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ABSTRACT

Near infrared spectroscopy (NIRS) is a non-invasive optical technique which measures

concentration changes of oxygenated (HbO), deoxygenated (HbR), and total hemoglobin

(HbT) in brain tissue. In conjunction with the ApoE genotype and neuropsychological

measures it might reveal new insights into brain-behaviour relationships.

We studied 240 non-demented elderly individuals selected from the project BASEL

cohort (69 females, 171 males; mean age = 72.3 ± 7.03 years) and 21 patients with probable,

mild Alzheimer’s Disease (12 females, 9 males; mean age = 76.2 ± 6.37 years; mean MMSE

= 25.3 ± 2.08) with multi-channel (left and right frontal, left and right parietal, left and right

temporal) NIRS during performance of either a verbal (letter) fluency task or a computerized

labyrinth test. On the same day, non-demented elderly subjects obtained a comprehensive

neuropsychological assessment - the patients with AD had their neuropsychological

examination first, followed by the NIRS examination maximally 10 days later. In all study

participants the ApoE genotype was determined. The proportion of ApoE-ε4-positives and –

negatives was evenly distributed in both study groups (non-demented elderly/patients with

AD: 45% ApoE-ε4 positives, 55% ApoE-ε4 negatives).

Mean concentration changes of HbO and HbR during cognitive activation with either

task revealed a typical hemoglobin oxygenation response pattern in normal elderly subjects:

an increase in HbO and a decrease of HbR over brain areas activated by the task. The NIRS

parameter HbR turned out to be a specific marker of brain activation, as significant decreases

in HbR were only seen with the verbal fluency task and over the frontal optode positions. In

contrast, the parameter HbO exhibited a pattern of general activation across the whole brain

and for both activation tasks and thus seems to reflect a state of arousal with a very high

sensitivity but no specificity.

Using multiple regression analysis we found that neither the sociodemographic factors

age, years of formal education, and gender, nor the ApoE genotype act as predictors of the

NIRS response in normal elderly subjects. Specifically, ApoE-ε4 carriers did not differ from

ApoE-ε4 non-carriers with respect to concentration changes of HbT at the left parietal

position.

Investigating the relationship between covert and overt behaviour, we found a

statistically significant correlation between the NIRS response during performance of the

verbal fluency task and the NIRS task performance: Subjects able to bring the brain areas

critical for successful performance in a cognitive task on-line, show better task performance.
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Further, subjects with a typical NIRS response pattern at the left-frontal position (Left-frontal

NIRS responders) performed significantly better in the NIRS verbal fluency task than subjects

who did not show a typical NIRS response at the left-frontal position (Left-frontal NIRS non-

responders). In conjunction with the neuropsychological data collected on the same day, we

investigated the relationship between the NIRS response during performance of the verbal

fluency task and neuropsychological test performance. We found that the NIRS parameters

HbO and HbR at the left and right frontal and left temporal position were able to predict 42%

of the performance in a test of executive function (Trail Making Test, quotient of Form B/A).

On another route, we compared the neuropsychological test performance of left frontal NIRS

responders with the performance of left-frontal NIRS non-responders. The results of these

analyses were largely in line with our hypothesis: With the exception of the Wisconsin Card

Sorting Test, left-frontal NIRS responders scored significantly better in tests of executive

function. Further, the subjects with a typical NIRS response at the left frontal position

performed markedly better in the WAIS Block Design and slightly better in the Boston

Naming Test and the WAIS Similarities.

In comparison to our sample of non-demented elderly subjects, the patients with mild-

stage AD did not show a reduced NIRS response during cognitive activation as compared to

rest. However, in comparison to the cognitively normal subjects, they showed a clearly

distinguishable profile in the relationship between covert and overt behaviour and between

NIRS response and neuropsychological test performance: The NIRS task performance of the

patient group was negatively correlated with the brain response. Further, left-frontal NIRS

responders in the patient group showed a statistical trend towards lower scores in tests of

executive function. In other words, the patients with AD – yet at a mild stage of the disease -

could not make use of the cortical network required for an efficient task performance as did

the group of cognitively normal elderly subjects.

In conclusion for future functional imaging studies, the analysis of brain-behaviour

relationships might add valuable benefit to the investigation of the brain response alone.
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1 Introduction

The data reported in this doctoral thesis were recorded in the context of the “Basel Study

on the Elderly (BASEL)” project, an extensive multidisciplinary research project. The primary

objective of the BASEL project is to identify preclinical markers of Alzheimer’s Disease.

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder and affects more than

5% of individuals over the age of 65 and increases up to 50% in those over 85. As of today,

there is no means to prevent or cure AD once the disease has been diagnosed. As a

consequence, treatments aimed at preventing the disease will intervene too late at this stage.

Therefore, the identification of preclinical markers of AD would be of tremendous benefit not

only in the search for the etiopathogenesis of AD, but, even more importantly, would lead to the

development of therapeutical measures at a very early stage of the disease. In order to address

this complex question, the BASEL project applies a research strategy which combines

multidisciplinary cross-sectional with longitudinal approaches in subgroups of individuals at

lower and higher risks to develop AD. Once some of these subjects develop overt AD, baseline

comparisons would identify the preclinical markers of this sample (Monsch, 2001).

In this thesis, the focus is on the cross-sectional aspect of the BASEL project,

incorporating functional Near-Infrared Spectroscopy (NIRS) of the brain, neuropsychology and

ApoE genotype data. The main objective is to correlate cerebral hemoglobin oxygenation data

obtained during functional NIRS with NIRS task performance and with selected

neuropsychological tests, thus providing a better understanding of the brain-behaviour

relationships in healthy elderly subjects and in patients with AD. By incorporating

sociodemographic factors such as age, gender, and years of formal education, and including a

well-described risk factor for AD, the Apolipoprotein E (ApoE) genotype, we will investigate if

and how these factors correlate with the NIRS data, and if they have a modifying effect on the

brain response. For this purpose, the author could revert her analyses to a unique sample of 240

non-demented elderly individuals selected from the project BASEL cohort and 21 patients with

mild probable Alzheimer Disease (DSM-IV criteria). In all individuals functional multi-channel

NIRS was performed and cerebral hemoglobin oxygenation measured during cognitive

activation and during rest. On the same day a comprehensive neuropsychological assessment

was performed, of which selected tests were chosen for our analyses. In all study participants

the ApoE genotype was determined and the presence or absence of at least one ApoE-ε4-allele

used for combined analyses.
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In the next chapter, the basic principles of NIRS, a non-invasive optical technique to

monitor brain function, will be described and the cortical origin of the NIRS signal evaluated.

By reviewing past functional NIRS studies conducted predominantly in young healthy

volunteers and using different activation paradigms it will be examined whether a typical NIRS

response pattern can be described, and how this pattern is altered in normal elderly subjects and

in various patient groups.

Chapter 3 provides an overview of the current neuroimaging research investigating brain-

behaviour relationships and using Verbal Fluency tasks as functional activation paradigm. The

ApoE genotype will be introduced as a major genetic susceptibility factor for AD, and its

importance in modulating the brain response evaluated.

Chapter 4 describes the methods, including an overview of the BASEL project and the

relevant cross-sectional main examinations (neuropsychological assessment and selected

neuropsychological tests, NIRS, ApoE genotype), subject disposition and key subject

demographics, and overview of statistical methods applied. The study objectives and

hypotheses are outlined in chapter 5 together with the corresponding statistical analysis plan.

This order corresponds to the approach applied, e.g. the fact that all data had been collected and

thereafter handed over to us for combined analyses.

Chapter 6 contains the result section.

A summary of the objectives and methods as well as a discussion of our major findings

are provided in chapter 7. The doctoral thesis ends with conclusions for future research.
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2 Near-infrared spectroscopy

Introduction

To date several techniques to examine functional brain activity are available. Historically,

electroencepholography (EEG) was the first technology, discovered by the neurologist Hans

Berger in the twenties of the past century (Borbély, 1991), followed by other technologies

including positron emission tomography (PET) and single-positron emission computed

tomography (SPECT), magnetencephalography (MEG), and most recently functional magnetic

resonance imaging (fMRI).

A less known technology for monitoring of brain function, near-infrared spectroscopy

(NIRS), uses the difference of absorption spectra of oxyhemoglobin and reduced hemoglobin as

well as oxygenated cytochrome oxidase in the near infrared.

Optical spectroscopy is a long-established technique for the observation of oxygenation

and hemodynamic effects in tissue. The specific interest in NIRS followed the first description

by Jöbsis (1977), in which he demonstrated that near-infrared spectroscopy can be used as a

new tool to non-invasively monitor cerebral blood oxygenation. Since that time, many hundreds

of papers have been published demonstrating its potential not only in the monitoring of the

brain but also in other organs (e.g. muscle, breast, liver, and kidney; see Cooper and Delpy,

1997). In clinical research NIRS has been widely used in neonates for early detection of

cerebral hypoxemia, and recently also in adult patients with closed-head injury (Kirkpatrick,

1997).

In the first part of this chapter the basic principles of optical imaging and NIRS will be

described in detail, and the physiological processes related to brain activity will be outlined. By

reviewing studies which have combined NIRS with other, more popular brain-imaging

techniques such as PET and fMRI, the cortical origin of the NIRS signal will be evaluated. At

the end of the first part, the usefulness of NIRS as a new method to examine functional brain

activity will be discussed by contrasting it against other techniques. In the next part, an

overview of studies using NIRS as a new tool to non-invasively assess functional brain

activation will be given. The question will be addressed whether a typical response pattern can

be described in young healthy volunteers and how, if at all, this pattern is altered in normal

elderly subjects and in various patient groups.
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2.1 Optical imaging: interactions of light with tissue

It is well known and widely used in medicine that the functional state of tissue

influences its optical properties: Cyanosis indicates poor tissue oxygenation,

paleness may be related to anaemia and yellow colouring may be due to increased

bilirubin concentration indicating liver failure (Villringer and Chance, 1997, p.

435).

It was reported as early as 1949 that the activity of nerve cells is associated with changes

in their optical properties (Hill & Keynes, 1949). Changes in optical properties of intact cortical

tissue were first described by Jöbsis (1997), while later reports of brain cells’ optical properties

were described in cell cultures (Stepnoski et al., 1991) and in bloodless brain slices (Grinvald,

Lieke, Frostig, Gilbert & Wiesel, 1986; MacVicar & Hochman, 1991).

Villringer and Chance (1997, p.435) define functional optical imaging as follows:

“Functional optical imaging is the assessment of physiological changes associated with brain

activity by optical methods, i.e. by investigating the interactions of photons with tissue”.

Photons that interact with tissue may undergo:

• Absorption which may lead to

• Radiationless loss of energy to the medium,

• Fluorescence or delayed fluorescence,

• Phosphorescence,

• Scattering,

• Doppler shifts due to moving particles in the tissue (e.g. blood cells; Villringer, 1997;

Villringer & Chance, 1997).

2.1.1 Measurement of Light Absorption

An optical apparatus typically consists of a light source by which the tissue is irradiated,

and a light detector that receives light after it has been reflected from or transmitted through the

tissue (Villringer & Chance, 1997). Light that is emitted by the light source will be multiply

scattered and partly absorbed. To quantify changes in concentrations of absorbing molecules, a

model of light diffusing through tissue is required (Strangman, Boas & Sutton, 2002), the

traditional approximation to the full photon migration theory being the so called modified

Lambert–Beer law (Figure 1).
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Figure 1: Modified Lambert–Beer law (taken from Villringer & Chance, 1997, p.436).

According to Figure 1, the concentration of a light-absorbing molecule in tissue can be

determined similarly to the determination of a substance concentration in a photometer.

Assuming infinitesimal substance concentrations, and no scattering in the medium, a

concentration can be determined according to the original Lambert–Beer law, A = ε × c × d,

according to which the extinction of light [the logarithm of the ratio of incident versus

measured light , lg(I0 /I)] is proportional to the concentration (c) of the absorber multiplied by

the constant extinction coefficient (ε ) for the particular absorber and the distance (d)

corresponding to the width of the cuvette. This law holds as long as photons are either absorbed

(photon 2) or transmitted in a straight line directly to the detector (photon 3). With higher

substance concentrations and significant light scattering, the formula must be modified to take

into account the longer pathlength of light (see photon 1) and the loss of light (photon 4) due to

light scattering. In the modified Lambert–Beer law as given in the Figure, therefore a term B

which accounts for the longer pathlength and a term G, which is a measure of the signal loss

due to light scattering and which depends mainly on geometrical factors are introduced. In

certain situations only the difference (∆ c) between two situations is of interest and under the

assumption of a constant light scattering loss the term G cancels out in the subtraction. ∆ A =ε

× ∆ c × d × B.

Ideally, B, the differential path length factor (DPF) should be determined in each

experiment, however, technology to do this has not been available in commercial optical

devices so far (Villringer, 1997). Therefore, until recently, DPF values from the literature were

taken as a reasonable estimate (see Duncan et al., 1996 for measurement of DPF as a function

of age).
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2.2 The basic principle of near-infrared spectroscopy (NIRS): Measuring

brain function with a light bulb

The method of NIRS relies on a simple basic principle: Biological tissue is relatively

transparent to light in the near-infrared range between 700–900 nm. This is due to the fact that

water absorption and hemoglobin absorption are relatively small within this wavelength region

(Villringer & Chance, 1997). Therefore, this wavelength range represents an “optical window”

for the non-invasive assessment of brain tissue, and allows light of these wavelengths to

penetrate several centimetres through tissue and still be detected (Strangman et al., 2002). As

described in section 2.1, (near-infrared) light administered into the head will be multiply

scattered and partly absorbed, whereas the scattered light, which is not absorbed on its path, can

in part be detected by a second optical probe, the light detector. The light source and the

detector are coupled to the subject's head via fibre-optical bundles (optodes, see Figure 2a). The

light-receiving optode is connected to a light-detecting system such as a photomultiplier or a

charge-coupled device (CCD) camera (Obrig et al., 2000).

Since biological tissue is rather transparent to light between 700 and 900 nm enough light

can be detected to allow for a spectroscopic analysis. The most important endogenous absorbers

in brain tissue are the chromophores oxygenated hemoglobin (HbO), deoxygenated hemoglobin

(HbR) and cytochrome-C-oxidase (Cyt-Ox). These substances have characteristic light

absorption patterns in the near-infrared range (see Figure 2b) and thus can be used as

biologically relevant markers of brain activity (Villringer, 1997). By adding the changes in

HbO and HbR a fourth parameter, total hemoglobin (HbT), can be obtained corresponding to

the corpuscular blood volume (Obrig et al., 2000).
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Figure 2: (a) Sketch of NIRS measurement of the adult head. Three possible photon paths are
illustrated. Photon 1 undergoes a number of scattering events to reach the detector, photon 2 is
absorbed after a number of scattering events, photon 3 leaves the head without being detected
by the system. Changes in scatter and absorption in the banana like shaped sampling volume
(white) will alter the amount of photons reaching the detector. (b) The spectra of HbO, HbR and
Cyt-ox in the near-infrared. The lines denote the four wavelengths of the NIRO-500 monitor,
the grey bar signifies the spectral region typically analysed in the CCD-approach (taken from
Obrig et al., 2000, p. 126).

Based on different assumptions and modelling algorithms several models of the sample

volume have been proposed (Villringer & Chance, 1997). Assuming a homogeneous tissue

beneath the optodes, the sample volume is assumed to correspond to a banana-shaped volume

beneath the optodes (see Figure 2a). This assumption is in agreement with the findings of Hock

et al. (1997a) who found a correlation between the total hemoglobin measured with NIRS and

the regional cerebral blood flow (rCBF) measured with positron emission tomography (PET)

which was restricted to a semisphere volume of brain tissue with a limited depth of penetration

of 1-3 cm. In recent more sophisticated approaches, a multi-layer model imitating skin, skull,

CSF and brain tissue has been assumed (‘Monte-Carlo Method’) in which the role of the CSF

layer with its potential `light tunnelling' properties is emphasized (Villringer & Chance, 1997).

2.2.1 Relationship between brain activity and optical parameters

As outlined above, the concentration of a light-absorbing molecule in tissue can be

determined by measuring the extinction of light passing through the tissue (Villringer, 1997).

By measuring light absorbance concentrations of endogenous  tissue components or exogenous

substances can be determined.

Optical measurements are classified as either extrinsic (using exogenous contrast agents)
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or intrinsic (without exogenous contrast agents). One great advantage of the NIRS technology is

that no exogenous contrast agent is required, thus with NIRS we are investigating endogenous

optical parameters (Villringer, 1997; Villringer and Chance, 1997).

Figure 3 illustrates the relationship between brain activity and optical measurements, on

the left part for intrinsic optical contrast agents, and for exogenous contrast agents on the right

part respectively. As explained by Villringer and Chance (1997, p. 437) “Brain activity is

accompanied by certain physiological events, e.g. an increase in cerebral blood oxygenation.

These events influence the value of certain intrinsic physiological parameters, for example, the

concentration of oxy-Hb, that, in turn, can be measured through their influence on optical

parameters, for example, light absorption”.
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Figure 3: Assessment of brain activity by measuring optical parameters (taken from Villringer
& Chance, 1997, p. 437).

2.3 Physiological processes associated with brain activity

Investigating brain activity using an indirect technology like NIRS has one great

drawback compared to direct measures: “It is, however, a big step from the activation of a

neuronal population, most directly measured by intracellular recordings to the vascular response

as demonstrated by the different imaging techniques” (Obrig et al, 2000, p. 131). Thus, we need

to understand the different steps from the activated neuron to the vascular response, or as in the

example of NIRS, to the cerebral hemoglobin oxygenation.

Physiological events associated with brain activity can be subdivided into intracellular

events or events occurring at cell membranes and those that are mediated by neurovascular

coupling and occur within the vascular space (Villringer and Chance, 1997).

2.3.1 Cellular physiological events

The activity of neurons is characterized by ion and water fluxes across the neuron's

membrane inducing a change in membrane potential, as well as electrical and magnetic field

changes. The main ions involved are Na+, K+, Cl– and Ca2+ with the ion shifts inducing changes

in their intracellular and extracellular concentrations. Furthermore, second messenger systems,

such as cAMP (Ca2+ itself also serves as a second messenger) are activated (Villringer &

Chance, 1997).



10

Increased brain activity is correlated not only with oxygen consumption but also with

glucose consumption. The brain has only negligible stores of glucose and therefore relies on

circulating glucose and an active transport system to move glucose across the blood-brain

barrier (Schmidt, 2003). Increased activity of brain cells is associated with an increase in

glucose consumption and thus the intracellular glucose concentration might fall in the early

activation period (Villringer & Dirnagl, 1995). This transient drop in glucose is accompanied

by a transient rise in local lactate concentration (Villringer & Dirnagl, 1995). Recently,

Magistretti and Pellerin (1999 a, b) have provided new insights on the role of astrocytes in

coupling neuronal activity with energy metabolism: They propose an initial glycolytic

processing of glucose occurring in astrocytes during activation, resulting in a transient lactate

overproduction, followed by a recoupling phase during which lactate is oxidized by neurons.

Although NIRS is most commonly used to measure concentration changes in HbO and

HbR, it can also be used to detect an oxygen-dependent signal from the mitochondrial enzyme

cytochrome oxidase (Cooper & Springett, 1997; Cooper et al., 1997; Obrig et al., 2000).

Cytochrome oxidase (Cyt-Ox) is the terminal electron acceptor of the mitochondrial electron

transport chain and responsible for over 90% of cellular oxygen consumption (Cooper et al.,

1997), and essential for the generation of cellular adenosine triphosphate (ATP; Cooper &

Springett, 1997). Due to the potential interference with the much greater HbO signal and the

lack of a gold standard for Cyt-Ox measurements, changes in Cyt-Ox are however a

controversial issue (Villringer & Chance, 1997; Obrig et al, 2000).

Several investigations in blood-perfluoro-carbon-exchanged animals with NIRS have

revealed small changes in Cyt-Ox redox state (e.g. Ferrari, Williams, Wilson, Thakor,

Traystman & Hanley, 1995), and large reductions in NIRS measurements of Cyt-Ox were only

found when oxygen delivery dropped significantly (Cooper & Springett, 1997; Cooper et al,

1997). In other words, there is at least preclinical evidence that under normoxic conditions, Cyt-

Ox is highly oxidised, whereas reductions in Cyt-Ox can only be observed when the cerebral

rates of oxygen delivery are very compromised (Cooper et al., 1997). Recent data in human

subjects using visual stimulation revealed an increase in Cyt-Ox, which was smaller in

amplitude than the increase in HbO and the decrease in HbR (Obrig et al., 2000; Wobst,

Wenzel, Kohl, Obrig & Villringer, 2001), and in the study of Wobst et al. (2001) showed a

roughly linear behavior of responses to stimulation periods of varying duration.
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2.3.2 Intravascular events: Relationship between Blood Oxygenation, Blood Flow and

Blood Volume

In addition to the events taking place intracellularly, local brain activity induces a local

arteriolar vasodilation (Villringer and Dirnagl, 1995; Villringer & Chance, 1997). Although

small arteries and arterioles probably contain less than 5% of the blood volume in the brain

parenchyma, they control most of the resistance and therefore blood flow at a local level

(Villringer & Dirnagl, 1995). As a consequence of local vasodilation the local cerebral blood

volume (CBV) as well as the blood flow (CBF) increase. This relationship between neuronal

activity and vascular response is termed “neurovascular coupling”. At the capillary level, the

increase in CBF is achieved mainly by higher blood flow per capillary, associated with higher

blood flow velocity rather than with “capillary recruitment”, e.g. the opening and closing of

previously unperfused capillaries (Villringer & Dirnagl, 1995). The increase in CBF and

oxygen delivery exceeds the increase in local oxygen consumption (Fox, Raichle, Mintun &

Dence, 1988), therefore, cerebral blood oxygenation rises locally (Villringer and Dirnagl,

1995). In other words, the changes in HbR most probably reflect the match between oxygen

supply and oxygen demand, whereas changes in HbO reflect the alterations in CBF, an

overshoot in cerebral oxygenation during brain activation.

Malonek and Grinvald (1996, p.554) detected a large mismatch between oxygen

consumption and oxygen supply after a brief sensory stimulation, which they expressed with

the following metaphor: „Watering the entire garden for the sake of one thirsty flower“. Using

optical imaging spectroscopy from the exposed visual cortex their spectroscopic data suggest a

sequence of three different physiological events:

1. an initial increase in HbR, indicating that „a localized increase of neuronal activity

was accompanied by aerobic metabolism“ (p. 553),

2. no complementary reduction in HbO, which suggests a second physiological event

which immediately compensates for the initial HbO decrease,

3. and a “delayed increase of the global oxyhemoglobin and the delayed undershoot

of the global deoxyhemoglobin signals presumably caused by the well-known,

large activity-dependent increase of blood volume and flow to the tissue“ (p. 553).

A spectroscopic analysis of the hemodynamic and metabolic responses to vibrissal

stimulation in rat somatosensory cortex performed by Mayhew et al. (1999) is in partial

agreement with the findings of Malonek and Grinvald, in that they also found an initial increase

of HbR following increased neural activity. In contrast to Malonek and Grinvald, Mayhew and



12

colleagues did also find an early rapid decrease in HbO (followed by a larger HbO increase).

However, they could not provide an explanation for this difference.

In a study of Jones, Berwick, Johnston and Mayhew (2001) the hemodynamic response in

rodent barrel cortex was examined using concurrent optical imaging spectroscopy and laser

Doppler flowmetry. Electrical stimulation of the whisker pad at varying intensities (0.8 –1.6

mA) resulted in a fast early increase in HbR followed by a decrease below baseline (reaching

minima at approx 3.7 s), whereas HbO simply increased after stimulation (reaching maximum

at approx 3.2 s). The time courses of changes in blood volume and blood flow were very

similar: „Both increased within a second of stimulation onset and peaked at ~2.7 s, after which

CBV returned to baseline at a slower rate than CBF“ (Jones et al., 2001, p. 1002). Using the

CBF, HbT and HbR data, time series were generated to estimate changes in oxygen

consumption. As a result, „Evidence for increased oxygen consumption was obtained even at

the lowest stimulation intensity“ (Jones et al, 2001, p. 1014).

In conclusion of their studies reviewed on activation-dependent coupling, Villringer and

Dirnagl (1995) put forward the following hypothesis:

Coupling serves to increase the delivery of glucose to fuel glycolysis and to remove

the lactate that is produced as a result of glycolysis. Lactate, which is increased in

the early phase of the response, is washed out by the increased blood flow. Tissue

and blood oxygenation might be decreased in the early phase of the response, but

overshoots during sustained activation due to the rise in blood flow and only minor

increase in oxidative metabolism (p. 256).

2.3.3 Studies combining NIRS and fMRI

Besides using a contrast agent as tracer to detect blood volume changes due to functional

brain activation, a major development in brain activity mapping is the development of Blood-

Oxygenation-Level-Dependent (BOLD) fMRI. BOLD fMRI follows changes in regional brain

blood flow by deoxyhemoglobin serving as an endogenous paramagnetic contrast agent

(Schmidt, 2003). It is known for some time that deoxygenated hemoglobin (HbR) is

paramagnetic while oxygenated hemoglobin (HbO) is diamagnetic, and hence an increase in the

concentration of HbR increases the volume susceptibility of blood. In BOLD fMRI

deoxyhemoglobin serves as the contrast agent and determines signal intensity, with other

words, „the increase in signal intensity during functional activation is therefore explained by a

drop in the concentration of HbR“ (Villringer and Dirnagl, 1995, p. 247).

In a combined and simultaneous NIRS-fMRI study, Kleinschmidt et al. (1996) have
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confirmed that this drop of HbR does occur in areas that emerge to be activated in fMR images.

Simultaneous NIRS and fMRI measurements were conducted in nine healthy subjects

performing a finger opposition task for 18 s followed by 36 s rest. The NIRS optodes were

located over the precentral region of the left hemisphere according to a modified 10-20 system

(1.5 – 2.0 cm medial and lateral position C3; thus the interoptode axis was superimposed onto

the central sulcus, thought to correspond to the location of the sensorimotor hand area). The

exact positioning of the optodes was assessed in the MR images by vitamin E capsules attached

to the optodes‘ head. The results showed that a decrease in HbR was most pronounced when

located over the area with the maximal BOLD signal increase, with the responses being

significantly stronger for contralateral than ipsilateral finger movements. In summary, Obrig et

al. (2000, p. 129) conclude that “the decrease in [deoxy-Hb] can be judged as a robust marker

of cerebral oxygenation changes in response to cortical activation”.

Applying a similar methodology, Hirth et al. (1996) inquired the spatial precision of

NIRS by determining the position of the optodes with MRI. NIRS measurements were obtained

over an array of 8-10 different locations over the left hemisphere and the cerebral oxygenation

was measured in five right-handed healthy subjects sequentially during performance of a

sequential finger opposition task of the contralateral hand at each location. In all five subjects, a

typical response pattern of a task-related increase of HbO and a decrease of HbR was observed

with a regional maximum in measurement positions located at C3 or in a position adjacent to

C3. Very interestingly, changes in HbR appeared to be more localized than changes in HbO and

therefore according to the authors seem to reflect a closer relationship to activated brain

regions.

Simultaneous measurements of cerebral oxygenation changes during a motor tapping task

were performed in a study of Mehagnoul-Schipper et al. (2002) using NIRS and BOLD fMRI in

healthy young and elderly subjects. As a result, NIRS and BOLD fMRI measurements of

motor-task related changes in HbR over the left motor cortex showed strong correlation in

young (r = -.70; p < .001) and elderly subjects (r = -.82; p < .001). They also found significant

relations between the individual HbT responses measured by NIRS and the changes in

maximum BOLD fMRI signal for the young subjects (r = -.55; p < .001), however not for the

group of elderly (r = -.20; p = .07).

In a recent study published by Kennan, Kim, Maki, Koizumi and Constable (2002)

hemoglobin changes were measured from an array of optical fibers on the scalp (so called “near

infrared optical topography”) in addition to fMRI measurement in order to determine language

lateralization of prefrontal areas to a widely used language task. The language task consisted of
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visually presented sentences containing either syntactic or semantic errors (e.g. babies can fly,

baby can crying) or syntactically and semantically correct sentences. Subjects were required to

respond by pressing a button if sentences were fully correct or either semantically-syntactically

incorrect. The control task consisted of a line decision task, e.g. a test designed to tap a

subject’s attention to physical characteristics of nonlinguistic stimuli. The findings of the study

revealed a strong correlation between the two methods in terms of laterality indices (r2 = 0.6).

Thus, the authors conclude, that near infrared optical imaging could be used to make

predictions of hemispheric dominance consistent with fMRI. (The areas of strongest

hemoglobin responses were recorded in optodes which are thought to be associated with Broca

area and pre motor cortex of the left hemisphere).

2.3.4 Studies combining NIRS and PET

Positron Emission Tomography (PET) is based upon the coincidence detection of paired

511 keV annihilation photons arising from the collision between an electron and a positron

emitted from a radionucleotide. The collision results in the release of two high-energy photons

that travel in opposite directions (180°) and can be measured at detectors spaced around the

head (Kutas and Federmeier, 1998). The detectors are arrayed in pairs around the bore of the

camera. When a pair of detectors senses photons simultaneously, this is recorded as a ‚true‘

event, whereas many millions of such events are recorded during a PET scan necessary to

create an image of isotope distribution (Schmidt, 2003). In a PET experiment, subjects are

injected with a radiolabeled substance, of which nanomolar concentrations can be detected,

provided it has been taken up by the brain.

Whereas [18F]deoxyglucose is most commonly used to investigate cerebral metabolism,

[15O]-labeled water is used to follow blood flow changes associated with transient physiological

increases in neuronal activity (Kutas and Federmeier, 1998). Using the [15O]-labeled water

approach, the distribution of a freely diffusible tracer in response to changes in functional

neuronal activity can be mapped. Cortical areas are termed ‚activated‘ if the tracer

concentration is higher under test as compared to under rest (Obrig and Villringer, 1997). The

underlying assumption that neuronal activation is coupled to an increase in regional cerebral

blood flow (rCBF) is broadly accepted and has been demonstrated by many techniques

(Villringer and Dirnagl, 1995).

In a simultaneous PET and NIRS study Villringer et al. (1997) compared changes in

HbO, HbR and HbT as measured by NIRS over the left forehead, with cerebral blood flow

measurements followed with PET using [15O]-labeled water. The light-emitting diode and the
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detector placed on the head for NIRS had an interoptode distance of 4 cm and were

radioactively labeled in order to localize them on the PET image. Two PET measurements were

performed at rest, two measurements during performance of a Stroop task, and two

measurements during performance of a calculation task in five healthy subjects. The results of

the study showed that changes in HbT correlated best with changes in CBF at a penetration

depth of near-infrared light of 0.9 cm (r = .88; p = .048). There was a trend for positive

correlation between HbO and CBF and a negative correlation between HbR and CBF, however

not statistically significant. According to the authors these data confirm the intracerebral origin

of the NIRS signal, which, using an interoptode distance of 4 cm, “most probably stems from

the outer 1 cm of the brain, i.e. mainly from the brain cortex” (Villringer et al, 1997; p. 151).

In a more ambitious study conducted by members of the same group (Hock et al., 1997a),

simultaneous NIRS and PET measurements were performed in ten patients with Alzheimer’s

disease (65 ± 13 years; diagnosis according to the criteria of the National Institute of

Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and Related

Disorders Association). The activation paradigm used was a modified Stroop test, in which

subjects have to name the colour of congruent and incongruent colour words. The NIRS

optodes were placed on the right parietal region to cover a portion of the right superior parietal

cortex, where changes in rCBF were expected based on previous findings (Pardo. Fox &

Raichle, 1991). To localize the position of the optodes on the PET image, they were labeled

radioactively. PET images were obtained under rest as well as during performance of the Stroop

task. For comparison of the hemodynamic changes measured by NIRS with changes in rCBF an

analysis of regions of interest (ROI) was performed (activation – rest), for which the individual

optode coordinates were transformed into the stereotactic space of Talairach (Talairach &

Tournoux, 1988) and projected to the cortex surface by an automated algorithm. By using these

cortex coordinates a hemispheric sample volume with the radius corresponding to the assumed

penetration depth of NIRS was defined. To address the question of overlap between changes in

rCBF (PET) and changes in cerebral hemoglobin oxygenation parameters HbO, HbR, and HbT

(NIRS) correlations were calculated for different assumed penetration depths of near-infrared

light (i.e. from 0.45 cm to 3.38 cm). As a result, the correlations were significant for all three

NIRS parameters up to a semisphere radius of 1.35 cm, and decreased with increasing assumed

penetration depth of near-infrared light into the brain tissue. The highest correlation was found

between changes in HbT and changes in rCBF at a semisphere radius of 0.68 (r = 0.93; p

<.001). Based on these data the authors conclude that the NIRS field of view is restricted to the

outer 1-3 cm of the brain cortex, which is in agreement with reports demonstrating that the
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NIRS signal is predominantly derived from the cerebral grey matter (Okada, Firbank & Delpy,

1995).

2.4 Classification of brain imaging techniques: making the case for NIRS

The usefulness of a specific method as a functional neuroimaging method is determined

by its non-invasiveness, practicability to be performed in humans, and spatial and temporal

resolution (Villringer and Dirnagl, 1995). In the following section, the different methodologies

are described according to these criteria, and a conclusion for the use of NIRS is made.

One way to classify brain imaging techniques is whether they provide direct or indirect

information about brain function (Gratton, Goodman-Wood & Fabiani, 2001). Direct methods

include EEG (including event-related potentials; ERPs) and MEG, from which EEG and ERP

record the electrical fields generated by neuronal activity, while MEG records the magnetic

fields induced by such activity (Strangman et al., 2002). PET, SPECT, fMRI and NIRS, in

contrast to EEG/ERP and MEG, are indirect measures as they monitor hemodynamic and

metabolic changes consequent to brain electrical activity, i.e. as a function of the so called

neurovascular coupling.

Another way of categorizing brain imaging techniques is whether the use of an exogenous

contrast agent is required. PET, SPECT, fMRI and NIRS, all measure changes in the

concentration of some intrinsic or extrinsic tracer with specific radioactive, magnetic or optical

properties. PET and SPECT are both based on the introduction of extrinsic radioactive tracers

into the blood stream (Cherry and Phelps, 1996): The blood stream carries the tracer to the

brain, where its local concentration is measured. As this concentration is higher in areas with an

increased blood flow and/or metabolism, areas of the brain that are active during a particular

task can be mapped in this fashion (Gratton et al., 2001). If a tracer with pronounced magnetic

properties is used, changes in blood flow can be measured by using magnetic resonance

imaging (MRI). For fMRI however the administration of an external contrast agent becomes

obsolete by the fact that the intrinsic chromophore deoxyhemoglobin is itself a substance with

pronounced paramagnetic properties (Kwong et al., 1992; Ogawa et al., 1992). This type of

fMRI is labeled blood-oxygen level dependent (BOLD) MRI. In addition to possessing distinct

magnetic properties, oxy- and deoxyhemoglobin also differ in their absorption spectra of both

visible and near-infrared light. These properties can be used for investigating functional

changes in the concentration of oxy- and deoxyhemoglobin in the brain non-invasively, which
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is the basis of NIRS. Thus, in the case of NIRS, no additional external tracer is needed.

Another approach of categorizing different brain imaging methods is in terms of their

spatial and temporal resolution as shown in Figure 4. The direct measures MEG and EEG/ERP

are strong in temporal sensitivity (i.e. in the range of milliseconds), but on the other hand

relatively weak in terms of spatial resolution. In contrast, fMRI, PET and SPECT have an

advantage when it comes to spatial resolution, however are weak in terms of temporal

sensitivity. Diffuse optical methods, such as NIRS, in comparison to the other techniques, can

provide excellent temporal sensitivity and, depending on the type of optical measurement

technique, also reasonable spatial sensitivity (Strangman et al., 2002).

Figure 4: Comparison of the spatial and temporal sensitivities of commonly-used neuroimaging
methods (taken from Strangman et al, 2002).

In NIRS functional activation studies performed so far, the spatial resolution however was

a major shortcoming (Obrig et al., 2000). According to Hock et al. (1997a) “it is obvious that

the spatial resolution (in the order of several cm3) is the most critical issue for the further

development of the method” (p. 301), and, “the NIRS method ... may be used as a research tool

with rather high temporal but low spatial resolution in clinical studies focussing on brain

activation, aging, or brain diseases” (p. 301-302).

The strength of NIRS lies beyond the categories of temporal and spatial resolution. In

contrast to PET and fMRI the NIRS instrumentation can be made portable (applicability at the

bedside) and compared to other techniques has low expense (Obrig et al., 2000). Another

advantage of NIRS is its noninvasiveness as no radioactive compound is needed, thus
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measurements may be repeated as many times as one likes (Hock et al., 1997a; Strangman et

al., 2002). With the current methodology in use, the poor spatial resolution can be partly

overcome by multiple site recordings (Obrig et al., 2000). The excellent temporal resolution and

the relative simple relationship between signal and chromophore concentration make NIRS a

suitable method to better understand the transformation of neuronal activity to the vascular or

oxygenation response (Wobst, Wenzel, Kohl, Obrig & Villringer, 2001).

Altogether, although the spatial resolution of the current NIRS methodology is clearly

behind fMRI, NIRS does have a role in functional brain activation research as it is has a high

biochemical specificity, a high temporal resolution, and the potential of measuring metabolic

(concentration changes in Cyt-Ox) as well as vascular events (concentration changes in HbO,

HbR, and HbT) simultaneously and thus may be used to better understand the basis of

neurovascular coupling. For the clinician, NIRS provides a simple, relatively inexpensive and

non-invasive tool to monitor cerebral hemodynamics even in difficult populations such as

infants, small children, or patients with claustrophobia.

2.5 NIRS in functional activation studies

Several NIRS studies conducted in the past ten years have demonstrated that activation-

induced changes in brain activity can be assessed non-invasively during the performance of

visual activation (Gratton, Corballis, Cho, Fabiani & Hood, 1995; Kato, Kamei, Takashima &

Ozaki, 1993; Villringer, Planck, Hock, Schleinkofer & Dirnagl, 1993;), motor activity (Maki et

al, 1995; Hirth et al., 1996; Obrig et al., 1996), and cognitive tasks (Hoshi and Tamura, 1993a,

b; Villringer et al., 1993).

In this section, by reviewing NIRS functional activation studies, it will be explored

whether a typical, activation-induced response pattern can be described for the NIRS

parameters HbO, HbR, HbT, and Cyt-Ox. In the first part, studies in young healthy volunteers

will be presented. In the second part, the question of how this typical response pattern may be

altered in normal aging and in different pathological conditions, such as Alzheimer’s disease

and major depression, will be addressed.

2.5.1 Typical response in healthy volunteers

An overview of functional activation studies in healthy volunteers is provided in table 2-

1. The most consistent finding is an increase in HbO in response to the stimulus applied, i.e.

either visual, motor or cognitive performance. HbT, which equals the sum of concentrations of
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HbO and HbR, is generally reported to have the same response direction as HbO, which is due

to the fact that changes in HbR are smaller in response amplitude than changes in HbO (Obrig

& Villringer, 1997). As can be seen in Table 2-1, there is only sparse data for Cyt-Ox, which

may be partly related to the problems of detecting the Cyt-Ox signal in the presence of the

much greater concentrations of HbO and HbR (Cooper et al, 1997, see also section 2.3.1).
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In three experiments Obrig et al. (1996) systematically investigated a total of 56 young,

healthy subjects to determine whether the response measured by NIRS reflects a localized

hemodynamic response. Using a motor stimulation (sequential opposition task, i.e. opposing the

thumb to each of the other four fingers of the right hand); NIRS data were acquired over the left

hemisphere corresponding to the contralateral hand region of the sensorimotor cortex (C3‘

position) in 44 subjects. 18 subjects also performed the motor task with their left hands, i.e.

ipsilateral to the optode position. In the third experiment, the frequency of finger tapping was

controlled in 12 subjects, such that subjects were asked to oppose their fingers at frequencies of

1, 2, and 3 Hz, both ipsilateral and contralateral to the NIRS optode. The study revealed the

existence of a typical stimulus-associated NIRS response during motor performance, which

consists of an increase in HbO and a decrease in HbR. The contralateral response was

significantly greater than the ipsilateral response for all parameters, and there was a trend for

greater response amplitudes with higher performance rates. Summarizing the homogeneity of

their findings in this first systematic approach, the authors conclude that the observed NIRS

response indeed reflects cortical hemodynamic changes in response to functional stimulation.

In NIRS studies applying cognitive activation tasks such as a calculation task (Hoshi and

Tamura, 1993a; Hoshi et al., 1994; Hock et al., 1995; Villringer et al, 1993), the Stroop task

(Villringer et al., 1997; Schroeter, Zysset, Kupka, Kruggel & von Cramon, 2002), the

Wisconsin Card Sorting Test (WCST; Fallgatter and Strik, 1998), a letter fluency test

(Herrmann, Ehlis & Fallgatter, 2003) or the Continuous Performance Test (CPT; Fallgatter &

Strik, 1997) an activation of the frontal region could be detected as reflected by an increase of

HbO and a decrease of HbR during these tasks.

In their NIRS study in healthy subjects Fallgatter and Strik (1997) found indications of

right frontal activation during the performance of a CPT. Subjects showed an initial increase of

HbR and a parallel initial decrease of HbO in the right frontal region, followed by an inverse

trend after some seconds, which lasted until the end of the task. This prevalently right-

hemispheric frontal activation is in line with Buchsbaum et al. (1990) who showed an increase

in glucose metabolic rate in the right frontal region during the CPT using PET.

The same authors recorded changes in blood oxygenation during reading aloud

(Fallgatter, Müller & Strik, 1998) and during performance of the WCST (Fallgatter & Strik,

1998), both again at prefrontal positions. For the reading-aloud task subjects were asked to read

an easy article from a sports magazine in normal pace. As a control condition a non-verbal

picture observation task was introduced. The results showed a marked increase of HbR in

prefrontal regions of both hemispheres, while HbO tended to decrease during the reading task.
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No blood oxygenation changes were found during the picture observation task, indicating that

the effects of the reading task are due to language-related efforts but not to visual perception.

Using the WCST Fallgatter and Strik revealed a significant relative increase in HbO at the left

as well as at the right frontal optode position. The average HbR concentration showed a slight

decrease for both hemispheres during performance of the WCST, which was not significant.

Summarizing their above findings in different activation paradigms, distinct activation

patterns become evident: The bilateral increase of HbO during the WCST clearly differs from

the bilateral frontal hypo-oxygenation during the reading task, and also from the right

lateralized frontal activation during the Continuous Performance Test. In conclusion of these

findings the authors note that „the method (NIRS) is capable not only to detect massive blood

oxygenation changes due to cerebral ischemia but also the more subtle changes during

physiological brain activation“ (Fallgatter, Müller & Strik, 1998, p. 218).

In their series of NIRS measurements in healthy volunteers Hoshi, Tamura and coworkers

(Hoshi et al., 1994; Hoshi and Tamura 1993a; Hoshi and Tamura, 1993b; Tamura, Hoshi &

Okada, 1997) have encountered unexpected results, which challenge the phenomenon of over-

compensation, i.e. an increase in HbO and HbT and a decrease of HbR under cognitive

activation. Hoshi and Tamura (1993a) found that only subjects who had difficulty in solving a

mathematical problem showed the typical Hb response. This mismatch between neuronal

activation and blood flow was detected first in volunteers above 45 years of age, but

subsequently also in about 27% of the young subjects (Hoshi et al., 1994; see also Table 1-1).

Following this unexpected result the question arises whether neuronal activation is always

accompanied by increasing blood flow and oxygen consumption (Tamura et al., 1997). Hoshi et

al. (1994, p. 132) conclude that these unexpected results might be related to the problem-

solving strategy used by these subjects and/or to the difficulty of the task: „When changes in

neuronal demand are slight because of easy mental tasks for subjects, changes in oxygen

extraction fraction might be sufficient to compensate. Alternatively, glycolysis might

compensate for the increase in neuronal demand“. However, one of these subjects with

unexpected results, in whom also PET was recorded, only solved 22 of the 30 calculations

correctly. Thus, the conclusion that neuronal demand was reduced due to easy task demand can

be doubted, at least for this subject.

In the recent publication of Schroeter et al. (2002), NIRS was used in an event-related

design during a Stroop color-word matching task (see Table 1-1). Event-related designs, which

allow a differentiation of the brain‘s response to separate events (in this case congruent color-

word pairs, incongruent color-word pairs and neutral in terms of presenting only ‚XXXX‘
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instead of words), also have the advantage of providing much shorter response latencies than

block-designs. The results of their study showed that the interference inherent to the Stroop task

led to specific brain activation in the lateral prefrontal cortex in both hemispheres (F3/4, F7/8,

FC3/4). This is in accordance with fMRI (Leung, Skudlarski, Gatenby, Peterson & Gore, 2000)

and PET (Taylor, Kornblum, Lauber, Minoshima & Koeppe, 1997) studies.

In conclusion of the above studies, a typical, activation-induced NIRS response pattern

can be described, with an increase of HbO and a decrease of HbR over areas most probably

activated by the stimulus. HbT, which is gained by summing up the concentration changes of

HbO and HbR, is generally reported to have the same response direction as HbO, due to the fact

that the changes in HbO generally are bigger in amplitude than the changes in HbR. There is

only limited data available for the intracellular NIRS parameter Cyt-Ox, which, unless

specifically analysed did not show a marked change related to brain activation. Functional

activation studies using a motor task consistently showed a clear response lateralisation, i.e. a

significantly stronger response over the sensorimotor cortex area contralateral to the hand

performing the motor task. In NIRS functional activation studies using a cognitive task such as

mental arithmetics, the Stroop task, the Wisconsin Card Sorting Test, letter fluency and the

Continuous Performance Test have showed increased activation of the frontal region as

reflected by an increase of HbO and a decrease of HbR during these tasks relative to rest. It has

to be noted however, that in most early studies only the frontal brain region was investigated. In

this regard, a recent multi-site study using an event-related approach (Schroeter et al, 2002)

earns special consideration as the incongruent trials of the Stroop task led to a markedly

stronger hemodynamic response only in the lateral prefrontal cortex. There is some evidence for

task difficulty and the problem-solving strategy used by the subject to have a response-

modifying effect. This however needs further examination, together with the combined analysis

of overt behavior (e.g. number of correct answers) and NIRS response.

2.5.2 Response patterns in normal elderly subjects and in different patient groups

2.5.2.1 Normal Aging

There is evidence for changes in the cerebral oxygen metabolism related to normal aging

gathered in PET studies (Marchal et al., 1992; Eustache et al., 1995). Reviewing earlier PET

studies to assess cerebral oxygen consumption (CMRO2) in healthy aging, Eustache et al. came

to the conclusion that “It is now widely accepted that, between the ages of 20 and 70 years,
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there is a linear (about 5-6% per decade) decrease in CMRO2. The cerebral cortex is involved

preferentially, but no lobar or gyral predominance has been consistently observed“ (Eustache et

al., 1995, p. 869).

The number of studies investigating age-related changes in cerebral brain oxygenation

measured by NIRS is very limited. The often-cited study by Hock, Müller-Spahn, Schuh-Hofer,

Hofmann, Dirnagl and Villringer (1995) is the only report of age-related changes in cerebral

oxygen metabolism during cognitive activation and thus will be described in more detail below.

A recent study by Mehagnoul-Schipper et al. (2002) (see also section 2.3.3), reported age-

dependent decreases in HbR and HbO as measured by NIRS during performance of a motor

task.

In the study of Hock et al. (1995) 12 healthy young (mean age: 28 ± 4 years) and 17

healthy elderly subjects (mean age: 52 ± 10 years) were included in the study. They were all

carefully screened including EEG, ECG, lab, as well as a physical and neurological

examination. All subjects were healthy and free of medication. Changes in HbO, HbR and HbT

were recorded over the left frontal brain during rest and activation, using a calculation task as

activation paradigm. It needs to be highlighted that the calculation task was not a uniform task

but the difficulty was adapted to the calculating abilities of the subject, thus a sufficient brain

activation should have been reached.

While performing the calculation task, the young subjects showed an increase in HbO and

HbT and a decrease in HbR (mean arbitrary units ± S.D: HbO = 2.36 ± 1.07, HbR = -0.11 ±

0.48, HbT = 2.24 ± 1.13). The elderly subjects showed a similar response pattern, however they

had a significantly lower mean increase in HbO and HbT, while HbR did not differ from the

young (mean arbitrary units: HbO = 1.21 ± 1.38, HbR = -0.50 ± 0.72, HbT = 0.72 ± 1.42).

When the HbO and HbT values were plotted against age, significant correlations were obtained

for both parameters (HbO – age: r = -0.43; HbT – age: r = -0.57). These results support the

hypothesis of an age-dependent decline in cerebral hemoglobin oxygenation, at least for HbO

and HbT. Looking at the changes in HbO, HbR and HbT from an individual subject’s

perspective, interindividual qualitative differences could be observed: Whereas all young

subjects showed an increase in HbO, two elderly subjects (12%) showed a decrease during

brain activation. Three young subjects (25%) exhibited an increase in HbR compared to only

one elderly subject (6%). As for HbT all young subjects showed an increase whereas 6 elderly

individuals (35%) showed a decrease under brain activation. This latter observation is

interpreted by the authors as an index for not only quantitative but also qualitative differences
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between the two age groups, thus, they point out, the reduction of HbO and HbT in the elderly

group cannot be a mere consequence of measuring less brain tissue due to a possible age-related

brain atrophy. However, we need to keep in mind that concentration changes in HbT are the

summation of changes in HbO and HbR and thus, smaller increases in HbO coupled with

slightly bigger decreases in HbR by definition lead to smaller values of HbT which equals the

total brain blood volume. The observation that all young subjects showed an increase in HbO

whereas more elderly subjects showed a decrease in HbR needs further consideration: As only

the left frontal position was investigated, and only one mental task was performed, we cannot

conclude as to which of the two parameters is more specific. We might assume that HbO

reflects a state of arousal with a satisfactory high sensitivity whereas HbR is more specific in

that it is a better reflection of oxygen consumption.

2.5.2.2 Depression

In an attempt to throw light on the neurobiological basis of hypofrontality in depression,

changes in HbO and HbR were examined with NIRS in 9 elderly patients with major depression

and 10 control subjects matched for age, sex, education and MMSE score (Matsuo, Kato,

Fukuda & Kato, 2000). Alterations of HbO and HbR were measured at the left frontal forebrain

during rest and during a verbal repetition task, a verbal fluency task, a hyperventilation test and

a paper-bag breathing test. During the verbal fluency test, HbO significantly increased and HbR

significantly decreased in control subjects, whereas no significant change could be observed in

depressive patients. During the hyperventilation test however both groups showed a significant

decrease in HbO accompanied with a significant increase in HbR. Thus the lack of activation in

the left forebrain in the depressed group during the verbal fluency test is not due to an altered

vasodilator response.

In a follow-up study by the same group (Matsuo, Kato & Kato, 2002) the number of

patients was increased, now including also younger patients with major depression (MD) as

well as bipolar disorder (BD) patients (14 patients with MD, 11 patients with BD not specified,

21 controls). The three groups were matched in age, sex, and education. Following the same

methodology as described above, the results of the study revealed significant differences

between the control and MD group, and between the control and the BD group in HbO during

the verbal fluency test: During the verbal fluency test, only control subjects showed an increase

in HbO, although only at the trend level, and a significant decrease in HbR. There was no

significant change in either MD or BD patients during the verbal fluency test. This result could
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not be explained by differences of performance in the verbal fluency test, because there was no

difference in the number of words produced among these three groups.

2.5.2.3 Schizophrenia

Applying the same methodology as in their study in healthy subjects (Fallgatter and Strik,

1997), Fallgatter and Strik (2000) report results of nine schizophrenic patients (DSM-IV; n=3

disorganized, n=3 catatonic, n=3 paranoid) obtained with NIRS during the CPT. In contrast to

the previous study, no hemispheric activation effects were found in schizophrenic patients. The

schizophrenic patients displayed a trend for higher HbR levels in the left frontal region,

irrespective of functional activation status, i.e. at rest as well as under performance of the CPT.

The absence of this lateralized activation could not be attributed to a worse performance since

number of omission errors and false alarms, as well as reaction times were not different from

the control group.

2.5.2.4 Alzheimer’s Disease (AD)

In their first experiment Hock and coworkers (1997a; see also section 1.3.4), investigated

19 elderly healthy volunteers (67 ± 10 years) and 19 patients with probable moderate AD (71 ±

10 years; diagnosis according to NINCDS-ADRDA) using a letter fluency task. One pair of

optodes was placed to cover the left parietal cortex. The results (mean values) revealed a typical

response pattern for the elderly healthy subjects during the verbal fluency test, i.e. increases in

HbO and HbT in parallel to a smaller decrease in HbR. Patients with AD showed significant

decreases in HbO as well as HbT, coupled with a small decrease in HbR. The NIRS variables in

the AD group did not correlate neither with the MMSE score nor with the verbal fluency test

score (correct responses). As Hock et al. pointed out however, large interindividual differences

in the NIRS variables were detected over the left parietal position as follows: 4 of the 19

healthy elderly subjects (21%) showed a decrease in HbO as opposed to 15 of the 19 AD

patients (79%). 6 of the healthy elderly subjects (32%) and 3 of the AD patiens (16%) presented

an increase in HbR, and a decrease of HbT was observed in 7 healthy controls (37%) versus in

17 AD patients (89%).
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To examine simultaneous changes in the left parietal and left frontal cortex during the

performance of the verbal fluency task, additional NIRS measurements were conducted in

another group of 8 healthy elderly subjects and 10 patients with moderate AD (same groups as

reported in section 2.3.4). As illustrated in Figure 5, the healthy elderly control group showed

increases in HbO and HbT in both frontal and parietal cortex during the verbal fluency test, the

changes between activation and rest being slightly more pronounced at the left frontal position

In contrast, the group of AD patients showed marked decreases in HbO and HbT over the left

parietal cortex, and, at the same time, increases in HbO and HbT in the frontal cortex.

Figure 5: Results of NIRS measurements of Hock et al. (1997a, p. 297) comparing healthy
elderly subjects with patients with probable moderate AD.

For the observation of decreases in HbO and HbT in the parietal cortex of AD patients

together with a ‘normal’, though smaller response than healthy controls, over the frontal cortex

during cognitive activation with the verbal fluency task the authors list three possible

interpretations (Hock et al., 1997a, b): First, there may be a reduction of hemoglobin

oxygenation in degenerating brain areas during cognitive activation which is in favour of other

healthier brain regions due to an altered functional brain organization. This interpretation would

be in line with observations by Grady et al. (1993) who described an additional frontal

activation in AD patients during performance of an object recognition task. Secondly, the

mechanism of neurovascular coupling may be altered during neurodegeneration, which may

lead to an abnormal regulation of the brain miscrovasculature with increased vasoconstriction

leading to regional reduced supply with oxygen during activation of brain function. Thirdly,
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anatomical changes during neurodegeneration may affect the optical properties of the brain

(enlargement of the subarachnoid space, brain atrophy, changes in white/grey matter ratio).

In a study of Fallgatter, Roesler, Sitzmann, Heidrich, Mueller and Strik (1997) ten

patients with AD (according to DSM-IV and NINCDS/ADRDA criteria) were compared to a

group of ten young healthy control subjects. Two verbal fluency tests were performed while

changes in HbO and HbR (activation-rest) were recorded at the left frontal and right frontal

positions in all study participants: a letter fluency task and a category fluency task. In both

groups, the relative concentrations of HbR decreased significantly during the letter fluency task

and the relative concentrations of HbO increased as a trend, but not during the category fluency.

Calculating for hemispheric differences, the control subjects showed a marked hemispheric

effect during the letter fluency task, in that their relative changes of HbO were more

pronounced in the left frontal than the right frontal region. The patients with AD did not show

this hemispherical asymmetry and performed worse on the letter fluency task: “It appears, in

fact, that DAT patients are characterized by a loss of this physiological hemispheric

lateralization and, instead, show a global activation involving right hemispheric regions in

addition to the left hemispheric response observed in controls” (Fallgatter et al, 1997, p. 70).

2.6 Summary

Near-infrared spectroscopy (NIRS) is a non-invasive optical technique to measure

changes in cerebral hemoglobin oxygenation in the outer 1-3 cm of the brain cortex. It makes

use of the fact that brain activity is associated with changes in optical properties of brain tissue.

As biological tissue is relatively transparent to light in the near-infrared range between 700–900

nm, this “optical window” can be used to measure concentration changes of several endogenous

chromophores, e.g. oxygenated and deoxygenated hemoglobin, which have different absorption

spectra for light at a specific wavelength in the near-infrared range. During increased brain

activity and by means of the “neurovascular coupling” between neuronal activity and vascular

response, there is an increase in local cerebral blood flow. This increase in cerebral blood flow

however is exceeding the increase in oxygen consumption and thus leads to an increase in

intravascular haemoglobin oxygenation during brain activity. Therefore, when the NIRS

measuring optode is located over an area in which cerebral blood flow increases during brain

activity, a localized increase in the concentration of oxygenated hemoglobin (HbO) and a

decrease in deoxygenated hemoglobin (HbR) is seen.
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Studies combining PET and fMRI with NIRS were able to demonstrate that concentration

changes in HbO and total hemoglobin (HbT) correspond well to rCBF increases as measured by

PET, whereas concentration changes in HbR highly correlate with signal intensity increases

measured by fMRI.

NIRS has a spatial resolution in the range of several cm3 and thus is clearly behind PET

and fMRI. However, it has a high temporal resolution and the potential of measuring metabolic

as well as vascular events simultaneously. It does not require large expensive equipment nor an

exogenous contrast medium, it is easy to handle and portable and thus can be used also in

clinical populations.

In the past ten years NIRS has been widely used in functional brain activation studies

including several types of activation such as motor activity, visual activation, and performance

of cognitive tasks. In NIRS functional activation studies it has been consistently shown that the

NIRS-parameters HbO and HbR exhibit typical responses to brain activation: an increase of

HbO and a decrease of HbR over the brain areas most probably activated by the stimulus.

There are only very limited functional NIRS data in normal elderly subjects and different

patient groups, and the studies conducted used only one or two optode positions. The study of

Hock et al. (1995) in healthy elderly vs. healthy young subjects is the only report of age-related

changes in cerebral hemoglobin oxygenation using a cognitive activation paradigm. In

Alzheimer’s Disease only 2 NIRS functional activation studies have been published, and both

used a verbal fluency activation paradigm. They suggest a reduction of cerebral hemoglobin

oxygenation in the left parietal cortex compared to normal activity in the left frontal cortex

(Hock et al., 1997a), and, measuring over the left and right frontal cortex, a global activation

involving the right frontal cortex in addition to the left-frontal response observed in controls.
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3 Investigating brain-behaviour and -ApoE relationships with specific

consideration of the verbal fluency task- evidence from neuroimaging

studies

The investigation of brain-behavior relationships has generally followed two major

routes: 1) detailed neuropsychological assessment of specific cognitive functions including

clinical case studies and 2) „on-line“ assessment of cognitive processes with the use of

functional brain imaging techniques. With the development of high-resolution techniques such

as fMRI, it became possible to very precisely localize the neural correlates of task performance

and thus this route has recently become most prominent.

In the first part of this chapter, the Verbal fluency task will be presented as a sensitive

measure of frontal lobe functioning, not only in neuropsychological practice, but also recently

in functional activations studies using PET and fMRI. The neural correlates of a verbal fluency

task as investigated with functional activation studies will be outlined, and the question of how

task performance during the scan relates to brain activation will be addressed.

In the second part, the Apolipoprotein E (ApoE) genotype, thought to be a major genetic

susceptibility factor for AD, will be introduced and its importance in modulating the brain

response in normal elderly subjects will be investigated.
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3.1 The Verbal fluency task - a sensitive measure of frontal lobe function

The purpose of the test is to evaluate the spontaneous production of words within a

limited amount of time. There are two versions of Verbal fluency tasks: the letter fluency or

„phonemic“ fluency and the category fluency or „semantic“ fluency.

The letter fluency is a well established test with a long tradition in neuropsychology,

going back to the Thurstone Word Fluency Test (Thurstone & Thurstone, 1962). The most

widely used version is the one developed by Benton (Benton, 1968), in which subjects orally

generate words beginning with letters (e.g. F, A, and S) with 60 seconds for each letter. The

category fluency is a measure of semantic memory as subjects are asked to generate words from

certain semantic categories (e.g. animals, fruits, clothing). Performance on a verbal fluency task

relies on efficient organization of verbal retrieval and further involves short-term memory (in

keeping track of the words already said), ability to initiate and maintain word production set,

cognitive flexibility (in rapidly shifting from one word to the next within the selected category),

as well as response inhibition capacity. These processes are commonly considered as aspects of

„executive“ functioning, which are subserved by the frontotemporal region, particularly left

frontal area, as demonstrated in clinical and functional activation studies (Mitrushina, Boone &

D’Elia, 1999).

It is nowadays generally accepted that in neurodegenerative disorders such as AD,

performance on letter fluency tasks dissociate from category fluency tasks (see Warburton et

al., 1996). In studies performed by Monsch and colleagues (Monsch et al., 1992; Monsch et al.,

1997) it could be shown that the category fluency test is superior over the letter fluency test in

differentiating AD patients from normal controls. Both tests require attention, initiation,

retrieval and working memory, however it is assumed that letter fluency is more dependent on

the phonologically based word store, whereas category fluency is dependent on access to intact

representations in semantic memory. This argument is consistent with the notion that AD

patients suffer from a significant deterioration in the structure of semantic knowledge (Monsch,

2001).

Neuropsychological research has revealed a large number of characteristic features of

early-stage AD that may serve as guidelines in the search for preclinical cognitive markers. In

short, tests that assess verbal episodic memory (e.g. recalling a list of words) and semantic

memory (e.g. category fluency) were shown to be most sensitive and specific in distinguishing

AD patients in early stages from normal controls (Monsch, 2001). A thorough review of this
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field of research as well as the analysis on preclinical markers from the neuropsychological

perspective in the BASEL study is provided in the habilitation thesis of PD. Dr. Andreas

Monsch (2001), and will not be discussed here.

3.2 PET and fMRI functional activation studies investigating the neural

substrates of verbal fluency tasks

3.2.1 Studies with PET

Tests of verbal fluency have become a prominent activation paradigm in functional

imaging, specifically to test the function of the frontal lobes. verbal fluency tasks have a long

tradition in PET functional activation studies, and they have lately also been used in fMRI and

NIRS.

There is vast and consistent evidence from PET functional activation studies in young and

middle-aged adults that the performance of a letter fluency task is strongly associated with the

left prefrontal cortex (Benton, 1968; Carlsson, Wendt & Risberg, 2000; Elfgren & Risberg,

1998; Frith, Friston, Liddle & Frackowiak, 1991a, b; Friston, Frith, Liddle & Frackowiak,

1993; Milner, 1964; Warburton et al., 1996; Warkentin & Passant, 1993). In addition to the

activation of the left prefrontal area, a number of studies have also found an involvement of the

temporal lobe with some of the studies having found a rCBF increase (e.g. Warkentin &

Passant, 1993) and others a symmetrical bilateral rCBF decrease (e.g. Frith et al., 1991a).

The results of PET studies using some form of a semantic fluency task (Klein, Milner,

Zatorre, Meyer & Evans, 1995; Warburton et al. 1996) suggest that common neural substrates

are involved: the left prefrontal cortex together with left parietal and inferotemporal regions.

Klein et al. (1995) investigated whether the search process in word generation, i.e. phonological

vs. semantic search, activate similar regions in bilingual young subjects. As a result, they

discovered a broad activation of the left inferior and dorsolateral frontal cortex together with

activations of the left parietal and inferotemporal regions irrespective of the search requirement.

Warburton et al. (1996) examined word retrieval (verbs and nouns) in four experiments,

contrasting it to four different control states (rest, listening to words, silent repetition of

pseudowords, verb-noun comparison). In summary of their findings they conclude that word

retrieval is the product of a distributed and predominantly left-lateralized neural network

involving particularly left inferior temporal and parietal regions as well as the left prefrontal

cortex. The studies of Klein et al. and Warburton et al. both propose that the involvement of the

left parietal and temporal lobe reflect semantic processing.
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3.2.2 Studies with fMRI

With high-resolution fMRI becoming available, it became possible to more precisely

localize the brain regions involved during performance of a verbal fluency task. One of the first

groups to compare the findings obtained with PET as described above was Phelps, Hyder,

Blamire and Shulman (1997). Following the methodology of Frith et al. (1991b), they

investigated three task conditions: repeating words, generating antonyms, and generating words

(letter fluency). 11 healthy subjects were included in their study, however, due to movement

artifacts, data from only six subjects could be analysed. The results obtained with fMRI by

Phelps and colleagues (1997) were in very good agreement with the Frith study: During

performance of letter fluency compared to simply repeating words, there was increased

activation in the left dorsolateral prefrontal cortex and in the left anterior cingulate (Brodmann

Area [BA] 45, 24, and 32; for an illustration of BAs see Appendix I, Figure I-1). The fMRI

study however showed an additional area of activation around the left superior frontal gyrus

(BA 8), which was interpreted in relation with different behavioural components of verbal

fluency in their task.

Trying to overcome the problems with movement artifacts resulting from overt speech

during the scanning procedure, covert response paradigms of verbal fluency have been

developed (Paulesu et al., 1997; Schlösser et al., 1998; Smith et al., 1999, 2002). Paulesu et al.

(1997), by contrasting letter fluency to semantic fluency in six young male normal volunteers,

found that in comparison to rest both tasks activated the anterior triangular portion of the left

inferior frontal gyrus (BA 45) and the left dorsomedial thalamus. Significant temporal cortex

activation was found only in four of the six subjects in the superior and medial temporal gyri

and particularly during the phonemic fluency task. Smith et al. (1999, 2002) found activation of

the left inferior frontal lobe (BA 44, 45), the exastriate areas of the occipital lobe bilaterally

(BA 18, 19), inferomedial areas of the posterior temporal lobe (BA 37), and the left premotor

cortex (BA 6) together with a significant deactivation bilaterally in the temporoparietal and

superior parietal areas and in the right premotor region (see Figure 6 for illustration) during

visual letter fluency vs. a baseline visual monitoring task in cognitively intact, middle-aged

women at high and low risk for AD (see section 3.4.1 for further details with respect to ApoE-

ε4 genotype). Schlösser et al. (1998) obtained whole brain fMRI from six male and six female

young normal volunteers and found a broadly consistent pattern of activation increase in the left

prefrontal cortex and right cerebellum together with significant decreased responses in mesial

and dorsolateral parietal cortex bilaterally. There were no gross differences in the pattern of
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activation between male and female subjects.

Figure 6: Task activation maps comparing baseline and letter fluency for the low-AD risk
group (n=17). Areas of increased activation are in red, areas of decreased activation in blue
(taken from Smith et al., 2002, p. 1199).

These studies are all consistent with earlier PET observations, in that they consistently

showed activation of the left dorsolateral prefrontal cortex. However, they have precluded

direct measurement of task performance during image acquisition.

Using a novel overt verbal fluency design that allowed for performance measurement

during image acquisition, the subjects in the study of Abrahams et al. (2003) performed a letter

fluency task vs. a baseline word-repetition task. During the tasks the subject was presented with

a letter cue every 6 seconds and responded overtly with a single word in a 4-second quiet

period. The 18 adult healthy volunteers (mean age: 56.7 ± 12.1 years) were clearly capable of

performing the letter fluency task as they on average produced 42.6 ± 1.8 different words from

a total of 45 possible responses. Task performance did not correlate with age. The cortical

regions of significant activation during the letter fluency task included extensive regions of the

left and right middle frontal gyrus (BAs 46 and 9), left inferior frontal gyrus (areas 44 and 45),

left and right anterior cingulate gyrus (BAs 32 and 24) and left medial prefrontal cortex (area

6). Correlational analyses of BOLD changes and task performance showed no significant

results.

3.2.3 Verbal fluency in patients with Alzheimer’s Disease

To date, brain imaging in patients with Alzheimer’s disease has primarily been performed

in the context of the diagnostic process and/or to better understand the neural correlates of the

cognitive deficits in Alzheimer’s disease. Functional imaging techniques have surprisingly

been performed to a very little extent and the number of available publications is very limited.

Furthermore, the studies differ in terms of imaging techniques, activation paradigm, and
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dementia severity, and thus are hardly comparable. Disease severity was found to correlate with

rCBF and oxygen metabolism (Rapoport, 1991; Tohgi et al., 1998). In this section we will

focus on PET and SPECT studies in Alzheimer’s disease and on the neural correlates of a

verbal fluency task in AD.

Measuring CBF and glucose metabolism in so called „resting brain“, i.e. without a

stimulus-induced cerebral activation, many researchers have found reductions in blood flow and

glucose utilization in the parieto-temporal association cortex, with the frontal cortex being

relatively spared in mild stages of the disease (for reviews see Heiss, Pawlik, Holthoff, Kessler

& Szelies, 1992; Lee, Mintun, Buckner & Morris, 2003; Mayberg, 1994; Matsuda, 2001;

Rapoport, 1991).

As summarized in Table 3-1, the majority of imaging studies on verbal fluency in

Alzheimer’s disease have investigated patients‘ resting blood flow and/or glucose metabolism

and correlated these measures with the performance in verbal fluency tasks assessed outside the

scan (Hirono et al., 2001; Keilp, Gorlyn, Alexander, Stern & Prohovnik, 1999; Kitabayashi et

al., 2001; Pasquier, Lebert, Grymonprez & Petit, 1995). Only Warkentin and Passant (1997)

have applied a functional imaging methodology, investigating the rCBF in patients with AD

during rest as well as during performance of a letter fluency task. Overall, these data suggest

that the relationship between regional cerebral blood flow/regional cerebral glucose metabolism

and verbal fluency in Alzheimer’s disease is comparable to what has been observed in healthy

volunteers: letter fluency scores were significantly correlated with the left prefrontal blood

flow/glucose metabolism, whereas category fluency scores in addition correlated with left

temporal flow/glucose metabolism. In the functional imaging study of Warkentin and Passant

(1997), the patients with AD during performance of a letter fluency task had significant

activation in the Broca’s area only, whereas the remaining frontal areas, particularly prefrontal,

unlike normal subjects showed no flow increases. Unfortunately, the AD sample of Warkentin

and Passant is not specified: neither the diagnostic classification system nor the severity of the

disease is indicated but only the duration of illness (which for the sample of 17 patients varied

between 1 and 10 years).
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Table 3-1: PET/SPECT studies on neural substrates of verbal fluency in Alzheimer’s Disease

Authors Study Design Results

Hirono et al.
(2001)

Resting [18F]deoxyglucose PET
57 patients with probable DAT (mean
MMSE: 19.1±3.4);
Category fluency

Significant positive correlations
between fluency scores and glucose
metabolism in :
-left superior frontal gyrus (r=0.457)
-left inferior frontal gyrus (r=0.417)
-left and right anterior cingulate gyrus
(r=0.475, r=0.424)
-left inferior temporal gyrus (r=0.441)

Keilp et al.
(1999)

Resting [133Xe]rCBF
25 patients with probable DAT (mean
MMSE: 16.7±4.6);
24 elderly controls (mean MMSE:
28.6±1.8);
Category and letter fluency

Left/right parietal rCBF values:
DAT< controls
Left/right frontal rCBF values:
no difference between groups
DAT group: primary predictor of
letter fluency score = left frontal rCBF

Kitabayashi et
al. (2001)

Resting SPECT
25 patients with probable DAT(mean
MMSE: 17.7±4.7)
Category and letter fluency

-Letter fluency score was significantly
correlated with the left dorsolateral
prefrontal rCBF (r=.463)
-Category fluency score was
significantly correlated with the left
dorsolateral prefrontal (r=.439) and
left temporal rCBF (r=.514)

Pasquier et al.
(1995)

Resting SPECT
7 patients with probable DAT (mean
MMSE: 23.1±5.2);
7 patients with dementia of frontal lobe
type (DFT; mean MMSE: 23.9±4.4); both
groups matched for gender, years of
education, age, MMSE;
Category and letter fluency

Frontal SPECT values: DFT < DAT
Parietal SPECT values: no difference
between groups
No correlation between frontal
SPECT and fluency measures
Category and letter fluency: no
difference between groups

Warkentin &
Passant (1997)

[133Xe]rCBF during rest and during
performance of a letter fluency task
15 patients with dementia of frontal lobe
type (DFT; mean duration of illness: 4.5
years; mean age: 62 years);
17 patients with AD (mean duration of
illness: 4 years; mean age: 67 years)
22 healthy volunteers (mean age: 36 years)

AD patients:
-Rest: regional flow pathology in
parietal and temporal areas, frontal
areas normal activation.
-Activation: significant activation of
Broca’s area, no significant changes
in other frontal areas, e.g. DLPFC, as
in healthy volunteers
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3.3 Correlation between task performance and brain response

To date there are only few reports on how performance in a verbal fluency task during

functional activation correlates with the corresponding brain response, and the relationships

between the two seem to be complex.

Elfgren and Risberg (1998) have investigated whether the cognitive strategy during the

performance of a verbal fluency task has an influence on the frontal blood flow increase. They

measured rCBF in twenty healthy young volunteers during performance of a letter fluency test

vs. a baseline control task. Splitting the group according to the reported strategy during the

letter fluency task yielded two subgroups: one with a „pure“ verbal strategy vs. one with a

„mixed“ strategy, i.e. a verbal strategy combined with a visual search strategy. Their interesting

main finding was that subjects reporting a verbal strategy not only produced significantly more

words during the letter fluency task but also showed significant flow increases in the left

dorsolateral prefrontal cortex while subjects with a mixed strategy showed no significant flow

increases.

Measuring rCBF during rest and during a letter fluency task in 49 healthy volunteers,

Warkentin and Passant (1993) have investigated whether the subject’s performance was related

to frontal lobe activation. They have divided the sample into „low“, „medium“, and „high“

performers. The high performers on average showed a trend towards highest frontal flow

increase, however also the low and medium performing group revealed frontal flow increases,

suggesting that task performance alone is not a critical factor for frontal lobe activation.

In one of the earliest PET studies of letter fluency, Parks et al. (1988) found negative

correlations between verbal fluency scores and PET normalized metabolic rates over the entire

cortex which was in contradiction to their hypothesis. They interpreted this finding in line with

the notion of verbal fluency as „effortless responding“ in analogy to the relatively minor

physical exertion of a proficient swimmer as opposed to that of the novice in swimming the

length of a pool: „The novice must expend more energy to swim slower because his/her

technique may not be as efficient as that of the expert „ (Parks et al., 1988, p. 572).

In the study of Abrahams et al. (2003), as outlined above, BOLD changes were not

significantly correlated with task performance, however, with the design of their overt paradigm

and the excellent average task performance, the variability might have been too small to detect

a significant correlation.

Increased task demand seems to be related to greater cerebral activation as demonstrated
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recently by Fu et al. (2002), who have investigated „easy“ vs. „hard“ letters in an overt fMRI

letter fluency experiment. Although both conditions elicited the typical pattern of activation

seen in letter fluency tasks, the hard letters were associated with greater activation of the left

anterior cingulate (BA 32). This greater activation might be related to a greater engagement of

arousal and stress responses by highly demanding tasks.

In summary of these findings, there are at least two possible scenarios for the relationship

between task performance and brain activation: 1) a positive correlation and 2) a negative

correlation:

1) A positive correlation: higher task performance is related to greater brain activation

in the corresponding brain area needed for task performance. As shown by Elfgren and

Risberg (1998), subjects using a verbal strategy, which was related with better

performance than the mixed strategy, showed significant activation of the left dorsolateral

prefrontal cortex, i.e. the area known to be involved in the performance of a letter fluency

task. In other words, subjects able to bring the brain areas critical for successful

performance of a cognitive task on-line, show better task performance.

2) A negative correlation: low task performance is associated with higher brain

activation. For healthy normal subjects a negative correlation could be interpreted in

terms of the „novice vs. expert“ metaphor, as done by Parks et al. (1988). Although the

novice needs to invest more effort to solve a task than the expert, his performance is yet

lower. In contrast to Elfgren and Risberg (1998), the correlation between letter fluency

score and brain activation was not restricted to a specific brain area but was seen over

frontal, parietal and temporal cortices of both hemispheres. Thus, using the novice-vs.

expert metaphor, the novices had an increased cerebral activation across the whole cortex.

Finally, the difficulty of a task seems to have a modifying effect on brain activation (see

also chapter 2, section 2.4.1), a generally accepted notion which has received further support

from a recent investigation of Fu et al. (2002).

3.4 The Apolipoprotein E (ApoE) Genotype

The search for preclinical markers of AD gained an important boost by the detection that

certain genotypes of Apolipoprotein E (ApoE) may serve as major genetic susceptibility factors

for AD (Monsch, 2001).

The apolipoproteins represent a group of proteins that share their presence on plasma
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lipoproteins (chylomicrons, low density lipoprotein (LDL), very low density lipoprotein

(VLDL) and high density lipoprotein (HDL)) that serve as the ferries for cholesterol,

triglycerides and phospholipids. While several studies have investigated a variety of genes

encoding apoAIV, ApoA, ApoB and ApoCIII, the effect of the ApoE gene has been studied

most intensively (Smith, 2002). The gene coding for ApoE is located on the long arm of

chromosome 19. Three primary alleles, ApoE-ε2, ApoE-ε3, and ApoE-ε4, determine an

individual's ApoE status. As each of us inherits one apoE allele from each parent, there are six

possible genotypes; ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4 and ε4/ε4. In western European and white

American populations, the allele frequencies for ε2, ε3 and ε4 are ~8, 78 and 14%, respectively

(Smith, 2002). In contrast to the allele frequency the carrier frequency is often reported,

especially with regard to the ApoE-ε4 allele: In the general population, 25 - 35% of healthy

individuals have at least one ApoE-ε4 allele (Mahley, 1988) compared to approximately 60% of

AD patients (Schmechel, Saunders, Strittmatter, Crain, Hulette, Joo et al., 1993). The relative

risk of AD increases about 2.5 times for individuals who are heterozygous for the ApoE-ε4

allele and approximately eight times for homozygous individuals (Corder et al., 1993; van

Duijn, de Knijff, Cruts, Wehnert, Havekes, Hofman et al., 1994). Furthermore, AD patients

who are homozygous for ApoE-ε4 (ε4/ε4) have a significantly earlier onset of dementia than ε4

heterozygotes and individuals without an ε4 allele (Corder et al., 1993; Strittmatter et al., 1993;

see Monsch (2001) for a more detailed review).

3.4.1 Brain correlates of ApoE-ε4 in the normal elderly

While the ApoE-ε4 allele has been identified as a major genetic susceptibility factor for

AD, yet little is known in vivo about how the ApoE genotype modulates the brain in aging and

in AD. One strategy to elucidate the relationship between ApoE genotype and normal and

pathological aging has been to implement brain imaging techniques in subjects at genetic risk

for AD. In this section, brain imaging studies in relation to ApoE genotype in normal elderly

subjects will be presented.

Brain imaging studies which have been conducted in relation with the ApoE genotype,

have in the majority of cases used two different brain imaging techniques:

• Volumetric MRI to measure potential hippocampal damage

• [18F]deoxyglucose PET to measure cerebral metabolism

Table 3-2 provides an overview of design and results of these studies.
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Table 3-2: Overview of studies investigating brain correlates of ApoE-ε4 using volumetric
MRI and/or PET in elderly subjects

Authors Study Design Results

Small et al.
1995

29 subjects with AAMI*
and a family history of AD,

19 ε4-
12 ε4+

Left/right parietal metabolism:
ε4+ < ε4-,
parietal asymmetry: ε4+ > ε4-,
MRI: no difference in subjective
atrophy ratings between groups

Soininen et al.
1995

32 healthy subjects,
18 ε4-/-,
10 ε4+/-,
  4 ε4+/+

Hippocampal volume asymmetry left
< right: ε4+/+ < ε4+/- <ε4-/-

Schmidt et al.
1996

214 population-based
normal subjects,

175 ε4-
  39 ε4+

No significant differences in
hippocampal/parahippocampal
volumes, no significant white matter
differences

Tohgi et al.
1997

54 healthy subjects,
40 ε4-
14 ε4+

Right hippocampus: ε4+ < ε4-,
ε4-subjects: right hippocampus > left

Jack et al. 1997 125 cognitively normal
subjects,

95 ε4-
30 ε4+

ε4+ subjects slightly smaller
hippocampal volumes, however not
significant

Reiman et al.
1998

33 subjects with a familiy
history of AD,

22 ε4-/-,
11 ε4+/+

ε4 homozygotes slightly smaller
hippocampal volumes, however not
significant

Cross-
sectional
Studies

Jernigan et al.
2001

43 healthy subjects,
22 ε4-
21 ε4+

No significant difference in
hippocampal volumes, nor in any
cortical volume

Small et al.
2000

2-year follow-up of 20
subjects with mild memory
complaints at baseline,

10 ε4-
10 ε4+

ε4+ subjects: significant decline in the
inferior parietal and temporal cortices
ε4- subjects: significant decline
primarily in frontal cortex

Longitudinal
Studies

De Leon et al.
2001

3-year follow-up of 25
healthy subjects,

17ε4-
 8 ε4+

Baseline: metabolism lateral temporal
lobe, superior temporal gyrus: ε4+ <
ε4-
Follow-up: interaction ε4 x cognitive
decline: declining ε4+ subjects
significant reduction metabolism
lateral temporal lobe

* AAMI = Age-associated memory impairment

To start with, it becomes evident that most of these studies have been performed cross-
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sectionally, and the number of longitudinal studies is yet very limited. Furthermore, with the

exception of the studies of Schmidt et al. (1996) and Jack et al. (1997) the sample size of

subjects, especially subjects with an ε4 allele, was very small. Thus, these results must be

interpreted with caution.

In the cross-sectional study of Schmidt et al. (1996) in addition to MRI and ApoE

genotyping a detailed neuropsychological test battery was applied. It was found that the 39 ε4

carriers had significantly reduced scores on measures of memory and learning compared to the

non-carriers (Bäumler’s Lern- und Gedächtnistest; LGT-3), a difference which could not be

attributed to potential confounders such as age, educational status, mood status, concomitant

medications or diseases, and vascular risk factors. The ε4 carriers did not differ from non-

carriers in neuropsychological measures of attention and speed (Alterskonzentrationstest, Trail

Making Test Form B), visuopractical skills (Purdue Pegboard Test), and conceptualization

(Wisconsin Card Sorting Test). As summarized in Table 3-1, the difference in memory and

learning abilities between ε4 carriers and non-carriers was not reflected on the level of MRI.

This lack of association was however not further investigated „It is a common radiological

observation that in neurodegeneration, morphological cerebral abnormalities occur only late in

the disease and are frequently proceeded by functional changes“ (Schmidt et al., 1996, p. 297).

In the study of Jack et al. (1997) ε4-positives did show a trend toward smaller

hippocampal volumes than ε4-negatives, this trend however did not reach statistical

significance. The absence of a significant association between ApoE genotype and hippocampal

volume was additionally confirmed by logistic regression analysis, in which no significant

interaction between hippocampal volume and ApoE genotype was found. For the authors this

finding was unexpected, and one possible explanation they give is the fact that their subjects, on

average, were between a decade and a decade and a half older than the nondemented subjects

investigated in earlier trials (mean age ε4-negatives: 78.8 ± 6.98 years, ε4-positives: 80.1 ±5.86

years). Thus, based on the generally accepted notion that intersubject anatomic variability

increases with advancing age, especially in olders subjects, the ε4 effect on hippocampal

volumes was small enough to have been overwhelmed by the much greater effect of

intersubject anatomic variability. In fact, the studies of Small et al. (1995) and Tohgi et al.

(1997), which found significant differences in hippocampal volume in relation to the ε4 allele,

had subjects with a mean age below 60 years (Small et al: mean age ε4-negatives: 55.5 ±12.0

years, ε4-positives: 56.4 ± 10.3 years; Tohgi et al: mean age ε4-negatives: 59.0 ±11.0 years, ε4-

positives: 58.8 ± 8.0 years).
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In replication of their cross-sectional findings (Small et al., 1995), Small et al. (2000)

observed lower metabolic rates in ε4 carriers for the inferior parietal and the lateral temporal

cortices as well as for the posterior cingulate at baseline. At the 2-year follow-up, analyses of

the PET data revealed significant glucose metabolic decline of 5% in the inferior parietal and

lateral temporal cortices in ε4 carriers, whereas the ε4 non-carriers showed significant decline

in the frontal cortex, which according to the authors, is consistent with normal aging. Moreover,

in subjects at genetic risk for AD, it was found that lower baseline metabolism predicted future

cognitive decline measured 2 years later. These results are in line with the observations of De

Leon et al. (2001): At baseline, ε4 carriers had significantly lower glucose metabolism in the

neocortical temporal lobe than non-carriers. At the 3-year follow-up, among those subjects with

cognitive decline, ε4 carriers showed further marked reductions in the same area, suggesting

that progressive ε4-related hypometabolism may underlie the known ε4 carriers increased

susceptibility for AD.

In addition to the investigation of resting metabolism and brain anatomy, functional

imaging has been used to further elucidate the differences between individuals at high vs. low

risk for AD. Smith et al. (1999) compared the functional MRI scans of 14 women at high risk to

develop AD (defined as having at least one ApoE-ε4 allele and a first degree relative with

clinical AD; mean age = 51.8 ± 5.1 years) with 12 low risk individuals (mean age = 53.0 ±. 6.2

years) while they performed confrontation naming and letter fluency tasks. The high-risk group

demonstrated significantly reduced activation in the bilateral temporal regions during both

activation tasks. These results however need to be taken with some caution as unfortunately

task performance during the scan was not assessed. Thus, differences in task performance

between groups might have contributed to the differences in activation. In a follow-up study of

the same group (Smith et al., 2002), the same methodology was used in an increased sample of

women at high and low risk for AD (N = 38, 21 high-risk vs. 17 low-risk subjects incl. the 26

subjects described above). The results of this study using a bigger sample size revealed

significantly increased left parietal activation for the high-risk group during the letter fluency

task, an observation which at a trend-level was also found in their initial investigation. No

difference was found in the frontal region, the area known to be similarly activated in a letter

fluency task. Taken together, the authors interpreted their findings in relation to a disruption of

functional circuits involving the left parietal lobe in individuals at increased risk for AD.
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3.5 Summary

With the development of high-resolution brain-imaging techniques it became possible to

precisely localize the neural correlates of cognitive functioning, and thus better understand the

brain-behaviour relationships.

A simple and frequently used functional activation paradigm is the verbal fluency task.

The verbal fluency task involves cognitive processes commonly considered as aspects of

executive functioning. Verbal fluency tasks can be subdivided into phonemic or letter fluency

tasks (e.g. words starting with a F, A, or S) and category or semantic fluency tasks (e.g. food,

animals, tools).

PET studies investigating the brain areas engaged in the performance of a verbal fluency

task have consistently shown activation of the left frontotemporal area. Recent fMRI studies

have more precisely identified the patterns of activation during the performance of a letter

fluency task: They have predominantly found activation of the left frontal cortex (including

Broca’s area, premotor cortex and dorsolateral prefrontal cortex), inferomedial areas of the

posterior temporal lobe together with variable deactivation bilaterally in temporoparietal areas.

Activation of the right prefrontal cortex was also reported. In these functional activation studies

the elderly non-demented population has not been systematically represented, and there is to

date only one functional imaging study using the verbal fluency Task in Alzheimer’s Disease

patients.

Positive as well as negative correlations between task performance during the brain scan

and brain response have been reported. While a positive correlation has been found specifically

in the cortical area of activation (i.e. the left prefrontal cortex in a letter fluency task), the

negative correlation between task performance and brain response seems to be distributed

globally across the entire cortex.

Although it is generally well accepted that the ApoE-ε4 allele acts as a major genetic

susceptibility factor for AD, the evidence coming from resting-brain imaging studies in relation

to the ApoE genotype in normal elderly subjects is controversial. There is some evidence that

ApoE-ε4 carriers have a tendency towards smaller hippocampal volumes, reduced temporal

glucose metabolism, and hippocampal asymmetry, however, given the fact that most of the

reports have applied a cross-sectional design and that the sample size in these positive studies

was relatively small, these reports have to be taken with caution.

Only a few data from functional activation studies in individuals at high vs. low risk for

AD are available, suggesting a disruption of functional circuits involving the left parietal lobe
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in individuals at increased risk for AD. Again, these studies used small sample sizes.

Furthermore, they did not control for task performance during the scan, which might have had a

confounding effect on the measured brain response.
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4 Methods

The data reported in this doctoral thesis were recorded in the context of the “Basel Study

on the Elderly (BASEL)” project. The BASEL project was planned and carried out as a

multidisciplinary project incorporating several disciplines, of which, for the purposes of this

thesis, near-infrared spectroscopy, neuropsychology and neurobiology (ApoE genotype) were

chosen for combined analyses. The contributors to these data were the Basel Memory Clinic

and NeuroPsychologieZentrum of the University Hospital of Basel (Prof. Dr. Hannes B.

Stähelin & Prof. Dr. Andreas Monsch), the Institute of Physiology of the University of Basel

(Prof. Dr. Uwe Otten) and the Psychiatric University Hospital of Basel (Prof. Dr. Franz Müller-

Spahn & Prof. Dr. Christoph Hock). The project was approved by the Ethics Committee of the

University Hospital of Basel, and written informed consent was obtained from all study

participants.

4.1 The BASEL project: an overview

When recruiting the participants of The BASEL project, the authors could revert to an

existing database of elderly subjects who had taken part in the longitudinal “Basel studies I-III”,

which began in 1959 with a cohort of approximately 6,400 subjects who were at that time

employees of the pharmaceutical industry in Basel (Monsch, 2001). The last mortality follow-

up in 1990 examined 1,931 individuals who had last been seen in 1972. This sample of

individuals comprised the recruitment base of the current study. An overview of the study

population and the flow of examinations in the BASEL project is provided in Figure 7.
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1972 - Basel Study III: n = 3796

1990 -  Follow-up: n = 1931

German CERAD-NAB: n = 740

Random selection of n = 740

Neuropsychology: 347 non-demented elderly + 30 AD patients

questionable dementia
n = 142

cognitively intact
n = 598

Interview of family member

 ADLs impaired
n = 21

 ADLs intact
n = 96

no information
n = 25

accepted
n = 10

refused
n =11

DROP-OUT
n = 36dementia

n = 6
no dementia

n = 4

Referral to Memory Clinic

non AD
n = 3

 AD
 n = 3

 ApoE Genotyping: n = 732: 172 E4; 560 non-E4

Selection
ε4 vs. nonε4
- Gender
- Age
- Education

Dementia assessment

 AD patients from
Memory Clinic

n = 28

refused
n = 1

DROP-OUT
n = 351

NIRS: 297 non-demented elderly + 25 AD patients

Figure 7: Overview of the BASEL project (reprinted with permission from Monsch, 2001)
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4.2 Screening examinations

After subjects had signed informed consent, a thorough screening examination was

performed to safeguard against the inclusion of demented subjects in the baseline sample of

healthy elderly subjects.

The screening examination consisted of a clinical interview to assess the past and current

medical history; the administration of the German version of the CERAD (Consortium to

Establish a Registry for Alzheimer's Disease; Morris et al., 1989) neuropsychological

assessment battery (CERAD-NAB) and the clock drawing test (CDT); and a blood drawing for

ApoE genotyping. The clinical interviews, CERAD-NAB and CDT administrations were

carried out by trained psychology students under the supervision of experienced clinical

psychologists. The decision, whether a study subject could be considered as “cognitively intact”

as opposed to presenting with a “questionable dementia” was based on a comparison of

individual test results with a sample of 85 optimally healthy controls, who had not participated

in the Basel Study III (see Monsch, 2001 for a detailed description of the procedure). Study

participants with a questionable dementia were contacted by a trained gerontologist who carried

out a semi-structured telephone interview on activities of daily living (ADL) with these subjects

and a significant other (usually the spouse). The objective of this interview was to assess

whether the low score on the CERAD-NAB would reflect a relatively new decrease and

whether it would impact on the subject’s daily life. If this was the case, the subject was asked to

give permission that his/her family physician would be contacted to initiate detailed

neuropsychological examination at the Memory Clinic.

4.3 Cross-sectional main examinations

On average 5.7 ± 2.7 months after the screening examination, all cognitively intact

individuals (i.e. as determined in the screening phase) returned to the study centre for a detailed

neuropsychological assessment as well as for a near-infrared spectroscopy examination. As

displayed in Figure 5, these individuals were grouped according to the presence and absence of

at least one ApoE-ε4 allele and were pairwise matched according to age (± 4 years), education

(± 4 years) and gender.

4.3.1 Neuropsychological assessment

The selection of the neuropsychological test battery was made to cover several criteria

relevant for the aims of the BASEL project: The tests needed to be able to detect subtle
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cognitive changes (i.e. they needed to be challenging and broad); they needed to be appropriate

for not only quantitative but also for qualitative analyses; they had to be suitable for repeated

administration (longitudinal approach); and they had to be internationally compatible. For the

cross-sectional correlation between neuropychological test performance and near-infrared

spectroscopic data as reported in this thesis, not the whole test battery but a selection of most

commonly used tests was chosen as displayed in Table 4-1. The neuropsychological

assessments were carried out by trained psychology students under the supervision of

experienced clinical psychologists.

Table 4-1: Selection of tests from the neuropsychological test battery used in the BASEL
project (German versions)

Premorbid IQ
-Mehrfachwahl-Wortschatz-Intelligenztest (MWT-B; Lehrl, 1993)

General intellectual functioning
-WAIS-R: Similarities, Block Design, Vocabulary (Tewes, 1991)

Language/Executive Functions
-Boston Naming Test (Kaplan, Goodglass & Weintraub, 1983)

-Category fluency (Newcombe, 1969), i.e., one minute each of animals, tools, and food

-Phonemic fluency  (Benton & Hamsher, 1989), i.e., one minute each of S-, O-, and G-words

Memory
-California Verbal Learning Test (Delis et al., 1987)

Executive functions
-Trail Making Test A and B (Army Individual Test Battery, 1944)

-Modified Wisconsin Card Sorting Test (Nelson, 1976)

4.3.1.1 Mehrfachwahl-Wortschatz-Intelligenztest (MWT-B; Lehrl, 1993)

The multiple-choice vocabulary word test is a measure of general verbal intelligence,

especially for the use in patients with (transient) organic brain syndrome. Developed in a

psychiatry environment, the test aims at gathering information about the premorbid intelligence

of a patient in a short period of time. The MWT-B consists of 37 lines of five words each. Each

line consists of one semantically correct word and four fictitious pseudowords. The score is

obtained by adding up the number of correctly recognized words.
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4.3.1.2 Wechsler Adult Intelligence Scale (WAIS-R; Tewes, 1991)

The WAIS-R is one of the most frequently used measures in neuropsychological test

batteries, providing information about the overall level of intellectual functioning, and the

presence or absence of significant intellectual disability (Lezak, 1995, Spreen & Strauss, 1998).

The WAIS-R is composed of 11 subtests, 6 verbal and 5 performance-oriented. Of these, three

subscales were chosen of which the Vocabulary and the Similarities subtest cover verbal

intelligence whereas the Block Design test belongs to the performance tests. The Vocabulary

subtest requires the subject to provide definitions of words. On the Similarities subtest, the

subject is asked to explain in what way two things are alike. On the Block Design subtest, the

subject is asked to construct replicas of constructions made by the examiner using red and white

blocks.

4.3.1.3 Boston Naming Test (Kaplan, Goodglass & Weintraub, 1983)

The purpose of this test is to assess the ability to name pictured objects (Spreen & Strauss,

1998), which requires several stages of information processing: a perceptual analysis of the

visual features of the object, semantic access of the underlying conceptual representation, the

lexical retrieval of the appropriate name for the object, encoding the articulatory program and

finally correct articulation of the name (Mitroshina et al., 1999; Nicholas, Obler, Albert &

Goodglass, 1985,). With the complexity of processes involved, it is evident that several brain

structures are responsible for object naming, of which e.g. the anterior part of the left inferior

temporal lobe has been identified for naming animals and the posterior portions of the of the

left inferior temporal lobe for naming tools (Damasio, Grabowski, Tranel, Hichwa & Damasio,

1996), but also focal left frontal regions have been suggested to be responsible for the ability to

access the sound form of the word (Whatmough, Chertkow, Murtha & Hanratty, 2002).

The original test by Kaplan, Goodglass and Weintraub (1983) contains 60 items. In the

BASEL project a subset of 45 items not contained in the CERAD-NAB screening battery was

used. For the purpose of this thesis, only the number of spontaneously given correct responses

were analysed.

4.3.1.4 Category Fluency (Newcombe, 1969)

In the category fluency test the subjects is asked to name as many different words as he or

she can think of in one minute from the semantic categories „food“, „animals“ and „tools“,

respectively. The test is scored by calculating the number of correctly named words, the number

of perseverations and the number of errors. For our analyses the number of total correct words
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across all three categories were entered into the database.

4.3.1.5 Phonemic Fluency (Benton & Hamsher, 1989)

In the phonemic fluency test, the subjects are prompted to name as many words starting

with a given letter (e.g. in this case „S“, „G“ and „O“) as they can think of in one minute,

respectively. Thus, this fluency test is also labeled „letter fluency“. The test is scored by

calculating the number of correctly named words, the number of perseverations and the number

of errors.

4.3.1.6 California Verbal Learning Test (CVLT; (Delis et al., 1987)

The CVLT assesses multiple aspects of the strategies and processes involved in learning

and remembering verbal material (Spreen & Strauss, 1998), The learning material consists of

two shopping lists, presented to the subject as the „Monday“ (List A) and the „Tuesday“ list

(List B). Each list contains 16 items from four categories each. Administration begins by

evaluating a subject’s ability to recall the items of List A by reading the items to the subject

over five sequential trials. The subjects are instructed to recall as many items as possible after

each trial. Following trial 5, subjects are presented with List B, an interference list with 16

items from categories different from those in List A, and required to recall as many items as

possible from List B. Immediately after List B subjects are again asked to recall the words from

List A (short delay free recall) and are subsequently cued with each of the four categories from

List A (short delay cued recall). After a 20-minute delay, long delay free recall and long delay

cued recall of List A and finally long delay recognition of List A items are tested (Monsch,

2001). From this procedure, the CVLT provides multiple parameters, from which the following

were chosen for data analysis:

• Number of correctly recalled words, perseverations, and intrusions across all 5 learning

trials

• Number of correctly recalled words, perseverations, and intrusions in the short delay

free recall

• Number of correctly recalled words, perseverations, and intrusions in the long delay

free recall

• Number of hits, false alarms, correct rejections, and omissions in the long delay

recognition.
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• Recognition discriminability (%): Percentage of correctly identified and correctly

rejected words from the total words presented:

(hits + correct rejections)/44 x 100

Recent functional activation studies of episodic memory have consistently shown that

retrieval processes are related to the activation of the right prefrontal cortex whereas the mesial

temporal lobes and the left frontal lobe are associated with encoding (Fletcher, Shallice &

Dolan, 1998; Fletcher, Shallice, Frith, Frackowiak & Dolan, 1998; Lapage, Habib & Tulving,

1998; Saykin et al., 1999). In a functional activation study of verbal memory, Johnson, Saykin,

Flashman, McAllister and Sparling (2001) found a high positive correlation between the

recognition discriminability and the fMRI signal increase to familiar words in the right

prefrontal cortex.

4.3.1.7 Modified Wisconsin Card Sorting Test (Nelson, 1976)

The widely used Wisconsin Card Sorting Test (WCST) is considered a measure of

executive function in that it requires strategic planning, organized searching, the ability to

utilize feedback to shift „cognitive sets“, goal-oriented behavior, and the ability to modulate

impulsive responding (Spreen & Stauss, 1998). In her modification of the WCST Nelson (1976)

removed the response cards which shared more than one attribute with a stimulus card, thus

eliminating ambiguity and simplifying the task for the patient. The test consists of a 48-card

pack with the four stimulus cards set up as in the WCST, i.e. triangle, star, cross, and circle.

The subject’s task is to choose categories by receiving feedback from the examiner who

informs the subject whether each choice is correct or not, until the subject has achieved a run of

six correct responses. Then, the patient is told that the rule has changed and is instructed to find

a different sorting rule. This procedure is continued until the maximal set of six categories are

achieved or the cards are used up (Lezak, 1995). The test is scored by calculating the number of

correct sorts, the number of obtained categories, and the total number of errors, which is

composed of the number of perseverative errors and nonperseverative errors.

4.3.1.8 Trail Making Test A and B (Army Individual Test Battery, 1944)

The Trail Making Test is a popular and widely used test of speed of visual search,

attention, mental flexibility, and motor function. Specifically, Part B (see below) assesses the

ability to alternate between sets of stimuli and thus can be used as a measure of executive

functioning (Mitrushina et al., 1999). The objective of the test is to connect, by making pencil
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lines, randomly arranged numbers on a page in proper order (Part A), and to connect numbers

and letters in alternating order (Part B). The subject is instructed to solve this task as fast as

possible, without lifting the pencil from the paper. For both parts, scoring is expressed in terms

of the time required to complete Part A and B, respectively, as well as the number of errors

commited. We generated the quotient B/A as a specific measure of executive functioning,

taking into account each subjects‘ individual motor speed: The lower the quotient B/A, the

better the ability of a subject to shift between cognitive sets.

4.3.2 Near-infrared spectroscopy (NIRS)

Using NIRS cerebral hemoglobin oxygenation changes during brain activation were

measured in 322 study subjects (see Figure 7, p. 47). The neuropsychological examination

usually was performed in the morning, whereas the NIRS examination took place in the early

afternoon (around 2:00 p.m.) of the same day. The NIRS examination was conducted at the

Psychiatric University Hospital of Basel, which is located near to the Basel Memory

Clinic/University Hospital where the neuropsychological assessment was performed. The study

participants were offered a free taxi to the Psychiatric Hospital, where they were received by

the NIRS study staff. Due to logistical reasons, not all study participants could pass the

neuropsychological examination and the NIRS on the same day. These subjects were excluded

from the cross-sectional statistical analysis of NIRS data (see section 4.4.1 for more details).

Finally, it needs to be pointed out that the participation in the NIRS examination was

independent from the participation in the BASEL project, i.e. each subject was free to withdraw

his consent to participate in the study at any time.

4.3.2.1 NIRS data recording and analysis

A multichannel system combining six commercially available NIRS devices (NIRO-500,

Hamamatsu Photonics) was used to non-invasively measure changes in cerebral hemoglobin

oxygenation over the left and right frontal, parietal and temporal cortex simultaneously during

performance of either a verbal fluency task (letter fluency, modified after Benton and Hamsher,

1989) or a computerized labyrinth test (modified according to the Nürnberger Altersinventar;

Oswald und Fleischmann, 1986). The NIRS variables obtained in this study are oxygenated

hemoglobin (HbO), deoxygenated hemoglobin (HbR), and cytochrome oxidase (Cyt-Ox). The

total hemoglobin (HbT) is obtained by summing up the concentration changes of HbO and HbR

(HbT = HbO + HbR). Assuming that hematocrit is constant, the changes in HbT can be used as
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an indicator of alterations in cerebral blood volume (Cope & Delpy, 1988).

The NIRO 500 system uses the difference of absorption spectra of HbO, HbR, and Cyt-

Ox in the near infrared. The measurements were performed in the reflection mode. Light from

the laser diodes (wavelengths 775, 825, 850, 904 nm) is guided through a fibre optic bundle, the

end of which (the first optode: admission of near-infrared light) is placed strictly at the same

site on the head in each subject to avoid effects of optode positioning. Optode pairs were placed

over the left and right frontal, left and right parietal and left and right temporal cortex according

to the international EEG 10-20 system (see Appendix I, Figure I-2) by a very well-experienced

EEG technician (left frontal: Fp1-F3, right frontal: Fp2-F4, left parietal: T5-P3, right parietal:

T6-P4, left temporal: T3-C3, right temporal: T4-C4). The interoptode distance was 4 cm.

Spatial resolution: It has been estimated that the brain volume measured corresponds to a

banana-shaped figure beneath the two optodes of an optode pair with an estimated penetration

depth of near-infrared light into brain tissue of a few centimetres (Hock et al., 1997a; Störmer,

Müller-Spahn & Hock, 1998). Light source: The laser diodes are pulsed at 1.9 kHz, thus every

pulse has a duration of 100 ns. Light detector: The reflected light is conducted by an optical

fibre to a photomultiplier-based optical detection system and the number of photons at each

wavelength is compared with the light output of the lasers (Cope & Delpy, 1988). The analysis

procedure converts the obtained optical densities to concentrations of the chromophores HbO,

HbR and Cyt-Ox, expressed in micromoles per liter times the optical pathlength (µmol x 1-1 x

cm), using Beer-Lambert’s law and an algorithm developed by Wray, Cope, Delpy, Wyatt, and

Reynolds (1988).

Temporal resolution: NIRS recordings between the 17-Nov-1997 and 04-Dec-1997

(n=20) were made by using a sampling time for each photon count of 1 second, thereafter, for

the majority of recordings (n=302), a sampling time of 2 seconds was used. The pathlength was

estimated by multiplying the interoptode distance (4 cm) with the (age-dependent) differential

pathlength factor (DPF) for the adult head (5.93; van der Zee et al., 1992). All values were

averaged and described as mean arbitrary units. Assuming that this pathlength estimate is

correct, these “arbitrary concentration units” correspond to micromolar.

Verbal fluency task: Subjects were sitting in a convenient position with eyes closed

throughout the whole examination that included a period of rest (5 min), a period of cognitive

activation (2 min, verbal fluency task, see below), another period of rest (10 min) and another

period of cognitive activation (2 min, verbal fluency task). For the verbal fluency task (letter

fluency, modified after Benton and Hamsher, 1989) subjects were asked to generate as many

words as they could think of beginning with e.g. the letters F and A within 60 s allowed for
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each letter (different letters were used for the second period of activation). The score used for

analysis was the total number of correct responses.

Labyrinth test: This test consisted of a computerized version of the labyrinth test

according to the Nürnberger Altersinventar (Oswald und Fleischmann, 1986). All subjects

received adequate instructions about the test and the use of the mouse. Subjects with reduced

vision and/or hemisymptomatic subjects were activated with the verbal fluency task. The

sequence and duration of rest and activation periods was the same as with the verbal fluency

task: After a 5-min period of rest, the first 2-min period of activation, followed by a second 10-

min period of rest and finally another 2-min period of activation occurred. Unfortunately, and in

contrast to the verbal fluency task, no data on the subjects’ overt task performance was

collected with the labyrinth test. Therefore, it is not possible to draw conclusions about the

involvement of a subject in this task, as could be operationalized by the quality and/or speed of

his/her performance.

Statistical analysis: The change of the relative chromophore concentrations for HbO,

HbR, and Cyt-Ox, i.e. from the resting to the activation state, was calculated resulting to so

called “delta values”: A mean value for the first period of rest as well as a mean value for the

first period of activation was calculated for each chromophore respectively (Note: the second

period of rest and activation did not enter the analysis. It was introduced for the purposes of a

separate analysis which will not be discussed here). The time windows for both means were

120 s. The difference was calculated by subtracting the prestimulation mean value from the

mean during the activation period (delta = mean concentrationactivation – mean concentrationrest).

The period between the end of the resting state and the start of the activation state, i.e. the

instruction period, was omitted from the calculation of delta values, as this period cannot be

assigned neither to the rest nor to the activation state (see Appendix I, Figure I-3 for a graphical

display). One methodological drawback needs to be considered here: the NIRS technique, as

applied in our study, could not provide absolute baseline concentrations of HbO, HbR, and Cyt-

Ox. This would have required the exact quantification of the optical pathlength of the near-

infrared light in brain tissue in each experiment and for each wavelength, and, in addition, the

quantitation of the loss due to scatter (Hock et al., 1997). Therefore, the measurements using

the current technique, i.e. as presented above, only refer to changes in absolute concentrations

starting from an estimated baseline level.



56

4.3.3 ApoE

The configuration of subjects' ApoE alleles was determined in a polymerase chain

reaction (PCR) analysis at the laboratory of PD Dr. André Miserez at the University Hospital,

Basel.
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4.4 Population

4.4.1 Subject disposition

Figure 8: Subject disposition of study sample

As outlined in Figure 8, 297 non-demented elderly subjects and 25 patients with probable

AD participated in this study. With regard to the non-demented elderly subjects it was aimed at

performing the NIRS and neuropsychological assessment on the same day. However, this could

not be achieved due to several reasons (e.g. personal reasons of study subjects, logistical

reasons). Therefore, as in this thesis the main focus is on the association of brain hemoglobin

oxygenation and neuropsychology measures, only non-demented elderly subjects were selected

who had both assessments on the very same day, resulting in a sample of 240 subjects.

The AD patients first had their neuropsychological assessment, followed by the NIRS

examination a couple of days later (maximum: 10 days in one subject, mean: 4.6 days). Of the

25 patients with AD, two patients had no evaluable NIRS data. From the remaining 23 patients

with a diagnosis of probable Alzheimer’s Disease, only those patients were entered into the

database for who the diagnosis of probable AD could be confirmed in at least one follow-up

neuropsychological examination at least one year after the date of diagnosis, resulting in a total

of 21 evaluable patients.

4.4.1.1 Non-demented elderly subjects

A spin-off of the BASEL project was to conduct a normative study for the newly

developed German version of the CERAD-NAB to be used in German-speaking Memory

Meeting criteria healthy subject

(n=177)

Not meeting criteria healthy subject

(n=63)

NIRS/NP same day

(n=240)

NIRS/NP different day

>>excluded from analysis

(n=57)

Non-demented subjects
(n=297)

AD Diagnosis confirmed

(n=21)

AD Diagnosis not confirmed/

Lost to follow-up

(n=2)

Evaluable NIRS data

(n=23)

No evaluable NIRS data

>>excluded from analysis

(n=2)

Patients with AD
(n=25)

Subjects with NIRS, NP & ApoE-status
(N=322)
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Clinics. In order to be enrolled in the normative sample, subjects were selected if they did not

meet a list of exclusion criteria summarized in Table 4-2. Subjects were additionally excluded if

their native language was not German and if they had less than eight years of formal education.

Based on these criteria, 74% (n=177) of our subjects belonged to the normative sample, and

will be labelled „healthy subjects“. The remaining 26% (n=63) were excluded from the

CERAD-NAB normative sample for reasons listed in Table 4-3. However, for the analysis of

the relationship between NIRS, NP and ApoE-status, these subjects remained in our study

sample. At the time of neuropsychological assessment (i.e. on average 5.7 months later) the

same exclusion criteria were applied again to capture potential changes in health status which

might have occurred in the meantime. Fortunately, there was no such change in any subject, so

that the constitution of the sample with regard to the criterion „healthy subject“ remained

constant.
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Table 4-2: Exclusion criteria for non-demented elderly subjects being part of the normative
CERAD-NAB study

A. Clinical findings

1. Severe hearing, visual, or language disturbance affecting the ability to complete

neuropsychological testing.

2. Sensory deficits (i.e., not able to have a conversation and/or not able to read a newspaper without

magnifying glasses).

3. Motor deficits that lead to problems in everyday life (paresis, essential tremor, dyskinesia, etc.).

4. Severe systemic diseases (heart, lungs, kidney, endocrine, gastrointestinal).

5. Continuous light to intense pain.

6. Current psychiatric problems (depression, psychosis, etc.).

B. Medical History

1. CNS diseases (e.g., Parkinson's disease, Huntington's disease, multiple sclerosis, Stiff-man

syndrome, epilepsy, encephalitis, meningitis, etc.).

2. Diseases or events during life that most likely negatively impact(ed) CNS activity, specifically:

- Head injury with loss of consciousness for more than 5 minutes;

- Brain surgery;

- General anesthesia within the last three months;

- Psychiatric disorders requiring hospitalization;

- Intake of potent psychoactive drugs (excluding minor tranquilizers);

- Insulin-dependent diabetes;

- Alcohol abuse (i.e., > 80g pure alcohol per day);

- Poisoning with substances that are toxic to the CNS.

3. Cerebrovascular diseases (e.g., transient ischemic attack (TIA), stroke).

4. Generalized atherosclerosis.
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Table 4-3: Reasons for the exclusion of subjects from the normative CERAD-NAB sample
(multiple reasons possible)

Reason for exclusion Number of subjects

Native language other than German 2

Less than 8 years of education 2

Medical reason

Loss of consciousness (> 5 minutes) 21

Actual depression 10

Systemic disease 10

Cerebrovascular incident 8

Diabetes (requiring insulin therapy) 6

Migraine/daily headaches 4

Suspected parkinsonism 3

Sensory deficits 2

History of meningitis 1

General anasthesia within last 3 months 1

4.4.1.2 Patients with AD

For the purpose of the cross-sectional investigation including NIRS only patients with a

mild probable AD according to DSM-IV criteria (Diagnostic and Statistical Manual of Mental

Disorders, 4th edition, American Psychiatric Association, 1994) were selected (for more

information on the diagnostic procedure see Monsch, 2001). In addition to disease severity,

only patients were included who had no current comorbid depressive disorder (assessed with

the DSM-IV questionnaire for depression, Kühner, 1997). In our patient sample the diagnosis of

probable AD was confirmed in at least one detailed follow-up neuropsychological examination

at least one year after the date of diagnosis.

Most patients were living with their spouse (60%), while some lived on their own (20%;

no data available from the remaining 20%). At the medical screening examination the patients

indicated to have no severe disease other than Alzheimer’s and at the time of examination felt

in good health. Specifically, none of the patients indicated to suffer from migraine or

headaches, diabetes, dizziness, feeling weak or falling. None of the patients indicated to have



61

current or past epilepsy, strokes in the past, or past diagnosis of depression and/or schizophrenia

which required hospitalization. All patients reported to be non-smokers and drinking less than

80 g pure alcohol per day (see also Table 4-2, p. 59).

13 patients (62%) were receiving pharmacological treatment with acetylcholinesterase

inhibitors (11 patients Exelon, 2 patients Aricept), and one patient was taking Gingko

capsules. Psychotropic medication was prescribed to a total of 5 patients, either to treat sleeping

problems (1x lorazepam, 1x oxazepam, 1x zolpidem) and/or to treat symptoms of anxiety

and/or depression (1x sertralin, 1x citalopram, 1x melitracen/flupentixol).
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4.4.2 Demographics

Table 4-4: Key subject demographics and MMSE scores
Non-demented elderly subjects

Healthy
(n=177)

Not Healthy
(n=63)

Total
(n=240)

AD Patients
(n=21)

Age
Mean ± SD
Min, Max

71.8 ±6.89
54, 88

73.5 ± 7.32
56, 90

72.3 ± 7.03
54, 90

76.2 ± 6.37
57, 86

Gender
Males/Females 129/48 42/21 171/69 9/12

Years of Education
Mean ± SD
Min, Max

12.6 ±3.33
7, 20

11.9 ± 3.30
4, 20

12.4 ± 3.33
4, 20

11.8 ± 2.59
8, 19

Handedness
Left/right/ambidexter 14/158/5 6/56/1 20/214/6 0/21/0

MMSE score
Mean ± SD
Min, Max

28.6 ± 1.33
25, 30

28.2 ± 1.68
21, 30

28.5 ± 1.44
21, 30

25.3 ± 2.08
22, 29

As depicted in Table 4-4, the non-demented elderly subjects covered quite a broad age

range (54-90 years), with age showing a normal distribution around a mean of 72.3 ± 7.03

years. Substantially more male subjects were included in the non-demented group, which was

due to the fact that a substantial part of subjects was recruited from the earlier „Basel studies“,

in which former employees of the Basel pharmaceutical industry were included (see also

section 4.1). Male individuals had received significantly more years of total education than their

female counterparts (13. 2 ± 3.21 vs. 10.5 ±2.84 years; Z=-6.07; p<0.000). Non-demented

males and females did not differ with respect to age (72.1 ± 6.93 vs. 72.8 ± 7.28; Z=-1.148;

p=0.25) and MMSE (28.5 ± 1.47 vs. 28.5 ± 1.37; Z=-0.544; p=0.59).

The 63 subjects who met at least one of the exclusion criteria listed in Table 4-2 did not

significantly differ from the remaining 177 individuals with respect to age, gender, years of

education, handedness, and MMSE score (all p-values > 0.05).

The patients with AD were significantly older than the non-demented subjects (Z=-2.95;

p=.003), and not surprisingly had lower MMSE scores (Z=-6.08; p<.001), but they did not

differ with respect to years of education (Z=-.491; p=.624). As shown in Table 4-4, the group of

AD patients contained a larger portion of female subjects. All AD patients were right-handed.
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4.4.2.1 Demographics by NIRS activation paradigm

During the course of the study two different NIRS activation paradigms were used to

measure changes in cerebral brain tissue oxygenation: In 119 non-demented subjects and 18

patients with AD a letter fluency task was applied, as opposed to 121 cognitively intact subjects

and 3 AD patients who were activated with a computerized labyrinth test (see section 4.3.2.1

for more details on the tasks). The allocation of subjects to the NIRS activation paradigm was

not randomized. Assuming that the changes in cerebral brain blood oxygenation, especially

with regard to the brain-topographical activation, will vary depending on the administered

cognitive task, these two paradigms will be analysed separately. Table 4-5 displays the subject

demographics for non-demented subjects per activation paradigm.

Table 4-5: Subject demographics and MMSE scores of non-demented elderly subjects per
activation paradigm

Non-demented elderly subjects
Letter fluency task

(n=119)
Labyrinth test

(n=121)
Comparison*

Age
Mean ± SD
Min, Max

74.6 ± 6.29
57, 90

70.0 ± 6.97
54, 89

p<.001

Gender
Males/Females 70/49 101/20 p<.001

Years of Education
Mean ± SD
Min, Max

11.7 ± 3.21
7, 20

13.0 ± 3.31
4, 20

p<.001

Handedness
Left/right/ambidexter 8/108/3 12/106/3 p=.670

MMSE score
Mean ± SD
Min, Max

28.4 ± 1.41
25, 30

28.6 ± 1.47
21, 30

p=.460

*Age, years of education, MMSE: Mann-Whitney U; gender, handedness: Chi-Quadrat test

The non-randomized allocation to the activation paradigm led to significant differences in

age, gender, and years of education: Subjects activated with the letter fluency task were

significantly older, and had less years of total education. The difference in education is partly

due to the fact that there were substantially more males who were activated with the labyrinth

test (however, when the females are removed from the analysis, this difference still remains

highly significant).
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4.4.3 Results of ApoE-Genotyping

The results of the ApoE-genotyping are displayed in Table 4-6. The proportion of ε4 -

positives and -negatives was evenly distributed across both subgroups of elderly subjects who

had either NIRS-activation paradigm, and also across patients with AD, with 45% of both non-

demented elderly subjects and AD patients having had at least one ApoE-ε4 allele. Please note

that the even distribution of ε4 carriers and non-carriers is due to the fact that our study

participants were selected according to this criteria, thus allowing to compare subjects at high

vs. low risk for AD (see Monsch, 2001 for more details).

Table 4-6: Results of ApoE-Genotyping
Non-demented elderly subjects

Letter
fluency
(n=119)

Labyrinth
test

(n=121)

Total
(n=240)

AD-Patients
(n=20)*

ε2/ε2 0 1     1 (0.4%)  0 (0%)

ε2/ε3 12 11   23 (9.6%)  1 (5%)

ε2/ε4 11 8   19 (7.9%)  1 (5%)

ε3/ε3 53 56  109 (45.4%) 10 (50%)

ε3/ε4 41 39    80 (33.3%)   7 (35%)

ε4/ε4 2 6    8 (3.3%)  1 (5%)

ε4 54 53 107 (45%)   9 (45%)

Non-ε4 65 68 133 (55%) 11 (55%)

*No ApoE-genotyping available for one AD patient

4.5 Data management and quality control

All neuropsychological test data were inspected by doctoral candidates working in the

BASEL project. A group of psychology students who had not administered the tests entered the

data into a FileMaker 5.0 database. A final, independent group of psychology students

inspected the entered data for correctness.

The NIRS delta-values were transferred into an excel spreadsheet and thereafter merged

into an SPSS-datafile together with the neuropsychological, ApoE-genotype, and medical

history data. To control for possible merging errors, the whole merging procedure was
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performed twice with verification upon first and second merging. A 100% manual data check

was performed for the variables „date of examination“ (NIRS, NP), „age“, „gender“, „years of

education“, „NIRS activation paradigm“, „performance in NIRS activation“. For all other

variables at least a 10% manual data check was performed.

4.6 Statistical methods

Descriptive and inferential statistical tests were calculated using the Statistical Package

for the Social Sciences (SPSS) version 10. A detailed description of the key statistical tests is

provided in section 5 together with the study objectives and hypotheses.

Normal distribution of all variables was tested using the Kolmogorov-Smirnov and/or the

Lilliefors test, and parametric statistics were applied only for variables with normal distribution

(e.g. NIRS parameters, NIRS task performance). In addition, to test for potential differences

between groups, parametric tests were only used if the criterion of homogeneity of variances

was fulfilled, otherwise nonparametric tests (e.g. Mann-Whitney U) were performed.

Furthermore, to test for potential differences between groups with markedly different sample

sizes (e.g. AD patients vs. non-demented elderly subjects; healthy vs. non-healthy subjects),

nonparametric tests were preferred.

Unless otherwise specified, statistical tests were two-tailed and performed at the 5%

significance level. In case of multiple univariate comparisons under an exploratory strategy, i.e.

when no a priori research hypotheses were formulated (e.g. differences in neuropsychological

test performance between healthy and non-healthy subjects), inferential statistics were tested at

an alpha level of 1%. This procedure was preferred because the more restrictive Bonferroni

alpha correction procedure was deemed to be too conservative when performing exploratory

analyses.

Figures in text and tables were presented displaying three significant figures (i.e. .XXX,

X.XX, XX.X).

Missing values: As with every typical data set, information may be missing for some

variables or for some cases. For the NIRS data reported in this thesis there was a substantial

number of missing values, which was due to the fact that some subjects had no evaluable NIRS

measures on one or more optode positions due to several sources of artifacts (e.g. movement

artifacts, strong hair, damaged optodes). We initially planned to replace missing values using

multiple imputation methods. After a first data inspection and being aware of the high variance
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in the NIRS data however, we decided to not replace missing values but instead use pairwise or

listwise deletion of missing data: The conservative method of listwise deletion is accomplished

by deleting from the sample any cases that have missing data on any variables in the data set.

By using pairwise deletion of missing data, all available cases for a particular variable are

entered in the analysis, which across several variables with missing values may lead to different

case numbers per variable. Whereas listwise deletion seems to be a simple solution, it has a

major disadvantage: It excludes a large fraction of the original sample and thus maximises the

standard error as less information is utilized. In the recent book by Allison (2002) on missing

data for quantitative applications in the social sciences, the author prefers pairwise deletion for

variables which are “missing completely at random” (MCAR) and defines these as follows:

”The data on Y are said to be missing completely at random (MCAR) if the probability of

missing data on Y is unrelated to the value of Y itself or to the values of any other variables in

the data set” (Allison, 2002, p. 3). When this assumption is satisfied for all variables, the author

concludes that the set of individuals with complete data can be regarded as a simple random

subsample from the original set of observations. According to the above, the NIRS variables in

our data set can be considered as MCAR, and in this case and following Allison’s

recommendation, in general the method of pairwise deletion was preferred.
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5 Study objectives and hypotheses

The primary objectives of this study are to investigate the brain response measured with

functional NIRS in a large sample of non-demented elderly subjects and in a homogenous

group of patients with mild-stage AD, and to analyse the relationship between the NIRS

response and 1) sociodemographic factors such as age, years of formal education, and gender;

2) the ApoE genotype (ε4 vs. non-ε4); and 3) neuropsychological test performance. In the first

part, these primary objectives will be investigated in our large sample of non-demented elderly

subjects, and in the second part in our patients with AD.

Whenever appropriate and possible, hypotheses-driven analyses will be preferred to

exploratory analyses.
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5.1 Non-demented elderly subjects

5.1.1 Response on NIRS

1. Can the „typical“ hemoglobin oxygenation response pattern, i.e. an increase in HbO

and a decrease in HbR under cognitive activation be replicated in our sample of non-

demented elderly subjects? As outlined in chapter 2, there is vast evidence for a

typical, activation-induced NIRS response pattern with an increase of HbO and a

decrease of HbR over areas most probably activated by the stimulus. Concentration

changes of HbT, which are gained by summing up the concentration changes of HbO

and HbR, are generally reported to have the same response direction as HbO, due to

the fact that the changes in HbO generally are bigger in amplitude than the changes in

HbR.

Statistical analysis: Graphical display of mean (± S.E.M) concentration changes of

HbO, HbR, and HbT across all optode positions and separate for each activation

paradigm (letter fluency vs. labyrinth test)

a) Do the NIRS parameters exhibit a pattern of general activation across all optode

positions or of specific activation? Based on earlier findings (Kleinschmidt et al.,

1996; Schroeter et al. 2002), the increase of oxygen consumption (HbR) is more

localized than the increase in blood flow (HbO).

Statistical analysis: One-sample t-tests for the total sample of non-demented elderly

subjects (N=240) calculating whether the changes in HbO, HbR, HbT and Cyt-Ox

during activation vs. rest are significantly different from zero (= no change). Two-

tailed t-tests performed at the 1% significance level.

b) Do the two activation paradigms (letter fluency vs. labyrinth test) differ in their

elicited NIRS response? Do they differ in brain-topography?

Statistical analyses:

• Separate one-sample t-tests for the sample of subjects activated with the verbal

fluency task (n=119) and the group of subjects who performed the labyrinth test

(n=121) calculating whether the changes in HbO, HbR, and HbT during activation vs.

rest are significantly different from zero (= no change). Two-tailed t-tests performed

at the 1% significance level.
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• Repeated measures ANOVA with within-factors „NIRS parameter“ (4 levels: HbO,

HbR, HBT, Cyt-Ox) and „topography“ (6 levels: left and right frontal, parietal and

temporal), and between-factor „paradigm“ (letter fluency vs. labyrinth test). Listwise

deletion of missing values was used for within factors.

2. Investigate subgroups of subjects:

a) Do the healthy subjects in our study population differ from the non-healthy population

in terms of their NIRS response? Do non-healthy subjects exhibit a greater variability

in their hemodynamic brain response due to various CNS pathology? Do the non-

healthy subjects show smaller cerebral hemoglobin oxygenation changes due to less

activation of brain tissue?

Statistical analyses:

• Descriptive statistics of all NIRS parameters for both groups

• Two-tailed Mann-Whitney U-Tests at alpha 1% testing the null hypotheses that

the two groups do not differ in NIRS parameters HbO, HbR, and HbT.

b) Taking the example of subjects activated with the verbal fluency task: Can the sample

be divided into subjects showing a typical response pattern („responders“) vs. subjects

who do not show a typical response pattern („non-responders“)? Is the response pattern

restricted to specific optode positions, e.g. the left frontal position?

Statistical analyses:

• Descriptive statistics for NIRS responders at the left frontal position

• ANOVA comparing left-frontal responders with left-frontal non-responders in the

dependent variables HbO and HbR to test the null hypothesis that the two groups do

not differ in their hemodynamic brain response across all positions.

3. Relationship between brain oxygenation and task performance:

a) As is known from PET and fMRI studies, the performance of a verbal fluency task is

highly associated with the activation of the left frontal and frontotemporal cortex, we

would expect a stronger correlation between the NIRS cerebral hemodynamics and

task performance at the frontal optode positions (with left being bigger than right), a

minor correlation at the left temporal position, and no correlation at the parietal and

right temporal position. If the correlation between task performance and brain

response is positive (i.e. HbO: positive correlation and HbR: negative correlation) and

indeed is limited to specific areas like the frontal positions and to a minor extent the
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left temporal position, this could be interpreted in line with Elfgren and Risberg

(1998): Subjects able to bring the brain areas critical for successful performance on-

line, show better task performance.

Statistical analysis: Correlation analyses testing the research hypothesis that

Pearson correlation coefficients for the relationship between task performance and

hemoglobin oxygenation are significantly different from zero for the left and right

frontal and the left temporal position while the correlation coefficients for all other

positions are not different from zero. As task performance was assessed only with

the verbal fluency task, only this subgroup of subjects will be used for the analysis

(n=119).

b) Do left-frontal responders show a better NIRS task performance than left-frontal non-

responders?

Statistical analysis: One-tailed ANOVA comparing left-frontal responders with left-

frontal non-responders in the NIRS task performance. In agreement with the

hypothesis put forward in a), we hypothesize that subjects with a typical NIRS

response at the left frontal position show better task performance than left-frontal

non-responders.

5.1.2 NIRS, sociodemographic factors and ApoE genotype

1. Do the sociodemographic factors „age“, „years of education“, and „gender“ and the

ApoE genotype (ε4 vs. non-ε4) correlate with concentration changes of HbR and

HbT? Specifically, can we replicate the findings of Hock et al. (1995), who found a

significant negative correlation between age and concentration changes in HbT at the

left frontal position in non-demented elderly subjects?

Statistical analysis: Multiple linear regression analyses (stepwise backwards) with

the independent variables “age”, “years of education”, “gender”, and “ApoE

genotype”, for the dependent variables HbR (left and right frontal position) and

HbT (all optode positions). The criteria for probability of F to enter were .05 and

the backward criteria for F to remove .10. The total sample of non-demented elderly

subjects (N=240) was used for these analyses.

2. Functional activation studies using a letter fluency task have reported a disruption of

functional circuits involving the left parietal lobe in ApoE-ε4 carriers vs non-carriers.

We sought to find out whether this finding can be replicated in our sample and with
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NIRS. The research hypothesis was tested that ApoE-ε4 carriers present significantly

lower values in HbT at the left parietal optode position than ApoE-ε4 non-carriers.

Statistical analysis: One-tailed t-test for the dependent variable HbT at the left

parietal position and presence of ApoE-ε4 allele as the independent variable. The

sample of subjects activated with the verbal fluency task was chosen for this

analysis (n=119).

3. Do subjects showing the typical NIRS response pattern differ from non-responders

with respect to sociodemographic factors and ApoE genotype?

Statistical analysis: ANOVA for the dependent variables “age” and “years of

education”; Chi-Square for the variables “gender” and “ApoE status”.

5.1.3 NIRS and Neuropsychological Test Performance

1. We assume that the performance during the NIRS letter fluency task significantly and

highly correlates with the performance of the NP fluency task as both tasks measure

the same construct.

Statistical analysis: Pearson correlation analysis testing the research hypothesis that the

Pearson correlation coefficient for the relationship between the NIRS letter fluency and

the NP letter fluency task is significantly different from zero. For this and all subsequent

analyses only the subjects activated with the verbal fluency task were entered (n=119).

2. Describe the neuropsychological test performance of our non-demented elderly

subjects activated with the verbal fluency test (n=119).

a) Compare the test results of our sample with normative data for the respective

neuropsychological test and data obtained in the BASEL project: Do our subject show

normal scores?

b) Do the non-healthy subjects differ from the healthy subjects in our study sample with

regard to test performance?

Statistical analyses:

• Descriptive statistics of neuropsychological and NIRS test performance

• Multiple Mann Whitney U-Tests comparing neuropsychological test performance of

healthy subjects activated with the verbal fluency task (n=88) with the respective scores

of non-healthy subjects (n=31).
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3. Investigate the predictive value of NIRS for the performance in a specific

neuropsychological test: How well can NIRS predict neuropsychological test

performance? Furthermore, if age and the ApoE genotype (ε4 vs. non-ε4) are included

in the set of predictors, does the proportion of explained variability increase?

Statistical analysis: Multiple regression analyses (stepwise backwards) with the

NIRS parameters HbO and HbR at each optode position as well as age and ApoE-

ε4-status as predictor variables and the following neuropsychological tests as

dependent variables:

• WAIS-R Vocabulary: total correct

• Category Fluency: total correct

• Phonemic Fluency: total correct

• CVLT: correctly recalled List A trials 1-5

• TMT B/A

The dependent variables fulfilled the criterion of normal distribution (all

Kolmogorov-Smirnov p≥.05), as did the predictor variables HbO and HbR at each

position. The criteria for probability of F to enter were .05 and the backward criteria

for F to remove .10. The sample of non-demented elderly subjects activated with

the verbal fluency test (n=119) was used for these analyses.

4. Based on the hypotheses that left-frontal responders show a better NIRS task

performance than left-frontal non-responders and that there are positive correlations

between NIRS task performance and performance in the NP letter fluency task (cf.

Section 5.1.1), we hypothesize that left-frontal NIRS responders show better

performance in other neuropsychological tests of executive functioning (i.e. NP

phonemic fluency, TMT B and TMT B/A, WCST) than the respective non-

responders. Although a positive relationship between verbal fluency and general

intellectual functioning, especially verbal intelligence, has been reported by a few

groups (e.g. Mitrushina et al., 1999), we expect the difference between left-frontal

responders and non-responders only to be minor and not of statistical significance.

Furthermore, left frontal responders should not differ substantially from left frontal

non-responders with regard to verbal memory performance (e.g. CVLT), as the neural

network involved in explicit verbal memory involves additional structures (e.g. the

medial temporal lobe including hippocampus and amygdala).

Statistical analyses:
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• Mean neuropsychological test scores of left-frontal NIRS responders (n=47) vs. left-

frontal non-responders (n=48)

• One-sided Mann Whitney U-Tests testing the research hypothesis that left-frontal

NIRS responders exhibit significantly better performance in tests of executive

functioning, i.e. phonemic (letter) and category fluency, WCST total correct

categories and WCST number of perseverative errors, time needed in the TMT-B as

well as the quotient TMT B/A.

• Two-sided Mann Whitney U-Tests comparing left-frontal NIRS responders with left-

frontal non-responders in tests of general intellectual functioning (MWT-B, WAIS-R

Vocabulary, Similarities, Block design), language (Boston Naming), and verbal

memory (CVLT learning List A, correctly recalled words after short and long delay,

recognition discriminability).
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5.2 Patients with mild-stage Alzheimer’s Disease (AD)

5.2.1 Response on NIRS

1. Do AD patients show the typical hemoglobin oxygenation response pattern during

performance of a cognitive task?

Statistical analysis:

• Graphical display of mean (± S.E.M) concentration changes of HbO, HbR, and HbT

across all optode positions. Note: In our sample of 21 patients with AD, 18 were

activated with the letter fluency task, and 3 with the labyrinth test described in section

4.3.2.1

a) Do AD patients show a reduced hemodynamic response? In resting-brain studies of

cerebral blood flow and glucose utilization AD patients showed most pronounced

decreases in the parietal and temporal cortices in contrast to age-matched controls.

This evidence however cannot be directly transferred to our data as we were using a

functional paradigm. In the functional NIRS study of Hock et al. (1997a), patients

with moderate AD showed marked reductions over the left parietal cortex whereas the

hemodynamic response over the left frontal cortex revealed the typical hemoglobin

oxygenation response pattern. In conclusion of the above, we might expect a reduced

hemodynamic response in the parieto-temporal cortex together with a spared response

over the frontal area.

Statistical analysis:

• One-sample t-tests calculating whether the changes in HbO, HbR, and HbT during

activation vs. rest are significantly different from zero (= no change). Two-tailed t-tests

performed at the 1% significance level.

• Mann Whitney-U tests at the 1% significance level comparing the NIRS data of our

mild-stage AD patients activated with the verbal fluency task (n=18) with the data of

our non-demented elderly subjects (n=119). One-tailed tests for the parietal and

temporal positions, two-tailed tests for both frontal positions.

2. Relationship between brain oxygenation and task performance:

a) Evidence from resting-brain imaging studies suggest that the relationship between

regional cerebral blood flow or regional cerebral glucose metabolism and verbal
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fluency in Alzheimer’s disease is comparable to what has been observed in healthy

volunteers, i.e. fluency scores are significantly correlated with the left prefrontal

blood flow/glucose metabolism.

Statistical analysis: Correlation analyses testing the research hypothesis that Spearman

correlation coefficients for the relationship between task performance and hemoglobin

oxygenation are significantly different from zero for the left frontal and the left temporal

position while the correlation coefficients for all other positions are not different from

zero. Spearman’s rho was preferred to the Pearson correlation coefficient due to the small

sample size (n=18).

b) Can our sample of AD patients be divided in „NIRS-responders“ and „NIRS-non-

responders“, and do left-frontal responders show a better NIRS task performance than

left-frontal non-responders?

Statistical analysis: Mann Whitney-U test comparing left-frontal responders with

left-frontal non-responders in the NIRS task performance.

5.2.2 NIRS and Neuropsychological Test Performance

1. Are the brain-behavior relationships of mild AD patients distorted?

a) The performance in the NIRS letter fluency task significantly correlates with the

performance of the NP fluency task as both tasks measure the same construct.

Statistical analysis: Pearson correlation analysis testing the research hypothesis that the

Pearson correlation coefficient for the relationship between the NIRS letter fluency and

the NP letter fluency task is significantly different from zero. For this analysis only the

patients activated with the verbal fluency task were entered (n=18).

b) Describe the neuropsychological test performance of our patients with AD (n=21), and

compare the test results with our sample of non-demented elderly subjects activated

with the verbal fluency task (n=119)

Statistical analysis: Mann Whitney-U tests at the 1% significance level.

c) Based on our observations in the sample of non-demented elderly subjects, we

hypothesize that left-frontal NIRS responders show better performance in other tests of

executive functioning as well as in tests of general intellectual functioning than the

respective non-responders.

Statistical analyses:
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• Descriptive statistics of neuropsychological test scores of left-frontal NIRS responders

(n=7) vs. left-frontal non-responders (n=8)

• One-sided Mann Whitney U-Tests at the 5% significance level testing the research

hypothesis that left-frontal NIRS responders exhibit significantly better performance

in tests of executive functioning (i.e. phonemic fluency, time needed in the TMT-B as

well as the quotient TMT B/A; total correct BNT), and tests of general intellectual

functioning (WAIS-R Similarities, WAIS-R Block design).
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6 Results

6.1 Investigation of NIRS response in non-demented elderly subjects

6.1.1 Is there a “typical” NIRS response?

Figure 9 shows the mean changes (activation – rest) in cerebral hemoglobin oxygenation

measured with NIRS over the left and right frontal, left and right parietal, and left and right

temporal cortex in our sample of non-demented elderly subjects (N=240) during performance of

either a verbal fluency task (n=119) or a computerized labyrinth test (n=121).
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Figure 9: Mean concentration changes ± S.E.M. in HbO, HbR, and HbT over the left and right
frontal, parietal and temporal cortex using either a letter fluency task as cognitive activation
paradigm or a computerized labyrinth test in non-demented elderly subjects.
* = p<.01; + = p<.05
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The mean concentration changes showed a strong and highly significant increase in the

concentration change of oxygenated hemoglobin across all optode positions during performance

of either cognitive task (all p-values <.001). Total hemoglobin, HbT, used as an indicator of

alterations in cerebral blood volume, also showed significant increases at all optode positions

and for both activation tasks (all p-values <.001). As illustrated in Figure 9, in contrast to the

strong increase of HbO and HbT, there was a substantially smaller and localized decrease in

HbR in both paradigms. Changes in the NIRS parameter cytochrome oxidase were in the

negative direction except for the right temporal position (mean = .471, SD = 4.79), and were

very small: Across both paradigms there was a significant decrease in Cyt-Ox at the right

parietal position only (mean = -.770, SD = 3.58), t(176) = -2.86, p = .005.

Comparing the two activation tasks with each other, differences in the pattern of

reduction in HbR became evident as illustrated in Figure 9: In the verbal fluency task the

reduction in HbR was most pronounced over the frontal cortex (left frontal position: t(94) = -

2.66, p = .009; right frontal position: t(99) = -3.29, p = .001) and only minimally and not

significantly reduced over the parietal cortex (left parietal position: t(91) = -.177, p =. 860; right

parietal position: t(81) = -.410, p = .683). Measurements over the temporal cortex showed

positive mean values for HbR, i.e. the concentration of reduced hemoglobin was smaller under

activation with the verbal fluency task as compared to rest, which was however not significant

(left temporal position: t(96) = 1.43, p = .155; right temporal position: t(92) = .445, p = .658).

This brain-topographical pattern of reduction in HbR could not be found for the labyrinth test,

where there was a trend towards reduction in HbR only over the right temporal cortex, t(80) = -

2.45, p = .028. The reductions over the frontal cortex and the left parietal cortex were only

slight (left frontal position: t(98) = -1.74, p = .085; right frontal position: t(101) = -1.76, p =

.081; left parietal position: t(96) = 1.71, p = .091).

When the two activation paradigms are taken together (N=240; data not shown), the

changes in deoxygenated hemoglobin were significant only at the left and right frontal position

(left frontal position: t(193) = -3.01, p = .003; right frontal position: t(201) = -3.49, p = .001),

with all other positions showing no significant change from baseline (all p-values ≥.224).

A repeated-measures ANOVA with the within-subject factors „topography“ (6 levels: left

and right frontal, left and right parietal, and left and right temporal) and „NIRS parameter“ (3

levels: HbO, HbR, HbT), and the between-subject factor „activation paradigm“ (verbal fluency

vs. labyrinth test) did not reveal a significant difference between the two activation paradigms

with regard to their brain-topographical characteristics of all three NIRS parameters

(Interaction: F(10,94)=1.50; p=0.15). Not surprisingly, the main factor „NIRS parameter“ showed
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a significant effect (F(2,102)=45.12; p<0.000), and the main factor „topography“ a trend

(F(5,99)=2.28; p=0.06). The interaction of „topography“ and „NIRS parameter“ also showed a

trend (F(10,94)=1.90; p=0.05). It must be noted that subjects with missing values in one or more

optode position(s) did not enter the ANOVA („listwise deletion of missing values“, see section

4.6, p. 66; remaining n=105).

As is apparent from Figure 9 (p. 78), there is considerable interindividual variance in the

NIRS data. In Table 6-1 descriptive statistics for all NIRS parameters are compiled, separately

for each activation paradigm and for each optode position. Looking at the dispersion statistics

of HbO and HbR not only reveals a marked variance, but also the existence of subjects with

extreme negative and positive values. Comparing the two activation paradigms, the variability

is more pronounced for the labyrinth test, especially with regard to HbR at the frontal and

parietal optode positions. The descriptive statistics for the NIRS parameter Cyt-Ox showed up

to 3000 times smaller mean values compared to the concentration changes of HbO. Finally, as

illustrated by the number of valid cases, there is a substantial number of missing values, which

is due to the fact that some subjects had no evaluable NIRS measures on one or more optode

positions. In detail, in the verbal fluency task only 50/119 subjects (42%) and in the labyrinth

test 55/121 subjects (46%) had evaluable NIRS data across all optode positions.
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Table 6-1: Descriptive statistics for all NIRS parameters at every position, displayed per activation
paradigm (verbal fluency vs. labyrinth test)

Valid N Missing Mean SD Q1 Median Q3 Min Max

HbO_lf verbal fluency
labyrinth test

95
99

24
22

20.8
19.2

27.6
30.1

3.32
3.47

16.0
14.0

35.1
29.2

-36.6
-48.0

102
123

HbR_lf verbal fluency
labyrinth test

95
99

24
22

-3.05
-2.46

11.2
14.1

-10.1
-7.83

-2.16
-1.43

4.19
6.18

-41.3
-69.5

24.1
34.9

HbT_lf verbal fluency
labyrinth test

95
99

24
22

17.8
16.7

29.8
37.8

-.478
-3.57

14.1
11.2

34.9
29.8

-52.5
117

113
135

Cyt_lf verbal fluency
labyrinth test

95
99

24
22

-.051
-.789

3.63
3.81

-1.31
-2.27

-.241
-.330

1.08
1.09

-11.5
–18.7

11.9
11.7

HbO_rf verbal fluency
labyrinth test

100
102

19
19

20.3
23.8

28.3
32.1

1.53
6.56

15.2
19.5

35.4
36.0

-59.4
-43.3

116
178

HbR_rf verbal fluency
labyrinth test

100
102

19
19

-4.37
-2.66

13.3
15.3

-11.5
-8.16

-3.83
-2.43

3.89
4.48

-39.9
-104

43.8
35.2

HbT_rf verbal fluency
labyrinth test

100
102

19
19

15.9
21.1

32.3
39.0

-5.03
-1.08

16.5
16.7

28.1
37.1

-92.4
-147

128
154

Cyt_rf verbal fluency
labyrinth test

100
102

19
19

-.129
-.008

5.53
4.84

-2.48
-1.18

-.434
.175

1.60
1.54

-19.2
-36.0

21.3
15.7

HbO_lp verbal fluency
labyrinth test

92
97

27
24

23.1
24.1

31.7
34.8

3.92
2.22

19.2
16.1

38.8
45.3

-51.7
-38.4

150
186

HbR_lp verbal fluency
labyrinth test

92
97

27
24

-.217
2.48

11.8
14.3

-4.52
-5.94

.411

.300
4.80
6.15

-33.0
-31.2

39.5
78.1

HbT_lp verbal fluency
labyrinth test

92
97

27
24

22.8
26.5

38.2
44.3

3.62
1.42

18.1
16.4

38.8
46.5

-84.7
-53.6

165
264

Cyt_lp verbal fluency
labyrinth test

92
97

27
24

-.437
-.766

4.18
4.34

-2.35
-1.24

-.719
-.159

.882
1.15

-12.3
-32.3

20.6
7.16

HbO_rp verbal fluency
labyrinth test

82
95

37
26

23.0
27.2

34.5
40.5

.098
-2.77

16.4
19.4

38.4
37.5

-31.0
-35.5

193
195

HbR_rp verbal fluency
labyrinth test

82
95

37
26

-.525
1.11

11.6
14.2

-7.69
-7.20

-.847
-1.65

5.19
4.60

-25.0
-17.2

43.0
66.2

HbT_rp verbal fluency
labyrinth test

82
95

37
26

22.4
28.3

39.9
51.4

-1.87
-5.09

14.6
18.0

39.2
38.5

-40.0
-37.4

222
256

Cyt_rp verbal fluency
labyrinth test

82
95

37
26

-.955
-.610

3.11
3.96

-2.38
-2.22

-.590
-.724

.637
1.10

-11.0
-24.5

8.78
10.4

HbO_lt verbal fluency
labyrinth test

97
89

37
32

21.5
22.1

31.7
32.3

3.09
-.913

15.9
18.3

37.8
38.6

-37.8
-45.3

143
105

HbR_lt verbal fluency
labyrinth test

97
89

22
32

1.95
-.940

13.4
11.8

-5.62
-6.41

.184
-2.17

6.59
3.95

-30.6
-41.0

63.4
40.9

HbT_lt verbal fluency
labyrinth test

97
89

22
32

23.5
21.1

41.0
38.9

.633
-1.21

17.0
14.9

37.5
42.0

-56.9
-86.2

168
129

Cyt_lt verbal fluency
labyrinth test

97
89

22
32

-1.25
.167

7.95
2.81

-2.18
-1.20

-.424
-.036

1.35
.998

-62.9
-6.61

9.40
12.6

HbO_rt verbal fluency
labyrinth test

93
81

26
40

17.7
19.6

29.1
32.8

1.19
-.236

14.4
18.8

32.6
32.1

-41.5
-44.9

127
193

HbR_rt verbal fluency
labyrinth test

93
81

26
40

-.567
-2.81

12.3
11.2

-7.07
-9.73

-.268
-2.68

6.34
4.66

-29.2
-44.0

42.7
33.0

HbT_rt verbal fluency
labyrinth test

93
81

26
40

18.3
16.8

37.5
38.0

-3.87
-5.48

15.8
14.2

27.8
37.3

-67.9
-88.9

160
193

Cyt_rt verbal fluency
labyrinth test

93
81

26
40

-.205
1.25

5.60
3.52

-1.75
-.907

0.023
1.31

2.24
3.24

-21.0
-9.62

14.9
12.5
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6.1.2 Healthy vs. non-healthy subjects

The marked interindividual variability in the NIRS data might partly be due to the fact

that one quarter of our study sample was composed of non-healthy subjects, i.e. subjects with

either current sensory or motor deficits, severe systemic disease, or a psychiatric or neurologic

disorder; and/or a medical history of a CNS disease or events negatively affecting CNS activity

(see Tables 4-4 and 4-5), which might be associated with a substantially greater variability in

the NIRS data.

Descriptive statistics for the group of healthy (n=177) and non-healthy (n=63) subjects as

well as the results of the multiple Mann-Whitney U-Tests are displayed in Table 6-2. Again, as

some subjects had no evaluable NIRS measures on one or more optode positions, the number of

valid cases per group, NIRS parameter and optode position is listed. As a result, the two groups

do not systematically differ in their cerebral hemodynamics: Only for the parameter Cyt-Ox at

the left frontal position, the healthy subjects showed a trend towards lower concentration

changes during cognitive activation (Z=-2.51, p=.012). Testing all NIRS parameters of the two

groups for homogeneity of group variance revealed equal group variance for all NIRS

parameters. Finally, as can be seen from the boxplots for HbO and HbR in Figure 10, both

groups had a comparable number of outliers and extreme values.
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Table 6-2: Descriptive statistics of all NIRS parameters displayed for healthy vs. non-healthy
subjects. P-values are taken from multiple Mann-Whitney U-Tests

Valid N Mean SD Median Min Max p-value
HBO_LF Non-healthy subjects 49 24.5 30.5 16.2 -27.8 105

Healthy subjects 145 18.5 28.2 14.2 -48.0 123 .436
HBR_LF Non-healthy subjects 49 -4.13 12.7 -2.75 -41.3 18.0

Healthy subjects 145 -2.29 12.7 -1.43 -69.5 34.9 .673
HBT_LF Non-healthy subjects 49 20.4 33.5 17.4 -52.7 113

Healthy subjects 145 16.2 34.3 11.6 -117 135 .355
CYT_LF Non-healthy subjects 49 -1.20 3.71 -.761 -9.01 10.0

Healthy subjects 145 -.165 3.72 -.132 -18.7 11.9 .012
HBO_RF Non-healthy subjects 52 22.4 33.6 13.6 -59.4 99.0

Healthy subjects 150 22.0 29.1 18.2 -43.3 178 .824
HBR_RF Non-healthy subjects 52 -3.81 14.9 -4.62 -33.0 35.2

Healthy subjects 150 -3.40 14.2 -3.25 -104 43.8 .423
HBT_RF Non-healthy subjects 52 18.6 41.0 15.2 -92.4 128

Healthy subjects 150 18.6 34.0 16.9 -147 154 .682
CYT_RF Non-healthy subjects 52 .891 5.63 .204 -14.4 21.3

Healthy subjects 150 -.401 4.99 -.171 -36.0 19.8 .421
HBO_LP Non-healthy subjects 51 25.6 34.9 19.6 -30.2 186

Healthy subjects 138 22.8 32.7 17.2 -51.7 150 .708
HBR_LP Non-healthy subjects 51 3.21 19.0 -.887 -26.4 78.1

Healthy subjects 138 .414 10.2 .403 -33.0 39.5 .881
HBT_LP Non-healthy subjects 51 28.8 48.9 17.4 -56.6 264

Healthy subjects 138 23.2 38.2 17.1 -84.7 165 .713
CYT_LP Non-healthy subjects 51 -.615 6.29 -.317 -32.3 18.7

Healthy subjects 138 -.602 3.23 -.345 -13.3 20.6 .483
HBO_RP Non-healthy subjects 47 26.1 36.4 17.3 -30.1 195

Healthy subjects 130 24.9 38.4 19.3 -35.5 193 .559
HBR_RP Non-healthy subjects 47 -1.01 13.8 -2.72 -25.0 61.7

Healthy subjects 130 .846 12.8 -1.12 -18.9 66.2 .388
HBT_RP Non-healthy subjects 47 25.1 46.4 12.6 -38.5 256

Healthy subjects 130 25.7 46.6 17.8 -40.0 222 .915
CYT_RP Non-healthy subjects 47 -.648 3.67 -.678 -11.0 8.8

Healthy subjects 130 -.814 3.56 -.677 -24.5 10.4 .806
HBO_LT Non-healthy subjects 48 25.0 32.8 19.5 -34.9 104

Healthy subjects 138 20.7 31.7 15.7 -45.3 143 .436
HBR_LT Non-healthy subjects 48 1.06 13.9 -1.95 -22.1 45.6

Healthy subjects 138 .395 12.3 -.735 -41.0 63.4 .563
HBT_LT Non-healthy subjects 48 26.1 42.5 17.4 -56.9 149

Healthy subjects 138 21.1 39.0 15.6 -86.2 168 .672
CYT_LT Non-healthy subjects 48 .771 3.19 .015 -5.61 9.4

Healthy subjects 138 -1.04 6.76 -.615 -62.9 12.6 .045
HBO_RT Non-healthy subjects 45 15.0 28.9 19.7 -44.9 15

Healthy subjects 129 19.8 31.5 15.8 -41.5 19.8 .549
HBR_RT Non-healthy subjects 45 -2.53 13.7 -1.01 -44.0 -2.53

Healthy subjects 129 -.471 11.2 -.824 -31.6 -.471 .502
HBT_RT Non-healthy subjects 45 12.5 39.4 11.1 -88.9 12.5

Healthy subjects 129 19.3 37.0 15.6 -55.1 19.3 .449
CYT_RT Non-healthy subjects 45 1.06 6.37 .614 -21.0 1.06

Healthy subjects 129 .265 4.11 .564 -20.3 .265 .367
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Figure 10: (a) Changes in HbO and (b) HbR across all positions in non-healthy vs. healthy
subjects.
О = outliers (values between 1.5 and 3 box lengths from the upper or lower edge of the box)

 = extreme values (values more than 3 box lengths from the upper or lower edge of the box)

(a)
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6.1.3 Analysis of NIRS responders vs non-responders, verbal fluency

As described earlier, there was a marked interindividual variance in hemoglobin

oxygenation changes during brain activation. For example, of the 119 subjects activated with

the verbal fluency task, 16 subjects (17%, based on valid N) showed a decrease in HbO and 35

subjects (37%) an increase in HbR at the left frontal position. There was a decrease of HbT in

24 subjects (25%) at the same position. This observation may give rise to the assumption that

subgroups of subjects can be identified in relation to their NIRS response pattern, i.e. some

subjects showing a typical response pattern whereas others do not.

In order to perform a classification into „responders“ and „non-responders“, the NIRS

delta values were in a first step transferred into dichotomous variables as follows:

change HbO > 0 = 1; change HbO < 0 = 0

change HbR < 0 = 1; change HbR > 0 = 0.

Thus, a value of „0“ corresponds to an untypical response in the respective NIRS

parameter, and a value of „1“ to a typical response, i. e. as extensively described in the

literature. In a second step, and for each optode position, all subjects were classified as

responders or non-responders according to the following rule:

Responder  = change HbO = 1 & change HbR = 1

Non-responder = change HbO = 1 & change HbR = 0 or

change HbO = 0 & change HbR = 1 or

change HbO = 0 & change HbR = 0.

Because HbT equals the sum of concentration changes of HbO and HbR, it was decided

not to enter it into the response definition.

In Table 6-3 the number of responders and non-responders is presented. Obviously, the

two categories are evenly distributed in both frontal positions (left frontal: 49.5% NIRS

responders vs. 50.5% NIRS non-responders; right frontal: 50% each), whereas the portion of

non-responders is markedly greater at the parietal (left parietal: 33.7% NIRS responders vs.

66.3% NIRS non-responders; right parietal: 39% NIRS responders vs. 61% NIRS non-

responders) and temporal positions (left temporal: 34% NIRS responders vs. 66% NIRS non-

responders; right temporal: 32% NIRS responders vs. 68% NIRS non-responders). The
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relatively high number of missing values is not due to the response definition but, as mentioned

earlier, due to the fact that many subjects had no evaluable NIRS measures on one or more

optode positions.

Table 6-3: Number of responders and non-responders in the verbal fluency task (n=119)
Position Responders Non-Responders Missing values

Left frontal 47 48 24
Right frontal 50 50 19
Left parietal 31 61 27
Right parietal 32 50 37
Left temporal 33 64 22
Right temporal 30 63 26

In addition to categorizing responders and non-responders for each position separately,

we were interested to know how many subjects show the typical response pattern across all

positions. Applying the above outlined response criteria, the following picture emerges:

• Responders left and right frontal: n=30

• Responders left and right frontal and left and right parietal: n=7

• Responders across all positions: n=2

In other words, 30 subjects (25%) activated with the verbal fluency task showed an

increase in HbO and a simultaneous decrease in HbR over both frontal positions. When the

parietal positions are included, the number of subjects with a typical response pattern decreases

to 7, and finally, across all positions, only 2 of the 119 subjects (neglecting missing values)

activated with the verbal fluency task qualify as responders.

As a consequence of this finding, we asked whether frontal responders do also show the

strongest activity on the frontal positions, i.e. whether they show a rather specific left frontal

activity. To address this question, descriptive statistics for the subgroup of responders at the left

frontal position were calculated (Table 6-4). As a result, left frontal responders not only show

activity on the left frontal position, but also on the other positions. In detail, the increase in HbO

for this group seems to be even more pronounced on the parietal positions. With regard to HbR

however, the left frontal position indeed shows the strongest decrease. (Note: By definition, this

group has only positive values for HbO and only negative values for HbR).
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Table 6-4: Descriptive statistics for responders at the left frontal position
Valid N Mean SD Min Max

HbO_lf 47 27.6 24.4 .040 101
HbO_rf 42 28.3 27.6 -12.8 116
HbO_lp 38 34.0 34.0 -13.3 150
HbO_rp 29 36.2 33.9 -13.8 131
HbO_lt 43 29.6 34.8 -19.4 143
HbO_rt 39 22.6 30.1 -41.5 118

HbR_lf 47 -9.67 8.32 -41.3 -.270
HbR_rf 42 -8.54 12.9 -32.8 34.1
HbR_lp 38 .490 11.4 -24.6 32.3
HbR_rp 29 -2.54 11.3 -25.0 40.4
HbR_lt 43 .530 11.9 -30.6 45.6
HbR_rt 39 -1.09 11.8 -24.9 42.7

Comparing left frontal responders to left frontal non-responders (Figure 11) revealed

significantly stronger increases in HbO for the responders at the right frontal, and the left and

right parietal position (right frontal: F(1,86)=9.48, p=.003; left parietal: F(1,77)=9.40, p=.003;

right parietal: F(1,68)=15.2, p<.001). There was also a trend for left frontal responders to have

stronger increases in HbO at the left frontal (F(1,93)=5.78, p=.018) and the left temporal

position (F(1,84)=4.96, p=.029). Left frontal responders had significantly stronger reductions in

HbR at the left and right frontal position (left frontal: F(1,93)=49.2, p<.001; right frontal:

F(1,86)=8.46 p=.005). In other words, left frontal responders not only differed from non-

responders in their cerebral hemodynamic activity at the left frontal position, but also at other

positions:
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(a)

(b)

Figure 11: Changes in (a) HbO and (b) HbR for subjects who at the left frontal position either
showed a typical NIRS response pattern („responders“, red) or not („non-responders“, blue)
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6.1.4 Relationship between NIRS cerebral hemodynamics and NIRS task

performance

Subjects who performed the verbal fluency task (n=119) produced on average 52.8 words

(SD=14, range=24 – 88, median=52.0) during the two activation periods (see section 4.3.2.1),

with the task performance being normally distributed (Kolmogorov-Smirnov and Lilliefors both

p>0.05).

The correlation matrix provided in Table 6-5 as well as the scatterplots in Figure 11 show

numerically small but statistically significant correlations between NIRS task performance and

concentration changes of HbR at the left frontal and the left temporal position, as well as

between concentration changes of HbO and the right parietal position. There were no

significant correlations between any Cyt-Ox parameter and task performance, interestingly

however, the correlation coefficients all point in the negative direction.

Table 6-5: Pearson correlation coefficients NIRS parameter and NIRS task performance

Frontal Parietal Temporal

Left
HbO:  .040
HbR: -.292**
Cyt-Ox: -.122

HbO:  .096
HbR: -.070
Cyt-Ox: -.110

HbO: -.058
HbR: -.297**
Cyt-Ox: -.057

Right
HbO:  .030
HbR: -.197
Cyt-Ox: -.142

HbO:  .288*
HbR:  .165
Cyt-Ox: -.208

HbO:  .071
HbR: -.104
Cyt-Ox: -.092

*=p≤.01; **=p≤.005

The correlations for HbR are in the negative direction, i.e. subjects with a higher task

performance had a higher reduction in deoxygenated hemoglobin. In contrast, the correlation

coefficient for HbO at the right parietal position is positive: the more words a subject produced

the stronger was the increase in oxygenated hemoglobin (Figure 12).
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Figure 12: Scatterplots of statistically significant correlations between NIRS task performance
and concentration changes of (a) HbR at the left frontal position (HBR_LF), (b) HbR at the left
temporal position (HBR_LT), and (c) HbO at the right parietal position (HBO_RP)
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In addition to investigating the relationship between NIRS task performance and brain

activation as a continuous measure, we asked whether the subjects with a typical NIRS

response at the left frontal (i.e. covering the area known to be most associated with the

performance of a letter fluency task) differ from the respective non-responders in that they

show better task performance.

Task performance for responders and non-responders at every optode position is

displayed in Table 6-6. A comparison of mean task performance between left frontal responders

and left frontal non-responders revealed a highly significant difference (F(1,90) =7.56; p=.004,

one-tailed). This difference was not found for all other optode positions, however there was a

trend for better task performance for right frontal responders (F(1,96) =2.01; p=.080, one-tailed),

left parietal responders (F(1,89) =1.94; p=.084, one-tailed) and left temporal responders (F(1,92)

=1.82; p=.091, one-tailed). Right parietal and right temporal responders did not differ from the

respective non-responders (both F ≤ .390).

Table 6-6: Mean (SD) correct words NIRS verbal fluency NIRS responders vs. non-responders
Responders Non-Responders

Left frontal 56.4 (14.6) 48.6 (12.2)
Right frontal 53.8 (14.4) 49.9 (12.6)

Left parietal 55.7 (13.4) 51.4 (14.3)

Right parietal 53.1 (13.6) 51.1 (14.9)

Left temporal 54.4 (13.0) 50.6 (13.1)

Right temporal 52.2 (15.6) 50.6 (13.0)
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6.1.5 Summary

The inspection of mean concentration changes of oxygenated and reduced hemoglobin in

our sample of non-demented elderly subjects (N=240) during performance of either the verbal

fluency task or the labyrinth test disclosed a „typical“ NIRS response pattern as described by

many earlier reports: an increased concentration of oxygenated hemoglobin (HbO) together

with a decrease in reduced hemoglobin (HbR) over areas most probably activated by the

stimulus. The mean concentration changes of total hemoglobin (HbT) were in the same

direction as for oxygenated hemoglobin, i.e. there was an increase in total hemoglobin at all

optode positions and for both activation tasks. Concentration changes in the NIRS parameter

cytochrome oxidase (Cyt-Ox) were minimal and generally in the negative direction, i.e. a

decrease under brain activation compared to rest.

The results of one-sample t-tests showed that whereas concentration changes of HbO and

HbT exhibited a pattern of general activation across the whole brain during activation with

either task, the decrease in HbR was restricted to the frontal positions only (N=240).

Furthermore, when the two activation paradigms were contrasted to each other, this frontal

decrease of HbR was observed for the sample of subjects activated with the verbal fluency task

(n=119) only, whereas the subjects performing the labyrinth test (n=121) showed a trend

towards reduction of HbR at the right temporal optode position. A repeated measures ANOVA

with the within-subject factors „topography“ and „NIRS parameter“ and the between-subject

factor „activation paradigm“ did not reveal a significant difference between the two activation

paradigms with regard to their brain-topographical characteristics of all three NIRS parameters.

However, this result must be interpreted with caution as only a relatively small sample size was

included in this analysis (n=105) due to missing values in one or more optode positions.

However, although the mean concentration changes of HbO, HbR and HbT in our unique

sample of 240 non-demented elderly subjects revealed a typical NIRS response pattern, there

were large interindividual differences in hemoglobin oxygenation changes during brain

activation.

Investigating whether the marked interindividual variability in the NIRS data was due to

the non-healthy subjects in our study sample, i.e. subjects with various CNS pathology (i.e. as

defined by our inclusion/exclusion criteria), the NIRS data of our group of healthy non-

demented elderly subjects (n=177) were compared with the ones of our non-healthy non-

demented elderly subjects (n=63). The results of Mann-Whitney U-Tests were in agreement

with the null hypothesis that the two groups do not differ in their cerebral hemodynamics.
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Moreover, the two groups had comparable group variance for each NIRS parameter and a

comparable number of outliers and extreme values.

The observation of the marked interindividual difference in the NIRS data led us to

classify subjects showing the typical NIRS response for both HbO and HbR, i.e. so-called NIRS

responders, and contrast them to subjects not showing the typical NIRS response, i.e. NIRS

non-responders. This classification was done for each optode position and particularly for

subjects activated with the verbal fluency task as this task had proved to be a reliable and well-

examined brain activation paradigm. Frequency counts revealed that the two categories were

evenly distributed in both frontal positions, and that the portion of non-responders was

markedly greater at the parietal and temporal positions. Descriptive statistics of HbO and HbR

at all optode positions for the subgroup of left-frontal NIRS responders illustrated that this

group also had NIRS activity on the other optode positions, in other words, they did not show a

specific left-frontal activity. This was specifically true for the parameter HbO, where the

activity for left-frontal responders was maximal at the right parietal position. Multiple

ANOVAS comparing left-frontal NIRS responders with left-frontal NIRS non-responders in the

dependent variables HbO and HbR at all optode positions were calculated. Left-frontal

responders not only showed a marked higher increase in HbO at the right frontal position and a

trend towards higher increase at the left frontal and the left temporal position, but also had

significantly higher increases in HbO at both parietal positions. At the same time, they had a

significantly stronger reduction in HbR not only at the left frontal but also at the right frontal

position. In short, left frontal responders not only differed from left-frontal non-responders in

their cerebral hemodynamic activity at the left frontal position, but also at other positions.

The relationship between cerebral hemoglobin oxygenation and task performance during

the NIRS verbal fluency task was investigated by performing Pearson correlation analyses. We

hypothesized that the correlation coefficients for the relationship between task performance and

hemoglobin oxygenation would be significantly different from zero for the left and right frontal

and the left temporal position, i.e. areas known to be highly associated with the performance of

a verbal (letter) fluency task, while the correlation coefficients for all other positions would not

be different from zero. In line with our hypothesis, we found numerically small but statistically

significant correlations between NIRS task performance and concentration changes of HbR at

the left frontal and the left temporal position, i.e. subjects with a higher task performance had a

stronger reduction in deoxygenated hemoglobin. However, and in contrast to our expectations,

there was also a statistically significant correlation for the relationship between HbO at the right

parietal position and NIRS task performance. In addition to investigating the relationship
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between NIRS task performance and cerebral hemoglobin oxygenation as a continuous

measure, and in line with the hypothesis put forward above, we asked whether subjects with a

typical NIRS response at the left frontal position (i.e. covering the area known to be most

associated with the performance of a letter fluency task) show better task performance than the

respective non-responders. The results of the one-tailed ANOVA was in good agreement with

our hypothesis: Left-frontal NIRS responders performed highly significantly better than left-

frontal non-responders.
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6.2 NIRS, Sociodemographic factors and ApoE genotype in non-demented

elderly subjects

6.2.1 Sociodemographic factors and ApoE-genotype as predictors of NIRS response?

The question whether the sociodemographic factors age, years of education, and gender,

and the ApoE-genotype (ε4 vs. non-ε4) might have a predictive value for the changes in

cerebral brain hemodynamics as measured by NIRS, was investigated using multiple linear

regression analyses (stepwise backwards) in the total sample of non-demented elderly subjects

(N=240). The factors „age“ and „years of education“ are continuous variables whereas the

factors „gender“, and „ApoE-genotype“ are binary nominal or so-called dichotomous variables.

As dependent variables the NIRS parameter HbR at the left and right frontal position and the

variable HbT at all optode positions were chosen.

In a first step the predictor variables were tested for possible intercorrelations. Only the

variables „gender“ and „years of education“ showed a numerically small but significant

intercorrelation (χ2=57.8; p<.001; r= -.362), with males having had markedly more years of

education than females (mean: 13.2 ± 3.21 vs. 10.5 ± 2.84).

The results of the multiple regression analyses for HbR and HbT at the left frontal

position, displayed in Table 6-6 and 6-7, clearly show no predictive value, neither of any of the

sociodemographic variables outline above, nor of ApoE-genotype (ε4 vs. non-ε4). Although the

beta coefficient for ApoE-ε4 in Table 6-6 is highly significant, it only explains about 5% of the

variability of HbT. The results for the NIRS parameter HbR right frontal and HbT at all other

positions were very similar, with the predictor variables explaining less than 4% of the

variability.
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Table 6-7: Results of stepwise backwards regression analysis for HbR at the left frontal
position and the predictor variables age, years of education, gender and ApoE-genotype (ε4 vs.
non-ε4)
Step Variables

entered

R Adjusted R2 β t p Variables

removed
1

Gender
Age
ApoE
Education

.088 -.013
-.067
 .041
 .039
-.048

-.858
 .562
 .534
-.613

 n.s.
 n.s.
 n.s.
 n.s.

2
Age
Education
Gender

.079 -.009
 .037
-.045
-.071

 .513
-.581
-.912

 n.s.
 n.s.
 n.s. ApoE

3
Education
Gender

.070 -.006
-.049
-.070

-.629
-.908

 n.s.
 n.s. Age

4
Gender

.053 -.002
-.053 -.731  n.s. Education

Table 6-8: Results of stepwise backwards regression analysis for HbT at the left frontal
position and the predictor variables age, years of education, gender and ApoE-genotype (ε4 vs.
non-ε4)
Step Variables

entered

R Adjusted R2 β t p Variables

removed
1

Gender
Age
ApoE
Education

.260 .048
-.118
 .092
 .194
-.153

-1.56
 1.30
 2.72
-2.02

 n.s.
 n.s.
.007
.045

2
Gender
ApoE
Education

.243 .044
-.118
.185
-.161

-1.56
 2.60
-2.13

 n.s.
.010
.035 Age

3
ApoE
Education

.217 .037
 .195
-.120

 2.74
-1.68

.007

.094 Gender
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Against our expectations, age did not correlate with any of the NIRS parameters at any

position. As an example, Figure 13 represents a scatterplot for the relationship between age and

changes in total hemoglobin measured at the left frontal position, for which, in the study of

Hock et al. (1995), a significant negative correlation with age was found.

Figure 13: Scatterplot for correlation between age and concentration changes of HbT at the left
frontal position for the sample of non-demented elderly subjects and both paradigms (valid
cases = 194). Partial correlation = .094

Classifying subjects according to their age in subgroups with „young old“ (54-63 years,

n=24), „old old“ (64-80 years, n=190), and „oldest old“ (81-90 years, n=26) did not reveal

differences in NIRS characteristics between groups. In detail, the extreme groups of „young

old“ vs. „oldest old“ subjects did not differ in any NIRS parameter at any position (see Table II-

1 Appendix). The same was true when only subjects who were activated with the letter fluency

task during NIRS were compared.

Subjects with an ApoE-ε4-allele (n=133) did not differ from subjects without ApoE-ε4-

allele (n=107) with respect to age, years of education, and MMSE score (ANOVA: all p ≥

.083).

To test whether ApoE-ε4 carriers present significantly lower values in HbT at the left

parietal optode position than ApoE-ε4 non-carriers, a t-test was performed. The mean
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concentration changes of HbT at the left parietal position were 21.8 (± 35.5) for ApoE-ε4

carriers (n=46) and 23.9 (± 41.1) for non-carriers (n=46). The result of the one-sided t-test

revealed no significant differences between the two groups (t=-.253, p=.401). The marked

interindividual variance in concentration changes of HbT within both groups is illustrated in

Figure 14.

Figure 14: Concentration change of HbT at the left parietal position in relation to ApoE-ε4
status for subjects with verbal fluency task (46 subjects in each group)

6.2.2 Differences between NIRS responders and non-responders in the verbal fluency

task with regard to sociodemographic factors and ApoE-genotype

Subjects with a typical NIRS response (responders) at the left frontal position (n=47) did

not differ from subjects who did not show a typical NIRS response (non-responders, n=48) with

regard to age and years of education (mean age: responders = 74.2 ± 5.75, non-responders: 74.5

± 6.79, F(1,93) = .057; p = .812; mean years of education: responders = 11.9 ± 2.99, non-

responders: 11.7 ± 3.58; F(1,93) = .484, p = .833). The same is true for non-responders and

responders at all other positions (right frontal, left and right parietal, left and right temporal):

there was no difference with respect to age and years of education (all p≥.092).

Furthermore, NIRS responders did not differ from non-responders with respect to gender
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and ApoE-genotype (ε4 vs. non-ε4), as revealed by Chi-Square tests (all p≥.220) and illustrated

for the left frontal position in Tables 6-8 and 6-9.

Table 6-9: Contingency table with gender and NIRS response type left frontal position
NIRS Response Type Left Frontal

Responder Non-Responder Total

Gender Male 31 28 59

Female 16 20 36

Total 47 48 95

χ2 = .587, p = .444

Table 6-10: Contingency table with ApoE-genotype (ε4 vs. non-ε4) and NIRS response
type left frontal position

NIRS Response Type Left Frontal

Responder Non-Responder Total

No ε4 allele 25 27 52Presence of

ApoE-ε4 allele At least one ε4 allele 22 21 43

Total 47 48 95

χ2 = .090, p = .765

6.2.3 Summary

Multiple regression analyses revealed that the sociodemographic factors „age“, „years of

education“, and „gender“, and the ApoE genotype (ε4 vs. non-ε4) did not correlate with

concentration changes of deoxygenated hemoglobin HbR nor with changes of total hemoglobin

HbT. Specifically, in our sample of non-demented elderly subjects age was not correlated with

any of the NIRS parameters at any optode position.

As functional activation studies using a letter fluency task had reported a disruption of

functional circuits involving the left parietal lobe in ApoE-ε4 carriers vs. non-carriers, we

investigated whether this finding could be replicated in our sample and with NIRS. The

research hypothesis was tested that ApoE-ε4 carriers (n=46) have significantly lower values in

HbT at the left parietal optode position than ApoE-ε4 non-carriers (n=46). The result of the

one-tailed t-test demonstrated that the two groups did not differ in their cerebral brain
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hemodynamics.

Subjects who showed the typical NIRS response pattern during the verbal fluency task,

NIRS responders, did not differ from the respective NIRS non-responders with regard to age,

years of education, gender and ApoE-genotype.
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6.3 NIRS and neuropsychology in non-demented elderly subjects

A great advantage in the search of brain-behaviour relationships in our study is the fact

that half of our non-demented elderly subjects during NIRS were activated with a verbal letter

fluency task, a task which had also been assessed during the extensive neuropsychological

assessment on the same day. Theoretically, a strong positive correlation between the two tasks

would mean that they measure the same aspects of brain function. The scatterplot in Figure 15,

illustrating the relationship between the subjects‘ performance in the NIRS letter fluency vs. the

subjects‘ performance in the NP letter fluency, clearly shows that the two tasks have a strong

positive correlation.

Figure 15: Correlation between performance in NIRS phonemic fluency and NP phonemic
fluency. r =.671, p<.001

In other words, we have good reason to believe that the brain activity measured during the

NIRS letter fluency task is to a great deal reflected in the neuropsychological assessment of

letter fluency performance.

This correspondence cannot be established for the NIRS labyrinth test, as unfortunately

no performance measures were assessed while subjects were performing the labyrinth test.

Therefore, in this section, correlating neuropsychological measures of brain function with
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cerebral hemoglobin oxygenation measures, the subgroup of subjects activated with the NIRS

letter fluency task will be focused.

6.3.1 Test performance of non-demented elderly subjects

Descriptive statistics of neuropsychological and NIRS test performance are displayed in

Table 6-11. Comparing our subjects‘ test scores with normative data of the respective tests and

data obtained in the BASEL project, indicates that our subjects are within the normal ranges of

elderly non-demented individuals (for normal ranges see Monsch, 2001; Mitrushina et al.,

1999; Spreen & Strauss, 1998).

Table 6-11: Neuropsychological test performance of non-demented elderly subjects activated
during NIRS with the verbal fluency task

Valid N Mean SD Min Max

NIRS Letter Fluency 116 52.8 14.0 24 88
MWT-B: correct words 119 32.1 3.58 14 37
WAIS-R Vocabulary: total correct 105 21.6 5.46 6 31
WAIS-R Similarities: total correct 116 24.7 5.30 6 32
WAIS-R Block design: total correct 119 23.6 7.69 6 45
BNT: total spontaneous correct 115 39.2 4.15 25 45
Category Fluency: total correct 117 50.4 11.9 24 88
Phonemic Fluency: total correct 117 28.8 9.20 8 56
CVLT: correctly recalled List A trials 1-5 119 50.6 8.96 28 69
CVLT: correctly recalled short delay 119 10.3 2.95 0 16
CVLT: correctly recalled long delay 119 11.0 2.76 2 16
CVLT: Recognition discriminability (%) 119 95.0 5.74 65.9 100
WCST: total correct categories 108 5.23 1.23 0 6
WCST: perseverative errors 108 2.40 3.11 0 19
TMT-A: time needed (s) 115 48.2 17.0 22 130
TMT-B: time needed (s) 115 135 64.5 60 435
TMT B/A 115 2.86 1.09 1.13 8.64
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Table 6-12: Mean (SD) performance of healthy vs. non-healthy subjects activated during NIRS
with the verbal fluency task

Healthy
subjects (n=88)

Not healthy
subjects (n=31)

Z p
(2-tailed)

NIRS Letter Fluency 53.5 (14.0) 50.9 (14.0) p=.452
MWT-B: correct words 31.9 (3.34) 32.6 (4.21) -1.30 p=.193

WAIS-R Vocabulary: total correct 22.0 (5.26) 20.3 (5.87) -1.23 p=.218

WAIS-R Similarities: total correct 24.7 (5.52) 24.6 (4.70) -.591 p=.554

WAIS-R Block design: total correct 24.2 (7.50) 21.7 (8.02) -1.34 p=.180

BNT: total spontaneous correct 39.2 (4.30) 39.4 (3.75) -.077 p=.939

Category Fluency: total correct 51.9 (12.1) 46.2 (10.6) -1.96 p=.050

Phonemic Fluency: total correct 29.0 (9.14) 28.0 (9.51) -.669 p=.504

CVLT: correctly recalled List A trials 1-5 51.7 (8.31) 47.5 (10.1) -2.06 p=.039

CVLT: correctly recalled short delay 10.5 (2.76) 9.55 (3.38) -1.60 p=.111

CVLT: correctly recalled long delay 11.4 (2.46) 9.94 (3.30) -2.55 p=.011

CVLT: Recognition discriminability (%) 95.6 (4.74) 93.3 (7.78) -1.15 p=.249

WCST: total correct categories 5.41 (1.04) 4.93 (1.60) -1.38 p=.168

WCST: perseverative errors 2.23 (2.77) 2.87 (3.89) -.556 p=.578

TMT-A: time needed (s) 47.2 (16.6) 51.4 (18.2) -1.06 p=.288

TMT-B: time needed (s) 124 (53.1) 169 (82.2) -2.94 p=.003

TMT B/A 2.70 (.986) 3.36 (1.24) -2.77 p=.006

Comparing the healthy subjects with the non-healthy subjects revealed highly significant

differences between the two groups in part B of the Trail Making Test as well as in the quotient

TMT B/A, i.e. in both aspects of the test which measure executive functioning (Table 6-12).

Executive functioning is known to be highly vulnerable to deterioration resulting from brain

pathology of different etiologies, and in this respect the TMT is known to be a sensitive

measure, particularly useful in documenting cerebral dysfunction in mild traumatic brain injury

and the differential diagnosis of dementia (Mitrushina et al., 1999). The differences in the

CVLT (correctly recalled words across all five learning trials, correctly recalled words long-

delay free recall) do show a strong trend for our healthy subjects to have a better verbal

memory than the group of non-healthy volunteers. In addition, there is a trend for higher

performance of our healthy subjects in the Category Fluency. The two groups however do not

differ substantially in measures of general intellectual functioning and verbal intelligence.

In summary, even though there are subtle differences in neuropsychological test

performance between healthy and non-healthy subjects, the test scores of the non-healthy

subjects lie within the normal ranges of normal elderly individuals.
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6.3.2 Do changes in cerebral hemodynamics predict neuropsychological test

performance?

One way to explore the relationship between cerebral hemodynamics measured with

NIRS and neuropsychological test performance is to ask whether the NIRS parameters can

predict the performance in a specific neuropsychological test. This question was investigated

for the following neuropsychological measures as dependent variables:

• WAIS-R vocabulary: total correct

• Category fluency: total correct

• Phonemic fluency: total correct

• CVLT: correctly recalled List A trials 1-5

• TMT B/A

A correlation analysis across all NIRS predictor variables not surprisingly revealed

moderately strong correlations for HbO and HbR between the left and right hemisphere, as well

as between frontal, parietal and temporal positions (see Table II-2, Appendix II).

In Table 6-13 the last step of every regression analysis is displayed for each dependent

variable respectively. With the exception of the Category Fluency test, every regression model

listed in Table 6-13 is highly significant - yet, as can be seen from the values of R2 - the NIRS

parameters in general only predict a low proportion of the variability (e.g. 27% of the WAIS-R

Vocabulary test score).

For the quotient TMT B/A the NIRS variables HbO measured at the left and right frontal

and at the left temporal position as well as HbR measured at the right frontal, right parietal and

left temporal position are able to predict a subject’s score in the TMT B/A to 42%. The

standardized partial regression coefficients (β) indicate the relative importance of the predictor

variables: For the TMT B/A the most important predictor variables are HbO at the left and right

frontal position (fairly equal weight), and HbR at the right frontal and the left temporal position.

The multiple regression equation for the expected score in the TMT B/A is:

yTMT B/A = 3.04 + .036*HbO_lf - .039*HbO_rf + .088*HbR_rf - .062*HbR_lt

- .022*HbR_rp + .017*HbO_lt

According to this equation, a reduction in HbR as well as an increase in HbO at the right frontal

position is associated with a lower TMT B/A score, i.e. with a better performance in executive

functioning. In contrast, increases in HbO at the left frontal and the left temporal as well as
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reductions in HbR at the left temporal and right parietal position are associated with a higher

test score and thus with lower abilities of executive functioning. Scatterplots for each predictor

variable and the score in TMT B/A are compiled in Figure 1 Appendix II (Note: there is one

subject with an extreme value, ID 5130, who could potentially have had an impact on the high

multiple correlation. Therefore, the multiple regression analysis was calculated again with this

subject excluded. The exclusion of the subject did not change the results of the regression

analysis, not even to a minor extent).

With regard to the multiple regression results for the Phonemic Fluency and the WAIS-R

Vocabulary, the NIRS parameter HbO at the right parietal position in both tests was associated

with a higher test score as was a reduction in HbR at either frontal position.

To test whether age and ApoE-ε4 status increase the prediction of the above

neuropsychological test scores, both variables were entered into the multiple regression

analyses. As a result, age was kept in the last step of the regression equations (i.e. in addition to

the NIRS variables outlined in Table 6-13) only for the Category Fluency and the CVLT list

learning, and did not markedly increase the percentage of explained variability (Category

Fluency: adjusted R2 last step = .088, BetaAge = -.273, p = .020; CVLT correctly recalled List A

trials 1-5: adjusted R2 last step = .200, BetaAge = -.205, p = .065). Age did not contribute to the

prediction of the TMT B/A, the Phonemic Fluency and the WAIS Vocabulary. The ApoE-ε4

status was removed from the regression equations of all five tests, with other words did not

contribute to the prediction of any of the neuropsychological test scores.
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Table 6-13: Summary of results of multiple regression analyses: Do NIRS parameters predict
neuropsychological test performance?

WAIS-R: Vocabulary
Number of
steps

Variables in
last step

R2

last step
Adjusted R2

last step
β t p

9 .312 .270
HbO_lf -.464 -3.91 <.001
HbO_rp .451 3.85 <.001
HbR_rf -.308 -2.47 .016
HbR_lt .265 2.26 .027

Category Fluency
Number of
steps

Variables in
last step

R2

last step
Adjusted R2

last step
β t p

12 .040 .026, n.s.
HbO_rp .200 1.682 .097

Phonemic Fluency
Number of
steps

Variables in
last step

R2

last step
Adjusted R2

last step
β t p

10 .311 .280
HbO_rp .511 4.19 <.001
HbO_lf -.219 -1.89 .063
HbR_lf -.199 -1.83 .072

CVLT: correctly recalled List A trials 1-5
Number of
steps

Variables in
last step

R2

last step
Adjusted R2

last step
β t p

8 .228 .168
HbO_lt -.637 -3.47 .001
HbO_rp .386 2.75 .008
HbR_rt .351 2.68 .009
HbR_rf -.359 -2.518 .014
HbR_lt .423 2.33 .023

TMT B/A
Number of
steps

Variables in
last step

R2

last step
Adjusted R2

last step
β t p

7 .467 .416
HbR_rf 1.07 6.65 <.001
HbO_rf -1.02 -6.25 <.001
HbO_lf .909 6.03 <.001
HbR_lt -.762 -4.35 <.001
HbO_lt .487 2.99 .004
HbR_rp -.238 -2.39 .020
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6.3.3 NIRS responders vs. non-responders: do they differ in neuropsychological test

performance?

Mean neuropsychological test scores of NIRS responders and non-responders at the left

frontal position are displayed in Table 6-14 (Tables for all other positions are listed in

Appendix II, Tables II-3, II-4, II-5, II-6, II-7). As we hypothesized that responders at the left

frontal position, i.e. the main area of activation during performance of a letter fluency task,

show better performance in other measures of executive functioning, the Mann Whitney U

comparisons were performed at the one-sided significance level for these.

Table 6-14: Mean (SD) performance of left-frontal NIRS responders vs. left-frontal non-
responders

Responders
(n=47)

Non-Responders
(n=48)

Z p

Phonemic Fluency: total correct 32.3 (8.84) 25.0 (7.74) -3.84 <.001*
Category Fluency: total correct 52.7 (12.6) 48.5 (10.7) -1.36 .087*

WCST: total correct categories 5.22 (1.40) 5.35 (1.10) -.124 .451*

WCST: perseverative errors 2.11 (3.35) 2.70 (3.00) -1.44 .075*

TMT-B: time needed 118 (39.9) 156 (76.4) -2.56 .005*

TMT B/A 2.58 (.772) 3.19 (1.36) -2.17 .015*

BNT: total spontaneous correct 40.4 (3.53) 38.4 (4.19) -2.40 .016

WAIS-R Block design: total correct 25.9 (7.15) 20.9 (7.39) -3.18 .001

WAIS-R Similarities: total correct 26.3 (3.26) 22.9 (6.63) -2.22 .026

WAIS-R Vocabulary: total correct 22.5 (4.74) 20.2 (6.08) -1.73 .084

MWT-B: correct words 32.6 (2.90) 31.0 (4.30) -1.89 .058

CVLT: correctly recalled List A trials 1-5 51.3 (8.31) 49.0 (8.78) -1.29 .197

CVLT: correctly recalled short delay 10.7 (2.84) 9.79 (2.92) -1.76 .078

CVLT: correctly recalled long delay 11.4 (2.67) 10.3 (2.74) -1.87 .062

CVLT: Recognition discriminability (%) 95.0 (6.23) 95.1 (4.48) -.732 .464

* = one-tailed p-values

As a result, the comparison of NIRS responders and non-responders at the left frontal

position revealed markedly significant differences between the two groups in the NP letter

fluency task, the TMT B time needed, and as a strong trend in the quotient of TMT B/A, with

the responders consistently showing better performance in all of these measures. The left-

frontal NIRS responders did not differ from the non-responders with regard to the obtained total
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correct categories of the WCST and number of perseverative errors. The left-frontal NIRS

responders further showed significantly better performance in the WAIS Block Design and as a

strong trend better performance in the BNT. Left-frontal responders performed somewhat better

in tests of verbal intelligence, particularly in the WAIS-R Similarities. There was no significant

difference between left-frontal responders and non-responders in tests of verbal learning and

memory.

For the remaining optode positions, i.e. the right frontal, left and right parietal and left and

right temporal position, no systematic difference could be observed between NIRS responders

and non-responders: At the right frontal and both temporal positions, NIRS responders did not

differ from non-responders with respect to executive functioning, verbal intelligence and/or

general intellectual functioning, and verbal learning and memory. Responders at the left parietal

position exhibited significantly better performance in Category Fluency, and a strong tendency

for less perseverative errors in the WCST than non-responders. At the right parietal position, a

trend towards better performance of responders were seen for the quotient TMT B/A.

6.3.4 Summary

The analyses presented in this section investigated brain-behaviour relationships in 119

non-demented elderly subjects, compiling functional NIRS data using a verbal fluency

paradigm with neuropsychological test data collected on the same day. The reason for choosing

subjects on the NIRS verbal fluency paradigm only was the finding that the scores in the NIRS

and NP Fluency Task showed a strong and highly significant correlation. In other words, we

have strong evidence that the brain activity measured during NIRS is indeed a function of

performing a verbal fluency task.

Descriptive statistics of the neuropsychological test data investigated in this study

revealed that our sample’s test scores were within the normal ranges of elderly non-demented

individuals. The healthy subjects in our sample of subjects activated with the verbal fluency

task (n=88) showed significantly better performance than the group of non-healthy subjects

(n=31) in both aspects of the Trail Making Test which measures executive functioning, e.g. part

B and the quotient TMT B/A They also showed a trend towards better performance in the

number of correctly recalled words across all five learning trials as well as in the number of

correctly recalled words after a long delay (CVLT).

Using multiple regression analysis we investigated the predictive value of NIRS for the

performance in the WAIS-R Vocabulary, Category and Phonemic Fluency, CVLT correctly

recalled words across all five learning trials, and the quotient TMT B/A. With the exception of
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the Category Fluency, every regression model was highly significant. The NIRS parameters

predicted 27% of the variability for the WAIS-R Vocabulary test score, 28% of the Phonemic

Fluency, 17% of the CVLT learning, and 42% of the TMT B/A. For the quotient TMT B/A the

most important predictor variables revealed to be concentration changes of HbO at the left and

right frontal position and concentration changes of HbR at the right frontal position. The

inclusion of the factors „age“ and „ApoE-ε4 status“ into the regression analyses did not

markedly alter the prediction of the neuropsychological test scores.

Based on the expectations that left-frontal responders show a better NIRS task

performance than left-frontal non-responders and that there are positive correlations between

NIRS task performance and performance in the NP letter fluency task (cf. Section 5.1.1), we

hypothesized that left-frontal NIRS responders show better performance in other

neuropsychological tests of executive functioning than the respective non-responders. In

agreement with our hypothesis, the left-frontal NIRS responders in our sample reached

significantly better test scores in the Phonemic Fluency, the TMT B and as a trend in the

quotient TMT B/A. In contrast to our expectations, the left-frontal NIRS responders also

showed significantly better performance in the WAIS Block Design.

For the other optode positions, i.e. the right frontal, left and right parietal and left and

right temporal position, no systematic difference could be observed between NIRS responders

and non-responders.
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6.4 NIRS in mild-stage Alzheimer’s Disease (AD)

6.4.1 Do patients with AD show a reduced hemodynamic response?

Figure 16: Mean concentration changes ± S.E.M. in HbO, HbR, and HbT over the left and right
frontal, parietal and temporal cortex during performance of either a verbal (letter) fluency task
(n=18) or a computerized labyrinth test (n=3) in patients with mild-stage AD.
 * = p<.01; + = p<.05

Figure 16 shows the mean concentration changes (activation – rest) in cerebral

hemoglobin oxygenation measured with NIRS over the left and right frontal, left and right

parietal, and left and right temporal cortex in our sample of patients with Alzheimer’s Disease

(N=21) during performance of a cognitive task. Concentration changes of HbO showed a strong

and highly significant increase at the left and right parietal and right temporal optode position

(left parietal position: t(16) = 3.06, p = .008; right parietal position: t(19) = 3.08, p = .006; right

temporal position: t(17) = 3.07, p = .007) together with a smaller increase at both frontal

positions as well as at the left temporal position. HbT, used as an indicator of alterations in

cerebral blood volume, showed a trend towards increases only at the parietal positions (left

parietal position: t(16) = 2.45, p = .026; right parietal position: t(19) = 2.52, p = .021). There

was a trend towards reductions of HbR at the right frontal and the left temporal position (right
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frontal position: t(15) = -2.81, p = .013; left temporal position: t(15) = -2.25, p = .040). Small

reductions in HbR could also be observed at all other positions with the exception of the left

parietal position. Concentration changes in cytochrome oxidase were very small and not

statistically different from zero for any position.

In comparison to our sample of non-demented elderly subjects (n=119) the patients

activated with the verbal fluency task (n=18) overall did not show a reduced hemodynamic

response as illustrated in Figure 17. Not surprisingly, the standard errors of the mean were

substantially greater in the patient sample. The results of Mann Whitney-U tests for the

comparison of HbO, HbR, and HbT between the non-demented elderly population and the

sample of mild-stage AD patients (Table 6-15), showed no significant difference between the

two groups. In particular, our expectation of a reduced hemodynamic response in the parieto-

temporal cortex was not confirmed. In fact, the patients with AD on average showed a slightly

stronger increase in cerebral blood volume at both parietal positions than the non-demented

group. The patients showed the typical hemoglobin oxygenation response pattern at both frontal

positions, with the concentration changes in HbR being slightly more pronounced than in the

non-demented group.



112

Figure 17: Mean concentration changes ± S.E.M. in HbO, HbR, and HbT in non-demented
elderly subjects (n=119) and patients with mild-stage AD (n=18).
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Table 6-15: Comparison of NIRS values between non-demented elderly subjects and
patients with AD activated with the verbal fluency task

Valid N Mean SD Median Z p

HbO_lf Non-demented
Patients with AD

95
14

20.8
17.5

27.6
37.1

16.0
14.2

-.652 .514

HbR_lf Non-demented
Patients with AD

95
14

-3.05
–4.84

11.2
13.5

-2.16
–3.98

-.498 .618

HbT_lf Non-demented
Patients with AD

95
14

17.8
12.6

29.8
35.5

14.1
10.5

-.869 .385

HbO_rf Non-demented
Patients with AD

100
14

20.3
15.0

28.3
35.0

15.2
18.8

-.043 .966

HbR_rf Non-demented
Patients with AD

100
14

-4.37
–10.5

13.3
11.9

-3.83
–7.11

-1.60 .110

HbT_rf Non-demented
Patients with AD

100
14

15.9
4.45

32.3
29.0

16.5
10.7

-.863 .388

HbO_lp Non-demented
Patients with AD

92
14

23.1
26.8

31.7
34.5

19.2
21.2

-.495 .311*

HbR_lp Non-demented
Patients with AD

92
14

-.217
.764

11.8
13.5

.411
–2.92

-.345 .365*

HbT_lp Non-demented
Patients with AD

92
14

22.8
27.6

38.2
42.7

18.1
27.1

-.551 .291*

HbO_rp Non-demented
Patients with AD

82
17

23.0
29.1

34.5
38.2

16.4
22.3

-.585 .280*

HbR_rp Non-demented
Patients with AD

82
17

-.525
–3.57

11.6
8.55

-.847
–4.73

-1.06 .145*

HbT_rp Non-demented
Patients with AD

82
17

22.4
25.5

39.9
41.7

14.6
20.5

-.315 .376*

HbO_lt Non-demented
Patients with AD

97
15

21.5
16.8

31.7
28.2

15.9
15.6

-.594 .277*

HbR_lt Non-demented
Patients with AD

97
15

1.95
–4.46

13.4
8.84

.184
–4.85

-1.99 .024*

HbT_lt Non-demented
Patients with AD

97
15

23.5
12.3

41.0
29.1

17.0
10.2

-.799 .212*

HbO_rt Non-demented
Patients with AD

93
16

17.7
22.0

29.1
29.3

14.4
23.3

-.694 .244*

HbR_rt Non-demented
Patients with AD

93
16

-.567
–4.01

12.3
16.4

-.268
–3.74

-1.34 .090*

HbT_rt Non-demented
Patients with AD

93
16

18.3
18.0

37.5
36.3

15.9
16.6

-.086 .466*

*=one-tailed
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6.4.2 Relationship between NIRS cerebral hemodynamics and NIRS task

performance

The patients who performed the verbal fluency task (n=18) produced on average 44.2

words (SD=16.7, range=14 – 89, median=42.5) during the two activation periods (see section

4.3.2.1), significantly less than the non-demented elderly subjects (Z= -2.32, p = .021).

The results of the correlation analyses between NIRS parameters and NIRS task

performance are displayed in Table 6-16. None of the correlation coefficients reached statistical

significance, however there was a trend for a negative correlation between reductions in HbR at

the left frontal position and the number of words produced in the fluency task (rS = .524, p =

.054): a strong reduction in HbR during activity compared to rest was associated with fewer

words produced during NIRS. This finding for the group of AD patients is illustrated in Figure

18, together with the observations made in the non-demented subjects. Interestingly, with the

exception of both parietal positions for which the correlation with task performance was close

to zero, the directions of the correlations between changes in HbO and task performance were

in the negative direction. There was a weak but non-significant correlation between the

reduction in Cyt-Ox and task performance at the right parietal position (rS = -.403 p = .109).

Table 6-16: Spearman Correlation Coefficients NIRS and NIRS task performance

Frontal Parietal Temporal

Left
HbO: -.185
HbR: .524
Cyt-Ox: -.306

HbO: .042
HbR: .101
Cyt-Ox: -.154

HbO: -.374
HbR: .306
Cyt-Ox: .175

Right
HbO: -.211
HbR: -.055
Cyt-Ox: .136

HbO: .081
HbR: .271
Cyt-Ox: -.403

HbO: -.172
HbR: -.019
Cyt-Ox: .239
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Figure 18: Scatterplot for correlation between NIRS task performance and concentration
changes of HbR at the left frontal position.

Non-demented elderly subjects
Patients with AD

As in our group of non-demented elderly subjects left-frontal responders showed a highly

significant better task performance than left-frontal non-responders, we were interested to find

out whether this observation could be replicated in our sample of mild-stage patients with AD.

An analysis of response type for the left frontal position revealed that out of the 15 patients with

valid NIRS values at the left frontal position, 7 showed a typical NIRS response and 8 a non-

typical response. The scores of both groups in the NIRS verbal fluency task are represented in

Figure 19. The median values show a trend towards higher task scores for left-frontal non-

responders (Z= -1.86, p = .064).
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Figure 19: Scores in NIRS task performance of patients showing a typical NIRS response at the
left frontal position („Responder“) vs. patients showing an untypical NIRS response („Non-
Responder“)
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6.5 NIRS and neuropsychology in mild-stage Alzheimer’s Disease

6.5.1 Relationship NIRS – neuropsychology phonemic fluency

The result of the Pearson correlation analysis for the relationship between the

performance in the NIRS letter fluency task and the score in the NP letter fluency task revealed

a positive and significant correlation in our sample of patients with mild-stage AD as illustrated

in Figure 20.

Figure 20: Correlation between performance in NIRS phonemic fluency and NP phonemic
fluency. r =.591, p<.05
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6.5.2 Neuropsychological test performance

The mean neuropsychological test scores of our patients with AD are displayed in Table

6-17 and in Table 6-18 in comparison to the scores achieved by our non-demented elderly

subjects. With the exception of the MWT-B and the WAIS-R Similarities, the patient sample

was markedly impaired in all tests of executive functioning, language, verbal learning and

memory.

Table 6-17: Neuropsychological test performance of patients with mild-stage AD

Valid N Mean SD Min Max

NIRS Letter Fluency 18 44.2 16.7 14 89
Phonemic Fluency: total correct 21 19.7 7.41 4 33

Category Fluency: total correct 21 33.1 12.2 10 59

WCST: total correct categories 18 4.17 1.79 1 6

WCST: perseverative errors 18 7.00 9.78 0 42.0

TMT-B: time needed (s) 18 256 126 119 617

TMT B/A 18 3.84 1.44 1.03 6.29

MWT-B: correct words 21 30.1 4.22 21 37

WAIS-R Vocabulary: total correct 19 16.8 5.86 2 27

WAIS-R Similarities: total correct 21 20.4 8.65 2 30

WAIS-R Block design: total correct 21 14.4 6.48 1 27

BNT: total spontaneous correct 21 30.0 8.54 8 42

CVLT: correctly recalled List A trials 1-5  21 28.5 8.64 17 48

CVLT: correctly recalled long delay 21 2.29 2.49 0 9
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Table 6-18: Mean (SD) performance of patients with mild-stage AD (n=21) and non-demented
elderly (n=119)

AD Patients Non-demented
elderly

Z p
(2-tailed)

Phonemic Fluency: total correct 19.7 (7.41) 28.0 (9.20) -3.96 p<.001
Category Fluency: total correct 33.1 (12.2) 50.4 (11.9) -5.03 p<.001

WCST: total correct categories 4.17 (1.79) 5.23 (1.23) -2.93 p=.003

WCST: perseverative errors 7.00 (9.78) 2.40 (3.11) -2.89 p=.004

TMT-B: time needed (s) 256 (126) 135 (64.5) -4.80 p<.001

TMT B/A 3.84 (1.44) 2.86 (1.09) -3.20 p=.001

MWT-B: correct words 30.1 (4.22) 32.1 (3.58) -2.19 p=.029

WAIS-R Vocabulary: total correct 16.8 (5.86) 21.6 (5.46) -3.15 p=.002

WAIS-R Similarities: total correct 20.4 (8.65) 24.7 (5.30) -2.17 p=.030

WAIS-R Block design: total correct 14.4 (6.48) 23.6 (7.69) -4.89 p<.001

BNT: total spontaneous correct 30.0 (8.54) 39.2 (4.15) -4.96 p<.001

CVLT: correctly recalled List A trials 1-5 28.5 (8.64) 50.6 (8.96) -6.57 p<.001

CVLT: correctly recalled long delay 2.29 (2.49) 11.0 (2.76) -7.05 p<.001

6.5.3 Do left-frontal NIRS responders show better neuropsychological test

performance?

The mean neuropsychological test scores of left-frontal NIRS responders vs. left-frontal

non-responders as well as the results of the multiple Mann Whitney-U Tests are displayed in

Table 6-19. At an alpha of 5% there was no significant difference between the two groups.
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Table 6-19: Mean (SD) performance of left-frontal NIRS responders vs. left-frontal non-
responders

Responders
(n=7)

Non-Responders
(n=8)

Z p

Phonemic Fluency: total correct 17.7 (8.26) 21.8 (5.90) -.931 .199*
Category Fluency: total correct 31.9 (12.2) 30.4 (11.8) -.696 .536

WCST: total correct categories 4.43 (2.07) 3.71 (1.25) -.977 .383

WCST: perseverative errors 8.57 (14.9) 8.00 (5.35) -1.09 .318

TMT-B: time needed 223 (61.9) 210 (68.8) ≈.000 ≈1.00*
TMT B/A 4.33 (1.20) 2.94 (1.30) -1.28 .120*

BNT: total spontaneous correct 33.1 (7.12) 26.3 (10.1) -1.33 .095*

WAIS-R Vocabulary: total correct 16.8 (8.18) 14.4 (4.08) -.935 .366

WAIS-R Similarities: total correct 19.6 (10.1) 17.5 (9.24) -.580 .310*

WAIS-R Block design: total correct 16.9 (5.98) 15.5 (5.42) -.350 .399*

MWT-B: correct words 29.3 (5.22) 29.3 (3.66) -.652 .536

CVLT: correctly recalled List A trials 1-5 27.0 (4.69) 25.0 (5.86) -.406 .694

CVLT: correctly recalled long delay 2.29 (1.98) 1.00 (.760) -.1.45 .189

*p = one-tailed
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7 Summary and Discussion

7.1 Summary of background and purpose of the study

The data reported in this doctoral thesis were recorded in the context of the “Basel Study

on the Elderly (BASEL)” project, an extensive multidisciplinary research project combining

cross-sectional with longitudinal approaches in subgroups of individuals at lower and higher

risks to develop AD. The analyses presented in this thesis focus on the cross-sectional aspect of

the BASEL project, incorporating functional Near-Infrared Spectroscopy of the brain (NIRS),

neuropsychology, and ApoE genotype data. The main objective of this thesis was to correlate

cerebral hemoglobin oxygenation data obtained during functional NIRS with NIRS task

performance and with selected neuropsychological tests, thus providing a better understanding

of the brain-behaviour relationships in healthy elderly subjects and in patients with Alzheimer’s

Disease (AD).

We studied 240 non-demented elderly individuals selected from the project BASEL

cohort (69 females, 171 males; mean age = 72.3 ± 7.03 years) and 21 patients with probable,

mild Alzheimer’s Disease (12 females, 9 males; mean age = 76.2 ± 6.37 years; mean MMSE =

25.3 ± 2.08) with multi-channel (left and right frontal, left and right parietal, left and right

temporal) NIRS during performance of either a verbal (letter) fluency task (non-demented

subjects: n=119; patients with AD: n=18) or a computerized labyrinth test (non-demented

subjects: n=121; patients with AD: n=3). The patients with AD were significantly older than the

non-demented elderly subjects but were comparable with respect to number of years of formal

education. On the same day of the NIRS examination, the non-demented elderly subjects

obtained a comprehensive neuropsychological assessment; the patients with AD had their NIRS

examination on average 4.6 days after the neuropsychological assessment. In all study

participants the ApoE genotype was determined using a polymerase chain reaction (PCR)

analysis. The proportion of ApoE-ε4-positives and –negatives was evenly distributed in both

study groups (non-demented elderly/patients with AD: 45% ApoE-ε4 positives, 55% ApoE-ε4

negatives).

As outlined in chapter 2, NIRS has recently gained increasing interest as a functional

brain imaging technique. It is non-invasive, applicable at the bedside, and has low expense

compared to more popular methods such as PET and fMRI. The method relies on a simple basic

principle, the fact that brain activity is associated with changes in optical properties of brain
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tissue. During increased brain activity and by means of the “neurovascular coupling” between

neuronal activity and vascular response, there is an increase in local cerebral blood flow. This

increase in cerebral blood flow however is exceeding the increase in oxygen consumption and

thus leads to an increase in intravascular haemoglobin oxygenation during brain activity.

Therefore, when the NIRS measuring optode is located over an area in which cerebral blood

flow increases during brain activity, a localized increase in the concentration of oxygenated

hemoglobin (HbO) and a decrease in deoxygenated hemoglobin (HbR) is seen.

The functional NIRS studies published so far have been predominantly conducted in

healthy young volunteers and using a single-channel methodology. There are however only

very limited functional NIRS data in normal elderly subjects and different patient groups, and

the majority of studies conducted used only one or two optode positions. The study of Hock et

al. (1995) in healthy elderly vs. healthy young subjects is the only investigation of age-related

changes in cerebral hemoglobin oxygenation using a cognitive activation paradigm.

From the consistent finding of a typical, activation-induced NIRS response pattern, i.e. an

increased concentration of HbO together with a decrease in reduced hemoglobin HbR over

areas most probably activated by the stimulus, we sought to investigate whether this finding can

be replicated in our unique sample of 240 non-demented elderly subjects. We were specifically

interested in the NIRS response pattern during performance of the verbal fluency task, a well-

established neuropsychological test and functional imaging activation paradigm, known to

activate the left frontotemporal area of the brain (cf. chapter 3), and further investigated

whether a specific NIRS response pattern relates to high task performance during the NIRS

verbal fluency task. In a second step, incorporating sociodemographic factors such as age,

gender, and years of formal education, and including a well-described risk factor for AD, the

ApoE genotype, we investigated if and how these factors correlate with the NIRS data, and if

they have a modifying effect on the brain response. In a third step, we sought to explore the

brain-behaviour relationships of our non-demented elderly population by analysing the NIRS

data in relation to the neuropsychological test data recorded on the same day.

Using the same research methodology, we investigated whether and to what extent our

well-defined sample of patients with mild-stage probable Alzheimer’s Disease (DSM-IV

criteria) shows reductions in cerebral hemoglobin oxygenation and changes in brain-behavior

relationships. As both study samples, non-demented elderly and patients with AD, had even

distribution of ApoE-ε4 positives and –negatives, any differences in NIRS and brain-behaviour

relationship between the two groups could not be attributed to the influence of ApoE genotype

alone. Therefore, in the comparison of AD vs. non-demented elderly data, the ApoE genotype
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was neglected.

7.2 NIRS response in non-demented elderly subjects

7.2.1 Do normal elderly subjects show a typical NIRS response?

Mean concentration changes of HbO, HbR and HbT obtained using NIRS in our sample

of 240 non-demented elderly subjects revealed that elderly subjects on average show a typical

hemoglobin oxygenation response pattern during cognitive activation as observed in young

healthy volunteers (Hock et al., 1995; Hoshi et al., 1994; Hoshi and Tamura, 1993a; Fallgatter

& Strik, 1997, 1998; Herrmann, Ehlis & Fallgatter, 2003; Villringer et al, 1993; Villringer et

al., 1997; Schroeter, Zysset, Kupka, Kruggel & von Cramon, 2002): an increase of HbO and a

decrease of HbR over the brain areas most probably activated by the stimulus. In detail, as we

were applying a multi-channel approach, we found that increases in HbO were generic in that

they occurred across all optode positions and for either activation task whereas significant

reductions in HbR could only be found at the frontal positions and only for the verbal fluency

task. Total hemoglobin, an indicator of changes in cerebral blood volume, also showed

significant increases across all optode positions and for both activation tasks.

NIRS response during performance of a verbal (letter) fluency task: Our findings in non-

demented elderly subjects and using NIRS are in good agreement with earlier PET functional

activation studies in young and middle-aged adults that the performance of a letter fluency task

is strongly associated with the left prefrontal cortex (Benton, 1968; Carlsson, Wendt & Risberg,

2000; Elfgren & Risberg, 1998; Frith, Friston, Liddle & Frackowiak, 1991a, b; Friston, Frith,

Liddle & Frackowiak, 1993; Milner, 1964; Warburton et al., 1996; Warkentin & Passant,

1993). In addition to the strong activation of the left frontal cortex our non-demented elderly

subjects also showed a strong activation of the right frontal area during performance of the

letter fluency task. Activation of right frontal areas was also reported by Abrahams et al. (2003)

in an fMRI study of letter fluency in a group of middle-aged normal subjects. This bilateral

frontal activation could be an index of a compensatory re-allocation of cognitive resources

which has been repeatedly observed in PET and fMRI studies on language and verbal memory

encoding tasks that are strongly left-lateralized in young adults: older adults tend to show

bilateral recruitment patterns (see Buckner, 2004 for a review).
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7.2.2 Is the NIRS response observed in the elderly specific or generic?

Whereas concentration changes of HbO and HbT exhibited a pattern of general activation

across the whole brain during performance of either cognitive task, the decrease in HbR was

restricted to the frontal positions. Using one-sample t-tests we found that this frontal decrease in

HbR only became significant for subjects activated with the verbal fluency task, whereas the

subjects performing the labyrinth test showed a trend towards reduction in HbR at the right

temporal optode position. Concluding from these findings we state that the NIRS response

pattern is both: generic and specific: Cognitive activation – irrespective of the task requirements

– leads to an increase of cerebral blood flow and blood volume across the whole brain. In other

words, concentration changes of HbO reflect a state of arousal with a very high sensitivity.

Reductions in HbR, rather an index of oxygen consumption, however are localized to areas

most probably activated by the stimulus, and thus are specific. Our observations are in good

agreement with earlier reports of Kleinschmidt et al. (1996), according to which the decrease in

HbR strongly correlates with the signal intensity measured in BOLD fMRI, Hirth et al. (1996)

and recently Schroeter et al. (2002), who found that reductions in HbR are more localized than

increases in blood flow.

7.2.3 Investigating subgroups of the BASEL project

Although the mean concentration changes of HbO, HbR and HbT in our sample revealed

a typical NIRS response pattern, there were large interindividual differences in hemoglobin

oxygenation changes during brain activation. For example, at the left frontal position during

performance of the verbal fluency task, 17% of subjects showed a decrease in HbO and 37% an

increase in HbR. One source of variance could have been the fact that 26% of our study sample

was composed of non-healthy subjects as defined by the inclusion/exclusion criteria of the

BASEL project, i.e. subjects with either current sensory or motor deficits, severe systemic

disease, a psychiatric or neurologic disorder; and/or a medical history of a CNS disease or

events negatively affecting CNS activity in the past, all of which might be associated with a

substantially greater variability in the NIRS data. Therefore, we compared the NIRS data of the

non-healthy subjects (n=63) with the data of the healthy subjects (n=177). According to the

results of Mann-Whitney U-Tests the two groups did not differ in their cerebral hemodynamics.

They had comparable group variance for each NIRS parameter and a comparable number of

outliers and extreme values. In conclusion, current neuropsychiatric findings and/or a medical

history of CNS disease and/or events negatively affecting CNS activity in the past were not

associated with a greater variability in the functional NIRS data. However, one major drawback
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of our NIRS methodology needs to be mentioned at this point: the fact that absolute baseline

concentrations of HbO and HbR could not be obtained. This would have required the exact

quantification of the optical pathlength of the near-infrared light in brain tissue for each

wavelength (see Hock et al., 1995). Therefore, since the absolute baseline value is not known,

the measurements refer only to changes in absolute concentrations. Consequently, we cannot

rule out that the two groups (non-healthy vs. healthy subjects) differed in their baseline values.

Following the regression to the mean, if the non-healthy subjects’ absolute baseline values were

at a higher level, the probability for them to further increase during activation would be lower

than for subjects who start off at a lower threshold.

7.2.4 Investigating “NIRS responders” versus “NIRS non-responders”

In the attempt to further elucidate the source of variance in the NIRS data, we further

investigated our subject sample by classifying our subjects into “NIRS responders”, i.e. subjects

showing a typical NIRS response for HbO and HbR, and “NIRS non-responders”, i.e. subjects

showing an untypical NIRS response in either parameter. From the consistent findings of earlier

PET and fMRI studies according to which the performance of a verbal fluency task is

particularly related to the left frontal cortex, the NIRS response at the left-frontal optode

position and the NIRS response during the performance of the verbal fluency task were of

special interest. NIRS responders and non-responders were evenly distributed at both frontal

positions, whereas the proportion of non-responders was markedly greater at the parietal and

temporal positions. However, our data showed that the subgroup of left-frontal NIRS

responders also had marked NIRS activity at the other optode positions – they did not show a

specific left-frontal activity. In fact, left-frontal NIRS responders had the strongest increase in

HbO at both parietal, left-temporal and right-frontal positions, whereas their maximum decrease

in HbR was indeed at the left-frontal position. This finding is in agreement with what we

observed earlier: concentration changes of HbO are a sensitive marker of brain activation but

brain-topographically unspecific, whereas reductions in HbR are specifically localized to areas

activated by the stimulus.

7.3 NIRS response in mild Alzheimer’s Disease: preserved or reduced?

From earlier studies using PET and SPECT in mild AD, a characteristic pattern of

reduced cortical metabolism and blood flow predominantly in the parieto-temporal cortex has

emerged (for reviews see Matsuda, 2001; Rapoport, 1991). Using functional NIRS, marked

reductions of HbO and HbT over the left parietal cortex were observed whereas the
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hemodynamic response over the left frontal cortex revealed the typical hemoglobin oxygenation

response pattern (Hock et al., 1997). On the basis of these findings we expected a reduced

hemodynamic response in the parieto-temporal cortex together with a spared response over the

frontal area.

In contrast to our expectations we found that our patients with mild AD showed a typical

hemoglobin oxygenation response pattern during performance of a cognitive task compared to

rest: increases in concentrations of HbO and decreases in HbR. In more detail, the strongest

increases in cerebral blood flow were observed at both parietal positions and at the right

temporal position, whereas the increases at both frontal positions were marked but statistically

non-significantly different from zero. Concentrations of deoxygenated hemoglobin showed a

strong trend towards reduction at the right frontal position and to a smaller degree at the left

temporal position. Cerebral blood volume – concentration changes in HbT – increased

particularly at the parietal positions and to a minor degree at the temporal and frontal positions.

Finally, in comparison to our sample of non-demented elderly subjects (n=119) the patients

activated with the letter fluency task (n=18) did not show a reduced hemodynamic response.

The patients with AD were significantly older than the non-demented subjects and they

contained a larger portion of female subjects, but they did not differ with respect to years of

education. However, as will be discussed later, our findings in non-demented elderly showed

that the sociodemographic factors “age” and “gender” do not have an effect on the NIRS

response.

Our finding of preserved hemodynamic response during cognitive action in mild AD is in

contrast to the report of Hock et al. (1997a), who found a reduced response over the left parietal

cortex together with a preserved response over the left frontal cortex. This dissociation between

left-frontal and left-parietal activity was interpreted in line with Grady et al (1993) who

proposed a compensatory reallocation of cognitive resources by means of increased utilization

of the frontal cortex during memory tasks due to an altered functional brain organization.

However, the patients of Hock et al. were at the moderate stage of the disease, whereas our

patients were at a very mild stage of AD and showed no reduction in NIRS response at any of

the cortical positions measured. One possible explanation could be that our patients were just at

the beginning of an altered brain organization, with the functional brain networks still being

relatively intact.

The results of our NIRS study in patients with mild AD do not seem in line with the

functional rCBF study of Warkentin and Passant (1997) who described a frontal dysfunction of

their patients with probably mild to moderate AD during performance of a letter fluency task.
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As reported by other groups, they found a regional flow pathology in the temporal and parietal

areas bilaterally during rest while frontal and central areas seemed normal. During performance

of the letter fluency task the AD patients had a significant activation in the Broca’s area only,

whereas - in contrast to the control subjects – the remaining frontal areas showed no significant

changes. They concluded that the findings of a widespread frontal dysfunction in the AD

patients could be the result not only of a primary frontal deficit, but also a dysfunction in any

part of the system normally involved in this task. Altered brain functional connectivity was also

proposed by Grady, Furey, Pietrini, Horwitz and Rapoport (2001) using a face memory task in

patients with mild AD and found a functional disconnection between the prefrontal cortex and

the hippocampus - a disruption of the distributed network that includes these two areas.

Another, more methodological contributor to our findings, could have been a different

concentration level of HbO and HbR at baseline yet leading to similar delta values: If, as

described in the literature, patients with mild AD have preserved resting blood flow over the

frontal cortex and reduced resting blood flow over parieto-temporal areas, the regional flow

over the frontal cortex is less likely to further increase during activation as compared to the

parieto-temporal cortex. Consequently, the changes from rest to activation would turn out to be

relatively smaller for the frontal cortex as compared to parietal and temporal areas as found in

our study.

Atrophy and an altered mechanism of coupling between brain cell activity and blood flow

may confound the interpretation of activation differences between non-demented and demented

elderly subjects. In the early stages of AD there may be hemodynamic and metabolic

abnormalities that are part of the neurodegenerative process and could affect the neurovascular

coupling. Johnson et al. (2000) were the first to investigate the relationship between region-

specific and whole-brain atrophy and BOLD fMRI activation effects in normal aging and AD.

No significant correlations between region-specific or whole-brain atrophy and fMRI activation

were observed among controls covering a broad age range. In contrast, the patients with mild

AD showed a strong positive correlation between the degree of atrophy in the left inferior

frontal gyrus and the magnitude of activation - greater atrophy was associated with greater

activation - suggesting that compensatory activation may require a certain level of preservation

of brain structure (Saykin et al., 2004). However, as Johnson et al. conclude, it remains yet

unclear whether the compensatory response is a response at the neural level or at the vascular

level.

Our results are partially in line with the findings of Fallgatter, Roesler, Sitzmann,

Heidrich, Mueller and Strik (1997) who found a strong left-lateralized response in HbO in their
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normal controls during performance of a letter fluency task. In contrast, their patients with AD

showed increases in HbO at the left and right frontal positions. Patients and controls did not

significantly differ in their concentration changes in HbR, which  - according to our findings in

a much larger sample and using a multi-channel NIRS approach - seems to be the more specific

NIRS parameter. A methodological drawback of this study is the selection of the control group

which consisted of healthy physicians and psychologists and was not matched to the patient

group with regard to age and years of education. Furthermore, the patients of Fallgatter et al.

were in a more progressed state of the disease, and like in many other imaging publications in

AD, mild and moderately severe states were pooled together into the same sample without

providing fundamental characteristics of the sample (e.g. performance in the ADAS-Cog which

was part of the test battery).

A final consideration needs to be made with regard to acetylcholinesterase (AChE)

inhibitor treatment which at the time of the investigation was taken by 62% of our patients (11

patients rivastigmine, 2 patients donepezil). Little is known about how AChE inhibitors affect

functional brain systems. Single doses of cholinesterase inhibitors have been shown to

normalize quantitative electroencephalographic patterns in patients with AD (Lanctot et al.,

2003), and PET and SPECT studies have shown preserved or increased cerebral blood flow in

AD patients treated with cholinesterase inhibitors (Matsuda, 2001; Mega et al., 2001). There are

indications that AChE inhibitors exert regionally specific effects on frontal regions rather than a

global effect on brain activity. In the recent study of Kaasinen et al. (2002) direct effects of

donepezil and rivastigimine on AChE activity (after 3 and 5 months of treatment, respectively)

were measured in the frontal, temporal, and parietal cortices of patients with mild to moderate

AD. Treatment with donepezil reduced the AChE activity in the AD brain by 39% in the

frontal, 29% in the temporal, and 28% in the parietal cortex, and the corresponding levels of

inhibition for rivastigmine were 37%, 28% and 28%. Treatment with either AChE inhibitor led

to significantly greater inhibition of AChE in the frontal cortex compared to the temporal

cortex. According to Saykin (2004), a preferential frontal response could be related to the fact

that the frontal cortex is relatively spared in the early stages of AD compared with temporal and

parietal regions and therefore has greater structural integrity with which to support increased

activation in response to pharmacological stimulation. Altogether, because the AChE inhibitor

treatment was not standardized in our study and the sample is to small to allow for comparisons

between treated and untreated patiens, we cannot rule out that AChE treatment did have a

normalizing effect on the NIRS response.
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7.4 Covert and overt behaviour: relationship between NIRS response and

NIRS task performance

Functional imaging allows to investigate the relationship between „covert“ and „overt“

behaviour, i.e. between brain activity measured in the scan and task performance displayed

during the scan. PET and fMRI studies have consistently shown that the performance of a

verbal fluency task is highly associated with the activation of the left frontal and frontotemporal

cortex (see section 7.2.1, p. 131). The evidence however is inconsistent for the relationship

between brain response and performance in the verbal (letter) fluency task during the scan: A

positive correlation between task performance and cerebral blood flow augmentations in the left

prefrontal cortex was found (Elfgren and Risberg, 1998), as well as a negative correlations

between fluency scores and normalized metabolised rates across the whole cortex (Parks et al.,

1988). No significant correlations between frontal lobe activation and task performance was

reported by Warkentin and Passant (1993) measuring rCBF, and by Abrahams et al. (2003)

using BOLD fMRI. Using NIRS, no significant correlation between concentration changes of

HbO in prefrontal areas and task performance was found by Herrmann, Ehlis and Fallgatter

(2003).

7.4.1 Non-demented elderly subjects

On the basis of the above findings and for our sample of 119 non-demented elderly

subjects activated with the letter fluency task we hypothesized a significant correlation between

the NIRS cerebral hemodynamics and task performance particularly at the left frontal optode

position. A minor correlation at the left temporal position, and no significant correlation at the

parietal and right temporal position was expected. In line with our expectations, pearson

correlation analyses revealed numerically small but statistically significant correlations between

NIRS task performance and concentration changes of HbR at the left frontal and the left

temporal position. In other words, subjects with a higher NIRS task performance had a stronger

reduction in deoxygenated hemoglobin, the brain-topographically specific NIRS parameter. In

contrast to our expectations, there was also a significant correlation for task performance and

increases in oxygenated hemoglobin, an index of generic brain activation, at the right parietal

optode position. The analysis of NIRS responders vs. NIRS non-responders confirmed the

finding of a correlation between NIRS response and task performance: Subjects with a typical

NIRS response pattern at the left frontal position performed significantly better in the NIRS

letter fluency task than left-frontal non-responders. There were trends of better task
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performance for responders vs. non-responders at the right frontal, left parietal and left

temporal position, but only the left-frontal position showed a marked dissociation between

responders and non-responders with regard to the performance achieved during the cerebral

oxygenation measurements.

Our findings are in agreement with the observations of Elfgren and Risberg (1998) who

found a positive correlation between brain activity in the left prefrontal cortex and task

performance: Subjects able to bring the brain areas critical for successful performance in a

cognitive task on-line, show better task performance. This interpretation is receiving additional

support from our finding that particularly concentration changes in the specific NIRS parameter

HbR are related to efficient task performance, whereas flow increases as a result of brain

activation vs. rest play a minor role.

7.4.2 Patients with AD

A number of rCBF studies suggest that the relationship between regional cerebral blood

flow and verbal fluency in Alzheimer’s disease is comparable to what has been observed in

healthy volunteers, i.e. fluency scores are significantly and positively correlated with the left

prefrontal blood flow (Hirono et al., 2001; Keilp et al., 1999; Kitabayashi et al., 2001).

However, these studies mostly used resting-brain imaging instead of functional imaging.

Compared to the sample of non-demented elderly subjects our patient sample with mild-

stage AD performed significantly worse in the NIRS letter fluency task. Correlation analyses

between NIRS response and NIRS task performance in our small patient sample revealed no

statistically significant relationship, however there was a strong trend for a moderately negative

correlation between reductions in HbR at the left frontal position during activity compared to

rest and number of words produced during the NIRS letter fluency task. Also in the negative

direction were the correlations between activity-related increases in HbO at both frontal and

temporal positions and task performance. At both parietal positions the correlation with task

performance was close to zero. The investigation of NIRS responders vs. NIRS non-responders

in our patient sample confirmed the correlational results: The patients who showed an untypical

NIRS response at the left-frontal position had a strong trend towards higher task performance

than left-frontal NIRS responders.

Altogether, the relationship between covert and overt behavior in our homogenous sample

of patients with mild AD proved to be completely different from what we found in the elderly

non-demented group: The patients with AD could not make use of the left frontotemporal

network required for an efficient task performance as did the group of cognitively intact elderly
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subjects. This observation could be interpreted in agreement with the „novice vs. expert“

metaphor used by Parks et al. (1988): Although the novice needs to invest more effort to solve a

task than the expert, his performance is yet lower. In the study of Hock et al. (1997),

investigating left frontal and left parietal cerebral blood oxygenation during performance of a

letter fluency task and in a small sample of patients with probable moderate AD, no correlations

were found between NIRS and verbal fluency test scores. As mentioned earlier, their sample of

patients was at the moderate stage of the disease, and they showed marked reductions in

concentration changes of HbO and HbT over the left parietal cortex during brain activation as

compared to rest.

A common notion in the relationship between brain response and task performance is the

concept of “cognitive reserve”. It posits that “...compensatory or other forms of reserve factors,

such as education level and intelligence, mitigate cognitive decline” (Buckner, 2004, p. 203). In

aging and dementia, neural mechanisms of reserve may include the reorganization of brain

pathways and recruitment of atypical brain pathways, such as e.g. the activation of (additional)

frontal brain regions during performance in memory tasks (Buckner, 2004). Grady et al. (2003)

have recently corroborated their earlier findings that patients with AD can make use of

additional neural resources in the frontal cortex to compensate for losses attributable to the

degenerative process of the disease. One of the novel contributions from their experiment was

the finding that patients who had more activity in bilateral prefrontal areas performed better in

tasks of semantic and episodic memory, in other words, recruitment of additional prefrontal

areas was associated positively with better task performance. As attractive as the concept of

compensatory recruitment may be, the findings of our study do not support it: First, our patients

with AD were comparable in their cerebral hemoglobin oxygenation response pattern to our

non-demented elderly subjects. Second, the activation of the frontal areas during performance

of the letter fluency task (concentration changes in HbO) were negatively correlated with task

performance.

7.5 Interactions of NIRS with sociodemographic factors and ApoE genotype

in non-demented elderly subjects

Calculating multiple linear regression analyses we investigated whether the

sociodemographic factors age, years of formal education, and gender, as well as a well-known

risk factor for AD, the ApoE genotype (ε4 vs. non-ε4), act as predictors of NIRS response in

the total sample of non-demented elderly subjects activated with either the letter fluency or the
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computerized labyrinth test. We were specifically interested to find out whether we could 1)

replicate the findings of Hock et al. (1995), who found a significant negative correlation

between age and concentration changes in HbT at the left-frontal position and during

performance of a calculation task, and 2) whether ApoE-ε4 carriers present significantly lower

concentration changes in HbT at the left parietal position, which could be indicative of a

disruption of functional circuits involving the left parietal lobe in ApoE-ε4 carriers.

The results of the multiple linear regression analyses were clear: Neither the

sociodemographic factors nor the ApoE genotype acted as predictors of NIRS response: nor for

the specific parameter HbR nor for the parameter HbT.

Against our expectations, in our sample of cognitively intact elderly subjects age did not

correlate with any of the NIRS parameters at any position. This finding is in contrast to the

report of Hock and colleagues who detected an effect of physiological aging on the activation-

induced increase in cerebral hemoglobin oxygenation. The young subjects in their study

demonstrated significantly higher concentration changes in HbO and HbT at the left frontal

position than the elderly subjects, whereas both groups were comparable in their concentration

changes of HbR. The negative correlations between age and HbT clearly were of linear nature,

even for the subgroup of elderly subjects alone. In contrast to Hock et al. (1995) no young

control subjects were included in our study, and a different activation paradigm was used. The

calculation task used by Hock et al. might have been more challenging than our letter fluency

task. Even though no group of young control subjects was included, the age range in our study

sample (54 – 90 years) still was big enough to allow for a correlation with NIRS response.

Interestingly, the “young old” in our sample (54-63 years, n=24) did not differ in their NIRS

characteristics from the “oldest old” (81-90 years, n=26). In conclusion, in elderly cognitively

intact subjects the calendar age is not the critical factor to determine brain activation during

mental tasks Therefore, in following Hock et al.‘s interpretations of their findings, we cannot

support the hypothesis that there is „less activation“ of brain tissue and thus less metabolic

demand during brain stimulation as elderly subjects age, i.e. in young-old vs. old-old subjects,

as might be assumed on the basis of a linear decrease in HbO and HbT with age.

Another important result of our study is the finding that the ApoE genotype (ε4 versus

non-ε4) only explains a very small percentage of the NIRS response in normal elderly subjects,

less than 5% in the case of concentration changes of HbT at the left frontal position.

Specifically, ApoE-ε4 carriers did not differ from ApoE-ε4 non-carriers with regard to

concentration changes of total hemoglobin at the left parietal optode position, the position of
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interest in the context of ApoE-ε4 as preclinical marker of AD. In conclusion, the cross-

sectional data of our study in a large sample of non-demented elderly subjects are not indicative

of an altered cerebral hemoglobin oxygenation pattern of subjects at higher genetic risk to

develop AD. This is in agreement with the findings of Schmidt et al. (1996), who, similar to our

investigation, performed brain imaging and ApoE genotyping as well as a detailed

neuropsychological test battery in a large sample of normal elderly subjects. The ε4 carriers in

their sample had comparable hippocampal and parahippocampal volumes compared to non-

carriers, and there were no significant white matter differences between the two groups.

However, like most studies in this area of research, Schmidt and colleagues applied a resting-

brain imaging methodology. There are only a few studies available to date which have

investigated the influence of ApoE genotype on brain activation. These studies used small

sample sizes and did not control for task performance during the scan, which might have had a

confounding effect on the measured brain response. Altogether, even though the ApoE-ε4 allele

plays a major role in AD symptomatology and AD progression once the disease has developed,

the predictive value of ApoE-ε4 in cognitively normal elderly subjects seems irrelevant.

7.6 Brain-behaviour relationships: NIRS and neuropsychological test

performance

With the cross-sectional design of the BASEL project, compiling functional NIRS and

neuropsychological test data collected on the same day, we investigated brain-behaviour

relationships in a study sub-sample of 119 non-demented elderly subjects activated with the

verbal fluency paradigm during NIRS and in the sample of patients with mild AD. Verbal

fluency tasks are well established in functional imaging and the brain areas involved in solving

these tasks are well known from earlier PET and fMRI studies. Another major advantage of

focussing on the NIRS verbal fluency task in our search for brain-behaviour relationships was

the fact that verbal fluency was also assessed outside the imaging and within the scope of the

neuropsychological test battery. As a vantage point, the NIRS verbal fluency score highly

correlated with the NP fluency score, suggesting that the brain activity measured during NIRS

was indeed a function of performing a verbal fluency task, and not only mere vocalisation

artifact and noise.

7.6.1 Non-demented elderly subjects

The first route in examining brain-behaviour relationships led us to investigate whether
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NIRS is a predictor of performance in selected neuropychological tests: 1) WAIS-R Vocabulary

as a measure of general intellectual functioning, 2) Category and Phonemic Fluency as

measures of language and executive functioning, 3) word list learning as measured in the

California Verbal Learning Test (CVLT), and 4) the quotient of the time needed in the Trail

Making Test Forms B over A (TMT B/A) as measure of executive functioning. With the

exception of the Category Fluency, every regression model was highly significant. The

inclusion of the factors „age“ and „ApoE-ε4 status“ into the regression analyses did not

markedly alter the prediction of the neuropsychological test scores The NIRS parameters

predicted 27% of the variability of the WAIS-R Vocabulary test score, 28% of the Phonemic

Fluency, 17% of the CVLT learning, and 42% of the quotient TMT B/A. For the quotient TMT

B/A the most important predictor variables were concentration changes of HbO at the left and

right frontal position and concentration changes of HbR at the right frontal and the left temporal

position: A reduction in HbR and an increase in HbO at the right frontal position was associated

with better performance in executive functioning whereas increases in HbO at the left frontal

position and decreases in HbR at the left temporal positions were correlated with lower abilities

in executive functioning. In other words, and in the context of a typical activation-induced

cerebral hemoglobin response pattern, activation of the right frontal cortex in cognitively intact

elderly subjects during a verbal fluency task as measured with NIRS is a good predictor of

performance in executive functioning - a measure which is well known to be associated with

the frontal lobe.

Our second route in exploring brain-behaviour relationships followed the comparison of

left-frontal NIRS responders with left-frontal NIRS non-responders. Based on the expectation

that there are positive correlations between covert and overt behaviour, i.e. NIRS and NP task

performance in the verbal fluency task, we hypothesized that left-frontal NIRS responders show

predominantly better performance in neuropsychological tests of executive function, whereas

they do not differ from left-frontal non-responders in tests of general intellectual functioning.

The results of our study were largely in line with our hypothesis: left-frontal NIRS responders

scored higher in tests of executive function: Phonemic Fluency, time needed in the TMT B and

as a trend in the quotient TMT B/A. In contrast to our expectations, the two groups did not

significantly differ in the Wisconsin Card Sorting Test (total correct categories, perseverative

errors). Further, the subjects with a typical NIRS response at the left frontal position performed

markedly better in the WAIS Block Design and slightly better in the Boston Naming Test and

the WAIS Similarities. The markedly better performance of the responders in the WAIS Block

Design Test might be related to the demands of the tasks, i.e. problem-solving under time
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pressure, which is also a key element of the letter fluency task. In fact, in our sample of non-

demented elderly subjects activated with the verbal fluency test, there was a significantly

positive correlation between the performance in the Block Design and the WAIS Similarities

and the Phonemic Fluency test.

A systematic dissociation in neuropsychological test performance of subjects with a

typical, activation-induced cerebral hemoglobin oxygenation pattern from subjects who did not

show a typical NIRS response could only be found at the left-frontal optode position, the

cortical area known to be predominantly involved in the performance of a verbal fluency task.

This observation of a relationship between brain activity and neuropsychological test

performance corroborates our findings of covert and overt behaviour: Subjects able to bring the

brain areas critical for successful performance in a cognitive task on-line, show better task

performance.

7.6.2 Patients with AD

In comparison to the non-demented elderly subjects, the patients with AD on average

performed significantly worse in tests of executive functioning, language, verbal learning and

memory, but were relatively comparable in premorbid IQ measured with the Mehrfachwahl-

Wortschatz-Intelligenztest (MWT-B). On the level of NIRS however, we found a preserved

hemodynamic response during cognitive activation, and, like in the group of cognitively intact

elderly subjects, found patients with a typical NIRS response pattern over the left-frontal

cortex.

Based on the observations in the sample of non-demented elderly described above and

applying the same research strategy, we investigated whether the left-frontal NIRS responders

in the patient sample show better performance in tests of executive functioning. The results of

Mann Whitney-U tests at the 5% alpha level revealed no significant difference between the two

groups, however, as a weak trend, the left-frontal NIRS responders on average had lower scores

in the Phonemic Fluency and in the TMT B/A which was in contradiction to our expectations

but fits well with our data of covert vs. overt behaviour, i.e. a negative correlation between

activation-induced hemodynamic changes in the left-frontal cortex and NIRS task performance.

Altogether, our data are in favour of a distorted relationship between brain and behaviour in

patients at a very mild stage of AD. However, given the relatively small sample size of our

patient group, a more substantial investigation in a bigger patient sample is needed.
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8 Conclusions for future research

Alzheimer’s Disease (AD), a progressive neurodegenerative disorder, affects more than

5% of individuals over the age of 65 and increases up to 50% in those over 85. Adults over 65

years of age are the fastest growing segment of the population in Western industrialized

countries. Thus, with the high prevalence rates indicated above, AD represents one of the most

challenging public health problems of the near future. As of today, there is no means to prevent

or cure AD once the disease has been diagnosed, i.e. at a stage at which significant pathological

changes (loss of synapses, deposition of tangles and plaques) have already occurred. As a

consequence, treatments aimed at preventing the disease will intervene too late at this stage.

Therefore, the detection of preclinical markers of AD is an important objective in the search for

the etiology of AD and would allow treatment of AD to be initiated as early as possible in the

disease process when the least amount of neurodegeneration has taken place.

The identification of preclinical markers of AD is the primary objective of the “Basel

Study on the Elderly (BASEL)” project, in which the data presented in this doctoral thesis were

recorded. In the search for preclinical markers of AD, the BASEL project applies a research

strategy which combines multidisciplinary cross-sectional with longitudinal approaches in

subgroups of individuals at lower and higher risk to develop AD. Once some of these subjects

develop overt AD, baseline comparisons would identify the preclinical markers of this sample.

Near-Infrared Spectroscopy (NIRS) of the brain was used to measure cerebral hemoglobin

oxygenation during cognitive activation in a unique sample of 297 healthy elderly subjects,

evenly distributed for high vs. low risk for AD based on the presence or absence of at least one

ApoE-ε4 allele, and in a homogenous sample of 21 patients with mild AD. The contribution of

NIRS to the detection of preclinical markers of AD was not the focus of this thesis. However,

with the data gathered from our cross-sectional investigations combining NIRS,

neuropsychological and ApoE genotype data, we can draw some conclusions for future

research.

The data presented in this thesis do not support the notion that cognitively normal elderly

subjects at a higher risk to develop AD, i.e. ApoE-ε4 positives, show differences in cerebral

hemoglobin oxygenation compared to those without an ApoE-ε4 allele. In fact, the ApoE

genotype explained less than 5% of the NIRS signal, making the ApoE-ε4 allele a very

unsuitable preclinical marker of cortical brain response in the normal elderly population.

However, with regard to longitudinal analyses, it would be interesting to investigate the
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baseline NIRS response of those ApoE-ε4-positives who convert to AD.

In comparison to our sample of non-demented elderly subjects, the patients with mild-

stage AD did not show a reduced hemodynamic response during cognitive activation as

compared to rest. NIRS proved to be sensitive to cognitive activation in both sample groups,

however, our finding of comparable NIRS response between normal and demented individuals

puts the specificity of the NIRS signal into question. NIRS has a spatial resolution in the range

of several cm3 and thus is clearly behind PET and fMRI. Another methodological drawback of

NIRS as applied in our study is that absolute baseline values of the chromophores could not be

measured. Thus, we cannot rule out that major baseline differences between normal and mildly-

demented patients might have played a role. As a consequence, improvements of the NIRS

technique would be desirable for the future.

The advantage of functional imaging is that it allows not only to investigate the brain in

response to cognitive demand, but also to study the relationships between covert and overt

behaviour, i.e. between brain response during the task and performance in the imaging task – or

as stated by Sir Francis Bacon “ A prudent question is one-half of wisdom”. One of the most

interesting findings of our analyses is that normal elderly subjects and patients with AD show

clearly distinguishable profiles in their relationship between covert and overt behaviour:

Cognitively normal elderly subjects under cognitive demand showed increased activation of

those brain areas responsible for the performance of the task, and higher activation of these

brain areas was associated with better task performance. In patients with mild AD, albeit the

NIRS response pattern was comparable to the one of the normal elderly, task performance

during the scan was negatively correlated with the brain response. The patients with AD could

not make use of the cortical network required for an efficient task performance as did the group

of cognitively normal elderly subjects. In the same direction were the results of our

investigations of brain-behaviour relationships, relationships between brain response and

performance in several selected neuropsychological tests collected in the same day. Subjects

with a typical, activation-induced NIRS response at the left-frontal position (left-frontal NIRS

responders) during performance of a verbal fluency task not only showed better task

performance but also scored higher in neuropsychological tests of executive function. In

contrast, left-frontal NIRS responders in the patient group showed a trend for lower scores in

tests of executive functioning. Altogether, our data are in favour of a distorted relationship

between brain and behaviour in patients at a very mild stage of AD. As a consequence for

future functional imaging studies, the analysis of brain-behaviour relationships might add

valuable benefit to the investigation of the brain response alone. This field of research might
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also be interesting for future clinical drug trials in AD, in developing more sensitive outcome

measures.
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Figure I-1:  Illustration of Brodmann Areas 

Figure I-2:  International 10-20 system for electrode positioning 

Figure 1-3:   Example of a typical time course of the NIRS parameters HbO and HbR in the 

verbal fluency task.  
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Table II-1:  NIRS values of „young old“ (54-63 years) versus „oldest old“ (81-90 years) 

subjects 

Table II-2:  Intercorrelations (r) of NIRS parameters HbO and HbR across all optode positions 

and for subjects activated during NIRS with the verbal fluency task (N=119) 

Figure II-3:  Scatterplot of partial correlations between TMT B/A and NIRS parameters 

Table II-3:  Mean (SD) performance of right-frontal NIRS responders vs. right-frontal non-

responders  

Table II-4:  Mean (SD) performance of left-parietal NIRS responders vs. left-parietal non-

responders  

Table II-5:  Mean (SD) performance of right-parietal NIRS responders vs. right-parietal non-

responders  

Table II-6:  Mean (SD) performance of left-temporal NIRS responders vs. left-temporal non-

responders  

Table II-7:  Mean (SD) performance of right-temporal NIRS responders vs. right-temporal 

non-responders  
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(a) 

(b) 

Figure I-1: Brodmann Areas. (a) Sagittal view, (b) Mid-sagittal view 
Taken from http://www.umich.edu/~cogneuro/jpg/Brodmann.html 

Frontal lobe 
 
Parietal lobe 
 
Temporal lobe 
 
Occipital lobe 

 



 

 
 
 
 
Figure I-2: The international 10-20 system for electrode positioning. (A) View from the left. (B) 
vertex view. (C) Location and nomenclature of the intermediate 10% electrodes, as standardized 
by the American Electroencephalographic Society.  
Taken from http://butler.cc.tut.fi/~malmivuo/bem/bembook/13/13.htm 



 
 
Figure 1-3: Sample time course of the NIRS parameters HbO (red) and HbR (blue) at the left and 
right frontal, left and right parietal, and left and right temporal optode position of a non-demented 
elderly subject performing the verbal fluency task. Two event markers (black vertical lines) 
indicate the end of the resting period (first marker) and the time at which the subject starts 
performing the verbal fluency task (second marker).  
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Table II-1: NIRS values „young old“ (54-63 years) versus „oldest old“ (81-90 years) subjects 

N Mean Min Max F p 
HBO_LF young old 21 12.7 30.5 -35.6 99.7   

oldest old 22 22.7 30.7 -12.2 104.6 1.15 .291 
HBR_LF young old 21 -2.06 11.1 -32.1 28.4   

oldest old 22 -.85 10.2 -29.2 16.6 .136 .714 
HBO_RF young old 20 14.8 21.5 -26.1 55.2   

oldest old 21 16.4 32.8 -40.5 99.0 .034 .855 
HBR_RF young old 20 -2.96 8.82 -17.8 19.7   

oldest old 21 -5.02 17.1 -39.9 43.8 .232 .633 
HBO_LP young old 21 16.7 23.5 -38.4 52.3   

oldest old 20 22.1 44.7 -33.4 185.7 .243 .625 
HBR_LP young old 21 2.13 8.06 -8.97 24.8   

oldest old 20 5.78 27.9 -31.2 78.1 .330 .569 
HBO_RP young old 21 17.8 31.1 -35.5 93.0   

oldest old 16 32.0 47.4 -6.17 194.5 1.20 .281 
HBR_RP young old 21 -.46 10.1 -13.5 25.9   

oldest old 16 6.50 21.8 -20.1 61.7 1.67 .204 
HBO_LT young old 18 13.2 28.7 -39.1 70.8   

oldest old 21 27.6 31.5 -17.0 102.6 2.19 .147 
HBR_LT young old 18 1.37 11.8 -12.9 29.5   

oldest old 21 5.73 17.8 -13.9 63.4 .782 .382 
HBO_RT young old 16 11.2 22.4 -20.5 46.1   

oldest old 20 17.1 34.8 -44.9 126.5 .345 .561 
HBR_RT young old 16 -.74 9.86 -18.3 14.4   

oldest old 20 -.77 15.9 -44.0 39.1 .001 .995 
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Figure II-1: Scatterplots for partial correlations between TMT B/A and the NIRS parameters 
which, as revealed by multiple regression analysis, significantly contribute to the prediction of 
the TMT B/A performance. 
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Table II-3: Mean (SD) performance of right-frontal NIRS responders vs. right-frontal non-
responders  

 Responders 

(n=50)

Non-Responders 

(n=50) 

Z p 

Phonemic Fluency: total correct 29.3 (9.68) 27.0 (8.16) -1.36 .174 
Category Fluency: total correct 52.4 (11.9) 48.8 (11.5) -1.17 .241 
WCST: total correct categories 5.27 (1.39) 5.24 (1.20) -.673 .501 
WCST: perseverative errors 2.05 (3.33) 2.74 (3.14) -1.40 .163 
TMT-B: time needed 131 (59.0) 145 (68.8) -1.17 .241 
TMT B/A  2.70 (.872) 2.94 (1.02) -.982 .326 

BNT: total spontaneous correct 39.3 (3.67) 39.4 (4.23) -.409 .682 
WAIS-R Block design: total correct 23.6 (7.49) 22.8 (7.52) -.621 .534 
WAIS-R Similarities: total correct 24.7 (5.79) 24.2 (5.07) -.793 .428 
WAIS-R Vocabulary: total correct  21.9 (5.75) 21.3 (5.47) -.553 .580 
MWT-B: correct words 31.8 (3.43) 31.8 (4.07) -.208 .835 

CVLT: correctly recalled List A trials 1-
5

51.7 (9.65) 49.1 (7.53) -1.69 .092 
CVLT: correctly recalled short delay 10.7 (3.01) 9.84 (2.89) -1.78 .075 
CVLT: correctly recalled long delay 11.4 (2.86) 10.5 (2.71) -1.77 .077 
CVLT: Recognition discriminability 
(%)

95.9 (4.49) 94.1 (7.26) -1.18 .238 
 



Table II-4: Mean (SD) performance of left-parietal NIRS responders vs. left-parietal non-
responders  

 Responders 

(n=31)

Non-Responders 

(n=61) 

Z p 

Phonemic Fluency: total correct 29.8 (10.0) 28.5 (8.91) -.993 .321 
Category Fluency: total correct 56.4 (12.0) 48.6 (10.8) -2.92 .004 
WCST: total correct categories 5.48 (.935) 5.17 (1.38) -1.04 .297 
WCST: perseverative errors 1.22 (1.63) 2.93 (3.58) -2.47 .013 
TMT-B: time needed 134 (69.4) 136 (64.0) -.328 .743 
TMT B/A  2.72 (1.05) 2.93 (1.19) -.730 .466 

BNT: total spontaneous correct 39.6 (3.83) 39.3 (3.97) -.361 .718 
WAIS-R Block design: total correct 25.8 (8.73) 22.8 (7.32) -1.76 .078 
WAIS-R Similarities: total correct 24.6 (6.20) 24.6 (5.20) -.364 .716 
WAIS-R Vocabulary: total correct  22.3 (6.94) 21.6 (4.99) -.904 .366 
MWT-B: correct words 31.8 (5.03) 32.1 (2.77) -1.01 .314 

CVLT: correctly recalled List A trials 1-
5

50.3 (7.61) 51.1 (9.30) -.566 .571 
CVLT: correctly recalled short delay 10.7 (2.61) 10.2 (3.12) -.831 .406 
CVLT: correctly recalled long delay 11.6 (2.52) 10.9 (2.99) -.816 .414 
CVLT: Recognition discriminability 
(%)

95.9 (4.49) 94.1 (7.26) -.841 .400 
 



Table II-5: Mean (SD) performance of NIRS right-parietal responders vs. right-parietal non-
responders  

 Responders 

(n=32)

Non-Responders 

(n=50) 

Z p 

Phonemic Fluency: total correct 30.7 (9.37) 26.7 (9.52) -1.76 .078 
Category Fluency: total correct 54.5 (11.4) 48.7 (12.2) -1.96 .050 
WCST: total correct categories 5.50 (1.14) 5.30 (1.13) -1.16 .247 
WCST: perseverative errors 1.40 (1.75) 2.59 (2.96) -1.67 .095 
TMT-B: time needed 122 (54.5) 151 (76.2) -1.87 .062 
TMT B/A  2.71 (1.16) 3.18 (1.22) -2.17 .030 

BNT: total spontaneous correct 40.4 (3.07) 39.0 (4.41) -1.01 .311 
WAIS-R Block design: total correct 24.6 (8.56) 23.5 (8.48) -.752 .452 
WAIS-R Similarities: total correct 24.6 (5.10) 23.9 (6.29) -.170 .865 
WAIS-R Vocabulary: total correct  21.1 (6.26) 21.7 (5.70) -.232 .817 
MWT-B: correct words 32.2 (4.16) 31.7 (3.69) -.901 .367 

CVLT: correctly recalled List A trials 1-
5

49.5 (8.93) 50.1 (8.14) -.423 .672 
CVLT: correctly recalled short delay 10.8 (2.76) 9.74 (2.69) -1.65 .099 
CVLT: correctly recalled long delay 11.3 (3.18) 10.7 (2.61) -1.12 .263 
CVLT: Recognition discriminability 
(%)

95.7 (4.23) 94.4 (6.56) -.795 .427 
 



Table II-6: Mean (SD) performance of left-temporal NIRS responders vs. left-temporal non-
responders  

 Responders 

(n=33)

Non-Responders 

(n=64) 

Z p 

Phonemic Fluency: total correct 28.6 (7.92) 27.6 (8.96) -.767 .443 
Category Fluency: total correct 50.8 (10.5) 50.3 (13.0) -.203 .443 
WCST: total correct categories 5.42 (1.21) 5.18 (1.33) -.739 .460 
WCST: perseverative errors 2.19 (3.67) 2.47 (2.59) -1.24 .215 
TMT-B: time needed 141 (55.0) 130 (54.5) -1.23 .218 
TMT B/A  3.05 (1.24) 2.78 (1.06) -1.08 .280 

BNT: total spontaneous correct 40.2 (3.05) 39.1 (4.27) -.873 .383 
WAIS-R Block design: total correct 24.8 (7.82) 23.2 (7.23) -.831 .406 
WAIS-R Similarities: total correct 24.3 (4.83) 24.7 (5.40) -.823 .411 
WAIS-R Vocabulary: total correct  20.2 (6.17) 22.3 (4.93) -1.60 .109 
MWT-B: correct words 31.2 (3.35) 32.3 (3.78) -1.85 .065 

CVLT: correctly recalled List A trials 1-
5

49.9 (8.66) 50.5 (8.98) -.210 .834 
CVLT: correctly recalled short delay 10.4 (2.67) 10.2 (3.14) -.115 .909 
CVLT: correctly recalled long delay 11.0 (2.49) 11.0 (2.84) -.015 .988 
CVLT: Recognition discriminability 
(%)

95.2 (4.32) 94.5 (6.89) -.233 .816 
 



Table II-7: Mean (SD) performance of right-temporal NIRS responders vs.right-temporal 
non-responders  

 Responders 

(n=30)

Non-Responders 

(n=63) 

Z p 

Phonemic Fluency: total correct 29.1 (10.2) 27.9 (9.28) -.311 .756 
Category Fluency: total correct 50.7 (11.6) 50.7 (12.2) -.217 .828 
WCST: total correct categories 5.42 (1.10) 5.35 (1.18) -.222 .824 
WCST: perseverative errors 1.66 (1.85) 2.45 (2.62) -1.13 .258 
TMT-B: time needed 133 (51.0) 136 (67.9) -.285 .776 
TMT B/A  2.85 (1.19) 2.88 (1.20) -.142 .887 

BNT: total spontaneous correct 39.5 (3.93) 39.5 (4.11) -.176 .860 
WAIS-R Block design: total correct 24.8 (9.37) 23.4 (6.72) -.346 .730 
WAIS-R Similarities: total correct 24.5 (5.57) 24.7 (5.00) -.091 .928 
WAIS-R Vocabulary: total correct  21.2 (6.51) 21.9 (4.44) -.235 .814 
MWT-B: correct words 32.0 (2.90) 32.0 (3.93) -.542 .588 

CVLT: correctly recalled List A trials 1-
5

49.2 (9.96) 51.4 (8.78) -1.23 .217 
CVLT: correctly recalled short delay 10.4 (3.15) 10.4 (3.08) -.186 .852 
CVLT: correctly recalled long delay 10.4 (3.04) 11.2 (2.79) -.945 .345 
CVLT: Recognition discriminability 
(%)

94.6 (6.79) 95.0 (5.92) -.050 .960 
 
 
 
 




