains crossing in 9 (the two different chain directions are shown in blue and in red, 

perchlorate atoms in black) 

The three-dimensional structure can be understood as the stacking of these two kinds of 

chains (Figure B-55a). The undulation of the chains is due to the presence of the 

perchlorate counter anions. 

 

Figure B-55: a) top view of the overall structure (the colour has the same meaning as on previous 

figure) along the b-axis; b) detail of the interactions within a layer in 9: � -stacking (arrows) and 

hydrogen bonds (dashed lines) 

Two adjacent chains running in the same direction are close enough to interact and to 

form layers. There are weak interactions within these layers and also between the layers.  

Firstly, the interactions within a layer will be detailed (Figure B-55b): i) The perchlorate 

counter anions bridge two chains, being involved in coordination bonds (O5-Ag1) and 

hydrogen bonding (with the H1 and H3 hydrogen atoms of the pyridine rings coordinated 

to the Ag1 silver atom and with the H7B ethyl hydrogen atom of the adjacent chain) (Table 

b) a) 
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B-31.); ii) there is also �-stacking between the pyridine rings and the ester groups in the 

area where the chains are the closest (the shortest distance is 3.3 Å). On Figure B-55b, 

cavities (9.5 × 10 Å) between the perchlorate anions (region in blue) can be seen: the 

second kind of chains is going through these channels. 

There are further interactions between the sheets: hydrogen bonds involving the O6 

oxygen of the perchlorate anions and hydrogen bonds between the ligand molecules 

belonging to different layers (Table B-31). These hydrogen bonds are mostly involving the 

O1 oxygen atoms and pyridyl or ethyl hydrogen atoms of another layer. 

 

Table B-30: most important bond lengths (Å) and angles (°) in 9 

Ag-N 2.197(4) N-Ag-N 180.000(1) 

Ag-O(ClO3) 2.698(8)   

C-N 1.346(7), 1.350(7) C-N-C 117.5(5) 

 

Table B-31: Hydrogen bond data for 9 [lengths (Å) and angles (°)] 

D-H���A d(D-H) d(H���A) d(D���A) Angle D-H���A 

intra-sheets hydrogen interactions  

C3-H3���O5 0.93 2.55 3.256(1) 133.6 

C3-H3���O6 0.93 2.52 3.33(1) 145.1 

C1-H1���O5#1 0.93 2.56 3.30(1) 137.7 

C7-H7B���O6#2 0.97 2.89 3.47(2) 119.6 

C-H���O hydrogen interactions between the sheets 

C4-H4���O6#3 0.93 2.47 3.31(1) 150.7 

C7-H7B���O1#3 0.97 2.82 3.649(7) 143.9 

C2-H2���O1#4 0.93 2.66 3.565(7) 164.0 

C1-H1���O2#5 0.93 2.89 3.609(7) 134.7 

Symmetry transformations used to generate equivalent atoms: #1 -X, -Y+2, -Z+1; #2 X+1, Y, Z; #3 X+1/2, -

Y+1, Z; #4 -X+1, Y+1/2, -Z+1/2; #5 X-1/2, -Y+2, Z. 

 

Table B-32: Ag � � � pyridine rings interactions lengths (Å) and angles (°) in 9 

 dM-R pdM-R � 

Ring (N1, C1, C2, C3, C4, C5)���Ag1#1 3.511 2.911 33.99 

Symmetry transformations used to generate equivalent atoms: #1 -X+3/2, Y, -Z. 

 

Perchlorate anions can be coordinating moieties (with silver-oxygen distances of about 2.5 

Å) [178], or engage in weak interactions with AgI (with silver-oxygen distances of about 2.7 
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Å) [36, 38, 165, 180] or be templates for the formation of networks (silver and perchlorate 

are spaced by ca. 2.9 Å) [167, 169, 172, 175, 270]. 

In 9, the motif is again a one-dimensional chain {Ag(L)}+
n, with which the perchlorate 

anions are moderately interacting. The role of perchlorate may be regarded as a template: 

the chains can not be linear and lie exactly parallel, because of the presence of the 

counter anions, giving an undulation to the chains. Contrary to 8, the chains in 9 tend to 

stack parallel as in the case of coordination polymers obtained with L and AgNO3 (3, 4, 5 

and 7). 

 

III.3.c - {[Ag(L)]PF6}n 10 

As in some cases, the use of hexafluorophosphate instead of perchlorate as counter 

anions induces no or few changes in the structure [169, 270], the {[Ag(L)]ClO4}n, 9, and 

{[Ag(L)]PF6}n, 10, will be compared. Indeed, both counter anions have a similar shape, 

size and non-polarity. 10 was synthetized by Jorge Sagué in the Fromm group and the 

synthesis and the crystallographic structure will be here only resumed for comparison. 

 

Crystals of 10 are obtained by slow diffusion between a solution of L in THF and a solution 

of AgPF6 in water in an “H-shaped” tube in low yield. 

The direct reaction between L and AgPF6 in dichloromethane gives a white precipitate with 

the composition L:AgPF6 1:1. The IR spectrum indicates the presence of PF6 and L, as 

well as the coordination of the ligand (shift of the 	(C=C) band from 1597 to 1618 cm-1). 

The batch precipitate was not crystalline enough to collect a good powder X-ray spectrum. 

 

10 crystallizes in the monoclinic space group I2/a (no.15) as does 9. The cell parameters 

are similar for a and b, but the c axis is twice as longer in 10 than in 9 (34.6 and 17.3 Å 

respectively). This difference is due to the fact that in 10, the asymmetric unit is bigger with 

one silver atom, one PF6
- counter ion and one ligand molecule. No atom is lying on 

particular crystallographic positions. 

The motif is, as in 9, a chain with alternating silver atoms and L molecules, but the 

directions of L on each side of one silver atom are different (Figure B-56). The ligand is 

going alternatingly “up-to-down” and “down-to-up” so that a zig-zag chain is formed. 
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Figure B-56: chain motif in 10 

The shape of the chain is the major difference between the structure of 9 and 10. The 

overall arrangement of the chains is indeed the same in 9 and 10 (Figure B-57). The 

chains arrange parallel to each other, and there are two main directions for the chains in 

10, and the PF6
- counter anions have the same effect in the structure: they are responsible 

of the undulation of the chains. The PF6
- anions interact weakly with silver ions in the same 

way than perchlorate in 9, i.e. PF6
- is bidentate with silver-fluorine distances of 2.894 and 

3.093 Å. Weak Ag-PF6
- are usually found with silver-fluorine distances of ca. 3 Å [177], the 

shortest Ag-F(PF5)
- is found in {[Ag(1,3-bis(4-pyridyl)propane](PF6)}n with 2.75 Å and the 

interaction is described as ionic [165]. 

 

Figure B-57: parallel stacking of the chains in 10: the blue chains are going in one direction, the red 

ones in another and the hexafluorophosphate anions are drawn in black 

The difference in the chain shape in 10 towards 9 induces another structural change: in 

10, the PF6
- anions are localized in channels, whereas 9 is not a porous material. Both 

three-dimensional structures of 10 and 9 are compared in Figure B-58. 

The interactions within the packing are listed in Table B-33 The most important ones are 

the hydrogen bonds between the ligand molecules (The ester oxygen atoms form 

hydrogen bonds with pyridyl hydrogen atoms with distances of 2.52 and 2.58 Å.) and the 

more or less strong interactions between the PF6 and the ligands (The fluorine hydrogen 

distances range from 2.49 to 2.86 Å.). For comparison, C-H���F interactions are found in 

{[Ag2(N,N’-di(2-pyridyl)oxamide)3(CH3CN)2](PF6)2}n between the fluorine atoms and pyridyl 

hydrogen atoms at 2.542 and 2.508 Å with angles of 143.4 and 152.7° respectively [38]. 

up-to-down down-to-up phosphor 

fluorine 



B - III.3 - AgI coordination polymers Adeline ROBIN 
 

Structural diversity of Cu(I), Ag(I) and Cu(II) coordination polymers with the ligand ethanediyl bis(isonicotinate) 119 

 

 

Figure B-58: Comparison of the 3D-dimensional structures of 9 and 10, the chains in different 

directions are shown in red and blue, anions in black 

Table B-33: most important bond lengths (Å) and angles (°) in 10 

Ag-N 2.138(5), 2.148(5) N-Ag-N 178.9(3) 

Ag-F(PF5) 2.896(8), 3.096(8)   

C-N 1.39, 1.39 C-N-C 120 

 

Table B-34: Hydrogen bond data for 10 [lengths (Å) and angles (°)] 

D-H���A d(D-H) d(H���A) d(D���A) Angle D-H���A 

Ligand-ligand hydrogen interactions  

C8-H8���O1#1 0.93 2.52 3.42(1) 163.6 

C3-H3���O3#2 0.93 2.58 3.49(1) 163.9 

C-H���F hydrogen interactions 

C7-H7���F1#3 0.93 2.61 3.43(1) 147.8 

C1-H1���F2#3 0.93 2.62 3.36(1) 137.1 

C7-H7���F2#3 0.93 2.49 3.27(1) 141.3 

C2-H2���F3#4 0.93 2.54 3.30(1) 134.0 

C6-H6���F3#4 0.93 2.86 3.57(1) 134.0 

C5-H5���F1 0.93 2.59 3.46(1) 156.8 

C1-H1���F4#3 0.93 2.50 3.25-1) 137.5 

C14-H14B���F4#5 0.97 2.66 3.20(2) 115.6 

C14-H14A���F4#2 0.97 2.74 3.35(2) 121.7 

C6-H6���F5 0.93 2.76 3.69(1) 173.4 

C10-H10���F6#6 0.93 2.45 3.21(1) 139.1 

Symmetry transformations used to generate equivalent atoms: #1 -X+1, -Y+2, -Z; #2 -X-1, Y+1/2, -Z+1/2; 

#3 X+1/2, -Y+1, Z; #4 X, Y+1, Z; #5 X-1/2, -Y+1, Z; #6 X+1/2, -Y+2, Z. 

 

9 10 
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Table B-35: Ag � � � pyridine rings interactions lengths (Å) and angles (°) in 10 

 dM-R pdM-R � 

Ring (N1, C1, C2, C3, C4, C5)���Ag1#1 3.88 2.89 41.9 

Ring (N2, C6, C7, C8, C9, C10)���Ag1#2 3.27 3.17 14.6 

Symmetry transformations used to generate equivalent atoms: #1 X-1/2, -Y, Z; #2 X+1/2, -Y, Z. 

 

As expected, there are similarities between the coordination polymer based on L and silver 

perchlorate or hexafluorophosphate, but both structures are not identical as in some other 

reported cases [169, 270]. 

Jung et al. show some coordination polymers built with 3,3’-thiobispyridine and different 

silver salts [177]. The compounds obtained with ClO4
- and PF6

- have similar motifs, i.e. 

helicoidal chains, but the helical pitches are different according to the anions, although 

both anions have a similar shape and size. They assume that the crystal packing may be a 

more important factor than the volume of the counter anions. The difference in the 

structural motif in 9 and 10 can thus be explained by the difference in the weak 

interactions between the counter anions and the surrounding ligand. 

 

III.3.d - Ag(BF4) + L 

In order to continue our study of the counter anion influence, the crystallization of L with 

AgBF4 was attempted. Unfortunately, it was not possible to obtain crystals. The direct 

reaction of L and AgBF4 in dichloromethane gives a white precipitate. Its composition 

Ag:L:BF4 is 1:1:1. The IR spectrum indicates the presence of BF4 and L, as well as the 

coordination of the ligand (shift of the 	(C=C) band from 1597 to 1612 cm-1). The presence 

of oligomeric species in solution was proven with ESI/MS in CH3CN/CH2Cl2 (presence of 

[LH]+, [LAg]+, [LHAg(BF4)]
+, [L2Ag]+ and [L2Ag2(BF4)]

+ at respectively 273.1, 379.1, 467.2, 

650.9 and 846.8 m/z). 

 

III.3.e - Ag2SO4 + L  

Some other AgI coordination polymers were attempted with other more coordinating 

anions such as sulfate.  

The reaction between Ag2SO4 and L (molar ratio 1:1) in dichloromethane gives a white 

precipitate. The analyses show a composition Ag:SO4:L 2:1:3 in addition to solvent 

molecules (either 0.5 CH2Cl2 or 2 H2O). The IR spectrum indicates the presence of the 

ligand and sulfate anions, but the proof of the coordination is not evident. 
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The different used techniques for the (re-)crystallization of this compound were 

unsuccessful: different solvents, different reaction temperatures, “H-shaped tube”. 

Generally, only Ag2SO4 crystallizes. 

 

III.3.f - Counter ion influence 

Motifs 

It is worthy to notice that the linear environment around silver is the preferential 

coordination modes of L with AgI (except for 6), the counter anions being more or less 

close to the silver centres for completing the AgI coordination sphere. This is in agreement 

with the important class of AgI-bipyridyl ligands already reviewed [9, 11]. Three- or four-

coordinated silver centers with L were never obtained. 

Ligand functionalities 

Both pyridine groups of L are coordinating silver atoms in the presented compounds, i.e. 

there are only bridging ligands, L, and no terminal ones in these structures. Another 

important aspect is the implication of the ester groups in the building of the coordination 

polymers. The oxygen atoms of the carbonyl functions are always involved in hydrogen 

bonding and not involved in any interactions with silver ions. This implies the formation of 

layers by stacking of parallel chains. 

 

Figure B-59: arrangement of the chains thanks to the hydrogen bonds involving C=O functions in 3, 

5, 7, 8 (formation of layers) and in 9, 10 (interactions between layers) 

In 3, 5, 7, 8, the ten-membered hydrogen bonding systems (���O=C-C-C-H���O=C-C-C-H) 

allow the “edge-to-edge” alignment of the chains (Figure B-59). These hydrogen bonds are 

moderate to weak [12] and involve either pyridyl hydrogen or ethyl hydrogen atoms. In 9 

and 10, C=O groups are also involved in hydrogen bonds, but as previously seen, these 

interactions are not the main factor of the sheet formation, layers in these structures being 

primarily formed by other interactions. In the two compounds 4 and 6, such hydrogen 

bonds are also observed, even if the structures are strongly different. The ligand N,N’-di(2-

3, 5, 7, 8 9, 10 
= hydrogen bonding system 
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pyridyl)oxamide containing C=O bonds in the bridging part between the pyridine rings is 

also involved in hydrogen bonding in all the coordination polymers built with this ligand 

[38]. 

Anion bonding modes 

The behaviour of the nitrate anions differs from the behaviour of the other counter ions, as 

its coordinating ability is flexible. In the compounds 3, 4, 5, 6, and 7, the interactions 

between the silver cations and the nitrate anions vary from weak monodentate interaction 

to strong bidentate coordination. The nitrate anions always interact with two silver ions 

using two or three of their oxygen donor atoms. It is possible for nitrate to bridge metal-

metal contacts (4 and 5). 

 

Figure B-60: Nitrate interactions in 3, 4 and 5 (coordination bonds in blue, hydrogen bonds in brown, 

oxygen-oxygen contacts in orange) 

 

Figure B-61: Nitrate interactions in 6 and 7 (coordination bonds in blue, hydrogen bonds in brown) 

The three other used counter anions are weakly coordinated to silver and act also as 

bidentate ligands between two chains. 

3 4 5 

6 7 
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Figure B-62: triflate, perchlorate and hexafluoroborate interactions in 8, 9 and 10 (coordination bonds 

in blue, hydrogen bonds in brown) 

All donor atoms of the counter anions are furthermore involved in hydrogen bonding. Apart 

for 8 (triflate), the donor atoms of the counter anions are similar and the shapes of the 

counter anions are symmetric. The increasing number of the donor atoms in the counter 

anions increases the number of interactions with the environment. This difference can be 

directly seen as far as the compounds 9 and 10 are compared (Figure B-62). Both 

structures are equivalent except the direction of the ligand molecules within a chain. This 

can be attributed to the counter anion influence. Concerning the triflate counter anions, the 

main influence is the presence of two kinds of donor atoms, which allows the formation of 

either C-H���F or C-H���O interactions. The direct consequence is the apparition of two 

types of ligands within the chain motif: ligands without interactions with -CF3 and ligand 

involved in hydrogen bonds with -CF3. 

Counter anion influence 

The role of the counter anions seems to come in third place in these coordination polymer 

packing, after the coordination bonding (linear silver centres) and the ligand-ligand 

hydrogen bonding (except in 4 and 6, in which the solvent influence is predominant). 

The nitrate anions can bridge two silver atoms and generate pairs of chains. In the AgNO3 

compounds, the chains are parallel “face-to-face” in addition to the stacking described 

above (except for 6, in which there is only parallel organisation within a pair of chains). 

The use of less coordinating counter anions shows the tendency to a tilted organisation of 

the chains, perhaps for better adjusting the repulsive and attractive forces in the packing 

(Ag���Ag, ring���ring, C=O���C=O, C-H���O....). On the other hand, these counter anions 

bring obviously new interactions, particularly with the introduction of fluorine atoms in 

triflate. 

 

8 9 10 
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IV - CuII coordination polymers 

Coordination polymers based on ethanediyl bis(isonicotinate) are at last investigated by 

the use of CuII metal ions. 

 

IV.1 -  {[Cu(L)2(NO3)(H2O)](THF)2(NO3)(H2O)x}n 11 

The reaction between L and Cu(NO3)2·3H2O in methanol gives a blue precipitate, of 

composition Cu:L:NO3 1:1:2 whatever the reaction stoechiometry (ML, ML2 or M2L). The 

recrystallization of this powder in a mixture of solvents THF/water (50:50) yields few dark 

blue and poorly stable (when coming out from the mother liquor) single crystals suitable for 

single crystal X-ray diffraction : {[Cu(L)2(NO3)(H2O)](THF)2(NO3)(H2O)x}n, 11. Some 

oligomeric fragments are present in solution: [LH]+, [CuL(NO3)2(H2O)2(THF)2]
2+, 

[CuL(NO3)]
+, [Cu2L2(NO3)2(H2O)]2+, [CuL2(NO3)]

+, [Cu2L2(NO3)3]
+. 

 

The coordination polymer 11 crystallizes in the monoclinic space group P2/c (no.13). The 

asymmetric unit is composed of one copper atom (Cu1), two L molecules (labelling on 

Figure B-63), two nitrate counter anions (N5, O9, O10, O11 and disordered N6, O12, O13, 

O14 or N7, O15, O16), two THF molecules (O17-C29 to C32 and O18-C33 to C36), one 

coordinating water molecule (O40) and non coordinating water molecules (O19, O600, 

O700, O12). All atoms are found in general positions, except two atoms, which are 

localized on a two-fold axis (0, y, 1/4(e)): N7 and O15. 

 

Figure B-63: labelling of the ligands in 11 (carbon atoms are going from C1 to C14 in L1, and from 

C15 to C28 in L2) 

The CuII is hexa-coordinated by four nitrogen atoms of four different ligand molecules in 

equatorial positions and two oxygen atoms in apical positions: one from a water molecule 

(O40) and one from a nitrate anion (O9) (Figure B-64b). The repeating unit of a one-

dimensional chain is a loop, in which the CuII atoms are pairwise bridged by two ligands 

and terminally bonded to one water and one anion (Figure B-64a). 

N1

O1

O2 O3

O4

N2

O5

O6 O7

O8

N4N3
L1 L2 
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Figure B-64: a) repeating unit in 11 (color codes giving for all following figures, the THF molecules 

being shown in brown on this figure); b) coordinated atoms on Cu II 

In the {CuN4O2} unit, the distances copper-nitrogen range from 2.026(2) to 2.051(2) Å 

(Table B-36). The sum of the N-Cu-N angles around a CuII centre is 359.46°; the four 

nitrogen atoms do not lie exactly in a plane and the CuII centre is found 0.116(1) Å above 

the mean plane through these four nitrogen atoms. There is thus a slight distortion of the 

equatorial positions, due to the relatively strong coordination of the water molecules on 

CuII. The distance Cu-water is 2.261(2) Å long, whereas the copper-nitrate distance is 

2.673(2) Å long. The Cu-nitrogen distances are in an expected range (2.01-2.06 Å) for 

equivalent coordination of four nitrogen atoms on CuII in CuII coordination polymers [49, 

276-278], so are the distances Cu-water (2.1-2.5 Å) [49, 277, 279, 280]. The nitrate anion 

is moderately coordinated to the CuII centre, like usually observed with nitrate 

monodentate ligands [161]. The CuII centre shows thus a Jahn-Teller distortion with the 

axial distances elongated in comparison to the equatorial distances. The distances C-N 

within the ligand are similar to the distances in the previous compound, whereas the C-C 

distances are ca. 0.01 Å smaller. 
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Figure B-65: one-dimensional motif in 11 

The structural motif in 11 is a one dimensional double chain (Figure B-65), in which the 

ligand adopts the gauche-conformation. The planes containing the pyridine groups within a 

ligand form an angle of 83.35(7)° for L1 and 40.9(1)° for L2. This motif is similar to 

compound 2 with the formation of (Cu2L2)-loops. Unlike in 2, there is no symmetry 

operation in the middle of the metallacycle and the two bridging ligands (L1 and L2) are 

not equivalent. The distance between two double-bridged CuII centres is 12.3611(7) Å, 

which is longer than in 2 by ca. 3 Å but smaller than in 4 by ca. 5 Å.  

 

Figure B-66: the crystal packing along the b-axis (the two types of chains are shown in blue and red, 

the non-coordinating molecules in brown) 

The cavities formed within the (Cu2L2)-loops have a size of about 7�8 Å. Along the b-axis, 

these cavities are stacked and the so-built channels contain the THF molecules (Figure 

B-66). The THF molecules are not found exactly between the ligand molecules, but below 

and above the chains as in 2 (Figure B-67). The THF molecules interact with the walls of 

the cavities through C-H���� interactions; the distance between THF hydrogen atoms and 

pyridine ring centres are 3.39 and 3.01 Å long, hydrogen atoms are not exactly vertical to 

the ring centres but offset of respectively 1.7 and 0.7 Å (Table B-37). 
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Figure B-67: the chains in 11 along the a-axis 

The strong bending of the ligand molecules is also due to the fact that the chains in 11 are 

not linear but undulating if regarded along the a-axis (Figure B-67). This undulation is 

attributed to the presence of non-coordinating water molecules and nitrate anions. Indeed, 

these molecules are localized in a second kind of channels along the a-axis (Figure B-68). 

 

Figure B-68: Crystal packing along the a-axis (the two types of chains are shown in blue and red, the 

non-coordinating molecules in brown) 

The two kinds of channels are supported by the skeleton of the structure: the double 

chains are arranged in a parallel way in the crystal packing. As shown on Figure B-66, the 

chains are assembled “two-by-two”. 

Firstly they interact on the side of the L2 ligands: they are alternatingly stacked and some 

interactions occur between the chains. i) Hydrogen bonds are found between the ligands, 

oxygen and hydrogen being apart by 2.60 and 2.81 Å (Table B-38). ii) Other kinds of 

hydrogen bonds occur between THF molecules and ligand, the THF molecules acting thus 

as intermediates between the chains, the oxygen-hydrogen distances ranging from 2.76 to 

2.89 Å (Table B-38). iii) The coordinating nitrate ions play the same role between the 

chains in this area with oxygen-hydrogen distances of 2.50 to 2.63 Å (Table B-38). 

Secondly the ligands L1 are in front of each other in the second kind of stacking of the 

chains. There are few interactions between the chains in this part. The major interactions 

are i) hydrogen bonds between the coordinated nitrate ions and ligand molecules 
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belonging to the adjacent chains group (2.50 Å) (Table B-38) and ii) interactions through 

the disordered nitrate/water molecules located between both groups of chains. 

As previously described, the non-coordinating molecules (one water molecule (O19) and 

some disordered nitrate and water molecules) are localized in the channels along the a-

axis, as well as the coordinating water molecules (O40). On the other hand, the THF 

molecules and the coordinating nitrates are embedded in the skeleton of the coordination 

polymer (Figure B-69a). 

 

Figure B-69: a) detail of the channels along the a-axis in 11 (skeleton in brown, nitrogen of nitrate 

ions in green, oxygen of nitrate ions and THF in red, water oxygen atoms in orange, copper in blue); 

b,c,d) different nitrate and water positions in the channels 

Two different crystallographic sites (sites I and II-Figure B-69b) were found to describe the 

disorder of the last nitrate anions. Both positions were refined at half site occupancy in 

order to establish the coherent charge balance. The Cu-Cu distances are different: 11.1 Å 

for site I, 9.4 Å for site II, implying different arrangement of the water and nitrate molecules 

in both sites. 

Three cases can be distinguished. i) The nitrate (N7) is present in site I and forms 

hydrogen bonds with the water molecules (O19). The site II is therefore occupied by three 

water molecules linked via hydrogen bonds (distances oxygen-oxygen of 2.63(2) and 

2.40(2) Å) (Figure B-69b, Table B-36, Table B-38). ii) Two water molecules (O700) are 

present in the site I, with hydrogen bonds between the several water molecules. In the site 
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c) d) 
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II, the nitrate molecule (N6) and one water molecule (O600) are found with also strong 

hydrogen bonding (Figure B-69c). iii) The last situation is almost the same, but the 

positions of nitrate (N6) and O600 are exchanged, as there is a mirror in the middle of the 

site II (Figure B-69d, Table B-36, Table B-38). It is worthy to note that the channels are 

filled with hydrogen bonding chains (made up from the non coordinating nitrate molecules 

and water molecules) and that the coordinating nitrate anions and THF molecules do not 

participate to this network. There are also interactions between the considered network 

and the skeleton: hydrogen bonds between nitrate/water molecules and ligand (Table 

B-38). The total amount of water molecules per asymmetric unit is thus 1,5. 

 

Table B-36: most important bond lengths (Å) and angles (°) in 11 

Cu-N 2.026(2), 2.036(2) 

2.040(2), 2.051(2) 

N-Cu-N 90.24(8), 88.42(8) 

89.92(8), 90.88(8) 

Cu-OH2 2.261(2) Cu-O(NO2) 2.673(2) 

C-N 1.336(3), 1.341(3) 

1.333(3), 1.339(3) 

1.340(3), 1.341(3) 

1.337(3), 1.342(3) 

C-N-C 118.8(2) 

118.0(2) 

118.0(2) 

118.3(2) 

(H2)O-O(H2) O700-0700 

O12-O600 

O12-O600 

2.63(2) 

2.41(2) 

2.63(2) 

 

 

Table B-37: C-H � � � pyridine rings interactions lengths (Å) and angles (°) in 11 

 dH-R pdH-R � � 

C31-H31B��� Ring(N1, C1, C2, C3, C4, C5)#1 3.39 2.94 29.8 145.4 

C34-H34B��� Ring(N2, C10, C11, C12, C13, C14)#2 3.01 2.93 13.0 153.3 

Symmetry transformations used to generate equivalent atoms: #1 X, Y, Z; #2 X, Y-1, Z. 
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Table B-38: Hydrogen bond data for 11 [lengths (Å) and angles (°)] 

D-H���A d(D-H) d(H���A) d(D���A) Angle D-H���A 

inter-chains ligand-ligand hydrogen interactions  

C22-H22���O8#1 0.97 2.81 3.720(3) 157.5 

C27-H27���O5#1 0.93 2.60 3.460(3) 153.0 

C-H���O hydrogen interactions between ligand and THF 

C15-H15���O18#2 0.93 2.77 3.631(7) 153.9 

C36-H36A���O8#2 0.97 2.84 3.676(8) 145.0 

C34-H34B���O1#3 0.97 2.76 3.68(1) 158.8 

C33-H33A���O3#2 0.97 2.89 3.832(9) 163.9 

C-H���O hydrogen interactions between coordinated nitrate and ligand 

C1-H1���O10#4 0.93 2.63 3.462(4) 149.6 

C22-H22B���O9#5 0.97 2.54 3.479(3) 164.2 

C26-H26���O9#2 0.93 2.50 3.152(3) 127.5 

C3-H3���O11#3 0.93 2.55 3.387(6) 149.4 

C22-H22B���O11#5 0.97 2.51 3.352(6) 145.4 

C8-H8A���O10#7 0.97 2.50 3.210(3) 129.8 

C-H���O hydrogen interactions between channels and skeleton 

C17-H17���O14#8 0.93 2.33 3.208(9) 158.1 

C25-H25���O12#9 0.93 2.79 3.67(1) 159.0 

C7-H7B���O700#2 0.97 2.63 3.54(1) 155.8 

C13-H13���O700#3 0.93 2.76 3.37(1) 123.6 

hydrogen interactions between water 

O19-H19B���O16#3 0.83(5) 2.14(5) 2.831(6) 140(5) 

O40-H40A���O13#8 0.66(3) 2.31(4) 2.940(6) 162(4) 

O40-H40A���O600#8 0.66(3) 2.06(4) 2.69(1) 161(4) 

O40-H40B���O19#6 0.87(4) 1.84(4) 2.696(3) 171(4) 

O19-H19B���O700#8 0.83(5) 1.81(5) 2.632(8) 171(5) 

Symmetry transformations used to generate equivalent atoms: #1 -X+1, -Y+2, -Z+2; #2 -X+1, Y, -Z+3/2; #3 

-X+1, Y+1, -Z+3/2; #4 -X+1, -Y+2, -Z+1; #5 X, Y, Z+1; #6 -X+1, -Y+1, -Z+1; #7 X+1, Y, Z+1; #8 X, Y, Z; #9 

-X+1, -Y+1, -Z+2; #10 X-1, Y-1, Z-1. 

 

IV.2 - {[Cu(L)(NO3)2]}n 12 

The slow diffusion between a solution of L in dichloromethane and a solution of 

Cu(NO3)2·3H2O in methanol allows the formation of a blue polycrystalline compound, 

forming needles which grow as “urchins”. The polycrystalline powder is suitable for powder 

X-ray diffraction and the structure was solved from these data by Antonia Neels 

(Neuchâtel). 
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12 crystallizes in the triclinic space group P-1 (no.2). The asymmetric unit is composed of 

one copper atom (50% occupancy), two nitrate anions and one half of a ligand molecule 

(Figure B-70a). There are two asymmetric units per unit cell. The copper atom lies on an 

inversion center (0, 0, 1/2(b)). 

 

Figure B-70: a) asymmetric unit in 12: b) coordination around Cu II
 centres 

The CuII ion is coordinated by two nitrogen atoms of two different ligand molecules and two 

different nitrate anions in a pseudo-square planar coordination geometry, the distances 

copper-nitrogen being 2.002(5) Å long, the copper-oxygen 2.003(6) Å. The distortion of the 

coordination sphere is due to weak interactions of a second nitrate oxygen atom O2 to the 

copper centre (2.497(6) Å) (Figure B-70b). The nitrate anions act thus as anisobidentate 

ligands. Both copper-nitrogen and copper-oxygen bonds are smaller than in 11. The strong 

bonding of nitrate on copper explains the shift of the nitrate stretching band on the IR-

spectrum of 12. Indeed this band is found between 1500 and 1450 cm-1, whereas the 

“free” nitrate band usually appears at 1390 cm-1. (In the silver-compounds in which the 

nitrate is moderately coordinating silver centers, the nitrate stretching bands also appear in 

the 1390 cm-1 region.) Such a shift has also been observed for similar copper compounds 

[281].  

 

Figure B-71: chain motif in 12 

The motif in 12 is a linear chain, in which the CuII ions are bridged by the ligand molecules 

in the anti-conformation (Figure B-71). The distances copper-copper within the chain are 

17.20 Å, in agreement with the metal-metal distances in the other compounds with anti-

conformation of the ligand, namely 1, 3, 5, 7, 8, 9 and 10. 
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Figure B-72: layers in 12 supported by hydrogen bonds between the chains 

The chains arrange parallel to each other supported by hydrogen bonds in order to build a 

layer. The hydrogen bond motif is a ten-membered ring including two hydrogen bonds: C2-

H2···O4 with a hydrogen-oxygen distance of 2.41(1) Å. In the layers, cavities of 5�14 Å are 

formed, which are filled by the nitrate molecules of the adjacent layers, one of the above 

layer, the other from below. The layers are stacked parallel in the crystal packing (Figure 

B-73). 

 

Figure B-73: the stacking of the layers in 12 (one layer in red, its adjacent ones in grey) 

Only few interactions occur between the layers: hydrogen bond involving nitrate anions 

and ligand molecules (2.62 Å) (Table B-40). The smaller distance between to copper 

atoms in 12 is 5.193 Å. 

 

Table B-39: most important bond lengths (Å) and angles (°) in 12 

Cu-N 2.002(5) N-Cu-N 180 

Cu-O(NO2) 2.003(6) 

2.497(6) 

  

C-N 1.335(3), 1.330(4) C-N-C 120.9(4) 
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Table B-40: Hydrogen bond data for 12 [lengths (Å) and angles (°)] 

D-H���A d(D-H) d(H���A) d(D���A) Angle D-H���A 

inter-chains ligand-ligand hydrogen interactions  

C2-H2���O4#1 0.928(9) 2.41(1) 3.256(8) 152(1) 

C1-H1���O2#2 0.93 2.620  145.44 

Symmetry transformations used to generate equivalent atoms: #1 -X-1, -Y+1, -Z; #2 -X-1, -Y, -Z+1. 

 

The two compounds based on L and Cu(NO3)2 strongly differ, underlining the influence of 

the crystallization method and solvent. 

CuII coordination sphere 

The main difference between the two compounds 11 and 12 is the coordination sphere of 

the CuII centers. The distorted octahedral CuII center (Jahn-Teller distortion) in 11 is 

coordinated by four ligand molecules (equatorial positions), one water molecule and one 

nitrate molecule (apical positions). In the other hand, the CuII center, in 12, lies in a pseudo 

square planar coordination geometry formed by two ligand molecules and two nitrate 

counter anions. The distance copper-nitrogen are thus shorter in 12 than in 11 by ca. 0.04 

Å. The nitrates are furthermore stronger coordinated in 12 than in 11, with copper-nitrate 

distances smaller of more than 0.6 Å. They are monodentate ligands in 11 and 

anisobidentate ones in 12. In these compounds, nitrate anions do not bridge two copper 

atoms, involving the three nitrate oxygen atoms in coordination bonds, as in some 

examples in the literature [10] or as in the silver compounds 3 and 7. 

As emphasized in the silver coordination polymers, the nitrate anions have flexible 

coordinating ability [10]. The use of this counter anion with a metal center like CuII 

(relatively rigid) and N-N’-donor bridging ligands can lead to bis-pyridyl metal coordination 

environment with trans monodentate nitrate anions and one-dimensional motifs [281, 282]. 

Other so-built frameworks can have tris-pyridyl metal environment with “T-shaped” 

connecting units, nitrate anions as syn terminal bidentate ligand and one- to -three 

dimensional networks [10]. The last possible configuration is the tetrakis-pyridyl metal 

environment with ligands in equatorial positions and nitrate anions in apical ones, giving 

two- or three-dimensional motifs [161, 217]. 

Compound 11 has a tetrakis-pyridyl metal environment, but with one water molecule and 

one nitrate anion in the apical positions. This situation is scarce in the literature [279, 283]. 

A similar motif is one of the motifs present in the compound 

{[Cu(L)3(NO3)2]·[Cu(L2)(H2O)(NO3)](NO3)}n (L = 1,6-bis(4-pyridyl)hexane) [283]. The motif 

is a double chain motif with {Cu2L2} loops, with analogous coordination environment for 
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CuII than in 11. On the other hand, second one-dimensional chains interlock the first kind 

of chains, passing through two loops: interpenetration occurs. 

Compound 12 has a bis-pyridyl metal environment and some analogue compounds were 

already described [281, 282], for instance, with bipyridine as bridging ligand [282]. 

Long range order 

The co-crystallisation of solvent molecules induces the gauche-conformation of the ligand 

molecules in 11, whereas in 12, the ligands adopt the anti-conformation as in the 

crystalline form of the ligand alone. Like in the silver coordination polymers based on L, 

the gauche-conformation is found in the compound containing solvent molecules. This is in 

correlation with the following statement: the co-crystallization of solvent molecules may 

induce the change in the ligand conformation, in order to create cavities or channels and to 

fit with the increasing number of possible interactions in the crystal packing. The reversible 

statement is not available. 

The solvent crystallization plays also an important role, as the aqueous solution seems to 

favour the formation of tetrakis-metal environment, according to similar structures in the 

literature [161, 279]. Crystals formed in alcoholic solution mostly show the one-

dimensional structural motif [281]. In {[Cu(1,2-bis(3-pyridyl)ethyne)(NO3)2(MeOH)]}n, the 

methanol molecule also coordinates to the copper ion, the copper ion having a pseudo-

square pyramidal coordination environment, instead of the pseudo-square one [27]. 

 

IV.3 -  {[Cu(L)2(ClO4)(H2O)]2(THF)4(ClO4)2(H2O)}n 13 

Caution! Although no problem in handling perchlorate salts occurs, these should be 

treated with great caution, due to their potential explosive nature. 

The reaction between L and Cu(ClO4)2�6H2O in methanol gives a blue precipitate of 

composition Cu:L:ClO4 1:2:2. This compound is insoluble in organic solvents, but soluble 

when organic solvents in addition with water are used. The recrystallization of the blue 

precipitate in a solvent mixture THF/water (50/50) yields to dark blue crystals (block- 

shape). The crystals are suitable for single crystal X-ray diffraction. 

The determination of the total amount of water molecules in 13 was made thanks to the 

structure refinement in addition with TGA/SDTA measurement. For the latter, crystals were 

taken out of the mother liquor, slightly dried on a filter paper and quickly used for 

TGA/SDTA measurement. The loss of weight occurs instantaneously between the 

weighing of the sample and the beginning of the measurement (Figure B-74). The first 

exothermal loss of weight occurs between 25°C and 117°C (4.62%) corresponding to the 

loss of one THF molecule and one water molecule. This first step is followed by three other 



B - IV.3 - CuII coordination polymers Adeline ROBIN 
 

Structural diversity of Cu(I), Ag(I) and Cu(II) coordination polymers with the ligand ethanediyl bis(isonicotinate) 136 

 

ones corresponding to the loss of three THF molecules between 117°C and 155°C 

(3.64%), 155°C and 173°C (3.82%) and 172 and 195°C (3.44%). (The calculated THF 

weight represents 3.68% of the total mass, water representing 0.92%.) The measurement 

should be stopped at 220°C before the decomposition of the organic part, in order to avoid 

explosion of the sample. Between 195°C and 220°C, the loss of one coordinating water 

molecule occurs (0.86%). Elementary analysis performed before and after the heating of 

the sample are in agreement with these results. 

 

Figure B-74: TGA curve for 13 (and its derivative in dashed line) 

 

The compound 13 crystallizes in the monoclinic space group P21/c (no.14). The cell 

parameters of 13 are the same than the ones for 11, except the b-axis parameter which is 

twice as long. Both compounds seem to be isomorphs, i.e. they have the same structural 

motifs. The only difference is in the number of included non-coordinating water molecules 

per {Cu(L)2(X)(H2O)} unit: 1.5 for 11 and 0.5 for 13. 

The asymmetric unit in 13 is thus constituted of two copper ions (Cu1 and Cu2), four 

ligand molecules (labelled in the Figure B-75), four perchlorate counter anions (Cl1, O19, 

O20, O21, O22; Cl2, O23, O24, O25, O26; Cl3, O27, O28, O29, O30 and Cl4, O31, O32, 

O33, O34), three water molecules (O1, O2, O39/O40) and four THF molecules (O35, 

C350, C351, C352, C353; O36, C360, C361, C362, C363; O37, C370, C371, C372, C373 

and O38, C380, C381, C382, C383). There are four asymmetric units per unit cell. 
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Figure B-75: Label of the ligand molecules in 13 

The Cu1 copper ion is coordinated by four ligand molecules (L1 and L2) through the 

nitrogen atoms in equatorial positions, one water molecule (O1) and one perchlorate anion 

(Cl1) in apical positions of an octahedral coordination environment, in order to form double 

chain motifs similar to 11 (Figure B-76). Similar chains involve the Cu2 copper ions 

coordinated by the ligands L3 and L4, one water molecule (O2) and one perchlorate anion 

(Cl2). The coordination sphere of both copper ions is distorted with copper-nitrogen 

distances (2.02 to 2.05 Å) shorter than copper-oxygen distances (2.28 to 2.85 Å) (Table 

B-41). The Cu1 atom lies by 0.114(2) Å out of the plane formed by the nitrogen atoms, 

whereas the Cu2 atom is by 0.514(3) Å out of its corresponding plane. This is due to a 

stronger coordination of the water molecule on Cu2 (2.278(5) Å) than on Cu1 (2.311(4) Å). 

 

Figure B-76: double chain motif in 13 (uncoordinated water and THF molecules omitted for clarity) 

Like in 11, the chains organize themselves parallel in “groups” of chains, creating THF 

containing-channels along the b-axis (Figure B-77a). The chains are not fully stacked, but 

slightly offset, offset attributed to the presence of two kinds of chains. The same 

interactions (hydrogen bonds) between the chains are observed as in 11 (Table B-42). 

Only the C-H···� interactions between pyridyl rings and THF hydrogen atoms disappear, 

as some THF molecules are involved in other interactions in the channels. 
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a) b)  

Figure B-77: Crystal packing in 13: a) along the b-axis and b) along the a-axis (stacked chains in red 

and blue; co-crystallized molecules in brown) 

Along the a-axis, the stacking of the chains leads to the second kind of channels in which 

the non coordinating molecules (water, perchlorate) are localized, as well as the 

coordinating water molecules (Figure B-77b). Both compounds, 11 and 13, differ in the 

organisation of the molecules in these channels. Whereas in 11, the molecules form a 

hydrogen bonded network along the channels directions, a similar network is not present 

in 13. Firstly, the coordinating perchlorate anions, as well as two of the THF molecules are 

involved in the channels interactions. 

 

Figure B-78: a) detail of the molecules localized in the channels (skeleton in brown); b) organisation 

of the molecules in the channels in 13 

The molecules located in the channels are the coordinating water molecules (O1, O2), the 

non-coordinating water molecules (O39/O40) and the non-coordinating perchlorate anions 

(Cl3 and Cl4). The other involved molecules (perchlorate-Cl1 and Cl2- and THF 

molecules-O35 and O36-) are also embedded in the organic skeleton (Figure B-78a). As 

shown on Figure B-78b, the molecules do not interact along the channel axis but are 
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organized around the copper ions. Due to the disorder of some molecules and the non-

coordinating water molecule, O39/O40, (both positions were refined at half site 

occupancy), different cases have to be distinguished. 

 

Figure B-79: the different interactions in the channels in 13 

- environment around O1 water molecules (Figure B-79a): The O1 water molecule forms 

one hydrogen bond with one THF molecule (O35) through its H1A atom. The other 

hydrogen atom (H1) is involved in one or the other of the following interactions: i) If the 

water molecule O40 is present, it is involved in hydrogen bonds with O25 (perchlorate 

coordinated to Cu2), O27 (non-coordinating perchlorate) and O1. ii) In the other case, the 

non-coordinating water molecule is not present, and there is a hydrogen bond between the 

water molecule and the Cl2 perchlorate anions. It is worthy to note that this perchlorate 

has two different positions in correlation with the presence or the absence of the non-

coordinating water molecule. 

- environment around O2 water molecules (Figure B-79b): The O2 water molecule always 

forms hydrogen bonds with the Cl1 perchlorate anion (coordinating Cu1) and with one 

non-coordinating water molecule or with one THF molecule according the cases: i) The 

presence of the non-coordinating water molecule (O39) leads to the formation of hydrogen 

bonds from this molecule to the coordinating water molecule, the THF molecule (O36) and 

the non-coordinating perchlorate anion (O39). ii) On the other hand, if the O39 water 

molecule is not present, there is a hydrogen bond between O2 and the THF molecule 

(O36). This molecule of THF is disordered, so that there are two possible positions in 

correlation with the presence of the O39 water molecule. 

The distances corresponding to these interactions are listed in Table B-41 and Table B-42. 
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Figure B-80: perchlorate-water-copper networks in 13 along the b-axis 

These interactions contribute to the bridging of the copper ions either through one water 

molecule and one perchlorate anion or through two water molecules and one perchlorate 

anion. The so-built interactions lead to the formation of perchlorate-water-copper networks 

running along the b-axis (Figure B-80). 

Table B-41: most important bond lengths (Å) and angles (°) in 13 

 Cu1 Cu2  Cu1 Cu2 

Cu-N 2.025(4) 

2.029(4) 

2.041(4) 

2.052(4) 

2.022(4) 

2.035(4) 

2.044(4) 

2.055(4) 

N-Cu-N 90.3(2) 

89.4(2) 

88.4(2) 

91.1(2) 

90.6(2) 

88.9(2) 

88.7(2) 

91.0(2) 

Cu-OH2 2.311(4) 2.278(5) Cu-O(ClO3) 2.799(4) 2.85(2) 

C-N 1.345(6) to 

1.366(6) 

1.346(6) to 

1.374(7) 

C-N-C 118.3(4) 

118.1(4) 

118.9(4) 

119.3(4) 

118.9(4) 

119.0(4) 

118.3(4) 

117.5(3) 

(H2)O-O(ClO3) O40-025(1) 

O40-O27 

O39-O33 

2.78(2) 

2.89(1) 

2.962(9) 

(H2)O-O(THF) O39-O36 2.79(1) 

 

 

 

 

 

 

 

 

 

 

 

 

9.3 Å 9.4 Å 

Cu2 Cu1 
Cu2 

Cu1 

First possible motif Second possible motif 



B - IV.3 - CuII coordination polymers Adeline ROBIN 
 

Structural diversity of Cu(I), Ag(I) and Cu(II) coordination polymers with the ligand ethanediyl bis(isonicotinate) 141 

 

Table B-42: Hydrogen bond data for 13 [lengths (Å) and angles (°)] 

D-H���A d(D-H) d(H���A) d(D���A) Angle D-H���A 

inter-chains ligand-ligand hydrogen interactions  

C41-H41���O3#1 0.93 2.75 3.566(7) 147.2 

C36-H36���O11#1 0.97 2.82 3.698(7) 150.5 

C13-H13���O11#1 0.93 2.60 3.462(6) 153.5 

C30-H30���O14 0.93 2.87 3.611(6) 137.2 

C8-H8B���O14#1 0.97 2.80 3.715(7) 158.1 

C15-H15���O18#2 0.93 2.44 3.026(6) 121.1 

C-H���O hydrogen interactions between ligand and THF 

C14-H14���O35#1 0.93 2.41 3.308(7) 162.5 

C42-H42���O361#1 0.93 2.43 3.33(1) 161.2 

C-H���O hydrogen interactions between perchlorate and ligand 

C4-H4���O28#3 0.93 2.44 3.191(6) 137.8 

C8-H8A���O23#1 0.97 2.56 3.50(2) 162.8 

C8-H8A���O25#1 0.97 2.48 3.27(2) 138.4 

C8-H8A���O251#3 0.97 2.53 3.34(2) 140.5 

C11-H11���O27#4 0.93 2.54 3.457(7) 166.8 

C17-H17��O25#5 0.93 2.55 3.28(2) 135.5 

C17-H17���O251#5 0.93 2.53 3.25(2) 135.1 

C22-H22B���O24#2 0.97 2.36 3.07(2) 130.1 

C26-H26���O32#1 0.93 2.50 3.220(6) 134.3 

C28-H28���O22#6 0.93 2.47 3.167(7) 131.7 

C29-H29���O261#3 0.93 2.57 3.30(1) 135.8 

C31-H31���O28#7 0.93 2.46 3.354(7) 160.6 

C36-H36A���O20#1 0.97 2.59 3.367(6) 137.2 

C43-H43���O20#3 0.93 2.48 3.373(7) 162.2 

C54-H54���O26#8 0.93 2.40 3.26(1) 154.4 

hydrogen interactions between water 

O1-H1���O40#5 0.68(7) 2.08(7) 2.66(1) 145(7) 

O2-H2���O39#3 0.56(6) 2.32(7) 2.81(1) 150(9) 

hydrogen interactions between water and perchlorate 

O1-H1���O26#5 0.68(7) 2.29(7) 2.88(1) 147(7) 

O2-H2A���O20#3 0.99(9) 2.21(9) 3.085(6) 146(7) 

hydrogen interactions between water and THF 

O2-H2���O361#7 0.56(6) 2.14(6) 2.76(1) 164(9) 

O1-H1A���O35#9 0.97(8) 1.80(9) 2.752(6) 167(7) 

Symmetry transformations used to generate equivalent atoms: #1 -X+1, -Y, -Z+1; #2 -X+2, -Y, -Z+1; #3 X, 

Y, Z; #4 -X+1, -Y+1, -Z+1; #5 X, Y+1, Z; #6 X, -Y+1/2, Z+1/2; #7 -X+1, Y-1/2, -Z+1/2; #8 X, -Y-1/2, Z+1/2; 

#9 -X+1, Y+1/2, -Z+1/2. 
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Copper perchlorate coordination polymers with bipyridine bridging ligands 

The influence of the counter anions on CuII coordination polymers is less studied than in 

the case of AgI. The related compounds with perchlorate anions present a tetrakis-pyridyl 

metal environment, the coordination sphere being completed by water molecules, the 

counter anions being not coordinating [49, 276, 277, 280]. These structures show two-

dimensional or three dimensional (diamondoid) motifs. For instance, the reaction between 

Cu(ClO4)2�6H2O and bipyridine leads to the formation of a two-dimensional square grid 

framework [277] with the uncoordinated perchlorate anions and solvent molecules 

between the layers. This compound is obtained from an acetonitrile/water mixture of 

solvents. 

To our knowledge, only one CuII coordination polymer exhibits a coordinating perchlorate 

anion [278]. This compound grows from a mixture methanol/dichloromethane, no water 

molecules are coordinating the copper centres. The structural motif is thus a one-

dimensional double chain motif with an {CuN4O} square pyramidal coordination 

environment for the copper ions. The distance copper-oxygen is shorter than in 13, due to 

the absence of other interactions in the crystal packing. 

Comparison of 11 and 13 

Both compounds 11 and 13 are very similar, if the motif, the chain packing is considered. 

But some differences have to be noticed. The distances in the one-dimensional chains are 

in the same range, particularly the copper-nitrogen distances. On the other hand, the 

distances copper-oxygen are longer in 13 than in 11. This may be a consequence of the 

difference in the involvement of the coordinating water molecules and counter anions in 

the channels. Indeed, the coordinating nitrate anions do not participate to the hydrogen 

bonding network in 11, allowing the nitrate anion to form a stronger coordination bond with 

CuII ions. The other main difference between both compounds is the organisation of the 

non-coordinating molecules in the channels: in 11, a hydrogen bonding network allows the 

formation of a copper-water-nitrate system along the channel axis, whereas in 13, a 

system copper-water-perchlorate appears perpendicularly to the channel direction. In the 

first case, the copper atoms are of 11.1 and 9.4 Å apart, in the second case, they are 

separated by distances of 9.3 and 9.4 Å. 
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C - Conclusion 

This thesis reports the synthesis of the ligand ethanediyl bis(isonicotinate), L, as well as 

the building of coordination polymers based on L and CuI, AgI and CuII salts. The Figure 

C-1 resumes the obtained compounds. 

 

Figure C-1: summary scheme of the obtained coordination polymers with L and Cu I, Ag I and Cu II ions 
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One-dimensional motifs 

Construction of coordination polymers with ethanediyl bis(isonicotinate) and copper or 

silver shows a preference for one-dimensional structural motifs. Indeed, all obtained 

compounds (except 6) present one-dimensional chains independently of the cation used: 

various linear chains or double chains with the ligand either in anti- or gauche-

conformation. Such motifs were expected for the AgI complexes, as they are the most 

frequently found ones in coordination polymers with 4,4’-bipyridine-derived ligands [9, 11]. 

On the other hand, CuII metal cations allow the construction of coordination polymers of 

higher dimensionality. Such networks are in principle possible, but have never been 

observed along this thesis work. 

Ligand functionalities 

The role of the ligand in the coordination polymer construction may be described as 

follows: The ligand molecules always coordinate the metal ions through their two nitrogen 

atoms. The construction of the motifs is afterwards driven by the interactions involving the 

ligands, the counter anions and the solvents. The predominant interactions featured by the 

ligand involve the carbonyl groups (hydrogen bonding acceptors) and the isonicotinic 

groups (�-stacking, Ag···� interactions) (Figure C-2). During the crystal formation, there is 

competition between all possible interactions. The presence of some or the other 

interactions determines the conformation of the ligand and the long-range organisation. 

 

Figure C-2: predominant interactions with the ligand ethanediyl bis(isonicotinate) 

For instance, the �-stacking between pyridyl rings of different ligands leads to the parallel 

organisation of the molecules in 5 and 7. The interactions between ligand molecules 

thanks to hydrogen bonding contribute to the parallel stacking of the molecules for 

example in 3, 7, 8 and 12. The inclusion of solvent molecules in the structures may 

furthermore induce the gauche-conformation of the ligand, like in 2, 4, 11 and 13. The 

ability of the bridging part of the ligand to form hydrogen bonds and to rotate seems thus to 

favour the apparition of one-dimensional motifs. 
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Role of the counter anions 

Another important parameter of the building of coordination polymers is the behavior of the 

counter anions. The coordination ability of the different counter anions was studied in the 

AgI coordination polymers. The nitrate anion is very flexible in its bridging mode and 

strength. It is therefore able to act as bridging ligand between two silver atoms as in 3 or 7 

in which it links several chains together. It also shows its ability to support a metal-metal 

contact in 4 and 5. Its coordination strength can be tuned by the number of hydrogen 

bonds it can be involved in with for instance water molecules. Thus, the silver-

oxygen(nitrate) distances increase with the number of co-crystallizing solvent. Solvation of 

AgNO3 also plays a role in Ag-NO3 distances in the crystal structure (Graph C-1). In our 

CuII coordination polymers, the nitrate anion however only acts as a monodentate or 

anisobidentate ligand. 

 

Graph C-1: dependence of distance silver-oxygen in the crystal structure for compounds 3 to 7 

towards the silver nitrate salt solubility in the used crystallization solvent 

Less coordinating counter anions change the nature and the number of interactions in the 

final packing. The counter anions are thus influencing the coordination sphere of the metal 

ions, as well as the long-range order. 

The role of the counter anion in the CuII coordination polymers seems to be less important 

than the role of the crystallization conditions, as two almost isostructural complexes are 

obtained with either nitrate or perchlorate anions. However, no final conclusion can be 

derived from this as other non-coordinating anions have not been investigated. 

Influence of the crystallization conditions 

The influence of the solvent has been outlined with different compounds. Two solvent 

contributions can here be distinguished: the coordination ability of solvent molecules as in 

11 and 13 and the different solvation of the reagents by the solvent in the crystallization 
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process. In some cases, the interactions between solvent molecules and reagents remain 

in the solid state, and solvent molecules co-crystallize, as in 2, 4, 5, 11 and 12. 

General conclusions 

On a more general view, the synthezised compounds revealed to us the manifold 

structural modifications possible for Ag and Cu coordination polymer networks with our 

ligand ethanediyl bis(isonicotinate). By isolating several influences, we were able to gain a 

little insight in the type and mechanisms of interactions that lead to a certain structure. 

Outlooks 

After this study of the behavior of the ligand ethanediyl bis(isonicotinate) with copper and 

silver ions during coordination polymer construction, further investigations can be carried 

out. 

CuII coordination polymers could be improved to get efficient coupling between the CuII, 

long-range magnetic ordering in low-dimensional metal complexes representing one of the 

most challenging research areas in chemistry and materials science. 

Another research interest with the presented systems is to favour certain structures using 

the O-donors atoms, to coordinate NH4
+ by hydrogen bonding or other metals ions. This 

approach should lead to crossing of chains for instance with the use of tetrahedral centres 

and the so-formed mixed metal compounds could be used as mixed metal precursors for 

oxide materials. 

The coordination polymers allow the distribution of the metal centres at determined 

distances from each other (for example 17 Å between the silver ions in our one-

dimensional AgI coordination polymers). If these species can be deposited on surfaces, 

local silver clusters could be formed by reduction or the biological activity of silver 

(sterilization of surfaces) could be investigated. 

 

In a more fundamental way, the presented compounds may help in the understanding of 

polymorphism, and contribute on a long term to the control of the formation of such 

compounds. This may then be an important contribution to the highly interesting problem 

of structure prediction and crystal engineering. 
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D - Experimental 

 

I - Reagents and solvents 

The reagents were purchased and directly used without further purification, if described 

otherwise. CuCl was synthesized according to the literature description [284]. For the 

syntheses of L and CuI compounds, dried and distilled solvents were used under N2 

atmosphere: ethylene glycol (sodium), THF (sodium, benzophenone) and acetonitrile 

(CaH2). 

 

II - Equipments 

Elementary analyses were performed by Dr. H. Eder, from the Laboratoire de Microchimie, 

University of Geneva, for L, 2, 8 and 9 and by W. Kirsch, from the Mikrolabor, University of 

Basle for L, 3, 4, 5, 7, 10, 11, 12 and 13. 

IR-spectra were collected on a Perkin Elmer, Spectrum One FT-IR-spectrometer using KBr 

or CsBr plates, from 4000 to 250 cm-1, at the University of Geneva for L, 2, 8 and 9 and on 

a Shimazu FTIR-8400S equipped with Golden Gate ATR (attenuated total reflection) 

system at the University of Basle for L, 3, 4, 5, 7, 10, 11, 12 and 13. Frequencies are given 

in cm-1. Abbreviations used are: s, strong; m, medium and w, weak. 

Luminescence curves were measured on a Perkin Elmer LS 50B at the University of 

Geneva for L and 2, and on a Perkin Elmer LS 50B at the University of Basle for the other 

compounds. Measurements were collected on solid state samples in a capillary. 
1H-NMR analyses were performed on a Varian Gemini 300 spectrometer, at 298 K. The 

chemical shifts are given in ppm relative to tetramethylsilane (TMS) as an internal 

standard. Abbreviations used are: s, singulet and m, multiplet. 

UV-Vis properties were analysed with a Varian Cary 1E at the University of Geneva. 

Powder X-ray diffraction data for 7 and 8 was registered on a D 5000 Kristalloflex Siemens 

diffractometer (Bragg-Brentans geometry; CuK� radiation) in the Mineralogie Fakultät, 

University of Basle. 

TGA/SDTA measurements were performed on a Mettler Toledo TGA/SDTA851e Modul 

under N2 (10cm3/min) in aluminium crucibles. 

ESI-MS spectra were recorded with a Finnigan-4000 and VG-7000E by the laboratoire de 

Spectrométrie de Masse, University of Geneva for 2 and 7 and on a Finnigan MAT LCQ at 

the University of Basle for 7, 8, 9, 10, 11 and 12. 
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Fast Atom Bombardment Mass Spectroscopy of 7 was obtained on a Finnigan MAT 312, 

by Dr. H. Nadig, Massen-Spektroskopie Labor, University of Basle. 

 

III - Synthetic part 

III.1 - Ligand L 

Synthesis I Isonicotinic acid (15 g, 0.122 mol) is strirred in SOCl2 (40 mL) in the presence 

of DMF (0.6 mL) at 60°C for 12h. Excess thionyl chloride is removed in vacuo. Dried 

ethylene glycol (3.4 mL, 0.061 mol) is added. After the evolution of hydrogen chloride ends, 

the mixture is heated at 150°C for a few hours. The mixture is dissolved in water, and 

NH4OH is added. After filtration, recrystallization in ethyl acetate gives white crystals of L. 

Yield 6 g (39%). 

Analysis calculated for C14H12N2O4: C 61.76, H 4.44, N 10.29; found: C 61.12, H 4.52, N 

10.11%. 
1H NMR (300MHz, THF, 293 K): � (ppm) 8.73 (4 H, m, H-pyr), 7.82 (4H, m, H-pyr), 4.69 

(4H, s, H-ethyl). 

IR (KBr, cm-1): � (C=O) 1732s, � (C=C) 1597 m, � (ArC-C, C=N) 1412 s, � (C-O) 1276 s, 
�

(ArC-H) 984 m. IR (CsBr, cm-1): � (ArC-H) 818 w, � (ArC-H) 348 m. 

UV-Vis (acetonitrile): 210, 271 nm. 

Luminescence (77K): 409 nm (excitation at 234 nm) 

 

Synthesis II Ethylene glycol (0.26 mL, 4 mmol) is added to isonicotinic acid (1 g, 8 mmol) in 

dichloromethane (10 mL) in stoechiometric ratio (1:2). A solution of 1,3-Dimethyl-2-

chloroimidazolium chloride (DMC) (1.66 g, 8 mmol) in dichloromethane (5 mL) is added 

dropwise to the mixture. After a few minutes of stirring, pyridine as solvent (5 mL) is added 

in order to dissolve the crude white solid product. The reaction is refluxed for 2 hours and 

turns from yellow to dark yellow with the precipitation of a dark solid. The product remains 

in the liquid phase. After filtration, the solution is evaporated in vacuo. The product is 

dissolved in dichloromethane and purified on a chromatography column. The solvent 

mixture hexane/ethyl acetate (4:1) allows the elimination of the impurities, and ethyl 

acetate allows the elution of the pure product. The white product is obtained by vacuo 

elimination of solvent of the corresponding fractions. Yield 1.213 g (95%). 

Analysis calculated for C14H12N2O4: C 61.76, H 4.44, N 10.29; found: C 61.58, H 4.72, N 

9.76%. 
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1H NMR (300MHz, THF, 293 K): � (ppm) 8.77 (4 H, m, H-pyr), 7.83 (4H, m, H-pyr), 4.71 

(4H, s, H-ethyl). 

IR (GB, cm-1): � (C=O) 1720s, � (C=C) 1597 m, � (ArC-C, C=N) 1412 s, � (C-O) 1257 s, 
�

(ArC-H) 980 m, � (ArC-H) 848 w (Graph D-1). 

UV-Vis (acetonitrile): 210, 271 nm. 

Luminescence (77K): 409 nm (excitation at 234 nm) 
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Graph D-1: IR spectrum of L 

 

III.2 - {[CuCl(L)]}n 1 

Reaction A: A solution of L (50,4 mg, 0,18 mmol) in dry acetonitrile (30 mL) is added to a 

solution of CuCl (9,1 mg, 0,09 mmol) in dry acetonitrile (10 mL). (molar ratio 2 : 1) giving a 

yellow solution. After concentration, the solution is left at room temperature for three 

months, then yellow-orange crystals 1 suitable for single crystal X-ray analysis appear in a 

low yield. 

Reaction B: The mother liquor containing the crystals of 2 stays at room temperature for 

several weeks and transformation of 2 into the crystals 1 is observed. 

Unfortunately the poor yield of these reactions and the poor stability of the crystals in air 

don’t allow complementary characterization analyses. 
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III.3 - {[CuCl(L)]�0.5THF}n 2 

Reaction A: The principle of the synthesis is the slow diffusion of the two solutions into 

each other. One arm of the tube is filled with a solution of CuCl (9.1 mg, 0,09 mmol) in dry 

acetonitrile (10 mL), and the other with a solution of L (50,4 mg, 0,18 mmol) in dry THF (10 

mL). (molar ratio) In one case the two solutions are separated with a physical barrier (fritt). 

In the second case the separation is made with solvent (THF): THF is introduce in the “U-

shaped” tube and frozen by immerging the tube into liquid nitrogen; then the two solutions 

are introduced carefully on the THF under nitrogen stream and after warming up of THF, 

the two solutions can diffuse. The crystals appear at the interface CH3CN/THF as CuCl is 

not soluble in THF. 

Reaction B: A solution of CuCl (7,8 mg, 0,08 mmol) in dry acetonitrile (5 mL) is added to a 

solution of L (21,6 mg, 0.08 mmol) in dry THF (6 mL). (molar ratio 1:1) The solutions is 

stirred for few minutes and red crystals of 2 appear after few hours. Yield: 8 mg (24%) The 

red crystals are stable in air after removal from mother liquor. 

Analysis calculated for [CuCl(L)]�0,5(C4H8O): C 47.18, H 3.96, N 6.88; found: C 47.29 , H 

3.97, N 6.81%. 

IR (KBr, cm-1): 	(C=O) 1731s, 	(C=C) 1603 w, 	(ArC-C, C=N) 1411 s, 	(C-O) 1269 s, 

(ArC-H) 1025 w. IR (CsBr, cm-1): 	(ArC-H) 808 w, �(ArC-H) 350 m, 	(Cu-N) 196 s. 

Luminescence (solid state): emission at 385 nm for an excitation at 240 nm. (Graph D-2) 
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Graph D-2: emission spectrum of 2 (blue) compared to the emission spectrum of L (red) 

ESI-MS (acetonitrile, m/z): 335.1, [CuL]+; 435.0, [CuL2]
+; 533.0, [CuClLH]+; 607.2, 

[Cu3Cl2L]+; 666.7, [Cu4Cl4LH]+ (Graph D-3). 

UV-Vis (acetonitrile): 211 and 274 nm. 
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Graph D-3: ESI-MS (acetonitrile) of 2 

 

III.4 - {[Ag(L)](NO3)}n 3 

Reaction A: Colorless crystals of 3 grew from a mixture of the solution of L (20mg, 0.04 

mmol) in THF (5 mL) and a solution of AgNO3 (12 mg, 0.07 mmol) in water (5mL) in 

darkness and at room temperature. Yield after drying: 23 mg (72 %). 

Reaction B: Crystals of 3 are also obtained from a solution of L (50 mg, 0.18 mmol) and 

AgNO3 (31 mg, 0.18 mmol) in THF (10 mL), heating to about 70°C, followed by fast cooling 

by putting it in the refrigerator at about 4°C just after the heating. Yield: 50 mg (62%). 

Analysis calculated for [Ag(L)]NO3: C 38.03, H 2.74, N 9.50; found: C 37.98, H 2.60, N 

9.39%.  

IR (GB, cm-1):  	(C=O) 1720 s, 	(C=C) 1612 m, 	(ArC–C, C=N) 1412 s, 	(NO3) 1365–1319 

i, 	(C–O) 1265 s, (ArC–H) 980 m, 	(ArC–H) 856 w (Graph D-4). 

 [CuL]+ 

 [CuL2]
+ 

[CuClLH]+ 

[Cu3Cl2L]+ 

[Cu4Cl4LH]+ 
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Graph D-4: Comparison between the IR-spectra of L (red) and 3 (blue) 

TGA/SDTA: no loss/gain of weight and no phase transition before the decomposition of the 

product at 260°C. 

UV-Vis (CH3CN): absorption at 212 and 273 nm. 

Luminescence (solid state): 406 nm (excitation at 232 nm) at 77K. (Graph D-5) 
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Graph D-5: emission spectrum of 3 (blue) compared to the emission spectrum of L (red) 
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III.5 - {[Ag(L)]NO3(H2O)}n 4 

Crystals of 4 are obtained in an “H-shaped” tube. A solution of L (40 mg, 0.15 mmol) in 

THF (5 mL) is introduced in one tube arm, a solution of AgNO3 (25 mg, 0.15 mmol) in water 

(5 mL) being introduced in the other arm. Both solutions are frozen and the diffusion 

solvent THF (~15 mL) is layered on top. The tube stays in the dark, and crystals appear 

after a couple of days. Crystals appear simultaneously with other crystals of 3 and 5 and 

polycrystalline powder. Yield after sorting: 12 mg (15%). 

Analysis calculated for [Ag(L)]NO3(H2O) : C 36.54, H 3.07, N 9.13; found: C 36.47, H 2.98, 

N 9.07%. 

IR (GB, cm-1): 	(C=O) 1720 s, 	(C=C) 1612 m, 	(ArC–C, C=N) 1419 s, 	(NO3) 1380–1330 

i, 	(C–O) 1265 s, (ArC–H) 972 m. 

TGA/SDTA: an exothermal loss of one water molecule at 117°C (loss of weight: 3.1%; 

calculated: 3.9%). (Between the starting temperature and the water loss temperature, 

weight loss (3%) is also observed but it corresponds to adsorbed solvent as we not fully 

dried the crystals before the measurement for maintaining its structure and the inclusion 

molecules.) 

UV-Vis (CH3CN): absorption at 212 and 273 nm. 

Luminescence (solid state): 397 nm (excitation at 230 nm). 

 

III.6 - {[Ag(L)]NO3(H2O)2}n 5 

Crystals of 5 appear during the slow diffusion using an “H-shaped” tube. A solution of L (40 

mg, 0.15 mmol) in THF (5 mL) is introduced in one tube arm, a solution of AgNO3 (25 mg, 

0.15 mmol) in water (5 mL) being introduced in the other arm. Both solutions are frozen 

and the diffusion solvent THF (~15 mL) is layered onto the solutions. The tube stays at 

room temperature in darkness and crystals appear after a couple of weeks. Crystals 

appear simultaneously with other crystals of 3 and 4, polycrystalline powder. Yield after 

sorting out: 9 mg (13%). 

Analysis calculated for [Ag(L)]NO3(H2O)2: C 35.17, H 3.37, N 8.79; found: C 35.34, H 3.36, 

N 8.61%. 

IR (KBr, cm-1): 	(water) 3540-3300 m, 	(C=O) 1728 s, 	(water) 1635 w 	(C=C) 1612 m, 

	(ArC–C, C=N) 1420 s, 	(NO3) 1380–1330 s, 	(C–O) 1265 s, (ArC–H) 980 m, 	(ArC–H) 

864 w (Graph D-6). 

TGA/SDTA: an endothermal loss of two water molecule between 25 and 70°C (loss of 

weight: 7.44%; calculated: 7.52%). The compound decomposes at 220°C. 
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Graph D-6: Comparison between the IR-spectra of L (red) and 5 (blue) 

Luminescence (solid state): 388 nm (excitation at 238 nm). (Graph D-7) 

UV-Vis (CH3CN): absorption at 212 and 273 nm. 
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Graph D-7: emission spectrum of 5 (blue) compared to the emission spectrum of L (red) 

 

III.7 - {[Ag2(NO3)2(L)]}n 6 

A solution of L (20 mg, 0.07 mmol) in THF (5 mL) is introduced in one arm of an “H-

shaped” tube, a solution of AgNO3 (12 mg, 0.07 mmol) in ethanol (5 mL) in the other one. 
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(molar ratio 1:1) The solutions are frozen in liquid nitrogen and THF is then layered into the 

tube in order to bridge the two reagent solutions. There is a fritt in the linking part of the 

tube. The slow diffusion occurs through the THF layer and the fritt. Crystals of 6 appear 

after several months at the interface EtOH/THF. After using some single crystals for X-ray 

diffraction, the product is collected. Yield: 4mg (11%). This quantity was not sufficient to 

perform a good elementary analysis. 

 

III.8 - {(Ag(L)](NO3)}n 7 

Reaction A: Crystals of 7 are obtained at room temperature from a solution of L (13.6 mg, 

0.05 mmol) and silver nitrate (8.5 mg, 0.05 mmol) in acetonitrile (10 mL). (Molar ratio 1:1) 

The crystals grow on the glass walls of the beaker at the solution surface after slow 

evaporation of the solution. The colorless crystals are suitable for single crystal X-rays 

diffraction and allow the resolution of the crystallographic structure. Not enough crystals 

were collected in order to make further investigations on this sample. 

Reaction B: A polycrystalline white powder is obtained from a mixture of L (60 mg, 0.22 

mmol) and AgNO3 (37.5 mg, 0.22 mmol) in CH2Cl2 (a large volume as AgNO3 is less well 

soluble in CH2Cl2). (Molar ratio 1:1) The powder X-ray spectrum of the compound shows 

that this polycrystalline precipitate has the same structure than 7. The comparison of the 

experimental spectrum with the theoretical spectrum for 7 (calculated from the single 

crystals crystallographic data) in shown on Graph D-8. It’s worth noting that if the molar 

ratio is changed, the same product is obtained. Yield: 79 mg (81 %) 
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Graph D-8 : comparison of the spectrum of the polycrystalline precipitate (blue) obtained in 

dichloromethane and the theoretical spectrum for 7 (red) 

Analysis calculated for [Ag(L)NO3]: C 38.03, H 2.74, N 9.50; found C 37.26, H 2.64, N 

9.4%. A certain amount of dichloromethane is adsorbed on the sample. 



D - Experimental Adeline ROBIN 
 

Structural diversity of Cu(I), Ag(I) and Cu(II) coordination polymers with the ligand ethanediyl bis(isonicotinate) 156 

 

IR (GB, cm-1): 	(C=O) 1726 s, 	(C=C) 1612 w, 	(ArC-C, C=N) 1412 w, 	(NO3) 1380-1330 

s, 	(C-O) 1272 s, (ArC-H) 985, 992 (split) m, 	(ArC-H) 825 m. 

UV-Vis (CH3CN): absorption at 212 and 273 nm. 

Luminescence (solid state): 407 nm (excitation at 234 nm). (Graph D-9) 
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Graph D-9: emission spectrum of 7 (blue) compared to the emission spectrum of L (red) 

 

ESI/MS (CH3CN/CH2Cl2 10/1, m/z): 273.2, [LH]+; 379.1, [LAg]+; 549.9, [LAg2(NO3)]
+; 650.9, 

[L2Ag]+; 718.6, [LAg3(NO3)2]
+; 821.7, [L2Ag2(NO3)]

+; 990, [L2Ag3(NO3)2]
+; 1161.3, 

[L2Ag4(NO3)3]
+; 1262.2, [L3Ag3(NO3)2]

+; 1432.6, [L3Ag4(NO3)3]
+ (Graph D-10). 

FAB (Fast Atom Bombardment) Mass Spectroscopy (m/z): [LH]+, [LAg]+, [LAg2NO3]
+ and 

[L2Ag]+ at respectively 273, 379, 550 and 651. 
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Graph D-10: ESI/MS (CH3CN/CH2Cl2 10/1) for 7 

 

III.9 - {(Ag(L)](CF3SO3)}n 8 

Reaction A: A solution of L (40 mg, 0.15 mmol) in THF (5 mL) is introduced in one arm of 

an “H-shaped” tube, a solution of AgCF3SO3 (38 mg, 0.15 mmol) in water (4 mL) in the 

other one. (molar ratio 1:1) The solutions are frozen in liquid nitrogen and THF is then 

layered on top in order to bridge the two reagent solutions. There is a fritt in the linking part 

of the tube. The slow diffusion occurs through the THF layer and the fritt. Crystals of 8 

appear after one day at the interface THF/water. After taking away some single crystals for 

the X-ray diffraction, the product is collected. Yield: 32mg (35%). 

Analysis calculated for [Ag(L)CF3SO3]: C 34.04, H 2.28, N 5.29; found C 33.94, H 2.55, N 

5.32%. 

IR (KBr, cm-1): 	(C=O) 1736s, 	(C=C) 1613 m, 	(ArC-C, C=N) 1425 s, 	(CF3SO3) 1300-

1220 s, 	(CF3SO3) 1150-1140 s, (ArC-H) 983 m, 	(ArC-H) 804 w, �(ArC-H) 366 m.  

 

Reaction B: A polycrystalline white powder is obtained from a mixture of L (30 mg, 0.11 

mmol) and AgCF3SO3 (28 mg, 0.11 mmol) in CH2Cl2. (Molar ratio 1:1) The powder X-ray 

spectrum of the compound shows that this polycrystalline precipitate has the same 

structure than 8. Yield: 47 mg (81 %) 

821.7, [L2Ag2(NO3)]
+ 

990, [L2Ag3(NO3)2]
+ 

1161.3, [L2Ag4(NO3)3]
+ 

1262.2, [L3Ag3(NO3)2]
+ 

1432.6, [L3Ag4(NO3)3]
+ 

718.6, [LAg3(NO3)2]
+ 

650.9, [L2Ag]+ 

549.9, [LAg2(NO3)]
+ 

379.1, [LAg]+ 

273.2, [LH]+ 
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Analysis calculated for [Ag(L)CF3SO3]: C 34.04, H 2.28, N 5.29; found C 34.06, H 2.44, N 

5.23%. 

IR (GB, cm-1): 	(C=O) 1732s, 	(C=C) 1614 m, 	(ArC-C, C=N) 1425 s, 	(CF3SO3) 1290-

1210 s, 	(CF3SO3) 1160-1120 s, (ArC-H) 984 m, 	(ArC-H) 862 m. 

 

ESI/MS (CH3CN/CH2Cl2 10/1): 273.2 (14%) [LH]+, 379.1 (2%) [LAg]+, 636.9 (31%) 

[LAg2(CF3SO3)]
+, 650.9 (20%) [L2Ag]+, 908.7 (100%) [L2Ag2(CF3SO3)]

+, 1164.4 (22%) 

[L2Ag3(CF3SO3)2]
+. 

 

III.10 - {(Ag(L)](ClO4)}n 9 

Crystals of 9 grow in an “H-shaped” tube, in which a solution of L (37 mg, 0.13 mmol) in 

THF (5 mL) can slowly diffuse into a solution of AgClO4 (33 mg, 0.13 mmol) in water (4 mL) 

through THF (~15 mL). (molar ratio 1:1) Crystals suitable for single crystal X-ray diffraction 

appear after one day at the interface THF/water. Yield after drying: 24.6 mg (38%). 

Analysis calculated for [Ag(L)ClO4]: C 35.06, H 2.52, N 5.84; found C 35.36, H 2.79, N 

5.71%. 

IR (KBr, cm-1): 	(C=O) 1733s, 	(C=C) 1613 m, 	(ArC-C, C=N) 1424 s, 	(C-O) 1268 s, 

	(ClO4) 1223 m, 	(ClO4) 1130-1020 s, (ArC-H) 983 m, 	(ArC-H) 831 w, 	(ClO4) 621 m, 

�(ArC-H) 369 m. 

Luminescence: emission at 409 nm for an excitation at 233 nm. (Graph D-11) (During this 

measure the ligand emits at 418 nm under an excitation at 233 nm.) 
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Graph D-11: emission spectrum of 9 (blue) compared to the emission spectrum of L (red) 

ESI/MS (CH3CN/CH2Cl2 10/1): 273.2 (18%) [LH]+, 379.1 (6%) [LAg]+, 586.9 (100%) 

[LAg2(ClO4)]
+, 858.9 (52%) [L2Ag2(ClO4)]

+, 1066.6 (59%) [L2Ag3(ClO4)2]
+. 
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III.11 - {(Ag(L)](PF6)}n 10 

Reaction A: Single crystals of 10 are obtained by slow diffusion of a solution of L (20 mg, 

0.07 mmol) in THF (5 mL) into a solution of Ag(PF6) (17.7 mg, 0.07 mmol) in water (5 mL) 

through THF (~15 mL). The reaction yields only small amount of crystals, which is not 

sufficient for further analyses. 

Reaction B: The direct reaction of L (31.5 mg, 0.11 mmol) and AgPF6 (28.7 mg, 0.11 

mmol) in dichloromethane gives a white precipitate. (molar ratio 1:1) Yield: 36.7 mg (61%). 

Analysis calculated for [Ag(L)PF6]: C 32.02, H 2.30, N 5.34; found C 32.31, H 2.29, N 

5.36%. 

IR (GB, cm-1): 	(C=O) 1727s, 	(C=C) 1618 m, 	(ArC-C, C=N) 1426 s, 	(C-O) 1280 s, 

(ArC-H) 977 m, 	(PF6) 860-830 m. 

 

ESI/MS (CH3CN/CH2Cl2 10/1): 273.1 (30%) [LH]+, 650.9 (14%) [L2Ag]+, 904.8 (100%) 

[L2Ag2(PF6)]
+. 

 

III.12 - {[Cu(L)2(NO3)(H2O)](THF)2(NO3)(H2O)x}n 11 

The reaction of L (60 mg, 0.22 mmol) and Cu(NO3)2�3H2O (53.2 mg, 0.22 mmol) in 

methanol gives a blue precipitate (molar ratio 1:1). The same product is obtained with a 

molar ratio of 2:1 or 1:2. Yield: 80 mg (79%). 

Analysis calculated for [Cu(L)(NO3)2]: C 36.57, H 2.63, N 12.18; found C 36.81, H 2.68, N 

11.94%. 

IR (GB, cm-1): 	(C=O) 1727s, 	(C=C) 1622 w, v(NO3) 1500-1460 	(ArC-C, C=N) 1427 m, 

	(C-O) 1261 s, (ArC-H) 989 w, 	(ArC-H) 866 m. 

ESI/MS (THF/H2O 50/50): 273.2 (100%) [LH]+, 352.7 (22%) [CuL(NO3)2(H2O)2(THF)2]
2+, 

397.8 (12%) [CuL(NO3)]
+, 407.0 (23%) [Cu2L2(NO3)2(H2O)]2+, 668.8 (14%) [CuL2(NO3)]

+, 

859.8 (10%) [Cu2L2(NO3)3]
+. 

The blue precipitate is dissolved in a mixture of solvents THF/water (50/50) (minimum of 

solvents). And after some days, dark blue crystals suitable for single crystals X-ray 

diffraction grow. The yield of single crystals is very low. Furthermore, L and copper nitrate 

co-crystallize. 

 

III.13 - {[Cu(L)(NO3)2]}n 12 

The polycrystalline compound 12 grows by slow diffusion (“H-shaped” tube) of a solution of 

L (20 mg, 0.07 mmol) in dichloromethane (5mL) into a solution of Cu(NO3)2�3H2O (17.7 
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mg, 0.07 mmol) in methanol (5mL) through dichloromethane (~15 mL) (molar ratio 1:1). 

Yield: 19 mg (56%). The polycrystalline powder is suitable of powder X-ray diffraction. 

Analysis calculated for [Cu(L)(NO3)2]: C 36.57, H 2.63, N 12.18; found C 36.02, H 2.66, N 

12.82%. 

IR (GB, cm-1): 	(C=O) 1728 m, 	(C=C) 1620 m, v(NO3) 1500-1450 m, 	(ArC-C, C=N) 1427 

m, 	(C-O) 1257 s, (ArC-H) 1010 m, 	(ArC-H) 864 w (Graph D-12). 

TGA/SDTA: an exothermal loss from 200°C corresponds to the loss of the organic material. 
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Graph D-12: Comparison between the IR-spectra of L (red) and 12 (blue) 

 

III.14 - {[Cu(L)2(ClO4)(H2O)]2(THF)4(ClO4)2(H2O)}n 13 

Caution! Although no problem in handling perchlorate salts occurs, these should be 

treated with great caution, owing their potential explosive nature. 

The direct reaction of L (62.3 mg, 0.23 mmol) and Cu(ClO4)2�6H2O (84.8 mg, 0.23 mmol) in 

methanol leads to a blue precipitate (molar ratio 1:1). Yield: 85.5 mg (43%). 

Analysis calculated for [Cu(L)2(ClO4)2(H2O)3]: C 39.06, H 3.51, N 6.51; found C 38.79, H 

3.39, N 6.22%. 

IR (GB, cm-1): 	(C=O) 1728 s, 	(C=C) 1622 m, 	(ArC-C, C=N) 1423 s, 	(C-O) 1273 s, 

	(ClO4) 1230 w, v(ClO4) 1140-1000 s, 	(ArC-H) 860 m, 	(ClO4) 621 s. 
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The recrystallization of the precipitate in the minimum of the solvent mixture THF/water 

(50/50) allows the formation of dark blue crystals, suitable for single crystal X-ray 

diffraction. 

Analysis calculated for [(Cu(L)2(ClO4)2(H2O))2(H2O)(C4H8O)4]: C 44.20, H 4.43, N 5.73; 

found C 43.98, H 4.30, N 5.87%. 

IR (GB, cm-1): 	(C=O) 1728s, 	(C=C) 1620 w, 	(ArC-C, C=N) 1420 s, 	(C-O) 1273 s, 

	(ClO4) 1227 w, v(ClO4) 1100-1000 s, 	(ArC-H) 856 w, 	(ClO4) 617 m. 

TGA/SDTA: exothermal loss between 25 and 118°C of one THF molecule and one water 

molecule, exothermal loss of three THF molecules respectively between 118°C and 155°C, 

155°C and 172°C, 172°C and 195°C, exothermal loss of one water molecule between 

172°C and 215°C. The measurement is stopped at 220°C to avoid the explosion of 

perchlorate. 
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E - Crystallographic Data 

 

I - Single crystal X-ray diffraction 

I.1 - Equipments 

Crystals of L, 5, 8 and 9 were measured at the University of Geneva by Gérald 

Bernardinelli, crystals of 1, 2 and 4 at the University of Karlsruhe by Helmut Goesmann and 

crystals of 3, 6, 7, 10, 11, 11 and 13 on single crystals by myself at the University of Basle. 

All diffractometers are STOE IPDS-II diffractometers with monochromated graphite Mo K� 

radiation, � = 0.71073 Å, equipped with an Oxford Cryosystems open flow cryostat [285], 

with an absorption correction by analytical integration [286]. The structures (except 12) 

were solved with direct methods and refined by full-matrix least-square on F2 with the 

SHELX-99 package [287]. Almost all heavy atoms could be refined anisotropically. 

Disorder was observed for the THF molecules included in the crystal structure of 2, 11 and 

13, as well as for the water and counter anions in 11 and 13. Crystallographic data for the 

structures L, 1, 2, 3, 4 and 5 have been deposited with the Cambridge Crystallographic 

Data Center with the CCDC reference numbers 206524, 206525, 206593, 238163, 217748 

and 217749 respectively. See http://www.rsc.org/suppdata/ce/b4/b413232g/ for 

crystallographic data in CIF or other format. Copies of the data can be obtained free of 

charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-

336-033; e-mail: deposit@ccdc.cam.ac.uk). 

The different representations of the compounds were drawn with the Schakal program. 

Definitions of the factors Rint, R1 and R2: 

Rint = � | Fo
2 - Fo

2(mean) | / � [Fo
2] 

R1 = � | | Fo | - | Fc | | / � | Fo | 

wR2 = { � [ w(Fo
2-Fc

2)2] / � [w(Fo
2)2] }1/2 
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I.2 - Crystal data and structure refinement for single crystal X-ray 

diffraction 

 

I.2.a - Crystal data and structure refinement for L. 

 
Empirical formula  C14 H12 N2 O4 

Formula weight  272.26 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 6.9688(11) Å � = 90°. 

 b = 10.6469(14) Å � = 109.047(18)°. 

 c = 8.8115(14) Å � = 90°. 

Volume 617.99(16) Å3 

Z 2 

Density (calculated) 1.463 Mg/m3 

Absorption coefficient 0.109 mm-1 

F(000) 284 

Crystal size ? x ? x ? mm3 

Theta range for data collection 3.09 to 28.08°. 

Index ranges -9<=h<=9, -14<=k<=14, -11<=l<=11 

Reflections collected 6383 

Independent reflections 1393 [R(int) = 0.0425] 

Completeness to theta = 28.08° 92.6 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1393 / 0 / 91 

Goodness-of-fit on F2 0.884 

Final R indices [I>2sigma(I)] R1 = 0.0371, wR2 = 0.0926 

R indices (all data) R1 = 0.0589, wR2 = 0.0983 

Largest diff. peak and hole 0.180 and -0.277 e.Å-3 
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Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for L.U(eq) is defined 
as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
O(2) 1157(2) 10013(1) -2857(1) 31(1) 
O(1) 1635(2) 8073(1) -1792(1) 41(1) 
C(2) 2435(2) 11147(1) 109(1) 29(1) 
C(1) 3133(2) 11667(1) 1641(2) 34(1) 
C(3) 3863(2) 9742(1) 2816(2) 34(1) 
C(4) 3204(2) 9131(1) 1344(2) 30(1) 
C(5) 2479(2) 9855(1) -40(1) 23(1) 
C(6) 1732(2) 9194(1) -1628(2) 26(1) 
C(7) 337(2) 9454(1) -4437(1) 33(1) 
N(1) 3844(2) 10984(1) 2991(1) 35(1) 
_______________________________________________________________________________________ 
 
Bond lengths [Å] and angles [°] for L. 
_______________________________________________________________________________________
__ 
O(2)-C(6)  1.3450(16) 
O(2)-C(7)  1.4492(15) 
O(1)-C(6)  1.2015(16) 
C(2)-C(5)  1.3832(17) 
C(2)-C(1)  1.3919(17) 
C(2)-H(2)  0.9300 
C(1)-N(1)  1.3435(18) 
C(1)-H(1)  0.9300 
C(3)-N(1)  1.3320(18) 
C(3)-C(4)  1.3883(18) 
C(3)-H(3)  0.9300 
C(4)-C(5)  1.3904(17) 
C(4)-H(4)  0.9300 
C(5)-C(6)  1.4995(16) 
C(7)-C(7)#1  1.501(3) 
C(7)-H(7A)  0.9700 
C(7)-H(7B)  0.9700 

C(6)-O(2)-C(7) 115.35(10) 
C(5)-C(2)-C(1) 118.43(11) 
C(5)-C(2)-H(2) 120.8 
C(1)-C(2)-H(2) 120.8 
N(1)-C(1)-C(2) 123.66(13) 
N(1)-C(1)-H(1) 118.2 
C(2)-C(1)-H(1) 118.2 
N(1)-C(3)-C(4) 124.04(12) 
N(1)-C(3)-H(3) 118.0 
C(4)-C(3)-H(3) 118.0 
C(3)-C(4)-C(5) 118.36(12) 
C(3)-C(4)-H(4) 120.8 
C(5)-C(4)-H(4) 120.8 
C(2)-C(5)-C(4) 118.75(11) 
C(2)-C(5)-C(6) 122.89(10) 
C(4)-C(5)-C(6) 118.34(11) 
O(1)-C(6)-O(2) 123.80(12) 
O(1)-C(6)-C(5) 124.54(12) 
O(2)-C(6)-C(5) 111.66(11) 
O(2)-C(7)-C(7)#1 104.89(13) 
O(2)-C(7)-H(7A) 110.8 
C(7)#1-C(7)-H(7A) 110.8 
O(2)-C(7)-H(7B) 110.8 
C(7)#1-C(7)-H(7B) 110.8 
H(7A)-C(7)-H(7B) 108.8 
C(3)-N(1)-C(1) 116.77(12) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z-1 
 
Anisotropic displacement parameters (Å2x 103) for L.  The anisotropic displacement factor exponent takes the 
form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 
 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
O(2) 45(1)  27(1) 15(1)  -1(1) 3(1)  -1(1) 
O(1) 66(1)  26(1) 26(1)  -2(1) 9(1)  3(1) 
C(2) 35(1)  30(1) 19(1)  2(1) 6(1)  0(1) 
C(1) 44(1)  29(1) 26(1)  -2(1) 7(1)  -2(1) 
C(3) 39(1)  39(1) 20(1)  4(1) 5(1)  1(1) 
C(4) 34(1)  28(1) 24(1)  2(1) 7(1)  0(1) 
C(5) 22(1)  30(1) 19(1)  -1(1) 7(1)  -1(1) 
C(6) 29(1)  28(1) 20(1)  1(1) 8(1)  2(1) 
C(7) 49(1)  29(1) 16(1)  -3(1) 5(1)  -1(1) 
N(1) 41(1)  39(1) 22(1)  -3(1) 5(1)  -1(1) 
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_______________________________________________________________________________________ 
Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for L. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(2) 1950 11656 -794 34 
H(1) 3105 12536 1735 41 
H(3) 4347 9253 3738 40 
H(4) 3247 8260 1285 35 
H(7A) -801 8909 -4494 39 
H(7B) 1366 8967 -4695 39 
_______________________________________________________________________________________ 
 
Torsion angles [°] for L. 
_______________________________________________________________________________________ 
C(5)-C(2)-C(1)-N(1) -0.2(2) 
N(1)-C(3)-C(4)-C(5) 0.0(2) 
C(1)-C(2)-C(5)-C(4) 0.4(2) 
C(1)-C(2)-C(5)-C(6) 178.90(13) 
C(3)-C(4)-C(5)-C(2) -0.3(2) 
C(3)-C(4)-C(5)-C(6) -178.87(14) 
C(7)-O(2)-C(6)-O(1) 1.7(2) 
C(7)-O(2)-C(6)-C(5) -177.67(12) 
C(2)-C(5)-C(6)-O(1) -175.28(14) 
C(4)-C(5)-C(6)-O(1) 3.2(2) 
C(2)-C(5)-C(6)-O(2) 4.04(19) 
C(4)-C(5)-C(6)-O(2) -177.47(13) 
C(6)-O(2)-C(7)-C(7)#1 175.49(15) 
C(4)-C(3)-N(1)-C(1) 0.2(2) 
C(2)-C(1)-N(1)-C(3) 0.0(2) 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z-1 
 
Hydrogen bonds for L [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(3)-H(3)...N(1)#2 0.93 2.76 3.5981(18) 151.2 
 C(7)-H(7A)...N(1)#3 0.97 2.85 3.571(2) 132.3 
 C(4)-H(4)...O(1)#4 0.93 2.72 3.2519(17) 117.3 
 C(7)-H(7B)...O(1)#5 0.97 2.90 3.6859(17) 139.2 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z-1    #2 -x+1,-y+2,-z+1    #3 -x,-
y+2,-z     #4 x,-y+3/2,z+1/2    #5 x,-y+3/2,z-1/2 
 

I.2.b - Crystal data and structure refinement for 1. 

 
Empirical formula  C28 H24 Cl2 Cu2 N4 O8 

Formula weight  371.26 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C2/c 

Unit cell dimensions a = 11.4740(11) Å � = 90°. 

 b = 11.5821(14) Å � = 106.670(18)°. 
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 c = 10.9650(14) Å � = 90°. 

Volume 1395.9(3) Å3 

Z 2 

Density (calculated) 1.766 Mg/m3 

Absorption coefficient 1.775 mm-1 

F(000) 752 

Crystal size ? x ? x ? mm3 

Theta range for data collection 2.55 to 28.26°. 

Index ranges -15<=h<=15, -15<=k<=15, -14<=l<=14 

Reflections collected 5896 

Independent reflections 1655 [R(int) = 0.0596] 

Completeness to theta = 28.26° 95.6 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1655 / 0 / 126 

Goodness-of-fit on F2 0.990 

Final R indices [I>2sigma(I)] R1 = 0.0467, wR2 = 0.1147 

R indices (all data) R1 = 0.0617, wR2 = 0.1221 

Extinction coefficient 0.0063(11) 

Largest diff. peak and hole 0.642 and -0.808 e.Å-3 

 
Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 1. U(eq) is 
defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
Cu(1) 0 597(1) 2500 32(1) 
Cl(2) 0 2591(1) 2500 35(1) 
N(1) -1001(2) 42(2) 847(3) 31(1) 
C(1) -1079(3) -1080(3) 501(3) 32(1) 
C(2) -1802(3) -1473(3) -660(3) 32(1) 
C(3) -2486(3) -679(3) -1525(3) 31(1) 
C(4) -2395(3) 488(3) -1203(4) 33(1) 
C(5) -1648(3) 805(3) -18(3) 32(1) 
C(6) -3350(3) -1102(3) -2737(3) 33(1) 
C(7) -4775(3) -562(3) -4670(3) 34(1) 
O(1) -3619(2) -2111(2) -2956(3) 41(1) 
O(2) -3823(2) -244(2) -3539(2) 35(1) 
_______________________________________________________________________________________ 
 
Bond lengths [Å] and angles [°] for 1. 
_______________________________________________________________________________________ 
Cu(1)-N(1)  1.955(3) 
Cu(1)-N(1)#1  1.955(3) 
Cu(1)-Cl(2)  2.3094(13) 
N(1)-C(1)  1.350(4) 
N(1)-C(5)  1.352(4) 
C(1)-C(2)  1.382(5) 

N(1)-Cu(1)-N(1)#1 141.63(17) 
N(1)-Cu(1)-Cl(2) 109.19(8) 
N(1)#1-Cu(1)-Cl(2) 109.19(8) 
C(1)-N(1)-C(5) 116.9(3) 
C(1)-N(1)-Cu(1) 123.5(2) 
C(5)-N(1)-Cu(1) 119.6(2) 
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C(1)-H(1)  0.96(5) 
C(2)-C(3)  1.390(5) 
C(2)-H(2)  1.02(4) 
C(3)-C(4)  1.394(5) 
C(3)-C(6)  1.495(5) 
C(4)-C(5)  1.385(5) 
C(4)-H(3)  0.92(6) 
C(5)-H(4)  1.00(4) 
C(6)-O(1)  1.215(5) 
C(6)-O(2)  1.335(4) 
C(7)-O(2)  1.446(4) 
C(7)-C(7)#2  1.507(7) 
C(7)-H(5)  1.06(4) 

N(1)-C(1)-C(2) 123.4(3) 
N(1)-C(1)-H(1) 116(3) 
C(2)-C(1)-H(1) 121(3) 
C(1)-C(2)-C(3) 118.9(3) 
C(1)-C(2)-H(2) 121(2) 
C(3)-C(2)-H(2) 120(2) 
C(2)-C(3)-C(4) 118.8(3) 
C(2)-C(3)-C(6) 119.4(3) 
C(4)-C(3)-C(6) 121.7(3) 
C(5)-C(4)-C(3) 118.4(3) 
C(5)-C(4)-H(3) 120(3) 
C(3)-C(4)-H(3) 122(3) 
N(1)-C(5)-C(4) 123.6(3) 
N(1)-C(5)-H(4) 113(3) 
C(4)-C(5)-H(4) 123(3) 
O(1)-C(6)-O(2) 123.6(3) 
O(1)-C(6)-C(3) 123.8(3) 
O(2)-C(6)-C(3) 112.5(3) 
O(2)-C(7)-C(7)#2 105.2(3) 
O(2)-C(7)-H(5) 109(2) 
C(7)#2-C(7)-H(5) 114(3) 
C(6)-O(2)-C(7) 116.1(3) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2    #2 -x-1,-y,-z-1 
 
Anisotropic displacement parameters (Å2x 103) for 1. The anisotropic displacement factor exponent takes the 
form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 
 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
Cu(1) 31(1)  36(1) 26(1)  0 3(1)  0 
Cl(2) 38(1)  33(1) 32(1)  0 6(1)  0 
N(1) 30(1)  34(2) 27(2)  -1(1) 6(1)  0(1) 
C(1) 31(2)  35(2) 28(2)  2(1) 4(1)  0(1) 
C(2) 31(2)  34(2) 29(2)  -1(1) 5(1)  -1(1) 
C(3) 29(1)  37(2) 25(2)  0(1) 5(1)  0(1) 
C(4) 31(2)  36(2) 30(2)  3(1) 6(1)  2(1) 
C(5) 31(1)  32(2) 32(2)  0(1) 5(1)  0(1) 
C(6) 27(1)  41(2) 29(2)  0(1) 6(1)  1(1) 
C(7) 30(2)  42(2) 25(2)  -2(1) -1(1)  -2(1) 
O(1) 45(1)  34(1) 37(2)  -1(1) 0(1)  -5(1) 
O(2) 35(1)  37(1) 25(1)  -3(1) -2(1)  -1(1) 
_______________________________________________________________________________________ 
 
Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 1. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(1) -590(40) -1610(40) 1120(50) 48(13) 
H(2) -1810(30) -2320(30) -900(40) 27(9) 
H(3) -2810(50) 1050(50) -1760(50) 56(13) 
H(4) -1500(40) 1630(30) 260(40) 34(10) 
H(5) -4410(40) -1130(40) -5220(40) 42(11) 
H(6) -4540(30) 960(30) -5570(40) 22(8) 
_______________________________________________________________________________________ 
 
Torsion angles [°] for 1. 
_______________________________________________________________________________________ 
N(1)#1-Cu(1)-N(1)-C(1) -7.2(2) 
Cl(2)-Cu(1)-N(1)-C(1) 172.8(2) 
N(1)#1-Cu(1)-N(1)-C(5) 173.5(3) 
Cl(2)-Cu(1)-N(1)-C(5) -6.5(3) 
C(5)-N(1)-C(1)-C(2) -1.8(5) 
Cu(1)-N(1)-C(1)-C(2) 179.0(2) 
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N(1)-C(1)-C(2)-C(3) 0.2(5) 
C(1)-C(2)-C(3)-C(4) 1.6(5) 
C(1)-C(2)-C(3)-C(6) -174.9(3) 
C(2)-C(3)-C(4)-C(5) -1.6(5) 
C(6)-C(3)-C(4)-C(5) 174.7(3) 
C(1)-N(1)-C(5)-C(4) 1.7(5) 
Cu(1)-N(1)-C(5)-C(4) -179.0(3) 
C(3)-C(4)-C(5)-N(1) 0.0(5) 
C(2)-C(3)-C(6)-O(1) 9.9(5) 
C(4)-C(3)-C(6)-O(1) -166.4(3) 
C(2)-C(3)-C(6)-O(2) -171.9(3) 
C(4)-C(3)-C(6)-O(2) 11.7(4) 
O(1)-C(6)-O(2)-C(7) 5.2(5) 
C(3)-C(6)-O(2)-C(7) -173.0(3) 
C(7)#2-C(7)-O(2)-C(6) 174.6(3) 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2    #2 -x-1,-y,-z-1 
 
Hydrogen bonds for 1 [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(4)-H(3)...O(1)#3 0.92(6) 2.76(5) 3.248(4) 114(4) 
 C(5)-H(4)...O(1)#3 1.00(4) 2.95(4) 3.353(4) 105(3) 
 C(1)-H(1)...O(1)#4 0.96(5) 2.85(5) 3.506(4) 126(3) 
 C(1)-H(1)...O(1)#5 0.96(5) 2.65(5) 3.533(4) 152(4) 
 C(5)-H(4)...Cl(2) 1.00(4) 2.80(5) 3.533(4) 131(3) 
 C(7)-H(5)...Cl(2) 1.06(4) 2.81(5) 3.716(4) 143(3) 
 C(4)-H(3)...Cl(2)#6 0.92(6) 2.88(6) 3.670(4) 145(4) 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2    #2 -x-1,-y,-z-1    #3 -x-
1/2,y+1/2,-z-1/2     #4 -x-1/2,-y-1/2,-z    #5 x+1/2,-y-1/2,z+1/2    #6 -x-1/2,-y+1/2,-z 
 

I.2.c - Crystal data and structure refinement for 2. 

 
Empirical formula  Cu2 Cl2 C32 H32 N4 O9 

Formula weight  814.60 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 6.9874(10) Å � = 112.339(17)°. 

 b = 11.7096(19) Å � = 96.728(17)°. 

 c = 11.8247(17) Å � = 102.930(18)°. 

Volume 850.0(2) Å3 

Z 1 

Density (calculated) 1.591 Mg/m3 

Absorption coefficient 1.468 mm-1 

F(000) 416 



E - Crystallographic Data Adeline ROBIN 
 

Structural diversity of Cu(I), Ag(I) and Cu(II) coordination polymers with the ligand ethanediyl bis(isonicotinate) 170 

 

Crystal size 0.49 x 0.11 x 0.07 mm3 

Theta range for data collection 3.07 to 26.07°. 

Index ranges -8<=h<=8, -14<=k<=14, -14<=l<=14 

Reflections collected 7365 

Independent reflections 3106 [R(int) = 0.0387] 

Completeness to theta = 26.07° 92.3 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3106 / 0 / 226 

Goodness-of-fit on F2 0.785 

Final R indices [I>2sigma(I)] R1 = 0.0328, wR2 = 0.0800 

R indices (all data) R1 = 0.0525, wR2 = 0.0879 

Largest diff. peak and hole 0.339 and -0.388 e.Å-3 

 

Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 2. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
Cu(1) 4684(1) 4626(1) 8699(1) 42(1) 
Cl(2) 3186(1) 6127(1) 10287(1) 36(1) 
N(1) 2223(3) 3366(2) 7413(2) 35(1) 
C(1) 367(4) 3408(3) 7597(3) 37(1) 
C(2) -1358(4) 2647(3) 6681(3) 40(1) 
C(3) 2334(4) 2516(3) 6295(3) 39(1) 
C(4) 677(4) 1720(3) 5338(3) 36(1) 
C(5) -1223(4) 1802(3) 5528(3) 33(1) 
C(6) -3090(4) 1055(3) 4498(3) 39(1) 
O(1) -4722(3) 1196(3) 4592(2) 74(1) 
O(2) -2703(3) 241(2) 3480(2) 41(1) 
C(7) -4318(4) -455(3) 2363(3) 42(1) 
C(8) -3367(4) -918(3) 1277(3) 42(1) 
O(3) -2062(3) 190(2) 1183(2) 42(1) 
C(9) -85(4) 482(3) 1655(3) 38(1) 
O(4) 695(3) -133(2) 2067(2) 49(1) 
C(10) 8931(4) 8304(3) 8398(3) 35(1) 
C(11) 9732(4) 7690(3) 9048(3) 37(1) 
C(12) 8514(4) 6578(3) 9040(3) 35(1) 
C(13) 6924(4) 7743(3) 7738(3) 44(1) 
C(14) 5826(4) 6645(3) 7784(3) 47(1) 
N(2) 6570(3) 6049(2) 8429(2) 37(1) 
O(5) 2143(9) 6223(7) 5590(6) 77(2) 
C(15) 362(8) 5834(6) 6024(5) 94(2) 
C(16) 1609(11) 4986(6) 4777(7) 135(3) 
_______________________________________________________________________________________ 
 
Bond lengths [Å] and angles [°] for 2. 
_______________________________________________________________________________________ 
Cu(1)-N(1)  1.998(2) 
Cu(1)-N(2)  2.033(3) 
Cu(1)-Cl(2)#1  2.3251(9) 
Cu(1)-Cl(2)#1  2.3251(9) 
Cu(1)-Cl(2)  2.5472(10) 
Cu(1)-Cu(1)#1  2.8092(10) 

C(5)-C(6)  1.503(4) 
C(6)-O(1)  1.200(4) 
C(6)-O(2)  1.323(4) 
O(2)-C(7)  1.450(3) 
C(9)-C(10)#2  1.497(4) 
C(10)-C(11)  1.385(4) 
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Cl(2)-Cu(1)#1  2.3251(9) 
N(1)-C(3)  1.342(4) 
N(1)-C(1)  1.348(4) 
C(1)-C(2)  1.379(4) 
C(1)-H(1)  0.9300 
C(2)-C(5)  1.376(4) 
C(2)-H(2)  0.9300 
C(3)-C(4)  1.378(4) 
C(3)-H(3)  0.9300 
C(4)-C(5)  1.390(4) 
C(4)-H(4)  0.9300 
C(7)-C(8)  1.489(5) 
C(7)-H(7A)  0.9700 
C(7)-H(7B)  0.9700 
C(8)-O(3)  1.460(3) 
C(8)-H(8A)  0.9700 
C(8)-H(8B)  0.9700 
O(3)-C(9)  1.341(3) 
C(9)-O(4)  1.198(4) 

C(10)-C(13)  1.396(4) 
C(10)-C(9)#2  1.497(4) 
C(11)-C(12)  1.383(4) 
C(11)-H(11)  0.9300 
C(12)-N(2)  1.343(3) 
C(12)-H(12)  0.9300 
C(13)-C(14)  1.366(5) 
C(13)-H(13)  0.9300 
C(14)-N(2)  1.347(4) 
C(14)-H(14)  0.9300 
O(5)-C(16)  1.332(8) 
O(5)-C(15)  1.447(8) 
C(15)-C(16)#3  1.458(8) 
C(15)-C(16)  1.869(10) 
C(15)-H(15A)  0.9700 
C(15)-H(15B)  0.9700 
C(16)-C(15)#3  1.458(8) 
C(16)-H(16A)  0.9700 
C(16)-H(16B)  0.9700 

 
N(1)-Cu(1)-N(2) 122.93(10) 
N(1)-Cu(1)-Cl(2)#1 119.12(7) 
N(2)-Cu(1)-Cl(2)#1 104.46(7) 
N(1)-Cu(1)-Cl(2)#1 119.12(7) 
N(2)-Cu(1)-Cl(2)#1 104.46(7) 
Cl(2)#1-Cu(1)-Cl(2)#1 0.00(3) 
N(1)-Cu(1)-Cl(2) 101.99(7) 
N(2)-Cu(1)-Cl(2) 95.36(8) 
Cl(2)#1-Cu(1)-Cl(2) 109.75(3) 
Cl(2)#1-Cu(1)-Cl(2) 109.75(3) 
N(1)-Cu(1)-Cu(1)#1 126.24(8) 
N(2)-Cu(1)-Cu(1)#1 106.94(8) 
Cl(2)#1-Cu(1)-Cu(1)#1 58.58(3) 
Cl(2)#1-Cu(1)-Cu(1)#1 58.58(3) 
Cl(2)-Cu(1)-Cu(1)#1 51.17(2) 
Cu(1)#1-Cl(2)-Cu(1) 70.25(3) 
C(3)-N(1)-C(1) 117.0(2) 
C(3)-N(1)-Cu(1) 121.93(18) 
C(1)-N(1)-Cu(1) 120.8(2) 
N(1)-C(1)-C(2) 122.5(3) 
N(1)-C(1)-H(1) 118.8 
C(2)-C(1)-H(1) 118.8 
C(5)-C(2)-C(1) 119.9(3) 
C(5)-C(2)-H(2) 120.0 
C(1)-C(2)-H(2) 120.0 
N(1)-C(3)-C(4) 123.7(3) 
N(1)-C(3)-H(3) 118.1 
C(4)-C(3)-H(3) 118.1 
C(3)-C(4)-C(5) 118.5(3) 
C(3)-C(4)-H(4) 120.7 
C(5)-C(4)-H(4) 120.7 
C(2)-C(5)-C(4) 118.2(2) 
C(2)-C(5)-C(6) 119.8(3) 
C(4)-C(5)-C(6) 122.0(3) 
O(1)-C(6)-O(2) 124.6(3) 
O(1)-C(6)-C(5) 123.7(3) 
O(2)-C(6)-C(5) 111.7(2) 
C(6)-O(2)-C(7) 118.0(2) 
O(2)-C(7)-C(8) 107.1(2) 
O(2)-C(7)-H(7A) 110.3 
C(8)-C(7)-H(7A) 110.3 
O(2)-C(7)-H(7B) 110.3 
C(8)-C(7)-H(7B) 110.3 
H(7A)-C(7)-H(7B) 108.5 

O(3)-C(8)-H(8B) 109.8 
C(7)-C(8)-H(8B) 109.8 
H(8A)-C(8)-H(8B) 108.3 
C(9)-O(3)-C(8) 116.3(2) 
O(4)-C(9)-O(3) 125.6(3) 
O(4)-C(9)-C(10)#2 123.2(3) 
O(3)-C(9)-C(10)#2 111.3(3) 
C(11)-C(10)-C(13) 117.7(3) 
C(11)-C(10)-C(9)#2 124.3(2) 
C(13)-C(10)-C(9)#2 118.0(3) 
C(12)-C(11)-C(10) 119.2(3) 
C(12)-C(11)-H(11) 120.4 
C(10)-C(11)-H(11) 120.4 
N(2)-C(12)-C(11) 123.4(3) 
N(2)-C(12)-H(12) 118.3 
C(11)-C(12)-H(12) 118.3 
C(14)-C(13)-C(10) 119.3(3) 
C(14)-C(13)-H(13) 120.3 
C(10)-C(13)-H(13) 120.3 
N(2)-C(14)-C(13) 123.8(3) 
N(2)-C(14)-H(14) 118.1 
C(13)-C(14)-H(14) 118.1 
C(12)-N(2)-C(14) 116.6(3) 
C(12)-N(2)-Cu(1) 122.3(2) 
C(14)-N(2)-Cu(1) 120.14(19) 
C(16)-O(5)-C(15) 84.4(6) 
O(5)-C(15)-C(16)#3 125.5(6) 
O(5)-C(15)-C(16) 45.2(4) 
C(16)#3-C(15)-C(16) 90.1(5) 
O(5)-C(15)-H(15A) 105.9 
C(16)#3-C(15)-H(15A) 105.9 
C(16)-C(15)-H(15A) 149.7 
O(5)-C(15)-H(15B) 105.9 
C(16)#3-C(15)-H(15B) 105.9 
C(16)-C(15)-H(15B) 93.3 
H(15A)-C(15)-H(15B) 106.3 
O(5)-C(16)-C(15)#3 128.9(6) 
O(5)-C(16)-C(15) 50.4(4) 
C(15)#3-C(16)-C(15) 89.9(5) 
O(5)-C(16)-H(16A) 105.1 
C(15)#3-C(16)-H(16A) 105.1 
C(15)-C(16)-H(16A) 89.4 
O(5)-C(16)-H(16B) 105.1 
C(15)#3-C(16)-H(16B) 105.1 
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O(3)-C(8)-C(7) 109.3(2) 
O(3)-C(8)-H(8A) 109.8 
C(7)-C(8)-H(8A) 109.8 

C(15)-C(16)-H(16B) 154.5 
H(16A)-C(16)-H(16B) 105.9 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+2    #2 -x+1,-y+1,-z+1    #3 -
x,-y+1,-z+1 
 

Anisotropic displacement parameters (Å2x 103) for 2. The anisotropic displacement factor exponent takes the 

form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
Cu(1) 27(1)  44(1) 43(1)  13(1) 3(1)  0(1) 
Cl(2) 27(1)  32(1) 41(1)  9(1) 6(1)  6(1) 
N(1) 29(1)  36(1) 37(2)  14(1) 7(1)  6(1) 
C(1) 29(1)  44(2) 29(2)  8(1) 7(1)  6(1) 
C(2) 26(1)  45(2) 38(2)  11(1) 8(1)  6(1) 
C(3) 28(1)  44(2) 39(2)  12(1) 9(1)  11(1) 
C(4) 29(1)  36(2) 35(2)  7(1) 7(1)  10(1) 
C(5) 28(1)  36(2) 30(2)  9(1) 7(1)  7(1) 
C(6) 28(1)  39(2) 37(2)  7(1) 4(1)  5(1) 
O(1) 29(1)  104(2) 48(2)  -11(1) 1(1)  22(1) 
O(2) 30(1)  41(1) 35(1)  1(1) 3(1)  6(1) 
C(7) 33(1)  38(2) 37(2)  4(1) -1(1)  -1(1) 
C(8) 42(2)  31(2) 40(2)  9(1) 8(1)  -2(1) 
O(3) 36(1)  38(1) 43(1)  15(1) 3(1)  -1(1) 
C(9) 40(2)  34(2) 33(2)  9(1) 8(1)  8(1) 
O(4) 50(1)  42(1) 59(2)  24(1) 10(1)  14(1) 
C(10) 32(1)  35(2) 33(2)  11(1) 7(1)  6(1) 
C(11) 27(1)  41(2) 34(2)  12(1) 3(1)  2(1) 
C(12) 29(1)  37(2) 35(2)  14(1) 7(1)  7(1) 
C(13) 35(2)  46(2) 50(2)  21(2) 2(1)  10(1) 
C(14) 32(2)  51(2) 51(2)  21(2) 1(1)  6(1) 
N(2) 26(1)  42(1) 36(1)  13(1) 5(1)  6(1) 
O(5) 75(4)  98(5) 62(4)  35(3) 8(3)  36(3) 
C(15) 103(4)  132(5) 65(3)  41(3) 30(3)  62(3) 
C(16) 139(6)  109(5) 136(6)  34(4) -28(5)  60(4) 
_______________________________________________________________________________________ 
 

Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 2. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(1) 247 3972 8372 44 
H(2) -2613 2705 6843 47 
H(3) 3601 2461 6160 47 
H(4) 826 1140 4581 43 
H(7A) -5087 109 2263 51 
H(7B) -5221 -1180 2423 51 
H(8A) -2583 -1469 1391 50 
H(8B) -4402 -1419 511 50 
H(11) 11072 8021 9483 44 
H(12) 9070 6175 9480 42 
H(13) 6341 8113 7272 53 
H(14) 4488 6289 7345 57 
H(15A) 144 6627 6581 113 
H(15B) 732 5414 6547 113 
H(16A) 1991 4534 5263 162 
H(16B) 2514 4944 4210 162 
_______________________________________________________________________________________ 
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Torsion angles [°] for 2. 
_______________________________________________________________________________________ 
N(1)-Cu(1)-Cl(2)-Cu(1)#1 127.22(8) 
N(2)-Cu(1)-Cl(2)-Cu(1)#1 -107.46(7) 
Cl(2)#1-Cu(1)-Cl(2)-Cu(1)#1 0.0 
Cl(2)#1-Cu(1)-Cl(2)-Cu(1)#1 0.0 
N(2)-Cu(1)-N(1)-C(3) 64.5(3) 
Cl(2)#1-Cu(1)-N(1)-C(3) -70.0(2) 
Cl(2)#1-Cu(1)-N(1)-C(3) -70.0(2) 
Cl(2)-Cu(1)-N(1)-C(3) 169.1(2) 
Cu(1)#1-Cu(1)-N(1)-C(3) -140.7(2) 
N(2)-Cu(1)-N(1)-C(1) -110.1(2) 
Cl(2)#1-Cu(1)-N(1)-C(1) 115.4(2) 
Cl(2)#1-Cu(1)-N(1)-C(1) 115.4(2) 
Cl(2)-Cu(1)-N(1)-C(1) -5.6(2) 
Cu(1)#1-Cu(1)-N(1)-C(1) 44.7(3) 
C(3)-N(1)-C(1)-C(2) -1.8(5) 
Cu(1)-N(1)-C(1)-C(2) 173.1(2) 
N(1)-C(1)-C(2)-C(5) 0.2(5) 
C(1)-N(1)-C(3)-C(4) 1.5(5) 
Cu(1)-N(1)-C(3)-C(4) -173.4(2) 
N(1)-C(3)-C(4)-C(5) 0.5(5) 
C(1)-C(2)-C(5)-C(4) 1.8(5) 
C(1)-C(2)-C(5)-C(6) -175.0(3) 
C(3)-C(4)-C(5)-C(2) -2.1(5) 
C(3)-C(4)-C(5)-C(6) 174.6(3) 
C(2)-C(5)-C(6)-O(1) 4.1(5) 
C(4)-C(5)-C(6)-O(1) -172.5(3) 
C(2)-C(5)-C(6)-O(2) -176.6(3) 
C(4)-C(5)-C(6)-O(2) 6.7(4) 
O(1)-C(6)-O(2)-C(7) 5.3(5) 
C(5)-C(6)-O(2)-C(7) -173.9(3) 

C(6)-O(2)-C(7)-C(8) 160.5(3) 
O(2)-C(7)-C(8)-O(3) -61.6(3) 
C(7)-C(8)-O(3)-C(9) 99.7(3) 
C(8)-O(3)-C(9)-O(4) 5.1(5) 
C(8)-O(3)-C(9)-C(10)#2 -175.2(2) 
C(13)-C(10)-C(11)-C(12) -1.5(5) 
C(9)#2-C(10)-C(11)-C(12) 179.4(3) 
C(10)-C(11)-C(12)-N(2) 0.1(5) 
C(11)-C(10)-C(13)-C(14) 1.7(5) 
C(9)#2-C(10)-C(13)-C(14) -179.1(3) 
C(10)-C(13)-C(14)-N(2) -0.6(6) 
C(11)-C(12)-N(2)-C(14) 1.1(5) 
C(11)-C(12)-N(2)-Cu(1) -168.1(2) 
C(13)-C(14)-N(2)-C(12) -0.8(5) 
C(13)-C(14)-N(2)-Cu(1) 168.6(3) 
N(1)-Cu(1)-N(2)-C(12) -155.4(2) 
Cl(2)#1-Cu(1)-N(2)-C(12) -15.4(2) 
Cl(2)#1-Cu(1)-N(2)-C(12) -15.4(2) 
Cl(2)-Cu(1)-N(2)-C(12) 96.6(2) 
Cu(1)#1-Cu(1)-N(2)-C(12) 45.6(2) 
N(1)-Cu(1)-N(2)-C(14) 35.8(3) 
Cl(2)#1-Cu(1)-N(2)-C(14) 175.8(2) 
Cl(2)#1-Cu(1)-N(2)-C(14) 175.8(2) 
Cl(2)-Cu(1)-N(2)-C(14) -72.2(2) 
Cu(1)#1-Cu(1)-N(2)-C(14) -123.2(2) 
C(16)-O(5)-C(15)-C(16)#3 -45.2(8) 
C(15)-O(5)-C(16)-C(15)#3 47.9(10) 
C(16)#3-C(15)-C(16)-O(5) 144.7(7) 
O(5)-C(15)-C(16)-C(15)#3 -144.7(7) 
C(16)#3-C(15)-C(16)-C(15)#3 0.0 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+2    #2 -x+1,-y+1,-z+1    #3 -
x,-y+1,-z+1 
 
Hydrogen bonds for 2 [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(4)-H(4)...O(4) 0.93 2.75 3.648(4) 162.2 
 C(8)-H(8A)...O(4) 0.97 2.31 2.708(4) 103.4 
 C(14)-H(14)...O(5) 0.93 2.45 3.239(6) 142.1 
 C(3)-H(3)...O(1)#4 0.93 2.49 3.272(4) 141.8 
 C(13)-H(13)...O(1)#3 0.93 2.82 3.737(5) 167.4 
 C(7)-H(7A)...O(4)#5 0.97 2.87 3.579(4) 130.7 
 C(1)-H(1)...Cl(2) 0.93 2.82 3.487(3) 129.4 
 C(12)-H(12)...Cl(2)#4 0.93 2.94 3.653(3) 134.3 
 C(12)-H(12)...Cl(2)#1 0.93 2.93 3.540(3) 124.3 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+2    #2 -x+1,-y+1,-z+1    #3 -
x,-y+1,-z+1     #4 x+1,y,z    #5 x-1,y,z    #6 x-1,y-1,z-1 
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I.2.d - Crystal data and structure refinement for 3. 

 
Empirical formula  C14 H12 Ag N3 O7 

Formula weight  442.14 

Temperature  240(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 11.6742(8) Å � = 90°. 

 b = 11.0728(6) Å � = 99.019(6)°. 

 c = 12.1813(9) Å � = 90°. 

Volume 1555.16(18) Å3 

Z 4 

Density (calculated) 1.888 Mg/m3 

Absorption coefficient 1.341 mm-1 

F(000) 880 

Crystal size 0.3 x 0.24 x 0.17 mm3 

Theta range for data collection 2.50 to 27.05°. 

Index ranges -14<=h<=14, -14<=k<=13, -15<=l<=15 

Reflections collected 13875 

Independent reflections 3246 [R(int) = 0.0672] 

Completeness to theta = 27.05° 95.3 %  

Absorption correction Numerical 

Max. and min. transmission 0.8999 and 0.5860 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3246 / 0 / 226 

Goodness-of-fit on F2 1.180 

Final R indices [I>2sigma(I)] R1 = 0.0345, wR2 = 0.0948 

R indices (all data) R1 = 0.0363, wR2 = 0.0960 

Largest diff. peak and hole 0.442 and -0.528 e.Å-3 
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Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 3. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
Ag(1) 7264(1) 1566(1) 3155(1) 40(1) 
N(1) 9156(2) 1401(2) 3823(2) 34(1) 
C(1) 9749(2) 2266(2) 4443(2) 36(1) 
C(2) 10929(2) 2195(2) 4824(2) 35(1) 
C(3) 9742(2) 424(2) 3583(2) 33(1) 
C(4) 10917(2) 272(2) 3940(2) 33(1) 
C(5) 11521(2) 1180(2) 4567(2) 30(1) 
C(6) 12789(2) 994(2) 4952(2) 35(1) 
O(1) 13260(2) 34(2) 4953(3) 59(1) 
O(2) 13310(2) 2023(2) 5291(2) 39(1) 
C(7) 14540(2) 1920(3) 5702(3) 45(1) 
C(8) 14933(2) 3212(3) 5910(3) 37(1) 
O(3) 16139(2) 3091(2) 6400(2) 34(1) 
C(9) 16729(2) 4122(2) 6515(2) 29(1) 
O(4) 16315(2) 5113(2) 6361(2) 39(1) 
C(10) 17993(2) 3901(2) 6888(2) 28(1) 
C(11) 18423(2) 2841(2) 7404(2) 32(1) 
C(12) 19606(2) 2730(2) 7736(2) 33(1) 
C(13) 18767(2) 4798(2) 6720(3) 37(1) 
C(14) 19935(2) 4606(2) 7062(3) 39(1) 
N(2) 20360(2) 3598(2) 7571(2) 34(1) 
N(3) 7385(2) 4322(2) 3607(2) 33(1) 
O(5) 7059(3) 3605(2) 4277(2) 56(1) 
O(6) 7536(2) 3940(2) 2667(2) 46(1) 
O(7) 7556(2) 5393(2) 3848(2) 57(1) 
_______________________________________________________________________________________ 
 
Bond lengths [Å] and angles [°] for 3. 
_______________________________________________________________________________________ 
Ag(1)-N(2)#1  2.232(2) 
Ag(1)-N(1)  2.239(2) 
Ag(1)-O(5)  2.669(2) 
Ag(1)-O(6)  2.724(2) 
Ag(1)-O(7)#2  2.800(3) 
N(1)-C(3)  1.337(3) 
N(1)-C(1)  1.343(4) 
C(1)-C(2)  1.385(4) 
C(1)-H(1)  0.9300 
C(2)-C(5)  1.380(4) 
C(2)-H(2)  0.9300 
C(3)-C(4)  1.382(4) 
C(3)-H(3)  0.9300 
C(4)-C(5)  1.387(4) 
C(4)-H(4)  0.9300 
C(5)-C(6)  1.495(3) 
C(6)-O(1)  1.198(4) 
C(6)-O(2)  1.326(3) 
O(2)-C(7)  1.449(3) 
C(7)-C(8)  1.511(4) 
C(7)-H(7A)  0.9700 

C(7)-H(7B)  0.9700 
C(8)-O(3)  1.446(3) 
C(8)-H(8A)  0.9700 
C(8)-H(8B)  0.9700 
O(3)-C(9)  1.329(3) 
C(9)-O(4)  1.202(3) 
C(9)-C(10)  1.494(3) 
C(10)-C(13)  1.380(4) 
C(10)-C(11)  1.388(4) 
C(11)-C(12)  1.383(3) 
C(11)-H(11)  0.9300 
C(12)-N(2)  1.340(3) 
C(12)-H(12)  0.9300 
C(13)-C(14)  1.378(4) 
C(13)-H(13)  0.9300 
C(14)-N(2)  1.335(4) 
C(14)-H(14)  0.9300 
N(2)-Ag(1)#3  2.232(2) 
N(3)-O(7)  1.231(3) 
N(3)-O(5)  1.240(3) 
N(3)-O(6)  1.259(3) 

N(2)#1-Ag(1)-N(1) 170.25(9) 
N(2)#1-Ag(1)-O(5) 93.84(9) 
N(1)-Ag(1)-O(5) 92.60(9) 
N(2)#1-Ag(1)-O(6) 98.83(7) 
N(1)-Ag(1)-O(6) 90.91(7) 
O(5)-Ag(1)-O(6) 47.05(6) 
N(2)#1-Ag(1)-O(7)#2 83.79(8) 
N(1)-Ag(1)-O(7)#2 94.29(8) 

C(8)-C(7)-H(7B) 111.0 
H(7A)-C(7)-H(7B) 109.0 
O(3)-C(8)-C(7) 103.4(2) 
O(3)-C(8)-H(8A) 111.1 
C(7)-C(8)-H(8A) 111.1 
O(3)-C(8)-H(8B) 111.1 
C(7)-C(8)-H(8B) 111.1 
H(8A)-C(8)-H(8B) 109.0 
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O(5)-Ag(1)-O(7)#2 149.70(7) 
O(6)-Ag(1)-O(7)#2 103.32(6) 
C(3)-N(1)-C(1) 117.7(2) 
C(3)-N(1)-Ag(1) 119.74(18) 
C(1)-N(1)-Ag(1) 122.58(18) 
N(1)-C(1)-C(2) 123.1(2) 
N(1)-C(1)-H(1) 118.5 
C(2)-C(1)-H(1) 118.5 
C(5)-C(2)-C(1) 118.5(2) 
C(5)-C(2)-H(2) 120.7 
C(1)-C(2)-H(2) 120.7 
N(1)-C(3)-C(4) 123.1(2) 
N(1)-C(3)-H(3) 118.5 
C(4)-C(3)-H(3) 118.5 
C(3)-C(4)-C(5) 118.6(2) 
C(3)-C(4)-H(4) 120.7 
C(5)-C(4)-H(4) 120.7 
C(2)-C(5)-C(4) 119.0(2) 
C(2)-C(5)-C(6) 123.2(2) 
C(4)-C(5)-C(6) 117.8(2) 
O(1)-C(6)-O(2) 125.0(3) 
O(1)-C(6)-C(5) 123.7(3) 
O(2)-C(6)-C(5) 111.2(2) 
C(6)-O(2)-C(7) 114.9(2) 
O(2)-C(7)-C(8) 104.0(2) 
O(2)-C(7)-H(7A) 111.0 
C(8)-C(7)-H(7A) 111.0 
O(2)-C(7)-H(7B) 111.0 

C(9)-O(3)-C(8) 114.8(2) 
O(4)-C(9)-O(3) 125.3(2) 
O(4)-C(9)-C(10) 123.4(2) 
O(3)-C(9)-C(10) 111.3(2) 
C(13)-C(10)-C(11) 118.5(2) 
C(13)-C(10)-C(9) 118.4(2) 
C(11)-C(10)-C(9) 123.1(2) 
C(12)-C(11)-C(10) 118.7(2) 
C(12)-C(11)-H(11) 120.6 
C(10)-C(11)-H(11) 120.6 
N(2)-C(12)-C(11) 122.9(2) 
N(2)-C(12)-H(12) 118.6 
C(11)-C(12)-H(12) 118.6 
C(14)-C(13)-C(10) 119.0(2) 
C(14)-C(13)-H(13) 120.5 
C(10)-C(13)-H(13) 120.5 
N(2)-C(14)-C(13) 123.2(2) 
N(2)-C(14)-H(14) 118.4 
C(13)-C(14)-H(14) 118.4 
C(14)-N(2)-C(12) 117.7(2) 
C(14)-N(2)-Ag(1)#3 119.69(18) 
C(12)-N(2)-Ag(1)#3 122.61(18) 
O(7)-N(3)-O(5) 121.0(3) 
O(7)-N(3)-O(6) 120.0(2) 
O(5)-N(3)-O(6) 119.0(2) 
N(3)-O(5)-Ag(1) 98.22(16) 
N(3)-O(6)-Ag(1) 95.06(16) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x-3/2,-y+1/2,z-1/2    #2 -x+3/2,y-1/2,-z+1/2    
#3 x+3/2,-y+1/2,z+1/2 
 

Anisotropic displacement parameters (Å2x 103) for 3. The anisotropic displacement factor exponent takes the 

form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
Ag(1) 22(1)  40(1) 54(1)  -1(1) -6(1)  -1(1) 
N(1) 23(1)  38(1) 39(1)  1(1) -3(1)  -4(1) 
C(1) 27(1)  32(1) 48(2)  -3(1) -2(1)  0(1) 
C(2) 27(1)  32(1) 43(1)  -3(1) -3(1)  -3(1) 
C(3) 28(1)  37(1) 32(1)  -3(1) -1(1)  -4(1) 
C(4) 30(1)  34(1) 35(1)  -2(1) 5(1)  0(1) 
C(5) 23(1)  33(1) 32(1)  4(1) 2(1)  -4(1) 
C(6) 25(1)  36(1) 42(1)  4(1) 0(1)  -1(1) 
O(1) 33(1)  39(1) 101(2)  -4(1) -3(1)  5(1) 
O(2) 21(1)  38(1) 55(1)  2(1) -5(1)  -2(1) 
C(7) 21(1)  45(2) 64(2)  9(1) -9(1)  -3(1) 
C(8) 18(1)  41(1) 47(2)  -6(1) -4(1)  3(1) 
O(3) 19(1)  38(1) 42(1)  2(1) -4(1)  -1(1) 
C(9) 24(1)  34(1) 30(1)  -2(1) 3(1)  1(1) 
O(4) 31(1)  35(1) 49(1)  -3(1) 2(1)  8(1) 
C(10) 22(1)  31(1) 28(1)  -2(1) 0(1)  -1(1) 
C(11) 24(1)  32(1) 40(1)  3(1) 1(1)  -3(1) 
C(12) 26(1)  32(1) 40(1)  4(1) -1(1)  1(1) 
C(13) 29(1)  30(1) 51(2)  7(1) 2(1)  1(1) 
C(14) 26(1)  33(1) 57(2)  5(1) 3(1)  -4(1) 
N(2) 22(1)  34(1) 43(1)  0(1) -2(1)  0(1) 
N(3) 23(1)  34(1) 42(1)  0(1) 1(1)  3(1) 
O(5) 77(2)  46(1) 48(1)  3(1) 24(1)  -9(1) 
O(6) 52(1)  48(1) 39(1)  -1(1) 9(1)  -1(1) 
O(7) 63(2)  36(1) 74(2)  -10(1) 19(1)  -7(1) 
_______________________________________________________________________________________ 
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Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 3. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(1) 9349 2945 4624 44 
H(2) 11313 2817 5243 42 
H(3) 9340 -183 3156 39 
H(4) 11294 -425 3764 39 
H(7A) 14943 1541 5154 54 
H(7B) 14676 1452 6383 54 
H(8A) 14854 3665 5221 44 
H(8B) 14492 3610 6416 44 
H(11) 17924 2216 7525 39 
H(12) 19891 2022 8089 40 
H(13) 18506 5521 6381 44 
H(14) 20452 5209 6931 47 
_______________________________________________________________________________________ 
 
Torsion angles [°] for 3. 
_______________________________________________________________________________________ 
N(2)#1-Ag(1)-N(1)-C(3) 43.7(6) 
O(5)-Ag(1)-N(1)-C(3) 175.0(2) 
O(6)-Ag(1)-N(1)-C(3) -137.9(2) 
O(7)#2-Ag(1)-N(1)-C(3) -34.5(2) 
N(2)#1-Ag(1)-N(1)-C(1) -138.0(5) 
O(5)-Ag(1)-N(1)-C(1) -6.7(2) 
O(6)-Ag(1)-N(1)-C(1) 40.4(2) 
O(7)#2-Ag(1)-N(1)-C(1) 143.8(2) 
C(3)-N(1)-C(1)-C(2) 0.9(4) 
Ag(1)-N(1)-C(1)-C(2) -177.4(2) 
N(1)-C(1)-C(2)-C(5) -0.9(4) 
C(1)-N(1)-C(3)-C(4) -0.1(4) 
Ag(1)-N(1)-C(3)-C(4) 178.2(2) 
N(1)-C(3)-C(4)-C(5) -0.7(4) 
C(1)-C(2)-C(5)-C(4) 0.0(4) 
C(1)-C(2)-C(5)-C(6) -178.8(2) 
C(3)-C(4)-C(5)-C(2) 0.8(4) 
C(3)-C(4)-C(5)-C(6) 179.6(2) 
C(2)-C(5)-C(6)-O(1) 162.9(3) 
C(4)-C(5)-C(6)-O(1) -15.8(4) 
C(2)-C(5)-C(6)-O(2) -16.9(4) 
C(4)-C(5)-C(6)-O(2) 164.4(2) 
O(1)-C(6)-O(2)-C(7) -1.0(4) 
C(5)-C(6)-O(2)-C(7) 178.8(2) 
C(6)-O(2)-C(7)-C(8) 174.1(3) 
O(2)-C(7)-C(8)-O(3) 175.7(2) 
C(7)-C(8)-O(3)-C(9) 170.8(2) 
C(8)-O(3)-C(9)-O(4) 8.4(4) 

C(8)-O(3)-C(9)-C(10) -172.7(2) 
O(4)-C(9)-C(10)-C(13) -21.0(4) 
O(3)-C(9)-C(10)-C(13) 160.1(2) 
O(4)-C(9)-C(10)-C(11) 158.4(3) 
O(3)-C(9)-C(10)-C(11) -20.5(3) 
C(13)-C(10)-C(11)-C(12) 0.5(4) 
C(9)-C(10)-C(11)-C(12) -178.9(2) 
C(10)-C(11)-C(12)-N(2) -0.7(4) 
C(11)-C(10)-C(13)-C(14) 0.5(4) 
C(9)-C(10)-C(13)-C(14) 179.9(2) 
C(10)-C(13)-C(14)-N(2) -1.3(5) 
C(13)-C(14)-N(2)-C(12) 1.2(4) 
C(13)-C(14)-N(2)-Ag(1)#3 -177.2(2) 
C(11)-C(12)-N(2)-C(14) -0.1(4) 
C(11)-C(12)-N(2)-Ag(1)#3 178.1(2) 
O(7)-N(3)-O(5)-Ag(1) -171.6(2) 
O(6)-N(3)-O(5)-Ag(1) 8.6(3) 
N(2)#1-Ag(1)-O(5)-N(3) -103.2(2) 
N(1)-Ag(1)-O(5)-N(3) 84.1(2) 
O(6)-Ag(1)-O(5)-N(3) -4.74(16) 
O(7)#2-Ag(1)-O(5)-N(3) -19.0(3) 
O(7)-N(3)-O(6)-Ag(1) 171.9(2) 
O(5)-N(3)-O(6)-Ag(1) -8.4(3) 
N(2)#1-Ag(1)-O(6)-N(3) 91.67(16) 
N(1)-Ag(1)-O(6)-N(3) -88.05(16) 
O(5)-Ag(1)-O(6)-N(3) 4.64(15) 
O(7)#2-Ag(1)-O(6)-N(3) 177.32(15) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x-3/2,-y+1/2,z-1/2    #2 -x+3/2,y-1/2,-z+1/2  
#3 x+3/2,-y+1/2,z+1/2 
 
Hydrogen bonds for 3 [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(7)-H(7A)...O(1)#4 0.97 2.75 3.543(4) 139.8 
 C(8)-H(8A)...O(4)#5 0.97 2.57 3.457(4) 152.9 
 C(11)-H(11)...O(4)#6 0.93 2.77 3.367(3) 122.8 
 C(12)-H(12)...O(4)#6 0.93 2.68 3.337(3) 128.0 
 C(1)-H(1)...O(5) 0.93 2.74 3.450(4) 133.9 
 C(12)-H(12)...O(5)#3 0.93 2.80 3.496(4) 132.6 
 C(2)-H(2)...O(7)#8 0.93 2.54 3.461(4) 172.5 
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 C(8)-H(8B)...O(7)#8 0.97 2.61 3.346(4) 133.1 
 C(3)-H(3)...O(6)#2 0.93 2.46 3.290(3) 148.4 
 C(14)-H(14)...O(6)#5 0.93 2.51 3.333(3) 148.2 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x-3/2,-y+1/2,z-1/2    #2 -x+3/2,y-1/2,-z+1/2  
#3 x+3/2,-y+1/2,z+1/2    #4 -x+3,-y,-z+1    #5 -x+3,-y+1,-z+1     #6 -x+7/2,y-1/2,-z+3/2    #7 x+1,y,z    #8 -
x+2,-y+1,-z+1 
 

I.2.e - Crystal data and structure refinement for 4. 

 
Empirical formula  C14 H14 Ag N3 O8 

Formula weight  462.16 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Ccca 

Unit cell dimensions a = 17.463(4) Å � = 90°. 

 b = 19.599(4) Å � = 90°. 

 c = 21.204(4) Å � = 90°. 

Volume 7257(3) Å3 

Z 16 

Density (calculated) 1.677 Mg/m3 

Absorption coefficient 1.157 mm-1 

F(000) 3648 

Crystal size 0.4 x 0.2 x 0.15 mm3 

Theta range for data collection 1.83 to 27.01°. 

Index ranges 0<=h<=22, 0<=k<=25, 0<=l<=27 

Reflections collected 3972 

Independent reflections 3972 [R(int) = ?] 

Completeness to theta = 27.01° 99.9 %  

Absorption correction Spherical 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3972 / 0 / 236 

Goodness-of-fit on F2 1.045 

Final R indices [I>2sigma(I)] R1 = 0.0674, wR2 = 0.2181 

R indices (all data) R1 = 0.0760, wR2 = 0.2388 

Extinction coefficient 0.00048(13) 
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Largest diff. peak and hole 1.720 and -0.932 e.Å-3 

 

Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 4. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
Ag(1) 3310(1) 2172(1) 4899(1) 75(1) 
N(1) 2649(2) 1478(2) 4316(2) 58(1) 
C(1) 2222(3) 967(2) 4569(2) 58(1) 
C(2) 1792(2) 531(2) 4220(2) 53(1) 
C(3) 1792(2) 595(2) 3562(2) 47(1) 
C(4) 2227(2) 1120(2) 3297(2) 52(1) 
C(5) 2633(3) 1548(3) 3680(2) 58(1) 
C(6) 1338(2) 97(2) 3191(2) 51(1) 
O(1) 917(2) -326(2) 3412(2) 71(1) 
O(2) 1470(2) 162(2) 2570(1) 55(1) 
C(7) 1129(3) -348(2) 2170(2) 61(1) 
C(8) 6284(3) 5169(2) 6504(2) 58(1) 
O(3) 5768(2) 4626(2) 6329(1) 52(1) 
C(9) 5799(3) 4439(2) 5718(2) 56(1) 
O(4) 6248(3) 4677(2) 5351(2) 89(1) 
C(10) 5225(2) 3911(2) 5555(2) 52(1) 
C(11) 4828(2) 3536(2) 5998(2) 50(1) 
C(12) 4308(2) 3055(2) 5804(2) 52(1) 
C(13) 5073(3) 3789(3) 4917(2) 60(1) 
C(14) 4542(3) 3298(3) 4766(2) 65(1) 
N(2) 4163(2) 2927(2) 5190(2) 58(1) 
O(8) 791(3) 1784(4) 2463(3) 131(2) 
N(3) 2621(2) 1669(2) 6300(2) 58(1) 
O(5) 2061(3) 1744(2) 5961(3) 100(2) 
O(6) 3263(3) 1763(3) 6100(4) 115(2) 
O(7) 2554(5) 1486(5) 6825(2) 173(4) 
_______________________________________________________________________________________ 
 
Bond lengths [Å] and angles [°] for 4. 
_______________________________________________________________________________________ 
Ag(1)-N(1)  2.171(4) 
Ag(1)-N(2)  2.189(4) 
Ag(1)-O(6)  2.671(8) 
Ag(1)-Ag(1)#1  3.1356(10) 
Ag(1)-O(5)  3.246(6) 
N(1)-C(5)  1.357(6) 
N(1)-C(1)  1.359(6) 
C(1)-C(2)  1.356(7) 
C(1)-H(1)  0.9300 
C(2)-C(3)  1.402(6) 
C(2)-H(2)  0.9300 
C(3)-C(4)  1.397(6) 
C(3)-C(6)  1.485(6) 
C(4)-C(5)  1.366(6) 
C(4)-H(4)  0.9300 
C(5)-H(5)  0.9300 
C(6)-O(1)  1.203(5) 
C(6)-O(2)  1.341(5) 
O(2)-C(7)  1.439(5) 
O(2)-O(8)  3.401(7) 
C(7)-C(8)#2  1.482(7) 
C(7)-H(7A)  0.9700 
C(7)-H(7B)  0.9700 
C(8)-O(3)  1.442(5) 
C(8)-C(7)#3  1.482(7) 

C(8)-H(8A)  0.9700 
C(8)-H(8B)  0.9700 
O(3)-C(9)  1.347(5) 
C(9)-O(4)  1.199(6) 
C(9)-C(10)  1.482(6) 
C(10)-C(11)  1.379(6) 
C(10)-C(13)  1.400(6) 
C(11)-C(12)  1.372(6) 
C(11)-H(11)  0.9300 
C(12)-N(2)  1.350(6) 
C(12)-H(12)  0.9300 
C(13)-C(14)  1.374(8) 
C(13)-H(13)  0.9300 
C(14)-N(2)  1.332(7) 
C(14)-H(14)  0.9300 
O(8)-O(8)#4  2.766(11) 
O(8)-O(8)#5  2.812(15) 
O(8)-O(3)#2  3.662(7) 
N(3)-O(7)  1.175(6) 
N(3)-O(6)  1.213(6) 
N(3)-O(5)  1.223(5) 
O(5)-Ag(1)#1  2.874(5) 
O(6)-O(8)#6  3.329(9) 
O(6)-Ag(1)#1  4.048(7) 
O(7)-O(8)#6  3.243(9) 
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N(1)-Ag(1)-N(2) 161.13(16) 
N(1)-Ag(1)-O(6) 109.76(17) 
N(2)-Ag(1)-O(6) 87.45(17) 
N(1)-Ag(1)-Ag(1)#1 81.66(10) 
N(2)-Ag(1)-Ag(1)#1 107.40(11) 
O(6)-Ag(1)-Ag(1)#1 88.02(11) 
N(1)-Ag(1)-O(5) 82.87(13) 
N(2)-Ag(1)-O(5) 115.91(15) 
O(6)-Ag(1)-O(5) 40.55(13) 
Ag(1)#1-Ag(1)-O(5) 53.49(8) 
C(5)-N(1)-C(1) 117.1(4) 
C(5)-N(1)-Ag(1) 120.9(3) 
C(1)-N(1)-Ag(1) 122.0(3) 
C(2)-C(1)-N(1) 123.6(4) 
C(2)-C(1)-H(1) 118.2 
N(1)-C(1)-H(1) 118.2 
C(1)-C(2)-C(3) 119.1(4) 
C(1)-C(2)-H(2) 120.5 
C(3)-C(2)-H(2) 120.5 
C(4)-C(3)-C(2) 117.9(4) 
C(4)-C(3)-C(6) 124.2(4) 
C(2)-C(3)-C(6) 118.0(4) 
C(5)-C(4)-C(3) 119.7(4) 
C(5)-C(4)-H(4) 120.2 
C(3)-C(4)-H(4) 120.2 
N(1)-C(5)-C(4) 122.7(4) 
N(1)-C(5)-H(5) 118.7 
C(4)-C(5)-H(5) 118.7 
O(1)-C(6)-O(2) 123.6(4) 
O(1)-C(6)-C(3) 124.9(4) 
O(2)-C(6)-C(3) 111.5(3) 
C(6)-O(2)-C(7) 116.1(4) 
C(6)-O(2)-O(8) 95.4(3) 
C(7)-O(2)-O(8) 117.8(3) 
O(2)-C(7)-C(8)#2 108.7(4) 
O(2)-C(7)-H(7A) 109.9 
C(8)#2-C(7)-H(7A) 109.9 
O(2)-C(7)-H(7B) 109.9 
C(8)#2-C(7)-H(7B) 109.9 
H(7A)-C(7)-H(7B) 108.3 
O(3)-C(8)-C(7)#3 107.8(4) 
O(3)-C(8)-H(8A) 110.1 
C(7)#3-C(8)-H(8A) 110.1 
O(3)-C(8)-H(8B) 110.1 

C(7)#3-C(8)-H(8B) 110.1 
C(12)-C(11)-H(11) 120.2 
C(10)-C(11)-H(11) 120.2 
H(8A)-C(8)-H(8B) 108.5 
C(9)-O(3)-C(8) 115.0(3) 
O(4)-C(9)-O(3) 123.0(4) 
O(4)-C(9)-C(10) 124.2(4) 
O(3)-C(9)-C(10) 112.8(3) 
C(11)-C(10)-C(13) 118.1(4) 
C(11)-C(10)-C(9) 123.6(4) 
C(13)-C(10)-C(9) 118.3(4) 
C(12)-C(11)-C(10) 119.7(4) 
N(2)-C(12)-C(11) 122.7(4) 
N(2)-C(12)-H(12) 118.6 
C(11)-C(12)-H(12) 118.6 
C(14)-C(13)-C(10) 118.2(4) 
C(14)-C(13)-H(13) 120.9 
C(10)-C(13)-H(13) 120.9 
N(2)-C(14)-C(13) 124.1(4) 
N(2)-C(14)-H(14) 118.0 
C(13)-C(14)-H(14) 118.0 
C(14)-N(2)-C(12) 117.2(4) 
C(14)-N(2)-Ag(1) 121.1(3) 
C(12)-N(2)-Ag(1) 121.7(4) 
O(8)#4-O(8)-O(8)#5 89.82(3) 
O(8)#4-O(8)-O(2) 110.14(12) 
O(8)#5-O(8)-O(2) 158.37(15) 
O(8)#4-O(8)-O(3)#2 91.52(18) 
O(8)#5-O(8)-O(3)#2 142.2(3) 
O(2)-O(8)-O(3)#2 48.89(11) 
O(7)-N(3)-O(6) 118.0(6) 
O(7)-N(3)-O(5) 121.0(6) 
O(6)-N(3)-O(5) 121.0(6) 
N(3)-O(5)-Ag(1)#1 129.9(4) 
N(3)-O(5)-Ag(1) 84.3(3) 
Ag(1)#1-O(5)-Ag(1) 61.29(11) 
N(3)-O(6)-Ag(1) 114.1(5) 
N(3)-O(6)-O(8)#6 99.0(5) 
Ag(1)-O(6)-O(8)#6 143.93(19) 
N(3)-O(6)-Ag(1)#1 68.5(4) 
Ag(1)-O(6)-Ag(1)#1 50.73(12) 
O(8)#6-O(6)-Ag(1)#1 141.7(2) 
N(3)-O(7)-O(8)#6 104.6(5) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+1/2,-z+1    #2 x-1/2,-y+1/2,z-1/2   
#3 x+1/2,-y+1/2,z+1/2    #4 -x,y,-z+1/2    #5 x+0,-y+1/2,-z+1/2     #6 -x+1/2,y,z+1/2 
 

Anisotropic displacement parameters (Å2x 103) for 4. The anisotropic displacement factor exponent takes the 

form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
Ag(1) 59(1)  86(1) 79(1)  -25(1) -19(1)  5(1) 
N(1) 55(2)  69(2) 50(2)  -9(2) -6(2)  7(2) 
C(1) 65(2)  71(3) 39(2)  2(2) -6(2)  11(2) 
C(2) 57(2)  57(2) 44(2)  6(2) 2(2)  6(2) 
C(3) 47(2)  53(2) 41(2)  2(2) 1(1)  10(2) 
C(4) 51(2)  67(2) 39(2)  4(2) 3(2)  3(2) 
C(5) 53(2)  69(3) 53(2)  0(2) 3(2)  -1(2) 
C(6) 49(2)  56(2) 46(2)  4(2) 0(2)  4(2) 
O(1) 74(2)  76(2) 63(2)  4(2) 2(2)  -11(2) 
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O(2) 60(2)  60(2) 44(1)  -2(1) -3(1)  -4(1) 
C(7) 64(3)  58(2) 60(2)  -7(2) -10(2)  -3(2) 
C(8) 56(2)  66(2) 53(2)  10(2) -5(2)  -12(2) 
O(3) 50(2)  63(2) 44(1)  5(1) 2(1)  -6(1) 
C(9) 59(2)  70(3) 40(2)  11(2) 0(2)  4(2) 
O(4) 101(3)  113(3) 52(2)  13(2) 12(2)  -38(2) 
C(10) 50(2)  65(2) 40(2)  5(2) -2(2)  6(2) 
C(11) 48(2)  61(2) 41(2)  1(2) -5(2)  5(2) 
C(12) 43(2)  65(2) 48(2)  -2(2) -5(2)  5(2) 
C(13) 67(3)  71(3) 41(2)  6(2) -5(2)  7(2) 
C(14) 63(3)  83(3) 48(2)  -3(2) -12(2)  7(2) 
N(2) 48(2)  69(2) 55(2)  -5(2) -13(2)  8(2) 
O(8) 109(4)  215(7) 70(3)  -4(4) 0(3)  71(4) 
N(3) 59(2)  67(2) 48(2)  9(2) -7(2)  -4(2) 
O(5) 101(3)  100(3) 100(3)  0(3) -52(3)  6(3) 
O(6) 75(3)  117(4) 153(6)  -18(4) 34(3)  -13(2) 
O(7) 198(7)  258(9) 64(3)  66(4) -28(4)  -81(7) 
_______________________________________________________________________________________ 
 

Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 4. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(1) 2226 912 5004 70 
H(2) 1500 195 4416 63 
H(4) 2241 1177 2861 63 
H(5) 2909 1902 3497 70 
H(7A) 581 -368 2243 73 
H(7B) 1345 -793 2266 73 
H(8A) 6203 5562 6235 70 
H(8B) 6811 5020 6456 70 
H(11) 4913 3609 6426 60 
H(12) 4045 2807 6109 63 
H(13) 5325 4033 4603 72 
H(14) 4440 3220 4342 78 
_______________________________________________________________________________________ 
 
Torsion angles [°] for 4. 
_______________________________________________________________________________________ 
N(2)-Ag(1)-N(1)-C(5) -20.2(7) 
O(6)-Ag(1)-N(1)-C(5) -175.0(3) 
Ag(1)#1-Ag(1)-N(1)-C(5) 100.2(3) 
O(5)-Ag(1)-N(1)-C(5) 154.2(4) 
N(2)-Ag(1)-N(1)-C(1) 161.3(4) 
O(6)-Ag(1)-N(1)-C(1) 6.5(4) 
Ag(1)#1-Ag(1)-N(1)-C(1) -78.4(3) 
O(5)-Ag(1)-N(1)-C(1) -24.4(3) 
C(5)-N(1)-C(1)-C(2) 0.2(7) 
Ag(1)-N(1)-C(1)-C(2) 178.7(3) 
N(1)-C(1)-C(2)-C(3) 1.4(7) 
C(1)-C(2)-C(3)-C(4) -1.4(6) 
C(1)-C(2)-C(3)-C(6) 177.8(4) 
C(2)-C(3)-C(4)-C(5) -0.1(6) 
C(6)-C(3)-C(4)-C(5) -179.2(4) 
C(1)-N(1)-C(5)-C(4) -1.7(7) 
Ag(1)-N(1)-C(5)-C(4) 179.7(3) 
C(3)-C(4)-C(5)-N(1) 1.7(7) 
C(4)-C(3)-C(6)-O(1) -174.3(4) 
C(2)-C(3)-C(6)-O(1) 6.5(6) 
C(4)-C(3)-C(6)-O(2) 7.3(6) 
C(2)-C(3)-C(6)-O(2) -171.8(4) 
O(1)-C(6)-O(2)-C(7) -5.4(6) 
C(3)-C(6)-O(2)-C(7) 173.0(3) 

N(1)-Ag(1)-N(2)-C(14) 15.2(7) 
O(6)-Ag(1)-N(2)-C(14) 171.5(4) 
Ag(1)#1-Ag(1)-N(2)-C(14) -101.4(4) 
O(5)-Ag(1)-N(2)-C(14) -158.6(4) 
N(1)-Ag(1)-N(2)-C(12) -167.4(4) 
O(6)-Ag(1)-N(2)-C(12) -11.0(4) 
Ag(1)#1-Ag(1)-N(2)-C(12) 76.1(4) 
O(5)-Ag(1)-N(2)-C(12) 18.8(4) 
C(6)-O(2)-O(8)-O(8)#4 -73.8(4) 
C(7)-O(2)-O(8)-O(8)#4 49.5(4) 
C(6)-O(2)-O(8)-O(8)#5 82.4(8) 
C(7)-O(2)-O(8)-O(8)#5 -154.2(8) 
C(6)-O(2)-O(8)-O(3)#2 -147.4(3) 
C(7)-O(2)-O(8)-O(3)#2 -24.1(3) 
O(7)-N(3)-O(5)-Ag(1)#1 136.2(7) 
O(6)-N(3)-O(5)-Ag(1)#1 -46.0(8) 
O(7)-N(3)-O(5)-Ag(1) -179.2(7) 
O(6)-N(3)-O(5)-Ag(1) -1.4(5) 
N(1)-Ag(1)-O(5)-N(3) 133.0(3) 
N(2)-Ag(1)-O(5)-N(3) -49.1(3) 
O(6)-Ag(1)-O(5)-N(3) 0.9(3) 
Ag(1)#1-Ag(1)-O(5)-N(3) -142.2(3) 
N(1)-Ag(1)-O(5)-Ag(1)#1 -84.88(12) 
N(2)-Ag(1)-O(5)-Ag(1)#1 93.10(13) 
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O(1)-C(6)-O(2)-O(8) 119.2(4) 
C(3)-C(6)-O(2)-O(8) -62.5(3) 
C(6)-O(2)-C(7)-C(8)#2 175.8(4) 
O(8)-O(2)-C(7)-C(8)#2 63.6(4) 
C(7)#3-C(8)-O(3)-C(9) 175.2(4) 
C(8)-O(3)-C(9)-O(4) 3.8(7) 
C(8)-O(3)-C(9)-C(10) -176.5(4) 
O(4)-C(9)-C(10)-C(11) 165.3(5) 
O(3)-C(9)-C(10)-C(11) -14.4(6) 
O(4)-C(9)-C(10)-C(13) -15.1(7) 
O(3)-C(9)-C(10)-C(13) 165.3(4) 
C(13)-C(10)-C(11)-C(12) 0.6(6) 
C(9)-C(10)-C(11)-C(12) -179.8(4) 
C(10)-C(11)-C(12)-N(2) 0.1(6) 
C(11)-C(10)-C(13)-C(14) -0.5(6) 
C(9)-C(10)-C(13)-C(14) 179.9(4) 
C(10)-C(13)-C(14)-N(2) -0.4(8) 
C(13)-C(14)-N(2)-C(12) 1.1(7) 
C(13)-C(14)-N(2)-Ag(1) 178.7(4) 
C(11)-C(12)-N(2)-C(14) -1.0(7) 
C(11)-C(12)-N(2)-Ag(1) -178.5(3) 

O(6)-Ag(1)-O(5)-Ag(1)#1 143.0(3) 
O(7)-N(3)-O(6)-Ag(1) 179.8(6) 
O(5)-N(3)-O(6)-Ag(1) 1.9(7) 
O(7)-N(3)-O(6)-O(8)#6 -15.0(8) 
O(5)-N(3)-O(6)-O(8)#6 167.2(4) 
O(7)-N(3)-O(6)-Ag(1)#1 -157.3(7) 
O(5)-N(3)-O(6)-Ag(1)#1 24.9(4) 
N(1)-Ag(1)-O(6)-N(3) -52.4(5) 
N(2)-Ag(1)-O(6)-N(3) 135.5(5) 
Ag(1)#1-Ag(1)-O(6)-N(3) 28.0(4) 
O(5)-Ag(1)-O(6)-N(3) -1.0(3) 
N(1)-Ag(1)-O(6)-O(8)#6 152.8(4) 
N(2)-Ag(1)-O(6)-O(8)#6 -19.3(4) 
Ag(1)#1-Ag(1)-O(6)-O(8)#6 -126.8(4) 
O(5)-Ag(1)-O(6)-O(8)#6 -155.7(6) 
N(1)-Ag(1)-O(6)-Ag(1)#1 -80.41(11) 
N(2)-Ag(1)-O(6)-Ag(1)#1 107.52(11) 
O(5)-Ag(1)-O(6)-Ag(1)#1 -28.9(2) 
O(6)-N(3)-O(7)-O(8)#6 15.7(8) 
O(5)-N(3)-O(7)-O(8)#6 -166.5(4) 
 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+1/2,-z+1    #2 x-1/2,-y+1/2,z-1/2 
#3 x+1/2,-y+1/2,z+1/2    #4 -x,y,-z+1/2    #5 x+0,-y+1/2,-z+1/2     #6 -x+1/2,y,z+1/2 
 
Hydrogen bonds for 4 [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(11)-H(11)...O(8)#3 0.93 2.79 3.587(7) 144.5 
 C(11)-H(11)...O(8) 0.93 2.63 3.348(7) 134.1 
 C(4)-H(4)...O(8) 0.93 2.92 3.334(6) 108.3 
 C(2)-H(2)...O(4)#7 0.93 2.27 3.075(6) 144.2 
 C(7)-H(7A)...O(1)#4 0.97 2.96 3.781(6) 142.7 
 C(12)-H(12)...O(6) 0.93 2.46 3.185(7) 134.8 
 C(7)-H(7B)...O(7)#9 0.97 2.68 3.421(9) 133.5 
 C(4)-H(4)...O(7)#10 0.93 2.31 3.224(6) 168.8 
 C(8)-H(8A)...O(5)#11 0.97 2.82 3.563(7) 134.2 
 C(1)-H(1)...O(5) 0.93 2.62 3.335(7) 134.2 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+1/2,-z+1    #2 x-1/2,-y+1/2,z-1/2   
#3 x+1/2,-y+1/2,z+1/2    #4 -x,y,-z+1/2    #5 x+0,-y+1/2,-z+1/2     #6 -x+1/2,y,z+1/2    #7 x-1/2,y-1/2,z     
#8 -x+1,-y+1/2,z     #9 x,-y,z-1/2    #10 -x+1/2,y,z-1/2    #11 x+1/2,y+1/2,z 
 

I.2.f - Crystal data and structure refinement for 5. 

 
Empirical formula  C14 H16 Ag1 N3 O9 

Formula weight  478.16 

Temperature  240(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 8.1061(9) Å � = 80.155(13)°. 

 b = 9.9873(11) Å � = 87.947(13)°. 
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 c = 11.0040(12) Å �  = 87.234(13)°. 

Volume 876.38(17) Å3 

Z 2 

Density (calculated) 1.812 Mg/m3 

Absorption coefficient 1.205 mm-1 

F(000) 480 

Crystal size 0.30 x 0.17 x 0.09 mm3 

Theta range for data collection 2.52 to 28.08°. 

Index ranges -10<=h<=10, -12<=k<=13, 0<=l<=14 

Reflections collected 3917 

Independent reflections 3917 [R(int) = ?] 

Completeness to theta = 28.08° 91.5 %  

Absorption correction Spherical 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3917 / 0 / 244 

Goodness-of-fit on F2 0.805 

Final R indices [I>2sigma(I)] R1 = 0.0244, wR2 = 0.0514 

R indices (all data) R1 = 0.0372, wR2 = 0.0531 

Largest diff. peak and hole 0.476 and -0.277 e.Å-3 

 

Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 5. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
Ag(1) 6976(1) 5288(1) 5333(1) 30(1) 
N(1) 5558(3) 6747(2) 6213(2) 23(1) 
C(1) 4731(3) 7798(2) 5540(2) 24(1) 
C(2) 3789(3) 8749(2) 6062(2) 23(1) 
C(3) 5459(3) 6638(2) 7451(2) 24(1) 
C(4) 4547(3) 7546(2) 8053(2) 23(1) 
C(5) 3696(3) 8632(2) 7342(2) 20(1) 
C(6) 2673(3) 9673(2) 7896(2) 22(1) 
O(1) 1613(3) 10402(2) 7355(2) 37(1) 
O(2) 3079(2) 9687(2) 9055(1) 26(1) 
C(7) 2185(3) 10686(2) 9672(2) 28(1) 
C(8) 2445(3) 10224(2) 11021(2) 26(1) 
O(3) 1557(2) 11235(2) 11621(1) 25(1) 
C(9) 1613(3) 11030(2) 12847(2) 22(1) 
O(4) 2381(2) 10110(2) 13454(2) 31(1) 
C(10) 600(3) 12093(2) 13392(2) 20(1) 
C(11) -127(3) 13232(2) 12680(2) 27(1) 
C(12) -1080(3) 14141(2) 13254(2) 27(1) 
C(13) 354(3) 11916(2) 14668(2) 25(1) 
C(14) -623(3) 12856(2) 15176(2) 27(1) 
N(2) -1351(3) 13957(2) 14483(2) 25(1) 
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N(3) 5327(3) 3279(2) 7752(2) 33(1) 
O(5) 5066(3) 3193(2) 8882(2) 52(1) 
O(6) 6777(3) 3304(2) 7333(2) 53(1) 
O(7) 4142(3) 3372(2) 7054(2) 61(1) 
O(8) 1998(3) 14312(2) 9619(2) 54(1) 
O(9) -1125(3) 13321(3) 9493(3) 76(1) 
_______________________________________________________________________________________ 
 
Bond lengths [Å] and angles [°] for 5. 
_______________________________________________________________________________________ 
Ag(1)-N(1)  2.150(2) 
Ag(1)-N(2)#1  2.154(2) 
Ag(1)-O(6)  2.704(2) 
Ag(1)-O(7)#2  2.892(2) 
Ag(1)-Ag(1)#2  3.4079(6) 
N(1)-C(1)  1.343(3) 
N(1)-C(3)  1.347(3) 
C(1)-C(2)  1.378(3) 
C(1)-H(1)  0.9300 
C(2)-C(5)  1.393(3) 
C(2)-H(2)  0.9300 
C(3)-C(4)  1.384(3) 
C(3)-H(3)  0.9300 
C(4)-C(5)  1.393(3) 
C(4)-H(4)  0.9300 
C(5)-C(6)  1.496(3) 
C(6)-O(1)  1.205(3) 
C(6)-O(2)  1.331(3) 
O(2)-C(7)  1.451(3) 
C(7)-C(8)  1.496(3) 
C(7)-H(7A)  0.9700 
C(7)-H(7B)  0.9700 
C(8)-O(3)  1.448(3) 
C(8)-H(8A)  0.9700 

C(8)-H(8B)  0.9700 
O(3)-C(9)  1.332(3) 
C(9)-O(4)  1.202(3) 
C(9)-C(10)  1.502(3) 
C(10)-C(11)  1.385(3) 
C(10)-C(13)  1.394(3) 
C(11)-C(12)  1.383(3) 
C(11)-H(11)  0.9300 
C(12)-N(2)  1.345(3) 
C(12)-H(12)  0.9300 
C(13)-C(14)  1.377(3) 
C(13)-H(13)  0.9300 
C(14)-N(2)  1.350(3) 
C(14)-H(14)  0.9300 
N(2)-Ag(1)#3  2.154(2) 
N(3)-O(7)  1.242(3) 
N(3)-O(5)  1.243(3) 
N(3)-O(6)  1.247(3) 
O(5)-O(8)#4  2.827(3) 
O(5)-O(9)#5  3.196(3) 
O(6)-O(9)#5  2.974(3) 
O(7)-O(8)#4  3.503(3) 
O(8)-O(9)#6  2.761(3) 
O(8)-O(9)#7  2.779(4) 

 
N(1)-Ag(1)-N(2)#1 173.20(8) 
N(1)-Ag(1)-O(6) 93.43(7) 
N(2)#1-Ag(1)-O(6) 88.36(7) 
N(1)-Ag(1)-O(7)#2 90.43(7) 
N(2)#1-Ag(1)-O(7)#2 91.11(7) 
O(6)-Ag(1)-O(7)#2 151.55(8) 
N(1)-Ag(1)-Ag(1)#2 77.55(6) 
N(2)#1-Ag(1)-Ag(1)#2 109.06(6) 
O(6)-Ag(1)-Ag(1)#2 89.16(6) 
O(7)#2-Ag(1)-Ag(1)#2 64.20(6) 
C(1)-N(1)-C(3) 117.7(2) 
C(1)-N(1)-Ag(1) 120.71(15) 
C(3)-N(1)-Ag(1) 121.55(16) 
N(1)-C(1)-C(2) 122.8(2) 
N(1)-C(1)-H(1) 118.6 
C(2)-C(1)-H(1) 118.6 
C(1)-C(2)-C(5) 119.1(2) 
C(1)-C(2)-H(2) 120.4 
C(5)-C(2)-H(2) 120.4 
N(1)-C(3)-C(4) 123.3(2) 
N(1)-C(3)-H(3) 118.3 
C(4)-C(3)-H(3) 118.3 
C(3)-C(4)-C(5) 118.2(2) 
C(3)-C(4)-H(4) 120.9 
C(5)-C(4)-H(4) 120.9 
C(2)-C(5)-C(4) 118.7(2) 
C(2)-C(5)-C(6) 118.5(2) 
C(4)-C(5)-C(6) 122.7(2) 
O(1)-C(6)-O(2) 124.6(2) 

O(3)-C(8)-H(8A) 110.7 
C(7)-C(8)-H(8A) 110.7 
O(3)-C(8)-H(8B) 110.7 
C(7)-C(8)-H(8B) 110.7 
H(8A)-C(8)-H(8B) 108.8 
C(9)-O(3)-C(8) 115.75(17) 
O(4)-C(9)-O(3) 124.4(2) 
O(4)-C(9)-C(10) 123.6(2) 
O(3)-C(9)-C(10) 112.0(2) 
C(11)-C(10)-C(13) 118.4(2) 
C(11)-C(10)-C(9) 122.9(2) 
C(13)-C(10)-C(9) 118.7(2) 
C(12)-C(11)-C(10) 119.2(2) 
C(12)-C(11)-H(11) 120.4 
C(10)-C(11)-H(11) 120.4 
N(2)-C(12)-C(11) 122.6(2) 
N(2)-C(12)-H(12) 118.7 
C(11)-C(12)-H(12) 118.7 
C(14)-C(13)-C(10) 119.3(2) 
C(14)-C(13)-H(13) 120.4 
C(10)-C(13)-H(13) 120.4 
N(2)-C(14)-C(13) 122.5(2) 
N(2)-C(14)-H(14) 118.8 
C(13)-C(14)-H(14) 118.8 
C(12)-N(2)-C(14) 118.1(2) 
C(12)-N(2)-Ag(1)#3 121.69(16) 
C(14)-N(2)-Ag(1)#3 120.12(16) 
O(7)-N(3)-O(5) 119.6(3) 
O(7)-N(3)-O(6) 120.9(2) 
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O(1)-C(6)-C(5) 123.8(2) 
O(2)-C(6)-C(5) 111.6(2) 
C(6)-O(2)-C(7) 116.14(18) 
O(2)-C(7)-C(8) 105.71(18) 
O(2)-C(7)-H(7A) 110.6 
C(8)-C(7)-H(7A) 110.6 
O(2)-C(7)-H(7B) 110.6 
C(8)-C(7)-H(7B) 110.6 
H(7A)-C(7)-H(7B) 108.7 
O(3)-C(8)-C(7) 105.00(17) 

O(5)-N(3)-O(6) 119.4(2) 
N(3)-O(5)-O(8)#4 116.14(18) 
N(3)-O(5)-O(9)#5 94.42(18) 
O(8)#4-O(5)-O(9)#5 137.52(10) 
N(3)-O(6)-Ag(1) 109.13(15) 
N(3)-O(6)-O(9)#5 105.44(16) 
Ag(1)-O(6)-O(9)#5 120.50(10) 
N(3)-O(7)-O(8)#4 82.20(16) 
O(9)#6-O(8)-O(9)#7 99.36(10) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x+1,y-1,z-1    #2 -x+1,-y+1,-z+1    #3 x-
1,y+1,z+1     #4 x,y-1,z    #5 x+1,y-1,z    #6 -x,-y+3,-z+2    #7 x,y,z 
 

Anisotropic displacement parameters (Å2x 103) for 5.  The anisotropic displacement factor exponent takes 

the form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
Ag(1) 31(1)  30(1) 32(1)  -16(1) 6(1)  6(1) 
N(1) 25(1)  25(1) 22(1)  -10(1) 2(1)  1(1) 
C(1) 29(2)  28(1) 17(1)  -7(1) 2(1)  0(1) 
C(2) 26(2)  24(1) 18(1)  -5(1) -2(1)  3(1) 
C(3) 29(2)  21(1) 22(1)  -5(1) -2(1)  5(1) 
C(4) 28(2)  26(1) 17(1)  -6(1) -1(1)  1(1) 
C(5) 20(1)  23(1) 19(1)  -9(1) 2(1)  -1(1) 
C(6) 25(2)  22(1) 20(1)  -7(1) 1(1)  0(1) 
O(1) 43(1)  42(1) 27(1)  -14(1) -7(1)  21(1) 
O(2) 29(1)  31(1) 20(1)  -13(1) -1(1)  10(1) 
C(7) 31(2)  28(1) 25(1)  -11(1) 5(1)  9(1) 
C(8) 27(2)  29(1) 24(1)  -13(1) 0(1)  11(1) 
O(3) 30(1)  29(1) 17(1)  -9(1) 2(1)  11(1) 
C(9) 21(1)  26(1) 20(1)  -7(1) 1(1)  0(1) 
O(4) 37(1)  33(1) 23(1)  -8(1) -3(1)  14(1) 
C(10) 19(1)  24(1) 20(1)  -8(1) 2(1)  0(1) 
C(11) 32(2)  31(1) 16(1)  -5(1) 2(1)  5(1) 
C(12) 32(2)  25(1) 24(1)  -4(1) 2(1)  6(1) 
C(13) 26(2)  27(1) 19(1)  -3(1) 0(1)  6(1) 
C(14) 30(2)  34(1) 18(1)  -8(1) 1(1)  4(1) 
N(2) 25(1)  26(1) 27(1)  -11(1) 1(1)  3(1) 
N(3) 44(2)  27(1) 25(1)  -5(1) 3(1)  6(1) 
O(5) 40(1)  94(2) 20(1)  -6(1) 1(1)  -1(1) 
O(6) 48(2)  55(1) 49(1)  2(1) 26(1)  16(1) 
O(7) 71(2)  81(2) 35(1)  -22(1) -22(1)  22(1) 
O(8) 50(2)  53(1) 55(1)  -6(1) 8(1)  5(1) 
O(9) 56(2)  67(2) 112(2)  -36(2) -24(2)  8(1) 
_______________________________________________________________________________________ 
 

Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 5. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(1) 4797 7890 4684 29 
H(2) 3222 9458 5567 27 
H(3) 6033 5915 7924 29 
H(4) 4504 7435 8910 28 
H(7A) 1019 10723 9495 33 
H(7B) 2614 11582 9403 33 
H(8A) 2008 9332 11293 32 
H(8B) 3611 10183 11199 32 
H(11) 23 13383 11826 32 
H(12) -1551 14910 12771 33 
H(13) 844 11171 15172 29 
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H(14) -787 12727 16028 32 
_______________________________________________________________________________________ 
 
Torsion angles [°] for 5. 
_______________________________________________________________________________________ 
N(2)#1-Ag(1)-N(1)-C(1) 99.2(7) 
O(6)-Ag(1)-N(1)-C(1) -155.66(19) 
O(7)#2-Ag(1)-N(1)-C(1) -3.86(19) 
Ag(1)#2-Ag(1)-N(1)-C(1) -67.28(18) 
N(2)#1-Ag(1)-N(1)-C(3) -81.2(8) 
O(6)-Ag(1)-N(1)-C(3) 24.0(2) 
O(7)#2-Ag(1)-N(1)-C(3) 175.8(2) 
Ag(1)#2-Ag(1)-N(1)-C(3) 112.33(19) 
C(3)-N(1)-C(1)-C(2) -0.5(4) 
Ag(1)-N(1)-C(1)-C(2) 179.10(19) 
N(1)-C(1)-C(2)-C(5) 0.7(4) 
C(1)-N(1)-C(3)-C(4) 0.3(4) 
Ag(1)-N(1)-C(3)-C(4) -179.29(19) 
N(1)-C(3)-C(4)-C(5) -0.3(4) 
C(1)-C(2)-C(5)-C(4) -0.7(4) 
C(1)-C(2)-C(5)-C(6) 179.8(2) 
C(3)-C(4)-C(5)-C(2) 0.5(4) 
C(3)-C(4)-C(5)-C(6) 180.0(2) 
C(2)-C(5)-C(6)-O(1) 19.0(4) 
C(4)-C(5)-C(6)-O(1) -160.5(3) 
C(2)-C(5)-C(6)-O(2) -161.1(2) 
C(4)-C(5)-C(6)-O(2) 19.4(3) 
O(1)-C(6)-O(2)-C(7) -1.6(4) 
C(5)-C(6)-O(2)-C(7) 178.6(2) 
C(6)-O(2)-C(7)-C(8) 162.4(2) 
O(2)-C(7)-C(8)-O(3) 179.63(18) 
C(7)-C(8)-O(3)-C(9) 179.9(2) 
C(8)-O(3)-C(9)-O(4) 2.6(4) 
C(8)-O(3)-C(9)-C(10) -177.5(2) 
O(4)-C(9)-C(10)-C(11) 172.5(3) 
O(3)-C(9)-C(10)-C(11) -7.4(3) 

O(4)-C(9)-C(10)-C(13) -8.6(4) 
O(3)-C(9)-C(10)-C(13) 171.4(2) 
C(13)-C(10)-C(11)-C(12) -0.6(4) 
C(9)-C(10)-C(11)-C(12) 178.2(2) 
C(10)-C(11)-C(12)-N(2) -0.9(4) 
C(11)-C(10)-C(13)-C(14) 1.3(4) 
C(9)-C(10)-C(13)-C(14) -177.6(2) 
C(10)-C(13)-C(14)-N(2) -0.4(4) 
C(11)-C(12)-N(2)-C(14) 1.8(4) 
C(11)-C(12)-N(2)-Ag(1)#3 -174.1(2) 
C(13)-C(14)-N(2)-C(12) -1.1(4) 
C(13)-C(14)-N(2)-Ag(1)#3 174.8(2) 
O(7)-N(3)-O(5)-O(8)#4 -25.2(3) 
O(6)-N(3)-O(5)-O(8)#4 153.01(18) 
O(7)-N(3)-O(5)-O(9)#5 -174.8(2) 
O(6)-N(3)-O(5)-O(9)#5 3.5(2) 
O(7)-N(3)-O(6)-Ag(1) 43.6(3) 
O(5)-N(3)-O(6)-Ag(1) -134.6(2) 
O(7)-N(3)-O(6)-O(9)#5 174.4(2) 
O(5)-N(3)-O(6)-O(9)#5 -3.9(3) 
N(1)-Ag(1)-O(6)-N(3) 45.16(18) 
N(2)#1-Ag(1)-O(6)-N(3) -141.41(18) 
O(7)#2-Ag(1)-O(6)-N(3) -52.1(2) 
Ag(1)#2-Ag(1)-O(6)-N(3) -32.31(17) 
N(1)-Ag(1)-O(6)-O(9)#5 -76.93(11) 
N(2)#1-Ag(1)-O(6)-O(9)#5 96.50(11) 
O(7)#2-Ag(1)-O(6)-O(9)#5 -174.19(12) 
Ag(1)#2-Ag(1)-O(6)-O(9)#5 -154.40(10) 
O(5)-N(3)-O(7)-O(8)#4 18.2(2) 
O(6)-N(3)-O(7)-O(8)#4 -160.1(2) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x+1,y-1,z-1    #2 -x+1,-y+1,-z+1     
#3 x-1,y+1,z+1     #4 x,y-1,z    #5 x+1,y-1,z    #6 -x,-y+3,-z+2    #7 x,y,z 
 
Hydrogen bonds for 5 [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(13)-H(13)...O(1)#8 0.93 2.49 3.257(3) 140.4 
 C(8)-H(8B)...O(2)#9 0.97 2.70 3.632(3) 162.5 
 C(2)-H(2)...O(4)#10 0.93 2.42 3.184(3) 139.6 
 C(1)-H(1)...O(7)#2 0.93 2.57 3.346(3) 141.7 
 C(12)-H(12)...O(7)#11 0.93 2.67 3.410(3) 137.0 
 C(8)-H(8A)...O(6)#12 0.97 2.95 3.712(3) 136.7 
 C(3)-H(3)...O(6) 0.93 2.83 3.470(3) 127.3 
 C(14)-H(14)...O(6)#3 0.93 2.50 3.192(3) 131.1 
 C(4)-H(4)...O(5)#12 0.93 2.44 3.349(3) 167.1 
 C(3)-H(3)...O(5) 0.93 2.88 3.555(3) 130.6 
 C(7)-H(7B)...O(5)#13 0.97 2.60 3.486(4) 151.3 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x+1,y-1,z-1    #2 -x+1,-y+1,-z+1    
 #3 x-1,y+1,z+1     #4 x,y-1,z    #5 x+1,y-1,z    #6 -x,-y+3,-z+2    #7 x,y,z     #8 x,y,z+1    #9 -x+1,-y+2,-z+2   
#10 x,y,z-1     #11 -x,-y+2,-z+2    #12 -x+1,-y+1,-z+2    #13 x,y+1,z 
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I.2.g - Crystal data and structure refinement for 6. 

 
Empirical formula  C7 H6 Ag1 N2 O5 

Formula weight  306.01 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C2/c 

Unit cell dimensions a = 20.976(7) Å � = 90°. 

 b = 9.3460(17) Å � = 106.98(2)°. 

 c = 9.903(3) Å � = 90°. 

Volume 1856.7(9) Å3 

Z 8 

Density (calculated) 2.189 Mg/m3 

Absorption coefficient 2.174 mm-1 

F(000) 1192 

Crystal size 0.20 x 0.07 x 0.07 mm3 

Theta range for data collection 2.40 to 31.94°. 

Index ranges -26<=h<=3, -12<=k<=13, -6<=l<=14 

Reflections collected 1972 

Independent reflections 1452 [R(int) = 0.0777] 

Completeness to theta = 31.94° 45.2 %  

Absorption correction Spherical 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1452 / 0 / 147 

Goodness-of-fit on F2 0.868 

Final R indices [I>2sigma(I)] R1 = 0.0733, wR2 = 0.1742 

R indices (all data) R1 = 0.0854, wR2 = 0.1885 

Largest diff. peak and hole 0.208 and -0.182 e.Å-3 

 

Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 6. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
Ag(1) 2278(1) 1292(1) 6290(1) 62(1) 
N(1) 1614(5) 14(6) 4541(8) 54(2) 
C(1) 1215(6) 623(7) 3357(10) 62(3) 
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C(2) 834(6) -167(8) 2249(10) 61(3) 
C(3) 1652(5) -1410(6) 4614(10) 56(3) 
C(4) 1291(5) -2287(7) 3521(9) 55(2) 
C(5) 881(5) -1649(7) 2321(9) 52(2) 
C(6) 459(8) -2493(9) 1113(12) 75(4) 
O(1) 169(6) -2006(8) -24(10) 87(5) 
O(2A) 641(11) -3929(11) 1229(19) 61(4) 
O(2B) 326(19) -3818(16) 1530(20) 63(7) 
C(7) 294(15) -4980(20) -30(30) 112(8) 
O(3) 2365(5) 3663(5) 7124(8) 62(2) 
N(2) 2023(5) 4465(6) 6179(8) 56(2) 
O(4) 3033(5) 757(5) 8555(7) 65(3) 
O(5) 1747(6) 3967(7) 4991(9) 74(3) 
_______________________________________________________________________________________ 
 
Bond lengths [Å] and angles [°] for 6. 
_______________________________________________________________________________________ 
Ag(1)-N(1)  2.226(7) 
Ag(1)-O(3)  2.354(5) 
Ag(1)-O(4)  2.390(7) 
Ag(1)-O(5)#1  2.716(13) 
N(1)-C(3)  1.334(8) 
N(1)-C(1)  1.351(11) 
C(1)-C(2)  1.369(12) 
C(1)-H(1)  0.9300 
C(2)-C(5)  1.389(10) 
C(2)-H(2)  0.9300 
C(3)-C(4)  1.392(10) 
C(3)-H(3)  0.9300 
C(4)-C(5)  1.383(12) 
C(4)-H(4)  0.9300 

C(5)-C(6)  1.489(12) 
C(6)-O(1)  1.201(12) 
C(6)-O(2B)  1.360(17) 
C(6)-O(2A)  1.391(15) 
O(2A)-C(7)  1.59(4) 
O(2B)-C(7)  1.87(4) 
C(7)-C(7)#2  1.25(6) 
C(7)-H(7A)  0.9700 
C(7)-H(7B)  0.9700 
O(3)-N(2)  1.249(10) 
N(2)-O(5)  1.240(10) 
N(2)-O(4)#3  1.249(8) 
O(4)-N(2)#4  1.249(8) 
 

 
N(1)-Ag(1)-O(3) 138.2(3) 
N(1)-Ag(1)-O(4) 135.27(19) 
O(3)-Ag(1)-O(4) 84.6(2) 
N(1)-Ag(1)-O(5)#1 88.5(3) 
O(3)-Ag(1)-O(5)#1 104.8(3) 
O(4)-Ag(1)-O(5)#1 92.1(3) 
C(3)-N(1)-C(1) 118.6(6) 
C(3)-N(1)-Ag(1) 118.6(6) 
C(1)-N(1)-Ag(1) 122.5(4) 
N(1)-C(1)-C(2) 122.5(6) 
N(1)-C(1)-H(1) 118.8 
C(2)-C(1)-H(1) 118.8 
C(1)-C(2)-C(5) 118.7(8) 
C(1)-C(2)-H(2) 120.6 
C(5)-C(2)-H(2) 120.6 
N(1)-C(3)-C(4) 122.4(7) 
N(1)-C(3)-H(3) 118.8 
C(4)-C(3)-H(3) 118.8 
C(5)-C(4)-C(3) 118.4(6) 
C(5)-C(4)-H(4) 120.8 
C(3)-C(4)-H(4) 120.8 
C(4)-C(5)-C(2) 119.4(7) 
C(4)-C(5)-C(6) 122.5(7) 
C(2)-C(5)-C(6) 118.1(8) 

O(1)-C(6)-O(2B) 122.5(12) 
O(1)-C(6)-O(2A) 119.7(11) 
O(2B)-C(6)-O(2A) 34.1(13) 
O(1)-C(6)-C(5) 124.8(8) 
O(2B)-C(6)-C(5) 111.4(10) 
O(2A)-C(6)-C(5) 111.1(10) 
C(6)-O(2A)-C(7) 118.8(13) 
C(6)-O(2B)-C(7) 103.9(18) 
C(7)#2-C(7)-O(2A) 103(3) 
C(7)#2-C(7)-O(2B) 77(3) 
O(2A)-C(7)-O(2B) 25.3(11) 
C(7)#2-C(7)-H(7A) 111.3 
O(2A)-C(7)-H(7A) 111.3 
O(2B)-C(7)-H(7A) 123.3 
C(7)#2-C(7)-H(7B) 111.3 
O(2A)-C(7)-H(7B) 111.2 
O(2B)-C(7)-H(7B) 119.4 
H(7A)-C(7)-H(7B) 109.2 
N(2)-O(3)-Ag(1) 109.5(5) 
O(5)-N(2)-O(4)#3 121.1(7) 
O(5)-N(2)-O(3) 119.5(6) 
O(4)#3-N(2)-O(3) 119.4(7) 
N(2)#4-O(4)-Ag(1) 108.8(5) 
 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+1/2,-z+1    #2 -x,-y-1,-z   
  #3 -x+1/2,y+1/2,-z+3/2     #4 -x+1/2,y-1/2,-z+3/2 
 
 
 
 



E - Crystallographic Data Adeline ROBIN 
 

Structural diversity of Cu(I), Ag(I) and Cu(II) coordination polymers with the ligand ethanediyl bis(isonicotinate) 189 

 

Anisotropic displacement parameters (Å2x 103) for 6. The anisotropic displacement factor exponent takes the 

form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
Ag(1) 74(1)  50(1) 55(1)  -7(1) 6(1)  -4(1) 
N(1) 61(6)  47(3) 50(3)  -4(2) 9(4)  -4(2) 
C(1) 70(7)  47(3) 60(5)  -2(3) 6(5)  0(3) 
C(2) 60(7)  60(4) 54(4)  1(3) 4(5)  8(3) 
C(3) 57(6)  49(3) 51(4)  -3(2) -2(5)  -3(2) 
C(4) 59(6)  49(3) 52(4)  -1(2) 8(4)  -7(2) 
C(5) 50(6)  57(3) 51(4)  -4(2) 17(4)  -7(3) 
C(6) 86(10)  62(4) 61(6)  0(3) -5(7)  -16(4) 
O(1) 98(11)  79(4) 62(4)  0(3) -12(7)  -5(4) 
O(2A) 51(11)  65(7) 72(9)  -15(4) 25(9)  -10(5) 
O(2B) 80(20)  51(7) 43(8)  -9(5) 4(12)  -23(8) 
C(7) 80(20)  135(11) 162(17)  46(11) 89(15)  40(11) 
O(3) 75(6)  49(3) 56(3)  4(2) 11(4)  1(2) 
N(2) 62(6)  50(3) 49(3)  -3(2) 7(4)  -2(2) 
O(4) 74(6)  47(3) 67(4)  -1(2) 9(4)  0(2) 
O(5) 74(8)  76(4) 59(4)  -11(3) -2(5)  -3(3) 
_______________________________________________________________________________________ 
 
Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 6. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(1) 1199 1616 3291 74 
H(2) 549 280 1464 73 
H(3) 1928 -1832 5425 67 
H(4) 1326 -3277 3596 66 
H(7A) 318 -4614 -925 135 
H(7B) 496 -5926 127 135 
_______________________________________________________________________________________ 
 
Torsion angles [°] for 6. 
_______________________________________________________________________________________ 
O(3)-Ag(1)-N(1)-C(3) -165.2(9) 
O(4)-Ag(1)-N(1)-C(3) -7.5(12) 
O(5)#1-Ag(1)-N(1)-C(3) 84.0(9) 
O(3)-Ag(1)-N(1)-C(1) 20.3(12) 
O(4)-Ag(1)-N(1)-C(1) 178.1(9) 
O(5)#1-Ag(1)-N(1)-C(1) -90.4(10) 
C(3)-N(1)-C(1)-C(2) 2(2) 
Ag(1)-N(1)-C(1)-C(2) 176.4(10) 
N(1)-C(1)-C(2)-C(5) -3(2) 
C(1)-N(1)-C(3)-C(4) -0.5(19) 
Ag(1)-N(1)-C(3)-C(4) -175.2(9) 
N(1)-C(3)-C(4)-C(5) -0.1(18) 
C(3)-C(4)-C(5)-C(2) -0.8(18) 
C(3)-C(4)-C(5)-C(6) -178.0(12) 
C(1)-C(2)-C(5)-C(4) 2(2) 
C(1)-C(2)-C(5)-C(6) 179.5(13) 
C(4)-C(5)-C(6)-O(1) -168.9(16) 
C(2)-C(5)-C(6)-O(1) 14(3) 
C(4)-C(5)-C(6)-O(2B) 24(3) 
C(2)-C(5)-C(6)-O(2B) -153(2) 

C(4)-C(5)-C(6)-O(2A) -13(2) 
C(2)-C(5)-C(6)-O(2A) 170.0(17) 
O(1)-C(6)-O(2A)-C(7) -17(3) 
O(2B)-C(6)-O(2A)-C(7) 88(3) 
C(5)-C(6)-O(2A)-C(7) -174.6(19) 
O(1)-C(6)-O(2B)-C(7) 46(3) 
O(2A)-C(6)-O(2B)-C(7) -49.9(19) 
C(5)-C(6)-O(2B)-C(7) -146.3(16) 
C(6)-O(2A)-C(7)-C(7)#2 -67(3) 
C(6)-O(2A)-C(7)-O(2B) -72(2) 
C(6)-O(2B)-C(7)-C(7)#2 -114(3) 
C(6)-O(2B)-C(7)-O(2A) 62(2) 
N(1)-Ag(1)-O(3)-N(2) -17.0(11) 
O(4)-Ag(1)-O(3)-N(2) 178.5(9) 
O(5)#1-Ag(1)-O(3)-N(2) 87.8(8) 
Ag(1)-O(3)-N(2)-O(5) -5.0(15) 
Ag(1)-O(3)-N(2)-O(4)#3 175.3(9) 
N(1)-Ag(1)-O(4)-N(2)#4 -7.9(11) 
O(3)-Ag(1)-O(4)-N(2)#4 157.4(9) 
O(5)#1-Ag(1)-O(4)-N(2)#4 -97.9(8) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+1/2,-z+1    #2 -x,-y-1,-z    
 #3 -x+1/2,y+1/2,-z+3/2     #4 -x+1/2,y-1/2,-z+3/2 
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Hydrogen bonds for 6 [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(7)-H(7B)...O(1)#2 0.97 2.37 2.98(3) 120.6 
 C(2)-H(2)...O(1)#5 0.93 2.38 3.271(11) 161.2 
 C(3)-H(3)...O(3)#4 0.93 2.49 3.286(12) 143.7 
 C(3)-H(3)...O(4)#4 0.93 2.46 3.167(9) 132.9 
 C(4)-H(4)...O(4)#4 0.93 2.89 3.367(10) 113.0 
 C(1)-H(1)...O(5) 0.93 2.80 3.547(10) 137.8 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+1/2,-z+1    #2 -x,-y-1,-z    
#3 -x+1/2,y+1/2,-z+3/2     #4 -x+1/2,y-1/2,-z+3/2    #5 -x,-y,-z 
 

I.2.h - Crystal data and structure refinement for 7. 

 
Empirical formula  C14 H12 Ag1 N3 O7 

Formula weight  442.14 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 6.1591(13) Å � = 93.15(2)°. 

 b = 8.895(3) Å � = 99.898(16)°. 

 c = 14.439(3) Å � = 91.43(2)°. 

Volume 777.6(4) Å3 

Z 2 

Density (calculated) 1.888 Mg/m3 

Absorption coefficient 1.341 mm-1 

F(000) 440 

Crystal size ? x ? x ? mm3 

Theta range for data collection 2.87 to 27.01°. 

Index ranges -7<=h<=7, -8<=k<=1, -17<=l<=17 

Reflections collected 1565 

Independent reflections 1494 [R(int) = 0.0213] 

Completeness to theta = 27.01° 43.9 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1494 / 0 / 226 

Goodness-of-fit on F2 1.070 

Final R indices [I>2sigma(I)] R1 = 0.0312, wR2 = 0.0686 
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R indices (all data) R1 = 0.0408, wR2 = 0.0732 

Largest diff. peak and hole 0.189 and -0.216 e.Å-3 

 
Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 7. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
Ag(1) 3781(1) 8572(1) 8897(1) 49(1) 
N(1) 4261(6) 7603(7) 10271(3) 43(2) 
C(1) 2640(7) 7678(9) 10784(4) 44(2) 
C(2) 2768(7) 6994(9) 11629(4) 44(2) 
C(3) 6036(7) 6821(9) 10603(4) 47(2) 
C(4) 6300(7) 6112(8) 11433(4) 39(2) 
C(5) 4635(6) 6248(8) 11977(3) 35(2) 
C(6) 4813(7) 5602(8) 12918(3) 34(2) 
O(1) 3504(5) 5801(6) 13440(2) 48(2) 
O(2) 6664(5) 4857(6) 13125(2) 39(1) 
C(7) 6991(7) 4117(8) 13993(3) 37(2) 
C(8) 9208(7) 3434(8) 14021(3) 39(2) 
O(3) 9710(5) 2733(6) 14909(2) 39(1) 
C(9) 11566(7) 1982(8) 15032(3) 35(2) 
O(4) 12742(6) 1850(7) 14446(3) 55(2) 
C(10) 2027(7) 11288(8) 5949(3) 32(2) 
C(11) 568(7) 11285(8) 6592(3) 41(2) 
C(12) 1128(7) 10589(9) 7408(4) 41(2) 
C(13) 4018(7) 10595(8) 6197(3) 41(2) 
C(14) 4455(7) 9904(8) 7031(3) 38(2) 
N(2) 3037(6) 9872(7) 7644(3) 39(2) 
N(3) 8575(6) 7523(8) 8492(3) 40(2) 
O(5) 6661(6) 7028(8) 8165(3) 63(2) 
O(6) 10157(6) 6753(10) 8340(4) 77(3) 
O(7) 8869(6) 8723(10) 8943(3) 65(2) 
_______________________________________________________________________________________ 
 
Bond lengths [Å] and angles [°] for 7. 
_______________________________________________________________________________________ 
Ag(1)-N(1)  2.183(4) 
Ag(1)-N(2)  2.189(4) 
Ag(1)-O(5)  2.599(5) 
Ag(1)-O(6)#1  2.703(7) 
Ag(1)-O(7)  3.122(4) 
Ag(1)-Ag(1)#2  4.0170(17) 
Ag(1)-Ag(1)#3  6.1591(13) 
Ag(1)-Ag(1)#4  17.659(4) 
N(1)-C(1)  1.342(5) 
N(1)-C(3)  1.343(7) 
C(1)-C(2)  1.384(7) 
C(1)-H(1)  0.9300 
C(2)-C(5)  1.375(6) 
C(2)-H(2)  0.9300 
C(3)-C(4)  1.372(7) 
C(3)-H(3)  0.9300 
C(4)-C(5)  1.398(5) 
C(4)-H(4)  0.9300 
C(5)-C(6)  1.493(6) 
C(6)-O(1)  1.204(5) 
C(6)-O(2)  1.331(5) 
O(2)-C(7)  1.434(5) 
C(7)-C(8)  1.503(6) 

C(7)-H(7A)  0.9700 
C(7)-H(7B)  0.9700 
C(8)-O(3)  1.445(5) 
C(8)-H(8A)  0.9700 
C(8)-H(8B)  0.9700 
O(3)-C(9)  1.329(6) 
C(9)-O(4)  1.208(5) 
C(9)-C(10)#5  1.479(7) 
C(10)-C(13)  1.386(6) 
C(10)-C(11)  1.398(5) 
C(10)-C(9)#4  1.479(7) 
C(11)-C(12)  1.358(7) 
C(11)-H(11)  0.9300 
C(12)-N(2)  1.352(6) 
C(12)-H(12)  0.9300 
C(13)-C(14)  1.370(7) 
C(13)-H(13)  0.9300 
C(14)-N(2)  1.347(5) 
C(14)-H(14)  0.9300 
N(3)-O(7)  1.213(10) 
N(3)-O(6)  1.248(7) 
N(3)-O(5)  1.251(7) 
O(6)-Ag(1)#3  2.703(7) 
O(7)-Ag(1)#3  3.044(4) 
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N(1)-Ag(1)-N(2) 169.8(2) 
N(1)-Ag(1)-O(5) 98.02(18) 
N(2)-Ag(1)-O(5) 91.59(17) 
N(1)-Ag(1)-O(6)#1 89.6(2) 
N(2)-Ag(1)-O(6)#1 92.1(2) 
O(5)-Ag(1)-O(6)#1 99.91(17) 
N(1)-Ag(1)-O(7) 90.63(15) 
N(2)-Ag(1)-O(7) 94.21(15) 
O(5)-Ag(1)-O(7) 42.67(19) 
O(6)#1-Ag(1)-O(7) 142.13(17) 
N(1)-Ag(1)-Ag(1)#2 64.40(18) 
N(2)-Ag(1)-Ag(1)#2 108.30(17) 
O(5)-Ag(1)-Ag(1)#2 115.91(12) 
O(6)#1-Ag(1)-Ag(1)#2 137.42(10) 
O(7)-Ag(1)-Ag(1)#2 74.79(12) 
N(1)-Ag(1)-Ag(1)#3 90.63(10) 
N(2)-Ag(1)-Ag(1)#3 94.62(9) 
O(5)-Ag(1)-Ag(1)#3 40.04(13) 
O(6)#1-Ag(1)-Ag(1)#3 139.45(12) 
O(7)-Ag(1)-Ag(1)#3 2.68(14) 
Ag(1)#2-Ag(1)-Ag(1)#3 77.19(2) 
N(1)-Ag(1)-Ag(1)#4 164.53(11) 
N(2)-Ag(1)-Ag(1)#4 8.19(9) 
O(5)-Ag(1)-Ag(1)#4 97.24(12) 
O(6)#1-Ag(1)-Ag(1)#4 85.29(14) 
O(7)-Ag(1)-Ag(1)#4 102.38(12) 
Ag(1)#2-Ag(1)-Ag(1)#4 110.67(3) 
Ag(1)#3-Ag(1)-Ag(1)#4 102.755(17) 
C(1)-N(1)-C(3) 117.5(4) 
C(1)-N(1)-Ag(1) 119.1(3) 
C(3)-N(1)-Ag(1) 123.1(3) 
N(1)-C(1)-C(2) 122.1(4) 
N(1)-C(1)-H(1) 118.9 
C(2)-C(1)-H(1) 118.9 
C(5)-C(2)-C(1) 119.6(4) 
C(5)-C(2)-H(2) 120.2 
C(1)-C(2)-H(2) 120.2 
N(1)-C(3)-C(4) 124.1(3) 
N(1)-C(3)-H(3) 117.9 
C(4)-C(3)-H(3) 117.9 
C(3)-C(4)-C(5) 117.7(4) 
C(3)-C(4)-H(4) 121.2 
C(5)-C(4)-H(4) 121.2 
C(2)-C(5)-C(4) 118.8(4) 
C(2)-C(5)-C(6) 119.0(3) 
C(4)-C(5)-C(6) 122.2(4) 

O(1)-C(6)-O(2) 124.7(4) 
O(1)-C(6)-C(5) 124.1(4) 
O(2)-C(6)-C(5) 111.1(3) 
C(6)-O(2)-C(7) 116.9(3) 
O(2)-C(7)-C(8) 103.4(3) 
O(2)-C(7)-H(7A) 111.1 
C(8)-C(7)-H(7A) 111.1 
O(2)-C(7)-H(7B) 111.1 
C(8)-C(7)-H(7B) 111.1 
H(7A)-C(7)-H(7B) 109.0 
O(3)-C(8)-C(7) 106.6(3) 
O(3)-C(8)-H(8A) 110.4 
C(7)-C(8)-H(8A) 110.4 
O(3)-C(8)-H(8B) 110.4 
C(7)-C(8)-H(8B) 110.4 
H(8A)-C(8)-H(8B) 108.6 
C(9)-O(3)-C(8) 115.0(3) 
O(4)-C(9)-O(3) 123.5(5) 
O(4)-C(9)-C(10)#5 123.1(4) 
O(3)-C(9)-C(10)#5 113.4(3) 
C(13)-C(10)-C(11) 117.3(4) 
C(13)-C(10)-C(9)#4 118.8(3) 
C(11)-C(10)-C(9)#4 123.9(4) 
C(12)-C(11)-C(10) 119.3(4) 
C(12)-C(11)-H(11) 120.3 
C(10)-C(11)-H(11) 120.3 
N(2)-C(12)-C(11) 123.7(3) 
N(2)-C(12)-H(12) 118.1 
C(11)-C(12)-H(12) 118.1 
C(14)-C(13)-C(10) 119.8(3) 
C(14)-C(13)-H(13) 120.1 
C(10)-C(13)-H(13) 120.1 
N(2)-C(14)-C(13) 123.0(4) 
N(2)-C(14)-H(14) 118.5 
C(13)-C(14)-H(14) 118.5 
C(14)-N(2)-C(12) 116.6(4) 
C(14)-N(2)-Ag(1) 119.9(3) 
C(12)-N(2)-Ag(1) 123.3(3) 
O(7)-N(3)-O(6) 121.2(5) 
O(7)-N(3)-O(5) 120.4(5) 
O(6)-N(3)-O(5) 118.4(7) 
N(3)-O(5)-Ag(1) 110.5(5) 
N(3)-O(6)-Ag(1)#3 105.3(5) 
N(3)-O(7)-Ag(1)#3 89.3(3) 
N(3)-O(7)-Ag(1) 85.3(3) 
Ag(1)#3-O(7)-Ag(1) 174.6(3) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z    #2 -x+1,-y+2,-z+2  
#3 x+1,y,z    #4 x-1,y+1,z-1     #5 x+1,y-1,z+1 
 

Anisotropic displacement parameters (Å2x 103) for 7. The anisotropic displacement factor exponent takes the 

form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
Ag(1) 52(1)  60(1) 37(1)  26(1) 6(1)  13(1) 
N(1) 44(2)  56(7) 30(2)  20(2) 3(2)  11(2) 
C(1) 42(2)  58(7) 35(3)  16(3) 6(2)  19(2) 
C(2) 39(2)  59(7) 37(3)  15(3) 9(2)  17(2) 
C(3) 41(2)  63(7) 42(3)  21(3) 15(2)  14(2) 
C(4) 36(2)  43(7) 41(3)  17(3) 7(2)  9(2) 
C(5) 32(2)  47(6) 27(2)  9(2) 3(2)  7(2) 
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C(6) 34(2)  37(6) 30(3)  12(2) 1(2)  5(2) 
O(1) 51(2)  62(6) 36(2)  17(2) 15(2)  18(2) 
O(2) 34(1)  53(5) 32(2)  21(2) 7(1)  11(2) 
C(7) 38(2)  45(6) 29(3)  19(2) 2(2)  6(2) 
C(8) 37(2)  54(7) 28(3)  20(2) 2(2)  7(2) 
O(3) 40(2)  52(5) 29(2)  20(2) 6(1)  15(2) 
C(9) 34(2)  39(6) 32(3)  12(2) 2(2)  7(2) 
O(4) 53(2)  78(6) 44(2)  27(2) 23(2)  25(2) 
C(10) 34(2)  32(6) 30(2)  9(2) 4(2)  4(2) 
C(11) 32(2)  57(7) 36(3)  17(3) 8(2)  14(2) 
C(12) 38(2)  51(6) 36(3)  16(3) 10(2)  12(2) 
C(13) 34(2)  56(6) 36(3)  13(2) 10(2)  12(2) 
C(14) 36(2)  41(7) 37(3)  15(2) 4(2)  12(2) 
N(2) 39(2)  47(6) 32(2)  16(2) 4(2)  8(2) 
N(3) 39(2)  44(6) 38(3)  12(3) 8(2)  5(2) 
O(5) 41(2)  63(7) 82(3)  -4(3) 3(2)  4(2) 
O(6) 47(2)  70(8) 112(4)  -11(4) 14(2)  21(3) 
O(7) 59(2)  66(9) 67(3)  -6(3) 9(2)  1(3) 
_______________________________________________________________________________________ 
 

Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 7. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(1) 1390 8207 10565 53 
H(2) 1599 7038 11959 53 
H(3) 7158 6755 10247 56 
H(4) 7542 5560 11627 47 
H(7A) 5849 3346 13993 44 
H(7B) 7001 4832 14526 44 
H(8A) 9164 2691 13500 47 
H(8B) 10321 4206 13979 47 
H(11) -772 11756 6461 49 
H(12) 142 10606 7830 49 
H(13) 5054 10600 5799 49 
H(14) 5793 9436 7181 45 
_______________________________________________________________________________________ 
 
Torsion angles [°] for 7. 
_______________________________________________________________________________________ 
N(2)-Ag(1)-N(1)-C(1) 41.6(14) 
O(5)-Ag(1)-N(1)-C(1) -157.7(6) 
O(6)#1-Ag(1)-N(1)-C(1) -57.8(6) 
O(7)-Ag(1)-N(1)-C(1) 160.1(6) 
Ag(1)#2-Ag(1)-N(1)-C(1) 87.3(6) 
Ag(1)#3-Ag(1)-N(1)-C(1) 162.8(6) 
Ag(1)#4-Ag(1)-N(1)-C(1) 12.6(11) 
N(2)-Ag(1)-N(1)-C(3) -143.9(9) 
O(5)-Ag(1)-N(1)-C(3) 16.7(6) 
O(6)#1-Ag(1)-N(1)-C(3) 116.6(6) 
O(7)-Ag(1)-N(1)-C(3) -25.5(6) 
Ag(1)#2-Ag(1)-N(1)-C(3) -98.3(6) 
Ag(1)#3-Ag(1)-N(1)-C(3) -22.8(6) 
Ag(1)#4-Ag(1)-N(1)-C(3) -173.0(5) 
C(3)-N(1)-C(1)-C(2) 0.5(11) 
Ag(1)-N(1)-C(1)-C(2) 175.3(6) 
N(1)-C(1)-C(2)-C(5) 2.1(12) 
C(1)-N(1)-C(3)-C(4) -0.7(11) 
Ag(1)-N(1)-C(3)-C(4) -175.2(6) 
N(1)-C(3)-C(4)-C(5) -1.7(11) 
C(1)-C(2)-C(5)-C(4) -4.4(11) 
C(1)-C(2)-C(5)-C(6) 176.0(7) 
C(3)-C(4)-C(5)-C(2) 4.2(11) 

C(11)-C(12)-N(2)-C(14) 1.8(11) 
C(11)-C(12)-N(2)-Ag(1) -174.0(6) 
N(1)-Ag(1)-N(2)-C(14) 142.8(9) 
O(5)-Ag(1)-N(2)-C(14) -18.0(6) 
O(6)#1-Ag(1)-N(2)-C(14) -118.0(6) 
O(7)-Ag(1)-N(2)-C(14) 24.7(6) 
Ag(1)#2-Ag(1)-N(2)-C(14) 100.0(6) 
Ag(1)#3-Ag(1)-N(2)-C(14) 22.0(6) 
Ag(1)#4-Ag(1)-N(2)-C(14) -151.8(16) 
N(1)-Ag(1)-N(2)-C(12) -41.5(13) 
O(5)-Ag(1)-N(2)-C(12) 157.7(5) 
O(6)#1-Ag(1)-N(2)-C(12) 57.7(5) 
O(7)-Ag(1)-N(2)-C(12) -159.7(5) 
Ag(1)#2-Ag(1)-N(2)-C(12) -84.3(5) 
Ag(1)#3-Ag(1)-N(2)-C(12) -162.3(5) 
Ag(1)#4-Ag(1)-N(2)-C(12) 23.9(8) 
O(7)-N(3)-O(5)-Ag(1) -12.4(8) 
O(6)-N(3)-O(5)-Ag(1) 167.7(4) 
N(1)-Ag(1)-O(5)-N(3) -76.1(5) 
N(2)-Ag(1)-O(5)-N(3) 100.6(4) 
O(6)#1-Ag(1)-O(5)-N(3) -167.0(4) 
O(7)-Ag(1)-O(5)-N(3) 6.1(4) 
Ag(1)#2-Ag(1)-O(5)-N(3) -10.7(5) 
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C(3)-C(4)-C(5)-C(6) -176.3(6) 
C(2)-C(5)-C(6)-O(1) -6.8(11) 
C(4)-C(5)-C(6)-O(1) 173.6(7) 
C(2)-C(5)-C(6)-O(2) 176.8(6) 
C(4)-C(5)-C(6)-O(2) -2.7(10) 
O(1)-C(6)-O(2)-C(7) 6.5(10) 
C(5)-C(6)-O(2)-C(7) -177.1(6) 
C(6)-O(2)-C(7)-C(8) -178.6(5) 
O(2)-C(7)-C(8)-O(3) 176.9(5) 
C(7)-C(8)-O(3)-C(9) 175.9(5) 
C(8)-O(3)-C(9)-O(4) -1.8(9) 
C(8)-O(3)-C(9)-C(10)#5 179.7(6) 
C(13)-C(10)-C(11)-C(12) -1.4(11) 
C(9)#4-C(10)-C(11)-C(12) 178.6(7) 
C(10)-C(11)-C(12)-N(2) -0.5(11) 
C(11)-C(10)-C(13)-C(14) 2.0(10) 
C(9)#4-C(10)-C(13)-C(14) -178.0(7) 
C(10)-C(13)-C(14)-N(2) -0.7(11) 
C(13)-C(14)-N(2)-C(12) -1.2(11) 
C(13)-C(14)-N(2)-Ag(1) 174.8(5) 

Ag(1)#3-Ag(1)-O(5)-N(3) 5.3(3) 
Ag(1)#4-Ag(1)-O(5)-N(3) 106.5(4) 
O(7)-N(3)-O(6)-Ag(1)#3 -10.6(7) 
O(5)-N(3)-O(6)-Ag(1)#3 169.3(4) 
O(6)-N(3)-O(7)-Ag(1)#3 9.0(6) 
O(5)-N(3)-O(7)-Ag(1)#3 -170.8(5) 
O(6)-N(3)-O(7)-Ag(1) -170.5(5) 
O(5)-N(3)-O(7)-Ag(1) 9.6(6) 
N(1)-Ag(1)-O(7)-N(3) 95.3(4) 
N(2)-Ag(1)-O(7)-N(3) -93.7(5) 
O(5)-Ag(1)-O(7)-N(3) -5.9(4) 
O(6)#1-Ag(1)-O(7)-N(3) 5.2(6) 
Ag(1)#2-Ag(1)-O(7)-N(3) 158.5(4) 
Ag(1)#3-Ag(1)-O(7)-N(3) 5(2) 
Ag(1)#4-Ag(1)-O(7)-N(3) -93.1(4) 
N(1)-Ag(1)-O(7)-Ag(1)#3 90(2) 
N(2)-Ag(1)-O(7)-Ag(1)#3 -99(2) 
O(5)-Ag(1)-O(7)-Ag(1)#3 -11(2) 
O(6)#1-Ag(1)-O(7)-Ag(1)#3 0(2) 
Ag(1)#2-Ag(1)-O(7)-Ag(1)#3 153(2) 
Ag(1)#4-Ag(1)-O(7)-Ag(1)#3 -98(2) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z    #2 -x+1,-y+2,-z+2     
#3 x+1,y,z    #4 x-1,y+1,z-1     #5 x+1,y-1,z+1 
 
Hydrogen bonds for 7 [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(11)-H(11)...O(1)#6 0.93 2.79 3.648(7) 153.2 
 C(8)-H(8B)...O(1)#3 0.97 2.64 3.580(7) 163.4 
 C(13)-H(13)...O(4)#7 0.93 2.63 3.195(7) 119.3 
 C(14)-H(14)...O(4)#7 0.93 2.85 3.316(6) 112.3 
 C(7)-H(7A)...O(4)#1 0.97 2.50 3.436(7) 161.9 
 C(1)-H(1)...O(7)#1 0.93 2.65 3.403(7) 138.9 
 C(12)-H(12)...O(7)#1 0.93 2.58 3.309(8) 135.3 
 C(1)-H(1)...O(7)#2 0.93 2.80 3.377(11) 121.3 
 C(4)-H(4)...O(6)#7 0.93 2.53 3.390(8) 154.7 
 C(8)-H(8A)...O(6)#7 0.97 2.83 3.494(7) 126.5 
 C(14)-H(14)...O(5) 0.93 2.65 3.308(9) 128.3 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z    #2 -x+1,-y+2,-z+2     
#3 x+1,y,z    #4 x-1,y+1,z-1     #5 x+1,y-1,z+1    #6 -x,-y+2,-z+2    #7 -x+2,-y+1,-z+2 
 

I.2.i - Crystal data and structure refinement for 8. 

 
Empirical formula  C15 H12 Ag1 F3 N2 O7 S 

Formula weight  529.20 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  monoclinic 

Space group  P21/c 

Unit cell dimensions a = 8.9891(18) Å � = 90°. 

 b = 21.386(4) Å � = 96.01(3)°. 
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 c = 9.4899(19) Å � = 90°. 

Volume 1814.3(6) Å3 

Z 4 

Density (calculated) 1.937 Mg/m3 

Absorption coefficient 1.299 mm-1 

F(000) 1048 

Crystal size ? x ? x ? mm3 

Theta range for data collection 2.47 to 28.09°. 

Index ranges -11<=h<=11, -28<=k<=28, -12<=l<=12 

Reflections collected 19223 

Independent reflections 4382 [R(int) = 0.0428] 

Completeness to theta = 28.09° 99.2 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4382 / 0 / 262 

Goodness-of-fit on F2 0.910 

Final R indices [I>2sigma(I)] R1 = 0.0246, wR2 = 0.0591 

R indices (all data) R1 = 0.0348, wR2 = 0.0611 

Largest diff. peak and hole 0.542 and -0.332 e.Å-3 

 
Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 8. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
Ag(1) 4504(1) 2588(1) 4775(1) 34(1) 
N(1) 2970(2) 2166(1) 6102(2) 26(1) 
C(1) 2135(2) 2506(1) 6914(2) 26(1) 
C(2) 1323(2) 2242(1) 7928(2) 25(1) 
C(3) 3001(2) 1543(1) 6273(2) 28(1) 
C(4) 2229(2) 1245(1) 7268(2) 27(1) 
C(5) 1381(2) 1599(1) 8112(2) 24(1) 
C(6) 521(2) 1302(1) 9211(2) 27(1) 
O(1) -165(2) 1587(1) 10021(2) 38(1) 
O(2) 603(2) 681(1) 9132(2) 34(1) 
C(7) -138(3) 335(1) 10166(2) 37(1) 
N(1A) 6067(2) 2970(1) 3425(2) 27(1) 
C(1A) 6800(2) 2601(1) 2574(2) 28(1) 
C(2A) 7660(2) 2838(1) 1573(2) 27(1) 
C(3A) 6196(2) 3593(1) 3301(2) 28(1) 
C(4A) 7040(2) 3868(1) 2324(2) 28(1) 
C(5A) 7786(2) 3484(1) 1442(2) 24(1) 
C(6A) 8747(2) 3745(1) 384(2) 26(1) 
O(1A) 9260(2) 3446(1) -520(2) 40(1) 
O(2A) 8980(2) 4355(1) 616(2) 31(1) 
C(7A) 9902(3) 4677(1) -311(2) 30(1) 
S(1) 5838(1) -981(1) 7619(1) 34(1) 
O(5) 5996(2) -1225(1) 9047(2) 54(1) 
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O(6) 7041(2) -600(1) 7256(3) 70(1) 
O(7) 5284(3) -1423(1) 6547(2) 61(1) 
C(15) 4286(3) -440(1) 7615(3) 48(1) 
F(1) 4571(3) 16(1) 8539(2) 95(1) 
F(2) 3960(3) -174(1) 6364(2) 87(1) 
F(3) 3073(2) -726(1) 7953(3) 97(1) 
_______________________________________________________________________________________ 
 
Bond lengths [Å] and angles [°] for 8. 
_______________________________________________________________________________________ 
Ag(1)-N(1A)  2.1590(17) 
Ag(1)-N(1)  2.1593(16) 
Ag(1)-O(7)#1  2.8041(17) 
Ag(1)-O(5)#2  2.8303(18) 
Ag(1)-Ag(1)#3  4.7598(10) 
N(1)-C(3)  1.343(3) 
N(1)-C(1)  1.344(3) 
C(1)-C(2)  1.387(3) 
C(1)-H(1)  0.9300 
C(2)-C(5)  1.388(3) 
C(2)-H(2)  0.9300 
C(3)-C(4)  1.384(3) 
C(3)-H(3)  0.9300 
C(4)-C(5)  1.387(3) 
C(4)-H(4)  0.9300 
C(5)-C(6)  1.502(3) 
C(6)-O(1)  1.200(3) 
C(6)-O(2)  1.334(2) 
O(2)-C(7)  1.446(2) 
C(7)-C(7)#4  1.492(4) 
C(7)-H(7A)  0.9700 
C(7)-H(7B)  0.9700 
N(1A)-C(3A)  1.343(2) 

N(1A)-C(1A)  1.350(3) 
C(1A)-C(2A)  1.382(3) 
C(1A)-H(1A)  0.9300 
C(2A)-C(5A)  1.394(3) 
C(2A)-H(2A)  0.9300 
C(3A)-C(4A)  1.389(3) 
C(3A)-H(3A)  0.9300 
C(4A)-C(5A)  1.395(3) 
C(4A)-H(4A)  0.9300 
C(5A)-C(6A)  1.499(3) 
C(6A)-O(1A)  1.200(2) 
C(6A)-O(2A)  1.337(2) 
O(2A)-C(7A)  1.445(2) 
C(7A)-C(7A)#5  1.505(4) 
C(7A)-H(7C)  0.9700 
C(7A)-H(7D)  0.9700 
S(1)-O(6)  1.426(2) 
S(1)-O(7)  1.4387(19) 
S(1)-O(5)  1.4445(17) 
S(1)-C(15)  1.812(3) 
C(15)-F(3)  1.318(4) 
C(15)-F(1)  1.319(3) 
C(15)-F(2)  1.321(3) 

 
N(1A)-Ag(1)-N(1) 177.61(6) 
N(1A)-Ag(1)-O(7)#1 89.56(6) 
N(1)-Ag(1)-O(7)#1 88.15(6) 
N(1A)-Ag(1)-O(5)#2 91.97(6) 
N(1)-Ag(1)-O(5)#2 90.37(6) 
O(7)#1-Ag(1)-O(5)#2 174.25(7) 
N(1A)-Ag(1)-Ag(1)#3 133.56(5) 
N(1)-Ag(1)-Ag(1)#3 47.07(5) 
O(7)#1-Ag(1)-Ag(1)#3 112.52(4) 
O(5)#2-Ag(1)-Ag(1)#3 70.14(4) 
C(3)-N(1)-C(1) 118.23(16) 
C(3)-N(1)-Ag(1) 118.58(14) 
C(1)-N(1)-Ag(1) 122.55(12) 
N(1)-C(1)-C(2) 122.99(16) 
N(1)-C(1)-H(1) 118.5 
C(2)-C(1)-H(1) 118.5 
C(1)-C(2)-C(5) 118.34(18) 
C(1)-C(2)-H(2) 120.8 
C(5)-C(2)-H(2) 120.8 
N(1)-C(3)-C(4) 122.26(18) 
N(1)-C(3)-H(3) 118.9 
C(4)-C(3)-H(3) 118.9 
C(3)-C(4)-C(5) 119.19(17) 
C(3)-C(4)-H(4) 120.4 
C(5)-C(4)-H(4) 120.4 
C(4)-C(5)-C(2) 118.98(17) 
C(4)-C(5)-C(6) 121.64(16) 
C(2)-C(5)-C(6) 119.39(17) 
O(1)-C(6)-O(2) 125.16(18) 
O(1)-C(6)-C(5) 124.56(17) 

C(3A)-N(1A)-Ag(1) 119.69(14) 
C(1A)-N(1A)-Ag(1) 121.46(12) 
N(1A)-C(1A)-C(2A) 122.73(17) 
N(1A)-C(1A)-H(1A) 118.6 
C(2A)-C(1A)-H(1A) 118.6 
C(1A)-C(2A)-C(5A) 118.72(18) 
C(1A)-C(2A)-H(2A) 120.6 
C(5A)-C(2A)-H(2A) 120.6 
N(1A)-C(3A)-C(4A) 122.49(18) 
N(1A)-C(3A)-H(3A) 118.8 
C(4A)-C(3A)-H(3A) 118.8 
C(3A)-C(4A)-C(5A) 118.78(17) 
C(3A)-C(4A)-H(4A) 120.6 
C(5A)-C(4A)-H(4A) 120.6 
C(2A)-C(5A)-C(4A) 118.87(17) 
C(2A)-C(5A)-C(6A) 119.12(17) 
C(4A)-C(5A)-C(6A) 122.00(16) 
O(1A)-C(6A)-O(2A) 124.91(18) 
O(1A)-C(6A)-C(5A) 124.91(17) 
O(2A)-C(6A)-C(5A) 110.16(16) 
C(6A)-O(2A)-C(7A) 117.07(15) 
O(2A)-C(7A)-C(7A)#5 104.42(19) 
O(2A)-C(7A)-H(7C) 110.9 
C(7A)#5-C(7A)-H(7C) 110.9 
O(2A)-C(7A)-H(7D) 110.9 
C(7A)#5-C(7A)-H(7D) 110.9 
H(7C)-C(7A)-H(7D) 108.9 
O(6)-S(1)-O(7) 114.86(13) 
O(6)-S(1)-O(5) 115.47(14) 
O(7)-S(1)-O(5) 114.81(11) 
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O(2)-C(6)-C(5) 110.26(16) 
C(6)-O(2)-C(7) 116.10(16) 
O(2)-C(7)-C(7)#4 104.4(2) 
O(2)-C(7)-H(7A) 110.9 
C(7)#4-C(7)-H(7A) 110.9 
O(2)-C(7)-H(7B) 110.9 
C(7)#4-C(7)-H(7B) 110.9 
H(7A)-C(7)-H(7B) 108.9 
C(3A)-N(1A)-C(1A) 118.41(17) 

O(6)-S(1)-C(15) 103.74(14) 
O(7)-S(1)-C(15) 102.03(13) 
O(5)-S(1)-C(15) 103.41(12) 
F(3)-C(15)-F(1) 106.8(3) 
F(3)-C(15)-F(2) 107.9(2) 
F(1)-C(15)-F(2) 106.8(2) 
F(3)-C(15)-S(1) 111.1(2) 
F(1)-C(15)-S(1) 112.0(2) 
F(2)-C(15)-S(1) 111.99(19) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1    #2 -x+1,y+1/2,-z+3/2     
#3 x,-y+1/2,z+1/2     #4 -x,-y,-z+2    #5 -x+2,-y+1,-z 
 

Anisotropic displacement parameters (Å2x 103) for 8.  The anisotropic displacement factor exponent takes 

the form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
Ag(1) 33(1)  39(1) 31(1)  12(1) 11(1)  -11(1) 
N(1) 27(1)  27(1) 25(1)  6(1) 5(1)  -8(1) 
C(1) 29(1)  21(1) 29(1)  6(1) 2(1)  -5(1) 
C(2) 26(1)  23(1) 26(1)  0(1) 5(1)  -3(1) 
C(3) 30(1)  28(1) 27(1)  2(1) 10(1)  -2(1) 
C(4) 30(1)  21(1) 32(1)  5(1) 9(1)  -3(1) 
C(5) 23(1)  25(1) 23(1)  4(1) 5(1)  -6(1) 
C(6) 30(1)  27(1) 25(1)  4(1) 7(1)  -7(1) 
O(1) 45(1)  36(1) 36(1)  -1(1) 22(1)  -5(1) 
O(2) 45(1)  26(1) 34(1)  8(1) 21(1)  -7(1) 
C(7) 47(1)  33(1) 35(1)  11(1) 23(1)  -8(1) 
N(1A) 27(1)  28(1) 26(1)  7(1) 6(1)  -7(1) 
C(1A) 29(1)  23(1) 33(1)  5(1) 6(1)  -4(1) 
C(2A) 26(1)  25(1) 31(1)  1(1) 6(1)  -3(1) 
C(3A) 28(1)  29(1) 29(1)  2(1) 11(1)  -4(1) 
C(4A) 28(1)  22(1) 34(1)  3(1) 10(1)  -4(1) 
C(5A) 22(1)  26(1) 23(1)  4(1) 5(1)  -5(1) 
C(6A) 26(1)  27(1) 27(1)  3(1) 8(1)  -4(1) 
O(1A) 51(1)  34(1) 38(1)  -4(1) 24(1)  -8(1) 
O(2A) 36(1)  26(1) 33(1)  4(1) 19(1)  -7(1) 
C(7A) 33(1)  30(1) 31(1)  7(1) 16(1)  -7(1) 
S(1) 39(1)  24(1) 41(1)  5(1) 20(1)  5(1) 
O(5) 77(1)  44(1) 44(1)  13(1) 21(1)  24(1) 
O(6) 43(1)  80(1) 88(2)  23(1) 19(1)  -14(1) 
O(7) 102(2)  32(1) 56(1)  -14(1) 38(1)  -7(1) 
C(15) 53(2)  48(1) 44(1)  -6(1) 3(1)  18(1) 
F(1) 151(2)  51(1) 76(1)  -29(1) -13(1)  49(1) 
F(2) 107(2)  92(1) 59(1)  14(1) -7(1)  51(1) 
F(3) 41(1)  147(2) 107(2)  0(2) 31(1)  15(1) 
_______________________________________________________________________________________ 
 

Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 8. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(1) 2100 2937 6790 32 
H(2) 754 2491 8471 30 
H(3) 3561 1303 5703 34 
H(4) 2278 812 7369 33 
H(7A) -1201 425 10073 45 
H(7B) 283 437 11121 45 
H(1A) 6722 2170 2664 34 
H(2A) 8146 2570 997 32 
H(3A) 5701 3850 3891 34 
H(4A) 7106 4301 2259 33 
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H(7C) 9411 4694 -1271 36 
H(7D) 10861 4470 -323 36 
_______________________________________________________________________________________ 
 
Torsion angles [°] for 8. 
_______________________________________________________________________________________ 
N(1A)-Ag(1)-N(1)-C(3) 4.8(15) 
O(7)#1-Ag(1)-N(1)-C(3) 21.99(15) 
O(5)#2-Ag(1)-N(1)-C(3) -163.57(15) 
Ag(1)#3-Ag(1)-N(1)-C(3) -101.61(15) 
N(1A)-Ag(1)-N(1)-C(1) 175.4(14) 
O(7)#1-Ag(1)-N(1)-C(1) -167.36(15) 
O(5)#2-Ag(1)-N(1)-C(1) 7.08(15) 
Ag(1)#3-Ag(1)-N(1)-C(1) 69.04(14) 
C(3)-N(1)-C(1)-C(2) 0.9(3) 
Ag(1)-N(1)-C(1)-C(2) -169.83(15) 
N(1)-C(1)-C(2)-C(5) 0.2(3) 
C(1)-N(1)-C(3)-C(4) -1.2(3) 
Ag(1)-N(1)-C(3)-C(4) 169.82(15) 
N(1)-C(3)-C(4)-C(5) 0.6(3) 
C(3)-C(4)-C(5)-C(2) 0.4(3) 
C(3)-C(4)-C(5)-C(6) -179.91(18) 
C(1)-C(2)-C(5)-C(4) -0.8(3) 
C(1)-C(2)-C(5)-C(6) 179.55(17) 
C(4)-C(5)-C(6)-O(1) 175.8(2) 
C(2)-C(5)-C(6)-O(1) -4.5(3) 
C(4)-C(5)-C(6)-O(2) -5.6(3) 
C(2)-C(5)-C(6)-O(2) 174.06(17) 
O(1)-C(6)-O(2)-C(7) -3.4(3) 
C(5)-C(6)-O(2)-C(7) 177.99(18) 
C(6)-O(2)-C(7)-C(7)#4 -179.8(2) 
N(1)-Ag(1)-N(1A)-C(3A) -179(39) 
O(7)#1-Ag(1)-N(1A)-C(3A) 163.92(15) 
O(5)#2-Ag(1)-N(1A)-C(3A) -10.54(15) 
Ag(1)#3-Ag(1)-N(1A)-C(3A) -74.66(16) 
N(1)-Ag(1)-N(1A)-C(1A) 8.8(15) 

O(7)#1-Ag(1)-N(1A)-C(1A) -8.36(15) 
O(5)#2-Ag(1)-N(1A)-C(1A) 177.18(15) 
Ag(1)#3-Ag(1)-N(1A)-C(1A) 113.06(14) 
C(3A)-N(1A)-C(1A)-C(2A) -0.7(3) 
Ag(1)-N(1A)-C(1A)-C(2A) 171.68(15) 
N(1A)-C(1A)-C(2A)-C(5A) 0.4(3) 
C(1A)-N(1A)-C(3A)-C(4A) 0.6(3) 
Ag(1)-N(1A)-C(3A)-C(4A) -171.93(16) 
N(1A)-C(3A)-C(4A)-C(5A) -0.2(3) 
C(1A)-C(2A)-C(5A)-C(4A) 0.0(3) 
C(1A)-C(2A)-C(5A)-C(6A) 178.50(18) 
C(3A)-C(4A)-C(5A)-C(2A) -0.1(3) 
C(3A)-C(4A)-C(5A)-C(6A) -178.56(18) 
C(2A)-C(5A)-C(6A)-O(1A) 11.5(3) 
C(4A)-C(5A)-C(6A)-O(1A) -170.1(2) 
C(2A)-C(5A)-C(6A)-O(2A) -167.04(17) 
C(4A)-C(5A)-C(6A)-O(2A) 11.4(3) 
O(1A)-C(6A)-O(2A)-C(7A) 1.0(3) 
C(5A)-C(6A)-O(2A)-C(7A) 179.46(16) 
C(6A)-O(2A)-C(7A)-C(7A)#5 -173.7(2) 
O(6)-S(1)-C(15)-F(3) -179.3(2) 
O(7)-S(1)-C(15)-F(3) 61.1(2) 
O(5)-S(1)-C(15)-F(3) -58.4(2) 
O(6)-S(1)-C(15)-F(1) -59.9(2) 
O(7)-S(1)-C(15)-F(1) -179.5(2) 
O(5)-S(1)-C(15)-F(1) 61.0(2) 
O(6)-S(1)-C(15)-F(2) 60.0(2) 
O(7)-S(1)-C(15)-F(2) -59.6(2) 
O(5)-S(1)-C(15)-F(2) -179.1(2) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1    #2 -x+1,y+1/2,-z+3/2     
#3 x,-y+1/2,z+1/2     #4 -x,-y,-z+2    #5 -x+2,-y+1,-z 
 
Hydrogen bonds for 8 [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(3)-H(3)...O(7)#1 0.93 2.48 3.235(3) 138.0 
 C(1A)-H(1A)...O(7)#1 0.93 2.58 3.298(3) 134.7 
 C(4)-H(4)...F(1) 0.93 2.81 3.501(3) 131.9 
 C(4)-H(4)...F(2) 0.93 2.82 3.556(3) 136.9 
 C(7)-H(7A)...F(3)#4 0.97 2.72 3.440(3) 131.2 
 C(2)-H(2)...O(1A)#6 0.93 2.68 3.579(3) 163.8 
 C(2A)-H(2A)...O(1)#7 0.93 2.81 3.708(3) 163.2 
 C(1)-H(1)...O(1)#8 0.93 2.70 3.239(3) 117.8 
 C(1)-H(1)...O(5)#2 0.93 2.66 3.368(3) 133.8 
 C(3A)-H(3A)...O(5)#2 0.93 2.61 3.378(3) 140.4 
 C(7A)-H(7D)...O(6)#9 0.97 2.77 3.517(3) 134.4 
 C(4A)-H(4A)...O(6)#8 0.93 2.78 3.703(3) 173.6 
 C(7)-H(7B)...O(6)#10 0.97 2.74 3.554(4) 142.0 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1    #2 -x+1,y+1/2,-z+3/2     
#3 x,-y+1/2,z+1/2     #4 -x,-y,-z+2    #5 -x+2,-y+1,-z    #6 x-1,y,z+1     #7 x+1,y,z-1    #8 x,-y+1/2,z-1/2     
#9 -x+2,y+1/2,-z+1/2     #10 -x+1,-y,-z+2 
 
 



E - Crystallographic Data Adeline ROBIN 
 

Structural diversity of Cu(I), Ag(I) and Cu(II) coordination polymers with the ligand ethanediyl bis(isonicotinate) 199 

 

I.2.j - Crystal data and structure refinement for 9. 

 
Empirical formula  C14 H12 Ag1 Cl1 N2 O8 

Formula weight  479.58 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  monoclinic 

Space group  I2/a 

Unit cell dimensions a = 9.0820(12) Å � = 90°. 

 b = 10.1788(11) Å � = 94.543(17)°. 

 c = 17.343(3) Å � = 90°. 

Volume 1598.2(4) Å3 

Z 4 

Density (calculated) 1.993 Mg/m3 

Absorption coefficient 1.478 mm-1 

F(000) 952 

Crystal size ? x ? x ? mm3 

Theta range for data collection 3.01 to 28.13°. 

Index ranges -11<=h<=11, -13<=k<=13, -22<=l<=22 

Reflections collected 6160 

Independent reflections 1391 [R(int) = 0.0471] 

Completeness to theta = 28.13° 71.2 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1391 / 0 / 120 

Goodness-of-fit on F2 1.143 

Final R indices [I>2sigma(I)] R1 = 0.0481, wR2 = 0.1395 

R indices (all data) R1 = 0.0650, wR2 = 0.1497 

Largest diff. peak and hole 1.001 and -0.717 e.Å-3 

 
Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 9. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
Ag(1) 0 10000 5000 34(1) 
N(1) 1326(5) 8867(5) 4228(3) 25(1) 
C(1) 2326(7) 9524(6) 3844(4) 27(1) 
C(2) 3402(6) 8913(5) 3452(3) 24(1) 
C(3) 1366(7) 7543(6) 4206(4) 29(1) 
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C(4) 2405(6) 6853(5) 3814(4) 27(1) 
C(5) 3455(6) 7547(5) 3449(3) 20(1) 
C(6) 4608(6) 6821(5) 3043(3) 22(1) 
O(1) 4525(5) 5670(4) 2873(3) 37(1) 
O(2) 5714(4) 7610(4) 2887(2) 25(1) 
C(7) 6887(6) 6998(5) 2484(4) 28(1) 
Cl(1) -2500 6856(2) 5000 35(1) 
O(5) -1371(10) 7730(9) 5308(6) 107(3) 
O(6) -1935(10) 6210(12) 4382(9) 177(7) 
_______________________________________________________________________________________ 
 
Bond lengths [Å] and angles [°] for 9. 
_______________________________________________________________________________________ 
Ag(1)-N(1)  2.197(4) 
Ag(1)-N(1)#1  2.197(4) 
Ag(1)-O(5)  2.698(8) 
Ag(1)-Ag(1)#2  4.5410(6) 
N(1)-C(1)  1.346(7) 
N(1)-C(3)  1.350(7) 
C(1)-C(2)  1.381(8) 
C(1)-H(1)  0.9300 
C(2)-C(5)  1.392(7) 
C(2)-H(2)  0.9300 
C(3)-C(4)  1.394(8) 
C(3)-H(3)  0.9300 
C(4)-C(5)  1.380(7) 

C(4)-H(4)  0.9300 
C(5)-C(6)  1.501(7) 
C(6)-O(1)  1.210(7) 
C(6)-O(2)  1.331(6) 
O(2)-C(7)  1.459(6) 
C(7)-C(7)#3  1.510(11) 
C(7)-H(7A)  0.9700 
C(7)-H(7B)  0.9700 
Cl(1)-O(6)  1.390(9) 
Cl(1)-O(6)#4  1.390(9) 
Cl(1)-O(5)  1.429(8) 
Cl(1)-O(5)#4  1.429(8) 

 
N(1)-Ag(1)-N(1)#1 180.000(1) 
N(1)-Ag(1)-O(5) 87.4(2) 
N(1)#1-Ag(1)-O(5) 92.6(2) 
N(1)-Ag(1)-Ag(1)#2 53.40(13) 
N(1)#1-Ag(1)-Ag(1)#2 126.60(13) 
O(5)-Ag(1)-Ag(1)#2 118.5(2) 
C(1)-N(1)-C(3) 117.5(5) 
C(1)-N(1)-Ag(1) 117.7(4) 
C(3)-N(1)-Ag(1) 124.0(4) 
N(1)-C(1)-C(2) 123.4(5) 
N(1)-C(1)-H(1) 118.3 
C(2)-C(1)-H(1) 118.3 
C(1)-C(2)-C(5) 118.6(5) 
C(1)-C(2)-H(2) 120.7 
C(5)-C(2)-H(2) 120.7 
N(1)-C(3)-C(4) 122.5(5) 
N(1)-C(3)-H(3) 118.7 
C(4)-C(3)-H(3) 118.7 
C(5)-C(4)-C(3) 119.0(5) 
C(5)-C(4)-H(4) 120.5 
C(3)-C(4)-H(4) 120.5 

C(4)-C(5)-C(2) 118.9(5) 
C(4)-C(5)-C(6) 119.8(5) 
C(2)-C(5)-C(6) 121.3(5) 
O(1)-C(6)-O(2) 124.6(5) 
O(1)-C(6)-C(5) 124.0(5) 
O(2)-C(6)-C(5) 111.4(4) 
C(6)-O(2)-C(7) 115.6(4) 
O(2)-C(7)-C(7)#3 104.9(5) 
O(2)-C(7)-H(7A) 110.8 
C(7)#3-C(7)-H(7A) 110.8 
O(2)-C(7)-H(7B) 110.8 
C(7)#3-C(7)-H(7B) 110.8 
H(7A)-C(7)-H(7B) 108.8 
O(6)-Cl(1)-O(6)#4 123.5(13) 
O(6)-Cl(1)-O(5) 106.6(5) 
O(6)#4-Cl(1)-O(5) 107.7(8) 
O(6)-Cl(1)-O(5)#4 107.7(8) 
O(6)#4-Cl(1)-O(5)#4 106.6(5) 
O(5)-Cl(1)-O(5)#4 102.9(9) 
Cl(1)-O(5)-Ag(1) 142.0(7) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z+1    #2 -x+1/2,y,-z+1     
#3 -x+3/2,-y+3/2,-z+1/2     #4 -x-1/2,y,-z+1 
 
Anisotropic displacement parameters (Å2x 103) for 9. The anisotropic displacement factor exponent takes the 

form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
Ag(1) 29(1)  42(1) 32(1)  -2(1) 17(1)  11(1) 
N(1) 18(2)  31(2) 27(2)  -4(2) 8(2)  7(2) 
C(1) 24(3)  23(2) 35(3)  3(2) 13(3)  6(2) 
C(2) 22(3)  24(3) 27(3)  1(2) 10(2)  0(2) 
C(3) 20(3)  30(3) 38(3)  2(2) 13(3)  -2(2) 
C(4) 24(3)  21(3) 37(3)  -2(2) 14(3)  0(2) 
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C(5) 16(3)  23(3) 22(3)  0(2) 7(2)  2(2) 
C(6) 20(3)  20(2) 27(3)  0(2) 7(2)  2(2) 
O(1) 32(3)  26(2) 56(3)  -14(2) 21(2)  -4(2) 
O(2) 17(2)  22(2) 36(2)  -7(2) 16(2)  2(1) 
C(7) 22(3)  26(3) 37(3)  -8(2) 18(3)  1(2) 
Cl(1) 27(1)  32(1) 47(1)  0 15(1)  0 
O(5) 117(7)  99(6) 112(7)  -43(5) 49(6)  -45(5) 
O(6) 80(6)  186(11) 278(16)  -181(12) 91(8)  -46(6) 
_______________________________________________________________________________________ 
 

Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 9. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(1) 2291 10437 3842 32 
H(2) 4076 9405 3196 29 
H(3) 675 7071 4462 34 
H(4) 2390 5940 3799 33 
H(7A) 6547 6800 1952 33 
H(7B) 7219 6191 2739 33 
_______________________________________________________________________________________ 
 
Torsion angles [°] for 9. 
_______________________________________________________________________________________ 
N(1)#1-Ag(1)-N(1)-C(1) 0(100) 
O(5)-Ag(1)-N(1)-C(1) 179.0(5) 
Ag(1)#2-Ag(1)-N(1)-C(1) -52.1(4) 
N(1)#1-Ag(1)-N(1)-C(3) 0(100) 
O(5)-Ag(1)-N(1)-C(3) -11.8(5) 
Ag(1)#2-Ag(1)-N(1)-C(3) 117.1(5) 
C(3)-N(1)-C(1)-C(2) -1.8(9) 
Ag(1)-N(1)-C(1)-C(2) 168.1(5) 
N(1)-C(1)-C(2)-C(5) 0.4(9) 
C(1)-N(1)-C(3)-C(4) 0.9(9) 
Ag(1)-N(1)-C(3)-C(4) -168.4(5) 
N(1)-C(3)-C(4)-C(5) 1.5(10) 
C(3)-C(4)-C(5)-C(2) -3.0(9) 
C(3)-C(4)-C(5)-C(6) 178.3(6) 
C(1)-C(2)-C(5)-C(4) 2.1(9) 

 
C(1)-C(2)-C(5)-C(6) -179.2(5) 
C(4)-C(5)-C(6)-O(1) 15.6(9) 
C(2)-C(5)-C(6)-O(1) -163.1(6) 
C(4)-C(5)-C(6)-O(2) -165.2(5) 
C(2)-C(5)-C(6)-O(2) 16.1(7) 
O(1)-C(6)-O(2)-C(7) -0.2(9) 
C(5)-C(6)-O(2)-C(7) -179.3(5) 
C(6)-O(2)-C(7)-C(7)#3 -169.4(6) 
O(6)-Cl(1)-O(5)-Ag(1) 72.6(12) 
O(6)#4-Cl(1)-O(5)-Ag(1) -153.0(8) 
O(5)#4-Cl(1)-O(5)-Ag(1) -40.6(6) 
N(1)-Ag(1)-O(5)-Cl(1) -79.9(8) 
N(1)#1-Ag(1)-O(5)-Cl(1) 100.1(8) 
Ag(1)#2-Ag(1)-O(5)-Cl(1) -125.2(8) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z+1    #2 -x+1/2,y,-z+1     
#3 -x+3/2,-y+3/2,-z+1/2     #4 -x-1/2,y,-z+1 
 
Hydrogen bonds for 9 [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(3)-H(3)...O(5) 0.93 2.55 3.259(10) 133.6 
 C(3)-H(3)...O(6) 0.93 2.52 3.327(11) 145.1 
 C(1)-H(1)...O(5)#1 0.93 2.56 3.305(10) 137.7 
 C(7)-H(7B)...O(6)#5 0.97 2.89 3.474(18) 119.6 
 C(4)-H(4)...O(6)#6 0.93 2.47 3.310(11) 150.7 
 C(7)-H(7B)...O(1)#6 0.97 2.82 3.649(7) 143.9 
 C(1)-H(1)...O(2)#7 0.93 2.89 3.609(7) 134.7 
 C(2)-H(2)...O(1)#8 0.93 2.66 3.565(7) 164.0 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z+1    #2 -x+1/2,y,-z+1     
#3 -x+3/2,-y+3/2,-z+1/2     #4 -x-1/2,y,-z+1    #5 x+1,y,z    #6 x+1/2,-y+1,z     #7 x-1/2,-y+2,z     
#8 -x+1,y+1/2,-z+1/2 
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I.2.k - Crystal data and structure refinement for 10. 

 
Empirical formula  C14 H12 Ag1 F6 N2 O4 P1 

Formula weight  525.10 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  I2/a 

Unit cell dimensions a = 9.3818(19) Å � = 90°. 

 b = 10.453(2) Å � = 93.95(3)°. 

 c = 34.673(7) Å � = 90°. 

Volume 3392.4(12) Å3 

Z 8 

Density (calculated) 2.056 Mg/m3 

Absorption coefficient 1.372 mm-1 

F(000) 2064 

Crystal size ? x ? x ? mm3 

Theta range for data collection 2.92 to 24.96°. 

Index ranges -10<=h<=10, -12<=k<=12, -40<=l<=39 

Reflections collected 3443 

Independent reflections 1214 [R(int) = 0.0949] 

Completeness to theta = 24.96° 40.8 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1214 / 0 / 229 

Goodness-of-fit on F2 1.043 

Final R indices [I>2sigma(I)] R1 = 0.0476, wR2 = 0.0843 

R indices (all data) R1 = 0.0908, wR2 = 0.0970 

Largest diff. peak and hole 0.301 and -0.290 e.Å-3 

 

Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for10. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
Ag(1) -34(1) 9619(1) 1287(1) 39(1) 
P -2443(4) 3428(3) 1236(1) 36(1) 
F(1) -1784(11) 3228(11) 832(3) 86(3) 
F(2) -3906(9) 2814(8) 1050(3) 55(2) 
F(3) -1911(10) 2034(8) 1354(3) 75(3) 
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F(4) -3141(11) 3559(8) 1644(3) 67(3) 
F(5) -1022(10) 3981(9) 1429(3) 88(4) 
F(6) -2979(11) 4788(6) 1121(3) 79(3) 
C(1) -1447(7) 7328(6) 1687(2) 40(3) 
N(1) -1381(7) 8656(6) 1671(2) 32(2) 
C(2) -2382(8) 9390(5) 1849(2) 33(3) 
C(3) -3450(7) 8797(6) 2043(2) 21(2) 
C(4) -3516(7) 7469(6) 2058(2) 23(3) 
C(5) -2515(8) 6735(5) 1881(2) 30(3) 
C(6) 1413(7) 11932(6) 911(2) 32(3) 
N(2) 1278(7) 10608(6) 904(2) 29(2) 
C(7) 2142(8) 9878(5) 680(2) 33(3) 
C(8) 3142(7) 10472(6) 463(2) 29(3) 
C(9) 3278(7) 11796(7) 470(2) 28(3) 
C(10) 2414(8) 12526(5) 694(2) 35(3) 
C(11) 4371(14) 12404(10) 233(4) 29(3) 
O(1) 5265(11) 11806(7) 73(3) 40(3) 
O(2) 4223(9) 13651(7) 226(3) 40(2) 
C(12) 5255(16) 14334(12) 11(5) 58(5) 
C(13) -4671(13) 6787(12) 2243(4) 30(3) 
O(3) -4593(9) 5695(8) 2358(3) 44(2) 
O(4) -5762(10) 7575(7) 2311(3) 34(3) 
C(14) -6896(16) 7010(12) 2508(4) 31(3) 
_______________________________________________________________________________________ 
 
Bond lengths [Å] and angles [°] for 10. 
_______________________________________________________________________________________ 
Ag(1)-N(2)  2.138(5) 
Ag(1)-N(1)  2.148(5) 
Ag(1)-F(2)#1  2.896(8) 
Ag(1)-F(3)#2  3.096(8) 
P-F(6)  1.552(8) 
P-F(5)  1.561(9) 
P-F(3)  1.585(8) 
P-F(1)  1.585(10) 
P-F(4)#3  1.604(9) 
P-F(4)  1.604(9) 
P-F(2)  1.610(9) 
F(4)-F(4)#3  0.00(3) 
C(1)-N(1)  1.3900 
C(1)-C(5)  1.3900 
C(1)-H(1)  0.9300 
N(1)-C(2)  1.3900 
C(2)-C(3)  1.3900 
C(2)-H(2)  0.9300 
C(3)-C(4)  1.3900 
C(3)-H(3)  0.9300 
C(4)-C(5)  1.3900 
C(4)-C(13)  1.478(13) 
C(5)-H(5)  0.9300 

C(6)-N(2)  1.3900 
C(6)-C(10)  1.3900 
C(6)-H(6)  0.9300 
N(2)-C(7)  1.3900 
C(7)-C(8)  1.3900 
C(7)-H(7)  0.9300 
C(8)-C(9)  1.3900 
C(8)-H(8)  0.9300 
C(9)-C(10)  1.3900 
C(9)-C(11)  1.498(12) 
C(10)-H(10)  0.9300 
C(11)-O(1)  1.212(15) 
C(11)-O(2)  1.311(12) 
O(2)-C(12)  1.450(15) 
C(12)-C(12)#4  1.47(3) 
C(12)-H(12A)  0.9700 
C(12)-H(12B)  0.9700 
C(13)-O(3)  1.210(13) 
C(13)-O(4)  1.347(15) 
O(4)-C(14)  1.431(17) 
C(14)-C(14)#5  1.53(3) 
C(14)-H(14A)  0.9700 
C(14)-H(14B)  0.9700 

 
N(2)-Ag(1)-N(1) 178.9(3) 
N(2)-Ag(1)-F(2)#1 90.6(3) 
N(1)-Ag(1)-F(2)#1 90.4(3) 
N(2)-Ag(1)-F(3)#2 90.4(3) 
N(1)-Ag(1)-F(3)#2 88.5(3) 
F(2)#1-Ag(1)-F(3)#2 163.4(2) 
F(6)-P-F(5) 91.3(6) 
F(6)-P-F(3) 179.5(6) 
F(5)-P-F(3) 89.2(6) 
F(6)-P-F(1) 91.8(6) 
F(5)-P-F(1) 93.0(6) 
F(3)-P-F(1) 88.4(6) 
F(6)-P-F(4)#3 90.3(5) 

N(1)-C(2)-C(3) 120.0 
N(1)-C(2)-H(2) 120.0 
C(3)-C(2)-H(2) 120.0 
C(2)-C(3)-C(4) 120.0 
C(2)-C(3)-H(3) 120.0 
C(4)-C(3)-H(3) 120.0 
C(5)-C(4)-C(3) 120.0 
C(5)-C(4)-C(13) 117.6(7) 
C(3)-C(4)-C(13) 122.3(7) 
C(4)-C(5)-C(1) 120.0 
C(4)-C(5)-H(5) 120.0 
C(1)-C(5)-H(5) 120.0 
N(2)-C(6)-C(10) 120.0 
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F(5)-P-F(4)#3 88.9(6) 
F(3)-P-F(4)#3 89.5(5) 
F(1)-P-F(4)#3 177.2(6) 
F(6)-P-F(4) 90.3(5) 
F(5)-P-F(4) 88.9(6) 
F(3)-P-F(4) 89.5(5) 
F(1)-P-F(4) 177.2(6) 
F(4)#3-P-F(4) 0.0(7) 
F(6)-P-F(2) 90.5(5) 
F(5)-P-F(2) 177.8(6) 
F(3)-P-F(2) 89.0(5) 
F(1)-P-F(2) 88.0(5) 
F(4)#3-P-F(2) 90.0(5) 
F(4)-P-F(2) 90.0(5) 
F(4)#3-F(4)-P 0(10) 
N(1)-C(1)-C(5) 120.0 
N(1)-C(1)-H(1) 120.0 
C(5)-C(1)-H(1) 120.0 
C(2)-N(1)-C(1) 120.0 
C(2)-N(1)-Ag(1) 117.4(4) 
C(1)-N(1)-Ag(1) 121.5(3) 
N(2)-C(6)-H(6) 120.0 
C(10)-C(6)-H(6) 120.0 
C(6)-N(2)-C(7) 120.0 
C(6)-N(2)-Ag(1) 121.8(4) 
C(7)-N(2)-Ag(1) 117.7(4) 
C(8)-C(7)-N(2) 120.0 
C(8)-C(7)-H(7) 120.0 
N(2)-C(7)-H(7) 120.0 

C(7)-C(8)-C(9) 120.0 
C(7)-C(8)-H(8) 120.0 
C(9)-C(8)-H(8) 120.0 
C(10)-C(9)-C(8) 120.0 
C(10)-C(9)-C(11) 121.4(6) 
C(8)-C(9)-C(11) 118.6(6) 
C(9)-C(10)-C(6) 120.0 
C(9)-C(10)-H(10) 120.0 
C(6)-C(10)-H(10) 120.0 
O(1)-C(11)-O(2) 125.4(11) 
O(1)-C(11)-C(9) 123.7(10) 
O(2)-C(11)-C(9) 110.9(9) 
C(11)-O(2)-C(12) 115.2(10) 
O(2)-C(12)-C(12)#4 105.4(17) 
O(2)-C(12)-H(12A) 110.7 
C(12)#4-C(12)-H(12A) 110.7 
O(2)-C(12)-H(12B) 110.7 
C(12)#4-C(12)-H(12B) 110.7 
H(12A)-C(12)-H(12B) 108.8 
O(3)-C(13)-O(4) 123.3(12) 
O(3)-C(13)-C(4) 124.6(11) 
O(4)-C(13)-C(4) 111.7(10) 
C(13)-O(4)-C(14) 115.5(9) 
O(4)-C(14)-C(14)#5 106.3(12) 
O(4)-C(14)-H(14A) 110.5 
C(14)#5-C(14)-H(14A) 110.5 
O(4)-C(14)-H(14B) 110.5 
C(14)#5-C(14)-H(14B) 110.5 
H(14A)-C(14)-H(14B) 108.7 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x+1/2,-y+1,z    #2 x,y+1,z    #3 x,y,z    #4 -
x+1,-y+3,-z     #5 -x-3/2,-y+3/2,-z+1/2 
 

Anisotropic displacement parameters (Å2x 103) for 10.  The anisotropic displacement factor exponent takes 

the form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
Ag(1) 34(1)  44(1) 41(1)  6(1) 17(1)  -11(1) 
P 39(2)  29(2) 42(2)  1(2) 14(2)  -1(2) 
F(1) 66(7)  133(9) 65(8)  -10(6) 41(6)  -16(6) 
F(2) 37(5)  62(5) 67(7)  -1(5) 4(5)  -8(4) 
F(3) 89(8)  50(6) 85(8)  6(5) 1(6)  22(5) 
F(4) 76(7)  79(7) 50(7)  -9(5) 21(5)  -4(5) 
F(5) 50(6)  99(8) 115(11)  -36(7) 3(7)  -36(6) 
F(6) 112(8)  27(5) 99(6)  10(4) 13(6)  16(5) 
C(1) 45(8)  50(9) 27(8)  10(6) 14(7)  5(7) 
N(1) 31(6)  29(6) 37(7)  -2(5) 10(5)  -13(5) 
C(2) 37(7)  30(6) 32(7)  -6(5) 13(6)  4(6) 
C(3) 26(6)  26(6) 14(6)  0(5) 14(5)  9(6) 
C(4) 30(7)  15(6) 24(7)  5(5) 12(6)  -3(5) 
C(5) 32(7)  13(5) 48(9)  2(6) 18(7)  -4(6) 
C(6) 29(7)  32(7) 34(8)  -5(6) 0(6)  -2(6) 
N(2) 29(5)  30(5) 29(5)  9(5) 6(5)  -4(5) 
C(7) 38(6)  17(6) 45(7)  6(6) 6(5)  -8(6) 
C(8) 32(6)  24(6) 32(7)  -7(6) 5(5)  -5(6) 
C(9) 29(7)  29(6) 25(7)  8(6) -2(6)  -5(6) 
C(10) 36(7)  36(7) 36(8)  3(6) 17(6)  -11(6) 
C(11) 31(7)  19(7) 38(7)  8(6) 7(6)  3(6) 
O(1) 44(6)  30(4) 48(8)  1(4) 26(5)  9(5) 
O(2) 40(5)  22(5) 62(7)  9(4) 28(5)  -5(4) 
C(12) 66(14)  41(8) 72(9)  15(9) 43(9)  -23(8) 
C(13) 22(7)  37(7) 30(8)  -7(6) 0(6)  -11(6) 
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O(3) 44(5)  23(5) 68(7)  15(4) 26(5)  2(4) 
O(4) 18(5)  26(5) 60(8)  10(5) 14(5)  -1(4) 
C(14) 33(8)  49(9) 12(8)  -3(6) 20(7)  1(6) 
_______________________________________________________________________________________ 
 

Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 10. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(1) -777 6837 1568 48 
H(2) -2338 10278 1838 39 
H(3) -4120 9288 2162 26 
H(5) -2559 5847 1891 36 
H(6) 835 12420 1062 38 
H(7) 2051 8992 675 40 
H(8) 3720 9984 312 35 
H(10) 2505 13412 699 42 
H(12A) 5297 13976 -246 70 
H(12B) 6199 14289 143 70 
H(14A) -6580 6820 2774 37 
H(14B) -7212 6222 2382 37 
_______________________________________________________________________________________ 
 
Torsion angles [°] for 10. 
_______________________________________________________________________________________ 
F(6)-P-F(4)-F(4)#3 0.0(8) 
F(5)-P-F(4)-F(4)#3 0.0(8) 
F(3)-P-F(4)-F(4)#3 0.0(8) 
F(1)-P-F(4)-F(4)#3 0(6) 
F(2)-P-F(4)-F(4)#3 0.0(8) 
C(5)-C(1)-N(1)-C(2) 0.0 
C(5)-C(1)-N(1)-Ag(1) -167.8(5) 
N(2)-Ag(1)-N(1)-C(2) -21(16) 
F(2)#1-Ag(1)-N(1)-C(2) -172.2(4) 
F(3)#2-Ag(1)-N(1)-C(2) -8.8(4) 
N(2)-Ag(1)-N(1)-C(1) 147(16) 
F(2)#1-Ag(1)-N(1)-C(1) -4.1(4) 
F(3)#2-Ag(1)-N(1)-C(1) 159.3(4) 
C(1)-N(1)-C(2)-C(3) 0.0 
Ag(1)-N(1)-C(2)-C(3) 168.3(5) 
N(1)-C(2)-C(3)-C(4) 0.0 
C(2)-C(3)-C(4)-C(5) 0.0 
C(2)-C(3)-C(4)-C(13) -176.8(9) 
C(3)-C(4)-C(5)-C(1) 0.0 
C(13)-C(4)-C(5)-C(1) 176.9(9) 
N(1)-C(1)-C(5)-C(4) 0.0 
C(10)-C(6)-N(2)-C(7) 0.0 
C(10)-C(6)-N(2)-Ag(1) 171.7(5) 
N(1)-Ag(1)-N(2)-C(6) 38(16) 
F(2)#1-Ag(1)-N(2)-C(6) -170.7(4) 
F(3)#2-Ag(1)-N(2)-C(6) 25.9(4) 

N(1)-Ag(1)-N(2)-C(7) -150(16) 
F(2)#1-Ag(1)-N(2)-C(7) 1.2(4) 
F(3)#2-Ag(1)-N(2)-C(7) -162.3(4) 
C(6)-N(2)-C(7)-C(8) 0.0 
Ag(1)-N(2)-C(7)-C(8) -172.0(5) 
N(2)-C(7)-C(8)-C(9) 0.0 
C(7)-C(8)-C(9)-C(10) 0.0 
C(7)-C(8)-C(9)-C(11) 179.7(9) 
C(8)-C(9)-C(10)-C(6) 0.0 
C(11)-C(9)-C(10)-C(6) -179.7(9) 
N(2)-C(6)-C(10)-C(9) 0.0 
C(10)-C(9)-C(11)-O(1) 170.3(10) 
C(8)-C(9)-C(11)-O(1) -9.4(16) 
C(10)-C(9)-C(11)-O(2) -9.5(12) 
C(8)-C(9)-C(11)-O(2) 170.7(7) 
O(1)-C(11)-O(2)-C(12) -1.1(19) 
C(9)-C(11)-O(2)-C(12) 178.7(11) 
C(11)-O(2)-C(12)-C(12)#4 171.0(15) 
C(5)-C(4)-C(13)-O(3) 24.1(15) 
C(3)-C(4)-C(13)-O(3) -159.0(10) 
C(5)-C(4)-C(13)-O(4) -163.4(8) 
C(3)-C(4)-C(13)-O(4) 13.4(13) 
O(3)-C(13)-O(4)-C(14) -4.3(18) 
C(4)-C(13)-O(4)-C(14) -176.8(10) 
C(13)-O(4)-C(14)-C(14)#5 -170.5(14) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x+1/2,-y+1,z    #2 x,y+1,z    #3 x,y,z    #4 -
x+1,-y+3,-z     #5 -x-3/2,-y+3/2,-z+1/2 
 
Hydrogen bonds for 10 [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(8)-H(8)...O(1)#6 0.93 2.52 3.425(11) 163.6 
 C(3)-H(3)...O(3)#7 0.93 2.58 3.487(10) 163.9 
 C(7)-H(7)...F(1)#1 0.93 2.61 3.429(12) 147.8 
 C(1)-H(1)...F(2)#1 0.93 2.62 3.363(11) 137.1 
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 C(7)-H(7)...F(2)#1 0.93 2.49 3.271(10) 141.3 
 C(2)-H(2)...F(3)#2 0.93 2.54 3.298(10) 139.3 
 C(6)-H(6)...F(3)#2 0.93 2.86 3.572(11) 134.0 
 C(5)-H(5)...F(4)#3 0.93 2.59 3.461(10) 156.8 
 C(1)-H(1)...F(4)#1 0.93 2.50 3.251(12) 137.5 
 C(14)-H(14B)...F(4)#8 0.97 2.66 3.196(17) 115.6 
 C(14)-H(14A)...F(4)#7 0.97 2.74 3.355(16) 121.7 
 C(6)-H(6)...F(5)#2 0.93 2.76 3.687(12) 173.4 
 C(10)-H(10)...F(6)#9 0.93 2.45 3.207(10) 139.1 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x+1/2,-y+1,z    #2 x,y+1,z    #3 x,y,z     
#4 -x+1,-y+3,-z     #5 -x-3/2,-y+3/2,-z+1/2    #6 -x+1,-y+2,-z    #7 -x-1,y+1/2,-z+1/2     #8 x-1/2,-y+1,z     
#9 x+1/2,-y+2,z 
 

I.2.l - Crystal data and structure refinement for 11. 

 
Empirical formula  C36 H46 Cu1 N6 O19 

Formula weight  930.33 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2/c 

Unit cell dimensions a = 19.6344(11) Å � = 90°. 

 b = 9.3190(4) Å � = 91.634(5)°. 

 c = 23.2805(14) Å � = 90°. 

Volume 4258.0(4) Å3 

Z 4 

Density (calculated) 1.451 Mg/m3 

Absorption coefficient 0.597 mm-1 

F(000) 1940 

Crystal size ? x ? x ? mm3 

Theta range for data collection 1.75 to 26.87°. 

Index ranges -24<=h<=24, -11<=k<=11, -29<=l<=29 

Reflections collected 25028 

Independent reflections 8457 [R(int) = 0.0365] 

Completeness to theta = 26.87° 92.3 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 8457 / 0 / 625 

Goodness-of-fit on F2 0.983 

Final R indices [I>2sigma(I)] R1 = 0.0611, wR2 = 0.1676 
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R indices (all data) R1 = 0.0777, wR2 = 0.1824 

Largest diff. peak and hole 0.504 and -0.450 e.Å-3 

 

Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 11. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
Cu(1) 7300(1) 7768(1) 8124(1) 35(1) 
O(40) 7228(1) 5533(2) 7750(1) 52(1) 
N(1) 7968(1) 7118(2) 8751(1) 35(1) 
C(1) 8451(1) 8021(3) 8951(1) 41(1) 
C(2) 8878(1) 7661(3) 9408(1) 43(1) 
C(3) 7915(1) 5826(3) 8994(1) 40(1) 
C(4) 8331(1) 5397(3) 9450(1) 42(1) 
C(5) 8815(1) 6342(3) 9669(1) 37(1) 
C(6) 9251(1) 5912(3) 10176(1) 41(1) 
O(1) 9318(1) 4696(2) 10337(1) 59(1) 
O(2) 9544(1) 7042(2) 10425(1) 48(1) 
C(7) 9986(1) 6760(4) 10926(1) 54(1) 
C(8) 10216(1) 8178(4) 11152(1) 54(1) 
O(3) 9640(1) 8830(2) 11425(1) 48(1) 
C(9) 9751(1) 10118(3) 11649(1) 47(1) 
O(4) 10259(1) 10789(3) 11597(1) 78(1) 
C(10) 9156(1) 10614(3) 11989(1) 40(1) 
C(11) 8666(1) 9676(3) 12166(1) 44(1) 
C(12) 8138(1) 10198(3) 12487(1) 42(1) 
C(13) 9114(1) 12032(3) 12148(1) 49(1) 
C(14) 8579(1) 12473(3) 12473(1) 45(1) 
N(2) 8089(1) 11574(2) 12637(1) 37(1) 
N(3) 6511(1) 7470(2) 8670(1) 36(1) 
C(15) 6563(1) 7883(3) 9221(1) 40(1) 
C(16) 6053(1) 7665(3) 9606(1) 41(1) 
C(17) 5936(1) 6816(3) 8490(1) 40(1) 
C(18) 5402(1) 6569(3) 8850(1) 41(1) 
C(19) 5460(1) 6987(2) 9419(1) 36(1) 
C(20) 4873(1) 6765(3) 9804(1) 40(1) 
O(5) 4323(1) 6361(3) 9635(1) 65(1) 
O(6) 5038(1) 7048(2) 10349(1) 45(1) 
C(21) 4490(1) 7115(3) 10749(1) 51(1) 
C(22) 4342(1) 8650(3) 10886(1) 49(1) 
O(7) 4832(1) 9197(2) 11311(1) 49(1) 
C(23) 5364(1) 9932(3) 11125(1) 41(1) 
O(8) 5473(1) 10196(2) 10631(1) 53(1) 
C(24) 5806(1) 10444(3) 11620(1) 37(1) 
C(25) 5816(1) 9782(3) 12151(1) 42(1) 
C(26) 6246(1) 10323(3) 12582(1) 41(1) 
C(27) 6225(1) 11614(3) 11535(1) 46(1) 
C(28) 6636(1) 12086(3) 11983(1) 45(1) 
N(4) 6647(1) 11462(2) 12503(1) 37(1) 
N(5) 2472(1) 8472(3) 1302(1) 54(1) 
O(9) 2751(1) 9661(2) 1370(1) 52(1) 
O(10) 1844(1) 8368(3) 1303(1) 79(1) 
O(11A) 2834(2) 7378(5) 1294(3) 123(2) 
O(11B) 2778(5) 7492(8) 1100(5) 76(3) 
N(6) 5479(3) 4147(6) 7442(2) 56(1) 
O(12A) 5014(4) 3299(10) 7641(5) 103(5) 
O(12B) 4987(6) 3381(14) 7216(5) 115(4) 
O(13) 6020(3) 3666(5) 7752(2) 81(2) 
O(14A) 5694(11) 5212(17) 7256(6) 154(5) 
O(14B) 5423(5) 5388(8) 7301(4) 116(3) 
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O(600) 6066(6) 4489(15) 7268(5) 360(6) 
N(7) 10000 15789(6) 12500 103(2) 
O(15) 10000 17045(8) 12500 164(3) 
O(16) 10391(3) 15103(6) 12174(2) 77(2) 
O(700) 617(4) 5588(10) 2735(4) 156(3) 
O(17) 3345(3) 7037(8) 3738(3) 200(3) 
C(29) 2742(3) 7542(9) 3496(3) 149(3) 
C(30) 2189(4) 6766(11) 3750(4) 192(4) 
C(31) 2447(5) 5994(12) 4158(5) 289(5) 
C(32) 3140(5) 5840(8) 4080(4) 238(4) 
O(18) 2261(3) 9936(8) 4870(3) 218(3) 
C(33) 1618(4) 10694(13) 4618(4) 230(5) 
C(34) 1884(5) 11846(10) 4275(4) 207(4) 
C(35) 2495(4) 12228(8) 4534(5) 176(4) 
C(36) 2771(4) 10962(11) 4784(3) 178(3) 
O(19) 1715(1) 6310(3) 2178(1) 87(1) 
_______________________________________________________________________________________ 
 
Anisotropic displacement parameters (Å2x 103) for 11.  The anisotropic displacement factor exponent takes 

the form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
Cu(1) 28(1)  42(1) 34(1)  6(1) 0(1)  3(1) 
O(40) 46(1)  41(1) 69(1)  -7(1) -13(1)  9(1) 
N(1) 29(1)  37(1) 40(1)  7(1) -1(1)  0(1) 
C(1) 39(1)  39(1) 45(1)  11(1) -4(1)  -6(1) 
C(2) 36(1)  43(1) 51(1)  3(1) -5(1)  -7(1) 
C(3) 37(1)  39(1) 44(1)  4(1) -5(1)  -1(1) 
C(4) 46(1)  37(1) 45(1)  7(1) -3(1)  1(1) 
C(5) 33(1)  41(1) 38(1)  2(1) 0(1)  8(1) 
C(6) 38(1)  45(1) 40(1)  2(1) 0(1)  11(1) 
O(1) 65(1)  54(1) 57(1)  9(1) -16(1)  7(1) 
O(2) 51(1)  51(1) 42(1)  -6(1) -13(1)  15(1) 
C(7) 48(1)  70(2) 43(1)  -10(1) -13(1)  27(1) 
C(8) 30(1)  82(2) 50(1)  -19(1) -3(1)  12(1) 
O(3) 29(1)  61(1) 53(1)  -19(1) 4(1)  4(1) 
C(9) 37(1)  60(2) 45(1)  -11(1) 6(1)  -4(1) 
O(4) 48(1)  89(2) 99(2)  -35(1) 33(1)  -25(1) 
C(10) 32(1)  52(1) 38(1)  -8(1) 5(1)  -5(1) 
C(11) 44(1)  40(1) 47(1)  -7(1) 9(1)  -4(1) 
C(12) 39(1)  39(1) 49(1)  -6(1) 13(1)  -8(1) 
C(13) 39(1)  48(2) 59(1)  -10(1) 13(1)  -14(1) 
C(14) 42(1)  40(1) 55(1)  -8(1) 11(1)  -11(1) 
N(2) 33(1)  41(1) 37(1)  -8(1) 4(1)  -5(1) 
N(3) 32(1)  37(1) 40(1)  2(1) 0(1)  1(1) 
C(15) 33(1)  44(1) 43(1)  -5(1) 1(1)  -7(1) 
C(16) 41(1)  42(1) 39(1)  -4(1) 1(1)  -3(1) 
C(17) 35(1)  45(1) 41(1)  -3(1) -2(1)  -2(1) 
C(18) 35(1)  43(1) 45(1)  -1(1) -3(1)  -4(1) 
C(19) 35(1)  30(1) 44(1)  2(1) 4(1)  -2(1) 
C(20) 43(1)  31(1) 44(1)  2(1) 3(1)  -5(1) 
O(5) 47(1)  92(2) 55(1)  -4(1) 8(1)  -32(1) 
O(6) 39(1)  49(1) 46(1)  -7(1) 9(1)  -4(1) 
C(21) 48(1)  59(2) 49(1)  -9(1) 15(1)  -16(1) 
C(22) 29(1)  64(2) 54(1)  -21(1) 1(1)  -4(1) 
O(7) 35(1)  66(1) 45(1)  -16(1) 1(1)  -11(1) 
C(23) 36(1)  40(1) 46(1)  -9(1) -2(1)  -1(1) 
O(8) 57(1)  63(1) 39(1)  -1(1) -8(1)  -15(1) 
C(24) 30(1)  42(1) 39(1)  -6(1) -1(1)  -1(1) 
C(25) 37(1)  44(1) 43(1)  0(1) 2(1)  -10(1) 
C(26) 37(1)  47(1) 40(1)  3(1) -2(1)  -11(1) 
C(27) 51(1)  49(1) 37(1)  3(1) -3(1)  -13(1) 
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C(28) 47(1)  48(1) 40(1)  3(1) -4(1)  -16(1) 
N(4) 31(1)  44(1) 36(1)  -4(1) 0(1)  -5(1) 
N(5) 38(1)  51(1) 73(1)  13(1) 5(1)  -6(1) 
O(9) 46(1)  50(1) 60(1)  -5(1) 6(1)  -8(1) 
O(10) 32(1)  82(2) 122(2)  29(1) -2(1)  -10(1) 
O(11A) 60(2)  58(2) 254(6)  52(3) 27(3)  12(2) 
O(11B) 63(5)  17(3) 150(8)  -27(4) 29(5)  -5(3) 
N(6) 53(3)  55(3) 59(3)  -10(2) -10(2)  -3(2) 
O(12A) 59(4)  53(4) 190(14)  35(5) -107(7)  -29(4) 
O(12B) 85(6)  142(8) 117(6)  -53(6) -9(6)  -1(6) 
O(13) 112(4)  48(2) 84(3)  12(2) -8(3)  -6(3) 
O(14A) 318(14)  112(8) 27(6)  35(5) -73(8)  -207(8) 
O(14B) 177(7)  59(4) 109(6)  9(4) -70(5)  45(5) 
N(7) 57(2)  87(4) 167(5)  0 39(3)  0 
O(15) 176(6)  123(5) 195(7)  0 33(5)  0 
O(16) 67(3)  67(3) 96(3)  0(3) 17(2)  21(2) 
O(700) 117(5)  147(7) 207(7)  65(5) 93(5)  35(5) 
O(17) 117(3)  242(6) 238(6)  34(5) -25(4)  24(4) 
C(29) 106(4)  197(7) 143(5)  50(5) 0(4)  22(4) 
C(30) 100(4)  267(9) 209(7)  106(7) 12(5)  18(5) 
C(31) 219(9)  323(9) 328(9)  240(7) 58(8)  82(8) 
C(32) 324(9)  106(5) 273(9)  10(5) -162(7)  75(6) 
O(18) 204(5)  255(6) 191(5)  70(5) -46(4)  -70(5) 
C(33) 108(4)  359(14) 221(9)  35(9) -22(5)  -98(6) 
C(34) 256(9)  141(6) 216(8)  -4(6) -118(7)  -29(7) 
C(35) 117(5)  122(5) 289(11)  -21(6) 29(6)  -20(4) 
C(36) 135(5)  250(9) 150(5)  58(6) 2(4)  -63(6) 
O(19) 62(1)  81(2) 120(2)  27(2) 18(1)  18(1) 
_______________________________________________________________________________________ 
 
Bond lengths [Å] and angles [°] for 11. 
_______________________________________________________________________________________ 
Cu(1)-N(1)  2.0261(19) 
Cu(1)-N(4)#1  2.0356(19) 
Cu(1)-N(2)#1  2.0401(19) 
Cu(1)-N(3)  2.051(2) 
Cu(1)-O(40)  2.261(2) 
Cu(1)-O(9)#2  2.673(2) 
Cu(1)-Cu(1)#3  12.3611(7) 
O(40)-H(40A)  0.66(3) 
O(40)-H(40B)  0.87(4) 
N(1)-C(3)  1.336(3) 
N(1)-C(1)  1.341(3) 
C(1)-C(2)  1.377(3) 
C(1)-H(1)  0.9300 
C(2)-C(5)  1.379(4) 
C(2)-H(2)  0.9300 
C(3)-C(4)  1.382(3) 
C(3)-H(3)  0.9300 
C(4)-C(5)  1.382(4) 
C(4)-H(4)  0.9300 
C(5)-C(6)  1.494(3) 
C(6)-O(1)  1.199(3) 
C(6)-O(2)  1.326(3) 
O(2)-C(7)  1.456(3) 
C(7)-C(8)  1.489(4) 
C(7)-H(7A)  0.9700 
C(7)-H(7B)  0.9700 
C(8)-O(3)  1.447(3) 
C(8)-H(8A)  0.9700 
C(8)-H(8B)  0.9700 
O(3)-C(9)  1.324(3) 
C(9)-O(4)  1.186(3) 
C(9)-C(10)  1.502(3) 

C(20)-O(5)  1.200(3) 
C(20)-O(6)  1.326(3) 
O(6)-C(21)  1.444(3) 
C(21)-C(22)  1.496(4) 
C(21)-H(21A)  0.9700 
C(21)-H(21B)  0.9700 
C(22)-O(7)  1.453(3) 
C(22)-H(22A)  0.9700 
C(22)-H(22B)  0.9700 
O(7)-C(23)  1.332(3) 
C(23)-O(8)  1.200(3) 
C(23)-C(24)  1.500(3) 
C(24)-C(27)  1.383(4) 
C(24)-C(25)  1.383(3) 
C(25)-C(26)  1.387(3) 
C(25)-H(25)  0.9300 
C(26)-N(4)  1.337(3) 
C(26)-H(26)  0.9300 
C(27)-C(28)  1.375(4) 
C(27)-H(27)  0.9300 
C(28)-N(4)  1.342(3) 
C(28)-H(28)  0.9300 
N(4)-Cu(1)#3  2.0356(19) 
N(5)-O(11B)  1.196(9) 
N(5)-O(10)  1.237(3) 
N(5)-O(11A)  1.242(5) 
N(5)-O(9)  1.245(3) 
O(13)-O(600)  1.369(13) 
O(14B)-O(14B)#4  0.000(19) 
O(14B)-O(600)#4  1.520(15) 
O(14B)-O(600)  1.520(15) 
O(600)-O(600)#4  0.00(4) 
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C(10)-C(11)  1.372(4) 
C(10)-C(13)  1.375(4) 
C(11)-C(12)  1.383(3) 
C(11)-H(11)  0.9300 
C(12)-N(2)  1.333(3) 
C(12)-H(12)  0.9300 
C(13)-C(14)  1.375(4) 
C(13)-H(13)  0.9300 
C(14)-N(2)  1.339(3) 
C(14)-H(14)  0.9300 
N(2)-Cu(1)#3  2.0401(19) 
N(3)-C(17)  1.340(3) 
N(3)-C(15)  1.341(3) 
C(15)-C(16)  1.378(3) 
C(15)-H(15)  0.9300 
C(16)-C(19)  1.383(3) 
C(16)-H(16)  0.9300 
N(6)-O(14A)  1.166(15) 
N(6)-O(14B)#4  1.206(9) 
N(6)-O(14B)  1.206(9) 
N(6)-O(12A)#5  1.261(10) 
N(6)-O(600)#4  1.273(13) 
N(6)-O(600)  1.273(13) 
N(6)-O(12A)  1.303(11) 
N(6)-O(12B)  1.300(13) 
N(6)-O(13)#4  1.344(7) 
N(6)-O(13)  1.344(7) 
N(6)-O(12B)#5  1.424(12) 
O(12A)-O(12A)#5  0.66(2) 
O(12A)-N(6)#5  1.261(10) 
O(12A)-O(600)#5  2.409(16) 
O(12B)-O(12B)#5  1.32(2) 
O(12B)-N(6)#5  1.424(12) 
O(12B)-O(600)#5  2.634(17) 
O(13)-O(13)#4  0.000(14) 
O(13)-O(600)#4  1.369(13) 
C(17)-C(18)  1.379(3) 
C(17)-H(17)  0.9300 
C(18)-C(19)  1.384(3) 
C(18)-H(18)  0.9300 
C(19)-C(20)  1.495(3) 

O(600)-O(13)#4  1.369(13) 
O(600)-O(14B)#4  1.520(15) 
N(7)-O(15)  1.170(9) 
N(7)-O(16)  1.269(6) 
N(7)-O(16)#6  1.269(6) 
N(7)-O(700)#7  1.329(9) 
N(7)-O(700)#8  1.329(9) 
O(16)-O(700)#7  1.440(11) 
O(700)-O(700)#4  0.000(18) 
O(700)-N(7)#9  1.329(9) 
O(700)-O(16)#9  1.440(11) 
O(700)-O(700)#10  2.631(17) 
O(17)-C(29)  1.380(8) 
O(17)-C(32)  1.435(11) 
C(29)-C(30)  1.446(10) 
C(29)-H(29A)  0.9700 
C(29)-H(29B)  0.9700 
C(30)-C(31)  1.284(11) 
C(30)-H(30A)  0.9700 
C(30)-H(30B)  0.9700 
C(31)-C(32)  1.385(13) 
C(31)-H(31A)  0.9700 
C(31)-H(31B)  0.9700 
C(32)-H(32A)  0.9700 
C(32)-H(32B)  0.9700 
O(18)-C(36)  1.404(10) 
O(18)-C(33)  1.548(11) 
C(33)-C(34)  1.444(13) 
C(33)-H(33A)  0.9700 
C(33)-H(33B)  0.9700 
C(34)-C(35)  1.375(11) 
C(34)-H(34A)  0.9700 
C(34)-H(34B)  0.9700 
C(35)-C(36)  1.416(11) 
C(35)-H(35A)  0.9700 
C(35)-H(35B)  0.9700 
C(36)-H(36A)  0.9700 
C(36)-H(36B)  0.9700 
O(19)-H(19A)  0.93(3) 
O(19)-H(19B)  0.83(5) 

 
N(1)-Cu(1)-N(4)#1 176.76(9) 
N(1)-Cu(1)-N(2)#1 90.24(8) 
N(4)#1-Cu(1)-N(2)#1 88.42(8) 
N(1)-Cu(1)-N(3) 89.92(8) 
N(4)#1-Cu(1)-N(3) 90.88(8) 
N(2)#1-Cu(1)-N(3) 169.86(8) 
N(1)-Cu(1)-O(40) 91.96(8) 
N(4)#1-Cu(1)-O(40) 91.11(8) 
N(2)#1-Cu(1)-O(40) 95.91(8) 
N(3)-Cu(1)-O(40) 94.21(8) 
N(1)-Cu(1)-O(9)#2 89.00(7) 
N(4)#1-Cu(1)-O(9)#2 88.07(7) 
N(2)#1-Cu(1)-O(9)#2 90.86(7) 
N(3)-Cu(1)-O(9)#2 79.01(7) 
O(40)-Cu(1)-O(9)#2 173.15(7) 
N(1)-Cu(1)-Cu(1)#3 55.95(6) 
N(4)#1-Cu(1)-Cu(1)#3 122.22(6) 
N(2)#1-Cu(1)-Cu(1)#3 116.29(6) 
N(3)-Cu(1)-Cu(1)#3 56.08(6) 
O(40)-Cu(1)-Cu(1)#3 132.16(5) 
O(9)#2-Cu(1)-Cu(1)#3 44.13(4) 
Cu(1)-O(40)-H(40A) 129(3) 

O(14A)-N(6)-O(600) 47.9(13) 
O(14B)#4-N(6)-O(600) 75.5(8) 
O(14B)-N(6)-O(600) 75.5(8) 
O(12A)#5-N(6)-O(600) 143.9(9) 
O(600)#4-N(6)-O(600) 0.0(12) 
O(14A)-N(6)-O(12A) 155.8(13) 
O(14B)#4-N(6)-O(12A) 128.2(8) 
O(14B)-N(6)-O(12A) 128.2(8) 
O(12A)#5-N(6)-O(12A) 29.7(10) 
O(600)#4-N(6)-O(12A) 156.3(9) 
O(600)-N(6)-O(12A) 156.3(9) 
O(14A)-N(6)-O(12B) 126.1(10) 
O(14B)#4-N(6)-O(12B) 110.8(8) 
O(14B)-N(6)-O(12B) 110.8(8) 
O(12A)#5-N(6)-O(12B) 15.3(8) 
O(600)#4-N(6)-O(12B) 132.7(9) 
O(600)-N(6)-O(12B) 132.7(9) 
O(12A)-N(6)-O(12B) 44.9(6) 
O(14A)-N(6)-O(13)#4 101.3(10) 
O(14B)#4-N(6)-O(13)#4 122.0(6) 
O(14B)-N(6)-O(13)#4 122.0(6) 
O(12A)#5-N(6)-O(13)#4 117.7(6) 
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Cu(1)-O(40)-H(40B) 124(3) 
H(40A)-O(40)-H(40B) 105(4) 
C(3)-N(1)-C(1) 118.8(2) 
C(3)-N(1)-Cu(1) 121.18(16) 
C(1)-N(1)-Cu(1) 119.93(16) 
N(1)-C(1)-C(2) 121.6(2) 
N(1)-C(1)-H(1) 119.2 
C(2)-C(1)-H(1) 119.2 
C(1)-C(2)-C(5) 119.8(2) 
C(1)-C(2)-H(2) 120.1 
C(5)-C(2)-H(2) 120.1 
N(1)-C(3)-C(4) 122.3(2) 
N(1)-C(3)-H(3) 118.8 
C(4)-C(3)-H(3) 118.8 
C(5)-C(4)-C(3) 119.0(2) 
C(5)-C(4)-H(4) 120.5 
C(3)-C(4)-H(4) 120.5 
C(2)-C(5)-C(4) 118.4(2) 
C(2)-C(5)-C(6) 122.2(2) 
C(4)-C(5)-C(6) 119.5(2) 
O(1)-C(6)-O(2) 124.8(2) 
O(1)-C(6)-C(5) 123.8(2) 
O(2)-C(6)-C(5) 111.4(2) 
C(6)-O(2)-C(7) 116.6(2) 
O(2)-C(7)-C(8) 106.9(2) 
O(2)-C(7)-H(7A) 110.3 
C(8)-C(7)-H(7A) 110.3 
O(2)-C(7)-H(7B) 110.3 
C(8)-C(7)-H(7B) 110.3 
H(7A)-C(7)-H(7B) 108.6 
O(3)-C(8)-C(7) 107.2(2) 
O(3)-C(8)-H(8A) 110.3 
C(7)-C(8)-H(8A) 110.3 
O(3)-C(8)-H(8B) 110.3 
C(7)-C(8)-H(8B) 110.3 
H(8A)-C(8)-H(8B) 108.5 
C(9)-O(3)-C(8) 115.6(2) 
O(4)-C(9)-O(3) 124.5(3) 
O(4)-C(9)-C(10) 124.1(3) 
O(3)-C(9)-C(10) 111.4(2) 
C(11)-C(10)-C(13) 118.9(2) 
C(11)-C(10)-C(9) 121.6(2) 
C(13)-C(10)-C(9) 119.4(2) 
C(10)-C(11)-C(12) 118.7(2) 
C(10)-C(11)-H(11) 120.6 
C(12)-C(11)-H(11) 120.7 
N(2)-C(12)-C(11) 122.8(2) 
N(2)-C(12)-H(12) 118.6 
C(11)-C(12)-H(12) 118.6 
C(14)-C(13)-C(10) 119.2(2) 
C(14)-C(13)-H(13) 120.4 
C(10)-C(13)-H(13) 120.4 
N(2)-C(14)-C(13) 122.4(2) 
N(2)-C(14)-H(14) 118.8 
C(13)-C(14)-H(14) 118.8 
C(12)-N(2)-C(14) 118.0(2) 
C(12)-N(2)-Cu(1)#3 119.77(16) 
C(14)-N(2)-Cu(1)#3 122.19(17) 
C(17)-N(3)-C(15) 118.0(2) 
C(17)-N(3)-Cu(1) 120.89(16) 
C(15)-N(3)-Cu(1) 121.04(16) 
N(3)-C(15)-C(16) 122.9(2) 
N(3)-C(15)-H(15) 118.6 
C(16)-C(15)-H(15) 118.6 

O(600)#4-N(6)-O(13)#4 63.0(7) 
O(600)-N(6)-O(13)#4 63.0(7) 
O(12A)-N(6)-O(13)#4 99.1(6) 
O(12B)-N(6)-O(13)#4 127.0(7) 
O(14A)-N(6)-O(13) 101.3(10) 
O(14B)#4-N(6)-O(13) 122.0(6) 
O(14B)-N(6)-O(13) 122.0(6) 
O(12A)#5-N(6)-O(13) 117.7(6) 
O(600)#4-N(6)-O(13) 63.0(7) 
O(600)-N(6)-O(13) 63.0(7) 
O(12A)-N(6)-O(13) 99.1(6) 
O(12B)-N(6)-O(13) 127.0(7) 
O(13)#4-N(6)-O(13) 0.0(5) 
O(14A)-N(6)-O(12B)#5 151.5(12) 
O(14B)#4-N(6)-O(12B)#5 125.2(8) 
O(14B)-N(6)-O(12B)#5 125.2(8) 
O(12A)#5-N(6)-O(12B)#5 42.9(7) 
O(600)#4-N(6)-O(12B)#5 155.1(9) 
O(600)-N(6)-O(12B)#5 155.1(9) 
O(12A)-N(6)-O(12B)#5 13.5(8) 
O(12B)-N(6)-O(12B)#5 57.9(9) 
O(13)#4-N(6)-O(12B)#5 92.5(6) 
O(13)-N(6)-O(12B)#5 92.5(6) 
O(12A)#5-O(12A)-N(6)#5 78.7(10) 
O(12A)#5-O(12A)-N(6) 71.6(13) 
N(6)#5-O(12A)-N(6) 96.3(8) 
O(12A)#5-O(12A)-O(600)#5 92.2(13) 
N(6)#5-O(12A)-O(600)#5 18.2(5) 
N(6)-O(12A)-O(600)#5 112.4(7) 
N(6)-O(12B)-O(12B)#5 65.7(9) 
N(6)-O(12B)-N(6)#5 88.9(8) 
O(12B)#5-O(12B)-N(6)#5 56.3(7) 
N(6)-O(12B)-O(600)#5 100.6(7) 
O(12B)#5-O(12B)-O(600)#5 63.3(9) 
N(6)#5-O(12B)-O(600)#5 11.8(4) 
O(13)#4-O(13)-N(6) 0(10) 
O(13)#4-O(13)-O(600)#4 0(10) 
N(6)-O(13)-O(600)#4 56.0(6) 
O(13)#4-O(13)-O(600) 0(10) 
N(6)-O(13)-O(600) 56.0(6) 
O(600)#4-O(13)-O(600) 0.0(6) 
O(14B)#4-O(14B)-N(6) 0(10) 
O(14B)#4-O(14B)-O(600)#4 0(10) 
N(6)-O(14B)-O(600)#4 54.2(6) 
O(14B)#4-O(14B)-O(600) 0(10) 
N(6)-O(14B)-O(600) 54.2(6) 
O(600)#4-O(14B)-O(600) 0.0(13) 
O(600)#4-O(600)-N(6) 0(10) 
O(600)#4-O(600)-O(13) 0(10) 
N(6)-O(600)-O(13) 61.0(7) 
O(600)#4-O(600)-O(13)#4 0(10) 
N(6)-O(600)-O(13)#4 61.0(7) 
O(13)-O(600)-O(13)#4 0.0(6) 
O(600)#4-O(600)-O(14B) 0(10) 
N(6)-O(600)-O(14B) 50.2(6) 
O(13)-O(600)-O(14B) 101.1(9) 
O(13)#4-O(600)-O(14B) 101.1(9) 
O(600)#4-O(600)-O(14B)#4 0(10) 
N(6)-O(600)-O(14B)#4 50.2(6) 
O(13)-O(600)-O(14B)#4 101.1(9) 
O(13)#4-O(600)-O(14B)#4 101.1(9) 
O(14B)-O(600)-O(14B)#4 0.0(8) 
O(15)-N(7)-O(16) 120.3(3) 
O(15)-N(7)-O(16)#6 120.3(3) 
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C(15)-C(16)-C(19) 118.9(2) 
C(15)-C(16)-H(16) 120.5 
C(19)-C(16)-H(16) 120.5 
N(3)-C(17)-C(18) 122.3(2) 
N(3)-C(17)-H(17) 118.8 
C(18)-C(17)-H(17) 118.8 
C(17)-C(18)-C(19) 119.4(2) 
C(17)-C(18)-H(18) 120.3 
C(19)-C(18)-H(18) 120.3 
C(18)-C(19)-C(16) 118.4(2) 
C(18)-C(19)-C(20) 119.4(2) 
C(16)-C(19)-C(20) 122.1(2) 
O(5)-C(20)-O(6) 124.7(2) 
O(5)-C(20)-C(19) 123.3(2) 
O(6)-C(20)-C(19) 111.9(2) 
C(20)-O(6)-C(21) 117.2(2) 
O(6)-C(21)-C(22) 109.4(2) 
O(6)-C(21)-H(21A) 109.8 
C(22)-C(21)-H(21A) 109.8 
O(6)-C(21)-H(21B) 109.8 
C(22)-C(21)-H(21B) 109.8 
H(21A)-C(21)-H(21B) 108.2 
O(7)-C(22)-C(21) 110.6(2) 
O(7)-C(22)-H(22A) 109.5 
C(21)-C(22)-H(22A) 109.5 
O(7)-C(22)-H(22B) 109.5 
C(21)-C(22)-H(22B) 109.5 
H(22A)-C(22)-H(22B) 108.1 
C(23)-O(7)-C(22) 118.0(2) 
O(8)-C(23)-O(7) 125.4(2) 
O(8)-C(23)-C(24) 123.7(2) 
O(7)-C(23)-C(24) 110.8(2) 
C(27)-C(24)-C(25) 119.1(2) 
C(27)-C(24)-C(23) 118.3(2) 
C(25)-C(24)-C(23) 122.6(2) 
C(24)-C(25)-C(26) 118.5(2) 
C(24)-C(25)-H(25) 120.7 
C(26)-C(25)-H(25) 120.7 
N(4)-C(26)-C(25) 122.5(2) 
N(4)-C(26)-H(26) 118.7 
C(25)-C(26)-H(26) 118.7 
C(28)-C(27)-C(24) 118.8(2) 
C(28)-C(27)-H(27) 120.6 
C(24)-C(27)-H(27) 120.6 
N(4)-C(28)-C(27) 122.7(2) 
N(4)-C(28)-H(28) 118.6 
C(27)-C(28)-H(28) 118.6 
C(26)-N(4)-C(28) 118.3(2) 
C(26)-N(4)-Cu(1)#3 122.93(16) 
C(28)-N(4)-Cu(1)#3 118.77(17) 
O(11B)-N(5)-O(10) 116.9(5) 
O(11B)-N(5)-O(11A) 22.3(7) 
O(10)-N(5)-O(11A) 120.4(3) 
O(11B)-N(5)-O(9) 120.3(5) 
O(10)-N(5)-O(9) 120.3(3) 
O(11A)-N(5)-O(9) 118.8(3) 
O(14A)-N(6)-O(14B)#4 27.7(12) 
O(14A)-N(6)-O(14B) 27.7(12) 
O(14B)#4-N(6)-O(14B) 0.0(11) 
O(14A)-N(6)-O(12A)#5 139.5(10) 
O(14B)#4-N(6)-O(12A)#5 119.6(7) 
O(14B)-N(6)-O(12A)#5 119.6(7) 
O(14A)-N(6)-O(600)#4 47.9(13) 
O(14B)#4-N(6)-O(600)#4 75.5(8) 

O(16)-N(7)-O(16)#6 119.5(7) 
O(15)-N(7)-O(700)#7 98.1(5) 
O(16)-N(7)-O(700)#7 67.3(5) 
O(16)#6-N(7)-O(700)#7 104.1(5) 
O(15)-N(7)-O(700)#8 98.1(5) 
O(16)-N(7)-O(700)#8 104.1(5) 
O(16)#6-N(7)-O(700)#8 67.3(5) 
O(700)#7-N(7)-O(700)#8 163.8(10) 
N(7)-O(16)-O(700)#7 58.3(4) 
O(700)#4-O(700)-N(7)#9 0(10) 
O(700)#4-O(700)-O(16)#9 0(10) 
N(7)#9-O(700)-O(16)#9 54.4(4) 
O(700)#4-O(700)-O(700)#10 0(10) 
N(7)#9-O(700)-O(700)#10 8.1(5) 
O(16)#9-O(700)-O(700)#10 50.7(4) 
C(29)-O(17)-C(32) 103.9(6) 
O(17)-C(29)-C(30) 108.0(6) 
O(17)-C(29)-H(29A) 110.1 
C(30)-C(29)-H(29A) 110.1 
O(17)-C(29)-H(29B) 110.1 
C(30)-C(29)-H(29B) 110.1 
H(29A)-C(29)-H(29B) 108.4 
C(31)-C(30)-C(29) 107.3(7) 
C(31)-C(30)-H(30A) 110.3 
C(29)-C(30)-H(30A) 110.3 
C(31)-C(30)-H(30B) 110.2 
C(29)-C(30)-H(30B) 110.3 
H(30A)-C(30)-H(30B) 108.5 
C(30)-C(31)-C(32) 109.3(9) 
C(30)-C(31)-H(31A) 109.9 
C(32)-C(31)-H(31A) 109.9 
C(30)-C(31)-H(31B) 109.8 
C(32)-C(31)-H(31B) 109.8 
H(31A)-C(31)-H(31B) 108.3 
C(31)-C(32)-O(17) 106.5(6) 
C(31)-C(32)-H(32A) 110.4 
O(17)-C(32)-H(32A) 110.4 
C(31)-C(32)-H(32B) 110.5 
O(17)-C(32)-H(32B) 110.4 
H(32A)-C(32)-H(32B) 108.6 
C(36)-O(18)-C(33) 102.2(7) 
C(34)-C(33)-O(18) 104.2(6) 
C(34)-C(33)-H(33A) 110.9 
O(18)-C(33)-H(33A) 110.9 
C(34)-C(33)-H(33B) 110.9 
O(18)-C(33)-H(33B) 110.9 
H(33A)-C(33)-H(33B) 108.9 
C(35)-C(34)-C(33) 105.9(8) 
C(35)-C(34)-H(34A) 110.6 
C(33)-C(34)-H(34A) 110.5 
C(35)-C(34)-H(34B) 110.6 
C(33)-C(34)-H(34B) 110.6 
H(34A)-C(34)-H(34B) 108.7 
C(34)-C(35)-C(36) 106.5(7) 
C(34)-C(35)-H(35A) 110.4 
C(36)-C(35)-H(35A) 110.4 
C(34)-C(35)-H(35B) 110.4 
C(36)-C(35)-H(35B) 110.4 
H(35A)-C(35)-H(35B) 108.6 
O(18)-C(36)-C(35) 111.1(7) 
O(18)-C(36)-H(36A) 109.4 
C(35)-C(36)-H(36A) 109.4 
O(18)-C(36)-H(36B) 109.4 
C(35)-C(36)-H(36B) 109.4 
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O(14B)-N(6)-O(600)#4 75.5(8) 
O(12A)#5-N(6)-O(600)#4 143.9(9) 

H(36A)-C(36)-H(36B) 108.0 
H(19A)-O(19)-H(19B) 94(4) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x,-y+2,z-1/2    #2 -x+1,-y+2,-z+1     
#3 x,-y+2,z+1/2     #4 x,y,z    #5 -x+1,y,-z+3/2    #6 -x+2,y,-z+5/2     #7 x+1,y+1,z+1    #8 -x+1,y+1,-z+3/2     
#9 x-1,y-1,z-1     #10 -x,y,-z+1/2 
 

Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 11. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(40A) 6955(17) 5150(40) 7681(14) 63(10) 
H(40B) 7567(19) 4940(40) 7733(15) 80(11) 
H(1) 8499 8912 8776 49 
H(2) 9208 8307 9540 52 
H(3) 7586 5193 8851 48 
H(4) 8287 4487 9608 51 
H(7A) 10375 6186 10818 65 
H(7B) 9739 6243 11215 65 
H(8A) 10591 8056 11428 65 
H(8B) 10368 8781 10841 65 
H(11) 8688 8707 12071 52 
H(12) 7804 9563 12603 50 
H(13) 9443 12684 12037 58 
H(14) 8557 13430 12584 55 
H(15) 6961 8338 9349 48 
H(16) 6106 7968 9985 49 
H(17) 5895 6518 8109 48 
H(18) 5006 6125 8711 49 
H(21A) 4619 6603 11098 62 
H(21B) 4086 6663 10581 62 
H(22A) 4361 9221 10539 59 
H(22B) 3886 8728 11033 59 
H(25) 5540 8992 12219 50 
H(26) 6257 9877 12939 50 
H(27) 6228 12072 11180 55 
H(28) 6918 12871 11925 54 
H(29A) 2735 7392 3083 179 
H(29B) 2697 8561 3569 179 
H(30A) 1858 7432 3900 230 
H(30B) 1961 6163 3465 230 
H(31A) 2230 5059 4157 347 
H(31B) 2370 6448 4525 347 
H(32A) 3233 4945 3885 285 
H(32B) 3385 5841 4448 285 
H(33A) 1347 10039 4383 276 
H(33B) 1340 11067 4922 276 
H(34A) 1951 11526 3884 248 
H(34B) 1572 12653 4266 248 
H(35A) 2425 12949 4827 211 
H(35B) 2800 12616 4253 211 
H(36A) 3111 10567 4533 214 
H(36B) 2995 11194 5149 214 
H(19A) 1586(17) 5840(40) 1839(15) 58(10) 
H(19B) 1350(30) 6150(60) 2340(20) 124(18) 
_______________________________________________________________________________________ 
 
Torsion angles [°] for 11. 
_______________________________________________________________________________________ 
N(4)#1-Cu(1)-N(1)-C(3) 162.3(13) 
N(2)#1-Cu(1)-N(1)-C(3) -132.17(19) 
N(3)-Cu(1)-N(1)-C(3) 57.97(19) 
O(40)-Cu(1)-N(1)-C(3) -36.24(19) 

O(14B)-N(6)-O(12B)-O(600)#5 -65.3(8) 
O(12A)#5-N(6)-O(12B)-O(600)#5 63(3) 
O(600)#4-N(6)-O(12B)-O(600)#5 -154.5(11) 
O(600)-N(6)-O(12B)-O(600)#5 -154.5(11) 
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O(9)#2-Cu(1)-N(1)-C(3) 136.98(19) 
Cu(1)#3-Cu(1)-N(1)-C(3) 105.71(19) 
N(4)#1-Cu(1)-N(1)-C(1) -13.9(15) 
N(2)#1-Cu(1)-N(1)-C(1) 51.62(19) 
N(3)-Cu(1)-N(1)-C(1) -118.24(19) 
O(40)-Cu(1)-N(1)-C(1) 147.55(19) 
O(9)#2-Cu(1)-N(1)-C(1) -39.23(18) 
Cu(1)#3-Cu(1)-N(1)-C(1) -70.50(18) 
C(3)-N(1)-C(1)-C(2) -1.7(4) 
Cu(1)-N(1)-C(1)-C(2) 174.6(2) 
N(1)-C(1)-C(2)-C(5) 0.3(4) 
C(1)-N(1)-C(3)-C(4) 1.2(4) 
Cu(1)-N(1)-C(3)-C(4) -175.07(19) 
N(1)-C(3)-C(4)-C(5) 0.8(4) 
C(1)-C(2)-C(5)-C(4) 1.7(4) 
C(1)-C(2)-C(5)-C(6) -178.2(2) 
C(3)-C(4)-C(5)-C(2) -2.2(4) 
C(3)-C(4)-C(5)-C(6) 177.7(2) 
C(2)-C(5)-C(6)-O(1) -163.2(3) 
C(4)-C(5)-C(6)-O(1) 16.9(4) 
C(2)-C(5)-C(6)-O(2) 17.3(3) 
C(4)-C(5)-C(6)-O(2) -162.6(2) 
O(1)-C(6)-O(2)-C(7) 0.8(4) 
C(5)-C(6)-O(2)-C(7) -179.8(2) 
C(6)-O(2)-C(7)-C(8) -176.2(2) 
O(2)-C(7)-C(8)-O(3) 73.2(3) 
C(7)-C(8)-O(3)-C(9) -179.4(2) 
C(8)-O(3)-C(9)-O(4) 6.3(4) 
C(8)-O(3)-C(9)-C(10) -172.4(2) 
O(4)-C(9)-C(10)-C(11) -162.2(3) 
O(3)-C(9)-C(10)-C(11) 16.5(3) 
O(4)-C(9)-C(10)-C(13) 15.2(4) 
O(3)-C(9)-C(10)-C(13) -166.1(2) 
C(13)-C(10)-C(11)-C(12) 1.4(4) 
C(9)-C(10)-C(11)-C(12) 178.8(2) 
C(10)-C(11)-C(12)-N(2) -0.7(4) 
C(11)-C(10)-C(13)-C(14) -0.7(4) 
C(9)-C(10)-C(13)-C(14) -178.2(2) 
C(10)-C(13)-C(14)-N(2) -0.8(4) 
C(11)-C(12)-N(2)-C(14) -0.9(4) 
C(11)-C(12)-N(2)-Cu(1)#3 -178.85(19) 
C(13)-C(14)-N(2)-C(12) 1.6(4) 
C(13)-C(14)-N(2)-Cu(1)#3 179.6(2) 
N(1)-Cu(1)-N(3)-C(17) -135.48(19) 
N(4)#1-Cu(1)-N(3)-C(17) 47.7(2) 
N(2)#1-Cu(1)-N(3)-C(17) 133.6(4) 
O(40)-Cu(1)-N(3)-C(17) -43.52(19) 
O(9)#2-Cu(1)-N(3)-C(17) 135.5(2) 
Cu(1)#3-Cu(1)-N(3)-C(17) 176.9(2) 
N(1)-Cu(1)-N(3)-C(15) 42.4(2) 
N(4)#1-Cu(1)-N(3)-C(15) -134.4(2) 
N(2)#1-Cu(1)-N(3)-C(15) -48.5(5) 
O(40)-Cu(1)-N(3)-C(15) 134.39(19) 
O(9)#2-Cu(1)-N(3)-C(15) -46.58(19) 
Cu(1)#3-Cu(1)-N(3)-C(15) -5.21(16) 
C(17)-N(3)-C(15)-C(16) -0.1(4) 
Cu(1)-N(3)-C(15)-C(16) -178.0(2) 
N(3)-C(15)-C(16)-C(19) 0.1(4) 
C(15)-N(3)-C(17)-C(18) 0.5(4) 
Cu(1)-N(3)-C(17)-C(18) 178.4(2) 
N(3)-C(17)-C(18)-C(19) -1.0(4) 
C(17)-C(18)-C(19)-C(16) 1.0(4) 
C(17)-C(18)-C(19)-C(20) 177.9(2) 
C(15)-C(16)-C(19)-C(18) -0.6(4) 

O(12A)-N(6)-O(12B)-O(600)#5 58.5(8) 
O(13)#4-N(6)-O(12B)-O(600)#5 120.0(7) 
O(13)-N(6)-O(12B)-O(600)#5 120.0(7) 
O(12B)#5-N(6)-O(12B)-O(600)#5 54.1(8) 
O(14A)-N(6)-O(13)-O(13)#4 0.0(8) 
O(14B)#4-N(6)-O(13)-O(13)#4 0.0(8) 
O(14B)-N(6)-O(13)-O(13)#4 0.0(8) 
O(12A)#5-N(6)-O(13)-O(13)#4 0.0(6) 
O(600)#4-N(6)-O(13)-O(13)#4 0.0(6) 
O(600)-N(6)-O(13)-O(13)#4 0.0(6) 
O(12A)-N(6)-O(13)-O(13)#4 0.0(7) 
O(12B)-N(6)-O(13)-O(13)#4 0.0(6) 
O(12B)#5-N(6)-O(13)-O(13)#4 0.0(7) 
O(14A)-N(6)-O(13)-O(600)#4 -29.7(11) 
O(14B)#4-N(6)-O(13)-O(600)#4 -49.5(10) 
O(14B)-N(6)-O(13)-O(600)#4 -49.5(10) 
O(12A)#5-N(6)-O(13)-O(600)#4 139.1(11) 
O(600)-N(6)-O(13)-O(600)#4 0.000(4) 
O(12A)-N(6)-O(13)-O(600)#4 163.6(10) 
O(12B)-N(6)-O(13)-O(600)#4 124.7(11) 
O(13)#4-N(6)-O(13)-O(600)#4 0(100) 
O(12B)#5-N(6)-O(13)-O(600)#4 175.4(10) 
O(14A)-N(6)-O(13)-O(600) -29.7(11) 
O(14B)#4-N(6)-O(13)-O(600) -49.5(10) 
O(14B)-N(6)-O(13)-O(600) -49.5(10) 
O(12A)#5-N(6)-O(13)-O(600) 139.1(11) 
O(600)#4-N(6)-O(13)-O(600) 0.000(4) 
O(12A)-N(6)-O(13)-O(600) 163.6(10) 
O(12B)-N(6)-O(13)-O(600) 124.7(11) 
O(13)#4-N(6)-O(13)-O(600) 0(100) 
O(12B)#5-N(6)-O(13)-O(600) 175.4(10) 
O(14A)-N(6)-O(14B)-O(14B)#4 0(5) 
O(12A)#5-N(6)-O(14B)-O(14B)#4 0(5) 
O(600)#4-N(6)-O(14B)-O(14B)#4 0(5) 
O(600)-N(6)-O(14B)-O(14B)#4 0(5) 
O(12A)-N(6)-O(14B)-O(14B)#4 0(5) 
O(12B)-N(6)-O(14B)-O(14B)#4 0(5) 
O(13)#4-N(6)-O(14B)-O(14B)#4 0(5) 
O(13)-N(6)-O(14B)-O(14B)#4 0(5) 
O(12B)#5-N(6)-O(14B)-O(14B)#4 0(5) 
O(14A)-N(6)-O(14B)-O(600)#4 -1.4(18) 
O(14B)#4-N(6)-O(14B)-O(600)#4 0(100) 
O(12A)#5-N(6)-O(14B)-O(600)#4 -144.4(10) 
O(600)-N(6)-O(14B)-O(600)#4 0.000(3) 
O(12A)-N(6)-O(14B)-O(600)#4 -178.8(11) 
O(12B)-N(6)-O(14B)-O(600)#4 -130.6(9) 
O(13)#4-N(6)-O(14B)-O(600)#4 44.4(8) 
O(13)-N(6)-O(14B)-O(600)#4 44.4(8) 
O(12B)#5-N(6)-O(14B)-O(600)#4 164.7(10) 
O(14A)-N(6)-O(14B)-O(600) -1.4(18) 
O(14B)#4-N(6)-O(14B)-O(600) 0(100) 
O(12A)#5-N(6)-O(14B)-O(600) -144.4(10) 
O(600)#4-N(6)-O(14B)-O(600) 0.000(3) 
O(12A)-N(6)-O(14B)-O(600) -178.8(11) 
O(12B)-N(6)-O(14B)-O(600) -130.6(9) 
O(13)#4-N(6)-O(14B)-O(600) 44.4(8) 
O(13)-N(6)-O(14B)-O(600) 44.4(8) 
O(12B)#5-N(6)-O(14B)-O(600) 164.7(10) 
O(14A)-N(6)-O(600)-O(600)#4 0.0(14) 
O(14B)#4-N(6)-O(600)-O(600)#4 0.0(13) 
O(14B)-N(6)-O(600)-O(600)#4 0.0(13) 
O(12A)#5-N(6)-O(600)-O(600)#4 0.0(7) 
O(12A)-N(6)-O(600)-O(600)#4 0.0(17) 
O(12B)-N(6)-O(600)-O(600)#4 0.0(8) 
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C(15)-C(16)-C(19)-C(20) -177.4(2) 
C(18)-C(19)-C(20)-O(5) -7.2(4) 
C(16)-C(19)-C(20)-O(5) 169.6(3) 
C(18)-C(19)-C(20)-O(6) 171.9(2) 
C(16)-C(19)-C(20)-O(6) -11.4(3) 
O(5)-C(20)-O(6)-C(21) -11.3(4) 
C(19)-C(20)-O(6)-C(21) 169.6(2) 
C(20)-O(6)-C(21)-C(22) -103.6(3) 
O(6)-C(21)-C(22)-O(7) -79.9(3) 
C(21)-C(22)-O(7)-C(23) 96.8(3) 
C(22)-O(7)-C(23)-O(8) 0.6(4) 
C(22)-O(7)-C(23)-C(24) 178.6(2) 
O(8)-C(23)-C(24)-C(27) 20.9(4) 
O(7)-C(23)-C(24)-C(27) -157.1(2) 
O(8)-C(23)-C(24)-C(25) -158.3(3) 
O(7)-C(23)-C(24)-C(25) 23.7(3) 
C(27)-C(24)-C(25)-C(26) 0.2(4) 
C(23)-C(24)-C(25)-C(26) 179.4(2) 
C(24)-C(25)-C(26)-N(4) 0.5(4) 
C(25)-C(24)-C(27)-C(28) -0.3(4) 
C(23)-C(24)-C(27)-C(28) -179.5(2) 
C(24)-C(27)-C(28)-N(4) -0.2(4) 
C(25)-C(26)-N(4)-C(28) -1.0(4) 
C(25)-C(26)-N(4)-Cu(1)#3 -178.20(19) 
C(27)-C(28)-N(4)-C(26) 0.9(4) 
C(27)-C(28)-N(4)-Cu(1)#3 178.2(2) 
O(14A)-N(6)-O(12A)-O(12A)#5 81(2) 
O(14B)#4-N(6)-O(12A)-O(12A)#5 83.7(12) 
O(14B)-N(6)-O(12A)-O(12A)#5 83.7(12) 
O(600)#4-N(6)-O(12A)-O(12A)#5 -93(2) 
O(600)-N(6)-O(12A)-O(12A)#5 -93(2) 
O(12B)-N(6)-O(12A)-O(12A)#5 2.4(12) 
O(13)#4-N(6)-O(12A)-O(12A)#5 -132.3(9) 
O(13)-N(6)-O(12A)-O(12A)#5 -132.3(9) 
O(12B)#5-N(6)-O(12A)-O(12A)#5 166(3) 
O(14A)-N(6)-O(12A)-N(6)#5 5(2) 
O(14B)#4-N(6)-O(12A)-N(6)#5 7.9(11) 
O(14B)-N(6)-O(12A)-N(6)#5 7.9(11) 
O(12A)#5-N(6)-O(12A)-N(6)#5 -75.9(10) 
O(600)#4-N(6)-O(12A)-N(6)#5 -169.3(19) 
O(600)-N(6)-O(12A)-N(6)#5 -169.3(19) 
O(12B)-N(6)-O(12A)-N(6)#5 -73.5(10) 
O(13)#4-N(6)-O(12A)-N(6)#5 151.8(6) 
O(13)-N(6)-O(12A)-N(6)#5 151.8(6) 
O(12B)#5-N(6)-O(12A)-N(6)#5 90(3) 
O(14A)-N(6)-O(12A)-O(600)#5 -4(2) 
O(14B)#4-N(6)-O(12A)-O(600)#5 -0.9(12) 
O(14B)-N(6)-O(12A)-O(600)#5 -0.9(12) 
O(12A)#5-N(6)-O(12A)-O(600)#5 -84.6(10) 
O(600)#4-N(6)-O(12A)-O(600)#5 -178.1(16) 
O(600)-N(6)-O(12A)-O(600)#5 -178.1(16) 
O(12B)-N(6)-O(12A)-O(600)#5 -82.2(10) 
O(13)#4-N(6)-O(12A)-O(600)#5 143.1(6) 
O(13)-N(6)-O(12A)-O(600)#5 143.1(6) 
O(12B)#5-N(6)-O(12A)-O(600)#5 82(3) 
O(14A)-N(6)-O(12B)-O(12B)#5 -145.8(15) 
O(14B)#4-N(6)-O(12B)-O(12B)#5 -119.4(8) 
O(14B)-N(6)-O(12B)-O(12B)#5 -119.4(8) 
O(12A)#5-N(6)-O(12B)-O(12B)#5 9(3) 
O(600)#4-N(6)-O(12B)-O(12B)#5 151.4(13) 
O(600)-N(6)-O(12B)-O(12B)#5 151.4(13) 
O(12A)-N(6)-O(12B)-O(12B)#5 4.4(10) 
O(13)#4-N(6)-O(12B)-O(12B)#5 65.9(10) 
O(13)-N(6)-O(12B)-O(12B)#5 65.9(10) 

O(13)#4-N(6)-O(600)-O(600)#4 0.0(12) 
O(13)-N(6)-O(600)-O(600)#4 0.0(12) 
O(12B)#5-N(6)-O(600)-O(600)#4 0(2) 
O(14A)-N(6)-O(600)-O(13) 139.1(12) 
O(14B)#4-N(6)-O(600)-O(13) 138.3(7) 
O(14B)-N(6)-O(600)-O(13) 138.3(7) 
O(12A)#5-N(6)-O(600)-O(13) -100.9(13) 
O(600)#4-N(6)-O(600)-O(13) 0(100) 
O(12A)-N(6)-O(600)-O(13) -44(2) 
O(12B)-N(6)-O(600)-O(13) -116.7(11) 
O(13)#4-N(6)-O(600)-O(13) 0.000(5) 
O(12B)#5-N(6)-O(600)-O(13) -11(2) 
O(14A)-N(6)-O(600)-O(13)#4 139.1(12) 
O(14B)#4-N(6)-O(600)-O(13)#4 138.3(7) 
O(14B)-N(6)-O(600)-O(13)#4 138.3(7) 
O(12A)#5-N(6)-O(600)-O(13)#4 -100.9(13) 
O(600)#4-N(6)-O(600)-O(13)#4 0(100) 
O(12A)-N(6)-O(600)-O(13)#4 -44(2) 
O(12B)-N(6)-O(600)-O(13)#4 -116.7(11) 
O(13)-N(6)-O(600)-O(13)#4 0.000(5) 
O(12B)#5-N(6)-O(600)-O(13)#4 -11(2) 
O(14A)-N(6)-O(600)-O(14B) 0.9(11) 
O(14B)#4-N(6)-O(600)-O(14B) 0.000(4) 
O(12A)#5-N(6)-O(600)-O(14B) 120.9(14) 
O(600)#4-N(6)-O(600)-O(14B) 0(100) 
O(12A)-N(6)-O(600)-O(14B) 178(2) 
O(12B)-N(6)-O(600)-O(14B) 105.1(12) 
O(13)#4-N(6)-O(600)-O(14B) -138.3(7) 
O(13)-N(6)-O(600)-O(14B) -138.3(7) 
O(12B)#5-N(6)-O(600)-O(14B) -149(2) 
O(14A)-N(6)-O(600)-O(14B)#4 0.9(11) 
O(14B)-N(6)-O(600)-O(14B)#4 0.000(4) 
O(12A)#5-N(6)-O(600)-O(14B)#4 120.9(14) 
O(600)#4-N(6)-O(600)-O(14B)#4 0(100) 
O(12A)-N(6)-O(600)-O(14B)#4 178(2) 
O(12B)-N(6)-O(600)-O(14B)#4 105.1(12) 
O(13)#4-N(6)-O(600)-O(14B)#4 -138.3(7) 
O(13)-N(6)-O(600)-O(14B)#4 -138.3(7) 
O(12B)#5-N(6)-O(600)-O(14B)#4 -149(2) 
O(13)#4-O(13)-O(600)-O(600)#4 0.0 
N(6)-O(13)-O(600)-O(600)#4 0(4) 
O(13)#4-O(13)-O(600)-N(6) 0.0(13) 
O(600)#4-O(13)-O(600)-N(6) 0(93) 
N(6)-O(13)-O(600)-O(13)#4 0(100) 
O(600)#4-O(13)-O(600)-O(13)#4 0(100) 
O(13)#4-O(13)-O(600)-O(14B) 0.0(12) 
N(6)-O(13)-O(600)-O(14B) 31.4(6) 
O(600)#4-O(13)-O(600)-O(14B) 0(100) 
O(13)#4-O(13)-O(600)-O(14B)#4 0.0(12) 
N(6)-O(13)-O(600)-O(14B)#4 31.4(6) 
O(600)#4-O(13)-O(600)-O(14B)#4 0(100) 
O(14B)#4-O(14B)-O(600)-O(600)#4 0.0 
N(6)-O(14B)-O(600)-O(600)#4 0.0(8) 
O(14B)#4-O(14B)-O(600)-N(6) 0.0(6) 
O(600)#4-O(14B)-O(600)-N(6) 0(100) 
O(14B)#4-O(14B)-O(600)-O(13) 0.0(3) 
N(6)-O(14B)-O(600)-O(13) -36.4(7) 
O(600)#4-O(14B)-O(600)-O(13) 0(100) 
O(14B)#4-O(14B)-O(600)-O(13)#4 0.0(3) 
N(6)-O(14B)-O(600)-O(13)#4 -36.4(7) 
O(600)#4-O(14B)-O(600)-O(13)#4 0(100) 
N(6)-O(14B)-O(600)-O(14B)#4 0(100) 
O(600)#4-O(14B)-O(600)-O(14B)#4 0(100) 
O(15)-N(7)-O(16)-O(700)#7 86.2(5) 
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O(14A)-N(6)-O(12B)-N(6)#5 -92.7(14) 
O(14B)#4-N(6)-O(12B)-N(6)#5 -66.2(8) 
O(14B)-N(6)-O(12B)-N(6)#5 -66.2(8) 
O(12A)#5-N(6)-O(12B)-N(6)#5 62(3) 
O(600)#4-N(6)-O(12B)-N(6)#5 -155.4(10) 
O(600)-N(6)-O(12B)-N(6)#5 -155.4(10) 
O(12A)-N(6)-O(12B)-N(6)#5 57.6(8) 
O(13)#4-N(6)-O(12B)-N(6)#5 119.1(8) 
O(13)-N(6)-O(12B)-N(6)#5 119.1(8) 
O(12B)#5-N(6)-O(12B)-N(6)#5 53.2(8) 
O(14A)-N(6)-O(12B)-O(600)#5 -91.7(15) 
O(14B)#4-N(6)-O(12B)-O(600)#5 -65.3(8) 

O(16)#6-N(7)-O(16)-O(700)#7 -93.8(5) 
O(700)#8-N(7)-O(16)-O(700)#7 -165.5(8) 
C(32)-O(17)-C(29)-C(30) 7.1(9) 
O(17)-C(29)-C(30)-C(31) 7.0(12) 
C(29)-C(30)-C(31)-C(32) -18.9(13) 
C(30)-C(31)-C(32)-O(17) 23.7(13) 
C(29)-O(17)-C(32)-C(31) -18.0(10) 
C(36)-O(18)-C(33)-C(34) 16.4(9) 
O(18)-C(33)-C(34)-C(35) -29.9(11) 
C(33)-C(34)-C(35)-C(36) 31.9(11) 
C(33)-O(18)-C(36)-C(35) 2.3(10) 
C(34)-C(35)-C(36)-O(18) -21.4(11) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x,-y+2,z-1/2    #2 -x+1,-y+2,-z+1     
#3 x,-y+2,z+1/2     #4 x,y,z    #5 -x+1,y,-z+3/2    #6 -x+2,y,-z+5/2     #7 x+1,y+1,z+1    #8 -x+1,y+1,-z+3/2     
#9 x-1,y-1,z-1     #10 -x,y,-z+1/2 
 
Hydrogen bonds for 11 [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(22)-H(22A)...O(8)#11 0.97 2.81 3.720(3) 157.5 
 C(27)-H(27)...O(5)#11 0.93 2.60 3.460(3) 153.0 
 C(15)-H(15)...O(18)#5 0.93 2.77 3.631(7) 153.7 
 C(36)-H(36A)...O(8)#5 0.97 2.84 3.676(8) 145.0 
 C(34)-H(34B)...O(1)#8 0.97 2.76 3.683(10) 158.8 
 C(33)-H(33A)...O(3)#5 0.97 2.89 3.832(9) 163.9 
 C(1)-H(1)...O(10)#2 0.93 2.63 3.462(4) 149.6 
 C(8)-H(8A)...O(10)#12 0.97 2.50 3.210(3) 129.8 
 C(22)-H(22B)...O(9)#13 0.97 2.54 3.479(3) 164.2 
 C(26)-H(26)...O(9)#5 0.93 2.50 3.152(3) 127.5 
 C(3)-H(3)...O(11A)#14 0.93 2.55 3.387(6) 149.4 
 C(22)-H(22B)...O(11A)#13 0.97 2.51 3.352(6) 145.4 
 C(17)-H(17)...O(14B)#4 0.93 2.33 3.208(9) 158.1 
 C(25)-H(25)...O(12B)#15 0.93 2.79 3.672(13) 159.0 
 C(7)-H(7B)...O(700)#5 0.97 2.63 3.541(10) 155.8 
 C(13)-H(13)...O(700)#8 0.93 2.76 3.366(10) 123.6 
 O(19)-H(19B)...O(16)#9 0.83(5) 2.14(5) 2.831(6) 140(5) 
 O(40)-H(40A)...O(13)#4 0.66(3) 2.31(4) 2.940(6) 162(4) 
 O(40)-H(40A)...O(600)#4 0.66(3) 2.06(4) 2.694(13) 161(4) 
 O(40)-H(40B)...O(19)#14 0.87(4) 1.84(4) 2.696(3) 171(4) 
 O(19)-H(19B)...O(700)#4 0.83(5) 1.81(5) 2.632(8) 171(5) 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x,-y+2,z-1/2    #2 -x+1,-y+2,-z+1     
#3 x,-y+2,z+1/2     #4 x,y,z    #5 -x+1,y,-z+3/2    #6 -x+2,y,-z+5/2     #7 x+1,y+1,z+1    #8 -x+1,y+1,-z+3/2     
#9 x-1,y-1,z-1     #10 -x,y,-z+1/2    #11 -x+1,-y+2,-z+2    #12 x+1,y,z+1     #13 x,y,z+1    #14 -x+1,-y+1,-z+1   
#15 -x+1,-y+1,-z+2 
 

I.2.m - Crystal data and structure refinement for 13. 

 
Empirical formula  C72 H86 Cl4 Cu2 N8 O39 

Formula weight  1956.37 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/c 
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Unit cell dimensions a = 19.6910(11) Å � = 90°. 

 b = 18.6897(16) Å � = 91.748(5)°. 

 c = 23.5089(13) Å � = 90°. 

Volume 8647.7(10) Å3 

Z 4 

Density (calculated) 1.503 Mg/m3 

Absorption coefficient 0.711 mm-1 

F(000) 4048 

Crystal size ? x ? x ? mm3 

Theta range for data collection 3.03 to 29.96°. 

Index ranges -27<=h<=26, -11<=k<=25, -31<=l<=33 

Reflections collected 41387 

Independent reflections 21936 [R(int) = 0.0415] 

Completeness to theta = 29.96° 87.3 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 21936 / 0 / 1226 

Goodness-of-fit on F2 1.073 

Final R indices [I>2sigma(I)] R1 = 0.0882, wR2 = 0.2042 

R indices (all data) R1 = 0.1305, wR2 = 0.2262 

Extinction coefficient 0.00132(12) 

Largest diff. peak and hole 1.629 and -0.952 e.Å-3 

 
Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 13. U(eq) is 

defined as one third of the trace of the orthogonalized Uij tensor. 
_______________________________________________________________________________________ 
 x y z U(eq) 
_______________________________________________________________________________________ 
Cu(1) 7315(1) 3611(1) 2967(1) 22(1) 
O(1) 7230(2) 4778(2) 2648(2) 32(1) 
Cu(2) 7378(1) -1405(1) 3258(1) 23(1) 
O(2) 7295(3) -279(2) 2890(2) 38(1) 
N(1) 6551(2) 3748(2) 3524(2) 23(1) 
C(1) 6608(2) 3521(3) 4071(2) 24(1) 
C(2) 6108(2) 3644(3) 4467(2) 25(1) 
C(3) 5970(2) 4091(3) 3352(2) 24(1) 
C(4) 5445(2) 4214(3) 3715(2) 25(1) 
C(5) 5512(2) 3994(3) 4282(2) 23(1) 
C(6) 4923(2) 4123(3) 4664(2) 24(1) 
O(3) 4377(2) 4338(3) 4492(2) 46(1) 
O(4) 5092(2) 3975(2) 5211(1) 29(1) 
C(7) 4540(3) 3983(3) 5603(2) 30(1) 
C(8) 4337(2) 3217(3) 5735(2) 30(1) 
O(5) 4805(2) 2908(2) 6172(2) 29(1) 
C(9) 5317(2) 2511(3) 5986(2) 24(1) 
O(6) 5421(2) 2358(2) 5497(2) 31(1) 
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C(10) 5769(2) 2252(3) 6481(2) 23(1) 
C(11) 5798(2) 2608(3) 7009(2) 26(1) 
C(12) 6237(2) 2339(3) 7430(2) 25(1) 
C(13) 6182(3) 1657(3) 6398(2) 29(1) 
C(14) 6611(3) 1433(3) 6842(2) 29(1) 
N(2) 6642(2) 1766(2) 7355(2) 24(1) 
N(3) 7999(2) 3873(2) 3593(2) 24(1) 
C(15) 8495(2) 3415(3) 3757(2) 27(1) 
C(16) 8934(2) 3555(3) 4215(2) 26(1) 
C(17) 7934(3) 4502(3) 3882(2) 28(1) 
C(18) 8355(3) 4681(3) 4345(2) 29(1) 
C(19) 8860(2) 4193(3) 4523(2) 25(1) 
C(20) 9292(2) 4382(3) 5042(2) 24(1) 
O(7) 9279(2) 4963(2) 5276(2) 33(1) 
O(8) 9666(2) 3815(2) 5214(1) 29(1) 
C(21) 10099(3) 3930(3) 5729(2) 32(1) 
C(22) 10286(2) 3192(3) 5949(2) 33(1) 
O(9) 9672(2) 2891(2) 6188(2) 27(1) 
C(23) 9754(3) 2237(3) 6428(2) 31(1) 
O(10) 10255(2) 1867(2) 6395(2) 47(1) 
C(24) 9144(2) 2035(3) 6769(2) 25(1) 
C(25) 9096(3) 1320(3) 6969(2) 28(1) 
C(26) 8554(2) 1156(3) 7309(2) 25(1) 
C(27) 8664(3) 2544(3) 6917(2) 30(1) 
C(28) 8135(3) 2321(3) 7252(2) 27(1) 
N(4) 8081(2) 1646(2) 7447(2) 24(1) 
N(5) 6594(2) -1252(2) 3796(2) 24(1) 
C(29) 6633(2) -1488(3) 4340(2) 23(1) 
C(30) 6111(2) -1378(3) 4716(2) 23(1) 
C(31) 6024(3) -903(3) 3610(2) 27(1) 
C(32) 5487(2) -773(3) 3963(2) 25(1) 
C(33) 5524(2) -1008(3) 4525(2) 23(1) 
C(34) 4932(2) -879(3) 4902(2) 23(1) 
O(11) 4404(2) -612(2) 4730(2) 28(1) 
O(12) 5080(2) -1087(2) 5440(1) 23(1) 
C(35) 4521(3) -1090(3) 5834(2) 30(1) 
C(36) 4376(3) -1859(3) 6010(2) 31(1) 
O(13) 4875(2) -2115(2) 6439(1) 29(1) 
C(37) 5411(2) -2487(3) 6261(2) 26(1) 
O(14) 5519(2) -2625(2) 5765(2) 34(1) 
C(38) 5859(2) -2735(3) 6751(2) 26(1) 
C(39) 5851(3) -2406(3) 7281(2) 28(1) 
C(40) 6292(3) -2665(3) 7713(2) 29(1) 
C(41) 6302(3) -3305(3) 6667(2) 29(1) 
C(42) 6731(3) -3531(3) 7116(2) 28(1) 
N(6) 6719(2) -3216(2) 7634(2) 25(1) 
N(7) 8035(2) -1096(2) 3896(2) 26(1) 
C(43) 8037(3) -396(3) 4077(2) 32(1) 
C(44) 8455(3) -168(3) 4529(2) 31(1) 
C(45) 8451(3) -1565(3) 4171(2) 29(1) 
C(46) 8873(3) -1369(3) 4632(2) 30(1) 
C(47) 8877(2) -659(3) 4808(2) 24(1) 
C(48) 9313(2) -396(3) 5306(2) 28(1) 
O(15) 9386(2) 231(2) 5426(2) 35(1) 
O(16) 9604(2) -948(2) 5596(2) 32(1) 
C(49) 10030(3) -745(3) 6089(2) 34(1) 
C(50) 10280(2) -1426(3) 6366(2) 33(1) 
O(17) 9705(2) -1776(2) 6622(2) 38(1) 
C(51) 9843(3) -2402(3) 6886(2) 37(1) 
O(18) 10389(2) -2697(3) 6890(2) 48(1) 
C(52) 9242(3) -2684(3) 7194(2) 35(1) 
C(53) 8716(3) -2235(3) 7353(2) 34(1) 
C(54) 8188(3) -2531(3) 7651(2) 34(1) 
C(55) 9217(3) -3414(3) 7341(3) 41(2) 
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C(56) 8677(3) -3658(3) 7648(2) 39(1) 
N(8) 8159(2) -3229(2) 7802(2) 30(1) 
Cl(1) 7599(1) 1512(1) 3492(1) 28(1) 
O(19) 7311(2) 2235(2) 3437(2) 32(1) 
O(20) 7078(2) 1020(2) 3672(2) 38(1) 
O(21) 8145(2) 1530(2) 3911(2) 48(1) 
O(22) 7851(3) 1271(2) 2955(2) 62(2) 
Cl(2) 7506(1) -3563(1) 3738(1) 18(1) 
O(23) 7267(9) -2786(9) 3760(8) 25(4) 
O(24) 8215(7) -3590(9) 3833(10) 108(8) 
O(25) 7135(7) -3997(7) 4137(6) 37(5) 
O(26) 7359(6) -3824(7) 3162(5) 81(3) 
Cl(21) 7529(2) -3310(2) 4267(1) 46(1) 
O(231) 7345(11) -2875(11) 3769(10) 34(5) 
O(241) 8189(6) -3466(7) 4216(8) 75(5) 
O(251) 7178(9) -3982(9) 4114(8) 66(7) 
O(261) 7296(6) -3012(6) 4804(4) 69(3) 
Cl(3) 4759(1) 5387(1) 2472(1) 32(1) 
O(27) 5059(2) 5779(2) 2951(2) 43(1) 
O(28) 4489(3) 4719(3) 2671(2) 61(2) 
O(29) 4139(7) 5847(11) 2188(9) 32(3) 
O(291) 4316(7) 5766(12) 2234(9) 38(3) 
O(30) 5269(2) 5241(3) 2066(2) 59(1) 
Cl(4) 184(1) 382(1) 2315(1) 39(1) 
O(31) -21(3) 1097(3) 2137(2) 54(1) 
O(32) 810(2) 431(2) 2655(2) 41(1) 
O(33) -339(2) 82(3) 2666(2) 48(1) 
O(34) 273(3) -80(3) 1826(2) 64(1) 
O(35) 2710(2) 126(3) 3486(2) 55(1) 
C(350) 2102(4) 382(4) 3737(3) 59(2) 
C(351) 2235(6) 1089(6) 4020(6) 112(4) 
C(352) 2888(5) 1356(5) 3707(5) 91(3) 
C(353) 3267(4) 658(7) 3646(4) 94(4) 
O(36) 2270(5) 6060(5) 3673(3) 32(2) 
C(360) 2919(9) 6331(11) 3487(8) 57(6) 
C(361) 3445(7) 5862(10) 3849(6) 59(4) 
C(362) 3030(6) 5324(8) 4186(6) 46(3) 
C(363) 2344(7) 5677(7) 4222(5) 36(3) 
O(361) 2530(5) 5077(5) 3198(4) 58(3) 
C(364) 3081(8) 5507(10) 3455(7) 65(4) 
C(365) 2744(14) 6154(10) 3718(10) 70(6) 
C(366) 2046(10) 5793(10) 3921(9) 69(6) 
C(367) 1860(7) 5337(8) 3354(7) 57(4) 
O(37) 2532(4) 7385(3) 4865(3) 100(3) 
C(370) 1862(5) 7647(5) 4707(4) 74(3) 
C(371) 1981(4) 8377(4) 4413(3) 58(2) 
C(372) 2601(3) 8678(4) 4758(3) 46(2) 
C(373) 2974(4) 7989(4) 4978(3) 55(2) 
O(38) 7778(6) -2588(6) 5269(5) 71(3) 
C(380) 7216(7) -3063(8) 5348(6) 49(3) 
C(381) 7563(7) -3753(8) 5554(6) 51(3) 
C(382) 8167(9) -3539(11) 5865(7) 60(4) 
C(383) 8460(9) -2891(10) 5404(8) 71(5) 
O(381) 9246(7) -2864(8) 5915(6) 88(4) 
C(384) 8575(10) -2541(11) 5789(9) 82(5) 
C(385) 8100(8) -3114(10) 6084(7) 64(4) 
C(386) 8413(10) -3792(11) 5922(8) 71(5) 
C(387) 9100(11) -3553(12) 5784(9) 91(6) 
O(39) 8292(4) 83(4) 2108(3) 34(2) 
O(40) 6522(6) -4131(7) 3059(5) 74(3) 
_______________________________________________________________________________________ 
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Bond lengths [Å] and angles [°] for 13. 
_______________________________________________________________________________________ 
Cu(1)-N(3)  2.025(4) 
Cu(1)-N(4)#1  2.029(4) 
Cu(1)-N(1)  2.041(4) 
Cu(1)-N(2)#1  2.052(4) 
Cu(1)-O(1)  2.311(4) 
Cu(1)-O(19)  2.799(4) 
Cu(1)-Cu(1)#2  12.4667(7) 
O(1)-H(1)  0.68(7) 
O(1)-H(1A)  0.97(8) 
Cu(2)-N(8)#3  2.022(4) 
Cu(2)-N(7)  2.035(4) 
Cu(2)-N(5)  2.044(4) 
Cu(2)-N(6)#3  2.055(4) 
Cu(2)-O(2)  2.278(5) 
Cu(2)-O(23)  2.850(17) 
Cu(2)-Cu(2)#4  12.4471(8) 
O(2)-H(2)  0.56(6) 
O(2)-H(2A)  0.99(9) 
N(1)-C(1)  1.355(6) 
N(1)-C(3)  1.362(6) 
C(1)-C(2)  1.395(7) 
C(1)-H(1B)  0.9300 
C(2)-C(5)  1.401(7) 
C(2)-H(2B)  0.9300 
C(3)-C(4)  1.379(7) 
C(3)-H(3)  0.9300 
C(4)-C(5)  1.398(7) 
C(4)-H(4)  0.9300 
C(5)-C(6)  1.507(7) 
C(6)-O(3)  1.205(6) 
C(6)-O(4)  1.347(6) 
O(4)-C(7)  1.447(6) 
C(7)-C(8)  1.521(8) 
C(7)-H(7A)  0.9700 
C(7)-H(7B)  0.9700 
C(8)-O(5)  1.476(6) 
C(8)-H(8A)  0.9700 
C(8)-H(8B)  0.9700 
O(5)-C(9)  1.335(6) 
C(9)-O(6)  1.209(6) 
C(9)-C(10)  1.522(6) 
C(10)-C(13)  1.395(7) 
C(10)-C(11)  1.407(7) 
C(11)-C(12)  1.389(7) 
C(11)-H(11)  0.9300 
C(12)-N(2)  1.352(6) 
C(12)-H(12)  0.9300 
C(13)-C(14)  1.389(7) 
C(13)-H(13)  0.9300 
C(14)-N(2)  1.355(6) 
C(14)-H(14)  0.9300 
N(2)-Cu(1)#2  2.052(4) 
N(3)-C(15)  1.345(6) 
N(3)-C(17)  1.366(6) 
C(15)-C(16)  1.386(7) 
C(15)-H(15)  0.9300 
C(16)-C(19)  1.404(7) 
C(16)-H(16)  0.9300 
C(17)-C(18)  1.388(7) 
C(17)-H(17)  0.9300 
C(18)-C(19)  1.404(7) 
C(18)-H(18)  0.9300 

C(41)-C(42)  1.397(7) 
C(41)-H(41)  0.9300 
C(42)-N(6)  1.353(6) 
C(42)-H(42)  0.9300 
N(6)-Cu(2)#4  2.055(4) 
N(7)-C(45)  1.351(6) 
N(7)-C(43)  1.374(7) 
C(43)-C(44)  1.391(7) 
C(43)-H(43)  0.9300 
C(44)-C(47)  1.389(7) 
C(44)-H(44)  0.9300 
C(45)-C(46)  1.393(7) 
C(45)-H(45)  0.9300 
C(46)-C(47)  1.391(7) 
C(46)-H(46)  0.9300 
C(47)-C(48)  1.513(7) 
C(48)-O(15)  1.213(7) 
C(48)-O(16)  1.354(6) 
O(16)-C(49)  1.460(6) 
C(49)-C(50)  1.505(8) 
C(49)-H(49A)  0.9700 
C(49)-H(49B)  0.9700 
C(50)-O(17)  1.454(6) 
C(50)-H(50A)  0.9700 
C(50)-H(50B)  0.9700 
O(17)-C(51)  1.349(7) 
C(51)-O(18)  1.207(6) 
C(51)-C(52)  1.503(7) 
C(52)-C(53)  1.393(7) 
C(52)-C(55)  1.409(8) 
C(53)-C(54)  1.385(7) 
C(53)-H(53)  0.9300 
C(54)-N(8)  1.354(7) 
C(54)-H(54)  0.9300 
C(55)-C(56)  1.379(8) 
C(55)-H(55)  0.9300 
C(56)-N(8)  1.356(7) 
C(56)-H(56)  0.9300 
N(8)-Cu(2)#4  2.022(4) 
Cl(1)-O(21)  1.436(4) 
Cl(1)-O(22)  1.442(4) 
Cl(1)-O(20)#5  1.451(4) 
Cl(1)-O(20)  1.451(4) 
Cl(1)-O(19)  1.471(4) 
O(20)-O(20)#5  0.000(12) 
Cl(2)-O(24)  1.407(15) 
Cl(2)-O(25)  1.453(8) 
Cl(2)-O(26)  1.460(13) 
Cl(2)-O(23)  1.528(16) 
O(26)-O(40)  1.755(17) 
Cl(21)-O(241)  1.341(12) 
Cl(21)-O(231)  1.46(2) 
Cl(21)-O(261)#5  1.467(10) 
Cl(21)-O(261)  1.467(10) 
Cl(21)-O(251)  1.472(17) 
O(251)-O(40)  2.78(2) 
O(261)-O(261)#5  0.00(4) 
Cl(3)-O(291)  1.243(11) 
Cl(3)-O(30)  1.432(5) 
Cl(3)-O(28)#5  1.441(5) 
Cl(3)-O(28)  1.441(5) 
Cl(3)-O(27)  1.455(4) 
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C(19)-C(20)  1.508(7) 
C(20)-O(7)  1.219(6) 
C(20)-O(8)  1.347(6) 
O(8)-C(21)  1.475(6) 
C(21)-C(22)  1.515(8) 
C(21)-H(21A)  0.9700 
C(21)-H(21B)  0.9700 
C(22)-O(9)  1.463(6) 
C(22)-H(22A)  0.9700 
C(22)-H(22B)  0.9700 
O(9)-C(23)  1.354(6) 
C(23)-O(10)  1.208(6) 
C(23)-C(24)  1.511(7) 
C(24)-C(27)  1.393(7) 
C(24)-C(25)  1.420(7) 
C(25)-C(26)  1.387(7) 
C(25)-H(25)  0.9300 
C(26)-N(4)  1.352(6) 
C(26)-H(26)  0.9300 
C(27)-C(28)  1.389(7) 
C(27)-H(27)  0.9300 
C(28)-N(4)  1.348(6) 
C(28)-H(28)  0.9300 
N(4)-Cu(1)#2  2.029(4) 
N(5)-C(29)  1.354(6) 
N(5)-C(31)  1.358(6) 
C(29)-C(30)  1.391(6) 
C(29)-H(29)  0.9300 
C(30)-C(33)  1.407(6) 
C(30)-H(30)  0.9300 
C(31)-C(32)  1.386(7) 
C(31)-H(31)  0.9300 
C(32)-C(33)  1.392(7) 
C(32)-H(32)  0.9300 
C(33)-C(34)  1.506(7) 
C(34)-O(11)  1.212(6) 
C(34)-O(12)  1.347(6) 
O(12)-C(35)  1.460(6) 
C(35)-C(36)  1.525(8) 
C(35)-H(35A)  0.9700 
C(35)-H(35B)  0.9700 
C(36)-O(13)  1.466(6) 
C(36)-H(36A)  0.9700 
C(36)-H(36B)  0.9700 
O(13)-C(37)  1.341(6) 
C(37)-O(14)  1.219(6) 
C(37)-C(38)  1.505(7) 
C(38)-C(39)  1.389(7) 
C(38)-C(41)  1.395(7) 
C(39)-C(40)  1.402(7) 
C(39)-H(39)  0.9300 
C(40)-N(6)  1.346(7) 
C(40)-H(40)  0.9300 

Cl(3)-O(29)  1.621(10) 
O(28)-O(28)#5  0.000(13) 
Cl(4)-O(33)  1.452(5) 
Cl(4)-O(34)  1.452(5) 
Cl(4)-O(32)  1.452(4) 
Cl(4)-O(31)  1.454(5) 
O(35)-C(350)  1.431(8) 
O(35)-C(353)  1.519(11) 
C(350)-C(351)  1.499(13) 
C(351)-C(352)  1.581(13) 
C(352)-C(353)  1.511(15) 
O(36)-C(360)  1.454(17) 
O(36)-C(363)  1.480(14) 
C(360)-C(361)  1.59(2) 
C(361)-C(362)  1.53(2) 
C(362)-C(363)  1.508(17) 
O(361)-C(367)  1.463(16) 
O(361)-C(364)  1.47(2) 
O(361)-O(39)#6  1.751(13) 
C(364)-C(365)  1.52(3) 
C(365)-C(366)  1.62(3) 
C(366)-C(367)  1.61(3) 
C(367)-O(39)#6  1.213(18) 
O(37)-C(370)  1.445(11) 
O(37)-C(373)  1.446(10) 
C(370)-C(371)  1.551(11) 
C(371)-C(372)  1.551(10) 
C(372)-C(373)  1.563(10) 
O(38)-C(380)  1.435(17) 
O(38)-C(383)  1.48(2) 
C(380)-C(381)  1.53(2) 
C(381)-C(382)  1.43(2) 
C(381)-C(386)  1.86(2) 
C(381)-C(385)  2.00(2) 
C(382)-C(386)  0.69(2) 
C(382)-C(385)  0.96(2) 
C(382)-C(383)  1.74(3) 
C(382)-C(387)  1.85(3) 
C(382)-C(384)  2.04(3) 
C(383)-C(384)  1.14(2) 
C(383)-C(385)  1.82(2) 
C(383)-C(387)  1.96(3) 
O(381)-C(387)  1.35(2) 
O(381)-C(384)  1.47(2) 
C(384)-C(385)  1.59(3) 
C(385)-C(386)  1.46(3) 
C(386)-C(387)  1.47(3) 
O(39)-O(39)#5  0.00(2) 
O(39)-C(367)#7  1.213(18) 
O(39)-O(361)#7  1.751(13) 
O(39)-O(36)#7  2.792(12) 
O(39)-O(33)#8  2.962(9) 
O(40)-O(27)#9  2.890(13) 

 
N(3)-Cu(1)-N(4)#1 90.33(16) 
N(3)-Cu(1)-N(1) 89.40(16) 
N(4)#1-Cu(1)-N(1) 173.22(17) 
N(3)-Cu(1)-N(2)#1 173.90(17) 
N(4)#1-Cu(1)-N(2)#1 88.40(16) 
N(1)-Cu(1)-N(2)#1 91.15(16) 
N(3)-Cu(1)-O(1) 92.74(16) 
N(4)#1-Cu(1)-O(1) 94.37(17) 
N(1)-Cu(1)-O(1) 92.41(16) 
N(2)#1-Cu(1)-O(1) 93.30(16) 

C(40)-N(6)-C(42) 119.0(4) 
C(40)-N(6)-Cu(2)#4 123.2(3) 
C(42)-N(6)-Cu(2)#4 117.7(3) 
C(45)-N(7)-C(43) 118.3(4) 
C(45)-N(7)-Cu(2) 122.1(4) 
C(43)-N(7)-Cu(2) 119.6(3) 
N(7)-C(43)-C(44) 121.6(5) 
N(7)-C(43)-H(43) 119.2 
C(44)-C(43)-H(43) 119.2 
C(47)-C(44)-C(43) 119.3(5) 
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N(3)-Cu(1)-O(19) 86.83(14) 
N(4)#1-Cu(1)-O(19) 91.82(14) 
N(1)-Cu(1)-O(19) 81.41(14) 
N(2)#1-Cu(1)-O(19) 87.25(14) 
O(1)-Cu(1)-O(19) 173.80(14) 
N(3)-Cu(1)-Cu(1)#2 54.11(12) 
N(4)#1-Cu(1)-Cu(1)#2 120.74(12) 
N(1)-Cu(1)-Cu(1)#2 54.21(11) 
N(2)#1-Cu(1)-Cu(1)#2 121.91(12) 
O(1)-Cu(1)-Cu(1)#2 128.16(12) 
O(19)-Cu(1)-Cu(1)#2 47.29(8) 
Cu(1)-O(1)-H(1) 117(6) 
Cu(1)-O(1)-H(1A) 123(5) 
H(1)-O(1)-H(1A) 118(7) 
N(8)#3-Cu(2)-N(7) 90.57(17) 
N(8)#3-Cu(2)-N(5) 167.54(18) 
N(7)-Cu(2)-N(5) 88.88(16) 
N(8)#3-Cu(2)-N(6)#3 88.72(17) 
N(7)-Cu(2)-N(6)#3 176.27(17) 
N(5)-Cu(2)-N(6)#3 91.03(16) 
N(8)#3-Cu(2)-O(2) 99.1(2) 
N(7)-Cu(2)-O(2) 93.13(17) 
N(5)-Cu(2)-O(2) 93.40(19) 
N(6)#3-Cu(2)-O(2) 90.60(17) 
N(8)#3-Cu(2)-O(23) 89.0(4) 
N(7)-Cu(2)-O(23) 90.4(4) 
N(5)-Cu(2)-O(23) 78.6(4) 
N(6)#3-Cu(2)-O(23) 85.9(4) 
O(2)-Cu(2)-O(23) 171.2(4) 
N(8)#3-Cu(2)-Cu(2)#4 114.33(14) 
N(7)-Cu(2)-Cu(2)#4 54.25(12) 
N(5)-Cu(2)-Cu(2)#4 55.99(11) 
N(6)#3-Cu(2)-Cu(2)#4 122.90(12) 
O(2)-Cu(2)-Cu(2)#4 131.33(13) 
O(23)-Cu(2)-Cu(2)#4 46.3(4) 
Cu(2)-O(2)-H(2) 122(8) 
Cu(2)-O(2)-H(2A) 122(5) 
H(2)-O(2)-H(2A) 116(9) 
C(1)-N(1)-C(3) 118.3(4) 
C(1)-N(1)-Cu(1) 121.9(3) 
C(3)-N(1)-Cu(1) 119.8(3) 
N(1)-C(1)-C(2) 122.8(4) 
N(1)-C(1)-H(1B) 118.6 
C(2)-C(1)-H(1B) 118.6 
C(1)-C(2)-C(5) 118.2(4) 
C(1)-C(2)-H(2B) 120.9 
C(5)-C(2)-H(2B) 120.9 
N(1)-C(3)-C(4) 122.3(4) 
N(1)-C(3)-H(3) 118.9 
C(4)-C(3)-H(3) 118.9 
C(3)-C(4)-C(5) 119.4(4) 
C(3)-C(4)-H(4) 120.3 
C(5)-C(4)-H(4) 120.3 
C(4)-C(5)-C(2) 119.1(4) 
C(4)-C(5)-C(6) 118.0(4) 
C(2)-C(5)-C(6) 122.9(4) 
O(3)-C(6)-O(4) 125.5(5) 
O(3)-C(6)-C(5) 123.2(4) 
O(4)-C(6)-C(5) 111.3(4) 
C(6)-O(4)-C(7) 115.9(4) 
O(4)-C(7)-C(8) 109.1(4) 
O(4)-C(7)-H(7A) 109.9 
C(8)-C(7)-H(7A) 109.9 
O(4)-C(7)-H(7B) 109.9 

C(47)-C(44)-H(44) 120.3 
C(43)-C(44)-H(44) 120.3 
N(7)-C(45)-C(46) 122.7(5) 
N(7)-C(45)-H(45) 118.7 
C(46)-C(45)-H(45) 118.7 
C(47)-C(46)-C(45) 118.7(5) 
C(47)-C(46)-H(46) 120.7 
C(45)-C(46)-H(46) 120.7 
C(44)-C(47)-C(46) 119.4(5) 
C(44)-C(47)-C(48) 117.9(5) 
C(46)-C(47)-C(48) 122.6(5) 
O(15)-C(48)-O(16) 125.0(5) 
O(15)-C(48)-C(47) 123.7(5) 
O(16)-C(48)-C(47) 111.3(5) 
C(48)-O(16)-C(49) 115.2(4) 
O(16)-C(49)-C(50) 107.2(5) 
O(16)-C(49)-H(49A) 110.3 
C(50)-C(49)-H(49A) 110.3 
O(16)-C(49)-H(49B) 110.3 
C(50)-C(49)-H(49B) 110.3 
H(49A)-C(49)-H(49B) 108.5 
O(17)-C(50)-C(49) 108.1(4) 
O(17)-C(50)-H(50A) 110.1 
C(49)-C(50)-H(50A) 110.1 
O(17)-C(50)-H(50B) 110.1 
C(49)-C(50)-H(50B) 110.1 
H(50A)-C(50)-H(50B) 108.4 
C(51)-O(17)-C(50) 115.6(4) 
O(18)-C(51)-O(17) 124.6(5) 
O(18)-C(51)-C(52) 123.3(5) 
O(17)-C(51)-C(52) 112.0(4) 
C(53)-C(52)-C(55) 119.0(5) 
C(53)-C(52)-C(51) 121.4(5) 
C(55)-C(52)-C(51) 119.5(5) 
C(54)-C(53)-C(52) 118.1(5) 
C(54)-C(53)-H(53) 121.0 
C(52)-C(53)-H(53) 121.0 
N(8)-C(54)-C(53) 123.8(5) 
N(8)-C(54)-H(54) 118.1 
C(53)-C(54)-H(54) 118.1 
C(56)-C(55)-C(52) 118.8(5) 
C(56)-C(55)-H(55) 120.6 
C(52)-C(55)-H(55) 120.6 
N(8)-C(56)-C(55) 122.8(5) 
N(8)-C(56)-H(56) 118.6 
C(55)-C(56)-H(56) 118.6 
C(54)-N(8)-C(56) 117.5(5) 
C(54)-N(8)-Cu(2)#4 120.3(3) 
C(56)-N(8)-Cu(2)#4 122.2(4) 
O(21)-Cl(1)-O(22) 109.8(3) 
O(21)-Cl(1)-O(20)#5 109.6(3) 
O(22)-Cl(1)-O(20)#5 108.9(3) 
O(21)-Cl(1)-O(20) 109.6(3) 
O(22)-Cl(1)-O(20) 108.9(3) 
O(20)#5-Cl(1)-O(20) 0.0(4) 
O(21)-Cl(1)-O(19) 108.5(3) 
O(22)-Cl(1)-O(19) 110.6(3) 
O(20)#5-Cl(1)-O(19) 109.4(2) 
O(20)-Cl(1)-O(19) 109.4(2) 
Cl(1)-O(19)-Cu(1) 150.9(2) 
O(20)#5-O(20)-Cl(1) 0(8) 
O(24)-Cl(2)-O(25) 113.3(9) 
O(24)-Cl(2)-O(26) 107.6(11) 
O(25)-Cl(2)-O(26) 108.8(9) 
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C(8)-C(7)-H(7B) 109.9 
H(7A)-C(7)-H(7B) 108.3 
O(5)-C(8)-C(7) 110.4(4) 
O(5)-C(8)-H(8A) 109.6 
C(7)-C(8)-H(8A) 109.6 
O(5)-C(8)-H(8B) 109.6 
C(7)-C(8)-H(8B) 109.6 
H(8A)-C(8)-H(8B) 108.1 
C(9)-O(5)-C(8) 116.8(4) 
O(6)-C(9)-O(5) 126.5(4) 
O(6)-C(9)-C(10) 122.6(4) 
O(5)-C(9)-C(10) 110.9(4) 
C(13)-C(10)-C(11) 119.5(5) 
C(13)-C(10)-C(9) 118.4(4) 
C(11)-C(10)-C(9) 122.0(4) 
C(12)-C(11)-C(10) 117.8(5) 
C(12)-C(11)-H(11) 121.1 
C(10)-C(11)-H(11) 121.1 
N(2)-C(12)-C(11) 123.3(5) 
N(2)-C(12)-H(12) 118.3 
C(11)-C(12)-H(12) 118.3 
C(14)-C(13)-C(10) 118.6(5) 
C(14)-C(13)-H(13) 120.7 
C(10)-C(13)-H(13) 120.7 
N(2)-C(14)-C(13) 122.7(5) 
N(2)-C(14)-H(14) 118.6 
C(13)-C(14)-H(14) 118.6 
C(12)-N(2)-C(14) 118.1(4) 
C(12)-N(2)-Cu(1)#2 123.4(3) 
C(14)-N(2)-Cu(1)#2 118.5(3) 
C(15)-N(3)-C(17) 118.9(4) 
C(15)-N(3)-Cu(1) 121.0(3) 
C(17)-N(3)-Cu(1) 119.9(3) 
N(3)-C(15)-C(16) 122.2(5) 
N(3)-C(15)-H(15) 118.9 
C(16)-C(15)-H(15) 118.9 
C(15)-C(16)-C(19) 119.2(5) 
C(15)-C(16)-H(16) 120.4 
C(19)-C(16)-H(16) 120.4 
N(3)-C(17)-C(18) 122.3(5) 
N(3)-C(17)-H(17) 118.9 
C(18)-C(17)-H(17) 118.9 
C(17)-C(18)-C(19) 118.6(5) 
C(17)-C(18)-H(18) 120.7 
C(19)-C(18)-H(18) 120.7 
C(18)-C(19)-C(16) 118.7(5) 
C(18)-C(19)-C(20) 117.8(5) 
C(16)-C(19)-C(20) 123.4(4) 
O(7)-C(20)-O(8) 125.8(4) 
O(7)-C(20)-C(19) 123.7(4) 
O(8)-C(20)-C(19) 110.4(4) 
C(20)-O(8)-C(21) 115.4(4) 
O(8)-C(21)-C(22) 106.0(4) 
O(8)-C(21)-H(21A) 110.5 
C(22)-C(21)-H(21A) 110.5 
O(8)-C(21)-H(21B) 110.5 
C(22)-C(21)-H(21B) 110.5 
H(21A)-C(21)-H(21B) 108.7 
O(9)-C(22)-C(21) 106.6(4) 
O(9)-C(22)-H(22A) 110.4 
C(21)-C(22)-H(22A) 110.4 
O(9)-C(22)-H(22B) 110.4 
C(21)-C(22)-H(22B) 110.4 
H(22A)-C(22)-H(22B) 108.6 

O(24)-Cl(2)-O(23) 109.5(10) 
O(25)-Cl(2)-O(23) 110.3(9) 
O(26)-Cl(2)-O(23) 107.3(9) 
Cl(2)-O(23)-Cu(2) 145.0(10) 
Cl(2)-O(26)-O(40) 113.3(9) 
O(241)-Cl(21)-O(231) 105.5(11) 
O(241)-Cl(21)-O(261)#5 119.2(10) 
O(231)-Cl(21)-O(261)#5 113.7(9) 
O(241)-Cl(21)-O(261) 119.2(10) 
O(231)-Cl(21)-O(261) 113.7(9) 
O(261)#5-Cl(21)-O(261) 0.0(10) 
O(241)-Cl(21)-O(251) 104.0(10) 
O(231)-Cl(21)-O(251) 100.1(12) 
O(261)#5-Cl(21)-O(251) 112.2(9) 
O(261)-Cl(21)-O(251) 112.2(9) 
Cl(21)-O(251)-O(40) 120.4(10) 
O(261)#5-O(261)-Cl(21) 0(10) 
O(291)-Cl(3)-O(30) 107.8(10) 
O(291)-Cl(3)-O(28)#5 112.3(11) 
O(30)-Cl(3)-O(28)#5 109.0(3) 
O(291)-Cl(3)-O(28) 112.3(11) 
O(30)-Cl(3)-O(28) 109.0(3) 
O(28)#5-Cl(3)-O(28) 0.0(6) 
O(291)-Cl(3)-O(27) 108.8(11) 
O(30)-Cl(3)-O(27) 109.6(3) 
O(28)#5-Cl(3)-O(27) 109.3(3) 
O(28)-Cl(3)-O(27) 109.3(3) 
O(291)-Cl(3)-O(29) 4.4(17) 
O(30)-Cl(3)-O(29) 111.2(8) 
O(28)#5-Cl(3)-O(29) 108.2(8) 
O(28)-Cl(3)-O(29) 108.2(8) 
O(27)-Cl(3)-O(29) 109.5(8) 
O(28)#5-O(28)-Cl(3) 0(10) 
O(33)-Cl(4)-O(34) 109.0(3) 
O(33)-Cl(4)-O(32) 108.4(3) 
O(34)-Cl(4)-O(32) 110.6(3) 
O(33)-Cl(4)-O(31) 108.9(3) 
O(34)-Cl(4)-O(31) 111.0(3) 
O(32)-Cl(4)-O(31) 108.9(3) 
C(350)-O(35)-C(353) 106.6(6) 
O(35)-C(350)-C(351) 109.9(7) 
C(350)-C(351)-C(352) 101.8(8) 
C(353)-C(352)-C(351) 100.6(8) 
C(352)-C(353)-O(35) 103.5(7) 
C(360)-O(36)-C(363) 111.5(10) 
O(36)-C(360)-C(361) 102.2(11) 
C(362)-C(361)-C(360) 106.9(10) 
C(363)-C(362)-C(361) 103.6(11) 
O(36)-C(363)-C(362) 103.1(9) 
C(367)-O(361)-C(364) 112.2(11) 
C(367)-O(361)-O(39)#6 43.2(7) 
C(364)-O(361)-O(39)#6 146.0(10) 
O(361)-C(364)-C(365) 106.0(14) 
C(364)-C(365)-C(366) 100.0(14) 
C(367)-C(366)-C(365) 98.7(12) 
O(39)#6-C(367)-O(361) 81.1(10) 
O(39)#6-C(367)-C(366) 171.1(15) 
O(361)-C(367)-C(366) 101.4(12) 
C(370)-O(37)-C(373) 108.9(6) 
O(37)-C(370)-C(371) 105.2(7) 
C(372)-C(371)-C(370) 102.3(6) 
C(371)-C(372)-C(373) 103.2(6) 
O(37)-C(373)-C(372) 107.9(6) 
C(380)-O(38)-C(383) 115.6(12) 
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C(23)-O(9)-C(22) 114.7(4) 
O(10)-C(23)-O(9) 125.2(5) 
O(10)-C(23)-C(24) 123.7(5) 
O(9)-C(23)-C(24) 111.1(4) 
C(27)-C(24)-C(25) 120.5(5) 
C(27)-C(24)-C(23) 121.2(5) 
C(25)-C(24)-C(23) 118.2(4) 
C(26)-C(25)-C(24) 117.3(5) 
C(26)-C(25)-H(25) 121.3 
C(24)-C(25)-H(25) 121.3 
N(4)-C(26)-C(25) 122.4(5) 
N(4)-C(26)-H(26) 118.8 
C(25)-C(26)-H(26) 118.8 
C(28)-C(27)-C(24) 117.6(5) 
C(28)-C(27)-H(27) 121.2 
C(24)-C(27)-H(27) 121.2 
N(4)-C(28)-C(27) 122.9(5) 
N(4)-C(28)-H(28) 118.6 
C(27)-C(28)-H(28) 118.6 
C(28)-N(4)-C(26) 119.3(4) 
C(28)-N(4)-Cu(1)#2 119.6(3) 
C(26)-N(4)-Cu(1)#2 121.0(3) 
C(29)-N(5)-C(31) 118.9(4) 
C(29)-N(5)-Cu(2) 121.1(3) 
C(31)-N(5)-Cu(2) 120.0(3) 
N(5)-C(29)-C(30) 122.1(4) 
N(5)-C(29)-H(29) 119.0 
C(30)-C(29)-H(29) 119.0 
C(29)-C(30)-C(33) 119.0(4) 
C(29)-C(30)-H(30) 120.5 
C(33)-C(30)-H(30) 120.5 
N(5)-C(31)-C(32) 122.0(4) 
N(5)-C(31)-H(31) 119.0 
C(32)-C(31)-H(31) 119.0 
C(31)-C(32)-C(33) 119.5(5) 
C(31)-C(32)-H(32) 120.2 
C(33)-C(32)-H(32) 120.2 
C(32)-C(33)-C(30) 118.5(4) 
C(32)-C(33)-C(34) 119.2(4) 
C(30)-C(33)-C(34) 122.2(4) 
O(11)-C(34)-O(12) 126.2(4) 
O(11)-C(34)-C(33) 122.8(4) 
O(12)-C(34)-C(33) 111.0(4) 
C(34)-O(12)-C(35) 116.9(4) 
O(12)-C(35)-C(36) 109.0(4) 
O(12)-C(35)-H(35A) 109.9 
C(36)-C(35)-H(35A) 109.9 
O(12)-C(35)-H(35B) 109.9 
C(36)-C(35)-H(35B) 109.9 
H(35A)-C(35)-H(35B) 108.3 
O(13)-C(36)-C(35) 111.5(4) 
O(13)-C(36)-H(36A) 109.3 
C(35)-C(36)-H(36A) 109.3 
O(13)-C(36)-H(36B) 109.3 
C(35)-C(36)-H(36B) 109.3 
H(36A)-C(36)-H(36B) 108.0 
C(37)-O(13)-C(36) 118.1(4) 
O(14)-C(37)-O(13) 124.8(5) 
O(14)-C(37)-C(38) 123.5(5) 
O(13)-C(37)-C(38) 111.6(4) 
C(39)-C(38)-C(41) 119.4(5) 
C(39)-C(38)-C(37) 121.9(5) 
C(41)-C(38)-C(37) 118.7(5) 
C(38)-C(39)-C(40) 118.2(5) 

O(38)-C(380)-C(381) 102.9(11) 
C(382)-C(381)-C(380) 106.4(13) 
C(382)-C(381)-C(386) 18.9(10) 
C(380)-C(381)-C(386) 124.5(12) 
C(382)-C(381)-C(385) 26.3(9) 
C(380)-C(381)-C(385) 85.2(10) 
C(386)-C(381)-C(385) 44.3(9) 
C(386)-C(382)-C(385) 125(3) 
C(386)-C(382)-C(381) 119(3) 
C(385)-C(382)-C(381) 112(2) 
C(386)-C(382)-C(383) 111(3) 
C(385)-C(382)-C(383) 79.2(17) 
C(381)-C(382)-C(383) 99.3(13) 
C(386)-C(382)-C(387) 47(2) 
C(385)-C(382)-C(387) 102.8(19) 
C(381)-C(382)-C(387) 138.9(15) 
C(383)-C(382)-C(387) 66.2(11) 
C(386)-C(382)-C(384) 112(3) 
C(385)-C(382)-C(384) 49.5(15) 
C(381)-C(382)-C(384) 122.2(14) 
C(383)-C(382)-C(384) 33.8(8) 
C(387)-C(382)-C(384) 67.1(11) 
C(384)-C(383)-O(38) 96.1(17) 
C(384)-C(383)-C(382) 88.0(17) 
O(38)-C(383)-C(382) 94.9(12) 
C(384)-C(383)-C(385) 60.2(14) 
O(38)-C(383)-C(385) 84.3(11) 
C(382)-C(383)-C(385) 31.2(8) 
C(384)-C(383)-C(387) 83.7(16) 
O(38)-C(383)-C(387) 154.6(15) 
C(382)-C(383)-C(387) 59.8(11) 
C(385)-C(383)-C(387) 73.5(11) 
C(387)-O(381)-C(384) 99.3(15) 
C(383)-C(384)-O(381) 94.6(18) 
C(383)-C(384)-C(385) 81.7(17) 
O(381)-C(384)-C(385) 99.9(15) 
C(383)-C(384)-C(382) 58.2(14) 
O(381)-C(384)-C(382) 87.8(13) 
C(385)-C(384)-C(382) 27.2(8) 
C(382)-C(385)-C(386) 22.6(15) 
C(382)-C(385)-C(384) 103.3(19) 
C(386)-C(385)-C(384) 102.2(14) 
C(382)-C(385)-C(383) 69.6(16) 
C(386)-C(385)-C(383) 77.9(13) 
C(384)-C(385)-C(383) 38.2(9) 
C(382)-C(385)-C(381) 41.5(15) 
C(386)-C(385)-C(381) 62.7(12) 
C(384)-C(385)-C(381) 115.8(13) 
C(383)-C(385)-C(381) 78.5(10) 
C(382)-C(386)-C(385) 32(2) 
C(382)-C(386)-C(387) 113(3) 
C(385)-C(386)-C(387) 101.1(16) 
C(382)-C(386)-C(381) 43(2) 
C(385)-C(386)-C(381) 73.0(13) 
C(387)-C(386)-C(381) 134.9(16) 
O(381)-C(387)-C(386) 115.4(19) 
O(381)-C(387)-C(382) 99.6(15) 
C(386)-C(387)-C(382) 19.9(10) 
O(381)-C(387)-C(383) 68.4(12) 
C(386)-C(387)-C(383) 73.1(13) 
C(382)-C(387)-C(383) 54.0(10) 
O(39)#5-O(39)-C(367)#7 0(10) 
O(39)#5-O(39)-O(361)#7 0(10) 
C(367)#7-O(39)-O(361)#7 55.7(8) 
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C(38)-C(39)-H(39) 120.9 
C(40)-C(39)-H(39) 120.9 
N(6)-C(40)-C(39) 122.7(5) 
N(6)-C(40)-H(40) 118.7 
C(39)-C(40)-H(40) 118.7 
C(38)-C(41)-C(42) 119.3(5) 
C(38)-C(41)-H(41) 120.3 
C(42)-C(41)-H(41) 120.3 
N(6)-C(42)-C(41) 121.4(5) 
N(6)-C(42)-H(42) 119.3 
C(41)-C(42)-H(42) 119.3 

O(39)#5-O(39)-O(36)#7 0(10) 
C(367)#7-O(39)-O(36)#7 22.3(8) 
O(361)#7-O(39)-O(36)#7 52.5(4) 
O(39)#5-O(39)-O(33)#8 0(10) 
C(367)#7-O(39)-O(33)#8 126.4(8) 
O(361)#7-O(39)-O(33)#8 177.9(5) 
O(36)#7-O(39)-O(33)#8 129.0(3) 
O(26)-O(40)-O(251) 55.5(7) 
O(26)-O(40)-O(27)#9 163.9(8) 
O(251)-O(40)-O(27)#9 121.3(6) 

_______________________________________________________________________________________
Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z-1/2    #2 x,-y+1/2,z+1/2    #3 x,-
y-1/2,z-1/2 #4 x,-y-1/2,z+1/2    #5 x,y,z    #6 -x+1,y+1/2,-z+1/2     #7 -x+1,y-1/2,-z+1/2    #8 x+1,y,z    #9 x,y-
1,z 
 

Anisotropic displacement parameters (Å2x 103) for 13. The anisotropic displacement factor exponent takes 

the form: -2�2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 
_______________________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 
_______________________________________________________________________________________ 
Cu(1) 19(1)  25(1) 23(1)  -1(1) 0(1)  0(1) 
O(1) 39(2)  26(2) 32(2)  1(2) 1(2)  0(2) 
Cu(2) 23(1)  24(1) 23(1)  -2(1) 3(1)  0(1) 
O(2) 63(3)  24(2) 26(2)  1(2) -3(2)  -3(2) 
N(1) 23(2)  22(2) 25(2)  1(2) 1(2)  0(2) 
C(1) 25(2)  22(2) 26(2)  5(2) 0(2)  0(2) 
C(2) 27(2)  22(2) 26(2)  2(2) 2(2)  -1(2) 
C(3) 25(2)  27(3) 20(2)  4(2) -2(2)  0(2) 
C(4) 19(2)  31(3) 24(2)  0(2) -3(2)  2(2) 
C(5) 26(2)  19(2) 23(2)  1(2) -2(2)  -3(2) 
C(6) 28(2)  23(2) 22(2)  -2(2) -3(2)  6(2) 
O(3) 36(2)  68(3) 34(2)  6(2) 5(2)  26(2) 
O(4) 29(2)  34(2) 25(2)  2(2) 2(1)  5(2) 
C(7) 28(3)  39(3) 22(2)  3(2) 6(2)  8(2) 
C(8) 17(2)  43(3) 31(3)  5(2) 1(2)  3(2) 
O(5) 22(2)  37(2) 28(2)  5(2) 2(1)  7(2) 
C(9) 21(2)  24(2) 26(2)  0(2) -3(2)  -3(2) 
O(6) 38(2)  33(2) 22(2)  -1(2) -2(2)  7(2) 
C(10) 21(2)  25(2) 24(2)  1(2) 2(2)  2(2) 
C(11) 26(2)  24(3) 26(2)  -1(2) 1(2)  3(2) 
C(12) 24(2)  27(3) 23(2)  -3(2) 3(2)  1(2) 
C(13) 29(3)  32(3) 27(2)  -5(2) 4(2)  4(2) 
C(14) 29(2)  31(3) 27(2)  -8(2) 4(2)  5(2) 
N(2) 17(2)  29(2) 27(2)  2(2) -1(2)  1(2) 
N(3) 20(2)  22(2) 28(2)  -1(2) 0(2)  1(2) 
C(15) 24(2)  29(3) 28(2)  -1(2) 4(2)  1(2) 
C(16) 20(2)  26(3) 32(3)  3(2) -1(2)  3(2) 
C(17) 27(2)  24(3) 33(3)  1(2) -5(2)  6(2) 
C(18) 31(3)  21(3) 36(3)  1(2) -1(2)  -1(2) 
C(19) 20(2)  27(3) 28(2)  6(2) 1(2)  -4(2) 
C(20) 19(2)  27(3) 25(2)  5(2) 1(2)  -1(2) 
O(7) 32(2)  37(2) 30(2)  1(2) -3(2)  1(2) 
O(8) 33(2)  30(2) 24(2)  4(1) -12(2)  -5(2) 
C(21) 28(3)  40(3) 28(3)  10(2) -10(2)  -7(2) 
C(22) 20(2)  44(3) 37(3)  12(2) -3(2)  -6(2) 
O(9) 21(2)  27(2) 32(2)  8(2) 2(1)  -3(1) 
C(23) 32(3)  29(3) 33(3)  8(2) 4(2)  1(2) 
O(10) 36(2)  50(3) 57(3)  27(2) 19(2)  17(2) 
C(24) 22(2)  27(3) 26(2)  2(2) 0(2)  0(2) 
C(25) 28(2)  26(3) 29(2)  2(2) 3(2)  3(2) 
C(26) 27(2)  20(2) 28(2)  2(2) 2(2)  2(2) 
C(27) 32(3)  23(3) 33(3)  3(2) 4(2)  1(2) 
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C(28) 28(2)  23(3) 30(3)  2(2) 2(2)  4(2) 
N(4) 24(2)  25(2) 24(2)  3(2) 0(2)  2(2) 
N(5) 23(2)  25(2) 24(2)  0(2) 0(2)  1(2) 
C(29) 22(2)  23(2) 25(2)  0(2) -3(2)  1(2) 
C(30) 25(2)  23(2) 20(2)  -1(2) 0(2)  1(2) 
C(31) 30(2)  29(3) 22(2)  2(2) 2(2)  3(2) 
C(32) 24(2)  22(2) 29(2)  5(2) 2(2)  1(2) 
C(33) 22(2)  23(2) 25(2)  -3(2) 0(2)  0(2) 
C(34) 27(2)  17(2) 25(2)  -1(2) 4(2)  -3(2) 
O(11) 26(2)  31(2) 28(2)  -1(2) 3(1)  8(2) 
O(12) 23(2)  25(2) 22(2)  2(1) 0(1)  2(1) 
C(35) 30(3)  34(3) 26(2)  1(2) 5(2)  5(2) 
C(36) 22(2)  37(3) 35(3)  5(2) -1(2)  5(2) 
O(13) 28(2)  33(2) 25(2)  4(2) 2(1)  4(2) 
C(37) 24(2)  27(3) 28(2)  3(2) 1(2)  -7(2) 
O(14) 35(2)  39(2) 26(2)  -1(2) -3(2)  7(2) 
C(38) 24(2)  23(2) 30(3)  7(2) 4(2)  -4(2) 
C(39) 26(2)  28(3) 31(3)  1(2) 4(2)  1(2) 
C(40) 33(3)  30(3) 22(2)  0(2) -1(2)  0(2) 
C(41) 34(3)  30(3) 23(2)  -2(2) 4(2)  3(2) 
C(42) 32(3)  26(3) 26(2)  2(2) 3(2)  7(2) 
N(6) 26(2)  23(2) 27(2)  0(2) 7(2)  -4(2) 
N(7) 23(2)  25(2) 29(2)  -1(2) 6(2)  1(2) 
C(43) 31(3)  24(3) 41(3)  3(2) -4(2)  1(2) 
C(44) 34(3)  25(3) 34(3)  0(2) -1(2)  -1(2) 
C(45) 29(3)  23(3) 35(3)  -1(2) 3(2)  5(2) 
C(46) 28(2)  30(3) 33(3)  4(2) 0(2)  5(2) 
C(47) 20(2)  27(3) 24(2)  5(2) 7(2)  -1(2) 
C(48) 22(2)  37(3) 26(2)  5(2) 3(2)  -2(2) 
O(15) 38(2)  30(2) 37(2)  0(2) -8(2)  -1(2) 
O(16) 32(2)  31(2) 34(2)  11(2) 1(2)  -3(2) 
C(49) 28(3)  40(3) 33(3)  9(2) -2(2)  -7(2) 
C(50) 21(2)  51(4) 27(2)  8(2) 6(2)  -1(2) 
O(17) 24(2)  48(2) 44(2)  22(2) 8(2)  8(2) 
C(51) 32(3)  48(4) 32(3)  16(3) 11(2)  11(3) 
O(18) 32(2)  60(3) 53(3)  28(2) 17(2)  19(2) 
C(52) 27(3)  43(3) 36(3)  17(3) 8(2)  9(2) 
C(53) 29(3)  29(3) 43(3)  15(2) 9(2)  10(2) 
C(54) 25(2)  31(3) 46(3)  7(2) 9(2)  7(2) 
C(55) 32(3)  45(4) 46(3)  20(3) 18(2)  20(3) 
C(56) 38(3)  39(3) 41(3)  22(3) 13(2)  17(3) 
N(8) 25(2)  30(2) 34(2)  10(2) 7(2)  6(2) 
Cl(1) 29(1)  26(1) 29(1)  2(1) 3(1)  1(1) 
O(19) 33(2)  24(2) 38(2)  0(2) 2(2)  3(2) 
O(20) 28(2)  30(2) 54(2)  8(2) 4(2)  -4(2) 
O(21) 28(2)  50(3) 65(3)  16(2) -12(2)  0(2) 
O(22) 114(4)  31(2) 43(3)  -2(2) 35(3)  4(3) 
Cl(2) 17(1)  12(1) 23(1)  -2(1) 8(1)  -1(1) 
O(23) 21(5)  12(5) 44(7)  9(4) 7(4)  12(4) 
O(24) 34(6)  80(10) 220(20)  73(13) 74(11)  43(6) 
O(25) 32(7)  27(8) 53(8)  31(6) 40(6)  -4(5) 
Cl(21) 36(2)  46(2) 55(2)  -2(2) -4(1)  3(1) 
O(241) 26(5)  45(7) 157(15)  37(8) 53(8)  16(4) 
O(251) 47(9)  50(11) 98(13)  -42(8) -31(8)  26(7) 
O(261) 107(9)  59(7) 42(5)  -16(5) -6(6)  18(6) 
Cl(3) 41(1)  31(1) 23(1)  0(1) -4(1)  1(1) 
O(27) 52(3)  39(2) 38(2)  -13(2) -5(2)  3(2) 
O(28) 90(4)  45(3) 47(3)  14(2) -32(3)  -24(3) 
O(29) 9(6)  51(7) 34(5)  20(4) -18(5)  33(5) 
O(291) 18(8)  59(7) 35(6)  13(5) -18(6)  40(6) 
O(30) 46(3)  87(4) 44(3)  -24(3) 4(2)  12(3) 
Cl(4) 47(1)  34(1) 36(1)  10(1) -8(1)  -4(1) 
O(31) 67(3)  43(3) 51(3)  22(2) -14(2)  7(2) 
O(32) 36(2)  35(2) 53(3)  5(2) -2(2)  1(2) 
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O(33) 43(2)  50(3) 51(3)  3(2) -4(2)  -11(2) 
O(34) 94(4)  56(3) 40(3)  -3(2) -6(3)  3(3) 
O(35) 57(3)  59(3) 47(3)  -21(2) 4(2)  3(2) 
C(350) 47(4)  59(5) 72(5)  -18(4) 15(4)  5(3) 
C(351) 111(9)  78(7) 150(11)  -31(7) 70(8)  -31(6) 
C(352) 97(7)  65(6) 114(8)  -4(6) 54(6)  -20(5) 
C(353) 37(4)  164(11) 83(6)  -40(7) 3(4)  -3(5) 
O(36) 35(5)  36(5) 24(4)  -2(3) -8(4)  -1(4) 
C(360) 41(8)  77(13) 53(10)  35(9) -5(7)  -24(8) 
C(361) 30(6)  98(13) 50(8)  22(8) 7(6)  6(7) 
C(362) 33(6)  58(8) 47(7)  11(6) -6(5)  14(6) 
C(363) 42(7)  34(7) 31(6)  3(5) 5(5)  4(5) 
O(361) 65(6)  51(6) 57(6)  -2(5) 17(5)  4(5) 
C(364) 65(10)  75(11) 55(9)  -24(8) 19(8)  7(8) 
C(365) 93(19)  43(10) 73(15)  -24(10) -39(13)  -6(10) 
C(366) 87(14)  52(10) 71(12)  13(9) 52(12)  30(9) 
C(367) 44(7)  55(9) 71(10)  7(8) 18(7)  16(7) 
O(37) 147(6)  50(3) 97(5)  -17(3) -78(5)  21(4) 
C(370) 93(6)  57(5) 71(5)  19(4) -36(5)  -18(5) 
C(371) 67(5)  51(4) 55(4)  3(3) -16(4)  6(4) 
C(372) 49(4)  50(4) 40(3)  0(3) 5(3)  9(3) 
C(373) 57(4)  60(5) 49(4)  13(3) 6(3)  13(4) 
_______________________________________________________________________________________ 
 

Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 13. 
_______________________________________________________________________________________ 
 x  y  z  U(eq) 
_______________________________________________________________________________________ 
H(1) 7160(30) 5030(40) 2850(30) 30(20) 
H(1A) 7180(40) 4910(40) 2250(40) 70(20) 
H(2) 7390(30) -210(40) 2680(30) 20(20) 
H(2A) 7040(40) 110(50) 3080(40) 80(30) 
H(1B) 6998 3273 4187 29 
H(2B) 6169 3498 4843 30 
H(3) 5925 4247 2977 29 
H(4) 5051 4442 3584 30 
H(7A) 4154 4239 5435 36 
H(7B) 4682 4227 5951 36 
H(8A) 3877 3209 5871 36 
H(8B) 4348 2931 5391 36 
H(11) 5532 3010 7073 31 
H(12) 6252 2566 7783 30 
H(13) 6170 1416 6051 35 
H(14) 6888 1038 6786 35 
H(15) 8544 2991 3556 32 
H(16) 9274 3230 4318 31 
H(17) 7596 4822 3764 34 
H(18) 8303 5115 4532 35 
H(21A) 9853 4194 6013 39 
H(21B) 10504 4197 5638 39 
H(22A) 10442 2894 5641 40 
H(22B) 10646 3223 6239 40 
H(25) 9415 976 6875 33 
H(26) 8514 692 7447 30 
H(27) 8696 3016 6796 36 
H(28) 7804 2652 7346 33 
H(29) 7020 -1731 4467 28 
H(30) 6149 -1546 5088 28 
H(31) 5994 -746 3235 32 
H(32) 5103 -531 3825 30 
H(35A) 4119 -882 5653 36 
H(35B) 4642 -806 6168 36 
H(36A) 3925 -1887 6163 37 
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H(36B) 4386 -2166 5678 37 
H(39) 5560 -2025 7348 34 
H(40) 6290 -2448 8068 34 
H(41) 6312 -3532 6315 34 
H(42) 7031 -3907 7058 34 
H(43) 7752 -68 3893 38 
H(44) 8452 308 4643 37 
H(45) 8456 -2038 4048 35 
H(46) 9147 -1707 4817 36 
H(49A) 9769 -467 6355 40 
H(49B) 10411 -458 5971 40 
H(50A) 10476 -1737 6084 40 
H(50B) 10627 -1319 6655 40 
H(53) 8719 -1751 7262 40 
H(54) 7834 -2233 7753 41 
H(55) 9557 -3726 7233 49 
H(56) 8669 -4137 7753 47 
_______________________________________________________________________________________ 
 
Torsion angles [°] for 13. 
_______________________________________________________________________________________ 
N(3)-Cu(1)-N(1)-C(1) -40.8(4) 
N(4)#1-Cu(1)-N(1)-C(1) 47.0(15) 
N(2)#1-Cu(1)-N(1)-C(1) 133.2(4) 
O(1)-Cu(1)-N(1)-C(1) -133.5(4) 
O(19)-Cu(1)-N(1)-C(1) 46.1(4) 
Cu(1)#2-Cu(1)-N(1)-C(1) 3.6(3) 
N(3)-Cu(1)-N(1)-C(3) 137.7(4) 
N(4)#1-Cu(1)-N(1)-C(3) -134.5(13) 
N(2)#1-Cu(1)-N(1)-C(3) -48.4(4) 
O(1)-Cu(1)-N(1)-C(3) 45.0(4) 
O(19)-Cu(1)-N(1)-C(3) -135.4(4) 
Cu(1)#2-Cu(1)-N(1)-C(3) -178.0(4) 
C(3)-N(1)-C(1)-C(2) -2.1(7) 
Cu(1)-N(1)-C(1)-C(2) 176.4(4) 
N(1)-C(1)-C(2)-C(5) 2.5(7) 
C(1)-N(1)-C(3)-C(4) 0.2(7) 
Cu(1)-N(1)-C(3)-C(4) -178.3(4) 
N(1)-C(3)-C(4)-C(5) 1.2(8) 
C(3)-C(4)-C(5)-C(2) -0.7(7) 
C(3)-C(4)-C(5)-C(6) -178.7(5) 
C(1)-C(2)-C(5)-C(4) -1.0(7) 
C(1)-C(2)-C(5)-C(6) 176.9(5) 
C(4)-C(5)-C(6)-O(3) 7.8(8) 
C(2)-C(5)-C(6)-O(3) -170.1(5) 
C(4)-C(5)-C(6)-O(4) -171.6(4) 
C(2)-C(5)-C(6)-O(4) 10.5(7) 
O(3)-C(6)-O(4)-C(7) 9.0(8) 
C(5)-C(6)-O(4)-C(7) -171.7(4) 
C(6)-O(4)-C(7)-C(8) 102.8(5) 
O(4)-C(7)-C(8)-O(5) 80.9(5) 
C(7)-C(8)-O(5)-C(9) -96.5(5) 
C(8)-O(5)-C(9)-O(6) -2.8(7) 
C(8)-O(5)-C(9)-C(10) 178.0(4) 
O(6)-C(9)-C(10)-C(13) -20.0(7) 
O(5)-C(9)-C(10)-C(13) 159.2(4) 
O(6)-C(9)-C(10)-C(11) 157.8(5) 
O(5)-C(9)-C(10)-C(11) -23.0(6) 
C(13)-C(10)-C(11)-C(12) -1.0(7) 
C(9)-C(10)-C(11)-C(12) -178.7(4) 
C(10)-C(11)-C(12)-N(2) 1.3(7) 
C(11)-C(10)-C(13)-C(14) 0.2(7) 
C(9)-C(10)-C(13)-C(14) 178.0(5) 
C(10)-C(13)-C(14)-N(2) 0.4(8) 

O(261)#5-Cl(21)-O(251)-O(40) 125.8(9) 
O(261)-Cl(21)-O(251)-O(40) 125.8(9) 
O(241)-Cl(21)-O(261)-O(261)#5 0.0(6) 
O(231)-Cl(21)-O(261)-O(261)#5 0.0(6) 
O(251)-Cl(21)-O(261)-O(261)#5 0.0(3) 
O(291)-Cl(3)-O(28)-O(28)#5 0.0(2) 
O(30)-Cl(3)-O(28)-O(28)#5 0.0(3) 
O(27)-Cl(3)-O(28)-O(28)#5 0.0(3) 
O(29)-Cl(3)-O(28)-O(28)#5 0.0(2) 
C(353)-O(35)-C(350)-C(351) 3.8(10) 
O(35)-C(350)-C(351)-C(352) 21.4(12) 
C(350)-C(351)-C(352)-C(353) -37.8(11) 
C(351)-C(352)-C(353)-O(35) 40.6(10) 
C(350)-O(35)-C(353)-C(352) -28.9(9) 
C(363)-O(36)-C(360)-C(361) 19.1(17) 
O(36)-C(360)-C(361)-C(362) 3.6(18) 
C(360)-C(361)-C(362)-C(363) -23.7(17) 
C(360)-O(36)-C(363)-C(362) -34.8(15) 
C(361)-C(362)-C(363)-O(36) 34.3(13) 
C(367)-O(361)-C(364)-C(365) -9.1(19) 
O(39)#6-O(361)-C(364)-C(365) 27(2) 
O(361)-C(364)-C(365)-C(366) 34.3(18) 
C(364)-C(365)-C(366)-C(367) -44.8(16) 
C(364)-O(361)-C(367)-O(39)#6 150.9(12) 
C(364)-O(361)-C(367)-C(366) -20.5(15) 
O(39)#6-O(361)-C(367)-C(366) -171.4(16) 
C(365)-C(366)-C(367)-O(39)#6 -66(9) 
C(365)-C(366)-C(367)-O(361) 39.6(15) 
C(373)-O(37)-C(370)-C(371) 30.3(9) 
O(37)-C(370)-C(371)-C(372) -35.7(8) 
C(370)-C(371)-C(372)-C(373) 27.3(7) 
C(370)-O(37)-C(373)-C(372) -12.2(9) 
C(371)-C(372)-C(373)-O(37) -10.6(7) 
C(383)-O(38)-C(380)-C(381) -0.3(16) 
O(38)-C(380)-C(381)-C(382) 31.2(15) 
O(38)-C(380)-C(381)-C(386) 25.1(17) 
O(38)-C(380)-C(381)-C(385) 47.0(11) 
C(380)-C(381)-C(382)-C(386) -164(3) 
C(385)-C(381)-C(382)-C(386) 158(5) 
C(380)-C(381)-C(382)-C(385) 38(2) 
C(386)-C(381)-C(382)-C(385) -158(5) 
C(380)-C(381)-C(382)-C(383) -44.3(15) 
C(386)-C(381)-C(382)-C(383) 120(4) 
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C(11)-C(12)-N(2)-C(14) -0.7(7) 
C(11)-C(12)-N(2)-Cu(1)#2 177.7(4) 
C(13)-C(14)-N(2)-C(12) -0.1(8) 
C(13)-C(14)-N(2)-Cu(1)#2 -178.7(4) 
N(4)#1-Cu(1)-N(3)-C(15) -52.0(4) 
N(1)-Cu(1)-N(3)-C(15) 121.2(4) 
N(2)#1-Cu(1)-N(3)-C(15) 26.0(17) 
O(1)-Cu(1)-N(3)-C(15) -146.4(4) 
O(19)-Cu(1)-N(3)-C(15) 39.8(4) 
Cu(1)#2-Cu(1)-N(3)-C(15) 76.8(4) 
N(4)#1-Cu(1)-N(3)-C(17) 132.3(4) 
N(1)-Cu(1)-N(3)-C(17) -54.5(4) 
N(2)#1-Cu(1)-N(3)-C(17) -149.8(14) 
O(1)-Cu(1)-N(3)-C(17) 37.9(4) 
O(19)-Cu(1)-N(3)-C(17) -135.9(4) 
Cu(1)#2-Cu(1)-N(3)-C(17) -98.9(4) 
C(17)-N(3)-C(15)-C(16) 1.3(7) 
Cu(1)-N(3)-C(15)-C(16) -174.5(4) 
N(3)-C(15)-C(16)-C(19) 0.4(7) 
C(15)-N(3)-C(17)-C(18) -1.2(7) 
Cu(1)-N(3)-C(17)-C(18) 174.6(4) 
N(3)-C(17)-C(18)-C(19) -0.6(8) 
C(17)-C(18)-C(19)-C(16) 2.2(7) 
C(17)-C(18)-C(19)-C(20) -177.5(5) 
C(15)-C(16)-C(19)-C(18) -2.1(7) 
C(15)-C(16)-C(19)-C(20) 177.5(5) 
C(18)-C(19)-C(20)-O(7) -8.2(7) 
C(16)-C(19)-C(20)-O(7) 172.2(5) 
C(18)-C(19)-C(20)-O(8) 169.4(4) 
C(16)-C(19)-C(20)-O(8) -10.2(6) 
O(7)-C(20)-O(8)-C(21) -1.0(7) 
C(19)-C(20)-O(8)-C(21) -178.5(4) 
C(20)-O(8)-C(21)-C(22) 162.3(4) 
O(8)-C(21)-C(22)-O(9) -72.1(5) 
C(21)-C(22)-O(9)-C(23) -177.3(4) 
C(22)-O(9)-C(23)-O(10) -9.5(8) 
C(22)-O(9)-C(23)-C(24) 168.1(4) 
O(10)-C(23)-C(24)-C(27) 163.0(6) 
O(9)-C(23)-C(24)-C(27) -14.6(7) 
O(10)-C(23)-C(24)-C(25) -12.9(8) 
O(9)-C(23)-C(24)-C(25) 169.6(4) 
C(27)-C(24)-C(25)-C(26) 0.5(7) 
C(23)-C(24)-C(25)-C(26) 176.3(5) 
C(24)-C(25)-C(26)-N(4) 0.5(7) 
C(25)-C(24)-C(27)-C(28) -1.5(8) 
C(23)-C(24)-C(27)-C(28) -177.2(5) 
C(24)-C(27)-C(28)-N(4) 1.6(8) 
C(27)-C(28)-N(4)-C(26) -0.7(8) 
C(27)-C(28)-N(4)-Cu(1)#2 176.8(4) 
C(25)-C(26)-N(4)-C(28) -0.4(7) 
C(25)-C(26)-N(4)-Cu(1)#2 -177.9(4) 
N(8)#3-Cu(2)-N(5)-C(29) 43.1(10) 
N(7)-Cu(2)-N(5)-C(29) -44.5(4) 
N(6)#3-Cu(2)-N(5)-C(29) 131.8(4) 
O(2)-Cu(2)-N(5)-C(29) -137.6(4) 
O(23)-Cu(2)-N(5)-C(29) 46.1(5) 
Cu(2)#4-Cu(2)-N(5)-C(29) 1.7(3) 
N(8)#3-Cu(2)-N(5)-C(31) -137.5(7) 
N(7)-Cu(2)-N(5)-C(31) 134.9(4) 
N(6)#3-Cu(2)-N(5)-C(31) -48.8(4) 
O(2)-Cu(2)-N(5)-C(31) 41.8(4) 
O(23)-Cu(2)-N(5)-C(31) -134.5(6) 
Cu(2)#4-Cu(2)-N(5)-C(31) -178.9(4) 
C(31)-N(5)-C(29)-C(30) -0.6(7) 

C(385)-C(381)-C(382)-C(383) -82(2) 
C(380)-C(381)-C(382)-C(387) -109(2) 
C(386)-C(381)-C(382)-C(387) 56(3) 
C(385)-C(381)-C(382)-C(387) -146(4) 
C(380)-C(381)-C(382)-C(384) -17.4(19) 
C(386)-C(381)-C(382)-C(384) 147(4) 
C(385)-C(381)-C(382)-C(384) -55.2(19) 
C(380)-O(38)-C(383)-C(384) -112.4(17) 
C(380)-O(38)-C(383)-C(382) -23.9(16) 
C(380)-O(38)-C(383)-C(385) -53.3(14) 
C(380)-O(38)-C(383)-C(387) -24(4) 
C(386)-C(382)-C(383)-C(384) -98(3) 
C(385)-C(382)-C(383)-C(384) 25(2) 
C(381)-C(382)-C(383)-C(384) 136.5(18) 
C(387)-C(382)-C(383)-C(384) -83.9(16) 
C(386)-C(382)-C(383)-O(38) 166(3) 
C(385)-C(382)-C(383)-O(38) -70.6(18) 
C(381)-C(382)-C(383)-O(38) 40.5(15) 
C(387)-C(382)-C(383)-O(38) -179.8(14) 
C(384)-C(382)-C(383)-O(38) -96.0(18) 
C(386)-C(382)-C(383)-C(385) -123(4) 
C(381)-C(382)-C(383)-C(385) 111(2) 
C(387)-C(382)-C(383)-C(385) -109.3(18) 
C(384)-C(382)-C(383)-C(385) -25(2) 
C(386)-C(382)-C(383)-C(387) -14(3) 
C(385)-C(382)-C(383)-C(387) 109.3(18) 
C(381)-C(382)-C(383)-C(387) -139.7(16) 
C(384)-C(382)-C(383)-C(387) 83.9(16) 
O(38)-C(383)-C(384)-O(381) 179.2(13) 
C(382)-C(383)-C(384)-O(381) 84.5(14) 
C(385)-C(383)-C(384)-O(381) 99.4(14) 
C(387)-C(383)-C(384)-O(381) 24.7(13) 
O(38)-C(383)-C(384)-C(385) 79.9(13) 
C(382)-C(383)-C(384)-C(385) -14.8(12) 
C(387)-C(383)-C(384)-C(385) -74.6(11) 
O(38)-C(383)-C(384)-C(382) 94.7(13) 
C(385)-C(383)-C(384)-C(382) 14.8(12) 
C(387)-C(383)-C(384)-C(382) -59.8(10) 
C(387)-O(381)-C(384)-C(383) -38(2) 
C(387)-O(381)-C(384)-C(385) 44.7(17) 
C(387)-O(381)-C(384)-C(382) 20.2(15) 
C(386)-C(382)-C(384)-C(383) 96(3) 
C(385)-C(382)-C(384)-C(383) -146(3) 
C(381)-C(382)-C(384)-C(383) -53(2) 
C(387)-C(382)-C(384)-C(383) 81.1(17) 
C(386)-C(382)-C(384)-O(381) -1(3) 
C(385)-C(382)-C(384)-O(381) 117(2) 
C(381)-C(382)-C(384)-O(381) -150.2(16) 
C(383)-C(382)-C(384)-O(381) -96.8(18) 
C(387)-C(382)-C(384)-O(381) -15.7(11) 
C(386)-C(382)-C(384)-C(385) -118(4) 
C(381)-C(382)-C(384)-C(385) 93(2) 
C(383)-C(382)-C(384)-C(385) 146(3) 
C(387)-C(382)-C(384)-C(385) -133(2) 
C(381)-C(382)-C(385)-C(386) 156(5) 
C(383)-C(382)-C(385)-C(386) -108(4) 
C(387)-C(382)-C(385)-C(386) -46(3) 
C(384)-C(382)-C(385)-C(386) -90(4) 
C(386)-C(382)-C(385)-C(384) 90(4) 
C(381)-C(382)-C(385)-C(384) -114.1(17) 
C(383)-C(382)-C(385)-C(384) -18.3(14) 
C(387)-C(382)-C(385)-C(384) 44.0(19) 
C(386)-C(382)-C(385)-C(383) 108(4) 
C(381)-C(382)-C(385)-C(383) -95.8(17) 
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Cu(2)-N(5)-C(29)-C(30) 178.8(4) 
N(5)-C(29)-C(30)-C(33) -0.1(7) 
C(29)-N(5)-C(31)-C(32) 0.9(7) 
Cu(2)-N(5)-C(31)-C(32) -178.6(4) 
N(5)-C(31)-C(32)-C(33) -0.3(8) 
C(31)-C(32)-C(33)-C(30) -0.5(7) 
C(31)-C(32)-C(33)-C(34) -178.7(5) 
C(29)-C(30)-C(33)-C(32) 0.7(7) 
C(29)-C(30)-C(33)-C(34) 178.9(4) 
C(32)-C(33)-C(34)-O(11) 4.1(7) 
C(30)-C(33)-C(34)-O(11) -174.0(5) 
C(32)-C(33)-C(34)-O(12) -174.8(4) 
C(30)-C(33)-C(34)-O(12) 7.0(6) 
O(11)-C(34)-O(12)-C(35) 9.6(7) 
C(33)-C(34)-O(12)-C(35) -171.4(4) 
C(34)-O(12)-C(35)-C(36) 114.0(5) 
O(12)-C(35)-C(36)-O(13) 78.0(5) 
C(35)-C(36)-O(13)-C(37) -95.2(5) 
C(36)-O(13)-C(37)-O(14) 0.6(7) 
C(36)-O(13)-C(37)-C(38) -177.8(4) 
O(14)-C(37)-C(38)-C(39) 160.2(5) 
O(13)-C(37)-C(38)-C(39) -21.3(7) 
O(14)-C(37)-C(38)-C(41) -18.8(7) 
O(13)-C(37)-C(38)-C(41) 159.6(4) 
C(41)-C(38)-C(39)-C(40) -0.1(7) 
C(37)-C(38)-C(39)-C(40) -179.1(4) 
C(38)-C(39)-C(40)-N(6) -0.1(8) 
C(39)-C(38)-C(41)-C(42) -0.3(7) 
C(37)-C(38)-C(41)-C(42) 178.8(5) 
C(38)-C(41)-C(42)-N(6) 0.9(8) 
C(39)-C(40)-N(6)-C(42) 0.7(7) 
C(39)-C(40)-N(6)-Cu(2)#4 179.2(4) 
C(41)-C(42)-N(6)-C(40) -1.1(7) 
C(41)-C(42)-N(6)-Cu(2)#4 -179.7(4) 
N(8)#3-Cu(2)-N(7)-C(45) -59.4(4) 
N(5)-Cu(2)-N(7)-C(45) 108.1(4) 
N(6)#3-Cu(2)-N(7)-C(45) 20(3) 
O(2)-Cu(2)-N(7)-C(45) -158.5(4) 
O(23)-Cu(2)-N(7)-C(45) 29.6(5) 
Cu(2)#4-Cu(2)-N(7)-C(45) 60.6(4) 
N(8)#3-Cu(2)-N(7)-C(43) 124.0(4) 
N(5)-Cu(2)-N(7)-C(43) -68.4(4) 
N(6)#3-Cu(2)-N(7)-C(43) -157(2) 
O(2)-Cu(2)-N(7)-C(43) 24.9(4) 
O(23)-Cu(2)-N(7)-C(43) -147.0(5) 
Cu(2)#4-Cu(2)-N(7)-C(43) -116.0(4) 
C(45)-N(7)-C(43)-C(44) 0.3(8) 
Cu(2)-N(7)-C(43)-C(44) 177.0(4) 
N(7)-C(43)-C(44)-C(47) -0.6(8) 
C(43)-N(7)-C(45)-C(46) 0.7(7) 
Cu(2)-N(7)-C(45)-C(46) -175.9(4) 
N(7)-C(45)-C(46)-C(47) -1.4(8) 
C(43)-C(44)-C(47)-C(46) -0.1(8) 
C(43)-C(44)-C(47)-C(48) -178.7(5) 
C(45)-C(46)-C(47)-C(44) 1.0(7) 
C(45)-C(46)-C(47)-C(48) 179.5(4) 
C(44)-C(47)-C(48)-O(15) -10.5(7) 
C(46)-C(47)-C(48)-O(15) 171.0(5) 
C(44)-C(47)-C(48)-O(16) 169.2(4) 
C(46)-C(47)-C(48)-O(16) -9.3(6) 
O(15)-C(48)-O(16)-C(49) 0.2(7) 
C(47)-C(48)-O(16)-C(49) -179.4(4) 
C(48)-O(16)-C(49)-C(50) 177.7(4) 
O(16)-C(49)-C(50)-O(17) -69.6(5) 

C(387)-C(382)-C(385)-C(383) 62.3(12) 
C(384)-C(382)-C(385)-C(383) 18.3(14) 
C(386)-C(382)-C(385)-C(381) -156(5) 
C(383)-C(382)-C(385)-C(381) 95.8(17) 
C(387)-C(382)-C(385)-C(381) 158(2) 
C(384)-C(382)-C(385)-C(381) 114.1(17) 
C(383)-C(384)-C(385)-C(382) 28(2) 
O(381)-C(384)-C(385)-C(382) -65(2) 
C(383)-C(384)-C(385)-C(386) 51.6(19) 
O(381)-C(384)-C(385)-C(386) -41.6(18) 
C(382)-C(384)-C(385)-C(386) 23.2(15) 
O(381)-C(384)-C(385)-C(383) -93.2(18) 
C(382)-C(384)-C(385)-C(383) -28(2) 
C(383)-C(384)-C(385)-C(381) -13.8(19) 
O(381)-C(384)-C(385)-C(381) -107.0(14) 
C(382)-C(384)-C(385)-C(381) -42.2(16) 
C(384)-C(383)-C(385)-C(382) -150(2) 
O(38)-C(383)-C(385)-C(382) 109.2(18) 
C(387)-C(383)-C(385)-C(382) -58.2(17) 
C(384)-C(383)-C(385)-C(386) -128.4(19) 
O(38)-C(383)-C(385)-C(386) 131.2(14) 
C(382)-C(383)-C(385)-C(386) 21.9(15) 
C(387)-C(383)-C(385)-C(386) -36.3(12) 
O(38)-C(383)-C(385)-C(384) -100.4(18) 
C(382)-C(383)-C(385)-C(384) 150(2) 
C(387)-C(383)-C(385)-C(384) 92.1(17) 
C(384)-C(383)-C(385)-C(381) 167.4(17) 
O(38)-C(383)-C(385)-C(381) 67.0(10) 
C(382)-C(383)-C(385)-C(381) -42.3(15) 
C(387)-C(383)-C(385)-C(381) -100.5(11) 
C(380)-C(381)-C(385)-C(382) -144(2) 
C(386)-C(381)-C(385)-C(382) 10(2) 
C(382)-C(381)-C(385)-C(386) -10(2) 
C(380)-C(381)-C(385)-C(386) -153.9(13) 
C(382)-C(381)-C(385)-C(384) 81(2) 
C(380)-C(381)-C(385)-C(384) -63.1(15) 
C(386)-C(381)-C(385)-C(384) 90.8(16) 
C(382)-C(381)-C(385)-C(383) 72(2) 
C(380)-C(381)-C(385)-C(383) -71.8(10) 
C(386)-C(381)-C(385)-C(383) 82.2(12) 
C(381)-C(382)-C(386)-C(385) -155(5) 
C(383)-C(382)-C(386)-C(385) 91(4) 
C(387)-C(382)-C(386)-C(385) 73(4) 
C(384)-C(382)-C(386)-C(385) 55(3) 
C(385)-C(382)-C(386)-C(387) -73(4) 
C(381)-C(382)-C(386)-C(387) 132(2) 
C(383)-C(382)-C(386)-C(387) 18(3) 
C(384)-C(382)-C(386)-C(387) -18(3) 
C(385)-C(382)-C(386)-C(381) 155(5) 
C(383)-C(382)-C(386)-C(381) -114(3) 
C(387)-C(382)-C(386)-C(381) -132(2) 
C(384)-C(382)-C(386)-C(381) -150(4) 
C(384)-C(385)-C(386)-C(382) -95(4) 
C(383)-C(385)-C(386)-C(382) -66(4) 
C(381)-C(385)-C(386)-C(382) 18(4) 
C(382)-C(385)-C(386)-C(387) 116(4) 
C(384)-C(385)-C(386)-C(387) 20.8(19) 
C(383)-C(385)-C(386)-C(387) 50.5(15) 
C(381)-C(385)-C(386)-C(387) 133.8(16) 
C(382)-C(385)-C(386)-C(381) -18(4) 
C(384)-C(385)-C(386)-C(381) -112.9(13) 
C(383)-C(385)-C(386)-C(381) -83.2(9) 
C(380)-C(381)-C(386)-C(382) 18(4) 
C(385)-C(381)-C(386)-C(382) -14(3) 
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C(49)-C(50)-O(17)-C(51) 179.5(5) 
C(50)-O(17)-C(51)-O(18) -4.7(9) 
C(50)-O(17)-C(51)-C(52) 173.5(5) 
O(18)-C(51)-C(52)-C(53) 156.8(6) 
O(17)-C(51)-C(52)-C(53) -21.4(8) 
O(18)-C(51)-C(52)-C(55) -21.3(10) 
O(17)-C(51)-C(52)-C(55) 160.5(6) 
C(55)-C(52)-C(53)-C(54) 0.0(9) 
C(51)-C(52)-C(53)-C(54) -178.1(5) 
C(52)-C(53)-C(54)-N(8) 0.8(9) 
C(53)-C(52)-C(55)-C(56) -1.2(9) 
C(51)-C(52)-C(55)-C(56) 176.9(6) 
C(52)-C(55)-C(56)-N(8) 1.8(10) 
C(53)-C(54)-N(8)-C(56) -0.3(9) 
C(53)-C(54)-N(8)-Cu(2)#4 178.1(5) 
C(55)-C(56)-N(8)-C(54) -1.1(9) 
C(55)-C(56)-N(8)-Cu(2)#4 -179.4(5) 
O(21)-Cl(1)-O(19)-Cu(1) 85.1(5) 
O(22)-Cl(1)-O(19)-Cu(1) -35.4(6) 
O(20)#5-Cl(1)-O(19)-Cu(1) -155.3(4) 
O(20)-Cl(1)-O(19)-Cu(1) -155.3(4) 
N(3)-Cu(1)-O(19)-Cl(1) -85.2(5) 
N(4)#1-Cu(1)-O(19)-Cl(1) 5.0(5) 
N(1)-Cu(1)-O(19)-Cl(1) -175.1(5) 
N(2)#1-Cu(1)-O(19)-Cl(1) 93.3(5) 
O(1)-Cu(1)-O(19)-Cl(1) -171.4(11) 
Cu(1)#2-Cu(1)-O(19)-Cl(1) -126.8(5) 
O(21)-Cl(1)-O(20)-O(20)#5 0.00(12) 
O(22)-Cl(1)-O(20)-O(20)#5 0.00(4) 
O(19)-Cl(1)-O(20)-O(20)#5 0.00(8) 
O(24)-Cl(2)-O(23)-Cu(2) 61(2) 
O(25)-Cl(2)-O(23)-Cu(2) -174.0(17) 
O(26)-Cl(2)-O(23)-Cu(2) -56(2) 
N(8)#3-Cu(2)-O(23)-Cl(2) -9.4(19) 
N(7)-Cu(2)-O(23)-Cl(2) -100.0(19) 
N(5)-Cu(2)-O(23)-Cl(2) 171.3(19) 
N(6)#3-Cu(2)-O(23)-Cl(2) 79.4(19) 
O(2)-Cu(2)-O(23)-Cl(2) 146.5(16) 
Cu(2)#4-Cu(2)-O(23)-Cl(2) -135(2) 
O(24)-Cl(2)-O(26)-O(40) 158.3(10) 
O(25)-Cl(2)-O(26)-O(40) 35.3(12) 
O(23)-Cl(2)-O(26)-O(40) -84.0(11) 
O(241)-Cl(21)-O(251)-O(40) -104.0(11) 
O(231)-Cl(21)-O(251)-O(40) 4.9(13) 

C(382)-C(381)-C(386)-C(385) 14(3) 
C(380)-C(381)-C(386)-C(385) 32.1(16) 
C(382)-C(381)-C(386)-C(387) -75(4) 
C(380)-C(381)-C(386)-C(387) -57(3) 
C(385)-C(381)-C(386)-C(387) -89(2) 
C(384)-O(381)-C(387)-C(386) -36(2) 
C(384)-O(381)-C(387)-C(382) -22.7(16) 
C(384)-O(381)-C(387)-C(383) 22.3(12) 
C(382)-C(386)-C(387)-O(381) 40(4) 
C(385)-C(386)-C(387)-O(381) 8(2) 
C(381)-C(386)-C(387)-O(381) 85(3) 
C(385)-C(386)-C(387)-C(382) -32(3) 
C(381)-C(386)-C(387)-C(382) 45(3) 
C(382)-C(386)-C(387)-C(383) -15(3) 
C(385)-C(386)-C(387)-C(383) -47.0(14) 
C(381)-C(386)-C(387)-C(383) 30(2) 
C(386)-C(382)-C(387)-O(381) -144(4) 
C(385)-C(382)-C(387)-O(381) -18(2) 
C(381)-C(382)-C(387)-O(381) 131(2) 
C(383)-C(382)-C(387)-O(381) 54.3(14) 
C(384)-C(382)-C(387)-O(381) 17.4(13) 
C(385)-C(382)-C(387)-C(386) 126(4) 
C(381)-C(382)-C(387)-C(386) -85(4) 
C(383)-C(382)-C(387)-C(386) -162(4) 
C(384)-C(382)-C(387)-C(386) 161(4) 
C(386)-C(382)-C(387)-C(383) 162(4) 
C(385)-C(382)-C(387)-C(383) -71.9(19) 
C(381)-C(382)-C(387)-C(383) 76(2) 
C(384)-C(382)-C(387)-C(383) -36.9(9) 
C(384)-C(383)-C(387)-O(381) -29.2(16) 
O(38)-C(383)-C(387)-O(381) -120(4) 
C(382)-C(383)-C(387)-O(381) -120.6(15) 
C(385)-C(383)-C(387)-O(381) -90.0(13) 
C(384)-C(383)-C(387)-C(386) 97.7(18) 
O(38)-C(383)-C(387)-C(386) 7(4) 
C(382)-C(383)-C(387)-C(386) 6.4(13) 
C(385)-C(383)-C(387)-C(386) 37.0(12) 
C(384)-C(383)-C(387)-C(382) 91.3(17) 
O(38)-C(383)-C(387)-C(382) 0(3) 
C(385)-C(383)-C(387)-C(382) 30.6(9) 
Cl(2)-O(26)-O(40)-O(251) -19.9(7) 
Cl(2)-O(26)-O(40)-O(27)#9 64(3) 
Cl(21)-O(251)-O(40)-O(26) 50.0(11) 
Cl(21)-O(251)-O(40)-O(27)#9 -111.2(11) 

_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z-1/2    #2 x,-y+1/2,z+1/2    #3 x,-
y-1/2,z-1/2     #4 x,-y-1/2,z+1/2    #5 x,y,z    #6 -x+1,y+1/2,-z+1/2     #7 -x+1,y-1/2,-z+1/2    #8 x+1,y,z    #9 
x,y-1,z 
 
Hydrogen bonds for 13 [Å and °]. 
_______________________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
_______________________________________________________________________________________ 
 C(41)-H(41)...O(3)#10 0.93 2.75 3.566(7) 147.2 
 C(36)-H(36B)...O(6)#10 0.97 2.82 3.698(7) 150.5 
 C(13)-H(13)...O(11)#10 0.93 2.60 3.462(6) 153.5 
 C(12)-H(12)...O(13)#11 0.93 2.98 3.639(6) 129.2 
 C(30)-H(30)...O(14) 0.93 2.87 3.611(6) 137.2 
 C(8)-H(8B)...O(14)#10 0.97 2.80 3.715(7) 158.1 
 C(15)-H(15)...O(18)#12 0.93 2.44 3.026(6) 121.1 
 C(14)-H(14)...O(35)#10 0.93 2.41 3.308(7) 162.5 
 C(42)-H(42)...O(361)#10 0.93 2.43 3.328(11) 161.2 
 C(4)-H(4)...O(28)#5 0.93 2.44 3.191(6) 137.8 
 C(8)-H(8A)...O(23)#10 0.97 2.56 3.501(19) 162.8 
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 C(8)-H(8A)...O(25)#10 0.97 2.48 3.266(16) 138.4 
 C(8)-H(8A)...O(251)#10 0.97 2.53 3.337(18) 140.5 
 C(11)-H(11)...O(27)#13 0.93 2.54 3.457(7) 166.8 
 C(17)-H(17)...O(25)#14 0.93 2.55 3.281(16) 135.5 
 C(17)-H(17)...O(251)#14 0.93 2.53 3.254(18) 135.1 
 C(22)-H(22B)...O(24)#12 0.97 2.36 3.072(18) 130.1 
 C(22)-H(22B)...O(241)#12 0.97 2.60 3.081(13) 110.9 
 C(26)-H(26)...O(32)#10 0.93 2.50 3.220(6) 134.3 
 C(28)-H(28)...O(22)#2 0.93 2.47 3.167(7) 131.7 
 C(29)-H(29)...O(261)#5 0.93 2.57 3.304(12) 135.8 
 C(31)-H(31)...O(28)#7 0.93 2.46 3.354(7) 160.6 
 C(36)-H(36A)...O(20)#10 0.97 2.59 3.367(6) 137.2 
 C(43)-H(43)...O(20)#5 0.93 2.48 3.373(7) 162.2 
 C(54)-H(54)...O(26)#4 0.93 2.40 3.263(14) 154.4 
 C(56)-H(56)...O(39)#4 0.93 2.43 3.037(10) 122.8 
 O(1)-H(1)...O(26)#14 0.68(7) 2.29(7) 2.885(14) 147(7) 
 O(2)-H(2A)...O(20)#5 0.99(9) 2.21(9) 3.085(6) 146(7) 
 O(1)-H(1)...O(40)#14 0.68(7) 2.08(7) 2.666(13) 145(7) 
 O(2)-H(2)...O(39)#5 0.56(6) 2.32(7) 2.814(10) 150(9) 
 O(2)-H(2)...O(361)#7 0.56(6) 2.14(6) 2.676(11) 164(9) 
 O(1)-H(1A)...O(35)#6 0.97(8) 1.80(9) 2.752(6) 167(7) 
_______________________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z-1/2    #2 x,-y+1/2,z+1/2    #3 x,-
y-1/2,z-1/2     #4 x,-y-1/2,z+1/2    #5 x,y,z    #6 -x+1,y+1/2,-z+1/2     #7 -x+1,y-1/2,-z+1/2    #8 x+1,y,z    #9 
x,y-1,z     #10 -x+1,-y,-z+1    #11 -x+1,y+1/2,-z+3/2    #12 -x+2,-y,-z+1     #13 -x+1,-y+1,-z+1    #14 x,y+1,z 
 

II - Powder X-Ray diffraction 

II.1 - Experiment 

This experiment was carried out in collaboration with Dr. Antonia Neels from the University 

of Neuchâtel. The powder sample of 12 was inserted in a glass capillary of 0.5 mm 

diameter. The X-ray powder data (Graph E-1) were collected on a computer controlled 

STOE-STADIP focusing powder diffractometer [288] equipped with a curved Ge(111) 

monochromator, where the CuKα1-line could be well separated (λ=1.5404 Å). A STOE 

linear position sensitive detector [289] was used. The compound was measured in the 

range of 6° ≤ 2θ ≤ 80° using a step width of 0.01°. The indexing procedure was performed 

using TREOR [290] in the program EXPO2004 [291]. The structure solution was carried 

out using the program DASH introducing a structural model of the copper-ligand fragment 

(Cu0.5L0.5) and one nitrate anion. The obtained positions of the molecules in the given 

symmetry and unit cell was used for Rietveld refinement in GSAS/EXPGUI [292-294]. After 

the initial refinement of the scale, and unit cell constants, the atomic positions were refined 

using soft constraints defining the geometry of the molecule within some allowable errors 

[295]. Subsequent Rietveld refinement was carried out using gradually relaxing bond 

restraints. The copper atom position was refined anisotropically, while all remaining non-

hydrogen atoms were refined isotropically applying an overall temperature factor for all 

carbon atoms and all nitrogen and oxygen atoms. The temperature factor of the H-atoms 
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was fixed. In the final cycles of refinement, the shifts in all parameters were less than their 

estimated standard deviations. Neutral atom scattering factors were used for all atoms. No 

corrections were made for anomalous dispersion, absorption effects, or preferred 

orientation. 

 

 

Graph E-1: Powder X-ray diffraction of 12 

 

II.2 - Crystallographic data for 12 

 

Empirical formula  C14H12N4O10Cu1 

Formula weight  459.81 

Temperature  293 K 

Wavelength  1.5404 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 5.19250(11) Å � = 71.8835(16)°. 

 b = 8.56689(19) Å � = 83.5771(16)°. 

 c = 10.8523(3) Å � = 77.9083(19)°. 
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Volume 448.07 (1)Å3 

Z 1 

Density (calculated) 1.704 Mg/m3 

Absorption coefficient 2.336 mm-1 

Specimen form, colour Cylinder (particle morphology: powder), green 

Crystal size 0.5 × 5 × 0.5 mm3 

Diffractometer Stoe STADIP 

Data collection method Specimen mounting: capillary; mode: transmission; 

scan method: step 

Absorption correction none 

2� (°) 2 � min = 6.0, 2 � max = 80.0, increment = 0.01 

Refinement on Inet 

R factors and goodness of fit Rp = 0.052, Rwp = 0.068, Rexp = 0.021, S = 3.36 

Profile function pseudovoigt 

No. of parameters 87 

H-atom treatment Constrained to parent site 

(�/
)max 0.04 

Computer programs: WinXPow, Stoe & Cie (1997); EXPO04; GSAS; PLATON04. 

 

Atomic coordinates and displacement parameters for 12 
_______________________________________________________________________________________ 
 x  y  z  U(iso or eq) 
_______________________________________________________________________________________ 
Cu1 1.0  0.0  0.5  Uani 0.05911 
C1 0.7957(14) 0.2408(7) 0.2735(5) Uiso 0.0251(16) 
C2 0.7364(11) 0.3905(8) 0.1758(4) Uiso   0.0251(16) 
C3 0.8528(12) 0.5197(6) 0.1737(4) Uiso   0.0251(16) 
C4 1.0214(11) 0.4998(7) 0.2677(5) Uiso   0.0251(16) 
C5 1.0742(11) 0.3489(8) 0.3644(4) Uiso   0.0251(16) 
C6 0.7989(11) 0.6844(6) 0.0713(4) Uiso   0.0251(16) 
C7 0.9062(11) 0.9555(6) -0.0200(5) Uiso   0.0251(16) 
N2 0.6559(13) 0.1460(5) 0.6459(5) Uiso   0.0491(13) 
N1 0.9592(14) 0.2236(7) 0.3653(4) Uiso   0.0491(13) 
O1 0.8994(12) 0.1234(7) 0.6328(6) Uiso   0.0491(13) 
O2 0.5423(12) 0.0803(8) 0.5873(5) Uiso   0.0491(13) 
O3 0.5314(12) 0.2249(7) 0.7176(5) Uiso   0.0491(13) 
O4 0.6461(12) 0.7181(7) -0.0112(5) Uiso   0.0491(13) 
O5 0.9472(12) 0.7912(6) 0.0789(4) Uiso   0.0491(13) 
H1 0.7134(22) 0.1538(10) 0.2728(8) Uiso   0.05 
H2 0.6210(13) 0.3993(14) 0.1135(6) Uiso   0.05 
H4 1.1022(19) 0.5867(11) 0.2683(8) Uiso   0.05 
H5 1.1904(14) 0.3405(14) 0.4270(6) Uiso   0.05 
H7 0.9319(34) 0.9540(13) -0.1064(5) Uiso   0.05 
H8 0.7317(11) 1.0134(11) -0.0272(16) Uiso   0.05 
_______________________________________________________________________________________ 
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Bond lengths [Å] and angles [°] for 12. 
_______________________________________________________________________________________ 
  Cu1       N1                2.002(5)   
  Cu1       N1                2.002(5)   
  Cu1       O1                2.003(6)   
  Cu1       O1                2.003(6)   
  Cu1       O2                2.497(6)   
  Cu1       O2                2.497(6)   
  C1        C2              1.3879(34)   
  C1        N1              1.3349(35)   
  C1        H1              0.9359(22)   
  C2        C1              1.3879(34)   
  C2        C3              1.3602(34)   
  C2        H2              0.9286(22)   
  C3        C2              1.3602(34)   
  C3        C4              1.3659(35)   
  C3        C6                1.494(4)   
  C4        C3              1.3659(35)   
  C4        C5              1.3854(34)   
  C4        H4              0.9299(22)   
  C5        C4              1.3854(34)   
  C5        N1                1.330(4)   
  C5        H5              0.9347(22)   
  C6        C3                1.494(4)   
  C6        O4                1.190(4)   
  C6        O5                1.340(4)   
  C7        C7                1.527(4)   

  C7        O5              1.4710(35)   
  C7        H7              0.9361(23)   
  C7        H8              0.9362(23)   
  N2        O1                1.237(4)   
  N2        O2                1.230(4)   
  N2        O3                1.230(4)   
  N1        CU1               2.002(5)   
  N1        C1              1.3349(35)   
  N1        C5                1.330(4)   
  O1        CU1               2.003(6)   
  O1        N2                1.237(4)   
  O2        CU1               2.497(6)   
  O2        N2                1.230(4)   
  O3        N2                1.230(4)   
  O4        C6                1.190(4)   
  O5        C6                1.340(4)   
  O5        C7              1.4710(35)   
  H1        C1              0.9359(22)   
  H2        C2              0.9286(22)   
  H4        C4              0.9299(22)   
  H5        C5              0.9347(22)   
  H7        C7              0.9361(23)   
  H7        H8                1.389(5)   
  H8        C7              0.9362(23)   
  H8        H7                1.389(5)   

 
  C2        C1        N1              121.12(34) 
  C2        C1        H1                117.0(5) 
  N1        C1        H1                121.8(5) 
  C1        C2        C3              118.61(32) 
  C1        C2        H1               24.70(17) 
  C1        C2        H2                119.3(5) 
  C3        C2        H1              143.31(31) 
  C3        C2        H2                122.0(5) 
  H1        C2        H2                 94.7(5) 
  C2        C3        C4              119.60(33) 
  C2        C3        C6                121.6(5) 
  C4        C3        C6                118.8(5) 
  C3        C4        C5              120.22(32) 
  C3        C4        H4                120.9(5) 
  C3        C4        H5              144.73(31) 
  C5        C4        H4                118.9(5) 
  C5        C4        H5               24.51(17) 
  H4        C4        H5                 94.4(5) 
  C4        C5        N1              119.59(34) 
  C4        C5        H5                117.5(5) 
  N1        C5        H5                122.9(5) 
  C3        C6        O4                124.5(5) 
  C3        C6        O5                112.9(4) 
  O4        C6        O5                122.6(5) 

  C7        C7        O5                101.9(4) 
  C7        C7        H7                114.3(5) 
  C7        C7        H8                114.2(5) 
  O5        C7        H7                115.8(5) 
  O5        C7        H8                115.7(5) 
  H7        C7        H8                 95.8(5) 
  O1        N2        O2                116.9(5) 
  O1        N2        O3                122.2(6) 
  O2        N2        O3                120.8(6) 
  C1        N1        C5                120.9(4) 
  C1        N1        H1               23.50(18) 
  C1        N1        H5                144.0(4) 
  C5        N1        H1                144.3(4) 
  C5        N1        H5               23.13(19) 
  H1        N1        H5              167.48(34) 
  C6        O5        C7                115.8(4) 
  C1        H1        C2               38.29(31) 
  C1        H1        N1               34.66(32) 
  C2        H1        N1               72.94(21) 
  C4        H5        C5               37.95(31) 
  C4        H5        N1               71.94(21) 
  C5        H5        N1               34.00(32) 
  C7        H7        H8               42.11(25) 
  C7        H8        H7               42.10(25) 

_______________________________________________________________________________________ 
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G - Appendices 

I - Abbreviations 

 

DMC 1,3-dimethyl-2-chloroimidazolium 

chloride 

LMCT Ligand to Metal Charge Transfert 

DMF Dimethylformamide MeCN Acetonitrile 

DMSO Dimethylsulfoxide MeCO2
- Acetate 

EtOH Ethanol MLCT Metal to Ligand Charge Transfert 

ESI/MS ElectroSpray Ionisation Mass 

Spectroscopy 

NMR Nuclear magnetic resonance 

FT-IR 

spectro. 

Fourier Transform InfraRed 

spectroscopy 

SDTA Scanning Differential Thermal 

Analysis 

IR InfraRed TGA Thermo-Gravimetric Analysis 

L Ethanediyl bis(isonicotinate) THF tetrahydrofurane 

    

IR designations   

� Stretching vibrations s strong 

� Out of plane vibrations m medium 

	 In plane vibrations w weak 

   

1H-NMR desigantions   

s singulet   

m mutiplet   
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II - Summary 

This thesis reports the synthesis of the ligand ethanediyl bis(isonicotinate), L, as well as 

the building of coordination polymers based on L and CuI, AgI and CuII salts. 

 

Chapter A gives an overview on coordination polymers, their syntheses, structures, and 

applications. It describes the use of bidentate ligands with N,N’-donors with silver and 

copper cations for the building of such metal-organic frameworks. 

 

Chapter B-I discusses the synthesis of the ligand ethanediyl bis(isonicotinate), L, and 

presents its characterizations and its crystallographic structure. 

 

Chapter B-II describes coordination polymers obtained from L and CuCl. It is focused on 

the importance of the crystallization solvent, since two different compounds appear 

according to the chosen crystallization solvent. 

 

Chapter B-III is devoted to the study of silver(I) coordination polymers based on L and 

silver salt. The numerous obtained silver coordination polymers allow finding some rules 

concerning the crystallization solvent influence or the counter ion influence. 

 

Chapter B-IV presents some copper(II) coordination polymers build up with L and copper 

nitrate or perchlorate. With these compounds, the behaviour of the ligand L towards more 

“rigid” cations was studied. 

 

Chapter C summarizes the related works, presents the outlooks to this project and 

especially the possible applications for the synthesized metal-organic frameworks. 
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