Math. Proc. Camb. Phil. Soc. (2013), **154**, 145–152 -c *Cambridge Philosophical Society* 2012 doi:10.1017/S0305004112000461 First published online 4 October 2012

An effective "Theorem of Andre" for ´ *C M***-points on a plane curve**

BY YURI BILU

Institut de Mathematiques de Bordeaux, Universit ´ e Bordeaux ´ 1, 351 *cours de la Liberation, ´* 33405 *Talence, France. e-mail*: yuri@math.u-bordeaux1.fr

DAVID MASSER

Mathematisches Institut, Universitat Basel, ¨ Rheinsprung 21, 4051 *Basel, Switzerland. e-mail*: David.Masser@unibas.ch

AND UMBERTO ZANNIER

Scuola Normale Superiore, Piazza Cavalieri 7*,* 56126 *Pisa, Italy. e-mail*: u.zannier@sns.it

(*Received* 4 *July* 2011; *revised* 5 *July* 2012)

Abstract

It is a well known result of Y. André (a basic special case of the André-Oort conjecture) that an irreducible algebraic plane curve containing infinitely many points whose coordinates are *CM*-invariants is either a horizontal or vertical line, or a modular curve $Y_0(n)$. André's proof was partially ineffective, due to the use of (Siegel's) class-number estimates. Here we observe that his arguments may be modified to yield an effective proof. For example, with the diagonal line $X_1 + X_2 = 1$ or the hyperbola $X_1 X_2 = 1$ it may be shown quite quickly that there are no imaginary quadratic τ_1 , τ_2 with $j(\tau_1) + j(\tau_2) = 1$ or $j(\tau_1)j(\tau_2) = 1$, where *j* is the classical modular function. 2010 MSC codes 11G30, 11G15, 11G18.

In the paper $[A]$, André established the most basic nontrivial special case of the André-Oort conjecture, by proving that *if an irreducible complex affine algebraic plane curve is not a horizontal or vertical line, then it contains infinitely many points* (x_1, x_2) *such that both* x_1 , x_2 *are singular moduli if and only if it is a modular curve* $Y_0(n)$ *(see for example* [H, p. 207]*), for some n.*

His arguments involved, among other things, Siegel's lower bounds for class-numbers of imaginary quadratic orders, and so led to ineffectiveness; for instance, his theorem shows that there are at most finitely many imaginary quadratic τ_1 , τ_2 such that $j(\tau_1) + j(\tau_2) = 1$, but did not allow the determination of all such pairs.

The purpose of this note is just to observe that in fact a modification of André's arguments leads to a completely effective result, and to work out an example. We have the following version of his theorem:

146 YU. BILU, D. MASSER AND U. ZANNIER

Effective theorem of André. Let *X* be an irreducible complex affine algebraic plane curve, which is neither a horizontal or vertical line nor a modular curve $Y_0(n)$. Then it contains at most finitely many points (x_1, x_2) such that both x_1, x_2 are singular moduli, and these points can be effectively found in terms of an effective presentation for *X*.

Example. There are no imaginary quadratic τ_1 , τ_2 *such that* $j(\tau_1)j(\tau_2) = 1$ *.*

While working on the first draft of this note (which included also the example $j(\tau_1) + j(\tau_2) = 1$), the authors learned that Lars Kühne (ETH) had five months earlier independently obtained an effective version of André's Theorem (see [K1,K2]). We feel that the concise exposition here will also be of value. Further he obtained a good explicit dependence on the height of the curve, and he also has some uniform estimates for the number of solutions which are independent of this height. He also handled $j(\tau_1) + j(\tau_2) = 1$, so we omit our own (slightly longer) argument.

For our proof let *X* be the plane curve in André's Theorem, which we suppose to be given by $f(X_1, X_2) = 0$, where *f* has "effectively known" algebraic coefficients. (The case when *f* is defined effectively over a field of positive transcendence degree may be immediately reduced to the case of algebraic coefficients.) Below, c_1, c_2, \ldots shall denote strictly positive numbers which can be effectively determined in terms only of equations for *X*. Their effectivity is a standard affair to which we shall make no further reference.

By taking the union of *X* with its conjugates over $\mathbb Q$ we may assume that *X* is defined and irreducible over \mathbb{Q} . We let (x_1, x_2) run through the set of *CM*-points in *X*; that is, $x_i = j(\tau_i)$, where *j* is the modular function and τ_1 , τ_2 are imaginary quadratic. We denote by D_i the discriminant of τ_i and by $\mathcal{O}_i = \mathbb{Z} + \mathbb{Z}((D_i + \sqrt{D_i})/2)$ its order (i.e. the set of α in $\mathbb C$ which stabilize the lattice $\mathbb Z\tau_i + \mathbb Z$). By symmetry, we may assume throughout that $|D_1| \geqslant |D_2|.$

André in $[A,]$ lemme 1] starts with an ingenious Galois argument, showing that for almost All points in this set we have $\mathbb{Q}(\sqrt{D_1}) = \mathbb{Q}(\sqrt{D_2})$; it is here that the ineffectivity arises, through the use of Siegel's class-number estimates. We shall entirely avoid this point of his proof.

As in [A], we use the fact that *X* is defined over $\mathbb Q$ to replace (x_1, x_2) by suitable conjugates. The conjugates of x_1 run through the values $j(\tau)$ of the elliptic modular function corresponding to lattices $\mathbb{Z}\tau + \mathbb{Z}$ whose stabilizers coincide with the order \mathcal{O}_1 ; see for example [L, theorem 5, p.133]. In particular, some conjugate corresponds to the full order \mathcal{O}_1 , and we may thus assume that $x_1 = j((D_1 + \sqrt{D_1})/2)$.

Now the Fourier expansion $j(\tau) = q^{-1} + 744 + 196884q + \cdots$ for $q = \exp(2\pi i \tau)$ shows that

$$
|\log|j(\tau)| - 2\pi y| \leqslant c_1 \exp(-2\pi y)
$$
 (1)

for the imaginary part *y* of τ . So in particular $|x_1| \to \infty$ as $|D_1| \to \infty$. In his paper, André now has a crucial "Lemme 2", asserting that for $|x_1| \to \infty$ we also have $|x_2| \to \infty$. We reproduce this argument in effective form; however we do not state it as a lemma, and glue the relevant conclusion with the rest of the argument.

Since no component of *X* is a vertical line, any x_1 determines at most finitely many x_2 with $f(x_1, x_2) = 0$. Further if $|x_1| \ge c_2$ these are given by finitely many convergent Puiseux series $x_2 = P(x_1)$. We choose such a *P* corresponding to singular moduli x_1, x_2 .

Effective "Theorem of Andre"´ 147

Suppose first that $P(\infty)$ is a complex number *l*. Since no component of *X* is a horizontal line, there are at most finitely many (x_1, x_2) in *X* with $x_2 = l$, so we may assume $x_2 \neq l$. Note that then *l* is necessarily algebraic. We have $P(t) = l + \gamma t^{-\alpha} + 1$ lower order terms, for some complex $\gamma \neq 0$ and rational $\alpha > 0$, whence

$$
\log|x_2-l|\leqslant -\alpha\pi\sqrt{|D_1|}+c_3.
$$

We may now pick a complex τ_2 in the standard modular fundamental domain $\mathcal F$ so that $j(\tau_2) = x_2$; note that τ_2 is imaginary quadratic over Q. Since the restriction of *j* to F is a bijection, this implies that τ_2 is near to some ζ in \mathbb{C} , with $j(\zeta) = l$. More precisely, expanding the *j* function as a Taylor series around ζ , we get

$$
\log |x_2 - l| \geqslant \kappa \log |\tau_2 - \zeta| - c_4,
$$

where $\kappa = 1, 2, 3$ (depending on ζ , i.e. whether $l = j(\zeta)$ is a regular value of *j*, or whether $l = 0$, 1728 is a critical value of *j*). Hence

$$
\log|\zeta-\tau_2|\leqslant -c_5\sqrt{|D_1|}.
$$

However the second author has established in [M] (p.1) that for any ζ with algebraic $j(\zeta)$ and any algebraic $w \neq \zeta$ we have an inequality

$$
\log|\zeta - w| > -C \max\{1, h(w)\}^{3+\epsilon},
$$

where the positive constant $C > 0$ is effective and depends only on ζ , $[\mathbb{Q}(w) : \mathbb{Q}]$, $\epsilon > 0$ (and where $h(w)$ denotes as usual the logarithmic Weil height). Here $\zeta - w$ is essentially a linear form in elliptic periods. We can apply the result, with $\epsilon = 1$ for example, putting $w = \tau_2$ and recalling that τ_2 has been chosen in the standard fundamental domain and that it is quadratic over $\mathbb Q$. We easily find (on looking at a minimal equation for τ_2 over $\mathbb Z$) that $h(\tau_2) \leq c_6 \log |D_2|$. Recalling also $|D_2| \leq |D_1|$, we see that the last two displayed inequalities are inconsistent for $|D_1| \ge c_7$ and large enough c_7 .

Hence in this case we have $P(\infty) = \infty$, and now we may write $P(t) = \gamma_0 t^{\beta} +$ lower order terms, for some complex $\gamma_0 \neq 0$ and rational $\beta > 0$.

Let us now choose both τ_1 , τ_2 in the standard fundamental domain, so that $x_i = j(\tau_i)$. In view of our opening normalization on x_1 , we may write

$$
\tau_1=\frac{c+\sqrt{D_1}}{2},\qquad \tau_2=\frac{b+\sqrt{D_2}}{2a},
$$

where *a*, *b*, *c* are integers with $a \geq b$, $c = 0, 1$. Of course *a* and $-b$ are coefficients in the equation for τ_2 .

Now the expansion $x_2 = P(x_1)$ shows that we have an inequality

$$
|\log |x_2| - \log |\gamma_0| - \beta \log |x_1|| \leq c_8 \exp(-c_9 \sqrt{|D_1|}).
$$

Then (1) yields at first

$$
\left|\pi \frac{\sqrt{|D_2|}}{a} - \log |\gamma_0| - \beta \pi \sqrt{|D_1|} \right| \leqslant c_{10} \exp \left(-c_{11} \frac{\sqrt{|D_2|}}{a} \right).
$$
 (2)

Hence for $|D_1|$ large enough we get say $\sqrt{|D_2|}/a \geq (1/2)\beta \sqrt{|D_1|}$ and so $a \leq 2/\beta$; and then we get an inequality similar to (2) with $\sqrt{|D_1|}$ replacing $\frac{\sqrt{|D_2|}}{q}$ on the right. We can write the we get an inequality similar to (2) with $\sqrt{D_1}$ replacing $\frac{dD_1}{d}$ on the right. We can write the left as $|\Lambda|$ for $\Lambda = \delta \pi i - \log |\gamma_0|$ with $\delta = \sqrt{D_2}/a - \beta \sqrt{D_1}$; and then standard results on linear forms in logarithms show that, also for $|D_1|$ large enough, we must have $\Lambda = 0$. Thus the two logarithms πi , log | γ_0 | must be linearly dependent over \mathbb{Q} , which forces log $|\gamma_0| = 0$ and then $\delta = 0$.

We conclude that $D_1/D_2 = (a\beta)^{-2}$ is a rational square in a finite computable set, so (since |a|, |b|, |c| are bounded by c_{16}) there are coprime integers *r*, *s*, *t* \neq 0 in $\mathbb Z$ satisfying $|r|, |s|, |t| \le c_{17}$, such that $\tau_2 = (r + s\tau_1)/t$. But then the point (x_1, x_2) lies on the modular curve $Y_0(st)$.

Thus all of the relevant points either satisfy $max(|D_1|, |D_2|) \le c_{18}$ or lie in the union of finitely many curves $Y_0(n)$, $1 \le n \le c_{19}$, which may be effectively computed, and this is a rephrasing of the desired conclusion.

Now to the examples.

The diagonal $X_1 + X_2 = 1$ can be treated without elliptic periods, because there is only one Puiseux expansion $P(t) = -t + 1$. Moreover $\gamma_0 = -1$ so we end up with a linear form in only one logarithm which can be handled with a very simple Liouville-type estimate.

The hyperbola $X_1X_2 = 1$ also has only one Puiseux expansion, namely $P(t) = t^{-1}$ which goes to finite *l*, so it looks like elliptic periods may be needed. However $l = 0$ happens to be $j(\zeta)$ with algebraic $\zeta = \rho = (1 + \sqrt{-3})/2$. So now $\zeta - w$ can be handled again by Liouville. However to find all the points we need explicitly to invert *j* near its critical point ρ .

In this way we now show that there are no imaginary quadratic τ_1 , τ_2 with

$$
j(\tau_1)j(\tau_2)=1.
$$
 (3)

LEMMA 1. If τ is in the standard fundamental domain with imaginary part *y* then

$$
||j(\tau)|-e^{2\pi y}|\leq 2079.
$$

Proof. We have $j = q^{-1} + \sum_{n=0}^{\infty} c_n q^n$ with $c_n \ge 0$. As $y \ge \sqrt{3}/2$ we get

$$
||j| - |q^{-1}|| \leq \sum_{n=0}^{\infty} c_n |q|^n \leq \sum_{n=0}^{\infty} c_n q_0^n
$$

for $q_0 = e^{-\pi\sqrt{3}}$. On the other hand $q_0 = e^{2\pi i \tau_0}$ for $\tau_0 = \sqrt{-3}/2$, so the sum on the far right is $j(\tau_0) - q_0^{-1} = 2078.813...$

LEMMA 2. For any τ with $|\tau - \rho| \leq \sqrt{3}/4$ we have $|i(\tau)| \leq 30000$.

Proof. We divide the disc $|\tau - \rho| \leq \sqrt{3}/4$ into six parts by means of the circles $|\tau| = 1$, $|\tau - 1| = 1$ and the vertical line through 1/2. Then a calculation using the functions τ , τ − 1, $1/(1 - \tau)$, $\tau/(1 - \tau)$, $(\tau - 1/\tau)$, $-1/\tau$ applied going round the boundary of the disc clockwise shows that every τ in the disc is modular equivalent to a point of the subset of the fundamental domain with $y \leq y_0 = (16\sqrt{3} + \sqrt{183})/26 = 1.586...$ It therefore suffices to consider the boundary of this subset. On the vertical and circular parts we get easily by monotonicity $|j| \leq \max\{1728, -j(1/2 + iy_0)\} < 20561$. On the horizontal part $|q| = q_0 = e^{-2\pi y_0}$ and now with $c_{-1} = 1$

$$
|j| = |q|^{-1} \left| \sum_{n=0}^{\infty} c_{n-1} q^n \right| \leq q_0^{-1} \sum_{n=0}^{\infty} c_{n-1} q_0^n = j(iy_0) < 22049.
$$

at [https:/www.cambridge.org/core/terms.](https:/www.cambridge.org/core/terms) <https://doi.org/10.1017/S0305004112000461> Downloaded from <https:/www.cambridge.org/core>. University of Basel Library, on 30 May 2017 at 19:46:21, subject to the Cambridge Core terms of use, available

The next two estimates correspond to $\kappa = 3$ in the general proof above.

LEMMA 3. If $\tau = 1/2 + i\gamma$ is in the standard fundamental domain with imaginary part γ and $|j(\tau)| < \varepsilon < 1/100000$ then

$$
\left|y-\frac{\sqrt{3}}{2}\right|<\frac{1}{34}|\varepsilon|^{1/3}.
$$

Proof. For any real ζ with $0 \le \zeta - \sqrt{3}/2 \le 1/1000$ we have for the fourth derivative

$$
j''''\left(\frac{1}{2}+i\zeta\right)=24\frac{1}{2\pi i}\int_{|\tau-\rho|=\frac{\sqrt{3}}{4}}\frac{j(\tau)}{(\tau-\frac{1}{2}-i\zeta)^5}d\tau.
$$

Using Lemma 2 we get

$$
\left|j''''\left(\frac{1}{2} + i\zeta\right)\right| \leq 24 \frac{\sqrt{3}}{4} \frac{30000}{\left(\frac{\sqrt{3}}{4} - \frac{1}{1000}\right)^5} < 30000000.
$$
 (4)

Next define the real-valued function $f(y) = j(1/2 + iy)$ ($y > 0$); we deduce the same bound (4) for $|f'''(\zeta)|$. For $0 \le \eta - \sqrt{3}/2 \le 1/1000$ the Mean Value Theorem gives

$$
f'''(\eta) - f''' \left(\frac{\sqrt{3}}{2} \right) = \left(\eta - \frac{\sqrt{3}}{2} \right) f''''(\zeta) \qquad \left(\frac{\sqrt{3}}{2} < \zeta < \eta \right).
$$

One checks $j'''(\rho) = -162i\,\Gamma(\frac{1}{3})^{18}/\pi^9$ and so

$$
\left| f''' \left(\frac{\sqrt{3}}{2} \right) \right| = |j'''(\rho)| > 270000.
$$

Therefore

$$
|f'''(\eta)| \geq 270000 - \frac{1}{1000}30000000 = 240000.
$$

Now $j(\rho) = j'(\rho) = j''(\rho) = 0$ so $f(\sqrt{3}/2) = f'(\sqrt{3}/2) = f''(\sqrt{3}/2) = 0$. With τ as in Lemma 3 we have by a Higher Mean Value Theorem

$$
\varepsilon > |j(\tau)| = |f(y)| = \frac{1}{6}|f'''(\eta)| \left| y - \frac{\sqrt{3}}{2} \right|^3 \qquad \left(\frac{\sqrt{3}}{2} < \eta < y \right). \tag{5}
$$

Here $y \le \sqrt{3}/2 + 1/1000$ else the opposite would imply by monotonicity

$$
j(\tau) < j\left(\rho + \frac{i}{1000}\right) < -\frac{4}{100000}
$$

against a hypothesis. So also $\eta < \sqrt{3}/2 + 1/1000$ and by (5) we get $|y - \sqrt{3}/2| \le$ $(6 \varepsilon / 240000)^{1/3}$. This is slightly better than required.

LEMMA 4. If $\tau = e^{i\theta}$ is in the standard fundamental domain with $\theta \leq \pi/2$ and $|j(\tau)| < \varepsilon < 1/100000$ then

$$
\left|\theta-\frac{\pi}{3}\right|<\frac{1}{33}|\varepsilon|^{1/3}.
$$

150 YU. BILU, D. MASSER AND U. ZANNIER

Proof. For any real θ with $0 \le \theta - \pi/3 \le 1/1000$ we have for the fourth derivative

$$
j''''(e^{i\theta}) = 24 \frac{1}{2\pi i} \int_{|\tau - \rho| = \frac{\sqrt{3}}{4}} \frac{j(\tau)}{(\tau - e^{i\theta})^5} d\tau.
$$

It follows as before that

$$
|j''''(e^{i\theta})| \leq 24 \frac{\sqrt{3}}{4} \frac{30000}{(\frac{\sqrt{3}}{4} - \frac{1}{1000})^5} < 30000000.
$$

Similar arguments give

$$
|j'(e^{i\theta})| < 70000, \quad |j''(e^{i\theta})| < 330000, \quad |j'''(e^{i\theta})| < 2300000.
$$

Next for the real-valued function $g(\theta) = j(e^{i\theta})$ ($0 < \theta < \pi$) we have

$$
g''''(\theta) = e^{i\theta} j'(e^{i\theta}) + 7e^{2i\theta} j''(e^{i\theta}) + 6e^{3i\theta} j'''(e^{i\theta}) + e^{4i\theta} j''''(e^{i\theta}).
$$

Thus for $0 \le \theta - \pi/3 \le 1/1000$ we conclude

$$
|g'''(\theta)| \le 70000 + 7 \cdot 330000 + 6 \cdot 2300000 + 30000000 = 46180000.
$$

The Mean Value Theorem gives

$$
g'''(\theta) - g'''(\frac{\pi}{3}) = \left(\theta - \frac{\pi}{3}\right)g''''(\phi) \qquad \left(\frac{\pi}{3} < \phi < \theta\right).
$$

As before we find $g(\pi/3) = g'(\pi/3) = g''(\pi/3) = 0$. It follows that

$$
\left|g'''\left(\frac{\pi}{3}\right)\right| = |j'''(\rho)| = 162 \frac{\Gamma(\frac{1}{3})^{18}}{\pi^9} > 270000
$$

and so

$$
|g'''(\theta)| \ge 270000 - \frac{1}{1000}46180000 = 223820.
$$

With τ as in Lemma 4 we have by a Higher Mean Value Theorem

$$
\varepsilon > |j(\tau)| = |g(\theta)| = \frac{1}{6} |g'''(\phi)| \left| \theta - \frac{\pi}{3} \right|^3 \qquad \left(\frac{\pi}{3} < \phi < \theta \right). \tag{6}
$$

Now $\theta \le \pi/3 + 1/1000$ else the opposite would imply by monotonicity

$$
j(\tau) > j(\rho e^{i/1000}) > \frac{4}{100000}
$$

against a hypothesis. So also $\phi \prec \pi/3 + 1/1000$ and by (6) we get $|\theta - \pi/3| \le$ $(6 \varepsilon / 223820)^{1/3}$. This is slightly better than required.

 $\mathcal{E}/225820$ and it is so singlify better than required.
Now in (3) let D_1 , D_2 be the discriminants; we may take $\sqrt{|D_1|} \ge \sqrt{|D_2|}$. By conjugating we may take $\tau_1 = (D_1 + \sqrt{D_1})/2$.

First assume D_1 is odd. Then we can even take $\tau_1 = (1 + \sqrt{D_1})/2$ in the fundamental domain and τ_2 also in the fundamental domain. By Lemma 1

$$
j(\tau_1) = -|j(\tau_1)| \leqslant -e^{\pi\sqrt{|D_1|}} + 2079 \leqslant -e^{\pi\sqrt{14}} + 2079 < -100000
$$

provided $|D_1| \ge 14$. So $-1/100000 < j(\tau_2) < 0$. It follows that $\tau_2 = 1/2 + iy$ ($y > \sqrt{3}/2$), because we can dispense with real part $-1/2$. Thus by Lemma 3

$$
\left|y-\frac{\sqrt{3}}{2}\right|<\frac{1}{34}|j(\tau_2)|^{1/3}\leqslant E
$$

Effective "Theorem of Andre"´ 151

with $E = \frac{1}{34} (e^{\pi \sqrt{|D_1|}} - 2079)^{-1/3}$. Also $\tau_2 = (a + \sqrt{D_2})/2a$ so

$$
\left|\frac{\sqrt{|D_2|}}{2a} - \frac{\sqrt{3}}{2}\right| \leqslant E, \quad |\sqrt{|D_2|} - a\sqrt{3}| \leqslant 2aE \leqslant \frac{2\sqrt{|D_1|}}{\sqrt{3}}E < 1
$$

provided $|D_1| \geqslant 14$. Then

$$
||D_2| - 3a^2| \le (1 + 2\sqrt{|D_1|})\frac{2\sqrt{|D_1|}}{\sqrt{3}}E < 1.
$$

Thus $|D_2| = 3a^2$ giving $\tau_2 = \rho$, absurd.

So we may now assume D_1 is even. Then we can take $\tau_1 = \sqrt{D_1}/2$ and τ_2 also in the fundamental domain. By Lemma 1

$$
j(\tau_1) = |j(\tau_1)| \geq e^{\pi \sqrt{|D_1|}} - 2079 \geq e^{\pi \sqrt{14}} - 2079 > 100000
$$

provided $|D_1| \geq 14$. So $1/100000 > j(\tau_2) > 0$. It follows that $\tau_2 = e^{i\theta} (\pi/3 < \theta < \pi/2)$, because we can dispense with $\theta \geq \pi/2$. Thus by Lemma 4

$$
\left|\theta-\frac{\pi}{3}\right|<\frac{1}{33}|j(\tau_2)|^{1/3}\leqslant E
$$

where now $E = 1/33(e^{\pi\sqrt{|D_1|}} - 2079)^{-1/3}$. Also $\tau_2 = (b + \sqrt{D_2})/2a$ so

$$
\left|\frac{\sqrt{|D_2|}}{2a} - \frac{\sqrt{3}}{2}\right| \leqslant E, \quad |\sqrt{|D_2|} - a\sqrt{3}| \leqslant 2aE \leqslant \frac{2\sqrt{|D_1|}}{\sqrt{3}}E < 1
$$

provided $|D_1| \geq 14$. Then

$$
||D_2| - 3a^2| \le (1 + 2\sqrt{|D_1|})\frac{2\sqrt{|D_1|}}{\sqrt{3}}E < 1.
$$

Thus $|D_2| = 3a^2$, and since $1 = |\tau_2| = (b^2 - D_2)/4a^2$ we get again the absurd $\tau_2 = \rho$.

It remains to check all $j(\tau)$ with τ of discriminant with absolute value at most 13. But this means $|D| = 3, 4, 7, 8, 11, 12$. These all have class number one, with *j* respectively

$$
0, 1728, -3375, 8000, -32768, 54000
$$

and visibly no two of these multiply to 1.

This example begs the question: are there any τ with $j(\tau)$ a unit? Possibly this could be answered with the methods of Gross-Zagier [GZ] on the factorization of products of $j(\tau) - j(\tau')$ by taking $\tau' = \rho$ (at least when $D(\tau)$ is not divisible by 3). But Habegger has very recently shown that there are at most finitely many.

Acknowledgment. When working on this paper, Yuri Bilu enjoyed the hospitality of the Mathematical Institute of the University of Basel. He was also partially supported by the *Agence nationale de la recherche* project "HAMOT".

REFERENCES

- [**A**] Y. ANDRE´. Finitude des couples d'invariants modulaires singuliers sur une courbe algebrique plane ´ non modulaire. *J. Reine Angew. Math.* **505** (1998), 203–208.
- [**GZ**] B. H. GROSS and D. B. ZAGIER. On singular moduli. *J. Reine Angew. Math.* **355** (1985), 191–220.

152 YU. BILU, D. MASSER AND U. ZANNIER

- [H] D. HUSEMÖLLER. Elliptic Curves (Springer-Verlag, 1987).
- [K1] L. KÜHNE. An effective result of André–Oort type. Ann. Math. 176 (2012), 651–671.
- [K2] L. KÜHNE. An effective result of André-Oort type II. Submitted.
- [**L**] S. LANG. *Elliptic Functions* (Addison–Wesley, 1973).
- [**M**] D. MASSER. *Elliptic functions and transcendence*. Lecture Notes in Math. vol **437** (Springer–Verlag, 1975).