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Abstract

Proteins are macromolecules which play a crucial role in virtually any process in the
living cell. The determination of the 3-dimensional structure of a protein is a key compo-
nent in understanding its function and mode of action. Preferably, the structure is solved
by an experimental technique such as X-ray crystallography, nuclear magnetic resonance
(NMR), or electron microscopy (EM). In many instances, experimental structures are un-
available or can not be readily determined. To the rescue come computational modeling
techniques, e.g. comparative modeling, which are producing structures at a fast pace.
State of the art methods are capable of generating accurate models down to the level of
sidechains. These models are a useful tool in designing experiments, e.g. site-directed
mutagenesis, virtual screening and identifying proteins of similar function. Despite the
recent advancements, comparative modeling still has substantial room for improvement
in many areas. In the course of this thesis, we aim at developing techniques which ad-
dress some of the shortcomings of today’s methods. As a solid foundation for this work,
the OpenStructure software framework is developed, which allows to conveniently im-
plement new methods and seamlessly integrate them with existing programs.

Computational modeling often requires comparisons of models and/or template struc-
tures. Standard structure similarity measures, such as RMSD and GDT are based on
global superposition of structures, and their results are not meaningful when applied
to structures exhibiting domain movements. For unsupervised comparison of structures
on a large scale, a similarity measure based on internal distances was developed, which,
to a large extent, is insensitive to domain movements. In analogy to the global distance
test, the similarity measure is referred to as local distance difference test (lDDT).

A critical step of template-based modeling is the selection of suitable template struc-
ture information. For well characterized protein families, often many alternative experi-
mental template structures are available. While all templates may share a similar overall
topology, the relative orientation of sub-domains often differs significantly. Such intrinsic
movements limit the assignment of consistent structural constraints for the comparative
modeling step. An efficient and robust procedure to identify stable structural building
blocks in ensembles of structures using contact-overlap map consistency (COM) is pro-
posed.

The ability of a structural model to answer a particular biological research question is
strongly influenced by its accuracy. Since models may contain substantial errors, reliable
quality estimates are fundamental to determine their usefulness. We develop techniques
to assign quality estimates to models, which expand on the typical potential of mean
force (PMF) formalism used in the field. By relating the protein’s PMF energy to energy
of experimental structures, we obtain a Z-score of the model’s structure being of com-
parable quality to experimentally determined structures. In a second scoring function,
the PMF scores are complemented with distance restraints from evolutionary related ex-
perimental structures. These restraints are helpful in discriminating between correct and
incorrect folds and greatly improve the accuracy of the scoring function.
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A novel modeling pipeline for the SWISS-MODEL expert system for comparative
modeling is presented. For template and model selection, the pipeline builds on scoring
functions developed in this thesis, and combines them with probability-based reliability
estimates. The pipeline is embedded into a new web-interface, leveraging on capabilities
of modern web browsers to perform the modeling in an interactive manner.

Finally, computational models are often improved by incorporating experimental re-
straints, e.g. from electron density maps, proteomics cross-links, mutation studies etc.
Likewise, at resolutions below 2.5Å, X-ray density maps are often insufficiently defined
to allow completely automated model building and can benefit from the incorporation of
computational techniques. We explore the application of computational sampling tech-
niques to the automated model building with ARP/wARP at low resolution with the aim
to improve model completeness and to reduce fragmentation.
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Introduction

1Protein Structure

Polymers are a reoccurring theme in biological systems. They are built from a limited al-
phabet of residues and are much more complex than the parts they are made of. Proteins
are one such class of polymers and are involved in virtually any process of living organ-
isms. Proteins consist of one or more polypeptides, each of which is a linear chain of α
amino acids. The atoms of the amino acids are grouped into backbone (N, Cα, C and O,
H) and sidechain atoms. The α carbon atom of the ith amino acid in a polypeptide chain
is connected to the nitrogen of the i + 1th amino acid via a peptide bond. The peptide
bond resonates between a charged and a neutral conformation, which gives it a partial
double bond character1. Free rotation around the C-N bond does not readily occur, since
this would destroy the π-orbital overlap. This means that the ω dihedral angle [Cα(1)-
C(1)-N(1’)-Cα(1’)] assumes one of two values: ω = 0 (cis) and ω = 180◦ (trans). The
trans-conformation is slightly lower in energy due to steric hindrance of the sidechains.
Only around 0.3 % of peptide bonds occur in the cis conformation, 87% of which are
peptide bonds preceding a proline residue2−3. The rigid planarity of the peptide bond is
vital to the functioning of proteins, as it greatly reduces the degrees of freedom of the
polypeptide chain. Torsional rotation of the protein backbone is limited to the two di-
hedral angles φ [C(1)-N(1’)-Cα(1’)-C(1’)] and ψ [N(1)-Cα(1)-C(1)-N(1’)]. The allowed
combinations of φ/ψ-angles for a given residue have been theoretically calculated by
Ramachandran based on steric hindrance of the sidechains. However, the φ/ψ pairs in
real structures may deviate from the theoretical conformations, since the conformation
is influenced by other interactions (van-der Waals, electrostatic, etc.) as well.

The wide range of sidechain chemical properties makes amino acids more versatile
than nucleic acids for catalysing reactions. In addition, proteins spontaneously fold into
stable 3-dimensional structures. This, among others, may have been a major driving force
for the evolution of proteins as catalysts of living cells4. Despite their differences, the
amino acids can be categorized according to the chemistry of their sidechains. The first
class is formed by hydrophobic amino acids, and predominantly occur in the hydrophobic
core of proteins. Hydrophobic amino acids are important during the folding as well as
for the general stability of the protein as interaction of hydrophobic residues with water
molecules are entropically not favourable4−5. Hydrophilic amino acids are predominantly
found to be solvent-accessible (aspargine, glutamine). Charged amino acids are often in
active sites, as their chemistry is amenable for interactions with other active biomolecules.
In addition, they are able to form salt-bridges, which are important for the stability of the
protein.
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Secondary Structure

Corey and Pauling were the first to describe structure elements that are stabilized by a
regular network of hydrogen bonds6. The first of these elements, the α-helices are rod-
like, wound structures whose inner core is formed by the backbone of the polypeptide,
with the sidechains pointing outwards. Hydrogen bonds are formed between the back-
bone CO group of ith and the NH of the i + 4th amino acid in the sequence4. Helices
are usually no longer than 45Å. However, in some cases, they entwine to form long,
stable helical structures (coiled-coil). The second structural element described by Corey
and Pauling are β-strands. Here, the hydrogen network is formed involving more distant
residues. The backbone of the polypeptide is fully extended. In anti-parallel β-sheets, the
pairing strands run in opposite directions, whereas in parallel β-sheets, the strands have
the same direction. These regular secondary structure elements are connected by loops.

A standardized vocabulary of secondary structures has been introduced by Kabsch and
Sander in their DSSP program7. The program assigns secondary structures states to each
residue based on hydrogen bonding patterns. In addition to the above-mentioned α-
helix (denoted ’H’) and β-strand (denoted ’E’), DSSP introduced the π-helix (’I’), three-
ten helix (’G’), turn (’T’), β-bridge(’B’), bend (’S’) and coil (’C’). Many programs use a
simplified 3-state scheme, in which residues are grouped into helical, extended and coil
states8−9. This is justifiable, since the other types of secondary structure are very rare10.

Tertiary and Quaternary Structure

The 3-dimensional arrangement of a polypeptide chain, including its secondary structure
elements are referred to as the tertiary structure. Water soluble proteins fold into compact,
globular, structures. Hydrophobic sidechains are buried in the core and thus shielded
from the water5. Hydrophilic sidechains are predominantly found on the surface of the
protein. Some proteins fold into several, independently stable regions, termed domains.

At the highest level of organisation, the quaternary structure, multiple polypeptide
chains arrange into stable and semi-stable complexes. The complexes are stabilized by
the hydrophobic effect or electrostatic interactions between residues of the polypeptides
chains. Homo-oligomers consist of multiple peptides with the same sequence, hetero-
oligomers have at least two different polypeptide sequences.

Oligomers are abundant in the living cell and serve a multitude of functions4. First,
many structural proteins form oligomeric complexes. Some of these structures assemble
into highly symmetric structures with a fixed number of copies, e.g. viral capsids, or the
proteasome. For others, e.g. actin filaments, association of monomers into oligomeric fil-
aments is a dynamic process. Here, oligomerisation occurs as response to external stimuli
or progression in the cell cycle. Apart from structural reasons, oligomers are supposed to
reduce errors in protein translation11. Since the probability of a translation error scales
linearly with the number of residues of a polypeptide, the number of units which can be
translated without error is higher for smaller proteins. Additionally, the genetic informa-
tion required to encode a single monomeric unit as opposed to to encoding all copies of
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a homo-oligomeric complex in the DNA is drastically reduced. Last, changes in the rela-
tive orientation of subunits can have regulatory effect on protein function. One example
is the allosteric regulation of hemoglobin12.

Experimental Methods

Over the years, there have been several methods developed to obtain structural informa-
tion at atomic and near-atomic resolution. The 3 most important techniques are X-ray
crystallography13, nuclear atomic resonance (NMR)14, and electron microscopy (EM)15.
They are all briefly introduced below.

X-RAY CRYSTALLOGRAPHY | X-ray crystallography exploits the properties of highly ordered
crystals to obtain structural information of biological macromolecules at atomic resolu-
tion. Structure determination is a four-step process: After expressing and purifying the
protein in sufficiently large quantities, protein crystals are grown. The crystalline sample
is placed in front of a X-ray detector and irradiated with a X-ray beam. The X-ray wave
interacts with the electrons of the sample and is diffracted by them. Due to the crys-
talline nature of the sample, the resulting diffraction pattern has non-zero intensity only
at specific positions, the reflections. The reflections are related to the electron density of
the sample via a Fourier relation. However, the diffraction pattern is a power spectrum,
meaning that the observed intensity is proportional to the square of the amplitude of
the waves. The phase information of the waves, which is also important for the deter-
mination of the structures is not available from the experiment. For very-high resolution
structures, e.g. small molecules, properties of the inter-atomic distances are sufficient to
determine the phases. For typical resolutions of data of biological macromolecules, the
phases need to be obtained by other means. This is called the phase problem of crystal-
lography. Commonly, molecular replacement, in which the phases are transferred from a
protein of supposedly similar structure, or multiple anomalous dispersion are applied16.

The high degree of automation and availability of sophisticated refinement programs,
currently make X-ray crystallography the method of choice to obtain protein structures
are atomic resolution.

NUCLEAR MAGNETIC RESONANCE (NMR) | Nuclear Magnetic Resonance (NMR) is a spec-
troscopic technique to obtain information on the spatial arrangement of atoms in macro-
molecules in solution. It relies on the energy difference between spin states of nuclei with
an uneven number of protons and neutrons in a magnetic field, e.g. the nuclei of hydro-
gen, 13C, or 15N atoms. By using a radio pulse, state transitions between the low and
high energy spin state can be induced. Due to chemical shielding by electrons, the mag-
netic field perceived by nuclei differ. These differences can be detected in the spectrum.
For proteins, typically higher-dimensional spectra are required, since chemical shifts of
atoms can overlap and are indistinguishable from each other. By using sophisticated
pulse-patterns, the signal is split across multiple dimensions. From all these spectra, dis-
tance constraints are extracted which are used to simulate possible conformations for
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proteins. When enough of these distance constraints are known, the protein structure
can be readily determined. In regions with enough distance constraints, the models typ-
ically agree well, for parts where not enough distance constraints are known, the models
show large fluctuation in atomic positions. One advantage of NMR is to follow mole-
cules in solution, e.g. to observe conformational changes. However, NMR is restricted to
relatively small proteins only.

ELECTRON MICROSCOPY (EM) | Due to the smaller wave-length of electrons, electron mi-
croscopes can go beyond the resolution limit of conventional light microscopes. While
electron microscopes can be used to obtain information at atomic resolution for metallic
compounds (e.g. gold), the signal obtained by electron microscopy of biological samples
is severely limited by the sensitivity of biological material to radiation damage. Much
lower electron doses need to be used which leads to a smaller signal to noise ratio. Thus,
the information from several copies of biological macromolecules need to be averaged
in order to obtain high resolution density maps. There are two modes of operation for
the electron microscope to obtain high-resolution information for proteins. The first, and
more widely-used technique, is single particle averaging. To overcome the low signal-to-
noise ratio, several images of particles (proteins) are collected. Each imaged particle is a
projection of the particle’s density. Using Radon back-projection, the two-dimensional
images are assembled into a 3-dimensional density map15. Currently, the use of single
particle averaging is limited to large particles. Work has been performed on the ribo-
some, which gave insight into the process of protein translation17. For highly symmetric
assemblies, near-atomic resolutions have been obtained. But typical resolutions for non-
symmetric particles are in the 10-15Å range15. As a second mode of operation, diffraction
patterns of two-dimensional protein crystals can be collected. This technique is however
limited to membrane proteins15.

Resources for Experimental Structures

Experimentalists deposit structures of polypeptides and poly-nucleotides in the Protein
Data Bank (PDB). The PDB was established in the early seventies to make the small but
growing number of solved protein structures available to the scientific community18. The
atomic coordinates are deposited together with information associated with the crystal-
lized polymer, e.g. the oligomeric state, references and experimental details such as unit
cell size and refinement parameters. Each experimental structure is assigned a unique
four-letter code (the PDB identifier) as well as a digital object identifier (DOI). The num-
ber of structures in the PDB has been growing exponentially. While, in the beginning,
there were only a few structures deposited every year, today more than 80’000 entries are
available. Part of it can be attributed to the high amount of automation in solving struc-
tures and to the efforts of the structural genomics projects19. The majority of structures
are solved by X-ray crystallography, followed by NMR and electron microscopy.

In the last few years, the efforts of the PDB are managed by a world-wide consor-
tium of scientists20. They are responsible for identifying the requirements of the research
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community as well as defining data exchange dictionaries. The structures themselves are
made available through mirror sites, e.g. RCSB21, PDBe22 and PDBj23.

Since the quality of the structures depends on both the experimental data and the re-
finement protocols, structures solved decades ago can often be improved by using mod-
ern refinement protocols. PDBredo is making the efforts of re-refining the structures
available to the research community24. Likewise, Paul Adams has reported that already
deposited structures are often improved by using newer version of the PHENIX pack-
age25.

Many other databases are derived from the PDB such as CATH26 and SCOP (structural
classification of proteins) 27, which classify protein structures in families based on their
folds

2Sequence and Structure

Sequence and Pro�le Alignments

The importance of evolutionary relationship between protein sequences for many bioin-
formatics and computational biology methods has led to the development of increasingly
sophisticated descriptions of sequence similarity28−33.

Sequence identity is the crudest and least sensitive of similarity measures. It is calcu-
lated as the fraction of conserved amino acids divided by the number of aligned residues.
Because of it’s simplicity, sequence identity is often used to categorize the evolutionary
distance of two proteins. Not all mutations have the same impact since some amino acids
are chemically more related than others. Mutating an alanine into a valine is on average a
smaller change than mutating a tyrosine into a glycine. Substitution scores take into ac-
count how favourable a certain amino acid substitution is. A substitution score penalizes
and rewards mutations according to a scoring matrix S(a, b). S(a, b) is positive if the mu-
tation of a to b is observed more often than would be expected by a chance. Vice-versa,
negative elements ofS(a, b) denote mutations from a to b that are less often observed and
thus less favourable than a random null-model. All substitution scores can be understood
as log-odd scores of co-occurrence34, e.g.S(a, b) = log f (a, b)/f (a)f (b) = log f (a|b)/f (a).
Many substitution matrices have been generated, some better suited to measure evolu-
tion of closely related protein sequences, some targeted at more distant pairs of pro-
tein sequences28,35−36. The scores for the most widely-used substitution scoring matrix
BLOSUM62 have been estimated based on co-occurrence probabilities of amino acids
in columns from a large multiple sequence alignment with sequences sharing less than
62 percent identity28. Other scoring functions have been derived from pairwise contact
potentials36.

The most sensitive of the currently available alignment programs represent the query
sequence as a Hidden Markov Model (HMM). The amino acid emission probabilities
of each column are estimated from a multiple sequence alignment generated for the
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query sequence. The transition probabilities for match, insertion and deletion states are
estimated from the multiple sequence alignment as well. The query HMM is then ei-
ther aligned against sequences (HMM-sequence alignment31,37), or against a database
of HMMs (HMM-HMM alignment)32−33. HMMs have greatly improved the detection
of remote homologs. In some rare cases, HMM-HMM programs are able to detect ho-
mologs with less than 15% sequence identity.

Structure-Sequence Relationship

The work of Anfinsen in 197338 revealed that a major determinant of the 3-dimensional
structure of a protein is it’s primary sequence. Folding is driven by thermodynamic stabil-
ity. Today, this concept is still the basis of our understanding, though is is known that in-
vivo folding is much more complex39. Ensuring proper folding of proteins in the crowded
intra-cellular milieu requires the interplay of hundreds of genes expressing chaperones,
degradation pathways and post-translational modifications. They protect the unfolded
and semi-folded intermediates from interactions that could lead to misfolding.

The EMBO Journal vol.5 no.4 pp.823-826, 1986

The relation between the divergence of sequence and structure in
proteins
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Homologous proteins have regions which retain the same gen-
eral fold and regions where the folds differ. For pairs of
distantly related proteins (residue identity --20%), the regions
with the same fold may comprise less than half of each mol-
ecule. The regions with the same general fold differ in struc-
ture by amounts that increase as the amino acid sequences
diverge. The root mean square deviation in the positions of
the main chain atoms, A, is related to the fraction of mutated
residues, H, by the expression: A(A) = 0.40 el87H.
Key words: evolution/protein homology/model building

Introduction
The comparative analysis of the structures of related proteins can
reveal the effects of the amino acid sequence changes that have
occurred during evolution (Perutz et al., 1965). Previous work
on individual protein families has shown that mutations, insertions
and deletions produce changes in three-dimensional structure
(Almassy and Dickerson, 1978; Lesk and Chothia, 1980, 1982,
1986; Greer, 1981; Chothia and Lesk, 1982, 1984; Read et al.,
1984). Here we report a systematic comparison of structures from
eight different protein families. This shows that the extent of the
structural changes is directly related to the extent of the sequence
changes.

In the work reported here we used the atomic coordinates of
25 proteins (Table I). All these structures have been determined
at high resolution (1.4-2.OA) and refined. The errors in their
co-ordinates are 0.15-0.20A (see references given in Table I).
The 25 proteins represent eight different protein families and pro-
vide 32 pairs of homologous structures.

Methods and Results
The conserved structural cores and the variable regions ofhom-
ologous proteins
The structures of homologous proteins can be divided into those
regions in which the general fold of the polypeptide chains is
very similar and those where it is quite different. In comparing
protein structures it is useful to separate the parts that have similar
folds from those where the folds differ. We did this using the
following quantitative procedure: (i) the main-chain atoms of
major elements of secondary structure - helices or two adjacent
strands of 3-sheet - were individually superposed; and (ii) each
superposition was then extended to include additional atoms at
both ends. The extension was continued as long as the deviations
in the positions of the atoms in the last residue included were
no greater than 3 A. This procedure defined the segments that

© IRL Press Limited, Oxford, England

1-0
o
L.c

0
u

0
E
E

uQ04U

._.6

-o

In

w

'6-

t02
ix04
a1..
0

I-
0~

10-100 80 60
Sequence

40
Identity (0/)

20 0

Fig. 1. Size of common cores as a function of protein homology. If two
proteins of length n1 and n2 have c residues in the common core, the
fractions of each sequence in the common core are c/n1 and c/n2. We plot
these values, connected by a bar,- against the residue identity of the core
(see Table II).

oi._£
0

._

oa
V
L-

o

a.
C

0

0
0

100 80 60 40 20 0
Percent residue identity

Fig. 2. The relation of residue identity and the r.m.s. deviation of the
backbone atoms of the common cores of 32 pairs of homologous proteins
(see Table I).

823

l I J| II |

K,I I I

IF

0.

^

Figure 1.1 The sequence-structure relationship states that proteins with similar sequence
adopt a similar structure40.

The importance of the amino acid sequence on folding and the tertiary structure let
Chothia and Lesk40 to compare experimental X-ray structures of evolutionary related
proteins. They calculated the RMSD of the conserved core of 20 proteins and plotted it
against the sequence identity of the protein pair (�gure 1.1). A clear relation between the
root-mean-square deviation and the sequence identity could be seen. With increasing
sequence identity between the two proteins, the RMSD decreases. The relation is clearly
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non-linear and the RMSD increases more rapidly with increasing dissimilarity between
the two protein sequences. In their work, they were limiting the structural comparison to
what they called the structural core of the protein, made necessary by the use of RMSD as
the similarity measure. However, similar trends can be seen when comparing the com-
plete structures using more robust structural similarity measures such as GDT41.

Structural Genomics and the Sequence - Structure Gap

Even though the number of experimentally determined protein structures has increased
exponentially, deep sequencing technology has led to to an enormous increase of avail-
able genome sequences. As as result, the difference in numbers between experimentally
available protein structures and sequences — the sequence - structure gap — is becoming
larger42. To counteract these trends, the structural genomics initiative has made efforts
to further automate the structure determination processes. Proteins were not selected on
biological relevance, but on homology (or lack thereof) to already solved protein struc-
tures. A sequence has been selected if it shares less than 30% sequence identity to existing
protein structures43. Despite these efforts, it is unlikely that the number of structures will
keep up with the ever-increasing number of available sequences.

The question remains as to how well the currently solved structures cover the fold-
space, e.g. how likely is it that a newly solved structure shares considerable structural sim-
ilarity to an already known protein structure. There has been a gradual decline in newly
discovered folds, e.g. as seen in the SCOP database. Can we assume that the fold-space
is completely covered by the PDB? To address this question, in-silico reduced polypeptide
models have been built using a pair-wise attractive potential, hydrogen bonding terms
and excluded volume to guide the sampling process44. The researchers then compared
the built models to the existing protein structures. They found, that for any built model,
there is an experimental structure that shares significant similarity on the fold level. Also,
the inverse was true: for any experimental structure from a set of 150 PDB structures, a
structure was found in the library of sampled models with significant structural similarity.
This suggest a strong upper limit of folds that single-domain proteins can adapt. They ar-
gue that the limited number of folds in the PDB is a direct effect of geometric constraints
imposed by regular secondary structure elements. For proteins with less secondary struc-
ture content, the degrees of freedom increase and, as a result, many more folds become
possible.

Based on the sequence-structure relationship and the increasing coverage of fold space,
the sequence-structure gap can be bridged by computational modeling methods.

3Protein Structure Prediction

Protein structure prediction uses two fundamentally different concepts: template-based
structure prediction techniques obtain a 3-dimensional, atomistic model by exploiting
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the structure-sequence relationship described above. De-novo structure prediction gen-
erates vast sets of alternative structures and selects the best scoring model using sophis-
ticated scoring functions. Before turning our attention to computational structure pre-
diction methods, efforts to objectively benchmark competing approaches are introduced
in the next section.

Benchmarking Existing Structure Prediction Methods

Critical assessment of structure prediction (CASP) is a community-wide double-blind
benchmark for protein structure prediction and related methods, taking place every sec-
ond year45−53. Participants in the protein structure prediction category are sent amino
acid sequences of proteins whose structures have been experimentally determined but
are not publicly available yet, and are asked to return 3-dimensional models. After the
prediction season, which typically lasts 3 months, the submitted models are compared
to the experimental structures using a variety of structural similarity measures. Methods
which perform particularly well are then highlighted at the CASP meeting.

As an alternative to CASP, since 2011, the Continuous Automated Modeling Evalua-
tiOn (CAMEO) web server benchmarks computational approaches for protein structure
and ligand binding site prediction54. Each Friday, sequences of the PDB pre-release are
sent to the predictors. The following week, the predictions are compared to the experi-
mental structures. The number of targets per week is usually between 15 and 40, mean-
ing that it takes between 3 to 8 weeks to have a target number comparable to CASP. In
contrast to the model evaluation of CASP, evaluation of CAMEO targets is completely
automated and does not involve human intervention.

Secondary Structure Prediction

Since regular secondary structure elements are an essential part of protein structures, a
major contributor to protein stability, and arguably even to the folding-pathway, there
has been a strong interest in predicting the secondary structure elements from the pri-
mary sequence. Early attempts at secondary structure prediction were based on the ob-
servation that some amino acids are more commonly found in secondary structure ele-
ments than in others55. However, these prediction methods never reached an accuracy
higher than 70%. Modern secondary structure prediction programs rely on sequence
profiles to improve the accuracy of the prediction. For example, today’s most widely-
used secondary structure prediction program PSIPRED8 generates a multiple sequence
alignment for the protein of interest with PSI-BLAST29. Each column in the alignment is
converted to a vector of amino acid probabilities, derived from the frequencies of occur-
rence. The resulting set of probability vectors is then used as input to a neural network.
PSIPRED has repeatedly been shown to be one of the top-scoring secondary structure
prediction programs in the EVA live benchmark56. The reliability measures of PSIPRED
agrees well with actual errors. The residues marked most accurate reach overlap of >90%
to the DSSP states. In general, the accuracy of secondary structure prediction programs
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to predict α-helices is higher than for β-strands. The hydrogen bonding structure of α-
helices and β-strands can partially explain the differences in performance. For α-helices,
the hydrogen donor and acceptors pairs are at fixed offset in the primary amino acid se-
quence. Identifying the hydrogen donors and acceptors in β-sheets on the other hand is
a much more complex problem, since the offset between the donor and acceptor is not
fixed. Additionally, the stabilizing interactions are less local than for α-helices.

Template-Based Protein Structure Prediction

Template-based modeling techniques are based on the sequence-structure relationship
first outlined by Chothia and Lesk40, and exploit experimentally available structures to
obtain a protein structure model. In contrast to de-novo methods, they are primarily based
on evolutionary information and only secondly on energy functions. For these methods,
the most important step is to identify related experimental protein structures.

Most comparative modeling procedures consist of four consecutive steps: (a) identi-
fication of protein structures related to the target sequence with a target/template align-
ment, (b) modeling of the target structure based on the information of the template, (c)
refinement of the model, (d) evaluation of the model quality and ranking of generated
models. These steps might be repeated iteratively until a satisfactory model is obtained57.

In traditional comparative modeling, local alignment algorithms such as BLAST58 are
used to obtain an alignment between the target sequence and experimentally determined
structures. For sequence alignments above 40%-50% sequence identity, the alignments
are very accurate and the fold between the target and the template is conserved. When
no close homologs are detected, more sophisticated homology detection algorithms are
required. Successful approaches are based on sequence-profile59, sequence-HMM60, or
HMM-HMM alignments32−33. Several research groups have reported improved model
accuracy when combining multiple homology detection programs61−63.

Other programs for remote homology detection thread the protein sequence through
template structures64−66. These programs have traditionally been into classified as fold-
recognition methods. However, with the advent of more sensitive sequence-based ho-
mology detection programs, the distinction has started to blur. Especially in the twilight
zone for protein sequence alignment67, improvements in alignment quality are possi-
ble by combining sequence and structural information. For example, RaptorX adjusts
the importance of sequence and structural information based on a non-linear regression
tree68−69. For high-sequence identity alignments, alignment scoring is mainly driven by
sequence features, whereas the importance of structural threading features increases for
remote targets. Similar adjustments are performed when the profile generated for the
target sequence has a low number of effective sequences, that is a low entropy. For such
profiles, the amount of information is insufficient to approximate the evolutionary events
from the sequence alignment. This can be compensated by increasing the relative impor-
tance of structural information68.

Once a target-template alignment is available, two conceptually different approaches
exist to build a 3-dimensional protein model: modeling by assembly of rigid bodies70−71,
and modeling by satisfaction of spatial restraints72.
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MODELING BY ASSEMBLY OF RIGID BODIES | In this approach, structurally conserved regions
are directly copied from the template to the model. Variable regions such as insertions
an deletions are then remodeled using a loop modeling protocol73−76. The last step is
modeling of sidechain conformations. For residues which are conserved between the tar-
get and the template, the sidechain coordinates can be copied from the template to the
model. However, non-conserved residues need to be remodeled in any case. Typically,
backbone-dependent rotamer libraries are used to sample possible sidechain conforma-
tions e.g. as done by the SCWRL software77−78. Modeling by assembly of rigid bodies
has the advantage of being very fast and accurate in the high sequence identity range.

MODELING BY SATISFACTION OF SPATIAL RESTRAINTS | A different approach to structure
prediction has been introduced by Sali in 1993 in his MODELLER program72. The struc-
ture determination is described as an optimization of spatial restraints between atoms
in the structure. Distances between atoms, angles and dihedrals are modelled as proba-
bility density functions (PDFs). PDFs can assume any form, provided that they integrate
to one and are always positive. Probability density functions of MODELLER have been
derived for many features, and a variety of sources: from know protein structures, force
fields, or stereo-chemical considerations. The formulation of modeling as satisfaction of
spatial restraints allows for flexible combination of structural information from multiple
sources. For example, the use of restraints from multiple template is a natural extension
of modeling with a single template structure. Instead of expressing the distance between
two atoms by a single PDF, two or more PDFs may be combined to obtain a feature PDF.
Constraints from different template structures are additive as they represent a different
conformation for the feature: Thus, the feature PDF is a weighted sum of the individual
basic PDFs.

The molecular PDF is then the probability density function for the whole protein struc-
ture to be modelled. Additivity is assumed and thus the molecular PDF is given by the
product of the individual feature PDFs. This is clearly incorrect as features, especially local
ones, are highly correlated. To some extent, this can be corrected by introducing higher-
order PDFs. However, the derivation of higher-order PDFs is limited by the available
experimental information.

Structures that optimally satisfy the restraints are generated by a series of conjugate
gradient optimizations of the molecular PDF. The molecular PDF is first approximated
with only local terms enabled. This allows for local packing and folding of secondary
structure elements. In each iteration, more terms are added until the target function is
identical to the molecular PDF. An ensemble of models is obtained by choosing different
initial conditions.

De-Novo Structure Prediction

Comparative, or template-based modeling techniques rely on an alignment of the target
sequence to determined protein structures. When no template information is available
for the whole, or parts of the sequence, de-novo methods may be used to predict the
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3-dimensional arrangement of atoms. These methods are independent of aligned tem-
plate structures and are thus able to predict the structure of proteins for any sequence.
Even though de-novo methods are not using structures as a whole, the most successful
techniques do incorporate information from experimentally available structures, e.g. in
the form of fragments for backbone conformation sampling, or empirical energy func-
tions derived from databases57. Successful ab initio structure prediction methods include
ROSETTA, which uses a fragment-guided sampling technique together with a sophis-
ticated energy function79, and threading of the target sequence through structures from
the PDB combined with lattice-based simulations, e.g. as implemented in I-TASSER66.

Overall, the quality of de-novo predictions is still rather poor and for many targets, the
predictions do not reach fold-level accuracy80. Thus, template-based methods are prefer-
able under almost all circumstances, as they deliver more accurate results at a fraction of
the time. Still, de-novo techniques play an important role in modeling of large insertions
or deletions of structures which have otherwise been predicted by comparative model-
ing. In addition, energy functions developed for de-novo predictions may be used to to
refined comparative models.

Model Re�nement

Template-based modeling protocols often incorporate a model refinement step. It serves
two main purposes: first, the refinement step regularizes the structure, e.g. by removing
clashes, and adjusting bond lengths and angles to chemically possible values. Second, in
some cases, conformations closer to the native state can be identified by using confor-
mational sampling. Many of the energy functions in use for de-novo structure prediction
are also applied for model refinement. They are often able to distinguish between native
and non-native conformations81−83. However, the scoring functions are not able to dis-
tinguish between near-native and non-native conformations. The result is a blind search
until the native state is visited as part of the conformational sampling. To avoid confor-
mational drift, refinement protocols include information from template structures to re-
straint the possible conformations of the model66. Still, even the best-performing servers
at CASP are unable to improve upon the best available structural template in more than
30% of the cases, in only 20% by more than 2 GDT_HA points53.

4Model Quality Assessment

Any structural model, irrespective if it has been determined by X-ray crystallography or is
purely computational, is just an approximative representation of the protein’s true struc-
ture, for otherwise it would be the protein itself. The question is not if models have errors,
but how large the errors are. Model quality assessment has set itself the task to analyse
theoretical models and assign error estimates. The advancement in recent years to detect
more remote homologs have made model quality assessment even more important, as



Introduction | 22

models may contain substantial errors. Applications of model quality assessment ranges
from selecting the best model among a set of alternative model or the prediction of per-
residue quality estimates on a global scale.

Model quality assessment routines can be broadly categorized into (a) chemical plau-
sibility checks, (b) physics-based (c) knowledge-based and (d) consensus-based quality
checks.

Even though some of the scoring functions described here have applications outside
of model quality assessment (fold recognition, model ranking), we would like to focus
the attention on their application to predicting errors for models.

Chemical Plausibility Checks

Chemical plausibility checks assess the chemical compliance of a protein structure. Bond-
lengths and angle parameters are compared to values obtained from high-resolution
structures, e.g. the set defined by Engh and Huber84. Additionally, conformance of back-
bone torsions with the Ramachandran plot, planarity of rings and sterical clashes are
checked. For experimental structures, such checks are routinely employed85−86 as part of
the structure deposition process, and the results are deposited together with the atomic
coordinates. For theoretical models, these checks have only recently been added to model
evaluation protocols52−53. In drawing an analogy to writing, chemical plausibility check
the spelling of individual words, but are oblivious to the structure of sentences. In a sense,
the plausibility checks are assessing an orthogonal quality of models, and a model with
strong violations of these parameters can still be close to the target structure. For fur-
ther use of models, e.g. molecular dynamics simulations or in-depth analysis of atomic
interactions, adherence to chemical and physical laws is highly important.

Physics-based

Physics-based quality estimation methods rely on the thermodynamic hypothesis, that
the native conformation of a protein lies in the free energy minimum87. The energy of
a protein structure is described using physics-based energy functions describing inter-
actions between atoms and entropic contributions. The functions are parametrized by
fitting experimental data or performing quantum chemical calculations. Others have per-
formed molecular dynamics (MD) simulations to assess a model’s quality88−91 by calcu-
lating the stability of a particular conformation. They claim that structures close to the
native state are stable, that is the RMSD does not change much with respect to the initial
conformation. Non-native conformations on the other hand, tend to drift away from the
initial conformation91.

Potential of Mean Force

Statistics on how often a certain type of residue is buried inside the core of a protein, or
the expected distance of a pair of atoms may be turned into knowledge-based scores or
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potentials of mean force. They assess how well a given model agrees with our current
knowledge of protein structure. Initially, potentials of mean force have been motivated
by the inverse Boltzmann law, where state frequencies are turned into energies. More
recently, a more versatile and intuitive description has arisen that is based on information
theory92−94. Others have motivated potentials of mean force from particle correlation
functions95.

The Boltzmann principle connects the energy state ci of a conformation at equilibrium
to the probability p(ci) of that conformation:

p(ci) = exp(−E(ci))/
∑

j

exp(−E(cj)/kT )

where k is the Boltzmann constant, T is the absolute temperature, i refers to the confor-
mational state of interest, and the sum j runs over all states of the system. The denomi-
nator, Z(C) =

∑
j exp(−E(cj)/kT ) is called the Boltzmann sum or partition function of

the system. The inverse Boltzmann law allows to derive energies from the occurrences
of a conformation:

E(ci) = −kT ln p(ci) + kT lnZ(C)

Rather than assigning absolute energies to a conformation, it is more practical to consider
energy differences with respect to a reference conformation. Typical examples include
the energy difference of an interaction between two particular types of sidechains and
interactions of any kind. The specific interaction is denoted as p(ci|sk), which translates
to, the energy of conformation ci, under the condition that we only consider components
of the system in state sk. The particular meaning of the state sk and the conformation
ci are on purpose left open. Specific parametrisations for both ci and sk will be given
below. The energy difference is given as

4E(ci|sk) = E(ci|sk)− E(ci) = −kT ln[p(ci|sk)/p(ci)] + kT ln[Z(c)/Z(c|s)]

Under the assumption, that Z(c) is equal to Z(c|s), the energy difference simplifies to

4E(ci|sk) = −kT ln[p(ci|sk)/p(ci)]

The probabilities to derive the energies can be estimated from experimental structures,
e.g. high resolution structures from the PDB. To give us a better understanding of the net
energy difference, it is useful to make a link to informatic quantities. The average energy
difference over all states and conformations is

〈4E(C|S)〉 =
∑

k

∑
i

−kTp(ci, sk) ln[p(ci|sk)/p(ci)]

Upon expansion, the net energy difference can be written as

〈4E(C|S)〉 = −kT
∑

k

p(sk)
∑

i

p(ci|sk) ln p(ci|sk) + kT
∑

i

ln p(ci)
∑

k

p(ci, sk)

= kT
∑

k

p(sk)H(C|sk) + kT
∑

i

p(ci) ln p(ci)

= kT
[
H(C|S)−H(C)

]
= −kT · Ig(S,C)
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with

H(C) = −
∑

i

p(ci) ln p(ci)

H(C|S) = −
∑

i

∑
k

p(ci|sk) ln p(ci|sk)

Ig(C, S) = H(C)−H(C|S)

Here H(·) denotes the Shannon entropy96. As can be seen, the net energy difference is
up to a constant factor of kT identical to the information gain of the system92−94.

The link to informatic quantities gives us some insight into the nature of potentials of
mean force. Using this notation, it is clear that the choice of reference state will have an
influence on the information gain and thus the discriminative qualities of the potential.
In the literature, many reference states have been proposed. Some were derived from
statistics extracted from experimental protein structures, others from theoretical consid-
erations95. No definitive answer to what the best reference state is has been found yet97.

Apart from the reference state, the information gain also depends on the choice of ci

and sk. According to Solis, these two parameters should be chosen in order to maximise
the information gain of the system93. This requires to identify components with similar
distribution of ci, as this will lead to the sharpest distributions. Typically, one would like
to have as many sk as possible. However, the choice of sk is affected by data sparsity as
well. When only limited data is available, grouping of components in the system might
be required to improve performance.

Even though additivity does in general not hold for biological polymers98, due to data
sparseness and computational tractability for potentials of mean force, additivity is usu-
ally assumed. In the literature, there have been some correction factors suggested to
reduce the magnitude of errors introduced by the additivity assumption.

In the following, let us turn the attention to particular potentials of mean force that
have been proven useful for the assessment of model quality.

INTERACTION POTENTIAL | Interactions are parametrised on distances between atoms,
e.g. 4Eint(d, ai, aj) = − ln p(d|ai, aj)/p(d), where d is the distance between two atoms
of type ai and aj

99−107. Several definitions of atom types have been used, but the most
common one is use one atom type for every chemically distinguishable atom of the stan-
dard amino acids. Some potentials additionally introduce a sequence separation para-
meter swhich has the effect that only interactions between atoms further than s apart in
sequence are considered. This counter-balances the usually observed over-weighting of
interactions of neighboring residues. Most widely used and successful potentials include
DFIRE106, RAPDF103, DOPE107 and QMEAN108. In addition to the full-atom models,
potentials have been introduced that operate on a subset of atoms, e.g. backbone atoms
and an additional virtual center of sidechain, or Cβ potentials using only one atom per
residue108. Recently, potentials have been developed that, in addition to the distance,
include angular parameters between the interacting partners95,109.
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SOLVATION POTENTIAL | Solvation potentials account for the preference of amino acids
to be exposed to solvent108,110−111. The burial status of residues is approximated as the
number of interacting residues (e.g. Cβ atoms) in a sphere of radius r, e.g. r = 9 in the
original QMEAN108. The energy is then calculated as4Esolv(n, ai) = − ln p(n|ai)/p(n),
where n is the number of interacting Cβ atoms, and ai is the amino acid type.

TORSION POTENTIAL | Torsion potentials are parametrised on φ/ψ backbone torsion an-
gles and measure the propensity of a certain residue for a given torsion angle pairs com-
pared to a background distribution. A single-residue torsion potential, can be though of
as the log-odd score derived from the residue-specific Ramachandran plot in compari-
son to the pooled Ramachandran plot of all residues. Since the torsional preference also
depends on the neighbours of the residue, there have been various torsion potentials
proposed that also include information from the neighboring residues108,112−115. Typical
parametrisation are based on the amino acid type before and after the residue of interest
as well as torsion values. Torsion potentials are most affected by data sparseness, and
torsion angles need to be binned heavily to achieve saturation.

QMEAN

QMEAN (Qualitative Model Energy ANalysis) is a composite scoring function that com-
bines statistical potentials terms with evolutionary information to assess the quality of
protein structures �gure 1.2. QMEAN has been developed by Pascal Benkert during his
PhD in the Schomburg group108.

On the statistical potential side, QMEAN implements an all-atom interaction poten-
tial, an interaction potential based on β carbons only, a solvation potential and a tor-
sion potential parametrised on 6 consecutive φ/ψ torsion angles. These four terms are
complemented by two evolutionary agreement terms: The predicted secondary struc-
ture by PSIPRED8 is compared to the observed secondary structure by DSSP7. Similarly,
the solvent accessibility predicted by ACCpro116 is compared to the solvent accessibility
assigned by DSSP. The terms are linearly combined to obtain the QMEAN score for a
certain model.

Even though the performance of QMEAN is well behind that of consensus-based
quality assessment methods, QMEAN has repeatedly been shown to perform among the
top non-consensus scoring functions in the quality assessment category of CASP117−118.

Consensus

The idea of scoring structural features by their abundance can be extended to complete
models as well. Consensus, or clustering methods, score models of the same target se-
quence by structural comparison, e.g. superposition117, or internal instance agreement63.
Regions with high similarity (e.g. small Cα-atom deviations) are thought be more accu-
rate than regions with large deviations. Many variants of consensus methods have been
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Figure 1.2 Graphical depiction of the statistical and agreement terms of the QMEAN scoring
function: The all-atom and Cβ interaction potentials (top-left) are combined with the solvation
(top-right) and torsion potential (bottom-left). Additionally, agreement between predicted and
observed secondary structure and solvent accessibility are taken into account.

proposed in the literature, e.g. ModFOLDclust63,119, QMEANclust117, MQAPmulti (un-
published), Pcons and ProQ120. In addition to structural consensus, they employ poten-
tials of mean force, predicted features from the target sequence to rank models. However,
their performance is clearly dominated by the structural comparisons of models. In the
context of the quality assessment category of CASP, consensus methods are very success-
ful. The high number of models built by independent modeling pipelines are ideal for
consensus methods. Modeling errors tend to cancel out and the most populated states
are usually closest to the target structure. As soon as the number of models becomes
smaller, e.g. less than 50, the performance of consensus methods starts to degrade118.
Since such large number of models are difficult to come by, especially generated by in-
dependent modeling pipelines, the application of consensus methods outside of CASP
is limited.

5Objectives

The main objectives of this thesis are to advance methods for protein structure predic-
tion. Contributions in two major areas are made. First, as we have seen, assessment of
model quality is of high relevance. We will expand on existing approaches to assign error
estimates to models and improve their accuracy. Second, we develop methods to increase
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the model accuracy itself by improving template selection and developing approaches to
select consistent constraints from multi-template modeling.

This thesis is organised as follows: First, we will describe a computational software
framework upon which the remainder of the work is built. Second, a similarity mea-
sure for superposition-free comparison of pairs of proteins is described. Third, an algo-
rithm for the identification of common residues and it’s application to multi-template
modeling is shown. Fourth, the QMEAN scoring function is extended: we transform the
QMEAN scores into absolute quality scores by relating the pseudo-energy of models to
that of experimental structures of similar size. In a second score, to improve the fold-
level assessment of QMEAN, we combine the scoring function with distance constraints
from alignments. Fifth, the work on the QMEAN scoring function is then used as the
basis for a newly developed modeling pipeline for SWISS-MODEL. Sixth, the pipeline
is made available to the research community through the SWISS-MODEL web server,
which focuses on interactive modeling. Seventh, in a collaboration with Tim Wiegels from
the EMBL in Hamburg, we combine methods from computational modeling with X-ray
density map interpretation to improve model completeness at resolutions below 2.5Å.
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MOTIVATION: Developers of new methods in computational structural biology are often hampered
in their research by incompatible software tools and non-standardized data formats. To address
this problem, we have developed OpenStructure as a modular open source platform to provide
a powerful, yet flexible general working environment for structural bioinformatics. OpenStructure
consists primarily of a set of libraries written in C++ with a cleanly designed application programmer
interface. All functionality can be accessed directly in C++ or in a Python layer, meeting both the
requirements for high efficiency and ease of use. Powerful selection queries and the notion of
entity views to represent these selections greatly facilitate the development and implementation
of algorithms on structural data. The modular integration of computational core methods with
powerful visualization tools makes OpenStructure an ideal working and development environment.
Several applications, such as the latest versions of IPLT and QMean, have been implemented
based on OpenStructure—demonstrating its value for the development of next-generation
structural biology algorithms.
AVAILABILITY: Source code licensed under the GNU lesser general public license and binaries for
MacOS X, Linux and Windows are available for download at http://www.openstructure.org.
CONTACT: torsten.schwede@unibas.ch
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

1 Introduction

We introduce OpenStructure, a flexible software framework for computational structural
biology, a solid, yet flexible and versatile toolkit for rapid prototyping of new methods
as well as their productive implementation. Typically, method development in struc-
tural bioinformatics involves combining different independent software tools, and sig-
nificant effort is devoted to writing code for input/output operations and format con-
versions between different packages. This culminates when data and algorithms from
different domains are to be combined, e.g. protein structures, protein sequence anno-
tation and chemical ligands. Several software tools and frameworks are available today
for molecular modeling, e.g. MMTK121, Coot122 MolIDE123, Modeller124, bioinformat-
ics algorithms libraries, e.g. BALL125, workflow automation tools, e.g. Biskit126 or KN-
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IME (www.knime.org) and visualization e.g. VMD127, PyMol (www.pymol.org), DINO
(www.dino3d.org), or SwissPdbViewer42.

OpenStructure is a flexible software framework tailored for computational structural
biology, which combines a C++ based library of commonly used functionality with a
Python layer and powerful visualization tools. While PyMol and VMD also combine a
scripting environment with sophisticated visualization tools, they are primarily geared
toward visualization and less on providing a clean application programmer interface
(API) that is easy to use and allows for rapid development of new algorithms. Open-
Structure is also designed to easily accommodate interfaces to already existing software.
This allows for rapid visually enhanced prototyping of new functionality, making Open-
Structure an ideal environment for the development of next-generation structural biol-
ogy algorithms. For example, new versions of the QMean tools for model quality as-
sessment117,128 are based on OpenStructure, as well as the structural analysis tools in
ProteinModelPortal129. Further, work is on the way to implement the next generation of
the SWISS-MODEL pipeline using the OpenStructure framework130−131.

2 Implementation

In OpenStructure, molecular or chemical entities, such as macromolecules, sequences,
alignments or electron density maps, are represented as objects, offering a comprehen-
sive set of functions for data manipulation and information querying. Typically, users
interact with a high-level Python interface, while ‘power users’ with high computational
requirements access the API at the level of C++.

Functionality in OpenStructure is grouped into modules. Each of these modules con-
sists of a computational core as a shared library of C++ code and a set of Python modules
built on top of the exported API. Parts of the computational core and the graphical user
interface of the Image Processing Library and Toolkit IPLT132 have been incorporated
into OpenStructure to offer versatile handling of image data with support for various
algorithms in one, two and three dimensions. A graphics module for real-time render-
ing of molecules, density maps and molecular surfaces provides functionalities for data
visualization.

Processing and visualization of molecular entities often requires filtering by certain
selection criteria. These selections are implemented as so-called EntityViews, containing
subsets of atoms, residues, chains and bonds of the respective EntityHandle chosen us-
ing selection statements (queries). The EntityView class shares a common interface with
the EntityHandle class it points to, and hence they can be used interchangeably. This
handle/view concept pertains to the full structural hierarchy, i.e. residue views will only
contain the atoms that were part of the selection, etc. The query language supports so-
phisticated selection criteria (for example, distance-based selection, Boolean operators,
selections based on user-defined properties, and so on).

In order to infer connectivity and topology when reading molecular coordinate files,
we make use of the chemical components dictionary which is part of the official PDB
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distribution20. Thus, detailed information is available on any of the chemical compo-
nents, allowing the framework to ensure correct connectivity and topology during the
load process and issue appropriate warnings. The connectivity step is extensible and its
behavior can be adapted by overloading functions. Additionally, a heuristic method is
available as a fallback for loading unknown residues or to handle non-standard residue
and atom names.

3Application Example

Figure 2.1 Molecular surface representation of a SH2 domain (PDB:3IMJ) colored by con-
servation of the positions in a multiple sequence alignment. The color scale ranges from red
for conserved residues to blue for residues with high variability. The ligand peptide is shown
as yellow stick representation. The image was rendered in OpenStructure, the molecular sur-
face was calculated using MSMS133. See Supplementary Table S1 for details on calculation of
sequence conservation scores.

Most users will interact with OpenStructure using Python. The code fragment in Supple-
mentary Table S1 illustrates the expressiveness of the OpenStructure API in combining
data from different domains. In this example, we compare the sequence conservation of
residues in contact with a ligand with the rest of the protein, quantifying the visually de-
rived hypothesis that the binding-site residues of the SH2 domain are more conserved
than the rest. This is achieved by mapping of a conservation score derived from a multiple
sequence alignment of various SH2 domains (‘sh2.aln’) onto a representative structure
(PDB: 3IMJ)134 and identifying residues in direct contact with the ligand. Figure 1 shows
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the results displayed in the DNG (‘DINO/DeepView Next Generation’) graphical user
interface, using the conservation score to color a molecular surface representation.

The OpenStructure distribution contains several scripting examples to introduce new
users to the functionalities and usage style of the tool kit, such as scripts to animate
molecular dynamics trajectories, calculate electron density maps from atomistic struc-
tures or rank short peptide fragments according to their correlation with electron density.
Exhaustive documentation and tutorials are provided on the web site. Mailing lists for
OpenStructure users and developers provide a forum to ask questions, report problems
or suggest new developments.
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Research projects in structural biology increasingly rely on combinations of heterogeneous
sources of information, e.g. evolutionary information from multiple sequence alignments,
experimental evidence in the form of density maps, or proximity constraints from proteomics
experiments. Previously, we have introduced the OpenStructure software framework, which
allows the seamless integration of information of different origin. The software consists of C++
libraries which are fully accessible from the Python programming language. Additionally, the
framework provides a sophisticated graphics module to interactively display molecular structures
and density maps in three dimensions. In this work, we outline the latest developments in the
OpenStructure framework. The extensive capabilities of the framework will be illustrated by using
short code examples that show how information from molecular structure coordinates can be
combined with sequence data and/or density maps. The framework has been released under the
LGPL version 3 license and is available for download from www.openstructure.org.

1 Introduction

In computational structural biology, there is a growing demand for tools operating at
the interface of theoretical modeling, X-ray crystallography, electron microscopy, nu-
clear magnetic resonance, and other sources of information for the spatial arrangement
of macromolecular systems125,132,135. Synergy between these fields has led to methods
which e.g. combine electron density information with evolutionary information from se-
quence alignments and structural information from computational models79,136−139. The
need to combine heterogeneous data in incompatible formats is often found to be the
reason why new methods in computational structural biology rely on custom-made ad
hoc combinations of command-line tools built to perform specific tasks. Hence, to facili-
tate these inconvenient data conversions and to make the development of new methods
more efficient, we have developed OpenStructure as a powerful and flexible platform for
method development in computational structural biology135. This open-source frame-
work provides an expressive API and seamlessly integrates with external tools, e.g. for
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structural superposition and comparison 9,41,140−141, secondary structure assignment7 or
homology detection29,32,58. OpenStructure has been consistently extended and its API
matured to allow building complex software stacks on top such as homology modeling
software, structure comparison methods53 and model quality estimation packages142.

Since the previous paper on OpenStructure substantial improvements to graphics,
performance and the user interface were made, and, support for molecular dynamics
trajectories, integration of external software tools and data handling was significantly ex-
tended. Here, we first briefly describe the architecture of the OpenStructure framework
at the code level. Then, we present the main components of the 1.3 release and indi-
vidual modules to interact with molecular structures, density maps and sequence data.
Code examples will be used to demonstrate the smooth integration of the OpenStructure
components.

2Architecture

OpenStructure was conceived as a scientific programming environment for computa-
tional protein structure bioinformatics with reuse of components in mind. The func-
tionality of OpenStructure is divided into modules, dealing with a specific type of data:
mol and mol.alg are concerned with molecular structures and the manipulation thereof.
conop is mainly concerned with connectivity and topology of molecules. seq and seq.alg
handle sequence data (alignments, single sequences). img and img.alg implement classes
and algorithms for density maps and images. File input and output operations for all data
types are collected in the io module. gfx provides functionality to visualize protein struc-
tures, density maps and 3-dimensional primitives. gui implements the graphical user
interface.

The framework offers three tiers of access, where at the lowest level, the functionality
of the framework is implemented as a set of C++ classes and functions, meeting both the
requirement for computational efficiency and low memory consumption. The framework
makes heavy use of open source libraries, including FFTW for fast Fourier transforms143,
Eigen for linear algebra144, and Qt for the graphical user interface.

The middle layer is formed by Python modules, which are amenable to interactive
work and scripting. This hybrid compiled/interpreted environment combines the best of
both worlds: high performance for compute-intensive algorithms and flexibility when
prototyping or developing applications. In fact this approach to multi-language com-
puting has found favor with many in the scientific computing community125,145−146 and
Python has established itself as the de-facto standard scripting language for scientific
frameworks. In addition to general-purpose libraries, e.g. numpy147, SciPy148 and the
plotting framework matplotlib149, there are many bioinformatics and structural biology
toolkits that are either completely implemented in Python, or provide a well-maintained
Python wrapper to their functionality121,125,146,150−151. The combination of general-purpose
frameworks with specialized libraries allows developing new algorithms with very little
effort.
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At the highest level, we offer a graphical user interface with 3D rendering capabili-
ties and controls to manipulate structures or change rendering parameters. The 3 layer
architecture is one of the main strengths of OpenStructure and sets it apart from other
commonly used tools in computational structure bioinformatics. Rapid prototyping can
be done in Python, and if successful, the code can later on be translated to C++ for bet-
ter performance. Since most of the functions in Python have a C++ counterpart, the
Python/C++ adaption is straight-forward and can be completed in a very short time.

3Molecular Structures

The software module mol implements data structures to work with molecular datasets.
At its heart lie the EntityHandle and EntityView classes which represent molecular struc-
tures such as proteins, DNA, RNA and small molecules. Other classes deal with mole-
cular surfaces as generated by MSMS133 or other external tools. The EntityHandle class
represents a molecular structure. The interface of entities is tailored to biological macro-
molecules, but this does not prevent it to be used for any kind of molecules: for example,
an entity may also represent a ligand or a collection of water molecules - hence the rather
generic name. An entity is in general formed by one or more chains of residues. These
residues in a chain may be ordered, e.g. in a polypeptide, or unordered, e.g. a collection
of ligands. A residue consists of one or more atom. The atoms store atomic position,
chemical element type, anisotropic B-factor, occupancy, charge, atom bond list etc. The
hierarchy of chains, residues and atoms is arranged in a tree-like structure rooted at the
entity (�gure 3.1). Atoms of an entity may be connected by bonds, which group the
atoms of the entity into one or more connected components.

Figure 3.1 Schematic diagram of the components of entity handles and views. The molecular
structure is represented in a tree-like structures rooted at the entity (E). The levels of the tree
are formed by chain (C), residue (R), and atom (A). In green, an example entity view containing
only a selected subset of elements is shown. The hierarchy of the entity view is separate
from the handle, however, at every level, the view maps back to its handle giving access to its
properties

Working with Subsets of Molecular Structures

Processing and visualization of molecular entities often requires filtering by certain crite-
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ria. The result of these filtering operations are modeled as EntityViews (�gure 3.1), which
contain subsets of atoms, residues, chains and bonds of the respective EntityHandle. The
entity view references the original data, e.g. modifications to atom positions in the origi-
nal entity handle are also reflected in the entity view. This handle/view concept pertains
to the full structural hierarchy, i.e. residue views will only contain the atoms that were
part of the filtering, etc. The EntityView class shares a common interface with the Entity-
Handle class it points to, and hence they can be used interchangeably in Python. In C++,
where type requirements are strict, we employ the visitor pattern152 to walk through the
chain, residue, and atom hierarchy without having to reside to compile-time polymor-
phism through templates.

The use of entity views throughout the framework makes the implemented algorithms
more versatile. For example, the same code to superpose two structures based on Cα
atoms can be used to superpose the sidechains of a binding site. The only difference is
the view and thus the set of atoms that gets passed to the superposition function. These
sets of atoms do not need to be consecutive and thus can be used to superpose arbitrary
sets of atoms.

The Query Language – Making Selections

Entity views are conveniently created by using a dedicated mini-language. Filtering a
structure and returning subsets of atoms, residues, chains and bonds is achieved by pred-
icates which are combined with Boolean logic, often referred to as “selection”. Typical
examples include selecting all backbone atoms of arginines, binding site residues, lig-
ands or solvent molecules. Conceptually, the language is similar to selection capabilities
of other software packages, e.g. VMD127, Coot122 or PyMOL153.

The predicates may use any of the available built-in properties defined for the atoms,
residues, and chains. Examples include the atom name, residue number, chain name,
or atom element. A complete list of built-in properties is given in the OpenStructure
documentation. In addition, the predicates may refer to user-defined properties declared
using generic properties (see below). The within-operator of the query language allows
selecting atoms in proximity of another atom or another previously performed selection.

Since selection statements can be applied both to EntityHandles and EntityViews,
complex selections can be carried out by chaining selection statements. For rare cases
of highly complex selections, the user may assemble the view manually, e.g. by looping
over the atoms and including atoms meeting some conditions

Selection Example: Superposition

As an example of how entity views make OpenStructure functions more versatile, we
will now consider the binding sites of two heme-containing proteins. We will use the
Superpose function of the mol.alg module to calculate rotation and translation operators
that superpose the atoms of two structures, first based on the coordinates of the heme
ligands and second on the residues binding the heme.
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# Load two HEM-containing proteins from the PDB website
# into EntityHandles.
prot_one=io.LoadPDB(’1mbo’, remote=True)
prot_two=io.LoadPDB(’1mbn’, remote=True)

# Superpose the proteins based on the HEM ligands
mol.alg.Superpose(prot_one.Select(’rname=HEM’),

prot_two.Select(’rname=HEM’))

# Superpose based on HEM-binding residues using the within (<>)
# operator
mol.alg.Superpose(prot_one.Select(’rname!=HEM and 3.0 <> [rname=HEM]’,

mol.MATCH_RESIDUES),
prot_two.Select(’rname!=HEM and 3.0 <> [rname=HEM]’,

mol.MATCH_RESIDUES))

As can be seen, the superposition based on heme atoms or heme-binding residues use
the same Superpose function. The only difference is the selection statement to prepare
the subset of atoms used to superpose.

Mapping User-de�ned Properties on Molecular Structures

Many algorithms calculate properties for atoms, residues, chains, bonds or entities. Ex-
amples of such properties include sequence conservation of a residue or local struc-
tural similarity scores. OpenStructure includes a system to store these properties as key-
value pairs in the respective handle classes: the generic properties. Classes deriving from
GenericPropertyContainer inherit the ability to store properties of string, float, int, and
bool type, identified by a key. For each of these data types, methods to retrieve and store
values are available both in Python and C++. As with all other built-in properties, the
view counterpart will reflect the generic properties of the handle. Since generic proper-
ties are implemented at a low-level of the API, they are accessible by the query language,
and may e.g. be used for substructure selection or in coloring operations.

Connectivity and Topology

The conop module interprets the topology and connectivity of proteins, poly-nucleotides
and small molecules. For example, after importing a structure from a PDB entry, bonds
between atoms have to be inferred as well as missing information be completed. In addi-
tion, the conop module provides an infrastructure for consistency checks. OpenStructure
supports two conceptually related, yet different approaches for deriving the connectivity
information: A rule-based approach that connects atoms based on rules outlined in a
database and a heuristic approach which uses a distance-based heuristic.

The rule-based approach to connectivity derivation is based on a set of rules that de-
fine the bonding partners for each atom based on its name. The rules are extracted from
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the chemical component dictionary provided by the wwPDB20 and stored in a compound
library. Since this library has knowledge of all residues deposited in the PDB, deviations
from the rules are easily detected and may be reported back to the user. For automatic
processing pipelines that operate on large set of structures, strict settings when loading
a structure are advised to limit surprises.

For structures from other sources, including molecular dynamic simulations and vir-
tual screening studies with loosely defined naming conventions, the heuristic approach
might be more appropriate. The heuristic builder uses lookup tables for the connectiv-
ity of standard nucleotides and standard amino acids, but falls back to a distance-based
connection routine for unknown residues or additional atoms present in the structure.
In contrast to the rule-based approach outlined above, the heuristic builder is meant to
be used as a quick and dirty connectivity algorithm when working with structures inter-
actively.

Loading and Saving Molecular Structures

OpenStructure contains the io module for importing and exporting structures from and
to various file formats such as PDB, CRD, PQR. In the following, reading of molecular
structures and molecular dynamics trajectory files is described in more detail.

File input is concerned with data from external sources. As such, importers are exposed
to files of varying quality. For automated processing scripts, it is crucial to detect non-
conforming files during the import, as every non-conforming file is a potential source for
errors. For visualization purposes and interactive work on the other hand, one would like
files to load, even if they are not completely conforming to standards. To account for these
two different scenarios, OpenStructure introduced IO profiles in version 1.1. A profile
aggregates flags that fine-tune the behavior of both the io and conop modules during
import of molecular structures. The currently active IO profile controls the behavior of the
importer upon encountering an issue. By default, the import aborts upon encountering
a non-conforming file. This strict profile has been shown to work well for files from the
wwPDB archive. Many files that could not be loaded using the strict settings exposed
actual problems in the deposited files. These issues have been reported and resolved in
the meantime by the wwPDB.

Molecular dynamics simulations generate a series of coordinate snapshot of the sim-
ulated molecule. These snapshots are often stored in binary files. OpenStructure sup-
ports reading of CHARMM formatted DCD files in two different ways: First, the whole
trajectory may be loaded into memory. This is the recommended behavior for small, pre-
processed trajectories. However, since trajectories may well be larger than the available
RAM, loading the complete trajectory is not always an option. The second alternative
is loading only a set of frames into memory. The remaining frames are transparently
fetched from disk, when required. This allows to efficiently processing very large trajec-
tories without consuming huge amounts of memory.
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4Sequences and Alignments

Since sequence and structure of a protein are intrinsically linked, scientific questions
in computational structural biology often require the combination of structure and se-
quence data. In fact, for many applications, methods based on evolutionary information
considerably outperform physics-based approaches53,118. Thus, efficient and convenient
mapping between sequence information and structural features of a protein is crucial.

In OpenStructure, the functionality for working with sequences, and the integration
with structure data, is implemented in the seq module. The principal classes, Sequence-
Handle, AlignmentHandle and SequenceList represent the three most common types of
sequence data. Instances of SequenceHandle hold a single, possibly gapped, nucleotide
or protein sequence. These instances serve as a container for the raw one-letter-code se-
quence with additional methods geared towards common sequence manipulation tasks.
The SequenceList is suited for lists of sequences, e.g. sequences resulting from a data-
base search using BLAST58. An AlignmentHandle holds a list of sequences, which are
related by a multiple sequence alignment. The interface for alignments is focused on
column-wise manipulation, e.g. insertion or removal of blocks or single columns. Im-
porting alignments and sequences is supported for the FASTA, ClustalW or PIR formats,
while exporting of sequence related data is implemented for FASTA and PIR formats.

Ef�cient Mapping of Structure and Sequence-based Information

The combination of structure and sequence information is embedded into the core of the
sequence handle class. A structure may be linked to its matching amino acid sequence by
simply attaching it, defining a relation between information associated with residues in
the structure and information related to residues in the sequence. To determine the index
of the residue in the protein sequence at the nth position in the alignment, the number
of gaps prior to n needs to be subtracted. A naive mapping implementation counting the
number of gaps prior to position n would scale linearly with n, which is suboptimal for
long sequences. For efficiency, the sequence handle maintains a list of all gaps present
in the sequence. Instead of traversing the complete sequence, traversal of the gap list
yields the number of gaps before a certain position. Since the number of gaps is usually
much smaller than the sequence length, a more efficient run time is thus observed when
mapping between residue index and position in the alignment.

Algorithms for Sequences and Alignments

The seq.alg module contains several general-purpose sequence algorithms. To align two
sequences using a local or global scoring scheme, the Smith-Waterman154 and Needleman-
Wunsch155 dynamic programming algorithms have been implemented. Conservation of
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columns in an alignment may be calculated with a variation of the algorithm from Con-
Surf156, which considers the pairwise physico-chemical similarity of residues in each
alignment column (for an example, see Biasini et al.135). More sophisticated sequence
and alignment algorithms are available through one of the available interfaces to external
sequence search tools such as BLAST29,58, ClustalW157, kClust (A. Hauser, unpublished),
or HHsearch32.

Example: Ligand Binding Site Annotation

The following example illustrates how annotation on ligand-interacting residues for a
protein may be automatically inferred from a related protein structure.

Dengue fever is a neglected tropical disease, caused by a positive-sense RNA virus
which contains a type-1 cap structure at its 5’ end. The dengue virus methyltransferase is
responsible for cap formation and is essential for viral replication158. Thus, it is an attrac-
tive drug target. Four closely related dengue virus serotypes (DENV1-4) have been iso-
lated, where each serotype is sufficiently different, that no cross-protection occurs159. The
structure of DENV2 methyltransferase (PDB-ID:1r6a) binds S-adenysyl-L-homocysteine
(SAH) and ribavirin monophosphate (RVP) in two distinct binding sites. RVP is a weak
inhibitor of the enzyme’s activity (Benarroch et al., 2004) . In the structure of DENV3
methyltransferase (PDB-ID: 3p97) only the SAH binding site is occupied. We would now
like to identify which residues in the second structure potentially interact with RVP. Since
the two structures share sequence identity of 77% to each other, the two sequences can
be aligned with high confidence using a pairwise sequence alignment algorithm. Using
the mapping defined by the sequence alignment, we then transfer the ligand binding site
information from the first to the second structure.
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# load the two structures
structure_wi_lig = io.LoadPDB(’data/structure-with-ligand.pdb’)
structure_no_lig = io.LoadPDB(’data/structure-without-ligand.pdb’)

# set a generic property for all residues of the first structure in
# contact with RVP
for res in structure_wi_lig.Select(’4.0 <> [rname=RVP]’).residues:
res.SetBoolProp(’close_to_ligand’, True)

# get the sequence for both structures
ligand_seq = seq.SequenceFromChain(’ligand’, structure_wi_lig.chains[0])
no_lig_seq = seq.SequenceFromChain(’no lig’, structure_no_lig.chains[0])

# align the two sequences using a global alignment algorithm with the
# BLOSUM62 substitution matrix and default gap extension and opening
# penalties. Global align returns a list of global alignments, but we
# only use the first one...
aln = seq.alg.GlobalAlign(ligand_seq, no_lig_seq, seq.alg.BLOSUM62)[0]

# print the alignment, to check that the alignment is reasonable
print aln

# the alignment essentially defines a mapping of residues in the first
# and the second structure. We will use GetMatchingBackboneViews to
# obtain two entity views which contain the corresponding residues
aln_wi_lig, aln_no_lig = aln.GetMatchingBackboneViews()

# iterate over the residue pairs and print residue names of residues
# which are part of the "predicted" binding site
print ’predicted binding site’
for lig_res, no_lig_res in zip(aln_wi_lig.residues, aln_no_lig.residues):
if lig_res.HasProp(’close_to_ligand’):
print no_lig_res

This example illustrates how little effort it takes to map between information con-
tained in two distinct structures. The results are visualized in �gure 3.3B. Often, useful
scripts can be built with only a few lines of descriptive OpenStructure Python code.

5Density Maps and Images

The majority of available experimental protein structures have been determined using
X-ray crystallography. This technique produces density maps into which an atomistic
or semi-atomistic model is built. For high resolution structures, model building into
density maps is completely automated146,160. However, for low resolution, automated
approaches usually fail and manual intervention is required. As shown repeatedly, the
integration of theoretical modeling techniques is often able to improve the built mod-
els136,138. The theoretical modeling field on the other hand can profit from the availability
of density maps, even at low resolution to refine homology models.
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To provide efficient and convenient access to density data, OpenStructure includes
the img and img.alg modules. The core functionality of these two modules has initially
been developed as part of the Image Processing Library and Toolkit (IPLT)132,161−162. The
IPLT package implements a complete processing pipeline to obtain density maps from
recorded electron micrographs. As part of a joint effort to lower the maintenance burden
for the two packages, the core data structures and algorithms of IPLT have been moved
to OpenStructure. The two modules offer extensive processing capabilities for 1-, 2- and
3-dimensional image data. In this module, electron density maps are considered as 3D
images and hence, the terms image and density map are used interchangeably.

The principal class of the image processing capabilities is the ImageHandle. It pro-
vides an abstraction on top of the raw pixel buffers and keeps track of pixel sampling,
dimension and data domain. An ImageHandle can store an image either in real or recip-
rocal space. The image is aware of the currently active domain. This means, for example
that one can apply a Fourier transformation (FT) to an ImageHandle containing a spatial
image and the image will correctly identify the new active domain as frequency. The Im-
ageHandle also supports applying a FT to an image with conjugate symmetry ,resulting
in a real spatial image, while applying a FT to a non-centrosymmetric one results in a
complex spatial image.

Image and density data may be imported and exported from and to PNG, TIFF, JPK,
CCP4, MRC, DM3 and DX files. Standard processing capabilities for images are provided
in the img.alg module. This module contains filters, e.g. low- and high-pass filters, mask-
ing algorithms and algorithms to apply a Gaussian blur to an image. Additionally, the
module contains algorithms to calculate density maps from molecular structures, either
in real-space or Fourier space136, which we will use in the following example.

Correlating Backbone Fragments with local Electron Density

We would like to illustrate the combined use of density maps and structure data in
OpenStructure in the following paragraph. As an example, consider a protein structure
where a segment of six residues has not been resolved. However, close inspection of the
density map reveals that there is substantial experimental evidence to connect the two
parts of the protein chain. We would now like to rebuild the missing part of the backbone.
Possible conformations are sampled from a database of structurally non-redundant frag-
ments compiled from the PDB. For scoring, the density for the fragment is calculated by
placing a Gaussian sphere on the position of every atom. The resulting density map is
then compared to the experimental density with real-spatial cross-correlation. Figure 3.2
shows a few selected backbone conformations colored by correlation to the density map.
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Figure 3.2 A selection of possible backbone conformations to bridge a fragmented chain.
The fragments are colored by correlation with the density from yellow to green. The tube
thickness to render the backbone fragment is scaled according to the density correlation.

# convert the candidate loop into a density and calculate the real-
spatial
# cross correlation with the actual density. The correlation
# coefficient is stored as the generic property "correl".
# which could be later used to colour the loops

for index, candidate in enumerate(candidates):
EntityToDensityRosetta(candidate.CreateFullView(), cmap,

HIGH_RESOLUTION, 5.0, True)

correl=img_alg.RealSpatialCrossCorrelation(dmap, cmap, dmap.GetExtent())
candidate.SetFloatProp(’correl’, correl)

Visualization

Solutions to challenging scientific and algorithmic problems often become obvious after
an appropriate form to display the information has been found. Readily available visual-
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ization tools are an enabling factor, both for science and algorithm development. Open-
Structure features sophisticated visualization capabilities as part of the gfx module. The
rendering engine is capable of producing publication-ready graphics. It has been used
for the visualization of very long molecular dynamic simulations163−164.

Each principal class of the mol and img modules has a renderer (graphical object)
in the graphics module, responsible for turning the abstract data into a 3-dimensional
rendering, supporting displaying of molecular structures, surfaces and density data. The
separation of graphical objects from their corresponding counterparts keeps the orthog-
onal concepts of display and general manipulation/querying of structural data separate
and saves memory when no visualization is required. Graphical objects are organized by
the scene, a scene-graph like object. The scene manages the currently active graphical
objects and is responsible for rendering them. In addition, the scene manages rendering
parameters, such as light, fog, clipping planes, and camera position.

The rendering engine has been implemented with OpenGL. Typically, each of the
graphical objects calculates the geometry, i.e. the vertices and triangle indices, once, and
stores it in vertex buffers. Since the geometry of most objects does not change with every
frame, storing the geometry allows for more efficient rendering of large structures. If
possible, the vertex buffers are transferred to the video memory of the graphics cards to
save round-trip time of sending the geometry over the system bus. For advanced effects,
the gfx module uses the OpenGL shading language (GLSL). The fixed-pipeline shaders
of OpenGL are replaced by custom shaders, which implement special lighting models,
e.g. cartoon or hemi-light shading, shadows or ambient occlusion effects.

Figure 3.3 contains two images generated with the graphics module of OpenStruc-
ture. The scripts to generate these images are contained in supplementary materials.
Figure 3.3A is inspired by a recent analysis of modeling performance within the Contin-
uous Automated Model EvaluatiOn assessment framework (http://www.cameo3d.org;
CAMEO). The target structure is shown in tube representation (white color, larger tube
radius) together with 3 theoretical models (thin tubes). The models are colored in a
traffic-light gradient from red to yellow to green using a superposition-free all-atom
structural similarity measure called the local distance difference test (lDDT)53. The com-
bination of outline render mode with hemi-light shading gives this image a very clear
style. Figure 3.3B shows the structures of the methyltransferase of two different dengue
virus serotypes as described in the example “Ligand Binding Site Annotation”. On top,
the enzyme is in complex with the inhibitor ribavarin monophosphate whereas at the
bottom, no ligand is present in this binding pocket. The enzyme is represented by its
molecular surface as calculated by MSMS133 and the inhibitor is shown in sticks repre-
sentation. The surface of observed (top) or predicted residues (bottom) interacting with
the ligand are highlighted in blue or red, respectively.

Visual Data Exploration Example: Proteomics Cross-Links

The following example illustrates how visualization of structure-based predictions can
help to rationalize the planning of proteomics crosslinking experiments. Large macro-
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Figure 3.3 Two distinct visualization styles illustrating the graphical capabilities (see text for
more detailed description); Panel A: hemi-light shading with outline mode; Panel B: simplified
enzyme representation by its molecular surface together with an inhibitor.

molecular structures are difficult to crystallize and often only diffract to limited resolu-
tion where it is unfeasible to determine the structure at atomic detail. It is thus common
practice to solve the structure of individual components separately and use other exper-
imental techniques to identity the relative orientations of the components. Proteomics
cross-links are one such experimental technique165 where isotope-labeled cross-linkers
such as Disuccinimidyl Glutarate (DSG) or Disuccinimidyl suberate (DSS) are added to
the sample. The cross-linking reaction chemically connects primary amines, i.e. terminal
amines of lysine side chains, which are in close proximity. After protein digestion with
Trypsin cross-linked fragments are then identified using mass spectrometry.

Urease of Y. entercolitica is a large oligomeric complex, vital to the pathogenicity of
the bacteria. The enzyme catalyzes the cleavage of urease to ammonia at the expense of
protons to reduce the acidicity during its passage through the stomach. To investigate
which cross-links are theoretically possible for this protein, we have built a homology
model based on the X-ray structure of the urease from H. pylorii (PDB ID: 1e9y)166, shar-
ing 50% sequence identity. Possible cross-linking sites have then been identified using
Xwalk167. Visualizing the cross-links by connecting the lysine atoms with a straight line
does not lead to conclusive results as the straight lines pass through the protein. To over-
come this visualization problem, we have used OpenStructure to simulate the cross-links
as strings of beads. By introducing a force that drives the beads away from the center of
the protein, their positions are optimized. The cross-links appear as red loops sticking
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Figure 3.4 Visualization of predicted cross-link locations in a homology model of the urease
from Y. entercolitica. The subunits of the urease are colored in blue (alpha subunits), green
(beta subunits) and grey (gamma subunits).

out from the surface of the protein. The resulting image (�gure 3.4) of proteomics cross-
links is visually appealing and easily conveys the message that all connections represent
intra-, not inter-chain cross-links.

Efficient visualization of the expected outcome allows planning experiments effec-
tively – in this case indicating that experimental proteomics crosslink data will not con-
tain sufficient information to determine the relative orientation and stoichiometry of the
components of the urease complex. The OpenStructure script to generate the example is
given in supplementary material.

6Graphical User Interface
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Figure 3.5 Screenshot of the graphical user interface DNG. Controls for data display are or-
ganized in a main application window. The majority of the main window by default is taken up
by the 3D scene window, which shows a structure rendered in ribbon mode. The user inter-
acts with the scene using the mouse and keyboard shortcuts. On the left side, the currently
loaded graphical objects are shown in the scene, a tree view that reflects the structure in the
scene graph. The render parameters of graphical objects may be changed with the inspector
widget displayed on top of the 3D window. In the bottom-right corner, the sequences of the
loaded proteins are shown.

For interactive work, we have developed the graphical user interface DINO/DeepView42

Next Generation (DNG). The graphical user interface builds on the visualization and data
processing capabilities of the OpenStructure framework and provides controls to interact
with macromolecular structures, sequence data and density maps (�gure 3.5). A central
part of DNG is the Python shell, which allows efficient prototyping and interaction with
the loaded data at runtime. Objects may be queried, modified and displayed by using the
OpenStructure API. For convenience, the shell supports tab-completion and multi-block
editing: complete functions and loops may be pasted into the Python shell.
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7Conclusions

OpenStructure is a software framework tailored towards computational structural biol-
ogy. Its modular and layered architecture make it an ideal platform for hypothesis driven
research and method development, particularly, when density maps, molecular struc-
tures and sequence data are to be combined. Together with powerful visualization ca-
pabilities, the expressive API allows to implement new algorithms in a very short time.
Additionally, through a variety of bindings, third-party applications can be included into
the scripts, without worrying about input and output file formats.

OpenStructure has been successfully used as analysis and development platform in
several recently published research projects, e.g. QMEAN142, the local difference dis-
tance test53, the identification of two-histidines one-carboxylate binding motifs in pro-
teins amenable to facial coordination to metals168−169, the evaluation of template-based
modeling53, the assessment of ligand binding site prediction servers169 and visualization
of very long molecular dynamic simulations163−164.
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Local Distance Difference Test - A Robust,
Superposition-Free Protein Structure
Similarity Measure

This chapter contains a paper manuscript currently in press for Bioinformatics in a revised
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Barbato. The contributions of VM, AB, TS, and MB were as follows: MB had the idea for the
lDDT score, and provided the first implementation used during CASP9. VM implemented the
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MB implemented the multi-reference code, AB and VM implemented the web-server, MB, VM
and TS wrote the manuscript
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1 Introduction

The knowledge of a protein’s three-dimensional structure enables a wide spectrum of
techniques in molecular biology, ranging from rational design of mutagenesis experi-
ments to elucidation of a protein’s function and to drug design. While the rapid devel-
opment of DNA sequencing techniques has been providing researchers with a wealth
of genomic data, structural biology has not been able to keep the same pace in comple-
menting sequence information with structural data, and the gap between the number of
known protein sequences and the number of known protein structures has been growing
continuously42,50,170−171. In order to fill this gap, various computational approaches have
been developed to predict a protein’s structure starting from its amino-acid sequence.

Despite remarkable progress in structure prediction methods, computational models
often fall short in accuracy compared to experimental structures. The bi-annual CASP
experiment (Critical Assessment of techniques for protein Structure Prediction) provides
an independent blind retrospective assessment of the performance of different modeling
methods based on the same set of target proteins50,172.

One of the main challenges for the CASP assessors is to define appropriate numerical
measures to quantify the accuracy with which a prediction approximates the experimen-
tally determined structure. In the course of the CASP experiment, model comparison
techniques have evolved to reflect the current state of the art of prediction techniques:
In the first installments of CASP, root mean square deviation (RMSD) between a pre-
diction and the superposed reference structures was used in various forms as the main
evaluation criterion8,45,173−174. However, RMSD has several characteristics which limit
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its usefulness for structure prediction assessment: the score is dominated by outliers in
poorly predicted regions while at the same time it is insensitive to missing parts of the
model, and it strongly depends on the superposition of the model with the reference
structure.

Figure 4.1 Comparison of predicted protein structure model with its reference structure for
CASP target T0542. The target structure (shown in grey) consists of two domains. In panel A,
a predicted model (TS236, in color) is shown in full length, with the first domain superposed
to the target. For graphical illustration, panel B shows the two domains in the prediction sepa-
rated according to CASP assessment units and superposed individually to the target structure.
In both panels, the model is colored according to full-length lDDT scores following a traffic-
light-like Red-Yellow-Green gradient, with a red color corresponding to low values of the local
lDDT, a green color corresponding to high values, and a yellow color to average values. As
superposition-free method, lDDT is insensitive to relative domain orientation and correctly
identifies segments in the full length model deviating from the reference structure.

In order to overcome some of the limitations of RMSD in the context of CASP, the Global
Distance Test (GDT) was introduced in CASP441,47. In contrast to RMSD, the GDT is an
agreement-based measure, quantifying the number of corresponding atoms in the model
that can be superposed within a set of predefined tolerance thresholds to the reference
structure. For each threshold, different superpositions are evaluated and the one giving
the highest number is selected. The final GDT score is then calculated as the average
fraction of atoms that can be superposed over a set of predefined thresholds (0.5, 1, 2
and 4 Å for GDT_HA and 1, 2, 4, 8 Å for GDT_TS, respectively). One of the advantages
of GDT is that outliers do not considerably influence the score, while missing segments
in the predictions are taken into account. Besides of GDT, several other scores for model
comparison have been developed to overcome the limitations of RMSD175−177.

One of the main limitations of measures based on global superposition becomes evi-
dent when applied to flexible proteins composed of several domains. The relative orien-
tation of the domains can naturally change. Typically, the global rigid-body superposition
is dominated by the largest domain, and as a consequence the smaller domains are not



51 | lDDT

correctly matched. Artificially high scores are the result. In CASP, the effects of domain
movement are reduced by splitting the target into so-called “assessment units” (AU) that
are evaluated separately. The definition of assessment units is carried out by visual in-
spection, and is therefore time consuming. Furthermore, the criteria used to define the
AU are often subjective178−179. Grishin and coworkers have proposed an approach to
numerically support this decision by analyzing the variability among the predictions for
a specific target179.

Local superposition-free measures based on rotation-invariant properties of a struc-
ture are an attractive alternative to overcome several of the shortcomings outlined be-
fore. For example, dRMSD - the distance-based equivalent of RMSD - is widely used
in chemoinformatics to assess differences in ligand poses in binding sites180. In CASP9,
the lDDT score was introduced, assessing how well local atomic interactions in the ref-
erence protein structure are reproduced in the prediction53. More recently, other non-
superposition-based scores have been proposed, for example CAD score, which is based
on residue-residue contact areas as opposed to interatomic distances141.

Initially, most of the scores used in structure prediction assessment aimed at the eval-
uation of the protein backbone or fold, thereby focusing on Cα atom positions. However,
with increasing accuracy of prediction methods for template based models, the focus of
the assessment has shifted to the evaluation of the atomic details of a model. In CASP7,
the first scores based on local atomic interactions were introduced in the form of HBscore,
which quantifies the fraction of hydrogen bond interactions in the target protein correctly
reproduced in the model51,181. In CASP8, several scores for assessing the local modeling
quality were introduced (main chain reality score, hydrogen bond correctness, rotamer
correctness, side chain positioning)52, as well as an evaluation of the stereo-chemical
realism and plausibility of models using the MolProbity score182. The lDDT score intro-
duced in CASP9 also considers all atoms of a prediction - including all side chain atoms,
thereby capturing the accuracy of, for example, the local geometry in a binding site, or
the correct packing of a protein’s core.

In this manuscript, we expand the initial concept of local Distance Difference Test
(lDDT). We discuss its properties with respect to its low sensitivity to domain movements,
and the significance that can be assigned to the absolute score values. Furthermore, we
introduce the concept of using multiple reference structures simultaneously, and incor-
porate stereo-chemical quality checks in its calculation. We finally illustrate how lDDT
can be used to highlight regions of low model quality, even in models of multi-domain
proteins where domain movements are present.

2Methods

The Local Distance Difference Test

The local Distance Test (lDDT) score measures how well local interactions in a reference
structure are reproduced in a protein model. It is computed over all pairs of atoms in the
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reference structure at a distance closer than a predefined threshold R0 (called inclusion
radius), and not belonging to the same residue. These atom pairs define a set of local
distances L. A distance is considered preserved in the model M if its length, within a
certain tolerance threshold, is the same as the one of the corresponding distance in L. If
one or both the atoms defining a distance in the set are not present in M , the distance
is considered non-preserved. The fraction of preserved distances as a function of the
threshold γ can be expressed as:

C(γ) =

∑
d∈L c(d, γ)
|L|

Where d is a distance belonging to L, c(d, g) has a value of 1 when the distance d is
preserved and 0 when it is not. |L| is the number of elements in L. The final lDDT score
is the average of four C values computed using the following thresholds: 0.5 Å, 1 Å, 2 Å,
and 4 Å, the same ones used to compute the GDT_HA score41,51:

lDDT =
1
4

[
C(0.5) + C(1) + C(2) + C(4)

]
For partially symmetric residues, where the naming of chemically equivalent atoms can
be ambiguous (Glutamic Acid, Aspartic Acid, Valine, Tyrosine, Leucine and Arginine),
two local Distance Difference Tests, one for each of the two possible naming schemes, are
computed using all non-ambiguous atoms in M as a reference. The naming convention
giving the higher score in each case is used for the calculation of the final structure-wide
lDDT score.

The lDDT score can be computed using all atoms in the prediction (the default choice),
but also using only distances between carbon α atoms, or between backbone atoms. In-
teractions between adjacent residues can be excluded by specifying a minimum sequence
separation parameter. Unless explicitly specified, the calculation of the lDDT scores for all
experiments described in this manuscript has been performed using default parameters,
i.e. R0 = 15Å using all atoms at zero sequence separation).

Multi-reference Local Distance Difference Test

The local Distance Difference Test can be computed simultaneously against multiple ref-
erence structures of the same protein at the same time. The set of reference distances L
includes all pairs of corresponding atoms which, in all reference structures lie at a dis-
tance closer than the reference threshold R0. For each atom pair, the minimum and the
maximum distances observed across all the reference structures are compared with the
distance between the corresponding atoms in the model M being evaluated. The dis-
tance is considered preserved if its length in M falls within the interval defined by the
minimum and the maximum reference distances, or if it lies outside of the interval by
less than a predefined length threshold . If any of the atoms defining the distance is not
present in M , the distance is considered not preserved. The fraction of preserved dis-
tances is computed like in the single reference case.
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Structure Quality Checks

In order to account for stereo-chemical quality and physical plausibility of the model be-
ing evaluated, the calculation of the local Distance Difference test can take violations of
structure quality parameters into account. Based on high resolution experimental struc-
tures, Engh and Huber have compiled a set of reference average bond lengths and planar
angle widths for all standard amino-acids, together with typical standard deviations of
their measurements84,183. Here, stereo-chemical violations in the model are defined as
bond lengths and angles with values which diverge from the respective average refer-
ence value by more than a predefined number of standard deviations (12σ by default).
Interatomic distances between pairs of non-bonded atoms in the model are considered
clashing if the distance between them is smaller than the sum of their corresponding
atomic van der Waals radii184, within a predefined tolerance threshold (by default 1.5 Å).
Tolerance thresholds can be defined for each pair of atomic elements independently.

In case where the side-chain atoms of a residue show stereo-chemical violations or
steric clashes, all distances that include any side-chain atom of this residue are considered
as not preserved for the lDDT calculation. In case the back-bone atoms are involved
stereo-chemical violations or steric clashes, all distances that include any atom of the
residue are treated as not preserved.

Determination of the Optimal Inclusion Radius

To determine the optimum value of the inclusion radius parameter R0 for lDDT, an
analysis of all predictions of multi-domain targets evaluated during the CASP9 exper-
iment53,179 was carried out (see Table-S1 in supplementary materials for a complete list).
GDC-all scores for all predictions were computed based on the Assessment Units (AU)
definitions by the CASP9 assessors179. A weighted whole target GDC-all score was com-
puted for each target as the average GDC-all scores of its AUs weighted by the AU size.
GDC-all scores are an all-atom version of GDT with thresholds from 0.5 to 10 in steps of
0.5 Å. GDC-all scores were computed using LGA version 5/200941, using the following
parameters: -3 -ie -d:4 -sda -swap -o1.

lDDT scores were calculated for the whole targets by including all residues which are
covered by any AU. The inclusion radii parameter was varied in the range from 2 Å to 40
Å, and the correlation R2 score between the distribution of weighted averaged GDC-all
scores and the distribution of lDDT scores was computed, and plotted against the value
of the inclusion radius (Figure 4.2 and Figure 4.3).

Validation of Baseline Scores for Different Folds

To analyze the influence of the protein fold of the assessed structure on the lDDT score,
pseudo-random models were created for different Architectures in the CATH Protein
Structure Classification system185 using the following procedure: Representative domains
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longer than 50 residues were selected as evenly as possible amongst the lower level
(Topologies) of the CATH classification. For each domain, side chain coordinates were
removed and then rebuilt using the SCWRL software package (with default parame-
ters)78. Pseudo-random models representing threading errors were then generated by
shifting all residues by one alignment position in a backbone only model, and rebuild-
ing the side-chains with SCWRL4, and computing the corresponding lDDT score. This
method is loosely based on the approached described in186. The procedure was repeated
iteratively until a threading error of 50 residue positions was reached. Here, we present
the results for CATH Architecture entries 1.25 (Alpha Horseshoe) and 2.40 (Beta-barrel),
each represented by 60 example structures (Figure 4.3).

For estimating lDDT scores of random protein pairs, 200 protein models with wrong
fold were generated by selecting pairs of structures with different CATH topologies, gen-
erating models by rebuilding side chains on the backbone of the other protein, and com-
puting lDDT scores for these decoy models. The median of the resulting distribution was
0.20 with a 0.04 mean absolute deviation.

Figure 4.2 Determination of the optimal inclusion radius parameter R0. Pearson correlation
(R2) between whole target lDDT scores vs. domain-based weight-averaged GDC-all scores for
different values of the inclusion radius parameter R0 were computed over all CASP9 predic-
tions for multi-domain targets.
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Implementation and Availability

lDDT has been implemented using the OpenStructure framework135. Source code, stand-
alone binaries for Linux and Mac OSX, as well as an interactive web server are available
at http://swissmodel.expasy.org/lddt/.

3Results and Discussion

We have developed the local Distance Difference Test (lDDT) as a new superposition
free measure for the evaluation of protein structure models with respect to a reference
structure. In the following, we will discuss the choice of the optimal inclusion radius
parameter R0 to achieve low sensitivity to domain movements, and analyze the depen-
dence of lDDT on the specific fold architecture. We will discuss the application of lDDT
for assessing local correctness in models, including stereo chemical plausibility. Finally,
we will present an approach for assessing a model simultaneously against several ref-
erence structures, e.g. a structural ensemble generated by NMR. Optimal choice of the
inclusion radius parameter R0 makes lDDT largely insensitive to domain movements

Determination of the optimal inclusion radius.

The nature of the lDDT score is ultimately determined by the choice of the inclusion ra-
dius parameterR0. For low values of the inclusion radius, only short-range distances are
assessed, and only the accuracy of local interactions has a major impact on the final value
of the lDDT score. On the other hand, when the value of the inclusion radius parameter
is high, the evaluation of long-range atomic interactions gains a bigger contribution in
the final score, and the final lDDT score turns into a representation of the global model
architecture quality.

For assessing the accuracy of protein models, the inclusion radius should be high
enough to give a realistic assessment of the overall quality of the model, but at the same
time, the lDDT score should not lose its ability to evaluate the modeling quality of local
environments. Especially, scores should not be influenced by changes of domain orien-
tation between the model and the target structures. The optimal value of the inclusion
radius parameter R0 has been determined on a dataset comprising all CASP9 predic-
tions for multi-domain targets, and the corresponding assignment of assessment units
(AU) as defined by the CASP9 assessors. Both GDC-all and lDDT scores were computed
for all predictions. The lDDT scores were computed against the whole target structures
whereas the weighted GDC-all scores were calculated as weighted averages of the AU-
based scores (see Methods for details). Hence, the weighted GDC-all scores can be con-
sidered to be largely devoid of the influence of domain movements. We computed lDDT
scores for a range of R0 values from 1 to 40 Å, and for each threshold we calculated the
correlation with the weight-averaged GDC-all scores for the same predictions. We used
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GDC-all (and not the more common Cα based GDT) score in order to compare two
all-atoms measures on the same set of data. The results are shown in Figure 4.1

For small values of the R0 parameter, the lDDT score essentially reduces to a contact
map overlap measure187 and the correlation with global scores such as GDC-all is rather
low. As the inclusion radius increases, longer-range interactions are being evaluated and
the correlation shows a steep increase as the lDDT score starts to reflect the global qual-
ity of the model. For large values of R0, where inter-domain relationships start playing a
more significant role and domain movements start to influence the lDDT score, the cor-
relation begins to decrease slowly. However, the slow decrease in correlation for values of
the inclusion radius higher than 24 Å (Figure 4.2) shows the stability of the lDDT score
with respect to the influence of domain movements. Even including all inter-atomic dis-
tances in the calculation (R0 = ∞), which maximizes the effect of domain movement,
does not significantly lower the correlation with domain-based GDC scores (R2 = 0.82).
Based on this analysis, we selected a default value of 15 Å for the inclusion radius R0.

Sensitivity analysis vs. relative domain movements.

Proteins consisting of multiple domains can exhibit flexibility between their domains,
which can often be experimentally observed in the form of structures with different rel-
ative orientations of otherwise rigid domains. In many cases, these relative movements
play a functional role. From a modeling assessment perspective, however, the anaylsis of
the relative orientation of the domains must therefore be separated from the assessment
of the modeling accuracy of the individual domains.

The insensitivity versus relative domain movement makes the lDDT score an ideal
candidate for the unsupervised evaluation of predictions of multi-domain structures, in
contrast to scores based on global superposition. To illustrate this behavior, Figure 4.3
shows lDDT and GDC-all scores computed on full length structures as a function of the
AU-based weight-averaged GDC-all scores (x-axis).

As expected, the correlation between the two types of GDC-all scores is rather poor
(R2 = 0.58), while the correlation between the AU-based GDC-all scores and the lDDT
scores is very good (R2 = 0.89). The hybrid nature of the lDDT score allows it to be global
enough to evaluate the modeling quality of the protein domains, but local enough to be
only marginally affected by their relative orientations in the compared structures. When
using the lDDT score to evaluate predictions, it is not necessary to split the target struc-
ture in separate domains, whose identification can be a complex and time consuming
procedure.

Validation of lDDT Score Baselines for Different Protein Folds

Since lDDT scores express the percentage of inter-atomic distances present in the tar-
get structure that are also preserved in the model, a value of “0” corresponds to zero
conserved distances, and “1” to a perfect model. However, these extreme values are in
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Figure 4.3 Correlation between whole structure GDC and lDDT scores and domain-based
weight-averaged GDC scores. For all CASP9 predictions of multi-domain targets, GDC-all
scores (red dots), and lDDT scores (blue dots) were computed against the whole unsplit target
structures. For the lDDT scores, the default value of 15 Å for the inclusion radius was used.

practice rarely observed, even in extremely high and low quality models. At the high-
accuracy end, fluctuations in surface side chain conformations will result in values lower
than 1. For very low accuracy models, still some local inter-atomic distances will be pre-
served if the model has at least a stereo-chemically plausible structure and features some
secondary structure elements. In the context of protein model assessment, two types of
baseline values are of interest: the expected score when comparing two random struc-
tures, and scores for models with correct folds, including alignment errors.

In principle, the first value could be estimated using Flory–Huggins polymer solu-
tion theory188−189. However, since protein structures are rich in rigid structural elements
like α-helices and β-sheets, where the relative local positions are restricted, they show
in general a higher number of preserved local distances than random polymers. Based
on these considerations, we decided to empirically derive lDDT baseline scores by com-
paring a reference structure with a set of well-defined decoy models. The average lDDT
score when comparing random structures, i.e. protein models with different architectures
(see materials and methods), is 0.20 (+/- 0.04). For estimating the effect of alignment
shifts in models with otherwise correct fold and stereochemistry, we created pseudo-
models starting from the original protein structure and introducing threading errors of
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increasing magnitude for different representative structure architectures from CATH185.
We then compared the pseudo-models to the original structure, computing their lDDT
scores against it.

A B

Figure 4.4 Baseline lDDT scores for models with simulated threading errors. lDDT scores
of pseudo-models with threading errors for two examples of different CATH Architectures are
shown: Alpha Horseshoe (left panel) and Beta Barrel (right panel). The lDDT score is plotted
as a function of the introduced threading error (top panels). The histograms (bottom panels)
show the distribution of these “baseline” scores for threading error offset > 15 residues for
the two architectures. The structure inlays show an example structure of the respective CATH
Architecture. Peaks at large off-sets indicate repetitive structural elements with locally correct
arrangement.

Here, we show the results for CATH architecture entries 1.25 (Alpha Horseshoe) as ex-
ample for proteins rich inα-helices, and 2.40 (Beta-barrel) as representative for a β-sheet
protein (Figure 4.4). The plots at the top of each panel show the value of the lDDT scores
(on the y-axis) for 60 pseudo-models as a function of the magnitude of the threading er-
ror (residue offset) on the x-axis. For large threading errors, the lDDT scores converge to
a “baseline” range of scores, which appears to be largely independent of the threading
error magnitude. We considered scores in this range to be typical lDDT scores for a low
quality model with the same architecture as the target structure. For models in the Al-
pha Horseshoe architecture, the average baseline lDDT score is around 0.28, while for
the Beta barrel class the value is much lower around 0.22, showing a clear influence of
the architecture of the protein. This indicates that the lower boundary of the lDDT score
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can vary as a function of the architecture of the target protein, and direct comparison
between absolute raw lDDT scores is only possible when comparing models of the same
architecture. This is a common feature of most structure comparison measures.

One interesting feature in Figure 4.3 are several peaks at larger threading errors in
the Alpha Horseshoe architecture example. These peaks correspond to internal repeats in
the structure, which give rise to locally correct models when the threading shift coincides
with the size of the repeat.

Local Model Accuracy Assessment

Modeling errors are typically not homogenously distributed over the full lengths of a
model, but are localized, e.g. segments in template based models which had to be re-
modeled de novo. Residue-based lDDT scores quantify the model quality on the level
of a residue’s environment, and can reveal regions in the model which have been well-
predicted. The low sensitivity of lDDT to relative domain movements also applies to per-
residue scores. As shown in Figure 4.1, local lDDT scores are not dominated by different
domain orientations between the target and the model structures, but correctly reflect
the accuracy of the local atomic environment surrounding the residue under investiga-
tion in the model. This makes the local lDDT scores ideal to detect local structural diver-
gences in multi-domain structures. Figure 4.1 shows a superposition of the structure of
target T0542 (in transparence) with prediction by group TS236 (colored according to the
full-length lDDT score). The models represent each of the two individual domains with
high accuracy, but their relative domain orientation does not correspond to the target
structure. Superposition-based scores would assign a high score to one of the domains
but not to the other, or require scoring based on isolated domain. As illustrated on the
right panel (Figure 4.1), residues with low lDDT score correspond to regions of large
local structural divergence between the two domain structures, irrespective of the do-
main movement between them. As expected, low local scores can also be detected at the
interface between the two domains where the interactions cannot be modeled correctly
without knowing their relative orientation in the target.

Stereo-Chemical Realism Assessment

While validation of the stereo-chemical plausibility of protein models is a routine pro-
cedure for experimental structure determination, e.g. in X-Ray crystallography86, this is
not common practice in theoretical modeling. Depending on the applied method, mod-
els generated in silico may reveal rather unrealistic stereo-chemical properties. Typically,
numerical scores applied in retrospective model assessment compute a measure for the
average atomic dislocation between the reference structure and the model, without any
concern for the stereo-chemical quality of the latter. Consequently, two models with sim-
ilar scores may nevertheless differ significantly in their stereo-chemical plausibility, and
some models might include atomic arrangements which are physically impossible.
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To address this limitation, lDDT incorporates a stereo-chemical plausibility check,
which assesses two aspects of model quality: the lengths of chemical bonds and the
widths of angles in the model structure. Bond and angle measurements are compared to
a set of standard parameters derived from high-resolution crystal structures183. A stereo-
chemical violation is defined as a parameter deviating from the expected values by more
than a specified number of standard deviations (default: 12σ). Inter-atomic distances be-
tween non-bonded atoms in the model are compared with the sum of their Van der Waals
radii184, and a violation (“clash”) is assigned if two atoms are closer than the sum of the
Van der Waals radii, allowing a certain tolerance (default: 1.5 Å). When calculating the
lDDT score, all distances involving side chain atoms of a residue involved in any type of
stereo-chemical violations in the model are considered as non-preserved. In cases where
backbone atoms are involved in stereo-chemical violations, all distances involving this
residue are considered non-preserved. This approach leads to the lowering of the final
lDDT score of a model according to the extent of the structure’s stereo-chemical prob-
lems (Figure 4.5).

A B

Figure 4.5 Assessing stereo-chemical plausibility. This example illustrates the stereo-
chemical quality checks on lDDT score for a model (TS276, left side as ribbon representation)
for target T0559-D1 with unrealistic stereochemistry (close up, right panel). Residues with too
short (1) or too long (2) chemical bonds, as well as those with close atomic interactions (3) or
impossible bond angles (4), result in lower scores during the lDDT computation.

As an example, Figure 4.5 shows the CASP9 prediction T0570TS276_1 for target T0570-
D1. The backbone of the prediction can be superposed accurately to the backbone of
the target structure (left panel), and the prediction has indeed a high GDT_HA score
(0.814). The analysis using all-atom scores does not immediately reveal the problems,
with a GDC-all score of 0.705 and an lDDT score without stereo-chemical checks of
0.682. However, when the lDDT score includes stereo-chemical check, the lDDT score
drops to 0.571, highlighting the presence of several problematic residues. Panel B shows
a close up of the region around residue Alanine 21, where several stereo-chemical vio-
lations are evident.
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Multi-Reference Structure Comparison

The typical situation for protein structure prediction assessment is to compare a model
against a single reference structure. There are, however, cases where several equivalent
reference structures are available, e.g. structural ensembles generate by NMR, crystal
structures with multiple copies of the protein in the asymmetric unit (for example, target
T603 in CASP9), or independently-determined X-ray structures for the same protein at
different experimental conditions. Choosing one of them to be used as a reference for the
calculation of model quality scores can only be an arbitrary decision. In all these cases,
no structure can be considered more reliable than any other, but the choice of reference
for the evaluation score can lead to very different results for models of equal quality. Due
to the choice of template, often models have a higher similarity to one or the other.

In case of the local distance difference test, the following approach allows to evaluate a
model simultaneously against an ensemble of reference structures: for each pair of atoms,
we define an acceptable distance range by taking the minimal and maximal distance
observed across all references where the atoms are present. If, in any of the reference
structures, the distance is longer than the inclusion radiusR0, this distance is considered
a long-range interaction, and is ignored. For the assessment, the corresponding distance
in the model is considered preserved, when it falls inside the acceptable range or outside
of it by less than a predefined threshold offset.

One obvious application of the multi-reference lDDT score is the evaluation of mod-
els against NMR structure ensembles. For example, in the case of CASP9 target T0559
(PDBID: 2L01), an ensemble of 20 NMR structures has been experimentally determined.
Selecting one single chain from the ensemble as reference to evaluate prediction models
would be an arbitrary decision, artificially favoring some models which are closer to that
specific structure. To estimate the effect of selecting a single reference structure (as must
be done for GDT scores), all structures in the ensemble were in turn used as a “model”
and evaluated against all the others. Using traditional pairwise comparison with GDC-
all scores (Figure 4.6, striped bars), fluctuations of almost 12 GDC points are observed.
Ideally, this situation should be avoided, and a prediction should not be rewarded or pe-
nalized for being more similar to one member of the ensemble of than to another. The
multi-reference version of the lDDT score has been developed to overcome this problem
by sampling the conformational space covered by the ensemble and compensating for
its variability. Using the same example, the multi-reference lDDT score, which uses one
chain as a “model” and all the others together as multi-references, shows a spread of
less than 1% (Figure 4.6, dotted bars), indicating its robustness when scoring a model
against an ensemble of equivalent reference structures.

4Conclusions

In this manuscript, we describe the local Distance Difference Test score (lDDT), which
combines an agreement- based model quality measure with (optional) stereo-chemical
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Figure 4.6 Comparing a model against an ensemble of reference structures. The experimen-
tal reference structure for CASP target T0559 (human protein BC008182, PDBID:2L01) is an
ensemble of NMR structures. The graph shows the effect of selecting a single structure as
reference (GDC-all values as striped bars) in contrast to the multi-reference lDDT implementa-
tion (dotted bars). For this example, in turn each structure within the ensemble was selected
as model and compared to the other members (reference).

plausibility checks. We have demonstrated its low sensitivity with respect to domain
movements in case of multi-domain target proteins, which allows for automated assess-
ment without the need for manually splitting targets into assessment units. We also have
shown that local atomic interactions are well captured and local lDDT scores faithfully
reflect the modeling quality of sub-regions of the prediction. In addition, we present an
approach to compare models against multiple reference structures simultaneously with-
out arbitrarily selecting one reference structure for the target, or removing parts which
show variability. Additionally, as an agreement-based score, lDDT is robust with respect
to outliers.

One disadvantage of the lDDT score is that it does not fulfill the mathematical criteria
to be a metric. However, the same is true for most scores commonly applied for struc-
ture comparison such as RMSD or GDT. We consider lDDT particularly suited for the
evaluation of predictions for the same target protein, for example in the context of the
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CASP and CAMEO experiments. For these kind of applications, unlike, for example, for
clustering protein structures, we don’t see the lack of metric properties as a significant
limitation.

FUNDING: We gratefully acknowledge the financial support by the SIB Swiss Institute
of Bioinformatics.
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Graph-based Constraint Selection for
Multi-template Modeling

A critical step of template-based modeling is the selection of suitable template structure
information. For well characterized protein families, often 20 or more alternative experimental
template structures are available. While all templates may share a similar overall topology, the
relative orientation of sub-domains often differs significantly. Such intrinsic movements limit the
assignment of consistent structural constraints for the comparative modeling step. Rigid-body
superposition and clustering of all templates and their sub-domains is a time consuming and error
prone procedure. Here, we propose an efficient and robust procedure to identify stable structural
building blocks in ensembles of structures using contact-overlap (COM) map consistency.

1 Introduction

It has been shown repeatedly that combining information of multiple template structures
for computational structure prediction is beneficial66,190−191. Skilled human predictors in
particular are able to improve models by using information from multiple templates192.
However, the automatic selection of information from multiple sources is still an open
challenge. Knowing when to leave a template move to another is non-trivial. Due to the
high number of possible combinations it is not tractable to exhaustively enumerate all
solutions.

The most successful multi-template modeling programs use extensive sampling and
scoring of alternative models to identify suitable combinations of templates66,79,82. For
example, in I-TASSER models are assembled on a lattice66 and then refined. For proteins
of typical size (>200 residues), optimization can require several days. For integration into
the SWISS-MODEL web server, such high computational costs are prohibitive and more
efficient algorithms for multi-template modeling are required.

Cheng190 proposed a multi-template selection scheme, where templates are combined
in a multiple-sequence alignment, which is then used as input for MODELLER72. Start-
ing from a seed template, other templates are added to the multiple sequence alignment
if they meet one of two requirements: (a) their sequence alignment E-value is within a
certain threshold to templates already added, (b) they cover residues not previously cov-
ered in the multiple-sequence alignment. In the algorithm proposed by Cheng, templates
are added even if they are structurally inconsistent, e.g. due to ligand induced domain-
movement, alignment errors etc. However, it is well-known that the use of inconsis-
tent constraints for multi-template modeling leads to suboptimal models. The models
satisfying most of the constraints, often do not represent a biologically relevant confor-
mation, and can even be physically and chemically impossible. Thus, when combining
distance constraints from multiple templates, special care needs to be taken to ensure
that the used information is consistent. Constraints can be filtered for consistency prior
to passing them to MODELLER, e.g. in the case of RaptorX, only templates are added
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which have a TMscore9 higher than 0.65 with already added templates69. This coarse-
grained consistency filtering prevents the most detrimental effects of mixing structurally
diverse templates, but has limitations, as it enforces consistency in a very global man-
ner. As an alternative, in HHpred server, Söding replaced the standard Gaussian distance
constraints in MODELLER by a mixture of two Gaussians, describing correctly and incor-
rectly aligned residues. The mixture parameters (means, standard deviations and mixture
weights) are predicted by a mixture density network (CASP9 abstract booklet). Rather
than summing the constraints from multiple templates, the constraints are multiplied.
Consistent restraints are reinforced, and contribute significantly more to the molecular
PDF than inconsistent constraints. However, the value maximising an individual feature
PDF are drawn towards the average, which might not represent a physically plausible
conformation. Indeed, the models of HHpred submitted to CAMEO often show physi-
cally impossible angles and bond lengths. Additionally, the consistency-enforcement for
each constraints is done separately, and does not take the local environment of residues
into account.

In our view, consistency should be enforced on the level of a residue’s environment.
Residues in two structures are consistent, if their local environment is very similar, i.e. if
they share contacts to the same sets of residues. The idea of environment conservation
was inspired by the structural similarity score lDDT, which quantifies structural similarity
by the overlap of conserved local distances. This view is in between the consistency en-
forcement protocols of RaptorX and HHpred, which either consider similarity on a very
global or local scale. In this work, we will describe an algorithm to divide the structures
into stable sets, starting from local the environment of residues. Since the sets of con-
sistent residues of the two structures often coincide with biological domains, we call this
procedure the Domain-Find (DOMF) algorithm. DOMF shares some ideas with a method
to identify RMSD-stable domains developed by Snyder and Montelione for ensembles of
NMR structures193, but replaces the variance matrix clustering by a graph-based neigh-
bor overlap. First we will discuss the DOMF algorithm and apply it to experimental struc-
tures of the same target sequence. The domain-assignment of DOMF is then compared to
domain-assignments from the well-established DynDom program194. In a second step,
we will show the application of the DOMF algorithm to the detection of well-modelled re-
gions of homology models. Finally, we will show on a few modeling cases how constraint
consistency leads to more accurate models.

2Materials & Methods

We first describe the core of the DOMF procedure and show and efficient implementation
of the DOMF algorithm which uses bitwise operations to speed up the calculation of the
neighbor overlap.
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The Core of Domain-Find

The method solely relies on distances between pairs of Cα atoms to identify consistent
sets of residues. The mapping of the Cα atoms between the first and second structure
is given by a pairwise sequence alignment, e.g. as obtained from BLAST58, HHsearch32,
or HHblits33. We denote the Euclidian distance between the ith and jth Cα of the first
structure as aij , the corresponding distance in the second structure as bij . The distances
aij , bij form distance matrices A and B, respectively.

We define the overlap of two distances aij and bij as

oij = ω(dij) =
{

0 if dij > τ

1 if dij ≤ τ

with dij = |aij − bij |. The tolerance parameter τ controls how similar the two distances
have to be in order to agree. The symmetric matrix C spanned by all oij is called the
contact overlap map (COM). Based on the matrix C, we would now like to find groups
of Cα atoms that have similar distances in both A an B.

The contact overlap map can also be seen as an adjacency matrix of a graph G :=
{V,E}. A vertex vi is connected (adjacent) to vj if the Cα distances between ith and jth
Cα in both structures agree, that is oij = 1. We would now like to find clusters of vertices
with high connectivity in the group but little connectivity between the groups. This can
be achieved with a simple iterative update of edge weights. We note that, if vi and vj are
part of the same cluster the sets of adjacent vertices ni and nj must be very similar. The
edge weight oij between vertex vi and vj is iteratively updated as

oij =
{

1 ifuij ≥ ε
0 ifuij < ε

with

uij =
|ni ∩ nj |
|ni ∪ nj |

ε is called the threshold, and is a value between 0 and 1 that describes how much the
neighbours of two vertices have to overlap in order to be in the same cluster. This update
step essentially draws vertices towards the groups of vertices they most agree with. The
algorithm usually converges after 5, sometimes after 10 iterations. The resulting graph
only contains edges between vertices of the same cluster, edges of vertices of different
clusters are subsequently removed during the iterative update procedure. The building
blocks of the structures are then simply the connected components of the graph195: starting
from any vertex vi, all vertices vj are added to the component of vi which can be reached
from a depth-first or breadth-first search.

The result of DOMF is a partitioning of the residues into domains/clusters (we use the
terms domain and cluster interchangeably). We denote each cluster of G as Si. Vertices
which are not consistent in the structures, e.g. which are part of connected components
of only one residue are assigned to the free (Sf ) cluster. Additionally, residues of clusters
with less than 16 residues are assigned to the free cluster.

In �gure 5.1, a few stages of the algorithm are shown for two adenylate kinase struc-
tures that undergo a domain rearrangment upon ligand binding.
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A B

C D

Figure 5.1 Example adjacency matrix and domain assignment for open and closed confor-
mations of the adenylate kinase (PDB identifiers 1ake and 4ake). The adjacency matrix (A)
after zero iterations, (B) after two iteration (C) the final assignment after five iterations. White
corresponds to an edge weight of one, and black to and edge weight of zero. (D) The struc-
tures of the open and closed conformation are colored according to the domain assignment.
The red, orange and green domains correspond to the Rossman fold, AMP binding site, and
lid domain, respectively. The white parts are not structurally conserved and are assigned as
unordered.

Global and Local Domain-Find

There are two possible ways to determine consistent sets of Cα-atoms:

• Either by considering all n× n distances of the two structures (global), or
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• by only considering distances below a certain distance cutoff, e.g. 15Å (local).

When using a distance cutoff, distances between residues beyond a distance cutoff are
ignored by effectively marking the edges as undefined in the adjacency matrix. The first
update of the neighborhood similarity is solely based on the local connectivity. During
subsequent updates, the previously undefined edge weights become defined based on
their neighbor overlap. Since the neighbor overlap is not reliable when calculated from
a small number of vertices, we only mark edges as defined when the vertices have a
defined connectivity to at least 10 common neighbors. If this criterion is not fulfilled,
the edge is marked as undefined. The edge weights might then become defined during
subsequent iterations. The local neighborhood update gradually starts to spread to other
vertices, until the domains can be read out as the connected components.

In the global scheme, the first iteration is already based on the complete neighbor
overlap and has thus a more global character.

To show the difference between the two schemes, consider the output of the DOMF

algorithm on two structures of the response regulator PleD (PDB identifiers: 2v0n196 and
2wb4). PleD has a two-domain architecture with a flexible linker region in the middle.
The two structures are overall very similar, but have a slightly different orientation of the
two domains. The progress of the DOMF algorithm is shown in �gure 5.2, for the global
and local cases. For the local case, the similarity of the hinge region is the main deter-
minant for the partitioning. The dissimilarity of the hinge region essentially introduces a
local region of low connectivity, and, as a result, the similarity between the domains does
not propagate through the hinge region. The global case on the other hand is mainly dri-
ven by the overall dissimilarity of the two domains, the similarity of the hinge region is
less important. The domain partitioning for the local and global DOMF schemes overlap
well. A few residues in the vicinity of the hinge region are assigned to the orange domain
for the global scheme, but are part of the red domain for the local case. These residues
appear as a white line in the lower-left and upper right corners of the adjacency matrix
in �gure 5.2B. Visually as well as numerically, the convergence of the local domain-find
algorithm is faster and cleaner for the local case: the connectivity for the global update
scheme is smeared out, whereas the local scheme remains sharp and well-defined across
all stages.

Fast Update of Edge Weights

Since we consider the edges of all pairs of vertices in the graph, the overall complexity
of the algorithm is O(n3). For small structures of less than 200 amino acids, DOMF con-
verges within fractions of a second. For a structure of 400 residues, the calculation takes
8 times longer. Implementing the inner-most loop in an efficient way, is crucial to keep
the running time of the algorithm low, particularly for large n.

The naive and slow implementation operates on the similarity matrix directly. The
edge-weight between the ith and jth Cα is calculated as
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A

B

Figure 5.2 State of the adjacency matrix during neighbor overlap updates together with the
final domain assignment for two structures of PleD (2v0n, 2wb4). (A) the adjacency matrix is
constructed from distances which, in either of the two structures are below a cutoff of 15Å, (B)
the adjacency matrix is constructed from all n×n distance pairs in the structure. The resulting
domain assignment is shown for both the local and global update schemes. The first domain
is shown in red, the second in orange. Residues in white are assigned to the free domain.
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for (w_i, w_j) in (v_i.edge_weights, v_j.edge_weights)
if not defined(w_i) or not defined(w_j)
continue

if w_i>threshold
denominator+=1
if w_j>threshold
nominator+=1

elif w_j>threshold
denominator+=1

w_ij_new = nominator/denominator # float division

In essence, each edge is in one of 3 states: The edge is undefined, the edge has a value
larger than the threshold value, the edge has a weight smaller than the threshold value.
These 3 states can efficiently be encoded in two bits: One bit (D) states whether the edge
is defined/undefined and one bit (C) states whether the two vertices are connected. The
idea is not so much to optimize for space than for finding an efficient representation to
update the edge weights. In each byte, we can store 4 neighbouring edge weights, in
the format DCDCDCDC. Since we are not interested to know exactly which edges are
defined, we can take advantage of bitwise operations to process multiple edges at once
when calculating the neighbor overlap.

The intersection is calculated as the bitwise AND of the two bytes. The resulting byte
has bits set to one for edges pointing to direct neighbors of vi and vj . To quickly identify
the number of bits set in a byte, we use a lookup table which maps every integer in the
range of 0 to 255 to the number of overlapping edges. For example, the number 206
(binary 11001110) corresponds to two edges set. The calculation of the denominator is a
little more involved, since the defined bits and the edge weight bits need to be treated
separately: for the edge weights, we calculate the bitwise OR and combine it with a mask
for the edge bits to set the defined bits to zero. This result is then combined with the
intersection calculated in the previous step with a bitwise OR. The algorithm can be
further speed up by performing the bitwise operations on 64 bit integers, which allows
to process 32 edges at once. By using this procedure, we have achieved a speed up of a
factor of ten, compared to the naive implementation.

Determining the Optimal Threshold Value

The threshold value ε has a large influence on the partitioning of the structure into do-
mains. The optimal threshold value is both depending on the overall similarity of the
proteins being compared and the topology of the structures. Since certain partitionings
are more favourable than others, the threshold values have to be determined for each
pair of structures.

To assess the fitness of the graph partitioning, we devised an objective function which
takes the connectivity of each Si into account. Intuitively, a good partitioning maximises
the connectivity within the domains and the vertices have few outgoing connections.
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Many different ways have been described in the literature on how to measure the quality
of a graph partitioning197. One possibility is local graph density, which is defined as the
fraction of edges in the cluster divided by the number of possible connections. Alterna-
tive definitions for graph density exist, e.g. by normalizing by the number of vertices in
the cluster.

For our purposes, we take the connectivity within a cluster and between clusters into
account. The score for a single domain is defined as

ρ(Si) = 2
|E(Si)| − |I(Si)|
|Si| · (|Si| − 1)

with Si the vertices of the cluster,E(Si) edges for which both vertices are in Si, and I(Si)
are edges for which only one vertex is in Si. We found that normalization by the number
of possible connections in a domain performs substantially better than normalizing by
the number of vertices, as it forces the domains to be more compact.

Our objective function combines the local graph density of all clusters as a weighted
sum:

F (G) = −c · ff
2 · |E(Sf )|

|Sf | · (|Sf | − 1)
+
∑

i

fiρ(Si)

where fi is the fraction of residues part of of Si, ff is the fraction of inconsistent residues
and c is a constant empirically set to 0.2. The optimal threshold value ε is the value which
maximizes the objective function. For many of the structure pairs, the objective function is
maximised over a relatively wide range of threshold values (�gure 5.3). Initially, the score
remains constant for threshold values between 0 and 0.2, before it starts to drop. A drastic
drop of the score occurs around ε = 0.35. Here, more and more residues are assigned to
the free group, even though they have good connectivity. After 0.35, the structures are
split into 2 domains, which causes the score to rise again. The score peaks at 0.525, before
it decreases again. After ε = 0.75, the thresholds are too high and as a result, virtually all
residues are assigned to the free domain.

A more interesting case is the partitioning of 1lfh.A and 1lfi.A in �gure 5.4. The parti-
tioning first starts by splitting the structure into two domains (0.25 ≤ ε < 0.7), then three
(0.7 ≤ ε ≤ 0.825). Already at low values of ε, DOMF identifies two domains, which is in-
dicative for strong domain orientation movement. The green and red domains, however
have almost the same orientation in both structures and it is not before a threshold value
of 0.7 that the similarity in the interface between the domains becomes too low to split
the structure into three parts. This example illustrates the importance of optimizing the
threshold value on a case-by-case basis. In this case, it is helpful that the three domains
are very similar in the two structures.

Consistent Constraints for Multi-Template Modeling (MTM)

The main motivation for the development of DOMF has been to create a tool for the auto-
matic detection of consistent structural information in sets of template structures. Here
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Figure 5.3 F (G) for the partitioning of 1lio.A and 1lii.A into domains. At the bottom, the
partitioning of the structures at ε = 0.2 and ε = 0.525 (the optimal value) is shown. White
regions are assigned to the free cluster.

we present a very conservative multi-template modeling algorithm which enforces con-
sistency of restraints before they are added to the MODELLER program. For the purpose
of constraint selection we are mainly interested in the local conservation of constraints,
because MODELLER only generates Cα-Cα distance constraints below a cutoff of 14Å
(MODELLER reference manual). Hence, in this application it is not important whether
long-range interactions are conserved or not and the local update scheme for DOMF will
be used.

The MTM algorithm starts with a seed template and gradually extends it with infor-
mation from other template structures.

1. We start with an initial seed template, e.g. the highest-scoring template from BLAST.
The seed template’s n×n Cα-distance distance matrix is extracted, setting distances
which are not present as undefined.

2. We identify templates which contain information not covered in the seed distance
matrix. If at leastm = 5 residues are present in the template which are not available in
the seed, the DOMF-algorithm is applied to the seed distance matrix and the template
structure. The resulting domain partitioning is stored.

3. All of the templates of the previous step are sorted by number of residues which are
consistent in both structures (as defined by the domain partitioning). The template
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Figure 5.4 F (G) for the partitioning of 1lfh.A and 1lfi.A into domains. At the bottom, the
partitioning of the structures at ε = 0.2 and ε = 0.65 and ε = 0.8 (the optimal value) is shown.
White regions are assigned to the free cluster.

structure with the highest number of agreeing residues is selected.

4. From the new template structure information which is either consistent with the seed
template, or covers residues previously not part of the seed, is added.

5. Steps 2 to 4 are repeated until no template contains new information.

6. The restraints are used as an input to MODELLER.

While more elaborate schemes are certainly feasible, e.g. by mixing and matching parts
of multiple templates, these schemes are computationally more demanding and require
scoring of alternative solutions. The algorithm we describe here as a proof of principle
for constraint selection is very conservative, since improvements are only possible in one
of two cases:

1. a template contains additional residues at the N- or C-terminus of the model
2. a template is well-aligned to the target sequence, whereas the seed template contains

a deletion
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3Results

Domain-Find on Pairs of Experimental Structures

As a first benchmark, and to understand the behaviour of DOMF in detail, we have applied
the DOMF algorithm to pairs of experimental structures. The structures are part of the
Protein Structural Change Database (PSCDB)198, which contains proteins which undergo
structural rearrangement upon ligand binding. The domains have been identified using
the algorithm of DynDOM194,199. We have applied the DOMF algorithm to all 35 single-
chain pairs of the coupled domain motion (CD) category, the other 24 are movements
involving more than one protein chain. While such multi-chain movements could also be
captured with the DOMF algorithm, analysis of the performance of DOMF on multi-chain
proteins is outside of the scope of this work. The structure pairs in the PSCDB offer a
good selection of domain movements, from small to large conformational changes.

We have calculated the domain-assigned of DOMF by using the local update scheme
with a tolerance of 0.5Å for all 35 structure pairs of the PSCDB dataset. The threshold
parameter ε has been optimized for each case individually by using the objective function
described above. A summary of the results is given in table 5.1. For each pair of protein
structures, the optimal ε, the number of domains identified by DOMF and PSCDB are
listed together with the number of residues per domain. The corresponding domains
identified by PSCDB and DOMF are determined by pairing the domains with the largest
residue overlap. When the numbers of domains are different, a single domain can be
paired with more than one domain (e.g. for 1eym.A and 1j4r.A).

For the majority of cases, the optimal threshold value ε is between 0.4 and 0.6. For
structures which are only split into one domain, the optimal ε is below 0.350. Very high
threshold values are reached for only two structure pairs: 2qrj.A/2qrl.A and 1lfh.A/1lfi.A
which both reach an optimal ε at 0.8. Such high values of ε are only possible if the internal
distances of the two structure are very similar.

For 28 of the 35 structure pairs, the number of domains identified by DOMF and PSCDB
are the same. For the remaining seven, DOMF identifies only one domain in six cases,
whereas the database lists two. Additionally, there is one case, where DOMF identifies
three domains, and PSCDB two. We have looked at these seven cases in more detail.
One of these structure pairs is 1yem.A/1j4r.A. Figure 5.5 shows the alternative domain
assignments by DOMF and PSCDB. The two structures are very similar overall (Cα-RMSD
of 1.147). According to PSCDB, the structures have a larger domain of 78 residues (yel-
low) and a smaller one of 24 residues (red). DOMF only identifies one domain and marks
part of the second domain as unordered. Here, the differences between the two domains
are not large enough relative to the intra-domain fluctuation to split the structure into
two domains. Similarly, for 1sbq.B and 1u3g.A, two methenyltetrahydrofolate synthetase
structures, DOMF assigns an N-terminal helix as unordered, whereas PSCDB defines it
as a domain on its own. For 2cgk.B/2uyt.A, DOMF splits the structure into three domains,
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unbound bound ε ND NP D1D D1P D2D D2P D3D D3P

4ake.A 2eck.A 0.425 3 3 121 133 43 43 17 17

1lfh.A 1lfi.A 0.800 3 3 299 354 136 169 143 143

1n0v.D 1n0u.A 0.400 3 3 451 459 280 282 72 72

2cgk.B 2uyt.A 0.675 3 2 284 257 52 217 32 217

2bjb.A 2o0d.A 0.500 2 2 180 217 191 186 — —

2ex0.B 2ihz.A 0.475 2 2 233 230 119 145 — —

1oen.A 2olr.A 0.675 2 2 252 348 113 157 — —

2gg4.A 2pqc.A 0.500 2 2 212 220 212 219 — —

1gqz.A 2gke.A 0.700 2 2 144 145 100 125 — —

1vh3.C 1vh3.B 0.550 2 2 88 122 111 110 — —

2gca.A 1jbw.A 0.550 2 2 292 292 99 108 — —

1l5t.A 1lct.A 0.525 2 2 160 163 158 154 — —

2ghb.A 2gha.A 0.425 2 2 216 213 155 156 — —

2uvg.A 2uvi.A 0.425 2 2 232 231 166 163 — —

2c00.A 2vqd.A 0.500 2 2 366 366 65 70 — —

1zkb.A 1jvy.A 0.450 2 2 207 200 161 158 — —

1ex6.B 1gky.A 0.725 2 2 93 127 45 55 — —

3c6q.B 3C6q.D 0.600 2 2 146 154 142 147 — —

1lio.A 1lii.A 0.525 2 2 193 254 55 67 — —

2brw.A 1ojp.A 0.725 2 2 490 494 208 223 — —

1jej.A 1qkj.A 0.725 2 2 178 188 106 159 — —

1a48.A 2cnq.A 0.675 2 2 141 263 76 30 — —

2qrj.A 2qrl.A 0.800 2 2 178 191 160 170 — —

2ous.B 2ouu.A 0.525 2 2 292 298 26 26 — —

1oid.B 1ho5.A 0.425 2 2 323 329 193 188 — —

3d8r.A 3d8n.A 0.525 2 2 128 123 121 122 — —

1zty.A 1zu0.A 0.450 2 2 286 281 242 243 — —

1z15.A 1z17.A 0.400 2 2 199 199 143 141 — —

2p0m.A 2p0m.B 0.375 2 2 619 630 18 28 — —

1eym.A 1j4r.A 0.275 1 2 107 78 107 24 — —

3cze.A 3czk.A 0.150 1 2 600 363 600 232 — —

1xgd.A 1ef3.B 0.150 1 2 315 266 315 28 — —

1meo.A 1rby.A 0.300 1 2 197 99 197 94 — —

2cbi.A 2j62.A 0.150 1 2 584 456 584 123 — —

1sbq.B 1u3g.A 0.350 1 2 164 127 164 32 — —

Table 5.1 Comparison of the domain assignments of PSCDB and DOMF on all 35 single-chain
coupled domain movement structures of the PSCDB. For each of the structure pairs, the num-
ber of domains identified by DOMF (ND) and PSCDB (NP ) are listed, together with the domain
sizes (D1D to D3D for DOMF, D1P to D3P for PSCDB). ε: the threshold value maximising the
objective function F (G). Differences in the number of identified domains are highlighted in
bold.
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A B

Figure 5.5 Comparison of domains identified by DOMF (A) and PSCDB (B). The domains are
shown in red/yellow, disordered parts in grey.

whereas PSCDB lists only two. The largest domain of DOMF overlaps almost perfectly
with PSCDB. However, DOMF divides the other domain into two parts: a domain of 32
and 52 residues, respectively. These domains are small compared to a size of 217 for the
same residues in PSCDB. The smaller size is mainly caused by an unassigned beta sheet
in the interface of the two PSCDB domains. In all 7 cases, where the number of domains
found by DOMF does not match the domain definition listed in PSCDB, one of two situa-
tions applies: (1) the domain movement is very small and the local environment of these
residues does not change enough to cause DOMF to split the structures, (2) the domain
listed in PSCDB is very small. Such domains usually have a high surface to volume ratio.

The domain assignment of the two adenylate kinase structures 4ake.A and 2eck.A
agrees almost perfectly, with only a handful of residues differing. Similar results are ob-
tained for two crystal structures of elongation factor 2 (1n0v.D and 1n0u.A), the two
phosphodiesterases 2ous.B/2ouu.A or the maltotriose binding protein (2ghb.A 2gha.A).
In other cases, the domain assignments of DOMF and PSCDB deviate in some details. One
such case is the domain assignment for the unbound and bound form of diaminopimelate
epimerase (1gqz.A/2gke.A). The first domain agrees rather well. However, the second
domain is smaller by around 25 residues. The difference stems mainly from residues at
the interface of the two domains which show large deviations, these are assigned as un-
ordered by DOMF. Whether these residues should be part of the domain depends on the
exact definition of what a domain encompasses and depends on the application at hand.
For the purpose of identifying consistent residues in pairs of structure, these residues at
the interface are clearly not consistent and the choice made by DOMF is correct.

In general, domains identified by DOMF are smaller than domains from PSCDB. In a
sense, the requirements for a domain are more strict and the resulting domains are usu-
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ally more compact. We argue that domains are driven to smaller sizes by the use of in-
ternal distances for domain calculation: residues are only part of the same domain when
their surrounding is similar. This is in contrast to the method rotation vector analysis per-
formed by PSCDB, which only requires residues to superpose well. Additionally, PSCDB
domains tend to me more continuous, i.e. have less unassigned residues in the middle.
This makes a direct comparison difficult, as the two algorithms seem to use different
domain definitions. To some extent, the differences could be diminished by assigning
residues of the free domain to the closest structurally conserved domain.

To summarize the performance of DOMF on pairs of experimental structures, the ma-
jority of the difference between PSCB and DOMF comes from cases where domains are
only slightly rotated in space, or when the interface between the domains are very similar
in both structures. These small deviations are usually within the tolerance and are thus
not detected as concerted movements in DOMF. On the other hand, the clustering of
rotation vectors200 underlying PSCDB is able to use the direction-dependence of these
structural variations to distinguish between thermal fluctuations and concerted move-
ments. Depending on the applications, the additional accuracy offered by the PSCDB
algorithm might be desired.

Identifying Correctly Predicted Residues in Models

In the following, we discuss the application of DOMF to identify regions of homology
models which have been well predicted. LGA41, a tool generally applied to identify such
regions and superpose structures usually only returns the RT operator which superposes
the model onto the largest matching region of the target. However, in presence of domain
movements, one would often like to superpose the model onto all regions that have
been well predicted, e.g. for visual inspection. For this purpose, we have applied DOMF

to model-target pairs. Model regions identified as domains by DOMF are regions which
match the target structure and have thus been well predicted. For visual inspection, for
each of these well-predicted regions, the model is then superposed onto the target, using
atoms of common residues. To illustrate this application of DOMF, we use two examples
from the tertiary structure prediction category of the CAMEO web-server54.

The sequence for CAMEO target 4HXT_A codes for an engineered, dimeric repeat
protein of 252 residues. In �gure 5.6, the superposition of the prediction from server16
(SWISS-MODEL Next Generation) is shown for both domains that have been identified
by DOMF. As can be seen, domain find is able to identify two regions of the model which
have been predicted well. However, these domains have been predicted in a different
orientation than they are present in the target. Here, DOMF allows us to quickly identify
these regions and use them as a seed for superposition. Whether the domain orientation
of the model is biologically feasible is a different question. As a second example, we con-
sider the prediction from server11 for target 4HS7_B. Again, two parts of the target have
been well-predicted in the model. Moreover, a relatively large fraction of the residues
shares little similarity to the target structure, and is thus assigned to the non-consistent
domain.
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Figure 5.6 Homology model from server16 for CAMEO target 4HXT_A.The target is shown
in white, the residues of the model used for the superposition are highlighted in orange, other
residues in yellow.

Constraint Consistency for Multi-Template Modeling

The application of DOMF to the consistent extraction of constraints has been tested on 8
targets of the CAMEO web servers. Some models can be dramatically improved by using
information from multiple templates, while others are best predicted using a single tem-
plate. Which targets can profit from multiple-templates mainly depends on the available
template structures. To get an idea how much models can be improved by combining in-
formation, we approximate the best-possible lDDT for each residue by using per-residue
lDDT of single-template models. Clearly, for each residue, the best possible distance
restraints are the ones from the template with the highest per-residue lDDT score. By
setting the maximally possible lDDT for each residue to the largest per-residue lDDT in
any of the single-template models, we get an approximate idea of the improvements that
can be achieved by combining templates. This scheme ignores changes in lDDT which
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Figure 5.7 Homology model from server16 for CAMEO target 4HS7B_B. The target is shown
in white, the residues of the model used for superposition are highlighted in orange, the other
residues in yellow.

come from improvements in residues which are nearby.
The maximal per-residue lDDT together with the per-residue lDDT of the model built

on the best template have been plotted in �gure 5.8. The best-possible model is plot-
ted as grey dotted lines, the best single-model template as grey solid lines. For most tar-
gets, the best-possible model is substantially better than the best single-template model.
For example, for targets 3HKU_A, 3U7R_A, 4DQ2_B, the maximal possible per-residue
lDDT is clearly distinguishable from the best single-template model. Other targets, e.g.
4FR9_A and 2LWE_A, can only be marginally improved and it is unlikely that multi-
template modeling is of any help. Nevertheless, the latter have been left in the testset
as a control: the multi-template modeling algorithm should not lead to significantly less
accurate models than the single-template modeling.

Multi-template models have been calculated using the scheme outlined in Materials
& Methods. The templates have been sorted by sequence similarity, and the top 20 tem-
plates have been used as seeds for the multi-template constraint selection. As a com-
parison, multi-template models have been calculated which use all constraints of the
templates used for the consistent constraint multi-template models. In table 5.2, the re-
sults for the 8 CAMEO targets are shown. For both single and multi-template models,
the models with the highest Cα-, all-atom lDDTs and GDT_HA are shown.

For all 8 cases, the Cα-lDDT for the consistency-enforced multi-template model is
equal or higher than Cα-lDDT of the best single-template model; for 6 out of these
8 targets, the Cα-lDDT is higher. While for most of them, the improvement is mar-
ginal, the consistency-enforced model for 4H1X_A is substantially better. Similar results
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Figure 5.8 Possible improvement over single template model for the CAMEO test cases.
(A) 4DQ2_B, ((B) 4HL9_A, (C) 4G9I_A, (D) 4H1X_A, (E) 4EV6_E, (F) 4FR9_A, (G) 2LWE_A, (H)
3U7R_D. Per-residue Cα-lDDT of best single-template model (grey line),maximal per-residue
Cα-lDDT of any single-template model (dotted grey line), best multi-template model with con-
straints consistency (black line), best multi-template model without constraints consistency
(light blue line).
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are seen for the all-atom lDDT. When compared using GDT_HA, for two targets, the
single-template models are slightly better than then multi-template models (4G9I_A and
4HKU_A). The Cα-lDDT and all-atom lDDT for the best multi-template model of tar-
get 4H1X_A is significantly higher than the single-model counterpart. Here, templates
which cover different regions of the target sequence are successfully combined to ex-
tend the range of the models. The GDT_HA of the multi-template models are indistin-
guishable from the single-templates model, indicating that the relative orientation of the
second domain has not been properly predicted. Enforcing constraints consistency is im-
portant and leads to a model with local accuracy in the N-terminal part comparable to
the best single-template model. Combining the templates without enforcing constraints
consistency leads to a dramatic loss of local model quality (�gure 5.8D)

Apart from 4H1X_A, the largest difference is seen for target 4DQ2_B: the best possible
single-template model achieves a Cα-lDDT of 0.728 (all-atom lDDT 0.618). In compari-
son, the best multi-template model achieves a Cα-lDDT of 0.756 (all-atom lDDT 0.633).
The difference can be attributed to higher local per-residue lDDT values for residues
around 215-240 (�gure 5.8A). The remaining residues of the single and multi-template
models are almost identical. In this example, constraint consistency improves the re-
sulting model. When using all constraints, the resulting model is worse according to
Cα-lDDT, lDDT and GDT_HA.

lDDT Cα-lDDT GDT_HA

target single cons multi single cons multi single cons multi

4DQ2_B 0.618 0.633 0.600 0.728 0.756 0.722 0.422 0.476 0.407

4HL9_A 0.751 0.748 0.763 0.896 0.899 0.906 0.718 0.750 0.734

4G9I_A 0.638 0.641 0.630 0.750 0.754 0.748 0.518 0.515 0.503

4EV6_E 0.572 0.572 0.599 0.677 0.682 0.677 0.368 0.368 0.371

4FR9_A 0.657 0.657 0.656 0.787 0.787 0.787 0.566 0.566 0.557

2LWE_A 0.652 0.654 0.644 0.766 0.766 0.766 0.612 0.612 0.612

3U7R_D 0.655 0.655 0.655 0.771 0.771 0.770 0.559 0.565 0.559

4H1X_A 0.323 0.534 0.390 0.369 0.616 0.468 0.363 0.361 0.170

Table 5.2 Modeling accuracy of models built on single and multiple templates with and with-
out consistency enforcement. lDDT, Cα-lDDT and GDT_HA of models built on single template
(single), multiple templates with (cons) and without (multi) constraints consistency to the tar-
get.

4Conclusions

The DOMF algorithm identifies subsets of residues in ensembles of protein structures
whose environment is similar. Starting from an adjacency matrix derived from Cα-Cα
distance agreement, the edge weights between two Cα-atoms are iteratively updated
until convergence to a well-defined assignment of residues into domains.
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DOMF can be applied to identify structural domains in experimental structures. In pres-
ence of domain movements, the structure is automatically partitioned into multiple rigid
blocks. The performance of the algorithm was analysed on structures of the protein struc-
tural change database (PSCDB). The number of domains identified by DOMF and PSCDB
is identical for the majority of cases. In general, the two methods find a similar domain
partitioning. Nevertheless, there are a few notable differences: For a fraction of struc-
tures, the domains identified by DOMF are smaller and more compact. In order for two
residues to be part of the same domain, their environment is required to be conserved in
both structures. In contrast, PSCDB requires the residues only to superpose well.

The algorithm allows to detect well-predicted regions in models. These regions en-
compass sets of residues whose environment share considerable similarity to the target
structure. DOMF finds such well-predicted residues even in presence of large structural
deviations, illustrating the stability of the algorithm. This stability is an important feature,
as it allows DOMF to be applied to pairs of remote homologs, where alignment errors and
intrinsic structural differences in the packing of secondary structure elements are present.
We are currently testing DOMF on more CAMEO targets, and, are planning on integrating
DOMF into the CAMEO model summary page.

Furthermore, DOMF has been applied to extract consistent sets of constraints for the
purpose of multi-template modeling. The constraint selection routine has successfully
led to more accurate models. The algorithm outlined here is a proof of principle to illus-
trate that selection of consistent restraints is (a) feasible and (b) beneficial for generating
more accurate models. More work in this direction will be required before turning the
algorithm into a solid multi-template modeling program.
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MOTIVATION: Quality assessment of protein structures is an important part of experimental structure
validation and plays a crucial role in protein structure prediction, where the predicted models
may contain substantial errors. Most current scoring functions are primarily designed to rank
alternative models of the same sequence supporting model selection, whereas the prediction
of the absolute quality of an individual protein model has received little attention in the field.
However, reliable absolute quality estimates are crucial to assess the suitability of a model for
specific biomedical applications.
RESULTS: In this work, we present a new absolute measure for the quality of protein models,
which provides an estimate of the ‘degree of nativeness’ of the structural features observed in a
model and describes the likelihood that a given model is of comparable quality to experimental
structures. Model quality estimates based on the QMEAN scoring function were normalized
with respect to the number of interactions. The resulting scoring function is independent of the
size of the protein and may therefore be used to assess both monomers and entire oligomeric
assemblies. Model quality scores for individual models are then expressed as ‘Z-scores’ in
comparison to scores obtained for high-resolution crystal structures. We demonstrate the ability
of the newly introduced QMEAN Z-score to detect experimentally solved protein structures
containing significant errors, as well as to evaluate theoretical protein models.
In a comprehensive QMEAN Z-score analysis of all experimental structures in the PDB, membrane
proteins accumulate on one side of the score spectrum and thermostable proteins on the other.
Proteins from the thermophilic organism Thermatoga maritima received significantly higher
QMEAN Z-scores in a pairwise comparison with their homologous mesophilic counterparts,
underlining the significance of the QMEAN Z-score as an estimate of protein stability.
AVAILABILITY: The Z-score calculation has been integrated in the QMEAN server available at:
http://swissmodel.expasy.org/qmean.

1 Introduction

In homology modelling, the quality of a model is largely dictated by the evolutionary dis-
tance of the protein of interest (target) to the available template structures. The sensitivity
of tools for detecting remote homologues with very low sequence identity has increased
significantly in recent years due to the development of sophisticated algorithms29,32,201

and growth in sequence databases202−203. However, with decreasing sequence similarity,
an increasing amount of structural divergence is observed40,67, and the resulting models
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may contain significant inaccuracies, especially models built on distant templates. Typical
sources of errors range from misplaced side chains, incorrect loop conformations, back-
bone distortions, alignment errors, to choice of a template with incorrect fold131,204−205.

Ultimately, the accuracy of a protein model determines its suitability for biomedical
applications. However, at the time of modelling the quality of a model is unknown and
has to be predicted as well. For this purpose, scoring functions have been developed that
evaluate different structural features of protein models in order to generate a quality es-
timate. Most scoring functions are primarily designed to rank alternative models of the
same protein sequence63,103,106,108,115,206−211. However, variability in model quality be-
tween different target proteins is typically by far larger than the variability within the en-
semble of models generated by different prediction methods for a given protein51,205,212.
Therefore, relative ranking of alternative models for a given protein is insufficient for
determining its usefulness for biomedical applications such as drug design, mutagene-
sis experiments, analysis of functional sites, etc. Reliable absolute quality estimates are
crucial for the scientist intending to use computational models171.

The prediction of absolute model quality has rarely been addressed in the literature:
the pioneering tool ProSA100 has primarily been developed to evaluate experimental
structures and estimates the statistical significance of a structure by comparing its score
to random structures with the same sequence. The ProSA Z-score can hardly be used as
a measure of absolute model quality as it is highly dependent on the protein size (i.e. the
energy gap between the native fold and random decoy structures increases with protein
size). Eramian and collegues206 apply support vector regression to estimate the quality
of models based on other modelling cases with similar properties selected from a large
database of precompiled structure-model pairs generated by the same method. Wang et
al.,213 express the agreement of a model with several structural features predicted from
the primary sequence as a reliability measure using the SCRATCH suite116. Most current
scoring functions operate on individual protein chains and are not able to deliver quality
estimates for biological assemblies.

In this work, we introduce a method for the estimation of the absolute quality of indi-
vidual protein structure models which is independent of protein size and can be used to
both assess isolated chains as well as entire oligomeric assemblies. The absolute quality
is estimated by relating the model’s structural features to experimental structures of sim-
ilar size. Based on our recently introduced composite scoring function QMEAN108,128,
we analyse different geometrical aspects of proteins. For normalization, the QMEAN
score of a model is compared to distributions obtained from high-resolution structures
solved by X-ray crystallography. The resulting ‘QMEAN Z-score’ provides an estimate
of the ‘degree of nativeness’ of the structural features observed in a model and indicates
whether the model is of comparable quality to experimental structures. The Z-scores of
the individual terms of the scoring function indicate which structural features of a model
exhibit significant deviations from the expected ‘native’ behaviour, e.g. unexpected sol-
vent accessibility, back-bone geometry, inter-atomic packing, etc.

We first describe normalized statistical potential terms and introduce length-corrected
QMEAN scores. We then calculate normalized QMEAN scores on all experimental struc-
tures from the PDB, and provide an analysis of proteins exhibiting unusually low and
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high values. We finally introduce the concept of the QMEAN Z-score and demonstrate
the strength of the new score for evaluating both experimental structures and theoretical
models.

2Methods

QMEAN

QMEAN is a scoring function consisting of a linear combination of six structural descrip-
tors as described elsewhere in more detail108,128. In short, two distance-dependent inter-
action potentials of mean force based on C-β atoms (i.e. residue-level) and on all atom
types are used to assess long-range interactions—both are secondary structure depen-
dent; a torsion angle potential over three consecutive amino acids is applied to analyse
the local back-bone geometry of the structure and a solvation potential to describe the
burial status of the residues; finally, the agreement of predicted and calculated secondary
structure and solvent accessibility is included in the form of two agreement terms. Sec-
ondary structure prediction is performed by PSIPRED8 and solvent accessibility predic-
tion with ACCpro116. The secondary structure and solvent accessibility of the model are
calculated by DSSP7. While the agreement terms have a significant impact on the perfor-
mance of QMEAN on theoretical models, they do not add additional information when
experimental structures are evaluated. Evaluations on experimental structures are there-
fore based on the normalized QMEAN4 score (i.e. statistical potential terms only).

The optimization of the weighting factors for the terms contributing to QMEAN has
been performed on models from the seventh round of the CASP experiment (CASP7)212.
To evaluate the performance on an independent dataset, QMEAN has been applied on all
server models submitted to CASP8. The length-normalized statistical potentials scores
are calculated as follows: the scores of single body potentials (solvation potential and
torsion angle potential) are normalized by the number of residues and the scores of the
non-bonded interaction potentials (all-atom and C-β potential) are divided by the total
number of interactions.

GDT_TS values for the benchmark were parsed from the CASP8 website and quality
assessment predictions downloaded from:

http://predictioncenter.org/download_area/CASP8/predictions/QA.tar.gz.

Datasets

PDB TRAINING SET: the statistical potentials were extracted from a non-redundant set of
high-resolution structures from the PDB21 selected using the PISCES server214. A pair-
wise sequence identity cut-off of 20% is applied and only structures solved by X-ray
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crystallography with a resolution better than 2 Å and R-value below 0.25 are included,
resulting in a total number of 3544 chains.

CASP7 TRAINING SET: the weighing factors of the QMEAN composite score were opti-
mized based on CASP7 models (human and server)212 using the GDT_TS score as target
variable41. From the initial set of 47 214 evaluated models, incomplete models covering
<95% of the target sequence or lacking side-chain atoms for >10% of the amino acids
were removed. The final CASP7 training set contains 34 322 models from various mod-
elling servers.

CASP8 TEST SET: a total of 31 491 server models from CASP8 were used as an inde-
pendent test set for the comparison of different implementations of QMEAN and for
assessing the performance of the QMEAN Z-score.

PDB REFERENCE SET: a non-redundant reference set of high-resolution PDB structures
for the QMEAN Z-score calculation was generated by PISCES using to following crite-
ria: structures longer than 30 amino acids solved by X-ray crystallography, with pairwise
sequence identity below 40% and resolution better than 2.5 Å were included, resulting in
9766 structures. Proteins annotated as transmembrane proteins215 were excluded. Also,
18 low-scoring outliers showing a normalized QMEANscore (without agreement terms)
deviating by more than 3 standard deviations were excluded from the PDB reference set.
A complete list of these structures with high scores is provided as Supplementary Data
Table S1. The final ‘PDB reference set’ contains 9451 entries.

BIOLOGICAL UNIT REFERENCE SET: this set contains the biological assemblies of all chains
from the PDB reference set. The PISA database216 was used to assign the most likely
oligomeric state and generate the coordinates of the assembly for all entries of the dataset.
The resulting set contains biological units from 9062 unique PDB identifiers—2999 of
them are monomers. A ‘biological active assembly’ may contain multiple chains from
the non-redundant chain list.

QMEAN Z-score

To calculate the QMEAN Z-score, the normalized raw scores of a given model (composite
QMEAN score and individual mean force potential terms) are compared to scores ob-
tained for a representative set of high-resolution X-ray structures of similar size (number
of residues of query proteins ±10%). For the analysis of isolated chains, the ‘PDB ref-
erence set’ is used and oligomeric assemblies are evaluated against the ‘biological unit
reference set’. The same procedure is applied to calculate Z-scores for the agreement
terms, i.e. for each structure in the two reference sets PSIPRED and ACCpro have been
applied to model the background distribution of expected secondary structure and sol-
vent accessibility prediction accuracy.

The raw QMEAN score and the individual terms have different scales and algebraic
signs: QMEAN and agreement terms range from 0 to 1 and the statistical potential terms
deliver pseudo energies with negative values for energetically favourable states. In the
Z-score calculations, we adjusted the sign of the statistical terms such that higher Z-
score consistently relate to favourable states, i.e. higher QMEAN Z-score means better
agreement with predicted features and lower mean force potential energy.



89 | QMEANnorm

Cross-validation

In order to investigate the saturation of the statistics in the QMEAN score calculation and
to exclude over-training, a cross-validation experiment has been performed in the form of
a leave-1/3-out experiment on the original dataset used to extract the statistical potentials
(i.e. the PDB training set). We trained the statistical potentials on 2/3 of the proteins
from the original training set and applied the QMEAN score on the remaining 1/3 of
the structures. We randomly selected 31 complete SCOP fold classes making up roughly
1/3 of the original set (1523 PDB chains). This results in two sets having no overlap in
terms of folds. If the statistics is saturated, the predicted scores of a structure from the
test set should not differ considerably between the two potentials implementations, i.e.
the one based on the full and the reduced training set. The cross-correlation coefficient
between the original QMEAN and the QMEAN score trained on 2/3 of the training set is
0.88 which underlines that the QMEAN score calculation is robust and does not change
strongly if applied on folds not used in the generation of the statistical potentials (Figure
S7 in the Supplementary Data).

Comparison of predicted protein stability between thermophilic and mesophilic
organisms

The dataset of pairs of homologous proteins by Robinson-Rechavi and Godzik217 has
been used. Three protein structures have in the meantime been superseded by newer
entries in the PDB: 1un7 has been replaced by 2vhl, 1nrh by 1u8x and 1jsv by 2afb. One
pair of homologues of the original dataset has been excluded (1g6p from T. maritima,
1c9o from Bacillus caldolyticus) since both are from thermophilic organisms. The final
dataset consist of 72 protein pairs.

As in the work of Robinson-Rechavi and Godzik, proteins were shortened according
to a structural alignment (FATCAT w/o flexibility,218) in order to get homologous protein
pairs of similar size.

Implementation

The current version of the QMEAN scoring function has been implemented based on
the open source molecular modelling and visualization framework OpenStructure135.

3Results

Normalization of the statistical potentials

Statistical potential scores are calculated as a sum of microstates and therefore have a
strong dependence on the size of the assessed protein structure and larger proteins tend
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to have lower energies (i.e. higher QMEAN scores). As long as similarly sized models are
compared, the strong size dependence does not present an issue. However, it renders the
prediction of absolute quality difficult when only looking at single models.

In this work, we introduce normalized statistical potential QMEAN terms. In order to
correct for the length dependence of the statistical potentials scores, the scores of single
body potentials (solvation potential and torsion angle potential) are normalized by the
number of residues and the scores of the two non-bonded interaction potentials (all-
atom and C-β potential) are divided by the total number of interactions considered in the
calculation. Figure 6.1 shows the effect of the normalization on the all-atom potential.
The all-atom energies of a non-redundant set of 9766 protein structures (single chains)
solved by X-ray crystallography are calculated as normalized and non-normalized scores.

Figure 6.1 Comparison between traditional (A) and normalized all-atom interaction score (B)
on a non-redundant set of 9766 high-resolution PDB chains.

A clear correlation with protein size is observed (Fig. 6.1 left) for the standard all-
atom potential whereas the average energy per interaction of the normalized potential
converges to an average value of −0.0058 ± 0.0017 (Fig. 6.1 right). This is in accordance
with recent results of Thomas et al.219 who report an average stability value for protein
folds. Smaller proteins adopt a wider range of average per-interaction energies in accor-
dance with the fact that small peptides often exist as a diverse ensemble of conformations
or are stabilized in larger complexes. Indeed, the peptides with the highest, i.e. most un-
favourable, energies in the dataset are the ribosomal protein THX [PDB:2vqe,220] and the
disordered protein hypocretin presented on a MHC class II protein [PDB:1uvq221]. On
the other side of the energy spectrum, we observe three peptide hormones namely hep-
cidin [PDB:3h0t222], endothelin-1 [PDB:1edn223] and relaxin [PDB:6rlx224] with predicted
per-interaction energies far below the average value reported above. Energy values and
their interpretation are given in Table S2 in the Supplementary Data.

We analysed protein chains with more than 100 amino acids having high predicted
interaction energies. The 27 protein chains with highest average interaction values (more
precisely those with positive per-interaction energies) all are membrane proteins. These
results confirm that the structural features of membrane proteins do not follow the same
distribution as proteins in solution, i.e. atomic interactions in membrane proteins and
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Figure 6.2 Normalized QMEAN score composed of four statistical potential terms (QMEAN4)
of 9766 high-resolution structures. Red crosses indicate chains belonging to membrane pro-
teins, blue crosses denote other proteins deviating by more than 3 standard deviations (see
Supplementary Table S1 for details).

their solvation properties differ considerably from those found in soluble proteins. We
decided that these proteins are better treated in a specialized mean force potential. A
variant of the QMEAN score for membrane proteins is currently underdevelopment.

In analogy to the all-atom term, the other three statistical potentials of QMEAN have
been normalized and for larger proteins show convergence to an average per residue en-
ergy, although with a higher variance (see Figure S1–S3 in the Supplementary Data). The
same is true for the composite score of the four statistical potentials scores (QMEAN4,
Fig. 6.2). In the course of the article, ‘QMEAN’ denotes the complete scoring function
consisting of six terms based on normalized potentials. The version of the scoring func-
tion based on statistical potentials only is denoted as QMEAN4 in the following.

PDB reference set and QMEAN Z-score concept

In analogy to the average energy per interaction, the average normalized QMEAN4 score
is constant over a wide range of protein sizes, i.e. experimental structures adopt a rela-
tively narrow distribution of QMEAN4 scores. While the average normalized score is
constant, the variance of the distribution depends on protein size (Fig. 6.2).
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These observations lead to the idea to use a non-redundant set of protein structures
as a reference to evaluate the quality of individual protein structures and models, i.e.
the PDB reference set. The dataset contains 9451 non-redundant high-resolution struc-
tures, excluding membrane proteins and energetic outliers (highlighted in Fig. 6.2). A
QMEAN Z-score for a given model is thereby calculated from its normalized QMEAN
score by subtracting the average normalized QMEAN score and divided by the standard
deviation of the observed distribution. In analogy, Z-scores are calculated for all individ-
ual terms of the composite score. In order to facilitate the interpretation, we standardize
the algebraic sign of the calculated Z-scores such that higher Z-scores relate to more
favourable models.

In the following, we first illustrate the application of QMEAN Z-score for quality es-
timation on two example proteins, representing a ‘good’ and a ‘bad’ experimental struc-
ture. We then extend our analysis on the entire PDB (single chains) and report outliers.
The QMEAN Z-score concept is then extended from chains to entire biologically relevant
oligomeric assemblies. Finally, we show that the new score can be used as a measure of
absolute model quality in the assessment of theoretical models.

QMEAN Z-score analysis of experimental structures

We have applied QMEAN Z-scores to experimental structures from the PDB database21.
Table 6.1 and Supplementary Figure S5 show the Z-scores analysis of two experimen-
tal structures solved by X-ray diffraction: bacteriophage T4 lysozyme [PDB:2lzm,225] and
Dengue virus NS3 serine protease [PDB:1bef,226]. The QMEAN Z-score of the lysozyme
structure is 0.5, i.e. the score of the structure is clearly within the expected quality range
as it deviates less than 1 standard deviation from the mean score in similar sized high-
quality proteins from the reference dataset. In contrast, the structure of the NS3 serine
protease has a QMEAN score deviating by more than 5 standard deviations indicating
that there is clearly something wrong with this structure. Both the composite QMEAN
score, as well as all individual terms deviate strongly from expected values (Figure S5,
Supplementary Data and Table 6.1). Indeed, this structure, as well as several other struc-
tures from the same group, have been identified as fabricated and have been retracted
(see http://www.wwpdb.org/UAB.html). A QMEAN Z-score analysis of all affected struc-
tures can be found in Supplementary Table S3.

PDB QMEAN C-B All-atom Solvation Torsion

T4 lysozyme, 2lzm 0.5 0.6 1.1 0.7 −0.3

Serine protease, 1bef −5.5 −3.4 −3.6 −2.7 −4.1

Table 6.1 Z-score analysis of the T4 bacteriophage lysozyme (2lzm, chain A) and the Dengue
virus NS3 serine protease (1bef, chain A). Both the QMEAN Z-score as well as the Z-scores of
individual statistical potential terms are reported. All structural properties of 1bef deviate sig-
nificantly from expectation values obtained from high-resolution structures. In the meantime,
the structure has been retracted from the PDB.
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PDB Size QMEAN C-B All-atom Solvation Torsion

2q97A 354 −1.2 −1.2 −0.5 −0.5 −1.0

2q97T 109 −3.3 −2.2 −1.8 −3.7 −1.1

PISAa 926 −1.6 −0.9 −0.6 −1.2 −1.0

Table 6.2 Z-score analysis of the toxofilin/actin both for the isolated chains and as well as
the biological assembly defined by PISA. a Most probable assembly as proposed by PISA:
a tetramer consisting of two copies of the chains A and T. Especially the solvation energy
and C-β potential terms exhibit large differences between the Z-score of the isolated toxofilin
monomer and the complex with actin.

Group name Targets Global r Mean r P-value Mean 4GDT_TS P-value

MULTICOM-REFINE 122 0.786 0.729 0.258 0.093 0.936

GS-MetaMQAP 121 0.779 0.708 2.13E-005 0.132 0.004

QMEANnorm 122 0.774 0.738 0.093

QMEANfamily 107 0.751 0.755 0.0016a 0.089 0.260

QMEAN 121 0.750 0.724 0.017 0.088 0.430

MULTICOM-CMFR 122 0.740 0.759 0.063 0.083 0.227

Bilab-UT 121 0.728 0.693 2.71E-005 0.107 0.239

MULTICOM-RANK 122 0.711 0.708 0.004 0.082 0.178

ModFOLD 122 0.686 0.616 6.24E-022 0.137 0.001

BMF_PP 96 0.683 0.615 9.25E-019 0.197 2.06E-007

SIFT_consensus 117 0.678 0.686 5.16E-007 0.106 0.117

circle 122 0.665 0.712 0.002 0.111 0.143

Pcons_ProQ 122 0.656 0.667 4.55E-010 0.129 0.003

DistillSN 120 0.655 0.476 6.60E-027 0.207 2.76E-012

MUFOLD-QA 122 0.583 0.645 2.14E-010 0.117 0.051

DISTILLF 118 0.581 0.650 2.07E-011 0.141 0.001

MODCHECK-HD 122 0.506 0.304 3.76E-043 0.155 2.40E-006

SELECTpro 122 0.503 0.635 3.22E-014 0.153 6.75E-005

Fiser-QA 121 0.502 0.564 5.24E-019 0.186 4.82E-008

Fiser-QA-COMB 121 0.478 0.521 7.94E-023 0.228 1.31E-010

SIFT_SA 112 0.469 0.636 8.98E-011 0.115 0.086

Fiser-QA-FA 121 0.331 0.524 2.96E-029 0.191 2.91E-007

qa-ms-torda-server 117 0.106 0.058 1.22E-052 0.487 2.92E-034

ProtAnG_s 121 0.081 0.124 4.31E-059 0.139 0.001

Table 6.3 Comparison of normalized QMEAN potentials (QMEANnorm) with single model
scoring function of CASP8. Global r: correlation against GDT_TS over all models from all tar-
gets; mean r: r averaged over individual targets; mean4GDT_TS: average deviation of model
with best score and best model. The statistical significance of the difference is measures
with a paired t-test on common targets (significantly better performance of QMEAN marked
in italic, significance level: 0.05). a QMEANfamily is significantly better than QMEAN in ranking
models. Performance of the methods described in this work (QMEANnorm) is highlighted in
bold.
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Scoring Function Term Wilcoxon T-test

C-β interaction potential 0.0029 0.0020

All-atom interaction potential 0.0322 0.0293

Solvation potential 0.0031 0.0020

Torsion potential 0.0051 0.0105

QMEAN 0.0001 0.0001

Table 6.4 Analysis of 72 pairs of homologous proteins from Thermotoga maritima and corre-
sponding mesophilic organisms217. The P-values in two statistical tests (Wilcoxon and t-test)
on paired samples are reported. The proteins of thermophilic and mesophilic organisms differ
significantly in terms of all QMEAN components.

Figure 6.3 Correlation between QMEAN and GDT_TS for all server models of CASP8. (A)
Scatter plot, (B) boxplot.

The ProSA228 analysis of the two structure can be found in Supplementary Figure
S6. The lysozyme structure receives a very low Z-scores of −8.7. The fabricated struc-
ture 1bef, however, also deviates by almost 4 standard deviations from random struc-
tures (Z-score = −3.74). In comparison to QMEAN, the score of this model does not
differ considerably from many other structures in the PDB. In contrast to QMEAN, the
ProSA Z-score shows a clear correlation with protein size which limits its application as
an absolute quality measure. We therefore think that a comparison to high-resolution
structures instead of random conformations is more meaningful.

We performed the QMEAN Z-score analysis on 144 142 protein chains from the PDB.
Of these chains, 134 604 were solved by X-ray diffraction, 7979 by NMR and 1559 by
electron microscopy. The Z-score distributions for structures derived by the three dif-
ferent methods show considerable differences (Supplementary Figure S4). The average
QMEAN Z-scores are −0.58 for X-ray diffraction, −1.19 for NMR and −2.00 for EM.
Among the protein chains solved by X-ray crystallography we observed 1’048 chains
(belonging to 417 PDB entries) with a QMEAN Z-score less than −5. The majority of
these proteins were either transmembrane or ribosomal proteins: 61 membrane pro-
teins, 99 oxidoreductases, 109 proteins involved in photosynthesis, 46 transporters and



95 | QMEANnorm

Figure 6.4 Density plot visualizing the QMEAN Z-score distribution of theoretical protein
structure models. Z-scores for models from CASP8 are shown in relation to scores of ex-
perimental reference structures (black line). The models are split into three quality ranges with
low-quality models in red, medium-quality models in blue and good models in green.

55 ribosomal proteins. These numbers underline the importance of a separate treatment
of proteins embedded in membranes or bound to RNA, e.g. ribosomes. The remain-
ing 48 proteins with unfavourable QMEAN Z-scores are provided in the Supplementary
Data (Table S4). The majority of these structures are of quite low resolution: 79% of the
proteins were solved at a resolution <3 Å.

To this point, we have applied the Z-score formalism on isolated protein chains. How-
ever, many proteins are part of oligomeric complexes and analysing protein stability on
the level of isolated chains does not capture the physiologically relevant situation in
the cell. We have therefore extended our analysis to complete oligomeric assemblies.
Figure 6.6 illustrates this effect on the example of toxofilin in complex with mammalian
actin [PDB:2Q97,227]. In the complex toxofilin (chain T, blue) adopts a non-globular con-
formation, which is meaningless in isolation. As expected, the QMEAN Z-score of −3.3
for toxofilin (chain T) in isolation is unfavourable, especially the solvation and the C-β
interaction terms exhibit large differences between the Z-score of the isolated toxofilin
monomer and the complex with actin (Table 6.2).

The biological unit reference set contains the most likely biologically relevant oligomeric
assembly generated by PISA216. Figure 6.5 shows the QMEAN scores of 9062 oligomeric
entries of the biological unit reference set (see Section 2). This dataset is used as a ref-
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Figure 6.5 QMEAN scores for all structures in the biological unit reference set. Proteins with
unusually high QMEAN scores (Z-score >3) marked in green correspond almost exclusively to
proteins from thermophilic organisms (see also Supplementary Table S5).

Figure 6.6 Oligomeric complex of mammalian actin (in grey) with toxofilin (chain T, blue) from
toxoplasma gondii [PDB:2Q97;227]. In the complex toxofilin adopts a non-globular conforma-
tion, which is meaningless in isolation. As expected, the QMEAN Z-score of −3.3 for toxofilin
in isolation is unfavourable (table 6.2).
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erence set for the assessment of complexes and oligomeric proteins. All structures with
extraordinarily high QMEAN scores (Z-score >3 standard deviations; 26 structures) are
highlighted with green crosses. Interestingly, 22 out of these 26 are proteins from ther-
mophilic to hyperthermophilic bacteria and archaea, two are designed proteins opti-
mized for stability, and the remaining two are structural genomics targets of unknown
function (Supplementary Table S5).

In summary, the proteins at the periphery of the QMEAN score spectrum can be as-
signed to membrane proteins which exist in a fundamentally different environment com-
pared to soluble proteins and extremely stable proteins found in thermophilic organisms.

Comparison of homologous proteins from thermophilic and mesophilic organ-
isms

The composite scoring function QMEAN seems to capture structural features which dis-
tinguish thermostable proteins from proteins in mesophilic organisms. In order to fur-
ther investigate which terms are most discriminative, we applied QMEAN on a published
dataset of pairs of proteins from Thermatoga maritima and corresponding homologues
from mesophilic organisms217. Out of 72 protein pairs, QMEAN assigns in 75% of the
cases higher scores to the proteins from T.maritima. Over the entire data set, the dif-
ference between the QMEAN scores assigned to mesophilic and thermophilic proteins
is highly significant (P = 0.0001, see table 6.4). The comparison is illustrated in form of
a diagonal plot in Supplementary Figure S8. These findings indicate that the QMEAN
score indeed may be understood as a measure of protein stability.

In agreement with a study on Thermatoga maritima in which the authors identified
salt bridges and compactness as major determinants of protein stability229, we observe
that the solvation potential and the interaction potentials on residue-level are the most
discriminative terms (P = 0.002 for both terms in paired t-test).

Analysis of theoretical models using normalized QMEAN scores and QMEAN
Z-scores

In the following, the normalized QMEAN scoring function is applied on theoretical mod-
els from CASP8 and its performance is compared to other methods. We demonstrate the
value of the QMEAN Z-score as a statistically well-founded measure of absolute qual-
ity and end with a critical discussion of the limitations of this approach for predicting
absolute local per-residue errors.

CASP data is a good testing ground for scoring functions since it includes models
spanning a wide range of quality generated by a variety of different modelling algorithms.
Figure ?? shows the global correlation between the size-normalized QMEAN score and
the GDT_TS distance to the native structure of all CASP8 server models. A global cor-
relation coefficient of 0.77 overall CASP8 models is obtained. QMEAN6 scores perform
significantly better than QMEAN4 to estimate the quality of predicted structures (corre-
lation on CASP8 data was 0.77 versus 0.66). While for assessing experimental structures,
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the agreement terms do not provide additional value, these terms are especially effective
in the medium to low model quality range230.

Table 6.3 shows a comparison of the normalized QMEAN scoring function (denoted
as QMEANnorm) with methods in the quality estimation category of CASP8231. Only
scoring functions operating on individual models are used (i.e. no consensus methods
and methods using structural information from homologous proteins). Compared to the
original QMEAN scoring function, the normalized QMEAN shows a considerably bet-
ter global correlation to GDT_TS which forms the basis for absolute quality predictions.
The new version is also significantly better in ranking the models (P = 0.017) while the
difference in picking the good models (mean delta GDT_TS of selected and best model)
is not significant (P = 0.43). MetaMQAP and MULTICOM-REFINE have a slightly bet-
ter global r but the former performs significantly worse in model ranking/selection. In
terms of global correlation, the three methods perform equally well on easy targets (mean
GDT_TS of top 5 models greater than 50) but QMEAN performs worse on the harder
ones (see Supplementary Tables S6 and S7). The performance of QMEAN with respect to
other state-of-the-art methods such as ProSA100 and DFIRE106 has also been recently as-
sessed in an independent study230. QMEAN was found to be the best performing method
in terms of the selecting the best model.

The robustness of the QMEAN Z-score on experimental structures lead us to apply
the same concept to describe the absolute quality of theoretical protein structure mod-
els. Large deviations from expected values of experimental reference structures may be
an indicator for modelling errors. The significance of the deviation as expressed by the
QMEAN Z-score provides a quantitative and statistically well-founded measure of model
reliability and therefore represents an absolute quality estimate of the model. (Note that
the Z-score formalism does not affect QMEAN’s ability to rank and select models.)

Figure 6.4 visualizes the differences in the QMEAN6 Z-score distributions between
experimental structures of the PDB reference set (black line) and the CASP8 server mod-
els coloured according to model quality ranges (i.e. the GDT_TS distance to the native
structure). The Z-score distribution of low-quality models with GDT_TS below 40 is
clearly shifted towards lower Z-scores compared to experimental structures (mean Z-
score = −3.85). Only a small overlap of the distributions is observed: 85% of the bad
models with a Z-score above−2 are small structures below 150 residues. As can be seen
in Figure 6.2, the variance of the QMEAN score increases with decreasing size and as a
consequence the separation between good and bad structures becomes less pronounced
(see also Supplementary Figure S9). Another reason for the overlap of the distributions
is that 36% of the overlapping bad models are incomplete with <80% residues resolved
which lowers the GDT_TS score but not the normalized QMEAN score. The ‘good’ mod-
els depicted in green reach QMEAN Z-scores comparable to experimental structures
(mean Z-score = −0.65) and the ‘medium’ quality models (in blue) are located in be-
tween (mean Z-score =−1.75). A clear correlation between the GDT_TS distance of the
model to target structure and the QMEAN Z-score for all CASP8 server models larger
than 150 residues is observed underlining the suitability of the QMEAN Z-score as an
estimate of model quality (Fig. 6.3 and Supplementary Fig. S10).

The prediction of local (per-residue) error estimates is an active field of research. For
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our previously introduced local QMEAN score (QMEANlocal)128, normalized interaction
potentials lead to a slight performance increase (data not shown). However, the precision
of current local scoring functions applied on single models is not sufficient as reliable
absolute quality estimate. Nevertheless, a distinction between more and less deviating
regions is still possible. Supplementary Figures S11 (boxplot) and S12 (ROC analysis)
show the performance of QMEANlocal in estimating per-residue errors on all CASP8
models. Only a weak correlation between local score and C-α deviation exists. The ROC
analysis shows that QMEANlocal is able to enrich residues from the models with low
deviation from the native structure. More than half of the residues with a calculated C-α
deviation below 2.5 Å are identified among the 10% best scoring residues.

4Conclusions

In this work, we present a new method for estimating the absolute quality of a single
protein structure, i.e. without including additional information from other models or al-
ternative template structures. The measure is based on the composite scoring function
QMEAN which evaluates several structural features of proteins. The absolute quality es-
timate of a model is expressed in terms of how well the model score agrees with the
expected values from a representative set of high resolution experimental structures. The
resulting QMEAN Z-score is a measure of the ‘degree of nativeness’ of a given protein
structure. The Z-scores of the individual components of the composite QMEAN score
point to structural descriptors that contribute most to the final score, and thereby indi-
cate potential reasons for ‘bad’ models.

A large-scale benchmark of experimental structures revealed two groups of proteins
on the periphery of the QMEAN score distribution: on one side there are membrane pro-
teins whose structural integrity is maintained by the lipid bilayer and as a consequence
their physico-chemical properties differ considerably from those of soluble proteins. On
the other side of the QMEAN score spectrum, proteins from thermophilic organisms
are predominant. In a direct comparison of pairs of homologous proteins, proteins from
thermophilic organisms receive significantly higher QMEAN scores compared to their
mesophilic counterparts.

Finally, we show that the QMEAN Z-score is a useful measure for the description of
the absolute quality of theoretical models and is a valuable measure for identifying exper-
imental structures with significant errors. Compared to most existing scoring functions,
QMEAN Z-scores can be both applied on isolated chains or biological assemblies.

The QMEAN Z-score calculation has been integrated in the QMEAN server128 A, and
the ‘Structure Assessment’ tools of SWISS-MODEL Workspace130,232 B. A stand-alone
version is available on request from the authors.

http://swissmodel.expasy.org/qmeanA

http://swissmodel.expasy.org/workspace/B
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QMEANdist - QMEAN Enhanced with
Distance Restraints from Alignments

Quality estimation of protein structure models is important for many stages of homology
modeling, e.g. to rank alternative models for the same sequence, or to judge the quality of
a model on an absolute scale. Previously, we have introduced QMEAN, a composite scoring
function combining potentials of mean force with terms measuring the agreement of observed
and predicted sequence features. During CASP8, we have found QMEAN to assign low energies
to models of certain groups, even if the models share little similarity to available template
structures. These models were heavily optimized with potential of mean force and QMEAN is
unable to judge their quality with confidence. In this work, we present QMEANdist, a variant
of QMEAN which tries to address this limitation by incorporating information from evolutionary
related protein structures. The structures define an Cα-Cα distance propensity, by which models
are scored. QMEANdist has been extensively validated during the CASP9 experiment as part
of quality estimation category. We show, that the method delivers performance comparable to
consensus scoring functions for ranking and model selection.

1 Introduction

In theoretical modeling protein structure models are inferred from sequence in absence of
experimental data207. The structural energy landscape of a protein is explored by various
means, e.g. by starting from a related template structure, or ab-initio folding techniques.
Since the usefulness of a model directly correlates with its quality, the ability to judge
how good a model is not only of academic but also of biological interest171. Model quality
assessment is thus an important aspect of every modeling endeavour.

CASP (critical assessment of techniques in structure prediction) is a biennial double-
blind experiment to objectively compare competing approaches in the theoretical mod-
eling field45−53. Model quality assessment servers are evaluated separately in the model
quality assessments (QA) category. QA methods at CASP can be broadly categorized
into 3 groups: consensus-based, single-model and quasi-single model methods.

Physics- and knowledge-based quality estimation programs employ potentials of mean
force, force fields, and agreement terms of predicted sequence features100,103,106,120,142 to
estimate the quality of models. These methods are referred to as single-model quality
estimation programs, as they evaluate the quality of each model separately.

Previously, we have developed the single-model MQA program QMEAN108,142. It uses
a linear combination of potential of mean force terms and two terms comparing pre-
dicted and observed sequence features. QMEAN has been shown to be one of the top-
performing single-model quality estimation programs at CASP8. While single-model
quality estimation have their benefits and are especially appealing from an academic per-
spective, the employed scoring schemes suffer from the same limitations as traditional
force fields and scoring functions: They are often unable to distinguish between near-
native and non-native conformations81−83. During CASP8, we have found QMEAN to
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systematically overpredict the quality of models from certain structure prediction servers.
For example, RBO-Proteus uses potentials of mean force to optimize the conformation
of the models. From the perspective of a potential of mean force, these models were
convincing, even though they were far from the native state.

Pcons120 and similar methods have been fairly successful at predicting the quality
of models using consensus features extracted from all models submitted for a target
sequence108,120,233. Since structural features more commonly found in the models are
more likely to be correct, the average structure is assigned the highest score. The top-
performing consensus servers at CASP additionally include pre-filtering steps to select a
fraction of the models for clustering108. In the context of CASP, consensus methods are
by far the most successful in terms of performance. Two reasons contribute to the suc-
cess: First, the number of models per target exceeds 300 and as such sufficiently large to
obtain statistics of structural features. Second, the models at CASP are built by different
modeling methodologies. Errors associated with these methods, e.g. alignment errors,
structural sampling biases, tend to cancel out. In an ad-hoc experiment, Kryshtafovych et
al. have shown that the performance of consensus methods for quality estimation rapidly
decreases when less models are available118. For many homology modeling projects, it
is not feasible to obtain such large number of models for the same target sequence, es-
pecially with different modeling programs. Thus, the conditions under which clustering
methods perform best are rarely met for real modeling projects.

Between single-model QA programs and consensus approaches, a new set of ap-
proaches has emerged at CASP7 and CASP8, which combine information from templates
with traditional scoring functions234−235. Since similar sequence implies structural simi-
larity40, models that are closer to related experimental structures are thought to be better
models for that target sequences. These scoring functions assess each model separately,
but rely on the availability of structural information, hence the name quasi single-model
estimation programs.

Paluszewski and Karplus235 extract distance constraints from alignments identified by
their threading method SAM. For each pair of residues in the model, they determine a
desired distances, a weighted average of observed distances in the templates. Distances
from template sequence closer to the target sequence are assigned a higher weight. The
weights are therefore interpreted as a confidence value for the distance constraints. Of-
ten, the distances observed for a residue pair show considerable variation. Thus, the
weighted average can result in a desired distance far away from any distance observed in
the templates.

In this work, we explore the combination of structural features of templates with the
QMEAN scoring function. Distances between residues in templates are combined by
expressing each distance as a Gaussian function, whose weight is proportional to the
evolutionary distance between target and template and the standard deviation is scaled
by the uncertainty of the restraint. Models are then scored by agreement with these re-
straints. The scoring function has participated in CASP9’s QA category as QMEANdist.
After showing results on CASP8 data, we will thoroughly discuss the performance of
QMEANdist using the official results obtained during the prediction season.
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2Materials & Methods

Datasets

CASP8 | The models of all CASP8 servers were used as a training set for QMEAN-
dist. For each week of CASP, we have created a timestamped PDB snapshot to be used
as template library. Template searches were performed against these snapshots. The
GDT_HA, GDT_TS41 scores for all models were calculated on the whole target structure
with TM-score236. Cα-lDDT scores (chapter ’Local Distance Difference Test - A Robust,
Superposition-Free Similarity Measure for Protein Structures’) were calculated without
clash-filters and stereo-chemical checks.

CASP9 | QMEANdist participated in the QA server category of CASP9. Predictions were
submitted for all 116 targets of CASP9. The preditions and GDT_TS scores for all servers
have been downloaded from the prediction center website. lDDT scores and Cα-lDDT
scores for the full-length targets have been calculated without clash-filters and stereo-
chemical checks.

Model Quality Assessment Method

The method for model quality assessment consists of the following steps, which are de-
scribed in detail in the following sections:

1. Identification of templates using BLAST and HHsearch
2. Clustering of the identified templates sequences by sequence similarity
3. Extraction of distance constraints from the identified templates
4. Scoring of models by the extracted constraints
5. Scoring of the models using the QMEAN6 scoring functions
6. Combination of the QMEAN6 and distance constraints scores

Template Identi�cation

For each target, templates were identified using BLAST58 and HHsearch32. BLAST was
run with the default parameters against all chains of the SWISS-MODEL template li-
brary. The HHsearch profile was built by using buildali.pl from the HHsearch package
using default parameters and 3 PSI-BLAST iterations. The profile was then searched
against a 70% clustered database of profiles of PDB chains. Then, the search was ex-
tended to all PDB profiles whose clusters have been identified during the first step.
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Clustering of Template Sequences

Due to the uneven distribution of sequences in the PDB, the set of identified templates
often contains multiple template sequences with identity above 90%. Since our structural
scoring algorithm combines information from all identified templates, information from
these sequences would be overrepresented. We account for the presence of multiple,
very similar template sequences by downweighting the contributions of these structures
accordingly (see ’Scaling of Constraints from Structures with Similar Sequences’).

To group templates with highly similar sequences, the sequences are clustered using a
greedy sequence identity clustering algorithm: The templates are first sorted by decreas-
ing target sequence coverage. The cluster list is initialized to an empty list. Each template
is then compared against the centroids of the existing clusters. When the sequence iden-
tity is higher than a defined threshold, the template is added to that cluster, otherwise
the sequence is compared to the next cluster. If the template sequence does not share
considerable identity to any of the existing clusters, a new cluster is added, setting the
template as the centroid.

For the final scoring function, we have used a sequence identity threshold of 90%.
While the clustering step in general did improve the performance of the scoring func-
tions, we found that the threshold could be varied between 70% and 90% without impact
on the performance.

Distance Constraints

Each template defines distance constraints for the interaction of residues in the final
model. The residues in the template structure are mapped onto the target sequence using
the target-template alignment. For each pair of Cα atoms closer than a distance thresh-
old D and further than s residues apart in sequence, a restraint is added. Setting the
sequence separation to 0 includes contacts from neighbouring residues, whereas a larger
separation increases the importance of interactions between distant residues. While a
larger sequence separation avoids trivial nearest-neighbours contacts, we have found
that setting the sequence separation to large values above 6 together with a small dis-
tance cutoff is problematic for short proteins: For these small structures, local interactions
are an important contributor to stability. For the final scoring function, we have identified
an optimal value of 4 for sequence separation and 15Å for the distance cutoff.

We have also experimented with using Cβ-Cβ distances instead of Cα-Cα. However,
we did not find an increase in performance on any of the testsets and hence decided to
stay with Cα-Cα distances.

Each pair of Cα atoms (i, j) meeting the requirements of sequence separation and
distance cutoff described above is represented as a Gaussian function:

cijk(d) =
Aijk

σijk

√
2π

exp

[
−(d− µijk)2

σ2
ijk

]



105 | QMEANdist

µijk is the mean of the Gaussian function and is set to the distance found in the template,
σijk andAijk, are standard deviation and scaling factors, respectively. They are calculated
as described in the next two sections.

CALCULATION OF SIGMA | σijk is set to the average root mean displacement of the two
residues defining the restraint. The root mean displacement is calculated from the aver-
age atomic B-factors of the two residues bi as σijk =

√
3bi/8π2.

CALCULATION OF SCALING FACTOR | Aijk balances the contributions of structural con-
sensus and evolutionary distance between target and template. By expressing Aijk as
a function of the sequence similarity between target and template, sequences closer to
the target are given a stronger weight. Setting Aijk to a constant for all templates would
weight all restraints the same, irrespective of the evolutionary distance between the tar-
get and the template. After experimenting with a variety of measure for the evolutionary
relatedness of target and template, a measure based on the BLOSUM6228 scoring matrix
was found to perform best. It was substantially superior to sequence identity, E-value
and raw alignment scores.

The question remains on how Aijk should depend on the sequence similarity mea-
sures. By defining Aijk as a linear function of sequence similarity, the consensus part of
the scoring algorithm was too influential. For many targets, constraints from distant tem-
plates were driving the best-scoring template away from the optimum. To increase the
importance of closely-related sequences, we express Aijk as an exponential of sequence
similarity, e.g. Aijk = exp[c · sim]. The coefficient c leading to optimal results was found
to be 16.

Scaling of Constraints from Structures with Similar Sequences

The uneven sampling of sequence space in the PDB leads to an over-representation of
certain structures. Typically, structural bias is avoided by choosing a representative struc-
ture for a cluster of sequences. However, the structures within a cluster might differ con-
siderably, due to domain rearrangements, crystallization conditions or ligand-induced
fit. Thus, it is not possible to select a single representative structure, since the target
sequence might be in one or the other conformation. In addition, different homology
detection algorithms can produce alternative alignments. They differ in the location of
insertions, deletions, and overall coverage of the target sequence. It is clear that structural
constraints which are consistent in alternative alignments are more reliable as they are
robust against fluctuations of alignment algorithms.

To account for alternative alignments and structures of highly similar sequences, con-
straints are scaled by how often the particular Cα-Cα pair is observed in the template
cluster. To illustrate, in �gure 7.1 a sample cluster with two templates is shown. The first
template covers the N-terminal and central region of the target sequence, whereas the
second template covers the C-terminal and central regions. Distances between residues
of the C-terminal part can only be observed in the second template. However, distances
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between Cα atoms in the central part can be observed twice. Distance between C- and
N-terminal residues are never observed.

n=2

n=0

n=1

Friday, November 2, 2012

Figure 7.1 Constraints are downweighted by the number of times the pairs of residues ap-
pears in a cluster. The thick black line denotes the target sequence, the thin black lines the
templates structures.

Depending on the scoring scheme of the alignment method, the insertions and deletions
can happen a few residues earlier or later. When determining the number of observations
from raw alignment counts, constraints from residues which appear as a deletion in one
sequence, but not in the other would not get downweighted. When determining which
pairs of Cα atoms can be observed in the structure, we consider short deletions below
5 residues in the template sequences as aligned. Thus, small relative shifts of insertions
and deletions effectively leads to a downweighting of constraints.

The additivity of the Gaussian constraints ensures that the score of distances which
are identical in all structures of a cluster result in the same score as if there would only be
one structure. When the distances differ considerably, the Gaussian constraints represent
two alternative conformations for the residue pair.

Scoring of Models

After the distance constraints have been extracted from the templates, the models are
scored. For all pairs of Cα atoms (i, j) at a distance below the distance threshold in the
model, the agreement of the distance with the propensity function is calculated:

Cij(dij) =
∑

k

cijk(dij)

, where dij is the distance between Cαatoms i and j and the sum runs over all distance
restraints defined between the two residues. The final score for the model is the sum of
the individual distance agreements, �gure 7.2.

The formulation of distance constraints as sum of Gaussian functions is employed by
the MODELLER programs as well72. It treats each observed distance as an alternative
conformation, without enforcing any consistency on the restraints. Multiple, alternative
conformations for the model can coexist.
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Figure 7.2 Example propensity for distance constraints between two residues. In grey, the
individual Gaussian functions are shown, one for each identified template. The blue line shows
the sum of all Gaussian functions.

The magnitude of these scores depends on several factors: First the number of restraints
considered in the calculation, second, the similarity of the templates to the target se-
quence, and third, the variation of the restraints. Since these factors all depend on the
target, the distance scores can only be understood as a relative ranking, which is valid for
models of a given sequence. These scores are helpful in identifying the best model among
a set of models, but do not predict the quality of the model on a global scale. However,
global quality estimates are important in determining the usefulness of a model. Addi-
tionally, as soon as the distance scores are combined with other scoring functions, e.g.
QMEAN, a sufficiently high global correlation is required to fix the relative importance
of the individual scoring functions.

To convert the relative scores into scores on an absolute scale, we use the sequence
similarity and structural score of the highest scoring template. The score value is related
to GDT_HA by comparing to GDT_HA values obtained for target-template pairs with
similar sequence similarity. Since GDT is clearly bound by the coverage of the target
sequence, the obtained GDT estimate is multiplied with the target sequence coverage of
the highest ranking template.

Combination of Distance Score with QMEAN

The QMEAN6 norm scores for each model are calculated after Benkert142. The predicted
solvent accessibility and secondary structure for the QMEAN agreement terms are cal-
culated with SSpro4116 (version 4.03) and PSIPRED8 (version 2.61), respectively.

The distance score is linearly combined with QMEAN6. When templates could be
identified, the relative scaling factors of distance score and QMEAN6 have been set to
0.8 and 0.2, respectively. When no templates are identified, the importance of QMEAN6
is set to one. The scaling factors have been determined empirically on the CASP8 training
set.
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Implementation

The scoring function has been implemented as part of SWISS-MODEL Next Genera-
tion using the OpenStructure framework135. The low-level calculations are implemented
in C++. Most of the logic that deals with setup/initialisation/output is implemented in
Python.

3Results & Discussion

Results on CASP8 data

Before turning our attention to the CASP9 predictions, we would like to have a closer look
at the contributions of the individual terms of QMEANdist. We will discuss the influence
of QMEAN and the distance score on template selection, model ranking and absolute
quality prediction of models. Table 7.1 summarizes the performance of the individual
terms of QMEANdist.

QMEAN dist QMEANdist

GDT_HA Cα-lDDT GDT_HA Cα-lDDT GDT_HA Cα-lDDT

r per-target 0.732 0.805 0.844 0.901 0.854 0.917

loss 0.057 0.065 0.050 0.050 0.048 0.039

r pooled 0.766 0.849 0.830 0.857 0.848 0.889

Table 7.1 Performance of QMEAN, the distance score (dist) and QMEANdist on all server
predictions of CASP8. For each of the structural similarity measures (GDT_HA and Cα-lDDT)
the loss (difference between best and best-scoring model), average Pearson coefficient and
Pearson correlation of all pooled predictions are listed.

MODEL RANKING | Per-target correlation measures how well quality estimation programs
are able to rank the models of a given target. Compared to the QMEAN scoring function,
the distance constraints substantially improve the ability to rank models (�gure 7.3). On
average, QMEANdist achieves a Pearson correlation to GDT_HA of 0.85, compared to
r = 0.732 for QMEAN. With the exception of 6 targets which have marginally lower Pear-
son correlations than QMEAN alone, the per-target correlations are higher in all cases.
In some cases, the correlations increase from 0.6 to almost 0.95 for QMEANdist. The
incorporation of QMEAN slightly lowers the correlation coefficient for easy targets. In a
sense, the distance constraints from the templates are informative enough and QMEAN
is adding noise to the ranking. Still, the incorporation of QMEAN into the scoring is
beneficial and leads to a significant increase of performance. The difference is especially
noticeable for medium to difficult targets, were multiple equally plausible templates are
available.
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Figure 7.3 Pairwise comparison of per-target correlation coefficients for QMEANdist, the dis-
tance score (dist) and QMEAN to GDT_HA on CASP8 predictions.

Similar results are obtained for correlation to Cα-lDDT. An increase in performance
is observed for both distance scoring and QMEANdist. For all 3 scoring schemes, the
correlations to Cα-lDDT are substantially higher than the corresponding correlations to
GDT_HA. Two reasons contribute to this: first the distance scoring schemes and poten-
tials of mean force are based on internal distances and are thus more closely related to
Cα-lDDT. Second, lower correlations to GDT_HA are observed for targets which exhibit
domain movement. The effect of domain movement is less strongly pronounced for Cα-
lDDT, which makes the correlations appear higher.

MODEL SELECTION | While relative ranking performance depends on the ordering of all
models, model selection measures the capability of a scoring function to pick the best
model. We compare the loss of GDT_HA, i.e. the difference between the GDT_HA of
the best model in the set minus the GDT_HA score of the highest scoring model, for
each scoring function.

As with model ranking, the combination of distance scores with QMEAN is beneficial,
�gure 7.4. QMEAN alone selects on average a model with a 5.7 lower GDT_HA than
the best model. The distance score alone achieves a loss of GDT_HA of 5.0, slightly lower
than QMEAN. The combination of QMEAN and distance constraints has a positive effect
for model selection. Even though the improvement is less pronounced than for per-target
and global correlations, the average loss of GDT_HA decreases to 4.8 GDT_HA points.

In analogy to loss of GDT_HA, we define the Cα-lDDT loss as the difference between
the model with the highest Cα-lDDT and the Cα-lDDT of the selected model. The loss
of Cα-lDDT also profits from incorporation of distance constraints. Already the distance
scoring alone is substantially better than QMEAN (0.065 vs. 0.050). Another boost in
performance is observed when the distance score and QMEAN are combined (0.039).

ABSOLUTE QUALITY PREDICTION | The performance of QMEANdist to estimate model
quality on an absolute scale was measured by pooling the models of all targets (�gure 7.5)
and calculating the correlations between QMEANdist and the GDT_HA/Cα-lDDT scores,
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Figure 7.4 GDT_HA of selected models of QMEANdist in comparison to the distance score
(dist) and QMEAN on the CASP8 training set. Points above the diagonal indicate targets for
which the selected model of QMEANdist had a higher GDT_HA than dist/QMEAN.

respectively. The correlation of QMEANdist to GDT_HA was found to be 0.85 compared
to 0.75 for QMEAN6. Correlation to Cα-lDDT was improved slightly as well, from 0.85
to 0.89. Although the correlations to Cα-lDDT are slightly higher, the absolute difference
between the predicted quality and the Cα-lDDT scores are bigger. There is one-to-one
correspondence between QMEANdist scores and GDT. However, for Cα-lDDT, the pre-
dicted scores are clearly off-diagonal and the QMEANdist score heavily under-estimate
the Cα-lDDT. This is a direct effect of the training of the global QMEANdist scores on
GDT. For better absolute quality estimates with respect to Cα-lDDT, the data would need
to be retrained on Cα-lDDT.
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Figure 7.5 Global correlation of QMEANdist score to GDT_HA and Cα-lDDT of all pooled
CASP8 targets. The plot shows the logarithmic point density from white to black.

In the upper left corner of �gure 7.5, a group of models are assigned a QMEANdist score
between 0.4 and 0.75, even though they have a GDT_HA of only 0.2. These structures are
all models of target T0498, a designed protein with a sequence identity of 95% to T0499.
T0498 adopts a 3α-fold, whereas T0499 adopts an αβ-fold66,237. Such targets are very
challenging for automated methods as the usual assumptions of sequence and struc-
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ture relationship do not necessarily hold for designed proteins: A single point-mutation
having a dramatic effect on the overall structure would most likely lead to a loss of func-
tion, and thus be deleterious in a living organism. But these sequences were designed in
absence of typical evolutionary pressure, and were allowed to undergo massive confor-
mational changes.

Regardless of the structural similarity measure, the spread between predicted and ob-
served similarity is relatively large. For example, a QMEANdist value of 0.6 corresponds
to GDT_HA values between 0.4 and 0.7, the difference between a fold-level accurate and
a prediction of medium quality. There is substantial room for improvement to make the
quality estimates more accurate.

Results on CASP9 data

In the following, the results of QMEANdist at the CASP9 experiment are discussed. The
discussion occasionally touches on the performance of other quality estimation servers
but is not intended to be a comprehensive evaluation of the CASP9 QA category. For an
in-depth discussion of all QA servers, the official QA assessment118 is to be consulted.

Unlike the official QA assessment which was based on GDT_TS scores, GDT_HA
is used herein, which is more discriminative for high-quality models: the four distance
cutoffs of GDT_TS (1Å, 2Å, 4Å, and 8Å) are replaced by 0.5Å, 1Å, 2Å, and 4Å. Addition-
ally, quality prediction servers are evaluated against Cα-lDDT, a measure which is more
robust in presence of domain movements.

Since QMEANdist was still in development during the prediction period of CASP9,
the set of parameters used differs from the final and optimal set. For the CASP9 pre-
dictions, the following parameters were used: the weights are calculated as exp(sim)
(coefficient set to 1), a sequence separation of s = 8, and a cutoff distance of D = 12Å.

PER-TARGET CORRELATION | For GDT_HA, the consensus-based methods achieve the
highest per-target correlations (�gure 7.6). They are followed by QMEANdist (QA101,
r = 0.850) and the quasi-single model method Splicer_QA (QA100, r = 0.837). While the
performance gap between consensus and quasi-single model methods is small, there is
a large gap to the first single-model MQA programs: MULTICOM-NOVEL (QA215) and
QMEAN (QA427) achieve an average Pearson correlation of 0.71 and 0.69, respectively.
For Cα-lDDT, QMEANdist (r = 0.900) moves to rank 12, statistically indistinguishable
from Splicer_QA (r = 0.907) on the 8th rank.

As with CASP8 server predictions, quality estimates tend to correlate better with Cα-
lDDT than GDT_HA. Similarly, the top-performing consensus servers for GDT_HA have
a higher correlation to Cα-lDDT, although the correlation improvement is less pro-
nounced for these methods. The differences in correlation gain is partially explained by
the dependence of the top-performing clustering methods on rigid-body superpositions
to compare the model structures. Methods based on inter-atomic distances fail to mimic
the behavior of GDT in presence of domain movements. This causes the correlations
to be smaller. The top-performing consensus methods for Cα-lDDT, ModFOLDclust2
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Figure 7.6 Mean Pearson correlations of predicted quality of all CASP9 QA servers and struc-
tural similarity to target. (A): GDT_HA, (B): Cα-lDDT. QMEANdist (QA101) in grey, consensus
groups in red, quasi-single model in yellow, single model servers in green.

(QA397) and IntFOLD-QA (QA078), are indeed methods that use inter-atomic distances
instead of global superpositions to cluster the models119.

While for 75% of the CASP targets, the per-target correlations of QMEANdist were
above 0.88, QMEANdist failed to properly rank the models for a small fraction of targets.
The majority of these targets have been assigned to the free-modeling category. Since
QMEANdist was unable to obtain any evolutionary restraints for these targets, the quality
predictions are solely based on the QMEAN6 scoring function. Lower correlations can
thus be expected.

MODEL SELECTION | Figure 7.7 shows the GDT_HA and Cα-lDDT losses for all QA
servers of CASP9. Again, for GDT_HA the typical separation between clustering, quasi-
single and single-model MQA programs is visible, albeit less pronounced than for per-
target correlations. For both GDT_HA and Cα-lDDT, QMEANdist was ranked as the
first non-consensus method, followed by Splicer_QA (QA100). The loss of QMEANdist
was indistinguishable from the majority of consensus methods.
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better worse tie delta

GDT lDDT GDT lDDT GDT lDDT GDT lDDT

QA002 36 44 49 36 31 36 0.011 0.000

QA312 31 40 48 35 37 41 0.013 0.000

QA407 36 44 51 41 29 31 0.010 0.003

QA273 35 34 47 39 34 43 0.005 0.003

QA472 56 58 18 15 42 43 -0.038 -0.037

Table 7.2 Head-to head comparison of QMEANdist and the two top performing servers for
Cα-lDDT (QA407, QA273), GDT_HA (QA002, QA312), and QMEAN (QA472). The table lists the
number of targets where QMEANdist was better, worse or equally good at model selection.
The delta column lists the difference in loss of GDT_HA and Cα-lDDT between the methods.
Positive numbers denote higher losses for QMEANdist.

In order to understand the differences between QMEANdist, QMEAN, and the top-
performing servers, we have performed head-to-head comparisons for GDT_HA and
Cα-lDDT, table 7.2. For each of the servers, the number of wins (QMEANdist selects
a better model), losses (QMEANdist selects a less-accurate model), ties (the selected
models are within 0.01 GDT_HA/Cα-lDDT), and the average difference in accuracy have
been calculated. Overall, the two top-performing servers for GDT_HA (QA002/QA312)
selected a better model in 49/48 cases, whereas the model of QMEANdist is better for
36/31 targets. Here, the number of targets where QMEANdist selects a better model is
significantly lower. Compared on Cα-lDDT, the same two servers are virtually indistin-
guishable from QMEANdist, both in terms of number of wins and average difference of
selected models. For the two top-performing servers for Cα-lDDT (QA407/QA273), the
number of wins and losses is more balanced.

A substantial increase in performance in model selection is seen in comparison to
QMEAN (QA472). QMEANdist selects worse models for 18 targets. With the exception
of five targets, the losses are smaller than 5 GDT_HA points. The wins, on the other hand
exceed 5 GDT_HA points in 34 cases.

ABSOLUTE QUALITY PREDICTION | The ability of the MQA methods to predict the quality of
models on an absolute scale is shown in �gure 7.9. The correlations have been calculated
both for lDDT and GDT_HA. Correlation of absolute quality to GDT_HA is dominated
by consensus methods. Splicer_QA, however, outperforms all other QA methods when
correlating against Cα-lDDT. The perceived dominance of consensus methods at CASP
for absolute quality predictions is not due to intrinsic limitations of quasi-single model
methods, but due to the choice of the structural similarity measure. Reliable absolute
quality predictions are feasible by only relying on information from available template
structures and empirical energy functions. No clustering of submitted models is required.

QMEANdist performed poorly at predicting the global quality of the CASP9 dataset.
The predictions are only slightly better than the predictions of QMEAN alone. The rela-
tions between scores and predicted quality of the targets exhibit a different slope, which
causes them to not superpose well and spread out. Partially, the lack of improvement
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Figure 7.7 Loss of GDT_HA and Cα-lDDT on CASP9 targets. (A) mean GDT_HA loss, (B)
median GDT_HA loss, (C) mean Cα-lDDT loss, (D) median Cα-lDDT loss. QMEANdist (QA101)
in grey, consensus groups in red, quasi-single model in yellow, single model servers in green.
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over QMEAN is explained by the use of a smaller coefficient for the distance constraint
weighting. A smaller weighting causes constraints from distant templates to be more in-
fluential and the magnitude of the scores is more dependent on the number of Gaussian
constraints per residue pair. A larger coefficient on the other hand, reduces the number
of significant constraints. When using the improved parametrization, the correlation to
GDT_HA increases from 0.76 to 0.83.
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Figure 7.8 Absolute quality prediction of QMEANdist on CASP9 targets

The Importance of the Similarity Measure

As described above, there seems to be a clear bias of methods towards either Cα-lDDT or
GDT_HA. When one or the other structural similarity measure is used, the final ranking
of the methods changes. When using GDT_HA, methods based on global superposi-
tion of models and templates perform better, whereas methods using internal distances
perform better when compared against Cα-lDDT. For most targets, the difference be-
tween the two similarity measures are small. However, the choice of one similarity mea-
sure goes beyond method preferences. Especially in presence of domain movements,
superposition-based measures do not lead to meaningful results. For example, CASP
target T0542 has a length of 590 residues and exhibits a two domain architecture. There
are two sets of templates available which differ in the relative orientation of the domains.
Some of the models submitted by predictors are based on the first, some on the second
group of templates. For the assessment of the TBM category, the T0542 has been split
into two assessment units. However, for the QA category the quality estimation pro-
grams are compared against the full models. It is clear that the whole-target GDT_HA
scores are largely dominated by the domain movement and not by how well the predic-
tors modeled the individual domains. For example, when evaluated against GDT_HA the
correlation of the QMEANdist score is only 0.640, even though the method is perfectly
capable of ranking the models for Cα-lDDT (r = 0.972). In this particular case, GDT_HA
scores do not capture local model quality well-enough. This reinforces the importance
of superposition-free scores in presence of domain movements.
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Figure 7.9 Absolute quality prediction of all QA servers expressed as Pearson correlation
coefficient between score and similarity measure. (A): GDT_HA, (B) Cα-lDDT. QMEANdist
(QA101) in grey, consensus groups in red, quasi-single model in yellow, single model servers
in green.

4Conclusions

In this work, we presented QMEANdist, a variant of QMEAN augmented with con-
straints from related template structures. Compared to QMEAN alone, the method’s
ability to rank and select models is greatly improved. In addition, the absolute quality
estimates are more reliable. The analysis of the QA results from CASP9 has shown that
our quasi-single model method QMEANdist produces per-target quality estimates com-
parable to consensus programs. The ability to rank models for a given target of QMEAN-
dist was indistinguishable from many of the clustering methods participating at CASP9.
The main differences are due to the presence of free-modeling targets, where little to no
template information is available. The ability of QA methods to select accurate models is
an important performance figure. Performance is less dominated by low-quality models,
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and focuses more on models with highest quality for each target. During CASP9, QME-
ANdist was one of the top-performing methods for model selection: for median loss of
lDDT, QMEANdist ranks as the fourth-best method. These results, together with a de-
tailed comparison to the two best-performing QA methods according to Cα-lDDT and
GDT_HA losses, underline the stability and viability QMEANdist.

The results of CASP9 have shown substantial room for improvement of QMEANdist
in two areas: absolute quality prediction and local, per-residue quality estimates. Con-
sensus programs perform substantially better than QMEANdist at absolute estimates.
As illustrated by absolute quality prediction estimates of Splicer_QA, more accurate ab-
solute quality estimation are feasible for template-based MQA programs. The weighting
scheme employed by QMEANdist is based on the sequence similarity of target-template
alignment alone. There is potential for improving the quality estimates of QMEANdist
by incorporating more target-template alignment properties into the weighting. The use
of properties based on profile-profile scores, predicted secondary structure features will
most likely have a positive effect on model selection and absolute quality estimation.

Likewise, the local quality estimates of QMEANdist can only be understood as a failed
experiment. Correlating the propensity scores to local residue quality has proven to be
difficult, as both the number of constraints and the magnitude of the propensity functions
vary greatly. More work is required to obtain reliable local quality estimates.

Additionally, it was shown that the choice of similarity measure alters the relative
ranking of the groups. Servers using inter-atomic distances for clustering perform bet-
ter on Cα-lDDT, whereas methods based on a superposition of models perform better
for GDT_HA and GDT_TS. As shown for target T0542, the evaluation of model qual-
ity servers on GDT measures in presence of domain movements is not meaningful. The
results are dominated by the effect of relative domain orientation changes and not the
ability to predict the accuracy of the individual domains. Domains should be split into
assessment units, or evaluated against Cα-lDDT, as done in this work.
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Automated Modeling in SWISS-MODEL
Next Generation

An automated homology modeling pipeline for inclusion into the SWISS-MODEL web server
is outlined. The method applies state-of-the art homology detection programs to identify
evolutionary related template structures. The quality of each template is estimated using a
probabilistic approach: each property of the target-template pair, e.g. sequence identity, HHsearch
alignment score, or agreement between predicted solvent accessibility acts as a predictor of the
template’s quality. The quality estimates are combined by considering the uncertainty of each
prediction, effectively increasing the importance of accurate predictors. Models are then built
for the 30 top-scoring templates, and their quality assessed with the composite scoring function
QMEAN. Finally, models are scored by consensus to identified template structures.
It will be demonstrated, that the combination of template properties for quality estimation greatly
improves template selection performance for all targets difficulties. The performance greatly
benefits from inclusion of both QMEAN and structural consensus as well. For an objective
comparison to other existing structure prediction servers, the complete pipeline is assessed as
part of the CAMEO live benchmark, which reveals strengths and weaknesses of the presented
approach.

1 Introduction

The SWISS-MODEL web-server for protein homology modeling is a widely-used service
to predict the structure of proteins from their primary amino acid sequence42,131. Struc-
tures are modelled by homology to experimentally determined protein structures, the
templates. SWISS-MODEL uses as much of the available template information as pos-
sible when building models, without residing to extensive sampling to guide the model
building process. Models only deviate from the templates where it is unavoidable, e.g.
due to insertions and deletions, or non-conserved sidechains.

The current version of SWISS-MODEL builds models on a single template. When
closely-related template structures are available, the models are locally very accurate,
and are often closer to the target structure than models from multi-template model-
ing programs. Nevertheless, multiple template modeling provides some benefits: in the
Domain-Find chapter, an analysis was performed to quantify how much models can be
improved by including information from multiple templates. Models with an overall low
lDDT score often contain stretches of residues with a higher per-residue lDDT than the
best single-template model. The chemical environment of these residues more closely
resembles the target structure. Would restraints from these residues be selected, more
accurate models could be built. In practice, it turns out to be challenging to identify the
optimal combination of restraints without residing to computationally demanding sam-
pling protocols66,79,82. Improvements seen for multi-template models are often due to
model extension: models built on a template covering only a part of the target sequence
are extended with structural information from other available templates. By that, the
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effective coverage of the target sequence is increased. For many applications, local pre-
diction accuracy is more important than complete coverage of the target sequence204,238.
Thus, local accuracy is to be retained while extending the coverage of the built models.

Regardless whether models are built on single or multiple templates, the templates
identified by homology detection programs need to be ranked according to their quality
prior to model building. In this work, a template ranking scheme is developed that allows
to accurately predict the quality of a template. The template ranking serves as the basis
for a complete homology modeling pipeline for inclusions into the SWISS-MODEL web
server. The ranking scheme is optimized for a single-template modeling pipeline, but has
been designed to facilitate the transition from pure single-template modeling to a multi-
template modeling approach. First, the automated modeling pipeline will be outlined in
detail. Then, the template selection and model building steps are analyzed on training
sets, giving insight into the factors that contribute the most to template selection perfor-
mance. Finally, to assess the overall viability of the approach, the method is compared to
existing protein structure prediction servers registered in the CAMEO live benchmark.

2Materials & Methods

Method Overview

The modeling pipeline comprises the following steps, which are described below in more
detail:

• Templates for the query sequence are identified using HHsearch/HHblits and BLAST.
• The template’s quality is estimated from its properties.
• The templates are ranked according to the estimated quality
• Models are built for the 30 top-ranking templates using PROMOD-II and MOD-

ELLER
• The model quality is assessed with QMEAN and combined with the quality estimates

on the template level.
• Models are further scored by structural agreement with the top-ranking templates.

Datasets

TARGET SEQUENCES | A set of target sequences from high-resolution X-ray structures has
been derived from the PISCES web-server239. The following parameters have been used
to generate the test set: mutual sequence identity less than 15%, R-factor of less than
0.3, resolution < 1.5 Å, and a minimal length of 60 amino acids. Chains where the atom
sequence covers less than 50% of the SEQRES sequence have been removed from the
set. The resulting test set contained 1304 protein chains.
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BLAST TRAINING SET | For each target sequence of TARGET SEQUENCES, BLAST29 (version
2.2.16) has been run against all sequences of the SMTL with default parameters (sub-
stitution matrix: BLOSUM62, gap opening penalty: 11, gap extension penalty: 1) and an
E-value cutoff of 0.0001. This resulted in a total of 8890 target-templates alignments.

HHSEARCH TRAINING SET | For each target sequence of TARGET SEQUENCES, a profile was
built with the buildali.pl script from the HHsearch package32 (version 2.0.13) using three
PSI-BLAST iterations. The profile was searched against a 70% clustered database of SE-
QRES profiles. Then, the search was extended to all sequences of the SEQRES by creat-
ing a temporary database containing sequences of all clusters identified in the first search
step. HHsearch was used with the default parameters. To avoid overweighting of target
sequences with many templates, the identified templates have been clustered, and only
the centroids of the 90% clusters have been used in the evaluation. The final HHsearch
Training Set contained a total of 151347 target-template alignments.

HHBLITS TRAINING SET | This set was created like the HHsearch Training Set, except that
the profiles have been built with HHblits33 (version 2.0.13) against a 20% non-redundant
database (NR20) with one iteration. The profile is then searched against all HHblits pro-
files of the SMTL. The final HHblits Training Set contained a total of 141362 target-
template alignments.

ARTIFICIAL TEMPLATE SELECTION TEST SET | Starting from the HHsearch Training Set, ar-
tificial template selection tests have been created by removing templates above certain
sequence identity, irrespective of the template-target coverage. Sequence identity thresh-
olds of 80%, 50%, 30%, 25%, 20%, and 15% were chosen. These test sets have then been
used to evaluate the template selection performance. The test sets comprised the follow-
ing number of targets:

Test set 15% 20% 25% 30% 50% 80%

Targets 797 917 958 980 1022 1035

CAMEO TEST SET A | The CAMEO test set was derived from CAMEO targets that were
submitted to structure prediction servers between 13th of January 2012 and 20th of April
201254. NMR structures and structures with lower than 75% coverage of the submitted
SEQRES sequence were removed from the set. The final set contained 205 targets of
all difficulty levels. Pseudo-models were built by copying conserved coordinates from
the templates to the model, ignoring insertions and deletions. To measure the structural
similarity between the pseudo-model and available experimental structures with match-
ing sequence, the Cα-lDDTs were calculated for the pseudo-models. Since the SMTL
might contain multiple polypeptide structures with matching sequence, the Cα-lDDT of
each model was set to the highest Cα-lDDT obtained against any of the chains in the
template library.
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CAMEO TEST SET B | The CAMEO test set was derived from CAMEO targets submitted to
structure prediction servers between 12th of October 2012 and 14th of December 201254.
The resulting set contained 191 targets.

Template Identi�cation

To identify evolutionary related protein structures, we apply three well-established ho-
mology detection programs: HHsearch, HHblits and BLAST. These sequence and profile-
profile search programs have repeatedly performed well at the CASP experiment52−53.
A detailed comparison of HHsearch and BLAST has been carried out by Sadowski and
Jones240. They find that it is beneficial to apply both methods as they target different
sequence identity regimes: for closely-related templates, the scoring model underlying
BLAST is more accurate for creating alignments, whereas the HHsearch scoring model
is taking over for more distant sequences that do not share considerable identity to each
other.

Template Properties

Several ranking schemes have been applied to template selection: feed-forward neuronal
networks241, alignment E-values190, profile-profile alignment scores242, selection by se-
quence identity243, etc. The template selection described herein sees each of the template
properties, e.g. sequence identity, secondary structure agreement, as predictors for the
template’s quality q. The higher a template’s quality the more closely the model built on
the template resembles the actual target structure. When the target structure is known,
e.g. for training purposes, q can be calculated from a pairwise structure comparison. In
other cases, q is to be estimated from available template properties.

The following template properties have been used to estimate q: sequence identity,
sequence similarity, agreement between predicted and observed secondary structure,
agreement between predicted and observed secondary solvent accessibility, QMEAN4
score of the model, and HHsearch raw alignment score (table 8.1).

Predictor Description

cov × id sequence identity

cov × sim sequence similarity

cov × acc solvent accessibility agreement

cov × sse secondary structure agreement

cov × hh score normalized HHblits/HHsearch score

cov ×QMEAN4 QMEAN4 norm score of the model.∗

Table 8.1 Available predictors for template/model quality q. ∗ only available after model has
been built.

In the following, precise definitions for these properties are given:
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SEQUENCE IDENTITY/SIMILARITY | The sequence identity is calculated as the fraction of
identical residues divided by the number total of aligned residues in the target-template
alignment, ignoring gaps. The sequence similarity measure is based on a linear transfor-
mation of the BLOSUM62 substitution matrix35. Consider an alignment of sequences A
and B. The score M (a, b) for a column in the pairwise alignment of A and B consisting
of amino acid a and b is given as:

M (a, b) =
{

m(a,b)−min(m)
max(m)−min(m) , if a 6=gap and b 6=gap
0, otherwise

where m(a, b) are the scores from the BLOSUM62 substitution matrix28, min(m) and
max(m) are minimal and maximal substitution scores found in the matrix. The similarity
between the sequences A and B then defined as

sim(A,B) =
1
L
×

l∑
i=1

M (ai, bi)

where L is the number of aligned columns not containing any gaps. Unlike sequence
identity, when a sequence is aligned to itself, the score is not always 100%, but depends
on the amino acid composition of the sequence. For a sequence with a typical amino acid
composition, the sequence similarity is around 0.62, for sequences with a bias towards
rare amino acids, the similarity of the sequences can reach higher values.

QMEAN4_NORM SCORE | After ranking the templates, models are built for the top 30
templates with PROMOD-II244. The all-atom, Cβ, solvation and torsion potential ener-
gies for the models are calculated according to Benkert et al.142. The potentials are then
combined using weights trained on a large set of models built by PROMOD-II.

HHSEARCH/HHBLITS SCORES | The HHsearch and HHblits scores were retrieved from
HHsearch and HHblits for each identified template. The scores are based on the raw
alignment scores from the maximum accuracy algorithm of the HMM-HMM alignment
step. Additionally, clusters of highly conserved residues are rewarded using a local auto-
correlation function. More details on the HHsearch and HHblits score are given in the
HHsearch paper32.

AVERAGE PROFILE COLUMN ENTROPY | The column entropies of the target profiles have
been calculated as

H = −
∑

a

pa log pa

where the sum runs over all amino acids a in the column, pa is the frequency of oc-
currence of that amino acid in the column as defined by the HHsearch profile of the
target sequence. The average column entropy of the target profile is then calculated as
the arithmetic mean of the individual column entropies.

SOLVENT ACCESSIBILITY/SECONDARY STRUCTURE AGREEMENT | Solvent accessibility and
secondary structure are predicted with SSpro4116 (version 4.03) and PSIPRED8 (version
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2.61), respectively, by using the alignment obtained from HHsearch/HHblits. The pre-
dicted burial/secondary structure states of the target are compared with the template. The
agreement is defined as the matching fraction of solvent accessibility/secondary structure
states of the aligned residues.

Choice of Structural Similarity Measure

In this work, q is defined as the lDDT of the pseudo-model built on the template. This
is in contrast to established quality estimation programs where the quality is expressed
either as global distance test GDT (global) or S-score (local). However, as discussed in
the lDDT chapter, structural similarity measures operating on global superpositions are
weak measures for the similarity of protein structures in presence of domain movements.
Especially, for large training sets, the splitting of targets into assessment units is not fea-
sible. We have thus chosen lDDT as the measure for template quality, as it is largely
independent of domain movements, while maintaining a high correlation to GDT-style
measures41.

The choice of the underlying similarity measure determines the balance between cov-
erage and local reliability of the selected template/model. When template selection is
optimized for RMSD, shorter models often lead to smaller root mean square deviations
and are preferred. Local reliability of the model is the major driving force. For agreement-
based measures, such as GDT and lDDT, higher coverage of the target sequence typically
implies higher similarity. There are two counter-acting forces that play a role for template
selection: To achieve higher scores, either a model with higher coverage, or a shorter, but
more reliable model is selected. Local reliability has to be traded for coverage. Identifying
the optimal template according to GDT or lDDT thus drives template selection towards
longer alignments.

Derivation of lDDT PDFs for Properties

For templates which share considerable sequence identity with the target, predicting
the template quality from sequence identity alone leads to very accurate results. Includ-
ing secondary structure agreement does not improve template selection, since sequence
identity is already discriminative enough. However, for templates in the twilight zone32,
sequence identity is no longer a good measure for evolutionary divergence. The inclu-
sion of structural information from predicted features can significantly improve template
selection and even threading performance68−69. The relative importance of the template
properties for template selection clearly depends on the sequence identity regime. A lin-
ear combination of template properties is unlikely to perform well, since the linear re-
gression model assumes that the relative importance of the properties remains constant.

Another way of looking at it, is to consider the uncertainty with which each property
mi predicts q. The smaller the range of observed qualities for a given mi, the more ac-
curate the prediction is. The reliability of each mi can be estimated from large sets of
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target-template pairs with known q: assuming that the data in the training set is a rep-
resentative sample of target-template alignments, the probability of the template having
a certain q, is given by the lDDT density.

There are many possibilities to determine the reliability of a property in predicting the
lDDT. They all require approximating the 2-dimensional training data for each property
by a probability density function. For simplicity, we have chosen to approximate each
property by N equi-distant lDDT distribution fits. The distribution for a certain mi is
then obtained by linear interpolation between the distributions. Each of the N equi-
distant distributions is calculated by estimating the lDDT density using a non-parametric
approach. More specifically, we use density estimation (KDE)245 to approximate the lDDT
histograms. The PDF of a sampleX = {x1, x2, ..., xn} is approximated by a sum of kernel
functions, one placed on each xi:

fh(x) =
n∑
i

1
n
Kh(x− xi) =

n∑
i

1
nh
K(

x− xi

h
)

Kernel functions are required to be symmetric and integrate to one. The bandwidth pa-
rameter h influences the smoothness of the approximation. We have used a Gaussian
kernel with a bandwidth of h = 1 for all properties. The density estimation has been
performed with SciPy148.

Since the lDDT is coverage dependent and the above properties are calculated on
the aligned part only, the property values are multiplied by the coverage of the target-
template alignment. This automatically downweights short alignments, while rewarding
longer alignments.

lDDT Prediction

For each property, a probability density function of the template having a quality q, given
the property is obtained. This is written as P (q|mi). The lDDT value maximising the PDF
for properties mi is the most probable lDDT according to the data. By assuming that the
properties are statistically independent, the joint probability distribution is obtained by
multiplication of the individual PDFs. Thus, the lDDT q for a template, given its properties
M are given by:

arg max
q

P (q|M ) = arg max
q

∏
i

P (q|mi)

Model Building

Models are built for the top-n templates. Above a sequence similarity of 0.4, the models
are built with PROMOD-II. If PROMOD-II fails to built a model, a second model is built
using MODELLER. Below 0.4 sequence similarity, models are built with both PROMOD-
II and MODELLER. QMEAN4 is run on the two models, and whichever model gives the
higher score is selected.
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Scoring of Models with QMEAN and QMEANdist

After the models have been built, the models are further assessed using two scoring func-
tions: First, the quality of the models is assessed using the QMEAN4 scoring function.
The predicted quality of the model is set to the value of q maximising the PDF of the
template, multiplied by the PDF of the QMEAN4 score.

For structural scoring of the built models, we use two variants of the constraint scoring
from the QMEANdist scoring function: distance constraints from the top 20 templates
are extracted and weighted by

• an exponential of sequence similarity (variant A)
• an exponential of the predicted quality q of the model (variant B)

3Results & Discussion

Coverage-Dependence

The agreement-based nature of the lDDT implies a strong dependence on coverage of
the target-template alignment. In fact, for structures with an even distribution of lo-
cal contacts, the lDDT is clearly bounded by the coverage of the template to the target.
Since all properties are averages over the aligned residues, the properties themselves
are coverage-independent. A short target-template alignment has the same average se-
quence similarity as a longer alignment, even though the two are clearly different, and
a longer alignment is most likely superior in terms of lDDT. To simulate the coverage-
dependence of lDDT, each of the properties is multiplied by the coverage, prior to corre-
lating it to lDDT. In the following, the predictors are referred to as cov × x, e.g. cov × id
for the sequence identity predictor, to indicate inclusion of coverage dependence.

The strong correlation between coverage and lDDT of templates identified by HH-
search can be seen in �gure 8.1A. Similar behaviour has been found for templates iden-
tified by HHblits and BLAST. The theoretical, coverage-imposed upper limit of lDDT
values is only violated by a few target-template pairs. For low coverage values, the pre-
dicted lDDT values are more accurate. With increasing coverage, the spread increases
and coverage is a less reliable predictor for template quality. Still, the correlation be-
tween q and coverage is very strong, much stronger than expected for random protein
pairs. Clearly, the prediction power of coverage is heavily influenced by the fact that the
plots only contain target-template pairs identified as significant hits by HHsearch. The
length of these alignments, and thus the coverage, is driven by the underlying scoring
model. Longer hits are only possible when they share considerable similarity to the query
profile.
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Discussion of the lDDT Predictors

The quality estimate of each property for the template is represented as a probability
density function (PDF) of the pseudo-model having a quality q. The most probable q,
according to the property, is defined as the value of q maximising the PDF. The higher-
order descriptors of the PDF give additional information on the reliability of the quality
estimate. Some predictors, are more accurate for low property values, whereas others are
more accurate for high property values. The relations between predicted quality and the
predictors of HHblits templates are shown in �gure 8.1. cov× id is a prime example of a
predictor for which the prediction accuracy changes as a function of the input. For values
between 0 and 20, the spread of lDDT values for a given sequence identity is large (up to
0.6-0.7). In fact, in this region, the signal is mostly dominated by the coverage; sequence
identity itself is very noisy. Above 20, the prediction accuracy increases and between 40
and 100, cov × id is a very accurate predictor for template quality. cov × sim behaves
very similarly to cov × id, but delivers better results over a larger range of input values.
The sharp bend present in the sequence identity predictor is also visible in for sequence
similarity, albeit less pronounced. Both cov × acc and cov × sse show a considerable
spread of lDDT values in the upper value range. Nevertheless, when combined with the
other predictors, they contribute significantly to better template selection performance.

Normalization of HH Scores

Many alignment properties are target dependent. Prominent examples of such properties
include E-values, P-values, and raw alignment scores. Their scale depends both on the
target length as well as the amino acid composition. As a result, it is not possible to com-
pare E-values for different target sequences. Similar difficulties arise when comparing
the potentials of mean force energy of structures with different size142.

Prior to calculating a global quality for the template, the properties need to be trans-
formed to remove target-specific effects and make them comparable on a global scale. For
sequence identity, sequence similarity and the agreement terms, normalization by length
and coverage leads to accurate predictors. However, the HHsearch and HHblits align-
ment scores require a more in-depth treatment. In addition to the length-dependence,
the magnitude of the alignment scores depends on the multiple sequence alignment used
to derive the profile. More specifically, it depends on the number of highly conserved
profile columns in the hidden Markov model: Figure 8.2 shows that the magnitude of
the average per-column score of profiles aligned to themselves increases with decreas-
ing profile entropy. Profile entropy is a direct effect of the multiple sequence alignment
used to derive the profile. For profiles derived from alignments with a high number of
effective sequences, the evolutionary rates for the amino acid positions are well approx-
imated by the sequences in the alignment. Important amino acids appear as conserved,
whereas the non-conserved profile columns exhibit a high column entropy. For profiles
derived from alignment with a low number of effective sequences, however, many of the
amino acid columns appear as low-entropy, even though they are non-conserved. The
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Figure 8.1 Relation between template properties and Cα-lDDT of the resulting pseudo-
model. The plots are colored according to logarithmic point density from white to red. The
following properties are shown: (A) coverage, (B) coverage times sequence identity, (C) cov-
erage times sequence similarity, (D) coverage times HHsearch probability, (E) coverage times
overlap of predicted solvent accessibility between target and template, (F) overlap predicted
secondary structure between target and template
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column scores for two similar, highly-conserved profile columns have a larger magni-
tude than scores for two similar, but less conserved profile columns, the reason being
that the conserved columns are very much different from the background null model.
In summary, the difference in the effective number of sequences leads to two distinct,
but related effects: Target-template alignments from profiles with low average column
entropy are less accurate since the profiles do not model the evolutionary events well
enough. These alignments are less reliable, hence the quality of the template can less ac-
curately be predicted (�gure 8.3). For these reasons, the HHsearch score data has been
split according to profile entropy and fitted individually.
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Figure 8.2 Dependency of HHsearch alignment scores on profile entropy. The HHsearch
alignment scores divided by length of the alignment for the target profile aligned to itself
are plotted as a function of average profile column entropy.

Choice of Bandwidth Parameter

The bandwidth parameter h used in this work for kernel density estimation is consider-
ably larger than what would be recommended by Scott’s or Silverman’s rule246−247. As
a result, the data is only weakly approximated and the PDF is a heavily over-smoothed
representation of the data. We justify the use of such large value for the bandwidth by
the avoidance of overfitting of the data and the way with which the resulting probability
density functions are combined. Since the final PDF is the product of the property PDF’s
low values of a single PDF have a strong influence on the lDDT value maximising the
combined distribution. By opting for smoother distributions, a single value has in general
a less drastic effect on the final lDDT, which leads to more robust estimates.
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Figure 8.3 Effect of target profile entropy on HHsearch score. The normalized HHsearch
score is plotted for pairs with (A) average column entropy between 1.0 and 1.6 and (B) average
column entropy between 2.1 and 2.7.)
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Discussion of Template Selection Performance on Training Sets

From the set of targets used for training, we have derived 5 test sets that simulate tem-
plate selection in all sequence similarity regimes. For each of these test sets, we have
removed templates above certain sequence identity thresholds. These test sets are only
approximations of typical template selection scenarios. However, they are useful in iden-
tifying which measures are most accurate selectors across difficulty levels. The test sets
have been separately compiled from templates for each template identification method.
In the following, we discuss the performance on the HHsearch test set. Similar behaviour
was observed on the HHblits and BLAST test sets.
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Figure 8.4 Loss of lDDT on test sets derived from training data. From left to right, the test
sets culled at 15%, 20%, 25%, 30%, 50% and 80%. (A) mean loss of lDDT, (B) 95th percentiles
of lDDT losses

We have found the loss of lDDT to be a useful measure when evaluating the template
selection performance of multiple methods: The loss expresses the difference between
the template with the highest lDDT in the set and the selected template. For targets,
where templates above 50% sequence identity are available, sequence similarity is a bet-
ter approximation of the evolutionary distance between the target and the template than
HHsearch (�gure 8.4); the templates selected by sequence achieve on average a lower
loss of lDDT. The profile-profile scores smudge the sharply-peaked sequence similarity
signal and make it less informative. However, below 50% percent, HHsearch score is a
more accurate predictor. This illustrates that predictors based on a single property are
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not likely to produce accurate results across all target difficulties. Likewise, a linear com-
bination of properties is suboptimal as the underlying regression model assumes that
the relative importance of every term remains constant. The probabilistic combination
of the template’s properties (pred) on the other hand delivers almost constant perfor-
mance over the complete range of test set difficulties. The mean loss of lDDT numbers
are substantially smaller than for the predictors based on a single property. The proba-
bilistic combination of the individual properties implicitly includes the uncertainty of the
properties in predicting the lDDT. Depending on the target difficulty, and available tem-
plates, template selection is driven by another set of properties. For example, the quality
scores of distant templates are driven by the normalized HHsearch score, whereas for
closer templates, the predicted quality is mainly determined by sequence similarity and
sequence identity. The relative contribution of each property mi is linked to the entropy
of P (q|mi) (�gure 8.5). When the entropy is small, the spread of expected lDDT scores
decreases and contributes more to the template selection. For both the normalized HH-
search and sequence similarity, the entropy decreases with increasing similarity between
the target and template. However, the entropy decrease is more pronounced for sequence
similarity. For more closely related targets, the relative importance of sequence similarity
for template selection thus increases.
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Figure 8.5 Average entropy of P (q|mi) for the template selection test sets capped at 80%,
50%, 30%, 25%, 20% and 15% sequence identity. To avoid influence of coverage, only tem-
plates with more than 90% coverage of the target sequence have been used.
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Effect of QMEAN

In our tests, QMEAN contributes significantly to the template selection performance
(�gure 8.4). We have found that the QMEAN score is especially helpful in detecting large
alignment errors and wrongly assigned folds. Models built on a misaligned template, of-
ten appear as elongated structures with their hydrophobic core turned towards the sol-
vent. By considering sequence features alone, the misaligned templates might achieve
higher scores, due to higher sequence similarity, secondary structure agreement and HH-
search scores, even though it is significantly worse than other available templates. This
highlights a key feature of a modeling pipelines: It is important not to prejudge the va-
lidity of sequence-structure relationships from sequence properties alone233,248. Many
errors are only detectable when taking the structure of the resulting model into account.

An example, where sequence feature alone are not sufficient to judge the quality of the
resulting model is target 2v9vA, part of the 20% test set. The sequence has a length of 145
residues and codes for SelB of Moorella thermatica249. The models selected by sequence
properties alone (built on template 2xv4A, �gure 8.6A) and the model selected by se-
quence properties combined with QMEAN (built on template 3qphA, �gure 8.6B) differ
by more than 18 lDDT points (table 8.2). Both of the models receive negative QMEAN
Z-scores. Still, there are substantial differences between the two models: While solvation
scores are within 1σ of the expected QMEAN scores of X-ray structures for the model
built on 3qphA, the solvation score for 2xv4A deviates by 4σ. Likewise, the all-atom in-
teraction potential, Cβ-interaction and torsion potentials deviate considerably from what
would be expected for a protein-like conformation. This clearly indicates that the models
exposes some of the hydrophobic core to the solvent. The QMEAN scores for the model
built on 3qphA are, with the exception of the torsion energy, within 1σ of X-ray struc-
ture of comparable size. And indeed, the template selected by pred + QMEAN is the
template with the highest lDDT.

Discussion of Template Selection Performance on CAMEO Test set A

The performance of template selection methods was further evaluated on a test set com-
posed of 10 weeks of CAMEO targets. This set includes 205 targets of all difficulty levels.
Since the identified targets for each template are fixed, this test measures raw template
selection performance. Improvements arising from choice of threading or fold recogni-
tion algorithms are beyond the scope if this test. A complete evaluation of performance
of the complete modeling pipeline, including template identification and model building
steps, are described in the section Performance on CAMEO test set B.

The performance of the template selection methods on CAMEO test set A is summa-
rized in table 8.3. Sequence similarity multiplied by coverage selects the best template
for almost half the targets. On average, a template with 2.5 lDDT points less than the
best template is selected. For the lower sequence identity range, sequence similarity is
still able to select the majority of structures within 2 lDDT points, albeit the number of
cases it fails increase (data not shown). Using template quality estimation (pred), results
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A B

Figure 8.6 Comparison of Cα-lDDT of models selected by pred (A) and pred+QMEAN (B).
The structures are colored according to the Cα lDDT to the target structure with a gradient
from red to yellow to green.

Template lDDT ID Sim SSE ACC Cov

2xv4A 0.273 14.0 0.287 0.675 0.675 0.844

3qphA 0.457 11.4 0.259 0.610 0.610 0.911

All-Atom C-β Torsion Solv QMEAN

2xv4A -3.09 -2.159 -2.92 -4.01 -5.32

3qphA -0.68 -0.98 -2.17 -0.72 -2.22

Table 8.2 Comparison of sequence properties and QMEAN scores of models selected by
pred (2vx4A) and pred+QMEAN (3qphA), respectively. ID: sequence identity, Sim: sequence
similarity, SSE: secondary structure agreement, ACC: solvent accessibility agreement, Cov:
coverage of template to target, All-Atom, C-β, Torsion, Solv, QMEAN: QMEAN Z-scores cal-
culated for the models

in a lower loss of lDDT. The improvement is reflected in both lower average and median



135 | SMNG AutoModel

lDDT losses. Ranking of templates by structural similarity performs equally well. On av-
erage, a template which is worse by 1.9 lDDT points is selected. Adding QMEAN to pred
slightly lowers the loss of lDDT. The biggest improvement is achieved by using the pre-
dicted lDDT score of pred+QMEAN as weights for the structural scoring. Here, the loss
of lDDT drops to just above one lDDT point.

Method Mean Loss Median Loss Max Loss

sim 0.0266 0.0049 0.340

pred 0.0189 0.0044 0.227

struct 0.0190 0.0030 0.433

pred+QMEAN 0.0175 0.0053 0.223

pred+QMEAN+struct 0.0105 0.0036 0.170

Table 8.3 Loss of Cα-lDDT on 10 weeks of CAMEO targets for the template selection meth-
ods evaluated in this work. sim selection by sequence similarity times coverage, pred selection
by predicted quality q, struct selection by structural scoring with QMEANdist, pred+QMEAN
selection by predicted quality including QMEAN4 score of model, pred+QMEAN+struct selec-
tion by structural scoring using QMEANdist, but replacing the sequence similarity weighting
with pred+QMEAN.

Global lDDT Prediction

One of the goals for template selection procedure presented in this work is to be able to
predict the quality of the models on a global scale. To understand how accurate these pre-
dictions are on an absolute scale, we have plotted the predicted lDDT by pred+QMEAN
for all selected templates of the 50% test set against the actual lDDT of the selected tem-
plate (�gure 8.8). Prediction and actual lDDTs achieve a Spearman rank correlation of
0.91, and a Pearson’s r of 0.94. The predictions are most accurate above an lDDT of 0.6.
Below, the methods tends to over-predict the lDDT. The over-prediction results in a mean
difference between predicted and actual lDDT of 4.5 lDDT points.

Comparison of MODELLER and PROMOD-II

Once a suitable template has been identified, the alignment is turned into a 3-dimensional
model using a coordinate modeling engine. We have investigated the use of two well-
established modeling programs, MODELLER72, and the modeling engine behind SWISS-
MODEL (PROMOD-II)42.

To asses which of the two approaches gives better results for single template modeling,
we have built models with both MODELLER and PROMOD-II in parallel. To minimize
effects from handling of non-standard residues, the target/template alignment was first
turned into a pseudo-model by copying backbone and sidechains of conserved residues.
A fake 100% alignment between the pseudo-model and the target sequence was then
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Figure 8.7 An example where integrating structural information into the scoring scheme is
beneficial for template selection. The 3 plots show the predicted versus actual lDDT of the
template for CAMEO target 3vbp_A (A) Predicted quality from sequence features alone, (B)
predicted quality including QMEAN4 score, (C) predicted quality including sequence features,
QMEAN4 score and structural clustering. The number of points decreases from (A) to (B),
since PROMOD-II was unable to build models for the remaining cases.
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Figure 8.8 Predicted vs. actual lDDT of all selected templates of the 30% test set. (A): Scatter
plot of predicted vs actual lDDT, (B) histogram of the differences between actual and predicted.
Negative numbers indicate that the lDDT has been over-predicted, e.g. is lower in reality.

constructed and passed to MODELLER and PROMOD-II. The performance of MOD-
ELLER and PROMOD-II was tested on a 281 target-template alignments of various dif-
ficulty levels. Since PROMOD-II has failed to build models for 27 targets, the final com-
parison was performed on 254 models.

The models built by MODELLER and PROMOD-II have virtually the same lDDT
scores when evaluated on the Cα level. They cover the complete range of lDDT scores,
from 0.3 to almost perfect models with lDDT scores close to one. Regardless of the target
difficulty, both modeling engines produce very similar model structures. In �gure 8.9, the
all-atom lDDT scores of the models built by PROMOD-II and MODELLER are plotted
against each other. Most points cluster around the diagonal. For targets with lDDT scores
below 0.6, both modeling engines on average produce models of the same quality. For
a few models, MODELLER is significantly better. Above lDDT scores of 0.7, the better
models are mostly generated by PROMOD-II. The difference between the two modeling
engines increases with higher lDDT scores.
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Figure 8.9 lDDT of models built on the same target-template alignment by MODELLER and
PROMOD-II, respectively. (A) all-atom lDDT, (B) histogram of lDDT differences between model
built by MODELLER and PROMOD-II. Negative differences mean the model built by PROMOD-
II is better.
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Figure 8.10 lDDT difference of models built by PROMOD-II and MODELLER plotted against
the sequence similarity between target and template. Negative differences means the model
built by PROMOD-II is more accurate than the model from MODELLER. The black line is a
sliding average.

Since the target difficulty and thus the expected lDDT value for a certain model strongly
correlates with the evolutionary distance between the target and the template, one would
expect that most high lDDT models are built on templates that are relatively close to
the target structure and share a high sequence similarity to the target. In �gure 8.10,
the all-atom lDDT difference between the model produced by PROMOD-II and MOD-
ELLER are plotted against the sequence similarity between the target and the template
the models were built on. The same trend that can be seen in �gure 8.9 can also be seen
in this figure. With increasing sequence similarity, PROMOD-II is able to consistently
build more accurate models than MODELLER. Above a sequence similarity of 0.4, the
PROMOD-II model is, with one exception, always at least as good as the MODELLER
model. The black line on the plot shows the average difference between the MODELLER
model and the PROMOD-II model. Down to a sequence similarity of 0.35, it is on aver-
age better to use PROMOD-II models. Below that, MODELLER produces slightly better
models.

To analyze the reasons for differences between the models from PROMOD-II and
MODELLER, the local per-residue lDDT scores from all residues of the 254 targets were
calculated. To test the hypothesis, that the main differences are caused by the way the
two programs approach the modeling of conserved sidechains, we have plotted the per-
residue lDDT of conserved residues from MODELLER and PROMOD-II against each
other. Similarly, we have plotted the non-conserved residue lDDT scores against each
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other (�gure 8.11). For both the conserved and non-conserved residues, the majority
of the residue lDDT scores are above 0.5. The non-conserved lDDT scores overall align
very well on the diagonal. The spread seems to increase for higher lDDT scores, even
though this might be caused by the fact that there are more points in the high lDDT
range. On average, the sidechains by MODELLER achieve a higher score by 0.001 lDDT.
The difference is significant (p-value of 1e − 28), albeit small. For the non-conserved
scores, on the other hand, the differences between MODELLER and PROMOD-II are
more pronounced. It can be clearly seen that the per-residue lDDT scores of PROMOD-II
have an advantage over the lDDT scores from MODELLER. The effect is most prominent
in the high lDDT range. The points move off-diagonal and shift towards the lower right
corner. On average, the PROMOD-II residues achieve a lDDT score that is higher by
0.015 lDDT points.

The sidechain modeling of PROMOD-II for conserved residues is very conservative.
Sidechains atoms are copied as is from the template to the model. MODELLER, on the
other hand, rebuilds the sidechains. The dihedral angle and distance constraints from the
sidechains in the template are combined with prior knowledge of sidechain orientations
from a large set of PDB structures72. Overall, the sidechains of PROMOD-II remain closer
to the template structure, which in turns makes them more accurate. The differences
between the PROMOD-II and MODELLER models can be explained by PROMOD-II’s
ability to more accurately model conserved sidechains.

COMPARISON OF LOOP MODELING | To compare the ability of the modeling programs to
build insertions, we compared the lDDT scores of all residues part of an insertion. The
spread between the lDDT scores of PROMOD-II and MODELLER is relatively large, sug-
gesting that the local environment of loops built by the two program are rather different.
On average, PROMOD-II builds more accurate loop residues (mean lDDT difference:
0.0091, median: 0.0018). However, no clear trend can be seen, as the spread between the
lDDT scores is high.

Performance on CAMEO test set B

For comparison of the pipeline to other structure prediction methods, we registered as
a server in the structure prediction category of CAMEO. The registered servers differ in
many aspects, e.g. template libraries, homology detection algorithms, template selection,
structural modeling and sampling etc. All these aspects affect performance of a method in
some way or another. This comparison gives the most complete evaluation of a pipeline’s
performance and assesses it as a whole.

While every server receives the same target sequences, models are not sent back for all
sequences, e.g. due to timeout, server maintenance, or difficulties in building a model.
Thus, a direct comparison of the servers on all targets is not possible. Instead, we will
perform head-to-head comparisons of our pipeline to all participating servers. Servers
will only be evaluated on common targets, e.g. targets where both servers returned at
least one model.
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Figure 8.11 Per-residue lDDT of models built on the same target-template alignment by
MODELLER and PROMOD-II. (A) conserved residues only, (B) non-conserved residues only.
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server better worse tie total mean median

server0 (SWISS-MODEL) 73 44 17 134 0.075 0.007

server4 89 50 14 153 0.026 0.024

server6 78 41 15 134 0.018 0.011

server9 (SMNG baseline) 78 30 43 151 0.017 0.005

server7 72 46 18 136 0.016 0.006

server13 (M4T) 36 57 8 101 0.013 -0.007

server8 68 47 15 130 0.008 0.006

server5 (IntFOLD-TS) 52 74 9 135 -0.008 -0.011

server12 50 101 8 159 -0.032 -0.015

server11 (Robetta) 33 115 10 158 -0.067 -0.046

Figure 8.12 Head-to-head comparison of the pipeline presented in this work and servers
registered in the CAMEO structure prediction category. For each server, the number of models
where our pipeline returns a better model, worse model equally good model (within 0.5 lDDT
points), mean and median lDDT differences are listed. Names of publicly available servers are
given in parenthesis.

Table 8.12 shows the results of the head-to-head comparisons. For 7 out of 10 servers,
our pipeline on average produces more accurate models, according to median difference
in lDDT in 6 out of 10. Similarly for 6 out of 10 servers, the number of better models is
higher. SMNG is considerably outperformed by server12 and server 11 (Robetta). Here
the fraction of targets, where SMNG returns a better model is small. Additionally, the
average lDDT difference is 3.0 and 7.5, respectively.

To our knowledge, with the exception of server4, the servers which are on average
less accurate than the method presented here (server0, server6, server7, and server8) are
all single-template modeling servers. This clearly illustrates the limits of single-template
modeling. For better performance, using information from multiple templates is inevitable.
The only multi-template modeling server which on average produces less accurate mod-
els than our method is server4: on average the returned models are less accurate by 2
lDDT points. The bad performance of server4 can be attributed to the newly introduced
stereo-chemical filtering step in lDDT. The models of server4 contain substantial stereo-
chemical problems. a substantial fraction atoms is involved in distorted bonds and angles
deviating considerably from the optimal values. When calculating the lDDT, interaction
form these atoms are considered to be non-conserved, hence the lower scores.

The current version of SWISS-MODEL is participating as server0 in the CAMEO
structure-prediction category. For many targets, SWISS-MODEL does not return any
model, e.g. due to problems with loop modeling or identification of templates. On com-
mon targets, the average difference in lDDT is substantial (>7 lDDT points), whereas the
median difference is close to zero. The large mean lDDT difference is mainly attributed
to a few targets, where SMNG produces significantly better models (�gure 8.13). For
a few of the targets, the difference is a matter of interpretation what a good model is.
For SWISS-MODEL, a shorter but more accurate model is thought to be better, whereas
in SMNG coverage and local accuracy are balanced. In general, the results of SWISS-
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Figure 8.13 Comparison of common models of SWISS-MODEL and SMNG. Negative values
denote models for which the model of SWISS-MODEL is more accurate.

MODEL tend to get better when templates with high sequence identity to the target are
available. Here, the applied template selection protocol, which is primarily based on se-
quence identity is superior. The selected template in SMNG is sometimes drawn away
from the one with the highest sequence identity by the structural clustering step. It should
be investigated whether structural clustering should be disabled for high-accuracy tar-
gets in SMNG.

4Conclusions

In this work, we have outlined the automated modeling pipeline of SWISS-MODEL Next
Generation. The idea to formulate the template selection as a quality estimation problem
has been used by other automated modeling pipelines, e.g. IntFOLD-TS233 and HH-
pred32. However, to our knowledge, this is the first time that quality estimates are com-
bined using a probabilistic approach. The method presented in this work is both fast and
intuitive to understand. The influence of each measure on the final template selection is
proportional to the uncertainty of the feature. Unreliable properties are down-weighted
and contribute less to the final score. The reliability of each feature is a function of the
property itself and is adapted based on fits to target-template alignments of known qual-
ity. Scaling of uncertainty is an important feature of the template selection and crucial
for good performance in all target difficulty regimes.

We have shown that the reliability of the lDDT prediction from HHsearch and HHblits
scores heavily depends on the average column entropy of the target profile. The accuracy
of lDDT estimation is improved by fitting the normalized HHsearch/HHblits scores for
low and high entropy profiles separately. Since the solvent-accessibility and secondary
structure predictions are calculated from the HHsearch and HHblits profiles, the perfor-
mance might also depend on the average column entropy. It remains to be seen to what
extent the performance degrades when only few sequences are available. Separate fits
for low and high entropy profiles might be beneficial as well.
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On the in-house test sets, we have shown that the performance of selecting templates
using a combination of properties is significantly better than a single feature, such as se-
quence similarity. Additionally, we have shown the benefit of incorporating QMEAN into
the scoring of models. QMEAN reduces the number of wrongly-aligned templates con-
siderably. On average, QMEAN is also beneficial in reducing alignment errors in models.

Scoring the models structurally by consensus of local contacts tremendously lowers
the loss of lDDT. Local contacts present in multiple models are reinforced. Models satis-
fying more of the consensus contacts are ranked higher. This drives the selection of the top-
ranking model towards the average template structure, a desirable property, since align-
ment errors tend to cancel out. As noted by Peng and Xu69, structural information can
have negative effects for alignment accuracy and template selection performance in the
high sequence identity regime. It shall be investigated whether it is beneficial to disable
the structural consensus scoring for simple modeling cases, e.g. templates with a high
predicted lDDT.

When pre-multiplying the properties with coverage, two independent properties of
the target-template alignment are combined into one number. A template with 100%
sequence identity and 50% coverage will get the same predicted quality as a template
with 50% sequence identity and 100% coverage. However, the 100% sequence identity
template is clearly preferable as is much more closely related to the target and should get
a higher score. For modeling on single templates, combining coverage and properties is a
viable solution. However, in the context of multi-template modeling, smaller coverage of
a template structure can be compensated by extending the model with another template.
Instead, the lDDT predictors could be redesigned to predict a coverage-corrected lDDT,
and take the length of the target-template alignment into account.

The comparison to existing TBM servers on the CAMEO live benchmark has shown
that for many targets single-template modeling delivers better performance than multi-
template modeling approaches. However, substantial room for improvement is possible,
particularly when templates only cover parts of the target sequence.
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SMNG Web Interface

In his chapter, we give a short overview of the newly developed user interface for SWISS-MODEL.
This work has been performed together with Konstantin Arnold, Stefan Bienert, Tobias Schmidt
and Andrew Waterhouse. KA has been setting up the productive web-server, SB has implemented
the backend, AW implemented the frontend, TS has implemented the backend of the ligand
annotation, MB has been coordinating and managing the project.

1 Introduction

SWISS-MODEL is one of the most widely-used web services for homology modeling
42,130−131,232,244. Around 2000 models are built every day by scientists around the world.
The modeling is primarily motivated by a particular biological research question, and
serves as the basis for the design of mutagenesis experiments, structure-based drug de-
sign250, binding site studies171,204, binding site prediction169 etc. The biology is not a
side-show of the model building but a primary concern. One of the goals of homology-
modeling pipelines thus has to be to provide models that are directly applicable to par-
ticular research questions. Several factors contribute to usefulness of models: First and
foremost, models have to be accurate, as the applicability of models strongly correlates
with quality204. In addition, the biological context of the model is important. This includes
modeling of the protein in its correct oligomeric state, and the inclusion of biologically
relevant ligands. Last but not least, reliable local quality estimates give the researcher an
idea in which areas a model can be trusted.

In this chapter, the user interface of SWISS-MODEL Next Generation and the tem-
plate library are outlined. For a scientific description of the modeling pipeline itself,
we refer to the ’Automated Modeling in SWISS-MODEL Next Generation’ chapter on
page 119.

2 Implementation

The backend of SMNG is written in Python251 and uses the Django web framework252.
Python seamlessly integrates with OpenStructure135 for input validation of sequences,
alignments and structure files. Input validation is performed directly in the HTTP request
handler. More demanding calculations, such as sequence searches and model building
are delegated to the cluster using the Sun Grid Engine. The web-interface then polls for
completion of the calculation.

On the client-side, SMNG uses the jQuery JavaScript library253 for cross-browser com-
patibility. For rendering of vector graphics, the frontend uses raphael.js254 which provides
a convenient interface on top of SVG (or SGML for older versions of Internet Explorer).
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The frontend communicates with the backend asynchronously. The data is requested
when used the first time and sent back as a JSON (JavaScript Object Notation) stream.
The use of asynchronous requests is important for reducing the latency in an interactive
interface. Once the page has been loaded, only parts of the website which change need
to be transfered from the server.

3Template Library

Since homology modeling pipelines draw most of their strength from available experi-
mental structures, ready and fast access to this information is key. Even more so, when bi-
ological information has to be available at every step of the homology modeling pipeline.
In SWISS-MODEL the template information is stored in a newly designed template li-
brary (SMTL). It is a large database of structural and biological information for experi-
mentally determined protein structures derived from the PDB18,21.

Biological Units

The smallest unit of structural information in the SMTL are the biologically functional
units, short biounits. It is the SMTL’s counterpart of biological assemblies of the PDB.
Since there might be multiple assemblies for a given PDB entry, there is a 1 to nmapping
between PDB and SMTL entries. The biounits consist of one or more entities, i.e. types of
molecules present in the structure. For example, a typical homo-tetramer consists of four
polypeptide chains and solvent molecules. In the biounit, the four polypeptide chains are
grouped as one polypeptidic entity, the water in a second entity. For a hetero-oligomer, the
peptide are grouped by their SEQRES sequence, which results in one entity per unique
sequence found in the structure.

When new structures have been released by the PDB, they are typically added to the
SMTL within 2 weeks. Information for the entries, such as deposited sequences, coor-
dinates, primary citations etc. are read from the mmCIF files and converted to a SMTL-
specific format. Annotations on the residue level, such as predicted secondary structure,
solvent accessibility, and DSSP states for the residues are calculated and stored along-
side the structures. Likewise, HHsearch and HHblits profiles are calculated if one of the
deposited structures contains a sequence that was not previously part of the SMTL.

Deprecated entries are kept in the database for backward compatibility, since they
might still be referenced by some projects. However, the chains are removed from the
indices and will not be available for a sequence/profile search performed after depreca-
tion.

Sequence and Pro�le Databases

Sequences and HMMs of the SEQRES sequences of all chains in the template library are
stored in databases that can be directly searched with BLAST58, HHsearch32 and HH-
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blits33. Since there are usually multiple polypeptide mapping to the same SEQRES se-
quence, we normalize the sequences by storing each sequence only once. The sequences
are referenced by their MD5, and denormalized upon use.

The following databases exist:

• SMTL100 is a non-redundant sequence database containing all SEQRES chains cur-
rently in the SMTL. SMTL90 and SMTL70 are like the SMTL100 a BLASTable se-
quence databases but culled at 90% and 70% sequence identity, respectively.

• HMM70 is an HHsearch profile library containing the centroids of sequence clusters
at 70%. Profiles for individual SEQRES sequences are kept in the profiles subdirec-
tory. Typically, homology detection with HHsearch first runs the query profile against
the 70% clustered database and then creates a temporary database containing all pro-
files of centroids identified as hits. This two-layer approach has proven to be effective
in reducing the memory consumption and runtime of the HHsearch alignment step.

• HHBLITSDB contains the profiles for HHblits. Since database creation for HHblits
databases is much more time-consuming that for HHsearch databases, database cre-
ation time becomes limiting and searching against the 70% cluster centroids and ex-
tension of the searches to all sequences of these clusters is not beneficial for search
performance. Instead all sequences are kept in one database.

Annotation of Cloning Artifacts

A large number of proteins crystallized today are purified using purification tags such as
poly-histidine tags, TAP tags etc255. While of importance to the purification itself, these
tags are not relevant to the biological function of the protein. Purification tags pose chal-
lenges for sequence searches. When the target sequence contains expression tags, often,
templates containing the same tag as the target sequence show up as high-identity hits,
even though the protein itself shares little sequence similarity with the target sequence.
Thus, expression tags should be excluded from the alignments when selecting templates.

Deposited entries contain partial purification tag annotations. While the number of
well-annotated sequences increases, there is still a large fraction of entries which is not
properly annotated. For these cases, we rely on heuristics to determine expression tags.
The complete annotation procedure is as follows:

• Sequence regions containing the word "TAG" are annotated as expression tags. In
addition, sequence regions with the annotation ’cloning’ in different spelling varia-
tions (clonning, clonong, etc) are annotated as tags.

• We have found that many of the regions identified in the first step usually only en-
compass the actual purification tag and do not include linker regions. Thus, we add
residues next to regions identified as tags in the first step, when they could not be
mapped to any sequence in reference sequence databases such as UNIPROT.

• Regions of sequences containing four histidines in a row and not related to any se-
quence in sequence databases (not including PDB) are also annotated as tags.
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Web Access to the Template Library

Virtually all information from the template library entries, .e.g. secondary structure anno-
tations, calculated profiles, coordinates, are available in a web interface. A typical SMTL
entry, the methyl transferase from the Dengue virus in complex with S-adenosyl homo-
cysteine and ribavirin 5 (1r6a.1), is shown in �gure 9.1. In the top-left, the structure is
rendered with OpenAstexViewer256. The top right lists primary citations, ligands and the
polypeptide chains present in the biologically assembly. The bottom part shows the se-
quences of the chains present in the strucure aligned to the SEQRES entries. It can be
immediately seen that 5 residues at the N-terminus and more than 30 residues at the
C-terminus of chain A are not resolved in the structure. The 3-dimensional structure
viewer is synchronized with the sequences displayed in the bottom part. Moving the
mouse over a residues will highlight it in the 3D view. Likewise, clicking on a secondary
structure element centers the 3D display on that element.

Figure 9.1 Entries from the SMTL are accessible from the web interface.

The web-interface also features an online annotation system for ligands. Ligands can be
annotated as buffer, post-translational modifications, biologically relevant or synthetic
binders etc. The annotations are stored for each biounit, which allows to mark potassium
ions, which are typically part of the solvent, as biologically relevant in an potassium chan-
nel. The system has been developed for the CAMEO ligand binding category, and allows
users to decide which ligands should be included in the evaluation. The same system is
used to decide which ligands are biologically relevant when building homology models.
In �gure 9.1, sulfate ions are annotated as buffer, whereas S-adenysyl-L-homocysteine
is annoted as biological ligand and ribavirin as a synthetic molecule. The ligand annota-
tion system is described in more detail in the PhD thesis of Tobias Schmidt257.
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4Modeling Interface Walkthrough

Input

Typically, a modeling projects starts with a target sequence for the protein of interest. The
sequence can be entered as FASTA, ClustalW, ProMod, PIR, plain string, or in the form of
a UNIPROT accession code. As soon as the sequence is entered, the input is sent to the
server for validation. If the input is a valid sequence, the input form is hidden and replaced
by a rendered display of the target sequence. The immediate feedback is important, as
input boxes are a major source of confusion for users. The validation procedure informs
the user immediately whether the input was understood by the web server (�gure 9.2)
or not.

Figure 9.2 A new modeling project is typically started by entering a target sequence or
UNIPROT accession code. The input is immediately validated when entered.

In addition to single sequences, a SWISS-MODEL projects can be started by

• a target/template alignment, allowing the user to specify the mapping between target
and template residues. Since the sequence of the user’s template might be different
from the sequence in the SMTL (non-standard residues, atom vs. SEQRES etc.), the
template sequence is aligned to the corresponding entry in the SMTL. Correspon-
dence is checked by testing various pattern of PDB and SMTL identifiers. The user’s
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template sequence is required to share at least 80% sequence identity with the SMTL
sequence.

• a SWISS PDB Viewer project file.
• uploading a template structure and a target sequence. This option is useful when the

user is in possession of an unpublished, experimentally determined structure.

Once the input has been validated, the user can choose to start a new project using
either manual or automated mode. In manual mode, a template search is performed
and the user selects suitable templates by hand. Automated mode uses the automated
template selection procedure outlined in more detail in the ’Automated Modeling in
SWISS-MODEL Next Generation’ chapter and directly returns models.

For this walkthrough, we will use the Superoxide dismutase from D. melanogaster
(UNIPROT accession code: P61851).

Template Search Results

In manual modeling mode, the user is redirected to the template results page when the
template search completes. The page serves both as an overview of available templates
as well as an interactive template selection tool.

The top part of the screen contains a summary of the top-ranking templates identified
by the template search methods (�gure 9.3). Three types of views are available: a tem-
plate summary table, listing all templates in tabular form, and two sequence/structural
similarity plots which show the templates in relation to each other. Templates for a sub-
sequent modeling step can be selected in any of the three views. Since the selections
between the views are synchronized, selection of a template in the table, automatically
selects the template in the two similarity plots and vice versa. The alignment of all se-
lected templates is shown in the lower part of the screen.

ALIGNMENT VIEWER | For the purpose of sequence and alignment visualisation the SMNG
web interface contains an interactive alignment viewer (�gure 9.3, bottom). The align-
ment viewer is used in all parts of the website, since it is central to the template selec-
tion process, it is described here in more detail. The alignment viewer supports a variety
of display styles and coloring modes, which can be changed dynamically. For example,
the ClustalW coloring scheme groups amino acids by property and colors each group
separately. Other options are to color by amino acid property, B-factor of the template
structure, solvent accessibility or local QMEAN score of the models. Secondary structure,
predicted or calculated by DSSP, can be shown as an SVG overlay: helices and extended
segments are are drawn as boxes and arrows around the sequences, respectively. In ad-
dition, the alignment viewer is synchronized with a 3D structure view. Hovering over a
residue in the alignment view automatically highlights the residues in the 3D display.
Likewise, the coloring schemes are shared between the alignment viewer and the 3D
display.
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Figure 9.3 Templates identified for the superoxide dismutate from D. melanogaster. The top-
part lists the identified templates in tabular form. At the bottom, the selected templates are
shown and superposed together with the alignment. Charged amino acids in the target and
template sequences are colored in red and blue. Mismatching residues in the alignment are
shown in grey. The predicted secondary structure for the templates and the target sequence is
displayed using an SVG overlay. The sequence alignment and structure views are synchronized,
hovering over one of the residues in the alignment will highlight it in the structure.

SEQUENCE SIMILARITY PLOT | As an alternative form of display, the template search re-
sults page contains a graph, which displays the templates in relation to each other. This
complements the table of identified templates with a focus on the relations between tem-
plates. The target sequence is depicted as a red dot together with each template shown
as a circle. The distances between the templates are proportional to the pairwise simi-
larity between the templates. An example of two sequence similarity plots is shown in
�gure 9.4. The target-sequence coverage is shown in a thick line around the circle. For
example, a template which covers the N-terminal half of the template will have a thick
border from top to bottom in clockwise direction. Templates which share a high sequence
identity, can be immediately identified, as they group together on the screen. We have
found the sequence similarity plot to be a very helpful tool in understanding the available
templates.

The layout of the template plot is performed by the neato program of the GraphViz
package258, which performs a dimensionality reduction, from the high-dimensional se-
quence and structure space to the two dimensions of a computer screen. The dimension-
ality reduction inevitably leads to a loss of information, and two templates sometimes
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appear close on the computer screen, even though they are far apart in sequence space.

A B

Figure 9.4 Two example sequence similarity plots of identified templates. (A) ATP synthase
subunit beta (P991122), (B) Flavodoxin (P00321). Similar templates cluster together and appear
in grape-like arrangements.

ORIENTING THE TEMPLATES | For visual comparison of the identified template structures,
it is important that the template structures are shown in the same orientation. Since the
orientation of the structures in the PDB is arbitrary, the structures need to be aligned ac-
cordingly before displaying them. For this purpose, we transform all template structures
into the same frame of reference according to a sequence-dependent superposition. The
alignment of all structures is performed as follows:

• The sequences of all templates are clustered at 90% sequence identity.
• The template structures within the cluster are structurally aligned onto the centroid

of the cluster (the template with highest coverage of the target sequence). The result
of the superposition is a rotation matrix and a translation vector which optimally
superposed the template structures onto the cluster centroid.

• We apply the DOMF algorithm (chapter ’Graph-based constraint selection for multi-
template modeling’) to all pairs of centroids and recursively group the centroids with
the largest number of residues part of domains. The larger of the two structures is
chosen as the representative and the smaller superposed onto it. The merging con-
tinues until all structures are merged.

The result of this procedure is a tree of transformations. To transform all structures into
the same frame of reference, we traverse the tree and apply the transformation matrices
to the structures.

The superposition of template structures makes it possible to directly compare the
templates by visual inspection. Flexibility and variability in the structures become im-
mediately apparent. While the majority of images created with the procedure outlined
above are close to perfect, in a few instances the images are suboptimal. One of the prob-
lems arises through the use of molscript to generate static images. The viewer’s position
is automatically adjusted to fill the available space on the image. As a result, the distance
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of the camera to the protein is affected by protein size. For smaller proteins, the viewer
moves closer to the protein, whereas larger proteins require the viewer to move back.
The differences in the viewer’s position are especially noticeable when open and closed
conformations of a protein are available. The positioning of the camera would need to be
fixed for all images, e.g. by calculating the bounding box of all template structures and
using that to position the camera.

Modeling Results

Once models are built with manual or automated modeling mode, they are available on
the template results page. A short summary of the template, global model quality142, the
included ligands, and oligomeric state is displayed in small boxes (�gure 9.5). To explore
different aspects of the models, the user can switch between various coloring modes.
Typical tasks include inspection of local model quality or modeled ligands. For example,
since insertions and deletions are major sources for uncertainty in models, it is usually
a good idea to check the locations of insertions and deletions, and to assess if these
loops play a role in the binding site. This task is facilitated by coloring the locations of
insertions and deletions in the model. Alternatively, as indicator of local model quality,
the structures can be colored by local QMEAN scores.

Figure 9.5 Information for built models is shown on the model results page.

Ligands are added to the models from the templates, provided the binding site is con-
served and the ligands are marked as biologically relevant in the SMTL. Additionally, at
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the user’s choice, the oligomeric state of the model can be based on the template. Work is
on the way to include the oligomeric state prediction developed by Florian Kiefer during
his PhD259. When the oligomeric state of the template and the model is predicted to be
the same, the models is built as a homo-oligomer.

For archiving and later retrieval, the results of a SWISS-MODEL homology modeling
project are available as a downloadable archive containing all relevant files, including the
coordinates of the models and QMEAN scores. In addition, a summary of the modeling
project is available in a project report. The report describes the applied methods in text-
form and lists versions of databases and programs used. The primary motivation of the
project report has been to create a standardized text document which can be copied and
pasted into a Materials & Method section of a paper.

5Conclusions

The current developments in SWISS-MODEL have been presented with a focus on the
completely overhauled user interface. The interface leverages on JavaScript capabilities of
modern web browsers to transform homology modeling into an interactive experience.
The version of SWISS-MODEL presented here builds on a newly developed template
library, the SMTL, for structural information. It is essentially a cleaned view on structural
data from the PDB with a focus on the biology of proteins. For example, ligands are
annotated using an online ligand annotation system, which allows to distinguish solvent
molecules from biological and synthetic binders. Additionally, to facilitate modeling, the
SMTL includes HHblits and HHsearch profiles, predicted secondary structure features,
solvent accessibility etc. Data in the SMTL can be easily browsed from a web interface,
making it possible to quickly look through large numbers of structures and compare their
biology. Plans are on the way to extend the annotation system to complete biounits, e.g.
to mark certain biological assemblies as biologically irrelevant, or to distinguish between
wild-type proteins and crystallized mutants.

A newly designed template selection step allows to quickly compare features of the
templates, including their structure, and choose an appropriate template for the sub-
sequent modeling step. Templates can either be selected in a tabular view or sequence
similarity graphs, which allow to compare the templates to each other. Additionally, the
template structures are superposed onto each other to facilitate structural comparison of
the templates. The manual template selection step is targeted at intermediate to experi-
enced users who would like to use biological knowledge to select templates.

Whenever possible, models are built including biologically relevant ligands in the cor-
rect oligomeric state. This places the models into biological context and is an important
prerequisite for further use of the models in mutagenesis, and ligand binding site studies.

While others, e.g. ModBase248 provide tools to perform interactive modeling inside of
UCSF Chimera, we would like to completely push the modeling away from the desk-
top into the browser. As one of the most important additions to support this goal, the
alignment viewer should be extended to handle alignment editing. Upon shifting in-
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sertions and deletions, the changes on the structure of the model should be visible in
real-time. Experienced users can directly observe the structural impact of an alignment
shift. Moreover, real-time calculations of local quality scores would help users to see if
the new alignment makes sense on the structural level.
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Knowledge-Based Extension of
Fragmented Models at Low Resolution in
ARP/wARP

This work has been performed in collaboration with Tim Wiegels from the EMBL Hamburg.
TW implemented the sequence docking, and performed the performance evaluation, MB
implemented the fragment library, and evaluated sampling performance. TW and MB wrote the
manuscript.
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SYNOPSIS: During automatic protein model building, chain breaks between partially built fragments
are automatically detected and filled using structural information from the PDB in order to achieve
higher completeness and accuracy of automatically built protein structures at medium-to-low
resolutions.
ABSTRACT: During automated protein model building from medium-to-low resolution crystallographic
data, the density between two built chain fragments is often too poorly defined to accurately
model any protein chain. This is especially true during early stages of model building, and is
the case not only for loops but also for helices or strands. A novel method is presented for the
automatic detection of breaks in partially built protein chains during model building that makes
use of electron density information, secondary structure predictions and statistical descriptions
of the relationship between gap length and missing residues. Structural information obtained
from the PDB is used to fill these structural gaps, with experimental data guiding the scoring of
the candidate fragments. The obtained structure models are up to 20% more complete and thus
less fragmented, specifically at crystallographic resolutions between 3.0 and 3.8 Å. The described
method has been incorporated into the ARP/wARP package for crystallographic model building.

1 Introduction

Macromolecular structures of proteins, DNA RNA or complexes thereof, are a focus of
attention in structural biology. This can be attributed to their high biomedical significance
and their role as major players in the key processes of life. For a deep understanding of
their function, it is crucial to have complete knowledge of the spatial arrangement of
their constituent atomic blocks. Three-dimensional macromolecular structures find ap-
plication in diverse areas of pharmaceutical and biotechnological industry and research.

Macromolecular crystallography (MX) has been the primary technique for the deter-
mination of structures of biomolecules at an atomic level of detail. MX has provided over
85% of all entries in the Protein Data Bank21,260 and over 90% of those complexes of pro-
teins that are larger than 80 amino acids. The continuous exponential growth in the num-
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ber of deposited PDB entries demonstrates the increasing demand for crystallographic
three-dimensional (3D) structural information on biological macromolecules.

Many challenging structure determination projects come to a halt at a certain point. In
particular, crystals of large proteins and their complexes may not diffract to a resolution
where an atomic model can be straightforwardly constructed. Indeed, even after semi-
high-throughput sample screening, the crystals of currently studied projects diffract on
average to about 4 Å resolution on synchrotron beamlines261, and only a small fraction
of the measured X-ray data results in a structure being deposited in the PDB. It has been
estimated that the gap between collected data sets and published structures is about 50
to 1262.

The apparent problem with low-resolution X-ray diffraction is that the amount of
collected data is insufficient for calculation of an electron density map that is detailed
enough for atomic modelling and subsequent structural refinement263. For example, for
a protein crystal with 55% solvent content that diffracts to a resolution of 2 Å, there
are 8 reflections per atom. If 4 atomic parameters (for example xyzB) are needed to be
refined, the observation-to-parameter ratio is 2, and the task is numerically overdeter-
mined. However, for the same structure at a resolution of 4 Å there is only 1 observation
per atom, which is insufficient to refine several atomic parameters264. This lack of obser-
vations at reduced data resolutions requires the use of additional parameters in the form
of constraints or restraints. It also causes smoothing of density maps and a loss of de-
tectable atomic features. The development of automated structure determination meth-
ods in MX has been predominantly focused on high-resolution data, where bonded or at
least angle-bonded atoms are resolved. Reduction of model completeness at medium-
to-low resolution implies an increase in the number of shorter, unconnected fragments
built. Thus, the determination of low-resolution structures is usually beyond the nor-
mal operational range of crystallographic software and involves a large, if not excessive,
amount of manual intervention.

Recently, impressive results have been reported for low-resolution structure deter-
mination, although rarely can a complete structure be built without user intervention.
For example, the Buccaneer software can build up to 80% of the model at a resolution
down to 3.2 Å provided that the initial map correlation is higher than 0.6265. Using the
PHENIX AutoBuild wizard266, it was shown that structures with data extending to reso-
lutions around 2.8 Å could be built automatically to a completeness of higher than 80%.
At a resolution of 3.3 Å, the model completeness dropped to 60%. A comparable perfor-
mance is obtained for model building with ARP/wARP160, version 7.3. Estimates from
the ARP/wARP remote model-building web service (July to October, 2012) suggest that
structures at a resolution of 2.6 Å are typically built to a completeness of 85%. At 3 Å
resolution, the model completeness decreases to 75%, and for cases with a resolution
of 3.5 Å, one typically obtains a structure with only 70% model completeness. Here, the
recently incorporated automatic detection of non-crystallographic symmetry into both
the model building and refinement stages of ARP/wARP267 leads to an average of 7%
more model completeness for cases between 2.3 and 3.2 Å.

Meanwhile, the theoretical modelling field has made progress in predicting the struc-
ture of proteins from the primary amino acid sequence. These methodologies operate
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in absence of experimental data and use evolutionary relationships to guide the model-
ling process32,68,268. Over last few years, the methods have advanced to a point, where
accurate predictions are possible, even when only distant templates are available. For ex-
ample, during the CASP9 instalment, the Zhou group was able to predict the structure
of target T0523 (120 residues) down to an all-atom RMSD of 2.2A, based on a template
that shares only 15% sequence identity to the target53.

Despite their increasing scope, algorithmic methods and databases from structural
bioinformatics are rarely exploited in an integrative manner to aid macromolecular struc-
ture determination. It has been shown that employing a coordinated use of structural
bioinformatics and modern X-ray data interpretation software can lead to impressive re-
sults, although existing methods are not yet fully applicable to everyday use139,269−270.
To fully take advantage of the technical possibilities of both experimental and theoret-
ical methods, novel, sophisticated software solutions are required. Initial efforts in this
direction include the application of homology modelling in molecular replacement72,271,
and the modelling of loops into smeared and non-interpreted electron density aided
by the incorporation of database-derived information. Examples of methods exploit-
ing bioinformatics for such loop modelling include the Loopy module of ARP/wARP272,
XPLEO273, LAFIRE274 and phenix.fit_loops from the PHENIX suite275. All of the noted
softwares have shortcomings, however. Either, the anchoring residues and the length of
the missing structural fragment are required as user input or the protein chain fragments
need to be sequence-assigned to identify loop regions – and thus they are not suitable
for incorporation into automated model building procedures.

Here we introduce the FittOFF (Fitting OF Fragments) method, which identifies chain
breaks between partially built fragments from ARP/wARP intermediate models and uses
structural information obtained from the PDB to complete these structural gaps, thereby
increasing the structural information available for the next iteration of modelling.These
structural gaps are defined by the stem residues that anchor the loop region to the inter-
mediate model and the number of missing residues therein. As opposed to loop-building
approaches commonly used in MX, the identification of structural gaps does not re-
quire the anchoring fragments to be sequence-assigned. Hence, the method becomes
especially applicable to low-resolution cases, for which automatic sequence assignments
rarely function well.

In a number of selected examples we demonstrate how the developed methodology
is implemented in the ARP/wARP package as a dedicated and efficient module.

2Methods

The FittOFF method is based on the analysis of the partially built protein chain frag-
ments produced during the ARP/wARP model building protocol, and most specifically,
whether or not such fragments should be connected by a single protein fragment of vari-
able length. Within ARP/wARP, an initial protein model, a set of ‘free atoms’ with no
chemical identity, or a mixture of both - the hybrid model - undergo iterative refine-
ment. In each building cycle some ‘free atoms’ gain chemical identity and are recognised
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as part of a protein chain fragment, others remain free. The evolving hybrid model com-
bines two sources of information: it incorporates chemical knowledge from the partially
built model and the free atoms aid the further interpretation of the electron density in
areas where no model is yet available. The FittOFF method itself can be divided into two
essential parts:

• The identification of the stem residues (residues anchoring a structural gap) and es-
timation of the number of residues necessary to close structural gaps in intermediate
models obtained from the ARP/wARP model building process and

• The sampling of a large number of backbone conformations from a structural data-
base to find the best suitable fragment to be placed in the structural gap (called the
FRAGRA method in the following).

Identi�cation of Gaps in Intermediate Models

At high resolution, the mutual location of chain fragments and the number of enclosed
missing residues can easily be derived from docking the modelled structure to the se-
quence. However, at resolutions lower than 2.5 Å the sequence docking algorithm in
ARP/wARP and similar approaches, all based on the recognition of the side chain elec-
tron density, which becomes very weak beyond this point, do not work sufficiently well.
As a result, the fragment’s position in the protein sequence remains largely unknown.
Determining which chain fragments of partially built models are consecutive is a chal-
lenging task, and the designation of which residues are stem residues for a particular gap
can be unclear, as shown in �gure 10.1A. In addition to identifying which fragments to
connect, the number of residues between the chain fragments has to be determined,
�gure 10.1B.

To position chain fragments in the protein sequence, we dock them according to their
secondary structure. Since there are often multiple possible matches, the best three dock-
ing positions are stored for each fragment. Gaps that connect two consecutive frag-
ments are then identified. Potential gap lengths are filtered for false-positives using a
knowledge-based approach relating the number of residues contained in a gap to the
distances between the Cα atoms of the stem residues. As a final validation criterion, the
density between each pair of partially built protein chains that are deemed to enclose a
structural gap is examined. Only structural gaps that are, at least partially, supported by
density will be put forward for fragment fitting with FRAGRA.

SECONDARY STRUCTURE DOCKING | To obtain results that are similar to sequence docking,
even at low resolution, we developed a method that detects the best agreement between
a segment of secondary structure assigned to a chain fragment and a secondary structure
predicted from the corresponding amino acid sequence. We used the approach by Zhang
and Skolnick276 to assign a secondary structure state for each residue of the partially-
built model based on the Cα-coordinates of five neighbouring residues. Their method
is applicable to highly fragmented models as it only considers the neighbouring local
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A B

Figure 10.1 Difficulties of defining stem residues and gap length. The question of which
stem residues should be connected is depicted in (A). Additionally, there is the question of
how many residues are missing in the potential gap, shown in (B).

geometry of fragments. Due to the required number of neighbouring Cα atoms only
chain fragments of at least seven residues receive an assignment.

The secondary structure of the whole protein meanwhile, is derived from the input
amino acid sequence using either PSIPRED8,277−278 or SSPro4116,279. The assigned sec-
ondary structure of the chain fragment (the pattern) is then slid over the secondary struc-
ture prediction (the template) and at each offset, the number of matches between pattern
and template at each position is computed and evaluated (see �gure 10.2). The align-
ment with the highest number of matches denotes the best fitting position. A predefined
number of best fits (three in the current implementation) are kept for each chain frag-
ment. For each fit the percentage of matches with the secondary structure prediction is
stored. All docked chain fragments are compared to each other and their relative posi-
tions are analysed. In short, if one chain fragment (fragi) has been docked from position
0 to 14 in the sequence and another one (fragj) from position 19 to 34, a gap of length
four is assumed between the last Cα atom of fragi and the first Cα atom of fragj . If some
chain fragments have been indeed sequence-assigned by ARP/wARP, this information
is taken into account to assign further structural gaps and validate the results from sec-
ondary structure docking.

RELATING GAP LENGTH TO THE DISTANCE BETWEEN STEM RESIDUES | Saving the three best
positions for each chain fragment following secondary structure docking can, in the worst
case, lead to nine different lengths for the same structural gap. To decide which gap length
is most likely, the predicted secondary structure content and distance between the ter-
minal Cα atoms is compared to experimental data from the PDB, assigning a probability
value to each of the possible lengths.
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Figure 10.2 Schematic overview of the sliding window method for sequence and secondary
structure docking.

Statistical data on secondary structure composition, enclosed residues and distances
between Cα atoms was collected from a large set of experimental structures. The analysis
was performed on a non-redundant set of 6,613 protein chains obtained from the PBD
(PDB50, Release: January 2011, solved by MX at resolution of 2.0 Å or better). This subset
was generated with CD-Hit280 by clustering all protein chains of at least 20 amino acids
at 50% sequence identity.

The probability of observing a certain gap-length at distances between stem residues
was calculated for gaps with a certain secondary structure composition, e.g. 50%, 75% or
100% helix, sheet or coil. An overview of occurrences for gaps with two, four, six, or eight
residues at distances between 0 Å to 20 Å, ignoring the secondary structure content for
visibility, is given in �gure 10.3.

For each possible gap length identified by secondary structure docking, the probability
of that gap being ‘true’ can be calculated from the distance between the Cα atoms of
the stem residues and the secondary structure content. Gaps below a certain probability
threshold are ignored for further processing.

FRAGRA

FRAGRA is a knowledge-based method to remodel structural gaps implemented within
the OpenStructure framework135. The method was originally designed to produce rea-
sonable models of short loops that could be used to complete homology models in sec-
onds rather than hours and to close structural gaps up to 14 residues in length. FRAGRA
uses a large database of backbone conformations (hereafter called fragment database).
FRAGRA differs from related methods such as XPLEO273, using existing fragments from
the PDB instead of rebuilding gaps with physical approaches. This results in a drastic
decrease in required computation time (under a minute for FRAGRA compared to up
to two hours with XPLEO for a gap of 12 residues). In principal, FRAGRA follows the
concept of knowledge-based loop modelling described by others281. In the context of Fit-
tOFF, FRAGRA is used to find candidate backbone conformations that fit a structural gap
with the stem residues and number of enclosed residues identified as described above,
�gure 10.4A.

FRAGMENT DATABASE | The fragment database has been constructed from about 60,000
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Figure 10.3 Relations between gap length and distance between stem residues for gaps of
2, 4, 6, and 8 residues. Occurrences of a certain distance (in Å) are shown. Distinctive peaks
are evident, for example, for gaps of two residues containing helices at 5.1 Å a gap of two
residues containing a beta-sheet at 10.0 Å and a gap of eight residues forming an alpha helix
at 14.3 Å.

protein chains solved by X-ray crystallography. Only structures with experimental data
extending to a resolution of 2.2 Å or better were included in order to provide a good trade-
off between the quality of the backbone models and the number of chains included in
the database. The database uses a hash generated from the geometry of the two residues
lining each fragment, the so-called stem geometry, to quickly look up possible backbone
conformations for the structural gap. Here, Cα - Cα distances as well as the angle be-
tween the Cα - Cα and the planes formed by N - Cα - C of the N-terminal residue and
the Cα - C - O plane of the C-terminal residue are used as descriptors. For each stem
geometry, the fragments in the database are structurally non-redundant, that is, not to
fragments is closer than a certain RMSD to another. The RMSD threshold is determined
as a function of the fragment length.

SAMPLING OF BACKBONE FRAGMENTS | Possible backbone conformations are sampled
from the fragment database by using the stem geometry of the structural gap as a lookup
key. Usually, the conformation from the database do not perfectly connect the two stem
residues. Therefore, to improve the fit at the stems, small fragments with a length of three
residues are used to bridge between the residue before and after the stem residue. Op-
tionally, the geometry of the backbone is additionally optimised using a steepest decent
optimisation of bonded terms.

SCORING AND FILTERING THE CANDIDATES | The list of candidates found during backbone
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Figure 10.4 Overview of FRAGRA in the FittOFF method. An identified structural gap (A),
stem residues are marked in green, gap length indicated by a red pseudo bond, is used for
fragment fitting in FRAGRA, the initial database search results in a large number of candidates
(B). By taking the residual density into account (C), it is possible to rank the candidates by map
correlation and define one, or a few, top scoring results (D). The map correlation can further
be used to identify regions that have been incorrectly identified as gaps.

sampling contains 1500 fragments on average, �gure 10.4B. To decide which one fits
the gap best, a scoring scheme is applied. At first, fragments that clash with the already
built protein structure are filtered out. A finer ranking is achieved by spatially correlating
the candidates to the residual density, �gure 10.4C. The expected density is computed
by placing a Gaussian sphere of density at each atom and the real-space correlation to
the experimental density is calculated as described by DiMaio136. The fragments are then
output ranked by the real-space correlation values, �gure 10.4D. If the gap length is not
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determined precisely by FittOFF, different lengths are used in FRAGRA and the real gap
length is identified by analysing the map correlations for different trials.

APPLICATION OF FITTED FRAGMENTS TO MODEL BUILDING | Within the ARP/wARP work-
flow, FittOFF is applied to the intermediate model as depicted in �gure 10.5. Specifically,
the obtained best fitting fragments are added as Cα seed points to the current hybrid
model. This hybrid model is used for subsequent tracing of protein chains in the main-
chain building block. The method is invoked by default if the resolution of the data is
poorer than 2.5 Å, as this is a typical resolution at which the standard sequence docking
algorithm does not work sufficiently anymore.

Figure 10.5 Flowchart of the ARP/wARP protein model building, including automatic detec-
tion and closing of structural gaps.
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3Results

Data

The method was initially developed on high resolution test cases obtained from the PDB.
A good representative example is the 1.6 Å structure of a B subunit of a mutated shiga-
like toxin, PDB ID 1c48282. The molecule is arranged as a homo-pentamer, with each
subunit composed of 69 residues.

For the initial proof of principle, 1c48 was fragmented to obtain six gaps of various
length and secondary structure content (between two and nine residues, with mainly
helical, mainly sheet, mainly loop and mixed content). This “gapped” structure was then
submitted to FitOFF-based loop modelling.

Computational tests for subsequent examination of the method’s effectiveness were
carried out using ten randomly chosen structures from the PDB that were determined at
resolutions ranging from 3.0 to 3.8 Å. Choosing this resolution regime further ensured
that the tested structures could have been used for the generation of the fragment data-
base used in FRAGRA. Only structures with low molecular weight (15 - 25 kDa) charac-
terised by various secondary structural content were selected. For all of these test cases,
secondary structure predictions were generated with PSIPRED version 3.0 and SSPro
version 4.1. Additionally, secondary structure assignments of the structure from the PDB
were generated with the Zhang algorithm.

Application of the Method in Absence of Coordinate Error

To assess its effectiveness, the FittOFF method was used to improve the completeness
of the artificially “gapped” structure of 1c48. The identification of gaps and the fitting
of the highest-ranking fragments have been evaluated independently. Of the six gaps in
the test structure, five could be successfully detected using secondary structure docking.
The sixth gap was anchored to a fragment of five residues, thus preventing assignment of
secondary structure. Two different protocols were tested for gap retrieval. Initially, a rigid
gap filtering was attempted, necessitating a secondary structure docking of the anchoring
fragments with at least 60% confidence (referred to as confdock) and a probability for the
suggested number of residues missing in the gap of at least 50% (confpvec). Starting from
the gap candidates and corresponding lengths identified by secondary structure docking,
all with values beyond the limits of the distance databases (gapdistance > 40 Å, gaplength
> 14 residues) of physically impossible (Cα - Cα distance > 4.5 Å) were immediately
discarded. After filtering using relations between gap distance and the number of missing
residues and check for uninterpreted density, three of the five gaps were automatically
detected without any mistakes. By applying a “loose protocol” that required a lower value
of confpvec (10%), all five gaps could be identified. As might be expected, loosening the
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filtering cutoff led to more than one potential gap length being suggested for three of
the five gaps. An overview of the number of gap candidates and corresponding lengths
filtered out in both protocols is given in table 10.1.

For testing the fitting of the fragments, the gaps obtained from the loose protocol
were fed into FRAGRA. By applying the map correlation as a ranking criterion, all false-
positive solutions could be eliminated, leaving only the best-ranked fragments for the
expected gaps and gap lengths. To obtain a good estimate of the validity of these fit-
ted fragments, they were superposed against the corresponding areas in the reference
structure, �gure 10.6. Although, poorer results are achieved for long gaps, �gure 10.6B,
even for larger deviations the fitted fragments follow a path very similar to the protein
backbone in the reference structure.

Rigid protocol Loose protocol

Detected by SS-docking 15 (45) 15 (45)

Beyond database limits 4 (12) 4 (12)

Physically impossible 1 (5) 1 (5)

Filtered by distance check 7 (25) 2 (15)

Filtered out by density check 0 (0) 3 (4)

Final results 3 (3) 5 (12)

Table 10.1 Validation test of FittOFF - ‘artificial gapping’. The table shows the number of gap
candidates (corresponding gap lengths given in brackets) filtered out by the applied protocols.

Incorporation of FittOFF into ARP/wARP Protein Model Building

The application of the FittOFF method to standard ARP/wARP protein model build-
ing was investigated using three protocols each with differing parameters. The first two
protocols are the rigid and the loose ones described above in the last section. In these
protocols, the average map correlation over all highest-ranking fragments issued by FRA-
GRA was calculated and only fragments with a map correlation higher than the average
were admitted to ARP/wARP model building as Cα seeds. In addition, a third proto-
col (also loose in regard to filtering) that fed back all fitted fragments into ARP/wARP
was used, denoted as the loosest protocol. Every protocol was executed with two differ-
ent secondary structure predictions, generated with PSIPRED and SSPro4. Additionally,
secondary structure assignments from the Zhang algorithm were also tested as secondary
structure information, resulting in nine test environments for each structure. In almost all
cases, we observed higher model completeness with less fragments. The improvement
for the best cases is shown in �gure 10.7. Up to 25% more residues could be built for
resolution as low as 3.8 Å (�gure 10.7A and �gure 10.7B). In addition, decreases in R-
factor by 4% and doubling of the average length of fragments were observed in several
cases (�gure 10.7C). The best results for extra residues could be obtained following the
application of the loose protocol, although the best improvement in fragmentation was
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seen following application of the rigid protocol as shown in table 10.2. Regarding the
source of secondary structure information, it was found that the prediction methods de-
livered results comparable to those obtained with the Zhang assignment of the deposited
structure. Nevertheless, slightly better results were achieved using the Zhang assign-
ment (table 10.3). No apparent relation was detected between the secondary structure
content of a structure and the extent of improvement. On average, the loose protocol
coupled with a secondary structure prediction from SSPro4 provided the best improve-
ments with 9% more residues built and 22% longer fragments.

A B

C D

Figure 10.6 Validation test of FittOFF method with artificially “gapped” test case 1c48. Part
(A) to (D) show the different structural gaps, with (D) showing the gap that could not be au-
tomatically detected due to short anchoring fragments. Fitted fragments are shown in stick
representation for the minimal backbone. The fitted fragment is colored in red, the reference
structure is shown in yellow. The biggest deviation can be seen in (B), for a gap including parts
of a beta-sheet and a loop.

For testing of FittOFF, only cases from the PDB were used. This made it possible to com-
pare the models built by the standard ARP/wARP with and without the FittOFF protocol
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to the crystal structure from the PDB. The results for the superpositions of three models
are shown in table 10.4. It is shown that all models built to a higher extent with FittOFF
also had a smaller rmsd and rmsdadj (rmsd scaled to the cube root of the number of
aligned residueso283) to the reference structure.

Protocol Residues built Model completeness Fragment length R-Factor

Rigid +19% +11% +98% -4.3%

Loose +25% +12% +78% -3.8%

Loosest +21% +11% +78% -3.8%

Overall best +25% +12% +98% -4.3%

Table 10.2 Comparison of the best result obtained by model building with FittOFF for each
of three different protocols for gap filtering.

Secondary Structure Residues built Model completeness Fragment length R-Factor

PSIPRED +18% +11% +78% -3.8%

SSPro4 +19% +10% +60% -3.4%

Zhang assignment +25% +12% +98% -4.3%

Overall best +25% +12% +98% -4.3%

Table 10.3 Comparison of the best result obtained by model building with FittOFF for each
of three different sources of secondary structure information.

Testcase Size Resolution (Å) Aligned Residues rmsd rmsdadj

ARP FittOFF ARP FittOFF ARP FittOFF

1PLR 258 3.0 225 240 0.80 0.75 0.13 0.12

2QSR 173 3.1 119 138 0.93 0.84 0.19 0.16

2AJ2 208 3.2 144 165 0.67 0.67 0.13 0.12

Table 10.4 Best results obtained with FittOFF; results of the structural alignments of the
model built with the standard ARP/wARP protocol and the protocol incorporating FittOFF and
the reference structure. The rmsd has been calculated over all C atoms in each model.

A B C

Figure 10.7 FittOFF applied to ARP/wARP. Best results are shown for tests with different
protocols and sources of secondary structure information. The red columns denote the values
obtained with the standard ARP/wARP model building protocol, the blue column with incorpo-
rating FittOFF. (A) The percentage of extra residues built compared to the standard ARP/wARP
protocol; (B) Average completeness of the built model; (C) Average length of built fragments.
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4Conclusions

The obtained results support assertion that application of methods from theoretical mod-
elling to automatic protein model building in macromolecular crystallography can be
beneficial. The application of FittOFF gave rise to notable improvements in crystallo-
graphic model building at resolutions between 3.0 and 3.8 Å, pushing model building
for some case studies towards 90% completeness and a significantly better rmsdadj to
the crystal structure from the PDB (table 10.4). The method imposes negligible over-
head on the computation time required by the standard ARP/wARP protein model build-
ing protocol and is thus applicable in general use. Further optimisation of the regime of
secondary structure prediction, and thus docking, will certainly provide additional en-
hancement. Due to the planned invocation of FittOFF in ARP/wARP web-based model
building, a continuous evaluation on a wide variety of cases will be performed automat-
ically.

In the “artificial gapping” test scenario, the chain fragments are free of phase depen-
dent coordinate error. There are also no mistakes in traced chain fragments such as route
shortcuts or spurious loops. Moreover, the electron density was of high quality (1.6 Å)
and the correct secondary structure information was used, meaning the test cases were
somewhat idealised. It was shown that all gaps surrounded by fragments docked into the
secondary structure could be identified without introducing any false-positive gaps. Fur-
thermore, wrongly recognised gap lengths could be eliminated using a threshold applied
to the map correlation of the fitted fragment to the residual density. Although the devi-
ation from the reference structure rises with longer fitted fragments, they are generally
highly similar to the path taken by the protein backbone.

The way the fragments fitted by FRAGRA are used in the protein model building pro-
tocol has certain advantages over other possible approaches. For example, plain use of
the coordinates of the fragments fitted into identified structural gaps may not be the best
option as it introduces a certain degree of model bias. In addition, some parts of the new
loop could be out of density, causing the accurately modelled parts to be removed dur-
ing refinement. In our implementation all fitted fragments are only used as potential Cα
seeds (suggestions) to ARP/wARP for subsequent building of longer chain fragments.
Therefore, the method is not expected to build parts of the structure that lack support for
coordinate placement in terms of electron density and plausible stereochemistry. If the
additional Cα atoms admitted to further chain tracing by FittOFF are in agreement with
the density, the structural gaps will be closed. If, on the contrary, the suggestions do not
match the density they will not be used for building a chain. This is especially important
for the additional information derived from FittOFF, which has been shown to be less
accurate for longer gaps. There may still be small decreases in model completeness or
higher fragmentation for some cases. This may occur for models that are built only to a
modest extent and can be caused by different paths that will be followed during chain
tracing. Following an incorrect path could always lead the tracing to areas of low density
and thus prevent the building of longer chains. Going forward, it may be worth inves-
tigating the placement of all protein atoms as seeds for model building as opposed to
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merely as Cα-candidates. Thus, FittOFF could also be applied after ARP/wARPs final
model building cycle.

The accuracy of the method depends predominantly on the degree of fragmentation
of the initial model and its coordinate accuracy. For the identification of structural gaps
correctly built and long chain fragments with defined secondary structure are of benefit.
The use of fragment fitting in model building is always advantageous, but the degree
of improvement depends even more strongly on the completeness, fragmentation and
correctness of the model, which all in turn depend on the quality of the initial phases and
the data. More specifically, for a model consisting only of chain fragments shorter than
seven residues, no chain fragments can be docked to the secondary structure prediction.
Additionally, for such a model, there is also a high probability that most, if not all, chain
fragments are modelled incorrectly or with high positional error.

The performance could be improved by using the Zhang assignment of the final model
instead of the predicted secondary structure by PSIPRED and SSPro4. This shows that
the method presented here is sensitive to the quality of the predicted secondary structure.
Still, the predicted secondary structure by PSIPRED and SSPro4 is in many cases suffi-
cient to dock the partially modeled fragments with high confidence into the sequence.
Fitting fragments into long gaps might result in only marginally reliable fragments (Fig-
ure 3.1b), which might not lead to the closure of a structural gap. However, the host
fragments may be partially extended, thus leading to a shorter gap and resulting in a
more reliably fitted fragment in the next iteration.

The possibility to deduce the correct location of structural gaps implies that the an-
choring fragments have been docked into right position in sequence.Thus, the secondary
structure docking should also be test for its application to aid the sequence assignment in
ARP/wARP at medium-to-low resolution. Highly ambiguous dockings could be further
improved by a combination of secondary structure docking and identification of large
side chains in the density.

The next step in the development of the FittOFF method must be its release within the
next version of the ARP/wARP software suite. Once this has been achieved, it will also
be necessary to evaluate protocols combining fragment fitting and already implemented
NCS-detection and extension 267 on an array of test cases containing NCS-relations to
see if their combined effectiveness is more than the effects of either addition alone.

Software Availability

The FittOFF method is currently being incorporated into a future release of ARP/wARP.
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FRAGRA - Knowledge-based Backbone
Conformation Sampling

What follows is a description of the FRAGRA method for sampling of backbone conformations.
It is essentially an extended version of the Materials and Methods part together with some
results in the "Knowledge-based extension of fragmented models at low resolution in ARP/wARP"
manuscript. We first give some methodological background before touching on sampling
performance of the FRAGRA method.

1 Introduction

Traditionally, there have been two different approaches to filling structural gaps in protein
structures. On one end of the spectrum, ab initio methods sample loop conformations
based on prior knowledge of backbone conformations and an energy function to guide
the sampling process73,284. On the other side are knowledge-based methods that make
use of large libraries of fragments from experimentally solved structures74,285. The main
argument of ab initio versus knowledge-based is one of coverage of structural space vs.
efficiency. Ab initio methods have good coverage of the structural space, but due to their
rigorous sampling tend to be slow, especially for long loop lengths. Knowledge-based
methods are very fast, mainly due to the fact that they only look at backbone conforma-
tions that are feasible in nature, but have the problem that only a fraction of the possible
backbone conformations are available in structural databases. For gaps of 15 residues and
more, fragment-based methods are not viable anymore, since the structural coverage is
too low. However, performance starts to decay already for shorter loop285. For longer
loops, only ab initio sampling is applicable. Recently, hybrid methods have been devel-
oped that combine the speed of fragment-based (knowledge-based) with the rigorous
sampling of ab initio methods75. For an extensive comparison of available loop sampling
and scoring methods, see Rossi76,286.

In the following, we describe a knowledge-based method to remodel structural gaps
in the context of ARP/wARP model building. It was developed with the following goals in
mind: the method should produce accurate results for short loops, finish the remodeling
in seconds rather than hours and be able to close structural gaps up to 14 residues in
length.

We start by describing how the fragment library is built, then go on to a benchmark
of the raw sampling performance in comparison to other available programs. Then, we
describe the backbone geometry regularizer, which improves accuracy of the sampling
results. Finally, we show clash filters help to reduce the number of false-positive fragment
candidates.
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2Fragment Database

The fragment database has been constructed from roughly 60’000 protein chains solved
by X-ray crystallography. Only structures solved at 2.2Å or higher resolution have been
included into the database. The cutoff of 2.2Å resolution provided a good tradeoff be-
tween the quality of the backbone models and number of chains included in the database.

When sampling fragments for a given structural gap, the two residues lining the gap
region constrain the geometry of the possible backbone candidates. These two residues
are coined stem residues as they are anchoring the backbone of the missing part to the
rest of the structure. Only fragments that are more or less matching the stem geome-
try are suitable backbone candidates. The geometry of the stem, thus provides a good
filtering opportunity to reduce the computational cost. We use the Cα/Cα distance as
well as the angle between the Cα/Cα vector and the planes formed by N-Cα-C of the
N-terminal residue and the Cα-C-O plane of the C-terminal residue as descriptors. To-
gether with the length of the fragment, they form the stem pair geometry (�gure 11.1).
The distance and angles are binned. Fragments that fall into the same bin are called a
stem group. Structural redundancy of the candidates in one stem group is removed: only
fragments that differ more than a certain RMSD are included. This makes sure we are not
wasting any CPU cycles on recomputing energies of similar fragments but rather spend
computation on a more diverse set of candidate fragments.

Figure 11.1 The stem geometry is calculated from the Cα/Cα distance as well as the angle
between the Cα/Cα vector and the planes formed by N-Cα-C of the N-terminal residue and
the Cα-C-O plane of the C-terminal residue.

The internal layout of the database has been optimized for fast fragment retrieval as well
as fast loading from disk (see �gure 11.2). The whole database can be loaded into mem-
ory, even on low-end consumer hardware. Thus, no access of the file system is required
during sampling. These two requirements had a large impact on the internal database
layout and lead to the design of a very compact, and efficient storage scheme that is
described in more detail in the next section.
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Figure 11.2 Data layout of the fragment library. See text for a description.

Instead of storing the coordinates of the backbone per fragment, the database is divided
into 2 parts, very similar to the tables in a relational database. The first part is called the
coordinate section and contains the actual backbone coordinates of the protein struc-
tures. This part is divided into a data section and a table of contents (TOC). The table of
contents is implemented with a quadratically probed hash-table with an open address-
ing scheme and maps the entry id (PDB identifier plus chain name) to the offset in the
data section. The data section itself is a compressed representation of the backbone co-
ordinates of the protein chains. The chains have been translated such that their minimal
position of the axis-aligned bounding box coincides with the coordinate origin. Each po-
sition takes 48bits, 16bit per dimension in a fixed-precision format. This leaves us with
a precision of 0.01Å per dimension and a maximal chain extent of 635.36 along each of
the x, y and z axes, more than enough for all of the protein chains that have been crys-
tallized so far. The second section stores the fragments for a given stem pair geometry. A
hash table maps the stem pair geometry to the block of fragment entries of the stem pair
geom. Each fragment entry has the size of one int (32bit) and maps back to the structure
section. While this data layout comes at the expense of cache efficiency as the coordi-
nates per stem pair geometry are spread out over the whole coordinate section and there
is not way to fit the whole structure section into the cache, the backbone coordinates can
be reused for overlapping fragments and fragments of different length. This reduces the
space required considerably.

As a post-processing step to the database creation, unused coordinates are removed,
e.g. only coordinates which are accessed by at least one fragment are kept in the database.

3Sampling Procedure

The task of the sampling is to produce a list of fragments that are suitable candidates
to remodel the backbone of the structural gap. This list is called the candidate list. As
input, the sampling routine requires 6 coordinates (the N, Cα, C atom positions of the
N-terminal stem and the Cα, C, O atom positions of the C terminal stem) and the loop
length. The stem pair geometry is calculated from these 6 coordinates. Each fragment
in the stem group is then superposed onto the stem atoms by minimizing the squared
errors using singular value decomposition287 and kept if the RMSD is lower than a cer-
tain threshold. While this step generally yields good candidates, they do not fit perfectly
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at the stems. Inserting them as is would produce suboptimal backbone geometries with
bond lengths and angles that are far from being physically/chemically feasible. We have
two different "protocols" to optimize the stems. The first one is to use small fragments
of length 3 that are used to bridge between the stem atoms and atoms on the back-
bone fragment to get better fits at the stems. The second one is use to use a backbone
optimization scheme with fixed stem atoms (see below).

Figure 11.3 Effect of healing and regularisation of fragment geometry on RMSD for loops of
different lengths. The best decrease in RMSD is observed fro small loops. For longer loops, the
improvement is still non-zero, but less pronounced The best decrease in RMSD is observed
fro small loops. For longer loops, the improvement is still non-zero, but less pronounced..

When used separately, both the healing and the backbone optimization have a positive
effect on the average RMSD of the backbone candidates to the native loop. For loops of
length 4, the backbone optimizer improves the backbone RMSD by 0.17Å, whereas the
healing protocol improves the backbone RMSD by 0.12Å (�gure 11.3). The combina-
tion of healing and backbone optimizer improves by an average of 0.21Å RMSD. For both
the backbone optimizer and the healing, the effect in RMSD difference becomes smaller
with increasing loop length. This is not surprising as the contribution of the residues
close the stem atoms becomes smaller with increasing loop length. For a better compar-
ison, one should look at the RMSD improvement per residue position. For the backbone
optimization, one would expect that the RMSD improvement is biggest for the terminal
loop residues and becomes smaller for residues in the middle.

In this section we compare the performance of our loop-sampling method to other
available loop modeling programs. This comparison is based on the loop test set and
analysis by Rossi286. The test set consists of high-resolution protein structures. For each
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loop length between 4 and 12, certain regions of the structure are removed and need to
be remodeled. The obtained ensemble of backbone conformations are then compared to
the native structure and an RMSD value is calculated. For each loop length, the average
of the lowest RMSD for each modeling case is calculated and plotted in �gure 11.4. The
solid lines are the results for sampling alone, whereas the dashed lines are the results
obtained from sampling and scoring. As can be seen, the gap between the best possible
loop in the generated ensemble of loops and the one that has been selected as the best
one (energy-wise) is considerably large. The method that performs best in selecting the
loops in the ensemble is the ab initio method Prime.

Figure 11.4 Performance of various loop sampling packages on the Rossi testset286. The
dashed-line represent the best-scoring loop candidates, the solid lines are the loop candidate
with the smallest RMSD to the native conformation.

To compare the sampling performance of our method, we repeated the calculations
done by Rossi286 with our method on the same test set (see �gure 11.5). For knowledge-
based methods, Rossi and coworkers removed fragments from structures that share a
sequence identity of 90% or higher to the structure containing the gap to be modeled.
We do the same for our fragment database. As can be seen, on average our method pro-
duces a backbone fragment below 2.0 up to loop lengths of 10 residues. For longer loops,
the performance starts to decay. The best method from the set tested by Rossi, Prime,
performs very similarly. They tend to produce slightly better result at short loop lengths,
whereas we find loops closer to the native loop conformations for loops of lengths of 10.
However, one should not over-interpret these result, as the comparison is not completely
fair. We are only assessing the sampling of our method and do not pay any attention to
the impact the sampling has on selecting a good backbone fragment. The sampling re-
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Figure 11.5 Performance of the loop sampling method presented here on the Rossi testset.
X-axis: loop length, Y-axis: average RMSD value of best candidate for each target.

sult of Prime, on the other hand is the result of a highly tuned interplay of scoring and
sampling.

Optimizing the Backbone Geometry

As input, the backbone optimizer takes a set of backbone coordinates. The N, Cα and C
atoms of the first amino acid and the C, Cα, O atom of the last amino acid are fixed to
the coordinates of the stem; their position remains constant throughout the minimization
procedure. This is required to fit the backbone candidate to the stem residues where we
would like to create perfect geometry where the backbone candidate connects to the
backbone of the protein.

The backbone optimizer considers only energies coming from bonded terms. There is
no term capturing van-der-Waals and Coulomb forces. A harmonic potential is used to
represent bonds:

Vb(b) =
1
2
K(b− b0)2

The bond-length b is allowed to oscillate around an equilibrium length . K is the spring
constant and determines how strongly the bond fluctuates. The spring constant is higher
for double bonds, e.g. the C-O bond than it is for single bonds, e.g. Cα-C. The equi-
librium lengths/angles and spring constants are taken from the CHARMM force field
(par_all27_prot_na.prm). Analogously, angles between 3 consecutive atoms are
described by a harmonic potential that is parametrized on the angle:

Va(γ) =
1
2
K(γ − γ0)2

The potential for dihedral angles is

Vd(γ) = K[1 + cos(n · γ − δ)]

Here, n is the multiplicity of the dihedral angle, δ determines the location of the minima,
K is a constant that scales the energy appropriately. For all involved backbone dihedrals,
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the multiplicity is 2 or 1, meaning that the potential has two or one minima, respec-
tively. To account for the energetic asymmetry of the omega cis and trans conformations,
two potentials are overlayed on top of each other. One with multiplicity one, and one
with multiplicity two. Together these potentials make the trans-peptide conformation
energetically more favourable. Although this it does not occur in the case of backbone
dihedrals, the multiplicity may also be 3, for example for the CHI1 torsion of lysine.

At each step, the backbone optimizer accumulates forces resulting from the bonded
terms. The forces are calculated as the derivatives of the potential functions given above.
The positions are updated by moving a tiny fraction along the resulting force vector. This
procedure is repeated iteratively until a fixed number of steps is reached. The minimum
of the bonded term potential is very far away from the normal loop conformation and
optimizing for many steps would drive the fragments away from their current position.
This is not desirable as the minimization step should merely serve to remove bonds and
angle that are not chemically feasible.

4Loop Ranking

The candidate list contains between 100 and 4000 backbone candidates with an average
number of fragments around 1500. For ARP/wARP Cα-seeding, only a few loops are
to be selected. Naturally, we would like the selected loop to be as close to the native
structure as possible. We use a combination of density map correlation and clash filtering
to select suitable loop candidates.

Density Correlation

The conformation of the fragment is converted to a density map following the approach
by DiMaio136. At each atom position, a Gaussian sphere of density is placed, with mag-
nitude proportional to the atomic weight. The resulting density map is then correlated
to the experimental density map with a real-spatial cross-correlation.

Filtering Clashing Backbone Candidates

Very often the backbone candidates sterically clash with the protein. While slight steric
overlap can be corrected by energy optimization procedures, candidates that are strongly
overlapping with the rest of the protein structure can be safely discarded: It would be
futile to further process them as for sure they are not good candidates. A first step is to
calculate a clash score and remove clashing loops from the candidate list. This provides
a very powerful filter to remove true negatives very early on.

We use a very simple steric energy function77 that is zero for atoms that are not clashing
and increases linearly to a value of up to 10 for clashing atoms. The used cutoff radii (ri
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for the first, rj for the second atom) are based on the element of the atom. We use 1.5
for carbon, 1.3 for nitrogen and oxygen and 1.7 for sulphur atoms. The energy is defined
as:

E(dij , ri, rj) =


0, if dij > ri + rj

10, if dij < 0.8254 · (ri + rj)
57.273 · (1− dij

ri+rj
), otherwise

Below are two typical cases where the RMSD of the backbone candidate is plotted against
the clash score (�gure 11.6). On the left side, the filtering works very nicely and we keep
the candidates close to the solution while removing loops of high RMSD. In the second
case, we see, that loops with very diverse RMSD have a steric energy close to zero. Several
false-positives remain after the filtering step. The latter is a typical scenario for loops that
are on the protein surface, whereas the first is a typical case when the loop is on the
inside of the protein: The conformational space is very confined and candidates that are
not close to the solution are clashing with the protein.

A B

Figure 11.6 Two typical examples of RMSD to native loop plotted against clash score. (A)
internal loop of a protein for which the space is very confined. Any loop deviating from the
native will inevitably clash with other parts of the protein. (B) Surface loop. Conformations
with large deviations from the native loop are possible without clashes.

Ranking with Statistical Potentials

We have looked into the application of statistical potentials as a filter for backbone frag-
ments. More specifically, a torsion potential over 3 consecutive phi/psi pairs and a solva-
tion potential from QMEAN. In addition, a residue-level potential parametrized on the
Cα-Cα distance and the angle between the two Cα-Cβ vectors has been implemented.
We have tested the performance of the potentials of mean force on a few artificial test
sets. The performance of these potentials as filters was found to be very limited. For
ARP/wARP model building, scoring of loops by traditional energy functions is likely to
be even less efficient, since the surrounding of the loop is not complete and thus lacking
many stabilizing interactions. In addition, the sampling produces backbone conforma-
tions without sidechains and scoring would be limited to backbone atoms only. Many
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loop-stabilizing interactions are mediated by sidechains atoms which will not be included
in the scoring.

5Conclusions

The fragment sampling protocol presented is a very efficient procedure to sample back-
bone conformations. On the Rossi testset, the procedure is able to identify loop confor-
mations which are on average within 2Å RMSD to the native structure for loops up to 10
residues in length. This performance is comparable to the other available loop sampling
programs described by Rossi, but at a fraction of the computational cost. For a detailed
analysis of the fragment sampling protocol in the context of ARP/wARP model building,
we refer to the ’Knowledge-Based Extension of Fragmented Models at Low Resolution
in ARP/wARP’ chapter.
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Summary and Outlook

In this work, we have presented novel methods for protein structure comparison, pro-
tein model quality assessment, automated homology modeling, and X-ray density map
interpretation. These methods have been developed based on the OpenStructure frame-
work, introduced in the thesis. The framework has made it possible to seamlessly inte-
grate the presented algorithms with existing tools. Moreover, the powerful visualisation
capabilities of the framework have been indispensable for development, and understand-
ing the molecular aspects of proteins.

First, we have described the local distance difference test (lDDT) for comparison of
protein structures, the measure has been used as one of the official criteria for the CASP9
and CASP10 tertiary structure prediction evaluation. The stereo-chemical and clash fil-
ters have helped to identify physically impossible models and driven participating servers
to generate more realistic models. In addition, lDDT has been successfully applied in the
CAMEO live benchmark to assess the quality of structure prediction servers in an unsu-
pervised manner. Here, the true power of lDDT comes into play, as the score accurately
describes structural similarity even in presence of domain movements. The splitting of
structures into assessment units, as it is currently done in the CASP experiment, is ren-
dered unnecessary.

With DOMF, we have presented a graph-based method to identify common build-
ing blocks in protein structures. The algorithm uses an iterative neighborhood update
to partition the residues into domains. On a test set of proteins which undergo struc-
tural rearrangements, we have successfully used DOMF to identify structural stable sets
of residues. A multi-template modeling algorithm based on DOMF has been presented,
which shows that it is beneficial to filter constraints for consistency at the residue level
prior to passing them to the modeling program.

For assessment of model quality we have developed two extensions to the QMEAN
scoring function. The first, QMEAN Z-score, relates the energy of models to that of ex-
perimental structures of similar size. By that, the quality estimates are placed on an ab-
solute scale. The score is expressed as a Z-score of the model being of X-ray like quality.
The work on QMEAN Z-score has identified the requirement for specialized scoring
functions for particular classes of proteins. For example, due to the different physico-
chemical properties of biological membranes, interactions which are favourable inside a
membrane are energetically prohibited in aqueous solution. When calculating the po-
tential of mean force energy of membrane proteins with potentials trained on soluble
proteins, the energies are often higher than for soluble proteins of similar size. There-
fore, specialized scoring functions targeted at the characteristics of membrane proteins
need to be developed.

QMEANdist complements the potential of mean force terms with constraints from
evolutionary related protein structures. In addition to scoring the models with QMEAN,
the models are scored by agreement with a local Cα-Cα atom distance propensity ob-
tained from templates. These restraints are very helpful in distinguishing correct from
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incorrect folds, and successfully filter models with over-optimized potentials of mean
force terms. QMEANdist has been extensively benchmarked during the CASP9 exper-
iment and been shown to perform very well for ranking and selection of models. The
CASP9 benchmark identified room for improvement for local, per-residue quality pre-
diction. The magnitude of local scores depend on the number of restraints, their ampli-
tude, and spread and it has proven difficult to correlate them to a structural similarity
measure. The Q-score employed by McGuffin and Roche119, or the filtered constraints
by Paluszewski235 seem to be better suited for local quality prediction.

Motivated by results of QMEANdist in the CASP9 QA category, QMEANdist was inte-
grated into the automated modeling pipeline of the next generation of SWISS-MODEL.
The sequence similarity weighting scheme employed during CASP9 was replaced by a
probabilistic template quality estimation. Properties of the target-template alignment
and predicted features (secondary structure and solvent accessibility agreement) act as
lDDT predictors and are combined in a probabilistic manner. Our template selection
scheme ensures good performance in all sequence identity regimes. Depending on the
evolutionary distance between the target and the template, the relative importance of the
predictors is adapted. In the high-sequence identity regime, template selection is mainly
driven by sequence similarity, whereas in the low-sequence identity regime, the impor-
tance of HHsearch/HHblits scores and other predictors increases. The new pipeline rep-
resents a substantial improvement compared to the current version of SWISS-MODEL.
On average, the models are more accurate, and the number of target sequences where
a model can be built is increased. Nevertheless, there is gap to top-performing struc-
ture prediction servers in CAMEO. Further work on the modeling pipeline in two ar-
eas is therefore required: first, model accuracy and coverage would tremendously bene-
fit from extension of single-template models. For these cases, a multi-template model-
ing pipeline based on DOMF should be implemented. Second, it should be investigated
whether the template quality predictor parametrisation can be optimized. Currently, the
properties are multiplied by coverage to account for the coverage-dependence of lDDT.
The predictors could be modified to estimate a coverage-corrected lDDT, i.e. an lDDT
calculated on residues present in the both the template and the target. These predictors
could additionally be parametrized on the alignment length, to account for the length-
dependence of the properties.

The newly designed web-interface for SWISS-MODEL Next Generation is a large
step towards providing a more interactive modeling environment for non-experts. The
completely overhauled template selection and comparison page, allows to compare both
the biology and structure of identified templates at a glance. By building on this solid
foundation, new interactive modeling applications are within reach. For example, tools
to analyze bindings sites of proteins or an alignment editor with live update of protein
structure models.



185 | Acknowledgement

Acknowledgement

I would like to thank Torsten Schwede for his constant support and wise words. It has
been a fantastic few years with many lessons learned. I am especially grateful for his
ability to put the work we do into bigger perspective. Being reminded that it’s all about
biology is a good thing once in a while... Also, I would like to thank Andrew Torda for
being part of my thesis committee and agreeing to serve as the co-referee.

Many people have made the years unforgettable. Most of this work would not have
been possible without their constant support and feedback. In particular, I am greatly
indebted to Pascal Benkert. He has been a fantastic mentor during my early years. Working
late to get the CASP9 server up and running was an experience I will look back to, when I
am old and bald. Also, I am grateful for all the evenings at the Linde, where we could have
sworn we just had 4 glass of beer but the waitress made us to pay for 5. Ansgar Philippsen
for introducing me to that little piece of software that later evolved into OpenStructure.
I still remember the moment as if it were yesterday. A huge ’thank you’, for making the
graphics look that great and all the discussions on software design. A huge ’thank you’
also goes to Tim Wiegels from the EMBL in Hamburg. Working together on ARP/wARP
didn’t feel like work at all. Tobias Schmidt for the many hours of coffee drinking, the
scientific and technical discussions, and getting Drug The Bug from a decent product to
the nifty gadget it is now. Juergen Haas for always finding another five minutes to help
and read a manuscript, and keeping me motivated. Andrew Waterhouse for your fantastic
work on SWISS-MODEL and for teaching me that normal people use the backspace
key to delete characters, Bienchen for all the work on OpenStructure, SWISS-MODEL,
and the after-work beer at the Cargo Bar. Valerio Mariani for the work on lDDT and his
burning passion to bundle, Lorenza Bordoli for being the good soul of the group, Andreas
Schenk for all the help an patience to explain things. Gabriel Studer for being a fun office
mate and his unbelievable enthusiasm for all things scientific. Konstantin Arnold for all his
help in setting up web services and managing the BC2 computing infrastructure. Last but
not least I would like to thank Andreas Bergner for carefully reading my thesis and giving
very valuable feedback.



Acknowledgement | 186



187 | References

References

1 Dugas, H. (1999). Bioorganic Chemistry: A Chemical Approach to Enzyme Action.
Springer.

2 Pal, D. and Chakrabarti, P. (1999). Cis peptide bonds in proteins: residues involved,
their conformations, interactions and locations. Journal of Molecular Biology, 294(1),
271 - 288.

3 Ramachandran, G. and Mitra, A. K. (1976). An explanation for the rare occurrence
of cis peptide units in proteins and polypeptides. Journal of Molecular Biology, 107(1),
85 - 92.

4 Berg, J., Tymoczko, J. and Stryer, L. (2002). Biochemistry, volume Teile 1-34 of Bio-
chemistry. W.H. Freeman.

5 Baldwin, R. L. (2007). Energetics of protein folding. Journal of Molecular Biology,
371(2), 283-301.

6 Eisenberg, D. (2003). The discovery of the α-helix and β-sheet, the principal struc-
tural features of proteins. Proceedings of the National Academy of Sciences of the United
States of America, 100(20), 11207-11210.

7 Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features. Biopolymers,
22(12), 2577–2637.

8 Jones, D. (1999). Protein secondary structure prediction based on position-specific
scoring matrices. Journal of Molecular Biology, 292(2), 195-202.

9 Zhang, Y. and Skolnick, J. (2005). TM-align: a protein structure alignment algo-
rithm based on the TM-score. Nucleic Acids Res., 33, 2302–2309.

10 Bourne, P. and Weissig, H. (2003). Structural Bioinformatics. John Wiley & Sons.
11 Goodsell, D. S. and Olson, A. J. (2000). Structural symmetry and protein function.

Annual review of biophysics and biomolecular structure, 29(1), 105–153.
12 Hilser, V. J., Wrabl, J. O. and Motlagh, H. N. (2012). Structural and Energetic Basis

of Allostery. In Rees, DC, editor, Annual Review of Biophysics, number 41 in Annual
Review of Biophysics, pages 585-609. .

13 Rhodes, G. (2010). Crystallography Made Crystal Clear: A Guide for Users of Macro-
molecular Models. Elsevier Science.

14 Keeler, J. (2011). Understanding NMR Spectroscopy. Wiley.
15 Glaeser, R. (2007). Electron crystallography of biological macromolecules. Oxford Uni-

versity Press.
16 Adams, P. D., Afonine, P. V., Grosse-Kunstleve, R. W., Read, R. J. and Richardson,

J. S. et al. (2009). Recent developments in phasing and structure refinement for
macromolecular crystallography. Current Opinion in Structural Biology, 19(5), 566-
572.

17 Fischer, N., Konevega, A. L., Wintermeyer, W., Rodnina, M. V. and Stark, H.
(2010). Ribosome dynamics and tRNA movement by time-resolved electron cry-
omicroscopy. Nature, 466(7304), 329-333.



References | 188

18 Bernstein, F. C., Koetzle, T., Williams, G., Meyer, E. and Brice, M. et al. (1977).
Protein Data Bank - Computer-Based Archival file for Macromolecular Structures.
Journal of Molecular Biology, 112(3), 535-542.

19 Chandonia, J. and Brenner, S. (2006). The impact of structural genomics: Expecta-
tions and outcomes. Science, 311(5759), 347-351.

20 Berman, H., Henrick, K. and Nakamura, H. (2003). Announcing the worldwide
Protein Data Bank. Nature Structure Biology, 10, 980.

21 Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G. and Bhat, T. N. et al. (2000).
The Protein Data Bank. Nucleic Acids Research, 28(1), 235-242.

22 Velankar, S., Alhroub, Y., Best, C., Caboche, S. and Conroy, M. J. et al. (2012). PDBe:
Protein Data Bank in Europe. Nucleic Acids Research, 40(D1), D445-D452.

23 Kinjo, A. R., Suzuki, H., Yamashita, R., Ikegawa, Y. and Kudou, T. et al. (2012).
Protein Data Bank Japan (PDBj): maintaining a structural data archive and resource
description framework format. Nucleic Acids Research, 40(D1), D453-D460.

24 Joosten, R. P., Salzemann, J., Bloch, V., Stockinger, H. and Berglund, A.-C. et al.
(2009). PDB_REDO: automated re-refinement of X-ray structure models in the
PDB. Journal of Applied Crystallography, 42, 376-384.

25 Sanderson, K. (2009). New protein structures replace the old. Nature, 459(7250),
1038-1039.

26 Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T. and Swindells, M. B. et al. (1997).
Cath–a hierarchic classification of protein domain structures. Structure, 5(8), 1093-
108.

27 Murzin, A. G., Brenner, S. E., Hubbard, T. and Chothia, C. (1995). SCOP: a struc-
tural classification of proteins database for the investigation of sequences and struc-
tures. Journal of Molecular Biology, 247(4), 536–540.

28 Henikoff, S. and Henikoff, J. G. (1992). Amino acid substitution matrices from pro-
tein blocks. Proceedings of the National Academy of Sciences of the United States of
America, 89(22), 10915-10919.

29 Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J. and Zhang, Z. et al. (1997).
Gapped BLAST and PSI-BLAST: a new generation of protein database search pro-
grams. Nucleic Acids Research, 25(17), 3389-3402.

30 Eddy, S. (1998). Profile hidden Markov models. Bioinfomatics, 14(9), 755-763.
31 Eddy, S. R. (2011). Accelerated Profile HMM Searches. PLOS Computational Biology,

7(10).
32 Soding, J. (2005). Protein homology detection by HMM–HMM comparison. Bioin-

formatics, 21(7), 951-960.
33 Remmert, M., Biegert, A., Hauser, A. and Söding, J. (2011). HHblits: lightning-fast

iterative protein sequence searching by HMM-HMM alignment. Nature Methods,
9(December), 173–5.

34 Eddy, S. (2004). Where did the BLOSUM62 alignment score matrix come from?.
Nature Biotechnology, 22(8), 1035-1036.

35 Valdar, W. S. (2002). Scoring residue conservation. Proteins-Structure Function and
Bioinformatics, 48(2), 227–241.



189 | References

36 Tan, Y. H., Huang, H. and Kihara, D. (2006). Statistical potential-based amino
acid similarity matrices for aligning distantly related protein sequences. Proteins-
Structure Function and Bioinformatics, 64(3), 587-600.

37 Finn, R. D., Clements, J. and Eddy, S. R. (2011). HMMER web server: interactive
sequence similarity searching. Nucleic Acids Research, 39(2), W29-W37.

38 Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science,
181(96), 223–230.

39 Vendruscolo, M. (2012). Proteome folding and aggregation. Current Opinion in
Structural Biology, 22(2), 138 - 143. Theory and simulation/Macromolecular assemblages.

40 Chothia, C. and Lesk, A. M. (1986). The relation between the divergence of se-
quence and structure in proteins. EMBO J., 5, 823–826.

41 Zemla, A. (2003). LGA: a method for finding 3D similarities in protein structures.
Nucleic Acids Research, 31(13), 3370-3374.

42 Guex, N., Peitsch, M. C. and Schwede, T. (2009). Automated comparative protein
structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical per-
spective. Electrophoresis, 30(S1), S162–S173.

43 Dessailly, B. H., Nair, R., Jaroszewski, L., Fajardo, J. E. and Kouranov, A. et al.
(2009). PSI-2: Structural Genomics to Cover Protein Domain Family Space. Struc-
ture, 17(6), 869-881.

44 Zhang, Y., Hubner, I., Arakaki, A., Shakhnovich, E. and Skolnick, J. (2006). On
the origin and highly likely completeness of single-domain protein structures. Pro-
ceedings of the National Academy of Science of the United States of America, 103(8),
2605-2610.

45 Martin, A. C., MacArthur, M. W. and Thornton, J. M. (1997). Assessment of com-
parative modeling in casp2. Proteins, Suppl 1, 14-28.

46 Alwyn Jones, T. and Kleywegt, G. J. (1999). CASP3 comparative modeling evalua-
tion. Proteins, Suppl 3, 30-46.

47 Zemla, A., Venclovas, Moult, J. and Fidelis, K. (2001). Processing and evaluation of
predictions in CASP4. Proteins, Suppl 5, 13-21.

48 Tramontano, A. and Morea, V. (2003). Assessment of homology-based predictions
in CASP5. Proteins, 53 Suppl 6, 352-68.

49 Tress, M., Ezkurdia, I., Grana, O., Lopez, G. and Valencia, A. (2005). Assessment of
predictions submitted for the CASP6 comparative modeling category. Proteins, 61
Suppl 7, 27-45.

50 Moult, J. (2005). A decade of casp: progress, bottlenecks and prognosis in protein
structure prediction. Current Opinion in Structural Biology, 15(3), 285 - 289.

51 Battey, J. N. D., Kopp, J., Bordoli, L., Read, R. J. and Clarke, N. D. et al. (2007).
Automated server predictions in CASP7. Proteins-Structure Function and Bioinfor-
matics, 69(8), 68-82. 7th Meeting on Critical Assessment of Techniques for Protein
Structure Prediction, Pacific Grove, CA, NOV 26-30, 2006.

52 Keedy, D. A., Williams, C. J., Headd, J. J., Arendall III, W. B. and Chen, V. B. et
al. (2009). The other 90% of the protein: Assessment beyond the C alpha s for
CASP8 template-based and high-accuracy models. Proteins-Structure Function and
Bioinformatics, 77, 29-49.



References | 190

53 Mariani, V., Kiefer, F., Schmidt, T., Haas, J. and Schwede, T. (2011). Assessment of
template based protein structure predictions in CASP9. Proteins-Structure Function
and Bioinformatics, 79(10), 37-58.

54 Haas, J., Schmidt, T., Biasini, M., Arnold, K. and Waterhouse, A. et al. (in prepara-
tion). CAMEO - Continuous Automated Modeling Evaluation. .

55 Chou, P. and Fasman, G. (1974). Prediction of Protein Conformation. Biochemistry,
13(2), 222-245.

56 Rost, B. and Eyrich, V. A. (2001). EVA: Large-scale analysis of secondary structure
prediction. Proteins: Structure, Function, and Bioinformatics, 45(S5), 192–199.

57 Schwede, T. and Peitsch, M. (2008). Computational Structural Biology: Methods and
Applications. World Scientific.

58 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic
local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

59 Marti-Renom, M., Madhusudhan, M. and Sali, A. (2004). Alignment of protein
sequences by their profiles. Protein Science, 13(4), 1071-1087.

60 Karplus, K., Barrett, C. and Hughey, R. (1998). Hidden Markov models for detecting
remote protein homologies. Bioinfomatics, 14(10), 846-856.

61 Bennett-Lovsey, R. M., Herbert, A. D., Sternberg, M. J. E. and Kelley, L. A. (2008).
Exploring the extremes of sequence/structure space with ensemble fold recognition
in the program Phyre. Proteins-Structure Function and Bioinformatics, 70(3), 611-625.

62 Wu, S. and Zhang, Y. (2007). LOMETS: A local meta-threading-server for protein
structure prediction. Nucleic Acids Research, 35(10), 3375-3382.

63 McGuffin, L. J. (2008). The ModFOLD server for the quality assessment of protein
structural models. Bioinformatics, 24(4), 586-587.

64 Xu, J., Li, M., Kim, D. and Xu, Y. (2003). RAPTOR: optimal protein threading by
linear programming. Journal of Bioinformatics and Computational Biology, 1(1), 95-
117.

65 Xu, J., Li, M. and Xu, Y. (2004). Protein threading by linear programming: Theoret-
ical analysis and computational results. Journal of Combinatorial Optimization, 8(4),
403-418.

66 Zhang, Y. (2009). I-TASSER: Fully automated protein structure prediction in
CASP8. Proteins-Structure Function and Bioinformatics, 77(S9), 100–113.

67 Rost, B. (1999). Twilight zone of protein sequence alignments. Protein Engineering,
12(2), 85-94.

68 Peng, J. and Xu, J. (2010). Low-homology protein threading. Bioinformatics, 26(12),
i294-i300.

69 Peng, J. and Xu, J. (2011). RaptorX: Exploiting structure information for protein
alignment by statistical inference. Proteins-Structure Function and Bioinformatics,
79(S10), 161–171.

70 Blundell, T., Sibanda, B., Sternberg, M. and Thornton, J. (1987). Knowledge-
based prediction of protein structures and the design of novel molecules. Nature,
326(6111), 347-352.

71 Greer, J. (1980). Structure of haptoglobin heavy-chain and other serine protease
homologs by comparative model-building. Biophysical Journal, 32(1), 218-219.



191 | References

72 Sali, A. and Blundell, T. (1993). Comparative protein modelling by satisfaction of
spatial restraints. Journal of Molecular Biology, 234(3), 779 - 815.

73 Canutescu, A. A. and Dunbrack, R. L. (2003). Cyclic coordinate descent: A robotics
algorithm for protein loop closure. Protein Science, 12, 963–972.

74 Jamroz, M. and Kolinski, A. (2010). Modeling of loops in proteins: a multi-method
approach. BMC Struct. Biol., 10, 5.

75 Lee, J., Lee, D., Park, H., Coutsias, E. A. and Seok, C. (2010). Protein loop modeling
by using fragment assembly and analytical loop closure. Proteins, 78, 3428–3436.

76 Rossi, K. A., Nayeem, A., Weigelt, C. A. and Krystek, S. R. (2009). Closing the side-
chain gap in protein loop modeling. J. Comput. Aided Mol. Des., 23, 411–418.

77 Canutescu, A. A., Shelenkov, A. A. and Dunbrack, R. L. (2003). A graph-theory
algorithm for rapid protein side-chain prediction. Protein Science, 12, 2001–2014.

78 Krivov, G. G., Shapovalov, M. V. and Dunbrack R. L., J. (2009). Improved prediction
of protein side-chain conformations with SCWRL4. Proteins, 77(4), 778-95.

79 Leaver-Fay, A., Tyka, M., Lewis, S. M., Lange, O. F. and Thompson, J. et al. (2011).
Rosetta3: An object-oriented software suite for the simulation and design of macro-
molecules. In Johnson, ML and Brand, L, editor, Methods in Enzymology, Vol 487 :
Computer Methods, Pt C Methods in Enzymology, pages 545-574. .

80 Kinch, L., Shi, S. Y., Cong, Q., Cheng, H. and Liao, Y. et al. (2011). CASP9 assess-
ment of free modeling target predictions. Proteins-Structure Function and Bioinfor-
matics, 79(10), 59-73.

81 Kim, D. E., Blum, B., Bradley, P. and Baker, D. (2009). Sampling Bottlenecks in De
novo Protein Structure Prediction. Journal of Molecular Biology, 393(1), 249-260.

82 Zhang, J., Liang, Y. and Zhang, Y. (2011). Atomic-Level Protein Structure Re-
finement Using Fragment-Guided Molecular Dynamics Conformation Sampling.
Structure, 19(12), 1784-1795.

83 Zhu, J., Fan, H., Periole, X., Honig, B. and Mark, A. E. (2008). Refining homology
models by combining replica-exchange molecular dynamics and statistical poten-
tials. Proteins-Structure Function and Bioinformatics, 72(4), 1171-1188.

84 Engh, R. and Huber, R. (1991). Accurate bond and angle parameters for X-ray
protein-structure refinement. Acta Crystallographica Section A, 47(Part 4), 392-400.

85 Laskowski, R., MacArthur, M., Moss, D. and Thornton, J. (1993). Procheck - A pro-
gram to check the stereochemical quality of protein structures. Journal of Applied
Crystallography, 26(Part 2), 283-291.

86 Read, R. J., Adams, P. D., Arendall III, W. B., Brunger, A. T. and Emsley, P. et al.
(2011). A New Generation of Crystallographic Validation Tools for the Protein Data
Bank. Structure, 19(10), 1395-1412.

87 Lazaridis, T. and Karplus, M. (2000). Effective energy functions for protein structure
prediction. Current Opinion in Structural Biology, 10(2), 139-145.

88 Ivetac, A. and Sansom, M. S. P. (2008). Molecular dynamics simulations and mem-
brane protein structure quality. European Biophysics Journal with Biophysics Letters,
37(4), 403-409.

89 DeRonne, K. W. and Karypis, G. (2009). Improved estimation of structure predictor
quality. BMC Structural Biology, 9.



References | 192

90 Zhang, J., Zhang, J., Wang, Q., Shang, Y. and Xu, D. et al. (2011). Quality Assess-
ment of Predicted Protein Structures by Using Molecular Dynamic Simulations.
Biophysics Journal, 100(3, 1), 214.

91 Zhang, J., Wang, Q., Vantasin, K., Zhang, J. and He, Z. et al. (2011). A multilayer
evaluation approach for protein structure prediction and model quality assessment.
Proteins-Structure Function and Bioinformatics, 79(10), 172-184.

92 Solis, A. and Rackovsky, S. (2006). Improvement of statistical potentials and thread-
ing score functions using information maximization. Proteins-Structure Function and
Bioinformatics, 62(4), 892-908.

93 Solis, A. and Rackovsky, S. (2002). Optimally informative backbone structural
propensities in proteins. Proteins-Structure Function and Genetics, 48(3), 463-486.

94 Solis, A. and Rackovsky, S. (2000). Optimized representations and maximal infor-
mation in proteins. Proteins-Structure Function and Genetics, 38(2), 149-164.

95 Fitzgerald, J. E., Jha, A. K., Colubri, A., Sosnick, T. R. and Freed, K. F. (2007). Re-
duced C-beta statistical potentials can outperform all-atom potentials in decoy
identification. Protein Science, 16(10), 2123-2139.

96 Shannon, C. E. (1948). A mathematical theory of communication. Bell system tech-
nical journal, 27.

97 Deng, H., Jia, Y., Wei, Y. and Zhang, Y. (2012). What is the best reference state
for designing statistical atomic potentials in protein structure prediction?. Proteins-
Structure Function and Bioinformatics, 80(9), 2311-2322.

98 Dill, K. A. (1997). Additivity Principles in Biochemistry. Journal of Biological Chem-
istry, 272(2), 701-704.

99 Sippl, M. (1990). Calculation of conformational ensembles from potentials of
mean force - An approach to the knowledge-based predition of local structures
in globular-proteins. Journal of Molecular Biology, 213(4), 859-883.

100 Sippl, M. (1993). Recognition of errors in 3-dimensional structures of proteins.
Proteins-Structure Functions and Genetics, 17(4), 355-362.

101 Bahar, I. and Jernigan, R. (1997). Inter-residue potentials in globular proteins and
the dominance of highly specific hydrophilic interactions at close separation. Jour-
nal of Molecular Biology, 266(1), 195-214.

102 Melo, F. and Feytmans, E. (1997). Novel knowledge-based mean force potential at
atomic level. Journal of Molecular Biology, 267(1), 207-222.

103 Samudrala, R. and Moult, J. (1998). An all-atom distance-dependent conditional
probability discriminatory function for protein structure prediction. Journal of Mol-
ecular Biology, 275(5), 895-916.

104 Tobi, D., Shafran, G., Linial, N. and Elber, R. (2000). On the design and analysis of
protein folding potentials. Proteins-Structure Function and Genetics, 40(1), 71-85.

105 Lu, H. and Skolnick, J. (2001). A distance-dependent atomic knowledge-based po-
tential for improved protein structure selection. Proteins-Structure Function and Ge-
netics, 44(3), 223-232.

106 Zhou, H. and Zhou, Y. (2002). Distance-scaled, finite ideal-gas reference state im-
proves structure-derived potentials of mean force for structure selection and sta-
bility prediction. Protein Science, 11(11), 2714-2726.



193 | References

107 Shen, M.-Y. and Sali, A. (2006). Statistical potential for assessment and prediction
of protein structures. Protein Science, 15(11), 2507-2524.

108 Benkert, P., Tosatto, S. C. E. and Schomburg, D. (2008). QMEAN: A comprehen-
sive scoring function for model quality assessment. Proteins-Structure Function and
Bioinformatics, 71(1), 261-277.

109 Zhou, H. and Skolnick, J. (2011). GOAP: A Generalized Orientation-Dependent,
All-Atom Statistical Potential for Protein Structure Prediction. Biophysical Journal,
101(8), 2043-2052.

110 Jones, D., Taylor, W. and Thornton, J. (1992). A new approach to Protein Fold
Recognition. Nature, 358(6381), 86-89.

111 Holm, L. and Sander, C. (1992). Evaluation of Protein Models by Atomic Solvation
Preference. Journal of Molecular Biology, 225(1), 93-105.

112 Albiero, A. and Tosatto, S. (2006). Fine-grained statistical torsion angle potentials
are effective in discriminating native protein structures. Current drug discovery tech-
nologies, 3, 75-81.

113 Betancourt, M. and Skolnick, J. (2004). Local propensities and statistical potentials
of backbone dihedral angles in proteins. Journal of Molecular Biology, 342(2), 635-
649.

114 Kocher, J., Rooman, M. and S.J., W. (1994). Factors Influencing the ability of
knowledge-based potentials to identity native sequence-structure matches. Jour-
nal of Molecular Biology, 235(5), 1598-1613.

115 Tosatto, S. (2005). The Victor/FRST function for model quality estimation. Journal
of Compuational Biology, 12(10), 1316-1327.

116 Cheng, J., Randall, A. Z., Sweredoski, M. J. and Baldi, P. (2005). SCRATCH: a
protein structure and structural feature prediction server. Nucleic Acids Research,
33(Suppl 2), W72-W76.

117 Benkert, P., Schwede, T. and Tosatto, S. C. E. (2009a). QMEANclust: estimation of
protein model quality by combining a composite scoring function with structural
density information. BMC Structural Biology, 9.

118 Kryshtafovych, A., Fidelis, K. and Tramontano, A. (2011). Evaluation of model qual-
ity predictions in CASP9. Proteins-Structure Function and Bioinformatics, 79(10), 91-
106.

119 McGuffin, L. J. and Roche, D. B. (2010). Rapid model quality assessment for protein
structure predictions using the comparison of multiple models without structural
alignments. Bioinformatics, 26(2), 182-188.

120 Larsson, P., Skwark, M. J., Wallner, B. and Elofsson, A. (2009). Assessment of global
and local model quality in CASP8 using Pcons and ProQ. Proteins-Structure Function
and Bioinformatics, 77(9), 167-172.

121 Hinsen, K. and Sadron, R. C. (2000). The molecular modeling toolkit: a new ap-
proach to molecular simulations. J. Comput. Chem, 21, 79–85.

122 Emsley, P., Lohkamp, B., Scott, W. G. and Cowtan, K. (2010). Features and devel-
opment of Coot. Acta Crystallographica Section D-Biological Crystallography, 66(Part
4), 486-501.



References | 194

123 Canutescu, A. and Dunbrack, R. (2005). MoIlDE: a homology modeling framework
you can click with. Bioinformatics, 21(12), 2914-2916.

124 Eswar, N., Eramian, D., Webb, B., Shen, M. and Sali, A. (2006). Protein structure
modeling with MODELLER, pages 145-159. Humana Press Inc.

125 Kohlbacher, O. and Lenhof, H. (2000). BALL - rapid software prototyping in com-
putational molecular biology. Bioinfomatics, 16(9), 815-824.

126 Gruenberg, R., Nilges, M. and Leckner, J. (2007). Biskit - A software platform for
structural bioinformatics. Bioinformatics, 23(6), 769-770.

127 Humphrey, W., Dalke, A. and Schulten, K. (1996). VMD – Visual Molecular Dy-
namics. Journal of Molecular Graphics, 14, 33-38.

128 Benkert, P., Kuenzli, M. and Schwede, T. (2009b). QMEAN server for protein model
quality estimation. Nucleic Acids Research, 37, W510-W514.

129 Arnold, K., Kiefer, F., Kopp J. Battey, J. N. D., Podvinec, M. and Westbrook, J. D. et
al. (2009). The Protein Model Portal. Journal of Structural and Functional Genomics,
pp. 1-8.

130 Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. (2006). The swiss-model work-
space: a web-based environment for protein structure homology modelling. Bioin-
formatics, 22(2), 195-201.

131 Bordoli, L., Kiefer, F., Arnold, K., Benkert, P. and Battey, J. et al. (2009). Protein
structure homology modeling using SWISS-MODEL workspace. Nature Protocols,
4(1), 1-13.

132 Philippsen, A., Schenk, A. D., Signorell, G. A., Mariani, V. and Berneche, S. et al.
(2007). Collaborative EM image processing with the IPLT image processing library
and toolbox. Journal of Structural Biology, 157(1), 28-37.

133 Sanner, M., Olson, A. and Spehner, J. (1996). Reduced surface: An efficient way to
compute molecular surfaces. Biopolymers, 38(3), 305-320.

134 DeLorbe, J. E., Clements, J. H., Teresk, M. G., Benfield, A. P. and Plake, H. R. et
al. (2009). Thermodynamic and Structural Effects of Conformational Constraints
in Protein-Ligand Interactions. Entropic Paradoxy Associated with Ligand Preor-
ganization. Journal of the American Chemical Society, 131(46), 16758-16770.

135 Biasini, M., Mariani, V., Haas, J., Scheuber, S. and Schenk, A. D. et al. (2010). Open-
Structure: a flexible software framework for computational structural biology. Bioin-
formatics, 26, 2626–2628.

136 DiMaio, F., Tyka, M. D., Baker, M. L., Chiu, W. and Baker, D. (2009). Refinement
of Protein Structures into Low-Resolution Density Maps Using Rosetta. Journal of
Molecular Biology, 392(1), 181-190.

137 Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W. and Kipper, J. et al. (2007).
Determining the architectures of macromolecular assemblies. Nature, 450(7170),
683-694.

138 Trabuco, L. G., Villa, E., Mitra, K., Frank, J. and Schulten, K. (2008). Flexible fit-
ting of atomic structures into electron microscopy maps using molecular dynamics.
Structure, 16(5), 673-683.



195 | References

139 Rigden, D. J., Keegan, R. M. and Winn, M. D. (2008). Molecular replacement us-
ing ab initio polyalanine models generated with ROSETTA. Acta Crystallographica
Section D-Biological Crystallography, 64(Part 12), 1288-1291.

140 Holm, L. and Sander, C. (1993). Protein Structure Comparison by Alignment of
Distance Matrices. Journal of Molecular Biology, 233(1), 123 - 138.

141 Olechnovic, K., Kulberkyte, E. and Venclovas, C. (2012). Cad-score: A new contact
area difference-based function for evaluation of protein structural models. Proteins-
Structure Function and Bioinformatics, pp. n/a–n/a.

142 Benkert, P., Biasini, M. and Schwede, T. (2011). Toward the estimation of the ab-
solute quality of individual protein structure models. Bioinformatics, 27, 343–350.

143 Frigo, M., Steven and Johnson, G. (2005). The design and implementation of fftw3.
In Proceedings of the IEEE, pages 216–231.

144 Guennebaud, G., Jacob, B. and others (2010). Eigen v3. http://eigen.tuxfamily.org.
145 Schroeder, W., Martin, K. and Lorensen, B. (2004). The Visualization Toolkit, Third

Edition. Kitware Inc.
146 Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B. and Echols, N. et al. (2011).

The Phenix software for automated determination of macromolecular structures.
Methods, 55(1), 94-106.

147 Dubois, P., Hinsen, K. and Hugunin, J. (1996). Numerical Python. Computers in
Physics, 10(3).

148 Jones, E., Oliphant, T., Peterson, P. and others (2001). SciPy: Open source scientific
tools for Python. http://www.scipy.org/.

149 Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science
and Engineering, 9(3), 90–95.

150 Sukumaran, J. and Holder, M. T. (2010). DendroPy. Bioinformatics, 26(12), 1569–
1571.

151 Chaudhury, Lyskov, S. and Gray, J. J. (2010). PyRosetta: a script-based interface for
implementing molecular modeling algorithms using Rosetta. Bioinformatics.

152 Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns. Reading,
MA: Addison Wesley.

153 Schrödinger, LLC (2010). The PyMOL molecular graphics system, version 1.3r1.
154 Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular sub-

sequences. Journal of Molecular Biology, 147(1), 195–197.
155 Needleman, S. G. and Wunsch, C. D. (1970). A general method applicable to the

search for similarities in the amino acid sequence of two proteins. Journal of Mole-
cular Biology, 48, 443-453.

156 Armon, A., Graur, D. and Ben-Tal, N. (2001). ConSurf: an algorithmic tool for the
identification of functional regions in proteins by surface mapping of phylogenetic
information. Journal of Molecular Biology, 307(1), 447 - 463.

157 Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R. and McGettigan, P. A.
et al. (2007). Clustal W and Clustal X version 2.0.. Bioinformatics (Oxford, England),
23(21), 2947–2948.



References | 196

158 Egloff, M., Benarroch, D., Selisko, B., Romette, J. and Canard, B. (2002). An RNA
cap (nucleoside-2 ‘-O-)-methyltransferase in the flavivirus RNA polymerase NS5:
crystal structure and functional characterization. EMBO Journal, 21(11), 2757-2768.

159 Halstead, S. B. (2007). Dengue. Lancet, 370(9599), 1644-1652.
160 Langer, G., Cohen, S. X., Lamzin, V. S. and Perrakis, A. (2008). Automated macro-

molecular model building for X-ray crystallography using ARP/wARP version 7.
Nature Protocols, 3, 1171–1179.

161 Philippsen, A., Schenk, A., Stahlberg, H. and Engel, A. (2003). IPLT-image process-
ing library and toolkit for the electron microscopy community. Journal of Structural
Biology, 144(1-2), 4-12.

162 Mariani, V., Schenk, A. D., Philippsen, A. and Engel, A. (2011). Simulation and cor-
rection of electron images of tilted planar weak-phase samples. Journal of Structural
Biology, 174(2), 259-268.

163 Yang, M. H., Nickerson, S., Kim, E. T., Liot, C. and Laurent, G. et al. (2012). Reg-
ulation of RAS oncogenicity by acetylation. Proceedings of the National Academy of
Sciences of the United States of America, 109(27), 10843-10848.

164 Shan, Y., Eastwood, M. P., Zhang, X., Kim, E. T. and Arkhipov, A. et al. (2012).
Oncogenic Mutations Counteract Intrinsic Disorder in the EGFR Kinase and Pro-
mote Receptor Dimerization. Cell, 149(4), 860-870.

165 Leitner, A., Walzthoeni, T., Kahraman, A., Herzog, F. and Rinner, O. et al. (2010).
Probing Native Protein Structures by Chemical Cross-linking, Mass Spectrometry,
and Bioinformatics. Molecular & Cellular Proteomics, 9(8), 1634-1649.

166 Ha, N., Oh, S., Sung, J., Cha, K. and Lee, M. et al. (2001). Supramolecular assembly
and acid resistance of Helicobacter pylori urease. Nature Structural Biology, 8(6),
505-509.

167 Kahraman, A., Malmstrom, L. and Aebersold, R. (2011). Xwalk: computing and vi-
sualizing distances in cross-linking experiments. Bioinformatics, 27(15), 2163-2164.

168 Amrein, B., Schmid, M., Collet, G., Cuniasse, P. and Gilardoni, F. et al. (2012). Iden-
tification of two-histidines one-carboxylate binding motifs in proteins amenable to
facial coordination to metals. Metallomics, 4(4), 379-388.

169 Mariani, V., Kiefer, F., Schmidt, T., Haas, J. and Schwede, T. (2011). Assessment of
template based protein structure predictions in CASP9. Proteins-Structure Function
and Bioinformatics, 79(10), 37-58.

170 Levitt, M. (2009). Nature of the protein universe. Proceedings of the National Academy
of Sciences of the United States of America, 106(27), 11079-11084.

171 Schwede, T., Sali, A., Honig, B., Levitt, M. and Berman, H. M. et al. (2009). Outcome
of a workshop on applications of protein models in biomedical research. Structure,
17, 151–159.

172 Moult, J., Pedersen, J., Judson, R. and Fidelis, K. (1995). A large-scale experiment
to assess protein-structure prediction methods. Proteins-Structure Function and Ge-
netics, 23(3), R2-R4.

173 Hubbard, T. J. (1999). Rms/coverage graphs: a qualitative method for comparing
three-dimensional protein structure predictions. Proteins, Suppl 3, 15-21.



197 | References

174 Mosimann, S., Meleshko, R. and James, M. N. (1995). A critical assessment of com-
parative molecular modeling of tertiary structures of proteins. Proteins, 23(3), 301-
17.

175 Siew, N., Elofsson, A., Rychlewski, L. and Fischer, D. (2000). MaxSub: an auto-
mated measure for the assessment of protein structure prediction quality. Bioinfor-
matics, 16(9), 776-85.

176 Sippl, M. J. (2008). On distance and similarity in fold space. Bioinformatics, 24(6),
872-873.

177 Zhang, Y. and Skolnick, J. (2004). Scoring function for automated assessment of
protein structure template quality. Proteins-Structure Function and Bioinformatics,
57(4), 702-710.

178 Clarke, N. D., Ezkurdia, I., Kopp, J., Read, R. J. and Schwede, T. et al. (2007). Do-
main definition and target classification for CASP7. Proteins, 69 Suppl 8, 10-8.

179 Kinch, L. N., Shi, S., Cheng, H., Cong, Q. and Pei, J. et al. (2011). CASP9 target
classification. Proteins-Structure Function and Bioinformatics, 79(10), 21-36.

180 Bordogna, A., Pandini, A. and Bonati, L. (2011). Predicting the Accuracy of Protein-
Ligand Docking on Homology Models. Journal of Computational Chemistry, 32(1),
81-98.

181 Kopp, J., Bordoli, L., Battey, J. N. D., Kiefer, F. and Schwede, T. (2007). Assessment
of CASP7 predictions for template-based modeling targets. Proteins-Structure Func-
tion and Bioinformatics, 69(8), 38-56.

182 Chen, V. B., Arendall W. B., r., Headd, J. J., Keedy, D. A. and Immormino, R. M. et
al. (2010). MolProbity: all-atom structure validation for macromolecular crystallog-
raphy. Acta Crystallogr D Biol Crystallogr, 66(Pt 1), 12-21.

183 Engh, R. A. and Huber, R. (2006). Structure quality and target parameters John Wiley
& Sons, Ltd.

184 Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a million crys-
tal structures and rising. Acta Crystallogr B, 58(Pt 3 Pt 1), 380-8.

185 Cuff, A. L., Sillitoe, I., Lewis, T., Clegg, A. B. and Rentzsch, R. et al. (2011). Ex-
tending CATH: increasing coverage of the protein structure universe and linking
structure with function. Nucleic Acids Research, 39(1), D420-D426.

186 Shi, S., Pei, J., Sadreyev, R. I., Kinch, L. N. and Majumdar, I. et al. (2009). Analysis
of CASP8 targets, predictions and assessment methods. Database (Oxford), 2009,
bap003.

187 Vendruscolo, M., Subramanian, B., Kanter, I., Domany, E. and Lebowitz., J. (1999).
Statistical Properties of Contact Maps, volume 59. College Park, MD, ETATS-UNIS:
American Physical Society.

188 Flory, P. (1969). Statistical mechanics of chain molecules. Interscience Publishers.
189 Huggins, M. (1958). Physical chemistry of high polymers. Wiley.
190 Cheng, J. (2008). A multi-template combination algorithm for protein comparative

modeling. BMC Structural Biology, 8.
191 Chakravarty, S., Godbole, S., Zhang, B., Berger, S. and Sanchez, R. (2008). Sys-

tematic analysis of the effect of multiple templates on the accuracy of comparative
models of protein structure. BMC Structural Biology, 8(1), 31.



References | 198

192 Venclovas, C. and Margelevicius, M. (2005). Comparative modeling in CASP6 us-
ing consensus approach to template selection, sequence-structure alignment, and
structure assessment. Proteins-Structure Function and Bioinformatics, 61(7), 99-105.

193 Snyder, D. A. and Montelione, G. T. (2005). Clustering algorithms for identify-
ing core atom sets and for assessing the precision of protein structure ensembles.
Proteins-Structure Function and Bioinformatics, 59(4), 673–686.

194 Qi, G., Lee, R. and Hayward, S. (2005). A comprehensive and non-redundant data-
base of protein domain movements. Bioinformatics, 21(12), 2832-2838.

195 Hopcroft, J. and Tarjan, R. (1973). Efficient algorithms for graph manipulation. Com-
mun. ACM, 16(6), 372–378.

196 Wassmann, P., Chan, C., Paul, R., Beck, A. and Heerklotz, H. et al. (2007). Structure
of BeF3–modified response regulator PleD: Implications for diguanylate cyclase ac-
tivation, catalysis, and feedback inhibition. Structure, 15(8), 915-927.

197 Schaeffer, S. (2007). Graph clustering. Computer Science Review, 1(1), 27–64.
198 Amemiya, T., Koike, R., Kidera, A. and Ota, M. (2012). PSCDB: a database for pro-

tein structural change upon ligand binding. Nucleid Acids Research, 40(D1), D554-
D558.

199 Amemiya, T., Koike, R., Fuchigami, S., Ikeguchi, M. and Kidera, A. (2011). Classifi-
cation and Annotation of the Relationship between Protein Structural Change and
Ligand Binding. Journal of Molecular Biology, 408(3), 568-584.

200 Poornam, G. P., Matsumoto, A., Ishida, H. and Hayward, S. (2009). A method
for the analysis of domain movements in large biomolecular complexes. Proteins-
Structure Function and Bioinformatics, 76(1), 201–212.

201 Dunbrack Jr., R. L. (2006). Sequence comparison and protein structure prediction.
Current Opinion in Structural Biology, 16(3), 374-384.

202 Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C. and Boeckmann, B. et al. (2005).
The universal protein resource (uniprot). Nucleic Acids Research, 33(Suppl 1), D154-
D159.

203 Tramontano, A. and Morea, V. (2003). Exploiting evolutionary relationships for pre-
dicting protein structures. Biotechnology and Bioengineering, 84(7), 756-762.

204 Baker, D. and Sali, A. (2001). Protein structure prediction and structural genomics.
Science, 294(5540), 93-96.

205 Koh, I. Y. Y., Eyrich, V. A., Marti-Renom, M. A., Przybylski, D. and Madhusudhan,
M. S. et al. (2003). Eva: evaluation of protein structure prediction servers. Nucleic
Acids Research, 31(13), 3311-3315.

206 Eramian, D., Eswar, N., Shen, M. Y. and Sali, A. (2008). How well can the accuracy
of comparative protein structure models be predicted?. Protein Science, 17, 1881–
1893.

207 Marti-Renom, M., Stuart, A., Fiser, A., Sanchez, R. and Melo, F. et al. (2000). Com-
parative protein structure modeling of genes and genomes. Annual Review of Bio-
physics and Biomolecular Structure, 29, 291-325.

208 Melo, F. and Feytmans, E. (1998). Assessing protein structures with a non-local
atomic interaction energy. Journal of Molecular Biology, 277(5), 1141-1152.



199 | References

209 Pettitt, C. S., McGuffin, L. J. and Jones, D. T..Improving sequence-based fold recog-
nition by using 3d model quality assessment. Bioinformatics, 21(17), 3509-3515.

210 Randall, A. and Baldi, P. (2008). Selectpro: effective protein model selection using a
structure-based energy function resistant to blunders. BMC Structural Biology, 8(1),
52.

211 Wallner, B. and Elofsson, A. (2003). Can correct protein models be identified?. Pro-
tein Science, 12(5), 1073-1086.

212 Moult, J., Fidelis, K., Kryshtafovych, A., Rost, B. and Hubbard, T. et al. (2007). Crit-
ical assessment of methods of protein structure prediction - Round VII. Proteins-
Structure Function and Bioinformatics, 69(8), 3-9.

213 Wang, Z., Tegge, A. N. and Cheng, J. (2009). Evaluating the absolute quality of a sin-
gle protein model using structural features and support vector machines. Proteins-
Structure Function and Bioinformatics, 75(3), 638-647.

214 Wang, G. and Dunbrack, R. L. (2003). PISCES: a protein sequence culling server.
Bioinformatics, 19(12), 1589-1591.

215 White, S. H. (2009). Biophysical dissection of membrane proteins. Nature, 459(7245),
344-346.

216 Krissinel, E. and Henrick, K. (2007). Inference of macromolecular assemblies from
crystalline state. Journal of Molecular Biology, 372(3), 774-797.

217 Robinson-Rechavi, M. and Godzik, A. (2005). Structural genomics of thermotoga
maritima proteins shows that contact order is a major determinant of protein ther-
mostability. Structure, 13(6), 857 - 860.

218 Ye, Y. and Godzik, A. (2003). Flexible structure alignment by chaining aligned frag-
ment pairs allowing twists. Bioinformatics, 19(Suppl 2), ii246-ii255.

219 Thomas, A., Joris, B. and Brasseur, R. (2010). Standardized evaluation of protein
stability. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 1804(6), 1265 -
1271.

220 Kurata, S., Weixlbaumer, A., Ohtsuki, T., Shimazaki, T. and Wada, T. et al. (2008).
Modified Uridines with C5-methylene Substituents at the First Position of the
tRNA Anticodon Stabilize U·G Wobble Pairing during Decoding. Journal of Bio-
logical Chemistry, 283(27), 18801-18811.

221 Siebold, C., Hansen, B. E., Wyer, J. R., Harlos, K. and Esnouf, R. E. et al. (2004).
Crystal structure of hla-dq0602 that protects against type 1 diabetes and confers
strong susceptibility to narcolepsy. Proceedings of the National Academy of Sciences of
the United States of America, 101(7), 1999-2004.

222 Jordan, J. B., Poppe, L., Haniu, M., Arvedson, T. and Syed, R. et al. (2009). Hep-
cidin Revisited, Disulfide Connectivity, Dynamics, and Structure. Journal of Biolog-
ical Chemistry, 284(36), 24155-24167.

223 Janes, R., DH, P. and Wallace, B. (1994). The crystal-structure of human endothelin.
Nature Structural Biology, 1(5), 311-319.

224 Eigenbrot, C., Randal, M., Quan, C., Burnier, J. and OConnel, L. et al. (1991). X-ray
structure of the human relaxin at 1.5 A - Comparison to insulin and implications
for receptor-binding determinants. Journal of Molecular Biology, 221(1), 15-21.



References | 200

225 Weaver, L. and Matthews, B. (1987). Structure of Bacteriophae-T4 Lysoyume re-
fined at 1.7 A resolution. Journal of Molecular Biology, 193(1), 189-199.

226 Murthy, H. M. K., Clum, S. and Padmanabhan, R. (1999). Dengue virus ns3 serine
protease. Journal of Biological Chemistry, 274(9), 5573-5580.

227 Lee, S. H., Hayes, D. B., Rebowski, G., Tardieux, I. and Dominguez, R. (2007). Tox-
ofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin
dimer. Proceedings of the National Academy of Sciences of the United States of America,
104(41), 16122-16127.

228 Wiederstein, M. and Sippl, M. J. (2007). ProSA-web: interactive web service for
the recognition of errors in three-dimensional structures of proteins. Nucleic Acids
Research, 35(Suppl 2), W407-W410.

229 Robinson-Rechavi, M., Alibes, A. and Godzik, A. (2006). Contribution of electro-
static interactions, compactness and quaternary structure to protein thermostabil-
ity: Lessons from structural genomics of Thermotoga maritima. Journal of Molecular
Biology, 356(2), 547-557.

230 Rykunov, D. and Fiser, A. (2010). New statistical potential for quality assessment
of protein models and a survey of energy functions. BMC Bioinformatics, 11(1), 128.

231 Cozzetto, D., Kryshtafovych, A. and Tramontano, A. (2009). Evaluation of CASP8
model quality predictions. Proteins-Structure Function and Bioinformatics, 77, 157-
166.

232 Schwede, T., Kopp, J., Guex, N. and Peitsch, M. C. (2003). SWISS-MODEL: an au-
tomated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381-
3385.

233 McGuffin, L. J. and Roche, D. B. (2011). Automated tertiary structure predic-
tion with accurate local model quality assessment using the IntFOLD-TS method.
Proteins-Structure Function and Bioinformaticst, 79(10), 137-146.

234 Zhou, H. and Skolnick, J. (2008). Protein model quality assessment prediction
by combining fragment comparisons and a consensus C-alpha contact potential.
Proteins-Structure Function and Bioinformatics, 71(3), 1211-1218.

235 Paluszewski, M. and Karplus, K. (2009). Model quality assessment using distance
constraints from alignments. Proteins, 75, 540–549.

236 Zhang, Y. and Skolnick, J. (2004). Scoring function for automated assessment of
protein structure template quality. Proteins, 57(4), 702-10.

237 He, Y., Chen, Y., Alexander, P., Bryan, P. N. and Orban, J. (2008). NMR structures of
two designed proteins with high sequence identity but different fold and function.
Proceedings of the National Academy of Sciences of the United States of America, 105(38),
14412-14417.

238 Fiser, A. (2010). Template-Based Protein Structure Modeling. In Fenyo, D, editor,
Computational Biology, number 673 in Methods in Molecular Biology, pages 73-94.
Humana Press Inc.

239 Wang, G. and Dunbrack, R. L. (2005). PISCES: recent improvements to a PDB se-
quence culling server. Nucleic Acids Research, 33(Suppl 2), W94-W98.



201 | References

240 Sadowski, M. I. and Jones, D. T. (2007). Benchmarking template selection and
model quality assessment for high-resolution comparative modeling. Proteins-
Structure Function and Bioinformatics, 69(3), 476–485.

241 Hildebrand, A., Remmert, M., Biegert, A. and Soeding, J. (2009). Fast and accurate
automatic structure prediction with HHpred. Proteins-Structure Function and Bioin-
formatics, 77, 128-132.

242 Kelley, L. A. and Sternberg, M. J. E. (2009). Protein structure prediction on the Web:
a case study using the Phyre server. Nature Procotols, 4(3), 363-371.

243 Kiefer, F., Arnold, K., Kuenzli, M., Bordoli, L. and Schwede, T. (2009). The SWISS-
MODEL Repository and associated resources. Nucleic Acids Research, 37, D387-
D392.

244 Schwede, T., Kopp, J., Guex, N. and Peitsch, M. (2003). SWISS-MODEL: an au-
tomated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381-
3385.

245 Rosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Density
Function. The Annals of Mathematical Statistics, 27(3), 832–837.

246 Scott, D. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization.
John Wiley & Sons.

247 Silverman, B. W. (1986). Density estimation: for statistics and data analysis. London.
248 Pieper, U., Webb, B. M., Barkan, D. T., Schneidman-Duhovny, D. and Schlessinger,

A. et al. (2011). ModBase, a database of annotated comparative protein structure
models, and associated resources. Nucleic Acids Research, 39(1), D465-D474.

249 Ganichkin, O. and Wahl, M. C. (2007). Conformational switches in winged-helix
domains 1 and 2 of bacterial translation elongation factor SelB. Acta Crystallograph-
ica Section D, 63(10), 1075–1081.

250 Fan, H., Irwin, J. J., Webb, B. M., Klebe, G. and Shoichet, B. K. et al. (2009). Mole-
cular Docking Screens Using Comparative Models of Proteins. Journal of Chemical
Information and Modeling, 49(11), 2512-2527.

251 The Python Software Foundation (1990-2013). The Python Programming Lan-
guage. http://www.python.org/.

252 Django Software Foundation (2013). Django - The Web framework for perfection-
ists with deadlines. http://www.djangoproject.com.

253 John, R., Corey, F., Katz, Y. and Dan, H. (2013). jQuery JavaScript Library.
http://jquery.org.

254 Dimitry, B. (2013). Raphael.js JavaScript Library. http://raphaeljs.org.
255 Kim, Y., Babnigg, G., Jedrzejczak, R., Eschenfeldt, W. H. and Li, H. et al. (2011).

High-throughput protein purification and quality assessment for crystallization.
Methods, 55(1), 12-28.

256 Hartshorn, M. (2013). OpenAstexViewer - Software for molecular visualisation.
http://openastexviewer.net.

257 Schmidt, T. (2012). Computational Approaches for Investigating Protein-Ligand Inter-
actions - Towards an in-depth Understanding of the Dengue Virus Methyltransferase.
PhD thesis, Biozentrum, University of Basel.



References | 202

258 Ellson, J., Gansner, E., Koutsofios, L., North, S. and Woodhull, G. (2001). Graphviz
— Open Source Graph Drawing Tools. In Lecture Notes in Computer Science,
pages 483–484.

259 Kiefer, F. (2012). Modeling of tertiary and quaternary protein structures by homology.
PhD thesis, Biozentrum, University of Basel.

260 Rose, P. W., Beran, B., Bi, C., Bluhm, W. F. and Dimitropoulos, D. et al. (2011).
The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids
Research, 39(1), D392-D401.

261 Holton, J. M. (2005). Abstract W0308. In Am. Crystallogr. Assoc. Annual Meeting .
262 Stroud, R. M., Choe, S., Holton, J., Kaback, H. R. and Kwiatkowski, W. et al..2007

Annual progress report synopsis of the Center for Structures of Membrane Pro-
teins. Journal of Structural and Functional Genomics, 10, 193-208.

263 Dyda, F. (2010). Developments in low-resolution biological X-ray crystallography.
F1000 biology reports, 2, 80.

264 Morris, R., Perrakis, A. and Lamzin, V. (2007). Getting a macromolecular model: model
building, refinement, and validation. Oxford Oxford University Press.

265 Cowtan, K. (2006). The Buccaneer software for automated model building. 1.
Tracing protein chains. Acta Crystallographica Section D-Biological Crystallography,
62(Part 9), 1002-1011.

266 Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W. and
Zwart, P. H. et al. (2008). Iterative model building, structure refinement and den-
sity modification with the PHENIX AutoBuild wizard. Acta Crystallographica Section
D-Biological Crystallography, 64(Part 1), 61-69.

267 Wiegels, T. and Lamzin, V. S. (2012). Use of noncrystallographic symmetry for au-
tomated model building at medium to low resolution. Acta Crystallographica Section
D-Biological Crystallography, 68(Part 4), 446-453.

268 Simons, K., Bonneau, R., Ruczinski, I. and Baker, D. (1999). Ab initio protein struc-
ture prediction of CASP III targets using ROSETTA. Proteins-Structure Function and
Genetics, pp. 171-176.

269 Qian, B., Raman, S., Das, R., Bradley, P. and McCoy, A. J. et al. (2007). High-
resolution structure prediction and the crystallographic phase problem. Nature,
450(7167), 259-U7.

270 Terwilliger, T., DiMaio, F., Read, R., Baker, D. and Bunkoczi, G. et al. (2012).
phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and
Rosetta. Journal of Structural and Functional Genomics, 13, 81-90.

271 Claude, J., Suhre, K., Notredame, C., Claverie, J. and Abergel, C. (2004). CaspR: a
web server for automated molecular replacement using homology modelling. Nu-
cleic Acids Research, 32(2), W606-W609.

272 Joosten, K., Cohen, S. X., Emsley, P., Mooij, W. and Lamzin, V. S. et al. (2008). A
knowledge-driven approach for crystallographic protein model completion. Acta
Crystallographica Section D-Biological Crystallography, 64(Part 4), 416-424.

273 van den Bedem, H., Lotan, I., Latombe, J. and Deacon, A. (2005). Real-space
protein-model completion: an inverse-kinematics approach. Acta Crystallograph-
ica Section D-Biological Crystallography, 61(Part 1), 2-13.



203 | References

274 Yao, M., Zhou, Y. and Tanaka, I. (2006). LAFIRE: software for automating the re-
finement process of protein-structure analysis. Acta Crystallographica Section D-
Biological Crystallography, 62(Part 2), 189-196.

275 Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B. and Davis, I. W. et al. (2010).
PHENIX: a comprehensive Python-based system for macromolecular structure so-
lution. Acta Crystallographica Section D-Biological Crystallography, 66(Part 2), 213-
221.

276 Zhang, Y. and Skolnick, J. (2005). The protein structure prediction problem could be
solved using the current PDB library. Proceedings of the National Academy of Sciences
of the United States of America, 102, 1029–1034.

277 Bryson, K., McGuffin, L., Marsden, R., Ward, J. and Sodhi, J. et al. (2005). Protein
structure prediction servers at University College London. Nucleid Acids Research,
33(2), W36-W38.

278 McGuffin, L., Bryson, K. and Jones, D. (2000). The PSIPRED protein structure pre-
diction server. Bioinformatics, 16(4), 404-405.

279 Pollastri, G., Przybylski, D., Rost, B. and Baldi, P. (2002). Improving the prediction
of protein secondary structure in three and eight classes using recurrent neural net-
works and profiles. Proteins-Structure Function and Genetics, 47(2), 228-235.

280 Li, W. and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics, 22(13), 1658-1659.

281 Heuser, P., Wohlfahrt, G. and Schomburg, D. (2004). Efficient methods for filtering
and ranking fragments for the prediction of structurally variable regions in proteins.
Proteins-Structure Function and Genetics, 54(3), 583-595.

282 Ling, H., Boodhoo, A., Hazes, B., Cummings, M. and Armstrong, G. et al. (1998).
Structure of the Shiga-like toxin I B-pentamer complexed with an analogue of its
receptor Gb(3). Biochemistry, 37(7), 1777-1788.

283 Maiorov, V. and Crippen, G. (1995). Size-Independent Comparison of Protein 3-
dimensional Structures. Proteins-Structure Function and Genetics, 22(3), 273-283.

284 Deane, C. and Blundell, T. (2000). A novel exhaustive search algorithm for pre-
dicting the conformation of polypeptide segments in proteins. Proteins-Structure
Function and Genetics, 40(1), 135-144.

285 Baeten, L., Reumers, J., Tur, V., Stricher, F. and Lenaerts, T. et al. (2008). Reconstruc-
tion of protein backbones from the BriX collection of canonical protein fragments.
PLoS Computional Biology, 4, e1000083.

286 Rossi, K. A., Weigelt, C. A., Nayeem, A. and Krystek, S. R. (2007). Loopholes and
missing links in protein modeling. Protein Science, 16, 1999–2012.

287 Kabsch, W. (1976). Solution for the best rotation to relate 2 sets of vectors. Acta
Crystallographica Section A, 32(SEP1), 922-923.



References | 204



205 | OST Tech

OpenStructure — Technical Annex

This chapters contains bits and pieces of OpenStructure — implementation details that didn’t fit
into the general OpenStructure overview chapters and papers.

1The Query Language

Entity views are a fundamental part of the OpenStructure framework. They are conve-
niently created using a dedicated mini-language, called the query language. The query
language allows to define binary predicates against which parts of the structure, e.g.
atoms, residues and chains are matched. Parts, which fulfil all of the criteria are selected,
and returned in a new entity view.

Here, we will describe how the query language syntax and its implementation in de-
tail.

Features of the Query Language

The predicates may use any of the available built-in properties defined for the atoms,
residues, and chains. Examples include the atom name (aname), residue number (rnum),
chain name (cname) or atom element (ele). Typically, properties of chains are prefixed
with c, properties on residues with r and atom properties with a. A complete list of built-in
properties is given in the OpenStructure documentation. In addition, the predicates may
refer to user-defined properties declared using the generic properties system (see below).

Selecting atom in proximity of another atom or point is achieved with the within-
operator of the query language: To select all atoms within 5Åof the origin of the reference
system, the query 5 <> {0,0,0}may be used. The <> operator is called the ‘within’ opera-
tor. Instead of a point, the within statements can also be used to return a view containing
all chains, residues and atoms within a radius of another selection statement applied to
the same entity. Square brackets are used to delimit the inner query statement: For exam-
ple, the statement 5 <> [rname=HEM and ele=C] and rname!=HEM selects all non-HEM
atoms within 5Åof carbon HEM atoms.

Since selection statements both can be applied to EntityHandles and EntityViews, com-
plex selections can be carried out by chaining the selection statements. For example,
chaining is particularly useful in combination with within-statements and whole-residue
matching, as it allows to select atoms within a certain radius of a ligand, extend the se-
lection to residues and then select the sidechains thereof.

Implementation of the Queries

The conversion of the query string into an internal representation consists of 3 stages.
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First, the selection string is converted into a stream of tokens, that is a stream of identi-
fiers, operators and values. Second, this stream is consumed by a recursive decent parser
and transformed into and abstract syntax tree (AST). Each node of the tree denotes a
construct occurring in query string. The syntax is abstract in the sense that it does not
represent every detail that appears in the real syntax. For instance, grouping parenthe-
ses and operator precedence are implicit in the tree structure. Additionally, convenience
shortcuts such as range selection are encoded as composite sub-trees. An example is the
numeric range selection rnum=1:100 that is stored as rnum>=1 and rnum<=100 in the
tree. The leaf nodes of the syntax tree are formed by predicates, e.g. rname=ASN, the in-
ternal nodes are boolean operators. Their left and right child nodes are either predicates
or other boolean operators. In �gure A.1 are two examples that show the AST for two
typical queries.

AND

AND aname!=N

AND aname!=CA

aname!=C aname!=O

AND

OR aname=CA

AND

rnum>=1 rnum<=50

AND

rnum>=101 rnum<=150

A B

Figure A.1 Abstract syntax trees (ASTs) for two selection statements: (A) ’aname!=N,CA,C,O’,
(B) ’aname=CA and rnum=1:50,101:150’

Some of the predicates operate on the level of the residue, some on the level of the chain,
some at the level of the atom. This means that each predicate assumes one of 3 values,
true, false, maybe. The maybe state introduces opportunities for optimized query execu-
tion. When several predicates are combined, the complete query can evaluate to true or
false, even though some of the predicates are in maybe state. For example, atom pred-
icates are in a state maybe when evaluating the chain or residue predicates, but assume
states true or false when considering a certain atom.

The AST is split into 3 evaluation contexts, one for each level of the chain, residue,
atom hierarchy. The contexts consists of a set of instructions in reverse polish notation
(RPN) that are executed on the tri-states of the predicates. The value of the predicates
are shared between the 3 contexts. Starting from the chain, the chain, residue atom
tree (CRA-tree) is traversed in breadth-first order. For many queries, the context does
not need to be evaluated down to the level of the atom, since the result is already de-
fined at the residue or chain level. For example, when evaluating the query statement
rname=GLY and aname=CA, the tree traversal can stop at the level of residues, except
for GLY residues: the expression false AND maybe can never be true, whereas true AND
maybe evaluates to maybe.

When at any point of the query execution, the expression evalutes to true, all sub
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elements of CRA-tree are included; when the expression evaluates to false, execution
continues with the next sibling; when the outcome is maybe, execution has to decent to
the child nodes.

2Crystallographic Density Maps in OpenStructure

Crystal lattice

A crystal is an object of apparent infinite extent that is created by replicating a unit cell
along the major axes of the crystal. In the simplest case, the unit cell consists of a sin-
gle point; the resulting crystal is a point lattice. Since the crystal is infinite, the points
in the lattice can not be distinguished by their distance to the border. These points are
absolutely identical and any of these points is able to reproduce the whole lattice. In the
more general case, unit cells are not infinitely small points but have a physical extent.
Points within a unit cell are usually represented as fractional coordinates f . Any point p
in the unit cell can be written as

p = fx · ~a + fy ·~b + fz · ~c

~a,~b and~c are the basis vectors of the unit cell. For a point within a unit cell, u, v and w are
limited to the half-closed interval [0, 1). For any point p in the crystal, the fractional part
of f , represents the location in the unit cell, whereas the integral part describes the unit
cell repeat the point falls into. The above equation can also conveniently be described by
a matrix vector product:

p =

 ax bx cx

ay by cy

az bz cz

 ·
 fx

fy

fz

 = U · f

Fractional coordinates have the advantage to be independent of the unit cell parameters
and can be used to represents points for any unit cell. The inverse of the above equation
generates fractional coordinates from a point:

f = U−1 · p

The size and shape of the unit cell are completely described by the length of 3 base vectors
~a, ~b and ~c and the angles α, β, γ between them. The matrix U can be constructed from
these parameters. Assuming ~a is along the x-axis and ~b lies in the XY-plane, the matrix
can be calculated as:

U =

 1 cos γ cosβ
0 sin γ − sinβ · s
0 0 sinβ ·

√
1− s2

 ·
 a 0 0

0 b 0
0 0 c


with
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s =
cos γ cosβ − cosα

sinβ sin γ

Space Groups and Symmetry Operators

The crystal is formed by repeating the unit cells along all 3 major axes of the unit cell.
Using the fractional coordinate notation from before, a point with fractional coordinates
f0, will be mapped to points fn = f0 + (l,m, n) with l,m, n ∈ N . These points are equiv-
alent, since any of these points is able to reproduce the inifinite lattice. The points within
one unit cell can have symmetry relations themselves. These relations are defined by the
space group of the crystal. The smallest set of points of the crystal that is not symmetry
related is called the asymmetric unit of the crystal. A unit cell can be reconstructed by
applying all symmetry operators of the space group to the points in the asymmetric unit.
The simplest of the space groups is P 1 that has only one symmetry operator, the identity
operator. In the following, we introduce a notation for symmetry operators that describes
the mapping to be applied to each component of a fractional coordinate. The mappings
for the components are separated by comma. Let’s first start with the identity operator:

X,Y, Z

The above operator maps all points onto themselves. In matrix notation, this can be writ-
ten as the 3x3 identity matrix:  1 0 0

0 1 0
0 0 1

 · ~f
Multiplying this matrix with a column-vector yields the transformed coordinates. A ro-
tation around Y by 90 degrees, can be written as

Z, Y,−X

It can be seen that the point (1, 0, 0) gets mapped onto (0, 0, 1), whereas a point on the
y axis gets mapped onto itself. Again, in matrix notation 0 0 −1

0 1 0
1 0 0

 · ~f
Symmetry operators can also introduce shifts:

1
2

+X,
1
2

+ Y,Z

Here the shifts are specified as fractions of the unit cell. This operator can not be described
by a 3x3 matrix alone, but requires a matrix plus a translation vector that is applied after
the matrix transformation:
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 1 0 0
0 1 0
0 0 1

 · ~f +

 1/2
1/2

0


Since the symmetry operators of the space group form a closed set, for every symmetry
operator there is a second symmetry operator that reverses its effect (the inverse). As an
example, for the symmetry operator 1

2 + X, 1
2 + Y,Z, it is 1

2 + X, 1
2 + Y,Z that produces

the same set of points.

Implementation of Crystallographic Density Maps in OpenStructure

OpenStructure supports X-ray density maps through the XtalMap class, available in the
non-orthogonal-maps branch. Internally the class only stores a little more than an asym-
metric unit and uses the symmetry operators of the space group and cell repeats to re-
construct any region of the crystal. This is called symmetry extension. While the theory
behind symmetry extension of a density map is trivial, implementing in a fast way re-
quires intelligent bookkepping. The idea used for the XtalMap class is largely based on
Kevin Cowtan’s clipper library.

An XtalMap is either created manually or loaded from a CCP4 or MRC file. These files
contain the voxel values for one asymmetric unit. To reconstruct the whole unit cell of a
P 1 21 1 space group with symmetry operators

X,Y, Z and −X,Y,−Z

only half the pixel of the unit cell size are required in both X and Z, whereas all voxels
along Y are required. For simple space groups, the asymmetric unit will fill the whole 3D
voxel array. More complex space groups will not fill the whole cuboid. Maps however,
are required to store a cuboid of data and thus there will be redundancy in the data.

For simplicity let’s call the ASU generated by the f th symmetry operator the f th ASU.
Suppose we want to find the voxel corresponding to a given point in 3D space. We

first convert the Cartesian coordinate to a fractional coordinate by

f = U−1 ∗ (p− o)

whereU−1 is the inverse of the 3x3 matrix whose columns are formed by the basis vectors
of the unit cell and o is the origin of the crystal. We then make sure that the components
of i fall into first unit cell by removing the integral part of f and only keeping the fractional
part. Multiplying by the number of voxels along each axes of the unit cell then gives the
integer pixels into the 3D data array of the whole unit cell.

We now have to figure out the symmetry operator that transform the point f to the
symmetry equivalent in the 0th ASU.

This is essentially the inverse operator that brings us from the zero-th ASU to the
ASU containing f . Since the the symmetry operators of a space group are a closed set,
the inverse is already part of the symmetry operators in the space group and we only have
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to loop over all the symmetry operators in the list of symmetry operators to find the right
one. To quickly find out whether one of the pixels is part of the 0th assymetric unit, we
keep a byte array for book-keeping. This array has the same size as the ASU map. For
each voxel, we store the symmetry operator number that transforms the voxel coordinate
to the zeroth ASU. For the 0th ASU itself, this is the identity operator that always has
number 0. We apply the symmetry operators of the space group one after the other until
we end up at a voxel that contains a zero in the bookkeeping array. What did we win?
Random access still scales linearly with the number of symmetry operators. However,
random access to pixel valus is rarely used, usually one is interested in a continuous
region of the crystal.

SYMMETRY-EXTENDING A CONTINUOUS REGION OF THE CRYSTAL | For the first point of the
region, we have to perform the O(n) lookup as described above. This will give us both
the symmetry number as well as the index into the data array. We now would like to
move to the next voxel in X direction in global coordinates. Using again the example of
P 1 21 1 space group, If we are currently in the 0th ASU, this translates to a movement
along X in the data array, and in the 1th ASU a movement along -X in the data array. This
movement is expressed as an offset and the new index is calculated by adding the offset
to the current index. If the bookkeeping array contains a zero at the new position, we
are still in the same ASU and we are done, if not, we are changing from one ASU to the
other. The new symmetry operator is then the product of the current symmetry operator
and the symmetry operator stored in the bookkeeping array.
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