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Abstract

The work presented in this thesis is devoted to the development of a numerical model for
the three dimensional simulation of magneto-rotational core-collapse supernovae (MHD-
CCSNe) with jet formation. The numerical model then suggests that MHD-CCSNe nat-
urally provide a possible site for the strong rapid neutron capture process in agreement
with observations of the early Galactic chemical evolution.
In the first part of this thesis, we develop several numerical methods and describe thor-
oughly their efficient implementations on current high-performance computer architec-
tures. We develop a fast and simple computer code FISH that solves the equations of
magnetohydrodynamics. The code is parallelized with an optimal combination of shared
and distributed memory paradigms and scales to several thousands processes on high-
performance computer clusters. We develop a novel well-balanced numerical scheme for
the Euler equations with gravitational source terms to preserve a discrete hydrostatic equi-
librium exactly. Being able to accurately represent hydrostatic equilibria is of particular
interest for the simulation of CCSN, because a large part of the newly forming neutron
star evolves in a quasi-hydrostatic manner. We include an approximate and computation-
ally efficient treatment of neutrino physics in the form of a spectral leakage scheme. It
enables us to capture approximately the most important neutrino cooling effects, which
are responsible for the shock stall and for the neutronisation of matter behind the shock.
The latter is crucial for the nucleosynthesis yields. To fit into our multidimensional MHD-
CCSN model, the spectral leakage scheme is implemented in a ray-by-ray approach.
In the second part of this thesis, we apply our three-dimensional numerical model to the
study of the MHD-CCSN explosion mechanism. We investigate a series of models with
poloidal magnetic field and varying initial angular momentum distribution through the
collapse, bounce and jet formation phase. For all computed models, we investigate the
process of magnetic field amplification, angular momentum redisribution and the formation
and driving mechanism of the bipolar outflow.
In a representative model we follow the jet for a longer time and larger distance. We
find that the bipolar outflow features a significant amount of very neutron rich matter
and is therefore a promising site for the rapid neutron capture process (r-process). The
computations show that under the prevailing conditions in the bipolarly ejected matter
the global solar r-process pattern could be reproduced. The computed amount of ejected
matter and pecularity of the progenitor (featuring large enough rotation and magnetic
fields to induce MHD-CCSN explosion mechanism) indicates that only a fraction (perhaps
0.1 - 1%) of CCSN explode with the MHD mechanism. This is also in agreement with the
observed large star-to-star scatter of r-process element abundances in very old halo stars
indicating the scarcity of these events in the early Galactic chemical evolution.
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Chapter 1

Introduction

1.1 Supernovae

Supernovae (SNe) are among nature’s most spectacular and energetic events. In the
course of such an event, a single star can briefly outshine its entire host galaxy. Owing
to their brightness, early astronomers have observed nearby SNe by the naked eye. They
have been termed as ’guest stars’ due to their sudden appearance and fade out. Two
prominent examples being the SN of Tycho Brahe in AD 1572 and Johannes Keppler in
AD 1604. Their detailed observation led to the conclusion that they were beyond the
moon’s orbit, contributing to the overthrow of the Aristotelian worldview that included
immutable heavens. These so-called ’historical’ SNe are also the last ones observed in our
galaxy.
In 1934, the fact that two energy scales became apparent in the observation of new stars
or novae, a sudden burst in luminosity that slowly decays, led the two astronomers Walter
Baade and Fritz Zwicky introduce the distinguishing terminology of common novae and
SNe [9, 10]. The later being orders of magnitudes brighter and much less frequent. The
high luminosities of SNe and the broad lines in their spectra brought them to the correct
conclusion that SNe were very energetic explosions. Even further, the physicist hypothes-
ized that ”... a super-nova represents the transition of an ordinary star into a neutron
star” [9]. This picture turned out to be correct and is still in the fundaments of modern
theoretical models of SNe resulting from the gravitational collapse of massive stars. The
fact that this hypothesis emerged only shortly after the discovery of the neutron by James
Chadwick in 1932 [36] further underlines its remarkable character.
From an observational point of view, SNe have been divided into two distinct types by
R. Minkowski in the early forties of last century. SNe are distinguished by the absence
(Type I) or presence (Type II) of hydrogen Balmer lines in their spectra. Since then, with
an increasing number of observations and more sophisticated photometry, sub-types were
introduced (see figure 1.1):

Type Ia: Type Ia SNe spectra are distinguished by a strong absorption attributed to Si
II and absent hydrogen Balmer lines.

Type Ib: Type Ib SNe are characterized by spectra with no evident hydrogen Balmer
lines, weak or absent Si II lines and strong He I lines.

Type Ic: Type Ic SNe are distinguished by weak or absent hydrogen Balmer lines, weak
or absent Si II lines and weak or absent helium lines.
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Type II: Type II SNe have prominent hydrogen Balmer lines.

Further classification of SNe is also performed on their light curve. See e.g. [47, 60, 163]
and references therein for further details. Type II, Ib and Ic occur near star forming
regions and have never been observed in elliptical galaxies (with no or negligible star
formation). On the other hand, type Ia SNe are observed in all types of galaxies [60].
A distinguishing feature of type Ia SNe is the similarity of their light curves which can
be standardised according to the Philips relation [129]. This makes them candidates for
so-called standard candles which can be used for measuring distances and probing the
curvature of the universe.
From a theoretical point of view, two fundamentally different SN types can be distinguished
based on the physical mechanism of the explosion: core-collapse and thermonuclear SNe.
The lifetime and the final fate of a star is intimately linked to its mass and chemical
composition at birth. Massive stars with M & 8M� go through all nuclear burning stages
up to iron beyond which nuclear fusion would be endothermic. Having exhausted the
nuclear fuel in their centres, massive stars undergo gravitational collapse of their cores,
leaving behind compact remnants in the form of neutron stars or black holes, and expel
their envelopes in a grand explosion. The gravitational energy liberated during the core’s
collapse is the energy source for the explosion.
Stars with masses M . 8M� are not massive enough to ignite carbon/oxygen burning
and become carbon-oxygen white dwarfs . A small subset of white dwarfs may be situated
in tight binaries with a normal stellar or white dwarf companion [68]. If sufficient matter
originating from a companion star is accreted onto the white dwarf to push it over the
Chandrasekhar mass limit for a relativistic degenerate electron gas, then a contraction
is issued. This contraction ignites the carbon and oxygen leading to a thermonuclear
incineration of the white dwarf. No remnant is left behind.
SNe are also crucial for the dynamical and the chemical evolution of the Universe. Indeed,
many elements necessary for the development of life are synthesised during these explosive
events. For example, the oxygen ejected during core-collapse supernovae is the dominant
source of that element in the universe [29].
In this thesis we will exclusively be concerned with core-collapse SNe (hereafter CCSN),
i.e. type Ib, Ic and II SNe.

1.2 Core-collapse Supernovae

1.2.1 Stellar evolution and progenitor structure

Much like living beings, stars are born, have a shiny nuclear burning life, and die, leaving
behind tiny fossils. A star’s life begins as a cloud of material with a mass & 0.075M�
[35, 31], composed primarily of hydrogen, along with helium and traces of heavier elements,
collapsing under the pull of its self-gravity/own gravitational force. As the cloud collapses
the density increases, the gravitational energy is converted into heat and the temperature
rises. Eventually, the temperature reaches values above 2 × 107 K igniting hydrogen
burning. The onset of nuclear burning then halts further compression by gravity and
hydrostatic equilibrium sets in. With the exhaustion of core hydrogen burning, most stars
transition to shell hydrogen burning and eventually the core is compressed enough to start
helium fusion. The ashes of helium burning are mostly carbon and oxygen.
So far, the exhaustion of one fuel, leaded to the ignition of the next. However, low initial
mass stars (. 6−8M�) are not massive enough to contract to sufficiently high densities and

2



SNe

I II
Si

Ia Ib Ic II

THERMONUCLEAR CORE-COLLAPSE

no Si

He no He

no H H

Figure 1.1: Classification scheme for Supernovae [47, 60, 163]. The two main classes are
discerned on the basis of the absence (Type I) or presence (Type II) of hydrogen Balmer
lines in their spectra. Class I is then further subdivided based on the presence (Ia) or
absence (Ib, Ic) of Si lines. Type Ib and Ic are distinguished by the occurrence of He I
lines (Ib) or not (Ic.) Regardless of the spectral signature, two fundamentally different SN
types can be distinguished based on the driving mechanism of the explosion: core-collapse
(SN II,Ib/c) and thermonuclear (SN Ia).

temperatures for carbon burning. This type of stars develop electron-degenerate carbon-
oxygen (C/O) cores. After shedding of their envelopes, forming planetary nebulae, they
leave behind their C/O cores, which form the remnant white dwarfs [63].
For more massive stars, contraction leads to the ignition of carbon burning which produces
oxygen, neon and magnesium (O/Ne/Mg) ashes. For stars in the initial mass range of
8− 10M�, core temperatures are too low to ignite subsequent nuclear burning stages. In
this intermediate mass range, the stars either loose their envelopes and become O/Ne/Mg
white dwarfs or proceed to core-collapse as described below for more massive stars [63].
Massive stars with initial masses higher than 10M� are able by further contraction to
ignite successive burning stages at their centres using the ashes of the previous stages as
fuel for the next [177]. Three distinct burning stages follow carbon burning: neon, oxygen
and silicon. Of these, only oxygen burning occurs by fusion reactions, while neon and
silicon burning require the partial photo-disintegration of the fuel by thermal photons.
Silicon burns to iron-group nuclei, where the nuclear binding energy per nucleon reaches
its maximum ( see e.g. [130]). Therefore, silicon burning is the last exothermic fusion
reaction.
At the end of thermonuclear life, massive stars have an onion-skin like structure in which
an iron core is nested within shells consisting of elements of successively lower atomic
weight at gradually lower densities and temperatures. This is sketched in figure 1.2. A
typical nesting of shells is Fe, Si, O/C, He and H. These shells are not pure, but are
mixtures of several elements and isotopes, with the most abundant element giving the
name.
Massive stars spend about 90% of their life time burning hydrogen and most of the rest
burning helium. For a typical 15M� star, hydrogen burning lasts 10 million years and
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helium burning 1 million years. In contrast, the final silicon burning lasts only about 20
days. After helium burning, neutrino losses become increasingly important for the energy
budget. In fact, the late burning stages of massive stars can be thought of as a neutrino
mediated Kelvin-Helmholtz contraction of a carbon-oxygen core [177].

Figure 1.2: Structure of a 15M� star at the onset of collapse, taken from [178]. In the
upper panel, the temperature and density profiles are displayed. The energy budget is also
shown, where Ltot is the total energy loss together with the individual contributions from
neutrino emission εν and from nuclear energy generation εnuc. The lower panel displays the
composition profile, showing the onion-skin like structure of progressively lighter elements
surrounding the iron core.
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1.2.2 Core collapse and core bounce

As silicon core burning proceeds, its ashes, iron-group nuclei, accumulate at the centre of
the star. When silicon is mostly exhausted in the centre, silicon core burning transitions
into silicon shell burning.
The pile up of the ashes of silicon burning at the centre of the star produces the so-called
iron core (because it mostly consists of iron-group nuclei). The iron core’s resistance
against gravity stems mostly from the pressure of relativistic and degenerate electrons
(& 90% [17]). This sets an upper limit to the iron core’s mass for the stability against
collapse: the Chandrasekhar mass limit [37]. The effective Chandrasekhar mass, corrected
for non-zero temperature effects [15, 144], is given by

MCh = 5.83Y 2
e

(
1 +

se

πY e

)
M�, (1.1)

where Y e and se are average values of electron fraction, i.e. the number of electrons per
baryon, and electronic entropy per baryon in the core. For typical values of Y e = 0.45
and se = 0.52 for a 15M� star, one obtains an effective Chandrasekhar mass of 1.34M�.
This value is close to the one inferred from figure 1.2, which was obtained by numerical
stellar evolution calculations.
Eventually the iron core overshoots its Chandrasekhar mass and becomes unstable to
collapse. Under the thermodynamic conditions in the iron core, the onset of infall is
accelerated by two other processes: electron capture and photo-disintegration. At typical
densities (& 109 g/cm3), electron capture on Fe nuclei occurs mostly by

56Fe + e− →56 Mn + νe, (1.2)

because the Fermi energy of electrons µe = 11.1 MeV (ρ10Ye)1/3 [78] exceeds the mass
difference between the two nuclei mMn −mFe = 3.7 MeV. Here ρ10 is the density in units
of 1010 g/cm3. This saps electrons, which supply most of the pressure that holds the iron
core up1.
Concurrently, at the prevailing high temperatures (& 5× 109 K), radiation also begins to
melt down some of the iron nuclei to helium

γ +56
26 Fe→ 13α+ 4n. (1.3)

This endothermic reaction eats up ∼ 125 MeV leading to a decrease in thermal pressure
support. Additionally, the internal energy produced by core contraction is consumed by
this reaction.
Hence, the collapse of the iron core is unavoidable and it contracts under the pull of its
self-gravity on a free-fall time scale, which is of the order τ ∼ (Gρ)−1/2 ∼ 0.04 s ρ10 (ρ is
an average density over the iron core). The outer shells take no notice of the inner collapse
until the supernova shock wave generated in the core hits and ejects them.
However, an important change in the collapse dynamics arises once the densities reach
∼ 1012 g/cm3: neutrino trapping [17]. The neutrino mean free path becomes much smaller
than the size of the collapsing core and they are dragged in with the collapsing matter.
This implies that the total lepton fraction (Yl = Ye + Yν) stays constant and the collapse
proceeds adiabatically. Similar to the photosphere in the sun a neutrinosphere can be

1Neutrinos escape freely when ρ . 1012 g/cm3.
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defined as the surface, where the optical depth

τ(r, Eν) =
∫ ∞
r

dr

λν
, (1.4)

becomes 2/3. Note that the location of the neutrinosphere depends on the neutrino energy.
Inside the neutrinosphere, the trapped neutrinos thermalize by neutrino-electron scattering
until β equilibrium is established, i.e. the weak reactions come into equilibrium and the
chemical potentials (including rest mass) of the electrons, protons, neutrons and neutrinos
fulfill µe + µp = µn + µνe .
Analytical studies [57, 180] and numerical simulations show that the collapsing core con-
sists of two parts: the inner core, which is homologously collapsing v(r) ∝ r, and the
outer core, which collapses supersonically. The matter inside the sonic point, i.e. the
point where the infall speed equals the speed of sound, stays in communication and col-
lapses homologously, and the matter outside collapses in quasi free-fall. It was shown in
[57] that the mass of the inner core scales approximately as Mic ∝ Y 2

e .
When the central density exceeds nuclear matter density (∼ 3×1014 g/cm3), the repulsive
nuclear forces generate a sudden increase in matter pressure. At this point the inner core
is undergoing a phase transition from a two phase-system of nucleons and nuclei (of the
iron-group) to a one-phase system of bulk nuclear matter, i.e. one may view the inner core
as one giant nucleus. This stiffening of the equation of state allows the inner core to halt
the collapse and to find an equilibrium configuration. Starting at the centre of the inner
core, where the density is largest, successive mass shells are stopped. Pressure waves move
outward in radius and accumulate near the sonic point, where they steepen into a shock
wave. Due to its inertia, the inner core overshoots its equilibrium and rebounds behind
the shock wave. This is the so-called core bounce. The core bounce halts the collapse on
a very short timescale of ∼ 1 ms.

1.2.3 From core bounce to explosion

The bounce of the inner core generates outward directed velocities at and below the shock:
an explosion shock is born. Schematically, the explosion shock is launched and energised
by the rebounding inner core ”piston”. Initially, the energy of the shock wave is a multiple
of the final observed kinetic supernova explosion energy [25, 94]. If the shock wave were to
proceed without stalling, thereby expelling the outer layers of the massive star, we would
have what has been called a prompt explosion [40].
While the shock propagates through the still supersonically in-falling outer core, it looses
its strength to the dissociation of outer core material into nucleons. This dissociation
costs ∼ 8.8 MeV per nucleon or ∼ 16× 1051 erg/M� [5, 17]. This change in composition
behind the shock results in even more energy loss, because the electron capture rate on
free protons e− + p → n + νe is significantly larger than on nuclei [72]. The electron
neutrinos are initially trapped, but escape when the shock passes beyond the electron
neutrinosphere resulting in a further energy loss. This gives rise to the electron neutrino
or neutronisation burst, where peak luminosities can easily exceed several 1053 erg/s for
several ms. It is also the first of three neutrino signals from CCSN. Due to these losses,
the shock is weakened so much, that it finally stalls and turns into an accretion shock
at a radius between 100 and 200 km within 10 − 20 ms after core bounce. All current
state-of-the-art simulations of core-collapse agree so far that the prompt explosion is not
taking place generally (see e.g. [72] and references therein).
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At the time the shock stalls, there is a central radiating object, the proto-neutron star
(PNS), rapidly growing by the accretion of the in-falling stellar material and evolving
to a compact remnant. This compact remnant is either a neutron star or a black hole,
depending on whether the progenitor star had a mass below or above ∼ 25M� [63].
The ultimate energy source in a CCSN is the ∼ 1053 erg of gravitational binding energy
associated with the formation of the neutron star (as hypothesised by Baade and Zwicky).
This energy is released after core bounce over a time ∼ 10 s in the form of a three
flavour neutrino signal. While mostly electron neutrinos are produce during collapse by
electron capture, after bounce, in the hot PNS mantle, all three flavours of neutrinos and
their antineutrinos are produced and emitted as the mantle cools and contracts during
its Kelvin-Helmholtz cooling phase. During this phase, the neutrino luminosities are
maintained at average values ∼ 1052 erg/s by mass accretion onto the PNS. The kinetic
energy of in-fall is converted into thermal energy when the material hits the PNS surface.
This is the second phase in CCSN neutrino emission.
After the explosion is initiated (the mechanism to be discussed below), the accretion
luminosity decreases drastically. During that, the neutrino signal enters its third and
last phase marked by an exponential decay of the neutrino luminosities characteristic of
neutron star formation and cooling.
It remains to specify the explosion mechanism by which the liberated gravitational binding
energy is transferred to the matter above the PNS resulting in the star’s explosion as ob-
served with optical telescopes. The theorist’s modern quest is to determine how the stalled
accretion shock is revived and converted into a supernova explosion. Currently, there exist
four SNe explosion mechanisms discussed in the literature: (a) the delayed neutrino-driven
mechanism, (b) the magneto-rotational mechanism, (c) the acoustic mechanism and (d)
the QCD phase transition mechanism.
The delayed neutrino-driven explosion mechanism (a) is based on the fact that most of the
liberated gravitational binding energy (∼ 1053 erg) is still contained in the PNS in the form
of trapped neutrinos. The idea is then, that neutrinos streaming off the neutrinosphere
deposit some of their energy in the layers between the PNS and the stalled accretion shock.
This occurs predominantly by charged-current νe and νe captures on free nucleons

νe + n→ e− + p

νe + p→ e+ + n.
(1.5)

The resulting heating then provides sufficient thermal pressure to blow off the outer layers
of the star. This mechanism was considered theoretically by Colgate & White [39] in 1966
and was later discovered numerically by Wilson [18] in 1985. Because the heating process
has to operate for a few 100 ms, in order to initiate the explosion, it was termed ”delayed”
explosion mechanism. The delayed neutrino-driven mechanism is the so far best studied
mechanism.
However, in highly sophisticated spherically symmetric models this mechanism fails in
general (see [100, 72] and references therein), and succeeds only for very peculiar progenitor
stars [77].
As a matter of fact, recent multi-dimensional simulations indicate that fluid instabilities
between the PNS and the stalled or standing accretion shock enhance the absorption of
neutrino energy. These fluid instabilities include convection [67, 73] and the so-called
standing-accretion shock instability (SASI, see e.g. [107, 28, 70, 119, 139]).
However, even though there is consensus among the research groups concerning the neces-
sity and functionality of fluid instabilities, the recent outcomes of 2D simulations performed
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by different groups, applying similar input physics, but different numerical methods, do
not yet converge. Models from the Florida/Oak Ridge group predict explosions ∼ 300 ms
after bounce [111] and models from the Garching group predict weak explosions ∼ 600 ms
after bounce [107]. It appears that more detailed investigations need to be performed in
this respect, with a possible extension to a 3D study of the phenomenon.
The magneto-rotational mechanism (b) triggers the explosion by extracting rotational en-
ergy with the help of magnetic fields. While first numerical simulations of this mechanism
have been performed 40 years ago [87], the mechanism has not attracted much attention
mainly because there was no observational support for the high magnetic field strength
required to trigger the explosion. Since the discovery of magnetars [44] the situation has
changed and magnetic fields might play an important role in CCSN, at least for a sub-
set. The jet-like explosion character associated with this mechanism may be linked to the
observational evidence of aspherical CCSN [168]. The explosion may reach hypernova en-
ergies (∼ 1052 erg) [30] and the mechanism may also be relevant in the context of long-soft
γ-ray bursts [175]. The jets may rise on a short time scale neutron rich material from the
vicinity of the PNS to the outer layers and produce favourable conditions for r-process
nucleosynthesis [7].
The acoustic mechanism (c) proposed by Burrows and collaborators [33, 32] draws its
energy from large-amplitude PNS pulsations excited by convection and accretion down
streams from the standing accretion shock instability (SASI). The PNS pulsation continu-
ously lose energy by the emission of strong sound waves which dissipate and deposit their
energy near the shock, driving the explosion. While this mechanism triggers the explo-
sion at relatively late times (t & 1 s after bounce), it appears to be sufficiently robust to
explode most massive progenitor stars. However, this mechanism has so far not been con-
firmed by other research groups, and there exist even strong analytical arguments against
its existence [170].
The phase transition explosion mechanism (d) involves a so-called QCD phase transition
of the PNS from baryonic matter to quark matter. This liberates further gravitational
binding energy which powers a secondary shock wave triggering a successful hydrodynamic
explosion, as reported in [55, 152] and recently also in [138, 48]. This mechanism works
in spherically symmetric simulations robustly for massive stars, but requires exotic input
physics.
Up to the present, there is no general agreement among theorists on a unique CCSN ex-
plosion mechanism. As a matter of fact, it may well be that a combination of mechanisms,
with varying relevance, are at work depending on the progenitor structure, rotation and
magnetic field. Sophisticated 3D models including general relativistic radiation magneto-
hydrodynamics as well as a micro-physical equation of state (describing stellar matter
at extreme conditions) and multi-dimensional progenitor models including consistently
rotation and magnetic fields may be necessary for the full understanding of the CCSN
problem.

1.3 Physical and mathematical model description of the prob-
lem

The theoretical understanding of the CCSN explosion mechanism is crucial for the under-
standing of the stellar life cycle. By their dramatic death, massive stars influence their
environment by feeding energy to the interstellar gas in star forming regions and enrich
the Galaxy with heavy elements. The explosion mechanism and remnant involves all four
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fundamental forces of nature at extreme conditions.
A CCSN is not accessible to any kind of manipulation. Therefore, no experiments can be
performed and a particular event cannot be repeated. However, given the size of the visible
Universe, many particular events can be observed. Hence, theoretical understanding of
CCSN has to rely on the information one can receive via electromagnetic radiation, particle
radiation (e.g. from neutrinos) and eventually gravitational waves (GWs).
A theoretical understanding of CCSN is, however, not straightforward for at least two
reasons. First, the CCSN explosion mechanism is occurring deep inside the massive star
and only secondary observables including the asymptotic explosion energy, ejecta mor-
phology, nucleosynthesis yields, remnant mass and proper motion, and pulsar spin and
magnetic field strength are accessible by traditional means. On the other hand, neutrinos
and gravitational waves (GWs) are considered as primary observables that may give ac-
cess to the innermost details of the explosion mechanism. Both neutrinos and GWs give
pristine information on the dynamics from the lieu where the explosion is initiated, and
are hardly affected by intervening material on their way to observers on Earth. Given
the difficulty in measuring both neutrino and GW signals, observers need to know what
signal has to be expected, which implies already a theoretical understanding of the event.
Second, the explosion happens at extreme conditions which are experimentally inaccess-
ible in the laboratory, implying that one has to rely on extrapolation of known physics
into regimes which are far beyond our well-tested laboratory knowledge.
Now, how to proceed under the difficult circumstances just described? One can construct
a theoretical model incorporating all the physical processes thought to be of importance
in CCSNe. Most theoretical models then involve a series of degrees of freedom in the
form of model parameters. The model can then be evolved by computational means
and comparing the model prediction to observations allows one then to constrain the
model parameters. Furthermore, the model can be improved to achieve better and better
agreement with observation. Hence, the model then links known or extrapolated physics
to astronomical observations. Model design, prediction, comparison to observation and
model improvement is therefore an iterative process. As in any iterative process, the
time it takes to evaluate a model with a given parameter set and the associated model
prediction is a crucial quantity. Indeed, the insight one can get in a predetermined time
from a model depends highly on the cost of one model evaluation. Therefore, a careful
choice of the included physical processes and the the complexity of their mathematical
description together with the evaluation procedure is crucial. The evaluation procedure
generally involves the usage of massively parallel computing architectures.
Computational models of CCSN have a long history starting with [39, 109]. Numerical
investigations in one-, two- and three-dimensions have shown that (1) neutrino transport,
(2) fluid instabilities, (3) rotation and (4) magnetic fields, together with an adequate
treatment of (5) the sub- and super-nuclear density stellar matter equation of state, (6)
neutrino interactions and (7) gravity are important [113]. A viable model of CCSN should
incorporate these ingredients, at least to some extent. Ingredients (2)-(4) require by
definition a multi-dimensional treatment (if not included by phenomenological means).
Our aim in this work is to construct a three-dimensional model of magneto-rotational
CCSN including the most important physical ingredients according to earlier models in
the literature. The fundament of our CCSN model was laid in [99] by M. Liebendörfer
and we shall describe it in the following together with some extensions.
Under the prevailing conditions in CCSNe, stellar matter can be described by a charge
neutral ideal magnetised fluid [81]. Furthermore, we base our model on a non-relativistic
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framework. The governing equations are then given by the equations of ideal magneto-
hydrodynamics (MHD), where all dissipative processes are neglected, i.e. there is no
viscosity and the conductivity is assumed to be infinite. The equations of ideal MHD read
[83]

∂ρ

∂t
+∇ · (ρv) = 0 (1.6)

∂ρv

∂t
+∇ · (vρv − bb) +∇Ptot = −ρ∇φ+ ˙(ρv)ν (1.7)

∂E

∂t
+∇ · [(E + Ptot)v − b (v · b)] = −ρv · ∇φ+ ˙(ρe)ν (1.8)

∂b

∂t
−∇× (v × b) = 0, (1.9)

expressing the conservation of mass, momentum, total energy and magnetic flux. Here ρ
is the mass density, v the velocity and E = ρe+ ρ

2v
2 + b2

2 the total energy density, being
the sum of internal, kinetic and magnetic energy density. The magnetic field is given by
B =

√
4πb and Ptot = p+ b2

2 is the total pressure, being the sum of the fluid pressure and
the magnetic pressure. The source terms on the right hand side come from gravity and
the neutrino transport and will be discussed below.
The system of ideal MHD equations must be closed by an equation of state (EoS) describing
the thermodynamic properties of stellar matter. The high temperatures (T & 8× 109 K)
prevailing in the iron core guarantee that matter is in nuclear statistical equilibrium (NSE),
i.e. the nuclear strong interaction is in equilibrium, and the thermodynamic state and the
nuclear composition depends solely on temperature, density and electron fraction. The
electron fraction has also to be evolved and therefore we need to supplement an advection
equation to the model

∂ρYe
∂t

+∇ · (ρYev) = ˙(ρYe), (1.10)

where the source term depends on the inclusion of the neutrino transport. The EoS must
be able to describe the stiffening of nuclear matter around nuclear matter density and
this under yet experimentally unreachable conditions. The computation of EoSs from
microphysical finite-temperature nuclear models is involved and a research field on its
own. EoS evaluations are too expensive on-the-fly during simulations, therefore we rely
on tabulated values. We have included the EoS of Lattimer and Swesty [86] and several
EoSs from Hempel et al. [66].
Neutrinos dominate the energetics of the system as they represent ∼ 99% of the liberated
gravitational energy. Furthermore, neutrinos also influence the neutron to proton ratio
of the in the explosion ejected matter which then crucially affects the production of the
elements. Hence, the treatment of neutrinos is a corner stone of a CCSN model. Neutrinos
propagate through the PNS and interact with the stellar fluid. Deep inside the PNS (at
high densities), the neutrinos and the fluid are tightly coupled (almost in equilibrium).
Their mean free path is much smaller than the size of the PNS and the neutrinos evolve
in an advective-diffuse manner. On the other hand, at lower densities, the neutrino mean
free path is much larger than the size of the core and neutrinos leave the star without any
interaction. They are in a free streaming regime.
In an intermediate semi-transparent regime, the neutrinos are not transported by diffusion-
advection, nor are they free streaming. In this regime, the neutrinos should ideally be de-
scribed with the full kinetic theory given by the Boltzmann transport equation. Moreover,
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the neutrino interactions and their associated cross sections are energy and flavour de-
pendent. The Boltzmann transport equation describes the time evolution of the neutrino
distribution f(t,x, Eν ,p/p), which, at each instant of time and each location gives the
neutrino distribution in direction p/p and energy Eν . Hence the Boltzmann equation is a
phase-space equation, which in three spatial dimensions results in a six-dimensional time
dependent problem.
Due to the complexity of the problem, the full Boltzmann transport equation is yet only
solved in spherical symmetry (where it is already a 3D problem!) [72, 97, 113]. In general,
multi-dimensional CCSN models must therefore rely on approximations of the neutrino
physics. For our model, we have opted for a spectral neutrino leakage scheme developed
by A. Perego in spherical symmetry. A neutrino leakage scheme provides an efficient
and effective estimate of the influence of neutrino cooling. So far we have included in
our model only electron neutrinos and anti-neutrinos. The scheme splits the advective-
diffuse regime into an advective and a diffuse part. The neutrinos are considered as
a separate component of the fluid an advected with it. This is the so-called trapped
neutrino component. Furthermore, mechanical work acting on the neutrino fluid must
change the neutrino mean specific energy according to the first law of thermodynamics.
One then introduces a neutrino fraction Yν and a neutrino specific mean energy Zν , which
are described by the following equations [102]:

∂ρYν
∂t

+∇ · (ρYνv) = ˙(ρYν) (1.11)

∂(ρZν)3/4

∂t
+∇ ·

(
(ρZν)3/4v

)
= ˙(ρZν)3/4. (1.12)

The source term of (1.10), (1.11) and (1.12) represent the local source or sink of trapped
neutrinos and their influence on the electron fraction. Diffusion is then handled in a
phenomenological manner by estimates of the diffusion timescale. In the free streaming
regime, any created neutrino simply escapes and Yν ∼ Zν ∼ 0. In the intermediate semi-
transparent regime, an effective rate of transport is computed by interpolation between
the two extreme limits of diffusion and free streaming. The leakage scheme also provides
the momentum and energy source terms ˙(ρvν), ˙(ρeν) in the momentum (1.7) and energy
(1.8) equations, respectively.
Gravity plays a key role in CCSN. The gravitational potential φ is determined by the
Poisson equation

∇2φ = 4πGρ, (1.13)

where G is the gravitational constant. The compactness of the PNS is sufficient to make
general relativistic effects important. Therefore we include in our model an effective
description of general relativistic effects which mimic the deeper gravitational well of the
relativistic case [106].
The bipolar jets arising in the magneto-rotational explosion mechanism carry and eject
a significant amount of neutron rich matter. These jets represent a promising site for
the rapid neutron capture process (r-process) [7, 110, 120]. Because the needed nuclear
network with thousands of isotopes is yet beyond current computational capabilities in
multidimensional simulations, we include a Lagrangian component in the form of tracer
particles to our model. The trajectories (in densities, temperature and electron fraction)
are then analysed in a post-processing step [174].
The above outlined model and its mathematical description in the form of non-linear
partial differential equations (PDEs) can only be evaluated by numerical means. First one
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has to set the domain over which one has to solve the equations. Figure 1.3 shows our
computational setup. The innermost regions of the massive star, where the explosion is
supposed to set in, is covered by a 3D domain of size 6003 km. In the 3D domain, the
MHD equations are evolved with the FISH code together with the spectral leakage scheme.
Because in the magneto-rotational CCSN context rotation is inducing an approximate
symmetry of the density field2 around the rotational axis, we solve the Poisson equation
in axisymmetry. This greatly reduces the computational load since no (global) elliptic
problem has to be solved over the full 3D domain. The 3D domain is embedded in a larger
spherical symmetric domain encompassing the iron core and parts of the silicon shell. The
spherically symmetric domain is evolved by the time-implicit hydrodynamics code AGILE
[101].
As in any model, one has to commit some trade-offs. The major weakness of our model
relies in the disregard of neutrino heating effects. However, the to date most microphys-
ically complete study of magneto-rotational CCSN in 2D axisymmetry [30], employing a
multi-group flux limited diffusion (MGFLD), has shown that neutrino heating participates
only to 15-25% to the total explosion energy. Therefore, we think that it is reasonable to
neglect neutrino heating effects, but instead relax the geometrical constraint of axisym-
metry. In future studies, we will consider to complete our model with a multi-dimensional
neutrino transport approximation: the isotropic diffusion source approximation (IDSA)
developed in the Basel supernova group [102].
In the following chapter 2, we will describe in detail the used numerical methods and their
efficient parallel implementation.

2And of course also other fields (pressure, Ye, ...).
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Figure 1.3: Schematic description of the computational domain: the 3D domain, en-
compassing the central 6003 km of the massive star, is embedded in a larger spherically
symmetric domain, encompassing the iron core and parts of the silicon shell.
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Chapter 2

Numerical methods &
implementations

2.1 Numerical solution of the ideal MHD equations: the
FISH code

In this section we describe in detail the 3D ideal magnetohydrodynamics (MHD) code
FISH. A condensed form of this section can also be found in Käppeli et al. 2011 [75].
FISH (Fast and Simple Ideal magneto-Hydrodynamics) is based on the publicly available
serial version of a cosmological MHD code [126]. In this algorithm, the MHD equations
are solved by rigorous application of the operator splitting technique. First, the MHD
equations are split into a fluid and a magnetic part. The fluid part is then handled by
a conservative finite volume scheme for an extended Euler system. The magnetic part,
modelled by the magnetic induction equation, is handled by a magnetic flux conserving
constrained transport method also thereby guaranteeing the divergence (of the magnetic
field) constraint.
Compared to [126], our algorithm features the following modifications and innovations.
The fluid evolution is modified to take into account local (to each cell) characteristic
speed information instead of only global. This improves the solution accuracy significantly
especially in cases where the characteristic speeds vary strongly in the computational
domain (as is the case e.g. in core-collapse simulations). Further, the magnetic field
evolution is modified for higher numerical stability, especially at high resolution.

2.1.1 The equations of ideal MHD

The equations of ideal MHD describe the movement of a compressible conducting fluid
subject to magnetic fields. In ideal MHD all dissipative processes are neglected, meaning
that the fluid possesses no viscosity and its conductivity is assumed to be infinite. The
ideal MHD equations then read [83]

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

∂ρv

∂t
+∇ · (vρv − bb) +∇Ptot = −ρ∇φ (2.2)

∂E

∂t
+∇ · [(E + Ptot)v − b (v · b)] = −ρv · ∇φ (2.3)

∂b

∂t
−∇× (v × b) = 0, (2.4)
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expressing the conservation of mass, momentum, energy and magnetic flux, respectively.
Here ρ is the mass density, v the velocity and E = ρe+ ρ

2v
2 + b2

2 the total energy density
being, the sum of internal, kinetic and magnetic energy densities. The magnetic field is
given by B =

√
4πb and Ptot = p + b2

2 is the total pressure, being the sum of the gas
pressure and the magnetic pressure. For the equation of state (EoS) we assume an ideal
gas law

p = ρe(γ − 1), (2.5)

where γ is the ratio of specific heats. General EOSs can be included, which is especially
important for the simulation of CCSN where the EoS has to describe stellar matter in
the very broad range of conditions prevailing during this event. The right hand side of
the momentum and energy conservation equations detail the effect of gravitational forces
onto the conserved variables. We shall assume here the gravitational potential as given
and fixed in time. The computation of the gravitational potential is discussed in section
2.3.
The MHD equations (2.1-2.4) conserve the divergence of the magnetic field so that an
initial condition

∇ · b = 0 (2.6)

remains true, consistent with the physical fact that magnetic monopoles have never been
observed.

2.1.2 Numerical solution of the MHD equations

The MHD equation form a set of non-linear hyperbolic equations, which can in general
only be solved by numerical means. Before we start describing the individual solution
operators, we first introduce our notation. We discretise time into discrete steps ∆tn and
space into finite volumes or cells Vi,j,k where n labels the different time levels and the
triple (i, j, k) denotes a particular cell. The vector u = (ρ, ρvx, ρvy, ρvz, E)T denotes the
conserved fluid variables. The solution vector uni,j,k contains the spatially averaged values
of the conserved variables at time t in cell Vi,j,k

ui,j,k =
1

Vi,j,k

∫
Vi,j,k

u (x, t) dxdydz, (2.7)

where the cell volume Vi,j,k = ∆x∆y∆z is given by the assumed constant cell dimensions
∆x = xi+1/2 − xi−1/2, ∆y = yj+1/2 − yj−1/2, ∆z = zk+1/2 − zk−1/2. Half-integer indices
denote the intercell boundary. Further we define the cell face averaged magnetic field
components at time t by

(bx)i+1/2,j,k =
1

Si+1/2,j,k

∫
Si+1/2,j,k

bx (x, t) dydz (2.8)

(by)i,j+1/2,k =
1

Si,j+1/2,k

∫
Si,j+1/2,k

by (x, t) dxdz (2.9)

(bz)i,j,k+1/2 =
1

Si,j,k+1/2

∫
Si,j,k+1/2

bz (x, t) dxdy (2.10)

where Si+1/2,j,k = ∆y∆z denotes the cell face of cell Vi,j,k located at xi+1/2 and spanned
by the zone increments ∆y and ∆z.
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In an operator-split scheme the solution algorithm to the ideal MHD equations can be
summarized as

un+2 = LforwardLbackwardu
n, (2.11)

where
Lforward = Lx (∆t)Byz

x (∆t)Ly (∆t)Bxz
y (∆t)Lz (∆t)Bxy

z (∆t)

Lbackward = Lz (∆t)Bxy
z (∆t)Ly (∆t)Bxz

y (∆t)Lx (∆t)Byz
x (∆t)

(2.12)

are the forward and backward operator for one time step. The operators Lx,y,z evolve the
fluid and account for the source terms, while the B operators evolve the magnetic field.
If the individual operators are second order accurate, then the application of the forward
followed by the backward operator is second order accurate in time [149]. In the following
subsections we shall detail the individual operators.
The numerical solution algorithm to the MHD equations is explicit. Hence we are restricted
by the Courant, Friedrich and Lewy [41] (CFL) condition. Therefore we impose the
following time step

∆tn = k ·min
i,j,k

(
∆x
Cn,xi,j,k

,
∆y
Cn,yi,j,k

,
∆z
Cn,zi,j,k

)
, (2.13)

where
Cn,di,j,k = max

(
vnd,i,j,k + cnFi,j,k

)
(2.14)

is the maximum speed at which information can travel in the whole computational domain
in direction d = x, y, z, being the sum of the velocity component in d and the speed of the
fast magnetosonic waves cF . We typically set the CFL number k to 0.75.

2.1.3 Solving the fluid MHD equations

In this subsection we describe the evolution of the fluid variables u in the x-direction. We
neglect the source terms from gravity, which are treated in 2.1.5. During this process the
magnetic field is held constant and interpolated to cell centers. Then mass, momentum
and energy conservation in x-direction can be written as

∂u

∂t
+
∂F

∂x
= 0, (2.15)

where

F =


ρvx

ρv2
x + Ptot − b2x
ρvxvy − bxby
ρvxvz − bxbz

(E + Ptot)vx − bxb · v

 (2.16)

is the flux vector.
Integrating eq. (2.15) over a cell Vi,j,k gives

∂ui,j,k
∂t

+
1

∆x
(
F i+1/2,j,k − F i−1/2,j,k

)
= 0, (2.17)

where the definition of the cell averaged values (2.7) has been substituted and Gauss’
theorem has been used. The numerical flux F i+1/2,j,k represents an average flux of the
conserved quantities through the surface Si+1/2,j,k

F i+1/2,j,k =
1

Si+1/2,j,k

∫
Si+1/2,j,k

F (x, t) dydz (2.18)

17



at given time t. Eq. (2.17) is a semi-discrete conservative scheme for the conservation law
(2.15). In the following we focus on obtaining the numerical fluxes in a stable and accurate
manner. Time integration of the ordinary differential equation (2.17) will be addressed
later in this subsection.
Many schemes for the stable and accurate computation of the numerical fluxes have been
devised in the literature. Godunov type methods achieve this by solving either exact
or approximate Riemann problems at cell interfaces [56, 85, 159]. Through solving the
Riemann problem, these methods ensure an upwind discretisation of the conservation
law and hence achieve causal consistency. Due to the difficulty of solving the Riemann
problem in the ideal MHD case, the algorithm of [126] uses the relaxation scheme of [74].
For detailed information on these type of methods we refer to [74, 95] and the references
therein.
The idea of the relaxation scheme is to replace a system like (2.15) by a larger system

∂u

∂t
+
∂w

∂x
= 0

∂w

∂t
+D2∂u

∂x
=

1
ε

(F (u)−w) ,
(2.19)

called the relaxation system. Here, the relaxation rate ε is a small positive parameter and
D2 is a positive definite matrix. For small relaxation rates, system (2.19) rapidly relaxes
to the local equilibrium defined by w = F (u). A necessary condition for solutions of
the relaxation system (2.19) to converge in the small ε limit to solutions of the original
system (2.15) is that the characteristic speeds of the hyperbolic part of (2.19) are at least
as large or larger than the characteristic speeds in system (2.15). This is the so-called
subcharacteristic condition.
As [74] we choose D = d ·I to be a diagonal matrix. In order to fulfill the subcharacteristic
condition the diagonal element d or the so-called freezing speed is chosen to be

d = |vx|+ cF , (2.20)

where cF is the speed of the fast magnetosonic waves, i.e. the fastest wave propagation
speed supported by the equations of ideal MHD.
The key point in the relaxation system is that in the local equilibrium limit it has a very
simple characteristic structure

∂

∂t
(w +Du) +D

∂

∂x
(w +Du) = 0

∂

∂t
(w −Du)−D ∂

∂x
(w −Du) = 0,

(2.21)

where w ±Du are then the characteristic variables. They travel with the “frozen” char-
acteristic speeds ±D respectively.
System (2.21) can be easily recast into an equation for u and w. However, we are prac-
tically only interested in that for u

∂u

∂t
+
∂F+

∂x
+
∂F−

∂x
= 0, (2.22)

where F+ = (w + Du)/2 denotes the right travelling waves and F− = (w −Du)/2 the
left travelling waves in the x-direction. In the following we shall drop the indices of the
other directions. Since this defines an upwind direction for each wave component, a first
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order upwind scheme results from choosing F+
i+1/2 = F+

i and F−i+1/2 = F−i+1. In this case,
the total flux at the cell interfaces is readily evaluated to become

F i+1/2 = F+
i+1/2 + F−i+1/2 =

1
2

(F i + F i+1)− 1
2
D (ui+1 − ui) , (2.23)

where F i = wi = F (ui). For D we use the freezing speed

d = max (di, di+1) (2.24)

in order to satisfy the subcharacteristic condition. We note that the local choice eq. (2.24)
for the freezing speed differs from the global choice in [126]. Further, eq. (2.24) for the
freezing speed makes the numerical flux equivalent to the Rusanov flux and the local
Lax-Friedrichs flux. As pointed out by [95], a wide variety of numerical flux assignments
can be derived from the relaxation system by simply letting the matrix D having a more
complicated form than diagonal.
So far, the numerical flux (2.23) is only first order accurate. First order methods permit
the automatic capturing of flow discontinuities but are inaccurate in smooth flow regions
due to the large amount of numerical dissipation inherent to them. As a matter of fact,
the large numerical dissipation present in first order methods is not a deficit of theses
methods but it is the reason why they are stable at flow discontinuities in the first place.
However, in many applications both smooth and discontinuous flow features are present
and therefore the use of higher order methods is desirable. We opt for a second order
accurate total variation diminishing (TVD) scheme due to the low computational cost
and the robustness of these type of schemes.
Let us first consider the right traveling waves F+. Given the ith cell, a first order accurate
flux at the cell boundary xi+1/2 is then given by F+

i+1/2 = F+
i = F+(ui). This corresponds

to a piece-wise constant approximation of the flux function F+(x, t) over the staggered
cell [xi, xi+1]. For second order accuracy we seek a piece-wise linear approximation

F+(x, t) ≈ F+
i +

∂F+

∂x

∣∣∣∣
i

(x− xi), (2.25)

where the derivative may be approximated from first order flux differences. Two choices
exist: either left or right differences

∂F+

∂x

∣∣∣∣
i

=


∆F+,L

i =
(
F+
i − F

+
i−1

)
/∆x

∆F+,R
i =

(
F+
i+1 − F

+
i

)
/∆x

. (2.26)

A flux limiter φ is used to choose between the left ∆F+,L
i and right ∆F+,R

i differences

∆F+
i = φ

(
∆F+,L

i ,∆F+,R
i

)
. (2.27)

This limiter enforces a nonlinear stability constraint commonly known as Total Variation
Diminishing (TVD) to ensure the stability of the scheme in the vicinity of discontinuities.
The limiter reduces spurious oscillations associated with higher accuracy than first order
to get a high resolution method. See for example [85, 90, 94, 159] and references therein.
We have implemented the minmod limiter

φ(a, b) = minmod(a, b) =
1
2

(sign(a) + sign(b)) min(|a|, |b|), (2.28)
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which chooses the smallest absolute difference if both arguments have the same sign, and
the van Leer limiter

φ(a, b) =
1
2

(sign(a) + sign(b))
2ab
a+ b

. (2.29)

Other choices are possible for the scheme to be TVD [74]. Note that when the left and
right flux differences have different signs, i.e. at extrema and hence also at shocks, no
correction is added in (2.25) and the scheme switches to first order accuracy. For core-
collapse simulations we use the van Leer limiter in the subsonic flow regions and the
minmod limiter in supersonic regions.
In a similar way we may construct a piece-wise linear approximation for the left going
fluxes F− in the staggered cell [xi, xi+1] starting at xi+1

F−(x, t) ≈ F−i+1 +
∂F−

∂x

∣∣∣∣
i+1

(x− xi+1) (2.30)

with either the left or right differences

∂F−

∂x

∣∣∣∣
i+1

=


∆F−,Li+1 =

(
F−i+1 − F

−
i

)
/∆x

∆F−,Ri+1 =
(
F−i+2 − F

−
i+1

)
/∆x

. (2.31)

Again the flux limiter φ is used to discriminate between the left or right differences

∆F−i+1 = φ
(

∆F−,Li+1 ,∆F
−,R
i+1

)
. (2.32)

The total second order accurate numerical flux is then simply

F i+1/2 = F+
i + F−i+1 +

∆x
2
(
∆F+

i −∆F−i+1

)
. (2.33)

For the time integration of eq. (2.17) we use a two step predictor-corrector method.
As predictor we compute a half time step with the first order fluxes (2.23). We regard
the freezing speed in the predictor step as a parameter varying between d = 0 and d =
max (di, di+1) to regulate the numerical dissipation. Hence we vary the predictor between
a first order scheme and a second order centered difference scheme depending on the
application.
In the corrector step we then use the calculated values from the predictor step un+1/2 to
compute the second order TVD fluxes eq. (2.33):

un+1
i = uni −

∆t
∆x

(
F
n+1/2
i+1/2 − F

n+1/2
i−1/2

)
. (2.34)

Hence we obtain a second order update in time and space of the fluid variables. This ends
the description of the Lx solution operator. The other spatial directions are treated in the
same way.

2.1.4 Divergence preserving advection of the magnetic field

In this subsection we describe the divergence preserving advection of the magnetic field
in x-direction Byz

x . The operators for the update in y- and z-directions Bxz
y and Bxy

z
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are handled analogously. During this operator split update, all quantities other than the
magnetic field are held constant. The update is then prescribed by the induction equation

∂b

∂t
−∇× (v × b) = 0. (2.35)

Straightforward discretisation of (2.35) can only guarantee that ∇·b = 0 is of the order of
the truncation error. However, at flow discontinuities, the discrete divergence may become
large. As a consequence, large errors in the simulation can accumulate [22]. A variety of
methods have been proposed to surmount this difficulty, see e.g. [46, 103, 136, 160, 161].
The algorithm of Pen et al. [126], and hence our code, uses the constrained transport
method [46].
The key idea of the constrained transport method is to write the induction equation in
integral form. Integrating eq. (2.35), for example, over the surface Si+1/2,j,k of cell Vi,j,k,
substituting definition (2.8) and using Stoke’s theorem yields

∂

∂t
(bx)i+1/2,j,k =

∫
∂Si+1/2,j,k

v × b · dx, (2.36)

where ∂Si+1/2,j,k denotes the contour of Si+1/2,j,k, i.e. the edges of the cell-face at i+ 1/2.
The integral form then naturally suggests one to choose the normal projections of the
magnetic field at faces of the cell Vi,j,k and the normal projections of the electric field
E = v × b at the cell edges as primary variables. This positioning leads directly to
the jump conditions of electric and magnetic fields [71] and therefore mimics Maxwell’s
equations at the discrete level (see figure 2.1). The discrete form of the ∇·b = 0 constraint
is then defined as

(∇ · b)ni,j,k =
(bx)ni+1/2,j,k − (bx)ni−1/2,j,k

∆x
+

(by)
n
i,j+1/2,k − (by)

n
i,j−1/2,k

∆y
+

(bz)
n
i,j,k+1/2 − (bz)

n
i,j,k−1/2

∆z
.

(2.37)

A detailed inspection of the characteristic structure of the induction equation reveals the
presence of two transport modes and one constraint mode. As pointed out by [126],
this allows one to separate the evolution of the induction equation into advection and
constraint steps. In x-direction, for example, this means that the y and z components of
the magnetic field need to be updated as

∂

∂t
(by)i,j+1/2,k = − 1

∆x

[
(vxby)i+1/2,j+1/2,k − (vxby)i−1/2,j+1/2,k

]
∂

∂t
(bz)i,j,k+1/2 = +

1
∆x

[
(vxbz)i+1/2,j,k+1/2 − (vxbz)i−1/2,j,k+1/2

]
.

(2.38)

However, the x component of the magnetic field has to be updated as

∂

∂t
(bx)i+1/2,j,k = +

1
∆y

[
(vxby)i+1/2,j+1/2,k − (vxby)i+1/2,j−1/2,k

]
− 1

∆z

[
(vxbz)i+1/2,j,k+1/2 − (vxbz)i+1/2,j,k−1/2

]
.

(2.39)

The fluxes in eq. (2.38) need to be upwinded for stability, since they represent the two
advection modes. To maintain ∇·b = 0 within machine precision, the same fluxes used to
update by and bz in eq. (2.38) need to be used in eq. (2.39) for the bx update. A simple
calculation then clearly shows that ∂/∂t(∇ · b) = 0.
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Figure 2.1: Schematic view of the positioning of the electromagnetic quantities in a
computational cell. In the constrained transport scheme the total flux piercing the surface
of a cell is always zero, achieved by balancing the electromotive force contributions taken
around the cell edges. Arrows indicate the direction of the closed contour integral.

To update (by)i,j+1/2,k we then proceed as follows. A first order accurate upwinded flux
is then given by

(vxby)i+1/2,j+1/2,k =


(vx)i+1/2,j+1/2,k (by)i,j+1/2,k , (vx)i+1/2,j+1/2,k > 0

(vx)i+1/2,j+1/2,k (by)i+1,j+1/2,k , (vx)i+1/2,j+1/2,k ≤ 0,
(2.40)

where the velocity has to to be interpolated to the cell edge (i+ 1/2, j + 1/2, k). We use
a simple bi-linear interpolation as

(vx)i+1/2,j+1/2,k =
1
4

[
(vx)i,j,k + (vx)i,j+1,k + (vx)i+1,j,k + (vx)i+1,j+1,k

]
, (2.41)

which is second order accurate.
To obtain fully spatial second order accurate fluxes, we perform a piece-wise linear mag-
netic flux conserving reconstruction at each cell face Si,j+1/2,k

by(x, t) ≈ (by)i,j+1/2,k +
∂by
∂x

∣∣∣∣
i,j+1/2,k

(x− xi), (2.42)

where the derivative may be approximated by limited first order differences to obtain a
non-oscillatory interpolation

∂by
∂x

∣∣∣∣
i,j+1/2,k

= φ

(
(by)i+1,j+1/2,k − (by)i,j+1/2,k

∆x
,
(by)i,j+1/2,k − (by)i−1,j+1/2,k

∆x

)
. (2.43)
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Here φ is a flux limiter and we have implemented the same limiters as for the fluid update,
i.e. minmod and Van Leer. At each face interface, i.e. cell edge, we then get two boundary
extrapolated values

(by)
L
i+1/2,j+1/2,k = (by)i ,j+1/2,k +

∂by
∂x

∣∣∣∣
i ,j+1/2,k

∆x
2

(by)
R
i+1/2,j+1/2,k = (by)i+1,j+1/2,k − ∂by

∂x

∣∣∣∣
i+1,j+1/2,k

∆x
2
,

(2.44)

where the slopes are limited. The spatial second order accurate flux is then simply

(vxby)i+1/2,j+1/2,k =


(vx)i+1/2,j+1/2,k (by)

L
i+1/2,j+1/2,k , (vx)i+1/2,j+1/2,k > 0

(vx)i+1/2,j+1/2,k (by)
R
i+1/2,j+1/2,k , (vx)i+1/2,j+1/2,k ≤ 0

.

(2.45)
Temporal second order accuracy is achieved as for the fluid update in a predictor-corrector
manner. This ends the description of the (by)i,j+1/2,k component of the magnetic field.
The update of the (bz)i,j,k+1/2 follows the same strategy.
We note that this magnetic field update is different from [126]. Empirically, we have
found this update to be more robust especially at high resolutions. Similar schemes for
the induction equation have been devised in e.g. [156], also in a constrained transport
framework, and e.g. [160] and [52] where the magnetic field is defined at cell centers.

2.1.5 Gravitational source terms integration

Since the fluid evolution in FISH uses dimensional splitting, we also split the gravitational
source term dimensionally as

∂u

∂t
+
∂F

∂x
= Sx, (2.46)

where u and F are as defined above. The source term in x-direction is given by

Sx =


0
ρ∂φ∂x

0
0

ρvx
∂φ
∂x

 (2.47)

and in analogous manner for the y- and z-direction. In the following we shall regard the
gravitational source term as given and constant in time. For the time integration of eq.
(2.46) one then has two possibilities, either an operator split or unsplit method.
In the fully operator split version, the evolution of the conserved variables is divided into
a homogeneous system (Sx = 0) and the ordinary differential equation

du
dt

= Sx. (2.48)

Solving the homogeneous part has been discussed in the previous section. In operator
notation, we then solve equation (2.46) as

un+1 = Gx

(
∆t
2

)
Lx (∆t)Gx

(
∆t
2

)
, (2.49)

23



which is second order accurate in time.
Therefore the update of the momentum field is then explicitly

Gx (∆t) : (ρv)n+1
i = (ρv)ni −∆t · ρni

(
∂φ

∂x

)n
i

, (2.50)

where we use centered differences for the gravitational potential(
∂φ

∂x

)n
i

=
φni+1 − φni−1

2∆x
. (2.51)

Note that the density field is left constant according to (2.46). The total energy is updated
similarly.
As a second possibility, we implemented an unsplit version. There we directly account for
gravity in the fluid predictor/corrector steps. The predictor step then is given by

u
n+1/2
i = uni −

∆t
2∆x

(
F n
i+1/2 − F

n
i−1/2

)
+

∆t
2
Sni (2.52)

where the F n
i+1/2 is the predictor numerical flux as described in previous section and

Sni =


0
ρni
0
0

(ρvx)ni

 φ
n
i+1 − φni−1

2∆x
. (2.53)

The corrector step is then

un+1
i = uni −

∆t
∆x

(
F
n+1/2
i+1/2 − F

n+1/2
i−1/2

)
+ ∆tSn+1/2

i , (2.54)

where the fluid fluxes are given in previous section and Sn+1/2
i is analogous to (2.53).

However, the density and the momentum are then given by the predictor step n+ 1/2.
Both implementations of the source terms are second order accurate in space and time.

2.1.6 Generalisation to non-uniform meshes

Finite volume methods can be constructed for non-uniform meshes in a straightforward
manner. The only quantities affected by the non-uniform mesh are the volumes of the
computational cells, their bounding surfaces as well as the cell edge lengths.
In the current version of the code, we have implemented irregular Cartesian meshes. Then
the mesh increments ∆xi = xi+1/2−xi−1/2, ∆yj = yj+1/2− yj−1/2, ∆zk = zk+1/2− zk−1/2

are no longer constant for the respective direction and equation (2.17) then changes to

∂ui,j,k
∂t

+
1

∆xi

(
F i+1/2,j,k − F i−1/2,j,k

)
= 0. (2.55)

For more general coordinates see for example [166].
The update formulas for irregular Cartesian meshes are then simply obtained by substi-
tuting ∆x by ∆xi adequately in all the previous sections. Analogously ∆y by ∆yj and
∆z by ∆zk. Furthermore, the velocity interpolation (2.41) in the magnetic field advection
needs also to conform with the non-equidistant spacing of the cell centers. Finally, the
CFL condition eq. (2.13) needs to be adapted,

∆tn = kmin

(
∆xi
Cn,xi,j,k

,
∆yj
Cn,yi,j,k

,
∆zk
Cn,zi,j,k

)
for all i, j, k. (2.56)
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2.1.7 Efficient parallel implementation

The implementation of the above-described simple algorithms uses the directional operator
splitting in a peculiar way: Instead of the traditional approach to hold the data locations
fixed in memory while sweeping updates in x-, y-, and z-directions, we rearrange the
data in the memory between the sweeps so that different directional sweeps always occur
along the contiguous direction of the data in memory [126]. This has the advantage that
the data load and store operations are very efficient for the large arrays that contain the
three-dimensional data and that only a single one-dimensional subroutine is required per
operator split physics ingredient to perform the corresponding data update in the sweep.
The disadvantage is the additional compute load to rearrange the data (of order 10% of
the total CPU-time) and the complications the rearranged data can cause if the code needs
to import or export oriented data between the sweeps (e.g. for debugging).
The most convenient operation to rearrange the data in the desired way is a rotation
with angle 2π/3 about the axis threading the origin and point (1, 1, 1). Each rotation
aligns another original coordinate axis with the current x-direction, without changing any
relative quantities between data points or the parity of the system. Three consequential
rotations lead back to the original state.
The repeated evaluation of the physics equations in the 1D routines implementing their
evolution prescription amounts to the dominant contribution to the total CPU-time. Be-
cause the sweeps are now always performed along contiguous memory, it is possible to
pipeline the physics quantities in the cache so that the access of the large data arrays is
reduced to a minimum. The first order predictor and second order corrector are evaluated
according to the following scheme:

loop over cells i in x-direction
u3 = u4
u4 = u5
u5 = u6
u6 = u(i)
if i<3 cycle
uu1 = uu2
uu2 = uu3
uu3 = uu4
uu4 = uu5
uu5 = u5 + rate(u4,u5,u6)*0.5*dt !first order
if i<7 cycle
u(i-3) = u3 + rate(uu1,uu2,uu3,uu4,uu5)*dt !second order

end loop over cells

Here, u(i) is the state vector with the conserved variables, which is only involved twice per
time step dt, once for data retrieval and once for data storage. The evolution prescription
of the physics equation is here abbreviated as rate. The whole operation has a stencil of
7 cells and will lead to 3 unassigned cells at each end of the array u. Hence, the buffer in
Fig. 2.2 has to be large enough to host the unassigned cells.
The computational domain is then partitioned via a cubical domain decomposition. For
the implementation of the parallel algorithm on distributed memory architectures we have
used the Message Passing Interface (MPI) [59]. For the MHD application here, commu-
nication between individual parallel processing units or CPUs (henceforth just processes)
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Figure 2.2: The interaction between sweeps and rotations is illustrated for a process A with
its four neighbouring processes B-E. The distributed data stored and treated in process
A carries a small permanent buffer area (light shading) around all of its interfaces. An
additional volatile buffer (dark shading) is added in the current x-direction. The x-sweep
is performed horizontally. For the y-sweep, the data and the permanent buffer are rotated
clockwise by 90 degrees such that the y-sweep can also be performed in the horizontal
direction.

is needed in two instances. The first is a collective communication, where all the processes
participate, for the time step computation (CFL condition). The second are point-to-point
communications between adjacent (in physical space) processes needed for the exchange
of buffer or ghost cells for the stencil operations. The latter represents the dominant part
of data communication (the time step computation needs only one float per process to be
sent/received).
The domain decomposition is chosen to minimise the amount of data that has to be
communicated. Suppose we want to distribute Nx × Ny × Nz cells evenly across Np =
px × py × pz CPUs. Here Nx,y,z and px,y,z is the number of cells and the number of
processors in the respective direction. We determine the decomposition triplet (px, py, pz)
by minimising the surface to volume ratio

Surface
Volume

=
2Nx
px

Ny

py
+ 2Nx

px

Nz
pz

+ 2Ny

py

Nz
pz

Nx
px

Ny

py

Nz
pz

. (2.57)

Figure 2.2 shows the computational domain of a process A after the cuboidal domain
decomposition. The data stored and updated in process A is surrounded by a small
permanent buffer zone (light shading). In the current x-direction, there is an additional
volatile buffer zone (dark shading). At the beginning of a time step, the overlapping data
from process B is communicated to process A in order to update the buffer designated by
’left’. The overlapping data communicated from process C fills the buffer designated by
’right’. During the communication, the horizontal sweep in x-direction can already start
to work on the interior zones that don’t require the communicated buffer zones. Once all
data has arrived, the x-sweep can be completed so that all zones in domain A and the
permanent buffer are up to date. Hence communication is overlapped with computation.
The details of the implementation are presented below.
In distributed memory parallelism, the bottleneck is generally the communication [59],
i.e. the exchange of buffer zones between neighbouring processes. Therefore one goal
is to overlap communication with computation. In the following we describe our imple-
mentation at the example of a sweep in x-direction. The other directions are handled
analogously. We shall forget for the moment the rotation of the data.
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The sweep in x-direction is performed by calling a routine sweep(hx,nx,ny,nz,u,update),
where nx = Nx/px, ny = Ny/py and nz = Nz/pz specify the dimension of the data array
u, belonging to a particular process, and where update points to a 1D routine that im-
plements the physical equations treated by the sweep. The hx is a handle, which holds
the addresses of adjacent processes (left and right) for the communication of buffer data.
In figure 2.2, these are communications B → A (left) and C → A (right). This handle is
defined during the initialisation of the MPI parallel environment. Furthermore, since dur-
ing the course of a parallel computation the location of parallel processes, i.e. the topology,
remains fixed, the exchange of buffer cells can easily be implemented using a persistent
communication request in the MPI at the beginning of a parallel computation. The com-
munication is then started by simply calling MPI STARTALL(requests) and checked for
completion by MPI WAITALL. Note that persistent communications are non-blocking, i.e.
the call to initiate communication returns immediately and the program can continue.
The communication should proceed in the background and one has then to check for its
completion.
In figure 2.3 a particular process with data array u, containing the solution at time tn

(light blue), together with a pseudo-code sweep routine is shown. There are also two
temporary data arrays u left and u right which are initially empty (white). The size of
the u left and u right arrays in x-direction is 3xb, where xb is the number of unassigned
cells at the boundary by the update routine (i.e. the stencil is 2xb + 1). The u left and
u right have the same size as u in y- and z-direction. The first step in the sweep routine
is then to copy data from the data array u of size 2 xb from the left and right end to the
u left and u right arrays (see figure 2.3). This data is available locally and therefore no
communication is needed.
The second step then consists of copying the data in u that has to be exchanged with
the left/right neighbouring processes into a sending buffer and of the initiation of the
non-blocking point-to-point communication via the handle hx (see figure 2.4). This is
implemented using permanent communications in the MPI.
Once the communication is initiated, the non-blocking MPI routine immediately returns
and we can proceed with the third step to update the data in array u with the routine
update. This step us illustrated in figure 2.5. When the update is finished, the data array
u contains the updated data at time tn+1 (green). At the left and right boundaries in
x-direction of u there are also xb zones of unassigned or corrupted data because of the
stencil of the update (red area in figure 2.5). Note that the left and right processes have
also initiated their sends of halo data for our particular process. This data is continuously
received during the update of u and stored into the left/right receive buffer.
The fourth step then consists of testing if the non-blocking communication has completed
during the update of the data array u (see figure 2.6). Ideally, the communication com-
pletes during the third step. This efficiently overlaps communication with computation.
In the fifth step, the received data from the neighbouring processes, available in a receive
buffer is copied into the u left and u right data arrays (see figure 2.7). Then the update
routine is applied to u left and u right with exactly the same calling arguments except
the size of the data arrays in x-direction. This results then in an updated central part of
u left and u right of size xb at time tn+1 (green) (see figure 2.8). At each side of u left
and u right, xb unassigned zones result (red) in the x-direction.
The sixth and last step then is to copy the updated data in u left and u right at time
tn+1 onto its respective location in the data array u. This is illustrated in figure 2.9. At
the end of the sweep routine, all the data in u is evolved to time tn+1. With the just
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Figure 2.3: Illustration of the sweep routine: Copy data from center to left and right data.

Figure 2.4: Illustration of the sweep routine: Copy of data into sending buffer and initi-
ation of communication with neighbouring processes.

outlined procedure, the cumbersome dimensional index gymnastics in the sweep and the
implementation of the physics in the routine update are very well disentangled. This ends
the description of the sweep routine.
Now we come back to the question of how the rotation of the data interferes with the
parallelisation. After having applied a cuboidal domain decomposition for distributed
memory architectures, one realises that it is not meaningful to rotate the whole domain
about the same rotation axis, because this would invoke excessive data communication
among the processes. It is sufficient to rotate all cuboids individually about the axis
defined in their local reference frame. These local rotations do not require any data
communication. For the sweep in y-direction, all local data in Figure 2.2 are rotated
clockwise by 90 degrees so that the y-direction becomes horizontal. This time it is the
data of process E that need to be communicated to the buffer zones designated by ’left’
and the data of process D that need to be communicated to the buffer zones designated by
’right’. Again, the sweep can start with the inner zones and update the border zones once
the communications have completed. The important point is to realise that the y-sweep is
now also applied in the horizontal direction so that the one-dimensional subroutines used
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Figure 2.5: Illustration of the sweep routine: Perform update of center.

Figure 2.6: Illustration of the sweep routine: Wait for communication to complete.

Figure 2.7: Illustration of the sweep routine: Copy received data.
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Figure 2.8: Illustration of the sweep routine: Apply update on left and right data.

Figure 2.9: Illustration of the sweep routine: Copy updated left and right data onto center.
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for the x-sweep can be used without any modifications. The y sweep is then initiated with
a call sweep(hy,ny,nz,nx,u’,update), where u’ is the rotated state of u. Here hy is
a handle, which holds the addresses of adjacent processes for the y sweep. Also update
points to the same 1D routine that implements the physical equations as in the x sweep.
In figure 2.2, this are communications E → A (left) and D → A (right). In the three-
dimensional code, the procedure is repeated a third time for the sweeps in z-direction.
Finally, all three sweeps are once more applied in reverse order to obtain second order
accuracy. This ordering of the sweeps requires four rotations between the six directional
sweeps.

Note that the horizontal sweep in x-direction is performed independently for all ny rows of
the data in process A. Hence it is straightforward to further parallelise the loop over the
rows iy = 1 . . . nl with OpenMP, where nl = ny + 2nbp is the dimension of A including the
permanent buffer of width nbp on either side. This one OpenMP parallel section suffices
to parallelise over 90% of the workload of the code for shared memory nodes. Hence, the
above-described approach naturally leads to a hybrid parallelisation, where MPI is used
to distribute the memory by the cuboidal domain decomposition across different nodes or
processors, while OpenMP is used to parallelise the loop over the rows along the current
sweep direction on the cores that are available to each node or processor.

To give a measure of the code’s performance in single-processor mode, we evaluated the
number of cells updated per wall clock second. The code was compiled with the INTEL
IFORT 10.1 compiler with -O2 optimisation level. The magnetic explosion test from sub-
section 2.1.8 was evolved with Nx = Ny = Nz = 128 on a single core of a dual-core AMD
Opteron 8220 2.8 GHz. The code made 39 double time steps in 726.6 s wall clock time
resulting in 225127 cell updates per second. We note that this measure is only qualitat-
ive and is highly dependent on e.g. the processor speed, compiler, compiler options and
number of cells.

We evaluated the strong scaling of FISH on the new ROSA system (Cray XT-5, nodes
with 2 quad-core AMD Opteron 2.4 GHz Shanghai processors, SeaStar 2.2 communica-
tions processor with 2 GBytes/s of injection bandwidth per node) at the Swiss National
Supercomputer Center (CSCS). The dominant limitation to the scaling of FISH is the
rather large stencil that emerges from the combination of the MHD and hydrodynamics
solver with a first and second order step in a single sweep. FISH scales without problem if
the problem size is increased with the increased number of processors. More interesting is
the case of a fixed size problem. Figure 2.10 shows the strong scaling for a problem with
6003 cells. As the number of processors is increased, the ratio of buffer zones to volume
zones increases as well. In this case it is the evaluation of the physics equations on the
buffer zones that limit the efficiency. However, Fig. 2.10 also shows that FISH scales very
nicely to of order 10000 processes in the hybrid MPI/OpenMP mode where MPI is used
between nodes and OpenMP within the node. This scaling can be achieved because the
parallelisation with OpenMP does not increase the number of buffer zones.

There is still room for further optimisations, which we have begun to explore. A version of
FISH with smaller stencils is under development. Furthermore, we have started to explore
more OpenMP shared memory parallelisation, including the threading of the MPI library.
In this approach, one OpenMP thread is dedicated to communicate the data with MPI
while the other threads are used to perform the updates [132]. However, this optimisations
are still in a preliminary phase.
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Figure 2.10: Strong scaling of the FISH code. The speedup, normalised to 216 processes, is
shown on the left hand side. The efficiency is displayed on the right hand side. The dashed
lines with data points taken at the circles refer to a parallelisation that uses only MPI. The
solid lines with data points taken at the crosses refer to a hybrid parallelisation with MPI
between nodes and OpenMP within nodes. The problem size was kept constant at 6003

cells. The deviation from perfect scaling is rather due to the increase of work on buffer
zones with respect to the work on volume zones than a bottleneck in the communication.

2.1.8 Numerical results

In this subsection we test our code by performing several multidimensional test simulations
of astrophysical interest. Unless otherwise stated, we use periodic boundary conditions
and the van Leer limiter for all test problems. The simulations are stopped before any
interaction due to the periodic boundary can occur.

Linear wave convergence

Our first test problem involves the propagation of linear waves, namely the fast, Alfvén
and slow modes, in 1D and 2D. We use a similar setup as [53] and [148].
The initial conditions are set as

u = u0 +A RFLUID
p sin (2πξ)

b = b0 +A RMAG
p sin (2πξ) ,

where u = [ρ, ρv‖, ρv⊥, ρvz, E]T and b = [b‖, b⊥, bz]T . The subscript ‖ and ⊥ indicate the
vector components parallel and perpendicular to the direction ξ, e.g. ξ = x, ξ = y or
ξ = z. The u0 and b0 are the constant background state of the conserved variables and
the magnetic field on which a perturbation with amplitude A in direction ξ is set. The
RFLUID
p and RMAG

p are the fluid and magnetic components of the right eigenvectors of the
ideal MHD system. Expressions for these may be found in many references, see e.g. [134].
The constant background state u0, b0 is set as in [53]. Then we have ρ0 = 1, p0 =
1/γ = 3/5, v0,‖ = v0,⊥ = v0,z = 0 and b0,‖ = 1, b0,⊥ =

√
2, b0,z = 1/2. This results in well

separated propagation speeds for each mode: fast cf = 2, Alfvén cA = 1 and slow cs = 1/2
modes. The perturbation is set to A = 10−6. The numerical expressions for RFLUID

p and
RMAG
p can be extracted from [53], appendix A.
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After letting the waves evolve for one wavelength, we calculate the L1 norm of the differ-
ence between the initial conditions and the numerical solution over all cells

δu =
1
N

∑
i

| uni − u0
i |

δb =
1
N

∑
i

| bni − b0
i |,

where the correct staggering of the magnetic variables is left out for readability. To get
the total error, we take the L2 norm of [δu, δb]T .
We then tested convergence for one dimensional linear waves in the domain [0, 1], therefore
ξ is simply ξ = x, by varying the resolution as Nx = 32, 64, 128, 256, 512, 1024 and Ny =
Nz = 1. The computed total errors are shown in figure2.11.
Next the linear waves are propagated in the x− y plane at an angle α = 30◦ with respect
to the x-axis. The domain is set to [0, 1/ cosα] × [0, 1/ sinα] and is discretised with
Nx × Ny cells where Nx = Ny = 32, 64, 128, 256, 512, 1024. The direction ξ is then given
by ξ = x cosα+ y sinα. The computed total errors are shown in figure 2.11.
We conclude that the scheme shows second order accuracy for linear wave propagation.
Figure 2.11 may be compared with similar tests found in [148]. We note that when the
magnetic field components are initialised at their respective staggered positions, the initial
conditions are divergence free to machine precision for the chosen discretisations.

Circularly polarised Alfvén waves

Our second test problem involves the propagation of circularly polarised Alfén waves in
1D and 2D. These waves are a smooth exact non-linear solution to the equations of ideal
MHD [83] and represent therefore an ideal problem to test the convergence of numerical
methods.
We have used the same initial conditions as [161]. The adiabatic index is set to γ = 5/3.
Then we have ρ = 1, v‖ = 0, p = 0.1, b‖ = 1, v⊥ = b⊥ = A sin(2πξ) and vz = bz =
A cos(2πξ). The subscript ‖ and ⊥ denote the components parallel and perpendicular to
the wave propagation, respectively. We have set the wave amplitude to A = 0.1. With
these parameters the Alfvén velocity is b‖/ρ = 1 and the wave is evolved until it crossed
once the domain and arrives back to its initial position.
First, we then tested convergence for one dimensional circularly polarised Alfvén waves
in the domain [0, 1], therefore ξ is simply ξ = x, by varying the resolution as Nx =
32, 64, 128, 256, 512, 1024 and Ny = Nz = 1. In figure 2.11 are shown the total errors
computed as in the previous test problem after the wave profile crossed the domain once
at t = 1.
Second, the circularly polarised Alfvén waves are propagated in the x−y plane at an angle
of α = 30◦ with respect to the x-axis. The domain is set to [0, 1/ cosα]× [0, 1/ sinα] and is
discretised with Nx ×Ny cells where Nx = Ny = 32, 64, 128, 256, 512, 1024. The direction
ξ is then given by ξ = x cosα+ y sinα. The final time is t = 1. The computed total errors
are shown in figure 2.11.
We conclude that the scheme shows second order accuracy as can be inferred from figure
2.11. The same remarks concerning the divergence free initialisation of the magnetic field
apply as for the previous linear wave tests.
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Figure 2.11: Convergence in the total error for fast (top left), Alfvén (top right), slow
(bottom left) and circularly polarised Alfvén (bottom right) waves after evolving the waves
once through the periodic domain in 1D (crosses) and 2D (squares).

Sedov-Taylor blast wave

The Sedov-Taylor blastwave test is a purely hydrodynamical test involving a strong spher-
ically symmetric outward propagating shock wave. An analytical self-similar solution can
be found for example in [84] and [173]. We use an adiabatic index of γ = 5/3. The
problem is solved on a cubic domain (x, y, z) ∈ [0, 1]3 with 2563 computational cells and
equidistant mesh spacing.
The density is set to unity and the velocity to zero throughout the whole domain. A huge
amount of internal energy e = 3 × 103 is placed uniformly in a small spherical region of
radius 0.01 at the center of the domain. Outside the spherical region the energy is set
to e = 1 × 10−3. The energy amount concentrated at the center then starts a strong
shock wave which propagates spherically outward from the center of the domain. The
simulation was stopped at time t = 1.7419 × 10−4 when the shock has propagated to a
distance r ≈ 0.45 from the center. In figure 2.12 a random subset of cells (points) are
compared against the exact solution (solid line). All the values have been normalized to
the exact postshock value. The postshock values of the numerical solution are lower but
come close to the exact solution. Despite we have a dimensionally split code, the scattering
of the points at the shock is not dramatic when compared to the Cartesian grid size of
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∆x = ∆y = ∆z ≈ 0.004. In figure 2.13 a shaded surface plot is shown for the density in
the x, y plane with z = 1/2. As seen in the figure, the shock looks spherical and no serious
symmetry breaking due to the dimensionally split character of the code can be seen.
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Figure 2.12: Radial distribution of the Sedov-Taylor blast wave test computed with 2563

cells. The points represent a random subset of all the cells and the line is the exact
solution. All values have been normalized to the exact postshock values. The ticks on the
r axis have the size of the mesh spacing ∆x and the shock is resolved within roughly 2∆x.
See the electronic edition of the Journal for a color version of this figure.

Spherical Riemann problem

This problem is a spherical setup of Sod’s shocktube and was suggested in [159] as a test
for multidimensional hydrodynamics codes. The solution is computed on a cubic domain
(x, y, z) ∈ [0, 1]3 with 2563 computational cells and equidistant mesh spacing. Once again,
an adiabatic index γ = 5/3 is used.
The domain is decomposed into a spherical region of radius R = 0.25 at the center of the
domain and the remaining exterior region. The fluid variables are set to constant values
in each region. At the boundary between both regions a spherical discontinuity results. In
both regions, the velocity is set to zero. In the inner region we set the density ρ = 0.125
and the pressure p = 0.1. In the outer region, we set the density ρ = 1 and the pressure
p = 1. The simulation is stopped at time t = 0.09.
In figure 2.14 the density distribution at the end of the simulation is displayed. The points
are a random subset of cells and the solid line is a highly resolved numerical solution from
a 1D spherically symmetric code based on the same algorithm as the 3D one. The shock,
the contact discontinuity and the rarefaction wave are well captured by the 3D code. The
scattering of the points is strongest at the inward propagating shock. In figure 2.15 a
shaded surface plot of the density in the x, y plane with z = 1/2 is pictured. The spherical
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character of the solution is well retained and the dimensional splitting does not degrade
this symmetry.

Magnetic explosion

This test is based on the same idea as the Sedov-Taylor blastwave problem with the
addition of a magnetic field. We used the same domain, number of cells and adiabatic
index. The same initial conditions as in [54] are set. The density is set to ρ = 1 and
the velocity to vanish everywhere in the domain. At the center of the domain we set the
pressure P = 100 in a spherical region with radius R = 0.125. Outside of the sphere we
set the pressure to P = 1. The magnetic field components are set as bx = by = 10/

√
2

and bz = 0. Inside the high pressure sphere the ratio between gas pressure and magnetic
pressure is β = 2P/b2 ≈ 2 and outside it is β = 2P/b2 ≈ 0.02. This is a difficult
test problem for codes evolving the total energy: The internal energy is obtained by the
subtraction of kinetic and magnetic energy from the total energy. When the energy density
is locally dominated by the magnetic field, negative internal energies can occur, which then
break down the simulation.
The simulation was stopped at t = 0.02 and we used a CFL number of 0.75. The results

Figure 2.13: Shaded surface plot of the density for the Sedov-Taylor blast wave in the
x, y plane with z = 1/2 illustrating the spherically symmetric character of the numerical
solution. The solution was obtained with 2563 cells.
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Figure 2.14: Radial density distribution of the spherical Riemann problem computed with
2563 cells. The points represent a random subset of all the cells, and the line is the result
of a highly resolved 1D simulation. See the electronic edition of the Journal for a color
version of this figure.

are displayed in figure 2.16 for the density, pressure, kinetic energy and magnetic energy.
As apparent from the figure, spherical symmetry is broken and one clearly distinguishes
between the flow propagation parallel and orthogonal to the magnetic field. The outer-
most shell indicates a fast magnetosonic shock, which is only weakly compressive. The
energy density is dominated by the magnetic field. On the inside there are two dense
shells propagating parallel to the magnetic field. From the outside these dense shells are
bound by a slow magnetosonic shock and a contact on the inside. Our results compare
qualitatively well to the ones of [54].

The rotor problem

Our next test is the so-called rotor problem, presented in [13]. We use the first rotor
problem in [161] as initial conditions. We solve this 2D problem in the Cartesian domain
[0, 1]2 with 2562 computational cells. The problem consists of a dense rapidly rotating
cylinder (the rotor) with ρ = 10, vx = −2(y−1/2)/r0, vy = 2(x−1/2)/r0 extending up to
a radius r0 = 0.1, where r = [(x−1/2)2 + (y−1/2)2]1/2, installed in a lighter resting fluid.
The lighter fluid is characterized by ρ = 1, vx = vy = 0 for r > r1 = 0.115. In between
the rotating and the light fluid r0 < r < r1 we set

ρ = 1 + 9f(r)
vx = −2f(r)(y − 1/2)/r
vy = 2f(r)(x− 1/2)/r
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Figure 2.15: Shaded surface plot of the density for the spherical Riemann problem in the
x, y plane with z = 1/2 illustrating the spherically symmetric character of the numerical
solution. The density ranges from 1 (black) to 0.125 (white). The solution was computed
with 2563 cells.

where

f(r) =
r1 − r
r1 − r0

.

This smoothes out the discontinuities and reduces initial transients. The magnetic field is
initially set to bx = 5/

√
4π, by = bz = 0 and the pressure is uniformly set to p = 1. The

adiabatic index used for this test is γ = 1.4.

The simulation was run to time t = 0.15 and the results are displayed in figure 2.17.
The dense rotating cylinder initially not in equilibrium has started to expand until the
magnetic pressure due to field wrapping has stopped the expansion resulting in its oblate
shape. The outer layers of the dense cylinder has lost part of its initial angular momentum
in form of Alvén waves radiating away. This braking of the magnetic rotor is a possible
model for the angular momentum loss of collapsing gas clouds in star formation [116, 117].
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Figure 2.16: Shaded surface plot of the magnetic explosion at time t = 0.03 computed
with 2563 cells. Density (top left) ranges from 0.21 (white) to 2.75 (black). Gas pressure
(top right) ranges from 1 (white) to 45.13 (black). Magnetic energy (bottom left) ranges
from 23.90 (white) to 64.39 (black). Kinetic energy (bottom right) ranges from 0 (white)
to 32.88 (black).

Two dimensional MHD Riemann problem

The next test we performed is a two dimensional Riemann problem. The initial conditions
are similar to [42]:

(ρ, vx, vy, vz, P ) =


( 1, −0.75, 0.5, 0., 1. ) , x ≤ Lx/2, y ≤ Ly/2
( 3, −0.75, −0.5, 0., 1. ) , x > Lx/2, y ≤ Ly/2
( 2, 0.75, 0.5, 0., 1. ) , x ≤ Lx/2, y > Ly/2
( 1, 0.75, −0.5, 0., 1. ) , x > Lx/2, y > Ly/2

and the magnetic field is uniformly b = (2, 0, 1) /
√

4π. We setup the problem on the
domain [0, 0.8]2 with 5122 cells. The adiabatic index is set to γ = 5/3. For this test
we used zeroth order extrapolation boundary conditions and evolved the problem to time
t = 0.8 The density, pressure, kinetic energy and magnetic energy are displayed in figure
2.18. A similar test problem can also be found in [143]. Our results compare qualitatively
well with the cited references.
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Figure 2.17: Contour plot of the rotor problem at time t = 0.15 computed with 2562 cells.
The density (top left), the gas pressure (top right), the Mach number (bottom left) and
the magnetic pressure (bottom right).

Field loop advection

The next problem we consider, is the advection of a weak magnetic field loop. Similar
initial conditions can be found in [53]. This problem tests the ability of the algorithm to
maintain the solenoidal character of the magnetic field. The computational domain is set to
[0, 2]×[0, 1] and is discretised by Nx = 64, 128, 256, 512, 1024 and Ny = 32, 64, 128, 256, 512
grid cells, respectively. Periodic boundary conditions are used.
The velocity field is set to

vx = v0 cos(α)
vy = v0 sin(α)
vz = 1,

where cos(α) = 1/
√

5 and sin(α) = 1/
√

5 respectively. We set v0 =
√

5 so that after
a simulation time of t = 2 the field loop has been advected twice through the domain.
The magnetic field is initialised with the magnetic vector potential where the only non-
vanishing component is given by

Az =
{
A0(R− r) , if r ≤ R

0 , if r > R,
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Figure 2.18: Shaded surface plot of the 2D MHD Riemann problem at time t = 0.8
computed with 5122 cells. Density (top left) ranges from 0.2571 (white) to 2.4398 (black).
Gas pressure (top right) ranges from 0.0787 (white) to 0.7091 (black). Magnetic energy
(bottom left) ranges from 0.0029 (white) to 0.2501 (black). Kinetic energy (bottom right)
ranges from 0 (white) to 0.6388 (black).

where A0 = 10−3, R = 0.3 and r =
√
x2 + y2.

The magnetic energy b2 is displayed in figure 2.19 at the initial and final time for the
128× 64 resolution. This figure may be directly compared to figure 6 in [53]. We observe
that the circular shape is well preserved. However, we observe numerical magnetic field
dissipation. Especially at the center and at the boundary of the field loop. The decay
of the magnetic field energy is displayed in figure 2.20, where we plot the mean magnetic
energy b2 as a function of time normalised to its initial value for the tested resolutions.
We note that while figure 2.19 gives a qualitative impression of where the magnetic energy
is dissipated, figure 2.20 gives a quantitative measure of the dissipation as a function of
resolution.

Similar to [88] we set vz 6= 0. This choice then implies that bz, initially zero, will grow in
time if the magnetic field is not divergence free. During our simulations, bz remained zero
to machine precision an therefore the algorithm preserves numerically ∇·b = 0 identically.
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Figure 2.19: Shaded surface plot of the magnetic energy b2 at times t = 0 (left) and t = 2
(right) with 128× 64 resolution.
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Figure 2.20: Plot of the mean magnetic energy as a function of time for the five tested res-
olutions: Nx = 64, 128, 256, 512, 1024 and Ny = 32, 64, 128, 256, 512 grid cells, respectively.
The magnetic energy dissipation is monotonically decreasing with increasing resolution.

Isentropic vortex evolution

This test simulates the evolution of a stationary isentropic vortex in 2D (see e.g. [182]).
This problem involves no flow discontinuities and an exact solution is available. The
problem is solved on a square domain [−5, 5]2 with N = Nx = Ny = 64, 128, 256, 512, 1024
computational cells and equidistant mesh spacing. We have used an adiabatic index of
γ = 1.4.

The stationary background flow is initialised with T0 = 1, vx,0 = vy,0 = 0, where T = p/ρ
is the temperature. The entropy is set to unity S = p/ργ = 1. The following perturbations
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are then added to get the T , vx and vy fields:

δT = − β2

8π2
exp

(
1− r2

)
δvx = − β

2π
exp

(
1− r2

2

)
y

δvy =
β

2π
exp

(
1− r2

2

)
x,

where r2 = x2 + y2 and β = 5 is a measure of the vortex strength. The density is then
computed by ρ = (T0 + δT )1/(γ−1) and the pressure by p = ργ .
The isentropic vortex is then evolved numerically up to t = 10 with a CFL number k = 0.9
and the Van Leer flux limiter. The flow is stationary and therefore the exact solution is
simply the initial condition for all times. The total L1 errors are shown in figure 2.21.
From the figure second order convergence is apparent.
This problem is also the basis for an accuracy test of the tracer particles evolution discussed
in section 2.4.
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Figure 2.21: Convergence of the total error for the isentropic vortex test problem.

2.2 Well-balanced methods for hydrostatic equilibrium

In this section we present a novel well-balanced scheme for the Euler equations with
gravitational source terms based on a discrete hydrostatic reconstruction. The extension
of the method to general equations of state and to MHD will also be discussed. The section
will end by several numerical examples demonstrating the accuracy of the scheme.
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The Euler equations for a fluid in a gravitational field are given by

∂ρ

∂t
+∇ · (ρv) = 0 (2.58)

∂ρv

∂t
+∇ · (vρv) +∇p = −ρ∇φ (2.59)

∂E

∂t
+∇ · [(E + p)v] = −ρv · ∇φ, (2.60)

expressing the conservation of mass, momentum and energy, respectively. We will also
assume an ideal gas law for the equation of state (EoS)

p = ρe(γ − 1). (2.61)

The inclusion of more general EoSs will be discussed below.
The above equations allow a rich family of non-trivial steady states. Of particular interest
in a multitude of applications is the hydrostatic state

∇p = −ρ∇φ, (2.62)

where the pressure gradient exactly balances the gravitational force. The interest in devel-
oping numerical schemes to accurately model this stationary or quasi-stationary solutions
is twofold. On the one hand, one might be concerned with the simulation of small per-
turbations on a gravitationally stratified atmosphere. These perturbations may be small
when compared to the density and pressure variations stemming from gravity and may
therefore be difficult to resolve numerically. On the other hand, one might be interested
in accurate long term simulations of stationary states. Long in the sense of many times
a characteristic dynamic timescale on which the stationary state reacts to equilibrium
perturbations.
In a CCSN context, this situation happens after bounce when the newly forming neutron
star is approximately in hydrostatic equilibrium. In figure 2.22 we show a radial density
and velocity profile at a typical time shortly after bounce. The stalled accretion shock is
located at ∼ 100 km. The density profile shows a steep gradient and the innermost parts
are in near equilibrium (v ≈ 0). Th dynamical timescale of the innermost parts (& 1012

g/cm3) may be approximated by (ρG)−1/2 ≈ 1 ms. This timescale is short when compared
to the typical simulation time & 100 ms. Therefore the numerical scheme should be able
to hold the near hydrostatic equilibrium of the neutron and at the same time accurately
model the perturbations on top of it. Since the neutron star is constantly accreting
further matter (until an explosion sets in), the numerical scheme should be self-adapting
to the slowly evolving equilibrium configuration. This poses some serious challenges for
the numerical methods.
Conservation laws with source terms or, equivalently, balance laws arise abundantly in
many research fields. These balance laws often admit steady sate solutions in which
the flux gradient is exactly balanced by the source term. Classical numerical solution
methods generally fail to capture this subtle balance. Numerical schemes that maintain
certain steady states either exactly or discretely are called well-balanced. Diverse well-
balanced methods have been designed for specific problems, in particular for the shallow
water equations, e.g. [8, 91, 121, 135, 179] and references therein.
Well-balanced methods for hydrostatic equilibrium have been developed in [21, 51, 93, 89].
Botta et al. [21] limpidly analyse the reason for the inaccuracies of standard high-resolution
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Figure 2.22: Density (left) and velocity (right) profiles in a CCSN simulation at a typical
time postbounce. In the right panel, also the sound velocity is shown (solid magenta line).
We observe that the innermost regions of the PNS are in near hydrostatic equilibrium
v ≈ 0. The numerical resolution of this near equilibrium state is difficult due to the large
gradients in density (and also pressure, ...).

shock-capturing methods in preserving the hydrostatic state. The reason for these inac-
curacies is that the equilibrium state is not a constant or a simple polynomial function.
Hence, standard reconstruction techniques lead to non-zero truncation errors. This leads
to spurious inaccuracies in computations of stationary states. Further, they propose an
elegant numerical scheme combining local analytical hydrostatic reconstructions with a
source term discretisation through a discrete Archimedes’ buoyancy principle. The result-
ing scheme is second order accurate and well-balanced for homentropic hydrostatic states.
In the following, we describe our well-balanced scheme for arbitrary entropy stratified
hydrostatic equilibrium.
The organisation of this section is then as follows. In subsection 2.2.1 and 2.2.2, we
will introduce a standard one-dimensional first order finite volume scheme for the Euler
equations together with explicit expression for several numerical fluxes. In subsection
2.2.3, we present a discrete hydrostatic reconstruction scheme for the first order finite
volume resulting in a well-balanced scheme. In subsection 2.2.4, we present an equilibrium
preserving second order extension of the one-dimensional finite volume schemes. The
multi-dimensional extension of the well-balanced schemes is then presented in subsection
2.2.5. In subsection 2.2.6, we present extensions of the hydrostatic reconstruction to
general equations of states and also to MHD in the form of an approximately-balanced
scheme. We end this section in 2.2.7 with several numerical experiments demonstrating
the efficiency of the schemes.

2.2.1 First order one-dimensional schemes

For simplicity and without loss of generality we focus on the one-dimensional Euler equa-
tions in Cartesian coordinates:

∂u

∂t
+
∂F

∂x
= S (2.63)
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with

u =

 ρ
ρvx
E

 , F =

 ρvx
ρv2
x + p

(E + p)vx

 and S =

 0
ρ
ρvx

 ∂φ
∂x
, (2.64)

where u, F and S are the vectors of conserved variables, fluxes and source terms. Further,
we will denote the primitive variables by w = [ρ, vx, p]T .
Space is discretised into cells or finite volumes Ii = [xi−1/2, xi+1/2] of regular size ∆x =
xi+1/2− xi−1/2 and time is discretised into time steps ∆tn = tn+1− tn, where n labels the
different time levels. A standard first order finite volume scheme is obtained by integrating
eq. (2.63) over a cell Ii and a time interval ∆tn (see e.g. [85, 92, 159])

un+1
i = uni −

∆t
∆x

(
F n
i+1/2 − F

n
i−1/2

)
+ ∆tSni , (2.65)

where the time step has to fulfil a certain CFL condition. Here uni and un+1
i are the

cell average of the conserved variables at their respective time level. The F n
i±1/2 are the

numerical fluxes and Sni the discretised source term to be given below.

2.2.2 Numerical fluxes: approximate solution of the Riemann problem

As is standard, the numerical flux is obtained by (approximate) solution of Riemann
problems at the cell interfaces

F n
i+1/2 = F(un,Li+1/2,u

n,R
i+1/2), (2.66)

where the un,Li+1/2 and un,Ri+1/2 are the cell interface extrapolated conserved variables. For a

first order scheme these reduce to un,Li+1/2 = uni and un,Ri+1/2 = uni+1.
We have used several popular approximate Riemann solvers: local Lax-Friedrichs, HLL,
HLLC and Roe. In the following we will give explicit expressions for the computation of
the numerical fluxes according to these approximate Riemann solvers. We refer to the
original research papers and textbooks (e.g. [85, 92, 159]) for their theoretical derivation.

The local Lax-Friedrichs approximate Riemann solver

The local Lax-Friedrichs solver assumes that the initial discontinuity at the cell interface
decays into a right and a left discontinuity propagating with identical speeds. Therefore
the solver does not resolve the contact discontinuity. This solver is also used in the MHD
algorithm of FISH for the solution of the extended Euler equations 2.1.3. The numerical
flux, consistent with the integral form of the homogeneous conservation law, is then

F LxF = F(uL,uR) =
1
2
(
F L + FR

)
− Smax

2
(
uR − uL

)
, (2.67)

where Smax is a numerical approximation for the largest physical signal-velocities in the
exact solution to the Riemann problem, given by

Smax = max
(
|vLx |+ cL, |vRx |+ cR

)
. (2.68)

The sound speed is given by c = (γp/ρ)1/2. The fluxes are simply F L = F (uL) and
FR = F (uR).
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The HLL approximate Riemann solver

Likewise, the HLL solver [62] assumes that the initial discontinuity at the cell interface
decays into a right and a left discontinuity, however, propagating with different speeds.
Like the Lax-Friedrichs solver, the HLL solver does not resolve the contact discontinuity.
This solver can also be easily incorporated into FISH since the same amount of character-
istic information (fastest physical signal-velocities) is needed than for the relaxation solver
(which is equivalent to the local Lax-Friedrichs solver) 2.1.3. The HLL numerical flux is
then

FHLL = F(uL,uR) =


F L if 0 ≤ SL
SRFL−SLFR+SLSR(uR−uL)

SR−SL if SL ≤ 0 ≤ SR

FR if SR ≤ 0,
(2.69)

where SL, SR are numerical approximations for the fastest physical signal-velocities in the
exact solution to the Riemann problem, given by

SL = min
(
vLx − cL, vRx − cR

)
SR = max

(
vLx + cL, vRx + cR

)
.

(2.70)

The HLLC approximate Riemann solver

The HLLC approximate Riemann solver [158] opens the Riemann fan with three waves,
where the middle wave represents the contact discontinuity. This solver can also be gener-
alised for the extended Euler system of the MHD algorithm in FISH (see [51] for details).
The HLLC numerical flux is given by

FHLLC = F(uL,uR) =


F L if 0 ≤ SL
F ∗,L = F L + SL

(
u∗,L − uL

)
if SL ≤ 0 ≤ Sm

F ∗,R = FR + SR
(
u∗,R − uR

)
if Sm ≤ 0 ≤ SR

FR if SR ≤ 0

(2.71)

with

u∗,K = ρK
SK − vKx
SK − Sm

 1
Sm

EK

ρK + (Sm − vKx )
(
Sm + pK

ρK(Sk−vK
x )

)
 (2.72)

for K = L,R. Here SL, SR are numerical approximations for the fastest physical signal-
velocities given in eq. (2.70). For the intermediate wave speed, we use an expression which
depends merely on the assumed speeds SL and SR [16]

Sm =
pR − pL + ρLvLx (SL − vLx )− ρRvRx (SR − vRx )

ρL(SL − vLx )− ρR(SR − vRx )
. (2.73)

The Roe approximate Riemann solver

Roe’s approximate Riemann solver [133] is one of the most commonly used solvers. In
this solver, the Riemann problem is approximately solved by writing the conservation law
in quasi-linear form and evaluating the Jacobian matrix at a conveniently chosen state
rendering the Riemann problem linear which can then be solved exactly. Like the HLLC,
this solver resolves the full spectrum of modes present in the Euler equations and therefore
resolves also the contact discontinuity.
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The flux difference is then decomposed as

FR − F L =
3∑
i=1

α̃iλ̃iR̃
(i)
, (2.74)

where the R̃
(i)

are the right eigenvectors of the approximate Jacobian

R̃
(1)

=
1
2c̃

 1
ṽx − c̃
H̃ − c̃ṽx

 , R̃
(2)

=
1
c̃2

 1
ṽx
1
2 ṽ

2
x

 , R̃
(3)

=
1
2c̃

 1
ṽx + c̃

H̃ + c̃ṽx

 , (2.75)

where λ̃i are the propagation speeds

λ̃1 = ṽx − c̃, λ̃2 = ṽx, λ̃3 = ṽx + c̃ (2.76)

and where α̃i are the wave strengths

α̃1 =
pR − pL

c̃
− ρ̃

(
vRx − vLx

)
α̃2 =

(
pR − pL

)
− c̃2

(
ρR − ρL

)
α̃3 =

pR − pL

c̃
+ ρ̃

(
vRx − vLx

)
.

(2.77)

The Roe averages are given by

ρ̃ =
√
ρLρR

ṽx =

√
ρLvLx +

√
ρRvRx√

ρL +
√
ρR

H̃ =

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

c̃2 = (γ − 1)
(
H̃ − 1

2
ṽ2
x

)
,

(2.78)

where H is the total enthalpy

H =
E + p

ρ
. (2.79)

We use a standard Harten-Hyman entropy fix with speed estimates from the Roe averaged
states to avoid expansion shocks [159]. The numerical flux is given by

FRoe = F(uL,uR) =
1
2
(
F L + FR

)
− 1

2

3∑
i=1

α̃i|λ̃i|R̃
(i)
. (2.80)

2.2.3 Well-balanced local hydrostatic reconstruction and source term
discretisation

In one dimension, hydrostatic equilibrium is given when the pressure gradient exactly
balances the gravitational force

∂p

∂x
= −ρ∂φ

∂x
. (2.81)
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For any non-constant gravitational potential, hydrostatic equilibrium clearly dictates a
non-trivial distribution of pressure and with it in density and internal energy. Therefore
some type of hydrostatic reconstruction is needed when computing the point values at cell
interface from the cell averaged conserved quantities. In case of equilibrium, this recon-
struction should guarantee pressure continuity at the cell interface. When the equilibrium
is perturbed, only the deviation from equilibrium should determine the pressure jump at
the cell interface.
If the stationary state is known globally u0(x), one can use u0(x) to perform the recon-
struction. This amounts to evolve numerically only the equilibrium perturbation u− u0.
However, if u0(x) is not known in advance, a different approach has to be taken. As pro-
posed in [21], another approach is to construct a local hydrostatic state u0,i(x) inside each
cell independently based on the local gravitational potential and thermodynamic condi-
tions. This local hydrostatic state is then used for the reconstruction. A similar approach
is taken in [51] in the context of wave propagation in stellar atmospheres.
We propose to perform the hydrostatic reconstruction based on a discrete form of (2.81)
for the cell averaged pressure and density

pni+1 − pni
∆x

= −
ρni + ρni+1

2
φi+1 − φi

∆x
, (2.82)

which is second oder accurate at the cell interface. We then define the hydrostatic pressure
differences

∆pn,+i = −1
2
ρni + ρni+1

2
(φi+1 − φi)

∆pn,−i = −1
2
ρni−1 + ρni

2
(φi − φi−1) ,

(2.83)

which are then used to reconstruct the pressure at the cell interface

pn,Li+1/2 = pni + ∆pn,+i

pn,Ri+1/2 = pni+1 −∆pn,−i+1.
(2.84)

Note that pressure equilibrium at the cell interface, i.e. pn,Li+1/2 = pn,Ri+1/2, holds exactly if
and only if eq. (2.82) is verified, by construction.
Now we have to compute from the interface pressures the corresponding density and in-
ternal energy density at the interface: pn,Li+1/2 = p(ρn,Li+1/2, ρe

n,L
i+1/2) and pn,Ri+1/2 = p(ρn,Ri+1/2, ρe

n,R
i+1/2).

This inversion, however, is not yet uniquely determined and a further assumption on some
thermodynamic variable is needed. We propose to use the polytropic relation

p = K(S)ργ , (2.85)

where γ is the ratio of specific heats and the coefficient K(S) depends on the entropy S.
We define the cell average of Kn

i simply by

Kn
i = pni /(ρ

n
i )γ . (2.86)

The same choice was made in [21].
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The interface density and internal energy density are then easily obtained:

ρn,Li+1/2 =

pn,Li+1/2

Kn
i

1/γ

and ρen,Li+1/2 =
pn,Li+1/2

γ − 1

ρn,Ri+1/2 =

pn,Ri+1/2

Kn
i+1

1/γ

and ρen,Ri+1/2 =
pn,Ri+1/2

γ − 1
.

(2.87)

The velocity, if the system is not in exact equilibrium vx = 0, is left unchanged by the
hydrostatic reconstruction vn,Lx,i+1/2 = vnx,i and vn,Rx,i+1/2 = vnx,i+1. We then get the interface
momentum density as

ρvn,Lx,i+1/2 = ρn,Li+1/2vx,i

ρvn,Rx,i+1/2 = ρn,Ri+1/2vx,i+1.
(2.88)

Similarly to the pressure differences, we may define hydrostatic density differences

∆ρn,+i = ρn,Li+1/2 − ρ
n
i

∆ρn,−i = ρni − ρR,ni−1/2,
(2.89)

hydrostatic momentum differences

∆ρvn,+x,i = ρvn,Lx,i+1/2 − ρv
n
x,i

∆ρvn,−x,i = ρvnx,i − ρvR,nx,i−1/2

(2.90)

and hydrostatic total energy density differences

∆En,+i = En,Li+1/2 − E
n
i

∆En,−i = Eni − En,Ri−1/2.
(2.91)

We can then write the hydrostatic reconstruction in the following compact form for the
conserved variables

un,Li+1/2 = uni + ∆un,+i

un,Ri+1/2 = uni+1 −∆un,−i+1

(2.92)

and for the primitive variables

wn,L
i+1/2 = wn

i + ∆wn,+
i

wn,R
i+1/2 = wn

i+1 −∆wn,−
i+1.

(2.93)

The hydrostatic differences in conserved and primitive variables are given by

∆un,±i =

 ∆ρn,±i
∆ρvn,±x,i
∆En,±i

 and ∆wn,±
i =

 ∆ρn,±i
0

∆pn,±i

. (2.94)

It remains to specify the discrete source term. Assume we are given discrete hydrostatic
data verifying eq. (2.82). Plugging the reconstructed interface variables (2.92) into the
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momentum component of the numerical flux divergence gives

1
∆x

[
Fρvx

(
un,Li+1/2,u

n,R
i+1/2

)
−Fρvx

(
un,Li−1/2,u

n,R
i−1/2

)]
=

1
∆x

[
pni+1/2 − p

n
i−1/2

]
=

1
∆x

[
(pni + ∆pn,+i )− (pni −∆pn,−i )

]
=

1
∆x

[
∆pn,+i + ∆pn,−i

]
(2.95)

for all the numerical fluxes in subsection 2.2.2. In the first equality, pressure equilibrium at
the interface pni±1/2 = pn,Li±1/2 = pn,Ri±1/2 was used. If the density and energy flux divergence
components vanish depends on the entropy stratification K(x) and the numerical flux used.
For solvers resolving the contact discontinuity, namely the HLLC and the Roe solver, the
density and energy flux divergence vanishes for any entropy stratification. For the local
Lax-Friedrichs and HLL solver, this holds only for a constant entropy K(x) = const., i.e.
continuous density and internal energy density over the interface.
Eq. (2.95) therefore suggests the following form for the source term

Sni = −

 0
1
2

(
ρn

i−1+ρn
i

2
φi−φi−1

∆x +
ρn

i +ρn
i+1

2
φi+1−φi

∆x

)
ρvnx,i

φi+1−φi−1

2∆x

, (2.96)

where the energy source term uses a simple central discretisation.
We conclude that the first order scheme (2.65) and the hydrostatic reconstruction (2.94)
together with the source term discretisation (2.96) maintains exactly, i.e. is well-balanced,
any discrete stationary state in the form (2.82).
The definition K(x) = Ki inside a cell is not the only possible choice. One could perform
any high order reconstruction, e.g. piece-wise linear, to get a better representation of K
inside the cell. However, this choice is not relevant for the scheme to maintain any discrete
hydrostatic equilibrium (2.82). By construction, the pressure is continuous across the cell
interface and any numerical flux resolving the contact discontinuity will yield a zero mass
and energy flux across the interface. More precisely, the numerical flux has to fulfil

F(wL,wR) = F([ρL, 0, p]T , [ρR, 0, p]T ) = [0, 0, p]T (2.97)

given that p = pL = pR. Therefore, we note that that the scheme maintains the discrete
hydrostatic equilibrium (2.82) for arbitrary K(x), i.e. arbitrary entropy stratification, in
particular for the HLLC and Roe approximate Riemann solver.

2.2.4 Second order one-dimensional schemes: higher order hydrostatic
reconstruction

Due to the limited practical use of first order schemes, a higher order extension is needed.
We will design a second order accurate in both space and time finite volume scheme which
maintains the discrete hydrostatic equilibrium (2.82) exactly.
A semi-discrete scheme may be written as

dui
dt

= − 1
∆x

(
F i+1/2 − F i−1/2

)
+ Si, (2.98)

where F i+1/2 = F(uLi+1/2,u
R
i+1/2) is the numerical flux and Si the gravity source term.
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In subsection 2.1.3, we have discussed a higher order extension by flux reconstruction.
The flux reconstruction can directly be performed on the basis of the numerical fluxes
obtained after hydrostatic reconstruction. This ensures that any discrete equilibrium of
the form (2.82) is exactly (or within round-off errors) preserved and that only deviations
from equilibrium are used in the flux reconstruction.
Another way to increase the spatial resolution is obtained by replacing the piece-wise
constant approximation of the conserved variables by a higher-order non-oscillatory re-
constructions, see e.g.[85, 92, 159]. Since we are seeking a spatially second order accurate
scheme, we will use a common piece-wise linear reconstruction with TVD limiters [165].
As a matter of fact, other reconstructions like ENO [61] or WENO [146] are possible and
these permit even higher orders of accuracy.

TVD equilibrium reconstruction

A standard piece-wise linear reconstruction of the conserved variables may not preserve
the discrete hydrostatic equilibrium.
Since the hydrostatic reconstruction already maintains to second order accuracy stationary
states, only the deviations from this discrete equilibrium should be used in the computation
of the slopes for the piece-wise linear reconstruction. Therefore, we propose to not simply
reconstruct ui(x) from cell averages ui, but rather the difference ũi(x) = ui(x)− ui

ũi(x) = σ̃i(x− xi) for x ∈ [xi−1/2, xi+1/2], (2.99)

where σ̃i is a slope. When computing the slope σ̃i, we also subtract the hydrostatic
differences (2.94) in the conserved variables

σ̃i = ϕ

(
ui − ui−1 − (∆u+

i−1 + ∆u−i )
∆x

,
ui+1 − ui − (∆u+

i + ∆u−i+1)
∆x

)
, (2.100)

where ϕ is a flux limiter. We have used the minmod limiter

ϕ(a, b) = minmod(a, b) =
1
2

(sign(a) + sign(b)) min(|a|, |b|), (2.101)

where the limiter is applied component-wise. Other choices for the limiter are possible
and we refer to e.g. [85, 92, 150, 159].
The cell interface extrapolated conserved variables are then evaluated by

uLi+1/2 = ui + ∆u+
i + σ̃i

∆x
2

uRi+1/2 = ui+1 −∆u−i+1 − σ̃i+1
∆x
2
.

(2.102)

The reconstruction amounts to approximate the slope of only the deviations from hy-
drostatic equilibrium. It is straightforward to show that the outlined second order TVD
reconstruction is well-balanced with respect to the discrete hydrostatic equilibrium eq.
(2.82). Similar approaches have been devised in [21].

Time stepping

For temporal second order accuracy, we use a simple predictor-corrector method. As a
predictor, we compute a half time step with the well-balanced first order scheme (2.65).
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In the corrector step, we then use the calculated values from the predictor step un+1/2 as
input for the above second order TVD equilibrium reconstruction:

un+1
i = uni −

∆t
∆x

(
F
n+1/2
i+1/2 − F

n+1/2
i−1/2

)
+ ∆tSn+1/2

i . (2.103)

The source term is given by eq. (2.96).

2.2.5 Extension beyond one dimension

The extension of the well-balanced hydrostatic reconstruction to two dimensions is shown
for convenience and the extension to three dimensions is straightforward. The equations
of hydrodynamics are then given by

∂u

∂t
+
∂F

∂x
+
∂G

∂y
= S, (2.104)

where

u =


ρ
ρvx
ρvy
E

 , F =


ρvx

ρv2
x + p
ρvyvx

(E + p)vx

 , G =


ρvy
ρvxvy
ρv2
y + p

(E + p)vy

 (2.105)

and

S = Sx + Sy =


0
ρ
0
ρvx

 ∂φ∂x +


0
0
ρ
ρvy

 ∂φ∂y . (2.106)

The primitive variables vector is then w = [ρ, vx, vy, p]T . While the hydrostatic recon-
struction is independent of the way one solves the 2D equations (dimensionally split or
unsplit), we shall use a dimensionally split approach in order to comply with the FISH code.

The hydrostatic reconstruction is then applied in each direction separately and we will
describe the scheme in x-direction. Similar to the description in subsection 2.1.3, we drop
the indices of the ignored y-direction. The only change is that in x- (y-) direction we
have ρvy (ρvx) that represents a passive scalar, i.e. the tangential velocity components
are passive scalars in the solution process of the directionally split Riemann problem. In
x-direction, if the system is moving in tangential direction vy 6= 0, the velocity vy should
be left unchanged by the hydrostatic reconstruction: vn,Ly,i+1/2 = vny,i and vn,Ry,i+1/2 = vny,i+1.
This motivates the following hydrostatic reconstructed interface tangential momentum
densities:

ρvn,Ly,i+1/2 = ρn,Li+1/2vy,i

ρvn,Ry,i+1/2 = ρn,Ri+1/2vy,i+1.
(2.107)

We then define the hydrostatic ρvy momentum differences as

∆ρvn,+y,i = ρvn,Ly,i+1/2 − ρv
n
y,i

∆ρvn,−y,i = ρvny,i − ρvR,ny,i−1/2.
(2.108)

In x-direction, the hydrostatic reconstruction can then be compactly written as (2.92) for
the conserved variables and as (2.93) for the primitive variables. The 2D x-split hydrostatic
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differences in conserved and primitive variables are given by

∆un,±i =


∆ρn,±i
∆ρvn,±x,i
∆ρvn,±y,i
∆En,±i

 and ∆wn,±
i =


∆ρn,±i

0
0

∆pn,±i

. (2.109)

The corresponding expressions for the hydrostatic reconstruction in y-direction follow by
analogy.
As for the one-dimensional case, one can compute the momentum component of the nu-
merical flux divergence (for the 2D equations) and this suggests the following discretisation
of the gravitational source term:

Snx,i = −


0

1
2

(
ρn

i−1+ρn
i

2
φi−φi−1

∆x +
ρn

i +ρn
i+1

2
φi+1−φi

∆x

)
0

ρvnx,i
φi+1−φi−1

2∆x

. (2.110)

The energy source term uses a simple central discretisation.
It follows from a simple calculation, that the hydrostatic reconstruction applied on a per
dimension basis together with the x-direction source term eq. (2.110) and the appropriate
source term in y-direction preserves exactly any discrete equilibrium of the form

pni+1,j − pni,j
∆x

= −
ρni,j + ρni+1,j

2
φi+1,j − φi,j

∆x
pni,j+1 − pni,j

∆y
= −

ρni,j + ρni,+1j

2
φi,j+1 − φi,j

∆y
.

(2.111)

This will also be demonstrated in three-dimension in subsection 2.2.7. Furthermore, spatial
second order accuracy is also achieved on a per dimension basis as described in subsection
2.2.4.

2.2.6 Extension to general equation of states and MHD: approximately-
balanced schemes

In many applications, the equation of state is more complicated than the ideal gas law.
For example in CCSN simulation, we use tabulated EoS due to the complexity of the state
description at the encountered extreme conditions. Furthermore, EoS evaluations are often
computationally intensive (e.g. table look-up) and one wants to avoid any superfluous
EoS calls. Therefore, it may be difficult to obtain from the hydrostatically reconstructed
pressure p(ρ, ρe) the associated density and internal energy density.
If we again assume the entropy to be constant inside each cell, then we can express the
hydrostatic pressure gradient by

∂p

∂x
=
(
∂p

∂ρ

)
S

∂ρ

∂x
= c2 ∂ρ

∂x
, (2.112)

where c is the speed of sound. With eq. (2.112), we can then express approximately the
hydrostatic density differences with

∆pn,±i = c2
i∆ρ

n,±
i , (2.113)
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where ci is the speed of sound in the cell and ∆pn,±i is the hydrostatic pressure difference
as computed in eq. (2.83).
Using the fundamental thermodynamic relation de = −pdV and relation (2.112), we can
express the hydrostatic internal energy density gradient by

∂ρe

∂x
=
(
e+

p

ρ

)
∂ρ

∂x
. (2.114)

With eq. (2.114), we can then express approximately the hydrostatic internal energy
density differences with

∆ρen,±i =
(
ei +

pi
ρi

)
∆ρn,±i . (2.115)

The hydrostatic total energy density differences follow immediately from the above.
The just outlined hydrostatic and internal energy density reconstruction is not exact.
Hence, we call the scheme using these differences an approximately-balanced scheme. This
scheme will not guarantee that a discrete hydrostatic state is maintained exactly. However,
we will confirm in a numerical experiment in the next subsection 2.2.7, that the scheme
performs very well and is therefore well suited for the simulation of (near) hydrostatic
objects with complex EoS.
Furthermore, the just outlined hydrostatic reconstruction for general EoS is only directly
applicable to hydrodynamics. However, since the magnetic field is usually playing a minor
role in regions where (near) hydrostatic equilibrium prevails, we have found that replacing
the acoustic sound speed by the fast magnetosonic speed works well and in a stable manner
for MHD simulations as well. This extension is implemented into FISH and is used in our
CCSN simulations.

2.2.7 Numerical results

In this section, we numerically test the first order (2.65) and second order (2.103) well-
balanced schemes on a series of numerical problems. For comparison, we also consider
unbalanced versions of the schemes by switching off the hydrostatic reconstruction, but
still using the discretisation (2.96) of the source term.
In all tests we use equidistant Cartesian grids. The time step is chosen according a suitable
CFL condition and a CFL number of 0.9.
To construct the equilibrium models, we use the polytropic relation between pressure and
density p = K(S)ργ , where the coefficient K = K(S) is a function of entropy S. The
internal energy density is then simply computed via eq. (2.61).
To characterise a timescale on which a model reacts to perturbations of its equilibrium,
we define the sound crossing time τsound

τsound = 2
∫ x1

x0

dx
c
, (2.116)

where c = (γp/ρ)1/2 is the speed of sound and the integral has to be taken over the extent
of the steady configuration of interest.
We quantify the accuracy of the schemes by computing the errors

Err =
1
N

∑
i

| qi − qref
i |, (2.117)
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where the sum runs over all N cells in the domain of interest. Here q is a selected relevant
quantity (e.g. density, pressure) and qref is the reference solution, i.e. the steady state
to be maintained discretely or an interpolated numerically obtained reference solution on
a very fine grid. While the comparison with a numerically obtained reference solution
does not provide a rigorous evidence of convergence, it nevertheless indicates a meaningful
measure of the errors.

One-dimensional hydrostatic atmosphere in a constant gravitational field: well-
balanced property and wave propagation

Our first numerical test problem considers the very simple setting of a one-dimensional
atmosphere in a constant gravitational field in hydrostatic equilibrium. The potential is
then a simple linear function

φ(x) = gx, (2.118)

where g is a constant set to g = 1. We have set γ = 5/3.
We set the computational domain to x ∈ [0, L] with L = 2 discretised by N cells. The
density cell averages are initialised by solving numerically

pi+1 − pi
∆x

= −ρi + ρi+1

2
φi+1 − φi

∆x
(2.119)

for i = 2, ..., N with φi = φ(xi) and ∆x = L/N . The pressure pi = K(xi)ρ
γ
i is a function

of density alone once K(x) is given (see below). The first cell is initialised by solving

p1 − p(0)
∆x/2

= −ρ(0) + ρ1

2
φ1 − φ(0)

∆x/2
, (2.120)

where the density at the base is ρ(0) = 1 and the pressure p(0) = K(0). The velocity is
set to zero and the total energy is computed by Ei = pi/(γ − 1).
For the boundary conditions, we perform a hydrostatic extrapolation of the density and
the pressure and a zero order extrapolation of the velocity. Explicitly, we have used the
following prescription at the lower boundary

p1−m − p1−(m−1)

∆x
= −

ρ1−(m−1) + ρ1−m

2
φ1−m − φ1−(m−1)

∆x
vx,1−m = vx,1−(m−1)

(2.121)

and similarly at the upper boundary

pN+m − pN+(m−1)

∆x
= −

ρN+(m−1) + ρN+m

2
φN+m − φN+(m−1)

∆x
vx,N+m = vx,N+(m−1),

(2.122)

where m = 1, ...,M . M is the number of ghost cells. Note that again the equations for the
density have to be solved numerically. The coefficient K is also constantly extrapolated
K1−m = K1−(m−1) and KN+m = KN+(m−1).
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Well-balanced property

We first numerically verify the well-balanced property of the first and second order schemes
for different choices of the coefficient K(x). We use the following expressions

K1(x) = 1 (2.123)

K2(x) = 1 + 0.1 sin
(

2πx
L

)
(2.124)

K3(x) =
{

2 if x < 1
1 if x ≥ 1

. (2.125)

Since K is a function of entropy, we therefore test the performance of the schemes on
different entropy stratifications.
We then evolved the initial condition for the three different entropy stratifications with
the resolutions N = 64, 128, 256, 512 for one sound crossing time: t = 4.28, 4.28, 2.86 for
K1, K2 and K3, respectively.
The numerical errors in density for the first order schemes and entropy stratification K1

are shown in table 2.1. We see that the well-balanced schemes maintain the stationary
state up to machine precision for all numerical fluxes and independently of the spatial
resolution. On the other hand, the unbalanced schemes show large errors.
Tables 2.2 and 2.3 show the numerical errors in density for the K2 and K2 entropy strat-
ifications. We confirm by experiment the fact that only the well-balaned schemes with a
numerical flux resolving the contact discontinuity (HLLC and Roe) are able to maintain
the discrete hydrostatic equilibrium within round-off errors and this independently of the
spatial resolution. However, the unbalanced schemes show large deviations from equilib-
rium with all numerical fluxes and these errors tend to zero with the expected first order
convergence.

N LxF HLL HLLC Roe
64 2.57E-02/4.50E-16 2.57E-02/5.19E-16 2.58E-02/5.82E-15 2.56E-02/2.48E-15

128 1.30E-02/2.17E-15 1.30E-02/2.40E-16 2.30E-02/6.51E-15 1.30E-03/6.49E-16
256 6.53E-03/9.63E-15 6.53E-03/4.81E-16 6.53E-03/4.39E-15 6.52E-03/8.99E-16
512 3.27E-03/1.98E-15 3.27E-03/1.78E-15 3.27E-03/4.15E-14 3.26E-03/1.04E-14

Table 2.1: Error in density for the one-dimensional hydrostatic atmosphere and entropy
stratifications K1 for the unbalanced/balanced first order schemes and the different nu-
merical fluxes.

N LxF HLL HLLC Roe
64 2.42E-02/8.21E-03 2.42E-02/8.21E-03 2.81E-02/5.11E-15 2.69E-02/2.84E-15

128 1.31E-02/5.79E-03 1.31E-02/5.79E-03 1.42E-02/8.54E-16 1.37E-02/1.65E-15
256 7.16E-03/3.65E-03 7.15E-03/3.65E-03 7.17E-03/2.03E-14 6.88E-03/1.59E-14
512 3.89E-03/2.14E-03 3.89E-03/2.14E-03 3.60E-03/6.40E-14 3.45E-03/5.33E-14

Table 2.2: Error in density for the one-dimensional hydrostatic atmosphere and entropy
stratifications K2 for the unbalanced/balanced first order schemes and the different nu-
merical fluxes.

In tables 2.4, 2.5 and 2.6 the errors in density for the second order schemes and entropy
stratifications K1, K2 and K3, respectively, are displayed. Here we also observe that
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N LxF HLL HLLC Roe
64 5.32E-02/5.15E-02 5.32E-02/5.14E-02 1.20E-02/1.03E-14 1.26E-02/3.86E-15

128 3.87E-02/3.72E-02 3.87E-02/3.72E-02 6.22E-03/8.72E-15 6.55E-03/4.85E-15
256 2.76E-02/2.66E-02 2.76E-02/2.66E-02 3.17E-03/7.07E-15 3.35E-03/9.28E-15
512 1.95E-02/1.89E-02 1.95E-02/1.89E-02 1.60E-03/5.54E-15 1.69E-03/7.79E-15

Table 2.3: Error in density for the one-dimensional hydrostatic atmosphere and entropy
stratifications K3 for the unbalanced/balanced first order schemes and the different nu-
merical fluxes.

the discrete equilibrium for arbitrary entropy stratifications is only guaranteed for the
well-balanced scheme with a numerical flux that resolves the contact discontinuity. As
expected, this result is independent of the spatial resolution. The errors for the second
order unbalanced schemes show the expected decrease.

N LxF HLL HLLC Roe
64 7.21E-05/1.48E-15 7.26E-05/4.07E-15 5.81E-05/1.11E-15 5.64E-05/1.60E-15

128 1.74E-05/5.90E-16 1.75E-05/4.87E-16 1.58E-05/8.01E-16 1.55E-05/5.50E-16
256 4.29E-06/5.58E-16 4.29E-06/9.93E-16 4.11E-06/2.77E-15 4.07E-06/8.58E-16
512 1.07E-06/3.38E-15 1.07E-06/1.23E-15 1.05E-06/1.50E-14 1.04E-06/1.25E-15

Table 2.4: Error in density for the one-dimensional hydrostatic atmosphere and entropy
stratifications K1 for the unbalanced/balanced second order schemes and the different
numerical fluxes.

N LxF HLL HLLC Roe
64 1.41E-03/1.96E-03 1.41E-03/1.96E-03 5.64E-03/3.41E-15 1.34E-03/4.63E-16

128 5.78E-04/7.67E-04 5.78E-04/7.67E-04 2.96E-03/2.02E-15 6.92E-04/1.74E-15
256 2.40E-04/3.02E-04 2.40E-04/3.02E-04 1.52E-03/5.11E-14 3.55E-04/2.27E-14
512 1.02E-04/1.17E-04 1.02E-04/1.17E-04 7.71E-04/1.64E-15 1.81E-04/1.14E-15

Table 2.5: Error in density for the one-dimensional hydrostatic atmosphere and entropy
stratifications K2 for the unbalanced/balanced second order schemes and the different
numerical fluxes.

N LxF HLL HLLC Roe
64 2.40E-02/1.98E-02 2.40E-02/1.98E-02 1.39E-04/1.36E-15 4.55E-04/6.87E-16

128 1.47E-02/1.27E-02 1.47E-02/1.27E-02 3.91E-05/8.11E-15 2.38E-04/8.54E-16
256 8.93E-03/8.05E-03 8.93E-03/8.05E-03 1.02E-05/6.02E-15 1.21E-04/1.61E-15
512 5.47E-03/5.10E-03 5.47E-03/5.10E-03 2.61E-05/2.52E-14 6.08E-05/1.35E-14

Table 2.6: Error in density for the one-dimensional hydrostatic atmosphere and entropy
stratifications K3 for the unbalanced/balanced second order schemes and the different
numerical fluxes.

From the performed tests, we conclude that the well-balanced schemes for both first and
second order accuracy show the theoretically expected ability to maintain discrete equi-
libria. This experiment illustrates the contrast between the unbalanced schemes and their
well-balanced counterparts.
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Wave propagation

As a second test, we check the capability of the second order schemes to propagate waves
on the static background of our first test with K1 entropy stratification by imposing a
periodic velocity perturbation at the lower boundary

vn0 = A sin (6πtn) . (2.126)

The excited waves move through the domain and are modified by the density and pressure
gradient induced by gravity. We perform two different tests: a small and a large amplitude
perturbation. For the small amplitude perturbation we set A = 10−6. Figure 2.23 shows
the velocity and the density deviation (from equilibrium) at time t = 1.8, just before the
waves reach the upper boundary, for the unbalanced (solid red line) and the well-balanced
(dash dotted red line) schemes with the HLLC numerical flux for N = 256.
As a reference solution, a high resolution N = 4096 simulation with the well-balanced
scheme and the HLLC is also shown in the figure (solid blue line). We observe that the
well-balanced scheme nicely resolves the wave pattern. On the other hand, the unbalanced
scheme suffers from large spurious deviations. As a matter of fact, the induced density
perturbation (∼ 10−6 from the figure) is either of the same order or orders of magnitude
smaller (see table 2.4) than the errors of the unbalanced schemes. This illustrates the
superiority of the well-balanced schemes for this type of problems.
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Figure 2.23: Plot of the velocity (left) and the density equilibrium deviation (right) for the
small amplitude A = 10−6 perturbation on a hydrostatic background. The blue line is the
reference solution, the red solid/dash-dotted line was computed with the unbalanced/well-
balanced second order scheme, both with HLLC and N = 256. The well-balanced scheme
is clearly able to resolve the small perturbations, while the unbalanced scheme suffers from
spurious deviations.

In order to check that the hydrostatic reconstruction does not interfere negatively with
the robustness of the base high-resolution shock-capturing finite volume scheme, we also
tested the propagation of large amplitude A = 0.1 waves until t = 1.8 (shortly before the
waves reach the upper boundary). The errors are displayed in table 2.7. The errors were
computed on the basis of a reference solution computed with the well-balanced scheme and
the HLLC at high resolution N = 4096. Both, the unbalanced and the well-balance second
order schemes show a rate of convergence close to one and the errors are of comparable
size. This is to be expected, because the sine waves steepen into saw-tooth waves while
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propagating down the density gradient. This is displayed in figure 2.24. The large amp-
litude test illustrates that the hydrostatic reconstruction does not diminish the accuracy
and the robustness of the base high-resolution shock-capturing scheme.

N LxF HLL HLLC Roe
64 2.01E-02/2.47E-02 1.97E-02/2.44E-02 2.02E-02/2.44E-02 2.01E-02/2.44E-02

128 1.27E-02/1.47E-02 1.18E-02/1.44E-02 1.21E-02/1.43E-02 1.20E-02/1.43E-02
256 5.21E-03/6.56E-03 4.62E-03/5.99E-03 4.71E-03/5.93E-03 4.67E-03/5.92E-03
512 3.30E-03/3.16E-03 3.01E-03/2.85E-03 3.01E-03/2.76E-03 3.00E-03/2.75E-03

Table 2.7: Error in density for the large amplitude perturbation and entropy stratifications
K1 for the unbalanced/balanced second order schemes and the different numerical fluxes.
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Figure 2.24: Plot of the velocity (left) and the density equilibrium deviation (right) for the
large amplitude A = 0.1 perturbation on a hydrostatic background. The blue line is the
reference solution, the red solid/dash-dotted line was computed with the unbalanced/well-
balanced second order scheme, both with HLLC and N = 256. Both schemes are able to
capture the large amplitude perturbations and their steepening down the density profile.

Three-dimensional steady polytrope

As a three-dimensional test, we show the performance of our hydrostatic reconstruction
scheme on an astrophysical problem. We simulate a static configuration of an adiabatic
gaseous sphere held together by self-gravitation, a so-called polytrope [37]. Here we test
our implementation of the second order well-balanced and the approximately-balanced
scheme into FISH. Note that FISH uses a flux reconstruction to achieve spatial second
order accuracy and a numerical flux equivalent to the Lax-Friedrichs.
These model stars are constructed from hydrostatic equilibrium

dp
dr

= −ρdφ
dr

(2.127)

and Poisson’s equation in spherical symmetry

1
r2

d
dr

(
r2 dφ

dr

)
= 4πGρ, (2.128)
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where r is the radial variable and G is the gravitational constant.
With help of the polytropic relation p = Kργ , eq. (2.127) and (2.128) can be combined
into a single equation

1
r2

d
dr

(
r2γK

dρ
dr

)
= −4πGρ, (2.129)

which is known as the Lane-Emden equation. To this equation, there exist three analytical
solutions for γ = 6/5, 2,∞ [37].
We will use γ = 2 since neutron stars can be modelled by γ = 2− 3 and since there exists
an analytical solution to eq. (2.129). The density is then given by

ρ(r) = ρc
sin(αr)
αr

, (2.130)

where

α =

√
4πG
2K

(2.131)

and ρc is the central density of the polytrope. The gravitational potential is given by

φ(r) = −2Kρ(r). (2.132)

We use for the model constants K = G = ρc = 1.
We then initialised the density profile (2.130), internal energy profile (ρe = p/(γ − 1))
and gravitational potential (2.132) onto a regular Cartesian domain of size (x, y, z) ∈
[−0.65, 0.65]3 discretised byN3 grid cells. The radius is r2 = x2+y2+z2. The velocity is set
to zero in the full domain. For the boundary condition, we have used the same hydrostatic
extrapolation of the density and the pressure and a zero order extrapolation of the velocity
as in the above one-dimensional tests. The boundary condition is applied in each direction
and the gravitational potential in the boundary is given by the analytical solution. We
note that the initialised hydrostatic configuration fulfils the discrete equilibrium exactly
eq. (2.111) (generalised to three-dimensions).
We then evolved the initial conditions for 20 sound crossing times t = 20τsound, where
τsound ≈ 1. We have used two resolutions: N = 643 and N = 1283. For comparison, we
also tested the standard unsplit integration of the gravitational source terms described in
2.1.5. Note that the gravitational potential is kept fixed during the simulation, i.e. we do
not use self-gravity.
The numerical errors for this test are shown in table 2.8 for the unbalanced, approximately-
balanced and well-balanced schemes. From the table, we observe that the well-balanced
scheme resolves the stationary state within machine precision. Therefore, we conclude that
our dimension-by-dimension hydrostatic reconstruction works as expected. On the other
hand, the approximately-balanced and the unbalanced show some deviations. However,
the errors in the approximately-balanced are two orders of magnitude lower than in the
unbalanced case.
In figure 2.25, we display the central density as a function of time for the well-balanced
(blue solid line), the approximately-balanced (dash-dotted red line) and the unbalanced
(solid red line) schemes. We see that the well-balanced and the approximately-balanced
show a near indistinguishable central density. On the other hand, the unbalanced scheme
seems not to be able to hold the discrete hydrostatic equilibrium of the polytrope. In
figure 2.26, we show the initial density profile (blue solid line) and the profile for the
approximately-balanced (dash-dotted red line) and the unbalanced (solid red line) scheme
at the final time. The profile of the gravitational potential is also shown. From the figure,
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we observe that the approximately balanced scheme can hold the equilibrium profile very
well, while the unbalanced scheme suffers from spurious deviations.
Here we have numerically demonstrated, that the hydrostatic reconstruction is well-balanced
with respect to discrete equilibrium in the form (2.111) (generalised to three-dimensions).
Furthermore, it is clear that the approximately-balanced scheme improves greatly the
numerical resolution of equilibrium configurations with respect to the unbalanced scheme.

N unbalanced approx.-balanced well-balanced
64 1.88E-02 3.41E-04 1.19E-15

128 2.73E-03 4.87E-05 3.41E-15

Table 2.8: Error in density for the 3D polytrope for the second order unbalanced,
approximately-balanced and well-balanced schemes.

0 2 4 6 8 10 12 14 16 18 20
0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Time [τ
sound

]

D
en

si
ty

 ra
tio

 ρ
(t)

/ρ
in

i

0 2 4 6 8 10 12 14 16 18 20
0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

Time [τ
sound

]

D
en

si
ty

 ra
tio

 ρ
(t)

/ρ
in

i

Figure 2.25: The central density normalised to the exact value as a function of time is
shown for the second order unbalanced (solid red line), approximately-balanced (dash-
dotted red line) and well-balanced schemes (solid blue line). The left panel was computed
with 643 computational cells and the right panel with 1283. The approximately and well-
balanced simulations are nearly indistinguishable, while the unbalanced ones suffer from
deviations from the exact value.

2.3 Gravitation

In this section we detail the numerical methods used to solve the Poisson equation

∇2φ = 4πGρ, (2.133)

where φ is the gravitational potential, ρ the mass density and G the gravitational constant.
In contrast with the hyperbolic MHD equations, the Poisson equation is an elliptic partial
differential equation (PDE). While the MHD equations propagate physical information
at a finite speed, the Poisson equations propagates information instantly, i.e. at infinite
speed. This has some important consequences concerning the efficient parallel implement-
ation of a solver for elliptic PDEs. After a straightforward domain decomposition of a
hyperbolic problem, one parallel working unit needs only to communicate with its imme-
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Figure 2.26: The figure shows the initial density profile (blue line), the gravitational
potential (green line) and the density at the end of the simulation for the unbalanced and
the approximately-balanced second order schemes and 643 cells. The profiles have been
plotted along the x axis and y = z = 0.

diate neighbours for one time step1. On the other hand, to compute the solution for an
elliptic problem the entire domain has to be available for each parallel unit.
There exist several highly efficient algorithms, which alleviate this communication bot-
tleneck by a divide-and-conquer approach (e.g. Barns-Hut [14], fast multipole method
[58], ...). Another related approach proceeds by dimensional reduction, where the original
problem is approximated in lower dimensions. This has also the effect of reducing the
communication demand during the solution process.
We have followed the latter approach, where our 3D Cartesian domain is reduced to a 2D
axisymmetric or to a 1D spherically symmetric domain. The details of the method and
its implementation are presented in the following subsections.

2.3.1 Gravity in spherical symmetry and general relativistic corrections

In the case of non- or slowly rotating stars, the mass distribution may be reasonably well
approximated by a spherically symmetric distribution. This approximation remains reas-
onable as long as centrifugal forces don’t produce significant deformations of the rotating
star or convection leads to strong density anisotropies. The Poisson equation in spherical
coordinates is then given by

1
r2

∂

∂r

(
r2∂φ

∂r

)
= 4πGρ, (2.134)

1This time step has to be of course small enough that information does not travel more than one extent
of a parallel working unit.
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which can be integrated once to get

∂φ

∂r
=
GM

r2
, (2.135)

where

M(r) =
∫ r

0
4πρr2dr (2.136)

is the spherical symmetric mass distribution. Here φ = φ(r) is the gravitational potential,
ρ = ρ(r) the spherically symmetric density distribution and G the gravitational constant.
Once ρ(r) is specified, eq. (2.134) or (2.135) can be integrated in a straightforward manner.
The spherically symmetric density distribution ρ(r) is obtained by a conservative mapping
from the 3D Cartesian domain to 1D spherical symmetry. The 1D spherical domain is
chosen to be the biggest sphere fully contained in the 3D domain (see figure 2.27).
In a parallel distributed memory context, this mapping requires the call to a collective
communication routine (MPI ALL REDUCE) to sum up the contributions from all processes
to ρ(r). Then each process has the spherically symmetric density and can integrate eq.
(2.134) or (2.135) to obtain the spherical symmetric gravitational potential. The obtained
potential φ(r) is then mapped onto the process’s local 3D domain. Since each process
holds the spherical symmetric potential for the full domain, no communication is required
during this step.
The most expensive part in terms of wall-clock time and a potential parallel scaling bot-
tleneck for the procedure outlined above is the collective communication required for the
construction of the spherical symmetric density distribution ρ(r). But due to the low
amount of data (∼

√
3 min(Nx, Ny, Nz)/2, where Nx,y,z is the number of cells in the re-

spective direction) that has to be communicated collectively, the overall solution process
takes less than ∼ 1% of the time required for a MHD step and is therefore quite efficient.

Figure 2.27: The 3D Cartesian domain of size Lx, Ly, Lz with the embedded 1D spherically
symmetric domain (left) and the 2D axisymmetric cylindrical domain (right). The size
of the sphere is given by Lr = min(Lx, Ly, Lz)/2. The size of the cylinder is Lr =
min(Lx, Ly)/2 in radial direction and Lz in z-direction. Note that in the part of the 3D
domain not covered by the sphere or the cylinder, the gravitational potential from the
surrounding 1D spherically symmetric code is used.
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Due to the compactness of the mass distribution involved in core-collapse, the pure Newto-
nian approach to gravity is too simplistic and general relativistic effects become important.
Because general relativity yields stronger gravitational forces, a purely Newtonian treat-
ment leads to slower infall velocities and reduced compactness of the nascent proto-neutron
star (see [27, 98, 100]). Therefore, general relativistic effects have to be appropriately ap-
proximated for quantitative simulations of core-collapse supernova.
In our Newtonian MHD codes FISH and ELEPHANT, we approximately include general
relativity by an effective gravitational potential [106] which mimics the deeper gravitational
well of the relativistic case (see figure 2.28). In this approach, the Newtonian gravitational
potential given by eq. (2.135) is replaced by an effective potential

∂φ

∂r
=
G

r2

(
Meff +

4πr3

c2
(p+ pν)

)
1

Γ2

(
ρc2 + ρe+ p

ρc2

)
, (2.137)

where p is the gas pressure, pν the neutrino pressure and e the specific internal energy.
This form is theoretically motivated by the Tolman-Oppenheimer-Volkoff (TOV) solution
of general relativistic hydrostatic equilibrium of spherical stars [144]. In [106] several
expressions for the effective mass have been suggested and we adopted their recommended
’case A’:

Meff(r) =
∫ r

0
4π
(
ρ+

ρe

c2
+
Eν
c2

)
Γr2dr, (2.138)

where Eν is the neutrino energy density. The metric function Γ is given by

Γ(r) =

√
1 +

v2
r

c2
+

2GMeff

c2r
, (2.139)

where vr is the radial velocity. Note the mutual dependence of Γ and Meff , which is accoun-
ted for iteratively. The (parallel) implementation follows the above described Newtonian
procedure. The effective potential additionally needs also the mapping of the radial ve-
locity and the thermodynamic state onto the spherical symmetric domain. We note that
in [118] an effective relativistic potential for (very) rapidly rotating configurations was
proposed. However, in our models we have not implemented it yet and this may be post-
poned for future work. Furthermore, it might be interesting to integrate also the magnetic
energy density in this formalism.

2.3.2 Gravity in cylindrical coordinates and axisymmetry

In the case of moderately to rapidly rotating stars, centrifugal forces may substantially
deform the mass distribution so that a spherically symmetric treatment is no longer ad-
equate. Moreover, the combined action of rotation and magnetic fields also results in
substantial deviations from spherical symmetry. In this case, the mass distribution may
be reasonably well approximated by an axisymmetric mass distribution. For obvious reas-
ons, the symmetry axis is chosen to coincide with the rotational axis.
We have chosen to use (axisymmetric) cylindrical coordinates and then the Poisson equa-
tion reads

1
r

∂

∂r

(
r
∂φ

∂r

)
+
∂2φ

∂z2
=
∂2φ

∂r2
+

1
r

∂φ

∂r
+
∂2φ

∂z2
= 4πGρ, (2.140)

where r is the cylindrical radius and ρ = ρ(r, z) the axisymmetric density distribution.
The latter is obtained by a conservative mapping procedure (very similar to the spherically
symmetric case) from the 3D Cartesian domain.
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Figure 2.28: Comparison of the Newtonian and effective relativistic gravitational poten-
tial for a γ = 2.5 polytrope and polytropic constant K = 0.01. Left: density and specific
internal energy profiles. Right: gravitational potential profiles. Note the deeper gravita-
tional well of the effective relativistic potential mimicking the stronger attraction in the
relativistic case.

The axisymmetric cylindrical domain is chosen to be the largest cylinder, fully contained
in the 3D Cartesian domain, with the z axis for the symmetry axis: r ∈ [0,min(Lx, Ly)/2]
and z ∈ [−Lz/2, Lz/2] where Lx, Ly, Lz are the domain’s lengths in the respective direction
(see figure 2.27).
The axisymmetric domain, including boundary, is discretised regularly by Nr + 2 (Nr =
min(Nx, Ny)/2) and Nz+2 points in the respective direction, i.e. with the same resolution
as the 3D Cartesian domain:

rl =
(
l − 1

2

)
∆r , l = 0, ..., Nr + 1

∆r =
min(Lx, Ly)/2

Nr
,

(2.141)

and

zk =
(
k − 1

2

)
∆z − Lz

2
, k = 0, ..., Nz + 1

∆z =
Lz
Nz

.

(2.142)

Note that this discretisation avoids the coordinate singularity at the symmetry axis. On
the lower and upper boundary (rl, zk) for l = 1, ..., Nr, k = 0, Nz + 1 the potential is ob-
tained from the previously described spherically symmetric approach. The same condition
is applied at the upper boundary in r direction (rl, zk) for l = Nr + 1, k = 1, ..., Nz. Along
the symmetry axis, a mirror boundary condition is applied:

φ(r0, zk) = φ(r1, zk) , k = 1, ..., Nz. (2.143)

The Poisson eq. (2.140) is then discretised to O(∆r2 + ∆z2) accuracy as follows

φl+1,k − 2φl,k + φl−1,k

∆r2
+
φl+1,k − φl−1,k

2∆rrl
+
φl,k+1 − 2φl,k + φl,k+1

∆z2
= 4πGρl,k (2.144)
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for l = 2, ..., Nr, k = 1, ..., Nz and

φl+1,k − φl,k
∆r2

+
φl+1,k − φl,k

2∆rrl
+
φl,k+1 − 2φl,k + φl,k+1

∆z2
= 4πGρl,k (2.145)

for l = 1, k = 1, ..., Nz. This linear system of Nr ×Nz equations can be solved by a wide
variety of methods (see [131, 137, 142] and references therein).
In the production codes, we have implemented a simple V cycle multigrid method with a
variety of smoothers. This type of iterative methods can solve elliptic PDEs discretised
on N grid points in O(N) iterations [23, 137, 162]. Thorough theoretical and methodical
descriptions of the multigrid method can be found in the cited textbooks and shall not
be repeated here. The only difference of our implementation to the ones in the textbooks
cited above relies in straightforward and standard adaption of the algorithm to non-square
discretisations (Nr 6= Nz) and the usually assumed 2n + 1 grid points (here n is the
number of grids). Non-square discretisations are handled by semi-coarsening, where only
one direction is coarsened, i.e. the direction with more grid points. The 2n + 1 grid points
requirement is ’relaxed’ by coarsening from the full Nr×Nz grid to the one that is closest
to Nr/2×Nz/2 and has (2nr−1 + 1)× (2nz−1 + 1) points, where nr and nz are the number
of grids in the respective direction.
In a parallel distributed memory context, the mapping procedure from the 3D Cartesian
domain to the 2D axisymmetric domain also requires the call to a collective communication
routine (MPI ALL REDUCE) to sum up the contributions from all processes to ρ(r, z). Then
each process has available the axisymmetric density distribution and can solve eq. (2.140)
by the multigrid method to obtain the axisymmetric gravitational potential. Again, since
each process holds the axisymmetric potential for the full domain, no communication is
required during this step.
Similar to the spherically symmetric case, the most expensive part in terms of wall-clock
time and potential parallel scaling bottleneck for the algorithm outlined above, is the
collective communication required for the construction of the axisymmetric density distri-
bution ρ(r, z). However, the overall solution procedure takes only ∼ 5% of the time for a
MHD step in typical production runs. The speed of this may seem surprising compared
to the spherical symmetric timing, because significantly more data (Nr × Nz) has to be
communicated in the axisymmetric case. This may be explained by the fact that the time
for the communication in the spherical case is latency dominated. Further investigations
are needed to clarify this point. However, the implemented version seems to be quite
efficient.
We note that the multigrid scheme has also been adapted for shared memory parallelism
via OpenMP.
As outlined in the previous subsection 2.3.1, general relativity is important in the context
of stellar collapse and some approximate treatment is therefore desirable. As proposed in
[106], an effective relativistic potential for multi-dimensional flows φ(r, z) can be construc-
ted by substitution of the ’spherical contribution’ φ(r) to the multi-dimensional Newtonian
gravitational potential φ(r, z) by the effective potential φeff(r):

φeff(r, z) = φ(r, z)− φ(r) + φeff(r). (2.146)

2.4 Tracer particles

Constraints on the nature of the CCSN explosion mechanism can also come from the com-
position of the ejecta. Because nuclear networks with thousands of isotopes are prohibit-
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ively expensive in terms of CPU time and memory for multi-dimensional computations,
such networks can (currently) only be integrated in a post-processing step. This, however,
neglects the feedback of the nuclear burning onto the hydrodynamics.
The post-processing calculations need as input the thermodynamic conditions (density,
temperature, electron fraction, ...) of a particular fluid element advected with the flow.
In order to record these quantities in our Eulerian code (where the grid is fixed in space),
we introduce a Lagrangian component in the form of tracer particles that we passively
advect with the flow.
In principle, the tracer particles trajectories could also be produced by post-processing the
regular output of a hydrodynamical simulation. This was done e.g. in [120]. With this
approach, one has to make sure that the outputs are sufficiently dense in time in order to
follow ”precisely” enough the particle trajectories. In our 3D simulations, we output only
every 5-8th time step in order to limit the generated data amount. Further, only selected
parts of the total computational domain are written with the full resolution. Because of
these considerations, we opted for a direct implementation of the tracer particles (where
the particles are concurrently evolved in time with hydrodynamics). The trajectories are
thus computed with the full temporal and spatial resolution and accuracy.
The evolution equation for the pth passive tracer particle is then simply

dxp
dt

= v(xp, t), (2.147)

where xp is the particle position and v(xp, t) is the velocity at the particle’s position. The
velocity is obtained by interpolation on the hydrodynamics grid.
The following subsections describe in detail the temporal evolution of the tracer particles,
the mapping of grid quantities to the particles and the (parallel) implementation. Because
there is not much original information in the following subsections, they are more meant
as a documentation.

2.4.1 Time integration

Here we shall describe the used methods to integrate the ODE (2.147) in time. The
particles velocities are obtained by interpolating the velocity field on the hydrodynamics
grid.
The particles are advanced in time from tn to tn+1 = tn + ∆tn, where the time step is
dictated by the hydrodynamics scheme. A simple first order accurate in time update of
the pth particle’s position is then given by Euler’s method

xn+1
p = xnp + vnp∆tn. (2.148)

Here vnp = v(xp, tn) is the fluid velocity at the particle’s position.
We have also implemented a second order accurate in time two-stage Runge-Kutta (RK2)
method:

x∗p = xnp + vnp∆tn

x∗∗p = x∗p + v∗p∆t
n

xn+1
p =

1
2
(
xnp + x∗∗p

)
,

(2.149)

where v∗p = v(x∗p, t
n+1).

For obvious accuracy reasons, the RK2 was used in all simulations. Further, note that
it makes not much sense to use higher than second order methods because the current
hydrodynamics scheme is second order.
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2.4.2 Spatial interpolation

We demand that the interpolation of grid quantities to the particles positions is consistent
with the numerical method used for the hydrodynamics. Since we are using a finite volume
method, the quantities on the grid represent cell averages rather than point values

qni,j,k =
1

Vi,j,k

∫
Vi,j,k

q(x, tn)dV, (2.150)

where qni,j,k is some scalar grid quantity (e.g. density) and Vi,j,k is the volume of cell
(i, j, k). Vectors are interpolated component-wise.
A first order in space conservative interpolation is then simply obtained by

qnp = q(xp, tn) = qni,j,k for xnp ∈ Vi,j,k, (2.151)

i.e. constant interpolation.
For second order accuracy, we use a tri-linear conservative interpolation

q(x, tn) = qni,j,k

+
(
∂q

∂x

)n
i,j,k

(x− xi)

+
(
∂q

∂y

)n
i,j,k

(y − yj)

+
(
∂q

∂z

)n
i,j,k

(z − zk) for xnp ∈ Vi,j,k, (2.152)

where we evaluated the derivatives by simple central differences of the cell averages(
∂q

∂x

)n
i,j,k

=
qni+1,j,k − qni−1,j,k

∆xi−1

2 + ∆xi + ∆xi+1

2(
∂q

∂y

)n
i,j,k

=
qni,j+1,k − qni,j+1,k

∆yj−1

2 + ∆yj + ∆yj+1

2(
∂q

∂z

)n
i,j,k

=
qni,j,k+1 − qni,j,k−1

∆zk−1

2 + ∆zk + ∆zk+1

2

.

Since our hydrodynamics scheme is currently second order, it makes no sense to implement
a higher than second order spatial interpolation here. Furthermore, we also do not limit
the slopes (as is done in the hydrodynamics scheme), because there are no stability issues
for the tracer particles evolution.

2.4.3 Verification

We have tested the tracer particles on the isentropic vortex problem. It is a smooth 2D
hydrodynamics problem with the motion of the fluid swirling around the domain’s centre.
Furthermore, it has an analytical solution and is therefore ideally suited for testing the
tracer particles evolution in conjunction with the hydrodynamics.
We used the initial conditions in 2.1.8, domain [−5, 5]2 and the same series of grids (N2 =
642, 1282, 2562, 5122, 10242). On this we added 2 tracer particles with the following initial
positions

r1 =
[

0.5
0

]
and r2 =

[
2.1
0

]
. (2.153)
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The particles positions in time are then given by

rp(t) = rp(t = 0)
[

cos(Apt)
sin(Apt)

]
, (2.154)

where
Ap =

β

2π
e

1
2

(1−rp(t=0)2) (2.155)

with p = 1, 2 and rp = ||rp||.
The fluid and the particles are then evolved until t = 10 with a fixed time step correspond-
ing initially to ≈ 0.75 CFL. During this time lapse, particle 1 does ∼ 1.84 and particle
2 ∼ 0.23 revolutions around the centre of the domain. We used the Euler and the RK2
scheme for the temporal integration, while keeping fixed the tri-linear spatial interpolation
of the velocity.
The computed L2 error between the numerical and analytical particle positions are dis-
played in figure 2.29. From the figure we conclude that the tracer evolution works well and
is consistent with the expected accuracy of the respective temporal integration scheme.
We note that a similar test was conducted in [24], thought for one grid resolution only.
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Figure 2.29: Errors for the particles 1 and 2 in the isentropic vortex test. The blue solid
(dashed) line is for particle 1 (2) and Euler’s method for time integration. The red solid
(dashed) line is for particle 1 (2) computed with the RK2 method. Note that the lines
show the expected convergence slopes (1st for Euler and 2nd for RK2).

2.4.4 Parallel implementation

The 3D Cartesian domain (in which the particles are advected) is partitioned via cubical
domain decomposition (see subsection 2.1.7). As tracers are advected with the fluid, they
may leave their (initial) host process for an adjacent (in physical space) process. Hence
one important step in the implementation is that of transferring (efficiently) particles from
one process to another as they move. Furthermore, since the number of tracer particles
on a particular process at a given time is not known in advance, the particles have to be
stored in dynamically allocated storage.

70



As a dynamic data structure, we have opted for a so-called doubly-linked list that consists
of a set of sequentially linked records. Each record contains the data for a particular
particle and two links, that point to the previous and next particle record in the list [38]:

particle_list particle{
id % unique identification
r % position
v % velocity
data % particle properties (e.g. density, temperature, ...)
prev % pointer to previous particle in list
next % pointer to next particle in list

}

A leaving (the local process) particle can therefore be easily extracted out of the list.
The dynamical allocatable particle storage has also the advantage, that particles can be
injected at any time during a simulation (e.g. based on certain criteria like being in the
ejecta of the supernova).
For the transfer of the particles, we have tested several implementations in MPI. The
easiest uses collective communication routines. Each process checks for leaving particles
from his (particles) list, removes them and stores them in a communication buffer. All
processes then exchange their leaving particles among each other (MPI ALLGATHERV). Each
process can then catch the particles entered in his (local) domain and append it to his
particle list. However, this implementation proved to be inefficient when a large number
of particles had to be transferred each time step. This is for example the case in the CCSN
simulations involving rotation of the progenitor.
A second implementation used (non-blocking) point-to-point communication between all
the neighbours (in 3D there are 26!). The major limiting factor of this implementation
was the communication latency, i.e. the start of a send/receive operation to a particular
neighbour (especially corners) could take longer than the actual sending/receiving of the
data.
The third implementation also uses point-to-point communications, but in a direction-
ally split manner. Here particles are only transferred to neighbours along a coordinate
direction, but eventually a particle is transferred more than once (see figure 2.30 for a
schematic 2D explanation). This implementation has proven to be the most efficient (of
the former two alternatives), i.e. in CCSN simulations (also with rotation) involving
100′000 particles uses only ∼ 2 − 3% o the total CPU-time of a MHD step. The same
communication algorithm is implemented in FLASH [50].

2.5 Angular momentum and magnetic field boundary con-
ditions

Rotation and magnetic fields play an essential role in the MHD CCSN explosion mech-
anism. There is considerable observational evidence that rotation and magnetic fields are
present in the progenitor and the compact remnant [155, 76, 43].
However, the detailed distribution of rotation and the magnetic field in the progenitor
are observationally hidden so far. From the theoretical side, stellar evolution calculations
have been performed including the effects of rotation and/or magnetic fields [64, 65, 69].
While including highly sophisticated treatments of rotation and magnetic fields, the stel-
lar evolution calculations are performed in 1D spherical symmetry and might therefore
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Figure 2.30: 2D illustration of the dimensionally split inter process transfer of particles.
First, the particles are exchanged along the x-direction (red): particles 1,4 are transferred
to the left process and 3 to the right. For particle 4, we already reached the destination
process and it is therefore added to the process’s particle list. Second, the particles are
exchanged in y-direction (blue). Particles 1 and 3 are only transiting temporarily on the
process they were sent to in x-direction and they reach only after the y-direction transfer
their destination process (where they are added to the process’s particle list). Particle 2
reaches directly its destination process in the y sweep.

miss the inherently multi-dimensional character of the phenomena they try to model. Re-
cently, multi-dimensional stellar evolution calculations have started (see [6] and references
therein).
With all these current limitations in mind, we have taken a parametric approach by
constructing the initial distributions of rotation and/or magnetic field using analytical
expressions in our simulations.
As outlined in 1.3, our simulation setup consists of a 3D Cartesian domain, evolving the
central parts of the star, which is embedded in a larger 1D spherically symmetric domain,
evolving the outer parts. While in the 3D domain, we can follow consistently rotation
and magnetic fields, we encounter consistency problems in the spherically symmetric 1D
domain. Therefore we need some approximation of the evolution of rotation and magnetic
field in the spherically symmetric domain in order to get reasonably accurate boundary
conditions for the 3D domain. In the following subsections, we describe this evolution in
detail.

2.5.1 Evolution of rotation

Here we describe the approximate evolution of rotation in the 1D spherically symmetric
domain. We assume that the rotation law is symmetric around the axis of rotation and is
given in the form

Ω = Ω(r, θ), (2.156)

72



where Ω is the angular velocity as a function of radius r and polar angle θ. We have
implemented several rotation laws found in the literature:

1. Solid body rotation [87]:
Ω(r, θ) = Ω0, (2.157)

where Ω0 is the constant angular velocity.

2. Shellular rotation [115]:

Ω(r, θ) = Ω0,c
R2

0

r2 +R2
0

, (2.158)

where r is the spherical radius, R0 is a constant that controls the degree of differential
rotation and Ω0,c is the central angular velocity.

3. Cylindrical rotation I [45]:

Ω(r, θ) = Ω0,c
X0

r sin(θ) +X0
, (2.159)

where X0 is a constant that controls the degree of differential rotation (as a function
of distance from the rotation axis) and Ω0,c is the central angular velocity.

4. Cylindrical rotation II [45]:

Ω(r, θ) = Ω0,c
X2

0

r2 sin2(θ) +X2
0

, (2.160)

where the constants have the same meaning as for the cylindrical rotation I.

5. Cylindrical rotation III [79]:

Ω(r, θ) = Ω0,c
X2

0

r2 sin2(θ) +X2
0

Z4
0

r4 cos4(θ) + Z4
0

, (2.161)

where Ω0,c, X0 have the same meaning as for the cylindrical rotation I, II and
Z0 controls the degree of differential rotation (as a function of distance from the
equatorial plane).

For the theoretical motivation of the different rotation profiles we refer to the respective
references given above. See figure 2.31 for a graphical representation of the different
rotation laws.
The collapse of the stellar core in the 1D spherically symmetric domain is simulated by
the time-implicit hydrodynamics code AGILE [101] that computes radial profiles for various
quantities (e.g. density, velocity, ...). The 1D collapse code does not include rotation.
At the beginning of a collapse simulation, we generate an axisymmetric 2D grid of the
domain (r ∈ [0, RAGILE]) × (θ ∈ [0, π]) with Nr and Nθ cells in r- and θ-direction. Here
RAGILE is the maximum radial extent covered by the 1D domain initially. Cell interfaces,
denoted by half-integer indices, are given by

r0
l+1/2 = l∆r0

l , l = 0, ..., Nr

θm+1/2 = m∆θ , m = 0, ..., Nθ,
(2.162)
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Figure 2.31: Angular velocity profiles for a domain x ∈ [0, Lx], z ∈ [−Lz/2, Lz/2] with
Lx = Lz = 2: Shellular (R0 = 0.1Lx), cylindrical I and II X0 = 0.1Lx, cylindrical III
(X0 = 0.1Lx, Z0 = 0.1Lz). The color scale ranges from the central angular velocity
Ω0,c = π (red) to zero (blue).

where the increments are given by

∆r0
l =

RAGILE

Nr

∆θ =
π

Nθ
.

(2.163)

Cell centres, denoted by integer indices, are given by

r0
l =

1
2

(
r0
l−1/2 + r0

l+1/2

)
, l = 1, ..., Nr

θm =
1
2
(
θm−1/2 + θm+1/2

)
, m = 1, ..., Nθ.

(2.164)

The superscript on the radial coordinate denotes the time step (initially t0 = 0). The
polar coordinate remains static in time. For each radial cell interface, we also store the
respective mass coordinate given by the 1D code AGILE at the start of the simulation.
We use this mass coordinate (a Lagrangian coordinate) to move the radial cell interfaces
according to the collapse at each time step. Hence the radial coordinate of the 2D grid
moves in time.
On this 2D grid we initialise the rotation profile. The rotation profile is then evolved in
time by assuming that the specific angular momentum is conserved

Ω(rnl , θm) =
(
r0
l

rnl

)2

Ω(r0
l , θm). (2.165)

The r0
l and rnl represent the initial and evolved cell centre at time step tn of the shell’s

mass coordinate, respectively. Note that we also assume that the rotation profile does not
evolve in θ-direction, i.e. we neglect all lateral angular momentum transport.
The 2D rotation profile is then used to set the boundary conditions for the 3D Cartesian
domain. In figure 2.32 we show the total angular momentum contained in the biggest
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enclosed sphere in the 3D domain as a function of enclosed mass at core bounce (crosses)
together with the initial angular momentum distribution over the full (1D and 3D) domain
(solid line). For the figure, we have used a 15M� star from [64] with shellular rotation
(R0 = 1000km), cylindrical rotation II (X0 = 1000km) and cylindrical rotation III (X0 =
Z0 = 1000km). We note that the angular momentum in the 3D domain agrees well with
what would be expected of angular momentum conservation. Furthermore, we note that
the angular momentum profile in the 3D domain agrees well with the initial profile. Hence
no significant angular momentum redistribution has occurred on the collapse time scale.
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Figure 2.32: Total initial angular momentum of the collapsing core as a function of mass
for shellular (solid blue), cylindrical II (solid green) and cylindrical III (solid red). Crosses
represent the total angular momentum as a function of enclosed mass in the biggest en-
closed sphere in the 3D Cartesian domain at core bounce. The analytical and numerical
profiles agree rather well.

2.5.2 Evolution of the magnetic field

In this subsection we describe the approximate evolution of the magnetic field in the 1D
spherically symmetric domain. We assume that we are given the magnetic field in the
same axisymmetric 2D domain as the rotation of previous subsection:

B(r, θ) = Br(r, θ)er +Bφ(r, θ)eφ +Bθ(r, θ)eθ, (2.166)

where Br, Bφ, Bθ are the components of the magnetic field and the er, eφ, eθ the unit
vectors in spherical coordinates.
We have currently implemented 2 magnetic field initial conditions:
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1. Uniform poloidal and toroidal field:

B(r, θ) = Bpol (cos(θ)er − sin(θ)eθ) +Btoreφ, (2.167)

where Bpol and Btor are the constant poloidal and toroidal field strengths, respect-
ively.

2. Decaying with radius poloidal and toroidal field:

B(r, θ) = ∇×A+Btor
R2

0

r2 +R2
0

eφ, (2.168)

where R0 is a constant regulating the decay and a vector potential given by

A(r, θ) =
[
0,
Bpol

2
R3

0

r3 +R3
0

r sin(θ), 0
]T
. (2.169)

For r < R0, the magnetic field strength is approximately uniform and for r > R0

the magnetic field strength diminishes monotonically.

To evolve the magnetic field in the 1D spherically symmetric domain, we use the same 2D
axisymmetric grid as for the rotation.
As mentioned in the previous subsection, the 2D grid moves radially in time according
to the mass coordinate from the 1D code AGILE. In polar direction, the grid is fixed in
time. In order to follow the field evolution, we use a flux conserving constrained transport
algorithm. This requires a staggered placement of the magnetic field components on the
2D grid: Br

l+1/2,m, Bφ
l,m+1/2, Bθ

l,m. Here, integer and half-integer indices denote cell centres
and cell interfaces, respectively. For the radial and polar components, we have only to
take into account the area changes between consecutive time steps:

Br,n
l+1/2,m

[
2π(rnl+1/2)2 sin(θm)∆θ

]
= Br,n+1

l+1/2,m

[
2π(rn+1

l+1/2)2 sin(θm)∆θ
]

Bθ,n
l,m+1/2

[
2π(rnl ) sin(θm+1/2)∆rnl

]
= Bθ,n+1

l,m+1/2

[
2π(rn+1

l ) sin(θm+1/2)∆rn+1
l

]
,

(2.170)

where the expressions in square brackets are the areas of the cell faces. This takes into
account the magnetic field changes due to compression. By construction, the transport
scheme also ensures the (discrete) conservation of the zero divergence of the magnetic field
(if it is zero initially).
The azimuthal component does not only change by compression, but also by winding due to
differential rotation. The induction equation in spherical coordinates for the φ-component
of the magnetic field is given by

∂Bφ

∂t
=

1
r

[
∂

∂r

(
r
(
vφBr − vrBφ

))
− ∂

∂θ

(
vθBφ − vφBθ

)]
. (2.171)

This equation is then solved in time by simple finite differencing. The azimuthal velocity
vφ is obtained by interpolation in the angular velocity profile. Since we allow only radial
motion, i.e. the motion given by the 1D code AGILE, vθ = 0 and we obtain the radial
velocity by interpolation in the AGILE profiles.
The magnetic field on the 2D axisymmetric domain grid is used to set the boundary con-
ditions of the 3D Cartesian domain by simple interpolation. The just described simplified
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evolution of the magnetic field takes only into account the magnetic field changes induced
by compression and winding. Furthermore, the magnetic field has no influence on the
1D spherically symmetric domain simulated by AGILE. This is justified by the reasonable
assumption that the magnetic field is not dominating the dynamics in the outer layers of
the star.
We note also that the scheme described here does not guarantee that the magnetic field
boundary setup is exactly divergence free. The divergence error is of the order of the
truncation error made in interpolating from the 2D axisymmetric grid to the 3D Cartesian
domain. However, since the flow is expected to be smooth in the outer layers of the star
and in the 3D boundary domain, the truncation errors remain small.

2.6 Electron neutrino leakage scheme in 3D

The inclusion of neutrino physics is an essential ingredient of CCSN simulations. An
overwhelming fraction (∼ 99%) of the by the collapse liberated gravitational binding
energy is converted into neutrinos of all flavours. Neutrino losses make the shock stall in
the early phase after bounce. On a longer time scale hot neutrinos from the innermost
regions of the forming neutron star are thought to deposit some of their energy in the
region behind the shock, thereby initiating the supernova explosion. This is the so-called
delayed neutrino-driven explosion mechanism. Furthermore, the neutrinos also influence
the matter composition, making the regions below the shock very neutron rich. Some of
this neutron rich matter is expelled in the explosion and thereby setting the stage for the
synthesis of the heavy elements and the implied galactic chemical evolution. Especially
the MHD CCSN mechanism is believed to be a promising site for r-process nucleosynthesis
in the early chemical evolution of the universe.
To date, the most micro-physically complete study of MHD CCSN explosion mechanism
was performed by Burrows et al. [30]. They present 2D axisymmetric simulations in
Newtonian gravity employing a progenitor from stellar evolution calculations [65] and the
microphysical equation of state (EoS) of Lattimer and Swesty (LS) [86]. The neutrino
transport is approximated by multi-group flux limited diffusion (MGFLD). According
to their findings, the neutrino heating effect is subdominant in the computed models.
Neutrinos only contribute ∼ 10-25% to the final explosion energy.
While neutrino heating may so be neglected as a first approximation, the neutrino cooling
cannot. Neutrino cooling is responsible for the shock stall and for the neutronisation of
the matter below the shock, which is so crucial for the nucleosynthesis yields.
In order to capture (approximately) the most important neutrino cooling effects, we have
coupled a sophisticated spectral leakage scheme for electron neutrinos and anti-neutrinos
to our 3D MHD code. The spectral leakage scheme was developed by A. Perego. The
accuracy of the scheme was verified in 1D spherical symmetry by comparison against
state-of-the-art simulations of CCSN with Boltzmann neutrino transport [97]. Excellent
agreement was obtained for both pre- and postbounce (∼ 100 ms) phases (A. Perego,
private communication). Later on, neutrino heating effects and also cooling by µ and τ
neutrino flavours become important. While a leakage scheme for µ and τ neutrinos is
available in 1D (also developed by A. Perego), we have not included it into our 3D code
so far. However, this is planned in future upgrades.
The idea of a leakage scheme is to accurately estimate the effects of neutrino cooling with
high computational efficiency. Deep inside the forming neutron star, the neutrinos and
the fluid are tightly coupled (nearly in equilibrium), i.e. they are trapped. On their way
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out of the high density regions, neutrinos go from a (nearly) isotropic diffuse regime to
the uncoupled (with matter) free streaming regime. Where the neutrinos are trapped
in matter, they evolve in a hydrodynamic manner and slowly drain by diffusion. The
fluid advects a neutrino particle number fraction Yν and an associated specific energy Zν
according to advection equations

∂ρYν
∂t

+∇ · (vρYν) = ˙(ρYν) (2.172)

∂(ρZν)3/4

∂t
+∇ ·

(
v(ρZν)3/4

)
= ˙(ρZν)

3/4
, (2.173)

where ν denotes νe and νe. The right hand side of the equations represent local source
(particle/energy creation) or sink (particle/energy absorption or drain out) of trapped
neutrinos. For the exact definition and the motivation of these equations we refer to
[127, 102]. These source terms are estimated on the basis of local production and diffusion
rates and the associated time scales. In regions where neutrinos stream freely, the created
neutrinos simply escape and Yν ∼ Zν ∼ 0. The production rates depend only on the
local thermodynamic state of matter and the locally present trapped neutrino fractions
(blocking effects). On the other hand, the diffusion rates depend simultaneously on local
and global quantities. The local quantity is the mean free path (of neutrino propaga-
tion) and the global quantity is the optical depth. In the intermediate semi-transparent
regime, between diffusion and free streaming, an effective emission rate is computed by
a smoothed minimum between production and diffusion rates. The leakage scheme also
provides the source terms which enter in the equation of (magneto-) hydrodynamics: an
electron fraction, an energy and a momentum (due to neutrino radiation stress) change
rates. For the exact details of the leakage scheme we refer to [127] and references therein.
Currently, the leakage scheme incorporates only neutral and charged weak interaction
processes that are expected to play a dominant role. For the neutrino absorption and
emission, the following charged current reactions are included:

e− + p ↔ n+ νe (2.174)
e+ + n ↔ p+ νe (2.175)

e− + (A,Z) ↔ (A,Z − 1) + νe. (2.176)

Here (A,Z) denotes a nuclei with mass number A and charge Z. For the neutrino scat-
tering, the following neutral and charged current reactions are included:

ν +N ↔ ν +N (2.177)
ν + (A,Z) ↔ ν + (A,Z). (2.178)

Here N denotes a free neutron or proton and ν denotes an electron neutrino or anti-
neutrino. As already stated, only the reactions expected to have a predominant role are
included in the current version of the leakage scheme. For a complete list of reactions and
their discussion in the CCSN context we refer to [26, 108] and references therein. Note
that the considered reactions are highly energy dependent on the neutrino energy [26] and
therefore a spectral treatment is adopted in the leakage scheme. The scheme avoids the
usage of mean energies for the determination of neutrino source functions or opacities.
In the following, we describe the multi-dimensional implementation of the leakage scheme.
The only quantities that do not readily translate to more than one dimension is the non-
local optical depth and the neutrino stress. Since we are here primarily interested in
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the simulation of MHD CCSN, involving a large degree of rotation, we shall reduce the
dimensionality by exploiting the (approximate) symmetry around the rotational axis (as
we already did for the gravitational potential in section 2.3).
Therefore we perform a mapping of the 3D Cartesian domain onto an axisymmetric polar
grid, encompassing the biggest enclosed sphere in the 3D domain , by averaging the rel-
evant quantities. The polar grid has then a series of radial grids along each discrete polar
angle: a so-called ray. The optical depth is then calculated along each ray. Note that
this is performed in a spectral manner: for each energy bin separately. Also the neutrino
stresses are evaluated along the rays based on the recipe given in [96]. For the application
of the leakage scheme in 3D, we then simply interpolate to the respective position the
optical depth and the neutrino stress. Then the scheme can be applied, giving all the
change rates for the hydrodynamic quantities. Therefore, the scheme is full 3D, apart
from the computation of the optical depth and the acceleration due to neutrino stresses.

2.6.1 Verification of the implementation

In this subsection, we verify the 3D implementation of the leakage scheme. We compare a
3D simulation to a state-of-the-art 1D spherically symmetric general relativistic simulation
performed with AGILE-BOLTZTRAN [97].
For the comparison, we use a solar-metallicity 15M� star from [64]. The reference simu-
lation was kindly performed by A. Perego. The 1D simulations used 103 adaptive spatial
zones ranging from the centre of the progenitor star to about 7000 km. A constant-pressure
boundary condition was used at the barely moving surface. The neutrino energy was re-
solved with 20 geometrically increasing energy groups, the first centred at 3 MeV and the
last at 300 MeV. The propagation angle has been discretised with six angles suitable for
Gaussian quadrature. The nuclear and weak interaction physics input is the same as in
[100].
The multi-dimensional simulation consists of a inner 3D Cartesian domain of size 6003 km3

discretised uniformly by 6003 cells, i.e. the constant resolution is 1 km. No rotation and
magnetic fields were set up. In the 3D leakage scheme, the neutrino energy was resolved
with 12 geometrically increasing energy groups, the first centred at 3 MeV and the last
at 200 MeV. For the computation of the optical depth, we have used a polar grid with
uniform 1 km radial spacing and 30 uniform angular rays covering the full [0, π]. Like the
1D simulation, we used the LS EoS with incompressibility modulus K = 180. We have
used the effective potential to mimic general relativistic effects 2.3.
We note that the neutrino reactions used in the 1D reference simulation are much more
complete (see [100] for a complete list). We have found empirically, that the additional
neutrino physics may be mimicked by simply switching off the acceleration due to neutrino
stresses in the 3D simulation. This results in a reduced expansion of the shock and a shock
stall at smaller radii, which is beneficial for the limited radial extent (∼ 300 km) of the
3D domain. Therefore we neglect neutrino stresses in the 3D domain in the following
comparison.
Figures 2.33, 2.34, 2.35, show the 3D simulation (spherically averaged) profiles (blue)
together with the reference 1D simulation profiles (red) at time -1, 0, 2, 5, 10 and 50 ms
with respect to bounce, respectively.
Figure 2.33 compares the 3D (spherically averaged) profiles (solid blue) with the reference
1D solution (solid red) for selected quantities a time slices -1 ms (left) and 0 ms (right)
with respect to bounce. We notice the the reference solution deleptonises a bit more, i.e.
the electron fraction Ye is somewhat overestimated in the 3D simulation. Beside Ye, all
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other quantities match very well. Also the sock positions are nearly identical 1 ms after
bounce.
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Figure 2.33: Density, velocity, electron fraction and entropy as functions of radius fro
a simulation with the 3D leakage (solid blue line) and a reference simulation based on
Boltzmann neutrino transport (solid red line). The comparison is shown at two different
time instances: at 1 ms (left) before core bounce and at bounce (right). Significant
differences are only visible in the electron fraction profiles: the deleptonisation during
collapse is slightly underestimated in the leakage simulation.

Figure 2.34 compares the profiles at time 2 ms (left) and 5 ms (right) postbounce. At 2
ms, we observe that the shock in the reference solution propagated ∼ 10 km further in
radius as in the 3D leakage simulation. The reference solution also started the neutrino
burst (dip in Ye) and these emitted neutrinos lead to some neutrino absorption ahead of
the shock (manifest in the small peak at ∼ 50 km). In the 5 ms postbounce time slice, is
On the other hand, in the 5 ms time slice, the shock position in the 3D profiles is ∼ 10
km ahead of the reference solution. The neutrino burst has also started to deleptonise the
3D solution, however, somewhat less than in the reference solution. This lower energy loss
may explain the faster shock propagation.
In figure 2.35, profiles at 20 ms (left) and 50 ms (right) are shown. At 20 ms, the 3D
leakage has caught up with the postshock deleptonisation, i.e. the Ye profile nearly matches
the reference solution. The 3D solution shock is still ∼ 10 km ahead of the shock in the
reference solution. The 50 ms time slice shows that the leakage somehow overestimates the
neutrino cooling. Hence the lower electron fraction profile. Furthermore, the postshock
region (∼50-100 km) is cooler (lower entropy) in the 3D solution than in the reference
solution due to the overestimated cooling. This also causes the difference in the shock
location of ∼ 10 km.
Figure 2.36 gives a short overview of the comparison in the form of shock trajectories
and neutrino luminosities for the approximate 3D leakage simulation (blue) and the refer-
ence 1D Boltzmann neutrino transport simulation (red). The left panel shows the shock
trajectories. As stated before, the very early postbounce phase (. 3 − 4 ms) shows nice
agreement in the shock position. At later times, the shock radius in the 3D leakage sim-
ulation is first overestimated by ∼ 10 km (∼ 5− 35 ms), followed by an underestimation
by . 30 km and an overestimation again by ∼ 30 km (40-200 ms). The right panel shows
the neutrino luminosities measured at 300 km for electron neutrinos (solid lines) and anti-
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Figure 2.34: Same presentation as in figure 2.33. Here the comparison is shown at two
later time instances: at 2 ms (left) after bounce and 5 ms (right) after bounce. The 3D
leakage simulation underestimates the shock position at 2 ms, and overestimates it a bit
at 5 ms after bounce. The neutrino burst deleptonisation is also somewhat delayed in the
approximate 3D simulation.
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Figure 2.35: Same presentation as in figure 2.33. Here the comparison is shown at two
later time instances: at 20 ms (left) after bounce and 50 ms (right) after bounce. In the
20 ms time slice, the profiles agree rather well. At 50 ms, the leakage overestimates the
cooling by neutrino emission and this results in a lower electron fraction profile.

neutrinos (dashed lines). In the reference solution (red), the luminosities are measured
in the comoving frame. In the 3D leakage (blue), we have also corrected for the redshift.
We observe that in the collapse phase the approximate 3D simulation underestimates the
luminosity. Therefore the deleptonisation is less pronounced and this is consistent with
the observation (in figure 2.33) that the Ye profile is a bit higher. The peak luminosity (in
electron neutrinos) is also overestimated by ∼ 15%. Later on, the luminosity is overestim-
ated until ∼ 70 ms. This increased energy loss in the 3D solution may explain the rapid
slow down of the shock propagation. It also explains the lower Ye profile in the left panel
of figure 2.35. At times & 80 ms, the luminosity of the electron neutrinos agree more or
less. We note that also the electron anti-neutrino luminosity is nicely reproduced, thought
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that it is somewhat lower in the 3D leakage simulation for times & 40 ms.
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Figure 2.36: The left panel shows the shock position as a function of time for the 3D
leakage simulation (solid blue) and the reference Boltzmann solution (solid red. The right
panel shows the electron neutrino (solid line) and anti-neutrino (dashed line) luminosities
as a function of time with same colour convention as the left panel.

In summary, we believe that we have complemented our 3D MHD CCSN model with
(dominant) neutrino physics in the form of a 3D spectral leakage scheme. We have
confirmed the ability of the scheme to (qualitatively) reproduce the effects of neutrino
cooling: deleptonisation during collapse, neutrino trapping, neutronisation burst and the
postbounce deleptonisation. The scheme gives also access to observable in the form of
neutrino luminosities. While the magnitude of the signal may show some deviations, we
believe that characteristic features from multidimensional effects may well be extracted.
Furthermore, even that the electron fraction can be underestimated, we think that it still
can be used as input for detailed nucleosynthetic analysis. The 3D leakage scheme offers a
computationally efficient approach to the modelling of CCSN in multi-dimension. These
simulations may serve as a first filter to identify interesting effects which can then be stud-
ied more in depth by more refined multidimensional neutrino transport approximation like
the isotropic diffusion source approximation (IDSA) [102].
As already stressed, the spectral leakage scheme currently includes only reactions thought
to play a dominant role. During the collapse phase, we are missing inelastic electron-
neutrino electron scattering, which thermalises the neutrinos very effectively [26]. This
leads to enhanced neutrino losses, because the neutrino mean free paths vary inversely with
the square of the neutrino energy. This may partly explain our higher central value of Ye in
the 3D leakage simulation when compared to the Boltzmann reference. Furthermore, the
cooling by µ and τ neutrinos and anti-neutrinos has so far been neglected. The inclusion
of these effects will be addressed in subsequent work.
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Chapter 3

Simulation of Magneto-Rotational
Core-Collapse

3.1 Introduction

Shortly after the discovery of pulsars, it was reasonable to explore the influence of rotation
and magnetic fields (associated with pulsars) on the CCSN explosion mechanism [19, 87,
110, 124, 151]. These pioneering studies came to the conclusion, that the typical pulsar
dipole fields of ∼ 1012 G and rotation periods of several to several tens of milliseconds
could not produce strong and robust magneto-rotationally induced explosions and seemed
thus unlikely.
However, several factors led to a need to reconsider this conclusion. There is growing
observational evidence that CCSN are asymmetric and are substantially directed along a
single direction in space [167, 168, 169]. Observation also suggest, that it is the explosion
mechanism itself that is responsible for this asymmetry: the asymmetry rises as a function
of time as the ejecta expand and one looks more deeply into the core material. But most
importantly, the magneto-rotational CCSN (MHD-CCSN) explosion mechanism gained
again in weight with the discovery and the interpretation of anamolous X-ray pulsars and
soft gamma-ray repeaters as magnetars: strongly magnetised neutron stars with (dipolar)
magnetic field strengths of ∼ 1015 G [44, 80, 157]. Indeed, while modern multi-dimensional
models of the explosion of CCSN are very asymmetrical (due to multi-dimensional fluid
instabilities), MHD-CCSN models are fundamentally so.
In the MHD-CCSN explosion mechanism, the explosion is powered by the free energy
stored in differential rotation. The typical rotational kinetic energy of a proto-neutron
star (PNS) may be estimated to

Trot =
1
2
IPNSΩPNS ≈ 1× 1051 erg ×

(
MPNS

1.5M�

)(
PPNS

2 ms

)−2( RPNS

10 km

)2

, (3.1)

where MPNS is the mass, RPNS the radius, PPNS the period, ΩPNS the angular velocity and
IPNS the moment of inertia of the PNS. The amount of free energy in differential rotation
is typically a fraction of the rotational kinetic energy. Hence, for enough rapid rotation
combined with an efficient way of extracting this free energy in differential rotation robust
explosions can in principle be obtained. The efficient extraction mechanism is provided
by the magnetic field, which may be sufficiently amplified and result in a strong magnetic
stress blowing off the matter in the vicinity of the PNS thereby driving an explosion.
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From the above estimate, it becomes clear that a viable MHD-CCSN model requires rapid
rotation, which the currently stellar evolution models including magnetic fields do not have
[65]. In these models, the phenomenologically included magnetic fields significantly slow
down the core’s rotation making it inadequate for powering an explosion. However, can
we take these one-dimensional stellar evolution calculations as granted? Or does there still
exist the possibility to produce supernova progenitors with fast rotation, but that only a
smaller subset of massive stars take this evolutionary path? The low-metallicity models of
Woosley & Heger [176], some of which they suggest as GRB progenitors, have much faster
rotation rates. Moreover, Woosley & Heger suggest that these progenitors may represent
only a fraction, perhaps 1%, of all the massive stars. Hence MHD driven explosions are
still possible, but it might be that not all CCSN explode by this mechanism. This is
also in accord with the suggestion that MHD-CCSN explosions present a promising site
for r-process nucleosynthesis [110, 112, 147]. The large scatter observed in the r-process
element abundances at low metallicities suggests that only a small subset of events have
produced that pattern.
The classical way of magnetic field amplification in a differential rotating environment
is magnetic winding [171, 172]. However, the magnetic field grows only linearly in time
by field winding. If the initial field is low, the amplification process may have to last
for a long time to reach a dynamical importance and by then the explosion may already
have been initiated by another mechanism (e.g. delayed neutrino heating) or a black
hole may have formed. An amplification process which can amplify the magnetic field
exponentially in time was introduced into supernova theory by Akiyama et al. [1]: the
so-called magneto-rotational instability (MRI) [12, 11, 128]. The MRI is driven by the
negative angular velocity gradients which are unavoidable in the context of CCSN [125]
and has the capability to amplify the magnetic field to dynamical importance. The growth
of the magnetic field is exponential in time with a characteristic timescale of the rotational
period and this whatever the strength of initial seed field.
The possibility to amplify the magnetic field sufficiently rapidly (by the MRI or, eventually
by some other dynamo process) together with the discovery of magnetars relaunched the
interest in the MHD-CCSN explosion mechanism [4, 3, 2, 30, 79, 82, 114, 145, 153, 154, 181,
122, 34]. However, only few of MHD-CCSN numerical investigations have been performed
in a three-dimensional setting [114, 140]. Furthermore, these studies have been performed
with simplified input physics employing a gamma-law gas and no neutrino transport.
In the present chapter, we will add up all the components described in the previous chapter
and apply them to the simulation of MHD-CCSN. In section 3.2, we describe our simulation
setup, initial conditions and model parameters. We also discuss some of the model’s merits
and drawbacks. Section 3.3 is then devoted to the discussion of the simulations outcome,
including the magnetic field amplification mechanism, the formation and propagation of
the bipolar outflow and the explosion energy, ejected mass and its composition.

3.2 Initial setup and model parameters

We performed the calculations presented here with the computational setup as described
in 1.3. The implementation details are described in chapter 2. The central 3D Cartesian
domain spans 6003 km3 and is uniformly discretised by 6003 cells, resulting in a resolution
of 1 km. The magnetic fluid is evolved with the ideal MHD code FISH. The gravitational
potential is approximated from an effective axisymmetric mass distribution that includes
radial general relativistic (GR) monopole corrections (see 2.3 and [106]). For the EoS we
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have used the Lattimer & Swesty EoS [86] with nuclear compressibility 180 MeV. The
transport of the electron and anti-electron neutrinos is approximated by a 3D spectral
leakage scheme based on a microphysical and energy dependent axisymmetric ray-by-ray
approximation of the optical depth (see 2.6). The neutrino energy was discretised with
12 geometrically increasing energy groups spanning the range Eν = 3− 200 MeV. For the
computation of the optical depth, we have used a polar grid encompassing the full 3D
Cartesian domain discretised uniformly with 1 km radial spacing and 30 uniformly spaced
angular rays covering the full [0, π] realm. Thus, we can only follow neutrino cooling
effects. However, the up to now microphysically most complete 2D axisymmetric study
of MHD-CCSN with multigroup flux-limited diffusion neutrino transport performed by
Burrows et al. [30] have shown, that neutrino heating contributes only 10 − 25% to the
explosion energy and is therefore subdominant. This justifies our pragmatic approach at
first.
The progenitor employed for the simulations presented here is the rotating 15M� model of
Heger et al. [64] (s15.0). We have computed five models with varying analytical rotation
laws (see 2.5.1). The detailed parameters for the setup of rotation is shown in table
3.1. All models have, however, the same initial amount of angular momentum. Only the
spatial distribution of angular momentum and the with it associated degree of differential
rotation is varied. In figure 3.1, we show the angular momentum distribution and the with
it associated ratio of rotational kinetic energy to gravitational binding energy. As one can
see, the solidly rotating model A has the lowest energy and the differentially rotating
models have roughly a decade more rotational energy. This illustrates the evident fact
that solid-body rotation is the lowest energy state. This energy excess in differential
rotation can be tapped by the magnetic field as will be illustrated in the following.
For the magnetic field, we have assumed a homogeneous distribution of purely poloidal
field throughout the computational domain of strength 5 × 1012 G. The parameters for
the magnetic setup are summarised in table 3.2.
Note that model A is non-rotating, non-magnetic and serves as a reference for identifying
effects from rotation and the magnetic field (this is the model used in the verification of
the leakage scheme in 2.6).
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Figure 3.1: Initial angular momentum distribution (left) and ratio of rotational kinetic
energy to gravitational binding energy (right) for all rotating models Trot/|W |.

Given our parameters, a few comments are in order. We note that Heger et al. have
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Model Rot. type R0 [km] X0 [km] Z0 [km] Ω0,c P0 [s] Trot/|W |
A - - - - 0 ∞ 0
B solid - - - 0.074 84.91 7.58× 10−4

C shellular 1000 - - π 2 7.63× 10−3

D cylindrical III - 1000 1000 5.47 1.15 2.23× 10−2

E cylindrical II - 1000 - 2.40 2.62 6.17× 10−3

Table 3.1: Parameters of the initial rotation for all computed models: the rotational law
and the with it associated differential rotation parameters (R0, X0, Z0), the initial angular
velocity Ω0,c, the initial period P0 and the initial ratio of rotational kinetic energy to
gravitational binding energy Trot/|W |.

Model Mag. type Bpol [G] Btor [G] Tmag/|W |
A - 0 0 0
B uniform 5× 1012 0 2.63× 10−8

C uniform 5× 1012 0 2.63× 10−8

D uniform 5× 1012 0 2.63× 10−8

E uniform 5× 1012 0 2.63× 10−8

Table 3.2: Parameters of the initial magnetic fields for all computed models: the magnetic
field type, the poloidal field strength Bpol, the toroidal field strength Btor and the ratio of
magnetic energy to gravitational binding energy Tmag/|W |.

also computed a series of models including magnetic fields [65]. The magnetic version
of the employed progenitor in the present study is m15b2. The iron core structure of
this progenitor is very similar to the one used here. However, these magnetic models
experience a significant magnetic spin-down during stellar evolution and generally result
in slowly rotating iron cores with central periods of ∼ 30− 50 s. The resulting rotational
kinetic energies at bounce are consequently inadequate to power a supernova explosion.
The models also predict toroidal field strengths of only few ∼ 109 G and roughly three
decades smaller poloidal field strengths. Moreover, their models have also the merit to
produce neutron stars with rotational velocities at birth in the upper range values given by
observation (periods of ∼ 10 − 15 ms). On the other hand, stellar evolution calculations
not including magnetic fields, i.e. ignoring magnetic torques, give rotational velocities
which are in agreement with the values used here [64, 69].
The above said, how do we explain or justify the seemingly unrealistic initial rotation
rates and magnetic fields we adopt here? The usual argument found in the literature,
underlines the fact that current state-of-the-art stellar evolution models are computed in
1D spherical symmetry employing (”only” theoretically) well-motivated prescriptions for
rotation and magnetic fields. So how well do these manifestly dimensionally restrained
calculations model the inherently multidimensional character of rotation and magnetic
fields? Can we ”trust” the rotation and magnetic field distributions from these models?
These questions are of course difficult to answer definitively and can ultimately only be
resolved once multidimensional stellar evolution models become available.
The line of argument in the preceding paragraph, however, does not acknowledge all
the merits of these stellar evolution calculations and may therefore be too simplistic [105].
More conservatively, one can suppose that there might be a subset of supernova progenitors
that feature rapid rotation and (strong) magnetic fields. For example, the low-metallicity
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models of Woosley & Heger [176], some of which they suggest as GRB progenitors, have
much faster spinning cores at collapse even when magnetic fields are included in the
evolution calculations. The total angular momentum of the iron core at the onset of
collapse derived there is comparable to the one used here. Moreover, they speculate that
roughly 1% of all stars above 10M� might have the here desired properties.
The MHD-CCSN explosion mechanism has been suggested to be a promising site for r-
process nucleosynthesis acting already in the early galaxy. This rarity of progenitors with
these special conditions is also consistent with the observed scatter of r-process elements
abundances at low metallicity indicating that these elements have been produced in relat-
ively scarce events [147]. Therefore, the (eventually rare) progenitor configurations used
here could provide an r-process site in agreement with observations of the early galaxy
and this possibility is explored on the basis of the models computed here by C. Winteler
[174].
However, another few comments are in order concerning our initial very strong magnetic
field strength. Currently, the aim to perform global 3D numerical simulations of CCSN
and the aim to simulate the local flow instabilities leading to magnetic field amplification
(e.g. MRI, dynamo, ...) seem mutually excluding objectives [123]. Given this difficulty,
we shall follow here the common approach in the literature by taking sufficiently strong
initial magnetic fields. By doing so, it is hypothesised that there is a physical process that
can sufficiently quickly amplify the magnetic field to dynamic importance by extracting
the free rotational energy in differential rotation. Furthermore, it is assumed that the
resulting MHD jet structure has lost the memory of the exact initial distribution of the
magnetic fields. This motivates our choice of initial poloidal field strength, which by flux
compression and rotational winding leads to magnetic fields whose magnitudes roughly
agree with those expected from the physical amplification process. This physical process
may be the MRI and/or some other dynamo process. The estimates given in [1, 30] show,
that for the MRI and the here used rotational velocities a field strength of several 1015 G
can be achieved within 100-200 ms with a weak dependence on the initial magnetic field.

3.3 Numerical results

3.3.1 Global dynamics

All the computed models undergo gravitational collapse and experience core-bounce due to
the stiffening of the EoS above nuclear densities (ρnu ≈ 2× 1014 g/cm3). Several physical
properties are listed in table 3.3. No model undergoes bounce dominated by centrifugal
forces nor magnetic pressure.

Model ρmax/1014 [g/cm3] Trot/|W | Tmag/|W |
A 4.57 0 0
B 4.56 9.86× 10−5 2.21× 10−4

C 4.15 6.81× 10−2 3.02× 10−4

D 3.31 1.46× 10−1 3.13× 10−4

E 4.34 4.68× 10−2 2.18× 10−4

Table 3.3: Bounce characteristics for all computed models: the maximum density ρmax,
the ratio of rotational kinetic energy to gravitational binding energy Trot/|W | and ratio
of magnetic energy to gravitational binding energy Tmag/|W |.
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All rotating models have the same initial total angular momentum, but with differing
spatial distributions (see figure 3.1). The distribution then determines how much total
angular momentum is present in the interior of the core that collapses nearly homologously
v ∝ r (the so-called inner core), which then sets the relative importance of centrifugal
forces at bounce. The relative importance of centrifugal forces is then directly reflected
in the maximum density at bounce. The solidly rotating model B bounces at the same
maximum density as the non-rotating model A. The angular momentum distribution in
model C and E is very similar. This explains that both models bounce at similar ρmax with
slightly higher density for model B, which is consistent with the initial angular momentum
distribution (see figure 3.1). The inner core of model D possesses significantly more angular
momentum and therefore bounces at lower ρmax than all other models. But note that the
maximal density of model D is still above nuclear saturation density and therefore this is
not a centrifugal bounce per definition. The same trend is also reflected in the ratio of
rotational kinetic energy Trot to gravitational binding energy |W | as can be seen in table
3.3.
In figure 3.2, we show the evolution of the maximum density for all computed models.
The non-rotating model A and the slowly rotating model B show a very similar progres-
sion. The models C, D and E show, after relaxation of the bounce oscillations, a gradual
increase in density. This is due to magnetic stresses, which gradually redistributes angular
momentum causing a spin-down of the PNS.
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Figure 3.2: Evolution of the maximum density for all models. Note that the solidly
rotating model B has a bit higher maximum density than the non-rotating model A,
which may seem counterintuitive. We attribute this very small difference to differing code
versions used for the two computations (a more recent code version was used for model
B). However, the differences are very small.

Conservation of angular momentum in combination with the gravitational collapse leads
to a massive spin-up and hence rotational deformation of the core. In figure 3.3, we show
density contours for all rotating models at ∼ 5 ms after core bounce. Due to the very
low rotation, model B shows (upper left panel) no sign of deformation and is actually
very similar to the non-rotating model A (not shown.) However, model C, D and E show
significant rotationally induced deformations. The high density regions are more and
more oblate, where the degree of deformation is set by the enclosed amount of angular
momentum. These deformation show, that an axisymmetric gravitational potential as
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described in 2.3.2 is necessary.
We note, however, that a 3D Poisson solver should be incorporated into our models. This
is currently in development and preliminary results look promising (N. Vasset, private
communication). As shown in [141, 82], non-axisymmetric motions and their associated
non-axisymmetric gravitational potential may have interesting interaction and feedback
onto the global dynamics of the high density regions.

Figure 3.3: Density contour in the yz-plane ∼ 5 ms after core bounce for all rotating
models: Upper left B, upper right C, lower left D and lower right E.

In figure 3.4, we show entropy contours for all rotating models. From the figure, it is appar-
ent that the different rotation laws alter also the shape of the shock wave and the strength
of the shock wave. This is visible by the magnitude of the entropy of the shocked material.
While for the solidly rotating model B the shock is very spherical (actually very similar
to the non-rotating model A, which is not shown), the differentially rotating models C,
D, and E significantly deviate from spherical symmetry and feature also higher entropies.
As pointed out in [49, 79], the polar regions reach higher entropies than equatorial regions
because of a stronger bounce in the poles. Along the poles, where centrifugal support is
negligible, much higher infall velocities are achieved than in the equatorial regions. This
effect seems to be particularly strong for model D. In this model differential rotation is
very strong and the with it associated conversion of poloidal field to toroidal field leads to
a strong increase in magnetic pressure along the rotational axis. This already launches a
bipolar jet along the rotational axis. For models C and E, however, it is clearly seen that
higher entropies are generated along the poles than in the equatorial regions.
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Figure 3.4: Entropy contour in the yz-plane ∼ 5 ms after core bounce for all rotating
models: Upper left B, upper right C, lower left D and lower right E.

3.3.2 Magnetic field amplification

In this subsection, we discuss the magnetic field amplification in detail. In figure 3.5,
we show the evolution of the maximum poloidal and toroidal field strength as a function
of maximum density during collapse up to core bounce. The figure displays all rotating
models. Note that we define the poloidal and toroidal field components from the Cartesian
components as follows

Bpol =
(
B2
x

x2

x2 + y2
+B2

y

y2

x2 + y2
+B2

z

)1/2

Btor = −Bx
y√

x2 + y2
+By

x√
x2 + y2

.

(3.2)

During the collapse phase, the magnetic field is amplified gradually. Since our computa-
tional model is based on ideal MHD, the magnetic flux is conserved and the magnetic field
lines are frozen into the magnetic fluid. Hence, from flux conservation, one easily derives
that the magnetic field strength should increase as Bmax ∝ ρ2/3 by compression alone. As
apparent in the left panel of figure 3.5, this relation holds over several decades of density
increase for the poloidal field strength. In the panel, the black line is a reference curve
proportional to ρ2/3. Note that all curves show a very similar trajectory, indicating that
the detailed angular momentum distribution in the core does not alter significantly the
amplification of the poloidal field during collapse. Accordingly, the poloidal field ampli-
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fication is compression dominated. Only at densities above 2 × 1014 g/cm3, i.e. close to
bounce, the poloidal field increases slightly faster.
The right panel of figure 3.5 shows that the maximum toroidal field trajectory differs from
model to model. This is because the toroidal field not only grows by compression, but also
by winding of poloidal into toroidal field by differential rotation. Hence the toroidal field
grows slightly faster than ρ2/3 as shown in [145]. Note also that all rotating models start
with vanishing toroidal field and the different starting values in the right panel are because
we only show Btor for densties & 5 × 1010 g/cm3. The progenitor maximum density at
onset of collapse is ρ ≈ 5 × 109 g/cm3. Therefore, the starting values differ due to the
model’s rotation law and with it associated differential rotation. Then the evolution of the
toroidal field for all rotating models may be divided in three maximum density regimes.
In the first regime, with ρmax ≈ 5× 1010 − 1012 g/cm3, we observe that the toroidal field
increase significantly deviates from the expected growth by compression alone (compare
to the black reference line ∝ ρ2/3). This density increase happens in the early stage of
collapse and lasts for a relatively long duration of ≈ 40 ms. Thus differential rotation and
winding amplification dominate in this regime, explaining the difference from the scaling
relation by pure compression. In the second regime, with ρmax ≈ 1012 − 2 × 1014 g/cm3,
all curves evolve more or less parallel to the ρ2/3 reference curve. Note that this density
increase happens within only 4 ms and field winding is acting negligibly. In the third and
last regime, we are close to bounce and the rotation is now strongly differential and the
toroidal field increases again faster due to winding of the strong poloidal field. The same
behaviour is observed by Shibata et al. [145]. Also note, that even the solidly rotating
model A has some differential rotation apparent from the rapid increase due to winding
shortly before core bounce. Hence, even for solid body rotation differential rotation is
generated during the collapse by angular momentum conservation, since the inner regions
collapse smaller relative distances than the outer regions [1, 125].
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Figure 3.5: Evolution of the maximum poloidal (left) and toroidal (right) field strength
as a function of central density for all rotating models. The black line depicts the relation
expected from flux conservation Bmax ∝ ρ2/3 in both panels.

In figure 3.6, we show the time evolution of the ratio of rotational kinetic energy Trot

to gravitational binding energy |W | (left panel), the ratio of magnetic energy Tmag to
|W | (middle panel) and the ratio of poloidal Tmag,pol and toroidal Tmag,tor energy to |W |
(right panel) for all rotating models. From the left panel, we see that during collapse
Trot/|W | monotonically increases, reaches a global maximum for models C, D, E and a
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local maximum for model B. From the figure, we also observe that model E holds the
highest amount of rotational energy followed by models C and E. Model B has the lowest
rotational energy, because the material with high angular momentum has yet not accreted.
This material should eventually accrete onto the PNS, but the simulation is yet not that
advanced in time. In figure 3.7 is displayed the angular velocity around the rotational
axis (here the z-axis) for all models at ≈ 5 ms after core bounce. From the figure, the
hierarchy of Trot/|W | for the models becomes clear. Also note that the high angular
velocity (log10(Ωz) & 3/2) in model B is actually more due to violent prompt convection
than the progenitor rotation itself. However, for models C, D, E we see that the inner
regions have gained a large angular velocity with significant differential rotation. Thus,
there is free energy available in differential rotation Trot,free, which is the difference between
the rotational kinetic energy Trot and the kinetic energy for solid-body rotation Trot,solid

at the same total angular momentum Ltot

Trot,free = Trot(Ltot)− Trot,solid(Ltot). (3.3)

Here the free energy is computed by determining the rotational kinetic energy of the PNS
and subtracting from it the rotational kinetic energy from the same object if in solid-body
rotation at the same angular momentum. The density profile in both cases is assumed to
be identical and therefore this procedure is only approximate [30]. The amount of free
rotational energy for material with ρ > 1010 g/cm3 as a function of time is depicted in
figure 3.8. From the figure, we observe that models C, D and E have significantly more
energy stored in differential rotation than model B. Again, this is due to the fact, that
the high angular momentum material in model B has not yet accreted. Note that the free
energies for models C, D and E are as high as several 1051 erg. Therefore, there is ample
energy to power a supernova. Our results for the free energy of rotation compare well to
the ones observed by Burrows et al. [30] (see their figure 15).
The free energy in differential rotation is then immediately tapped by the magnetic field.
The poloidal component is wound up into toroidal field. This is reflected in the rapid
growth of the magnetic energy Tmag and the simultaneous decrease of the rotational energy
(see figure 3.6). More specifically, the toroidal field energy grows by nearly two orders
of magnitude within the first ∼ 10 ms after core bounce. This reduces the amount of
total rotational kinetic energy by extracting the free rotational energy, i.e. this reduces
the degree of differential rotation by progressively forcing the material into solid-body
rotation as it is reflected in the decrease of Trot,free (see figure 3.8). Note that the poloidal
field energy changes only little, reflecting the fact that only the toroidal field is affected
by differential rotation.
In figure 3.9, we show the contour of the free rotational energy density

erot,free = erot(Ltot)− erot,solid(Ltot) (3.4)

in the upper panels and the contour of the toroidal field strength in the lower panels for
models C, D and E. The figure shows a clear spatial correlation between the toroidal field
strength and the amount of free rotational energy density.
From the above, we conclude that the poloidal magnetic field is amplified by compression
during collapse. The toroidal magnetic field, which is initially zero, grows first by winding
of poloidal field by the action of differential rotation and then subsequently also by flux
conservation during collapse. The differential rotation is either already present in the
initial rotation profile (as for models C, D, E) or is naturally generated by the nature
of the collapse. After bounce, the large amount of free energy in differential rotation of
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Figure 3.6: Evolution of the ratio of rotational kinetic energy Trot to gravitational binding
energy |W | (left panel), the ratio of magnetic energy Tmag to |W | (middle panel) and the
ratio of poloidal Tmag,pol and toroidal Tmag,tor energy to |W | (right panel) for all rotating
models. Note the small humps in model C (red line) in all panels. These humps are due
to the enlargement of the 3D computational domain to follow the propagation of the jet
further in time and space.

Figure 3.7: Angular velocity Ωz contour in the yz-plane ∼ 5 ms after core bounce for all
rotating models: Upper left B, upper right C, lower left D and lower right E. Note that
Ωz is not well-defined along the rotational axis and is represented in dark blue.

models C, D and E is tapped by the magnetic field, increasing the magnetic energy at
the expense of the former by winding poloidal field into toroidal. This is clearly seen in
the strong increase of the toroidal magnetic energy in figure 3.6. For the initially solidly
rotating model, there is roughly 3 orders of magnitude lower energy in differential rotation
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Figure 3.8: Free energy stored in differential rotation as a function of time for all rotating
models for material with ρ > 1010 g/cm3. Observe that the initially solidly rotating model
B has indeed differential rotation, but a very low amount.

Figure 3.9: The upper panels show a contour of the free rotational energy in the yz-plane
for the rotating models: Left C, middle D and right E. The lower panels show a contour of
the toroidal field strength in the yz-plane for the rotating models: Left C, middle D and
right E. Note that the absolute number of the free rotational energy is not relevant for the
visualisation that the local free rotational energy density is spatially correlated with the
regions of high toroidal field amplification.

available. Although, also for model B a strong increase in the toroidal magnetic energy
is observed, this increase is, however, not strong enough yet to alter the dynamics. This
might change once the further out material, holding a large angular momentum, accretes.
Though, the simulation is currently not so far.
On the other hand, the poloidal magnetic energy grows not significantly after core bounce.
This may indicate, that the MRI is not acting due to our limited spatial resolution, since
the poloidal field should then also grow. But, since the field strength is already very high,
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it could equally be, that the poloidal field has already reached saturation field strength
(and this mostly by compression during collapse) [82, 122, 123, 145, 114]. This issue,
however, can only be resolved by performing a (computationally) demanding resolution
study which is beyond of the present work here and is postponed to a later study.

3.3.3 Formation and driving mechanism of bipolar outflow

In all our differential rotating models the bipolar jet outflow is initiated in a similar
manner and thus we present mainly one representative model C. Furthermore, we have
also used this model to study the jet propagation up to a radius of 700 km. Model B has
not launched any jet during the time of the simulation which we stopped ∼ 70 ms after
bounce. This is mainly due to the short time evolution of the model, because the material
with high angular momentum has yet not entered the 3D domain.
Hence, we focus now on model C. After bounce, the strong differential rotation winds the
poloidal field very quickly into a very strong toroidal field increasing the magnetic energy
and hence the magnetic pressure. As a consequence, strongly magnetised regions appear
along the rotational axis. This triggers an increase in magnetic pressure, which quickly
reaches and exceeds that of the local matter pressure. Then the outflow mechanism may
be understood by considering the equation of motion

ρ
dv
dt

= −∇p− ρ∇φ− b× (∇× b) , (3.5)

where the terms on the right hand side come from the matter pressure force, the grav-
itational force and the magnetic force, i.e the Lorentz force. The Lorentz forces are the
agencies of jet propulsion, and their direction explains the underlying dynamics. In figure
3.10 is shown a contour of the ratio of the matter pressure to magnetic pressure together
with the direction of the Lorentz force at ∼ 10 ms after bounce (lower panel). From the
figure we see that along the rotational axis a region develops where the magnetic pressure
becomes comparable and even exceeds the matter pressure. The Lorentz force then be-
comes dynamically important and the matter near the axis is lifted from the PNS along
the rotational axis. As the directions of the vectors make clear, the vertical component
of the Lorentz force along the rotational axis are pointing outward. This then drives the
bipolar outflow along the rotational axis, i.e. the jets are launched. Additionally, the
horizontal component of the Lorentz force points inward towards the rotational axis and
thus partially confines the jet at this early stage.
In figure 3.11 the 3D magnetic field lines are shown at several time slices: ∼ 14 ms, ∼ 25
ms and ∼ 31 ms after core bounce. In order to follow the jet propagation for longer
times, we expanded the computational domain continuously from the standard 6003 km
up to 700 × 700 × 1400 km. Thus we followed the jet propagation up to ∼ 700 km in
radius. The strong twisting of the field lines due to rotational winding behind the shock
is clearly seen. This outflow structure resembles a tower, and hence is called a magnetic
tower jet [104, 164]. Alternatively, the magnetic tower jet mechanism is also called the
magneto-spring jet mechanism due to the tightly coiled spring like shape of the magnetic
field lines. The energy in differential energy is consumed to wind up the poloidal field
into toroial field which increases the magnetic energy continuously within the shocked
material. This can be seen in the left panel of figure 3.12. The magnetic energy, or
equivalently the magnetic pressure, becomes dominant all along the rotational axis. This
pushes matter predominantly along the poles leading to outward directed velocities: an
explosion is initiated.

95



Figure 3.10: In the upper panel, a velocity contour with arrows indicating the direction of
the velocity. In the lower panel a contour of the ratio of the matter pressure to magnetic
pressure with arrows showing the direction of the Lorentz force.

While matter is pushed along the poles, toroidal field is stretched into poloidal field again.
This can be seen in figure 3.11. Close to the PNS, the field is tightly wound and the
toroidal field component clearly dominates. However, with increasing radius along the
poles, a poloidal component becomes clearly visible in the increasingly helix-like magnetic
field line trajectories. It has been proposed by Shibata et al. [145] on the basis of 2D
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axisymmetric GR numerical simulations and more recently by Kuroda & Umeda [82] on the
basis of 3D Newtonian and GR computations, that the jet driving mechanism transitions
from a magnetic tower mechanism to a magneto-centrifugal supported mechanism. This
mechanism is also known after the name of their inventors Blandford & Payne [20]. In this
mechanism, matter is flung out along open magnetic field lines by the centrifugal force. In
our simulations, this mechanism seems not to operate in accordance with [30]. However,
we cannot exclude that the Blandford-Payne mechanism operates eventually at a later
stage. For this we have to further advance our simulation in time and we postpone this
to future investigations.

3.3.4 Explosion energy, ejected mass and its composition

The quickly expanding bipolar jets transport energy and stellar material outward against
the gravitational attraction of the PNS, and, eventually escape it. In order to approxim-
ately determine the explosion energy and the amount of ejected matter, we define that a
fluid parcel is ejected, if its specific total energy, i.e. the sum of specific internal energy,
specific radial kinetic energy, specific magnetic energy and the gravitational potential is
positive. In addition, we consider only fluid cells which have an outward pointing radial
velocity component. Then the ejection criterion reads

ε = eint +
v2

2
+
b2

2ρ
+ φ > 0

vr > 0.
(3.6)

The total explosion energy and the ejected mass are then computed by simply integrating
this criterion over the full 3D domain. These numbers are summarised in table 3.4.

Model tf [ms] Mej [M�] Eexp [erg]
C 33 6.72× 10−3 8.45× 1049

Table 3.4: Summary of the explosion characteristics: tf indicates the final time of the sim-
ulation relative to core bounce, Mej is the total ejected mass and Eexp the total explosion
energy at end of the simulation. These number are computed as described in the text.

However, we stress here that our calculation of the explosion energy and the ejected mass
are based on a very crude estimate. This numbers were still growing when the simulation
was stopped and therefore may underestimate the actual values. Note that, if we compare
the here estimated explosion energy Eexp ∼ 8.45 × 1049 erg to the canonically observed
∼ 1051 erg, our estimate seems nevertheless reasonable.
In the right panel of figure 3.12 is shown a contour in the yz-plane of the explosion criteria
eq. (3.6). The colorscale gives the asymptotic escape velocity v∞, which is computed from
the specific total energy (3.6) assuming that it is entirely converted into kinetic energy.
An asymptotic escape velocity of zero indicates that the ejection criteria is not fulfilled.
From the figure, we see that these outflow velocities can reach as high as 20% of the speed
of light. This may question the validity our non-relativistic MHD approach and implies
that a relativistic treatment may be necessary for the longer evolution of the jets.
As already repeatedly stated, the high velocity expanding jets are believed to be a prom-
ising site for r-process nucleosynthesis. In the middle panel of figure 3.12 is shown a contour
of the electron abundance Ye in the yz-plane. From the figure, we see that very neutron
rich matter, due to the postbounce deleptonisation, is carried away in the jet and some of
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this matter is ejected (according the criteria (3.6)). In the left panel of figure 3.13 is shown
a histogram of the electron fraction and the with it associated ejected mass from the sim-
ulation. From the panel, we see that a significant amount of mass is indeed very neutron
rich. In the right panel is shown the integrated mass fraction of the elements produced
by detailed nucleosynthesis calculations on the basis of the present simulation (model C
also featured ∼ 20′000 tracer particles). From the figure it is seen, that the abundance
distribution in the ejecta of our simulation fits the solar abundance very well in the mass
region 120 < A < 200. These nucleosynthesis calculations have been performed by C.
Winteler and we refer to [174] for a detailed discussion of these results. Furthermore,
these results agree with previous studies performed in 2D axisymmetry [120].
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Figure 3.11: Three-dimensional plots of entropy contours spanning the coordinate planes
with magnetic field lines. The time slices are ∼ 14 ms, ∼ 25 ms and ∼ 31 ms after
core bounce in the upper, middle and lower panel, respectively. The three-dimensional
Cartesian domain was continuously expanded from 6003 km3, 600× 600× 1000 km3 and
finally 700 × 700 × 1400 km3. The white wire box shows the largest domain size in all
panels. The very tightly wound toroidal field is clearly visible in all three time slices.
Also note that the magnetic field in the accreting unshocked regions is of mainly poloidal
character, which demonstrates that the winding mechanism is not acting very strongly
during the collapse. As the jet propagates, the toroidal magnetic field lines are gradually
stretched into poloidal ones and the field becomes more and more helical.
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Figure 3.12: Contour in the yz-plane ∼ 31 ms after core bounce: ratio of matter to mag-
netic pressure (left), electron abundance (middle) and asymptotic escape velocity (right).
A zero value for the asymptotic escape velocity indicates that the ejection criteria is not
fulfilled.

Figure 3.13: Left panel: mass distribution with respect to electron abundance Ye for the
matter fulfilling the ejection criteria. Right panel: Integrated mass fractions obtained by
analytic expansion and nuclear-network post-processing on the simulation data (solid red
line) and the solar r-process element distribution (black dots) scaled to fit the graph at
A = 162. These figures are courtesy of C. Winteler.
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Chapter 4

Summary and conclusions

We have applied the developed computational model described in the previous chapters
to the study of the MHD-CCSN explosion mechanism. We have presented a series of 5
models exploring magneto-rotational supernova core collapse, bounce and jet formation
with an approximate treatment of neutrino transport in the form of a spectral leakage
scheme.
We have investigated the influence of 4 different rotational laws with the same amount
of total angular momentum. In agreement with previous studies, we have found that
initially solid-body rotation also results in differential rotation due to the nature of the
collapse [1, 87, 125]. However, the generated differential rotation was not enough to trigger
any significant MHD effects and the developed dynamics resembled the non-magnetic and
non-rotating reference model. This is mainly due to the short simulation time, since the
outer material featuring large angular momentum has not entered the 3D domain when
the simulation was stopped. On the other hand, the rotation laws with initial differential
rotation show significant rotationally induced deformation of the mass distribution.
In accord with previous studies, we find that the magnetic field is mostly amplified by
compression during collapse up to bounce. While the poloidal field is also transformed
to toroidal field by differential rotation during the collapse, the poloidal magnetic field
remains dominant. Conservation of angular momentum in combination with the grav-
itational collapse leads to a massive spin-up of the core. For the initially differentially
rotating models, the rotation becomes highly differential. After bounce, a large amount
of free rotational energy is stored between the PNS and the sock wave. This free energy
is immediately tapped by the magnetic field in winding poloidal to toroidal field and thus
reducing the differential rotation. This leads to a rapid increase in the (toroidal) magnetic
energy and magnetic pressure dominated regions are formed along the rotational axis. In
these regions, the Lorentz force dominates the dynamics and this launches a strong out-
flow along the poles. In the mean time, the continued accretion of differentially rotating
material continuously makes new free energy available. However, because this mechanism
is taking place on a very short time scale in our simulations (actually in a near prompt
fashion), we could not observe the quasi-steady state evolution of this mechanism as ob-
served by [30]. This is a vestige of the very high initial poloidal field strength adopted in
our simulations for reasons to be explained below.
In one model, we have followed the jet for a longer time and distance by extending our
3D domain up to 700 km in radius along the jet. The jet rapidly propagated along the
rotational axis. We identify the driving mechanism to be the so-called magnetic-tower or
magneto-spring mechanism that may be only little aided by the Blandford-Payne magneto-
centrifugal effect. This simulation resulted in an (early) estimate of the explosion energy
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and the associated ejected mass. The ejecta was composed of very neutron rich matter
and the outcome of the simulation was the basis for detailed nucleosynthesis calculations
in a post-processing step [174]. These calculations revealed that the prevailing conditions
could reproduce the global solar r-process pattern. The results also show a good qualitative
agreement with 2D axisymmetric simulations [120].
However, the MHD-CCSN may not be the standard explosion mechanism of CCSN. This
mechanism might be at work for only a small subset of massive stars, since it requires
rather extreme conditions for rotation and magnetic fields. Furthermore, from the here
computed ejected mass and its r-process nucleosynthesis [174], these numbers can only be
brought in agreement with the nowadays observed abundance pattern if only a fraction
(perhaps 0.1 − 1%) of CCSN explode with the MHD mechanism. This also agrees with
the observed large star-to-star scatter of r-process element abundances in very old halo
stars indicating the scarcity of these events [147].
The presented numerical simulations also revealed some deficiencies. First, we observed in
all simulations a strong loss of angular momentum. This is shown in figure 4.1 depicting the
integrated angular momentum distribution as function of enclosed mass for two simulations
with similar initial conditions as model C, but with a lower initial poloidal field magnetic
strength Bpol = 1012 G. This has the effect to delay the generation of the jets. The blue
line is the initial angular momentum profile, the red lines show the simulation performed
with an older code version and the green lines with a new version. The difference between
the newer and older version relies in the fluid advection scheme. The new version employs
the scheme developed in 2.1 together with the approximately well-balanced reconstruction
and gravity source term integration 2.2. From the figure we observe that the old code
version has spuriously dissipated ∼ 20% of the total angular momentum within 49 ms
after core bounce. Unfortunately, the simulations presented here have been performed
with the older code version. This explains, at least from a practical standpoint, why we
had to impose the strong initial fields: the magnetic effects should happen rapidly enough
so that the angular momentum losses are not so severe.
Second, we have observed spurious entropy decreases in regions where the magnetic pres-
sure exceeds the matter pressure. The origin of this problem is yet not fully understood.
The problem actually happens at ratios of p/pmag . 0.1, which in the presented test prob-
lems in 2.1.8 posed no major problems. Currently, we suppose that this may be linked to
the EoS, but this will need further investigations. In order to practically fix this problem,
we have implemented also an advection equation for the entropy. In case the entropy com-
puted standardly from the total energy equation strongly decreases in regions dominated
by the magnetic pressure, we use the result from the entropy advection equation. Since
this switch is applied only in regions (highly) dominated by the magnetic field, we don’t
expect a severe violation of total energy conservation and also the shock speeds.
The resolution of these two issues should enable us to perform MHD-CCSN simulations
covering a longer stretch of physical time with more reasonable initial conditions.
In summary, the physical and numerical aspects of our simulations that distinguish them
from previous studies of the MHD-CCSN explosion mechanism includes the following:

1. They are fully 3D and therefore no dimensional restriction is applied.

2. The use of a microphysical EoS state. All previous studies devoted only to MHD-
CCSN performed in 3D employed a gamma-law EoS.

3. The approximate treatment of neutrino transport in the form of a multidimensional
spectral leakage scheme. This allows us to follow the deleptonisation during collapse
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Figure 4.1: Total angular momentum profile as function of enclosed mass. The solid blue
line is the initial distribution, the red lines are computed with an older code version and the
green lines with a newer code version. The dashed lines show the total angular momentum
profile in the biggest enclosed sphere in the 3D domain at bounce and the dash-dotted
lines ∼ 49 ms after core bounce. We see that at bounce both code version agree well
and that no significant angular momentum transport has occurred during collapse. At 49
ms, we see that the angular momentum has been redistributed (this is due to magnetic
stresses). We also see that the older code version has lost ∼ 20% of enclosed angular
momentum while the new version agrees well with the expected value. The lost angular
momentum has been spuriously numerically dissipated.

and after core bounce resulting in a neutron rich environment.

4. The approximate inclusion of general relativity by an effective gravitational potential
mimicking the deeper gravitational well of the relativistic case.

5. Last but not least, the expel of very neutron rich mater along the bipolar outflow
was shown to be a promising site for r-process nucleosynthesis.

The major limitations of our simulations are as follows:

1. The relatively short postbounce simulation time due to spurious angular momentum
losses. This limits the detailed study of jet formation on a longer time scale.

2. The strong initial magnetic fields, which are necessary to observe a quickly developing
jet-like explosion before angular momentum losses inhibit it.

3. Our limited spatial resolution (1 km), which inhibits the development of fast mag-
netic field amplification mechanism like the MRI and/or dynamo action. This also
forces us to use strong initial magnetic fields.
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4. The approximate neutrino transport with a spectral leakage scheme accounting only
for neutrino cooling. Even though, that neutrino heating may only add fractional
contribution to the explosion, neutrino heating can change the neutron to proton
ratio and thus alter the outcome of the nucleosynthesis.

5. The non-relatvistic MHD approach and the only approximate treatment of general
relativity.

We currently think that we have resolved issue 1 and 2. For issue 4, we can eventually
integrate into our model the approximate neutrino transport provided by the computation-
ally efficient isotropic diffusion source approximation [102]. Generalising FISH to special
relativity would resolve partially issue 5 and we have already started this task with en-
couraging, yet only 1D, preliminary results. However, issue 3 may be difficult to resolve by
brute force computational power and/or adaptive grids (like adaptive mesh refinement).
Perhaps the usage of a MHD subgrid turbulence model could relax this issue. This steps
go beyond the scope of this thesis and will be addressed in subsequent work.
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