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Summary 

Classical sexual selection theory assumes that the reproductive success of females is limited by the 

resources available for egg production, while the reproductive success of males is determined by the 

number of mates (Bateman’s principle). It has been suggested that the optimal mating rates should also 

diverge between gender functions within individuals of simultaneous hermaphrodites. This thesis 

investigates sex allocation and precopulatory sexual selection by considering the influence of 

environmental conditions and behaviour on the reproductive allocation to the female and male function 

in the simultaneous hermaphrodite land snail Arianta arbustorum (L.). Furthermore, sperm competition 

and cryptic female choice are assumed to be crucial in determining fertilization success in this species 

because of the presence of multiple mating and long-term sperm storage. This work studies 

postcopulatory sexual selection mechanisms by considering sperm quality traits. Stylommatophoran 

gastropods have extraordinary long sperm. However, the extent of intra- and interindividual variation 

has rarely been examined. 

First, we investigated the effects of soil type and adult size (shell volume) on mating propensity 

and female and male reproductive output (number and mass of eggs, number of sperm delivered and 

spermatophore mass) in individuals from two populations kept both on calcium-(Ca-)rich and Ca-poor 

soil. Independent of population and shell size, the mating propensity was higher and the total number of 

eggs produced was larger in snails kept on Ca-poor soil than in individuals reared on Ca-rich soil. We 

supposed that the Ca-poor soil used in the experiment still contained enough Ca to allow reproduction. 

Moreover, the Ca-rich soil could contain minerals or (unknown) substances which discourage 

reproduction in A. arbustorum. 

 In individual A. arbustorum, we assessed determinants of mating success and female and male 

reproductive success. We videorecorded the behaviour of individually tagged snails kept in groups of 

six animals over one reproductive period (58 days) and assigned the genotyped hatchlings to the female 

and male function of individual parents. We found considerable interindividual variation in the activity 

of snails, which is a combined measure of time spent crawling, feeding and digging. The snails mated 

between zero and three times. Mating success, which is equal to the female and male function in 

simultaneous hermaphrodites with reciprocal copulation, was mainly determined by the activity of an 

individual. We found that female reproductive success (number of hatchlings emerging from the eggs 

laid by the focal snail) was positively correlated with male reproductive success (number of hatchlings 

sired by the focal snail) and that both were determined by the individual’s activity. Our results challenge 

the trade-off assumption of sex allocation theory in simultaneous hermaphrodites. Furthermore, both 
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female and male reproductive success of an individual were influenced positively by the snail’s degree 

of genetic heterozygosity and negatively by shell size. 

Sperm competition is one of the principal determinants of male fitness in species in which 

females mate promiscuously. The selective pressures it causes, though, are only partly understood, 

especially with respect to sperm characteristics favoured in sperm competition. We assessed among- and 

within-population variation in sperm length and number of sperm transferred in A. arbustorum from four 

natural populations. Sperm competition models on the evolution of sperm size assume associations with 

other sperm quality traits. Thus, we assessed variation in velocity, motility, and longevity of sperm in 

snails from two of the four populations. Independent of shell size, sperm length differed among 

populations and, to a minor extent, even among individuals within populations. Mean sperm length of a 

snail was not correlated with the number of sperm delivered in a spermatophore. The mean sperm 

velocity (=VCL) did not differ between snails from two populations. However, VCL varied among 

snails. Percentage motility and longevity of sperm differed between snails from the two populations. No 

correlations were found between length, velocity, percentage motility, and longevity of sperm. To 

conclude, individual snails differed in sperm quality, and this variation may partly explain the 

differential fertilization success between A. arbustorum snails. Moreover, our findings did not support 

the positive association between sperm length and longevity assumed by sperm competition models for 

internally fertilizing species. 

The adaptive significance of sperm length variation is still unknown in A. arbustorum. Sexual 

selection on sperm length requires a significant additive genetic variance. Here we present the first 

estimates of narrow sense heritability of sperm length in this land snail. Sperm delivered by the same 

individuals in 2–4 matings over two reproductive seasons did not differ in length, indicating a high 

repeatability of this trait. Offspring of 10 families were kept at three temperatures (11, 15 and 20 °C) to 

examine the influence of different environmental conditions on sperm length and adult shell size. Sperm 

length was affected by temperature but not by family of origin, while adult shell breadth was influenced 

by temperature and family of origin. Higher temperatures resulted in shorter sperm but larger shells. The 

heritability of sperm length derived from the two different approaches (one-parent–offspring regression: 

h2 ± SE = 0.52 ± 0.55; full-sibling split design: H2 ± SE = –0.19 ± 0.28) suggests relatively little genetic 

variation in this trait in the studied population. In contrast, the heritability of adult shell breadth indicates 

a strong genetic effect (mother-offspring regression, h2 ± SE = 0.90 ± 0.33). The heritability (h2 ± SE) 

of adult shell breadth obtained from the father–offspring regression was 0.18 ± 0.42, i.e. 5 times smaller 

than that of the mother–offspring regression, suggesting a maternal effect on shell size. 
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General Introduction 

Life histories are particularly suited to evolutionary analysis because the two major traits, survival and 

reproduction, are components of fitness (Silvertown & Doust, 1995). The fittest individuals in a 

population are, by definition, those that leave the greatest number of descendants (Begon et al., 1990). 

Charles Darwin (1871) distinguished between “natural selection”, in which individuals are selected 

according to their abilities to survive and reproduce in a particular habitat, and “sexual selection”, in 

which they are selected according to their abilities to obtained more or better mates than other individuals 

(Silvertown & Doust, 1995). The life history favoured by natural selection from among those available 

in the population will be the one which has the highest total reproductive output, and depends on the 

habitat of the organism concerned (Begon et al., 1990). Sexual selection promotes traits that confer an 

advantage in reproductive competition, in spite of being costly in the perspective of natural selection 

(e.g. the horns of horned beetles, or the fantastic plumes of the peacock tail; Møller, 1998). 

Sexual selection operates through two fundamentally different mechanisms (Fig. 1; Pizzari & 

Parker, 2009): a) an intrasexual component of male-male competition for access to females, and b) an 

intersexual component of female selection of copulation partners. Thus, sexual selection may occur 

before mating (pre-insemination; Fig. 1). In most taxa, individual females may copulate (or spawn) with 

multiple males (i.e., are polyandrous). A consequence of polyandry is the potential for inter- and 

intrasexual selection to continue after copulation (post-insemination; Fig. 1). By means of controlled 

processes or structures, ejaculates of rival males may compete to fertilize the same set of eggs (sperm 

competition; Fig.1), and/or females may selectively favour paternity of males with a particular trait over 

that of other males (cryptic female choice or female sperm selection; Fig.1). 

 

 
Figure 1. Diagrammatic representation of the main mechanisms of sexual selection (Pizzari & Parker, 2009) 
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In general, the study of sexual selection attempts to explain the evolution of structure and 

behaviour associated to reproduction (Birkhead & Møller, 1998). Michiels (1998) discussed the 

consequences of sexual selection and sperm competition in simultaneous hermaphrodites. Simultaneous 

hermaphroditism is widespread among plants and animals, and adaptations resulting from sexual 

selection are sometimes unique to this mating system. On the one hand, selection on male traits cannot 

be independent from the selection on female traits of the same individual. Thus, simultaneous 

hermaphrodites can optimize their reproductive allocation to the female and male function. On the other 

hand, conflicts between mating partners are particularly strong during copulation because of different 

mating interest. Indeed, conflicts arise within and between individuals that do not exist in gonochoristic 

species (Birkhead & Møller, 1998). 

Reproductive resource allocation (or sex allocation) is a fundamental aspect of life history with 

profound ecological and evolutionary consequences in all sexual organisms (Stearns, 1992). In 

simultaneous hermaphrodites, sex allocation represents a decision about how resources are allocated to 

different organs and behaviours within an individual, given its reproductive mode, and given certain 

environmental and social conditions in which the organism lives (Schärer, 2009). The variable part of 

male and female investment is not restricted to gamete production. It may involve investments toward 

the production of seminal fluids, love darts, and egg shells, or toward the performance of sex-specific 

reproductive behaviours, such as mate searching, courtship, or egg laying (Schärer, 2009). 

Factors thought to limit the fitness returns for allocation to male and female reproduction in 

hermaphrodites are to some extent linked to pre- and post-insemination sexual selection. For example, 

a female-biased sex allocation is favoured when the number of mates is limited (i.e. weak sperm 

competition), and a shift toward a more male-biased sex allocation is favoured with increasing numbers 

of mates (i.e. strong sperm competition). Such biological processes should be included in models for 

simultaneous hermaphrodites to make predictions on the shape of fitness gain curves and the resulting 

sex allocation patterns (Schärer, 2009). However, compared to gonochorists, quantitative data are 

needed that relate sexual selection and sex allocation in simultaneous hermaphrodites to the mating 

frequency, sperm precedence patterns, sperm displacement, sperm digestion, and cryptic female choice 

(Michiels, 1998; Schärer, 2009). 

Sperm competition is one of the key processes in male-male competition (Fig. 1) and is defined as 

the competition between the sperm of two or more males for the fertilisation of a given set of ova (Parker, 

1970). Adaptations to sperm competition occur at many biological levels (Parker, 1998): they may be 

behavioural (e.g. mate-guarding), physiological (e.g. male accessory gland fluid inducing unreceptivity 

after mating), and/or anatomical (e.g. copulatory plugs). Sperm competition studies investigate how a 
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male should allocate sperm among different ejaculates, or how he outdoes rival males. The evolution of 

sperm phenotype under sperm competition has received relatively little attention (Pizzarri & Parker, 

2009). The mating or ejaculatory strategy which is the best for a male need not to be the best for the 

female. Thus, sperm competition can involve sexual conflict in which the interests of male and female 

differ (Parker, 1998). There is evidence of female control of sperm competition in some species, through 

either behavioural or physiological processes (Eberhard, 1996). 

The aim of my thesis was to improve our understanding of sexual selection mechanisms in 

simultaneous hermaphrodites. Baur (1998) reviewed evolutionary aspects of sexual selection in 

molluscs: reproductive morphology, physiology, and behaviour that have implications for sperm 

competition. He concluded that not all groups of molluscs have received the same attention and that their 

potential as experimental organisms has not yet begun to be exploited by behavioural and evolutionary 

biologists. In particular, gastropods and cephalopods are unique because of several important features. 

Their elaborate mating behaviour may rival the complexity of those of various vertebrates (Baur, 1998). 

 

FOCUS OF THE THESIS 

In this thesis I investigated different male and female aspects of sex allocation theory and studied sperm 

competition mechanisms in the simultaneously hermaphroditic land snail Arianta arbustorum 

(Linnaeus, 1758). This model organism fulfils the main prerequisites for sperm competition: (a) A. 

arbustorum mates repeatedly in the course of a reproductive season in the field, and (b) fertile sperm 

can be stored for more than 1 year (Baur, 1988). Additionally, complex sperm storage organs and a 

mechanism for the digestion of excess sperm are known (Baur, 1998; Beese et al., 2006; Beese et al., 

2009). Multiple mating and sperm storage might enhance postcopulatory processes as competition 

among sperm from different partners, and/or selective storage and use of allosperm from the receiver 

(Baur, 1994a; Kupfernagel et al., 2010). I asked the following main questions: Chapter I - how are 

resources allocated to different organs and behaviours within an individual given certain environmental 

conditions? Chapter II - how do behavioural and genetic traits influence mate choice, and female and 

male reproductive success? Chapter III - do snails differ in sperm quality characteristics that in turn may 

play a role in sperm competition? and finally Chapter IV - is there the potential for evolution to select 

individuals according to the length of their sperm? 

Life-history theory predicts that a species occurring in different environments exhibits inter-

populational variation in life-history traits as a result of different selection pressures (Stearns, 1992). 

However, observed local differences in life histories may also result from founder effects, genetic drift, 

and phenotypic plasticity (Calow, 1978; Caswell, 1983). Life-history variation may also be the result of 
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developmental plasticity or physiological acclimatisation. It follows that the observed variation in life 

history could simply mirror differences in habitat quality. It is well established that soil type and calcium 

availability influence shell growth and female reproductive output (number of eggs laid) in terrestrial 

gastropods (Baur, 1994b; Heller, 2001). Scarcity of Ca may result in thinner and more brittle shells 

(Voelker, 1959), rendering the snails less fit to protect the soft body properly against desiccation, 

physical damage, and invertebrate predators. In several species of terrestrial gastropods, Ca-provision 

to the eggs represents a major cost to the parent. The Ca concentration in A. arbustorum eggs may range 

from 5 to 8% of their dry mass (cf. Tompa, 1976). In Chapter I, we present the results of an experiment 

designed to examine whether mating propensity and sex specific reproductive allocation in A. 

arbustorum are affected by the type of soil. In a reciprocal transplant experiment, snails from habitats 

with Ca-rich and Ca-poor soils were kept either on their original soil or on the other soil under laboratory 

conditions. In particular, we asked whether the origin of the snails, adult shell size and/or soil type 

affected female and male reproductive output (number and mass of eggs, number of sperm delivered 

and spermatophore mass). We also examined whether the ratio of the resources allocated either to the 

male or female reproductive output is affected by the snails`origin, shell size, and soil type. 

 Much recent research effort has been directed at explaining determinants of the reproductive 

success of females and males in gonochoristic animals (Clutton-Brock, 1988; Roff, 2002). In mating 

systems without paternal care, male fitness tends to be more tightly linked to mating success than is 

female fitness (Trivers, 1972). This can be explained by Bateman’s principle, which states that the 

female’s reproductive success is primarily limited by the energy available for producing gametes, 

whereas the reproductive output of males is primarily governed by the number of mates (Bateman, 

1948). Bateman’s principle also applies to hermaphrodites (Charnov, 1979; Anthes et al., 2010). Despite 

the central role of number of mates in sexual selection theory, only very little is known of the absolute 

number of mating partners simultaneous hermaphrodites can acquire and how this number varies 

between individuals. In Chapter II, we observed the mating frequency and videorecorded the behaviour 

of individually tagged snails kept in groups of six animals over one reproductive season (58 days) under 

semi-natural conditions. Furthermore, we asked which factors (behavioural traits, shell size, level of 

heterozygosity) determine mating and reproductive success in each sex function in individuals of A. 

arbustorum, and whether our results support existing models of sexual strategies in hermaphrodites. 

 Investment in sperm quality traits and in sperm number must be considered when examining the 

evolution of sperm characteristics through sperm competition. Sperm characteristics have so far been 

examined exclusively in gonochoristic species, with the exception of the hermaphroditic nematode 

Caenorhabditis elegans (LaMunyon & Ward, 2002). Sexual selection is also likely to shape sperm 
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characteristics in simultaneous hermaphrodites, even though this may conflict with the sperm receiver’s 

interests (Michiels, 1998). The sperm donor must persuade the sperm receiver to use its sperm to fertilize 

eggs, and/or to avoid the postcopulatory control mechanisms (Michiels, 1998). In gastropods, 

interspecific differences in sperm morphology have been studied, while the intraspecific variation in 

sperm traits has not yet been analysed quantitatively. Sperm morphology is used as a taxonomical 

character (e.g. Healy, 1996). In taxa with sperm storage organs, sperm length may determine the ability 

to reach the storage organs first and to move to the ovum from the storage organ once ovulation takes 

place. Furthermore, within species, sperm–female interactions have been proved to be a major factor 

influencing sperm length evolution (e.g. Miller & Pitnick, 2002; Pattarini et al., 2006; Pitnick et al., 

2009). In Chapter III, we assessed among- and within-population variation in sperm length and number 

of sperm transferred during copulation in A. arbustorum from four natural populations. To test the 

assumptions of sperm competition models on the evolution of sperm size (Parker, 1998), we measured 

the velocity, motility, and longevity of sperm, and we assessed their relationship with sperm length in 

two of the examined populations. 

 Different processes of postcopulatory sexual selection may result in sperm size differences 

(sperm competition, e.g. LaMunyon & Ward, 2002; cryptic female choice, e.g. Pitnick et al., 2003), 

which, in turn, may lead to different paternity success (e.g. Oppliger et al., 2003). Therefore, inter-

individual differences in sperm length could account for the unexplained variance in fertilization success 

in A. arbustorum (Baur, 1998). Sexual selection on sperm length requires a significant additive genetic 

variance, but few studies have actually measured this. In Chapter IV, we present the first estimates of 

heritability of sperm length in the land snail Arianta arbustorum (L.) using two complementary 

approaches (one-parent–offspring regression and full-sibling split design). We also examined whether 

sperm length is influenced by the shell size of the snail and estimated heritability of shell size. 

Finally, in the section “General Discussion”, an overview of the results is given, as well as a 

discussion on how this thesis contributes to a better understanding of complex behaviour and 

reproductive strategies in hermaphrodites. 
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General discussion 

The aim of this thesis was to investigate life-history traits, sex allocation strategies and sexual selection 

mechanisms in the simultaneous hermaphrodite land snail Arianta arbustorum. Sexual selection can be 

considered to consist of a number of components that affect total fitness, with two major routes: mating 

success and fecundity per mate (Møller, 1998). In hermaphrodites, sex allocation simply represents a 

decision about how resources are allocated to different organs and behaviours within an individual. 

Therefore, and in contrast to gonochorists, sex allocation will influence the immediate reproductive 

success of the individual rather than that of its offspring (Borgia & Blick, 1981; Michiels, 1998; Michiels 

et al., 1999). 

Sex allocation theory aims to predict the optimal sex allocation that an organism should exhibit 

under different environmental and social conditions, which makes it a central topic in life-history theory 

(Charnov, 1982; Stearns, 1992; De Jong & Klinkhamer, 2005). Thus, how are resources allocated to 

different organs and behaviours within an individual given certain environmental conditions? Effects of 

soil type on reproductive traits have so far received little attention in terrestrial gastropods. In Chapter 

I, we showed that soil type could affect mating propensity, female but not male reproductive traits in A. 

arbustorum. Unexpectedly, the total number of eggs produced was larger in snails kept on Ca-poor soil 

than in individuals maintained on Ca-rich soil. The resulting Ca-uptake per week that a snail might have 

invested in egg production was probably obtained by the lettuce consumed and/or by compensatory 

feeding. Thus, the snails kept in the Ca-poor soil received enough Ca to allow egg production. On the 

other hand, there may also be a trade-off between reproductive output and survival. Snails living in 

environmentally stressful conditions may allocate more resources into reproduction in the first 

reproductive season but may die earlier than those living in more favourable conditions. This hypothesis 

could be tested by maintaining snails over two or more years under the experimental conditions of the 

present study. However, snails kept in the Ca-rich soil had a reduced mating propensity and reproductive 

output. Apart from Ca availability, most probably other soils parameters may influence the reproductive 

output of A. arbustorum. This study examined – to our knowledge for the first times – soil-related effects 

also on male reproductive output. However, neither the number of sperm delivered nor spermatophore 

size differed between the two snail groups kept in different soils. 

How do behavioural and genetic traits influence mate choice, and female and male reproductive 

success? In the study presented in Chapter II, we used a combination of behavioural and genetic data 

collected in groups of snails kept in a semi-natural environment over one reproductive season. We found 

that mating success and both female and male reproductive success in A. arbustorum are mainly 

determined by the activity of the individual snail. In this context, activity is a combined measure of the 
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time spent crawling, feeding and digging. Activity as measured in our study might be a proxy for the 

condition or healthiness of a snail. Individuals of A. arbustorum infested by parasitic mites showed 

reduced activity, produced fewer eggs and exhibited a higher winter mortality than parasite-free snails 

(Schüpbach & Baur, 2010). Consequently, a high activity and healthiness result in a large number of 

mate encounters, and thus influence reproduction in this simultaneous hermaphrodite. The extended 

courtship in pulmonate land snails should provide ample opportunities for partner assessment and/or 

mate choice (Baur, 1998). In our study, 2.2% of the long contacts (interindividual range 0–13.7%) led 

to courtship, and 60.3% of the courtships (interindividual range 0–100%) resulted in copulation, 

suggesting a multilevel assessment of potential partners in A. arbustorum, although the relevant cues are 

not known. Individuals of A. arbustorum did not respond to experimentally increased cues from 

conspecifics, which were designed to mimic a high risk of sperm competition by delivering more sperm 

(Locher & Baur, 2000a). In our study, the degree of heterozygosity explained variation in mating success 

and in female and male reproductive success. 

We also found that female reproductive success was positively correlated with male reproductive 

success and that both increased with the number of copulations a snail had. To our knowledge this is the 

first study estimating both female and male reproductive success in a simultaneous hermaphrodite snail 

kept under semi-natural conditions. Sexual selection models show that simultaneous hermaphroditism 

will be stable when there is a positive correlation between female and male reproductive success 

(Charnov et al., 1976; Charnov, 1979; Leonard, 2006). Our findings support these models. However, 

our results contradict a basic assumption of sex allocation theory. Based on the simplified assumption 

that all individuals in a population have the same fixed reproductive resource budget, sex allocation 

theory predicts a trade-off between female and male reproductive allocation (Charnov, 1982). However, 

so far there is little empirical evidence for this trade-off in animals (Schärer, 2009). Locher & Baur 

(2000b) found that the reproductive allocation was highly female biased in A. arbustorum and that an 

increased mating frequency led to an increased allocation to the male function. However, even snails 

that copulated three times invested less than 5% of the total energy allocated (expressed as dry weight, 

nitrogen or carbon content of the released gametes) to the male function. Thus, the findings of Locher 

& Baur (2000b) and our results indicate that there is no direct link between male allocation and male 

reproductive success (i.e. a linear male fitness gain curve) in this snail. 

Sexual selection theory attempts to explain the evolution of anatomical, physiological, and 

behavioural adaptations associated with reproduction. In postcopulatory processes of sexual selection, 

male success may be skewed at the time of fertilisation if females favour the sperm of certain males over 

others, and if the sperm of a male are competitively superior, or if reproduction depends on the phenotype 

of the mate (Møller, 1994). Do snails differ in sperm quality characteristics that in turn may play a role 
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in sperm competition? In gastropods, the interspecific variation in sperm morphology has been studied, 

and is used as a taxonomical character (e.g. Healy, 1996), while the intraspecific variation in sperm traits 

has not yet been analysed quantitatively. Spermatozoa of terrestrial gastropods are among the longest 

within molluscs (e.g. 850 µm in Helix pomatia, and 1140–1400 µm in Hedleyella falconeri; Thompson, 

1973). Chapter III focuses on intraspecific variation in sperm characteristics in the simultaneously 

hermaphroditic land snail Arianta arbustorum. In this species, sperm are monomorphic and ca. 800 µm 

long (Bojat et al., 2001). We found significant differences in sperm length, both among- and within-

populations of A. arbustorum. Sperm length was not affected by snail size and the weight of the albumen 

gland (a measure for female allocation). This suggests that sperm length in A. arbustorum is not 

dependent on allometry or on body conditions, confirming similar studies on gonochoristic animals (e.g. 

Hellriegel & Blanckenhorn, 2002; Schulte-Hostedde & Millar, 2004). 

Sperm competition models predict that sperm size can confer a fertilization advantage, but only 

under the assumption of a functional relationship between sperm quality traits (e.g. sperm velocity, 

motility and longevity). Theory for internally fertilizing species predicts that enhanced sperm 

competition risk would favour increased sperm length when larger sperm enjoy higher survival, and 

could be stored until fertilization (Parker, 1998). In A. arbustorum, the longer sperm of snails from one 

population survived longer than the shorter sperm of snails from the other population considered in our 

study. Within populations, however, our study did not find any relationship between sperm length and 

longevity. In contrast to theoretical models (Katz & Drobnis, 1990), sperm length and sperm velocity 

were not associated. Moreover, sperm velocity was not correlated with sperm longevity. The effect of 

sperm motility on fertilisation success has not yet been examined. Roger & Chase (2002) suggested that 

in the snail Helix aspersa the beating of longer sperm should generate resistance to incoming sperm of 

rivals in the sperm storage organ. 

Sexual selection on sperm length requires a significant additive genetic variance; i.e. the trait 

must be heritable. In A. arbustorum, is there the potential for evolution to select individuals according 

to the length of their sperm? Sperm size usually exhibits little variation across ejaculates of single males 

(Morrow & Gage, 2001a; Birkhead et al., 2005; Immler et al., 2008) indicating a strong genetic 

determination (Morrow & Gage, 2001b; Simmons & Kotiaho, 2002). However, there is some evidence 

that environmental factors also may influence sperm length (e.g. temperature, larval density, nutrition; 

Blanckenhorn & Hellriegel, 2002; Morrow et al., 2008; Amitin & Pitnick, 2007). Furthermore, sperm 

length may partly be determined by maternal effects (Dowling et al., 2007; Gay et al., 2009) and by 

males’age (Green, 2003). In Chapter IV, we present the first estimates of heritability of sperm length 

in a Stylommatophoran gastropods. The study showed that individuals of A. arbustorum delivered sperm 

of constant length in four successive matings. The high repeatability of sperm length suggests a genetic 
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determination of this trait. However, the results of our breeding experiment, in which full-siblings were 

raised at different temperatures, revealed both environmental and – to a minor extent – genetic effects 

on sperm length. Our results indicated that sperm length may be affected by the temperature, and this 

fact should be considered when studying genetic components of sperm length. 

In Chapter IV, we also assessed the heritability of shell breadth using separate parent-offspring 

regressions for both mother and father snails. The effect of the family of origin was so strong that it was 

significant even with a small sample size. Interestingly, h2 of shell breadth estimated with the father-

offspring regression was 0.18, i.e. 5 times smaller than that of the mother-offspring regression (h2 = 

0.90), suggesting a maternal effect on shell size. This result is of importance because female reproductive 

traits including egg size and clutch size are positively correlated with shell size in A. arbustorum (Baur 

1988b, 1990; Baur & Raboud, 1988; Baur et al., 1998) as well as in other helicid snails (Dupont-Nivet 

et al., 2000). 

 

OUTLOOK 

In this thesis, we studied sex allocation in a simultaneous hermaphrodite, in which sex allocation 

decisions that affect reproductive success take place within an individual. Sex allocation models predict 

a fixed sex allocation for all individuals within a population (Schärer, 2009). However, we found that 

individuals could make short-term adjustments in sex allocation in response to current conditions (i.e. 

to Ca/soil type in our study). Thus, phenotypic plasticity should be considered in the models. However, 

we showed that female but not male allocation changed. While we confirmed some of the assumptions 

(e.g. the non-linearity of the male fitness gain curve) and some of the predictions (e.g. sex allocation is 

in general female-biased, or sex allocation varies with body size) of sex allocation theory, other patterns 

did not match and we even found differences between some of the central assumptions of theoretical 

models (e.g. the absence of the sex allocation trade-off). We found a positive correlation between female 

and male reproductive success during a reproductive season, but it is an open question how resource 

allocation translates into fitness. Moreover, future studies should assess lifetime reproductive success 

for both the female and male functions of a snail and check for possible trade-offs between current 

reproductive success, winter survival and future reproductive success. 

Snails often mate multiply, most frequently with different partners. A. arbustorum individuals 

may obtain direct benefits from mating with multiple partners. It would be interesting to study mate 

choice decision based on indirect (i.e. genetic) benefits resulting in higher quality offspring and, in 

particular, to test if female mate preferences favour genetically dissimilar mates. Our study design did 

not allow us to test this hypothesis because snails kept in groups of six individuals had no free choice 

between all potential partners in the population. In relation to the mechanism underlying mate choice 
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processes in A. arbustorum, it would be interesting to look for the empirical evidence of (chemical) cues 

for partner assessment. 

 In this work, we consider sperm quality traits, which are important factors in postcopulatory sexual 

selection for other species. Our data did not support any trade-off between sperm size (total length) and 

sperm function (velocity, motility and longevity). Thus, these findings did not bear out the assumptions 

of sperm competition models on the evolution of sperm size for internally fertilizing species like A. 

arbustorum (Parker, 1998). Future research should examine genetic correlations between sperm traits to 

elucidate the constraints on the evolution of sperm morphology and function. 

 Interindividual differences in sperm quality traits found in A. arbustorum could be a response to 

sperm competition risk in interaction with cryptic female choice. The adaptive significance of sperm 

length variation in A. arbustorum should be investigated in laboratory experiments. It remains to be 

determined whether snails with long sperm actually enjoy an increased fertilization success in multiple 

mated snails. It could also be interesting to investigate the mechanisms that make the sperm of an 

individual more successful in fertilisation than the sperm of rival males. Further work is needed to assess 

the energy supply of A. arbustorum sperm (ATP and/or glycogen content). For example, in domestic 

fowl, longer sperm have increased motility because of their higher ATP/mitochondria. On the other 

hand, sperm with a higher energy supply may survive longer before fertilisation and thus enhance 

individual fertilisation success. 

In general, this work underlines that reproductive traits (and also body size) in A. arbustorum are 

likely to be shaped by a complex set of genetic and environmental factors that affect populations to 

different degrees and that have probably different magnitudes over time. An intriguing aspect of our 

results is that environmental conditions influenced snail activities to a different extent, and in turn 

different environments might result in different levels of multiple paternity in A. arbustorum. Some 

reproductive traits were also influenced by the population of origin of the snails and by shell size 

emphasizing the importance of proper design and replication of life-history studies in gastropods. 
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