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1. Enantioselective catalysis - Introduction 

 

During the past two decades, asymmetric catalysis has become a very rapidly developing area 

of organic synthesis. The reason lies in the constantly increasing demand from the chemical 

industry for enantiomerically pure compounds. The main area where the requirement for 

enantiomerically pure compounds is the greatest is in the pharmaceutical industry. This need 

is hence a driving force for developing new methods for the production of biologically active 

substances in their enantiomerically pure forms. The development of asymmetric synthesis 

from the late 1960s is illustrated in Figure 1. 

 Figure 1: Development of the stereoselective synthesis from the 1970’s until present. 

 

The main impulse for research in this new area of chemical synthesis was the fact that in 

drugs containing stereogenic centers, each enantiomer can have a different effect on the 

patient. This implies that if the drug were to be used in its racemic form (containing both 

enantiomers), in the better case scenario, only one of the enantiomers would be biologically 

active and therefore only 50% of the active ingredient would be used effectively. In the worst 

case scenario the second enantiomer would have a completely different effect from that of the 

first enantiomer, either suppressing the desired effect of the first one or even causing 

undesirable side effects. The differences in various biological effects of each enantiomer can 

be explained by the pharmacon-receptor interaction, whenever only one of the enantiomers 

fits into the biological receptor. 
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An example of the second enantiomer of a drug having an undesired effect is exemplified by 

the case of Thalidomide in the late 1950s. The development of the drug as a racemic mixture 

was initiated during the Second World War and was first described in 1953 by the Swiss 

pharmaceutical company Ciba, which subsequently discontinued its development. Then in 

1957 the German pharmaceutical company Grünenthal introduced Thalidomide on  the 

market as Contergan.[1] The drug was subsequently distributed in many European countries 

and also in Canada, USA and Australia and prescribed mainly as an analog of the structurally 

related barbiturates (Figure 2) which were at that time known for their relatively low toxicity 

in adults. 

Figure 2: Enantiomers of Thalidomide, an analog of barbituric acid. 

 

The indication was therefore similar and Thalidomide was used as a sedative and tranquilizer 

for treating insomnia. Because it was also found to have an antiemetic effect, the drug was 

prescribed to pregnant women in their first three months of pregnancy to treat morning 

sickness. After the introduction of the drug on the market, a large number of birth defects 

were observed, such as amelia (absence of limbs), different limbs malformations, bone 

hypoplasticity and also congenital defects of internal organs. It was found that the occurrence 

of these defects was related to the drug Thalidomide, which was therefore withdrawn from the 

market in 1961 for its teratogenic and neurophatic effects. During its few years on the market, 

Thalidomide produced a worldwide tragedy claiming over 10.000 victims.[2] At that time, it 

was thought that no exogenous agent can cross the placental barrier and therefore the side 

effects of the drugs were not specifically tested in this regard. (R)-thalidomide was found to 

be non-toxic whereas the (S)-enantiomer was discovered to be responsible for the adverse 

effects of rac-thalidomide. This observation was also a motivation for the development of 

new methods for preparing enantiomerically pure pharmaceuticals, although it later 

materialised that the Thalidomide tragedy could not have been avoided by supplying just the 

pure (R)-enantiomer. The reason being, that enantiopure Thalidomide racemizes under in vivo 

conditions.[3] 
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The teratogenicity of the rac-thalidomide then started a new period of drug development with 

respect to safety and it has opened a new area of chemical research, namely the preparation of 

enantiomerically pure compounds (Figure 1). 

 

Asymmetric transformations can be either achieved using stochiometric amounts of chiral 

reagents[4] or, more effectively by using a chiral catalyst ensuring an enantioselective outcome 

for the reaction. Our current work also deals with the preparation of chiral catalytic systems. 

This thesis will focus on the preparation of chiral ligands which can control the 

enantioselectivity of metal-catalyzed reactions in order to prepare pure enantiomers.
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Chiral bis(oxazoline) ligands in asymmetric catalysis 
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2. Chiral bis(oxazoline) ligands in asymmetric catalysis 

 

2.1 Semicorrin ligands 

 

In 1977 Mansuy et al. reported the first example of a metalloporphyrin carbene complex [FeII 

(tetraphenylporphin)(CCl2)], which was formed by the reaction of [(TPP)FeII] with carbon 

tetrachloride in the presence of an excess of a reducing agent.[5] This result was in analogy to 

the previously reported abilities of cytochrome P-450 to reduce various polyhalogenated 

compounds. Three years later, Callot found that rhodium (III) porphyrins (Figure 3) can 

catalyze the cyclopropanation of alkenes with ethyl diazoacetate to form cyclopropyl esters 

with a favorable cis–selectivity.[6] This result can be rationalized by a metal-catalyzed 

mechanism involving a rhodium porphyrin carbene as an active species in the catalytic cycle. 

Porphinoid metal complexes of this type inspired the development of related catalysts 

including chiral complexes for asymmetric catalysis. 

 

 

Figure 3: Comparison of the rhodium porphyrin and copper semicorrin. 

 

The C2-symmetric bidentate nitrogen ligands called semicorrins,[7] developed by Pfaltz and 

co-workers in 1986, were specifically designed for enantioselective catalysis. They were 

derived from the porphyrin structural motif of known compounds called corrinoids and 

hydroporphonoids.[8] These semicorrin ligands consist of two chiral moieties, which are 

bridged via a vinyl system. They can be readily prepared from the natural amino acid pool as 

enantiomerically pure compounds in both enantiomeric forms (Scheme 1).[7, 9] The vinyl sp2 

bridge makes the ligand scaffold more rigid, which is reflected in better stereocontrol of a 
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metal-catalyzed reaction. Steric hindrance around the metal center can be further tuned by 

modifying the R groups, which are generated by derivatization of the ester functional groups. 

 

 

 Scheme 1: Semicorrin ligand synthesis. 

 

Semicorrins ligands 1 were then complexed with copper (II) to obtain homoleptic metal 

complexes. These were further investigated in the asymmetric copper-catalyzed 

cyclopropanation reaction of olefins. This reaction has its origin in the pioneering work of 

Nozaki, and consists of the formation of a metal-carbene species from the corresponding 

diazoacetate, which then undergoes reaction with the double bond of an olefin.[10] 

 

Table 1: Enantioselective cyclopropanation catalyzed by copper-semicorrin complex 2. 

R1 R2 Yields of  Stereoselectivity 

    3 + 4 [%] 3 [% ee] 4 [% ee] 3 : 4 

Ph Et 65 85 68 78 : 22 

Ph tBu 60 93 92 84 : 16 

Ph L-menthyl 65-75 91 90 85 : 15 

Ph D-menthyl 60-70 97 95 82 : 18 

CH=CH2 D-menthyl 60 97 95 63 : 37 

n-pentyl D-menthyl 25-30 92 92 82 : 18 
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In the asymmetric copper-semicorrin-catalyzed cyclopropanation reaction of olefins with 

diazoesters, these catalysts exhibited hight enantioselectivities. The results obtained were 

impressive and better than those of previously reported asymmetric cyclopropanation 

reactions, which reached a maximum of about 80 % ee.[11] Since this time, the scope of the 

semicorrins ligands application has been broadened further; for example, the cobalt-catalyzed 

enantioselective reduction of α,β-unsaturated carboxylates[12] or carboxamide[13] by NaBH4 

and also an intramolecular version of the copper-catalyzed cyclopropanation.[14]  

 

 

2.2 Bisoxazolines in asymmetric catalysis 

 

Several new types of C2-symmetrical ligands derived from the semicorrins were developed 

over time, and they have found different applications in asymmetric catalysis. Representative 

examples, which were inspired by the negatively charged structural motif of the semicorrins 

1, are methylene bisoxazolines 2 or their aza-derivatives 3. 

These ligands bear a characteristic π-conjugated system, which bridges the two chiral 

moieties and is partially responsible for the rigidity of the backbone, which remains planar 

during the catalytic process. At the same time, the π-electrons of the system are donated to the 

electrophilic metal center. A decrease in the electrophilicity of the system is not always 

desirable. Therefore, neutral variants of the ligands were also designed [9] called 5-

azasemicorrins (4) or  5-azaoxazolines (5), both of which have a planar nitrogen bridging 
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atom. Another class is the bisoxazoline ligands (6; BOX) where the connection between two 

oxazolines is made through an sp3 carbon bridge. They were introduced by Masamune et 

al.[15] in 1990 and by David Evans[16] in 1991, respectively.  

The oxazoline structural motif has turned out to be one of the most popular ligands for use in 

enantioselective catalysis. There was enormous growth in the use of bis(oxazoline) ligands in 

the field of asymmetric catalysis after their introduction in 1990, as can be seen in Figure 4. 

Figure 4: Number of citations containing the keyword “bis(oxazoline)” in the years 1990 – 2011. 

 

 

2.3 Preparation of bis(oxazoline) ligands 

 

Inspired by the initial successful semicorrin structural backbone, the library of new chiral 

bis(oxazoline ligands) was quickly broadened . Bisoxazoline ligands were developed that are 

either bridged directly over the oxazoline sp2 carbon (examples 7-10), or via the substituted 

methylene bridge (examples 11-18). 
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They all have of the potential for different substitution patterns, allowing for their sterical and 

electronic properties to also be tuned. The previously mentioned bridged bis(oxazolines) can 

be readily prepared, starting either from dimethylcarboxylate or dimethylmalonate and 

various chiral aminoalcohols (11a – 14a) to form the corresponding bis(hydroxy)amides (11b 

– 14b). Those are subsequently converted into the bis(oxazolines) via a cyclization reaction 

(Scheme 2).[17] The dimethyl substituted bridge in 11-18 could be formed by the reaction of 

dimethylmalonyl chloride with the corresponding aminoalcohol in the presence of a base, 

followed by the same oxazoline closing protocol as in the other examples.[18] 

Scheme 2: Synthesis of methylene-bridged bis(oxazolines). 

 

Different methods were employed for the oxazoline closure using a wide range of reagents, 

such as CH3SO3H,[19] Me2SnCl2, 
[15, 20] ZnCl2,

[21] DAST,[22] or CF3SO3H and BF3.Et2O.[23] The 

selection of a proper cyclization method to close the oxazoline ring can be used to control the 

absolute configuration of the final oxazoline, as was done by Desimoni et al. for the synthesis 

of 4,5-disubstituted chiral bis(oxazolines) 15 and 16, as shown in Scheme 3.[24]  

 

Scheme 3: Stereodivergent synthesis of chiral 4,5-disubstituted bis(oxazolines). 
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The cyclization of bis(hydroxy)amide in the presence of Bu2SnCl2 proceeds with retention of 

configuration at C5, while cyclization using mesylate as a leaving group leads to inversion of 

configuration to yield oxazoline 15. 

The indane-derived BOX ligands 17 and 18 can be obtained by the reaction of (1S, 2R)-

aminoindan-2-ol with imidate salt 17a (Scheme 4)[25], which is easily accessible via the 

treatment of malonitrile with anhydrous HCl in ethanol. 

Scheme 4: Synthesis of (1S, 2R)-inda-box. 

 

After the cyclization reaction, either ligand 17 can be obtained directly, or the acidic malonate 

protons can be readily deprotonated by lithium diisopropylimide, followed by alkylation with 

two equivalents of the methyliodide to deliver bis(oxazoline) ligand 18. When alkylation on 

the bridging carbon is performed with a diiodoalkane, the spirocyclic inda-boxes are produced 

instead.[26] 

 

 

2.4 Bis(oxazoline)-metal complexes 

 

Bis(oxazoline) ligands are chiral C2-symmetric ligands that readily forms stable five-

membered (for example, with ligands 7–10), or, more frequently, six-membered metallacycles 

with various metals, such as Cd2+, Co2+, Cu2+, Mn2+, Ni2+, Pd2+, Ru4+, Ti2+, and Zn2+ (Figure 

5). During their development, after successful complexation with certain metals, the structural 

elucidation of the newly prepared complexes is undertaken. The argument in favor of this is 

that knowledge of the three dimensional structure can allow more sophisticated design of new 
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ligands, but furthermore, with knowledge of the metal complex structure, the transition state 

for certain transformations can be proposed. The ligand-metal complexation can be done by 

direct in situ mixing of both components in the proper ratio, to form either homoleptic or 

heteroleptic complexes, depending on the ligand structure and the reactivity of the 

corresponding metal. Alternatively, they can be precomplexed and isolated prior to use. The 

presence of a C2-symmetric axis in these ligands minimizes the number of possible transition 

states for certain transformations, which can have a beneficial effect on selectivity.[27] Also, 

the presence of lateral bulky groups on the oxazoline rings constrains the space around the 

metal center and in this way can favour one direction for substrate access. The bulky groups 

either come directly from the pool of natural/unnatural amino acids or from further chemical 

transformation of the reactive functional groups on the oxazoline. 

 

 

Figure 5: Diversity in the box metal complexes. 

 

The bis(oxazoline)-Cu(II) (2:1) complex 19 was isolated and X-ray analysis showed a 

tetrahedral coordination geometry. Lehn et al. thought of incorporating such ligands into 

oligomeric bipyridyl strands, which should lead to strained double helicatal complexes 

capable of asymmetric induction.[28] The other example is Pd(II)-allyl complex 20, reported 

by Pfaltz et al. Based on the crystal structure and NMR measurements of the chiral metal 

complexes, the mechanism for the asymmetric palladium-catalyzed allylic substitution was 

elucidated.[29] Box-titanium (IV) complexes 21, prepared by the reaction of different 

bis(oxazolines) ligands with TiCl4 in toluene, were shown to have a trigonal bipyramidal 
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structure, with the two nitrogen binding sites in the equatorial position.[30] The authors were 

not able to obtain crystal structures of these metal complexes, because of their instability 

during the crystallization process. Ghosh and co-workers were successful in preparing 

crystalline cobalt (II) complex 22, which showed tetrahedral geometry at the metal center, 

using an (1S, 2R)-inda-box ligand.[31] Most of the common bisoxazoline ligands are bidentate, 

but there also exist several types of tridentate bis(oxazolines), which also readily form metal 

complexes, such as 23 where a (S,S-iPr2)-Py-BOX ligand is complexed with ruthenium 

(IV). [32] 

 

The bis(oxazoline) ligands were also research topic of our group. They were used for the 

asymmetric catalysis deploying mainly their copper and palladium metal complexes.[12-14] The 

next chapter will be focused on their analogs bearing a negatively charged boron atom within 

the bis(oxazoline) backbone. 
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3. Boron-bridged bis(oxazoline) ligands 

 

3.1 Introduction 

 

Phosphine ligands are widely used in inorganic and organic synthesis. Their bidentate 

versions are also frequently used in asymmetric catalysis.[33] In 2003, a new family of these 

ligands was developed by Peters et al.[34] by incorporating the boron atom into the bridging 

backbone of the bis(phosphine) scaffold. The boron atom in those ligands bears a negative 

charge because it is four-substituted (Figure 6); hence, these ligands could be expected to 

have new properties. 

Figure 6: bis(phosphine) ligands vs. bis(phosphino)borates. 

 

In these species, the anionic bis(phosphino)borate ligands keep the coordination properties of 

their neutral analogs towards the metal, while being anionic at the same time. The negative 

charge can also influence the electronic properties of the complex by electron donation to the 

phosphine, thus affecting the electron charge on the metal center. The synthesis of metal 

borate complexes is not a well developed area, even though it has been studied, for example 

by the group of Riordan (Scheme 5).[35] 

Scheme 5: Synthesis of anionic bis(phosphino)borate ligands 
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24 25 26



 

 22 

The preparation of these anionic ligands starts from a diarylchloroborane 24 that, after the 

nucleophilic attack by a lithium diarylphosphine salt 25, forms boron ate-complex 26 as the 

product. Although the synthesis of those ligands looks very simple, the reaction proceeds 

cleanly only under the optimized conditions (Et2O / Tol, -78 °C to room temperature). 

The anionic bidentate ligands were isolated as lithium salts, which were then crystallized and 

the X-ray structure was obtained. The lithium salts can be further modified by a simple cation 

exchange, for example with Me2PtCOD or Tl(NO3)3. The tantalum complex was subjected to 

crystallographic analysis and the structure is depicted in Figure 7.[34] 

Figure 7: X-ray structure of dimeric bis(phosphino)borate tantalum (III) 

 

The influence of different substituents on the boron or phosphorous in the 

bis(phosphino)borate dimethylplatinum (II) complexes was also studied. CO gas was used to 

exchange one of the methyl ligands on the platinum, and the resulting change in the stretching 

band of the CO was observable by infrared spectroscopy. However, the difference between 

the different substituents was rather small. For example, the difference between electron-

donating para substituents CH3O and electron-withdrawing CF3 groups on the phenyl group 

of boron was only 3 cm-1, although the difference between para substituents tBu and CF3 on 

the phenyl group of phosphorous was already 14 cm-1.   

The authors of this article also disclosed problems which they faced during the ligand 

synthesis, for example, when they attempted to prepare the less strained ligand 

[Ph2B(CH2PMe2)2]. Another problem was in the preparation of the simple phosphine 

carbanion, but this problem was circumvented by BH3 protection of the phosphine. However 

this protection could cause problems of its own in the subsequent deprotection step. 
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3.2 Borabox ligand synthesis 

 

Two years later, after the invention of the bis(phosphino)borate by Peters et al., the synthesis 

of a new ligand class bearing both tetravalent boron and two chiral oxazoline moieties was 

developed in the Pfaltz group.[36] These ligands are also anionic and in combination with the 

metal they can produce a neutral species, called a zwitterionic metal complex (Scheme 6). 

 

Scheme 6: Borabox ligand synthesis. 

 

The synthesis of the borabox ligands is very straightforward. It starts from readily available 

oxazolines 27 by the deprotonation of the acidic proton with a sterically hindered base, such 

as t-BuLi, to obtain the corresponding lithiated oxazoline 28. This product is then treated with 

a dialykyl or diaryl chloroborane (0.5 equiv) at low temperature and the reaction mixture is 

allowed to warm to room temperature, resulting in the desired product 29 in good to moderate 

yield, depending on the nature of the boron substituent. This product could be isolated as 

either a highly hygroscopic white powder, by crystallization from apolar solvents, or it can be 

converted into its protonated form 30 by hydrolysis. The hydrolysis usually spontaneously 

occurs during column chromatography on silica gel with EtOAc/Hex/Et3N (9:1:0.5) as eluent. 

Thus, the protonation happens during the purification of the reaction mixture and the 

additional step is not necessary. The lithium salts can be regenerated from their protonated 

forms by using one molar equivalent of n-butyllithium in diethylether at room temperature. 

A number of ligands, which differ sterically and electronically, could be prepared through this 

short series of reactions. The substituents on the oxazoline ring are mainly intended to vary 

the steric environment that will be close to the reaction center in the catalyzed reaction. By 

variation of the substituents of the chloroborane from alkyl to aryl to aryl with electron-

withdrawing substituents, the electronic properties of the final metal complex are also 

modified.  
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3.3 Borabox Metal complexes 

 

3.3.1 Complexes with copper (II) 

 

The borabox complexes readily form metal complexes with various transition metals, such as 

Cu(II), Zn(II), Pd(II), Rh(I), and Ir(I), either by directly using the protonated ligand in the 

presence of a base such as K2CO3, or just by ion exchange of the lithium salts with the 

transition metal. In Figure 8 two related metal complexes are shown. The first one is a 

homoleptic [Cu(II)(borabox)2], which shows slightly distorted tetrahedral geometry. For 

comparison, the second structure is [Cu(II)(box)Cl2], which also has tetrahedral geometry but 

is heteroleptic.   

 

Figure 8: Crystal structures of the Cu(II) complexes of borabox and the related box complex. 

Hydrogen and chorine atoms were omitted for clarity. 

 

A number of homoleptic Cu(II)borabox complexes have been prepared, starting with 

variously substituted borabox ligands 30.[37] These can be readily obtained by complexation of 

the corresponding borabox lithium salts in a biphasic water/CH2Cl2 mixture with CuSO4·H2O 

(1.0 equiv.) or by treatment of the protonated borabox ligand with Cu(OAc)2 (1.0 equiv.) in 

methanol.[38] Their crystallographic data were recorded and the structural properties of the 

individual ligands in their copper complexes were consequently compared. They all adopt 
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very similar geometries and differ only minimally. For example, the Coxa-B-Coxa angles are 

close to the ideal tetrahedral geometry in the range of 108.8°, for ethyl substituted boron and 

isopropyl oxazoline, to 110.4°, for the 3,5-(CF3)2C6H3 substituted boron and isopropyl 

oxazoline. The bond lengths between the oxazoline quaternary carbons and boron are within 

the range of 1.61 Å to 1.62 Å and the C=N bonds lengths are within the range of 1.28 Å, for 

iPr oxazoline, to 1.30 Å, for benzyl oxazoline, both with an ethyl substituent on the boron. 

 

 

3.3.2 Complexes with palladium (II) 

 

In analogy with already established box systems, the other transition metal that was attractive 

to test with the new borabox ligands was palladium. Therefore new borabox palladium (II) 

complexes 32 and 34 were prepared, as shown in Scheme 7.[37] 

 

Scheme 7: Synthesis of borabox and box palladium complexes. 
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While palladium box and aza-semicorrin complexes catalyze the allylic substitution of rac-

(E)-1,3-dipehnylallylacetate with dimethylmalonate very well, with excellent yields (up to 

99%) and stereoselectivities (up to 97 % ee), the borabox ligands 31and 33 are unreactive in 

this transformation.[29] Even borabox complex 34, which is structurally very similar to box 

palladium complex 36, didn’t show any reaction in the corresponding allylic substitution 

between rac-(E)-1,3-dipehnylallylacetate and dimethylmalonate (Scheme 8).  

 

Scheme 8: Palladium-catalyzed allylic substitution using borabox complex 34. 

 

The properties of the palladium borabox complexes were further investigated in 13C NMR 

studies, where the chemical shift of the carbon atoms within the allyl fragment should differ 

based on the electronic properties. The NMR studies showed that the carbon shifts of the 

borabox palladium complexes are further upfield than the corresponding signals in the box 

palladium species, which supports the expectation that the allyl moiety will be more electron-

rich, owing to the delocalized negative charge of the tetrasubstituted boron. Furthermore, DFT 

calculations were conducted which, based on the charge distribution using natural population 

analysis, were in a good agreement with the results obtained by 13C NMR spectroscopy.[39] 

 

 

3.4 Monobenzoylation and kinetic resolution of 1,2-diols  

 

After discovering the limitations of the borabox complexes in the palladium-catalyzed 

asymmetric allylic substitution reaction, further research focused on the chemistry of the more 

successful borabox copper complexes. Matsumura et al. published a 2003 paper about the 

kinetic chiral resolution of meso 1,2-diols catalyzed by Ph-box Cu(II) (5 mol %), where they 

obtained good to excellent enantioselectivities depending on the substrates used.[40] 
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This reaction (see Scheme 9) was then tested using the borabox Cu(II) complexes, this time 

catalyzed by 1 mol % of catalyst, but otherwise under the same conditions as Mastsumura. 

The results are summarized in Table 2.[36] 

 

Table 2: Monobenzoylation of meso 1,2-diols. 

 

Ligand meso 1,2-diol Yield [%][a] ee [%][b] 

39a 79 40 

39b 73 76 
40 70 33 

 

 
 

  
39a 75 47 

39b 83 90 
40 

 
 

74 85 
   

39a 62 92 

39b 65 94 

40 

 
 

68 84 
[a] Average of two runs. [b] ee determined by HPLC  

 

In Table 2 it is demonstrated that in the desymmetrization of meso 1,2-diols 36-38, the 

boroabox copper complex can reach the same conversions as the related box copper complex 

and the enantiomeric excesses obtained with the borabox ligand in many cases are better than 

with the box ligand. 

Another reaction along the same lines as the desymmetrization of the meso 1,2-diols is the 

kinetic resolution of 1,2-diols, which was also published by Matsumura using box copper(II) 

complexes.[40] 
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3.5 Kinetic resolution of pyridyl alcohols 

 

The borabox ligands were shown to be efficient in the desymmetrization of the diols and so 

they were applied in the synthetically valuable kinetic resolution of pyridyl alcohols, as 

shown in Scheme 9.[41] 

 

  

Scheme 9: Cu(II)-(Borabox)-catalyzed kinetic resolution of pyridyl alcohols. 

 

Chiral pyridyl alcohols are useful precursors for the preparation of chiral P,N ligands, because 

their cationic iridium complexes 48 have been shown to be highly efficient catalysts in the 

enantioselective hydrogenation of unsubstituted olefins.[42] To date there are just a few 

synthetic methods to approach these chiral pyridyl alcohols. These mainly rely either on the 

asymmetric reduction of pyridyl ketones [43] or on enzymatic resolution.[44]  

This synthesis utilizes only 1 mol % of the Cu(II) catalyst bearing chiral borabox ligand 47 

and starts from racemic pyridyl alcohol 44. After a reaction time of 16 hours under very mild 

conditions a mixture of chiral pyridyl alcohol 45 and benzylated alcohol 46 was obtained, 

which was separable by column chromatography. The chiral alcohol 45 was obtained as the S 

enantiomer in 39 % yield and 97 % enantiopurity after recrystallization. The other enantiomer 

of the R pyridyl alcohol 49 can be obtained in 42 % yield and 97 % ee after deprotection and 

recrystallization. 

The enantioselectivities obtained in this kinetic resolution differ depending on the ring sizes 

of the pyridyl alcohols and on the pyridine R substituent, with a phenyl substituent being the 
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best among the substrates screened. Also, lower selectivities were obtained when using Cu(II) 

box as a catalyst versus the Cu(II) borabox complexes. 

 

 

3.6 Copper-catalyzed allylic oxidation of cyclopentene and cyclohexene 

 

Another reaction where the abilities of the borabox ligands were examined was the 

asymmetric copper-catalyzed allylic oxidation of cyclic olefins (Scheme 10).[37] The initial 

screening showed that using protonated borabox ligands 50 in combination with K2CO3 is 

more efficient in terms of enantioselectivity than using their Li(borabox) salts.  

 

Scheme 10: Borabox Cu (II)-catalyzed allylic oxidation. 

 

The results of this reaction were also compared with the results obtained from the analogous 

substitution pattern of the box ligand where R1 was a phenyl group and R2 was isopropyl. In 

the oxidation of cyclohexene, borabox ligand 50 delivered an ee of 74 %, whereas the box 

ligand only gave 48 % ee. A surprising observation was that the typically very effective tert-

butyl R2 substituent of the oxazoline completely failed in this type of reaction, delivering 

almost racemic products. The oxidation reaction is quite slow, usually requiring a number of 

days to achieve good conversions. Since the kinetic studies showed only a small dependence 

on temperature for the enantioselectivity, the reaction can be accelerated by heating to 80 °C, 

which shortens the reaction time from days to hours without significant drop in the 

enantioselectivity. Substitution in the C5 position of the oxazoline did not provide any 

significant improvement in the reaction results. 
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3.7 Diels-Alder reaction 

 

An enantioselective version of the Lewis acid catalyzed Diels-Alder reaction has been 

successfully applied and tested with new borabox ligands. The role of the base and the source 

of the metal were also studied.[45] The use of a base during the formation of the zinc metal 

complex was shown to be crucial both for the formation of the heteroleptic borabox complex 

and to avoid formation of the homoleptic complex, which is unselective. A sample reaction of 

acyl-1,3-oxazolidin-2-one 51 with cyclopentadiene is shown in Scheme 11. 

 

 

Scheme 11: Borabox as a chiral ligand in a Lewis acid catalyzed Diels-Alder cycloaddition. 

 

There was a surprisingly large difference in the selectivity of chiral borabox 53, as shown in 

Scheme 11, when the C4 substituent was changed from tBu to benzyl, which lead to a 

completely racemic endo product. By employing various metal sources, such as Zn(OTf)2, 

MgI2·I2, FeI3·I2, almost racemic endo product was obtained, while conversions and endo/exo 

ratios remained good under all conditions tested. 

 

 

3.8 Asymmetric Henry reaction 

 

Borabox ligands were also tested in the copper-catalyzed nitroaldol reaction, called Henry 

reaction, which is a base-catalyzed reaction between an aldehyde and a nitroalkane.[46] The 

reaction requires a base to deprotonate the nitroalkane, which then nucleophilically attacks the 

aldehyde. The reaction is terminated by protonation of the newly generated product, which 

also regenerates the base at the same time. The drawbacks of this reaction are that all of the 

steps in the mechanism are reversible and that the disproportionation of the aldehyde in a side 
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reaction when using base to deprotonate nitroalkane could affect the yield of the desired 

product. 

Borabox ligands 54 have been shown to be effective ligands for stereoselective control of the 

Henry reaction. Under optimized conditions, high selectivities can be attained, especially 

when nitroethane or nitropropane is used in combination with the aliphatic aldehyde. The 

results for nitroethane are depicted in Table 3. 

 

Table 3: Henry reaction with nitroethane catalyzed by a borabox Cu(II) complex. 

 

Entry  R 
 Time 
[days] 

Yield 
[%][a] 

syn/anti[b] 
ee (syn) 

[%][c] 
 ee (anti) [%][c] 

1 Ph 1 80 62:38 21 (1S,2S) 15 (1S,2R) 

2 Cy 5 82 90:10 90 (1S,2S) 47 (1S,2R) 

3 Et 5 80 64:36 51 (1S,2S) 23 (1S,2R) 
[a] Combined yield of syn and anti isomers. [b] determined by 1H NMR spectroscopy. [c] Determined by chiral HPLC 
analysis 

 

3.9 Cyclopropanation of olefins 

 

Further investigation of the borabox ligands conducted by Clément Mazet were screening 

experiments[36] to compare their performance with that of box complexes in cyclopropanation 

reactions, as previously reported by the groups of Pfaltz, Masamune, and Evans.[15-17, 47] The 

Cu(I) borabox complexes were prepared in situ from CuOTf and lithium salts of the 

corresponding borabox ligands. As a test reaction for the initial screening of the borabox 

ligands a typical cyclopropanation reaction using styrene and diazoacetate ester was chosen. 

This reaction is commonly used as a benchmark for testing selectivity of new chiral ligands. 

The mechanism of this Cu(I)-catalyzed cyclopropanation was investigated by Evans et al. 

including an X-ray structure of the catalyst.[47] The reactivities of the borabox ligands are 

basically the same as their box analogs (Table 4). Large substituents on the oxazoline ring in 

the C4 position have a positive influence on the enantioselectivity of the reaction, as with the 

box ligands, although it is not that significant (Table 4, 55a and 55b vs. 56a and 56b). In the 

reaction with ethyldiazoacetate, the selectivities obtained with borabox ligands were only 
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moderate (see 55a-55f), but through the use of tert-butyl diazoacetate and 2,6-di-tert-butyl-4-

methoxyphenyl (BHT) diazoacetate, the selectivities were significantly improved. The 3,5-

bis(trifluoromethyl)phenyl group in the ligand 55f was shown to be the best substituent for 

boron. To date, the best published result in terms of selectivity was obtained in the reaction of 

the BHT-diazoacetate and an oxazoline substituted with a tert-butyl group in the C4 position 

and an electron-withdrawing ArF substituent on the boron, as in ligand 55f.  

 

Table 4: Cyclopropanation of styrene. 

Entry Ligand R1 R2 
Diazo 
ester (R) 

cis/trans 
cis[a] 

ee [%] 
trans[a] 
ee [%] 

Yield [%][b] 
(cis+trans) 

1 56a Ph iPr Et 36:64 54 51 85 

2 56b Ph tBu Et 33:67 91 89 72 

3 56c Me tBu Et 27:73 97 99 77 

4 55a Ph iPr Et 29:71 58 65 77 

5 55b Ph tBu Et 30:70 66 70 84 

6 55c Cy iPr Et 32:68 24 33 68 

7 55d Et tBu Et 28:72 59 72 75 

8 55e Cy tBu Et 28:72 78 66 79 

9 55f ArF tBu Et 32:68 68 77 89 

10 56b Ph tBu Et 21:79 93 90 70 

11 56c Me tBu tBu 19:81 93 96 75 

12 55b Ph tBu tBu 15:85 77 67 77 

13 55d Et tBu tBu 13:87 76 73 65 

14 55e Cy tBu tBu 9:91 82 73 63 

15 55f ArF tBu tBu 17:83 86 92 65 

16 56c Me tBu BHT 4:96 - 99 85 

17 55f ArF tBu BHT 1:99 - 98 89 

[a] Determined by GC or HPLC analysis. [b] After chromatography [c] Determined by 1H NMR spectroscopic analysis 

Ph
+

L* (1 mol%),
[Cu(OTf)]2 C6H6 (0.5 mol%)

ClCH2CH2Cl, 28 h, RT
CO2R Ph CO2RPh

+

cis trans

N2

CO2R

1.0 equiv. 1.2 equiv.

L* =

B
R1 R1

O

N N

O

R2 R2
H

55a: R1 = Ph, R2 = iPr

55b: R1 = Ph , R2 = tBu

55c: R1 = Cy, R2 = iPr
55d: R1 = Et, R2 = tBu
55e: R1 = Cy, R2 = tBu
55f: R1 = ArF, R2 = tBu

R1 R1

O

N N

O

R2 R2

56a: R1 = Ph, R2 = iPr

56b: R1 = Ph, R2 = tBu

56c: R1 = Me, R2 = tBu

.



 

 33 

 

With the results from the initial screening in hand, further investigations were undertaken 

using additional olefins bearing substituents with different electronic properties, including 

electron-donating (entry 3, 4) or electron-withdrawing groups (entry 5, 6) or aromatic (entry 

1, 2), as well as aliphatic substituents (entry 9, 10). Again, the best results were obtained with 

borabox ligand 55f, especially in case of p-F-C6H4, which resulted in 1:99 cis/trans selectivity 

and 99.5 % ee in 91 % yield of isolated product. 

 

Table 5: Cyclopropanation of different olefins. 

 

Entry Ligand R1 R2 R3 cis/trans[a] 
trans[b] 
ee [%] 

Yield [%][c] 
(cis+trans) 

1 56c Me tBu Ph 4:96 99 85 

2 55f ArF tBu Ph 1:99 98 89 

3 56c Me tBu p-MeOC6H4 4:96 96    35[d] 

4 55f ArF tBu p-MeOC6H5 4:96 97    65[d] 

5 56c Me tBu p-FC6H4 4:96 99.4 89 

6 55f ArF tBu p-FC6H5 1:99 99.5 91 

7 56c Me tBu PhCH2 7:93 99    ng[e] 

8 55f ArF tBu PhCH2 8:92 97 66 

9 56c Me tBu n-hexyl 2:98 99    51[d] 

10 55f ArF tBu n-hexyl 1:99 95    68[d] 
[a] Determined by 1H NMR spectroscopy. [b] Determined by GC or HPLC analysis. [c] After chromatography [d] Reaction 
time not optimized. [e] not given 
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3.10 C5-disubstituted borabox ligands 

 

3.10.1 Preparation of C5-disubstituted borabox ligands 

 

Directed by the results of the borabox-complex-catalyzed reactions, in particular by the 

cyclopropanation reactions, we proposed further modifications of the borabox scaffold in 

order to obtain new borabox ligands 57g and 57h with potentially better properties. As the 

steric bulk of the oxazoline substituents in the C4 position proved to be beneficial in many 

cases, the adjacent carbon, C5, was then a good candidate for further modification the lateral 

steric bulk around the metal center of the catalyst. 

 

The C5-substituted ligands 57a-57f were prepared by the Pfaltz group and successfully 

applied in the asymmetric Henry reaction.[45] Their synthesis starts from commercially 

available chiral amino acids, which are then converted into the corresponding amino acid 

esters. The ester functionality is then a suitable handle for introduction of the new substituents 

into the C5position of the future oxazoline. By reaction with two equivalents of a Grignard 

reagent, a chiral amino alcohol is obtained, and is subsequently converted into the 2H-

oxazoline by the Meyers protocol.[48] In the synthesis of 5,5-dimethyl substituted 2H-

oxazoline, the Grignard addition was a problematic reaction step (Scheme 12) which was then 

circumvented by using an N-protecting group in order to obtain higher yields.[45]  
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Scheme 12: 5,5-dimethyl-2H-oxazoline synthesis. 

 

Therefore, in planning the synthesis of the 5,5-diethyl substituted 2H-oxazoline an amine 

protection step was also incorporated to avoid problems during the Grignard addition. 

Unfortunately, although the Grignard addition was complete and the reaction clean, 

deprotection of trifluoroacetyl protected aminoalcohol 58 was impossible and did not go to 

completion even after a day under reflux with methanolic hydroxide. Ultimately, the synthesis 

of 59 (Scheme 13) was successfully accomplished by the addition of an excess of 

ethylmagnesium bromide to the hydrochloride salt of the aminoalcohol, which led to a very 

clean reaction. 

Scheme 13: Synthesis of 5,5-diethyl-2H-oxazoline. 

 

The reaction of the alcohol 58 with ethyl formimidate hydrochloride delivered the 5,5-diethyl-

2H-oxazoline 59 in good yield. The next step in the synthesis of the new 5,5-disubstituted 

borabox ligands 57g and 57h was preparation of the starting chloroborane 61 (Scheme 14), 

which was done by the method of Peters et al.[34]  
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Scheme 14: Synthesis of bis(3,5-bis(trifluoromethy)phenyl)chloroborane. 

 

This method utilizes the moderate reactivity of dimethyltin dichloride, which, in reaction with 

two equivalents of a Grignard reagent, delivers the addition product 60. In the subsequent 

step, the aryl substituents are transferred from the tin to boron to obtain 61. Although the use 

of dicyclohexyl chloroborane in this method could be considered a drawback, owing to the 

difficulty of its preparation, this potential problem was obviated by the commercial 

availability of the compound. Then, following the general procedure for formation of the 

borabox ligand (Scheme 15), 2 equivalents of 59 were deprotonated by tert-butyllithum and 

allowed to react with the corresponding chloroboranes.[36] 

Scheme 15: Preparation of new 5,5-disubstituted borabox ligands. 

 

Both ligands 57g and 57h were purified by the column chromatography on silica gel, but 

neither of these complexes could be well separated, because they are unstable and decompose 

during chromatography. The use of triethylamine in the eluent mixture to reduce the acidity of 

the silica gel has been found to be beneficial, but both ligands are very nonpolar and so the 

use of triethylamine is not acceptable, therefore they were purified on neutral alumina. In case 

of the 57g, this led to the pure compound, but this was not the case for 57h. Therefore, 

purification of the crude ligand 57h was attempted by crystallization with CuSO4 or CuCl2 ; 

however, in neither case were crystals produced, thus the impure ligand was used in all further 

investigations. 
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3.10.2 Cyclopropanation using 5,5-disubstituted borabox complexes 

 

The newly prepared ligands 57g and 57h were then tested in the cyclopropanation reaction 

using styrene and tert-butyldiazoacetate as substrates and the results compared with those of 

the previously prepared 5,5-unsubstituted analogs; the results are summarized in the Table 6. 

 
Table 6: Cyclopropanation of styrene using 5,5-disubstituted borabox complexes. 

 

Box ligand 56c was found to be the most selective, providing the favored trans product in ee 

96 %. When comparing 55e with 57g, it can be seen that the 5,5-disubstituted borabox ligand 

57g is only slightly better in the cis/trans ratio of its products and in the selectivity of the 

trans-isomer, as well as providing a better yield of isolated product; however, this is 

counteracted by a significant loss in the enantioselectivity of the cis product. When 

compariing ligands 55f and 57h, only small drop in the cis/trans ratio of the products from the 

5,5-disubstituted borabox ligand 57h is observable, but again the product was isolated in a 

significantly higher yield. The enantiomeric excesses provided by ligand 57b cannot be 

compared with those of its analog, as the impurity present in the ligand most likely 

significantly undermined the enantioselectivity of the reaction. 

Entry Ligand R1 R2 R3 cis/trans[a] 
cis[b]    

ee [%] 
trans[b] 
ee [%] 

Yield [%][c] 
(cis+trans) 

1 56c Me tBu H 19:81 93 96 75 

2 55e Cy tBu H 9:91 82 73 63 

3 55f ArF tBu H 17:83 86 92 65 

4 57g Cy tBu Et 8:92 47 74 73 
5 57h ArF tBu Et 22:78 11 13 84 

[a] Determined by 1H NMR spectroscopy. [b] Determined by GC or HPLC analysis. [c] After chromatography           [d] Ligand 
contained impurities. 
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3.10.3 Conclusion for cyclopropanation using C5-disubstituted borabox ligands 

 

The borabox ligands proved to be effective in many types of metal-catalyzed chemical 

reactions. They were designed for the same broad range of the potential applications as their 

bis(oxazoline) (box) analogs, mainly for use in enantioselective copper- and palladium-

catalyzed reactions. For example, the synthesis of chiral pyridyl alcohols[41] allows direct 

access to synthetically valuable precursors for the synthesis of efficient cationic iridium 

catalysts.[42a] The palladium-catalyzed allylic oxidation of cyclopentene reached an ee of 76 

%, which is one of the best results obtained for this substrate to date.[49] The borabox ligands 

also exhibited the versatility of their use in the Lewis acid catalyzed Diels-Alder reaction and 

also the Henry and Aza-Henry reactions.[45] However, as opposed to the box ligands, which 

were successfully applied in the asymmetric palladium catalyzed reaction, the borabox 

ligands do not catalyze allylic substitution. 

Excellent results were obtained in the copper-catalyzed asymmetric cyclopropanation of 

various olefins, where the borabox ligands surpass the box ligands in the number of 

substrates. A positive influence was also observed when the steric bulk of either the substrate 

or the ligand side of the catalyst was increased. In general, more sterically demanding 

substituents, such as tert-butyl, in the C4 position of the oxazoline produced better 

enantioselectivities. The substituents on the boron atom can tune the catalyst in two ways, 

either by influencing the bite angle of the bis(oxazoline) bidentate ligand through their sterics, 

or by influencing the electronic properties through changes in the distribution of negative 

charge along the ligand. New ligands 57g and 57h were tested in the cyclopropanation 

reaction with tert-butyldiazoacetate, in which previous experiments had not provided high 

enantioselectivities. The 5,5-disubstituted borabox ligands 57g and 57h gave basically the 

same results in terms of reactivity and selectivity as their 5,5-nonsubstituted borabox analogs. 

The expected positive effect on selectivity of the asymmetric induction by increasing the 

steric bulk around the metal center in the C5 position of the oxazoline does not seem to occur. 

This may be due to the already remote position of those substituents, which then do not play 

an important role in the transition state, as the substrate is approaching the metal center 

without observable difference.  
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4. Preparation of non-symmetrically substituted boron compounds 

 

 

4.1 Introduction 

 

In the previous chapter a wide range of potential uses for boron-bridged bis(oxazolines) as 

efficient ligands in asymmetric catalysis was demonstrated. The scope of the applications 

ranges from the kinetic resolution of 1,2-diols, which has been applied as an useful tool in the 

kinetic resolution of pyridyl alcohols[41, 50], to copper-catalyzed allylic oxidations[37], Lewis 

acid catalyzed Diels-Alder cycloadditions, asymmetric Henry reaction,[45] and, last but not 

least, in the asymmetric copper-catalyzed cyclopropanation of the olefins[36]. The scope of the 

applications for the borabox ligands it is not just limited to the above mentioned reactions, but 

it can also be extended to many other reactions where the box ligands were more or less 

successful. As previously demonstrated, the properties of the borabox ligands can be tuned 

both electronically and sterically. Variation of the substituents R1 (Figure 9) on the boron 

atom mainly influences the electronic properties at the metal center. Sterical properties can be 

then tuned by substitution of the oxazoline ring either in the C4 position by using different 

amino acid sources or by incorporation of R3 substituents at the C5 position into the amino 

acid backbone prior the oxazoline ring closure. 

 

 

Figure 9: General borabox scaffold with a list of different boron substitunents. 

 

While the modification of the R3 or R2 groups of the oxazoline ring were very well 

established during the period where oxazolines became a powerful and widely used tool, the 

modification of the boron atom remains underexplored. However, while the synthesis of the 
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borabox ligands seems to be straightforward and versatile, just a few examples using different 

boron substituents were prepared (Figure 9). The main problem is that almost all the needed 

boron precursors are not commercially available and their preparation is often tedious, 

requiring special techniques and safety precautions. Hence, there remains room for 

improvement to make the boron chemistry more accessible for wider use in organic synthesis. 

 

 

4.2 Preparation of the chloroborane precursors 

 

As was previously shown, chloroboranes are precursors for borabox ligand syntheses as 

reported by Pfaltz and Mazet in 2005.[36] Their synthesis was inspired by the protocol used by 

Peters et al. in their 2003 publication on bis(phosphino)borates (Scheme 16).[34] 

Scheme 16: Synthesis of the bis(phosphino)borates and the boron-bridged bis(oxazolines). 

 

Peters demonstrated that a wide range of aromatic chloroboranes can be prepared by using a 

modification of the protocol of Chivers[51] and Piers,[52] which was originally described for the 

preparation of the perfluorinated chloroborane (C6F5)2BCl. Until then, no efficient 

experimental protocol for the the preparation of diarylchloroboranes had been described. 

Scheme 17: Preparation of the diarylchloroboranes using dimethyltin dichloride. 

 

The protocol uses a reaction between dimethyltin dichloride and two equivalents of the 

corresponding Grignard reagent in the first step, wherein all listed aromatic group precursors 
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formed the desired diaryldimethystannanes. The second step, which relies on a ligand 

exchange between boron trichloride and Me2SnAr2, led to the desired diarylchloroboranes, 

except for the ortho-methyl-substituted analogs, which produced mostly methyl aryl ethers, 

while the ortho-trifluoromethtyl analogs led to a mixture of products. As shown in Scheme 17, 

after the second step the relatively expensive and highly toxic dimethyltin dichloride can be 

recovered from the reaction mixture either by crystallization from hydrocarbon solvents or by 

vacuum sublimation.  This method is the most versatile, but it requires dimethyltin chloride, 

which is the only disadvantage. Therefore analogous methods, which could be useful for the 

preparation of many types of haloboranes, but which also use tin chemistry, were not 

considered.[53] A more environmentally friendly method is described in Scheme 18. The 

synthesis utilizes the reaction between diarylborinic acid anhydride and boron trichloride, 

leading to the desired diphenylchlroborane 62.[54] 

Scheme 18: preparation of dimethylchloroborane from diphenylboroinic acid anhydride. 

 

In case of diphenylchoroborane, this method is easily applicable and it was used in our group 

for preparation of the title compound. But the procedure is limited to diphenyl borinic acid 

anhydride, which is the only derivative commercially available to date. The other borinic 

acids would have to be prepared in order to use this method as an alternative to the previous 

one using Me2SnCl2. The preparation of the borinic acid anhydride was reported by 

Zimmerman in 1961, but a description for a wider range of substrates is missing.[55] The 

published procedure describes the preparation of diphenylborinic acid, which must be stored 

as an ethanolamine ester and is converted back to diphenylborinic acid after hydrolysis of the 

ester bond by treatment with mineral acid. The borinic acid decomposes over time (within 

hours) and has to be used immediately in the second dehydration step which leads to the 

desired borinic acid anhydride. 

The preparation of dialkylhaloboranes, which are in general more unstable and air and 

moisture sensitive than their aromatic analogs, was also not considered as a robust process for 

supplying the desired chloroboranes precursors.[53, 56] 

B O B + B

Cl

ClCl -78°C, DCM
Cl B + BOCl

62



 

 46 

From the described protocols, which are either not general or involve toxic tin compounds, it 

is clear that the preparation of those highly reactive and air unstable compounds is not trivial. 

Therefore, the incorporation of aryl substituents on the boron atom in a stepwise fashion, as is 

done with phosphorus compounds, could be considered. However, there is a dramatic 

difference in the reactivity of boron trichloride and phosphorus trichloride as shown in 

Scheme 19. 

Scheme 19: Different reactivity of phosphorus trichloride and boron trichloride. 

 

In the case of phosphorus trichloride, diphenylchlorophosphine can be easily obtained by the 

addition of two equivalents of the Grignard reagent,[57] whereas in the case of boron 

trichloride, the corresponding diphenylchloroborane is not formed. Boron trichloride is far 

more reactive and such a reaction will generally end up with a mixture of trisubstituted and 

tetrasubstituted boron compounds. The reaction of phenylmagnesium bromide was tested and 

triphenylborane was not even a major product. 

Therefore, some less reactive boron compounds had to be examined to avoid undesired 

multiple substitution on the boron atom. Suitable candidates, which are far less reactive then 

the chloroboranes, are esters of the boric acid, so called boronates. The natural Lewis acidity 

of boron is suppressed in the boronates by their electron-donating substituents (Figure 10). 

 

Figure 10: Decreased Lewis acidity of the boron in the alkylboronates. 

 

The crucial electron-donating role of these compounds is played by oxygen, which is directly 

bound to the boron atom and the oxygen’s lone pair electrons push the electron density 

towards the electron-deficient boron center. The electron-donating effect of the alkyl chain is 

negligible compared to the donation of the oxygen lone pairs. This electron-donation effect is 
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also reflected in the stability of such compounds. For example, trialkylboranes spontaneously 

combust upon exposure to air, while the corresponding boronates can be handled in air 

without any special precautions. The boronates approach was published by Mikhailov et al. in 

1955, where he uses diphenyl(isobutyl)boronate as a starting material.[58] This method seems 

to be generally applicable because he was able to prepare a wide range of chloroboranes using 

reasonable conditions and starting from commercially available compounds. Therefore, we 

decided to test the synthesis by reproducing the previously published results from Mikhailov. 

 

 

Scheme 20: Synthesis of diphenylchloroborane starting from boric acid. 

 

The synthesis of diphenylisobutyl boronate 64 (Scheme 20) starts from tris(isobutyl)boronate 

63, which can be readily obtained by simple esterification of boric acid with the 

corresponding alcohol, in this case isobutanol, by refluxing both neat reagents while 

continuously removing the water generated by use of a Dean-Stark distillation apparatus. The 

choice of isobutylalcohol for the esterification was based on the same reasoning as the choice 

of boronates as reactants for the next modification, that being the higher stability of the final 

boronate, which is determined by the length of the alkoxy substituents. The obtained boronate 

64 was purified by fractional distillation after the anhydrous workup and treated with 

phosphorus pentachloride in the next step. This reaction is very fast, slightly exothermic, and 

complete after several minutes; the product can be isolated either by distillation or by 

crystallization from the dry hydrocarbon solvent. 

The first part of the synthesis is analogous to the well established synthesis of boronic acids, 

which are widely used in reactions such as the Suzuki coupling. The organolithium or 

Grignard reagent first attacks the electrophilic boron center of the trialkylborate to form the 

ate complex 65 which is then quenched by a mineral acid. When this step is done under 

anhydrous conditions, quenching is done either by gaseous HCl or by ethereal solution of HCl 
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and the product is arylboronate 66. When an aqueous workup is used, the product obtained is 

the boronic acid 67 (Scheme 21). 

Scheme 21: Mechanism of the addition of the organolithium reagent to the boronates. 

 

The cleavage of the phenyl-boron bond can also take place during the workup while releasing 

the starting trialkyl boronate 63. This undesired reaction was never significant in the tested 

reactions and the products could be easily separated by fractional distillation. 

The more convenient aqueous workup could be used as well and the obtained boronic acids 

could be subsequently converted back to the boronic esters by azeotropic distillation with the 

corresponding alcohol.  

A wide range of substrates can be prepared by this boronate approach, and this was 

extensively studied by Mikhailov et al. Most of the transformations utilizing this method are 

for aromatic substrates, but there are a few examples with aliphatic substrates. The reaction 

sequence which was used by Mikhailov to demonstrate the versatility of the method is shown 

in Scheme 22.[59] 

Scheme 22: Stepwise substitution on boron using boronates and aromatic nucleophiles.[59] 
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The reaction sequence starts from tri(isobutyl)boronate 63, where in the first step the ester of 

phenylboronic acid 66 is formed. By treatment of the product with 1 equivalent of the 

phosphorus pentachloride, one of the alkoxy groups is replaced by chloride to form 

chloroborane 68, which readily reacts with the next aryl-metal reagent to produce 

diarylborinic acid ester 69. The next step, already described in the previous section, was used 

to convert diarylboronate 69 into diarylchloroborane 70, which, upon the addition of the next 

Grignard reagent, forms triarylsubstituted borane 71. By using another equivalent of the 

arylorganometallic reagent, tetrasubstituted boranes 72 can be formed with four different 

substituents.[59] 

The last two steps combined into one were also used in the borabox ligand synthesis, or in the 

synthesis of the bis(phosphino)borates, just by using two equivalents of the nucleophile. 

More interesting were the initial steps where the substitution on the boron atom could be 

controlled in a resourceful way by starting from the readily available trialkylboronate. This 

boronate approach seemed to be a versatile method for the preparation of the 

diarylchloroboranes, because it did not use any drastic conditions, or involve the reaction of 

gaseous reagents, or make use of any toxic metals. Therefore we decided to test the reaction 

protocol and to make sure that it is reproducible under current laboratory conditions. For that 

purpose we chose the preparation of (p-chlorophenyl)phenyl(isobutyl)boronate (Scheme 23). 

 

Scheme 23: Preparation of an unsymmetrical diarylboronate. 

 

The synthesis of the non-symmetrically substituted boronate 73 starts from 

triisobutylboronate 63 and by consecutive addition of two different Grignard reagents 

produces the desired product in very good yield under rather mild reaction conditions. 
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An important observation in this case was that the weakly electron withdrawing chloro-

susbstituent of the Grignard reagent in the para-position had a positive electronic effect on 

the second substitution. As was shown in Scheme 20 for the preparation of the 

diphenylisobutyl boronate, subsequent heating after the Grignard addition was necessary to 

reach good conversion to the diarylboronate 64. In this case simply warming the reaction 

mixture to room temperature led to 73 in good conversion and produced a very clean product. 

This is an illustrative example of how electronic fine tuning of the boron substituents can 

have an strong impact on the reactivity of the selected boron compounds with nucleophiles. 

The results from those experiments where the general reactivity of the boron was investigated 

were used for planning of further syntheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IF AT FIRST YOU DON'T SUCCEED, TRY, TRY AGAIN. 

 THEN GIVE UP; 

 THERE'S NO USE BEING A DAMN FOOL ABOUT IT. 

 

-- W. C. FIELDS 
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4.3 Modification of existing ligands using chloroboranes 

 

In the previous chapters the importance of bidentate ligands such as 74 or 77 in asymmetric 

catalysis was demonstrated. Recently new ligands bearing tetrasubstituted boron were 

developed. In 2003, bis(phosphino)borates 75 were invented by Peters[34] and boron-bridged 

bis(oxazoline) ligands 76 in 2005 by Pfaltz.[36] 

Figure 11: Structural motifs of the bidentate ligands. 

 

A very efficient bidentate chiral ligand that was successfully applied in many metal-catalyzed 

asymmetric transformations is the phosphino-oxazoline 77. From the list of known chiral 

ligands in Figure 11 it is clear which modification to the current ligand scaffold could be done 

next. Therefore structure 78, which would be a combination of the phosphino-oxazoline 

ligands 77 with a negatively charged boron, as present in ligands 75 and 76 was proposed. 

 

Figure 12: Cationic phosphino-oxazoline ligand with the negatively charged boron as a counterion. 

 

The bidentate P,N-ligands in general are widely used in our group as ligands for iridium-
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cationic complexes. The counterion that has proven to be the best choice is tetrakis(3,5-

bis(triflouromethyl))borate (BArF; Figure 12) which allows much higher turnover numbers 

than PF6
(-) or similar anions. An additional advantage of these borate anions is that iridium 

complexes bearing a chiral ligand can be easily purified by column chromatography. In view 

of the strong anion effect observed, it would be interesting to compare the ligands with similar 

backbones in one case as an ionic pair and in the second case bearing the negatively charged 

boron atom within the catalyst molecule to form zwitterionic metal complexes. 

 

 

Figure 13: Comparison between zwitterionic structures of the catalyst and the cation-anion pair. 

 

The effect of ion pairing was previously studied in our group by Axel Franzke, who prepared 

several zwitterionic complexes and applied them together with structurally similar compounds 

(Figure 13) in iridium-catalyzed hydrogenation reactions.[60] However no definitive 

conclusion could be reached from those studies. 

 

 

There were already several investigations done in our group by Clement Mazet, Valentin 

Köhler, and Axel Franzke[61] to prepare the desired oxazoline and phosphorus-substituted 

tetravalent compounds with the structural motif 78. Unfortunately, none of them was 

successful and so we decided to focus more in depth on this topic. 

We planned the synthesis based on the knowledge from the synthesis of borabox ligands 76 

and the literature examples for the synthesis of bis(phosphino)borates 75. We chose two 

logical routes for the preparation of the boron-bridged phosphino-oxazoline ligands 78, as 

shown in Scheme 26, using conditions from the preparation of ligands 75 and 76. 
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Scheme 24: Synthetic strategy for the preparation of the boron-bridged phosphino-oxazoline ligands. 

 

The proposed synthetic route A (Scheme 24) starts from the diarylchloroborane and, contrary 

to Peter’s route,[34] only one equivalent of the phosphine is added to form the desired adduct 

79. Subsequent addition of one equivalent of the oxazoline lithium salt is supposed to deliver 

the desired product 78. Route B involves an analogous reaction sequence only in the opposite 

order with regard to the reagents added. The first step is taken from the borabox ligand 

synthesis,[36] but reacting just with one equivalent of lithiated oxazoline to form adduct 80 that 

should deliver the same product 78 as route A upon addition of the lithium phosphine salt. 

 

 

4.3.1 Preparation of Li salts from the methyldiphenylphosphine 

 

In both reaction pathways A and B (Scheme 24), lithiated methyldiphenylphosphine salt is 

considered as a synthon for the phosphorus part of the desired product 78. Protection of the 

phosphine should be considered to avoid undesired interactions with the boron atom that is 

incorporated the ligand structure. However deprotection of the final product, which possesses 

a tetravalent boron atom, might be problematic. Therefore, it was planned to also investigate a 

sequence without protecting groups. 
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There are several literature examples showing how to prepare either protected or unprotected 

lithiated methyldiphenylphosphine 81 (Scheme 25).[34] 

Scheme 25: Preparation of the lithium salts of methyldiphenylphosphines using different methods. 

 

In the first example neat methyldiphenylphosphine 81 is deprotonated by the action of n-

butyllithium to form 82 as a highly hygroscopic white powder. A reaction time of 3 days at 

room temperature is required to obtain at least 30 % conversion. [62] The yield can be slightly 

improved by using sec or tert-butyllithium. The second reaction follows the method of 

Peterson [63] and Schores[64] to generate Li(TMEDA) salt 83 from the unprotected phosphine 

81. Significant improvement in the yield (60 %) and the reaction time was observed in this 

reaction. This is mainly due to the better properties of the pregenerated nBuLi(TMEDA) 

reagent, which is more reactive than just simple n-butyllithium. However, we should be aware 

that the presence of the N-coordinating ligand can have an undesired influence on boron-

containing compounds. The final Li(TMEDA) salt, 83, can be used without purification after 

dissolving the reaction mixture in THF, but for better reaction control the product was isolated 

by filtration under inert atmosphere and weighed for the reaction as a solid. In the third 

reaction in Scheme 25, protection with BH3
.THF was used to obtain the protected phosphine 

84. The BH3 protecting group has the desirable effect of avoiding undesired interactions 

between phosphorus and boron. Furthermore, the electron withdrawing properties of BH3 are 

beneficial during the deprotonation step making the protons of the methyl group significantly 

more acidic than in unprotected phosphine 81. Therefore only 2 hours at room temperature are 

required to achieve full conversion.[65] 
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4.3.2 ROUTE A: Addition of the Phosphinemethylenelithium salts to chloroboranes 

 

The first synthetic strategy that was tested involved reaction of the methyl diphenylphosphine 

lithium salt 82 and two different chloroboranes (Scheme 26). The reaction conditions were 

chosen according to Peter’s procedures for the preparation of bis(phosphino)borates.[34]. 

 

Scheme 26: Reaction of the lithiated phosphine with chloroborane. 

 

The reaction of diphenylchloroborane 62 with the phosphine 82 was performed in diethylether 

at -78 °C, wherein the previously prepared and isolated phosphine salt 82 was dissolved and 

then carefully added to the precooled chloroborane solution. This reaction sequence should 

avoid formation of the undesired doubly substituted boronate. Proton and phosphorus NMR 

analysis of the crude reaction showed it to be a complex mixture. Therefore the phosphine 

lithium salt source was changed to lithium(TMEDA) salt 83. Following exactly same protocol 

as for the lithium phosphine salt 82, only traces of the starting material were observed but 

again a very complex phosphorus spectrum was obtained. After the aqueous workup, mainly 

starting methyldiphenyl phosphine 81 was observed. 

Another chloroborane that we decided to test was dicyclohexylchloroborane, because it is 

commercially available as a hexane solution and because the aliphatic chloroborane was 

thought to have different reactivity than the aromatic derivative 62. Unfortunately, the 

reaction mixture was not much cleaner based on the phosphorus NMR spectrum of the crude 

reaction mixture. MALDI-TOF analysis showed the mass of an oxidized product consistent 

with the corresponding phosphine oxide (Scheme 27). 
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Scheme 27: Reaction of chlorodicyclohexylborane with the phosphine lihium salt. 

 

Since we were not able to purify the (likely unstable) product, we decided to test the impure 

reaction mixture in the next step and if possible purify the product afterwards. This time, the 

reaction sequence (Scheme 28) involved addition of Li(TMEDA) phosphine 83 to the 

dicyclohexylchloroborane at -78 °C and after the crystallization workup described above, a 

THF solution of this impure mixture was added to the preformed lithium oxazoline salt at low 

temperature. 

Scheme 28: Planned synthesis of the phoshinooxazoline starting from the chloroborane and including 

possible complexation. 

 

This time the oxazoline lithium salt in the last reaction step was in excess and if any of the 

desired phosphinoborane adduct was formed it would have a chance to react with the lithiated 

oxazoline. Keeping in mind that the product of the reaction could be unstable, the reaction 

mixture was directly analyzed by spectroscopic methods without subsequent reaction workup. 

Since the starting material was already not clean, the NMR spectrum of that reaction mixture 

showed a complex mixture of compounds. Therefore the mass spectrum of the reaction 

mixture was recorded by MALDI-TOF and the signal corresponding to the oxidized product 

Ph2P CH2LiB P B

O-78°C to rt.,
Et2O

Mass: 392,24

Cl +

Ph2P CH2Li(TMEDA)Cy2BCl Ph2P BCy2

N

O

B
Cy Cy

N

O

Ph2P

-78 °C to rt.,
THF

Ph

+

Ph

83

-78 °C to rt.,
THF

B
Cy Cy

N

O

Ph2P

Ph

M

possible complexation

N

O

Ph

H Li
tBuLi

-78 °C, THF

86

87



 

 57 

was detected. By using EI-MS, only a very weak signal from the non-oxidized product was 

observed. Therefore, there was a good chance that the product was formed, but since it was in 

a very impure reaction mixture and probably air sensitive we decided to isolate it as a metal 

complex which should be far more stable. For complexation, we chose copper (II) chloride, 

which was added to the reaction mixture together with dichloromethane. However no traces 

of the the desired product or a corresponding fragment was observed by mass spectroscopy. 

 

Due to the previously unsuccessful trials using unprotected phosphine for the preparation of 

the desired methylene-bridged boron-phosphorus adduct, the BH3-protected phosphine 84 was 

used instead (Scheme 29). 

Scheme 29: Reaction of the chlorodicyclohexylborane with the BH3-protected phosphine lihium salt. 

 

The use of protected phosphine 84 has distinct advantages over the unprotected phosphines 82 

and 83. Firstly, there is no possible interaction of the boron intermediates with the nitrogen 

atoms of the TMEDA, as in 83, and secondly, the preparation of the protected lithium 

phosphine 85 could be done in situ and quantitatively, unlike in case of 82 (Scheme 25). In 

addition the phosphineoxide formation would be prevented. The sequence started with the 

deprotonation of methylphosphine 84 to obtain an orange solution of 85 that was then added 

to a precooled solution of the chloroborane 86, again in order to keep chloroborane in excess 

during the addition. The EI-MS spectrum was recorded, which showed the mass of the 

deprotected product 88 (Scheme 29). The BH3 group from the phosphine could be lost under 

the ionization conditions of the EI mass spectroscopy. As in the case of the non-protected 

phosphine, the NMR spectrum was complex and non conclusive. Purification by sublimation 

led to an impure sample based on the NMR spectrum. 

Chromatographic workup delivered only the starting material as phosphine 84. Unfortunately, 

attempts to purify the product by crystallization also failed because of the high solubility of 

the product even in pure hydrocarbon solvents. Even repeatedly precipitating the byproducts 

from benzene/pentane solution did not lead to the pure compound 88, therefore it was used 

without purification in the next reaction with Li-oxazoline (Scheme 30). 
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Scheme 30: Reaction of BH3-protected methyldiphenylphosphine with dicyclohexylchloroborane. 

 

Based on NMR analysis, before any workup, the reaction mixture contained many 

byproducts. MALDI-MS showed the desired masses of the product and also a fragment 

lacking BH3, but both signals were very weak compared to the other signals that could not be 

assigned to any fragment or byproduct. This time the purification of the product by 

complexation, as shown in Scheme 28, was not performed because of the very complex 

reaction mixture, which would still require a deprotection step to prepare the metal complex. 

After this unsuccessful attempt at preparation of clean 88 for the next reaction, a 

transmetallation step involving either zinc or palladium was carried out after the formation of 

85 (Scheme 30) in order to tune the nucleophilicity of the phosphine 85. When either zinc 

chloride or Pd(PPh3)4 was used, no product 88 was observed and only starting phosphine 84 

was recovered. 
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4.3.3 ROUTE B: Addition of the lithium-oxazolines to chloroboranes 

 

The alternative approach depicted in Scheme 24 was based on the related reaction used for 

preparation of the borabox ligands, where the corresponding chloroborane (1 equiv.) was 

added to the lithiated oxazoline (2 equiv.) at low temperature.[36] In the borabox synthesis, the 

addition of the chloroborane to a solution of the lithiated oxazoline was also used, which was 

always in excess in order to preferentially form the doubly substituted product.  

Scheme 31: Synthetic strategy for preparation of monosubstituted boranes. 

 

The initial idea was to use lithium-oxazoline and chloroborane in equimolar ratios under the 

same conditions as described for the borabox ligand preparation, only the ratios of reagents 

was different (Scheme 31). After the chromatographic workup of the complex reaction 

mixture was only borabox ligand isolated in about 40% yield. This result implied that the 

addition of the oxazoline salt to the chloroborane is very fast and proceeds even at low 

temperatures, where it results in the doubly substituted product and leaves half of the 

chloroborane unreacted. 

Therefore the addition was carried out in reverse order, thus always having the chloroborane 

in excess to avoid double substitution. One equivalent of the lithium oxazoline was added via 

precooled cannula to a precooled solution of the chloroborane in THF. Nevertheless, only 

borabox ligand was isolated from the reaction mixture after the workup, in about 20 % yield. 

Transmetallation with ZnCl2 was also tried in order to lower reactivity of the deprotonated 

oxazoline. Unfortunately, the same results, the exclusive formation of the borabox ligand, 

were obtained (Scheme 32). 
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Scheme 32: Addition of the lithium oxazoline to the chloroborane. 

 

We thought that if the reaction proceeds so much in favor of the borabox ligand even at low 

temperatures, that this could be due to the relatively fast addition of the lithium oxazoline 

through the precooled cannula. We did not find any information in the literature about the 

stability of the lithium oxazoline salts, because the previous protocols used the lithium 

oxazoline only at low temperatures. Hence, we decided to test whether the THF solution of 

the deprotonated oxazoline survives handling at room temperature, to allow for slow addition 

to the chloroborane. For this purpose we deprotonated the oxazoline under standard condition 

and then warmed the solution to room temperature. After quenching with CD3OD the 

deuterium incorporation was almost quantitative. This showed that the lithium oxazoline salt 

can be handled at room temperature. Unfortunately, however even slow dropwise addition of 

the lithium oxazoline at room temperature led to the borabox ligand, as in all the previous 

experiments. 

Since it was not clear whether the desired monosubstituted product was being formed during 

the previous reactions and is perhaps just unstable, the phosphine 85 was directly added to the 

reaction solution after addition of Li-oxazoline. Unfortunately this reaction did not lead us to 

the desired product (Scheme 33). 

Scheme 33: Addition of lithium-oxazoline and lithium phosphine to the chloroborane. 
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4.4 Boronates approach 

 

Isobutyl esters of boric acid, such as 63 and 66, which were used for preparation of the non-

symmetrically substitutes borates (Scheme 23), were also shown to be good building blocks 

for the preparation of diarylchloroborates (Scheme 20). Based on the previous work of 

Mikhailov et al., where boronates were used in reactions with either aryllitium or 

arylmagnesiumhalides to obtain substituted borates and boronates (Scheme 22) the following 

synthesis was proposed (Scheme 34). 

 

Scheme 34: Reaction of the phenylboronate with the lihium-oxazoline. 

 

In analogy with the synthesis of the borabox ligands, phenylboronate 66 was used instead of 

disubstituted chloroborane, and was added to lithium-oxazoline 87 at low temperature to 

obtain 2-substituted oxazoline 89. The monosubstituted boronate was chosen because of the 

higher reactivity of the electrophilic boron atom compared to the double substituted one. The 

addition of the reagents was done in both orders, but based on the NMR analysis of the crude 

reaction mixture none led to the desired compound 89. As the reaction sequence using 

oxazoline 87 in the first step failed, addition of the lithiated phosphine 82 was also tested as 

shown in Scheme 35.  

 

 

Scheme 35: Reaction of triisobutylboronate with diphenylmethylphosphine lithum salt. 

 

For the oxazoline route (Scheme 34) the workup was limited to a neutral workup because the 

oxazoline itself is acid labile and undergoes ring opening. However, in the reaction with the 
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phosphine 82 an acidic workup should be possible. Therefore, several acidic workup 

procedures were examined but none of them resulted in product 90.  

 

To change the reactivity of the system, the synthesis of boron-phosphorus adduct 88 was 

reconsidered using the boronates approach. The use of this route was selected even though 

doubly substituted boronates, such as diphenylisobutyl boronate 64, are less reactive than 

their monosubstituted analogs. As described in Scheme 20, the ester of borinic acid 64 could 

be prepared by the addition of two equivalents of PhMgBr to triisobutlyboronate 63, followed 

either by quenching with aqueous HCl to obtain diphenylborinic acid, or by quenching with 

gaseous HCl to deliver the borinic acid ester without breaking the ester bond (Scheme 36). 

The shorter alkyl chain esters are generally less stable and more reactive. 

Scheme 36: Preparation of the diphenylborinates from boric acid esters. 

 

Two different borinates, 64 and 92, were prepared as previously described in Scheme 20. In 

the first reaction sequence, after quenching of the ate complex by aqueous HCl and the usual 

extraction workup, diphenylborinic acid 91 was esterified with methyl alcohol. A mixture of 

esters 64 and 92 was obtained, which is difficult to separate by fractional distillation. A 

possible reason why a mixture of these products was obtained is that borinate 64 is a quite 

stable ester and even treatment by aqueous HCl does not lead exclusively to borinic acid 91 

(which is unstable and is usually not isolated). Another explanation could be that after workup 

iBuOH is still present in the mixture and then competes in the next step with methanol as a 

second alcohol in the esterification reaction, therefore leading to the product mixture. For 

preparation of borinate 92 an alternative synthesis starting from trimethylborate followed by 

workup with anhydrous ethereal hydrochloride acid solution was then used. 
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Esters 92 and 64 were both used in the reaction with phosphine lithium salt 85 in analogy to 

the reaction with trialkylboronate 63 shown in Scheme 35. For the following reaction (Scheme 

37) the less nucleophilic protected phosphine 84 was used and also the reactivity of the 

borinate 64 is lower then reactivity of the monosubstituted boronate 63. 

 

Scheme 37: Reaction of the borane-protected phosphine with diphenylboronate. 

 

The reaction (Scheme 37) provided quite a clean reaction mixture based on 1H NMR analysis, 

which contained starting phosphine 84 and additional species which could be a desired 

product. An approximate ratio of a 2:3 for these two species was obtained reproducibly every 

time the reaction was done under the same reaction conditions. In the phosphorus decoupled 
1H NMR spectrum, the new doublet at 2,4 ppm was transformed into a singlet. This suggested 

that the proton signal must come from the phosphorus-containing compound and be placed 

close to the phosphine due to the coupling constant, which was 16 Hz. In the 11B NMR 

spectrum of the crude, unquenched, reaction mixture one broad signal with a shift of 0 ppm 

was found, which is the typical region for tetravalent boron compounds. After quenching of 

the reaction mixture by ethereal HCl, this signal shifted to 46 ppm. That change indicates the 

transformation of the tetravalent boron species into a trivalent one. In the phosphorus NMR 

spectrum of the crude reaction mixture two species in a 1:1 ratio were observed. After 

quenching the reaction with HCl, the phosphorus NMR signal ratio remained basically the 

same, but these signals became more separated. One of the signals corresponds to 84 and the 

second broader signal with a chemical shift 3 ppm higher and a more complex splitting 

pattern was assigned to the expected product 93. This observation strongly supported the 

presence of a second boron atom in the expected product 93, which also shows coupling with 

the phosphorus nucleus. However, when separation by column chromatography was 

attempted, only starting phosphine 84 was isolated. This observation could be explained by 

the instability of the product on the column, which is unlikely due to the fact that it had 

already survived the HCl workup. From the quenched reaction mixture a 1H NMR spectrum 

was recorded and, after quick filtration over a plug of silica gel, was recorded again. The 
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integral of the potential product doublet with a chemical shift of 2.4 ppm in the 1H NMR 

spectrum was smaller compared to the starting phosphine 84, but it was still present. This 

proved that the column chromatography has some negative impact on the tracked compound, 

even though the product does not immediately decompose after contact with the silica gel. 

Another method to prove the presence of product 93 was mass spectroscopy but GC-MS 

analysis showed only the signal of phosphine 84. 

 

Scheme 38: Previous reaction mixture with lithium oxazoline. 

 

Although attempts at characterization of product 93 were unsuccessful, we decided to test the 

subsequent reaction step (Scheme 38) with the previously described reaction mixture from 

Scheme 37. The reactant ratios were based on the expected composition of the products from 

the previous reaction and were in a 1:1 ratio with the oxazoline nucleophile. Therefore the 

mixture of two phosphine species, including starting phosphine 84 and expected product 93, 

were added to the pregenerated lithium oxazoline salt at -78 °C and after warming up the 

reaction to room temperature, an NMR spectrum of the crude mixture was recorded. The 

spectrum showed a 1:1 mixture of 84 and the H-oxazoline 87. 

This result was surprising because a more complex reaction mixture would be expected from 

the mixture of these three reaction components.  

The results obtained during the examination of the boronate approach developed by 

Mikhailov suggested that this method cannot be applied to a wider spectrum of substrates. 

However, although this approach cannot be applied for desired P,N-ligands, it was at least 

successfully applied in the synthesis of chloroboranes, which are valuable boron building 

blocks.  
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4.5 Chloroboronate approach 

 

An alternative synthetic strategy using chloroboronates as boron building blocks was 

proposed. This strategy is still related to the Mikhailov method using boronates, because he 

also transformed certain boronates into chloroboronates (by action of PCl5) in order to reach 

higher reactivity of the boron building blocks as it was shown earlier in Scheme 22. 

Scheme 39: Synthetic strategy using chloroboranes as boron building blocks. 

 

The use of the chloroboronates would change the electronic properties of the boron 

intermediates in the planned synthesis (Scheme 39) compared to the previous approaches.  

The reactions are analogous to the previous reactions examined using the chloroboranes as 

synthons, but in contrast to those they have two oxygen atoms directly bound to the boron 

instead of carbon substituents and this is reflected in their reactivity (Scheme 39).  

For preparation of the chloroboronates, more convenient methods than those of Mikhailov 

could be chosen for our purpose, such as the reaction of trichloroborane with the 

corresponding alcohol. This method could be applied for the preparation of somewhat simpler 

chloroboronates, although it is more limited in scope than the Mikhailov method. Or an 

alternative chloroboronate synthesis could be used that starts from boric acid ester 63, which 

is transformed into the chloroboronate 95 upon treating with trichloroborane in the proper 

stochiometric ratio (Scheme 40). 
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Scheme 40: Two different pathways for the preparation of chloroboronates. 

 

Both synthetic approaches were examined and the second method using boronate 63 seemed 

to give a cleaner reaction mixture. In the synthesis of 95 starting from isobutyl alcohol two 

molecules of hydrochloric acid are released during the reaction and have to be removed, 

which makes the preparation less convenient. 

Scheme 41: Reaction of the diisobutylchloroboronate with the Li(TMEDA) salt of the methyl- 

diphenylphosphine. 

 

The chloroboronate 95 was then used in the reaction with the phosphine synthon as was 

depicted in Scheme 39 using Route A. For this reaction lithium(TMEDA) salt 83 was used 

and was added as a THF solution to a solution of chloroborane 95 at -78 °C. Unfortunately, 

no expected product was observed and three compounds were identified from the unusually 

clean crude reaction mixture. The first compound was the starting phosphine 81 and was the 

only phosphorus-containing compound, the other two compounds were isobutanol and 

triisobutyl boronate 63 (Scheme 41). The proton NMR spectrum intensities correspond to the 

equimolar amount of the starting chloroboronate 95 and the phosphine 83. The formation of 

these species cannot be explained by any simple mechanism, but one possible explanation 

could be that during the reaction a boronate complex is formed and further undergoes some 

redistribution reactions between the reaction intermediates, thus transferring some 

isobutanolate groups to the other boron atom. That would explain the formation of compound 

63 and the presence of the isobutyl alcohol in the reaction mixture as a quenched migrating 

group. 
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To test this hypothesis a control experiment was performed. The reaction of 

phenylmagnesium bromide was chosen because the expected product had already been 

prepared via a different reaction sequence (Scheme 23). 

 

Scheme 42: Reaction of the chloroboronate with the Grignard reagent as a control experiment. 

 

The reaction of chloroboronate 95 with phenylmagnesium bromide also did not lead to the 

desired product 66 and, as in the previous reaction, isobutyl alcohol was also detected in the 

reaction mixture (Scheme 42). This observation, which was analogous to the previous 

observation from the reaction of the phosphine 83, inidicated that the undesired behavior is 

not due to the presence of the heteroatoms interacting with boron, but rather the result of a 

redistribution reaction, including the transfer of alcoholates between different boron species. 

 

 

4.5.1 Aromatic chloroboronate approach 

 

Based on the previous observations further investigations to change the chloroboronante 

species seemed more promising than examining Route B (Scheme 39) with the same 

chloroboronate 95. As migration of the ester function of the phosphine was a problem in 

previous reactions, chloroboronates with an ester function derived from diols were chosen. 

Two diols were considered as potential candidates, pinacol and catechol. The preparation of 

the pinacolchloroborane was described by Bettinger in 2008.[66] The synthesis employs the 

same synthetic strategy as was described in Scheme 40, but the reaction is accompanied by 

formation of the undesired dimeric pinacolboronate, which lowers the yield of the desired 

pinacolchloroborane to 30%. The synthesis of the chlorocatecholboronate 96 from catechol 

was described by Gerrard et al. in 1959, as depicted in Scheme 43.[67] 
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Scheme 43: Preparation of catecholchloroborane from catechol and BCl3. 

 

As opposed to diisobutylchloroboronate 95, which is a low boiling liquid, the catechol 

derivative 96 is a solid and could be isolated by sublimation in pure form. Also, the electronic 

properties of the aromatic and aliphatic chloroboranes differ as shown in Scheme 43. The 

difference is in the ability of the aromatic ring to accept the electron density of the oxygen 

lone pairs and thus weaken the electron donating effect towards the boron. Therefore the 

boron atom in the related chloroboranes is more Lewis acidic in case of the aromatic esters 

then in the aliphatic ones. BH3-protected methylphosphine 85 was chosen as the nucleophile 

in the reaction of 96 (Scheme 44). 

Scheme 44: Reaction of catecholchloroborane with the Li salt of methyl diphenylphosphine. 

 

The reaction was carried out by adding 96 to 85 or in reverse order so that either phosphine 85 

or the chloroboronate 96 were in excess, but both protocols basically resulted in the same 

product mixture. When the 11B NMR spectrum of the crude reaction mixture was recorded 

there were at least four different species with chemical shifts ranging from 33 to 7 ppm. These 

numbers represent both trivalent and tetravalent compounds, which were present in similar 

amounts. 

 

After unsuccessful attempts using Route A, we decided to investigate Route B by employing 

the chemistry of chlorocatecholboronate 96. The reaction of chloroboronate 96 with oxazoline 

Li-(87) under standard reaction conditions was performed to obtain the desired addition 

product 97. The reaction proceeded very cleanly and only one major product was observed. In 

the proton NMR spectrum all signals matched expected changes in the chemical shifts and all 

integrals fitted with structure 97. After purification of the reaction mixture by column 
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chromatography a 11B NMR spectrum was recorded wherein there was only one major boron 

signal, as expected, but surprisingly the chemical shift of that signal was 5 ppm, which is in 

the typical region for tetravalent boron compounds. The integral in the aromatic region of the 

proton NMR spectrum was higher than anticipated for 97. This could possibly come from the 

phenyl groups of the oxazoline, indicating that the product of double addition of Li-(87) 

might have formed, since chloroboronate 96 was added to the pre-generated lithium oxazoline 

Li-(87) and so the latter species was in excess during the course of the addition. The data 

obtained from the MALDI-MS showed a signal corresponding to the double value of the 

molecular mass of product 97 (Scheme 45). 

Scheme 45:  Reaction of the catecholchloroborane with the 2-lithium oxazoline leading to the 

undesired dimeric product. 

 

Based on all analytical data obtained, structure 98 was proposed. Since the product was a 

crystalline compound it was attempted to grow crystals in order to confirm the structure by X-

ray analysis. Even though it was not possible to remove contaminating catechol from the 

sample, crystals suitable for X-ray analysis could be prepared. Selected bond lengths from the 

crystallographic measurement are shown in Table 7. 
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Table 7: Selected bond lengths from the X-ray structure of 98-catechol (Figure 14) 

 

Bond B-N[a] B-N[b] B-C(oxaz)[a] B-C(oxaz)[b] catOH-OB[a] catOH-OB[b] 

Length [Â] 1,545 1,547 1,626 1,635 3,260 4,002 

 

 

 

[a] closer monomeric fragment, [b] remote monomeric fragment 

Figure 14: Crystal structure of the dimeric oxazoline-catecholboronates cocrystallized with catechol as 

an impurity 98-catechol (hydrogen atoms are omitted for clarity). 

 

The resulting crystallographic structure was in agreement with the proposed product structure 

98, but was cocrystallized with one molecule of catechol (98-catechol) within the crystal cell 

(Figure 14). There are clear hydrogen bonding contacts between catecholboronate oxygen 

atoms and the hydroxy protons of the cocrystallized catechol. The other interesting 

observation was that the boron-nitrogen interaction has the character of a covalent bond with 

a length of 1.5 Å, which is even shorter than the boron-carbon bond of the oxazoline part 

(Table 7).   

After the crystal structure of 98-catechol was refined there were also separation conditions 

found for removing the catechol molecule from the 98-catechol which had persisted even 

after column chromatography or crystallization. Column chromatography which uses either 

Bond catOH-OB[a] catOH-OB[b] catOH-OB[a] catOH-OB[b] 

Length [Â] 2,717 2,796 2,005 1,943 



 

 71 

neutral alumina as the stationary phase or dichloromethane as an eluent even for 

chromatography on silica gel can be used for isolation of pure 98. 

Using crystallization conditions that were used for the preparation of 98-catechol crystals for 

X-ray analysis provided in case of pure 98 just thin fiber crystals which were not suitable for 

crystallographic measurement. However, when a temperature driven crystallization was 

performed instead of the solvent diffusion method, a different crystalline form was obtained 

and these crystals were suitable for the crystal structure elucidation. The resulting X-ray 

structure is depicted in Figure 15 and several selected crystallographic bond lengths of 

compound 98 are listed in the Table 8. 

Table 8: Selected bond lengths from the X-ray structure of 98 (Figure 15) 

 

Bond B-N[a] B-N[b] B-C(oxaz)[a] B-C(oxaz)[b] catO-B[a] catO-B[b] 

Length [Å] 1,548 1,546 1,627 1,638 1,487(1,472) 1,480(1,469) 

[a] closer monomeric fragment, [b] remote monomeric fragment 

Figure 15:  Crystal structure of the dimeric oxazoline-catecholboronates without cocrystallized 

catechol 98 (hydrogen atoms are omitted for clarity). 

 

Comparison of the lengths of the boron-nitrogen bonds in Table 7 and Table 8 showed that 

the distances between those nuclei in both compounds (98 and 98-catechol) are identical. The 

additional coordination of the catechol molecule does not have any influence on the structure 

of the compound 98. The only significant change in the crystal structure is that one of the 

catecholboronate units has a disordered phenyl ring. To supress this dynamic behavior, the 
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crystallographic data were recorded at 100 K instead of 123 K but the lower temperature did 

not show a positive effect on the disorder of the phenyl group. 

 

Even though the product of the lithium oxazoline Li-(87) addition to chlorocatecholboronate 

96 produced undesired dimeric product 98 instead of 97, the reactivity of the dimer was 

examined in order to incorporate the phosphine function and to obtain target molecule 99 

(Scheme 46).  

Scheme 46: Reactivity of the dimer 98 with nucleophiles or with various metal salts. 

 

In this reaction two lithium phosphines, Li(TMEDA) salt 83 and BH3-protected lithium 

phosphine 85, were tested (Scheme 46). The addition of 83 to dimer 98 as well as the addition 

of 98 to 83 left the phosphine unchanged based on the 31P NMR spectrum, but at the same 

time led to oxazoline ring decomposition. When the addition of the reagent was performed in 

the reverse order there was no conversion observed, even at low temperature or after 16 hours 

at room temperature. Even when salt 85 was added to a boiling solution of the dimer 98 in 

THF and refluxed overnight, no reaction was observed. 

That no reactivity at the boron center was observed in those reactions was in agreement with 

the strong covalent B-N bond observed in the crystal structure. Another option to recover the 

trivalent boron species would be acidic cleavage of the B-N bond. Unfortunately, this 

approach could not be applied to substrate 98, because it contains acid-labile oxazoline 

moieties, which would open up under those acidic conditions.  

Therefore the use of a Lewis acids was considered instead and Cu(I), Cu(II), Co(II), Ni(II) 

and Ir(I) salts were tested (Scheme 46). Solutions of the selected salts were prepared in 

various solvents, dimer 98 was added, and after 5 hours the MALDI-MS was recorded to 

prove the eventual existence of metal complexes. However, although all the metal salts 

changed color, the desired mass (m/z) was not observed. Attempts to identify the metal 
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complexes by X-ray analysis also failed. Unfortunately none of the crystals obtained were of 

the desired metal complex. 

The two crystal structures as well as the complexation studies with several metal salts and the 

experiments with the phosphine nucleophiles clearly demonstrate the low reactivity of dimer 

98. For better understanding of the reactivity of 98 the charge distribution was modeled by 

quantum chemistry simulations. The method used for this investigation was mapping the 

electron density on the structure obtained from X-ray analysis, which should offer a good 

image of the charge distribution within the molecule.The electrostatic charge distribution was 

calculated using the ChelpG method[68] and it is represented as molecular electrostatic 

potential (MEP) density surface (Figure 16). 

 

Figure 16: Molecular electrostatic potential (MEP) for the X-ray structure of 98 (two different views) 

calculated in Gaussian 09, B3LYP/6-311g(d,p) by the ChelpG method. 

 

The shell surrounding the molecule represents the electron density space and the color range 

describes the distribution of the electron density along the density surface. The red surface 

color stands for the highest electron density and the blue regions are the ones with the lowest 

electron density within the molecule. This is a useful tool for predicting the reactivity of 

organic molecules by locating their nucleophilic and electrophilic centers. In the case of dimer 

98 this analysis should tell whether the boron atom still should have a tendency to react with 

nucleophiles, or if the Lewis acidity of the boron center was entirely suppressed by the 

interaction with the oxazoline N atom. The answer is displayed in Figure 16 (left structure), 

where it is clearly visible that the more electropositive part in this case is the oxazoline ring 
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rather than the boron atom. The other attribute which is nicely represented in both views is 

that the places with the highest electron density are on the oxygen atoms of the 

catecholboronate, namely on the side where the benzyl groups of the oxazoline are not 

present. This is in agreement with the observation of the structure of 98-catechol where the 

hydrogen bonding is pointing towards those atoms. A further important observation is that the 

electron density of the catecholboronate phenyl ring is clearly delocalized from the 

neighboring oxygen atoms along the entire aromatic ring (Figure 16, right structure) as was 

previously described in Scheme 45. This observation explains why the aromatic boronates are 

more Lewis acidic than their aliphatic analogs. 

 

4.5.2 Phosphine aliphatic boronate approach 

 

In a further investigation of the boronate approach aliphatic boronate 101 derived from 

pinacol were used. The synthesis of the boronate analog 101 was described by Bourissou in 

2010 (Scheme 47).[69] Compound 101 is basically an analog of the previously used boronate 

building blocks, but its advantage is that it already has the phosphine function incorporated. 

 Scheme 47: Synthesis of the phosphinopinacol boronate adduct for further investigations. 

 

The pinacolboronate precursor 100 could be prepared from pinacol and triisopropyl boronate 

by a condensation reaction.[70] In the next step, the monobrominated triphenyl phosphine was 

first transformed into the lithium salt, which then acted as a nucleophile in the addition to the 

Lewis acidic boronate 100. After workup product 101 was obtained (Scheme 47).[69] 

The pinacolboronate 101 was used in the next reaction with lithium oxazoline Li-(87) where 

it was added at low temperature (Scheme 48). 
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Scheme 48: Reaction of the lithium oxazoline with the aromatic pinacolboronate. 

 

The crude reaction mixture was analyzed by 1H 31P and 11B NMR spectroscopy. Mostly 

signals of the starting material, unreacted H-oxazoline 87, and also partially decomposed 

phosphine 101 were visible. Part of the reaction mixture was also used for direct 

complexation with [Ir(cod)Cl]2 in order to avoid possible decomposition of product 102, as 

there is no literature data on the stability of such compounds. The metal complex with iridium 

should be more stable than just the ligand itself. However no changes were observed in the 

NMR spectra in particular, the oxazoline proton shifts were unchanged, implying that there 

was no desired complexation product present. 

The reactivity of the boron compounds is driven mainly by two factors, electronegativity of 

the substituents and the steric environment of the boron atom. This might be the reason for the 

lack of reactivity of compound 101 with the nucleophile Li-(87) (Scheme 48), because the 

pinacol ester is a very sterically demanding group. 

Based on those facts the next investigation was directed towards the preparation of different 

boronates that would be less sterically demanding than the pinacol esters, as well as less 

electron rich, if possible. From the general synthesis of boronic acids (Scheme 21) it is known 

that after nucleophile addition the boronate is formed first and then after acidic workup the 

corresponding boronic acid is obtained. 

This approach was applied to the boronate 101 in order to prepare boronic acid 103, which 

could be further transformed into different esters. Pinacol boronate 101 was then treated with 

aqueous hydrochloric acid, but only starting material was obtained, even after heating the 

mixture with aqueous HCl to 55 °C for 16 hours (Scheme 49). 
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Scheme 49: Stability of pinacolboronate 101 under acidic conditions. 

 

Since hydrolysis of product 101 was not possible, another synthesis was considered which did 

not start from pinacol boronate 101, but from trimethylboronate to produce the dimethylester 

of 103, which could be easily hydrolyzed to obtain the desired boronic acid 103. This species 

can be further transformed into the corresponding esters by condensation with alcohols. 

Ethylene glycol was chosen as the diol for the condensation because it has less steric demand 

than pinacol (Scheme 50).[71] 

Scheme 50: Preparation of boronic acid 103 followed by ethylene glycol ester formation. 

 

The reaction of glycolboronate 104 was performed under standard conditions for the 

analogous reaction of pinacolboronate 101 in order to obtain the expected addition product 

102 (Scheme 51).  

 

Scheme 51: Reaction of the gylcolboronate 104 with the oxazoline 87. 

 

Unfortunately also the ethylenegycol derivative 104 showed to be unreactive as well as the 

pinacol derivative 101 and did not produce any desired addition product 102. 
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4.6 Aminoborane complexes 

 

In the previous chapters the reactions either were not specific and mixtures of uncharacterized 

products were obtained or the reaction produced the undesired dimeric product 98. The B-N 

bond in this dimer was found to be very strong and the breaking of that bond was not possible 

(Scheme 46). The analogous dimeric product was also later observed in the reaction of 

dipehenylchloroborane with lithium oxazoline (Scheme 52). 

 Scheme 52:  Reaction of the dipehnylchlorobornate 61 with the oxazoline producing undesired 

dimeric product. 

 

Li-(28)-tBu was added into the precooled solution of chloroboronate 62 to ensure that the 

chloroboronate is in excess during the addition to avoid formation of the undesired borabox 

ligand. Based on the 11B NMR spectrum a tetravalent boron species was obtained, but the 

chemical shifts did not match with the known borabox ligand.[36] Therefore the mass spectrum 

was recorded, which showed the mass of dimeric structure 105. 

Keeping in mind the inert nature of 98, no nucleophile addition trials were then performed. 

Instead, we thought of how to avoid the undesired dimer formation. An option would be to 

reversibly block the fourth substitution position of the boron atom, which would prevent the 

undesired dimer formation. 

As was shown in Scheme 43, the Lewis acidity of the aromatic boronates differs due to the 

increased back donation of the oxygen lone pairs as opposed to the aliphatic boronates, where 

electron delocalization is not possible. This different electronic behavior can be 

experimentally demonstrated by complexation of the selected boronates with pyridine. The 

aromatic boronates form pyridine complexes, whereas the aliphatic ones do not.[67] Pyridine 

usually forms very stable complexes with boranes,[72] which is used for example for the 

deprotection of BH3-protected phosphines, where the newly formed B-N bond is much 

stronger than the B-P bond. Therefore, using pyridine to temporarily block the boron 

coordination sphere would not be feasible. The interaction of the boranes with various amines 
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was studied by Mikhailov, where amines like diethylamine, piperidine, pyridine, or gaseous 

ammonia were tested.[72-73] He found that the ammonia-boron complexes could be treated by 

gaseous hydrochloric acid to recover the trivalent boron compounds. This approach 

unfortunately cannot be applied to our previously prepared unreactive compounds 89 or 105, 

because treatment of those compounds with the acid would lead to oxazoline decomposition. 

Since the B-N bonding was dependent on the nature of the amine and also temperature, we 

decided to test weakly coordinating triethylamine at various temperatures with 

dicyclohexylchloroborane 86 in order to obtain reversibly protected borane (Scheme 53). 

Scheme 53: Complexation of dicyclohexylchloroborane with triethylamine at low temperature to form 

an insoluble complex 106 in hydrocarbon solvent. 

 

Initially triethylamine was added to the clear precooled solution of the chloroborane 86 in n-

hexane. The white precipitate 106 already began forming during the triethylamine addition. 

This precipitate was completely dissolved upon warming the reaction mixture up to room 

temperature and a solution without precipitate was again obtained. The n-hexane was 

evaporated from the reaction mixture and there was no triethylamine present based on the 1H 

NMR spectrum. 

This weak coordination could be useful, for example, for the purification of selected trivalent 

boron compounds, because the reversible complexation can be driven just by temperature. 

Another application of the ammonium complexes is that they could be used even in reactions 

with nucleophiles.[74] 

We were particularly interested in the reaction of amino-borane complexes with nucleophiles 

and therefore the same complexation as in Scheme 53 was investigated, but in the intended 

reaction solvent, which was tetrahydrofuran. This reaction was performed in deutero-

tetrahydrofuran to allow the changes of the amine complexation in the variable temperature 
1H and 11B NMR studies to be tracked. For this purpose, the addition of equimolar amounts of 

triethylamine to chloroborane 86 was done at room temperature and subsequently a set of 1H 

and 11B NMR spectra were recorded at lower temperatures (Figure 17 and 18). 
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Figure 17:  Variable temperature 1H NMR experiment displaying complexation of the chloroboronate 

86 with triethylamine in THF. 

 

The NMR spectra of chloroborane 86 were first recorded only in THF-d8 to see possible 

changes after triethylamine addition, such as whether it would already coordinate to the 

borane at room temperature. But this change did not occur, as is visible from the first 2 

stacked spectra where neither the 1H nor 11B NMR spectra has changed. The major change in 

the 11B NMR spectrum from 76 ppm to 28 ppm was observed when the NMR solvent was 

changed from CDCl3 to THF-d8, but no further change after triethylamine addition at room 

temperature was observed (Figure 18). After cooling the sample down to 200 K changes in 

the 1H NMR were already visible, where the CH signal of the cyclohexyl group at 0.75 ppm 

moved slightly upfield as well as the signal at 1.73 ppm. The positions of the triethylamine 

signals were practically unchanged, but the quartet of the CH2 group got broader and lost 

multiplicity, while the triplet of the methyl group remained. In the 11B NMR the boron signal 

became broader and moved several ppm upfield. Further cooling to 200 K further enhanced 

that effect (Figure 18). 
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Figure 18:  Variable temperature 11B NMR experiment displaying complexation of the chloroboronate 

86 with triethylamine in THF. 

 

This behavior could be interpreted as an interaction of the chloroborane 86 with the nitrogen 

atom of the amine, which is dynamic and the amine is competing with the surrounding 

molecules of tetrahydrofuran. The broadening of the CH2 proton signals of the triethylamine 

would support this theory, because the CH2 group would be the one most affected by 

complexation and therefore broadened by dynamic process and at the same time also by 

possible remote coupling with the boron atom. The broadening of the boron signals in the 11B 

NMR probably results from a complex equilibrium, where at the lower temperature the more 

stable ammonium complex is favored, but the concentration effect of the solvent still allows 

competition between the amine and THF. 

The initial idea of using weakly coordinated amines as a temporary protecting group was to 

avoid the undesired reactions that were observed in THF (Schemes 32, 46, and 52). From 

these complexation experiments we concluded that complexation of the boranes with amines 

could be possibly used in general for purification of the trivalent boron compounds by 
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crystallizing them from hydrocarbon solvents at low temperatures. But using them to avoid 

the undesired reactions with other nucleophiles at low temperatures was considered 

unreasonable because of the similar complexation abilities of triethylamine and 

tetrahydrofuran (Figure 18). 

 

 

4.7 Difluoroborates as electrophiles in the nucleophilic substitution reaction 

 

As it was not possible to block the fourth substituent position at the boron atom by weakly 

coordinating nitrogen bases, another strategy was proposed, which would keep the boron 

atom tetravalent during the entire reaction sequence (Scheme 54). 

Scheme 54: Synthetic strategy utilizing difluoroborates in reaction with oxazolines and phosphines. 

 

Diaryldifluoroborates 107 served as starting materials in the reactions with nucleophiles in 

order to control the stepwise substitution without the danger of either multiple substitution or 

undesired boron-heteroatom interactions. The diaryldifluoroborates are not widely used 

reagents,[75] they were almost exclusively used in the Suzuki-Miyaura coupling reaction for 

transferring aryl groups to substrates via palladium-catalyzed reactions.[76] The more widely 

used analogs in Suzuki-Miyaura reactions are potassium trifluoroaryl-boranes. 

Herein we present the first use of diaryldiflouroboranes as electrophiles in a nucleophilic 

substitution reaction. 

 

4.7.1 Preparation of difluoroborates 

Several diaryldiflouroboranes were easily prepared from the corresponding borinic acids by 

reaction with potassium hydrogen difluoride. Only a few examples of potassium 

diaryldifluoroborates have been reported before (Scheme 55).[76] The resulting compounds 

107 are moisture and air stable, unlike most of the boron compounds, and their final 
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purification could generally be done by crystallization from a methanol/diethylether mixture. 

Preparation of the diarylborinic acids as precursors starts from trialkylboronates and was 

previously described in Scheme 36. 

Scheme 55: Preparation of potassium diphenyldifluoroborate from diphenylborinic acid. 

 

To have a robust synthesis of borinic acids and their difluoroborates 107, their preparation and 

purification were investigated. Diphenlylborinic acid 91 was chosen as a model starting 

substrate. This borinic acid is not stable and it hydrolyzes over time to give mainly 

phenylboronic acid, therefore it has to be either used immediately after preparation or it can 

be converted back to the isobuthylester, which can be purified by fractional distillation. 

Column chromatography of 91 is possible, but owing to its instability under acidic conditions, 

it is not the method of choice. A better method for purification is formation of the 

ethanolamine ester of the corresponding borinic acid. Such esters are air and moisture stable 

and they can be easily purified by crystallization. The high stability of these esters is due to 

coordination of the amino group of ethanolamine resulting in the tetravalent compound 109 

(Scheme 56). 

Scheme 56: Preparation of stable derivatives of the diphenylborinic acid suitable for purification. 
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The previously prepared isobutylborate 64 can also be directly converted into the 

ethanolamine ester. The driving force for the transesterification reaction is the formation of 

the more stable tetravalent boron species 109 (Scheme 56). 

As described in Scheme 55, diphenylborinic acid 91 can be converted into Ph-107 by using an 

excess of KHF2. The starting borinic acid 91 can be also released from the ethanolamine ester 

109 by treatment with aqueous hydrochloric acid followed by extraction (Scheme 56). 

Both esters 64 and 109 can be used for direct transformation to Ph-107 using the same 

conditions as for the reaction from borinic acid 91, but in case of ethanolamine ester 109, the 

reaction is significantly slower. Therefore, it is better to first transform the ethanolamine ester 

to 91 because the reaction with the borinic acid proceeds much faster and is complete in about 

15 min (Scheme 57). 

Scheme 57: Preparation of the potassium diphenyldiflouroborane Ph-107 form the ethanolamine ester 

109 and isobutylboronate 64. 

 

While ethanolamine ester 109 is less reactive than the borinic acid 91 in the reaction with the 

nucleophilic fluorine of KHF2, the isobutyl ester reacts even faster than acid 91, accompanied 

by an observable evolution of heat. The reason for these different reactivities is obvious. 

Amino function of the ethanolamine ester has to first dissociate from the boron center and, as 

was described earlier, the B-N bonds are very strong; therefore, this transformation requires 

more time than the reaction of trivalent precursors 64 and 91. This reaction is nevertheless 

possible, probably owing to the driving force of the newly formed, and also very strong, B-F 

bond. 
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4.7.2 Reaction of difluoroborates with lithium-oxazolines 

 

The previously prepared difluoroborate Ph-107 was used for the reaction with lithium-

oxazoline to obtain the substitution product 108. Oxazoline 87 was selected as the first 

nucleophile in the reaction sequence (Scheme 54) because it was considered to be a weaker 

nucleophile than the lithiated methylphosphine 85 and therefore the addition should be done 

in the first substitution step. The reaction using Ph-107 as a reactant was done at low 

temperature in order to decrease the reactivity of Li-87, which could possibly form the double 

substitution product (borabox ligand) because it is present in excess during the addition 

(Scheme 58). 

Scheme 58: Reaction of difluoroborate Ph-107 with lithium-oxazoline Li-87. 

 

The reaction mixture was warmed to room temperature after addition and after approx 30 

minutes the reaction was discolored. After another 2 hours a sample was taken from the 

reaction mixture and an NMR analysis was done in CDCl3 because the product was expected 

to be soluble in chloroform. However, starting material was almost exclusively observed. The 

reaction mixture was allowed to react additionally overnight at room temperature and then 

was analyzed again. There was a signal in the 19F NMR spectrum with a very low chemical 

shift at around -192 ppm, which did not correspond to starting material. The 11B NMR mainly 

showed the presence of tetravalent boron, which could not be starting material because Ph-

107 was not soluble in the selected NMR solvent. The MALDI-MS was also recorded to 

determine the molecular mass of the product, which showed the expected mass for Ph-108 in 

the negative mode. The crude product was then purified by column chromatography on silica 

gel where the product was eluted with methanolic ethyl acetate. The 1H NMR spectrum after 

chromatography looked slightly different than the NMR spectrum of the crude reaction 

mixture, especially the signals of the oxazoline ring were all shifted. Overall the spectrum was 

consistent with the protonated form of Ph-108-H (Scheme 59). 
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Scheme 59: Protonation of the Ph-108 on the silica gel column. 

 

This behavior is in analogy with the previously prepared borabox ligands, which can also be 

converted from the negatively charged lithium salts into the zwitterionic structures.[36] The 

confirmation of this proposed behavior prompted FAB-MS analysis where the mass of the 

neutral product Ph-108-H was detected as an adduct with the potassium cation, which came 

from the KCl salt intentionally added for the measurement. FAB was selected as a soft 

ionization method, as ESI and MALDI had failed to detect the product Ph-108-H mass.  

 

 

4.7.3 Reaction of oxazolinefluoroborane with the lithium phosphine 

 

Product Ph-108-H was used in the next step of the planned synthesis (Scheme 54) with 

lithium phosphine salts. Ph-108-H was deprotonated with n-butyllithium under the same 

conditions as described for the borabox ligands.[36] The deprotonated oxazoline Ph-108 was 

then used in the reaction with phosphine nucleophiles 83 and 85 (Scheme 60). 

Scheme 60: Reaction of Ph-108 with the lithum salt of diphenylmethylphosphine. 

 

However lithium phosphines 83 or 85 did not undergo the proposed nucleophilic substitution 

with Ph-108, and in both cases only starting material was recovered. More forcing conditions, 

such as refluxing the reaction mixture in THF for an extended time period were also 

examined, but no reaction was observed. 
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4.7.4 Removing fluorine from diphenyloxazolinefluoroborane 

 

Because of the inert nature of the fluoroborate Ph-108 it was attempted to cleave the B-F 

bond and possibly let the released trivalent boron species react in situ with the nucleophile in 

order to avoid possible dimer formation (Scheme 61). 

Scheme 61: Adjusted synthetic strategy using Ph-108 in the reaction with phosphine nucleophiles. 

 

For the cleavage of the fluoride-borane adduct Ph-108 several reagents were considered 

which could possibly form stronger bonds with fluoride and at the same time not interfere 

with the lithium reagents present in the reaction mixture.  

 

The first method selected for the B-F bond cleavage in Ph-108 was the use of the silver salts, 

which can remove the fluoride by forming silver fluoride, which is basically insoluble in 

tetrahydrofurane which is used as a reaction solvent. Two silver salts, AgNO3 and AgPF6, 

were tested in the reaction with either Ph-108 or Ph-108-H. Silver(I) nitrate is not well 

soluble in THF, but if the desired silver fluoride formation were to take place then it would 

gradually dissolve as the reaction progresses. The silver hexafluorophosphate was selected 

because of its better solubility in organic solvents. In both reactions unidentified mixtures of 

products were obtained, which were mostly insoluble in THF. The soluble part did not contain 

any oxazoline signals, which suggested that the starting Ph-108 was transformed into its 

silver salt, which was not soluble in THF. Despite the fact that it was not possible to identify 

the reaction intermediates, the reaction mixture containing the silver salts was used in the 

reaction with lithium(TMEDA) phosphine 83. Instead of the expected substitution product 

this reaction produced only starting phosphine and the corresponding 2H-oxazoline (Scheme 

62).  
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Scheme 62: Reaction of Ph-108 with silver salts. 

 

The silver salts of Ph-108 after the first reaction step still contained the fluorine bound to the 

tetravalent boron based on the fluorine NMR even though silver was used in excess. An extra 

equivalent of silver salt should guarantee that there will still be some free Ag+ for reaction 

with the fluoride. The problem in this case is probably the low solubility of the silver salts. 

When the protonated form Ph-108-H was used, decomposition of the oxazoline was 

observed. 

 

As the initial attempts at removing the fluoride from Ph-108 were unsuccessful, we proposed 

boron-based fluoride scavengers, such as BH3.THF or BF3.Et2O. Those boron compounds 

should form adducts with the fluoride anion and liberate the trivalent boron species (Scheme 

63). 

 

Scheme 63: Reaction of Ph-108 with BF3.Et2O or with Me3SiCl. 

 

The driving force for the reaction should be formation of the tetrafluroborate salt, but even 

when BF3.Et2O was used in excess the characteristic signal of Ph-108 was still observed in 

the fluorine NMR spectrum. When a silicon-based fluorine scavenger was used, either in the 

form of Me3SiCl or SiCl4, only the decomposition of the oxazoline was observed, as was also 

the case when BH3.THF was used. 
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4.7.5 Electronic tuning of the aromatic tetravalent fluoroborates 

 

As the reaction of Ph-108 with either 83 or 85 was not taking place and the removal of 

fluoride from Ph-108 was not possible, we decided to tune the electronic properties of the 

starting difluoroborates. The phenyl substituents of those compounds could bear either 

electron-withdrawing or electron-donating substituents. The substituents were selected based 

on their σ Hammett constants in an effort to vary the electronic properties over a wide range. 

Thus the following structures were proposed (Figure 19). 

 

 

Figure 19: Proposed substituted aromatic difluoroborates for the electronic effect studies. 

 

The synthesis of these new Ph-108 analogs was done using the corresponding Grignard 

reagents in a reaction with boronate 63, producing borinic acid esters which were converted 

into the difluoroborates by reaction with KHF2 without isolation (Scheme 64). 

Scheme 64: Preparation of the potassium difluorodiarylboranes. 

 

The purification of the final difluoroborates is straightforward and should be applicable to a 

wider range of substrates because of their relatively similar physical properties. They can be 

all crystallized out of the methanolic solution by precipitation with either diethyl ether or 

chloroform. The only compound which was not possible to prepare was Me2N-107. The 

reason for this different behavior could be that the dimethylamino groups can interact with the 

boron and form some B-N intermediates, which will not allow formation of the desired 

difluoroborate, but these intermediates were not detected. 
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The other two new products MeO-107 and CF3-107 were successfully prepared and tested in 

the reaction with Li-87. The electron-poor difluoroborate CF3-107 was the first tested in the 

reaction with Li-87 under the same reaction conditions used for the preparation of Ph-108. To 

our surprise, only starting difluoroborate CF3-107 and oxazoline 87 were observed and no 

other products were detected in the reaction mixture (Scheme 65). 

Scheme 65: Attempted reaction of CF3-107 with Li-87. 

 

In contrast to CF3-107, the reaction of the electron-rich difluoroborate MeO-107 produced the 

anticipated product Me-108. This compound had analogous properties to the previously 

prepared Ph-108 and could also be purified by column chromatography, where it was 

converted into the protonated form, MeO-108, which is a white crystalline solid (Scheme 66). 

Scheme 66: Reaction of difluoroborate MeO-107 with Li-87 and subsequent protonation. 

 

Although the protonated MeO-108 was crystalline, no suitable crystals for X-ray analysis 

could be obtained. Fluoroborate MeO-108 was also subjected to the reaction with lithium 

phosphines 83 and 85. The reaction mixture showed a new 11B signal at -13 ppm and 

phosphorus signals at 10 and 15 ppm. Those signals disappeared after purification attempts 

using column chromatography, and mostly starting material was observed in both cases. The 

NMR chemical shifts of the crude reaction mixture support the existence of the desired 

substitution product. Unfortunately successful purification conditions were not found. In one 

case, when the reaction sequence was started from the protonated MeO-108 and n-

butyllithium was used to deprotonate the starting material prior to the reaction, a compound 

with the proposed structure of MeO-108-Bu was observed (Scheme 67). 
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Scheme 67: Proposed reaction of n-butyllithium with MeO-108. 

 

This reaction, where the tetravalent boron species was observed by 11B NMR, did not show 

starting material in the 19F NMR spectrum and in the 1H NMR spectrum showed the signals of 

the n-butyl group. Since the result of this reaction was not reproducible and the initial reaction 

was performed only on a small scale, the compound MeO-108-Bu was not fully 

characterized. The proposed compound MeO-108-Bu could have also been the n-butoxyl 

derivative, which may come from n-BuOLi traces in n-butyllithium. Because the reaction with 

n-butyllithium was not reproducible, a reaction with sodium ethoxide was examined to better 

examine the reactivity of MeO-108-Bu in reactions with O-nucleophiles; unfortunately, there 

was no product observed in this reaction. 

 

 

4.7.6 Computational studies of the electronic properties in selected fluoroborates 

 

The general reactivities of the tetravalent fluoroborates in the nucleophilic substitution 

reactions are not known, as similar reactions have not been previously reported. To get a 

better understanding of the electronic properties and reactivity of fluoroborates Ph-108 and 

MeO-108, and difluoroborate CF3-107, we carried out quantum chemistry studies.  

 
Figure 20: Gibbs free energies for the difluoroborate dissociation reaction, and definition of ∆∆Gstd.. 

B
ArAr

F O

N

Bn

MeO-108-H
Ar = p-MeOC6H4

THF, -78 °C to rt.H

B
ArAr

O

N

Bn

MeO-108-Bu

n-BuLi (2 equiv.)

∑ ∑∆∆∆ −= GGG reactantsproductsreaction

GGG
Ar

reaction

Ph

reaction

stdBFPh

reaction ∆∆∆∆ −=.2

Ar
B

Ar

F F

Ar = Ph, p-Me2N(C6H4), p-MeO(C6H4),
3,5-(CF3)2(C6H2)

reactants

Ar
B

Ar

F

+ F

products

dissociation
reaction



 

 91 

The first task of the theoretical investigation was to calculate the thermochemical data for the 

important, and probably rate determining step of the SN1 reaction, which is dissociation of the 

fluoride from the difluoroborate molecule (Figure 20). 

From the optimized geometries of the reactants and products the ∆G values were calculated 

for all fluoride dissociation reactions, with substituents ranging from electron-donating to 

electron-withdrawing. All of the ∆GAr values obtained were then referenced to the ∆GPh value 

for the Ph-107 reaction to obtain the variable ∆∆Gstd. (Figure 20, 2nd equation), which should 

express the overall difference in the Gibbs free energies between the individual reactions. 

These ∆∆Gstd. values are then presented on the last line of Table 9. 

Density functional theory (DFT) calculations were carried out to obtain the ground state 

energies of the selected fluoroborates.[77] The corresponding Gibbs free energy corrections 

were obtained from a vibrational analysis, which had no negative frequencies. 

 
Table 9: Electron charge distributions in difluoroborates, B-F bond lengths, and ∆∆Gstd. values. 
 

*values calculated using B3LYP/6-311+G(d,p), the charge numbers represent charges on the boron atom 
 

 

Method p-Me2NAr2BF2 p-MeOAr2BF2 Ph2BF2 3,5-(CF3)2Ar2BF2 

MBS -0,459 -0,457 -0,457 -0,444 

NBO -0,577 -0,576 -0,576 -0,564 

Merz-Kollman -0,547 -0,524 -0,514 -0,484 

ChelpG -0,534 -0,514 -0,509 -0,488 

∆∆Gstd. [kcal/mol] 10,1 4,6 0 -27,6 

B-F [Â] 1,4464 1,4450 1,4447 1,4336 

Electron densities on the fluorine atom in Ar2BF2
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Another electronic property which was calculated by quantum chemistry modeling is the 

charge distribution within the molecule. In this computational study four different methods for 

the charge distribution were examined and applied to the diaryldifluoroborates. 

The first method used was Mulliken population analysis, using a minimal basis set (MBS)[78]. 

This method is based on the coulombic charges of the individual atoms and the assumption 

that the overlap between orbitals is equally shared and therefore bond polarization is 

neglected. 

The second method used was Natural Bond Order analysis (NBO)[79] based on the localized 

orbitals centered on the atoms. Since those two methods are based on orbital occupancies, 

where the charges are localized on the atoms and the polarization of the bonds is neglected, 

they may not always produce an accurate representation of the charge distribution, especially 

in polarized systems. This was the case in our systems, where the remote electron 

delocalization was not well represented by these methods, because the differences in the 

atomic charges that would describe the desired electronic trends were too small. 

Two methods, Merz-Singh-Kollman[80] and ChelpG,[68] use electrostatic potential projection. 

Both methods calculate the distribution of electron densities along the atomic radii, which 

creates the molecular Van der Waals surface. The calculated densities describe the electronic 

behavior of a molecule very well, because they represent charge distribution as a continuous 

function of the electron densities around the atoms. Those densities are then fitted onto the 

atoms in order to determine the atomic charges. 

The data for the charge distribution obtained from all these methods are shown in Table 9, 

they are also displayed on the associated graph for better comparison of the numerical results. 

When we compare the electronic charges obtained from both electrostatic potential methods, 

the electronic trends correlate very well with the expected influence of the electron-donating 

or electron-withdrawing groups of the substituted aromatic rings bound to the tetravalent 

boron. The calculated charge values also provide us with a quantitative representation of those 

differences. The results from the ESP methods used clearly show that MeO-107 and Ph-107 

closely resemble each other in terms of the charge on the fluorine atom. The fluorine charge 

in the CF3-107 is far more electropositive owing to the electron-withdrawing effect of the two 

CF3 groups, which makes the B-F bond in this compound the strongest among the calculated 

compounds. This effect is also supported by the calculated bond length of 1.4336 Å, which is 

again the shortest. 
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The effect of the electron-donating group on Me2N-107 is exactly the opposite. In this case, 

the calculated electronic properties cannot be compared with the experimental data since the 

para-dimethylamino derivative Me2N-107 could not be prepared. 

 Me2N-107  MeO-107 

Ph-107 CF3-107 

 

Figure 21: Molecular electrostatic potential (MEP) for selected difluoroborates 107 calculated in 

Gaussian 09, at the B3LYP/6-311g(d,p) level of theory by the ChelpG method. 

 

The electronic distribution in difluoroborates 107 is not obvious from the molecular structures 

because of the electronic effects of the phenyl substituents and the presence of highly 

electronegative fluorine in the molecule. Another parameter that also influences the electron 

density distribution is the overall negative charge of the tetravalent boron, which is 

delocalized both on the aromatic ring and between the fluorine atoms. A graphical 

representation of the charge distribution in the selected difluoroborates is shown in the 

electrostatic potential maps in Figure 21. The color levels for all molecules are set to the same 

range to allow for quantitative comparison between them. In the first two structures, Me2N-

107 and MeO-107, the electrons from the electron-donating groups are delocalized on the 

phenyl rings and most of the electron density is located on the electronegative fluorine atoms. 

Completely different behavior was observed for the CF3-107, where two CF3 groups on the 

phenyl ring compete against two fluorine atoms on the boron atom and the resulting electron 

density is more equally distributed within the molecule. 
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The electrostatic charges fitted to the fluorine atom as well as the length of the B-F bonds 

should produce a measure for the boron-fluorine bond strength, which is an important 

parameter in the proposed SN1 mechanism, where the fluoride has to dissociate. However, the 

bond strengths do not necessarily correlate with the thermodynamics of the process. Therefore 

the ∆Greaction values for all of the fluorine dissociation reactions have also been calculated 

(Figure 20). All of these values had a positive sign, implying that the dissociation reactions 

are endothermic, which is expected as the corresponding difluoroborates are much more 

stable than the trivalent diarylfluoroborates. Since we had the experimental results from the 

reaction of Ph-108 with the Li-87, the rest of the ∆Greaction values were then referenced to this 

value to see the relative differences between various difluoroborates (Table 9). 

From the values of ∆∆Gstd. obtained, it can be seen that the dissociation of the B-F bond in 

MeO-107 requires only 4,6 kcal/mol less energy than the analogous reaction with Ph-107. In 

contrast, the dissociation energy required for same bond dissociation in CF3-107 requires 27,6 

kcal/mol more energy. This calculated value explains the experimentally observed lack of 

reactivity of CF3-107 in the reaction with Li-87. 
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4.7.7 An elimination-addition approach with fluoroborates 

 

In the difluoroborate chemistry previously studied, a unimolecular nucleophilic substitution 

approach was used with elimination of the fluoride ion being the first, rate determining step. 

This step could be problematic, as the boron substituents do not have the right electronic 

properties. Therefore, we proposed a synthetic route that would eliminate the fluoride first in 

order to prepare the diarylfluoroborates in situ, which can then react further with nucleophiles 

in the nucleophilic substitution reaction (Scheme 68). 

Scheme 68: Synthetic strategy using the difluoroborates in the elimination-addition approach  

 

The reason for this strategy was not only utilization of the first elimination step by the 

irreversible cleavage of the fluorine, but also to test the reactivity of the fluoroborates in 

analogy with the chloroboranes used in previous studies. Trimethylsilyl chloride was used as 

a fluoride scavenger by Schrimpf et al. to eliminate fluorine from the phenyltrifluoroborate 

potassium salt in situ during the preparation of chiral oxazaborolidinones.[81]  

It would be interesting to see whether fluoroborates would produce substitution products in 

reactions with nucleophiles, as chloroboranes do, [34, 36] or if they would instead form addition 

products, as Ph-108 does. In this context, it would be good to know the actual B-F bond 

strengths in the fluoroborates. The properties which provide a measure of the bond strengths 

in those compounds are the bond lengths and the vibrational frequencies of the B-F bonds, 

which were obtained by DFT calculations (Figure 22). 

Figure 22: Calculated B-F bond stretching and bond lengths at the B3LYP/6-311+g(d,p) level of 
theory for selected fluoroborates. 

 

B

F

B

F

B

F

B

F

N N MeO OMe

F3C

CF3 CF3

CF3

ν = 1247 cm-1 ν = 1242 cm-1 ν = 1250 cm-1 ν = 1258 cm-1

1, 367 Â 1,362 Â 1,356 Â 1,346 Â

Ar
B

Ar

F F

Ar
B

Ar

F

Me3SiClK

- Me3SiF

LiCH2 PPh2.BH3

Li-87

Ph
B

Ph

N

O

Bn

Ph2P



 

 96 

The B-F bonds in diarylfluoroborates (Figure 22) are generally shorter than bonds in the 

corresponding difluoroborates (Table 9). This result suggests that the fluoroborates will 

preferentially react with nucleophiles in an addition reaction, as the fluorine bond will 

probably not dissociate to produce the substitution product. Therefore, the reaction of MeO-

107 was tested first, as it has the best chance to react with the second nucleophile in the 

substitution reaction (Scheme 69).  

Scheme 69:  Elimination of fluoride from MeO-107 followed by reaction with protected phosphine and 

Li-78. 

 
The addition of trimethylsilyl chloride was done at low temperature and then the reaction was 

continued for another hour at room temperature. After cooling to -78°C 85 and Li-78 were 

subsequently added, followed by stirring overnight at room temperature. The crude reaction 

mixture was then analyzed by NMR, where a 11B signal was observed at -14 ppm and three 

signals in the 31P NMR at 15 and 12 ppm. Those chemical shifts for 11B and 31P were also 

observed in the previous reaction of MeO-108 with 85 (Scheme 67), which was postulated to 

give the same product. In the MALDI-MS of the crude reaction mixture the mass peak of the 

desired product was detected, but it was very weak; a fragment that could come from 

fragmentation of the product was also detected. Therefore, the reaction mixture was purified 

by column chromatography using silica gel or alumina, but only decomposition products were 

observed. Deprotection of the BH3-protected phosphine was attempted in order to purify the 

product by complexation with a metal, such as Ir, Cu, Zn but these trials were unsuccessful. 

 Scheme 70:  Elimination of the fluoride from the MeO-107 followed by reaction with non-protected 

phosphine and Li-78. 

 

Since deprotection of the BH3-protected phosphine product was problematic, an alternative 

synthesis using unprotected phosphine was attempted (Scheme 70). In this case the reaction 
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mixture showed signals at -14 ppm in the 11B and -22 ppm (starting phosphine -27 ppm) in 

the 31P NMR spectra. This crude reaction mixture was then subjected to complexation with 

ZnCl2 in chlorobenzene, but the desired mass was not observed by MALDI-MS. 

 

Another reactive difluoroborate used in reaction with a Li nucleophile in our previous studies 

was Ph-107. Hence, we decided to use it in the reaction sequence depicted in Scheme 68. 

 Scheme 71:  Elimination of fluoride from MeO-107 followed by reaction with protected or unprotected 

phosphine 85 and then reaction with Li-78. 

 

When the entire reaction sequence was done as depicted in Scheme 71 several species were 

observed in the 11B and 31P NMR spectra, including starting materials. For the reaction with 

the BH3-protected phosphine 85 signals were detected that were almost identical to the 

previously observed signals using MeO-107. 

Because phosphine deprotection was problematic in the previous reaction with MeO-107, the 

reaction sequence was carried out again, this time using lithium methylenediphenylphosphine 

82. Again a tetravalent boron species was detected by 11B NMR analysis and a new species 

also appeared in the 31P NMR spectrum. Because of these promising results, several metals 

were employed to prepare a complex of the expected product, which could possibly be 

purified by crystallization. 

Three different metal sources were selected, [Ir(cod)Cl]2, ZnCl2, and [Pd(allyl)Cl]2. The 

complexations were done in refluxing THF and monitored by NMR spectroscopy. For the 

iridium and palladium complexes, all changes in the phosphorus NMR spectrum occurred  

within the first 30min of complexation. In the case of zinc chloride, 50% of the starting 

material was still observed after 20 hours. MALDI-MS spectra were recorded of all 

complexation mixtures, but desired masses (m/z) were not observed. 

All crystallization attempts were unsuccessful with the exception of an iridium complex. 

These crystals were suitable for crystallographic measurement, but the structure could not be 

solved due to disorder in the crystal lattice. 
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Therefore, purification of the obtained metal complexes by column chromatography was 

attempted, as the ligand-metal complexes are more stable than the ligands alone. Only when 

[Pd(allyl)Cl]2 was used a defined compound could be isolated. Unfortunately, after 

chromatography all oxazoline 1H NMR signals were lost, as well as the tetravalent boron 

signal. In contrast, the phosphorus signal was unchanged and so other analyses were done in 

order to determine the structure of the unknown phosphine species. In analyzing the 31P NMR 

spectrum using a pulse sequence without proton decoupling, a triplet was found, which 

suggests the presence of two protons neighboring the phosphorus atom. As the signals of one 

trimethylsilyl group were still present in the purified sample, structure 109 was proposed 

(Figure 23). 

Figure 23:  Undesired product observed in the reaction sequence shown in Scheme 71. 

  

Based on this observation the spectra of all previous reactions were revisited to find out 

whether the precursor of the silylated metal complex 109 was already present in the reaction 

mixture before the oxazoline addition. After finding literature precedents and the 

corresponding spectroscopic data for these silylated phosphines [82] it was confirmed that the 

silylated product was already present after the second reaction step after in situ scavenging of 

the fluorine from the difluoroborates and addition of the lithium phosphines 83 and 85 

(Scheme 71). 

There could actually be two possible ways for the trimethylsilyl group to be incorporated into 

the phosphine backbone (Scheme 72). 

Scheme 72: Postulated mechanism for the formation of undesired silylated phosphine 109. 
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Product 109 could be formed is if trimethylsilyl fluoride is still present in the reaction mixture 

after the elimination of fluoride from Ph-107 and reacts with lithium phosphine 82 before the 

latter can add to diphenylfluoroborane (Scheme 72, Path 1). Alternatively, trimethylsilyl 

chloride, which is still present in the reaction mixture, could react with 82 and deliver the 

undesired product (Scheme 72, Path 2). 

To find out which reaction pathway is actually taking place, the reaction mixture was 

carefully analyzed after elimination of the fluoride. The reaction solvent was carefully 

evaporated from the reaction mixture, but not to dryness, because diphenylfluroborane has a 

boiling point of 42°C / 100 Torr.[83] The 11B NMR spectrum was then recorded in chloroform 

and the trivalent boron species was exclusively detected. The insoluble starting Ph-107 cannot 

be seen because it is insoluble in the NMR solvent. This indicates that one of the fluorides 

from Ph-107 must have been eliminated. No 1H NMR signals from the trimethylsilyl group 

were observed, which was expected as the boiling point of trimethylsilyl fluoride is only 16°C 

/ 760 Torr.[84] 

Because the starting material Ph-107 was not present in the reaction mixture after the first 

reaction step, the second proposed pathway can be ruled out, because it requires unreacted 

trimethylsilyl chloride. All of these results suggest that the preferred reaction pathway was 

Path 1, where substrate 82 reacts with the low-boiling trimethylsilyl fluoride. A possible way 

to avoid formation of the undesired product 109, which most likely comes from the reaction 

of trimethylsilyl fluoride with 82, was to apply low vacuum to the reaction mixture in order to 

evaporate the undesired low-boiling Me3SiF while preserving the diphenylfluoroborane. 

Unfortunately, after applying those conditions to the reaction sequence depicted in Scheme 

71, no products were observed and mostly starting material was recovered. 

The reaction of potassium phenyltrifluoroborate 110 was also investigated (Scheme 73) in 

order to compare its reactivity with that of diaryldifluoroborates 107. The protocol used in this 

case was inspired by analogous reaction used for preparation of oxazaborolidinones.[81] 
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Scheme 73: Reaction of potassium phenyltrifuoroborate with Me3SiCl in THF does not produce the 

elimination product. 

 

An elimination reaction of fluoride from 110 was also used in the preparation of the chiral 

oxazaborolidinones, but the reaction solvent in that case was acetonitrile. The reason for using 

110 in polar solvents, even in Suzuki coupling reactions, is its low solubility, but in our 

reactions we were quite limited in the solvent selection because of the lithium reagents used. 

These reactions were tested anyway, because even though the solubility of 110 in THF is low, 

the anticipated elimination product should be soluble. However, only starting material was 

observed in both cases using 85 and Li-87. 
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4.7.8 Potential applications of the fluoroborates 

 

During the experimental and theoretical investigations of fluoroborane chemistry novel 

reactions of these compounds were discovered, which were also supported by quantum 

chemistry calculations. Unfortunately, none of the approaches led to our target molecules, 

which bear both a phosphine and a chiral oxazoline unit and could serve as a chiral ligands for 

metal-catalyzed asymmetric transformations. 

Nevertheless, we decided to investigate possible applications of difluoroborates as reagents in 

nucleophilic substitution reactions and also to explore possible applications of the chiral 

products Ph-108 and MeO-108. 

 

4.7.8.1 Application as synthons for zwitterionic metal complexes 

 

Inspired by the facts that boron can form strong B-N bonds and that difluoroborates are able 

to react in nucleophilic substitution reactions, we decided to investigate these compounds as 

easily accessible precursors for the synthesis of zwitterionic compounds. N,N,N-Tridentate 

pyridinebisimidazoline (pybim) ligands looked to be good candidates for this investigation, as 

they had the desired imidazoline unit incorporated. These ligands were developed by M. 

Beller et al. in 2005 and used for the Ru-catalyzed asymmetric epoxidations of olefins.[85]  

The authors had prepared ligand 111, because they could gain an additional position (on the 

secondary amine) for tuning their properties compared to the established chiral 

pyridinebisoxazoline (pybox) ligands.[86] They demonstrated this modification in several 

examples, substituting the secondary amine position by reaction with acid chlorides in the 

presence of bases such as NaH or dimethylaminopyridine. We decided to prepare this ligand 

and test it in the reaction with our boron reagent Ph-107 (Scheme 74). 
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Scheme 74: Synthetic strategy for the application of Ph-108 as a reagent in the synthesis of 

zwitterionic compounds. 

 

The synthesis of 111 started from pyridine-2,6-carbodinitrile, which was converted into the 

corresponding bisimidate in the first step. In the next step, the bisimidate reacted with (R,R)-

1,2-dipehenylethylene diamine and formed the final pyridinebisimidazoline ligand 111. This 

ligand was then subjected to the reaction with Ph-107. We decided to use tert-butyllithium as 

a sterically hindered base for the deprotonation of the imidazolines (Scheme 75).  

Scheme 75: Substitution reaction of potassium diphenyldifluoroborate with the pybim ligand. 

 

THF-d8 was used as solvent to allow for tracking of reaction progress by NMR analysis 

without any workup. The substitution reaction was done at -78 °C, after dissolving 1 

equivalent of 111 and two equivalents of Ph-107 at room temperature, followed by the 

addition of 2 equivalents of the base. At that low temperature a white precipitate was formed 

and completely dissolved upon warming up to room temperature. The reaction was then 

cooled back to -78 °C to see whether it was the product or some reaction intermediate that is 

insoluble at low temperature. However, when the reaction mixture was cooled down again, no 
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precipitation was observed. It may be that the Ph-107 potassium salt exchanges cations with 

the tert-butyllithium present and this product may not be soluble in THF. 

When the crude reaction mixture was analyzed by 11B and 19F NMR spectroscopy 

immediately after warming up, mostly starting material was observed. Therefore, the reaction 

was allowed to react for another 4 hours and then the NMR analysis was repeated. This time 

changes in the boron and phosphorus NMR spectra were already observable: the 11B signal of 

the starting material had moved from 7,9 ppm to 2,5 ppm and the 11F signal from 159,2 ppm 

to 171,3 ppm. Those changes in the NMR chemical shifts clearly support the formation of 

112. The 11B NMR showed exclusively one tetravalent species with a different shift than the 

starting material, which was no longer visible in the spectrum. The full conversion of the 

starting material was further supported by 19F NMR analysis. 

As we had obtained a new compound bearing a double negative charge, it was necessary to 

prepare some zwitterionic complexes to separate the ligand salt 112 as a metal complex, 

because separation of the dianion would be significantly more difficult. Therefore Zn2+ was 

chosen as a cation to form the Zn-112 metal complex. Since after complexation additional 

coordination sites on the zinc ion would remain free, an additional equivalent of 

acetonylacetone (acac) was added (Scheme 76). 

Scheme 76: Preparation of the metal complex of 112 by complexation with zinc chloride. 
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The resulting reaction mixture was analyzed by MALDI-MS where one signal of 1102 Da 

was exclusively observed in the positive mode with the typical zinc complex isotopic pattern. 

By 11B and 19F NMR analyses traces of Ph-107 were observed but starting material 112 was 

not present at all. Based on these results, product structure Zn-(111)2 was proposed (Scheme 

76), which is in agreement with all of the analytical observations obtained. The observed m/z 

ratio for Zn-(111)2 in the MALDI-MS corresponds to a monocationic Zn-bisligand complex. 

Most likely one of the imidazoline units is deprotonated. Therefore, product 112 must have 

decomposed during the complexation process with zinc chloride. The instability of 112 could 

be due to steric strain induced by the bulky BFPh2 groups. 

Despite this negative result, further investigations of this approach to synthesize zwitterionic 

metal complexes might be worth while. 

 

 

4.7.8.2 Application in the Suzuki-Miyaura reaction 

 

Potassium trifluoroborates are widely used in organometallic chemistry because they can 

serve as reagents in the Suzuki coupling reaction.[87] Suzuki reaction an important synthetic 

transformation which can be applied to a wide range of substrates. In 2010 Prof. Akira Suzuki 

was awarded the Nobel Prize in Chemistry for his contributions to the field of the 

organometallic chemistry, in which the reaction bearing his name played a significant role. 

The difluoroborates discussed in this chapter were also used by Ishino et al. as reactants in 

palladium-catalyzed coupling reactions.[76] Because of the structural similarity of our substrate 

Ph-108 to the tri- and difluroborates, where the boron atom is tetravalent and bears aromatic 

substituents, we decided to investigate its reactivity in the Suzuki reaction (Scheme 77). 

Scheme 77: Possible application of the difluoroborate Ph-108 in the Suzuki coupling reaction 
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to predict, as there is no literature data for similar reactions available. We tested the coupling 

reaction under the usual conditions using (PPh3)2PdCl2 as catalyst, potassium carbonate as the 

base, and THF as the reaction solvent at room temperature with simple aryl halides. However, 

no coupling product was observed and only starting material was recovered. We tested two 

different substrates, a simple chlorobenzene and a second derivative bearing electron-

withdrawing CF3 groups in order to vary the electronic properties of the aryl halide. In both 

cases the reaction produced none of the possible coupling products (Scheme 77). 

Although there was no coupling reaction observed in our investigation, there is still room for 

improvement of the reaction conditions, especially including polar solvents, such as 

dimethylformamide,[88] or alcoholic solvents,[89] or employing various palladium catalysts. 

 

 

4.7.8.3 Possible application of the oxazoline-fluoroborates as chiral anions 

 

Since we obtained compounds Ph-108 and MeO-108, which have a tetravalent boron unit 

bearing a fluorine atom and also a chiral oxazoline backbone,  in our previous investigations, 

we examined possible applications for these compounds. One application would be to use 

them as chiral anions for metal complexes to improve the selectivity of asymmetric 

transformations. An analogous chiral boron anion based on BINOL was used by Arndtsen et 

al. in a Cu-catalyzed aziridination and cyclopropanation reaction (Figure 24).[90]  

Figure 24: Comparison of structurally similar boron compounds used for asymmetric transformations 
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4.8 Aminoboranes as building blocks 

 

In this work reactions of boron compounds with nitrogen-based reagents were already 

described. The first compound of this class was obtained when an undesired boron-nitrogen 

bond was formed during the synthesis of 98. The final dimeric structure, including the 

tetravalent boron atom bound to the nitrogen of the oxazoline, was very stable and a B-N 

bond could not be broken by any of the various methods tried. Another example was the 

complexation of amines with chloroborane. In that case the interaction was reversible and 

temperature dependent. In general this type of interaction of tetravalent boron compounds 

with amines can be reversible or irreversible depending on the nature of the borane and the 

amine.[72-73]  

In further investigations we decided to focus on the synthesis of trivalent boron compounds 

bearing nitrogen substituents. The aminoboranes obtained could be applicable to the synthesis 

of tetracoordinated boron compounds substituted with chiral oxazoline and phosphine to 

prepare P,N-ligands, which can be of potential use in asymmetric catalysis (Figure 25). 

 Figure 25: Proposed ligand structure based on the aminoborane building block 

 

As described by Peters et al., P,P bidentate ligands are obtained by reaction of 83 with 

chloroboranes .[34] Analogous N,N-ligands were also developed by Peters and coworkers. [91] 

From our previous investigations we knew that the chloroboranes are very reactive and it is 

not possible to avoid double addition of two nucleophiles. Therefore, using aminoboranes as 

precursors, which are less reactive, might be a solution to this problem.  

There are some literature examples describing the formation of boron containing phosphines 

as shown in Scheme 81 with the aminoborane motif that could possibly serve us as a precursor 

for our intended transformations. Manners et al. described the synthesis of a borane, 

methylene-bridged to a BH3-protected phosphine.[65] The synthesis uses chloroborane 

complexed with dimethylamine (Scheme 78). 
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Scheme 78: Synthesis of the aminoboranes bearing phosphine function. 

 

Another synthetic route reported by Garner et al., describing the preparation of a B-CH2-P 

backbone lithium methylenedimethylphosphine and bis(dimethylamino)chloroborane 116.[92] 

This product had the scaffold that we wanted use in our attempt to prepare the chiral ligand 

115. 

 

 

4.8.1 Preparation of the aminochloroboranes 

 

The preparation of the phosphine aminoborane, described by Garner et al. starts from 

aminochloroborane 116. The method for preparation of this compound described by Zeiss et 

al. requires neat gaseous reagents, such as boron trichloride and dimethylamine.[93] Since we 

were not planning to use the aminochloroboranes in large quantities, we decided to optimize 

the synthesis of 116 for a smaller laboratory scale. 

For our preparation of 116 we used a commercial solution of boron trichloride in hexanes and 

an ethereal solution of dimethylamine freshly prepared from dimethylamine hydrochloride. 

The solution of diethylamine was used in excess to completely convert the boron trichloride 

into tris(dimethylamino)borane 117 (Scheme 79). 
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Scheme 79: Preparation of bis(dimethylamino)chloroborane from BCl3 and Me2NH in solution. 

 

The triaminoborane 117 obtained could be isolated by distillation and stored. When boron 

trichloride was added in the proper molar ratio, another ligand exchange reaction between 

boron and amine took place and delivered 116. This aminochloroborane is a colorless low 

boiling liquid that is highly air and moisture sensitive and hydrolyzes very rapidly. The first 

samples of this low boiling compound were purified by fractional distillation and turned 

overnight into transparent crystals. Thus, 116 must be prepared fresh from 117 for each 

reaction using this compound. Analysis of the sample obtained by the transformation of 116 

into transparent crystals by 11B NMR showed only one signal in the region expected for 

tetravalent boron compounds. This signal was very sharp which is not typical for boron 

compounds. This sharp signal was very informative, because it suggested the presence of a 

highly symmetric boron compound. Based on this information structure 118 was proposed; 

this compound is highly symmetrical and the boron is tetravalent. Dimeric compound 118 as a 

complex with TiCl4 was previously described by Schram et al.[94] 

Having identified the undesired product 118, we wanted to avoid this dimerization process by 

cooling the monomeric 116 in order to avoid the dimer 118 formation. Indeed the liquid 116, 

which is completely transformed into 118 overnight at room temperature, can be kept at 4 °C 

for months without any signs of dimerization. 
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With those results in hand we could update the synthesis of the 116 into a one step synthesis 

without the need for the two distillations of 117 and 116 (Scheme 80). 

Scheme 80: Optimized bis(dimethylamino)chloroborane synthesis. 

 

In this optimized synthesis, 116 can be prepared directly from BCl3 and dimethylamine by 

mixing those reagents in the desired molar ratios and after isolation the product can be stored 

at low temperature for further reactions. 

 

 

4.8.2 Preparation of the phosphine-aminoborane adduct 

 

For the preparation of the desired adduct containing the B-CH2-P backbone with 116 we 

combined both the synthesis of Manners[65] and Garner.[92] We then allowed the BH3-

protected phosphine 85 to react with aminochloroborane 116 at low temperature; after 

gradually warming up the reaction, the desired product 119 was obtained (Scheme 81). 

Scheme 81: Reaction of bis(dimethylamino)chloroborane with the protected phosphine 85. 

 

Only one boron species was observed in the 11B NMR of crude reaction mixture after the 

reaction was complete. The crude product, after optimization of the reaction conditions, was 

clean and contained only the substitution product 119. As 119 decomposes over time, we tried 

to develop a method for purifying samples that were not freshly prepared. Unfortunately, all 

BCl3 3 HNMe2

Et3N

2 B(NMe2)3
BCl3

B(NMe2)3

3 Cl-B(NMe2)2

+
-30°C, pentane

BCl3 2 HNMe2

Et3N
Cl-B(NMe2)2+

-30°C, pentane
Summary:

117

116

B Cl
Me2N

Me2N

B PPh2
Me2N

NMe2

BH3
+

-78°C to rt.
THF

Li PPh2

BH3

116 85
119



 

 110 

attempts to purify the sample resulted in further decomposition, so 119 was prepared fresh for 

all subsequent reactions.  

 

 

4.8.3 Reaction of the phosphine-aminoborane adduct with oxazolines 

 

After the successful preparation of intermediate 119, it was then subjected to reaction with 

oxazoline 87 to prepare the desired target molecule 115. Therefore, the freshly prepared 116 

was added at low temperature to the lithium salt of oxazoline Li-87, however, after stirring  

overnight at room temperature no reaction was observed and both reactants were detected 

completely unchanged (Scheme 82). 

Scheme 82: Reaction of the aminoborane-phosphine 119 with the oxazoline Li-87. 

 

Since the addition reaction didn’t take place at room temperature, we decided to increase the 

temperature and the mixture was refluxed in THF for several hours, but only decomposition 

products, along with unreacted starting material, were observed. 2-methyloxazoline 120 was 

also used as a nucleophile. This oxazoline was readily obtained from the condensation of 

acetimidate hydrochloride with the corresponding aminoalcohol.[95] The acidic proton of the 

methyl group was easily removed by n-butyllithium to form Li-120. We added our adduct 119 

at low temperature and allowed it to react overnight at room temperature (Scheme 83). 

Scheme 83: Reaction of the aminoborane-phosphine 119 with the oxazoline Li-120. 
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However, no product was observed under these conditions. After reflux in THF for 48 hours, 

NMR spectroscopy showed only adduct 119 along with some methylphosphine 84 and BH3-

deprotected phosphine 119. The low reactivity of the boron atom of 119 can be explained by 

conjugation of the nitrogen lone pairs with the boron π* orbital, which strongly reduces the 

electrophilicity of the boron center. 

 

 

4.8.4 Transformation of the aminoborane into the more reactive intermediates 

 

As we knew from previous results that esters of the boronic acids could be used in reactions 

with nucleophiles (Scheme 23), exchange of the dimethylamino group with alkoxy groups was 

attempted.[96] The alcohol of choice for this type of transformation was methanol (Scheme 84). 

 

Scheme 84: Reaction of the dimethylaminoborane 119 with the methanol 

 

The reason for this choice was that the methylesters of boronic acids are known to be more 

reactive than other alky esters. When aminoborane 119 was treated with methanol in THF, a 

mixture of products including methylphosphine 84 was formed. This means that methanolysis 

of aminoborane 119 does not exclusively remove the dimethylamino groups, but also cleaves 

the boron carbon bond. The result obtained was practically the same when the reaction was 

performed in benzene instead. A mixture of decomposition products was also observed when 

other alcohols, such as iso-butanol, pinacol, or catechol, were used. 

Although, the transformation of aminoboranes to boronates by reaction with alcohols seems to 

be a generally applicable reaction, it is probably very substrate dependent. A similar problem 

also experienced by the authors of the previously mentioned work using (Me2N)2BCH2PMe2 

(Scheme 85).[92] 
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Scheme 85: Indirect conversion of aminoboranes into boronates.[92] 

 

When they carried out the methanolysis directly with (Me2N)2BCH2PMe2 they observed only 

mixtures of undesired products. However, transformation to the dimethylboronate was 

possible when the phosphine was coordinated to a metal (Scheme 85). In our investigations 

we had thought that the electron-withdrawing phosphine BH3 protecting group would have a 

similar beneficial effect as the metal. Attempts to use chloroboranes prepared from 119 as 

electrophiles also failed (Scheme 86). 

Scheme 86: Postulated reactivity of the aminoborane 119 with the boron trichloride. 
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transformation (Scheme 87).[96e] 
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Scheme 87: Transformation of a bis(dimethylamino)boryl group by Braunschweig et al. [96e] 

 

The success with these transformations was likely due to the higher stability of 

triarylphosphines compoundes to trialkyl phosphine.[96e] Therefore, we decided to test 

aminoborane 120 by converting it to the boron dichloride derivative 120-Cl with BCl3 and 

then perform the intended transformation, including introduction of the phenyl substituents to 

the boron. 

The transformation of 120-Cl into the corresponding diphenylderivative with a Grignard 

reagent was possible, but the reaction mixture contained many byproducts. However, the 11B 

and 31P NMR spectra taken after the reaction still showed a coupling between boron and 

phosphorus, which means that B-P bond is still present. This would be a problem for our 

proposed introduction of another chiral substituent, because the boron is already 

tetracoordinated and the B-P bond is usually strong. 

The other derivatives prepared by Braunschweig et al. were also considered for further 

transformations, but their rather difficult preparation led us to abandon this approach in our 

investigations. 
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atom which would not require its removal and which would form stable trivalent boron 

compound 124 structurally related to the C2-symmetrical oxazoline box ligands. There are 

examples in the literature which describe a tetravalent boron atom with three oxazoline 

substituents 123 (Figure 26).[97]  

Figure 26: Structures of the tridentate oxazoline ligand 123 and the proposed structure 124. 

 

Preparation of the aminoborane 123 was proposed in analogy to the reaction used for 

preparation of diphenyldimethylaminoborane 122. The first step in its synthesis is the ligand 

redistribution driven by the ratio of the mixture of BCl3 and HNMe2. The resulting 

dimethylaminoboryldichloride 121 is then converted into 122 by reaction with two 

equivalents of phenylmagnesium bromide (Scheme 88).[98]. 

 Scheme 88: Preparation of aminodiarylboranes from corresponding chloroderivative 121. 
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uncontrolled substitution of the organometallic reagent to the trihaloboranes by decreasing the 

reactivity of the boron center by electron-donating dimethylamino groups. This might be 

useful synthetic route for preparation of fluoroborates since direct synthesis from BF3 is 

possible just for  dimesitylboronfluoride.[100] 
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structure 124 the fourth substitution step could not take place because of the electronic effect 

of the dimethylamino group (Scheme 89). 
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 Scheme 89: Reaction of the dimetylaminoboryldichloride with the lihium oxazoline  

 

Compound 121 was added to Li-87 at low temperature and then stirred for several hours at 

room temperature, following the conditions for the preparation of 122. The crude reaction 

mixture contained tetravalent boron species with an 11B NMR chemical shift of 2,2 ppm. This 

species could not be separated and the possible structure could not be assigned in the mixture. 

Because of this formation of an unexpected tetravalent species, we decided to change the 

reaction conditions. The reaction of 121 with the phenyl Grignard reagent proceeded very 

cleanly and produced 122 in good yield. Therefore we thought that changing Li-87 to the 

corresponding Grignard reagent via transmetallation with MgBr2 might be beneficial. 

Unfortunately, the reaction involving the transmetallation step did not lead to the desired 

product either. 

 

 

4.9 Attempts to prepare B-O-P scaffolds 

 

In the attempts to modify the boron-phosphorus building block, the formation of a B-O-P 

backbone was also considered. The first step would involve the deprotonation of 

diphenylborinic acid, which would then react in the next step with the 

diphenylchlorophosphine to form the desired B-O-P backbone. This adduct can possibly react 

with the lithium oxazoline to form the target molecule (Scheme 90).  

Scheme 90: Synthetic strategy using the borinic acids as building blocks for B-O-P bond formation 
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For the deprotonation of borinic acid 91, KH was the first base examined after treatment with 

the diphenylchlorophosphine, the reaction mixture was analyzed by 31P NMR spectroscopy. 

The spectrum showed two doublets with shifts of 33 ppm and -25,5 ppm and a very large 

coupling constant of 228 Hz. This pattern was also obtained when other bases, such as K2CO3 

in THF or triethylamine were used. Therese signals are consistent with the diphosphine 

species 125a. This product was reported to be formed in the in the reaction of Me3SiONa with 

diphenylphosphine chloride.[101] In analogy with this reaction, we propose the following 

mechanism for the formation of 125a in our boron-based reaction (Scheme 91). 

Scheme 91: Proposed mechanism for the reaction of the borinic acid 91 with the diphenyl-

chlorophosphine in the presence of the base. 

 

This mechanism involves a B-O-P intermediate that undergoes an exchange reaction with the 

borinate in the presence of chlorophosphine, whereupon the product of this reaction 

rearranges into the final diphosphine 125a. 

To avoid the formation of Ph2P-O-PPh2 in the third step, the chlorophosphine should not be in 

excess and therefore should be added to the deprotonated diphenylborinic acid. For the 

deprotonation of the borinic acid we instead used n-butyllithium at low temperature. In this 

case there was no desired B-O-P adduct observed either, only n-butyldiphenylphosphine 125b 

was detected. We decided to use tert-butyllithium as a sterically hindered base for our further 

investigations. In the reaction of 91 with diphenylchlorophosphine diphosphine 125c was 

formed in contrast to the reaction with NaH, which led to 125a, which had one phosphorus 

atom oxidized (Scheme 92). 
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Scheme 92: Teaction of the borinic acid 91 with the various bases. 

 

Another possibility for the formation of the desired backbone could be the use of phosphine 

oxides, which after deprotonation can act as O-nucleophiles. But the conclusion from our 

observations is that even when the desired B-O-P intermediate is possibly formed, it either 

undergoes undesired rearrangements or other undesired products are being formed during the 

reaction.  
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NeoPHOX ligands in asymmetric catalysis 
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5. NeoPHOX ligands in asymmetric catalysis 

 

 

5.1 Asymmetric hydrogenation – Introduction 

 

Asymmetric hydrogenation became an important part of the field of enantioselective 

transformations in the early 1970s.[102] The popularity of the method arose with the first 

industrial application of asymmetric hydrogenation by Monsanto for the preparation of L-

DOPA, which is a chemical substance widely used in medicinal applications as a prodrug of 

the neurotransmitters dopamine, noradrenaline, and adrenaline. This precursor is used because 

dopamine itself cannot pass the hematoencephalic barrier and therefore it is delivered as L-

DOPA, which then undergoes certain biological transformations that deliver the desired 

dopamine molecule.[103] The effects of increased dopamine levels can be used in various 

applications, for example, for treatment of the Parkinson’s disease. 

The process developed by Monsanto was initially inspired by the Wilkinson rhodium catalyst, 

which was the first of its kind that could effectively catalyze the hydrogenation of olefins in a 

homogenous process.[104] Then new monodentate chiral phosphine ligands which replaced 

triphenylphosphine in the Wilkinson catalyst were developed by Knowles in Monsanto. 

Bidentate ligands, which were much more effective than their monodentate analogs, were also 

developed. By using the DIPAMP ligand in the asymmetric hydrogenation reaction, the 

process was improved to 95 % ee and was immediately turned into a commercial industrial 

process with high efficiency (Scheme 93). 

This catalytic synthetic approach opened a new area for the discovery of new chiral ligands 

for asymmetric transformations. Until that time, various methods for the separation of racemic 

mixtures, mainly based on the co-crystallization of enantiomers with some chiral agent, were 

used to obtain enantiopure compounds. These methods were far less effective than the 

catalytic process, because a theoretical maximum of 50% yield can be obtained during the 

separation of the enantiomers from the racemic mixture, which makes the whole process 

uneconomical. 
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Scheme 93: Industrial process by Monsanto using a chiral phosphine ligand in a homogenous 

hydrogenation reaction for the preparation of L-DOPA. 

 

Asymmetric hydrogenation is still a widely used industrial process for the preparation of 

optically active compounds, mainly due to the atom economy, very high enantioselectivities 

low catalyst loadings, and high turnover numbers with usually quantitative yields that this 

method provides.[105] The chiral Rh and Ru complexes that are used in the hydrogenation 

reactions still have some limits, because, in order to achieve high enantioselectivities, the 

presence of a coordinating group in the substrate is necessary. Later on in the group of 

Professor Pfaltz, new chiral catalyst based on iridium that can reach high enantioselectivities 

in the hydrogenation of unfunctionalized trisubstituted or even tetrasubstituted olefins, were 

developed.[106] 

The development of new chiral catalysts for homogenous asymmetric hydrogenation is still in 

progress in our group, in an effort to also allow for the hydrogenation of various olefins for 

which the original systems were ineffective. 
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5.2 PHOX ligands 

 

In the early 1990s, a new class of highly selective ligands was developed independently in the 

laboratories of Helmchen, Pfaltz, and Williams.[107] These ligands were bidentate and they 

combined the concept of the widely used C2-symmetrical bis(oxazolines) ligands[15-16, 18, 29, 31, 

108] with the very effective bis(phosphine) ligands[109] used in asymmetric hydrogenation 

(Figure 27). They were named phosphinooxazolines (abbr. PHOX) due to the presence of the 

phosphine and oxazoline ligand within one unit. They extended the possibilities in field of 

metal-catalyzed asymmetric transformations for many reactions that were not selective with 

the known systems. 

Figure 27: Phosphinooxazoline ligands (PHOX) and examples of related BOX and DuPHOS ligands. 

 

Those P,N-ligands were originally designed for the asymmetric palladium-catalyzed allylic 

substitution, where they were shown to be very efficient in terms of reactivity and selectivity. 

Since the parent ligands were also used in various metal-catalyzed asymmetric 

transformations, over time researchers have found a wide range of possible applications for 

phosphinooxazoline ligands in the field of asymmetric catalysis.[110] 

 

 

5.2.1 Phosphinooxazoline ligands in the Iridium-catalyzed hydrogenation reactions 

 

The use of P,N ligands in iridium-catalyzed asymmetric hydrogenation was originally 

inspired by Crabtree’s catalyst [(Cy3P)(pyridine)Ir(COD)]PF6, which consists of two 

monodentate ligands, such as phosphine and pyridine, and which was effective for the 

hydrogenation of olefins.[111] Therefore an analogous catalyst based on the PHOX ligand was 

designed that bears the chiral information in the oxazoline moiety and is therefore applicable 

for an asymmetric version of homogenous hydrogenation reactions (Figure 28). 
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Figure 28:  Comparison of Ir-PHOX with Crabtree’s catalyst. 

 

In an initial study, this Ir-PHOX was tested on a standard hydrogenation substrate, (E)-1,2-

diphenyl-1-propene. In this hydrogenation reaction of an olefin lacking coordinating groups, 

it exhibited very high enantioselectivity (Scheme 94). 

Scheme 94: Ir-PHOX in the asymmetric hydrogenation of an unfunctionalized olefin. 

Even though the enantioselectivities using the chiral iridium PHOX catalyst were excellent, 

the turnover numbers were quite low. In order to avoid this undesired behavior, the stability 

of the active catalytic species was investigated and it was found that Ir-PHOX undergoes the 

same deactivation process[112] as Crabtree’s catalyst, in which a catalytically inactive 

trinuclear species is formed.[111] The solution to the deactivation of the catalyst was later 

found by Andrew Lightfoot in our group. After testing various conditions that could possibly 

have an impact on the activity of the iridium catalyst, it was found that the anion of the 

cationic iridium catalyst plays a significant role in the deactivation process. When a weakly 

coordinating anion such as tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BArF) was used, 

the problem of the formation of the trinuclear species was avoided. This could be explained 

by the non-interfering behavior of the BArF anion which did not slow down the crucial step of 

the olefin insertion into the iridium-hydride bond as it was shown in kinetic studies of these 

complexes.[113] In contrast, for complexation with PF6
(-) or BF4

(-) as anions, which bind more 
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strongly to the Ir center or form tighter ion pairs, the insertion step was slower. This 

interesting observation also led us to investigate zwitterionic metal complexes, which would 

provide us with a direct comparison of the built-in anion with the ion pair situation. Their 

preparation was extensively studied in the previous chapter dealing with boron compounds, 

and it was also previously investigated by Clement Mazet, Valentin Kohler, and Axel 

Franzke.[60] The following chapter will be focused on the preparation of new chiral 

phosphinooxazoline ligands. 

 

 

5.3 NeoPHOX ligands - Introduction 

 

Since the development of the first chiral P,N ligands in the Pfaltz group, this field was 

extensively studied in order to prepare new ligands that would have the desired properties, 

and which would be widely applicable. In context with the development of chiral 

hydrogenation catalysts several classes of new P,N ligands were prepared and applied to a 

broad range of olefins, resulting in high selectivities. In order to satisfy the needs of potential 

industrial applications, it is necessary to not only reach high enantioselectivities, but also to 

have low catalyst loadings,  in order to produce an economical process. 

The synthesis of a new class of chiral phosphinooxazoline ligands called NeoPHOX was 

described by Marcus Schrems in our group in 2009.[114] The structural motif of the new 

ligands was inspired by the previously prepared P,N ligands, which were successfully applied 

in the iridium-catalyzed asymmetric hydrogenation of olefins (Figure 29). 

Figure 29: Structural motifs of different phosphinooxazoline ligands. 
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5.3.1 Preparation of NeoPHOX ligands 

 

The retrosynthetic analysis of NeoPHOX ligands was based on the carbon-phosphorous bond 

disconnection in order to combine the phosphine and oxazoline synthons.[115] By further 

disconnection, a chiral aminoalcohol and a corresponding carboxylic acid are obtained as the 

common precursors of the oxazoline ring (Scheme 95). 

Scheme 95: Retrosynthetic analysis for the preparation of NeoPHOX ligands. 

 

The second step of the retrosynthetic analysis, the disconnection of the oxazoline ring, is a 

trivial step from a synthetic viewpoint, as oxazoline formation from these precursors has been 

well established. However, the functional group interconversion (FGI) where the phosphine 

and chloro-oxazoline should react in order to deliver the target NeoPHOX ligand is not so 

obvious. 

The final step requires a substitution reaction on a neopentyl system, which is the problematic 

part. In the case of a substitution reaction via an SN1 mechanism, the formation of 1,2 

rearrangement reaction products (Wagner-Meerwein rearrangement) could be expected, in 

order to stabilize the cation generated after the chlorine dissociation.[116] 

A second mechanism possible would be an SN2 reaction, which, in the case of a neopentyl 

system, is disfavored and if it does take place then it is usually very slow. However examples 

of the reaction of neopentyl halides with phosphines have been described by several authors 

and shown to proceed via a radical mechanism.[117] 

Ashby et al. investigated the reactivity of the neopentyl halide system with various metal 

diphenylphosphides (Scheme 96). They found that the reaction outcome depends on both the 

structure of the neopentyl halide and the nature of the phosphide salt. To conclude their 

observation, the SET mechanism is favored in case of the neopentyl iodide, where the 

reaction is complete within one minute, which is not in agreement with the SN2 mechanism, 

which would be expected to be very slow. Also, when neopentyl iodide was used, a cyclic 

side product was observed, a result which cannot be explained by a simple SN2 mechanism. In 
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contrast, the cyclic side product was not observed in the reaction using neopentyl bromide or 

chloride, and these reactions were also much slower than the analogous reaction with 

neopentyl iodide. The probability of a SET mechanism for the reaction with neopentyl iodide 

or bromide with MPPh2 follows the order K > Na > Li. A halogen-metal exchange (HME) 

does not seem to play a role in this reaction.[117b] 

 

Scheme 96: Plausible mechanism for the phosphide reaction with a neopentyl system by Ashby.[117b] 

 

As a model system for the reaction planned fo the synthesis of NeoPHOX ligands, the 

reaction of neopentyl chloride in tetrahydrofuran was studied by Marcus Schrems[114] and 

compared to compare the results obtained by Rossi et al. in liquid ammonia (Scheme 97).[117a] 

The reaction in THF was promoted by heat, whereas the reaction in ammonia was stimulated 

by UV irradiation and followed by an oxidative workup to obtain the substitution products. 

Scheme 97: Reaction of neopentyl chloride with diphenylphosphide under different reaction conditions 

by Rossi[117a] and Schrems.[114] 
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Marcus Schrems found that the reaction proceeds without photoactivation with UV light and 

at elevated temperature delivers the desired substitution product in good yield. 

These reaction conditions were then applied to the ligand synthesis. In the first step, the amide 

was formed from 3-chloropivaloyl chloride and the corresponding chiral aminoalcohol. In the 

second step, a standard ring oxazoline closure starting from the amide using the Burgess 

reagent[118] was used for the dehydration step.[119] The crucial nucleophilic substitution 

proceeded well and afforded the desired NeoPHOX ligands in good yields (Scheme 98). 

 

Scheme 98: Synthesis of 1st generation NeoPHOX ligands by Marcus Schrems.[115] 

 

The synthesis of new chiral P,N ligands could be done in three steps from readily available 

starting materials and all steps of the synthesis provide products in high yields. The final 

phosphinooxazoline ligands were stable in air, without any significant oxidation of the 

phosphine even after several months of storage. The free ligands were then complexed with 

[Ir(COD)Cl]2 and tested in the asymmetric hydrogenation of selected olefins (Figure 30).[115] 

 

Figure 30: Enantioselectivities of the NeoPHOX iridium complexes in asymmetric hydrogenation 

reactions with selected substrates. 
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In the hydrogenation of a series of standard substrates the enantioselectivities were 90% ee or 

higher in all cases. With such high enantioselectivities on for a broad substrate range the 

NeoPHOX ligands outperform many related phosphinooxazoline ligands. Therefore, the new 

NeoPHOX ligands have two important advantages: they are easily accessible in a three step 

synthesis from commercially available starting materials, and the results achieved in the 

asymmetric hydrogenations were excellent. However, there is still one aspect that could be 

improved: the cost of the starting materials. The downside of the most selective 

phosphinooxazoline ligands is that they are almost exclusively derived from the amino acid 

tert-leucine which is very expensive. In this regard, several modifications of the NeoPHOX 

backbone were done by Marcus Schrems in order to decrease the final cost of these very 

efficient chiral ligands (Figure 31). 

Figure 31: Employing L-valine as a starting material plus C5 modification on the oxazoline and a price 

comparison with the amino acid tert-leucine. 

 

The initial idea was to introduce sterically demanding substituents into the position C5 of the 

oxazoline in order to balance the loss of steric hindrance incurred when replacing the tert-

butyl group of the tert-leucine with the isopropyl group of the valine. The difference in cost of 

the primary starting material for the NeoPHOX ligand preparation would be almost 40 times 

lower in the case of valine. The results of the hydrogenation screening using the valine-based 

NeoPHOX ligand are summarized in the Table 10.[114] 
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Table 10: The C5 modified NeoPHOX ligand derived from L-valine compared to the previously tested 

NeoPHOX ligands.[114] 

 

  

    

 

19% ee (R) 
93% yield 

35% ee (S) 
>99% yield 

84% ee (−) 
>99% yield 

63% ee (R) 
41% yield 

 

74% ee (R) 
>99% yield 

53% ee (S) 
89% yield 

88% ee (−) 
>99% yield 

85% ee (R) 
>99% yield 

 

97% ee (R) 
>99% yield 

92% ee (S) 
>99% yield 

83% ee (−) 
>99% yield 

95% ee (R) 
>99% yield 

Reaction conditions: 50 bar, 2h, 1mol% catalyst, 0,1mmol substrate, 0,5 mL CH2Cl2. 

 

From the results of the hydrogenation screening it can be seen that changing the amino acid 

source from L-tert-leucine to L-valine caused a significant drop in enantioselectivities. When 

sterically demanding phenyl substituents were introduced into the C5 position of the 

oxazoline, the drop in enantioselectivity was even higher. Therefore, it was concluded that 

modification of the NeoPHOX structure is quite sensitive to conformational changes in the 

oxazoline ring and that this modification cannot be used to prepare a selective, but the 

significantly cheaper ligand. 
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5.4 2nd Generation NeoPHOX ligands 

 

Due to the unsuccessful attempts to prepare NeoPHOX ligands starting from the cheaper 

amino acid L-valine,[114] we proposed another modification involving the amino acids L-

threonine and L-serine as starting materials. The chiral amino acid serine was used by Axel 

Franzke for modification of the PHOX ligands.[120]  Promising results were obtained and so 

we decided evaluate both L-serine and L-threonine as starting materials with the goal of 

maintaining the selectivity attained by the most effective tert-leucine NeoPHOX derivatives 

but employing a significantly cheaper precursors. 

Figure 32: Comparison of the phosphinooxazoline ligands with the structural motifs implemented in 

the 2nd generation NeoPHOX ligands. 

 

Structural motifs of several ligands were considered while designing the second generation 

NeoPHOX ligands (Figure 32). The basic idea behind the ligand design was to leave the 

neopentyl backbone interconnecting the phosphine and the oxazoline moieties unchanged 

because any changes in this part of the ligand would probably affect the geometry of the 6-

membered iridacycle. The geometry of the metallacycle is one of the most important factors, 

because this part of the catalyst is the closest to the reaction center. The second most 

important factor for stereocontrol through catalyst-substrate interaction is the presence of a 

adjacent sterically demanding group, which helps to restrict the geometry of the transition 

states.  
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5.4.1 Retrosynthetic analysis 

 

The first FGI transformation and the second step disconnection of the oxazoline are analogous 

to those used for the 1st generation NeoPHOX ligands. These transformations will also 

include the same synthetic transformations: oxazoline closure and the neopentyl chloride 

substitution reaction with the diarylphosphide (Scheme 99). 

Scheme 99: Retrosynthetic analysis of the 2nd generation NeoPHOX ligands. 

 

In the next retrosynthetic transformation the bulky tertiary alcohol substituent originates from 

the carbonyl group of L-threonine and L-serine.  

 

 

5.4.2 Synthesis of the threonine-derived NeoPHOX ligands 

 

The obvious first step of the synthesis a threonine-derived NeoPHOX ligand would be the 

transformation of L-threonine into the methylester 133. The ester can then be treated with 

methyl Grignard reagent to deliver aminoalcohol 134, which would be the reagent of choice 

for the condensation with 3-chloropivaloyl chloride (Scheme 100). 

Scheme 100:  Preparation of chiral aminoalcohol 134 via direct reaction of methylester 133 with a 

methyl Grignard reagent. 
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The direct transformation of ester 133 with an excess of various methyl Grignard reagents 

under different reaction conditions did not lead to desired aminoalcohol 134, only mixtures of 

unidentified products were obtained. 

This result can be explained by the formation of unreactive intermediates by deprotonation of 

the amido and alcohol functions. Therefore the alcohol and amino groups were protected by 

introduction of an oxazoline ring (Scheme 101). 

Scheme 101:   Synthetic strategy for NeoPHOX ligand preparation involving temporary oxazoline ring 

formation in order to prepare starting aminoalcohol 134. 

 

This synthetic strategy was previously used by Gisela Umbricht in our group to obtain a 

serine-derived tertiary alcohol analogous to aminoalcohol 134 for the preparation of BOX 

ligands.[121] In our case, protection of the threonine methylester 133 proceeded very cleanly 

and 135 was delivered in high yield The following transformation with two equivalents of the 

methyl Grignard reagent proceeded also well. 

In the case of the serine derivative, the desired aminoalcohol was readily obtained by 

hydrolysis with aqueous acid.[121] However, in the case of the threonine derivative, a mixture 

of partially hydrolyzed oxazoline 137, starting material 136, and also the desired 

aminoalcohol 134 was obtained (Scheme 102). 
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Scheme 102: Acidic hydrolysis of the threonine-derived phenyloxazoline 136 with hydrochloric acid. 

 

In the case of threonine derivative 136, the stability of the oxazoline ring towards acidic 

conditions was much higher compared to the analogous serine derivative and it was not 

possible to obtain the desired aminoalcohol 134, even after applying harsh reaction 

conditions, such as elevated temperature, or extended reaction time. Therefore it was 

necessary to reconsider the synthetic strategy (Scheme 103). 

Scheme 103: Revisited synthetic strategy for the preparation of a threonine-based NeoPHOX ligand. 

 

In the alternative strategy shown in Scheme 106, amide 138 is formed from 3-chloropivaloyl 

chloride and threonine methylester 133 in the first step. Via this reaction the amide 138 was 

obtained in 96% yield. We had two options for continuing the synthesis: either to achieve the 

oxazoline cyclization first with the Burgess reagent, or to form the tertiary alcohol from the 

methylester of 138. The second option, which would lead to 139, was not performed because 

a similar transformation of the amide was unsuccessfully attempted by Marcus Schrems in the 

development of the C5-disubstituted NeoPHOX ligand synthesis (Scheme 104). 
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Scheme 104: Undesired 4-membered aza-lactone formation by Schrems.[114] 

 

In this reaction, all of the amide was consumed in an undesired cyclization reaction of the 

deprotonated amide and therefore no tertiary alcohol could be obtained.  

Thus the first option was chosen and oxazoline 140 was successfully prepared via the 

cyclization protocol using the Burgess reagent. There are three electrophilic centers in the 

molecule, the ester group, the oxazoline π-system and the C-Cl bond. To get an estimate at the 

reactivity order of these three centers quantum chemical calculations were carried out. In 

nucleophilic substitution the primary interaction occurs between the HOMO orbital of the 

nucleophile and the LUMO orbital of the electrophile. Therefore the orbital analysis of 

oxazoline 140 in its optimized geometry was calculated using NLMO analysis[79] (Figure 33). 
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Figure 33: Natural Localized Molecular Orbital analysis and Molecular Electrostatic Potential (MEP) 

map by ChelpG calculated in Gaussian 09, B3LYP/6-311+g(d,p) for oxazoline 140. 
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The results show that the LUMO orbital is located on the carbonyl group of the methylester 

function, which also exhibits the lowest electron density of the analyzed reaction centers. In 

the other pictures the LUMO+1 and LUMO+2 orbitals are displayed as well. The energy 

order is retained after the transformation of the methylester into tertiary alcohol 141, but due 

to the electron density distribution in the molecule the next most reactive center is placed on 

the LUMO+2, which is the C-Cl σ∗ orbital that will react further with another nucleophile. 

 

Taking into an account the results from computer modeling, the transformation of the ester 

function of the oxazoline 140 was preferentially selected for the next step in order to 

successfully complete synthesis of the threonine NeoPHOX ligand. With respect to the 

possible undesired interaction of neopentyl chloride with the methyl Grignard, the addition 

was performed at -78 °C, which was expected to still be a sufficient temperature for the 

reaction with the carbonyl group (Scheme 105).  

 

Scheme 105: Transformation of the methylester of 140 into a tertiary alcohol followed by the 

incorporation of diphenylphosphide 

 

This reaction sequence proceeded as planned and the desired oxazoline 141 bearing a tertiary 

alcohol moiety could be obtained in 80% yield. The obtained oxazoline 141 was then 

subsequently transformed into the phosphinooxazoline ligand 142 using established 

methods.[115] This new threonine-derived NeoPHOX ligand 142 was then evaluated in 

asymmetric metal-catalyzed reactions. 
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5.4.3 Synthesis of the serine-derived NeoPHOX 

 

Having established the synthesis of the threonine-derived NeoPHOX ligand 142, we planned 

the synthesis of the serine based NeoPHOX accordingly. However, while the formation of 

amide 144 from serine methylester 143 worked well as for the threonine analog, the second 

step, which involved the cyclization of the amide using the Burgess reagent, did not produce 

the desired oxazoline 145 (Scheme 106). 

Scheme 106: Synthetic strategy for the synthesis of the serine-derived NeoPHOX ligand. 

 

After several unsuccessful trials to reproduce the established step of the oxazoline ring 

closure using the Burgess reagent, a modified synthetic approach was considered. We decided 

to employ an extra oxazoline protection step in order to prepare the serine analog, 146.[121] 

However, the reaction of 146 with 3-chloropivaloyl chloride was unexpectedly unselective 

and a mixture of products was obtained. Therefore, this approach was abandoned (Scheme 

107). 
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Scheme 107: Revisited synthetic strategy employing an oxazoline protection step .[121] 

 

As a consequence, we decided to continue developing the first synthetic strategy. In order to 

solve the problem of the oxazoline ring closure, we decided to use a method employing 

diethylaminosulfurtrifluoride (DAST) (Scheme 108).[122] Using DAST for the oxazoline ring 

closure delivered the desired oxazoline, 145, within 30 min in more than 90% yield. The next 

step was the transformation of the ester group into a tertiary alcohol. Using low temperature 

for this reaction, as was used for the threonine derivative, led to an unidentified mixture of 

products. Surprisingly, increasing the temperature for the reaction with the Grignard reagent 

helped to overcome this issue. (Scheme 108). 

Scheme 108: Preparation of the serine-derived NeoPHOX ligand 148. 
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Carrying out the Grignard addition at 0°C and subsequently warming to room temperature 

provided the desired product 147 in 78% yield. 

Having resolved all of the problematic parts of the serine-based NeoPHOX synthesis, it was 

successfully completed, including the last step involving conversion of neopentyl chloride 

147 into diphenylphosphine derivative 148 (Scheme 108). 

 

 

5.4.4 Initial hydrogenation tests with the threonine-derived NeoPHOX ligand 

 

The iridium complex required for the hydrogenation studies were prepared by reaction of 142 

with [Ir(COD)Cl]2 under reflux in dichloromethane followed by anion exchange with sodium 

tetrakis[(3,5-trifluoromethyl)phenyl]borate (NaBArF). The corresponding complex, 142-Ir, 

was obtained in almost quantitative yield after column chromatography on silicagel (Scheme 

109). 

 

Scheme 109: Preparation of iridium complex 142-Ir. 

 

With iridium complex 142-Ir in hand, we selected several standard substrates, such as 

unsubstituted olefin 149, imine 152, and two olefins with a coordinating group, 150 and 151. 

Those substrates were then subjected to the hydrogenation reaction in the presence of chiral 

iridium complex 142-Ir under 50 bar of hydrogen pressure (Scheme 110). 
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Scheme 110: Initial hydrogenation screening with the unprotected threonine-derived NeoPHOX ligand 

 

The results of this initial screening showed only very low conversions and, in the case of 

substrates 149 and 150, no hydrogenated products were observed. Since iridium complex 142-

Ir  showed only low catalytic activity it was evident that there must be an iridium-deactivation 

process involved. It had been found by Axel Franzke in our group that the serine-based 

PHOX complex 153 can undergo an undesired dimerization process under the hydrogenation 

conditions to form a catalytically inactive iridium dinuclear complex (Scheme 111).[120b] This 

undesired dimerization process likely takes place after the cyclooctadiene is hydrogenated off 

from precatalyst 153, which makes the coordination space on the iridium center accessible. 

Scheme 111: Deactivation of the methoxy-derived serine-based PHOX ligand by Franzke.[120b] 

 

The formation of dinuclear complexes similar to 154 with serine-derived PHOX ligands was 

one possible reason for their low reactivities.[120b] 
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5.4.5 Derivatization of the threonine- and serine-based NeoPHOX ligands, followed by 

preparation of the corresponding iridium complexes 

 

In order to avoid this undesired catalyst deactivation process, we decided to protect tertiary 

alcohols 142 and 148 with different protecting groups and then study the effects of this 

substitution. Another argument for the use of different protecting groups was the possibility of 

tuning the steric bulk near the metal center in the corresponding metal complexes and thus 

improve the enantioselectivity. 

Modified PHOX ligands derived from the amino acid L-serine were recently prepared in our 

group and they were also investigated in the asymmetric iridium-catalyzed hydrogenation 

reaction of olefins.[120b] These ligands were derivatized with different substituents on the 

tertiary alcohol via ether or ester bonds. In order to form these derivatives potassium hydride 

was used for deprotonation of the tertiary alcohol followed by reaction with alkyl or acyl 

halides. 

When this method was applied to L-threonine-derived NeoPHOX ligand 142, only unreacted 

starting material was recovered. Therefore, we tested several alternative bases for the 

deprotonation of the tertiary alcohol, namely triethylamine, pyridine, and 2,6-lutidine. Of the 

amines tested, the only successful one was 2,6-lutidine, which was subsequently used for 

derivatization of the tertiary alcohol groups of all L-threonine- and L-serine-derived 

NeoPHOX ligands. Those derivatized ligands were then complexed with bis(1,5-

cyclooctadiene)diiridium(I) dichloride (Scheme 112).  

 

Scheme 112: Derivatization of the 2nd generation NeoPHOX ligands and formation of their iridium 

complexes. 
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5.4.6 Asymmetric iridium-catalyzed hydrogenations using 2nd generation NeoPHOX 

ligands 

 

The new NeoPHOX derivatives of L-threonine and L-serine ligands were tested in the 

iridium-catalyzed hydrogenation reaction on selected standard substrates. Good 

enantioselectivities were expected because the triethylsilyl protecting group of the tertiary 

alcohol is quite sterically demanding.  

After the initial unsuccessful hydrogenation test employing threonine-derived NeoPHOX 

complex 142-Ir with an unprotected tertiary alcohol function, a triethylsilyl protected 

derivative 142-Ir-TES was found to exhibit very high enantioselectivities with standard 

substrates 149 and 150. These selectivities were comparable with those obtained from the 

analogous NeoPHOX ligand derived from the tert-leucine (Table 11). However, although the 

selectivities were around 90 %, the conversions were quite low. 
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Keeping in mind the deactivation process shown in Scheme 111, it was considered that this 

could also be the reason for lower reactivity observed with our NeoPHOX catalyst. To prove 

that the catalyst 142-Ir-TES is still active even after the standard reaction time of 2 hours, we 

extended the reaction time to 16 hours under otherwise identical reaction conditions. The 

outcome of this experiment was quite satisfying. While enantioselectivities remained 

unchanged, conversions after the extended reaction time were significantly higher. This shows 

that at least part of the catalyst remains active during this time. 

In order to see the effect of altered steric bulk on enantioselectivity we prepared the smaller, 

trimethylsilyl-derived NeoPHOX, 142-Ir-TMS . This modification had only a small impact on 

the selectivities obtained, but a large impact on reactivity in the hydrogenation process. 

Phosphino oxazoline iridium complexes were recently studied by Burgess et al. and it was 

found that the corresponding active catalyst, an iridium hydride of the phosphinooxazoline 

catalyst, has a significant acidic character.[123] The fact that the iridium hydrides of our 

NeoPHOX complexes are acidic could explain the different reactivities of our silylated 

derivatives. The trimethylsilyl ether is more readily cleaved by acid than the triethylsilylether. 

Cleavage would lead to the tertiary alcohol that shows very low activity. We thus prepared 

142-Ir-TBDMS , a derivative that should have the superior properties in terms of acid stability 

and steric bulk. The results from the hydrogenation experiment confirmed our expectations 

and the conversions of the tested olefins reached completion within the standard reaction time 

of 2 hours (Table 11). No less important was the finding that the acid-stable protecting group 

did not have a negative impact on the selectivities of the hydrogenation reactions, as they 

remained as high as those of the acid-labile protecting groups.  

For comparison with the previously studied serine-derived PHOX ligands[120b] threonine-

derived NeoPHOX ligand 142-Ac, which possesses an acetyl protecting group, was prepared. 

This was one of the most effective derivatives of the serine-derived PHOX.[120b] The obtained 

results more less fulfilled our expectations in terms of reactivity, which was similar to the 

serine-PHOX based catalyst, and the enantioselectivities of the olefin hydrogenations were 

still high, around 90 % ee (Table 11). The serine-derived 148-Ir-TBDMS  also was highly 

active but somewhat less enantioselective than the corresponding threonine derived catalyst 

142-Ir-TBDMS . 

 

The newly prepared threonine- and serine-derived NeoPHOX ligand with a TBDMS ether 

group exhibited very high enantioselectivities in the hydrogenation of functionalized and 

unfunctionalized olefins, similar to the most successful first-generation tert-leucine-derived 
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NeoPHOX analogs. It was found that the presence of an acid-stable alcohol protecting group 

is necessary in order to avoid undesired catalyst deactivation. The presence of an additional 

methyl group on the oxazoline ring in the threonine-derived NeoPHOX ligands seemed to 

have a positive effect, probably due to the increased rigidity of the oxazoline ring. 

 

 

5.4.7 Crystallographic analysis of Ir NeoPHOX complexes 

 

The three dimensional structures of several threonine- and serine-derived NeoPHOX iridium 

complexes were determined by X-ray analysis and compared with known phosphino-

oxazoline complexes. Our interest was to see the differences in the steric shielding of the 

coordination sphere by protecting groups on the tertiary alcohol function and to correlate this 

feature with the hydrogenation results. From the obtained crystal structures, it can bee seen 

that the conformations of the threonine- and serine-derived NeoPHOX iridium complexes are 

essentially the same as those of the 1st generation NeoPHOX[114] with respect to the geometry 

of the 6-membered iridacycle, which retains a V-shaped conformation (Figure 34). 

 142-Ir-TMS 142-Ir-TES 

 142-Ir-TBDMS 148-Ir TBDMS 

 

Figure 34: Crystal structures of 2nd generation NeoPHOX iridium complexes. Hydrogen atoms, COD, 

and BArF anions omitted for clarity. 
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Unlike the methoxy-protected serine-derived PHOX complex described by Axel Franzke, the 

protected tertiary alcohol group in these systems does not point towards the iridium center.[60] 

The interaction of the ether oxygen atom with the iridium center was the reason for the lack of 

reactivity of the serine-based PHOX complexes. In our case, the silyl protecting groups are all 

more sterically demanding than the methoxy group and thus the coordination of the tertiary 

alkyl ether group with the iridium center is not possible, as long as the protecting group 

survives the acidic reaction conditions. In the deprotected NeoPHOX ligands, the tertiary 

alcohol would be able rotate and coordinate to the iridium center. Unfortunately, we did not 

succeed in the preparation of a suitable crystal of 142-Ir for crystallographic analysis and so 

we could not confirm this assumption. 

To compare our new NeoPHOX iridium complexes with the 1st generation versions, 

complexes 155, 157, 158, and the structurally related Gilbertson system 156[124] (prepared by 

Marcus Schrems) were compiled in Table 12, which contains important crystallographic data 

for all these compounds. 

 

Table 12: Crystallographic bond lengths [Å] and angles [°] for selected iridium phosphinooxazoline 

complexes. 

  

    

Ir-P 2,280 2,284 2,278 2,281 

Ir-N 2,096 2,137 2.107 2,112 

Ir-C2 3,430 3,462 3,473 3,459 

P-C1 1,816 1,848 1,854 1,839 

P-Ir-N 86,76 88,19 88,72 88,64 

C1-C2-C3 111,00 110,63 111,64 111,15 

  

    

Ir-P 2,274 (2,287) 2,293 2,279 2,284 

Ir-N 2,093 (2,099) 2,106 2,112 2,097 

Ir-C2 3,458 (3,444) 3,340 3,463 3,425 

P-C1 1,850 (1,845) 1,847 1,843 1,851 

P-Ir-N 87,1 (86,78) 87,11 86,45 88,4 

C1-C2-C3 111,75 (109,54) 111,56 108,82 110,15 
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The structural parameters of all these complexes are very similar, so no direct conclusions 

with respect to the observed enantioselectivities are possible.  

 

 

5.4.8 Palladium-catalyzed allylic substitution employing Neophox ligands 

 

As the first phosphinooxazoline ligands were specifically designed for asymmetric palladium-

catalyzed allylic substitutions, we wanted to test our new NeoPHOX ligands in this reaction 

as well. For comparison with established ligands, we decided to evaluate ligands 142 and 142-

TES on the standard substrate, (E)-1,3-diphenylallylacetate 159. The anion of 

dimethylmalonate was used as a nucleophile for the allylic substitution (Scheme 113). 

 

Scheme 113: Asymmetric palladium-catalyzed allylic substitution with rac-(E)-1,3-diphenylallylacetate 

159. 

 

The product of this allylic substitution, 160, was isolated in good yields, and the 

enantioselectivities exceeded 90% ee. Ligand 142-TES was even more effective than tert-

leucine-derived NeoPHOX ligand 155.[114] Due to the good results obtained with substrate 

159, threonine-derived NeoPHOX ligand 142-TES was also tested on the more demanding 

cyclic substrate 161 (Scheme 114).  
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Scheme 114: Asymmetric palladium-catalyzed allylic substitution with cyclic substrate 161 

 

An encouraging enantioselectivity of 70% ee in this case was obtained and the substitution 

product 162 was isolated in good yield. Our result demonstrate that the 2nd generation 

NeoPHOX ligands possess a potential for palladium-catalyzed allylic substitutions.   

  

 

5.4.9 Attempts at modifications of 2nd generation NeoPHOX ligands 

 

In order to modify the backbone of NeoPHOX ligands we investigated methods that could be 

applied to tertiary alcohols. The first intended modification of NeoPHOX ligand 142 was the 

transformation of the OH group to fluorine. This change was expected to impact the electronic 

properties of the ligand and, from a steric point of view, the change would better resemble the 

isopropyl derivative due to the size of the fluorine atom, which is close to the size of a 

hydrogen atom. For this process we selected reagents known to be capable of converting 

tertiary alcohols into the corresponding fluorine compounds: the Ishikawa fluorinating 

reagent[125] and diethylaminosulfurtrifluoride (DAST).[126] Unfortunately, neither of them 

produced the desired fluorinated product from substrate 142 (Scheme 115). 

N

O

PPh2

OSiEt3

OBz
MeOOC COOMe

[allylPdCl]2, BSA, L*

dimethylmalonate
*

70% ee
90% yield

142-TES

161 162

L* =



 

 
 

149 

Scheme 115: Iridium-catalyzed allylic substitution with rac-(E)-1,3-diphenylallylacetate 159. 

 

Another transformation considered, was a reaction reported by Manfred Reetz that employs 

dimethyltitanium dichloride as a methylation agent. This reagent was used to replace the 

hydroxy group of tertiary alcohols with a methyl group.[127] However, in this case the desired 

tert-butyl-substituted ligand was not formed. Preparation of an ionic ligand by reaction of the 

tertiary alcohol with Ph2BF2K and base also failed (Scheme 115). 

 

 

5.5 Conclusion  
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NeoPHOX ligands employing the amino acids L-threonine and L-serine. 

The 2nd generation NeoPHOX ligands were tested in asymmetric iridium-catalyzed 

hydrogenation reactions, where they exhibited high enantioselectivities. The strctures were 

optimized to achieve good conversions in these reactions. The presence of an acid-stable 
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protecting group for the tertiary alcohol group proved to be crucial in order to avoid catalyst 

deactivation. The 2nd generation NeoPHOX ligands also exhibited high enantioselectivities in 

the palladium-catalyzed allylic substitution. The structural properties of the 2nd generation 

NeoPHOX ligands were investigated by crystallographic analysis. The 2nd generation 

NeoPHOX ligands were part of an industrial patent together with Solvias AG.[128] 
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6. Diels-Alder products as substrates for asymmetric hydrogenation 

 

 

6.1 Introduction 

 

The Diels-Alder reaction is one of the most powerful tools in organic synthesis used for 

construction of the cyclic compounds. This reaction was first reported by German chemists 

Otto Paul Hermann Diels and Kurt Alder in 1928.[129] Since its invention it has become a very 

popular synthetic method for the simplicity and versatility and in 1950 both chemists were 

awarded the Nobel Prize “for their discovery and development of the diene synthesis”. 

In the Diels-Alder reaction 4π electrons of the diene molecule are interacting with 2π 

electrons of the dienophile in a single step via a concerted mechanism and therefore this 

reaction also is called a [4+2] cycloaddition.  The simplest reaction of this type is a reaction of 

1,3-butadiene with ethylene proceeding through a cyclic transition state which finally leads to 

cyclohexene (Scheme 116). 

Scheme 116: Diels-Alder reaction of 1,3-butadiene with ethylene proceeding through a cyclic 

transition state. 

  

The reaction of this unsubstituted system requires elevated temperature and pressure in order 

to proceed even in very low yield (Scheme 116).[130] However, electron-withdrawing 

substituents in the dienophile strongly accelerate the reaction. With aldehydes or esters, e.g., 

Diels-Alder reactions often proceed even at room temperature. The reactivity can be 

furthermore increased by complexation of an electron-withdrawing substitutent (typically a 

carbonyl group) with a Lewis acid. Therefore Lewis acids are often used to catalyze the Diels-

Alder reactions. When a chiral Lewis acid is used the Diels-Alder reaction can be rendered 

enantioselective. 

+
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cyclic
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Chiral catalysts used for that purpose are for example the earlier discussed copper 

bis(oxazolines).[131] Another efficient approach described by MacMillan is deploying a chiral 

organocatalyst based on the amino acid (S)-proline. This secondary amine catalyst forms a 

chiral iminium ion which has essentially the same effect on the dienophile as a Lewis acid. 

After reaction with diene the product is released by hydrolysis the catalyst is recycled 

(Scheme 117).[132] 

Scheme 117:  The enantioselective organocatalyzed Diels-Alder reaction by MacMillan.[132] 

 

Another class of chiral Lewis acids, based on oxazaborolidines was investigated by E.J. 

Corey.[133] Very strong chiral Lewis acids are formed upon the protonation of the 

oxazaborolidines with strong protic acids or by N-coordination of the AlBr3. Very high 

enantioselectivities could be achieved by using these N-activated oxazaborolidines as chiral 

Lewis acids in [4+2], [3+2] and [2+2] cycloadditions (Scheme 118). 

Scheme 118:  Activation of the oxazaborolidines by the triflic acid by E.J. Corey[133] 

 

Due to the weak coordination of the triflate ion to the boron, equilibrium exists between the 

borate complex and the trivalent boron species which can act as a chiral Lewis acid in the 

Diels-Alder reaction. 

In this project we wanted to use chiral enantio-enriched Diels-Alder products as substrates for 

the asymmetric iridium-catalyzed hydrogenation reaction. If we use a diene substituted at 
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C(2), the product will contain a trisubstituted double bond which can be then 

diastereoselectively hydrogenated (Scheme 119). 

Scheme 119: Concept of the diastereoselective hydrogenation of Diels-Alder products. 

 

If we take into an account that there could be already two stereocenters formed via the Diels-

Alder reaction we can easily incorporate the third one by applying a diastreoselective 

hydrogenation. Therefore by using this approach we could possibly implement three 

stereocenters into a molecule within just two reaction steps. 

The concept of the stereoselective hydrogenation of Diels-Alder products has some literature 

precedence in the synthesis of the biologically active compounds.[134] Hence we decided to 

test iridium-based catalysts developed in our group in order to develop an effective and 

reliable method for those synthetically useful transformations. 

 

 

6.2 Initial screening of a model substrate 

 

In order to optimize the conditions for the diastereoselective hydrogenation reaction of Diels-

Alder products we decided to use a model substrate first. As the chiral precursor of the model 

substrate we selected limonene. This molecule already bears a stereogenic center and it also 

has a substituted double bond which can be diastereoselectively hydrogenated. Because of the  

directing effect in homogenous hydrogenation of related cyclohexene substrates which were 

previously studied by Crabree we decided to implement the ligating group into our model 

substrate.[135] The transformation which was necessary to perform to implement the 

coordinating group was the cleavage of the exocyclic double bond of the limonene. This 

transformation was done by the selective ozonolysis followed by a reductive workup in one 

pot two step synthesis (Scheme 120).[136] 
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Scheme 120: Ozonolysis of the limonene exocyclic double bond. 

  

The substrate 164 was then used for and initial screening of various chiral iridium catalysts in 

the hydrogenation reaction (Table 13).[137] 

  

Table 13: Catalyst screening in the diastereoselective hydrogenation reaction.[137] 

 

When the non-chiral iridium catalysts 165 and 166 were used the diastreoselectivities of the 

hydrogenation reactions favored the trans products and good conversions were reached. The 

different cis/trans ratios for the (R)-163 and (S)-163 for catalyst 166 can be explained by the 

different enantio purity of the commercial (R)- and (S)-lemonene. Using chiral Ir-PHOX 167 

and Ir-SimplePHOX 168, only moderate diastereoselectivites and low conversions were 

(R) or (S)-limonene

1) MCPBA, DCM
2) O3, -78 °C
3) KI, Zn dust, HOAc

O

No loss in ee
~30% overall yield

163 164

O O

+

O
Catalyst,

100 bar H2

CH2Cl2, RT

O O

+

O
Catalyst,

100 bar H2

CH2Cl2, RT

(R)-163

(S)-163

cis-164

cis-164

t rans-164

trans-164

Catalyst Convers ion of
(S)-163

164 (cis/trans)
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168
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170

97%

94%

14%

68%

>99%

>99%

1 : 9.7

1 : 4.7

0.5 : 99.5

1 : 16.2

7.5 : 1

171 >99%

Conversion of
(R)-163

>99%

95%

76%**

5%

51%

>99%

>99%**

164 (cis/trans)

1 : 4.6

4.9 : 1

0.6 : 99.4

2.8 : 1

1 : 9.1

1 : 23.4** 1 : 3.8

2.6 : 1** 1 : 4.5

Standard conditions: 1 mol% catalyst, 0.4M substrate conc., overnight reaction time.
** Reactions run with 3 mol% catalyst, 0.14M substrate conc.
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reached. In case of the Ir-ThreoPHOX 169 either good cis/trans ratio but low conversion was 

obtained or high conversion and low cis/trans selectivity. The best performing catalyst was 

the pyridine-phosphinite derived complex 170 which gave good diastereselectivities and full 

conversion. The stereoselectivity is strongly catalyst-controlled as shown by the reaction of 

the (R)-enantiomer which leads to the cis product overriding substrate control which favors 

the trans product. Catalyst 171 also gave full conversion but lower diastereoselectivity. 

Whereas in the case of achiral catalysts 165 and 166 the disastereoselectivity of the Ir-

catalyzed hydrogenation was driven mainly by the ligation effect of the carbonyl group in 163 

(trans product preferred), in the case of chiral catalyst 170 cis selectivity for (R)-163 was 

preferred. 

 

 

6.3 Diastereoselective hydrogenation of Diels-Alder products 

 

Based on the results obtained from the initial screening we decided to test the most efficient 

catalyst 170 in the hydrogenation of substrates obtained from enantioselective Diels-Alder 

reactions. For this purpose we selected several compounds, structurally related to 163. 

(Scheme 121). 

Scheme 121: Syntheses of the hydrogenation substrates via Diels-Alder reaction.[132-133] 
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The cyclohexene derivatives 177-179 were prepared using methods described by E.J. 

Corey[133] and MacMillan.[132]  

Due to the directing effect of the catalyst 170 with chiral substrates (R)-163 and (S)-163 

observed in the initial screening we wanted to see whether it is also possible to control 

selectivity of the hydrogenation process by using different enantiomers of the chiral catalyst 

170. The results obtained in the hydrogenation using both enantiomers of the catalyst 170 are 

shown in Table 14. 

 

Table 14: Diastereoselective hydrogenation of Diels-Alder products 177-179. 

 

cat. (R)-170 cat. (S)-170 
hydrogenated 

product 
ds conv. [%] ds conv. [%] 

180 98:2 full 2:98 full 

181 95:5 full n.d. 0 

182 89:11 10 4:96 10 

 

 

In the diastereoselective hydrogenation of cyclohexene 177, full conversion to product 180 

was achieved and opposite diastereomers were obtained from catalysts (R)-170 and (S)-170 

with the equal diastereoselectivities of 98:2. For substrate 178 only catalyst (R)-170 led to the 
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desired hydrogenated product 181 while the opposite enantiomer (S)-170 did not produce any 

product 181 and only starting 178 was observed. The same result was obtained when the 

hydrogenation of 178 was performed at 90 bar of H2 under the same conditions. For the 

substrate 179 the reaction was selective that each enantiomer of the catalyst 170 delivered the 

opposite diastereomer of 182, but only with low conversion. A possible explanation for this 

low reactivity might be an undesired interaction of the aldehyde functional group with the Ir-

catalyst. The reaction was also performed with catalysts 167, 168 and 171 but without any 

improvement. 

 

 

6.4 Conclusion 

 

We have shown that products of the enantioselective Diels-Alder reaction can be converted to 

saturated cyclohexene derivatives by asymmetric iridium-catalyzed hydrogenation with 

excellent diastereoselectivities of up to 98:2. The diastereoselectivity of the reaction is 

strongly catalyst-controlled, so it is possible to obtain each of the two diastereomeric products 

with high selectivity using either the (R)- or (S)-catalyst. It was found that the most effective 

catalyst in terms of diastereoselectivity and reactivity was the pyridine-phosphinite derived 

complex 170. 
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7. Summary 

 
Borabox ligands proved to be efficient ligands for controlling the enantioselectivity of various 

metal-catalyzed reactions. Therefore modification of an existing borabox backbone was 

implemented and new borabox ligands modified on C(5) position of the oxazoline ring were 

prepared and tested in the copper-catalyzed asymmetric cyclopropanation. In this study high 

stereocontrol of the reaction was observed. However the presence of sterically demanding 

groups at position C(5) did not improve the results compared to the C(5) non-substituted 

analogs (Figure 35). 

Figure 35: Borabox ligands – C(5) substituted (left), C(5) unsubstituted (right). 

 

The synthesis of analogous boron-bridged phosphino-oxazolines was attempted via several 

synthetic approaches in order to prepare new zwitterionic N,P-ligands (Scheme 122). 

Scheme 122: Retrosynthetic analysis of N,P-zwitterionic ligands. 

 

The simple stepwise substitution by subsequent addition of lithiated oxazoline and phosphine 

was not possible. It either led to borabox ligands or to undesired dimeric species, which were 

inert towards reaction with other nucleophiles (Scheme 123). 

Scheme 123: Reaction of chloroboranes with lithiated oxazolines. 
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We decided to tune the electronic properties of the boron compound by variation of the 

substituents in order to avoid multiple substitution or undesired dimer formation. Therefore 

aminochloroborates were examined due to their lower reactivity compared to chloroboranes 

or chloroborates. A derivative with a phosphine-aminoborate backbone was prepared but 

unfortunately the decreased reactivity of the nitrogen-substituted boron center did not allow 

another nucleophilic addition of the oxazoline moiety (Figure 36). 

Figure 36: Unreactive aminoborate with lithiated oxazolines. 

 

In order to avoid dimer formation the reactivity of potassium diaryldifluoroborates was 

investigated. These tetrasubstituted boron compounds reacted with lithium oxazolines and 

provided products of nucleophilic substitution at the boron center (Scheme 124). 

Scheme 124: Nucleophilic substitution using potassium diaryldifluoroborates. 

 

The resulting oxazoline-substituted fluoroborates could be isolated as zwitterions after 

protonation of the oxazoline nitrogen atom. However, the second intended substitution with 

the phosphine moiety failed. In addition, quantum chemistry calculations were carried out to 

support the experimental studies. 

 

 

The synthesis of new NeoPHOX ligands derived from inexpensive chiral aminoacids L-serine 

and L-threonine was developed. These chiral ligands were tested in the iridium-catalyzed 

asymmetric hydrogenation and palladium-catalyzed allylic substitution (Figure 37). 

 

 

 

 

B PPh2
Me2N

NMe2

BH3
+ oxazoline

nucleophile

unreactive

Ar
B

Ar

F F

K
+ N

O

R

Li

N

O

R

B
F

Ar Ar

H



 

  
 

167 

Figure 37: L-serine and L-threonine derived ligands and their applications. 

 

In both reactions the enantioselectivities achieved were excellent for most of the substrates 

tested. In the iridium catalyzed hydrogenation it was found that presence of an acid-stable 

protecting group of tertiary alcohol (R2) is necessary in order to achieve full conversions. The 

enantioselectivities obtained in the catalytic asymmetric hydrogenation and allylic substitution 

with the L-serine and L-threonine derived ligands were almost identical to those reported for 

tert-butyl-substituted NeoPHOX ligands, which are derived from very expensive amino acid 

tert-leucine. 

 

 

The use of Ir catalysts for the diastereoselective hydrogenation of Diels-Alder products was 

investigated. The best results were obtained with a pyridine-phosphinite complex that 

afforded the saturated cyclohexane derivatives with diastereoselectivities of up to 98:2 and 

full conversion. The reaction is strongly catalyst-controlled, so it is possible to obtain each of 

the two diastereomeric products with high selectivity using either (R)- or (S)-catalyst (Scheme 

125). 

Scheme 125: Diastereoselective hydrogenation controlled by enantiomer of Ir-catalyst. 
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8. Experimental part 

 

8.1 Working techniques and reagents 

 

Synthetic procedures involving manipulation under inert atmosphere were performed in the 

dried glassware under positive argon pressure using standard Schlenk techniques. For 

handling moisture and air sensitive compounds was used glove box (MBraun Labmaster 130). 

Commercially available reagents were purchased from Acros, Aldrich, Flourochem, Strem 

and used without further purification. Triethylamine was distilled from calcium hydride, 2,6-

lutidine was distilled under reduced pressure prior to use. 

Solvents were distilled from sodium/(benzophenone) (diethylether, pentane, tetrahydrofurane, 

toluene), obtained from the purification activated alumina columns system under nitrogen 

(PureSolv, Innovative Technology Inc) or obtained from Aldich or Fluka in a septum-sealed 

bottles under inert atmosphere and over molecular sieves. The oxygen free solvents were 

prepared by freeze-pump-thaw degassing technique 

Column chromatography was performed on silica gel 60 (0.040-0.063 mm) or neutral alumina 

obtained from Aldrich or Merck. The reagents were of technical grade and were distilled prior 

to use. 

 

8.2 Analytical methods 

 

NMR-Spectroscopy: NMR spectra were recorded either on a Bruker Avance 400 (400 MHz, 

BBO probe head) or a Bruker Avance DRX 500 (500 MHz, BBO or BBI probe heads) NMR 

spectrometers. Chemical shifts δ are given in ppm and they are referenced for CDCl3 to 7.26 

ppm (1H-NMR) and 77,16 ppm (13C-NMR) for C6D6 to 7.16 ppm (1H-NMR) and 128.1 ppm 

(13C-NMR) and for THF-d8 to 3.58 ppm (1H-NMR) or to internal standard TMS 0 ppm. 31P-

NMR spectra were calibrated to an external standard of a phosphoric acid (85%) to 0 ppm. 
19F-NMR spectra were calibrated to the chemical shift of the most downfield isotopomer of 

external CFCl3 to 0 ppm. 11B-NMR spectra were calibrated to 0 ppm with the BF3
.Et2O as an 

external standard. The assignment of 1H and 13C-NMR signals was accomplished with help of 

DEPT135 NMR experiments or by using 2D-NMR experiments (COSY, HMQC, HSQC, 
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HMBC). Multiplets were assigned as s (singlet), d (doublet), dd (doublet of doublet), t 

(triplet), q (quartet), m (multiplet) and br s (broad singlet). 

 

Mass Spectrometry: EI (Electron Impact) and FAB (Fast atom bombardment) mass spectra 

were recorded by Dr. Heinz Nadig (Department of Chemistry, University of Basel). Electron 

Impact ionization spectra were recorded on VG70-250 spectrometer and Fast Atom 

Bombardment spectra were recoded on Finnigan MAR312 with 3-nitrobenzyl alcohol (NBA) 

as matrix. Electron spray ionization (ESI) was measured on Varian 1200L Triple Quad 

MS/MS spectrometer with the sample concentrations between 10-4 and 10-5 M (40 psi 

nebulizing gas, 4.9 kV spray voltage, 18 psi drying gas at 200 °C, 38-75 V capillary voltage, 

1300-1500 V detector voltage) by Dr. I. Fliescher. MALDI (Matrix-assisted laser 

desorption/ionization) spectra were recorded on Voyager-DE-Pro or Bruker Microflex with p-

nitroaniline or 2,5-dihydroxybenzoic acid as matrixes. 

The signals are given in mass-to-charge ratios (m/z) with the relative intensities in brackets. 

 

Elementar Analysis: Elementar analyses were measured by Mr. W. Kirsch (Department of 

Chemistry, University of Basel) on Lenco CHN-900. The data are indicated in mass percent. 

 

Melting Points: Melting points were determined on Büchi 535 melting point apparatus and 

they are uncorrected. 

 

Optical Rotations ([[[[ ]]]]20
Dαααα ): Optical rotations were measured on a Perkin Elmer Polarimeter 

341 in cuvette (l = 1 dm) at 20 °C at 589 nm (sodium lamp). The concentration c is given in 

g/100 mL. 

 

Infrared Spectroscopy: Infrared spectra were recorded on a Perkin Elmer 1600 series FTIR 

spectrometer or on Shimadzu FTIR-8400S spectrometer (Golden Gate ATR). Liquid samples 

were measured as a thin layer between two sodium chloride plates and solid samples were 

compressed into potassium bromide pellets. The absorption bands are given in wavenumbers 

(ν~ [cm−1]). The peak intensity is described as s (strong), m (medium), w (weak). The index br 

stands for broad. 

 

Gas Chromatography: Gas chromatograms were recorded on Carlo Elba HRGC Mega2 

Series 800 (HRGS Mega 2) instruments. Achiral separations were performed on a Restek Rtx-
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1710 column (30 m × 0.25 mm × 0.25µm) and for chiral separations β- and γ− cyclodextrine 

columns (30 m × 0.25 mm × 0.25µm) were used. 

 
Gas Chromatography with Mass Spectrum detection: HP6890 gas chromatogram with 

Macherey-Nagel OPTIMA1 Me2Si (25 m × 0.2 mm × 0.35µm, 20 psi, split ca. 20:1, carrier 

gas: 1 mL/min helium) with HP5970A mass detector (EI). Shimadzu GC-MS-QP2010 SE 

equipped with Rtx-5MS (30 m × 0.25 mm × 0.25µm, 100 kPa, split ca. 40:1, carrier gas: 3 

mL/min). 

 

High-performance Liquid Chromatography:  HPLC analyses were measured on Shimadzu 

systems with SCL-10A system controller, CTO-10AC column oven, LC10AD pump system, 

DGU-14a degasser. Chiracel brand chiral columns from Diacel Cheical Industries were used 

with models OD-H, OJ-H, AD-H in 4.6 × 250 mm size. 

 

Thin Layer Chromatography:  TLC plates were purchased from Macherey-Nagel (Polygram 

SIL G/UV254, 0.2mm silicas with fluorescence indicator, 40 × 80 mm). 
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8.3 Borabox ligands 

 

(S)-methyl 3,3-dimethyl-2-(2,2,2-trifluoroacetamido)butanoate [138] (BB-01) 

 

 

 

Triflouroacetic anhydride (1.14 mL, 8.22 mmol, 1.0 eq.) was added dropwise to a solution of 

L-tert-Leucine methylester ( 1.194 g, 8.22 mmol, 1.0 eq.) and triethylamin (1.26 mL, 9.05 

mmol, 1.1 eq.) in CH2Cl2 (25 mL) at -78 °C over 5 min. After complete addition the reaction 

mixture was stirred at -78 °C for another 1h, then quenched with saturated aqueous NaHCO3 

solution (10 mL) and allowed to warm to room temperature. Reaction mixture was then 

extracted with CH2Cl2 (3 x 15 mL), combined organic extracts were washed with brine (1 x 

25 mL) and dried over MgSO4. Concentration of the filtrate afforded slightly yellow oil which 

was then subjected to vacuum distillation (bp. 68 °C / 4 Torr) to provide 1,56 g (79% yield) 

trifluoroacetamide as a colorless oil[45]. 

 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 6.80 (br s, 1H, NH), 4.49 (d, 1H, J = 9.3 Hz, 

CH), 3.78 (s, 3H, COOCH3), 1.00 (s, 9H, (CH3)3). 
19F{1H}-NMR  (376.5 MHz, CDCl3, 300K): δ (ppm) -76.9. 

 

 

(S)-N-(4-ethyl-4-hydroxy-2,2-dimethylhexan-3-yl)-2,2,2-trifluoroacetamide (BB-02) 

 

 

 

A solution of trifluoroacetamide BB-01 (1,56 g, 6,5 mmol, 1 eq.) in THF (8 mL) was added 

dropwise to ethylamagnesium bromide (1,66 M in Et2O, 19,5 mL, 32,3 mmol, 5,0 eq.) in 10 

mL of THF over 1 h. The reaction mixture was heated to reflux for 6 hours and then was 

cooled to 0°C, quenched with saturated aqueous NH4Cl solution (9 mL) and extracted with 

TBME (4 x 10 mL). The combined organic extracts were washed with brine (25 mL) and 

dried over MgSO4. Concentration of the filtrate gave a yellow oil which was bulb to bulb 

distilled (bp. 65-70 °C / 6 Torr) to provide white paste which was further purified by 
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crystallization from n-hexane. It was obtained 1.3 g (75 % yield) of the product as white 

crystals. 

 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 6.90 (d, 1H, J = 7.3 Hz, NH), 3.82 (d, 1H, 

J = 10.2 Hz, N-CH), 1.78 (m, 2H, CH2), 1.41 (m, 2H, CH2), 1.07 (s, 9H, (CH3)3), 0.92(t, 3H, 

J = 7.3 Hz, CH3), 0.83(t, 3H, J = 7.3 Hz, CH3). 
13C{1H}-NMR  (100.6 MHz, CDCl3, 300K): δ (ppm) 157.4 (q, JCF = 36 Hz, C=O), 116.7 (q, 

JCF = 288 Hz, CF3), 79.5 (C-OH), 60.4 (CH), 36.7 (C(CH3)3), 30.0 (CH2), 29.2 (CH2), 29.1 

(C(CH3)3), 8.6 (CH3), 8.3 (CH3). 
19F{1H}-NMR  (376.5 MHz, CDCl3, 300K): δ (ppm) -76.9. 

MS (FAB) m/z (%) 270 ([M+H]+, 18), 271 (3), 252 (100), 196 (26), 137 (60). 

IR  (ν~ [cm−1]) 3465m, 3397m, 2979m, 1718s, 1541m, 1484w, 1393m, 1346m, 1270m, 1223s, 

1150s, 1036w, 971w, 931w, 899w, 872w, 772w, 713w, 644w. 

Elementar analysis for C12H22F3NO2 (269.30) calcd %: C, 53.52; H, 8.23; N, 5.20; found: C, 

53.83; H, 7.96; N, 5.05.  

[[[[ ]]]]20
Dαααα = -25.8° (c=1.00, CHCl3) 

M.p. 83.7 – 84.5 °C 

 

 

(S)-4-amino-3-ethyl-5,5-dimethylhexan-3-ol (58) 

 

To deprotect TFA protected aminolcohol BB-02 after 5 hours reflux in 5% methanolic NaOH 

solution overnight was observed only 50% conversion. After additional 16h reflux was 

conversion around 90%. Therefore formation of the aminoalcohol BB-03 was performed 

without N-protection of L-tert-leucine methylester. 

To a precooled solution of EtMgBr  (6,2 mL, 8,6 mmol, 1,4 M in Et2O, 5 eq.) in 3 mL THF 

was dropwise added L-tert-Leucine methylester hydrochloride (0,25 g, 1,7 mmol, 1 eq.) in 4 

mL THF at -40°C within 20 min. After the addition was complete the reaction mixture was 

warmed to r.t. and refluxed overnight. The reaction was quenched by sat. solution NH4Cl at 

0°C and followed by addition of 10% HCl until clear solution was obtained. Product was 

extracted from the mixture using TBME (6 x 15 mL) and combined organic extracts were 
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t-Bu
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Et Et
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washed by 10 mL brine and dried over Na2SO4. After concentrating extracts was resulting 

yellow oil purified by vacuum distillation (55°C/0,15 Torr) to provide 284 mg (95% yield) of 

the product as a colorless oil. 

 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 2.53 (s, 1H, OH), 1,76 (m, 1H, CH), 1.46 (m, 

2H, CH2), 1.43 (m, 2H, CH2), 1.00 (s, 9H, (CH3)3), 0.91 (t, 3H, J = 7.3 Hz, CH3), 0.89 (t, 3H, 

J = 7.3 Hz, CH3). 
13C{1H}-NMR  (100.6 MHz, CDCl3, 300K): δ (ppm) 75.6 (C-OH), 62.9 (CH), 35.5 

(C(CH3)3), 29.8 (CH2), 29.7 (CH2), 29.1 (C(CH3)3), 8.5 (CH3), 8.3 (CH3). 

MS (FAB) m/z (%) 174 ([M+H]+, 100), 175 (12), 100 (75), 57 (53). 

IR  (ν~ [cm−1]) 3412m, 3332m, 2961s, 2882s, 2361w, 1617w, 1467m, 1398m, 1369m, 1262w, 

1218w, 1146m, 1038w, 950m, 893m, 833m, 755m. 

Elementar analysis for C10H23NO (173.30) calcd %: C, 69.31; H, 13.38; N, 8.08; found: C, 

69.03; H, 13.09; N, 7.92.  

[[[[ ]]]]20
Dαααα = -26.4° (c=0.99, CHCl3). 

 

 

 (S)-4-(tert-butyl)-5,5-diethyl-4,5-dihydrooxazole (59) 

 

 

The oven dried three neck flask equipped with the reflux condenser and magnetic stir bar was 

charged under the inert atmosphere with aminoalcohol (1,050 g, 6,1 mmol, 1eq.), ethyl 

formimidate hydrochloride (0,796 g, 7,3 mmol, 1,2 eq.) and dissolved in 100 mL CH2Cl2  and 

refluxed overnight under the inert atmosphere. Then triethylamine (4,22 ml, 30,3 mmol, 5 eq.) 

was carefully added to a reaction mixture via syringe followed by addition of 60 mL sat. sol. 

NaHCO3. After the extraction with 3 x 20 mL CH2Cl2 were the combined organic extracts 

dried over Na2SO4 and after evaporation of the volatiles in vacuum was obtained 1,198 g of 

the yellowish oil as a crude product which was subjected to vacuum distillation (38 °C / 0,1 

Torr) to obtain 650 mg (59%) of the product as a colorless oil. 
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1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 6.79 (d, J = 2.1 Hz, 1H, H-C=N), 3.47 (d, 

J = 2.3 Hz, 1H, CH-N), 1.93 (m, 1H, CH2),  1.72 (m, 2H, CH2),  1.57 (m, 1H, CH2), 1.02 (s, 

9H, (CH3)3), 0.95 (t, 3H, J = 7.3 Hz, CH3), 0.86 (t, 3H, J = 7.3 Hz, CH3). 
13C{1H}-NMR  (100.6 MHz, CDCl3, 300K): δ (ppm) 153.3 (HC=N), 91.6 (C-Et2), 78.9 

(CHtBu), 34.4 (C(CH3)3), 29.6 (CH2), 28.5 (C(CH3)3), 25.9 (CH2), 8.9 (CH3), 8.2 (CH3). 

MS (FAB) m/z (%) 184 ([M+H]+, 100), 83 (66), 57 (93). 

IR  (ν~ [cm−1]) 3067w, 2968s, 2883s, 1638s, 1463m, 1365m, 1291w, 1160m, 1100s, 1026w, 

926m, 885w. 

Elementar analysis for C11H21NO (183,29) calcd %: C, 72.08; H, 11.55; N, 7.64; found: 

C, 71.72; H, 11.25; N, 7.63.  

[[[[ ]]]]20
Dαααα = -72.2° (c=0.93, CHCl3).  

 

 

Bis (2,2-diethyl-(S)-tert-butyl-oxazoline)dicyclohexylborane (57g) 

 

To a precooled solution of the (S)-4-(tert-butyl)-5,5-diethyl-4,5-dihydrooxazole (300 mg, 1,64 

mmol, 2 eq.) in 100 mL THF was dropwise added t-BuLi (1,1 mL 1,7 M, 2,2 eq) at -78°C and 

stirred for 30 min during which the colorless solution turned yellow. Then was premixed 

solution of the dicyclohexylchloroborane (0,82 mL, 1M in hexane, 1eq) in toluene (5 mL) 

added via cannula to the reaction mixture. The cooling bath was immediately removed and the 

reaction was leaved warm to room temperature overnight. All volatiles were removed and 

resulting white foam was transferred on a column (25 g SiO2) end eluted by 

Hexane/EtOAc/Et3N (10:1:0,5) mixture. The product is decomposing during the column 

chromatography, therefore second purification is needed on the neutral aluminium oxide 

column (Rf=0.85, n-pentane) stained by PMA solution. 

 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 3.49 (s, 2H, CHN), 1.93-1.88 (m, 4H, CH2 Et), 

1.88-1.80 (m, 4H, CH2 Et), 1.66-1.58 (m, 8H, HCy), 1.44-1.40 (m, 2H, HCy), 1,17-1,11 (m, 6H, 

HCy), 1,05 (s, 18H 2 x tBu), 1.04 (t, J = 3.9 Hz, 6H, CH3 Et), 1.01 (t, J = 3.9 Hz, 6H, CH3 Et), 

0,94-0.89 (m, 4H, HCy), 0.63-0.57 (m, 2H, HCy). 
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13C{1H}-NMR  (100.6 MHz, CDCl3, 300K): δ (ppm) 92.3 (2C, OCEt2), 74.5 (2C, CHtBu), 

33.9 (2C, C(CH3)3), 31.9 (4C, CH2 Cy), 31.7 (2C, CMe2), 29.8 (CH2 Et), 29.7 (CH2 Et), 29,3 

(2C, CH Cy) 28.9 (2C, CH2 Cy),28.8 (4C, CH2 Cy), 27.7 (6C, C(CH3)3), 23.5 (2C, CH2), 8.9 

(CH3 Et), 8.2 (CH3 Et). 
11B{1H} NMR  (160.8 MHz, CDCl3, 295K): δ (ppm) -11.8. 

MS (FAB) m/z (%) 543 ([M+H]+, 100), 542 (24), 544 (36), 278 (16), 196 (38), 83 (54). 

Elementar analysis for C34H63BN2O2 (542.69) calcd %: C, 75.25; H, 11.70; N, 5.16; found: 

C, 75.27; H, 11.55; N, 5.05.  

[[[[ ]]]]20
Dαααα = -13.4° (c=0.32, CHCl3).  

 

 Bis(3,5-bis(trifluoromethyl)phenyl)dimethylstannane (60) 

 

This compound was prepared according to the literature procedure[34]. Oven dried three 

necked flask was equipped with magnetic stir bar, dropping funnel and reflux condenser and it 

was cooled to room temperature under positive pressure of argon and then charged with the 

oven dried magnesium turnings (1,68 g, 69 mmol, 1,5 eq.) which were then activated by a 

small crystal of I2. Solution of 3,5-bis(trifluoromethyl)phenylbromide (13,5 g, 46 mmol, 1 

eq.) in 20 mL dry diethylether was added from the dropping funnel over course of 20 minutes 

in a rate to mantain gentle reflux of the reaction mixture. After the reaction heat ceased the 

solution of a Grignard reagent was heated[139] to a reflux for another 1 hour and stirred in 

addition overnight at room temperature. Then was the solution filtered under positive argon 

pressure through the glasswool plug over cannula to another reaction vessel for following 

reaction. Concentration of the final Grignard solution was recalculated according to the 

amount of the Mg turnings residue washed by acetone after filtration. 

To a precooled solution of (3,5-bis(trifluoromethyl)phenyl)magnesium bromide (25 mL, 1,8 

M in Et2O, 46 mmol, 2 eq.) was added solid dimethyltindichloride (5g, 23 mmol, 1 eq.) Note! 

Me2SnCl2 is highly toxic. Use appropriate precautions when handling this material. at -78°C 

and stirred 2 hours and then was the reaction mixture warmed to RT and stirred overnight. 

The clear colorless solution was concentrated in vacuum and it was obtained 12,6 g (96 % 
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yield) of a white crystalline solid[140] which was used in the next experiment without further 

purification. 

 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 0.72 (s, 6H, 2JH-Sn117, 119 = 58.1, 

55.5 Hz, CH3), 7.94, 7.88, 7.83 (m, CHAr, 6 H). 
19F{1H}-NMR  (376.5 MHz, CDCl3, 300K): δ (ppm) -64.0. 

 

 

Bis(3,5-bis(trifluoromethyl)phenyl)chloroborane (61) 

 

The oven dried thick-walled glass 100 mL Schlenk vessel equipped with the magnetic stir bar 

and rubber septum was after cooling to room temperature charged with the crystalline bis(3,5-

bis(trifluoromethyl)phenyl)dimethylstannane (6,3 g, 11 mmol, 1 eq.) and dry n-heptane (25 

mL).  The solution of BCl3 (11,0 mL, 1.0 M in n-heptane, 1 eq.) was added dropwise via 

syringe at rt and solution was stirred for additional 1 hour. Then was rubber septum replaced 

by the glass stopper equipped with the Teflon O-ring and the V-shaped metal clamp. The 

Schlenk flask was placed into the oil bath and it was heated to 100 °C for 48 hours. After 

cooling to rt was the reaction solvent removed under reduced pressure on the Schlenk line by 

using distillation apparatus connected to the two additional cooling traps to trap traces of the 

regenerated volatile dimethyltindichloride. Note! Me2SnCl2 is highly toxic. Use appropriate 

precautions when handling this material. The crude slightly shadow solid was then connected 

to the bulb to bulb distillation apparatus (also equipped with two additional cooling traps) and 

Me2SnCl2 was then sublimed (40°C / 1 Torr) from the solid crude. The residue after the 

sublimation was then purified by a high vacuum sublimation on a diffusion pump (55°C / 

5.10-5 mbar) and it was obtained 2.858 g (55 % yield) of the product[140] as a white solid. 

 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 8.06 (br s, 2H, CHAr), 7.92 (br s, 4H, CHAr). 
19F{1H}-NMR  (376.5 MHz, CDCl3, 300K): δ (ppm) -63.9. 
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Bis(2,2-diethyl-(S)-tert-butyl-oxazoline)bis(3,5-bis(trifluoromethyl)phenyl)borane (57h) 

 

To a precooled solution of the (S)-4-(tert-butyl)-5,5-diethyl-4,5-dihydrooxazole (100 mg, 

546 µmol, 2 eq.) in 30 mL THF was dropwise added t-BuLi (0.35 mL, 1.7 M in n-hexane, 2.2 

eq.) at -78°C and reaction mixture was stirred for 30 min while the solution turned yellow. 

Then Bis(3,5-bis(trifluoromethyl)phenyl)chloroborane (129 mg, 273 µmol, 1 eq.) in benzene 

(3 mL) was added via cannula. After addition was complete, cooling bath was removed and 

the reaction mixture was stirred overnight at rt. All volatiles were evaporated and resulting 

white foam was transferred on to a column (25 g silicagel, Hex:EtOAc:Et3N (10:1:0,5), 

Rf=0.94). After the column chromatography was obtained 100mg of the product with small 

amounts of impurities, therefore chromatography was performed again using the same solvent 

mixture on silica. It was obtained 40 mg (18%) of the product as a white wax. The product 

seemed to be unstable and it was probably decomposing during the chromatography therefore 

it could not be obtained as an analytically pure sample and it was used in the next experiments 

without being fully characterized. 

 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 8.75 (br s, 1H, N-H), 7.78 (br s, 4H, ArHortho), 

7.69 (br s, 2H, ArHpara), 3.55 (s, 2H, CHN), 2.01-1.91 (m, 2H, CH2 Et), 1.88-1.78 (m, 2H, 

CH2 Et), 1.71-1.60 (m, 4H, CH2 Et), 1.04 (s, 18H 2 x tBu), 0.95 (t, J = 7.6 Hz, 6H, CH3 Et), 0.82 

(t, J = 7.6 Hz, 6H, CH3 Et). 
19F{1H}-NMR  (376.5 MHz, CDCl3, 300K): δ (ppm) -63.8. 

MS (MALDI) m/z (%) 803 ([M+H]+, 100). 

 

 

 

 

 

N

OBO

N
H

t-But-Bu

Et

Et

Et

Et

CF3

F3C

F3C

CF3



 

  
 

181 

General procedure for the conversion protonated borabox ligands into their lithium 

salts[36] 

 

n-BuLi (48 µl, 77 µmol) was added at 0°C to a solution of protonated borabox complex BB-

05 (40 mg, 74 µmol) in 4 ml of THF. After 2 hours of additional stirring at room temperature, 

the volatiles were removed under reduce pressure. There was isolated lithiated borabox 

complex (BB-05)-Li (40 mg, 73 µmol, 99 % yield) which was used in the further reactions. 

 

 

General procedure for the cyclopropanation reaction[36] 

 

Ligand (BB-05)-Li (7 mg, 0.012 mmol) and Cu[(OTf)2]-0.5(C6H6) (2.5 mg, 0.005 mmol) 

were dissolved in 1 mL 1,2-dichlorethane (degassed in the ultrasonic bath) and resulting 

solution was stirred at room temperature for 30 minutes before styrene (115 µL, 1 mmol, 

freeze-pump-thaw degassed) was then added. After further 30 minutes solution of the tert-

butyl diazoacetate (171 mg, 166 µL, 1.2 mmol) in 1 mL 1,2-dichlorethane was added over 

course of ~6 hours via a syringe pump. After the addition was complete the reaction was 

stirred for an additional 12 hours. The reaction mixture was then concentrated in vacuum to 

afford crude product (226 mg). Flash chromatography using hexanes-ethylacetate (9:1) 

(cis/trans product with Rf=0.5, and fumarate and maleate with Rf=~0,3) afforded a cis/trans 

mixture (160 mg) of the cyclopropane carboxylates. From this mixture was recorded 1H 

NMR and GC (1,5°/min, 50-180°C). Rt for cis/trans products was 69,85 min and 73,74 min 

(fumarate and maleate Rt = 54,54 min and 56,62 min). From GC determined cis/trans ratio of 

cyclopropane isomers was same as from the 1H NMR. 

 

 

Transesterification of the cyclopropanation products into the corresponding 

ethylesters[141] 

 

The crude reaction mixture from cyclopropanation reaction was dissolved in a neat 

CF3COOH and stirred 10 minutes at rt.  The CF3COOH was evaporated in vacuum and 

distillation residue was furthermore several times codistilled with toluene. The crude product 
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was dissolved in DCM and separated by filtration from fumaric and maleic acid to afford a 

mixture of cis/trans cyclopropyl acids. 

To a solution of cyclopropyl acids (100 mg, 617 µmol) were added Pyridine (3,3 mL, 0,25 M 

in Toluene), SOCl2 (3,3 ml 0,7M in Toluene) and EtOH (3,3 ml 1,4 M in Toluene). The 

reaction mixture was stirred at 100°C for 1 hour, diluted with Et2O and extracted 3 times with  

0,1 M phosphate buffer (prepared form NaH2PO4 and (1:5) HCl in ratio 40:1 to pH = 3), 

followed by sat. solution NaHCO3. After drying with MgSO4, solvent was removed in 

vacuum. GC was recorded on Beta-cyclodextrine DEtButSil (SE54) 100-130°C (0,5°C/min). 
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8.4 Non-symetrically substituted boron compounds 

 

Triisobutyl borate (63) 

In the two necked round-bottomed flask fitted with Dean-Stark apparatus, boric acid 20g (323 

mmol, 1eq.) was dissolved in isobutanol 97 mL (1,051 mol, 3,25 eq.) and refluxed under Ar 

for 5 hours. After removal of 17,5 ml of water was excess of the isobutanol (7,5 mL) distilled 

off at atmospheric pressure (bp. 108°C) and then was the reaction mixture distilled in vacuum 

(58°C / 3 Torr) to produce 68 g (95% yield) of the triisobutylborate 63 as a colorless liquid. 

 

C12H28BO3 (238,15 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 3.56 (d, J = 6.5 Hz, 6H, CH2), 1.77 (m, 3H, 

CH), 0.88 (d, J = 6.7 Hz, 18H, CH3). 

 

 

Diisobutyl phenylboronate (66) 

 

To as solution of 24 mL (48 mmol, 1.1 eq., 2 M in Et2O) of phenylmagnesium bromide in 50 

mL of diethylether was added 10 g (44 mmol, 1 eq.) of triisobutylborate in 20 mL of 

diethylether at -78°C in course of 30-40 minutes. The reaction mixture was then leaved warm 

up to room temperature and stirred overnight. Afterwadrs was reaction flask place into the oil 

bath and refluxed for 2 hours. After cooling to room temperature was reaction flask plugged 

to a source of gaseous hydrochloric acid which was bubled through the reaction mixture for 1 

hour. Diethylether was evaporated, the white precipitate was filtered off and washed with 

benzene. The filtrate was then fractionally distilled in vacuum (68°C/4 Torr 2nd fraction) to 

obtain 6,32 g (64 % yield) of product 66 as colorless liquid. 1st fraction 56°C/5 Torr contained 

starting material (510mg) and 3rd fraction 61°C/0,07 Torr (0,732 g) containing isobutyl 

dipehnylborate. 
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C14H23BO2 (234.14 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 7.69-7.67 (m, 2H, ArH), 7.43-7.38 (m, 3H, 

ArH), 3.86 (d, J = 6.5 Hz, 4H, CH2), 1,95-1.89 (m, 2H, CH), 0.99 (d, J = 6.7 Hz, 12H, CH3). 
13C{1H}-NMR  (100.6 MHz, CDCl3, 300K): δ (ppm) 134.0 (CArH), 130.0 (CArH), 128.1 (CArH), 

71.4 (CH2), 30.6 (CH), 19.4 (CH3). 

IR  (ν~ [cm−1])  3052w, 2957s, 2878s, 2360m, 1601m, 1470s, 1435s, 1411s, 1324s, 1258s, 

1173w, 1130m, 1072w, 1025s, 951w, 910w, 826w, 759w, 700m, 651m. 

Elementar analysis for C10H16ClNO3 (234.14) calcd %: C, 71.82; H, 9.90; found: C, 70.64; 

H, 9.65. 

 

 

(4-chlorophenyl)(isobutoxy)(phenyl)borane (73) 

 

The diisobutylphenylboronate (66) 0,827g (3.53 mmol, 1.0 eq.) was dissolved in 3 mL of 

diethyl ether and then was added with syringe pump during 2 hour of Grignard reagent 3,9 

mL (3.89 mmol, 1M, 1.1 eq.) at -78°C. After addition was complete, the reaction mixture was 

stirred at the same temperature for another 5 hours and then leaved warm overnight in the 

cooling bath. Reaction was quenched with 3 mL of 5% H2SO4 and extracted with 3 x 25 mL 

of diethylether. Solvent was distilled off and 5 mL of iBuOH was added to the residue and co-

distilled with 5 x 5 mL of iBuOH. The crude product (960mg) was then fractionaly distilled 

(68°C/0,06 Torr) to obtain 570 mg (60%  yield) of the product 73 as a colorless liquid. 

 

C16H18BClO (272.58 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 7.63-7.60 (m, 4H, ArH), 7.49-7.39 (m, 5H, 

ArH), 3.94 (d, J = 6.4 Hz, 2H, CH2), 2.02-1.95 (m, 1H, CH), 1.00 (d, J = 6.7 Hz, 6H, CH3). 
13C{1H}-NMR  (100.6 MHz, CDCl3, 300K): δ (ppm) 136.9 (CAr), 136.3 (CArH), 134.3 (CArH), 

130.5 (CArH), 128.3 (CArH), 128.1 (CArH), 74.8 (CH2), 30.7 (CH), 19.4 (CH3). 

MS (EI, 70 eV): m/z (%): 272 (12, M+), 199 (29), 139 (48), 105 (64), 91 (25), 78 (30), 56 

(100),  41 (21). 
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IR  (ν~ [cm−1])  3050w, 2959s, 2877m, 2361w, 1587s, 1469m, 1433m, 1385m, 1331s, 1260s, 

1180w, 1130w, 1089m, 997w, 945w, 895w, 822m, 701m, 646w. 

Elementar analysis for C16H18BClO (272.58) calcd %: C, 70.50; H, 6.66; found: C, 69.35; H, 

6.85. 

 

 

Isobutoxydiphenylborane (64) 

To a solution of 5 g (21.72 mmol, 1eq.) triisobutylborate in 20 mL of  Et2O, 23.9 mL of 

PhMgBr (47.79 mmol, 2M in Et2O, 2.2 eq.) was added during 2 hours via syringe pump at -

78°C and stirred at this temperature for additional 5 hours and then leaved warm overnight in 

the cooling bath to room temprature. Following day was the reaction mixture refluxed for 4 

hours and then quenched with 25 mL of 5% HCl (aq.) and extracted with diethyl ether. 

Solvent was removed in vacuum and residue was co-distilled with 3 x 10 mL of isobutanol. 

The crude mixture was distilled on Kugelrohr at 150°C/0.1 Torr to obtain 4.764g (92% yield) 

of product 64 as colorless oil. 

 

C16H19BO (238.13 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 7.68-7.65 (m, 2H, ArH), 7.49-7.41 (m, 6H, 

ArH), 3.95 (d, J = 6.4 Hz, 2H, CH2), 2.04-1.94 (m, 1H, CH), 1.00 (d, J = 6.7 Hz, 6H, CH3). 
13C{1H}-NMR  (100.6 MHz, CDCl3, 300K): δ (ppm) 134.7 (CArH), 130.5 (CArH), 128.0 (CArH), 

74.8 (CH2), 30.8 (CH), 19.5 (CH3). 

MS (EI, 70 eV): m/z (%): 238 (4, M+), 182 (98), 154 (24), 105 (100), 78 (92), 56 (35). 

 

 

Chlorodiphenylborane (62) 
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1.5 g (6.3 mmol, 1eq.) of isobutyl diphenylboronate was dissolved in 10 mL DCM and colled 

to 0°C then 1,38 g (6.3 mmol, 95%, 1 eq.) of PCl5 was added in two portions. During addition 

the reaction was accompanied by evolution of the heat. After 15 min was the cooling bath 

removed and stired for another 30 minutes. The isobutylchloride (b.p. 69°C) and POCl3 (b.p. 

107°C) were removed by reduced pressure distillation with an additional cooling trap. The 

chlorodiphenylborane was distilled (80°C/0.06 Torr) to obtain 0,836 g (66% yield) of the 

product as an transparent oil. By recrystallization from 4 mL of n-heptane at -35°C was 

obtained 640mg a white crystalline solid.  

 

C12H10BCl (200.47 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 8.06-8.02 (m, 4H, ArH), 7.68-7.62 (m, 2H, 

ArH), 7.56-7.50 (m, 4H, ArH). 
11B-NMR  (160.5 MHz, CDCl3, 300K): δ (ppm) 62.8. 

 

 

Lithim(TMEDA)methylenedipehnylphosphine (83)[64] 

 

A solution of 3.12 mL of n-BuLi (1.6M in hexane) was diluted with 3 mL of n-pentane and  

0.580 g (5 mmol, 0.75 mL, d=0.775) of N,N,N′,N′-tetramethylethylen-1,2-diamine was 

dropwise added. After 15 min stirring of the reaction mixture at room temperature, 1g (5 

mmol, d=1.076) of methyldiphenylphosphine was added and continued stirring for another 48 

hours. The precipitated yellow product was filtered by using Schlenk filtration apparatus and 

washed with 3 x 5 mL of n-pentane. Filtrate was then dryed in the vacuum. It was obtained 

0.968g (60% yield) of 83 as a yellow solid.  
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 (R)-4-benzyl-4,5-dihydrooxazole (87) 

(S)-Phenylaninol 1.3 g (8.60 mmol, 1 eq.) was dissolved in 100 mL of dry dichloromethane 

and 1.036g (9.45 mmol, 1.01eq) of ethylformimidate hydrochloride was added in one portion. 

Reaction was refluxed overnight and after cooling to room temperature 6 mL of triethylamine 

was added. The reaction mixture was then diluted with 70 mL of sat. sol. NaHCO3 followed 

by the extraction with 3 x 30 mL of diethylether. Organic extracts were dried over Na2SO4 

and solvent was evaporated in vacuum to obtain crude product (1.305 g). By distillation on 

Kugelrohr (110°C/0.1 Torr) was obtained 1.150 g (83% yield) of the product 87 as colorless 

oil.[140] 

 

C10H11NO (161.2 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 7.34-7.28 (m, 2H, ArH), 7.25-7.19 (m, 3H, 

ArH), 6.81 (d, J = 1.7 Hz, 1H, HCoxaz.), 4.44-4.34 (m, 1H, NCH), 4.16 (dd, J = 9.1 Hz, 1H, 

OCH2), 3.92 (dd, J = 8.0 Hz, 1H, OCH2) 3.08 (dd, J = 13.8, 5.8 Hz, 1H, CH2Ph), 2.68 (dd, J = 

13.8, 8.2 Hz, 1H). 

  

 

Bis(dimethylamino)chloroborane (116) 

 

To a precooled solution of 1.411 g (9.86 mmol, 2eq.) of B(NMe2)3 in 20 mL of n-pentane was 

dropwise added 4.93 mL of BCl3 (1M solution in n-hexane, 1eq.) at -20°C. Reaction mixture 

was warmed to room temperature and stirred for additional 1 hour. Then the solvent was 

removed in vacuum and crude reaction mixture (1.035 g) was fractionally distilled. It was 

obtained 0.836 g (42% yield) of the product 116 as colorless air sensitive liquid. 116 has to be 

stored below 4°C otherwise it dimerizes to white solid [Me2NBCl2]2 with 11B-NMR shift of 

10.5 ppm (in CDCl3).  
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C4H12BClN2 (134.42 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 2.72 (s, 12H, CH3). 
11B-NMR  (160.5 MHz, CDCl3, 300K): δ (ppm) 27.8. 

MS (EI, 70 eV): m/z (%): 134 (89, M+), 119 (53), 99 (80), 90 (81), 71 (67), 57 (57), 43 (100). 

 

 

Tris(dimethylamino)borane (117) [142] 

 

Preparation of 1,5 M etheral solution of dimethylamine 

The saturated solution of NaOH (approx. 12 g NaOH in 12 mL H2O) in Erlemayer flask was 

overlayed with 100 mL of diethylether and it was cooled to 0°C. Then 12.233 g of N,N-

dimethylamine hydorchloride was added in several portions as a solid. The solution was after 

2 hours decanted and dried overnight over KOH in the fridge and used as a stock solution. 

 

To a precooled solution of 4.12 mL (3g, d=0.727, 29.7 mmol) of Et3N in 16 mL of n-pentane 

was dropwise added 9.9 mL (9.9 mmol, 1M in n-hexane) of boron trichoride at -20°C. Then 

was the resulting suspension well stirred at room temperature for 5-10 minutes and recooled 

back to -20°C. In course of 2 hours 20 mL (1.5M, 30 mmol) of dimethylamine in Et2O was 

dropwise added and then slowly (1,5 hour) warmed to room temperature. The reaction 

mixture was refluxed for 1 hour and then the voluminous white precipitate was filtered off 

under nitrogen. The filtration cake was several times washed with n-pentane. The combined 

filtrates were freed of solvent and distilled in vacuum (bp. 44°C/15 Torr). It was obtained 

1,411g (33% yield) of the product as a colorless air sensitive liquid. 

 

C6H18BN3 (143.04 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 2.52 (s, 18H, CH3). 
13C{1H}-NMR  (100.6 MHz, CDCl3, 300K): δ (ppm) 39.6 (CΗ3). 

11B-NMR  (160.5 MHz, CDCl3, 300K): δ (ppm) 27.4. 
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1-((diphenylphosphino(borane))methyl)-N,N,N',N'-tetramethylboranediamine (119) 

159 mg (0.74 mmol) of MePPh2
.BH3 84 was dissolved in 2.5 mL of THF and cooled to 0°C, 

then 0.51 mL of n-buthyllithium (1.6M in hexane, 1.1 eq.) was dropwise added via syringe. 

The reaction mixture was stirred for 30 min at 0°C and then warmed to room temperature and 

stirred for another 90min to obtain 85. Afterwards was the reaction cooled to -78 °C and 

solution of 100 mg (0.74 mmol) of the (Me2N)2BCl in 1 mL of n-pentane was dropwise added 

via syringe. Cooling bath was removed, reaction mixture discolored while warming up to the 

room temperature and continued stirring overnight. The solvent was removed in vacuum and 

223 mg (96% yield) of the product 119 was obtained as colorless oil. 

 

C17H27B2N2P (312.01 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 295K): δ (ppm) 7.68 (dd, J = 9.8, 8.3 Hz, 4H, ArH), 7.47 – 

7.38 (m, 6H, ArH), 2.38 (s, 12H, CH3), 1.83 (d, J = 15.5 Hz, 2H, CH2) 1.02 (br q, 3H, BH3). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 295K): δ (ppm) 132.3 (d, J = 9.1 Hz, CArH), 132.0 (CAr), 

130.6 (d, J = 2.4 Hz, CArH), 128.4 (d, J = 9.7 Hz, CArH), 40.3 (CH3). 
11B-NMR  (160.5 MHz, CDCl3, 295K): δ (ppm) 31.2 (B-N), -37.5 (m, B-P). 
31P-NMR (202.5 MHz, CDCl3, 295K): δ (ppm) 16.8 (m, P-B). 

MS (EI, 70 eV): m/z (%): 298 (20, M+ - BH3 ), 200.1 (100), 183 (49), 132 (18), 111 (20), 91 

(13), 44 (13). 

 

 

(2-(diphenylphosphino)benzyl)lithium(TMEDA) [96e] 

 

 

Solution of 0.68 mL of n-buthyllithium (1,6M in n-hexane) was diluted with 3 mL of n-

pentane and treated with 0.163 mL (1.09 mmol, d=0.775) of N,N,N',N'-

tetramethylethylendiamine at room temperature and stirred for 15 minutes. Then 0.300 g (1.09 
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mmol) of diphenyl(o-tolyl)phosphine in 2 mL of n-pentane was added and the reaction 

mixture was stirred for 48 hours. The yellow precipitate 120 was isolated by filtration under 

Ar followed by washing with 2 x 10 mL of n-pentane to obtain 290 mg (67% yield) of the 

orange powder as product 120 which was stored in the glovebox for further transformations.  

 

 

1-(2-(diphenylphosphino)benzyl)-N,N,N',N'-tetramethylboranediamine[96e] (120) 

 

98 mg of the chloroborane in 5 mL of n-pentane was added to a solution 290 mg of 

Li(TMEDA) salt in 5 ml THF at -78°C. The reaction mixture was warmed up to room 

temperature (from dark brown to brownish during 30min after heating to rt.) and volatiles 

were removed under high vacuum. The residue was extracted with 2 x 10ml of pentane and 

purified by crystallization at -30°C. 

 

C23H28BN2P (374.27 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 295K): δ (ppm) 7.40 – 7.25 (m, 11H, ArH), 7.10-7.07 (m, 2H, 

ArH), 6.84-6.82 (m, 1H, ArH), 2.57 (s, 12H, CH3), 2.38 (s, 2H, CH2). 
11B-NMR  (160.5 MHz, CDCl3, 295K): δ (ppm) 34.5. 
31P-NMR (202.5 MHz, CDCl3, 295K): δ (ppm) -13.7. 

MS (EI, 70 eV): m/z (%): 330 (100, M+ - NMe2 ), 275 (8), 197 (6), 183 (8), 165 (5), 99 (9), 56 

(6). 

 

 

Dimethylaminoborane dichloride (121) 

 

Dimethylamine 13.3 mL (20 mmol, 1,5M solution in Et2O) was dropwise added to the 

precooled solution 20 mL (1M in hexane, 20 mmol) of BCl3 in 20 mL of n-pentane at -20°C. 

After warming up to room temperature and stirring for 15 min was the reaction recooled back 

to -20°C and 2.78 mL (20 mmol, d=0.727) of triethylamine in 8 mL of n-pentane was added. 
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Then slowly warmed up a stirred at room temperature overnight. The white precipitate was 

filtered off and washed with n-pentane. After removing the solvent in vacuum was the crude 

mixture fractinally distilled at 51-53°C/90 Torr to obtain 1.02 g (41% yield) of 121 as 

colorless air sensitive liquid. 

 

C2H6BCl2N (125.79 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 2.94 (s, 6H, CH3). 
11B-NMR  (160.5 MHz, CDCl3, 300K): δ (ppm) 30.5. 

 

 

N,N-dimethyl-1,1-diphenylboranamine (122) 

 

Dimethylaminoboron dichloride 121 510 mg (4.05 mmol) was dissolved in 10 mL of benzene 

and 4.05 mL (2M solution in Et2O) of PhMgBr was dropwise added at 0°C. Cooling bath 

removed and reaction mixture was stirred overnight at room temperature. Then was the 

solvent removed in vacuum and after fractional distillation at 75°C / 0,08 Torr was obtained 

376 mg  (44 % yield) of the product 122 as a transparent liquid. 

 

C14H16BN (209.09 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 295K): δ (ppm) 7.28-7.26 (m, 4H, ArH), 7.22 – 7.18 (m, 6H, 

ArH), 2.88 (s, 12H, CH3). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 295K): δ (ppm) 133.2 (CArH), 127.6 (CArH), 127.3 (CArH), 

41.7 (CH3). 
11B-NMR  (160.5 MHz, CDCl3, 295K): δ (ppm) 41.8 (B-N). 

 

 

Diphenylborinic acid (91) 

 

B
Ph Ph

OH

B
N Ph

Ph



 

  
 
192 

Dipehnylborinic acid was prepared by quenching isobutoxydiphenylborane (64) by 20 mL of 

1M HCl (aq.). Followed by extraction with 3 x 15 mL of diethylether was obtained 

diphenylborinic acid 91 which was used for further transformations without any additional 

purification. The diphenylborinic acid is unstable and therefore it was prepared from its esters 

freshly before use. 

 

C12H11BO (182.03 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 7.94 (dd, J = 8.1, 1.4, 4H), 7.59 – 7.51 (m, 

2H), 7.51 – 7.43 (m, 4H). 
11B-NMR  (160.5 MHz, CDCl3, 295K): δ (ppm) 45.9. 

 

 

Potassium diflurodipehnylborate (Ph-107) 

 

1.5 g (8.24 mmol, 1eq.) of diphenylborinic acid 61 was dissolved in 10 mL of methanol and 

cooled to 0°C. Solid KHF2 1.93 g (24.72 mmol, 3eq.) was added in one portion and the 

reaction was stirred for 1 hour at 0°C. Methanol was then evaporated in vacuum and the 

residual solid was dissolved in the acetone. Inorganic salts were decanted and sample was 

concentrated in vacuum. By addition of diethylether to this solution the product precipitated 

out. Crystals were filtered off, washed with 2 x 5 mL of Et2O and dried in vacuum. It was 

obtained 1.753 g (88% yield) of the product Ph-107 as a white crystalline solid. 

 

C12H10BF2K (242.11 g.mol-1) 
1H-NMR  (500.1 MHz, DMSO-d6, 295K): δ (ppm) 7.33 (d, J = 6.8 Hz, 2H, ArH), 7.01 (t, J = 

7.4 Hz, 2H, ArH), 6.93 (t, J = 7.3 Hz, 1H, ArH). 
11B-NMR  (160.5 MHz, DMSO-d6, 295K): δ (ppm) 6.9 (br s). 
19F-NMR  (376.5 MHz, DMSO-d6, 300K): δ (ppm) -158.0. 

IR  (ν~ [cm−1]) 3048w, 2995w, 1593w, 1429s, 1312w, 1266w, 1193m, 1159s, 994w, 942s, 

901s, 873s, 756s, 737s, 711s, 624s. 
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Potassium (S)-(4-benzyl-4,5-dihydrooxazol-2-yl)fluorodiphenylborate (Ph-108) 

 

 To 100 mg (0.62 mmol) of oxazoline 87 in 20 mL of THF was t-BuLi 0.37 mL (1,7 M 

solution in n-hexane) dropwise added at -78°C and stirred for 30 min. Then 150 mg (0.62 

mmol) of Ph2BF2K in 3 mL THF was added and leaved warm in the cooling bath overnight. 

Reaction progress was tracked by NMR and the reaction was complete in 16 hours. Residue 

was dissolved in benzene to remove inorganic salts from product by filtration. Filtrate was 

concentrated and n-pentane was added in order to precipitate the product which was filtered 

and washed with 3 x 5 mL of n-pentane. It was obtained 173 mg (72% yield) of Ph-108 as 

colorless semi solid. 

 

C22H20BFKNO (383.31 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 295K): δ (ppm) 7.28-7.02 (m, 15H, ArH), 4.10 (m, 2H, 

OCH2), 3.79-3.78 (m, 1H, NCH), 2.71-2.68 (m, 1H, CH2), 2.51-2.46 (m, 1H, CH2). 
11B-NMR  (160.5 MHz, CDCl3, 295K): δ (ppm) 2.6 (br s). 
19F-NMR  (376.5 MHz, CDCl3, 300K): δ (ppm) -190.8. 

MS (MALDI-TOF) m/z (%): 344 ([M−(K+)]- , 100). 

 

 

Protonated (S)-(4-benzyl-4,5-dihydrooxazol-2-yl)fluorodiphenylborate (Ph-108-H) 

 

 Ph-108 was transferred on a silicagel column and eluted by Hex/EtOAc (9:1). The resulting 

colorless oil Ph-108-H was obtained in ca. 20% yield. The product Ph-108-H mass was 

observed as adduct with KCl by using FAB for ionization. 
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C22H21BFNO (345.22 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 295K): δ (ppm) 10.33 (s, 1H, N-H), 7.61 – 7.40 (m, 4H, ArH), 

7.40 – 7.16 (m, 9H,ArH), 7.03 (dd, J = 7.4, 1.9 Hz, 2H, ArH), 4.56 (t, J = 9.8 Hz, 1H, OCH2), 

4.41 (dd, J = 9.7, 7.0 Hz, 1H, OCH2), 4.00 – 3.87 (m, 1H, NCH), 2.91 (dd, J = 13.9, 5.3 Hz, 

1H, CH2), 2.67 (dd, J = 13.9, 8.2 Hz, 1H, CH2). 
19F-NMR  (376.5 MHz, CDCl3, 300K): δ (ppm) -196.6. 

MS (FAB NBA + KCl) m/z (%): 384 ([M+(K+)]  , 13), 326 ([M-(F)] , 100), 268 ([M-(Ph)] , 

61), 200 (8), 165 (9), 117 (34), 107 (20), 91 (50), 39 (25). 

 

 

2-Aminoethyl diphenylborinate (109) 

 

Phenylmagnesium bromide 15 mL (1,86M in Et2O, 2eq.) was diluted with 15 mL THF and 

solution of 2,9 g (12.6 mmol, 1 eq.) triisobutylborate in 8 mL of THF was added at 0°C then 

continued stirring at room temperature overnight and completed with 4 hours reflux. After 

cooling to room temperature was the reaction mixture quenched with 25 mL of 5% HCl (aq.). 

After extraction with 3 x 20 mL with diethyether was the solvent volume reduced to 15 mL 

and ethanolamine 0.95 mL (15.75 mmol, 1.25 eq.) in 10 ml of 50% ethanol was added. 

Reaction with ethanolamine was accompanied by evolution of head and during cooling back 

to room temperature the white crystals were formed which were allowed to crystallize for 4 

hours. Crystals were then filtered of and washed by diethylether to obtain 1.922 g (68% yield) 

of the product 109 as fine white crystals. 

This 2-aminoethyl diphenylborinate was used as precursor of preparation of dihenylborinic 

acid. Apropriate amount of 109 was hydrolyzed by extraction with aq. HCl in Et2O.  Solution 

of the released diphenylborinic acid 91 was dried over Na2SO4 and then Et2O was evaporated. 

 

C22H21BFNO (345.22 g.mol-1) 
1H-NMR  (500.1 MHz, DMSO-d6, 295K): δ 7.40 (d, J = 7.2 Hz, 4H, ArH), 7.13 (t, J = 7.4 Hz, 

4H, ArH), 7.03 (t, J = 7.2 Hz, 2H), 6.07 (br s, 2H, NH2), 3.76 (t, J = 6.4 Hz, 2H, CH2), 2.83 

(dd, J = 12.4, 6.2 Hz, 2H, CH2). 
11B-NMR  (160.5 MHz, DMSO-d6, 295K): δ (ppm) 9.2 (br s). 
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(4S)-4-(tert-butyl)-2-methyl-2-oxazoline[95] (120) 

 

To a stirred solution of ethyl acetimidate hydrochoride 1.91g (15.46 mmol, 1.25 eq.) in 5 mL 

of methylene chloride at 0°C was added 1.45 g (12.36 mmol, 1 eq.) of (S)-tert-leucinol in 10 

mL of DCM and allowed to slowly warm to room temperature and stirred overnight. Then 

was the reaction mixture was poured into 20 mL of water and extracted with 3 x 20 mL of  

DCM. By distillation on Kugelrohr (80°C/50 Torr) was obtained 1.491 g (86% yield) of 

product as transparent liquid. 

 

C22H21BFNO (345.22 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K) δ 4.19 – 4.09 (m, 1H, CH2), 4.06 – 3.94 (m, 1H, CH2), 

3.88 – 3.73 (m, 1H, NCH), 1.96 (m, 3H, CH3), 0.87 (s, 9H, tBu). 

 

 

Potassium phenyl trifluoroborate (110) 

 

Phenylboronic acid 500 mg (4.10 mmol, 1 eq.) was dissolved in 7 mL of MeOH and cooled to 

0°C and then 960 mg (12.3 mmol, 3eq.) of solid KHF2 was added and stirred 2 hours at 0°C. 

Methanol was evaporated and the residual solid was dissolved in acetone and decanted in 

order to remove inorganic salts. Acetone was removed in vacuum and it was obtained 720 mg 

(94% yield) of 110 as white solid. 

 

C6H5BF3K (184.01 g.mol-1) 
1H-NMR  (500.1 MHz, CD3CN, 295K) δ 7.47 (d, J = 7.0 Hz, 2H, ArH), 7.20 (t, J = 7.3 Hz, 

2H, ArH), 7.14 (dd, J = 8.5, 6.0 Hz, 1H, ArH). 
11B-NMR  (160.5 MHz, CD3CN, 295K) δ 3.50 (q, 55 Hz). 
19F-NMR  (376.5 MHz, CD3CN, 300K) δ 143.50 (q, 49 Hz). 
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B-Chlorocatecholborane (96) 

 

Catechol 500 mg (4.54 mmol, 1 eq.) was dissolved in 10 mL of dry dichloromethane and 

added to a precooled solution of o 5,2 mL BCl3 (1M in hexane, 1.15 eq.) at -78°C. Reaction 

was stirred for 30 minutes and then was warmed to room temperature and solvent was 

removed in vacuum. Crude grey solid was then resublimed at 65°C/40 Torr to obtain 490 mg 

(70% yield) of  96 as white air sensitive needles.[143] 

 

C6H4BClO3 (154.36 g.mol-1) 
1H-NMR  (500 MHz, CDCl3, 295K) δ 7.31-7.28 (m, 2H, ArH), 7.21- 7.14 (m, 2H, ArH). 
11B-NMR  (160.5 MHz, CDCl3, 295K) δ 28.9. 

 

 

(S)-2-(benzo[d][1,3,2]dioxaborol-2-yl)-4-benzyl-4,5-dihydrooxazole dimer (98) 

 

t-BuLi 0.37 mL (1.7 M in n-hexane) was dropwise added to a solution of 100 mg (0.62 mmol) 

of oxazoline 87 in 10 mL of THF at -78°C and stirred for 30 min. Solution of 96 mg (0.62 

mmol) B-Chlorocatecholborane 96 in 2 mL THF was dropwise added at -78°C warmed up 

and stirred overnight at room temperature. After evaporation of the THF, the residual 

yellowish solid was redissolved in dichloromethane and column chromatography was 

performed in neat DCM to obtain 83 mg (46% yield) of the product 98 as a white crystalline 

solid. Crystals for X-ray analysis were prepared by dissolving product in a small amount of 

DCM and chloroform then overlayed with n-heptane and the flask inlet was covered with 

paper tissue and in 20 hours were obtained X-ray quality crystals of 98. 

 

 

 

O
B

O
Cl



 

  
 

197 

C32H28B2N2O6 (558.20 g.mol-1) 
1H-NMR  (500.1 MHz, C6D6, 295K) δ 7.14 (d, J = 7.5 Hz, 1H), 7.01 (d, J = 7.4 Hz, 1H), 6.98 

– 6.88 (m, 3H), 6.84 (t, J = 7.4 Hz, 1H), 6.79 (t, J = 7.5 Hz, 1H), 6.58 (d, J = 7.0 Hz, 2H), 

4.13 – 4.04 (m, 1H), 3.59 (dd, J = 9.4, 6.7 Hz, 1H), 3.29 (dd, J = 9.6 Hz, 1H), 3.06 (dd, J = 

13.8, 3.3 Hz, 1H), 2.35 (dd, J = 13.7, 10.0 Hz, 1H). 
13C{1H}-NMR  (125.8 MHz, C6D6, 295K): δ (ppm) 152.7 (CAr), 151.9 (CAr), 135.8 (CAr), 

129.3 (CArH), 128.8 (CArH), 128.2 (CArH), 127.1 (CArH), 120.4 (CArH), 120.3 (CArH), 110.5 

(CArH), 110.2 (CArH), 75.0 (OCH2), 60.7 (NCH), 39.2 (CH2). 
11B-NMR  (160.5 MHz, CDCl3, 295K) δ 5.4. 

MS (MALDI-TOF) m/z (%): 559 ([M+(H+)], 80), 280 ([M/2+(H+)], 100). 

 

 

Bis(3,5-bis(trifluoromethyl)phenyl)(isobutoxy)borane (CF3-64) 

 

From the 3,5-(CF3)2PhBr 1.96 g (6.69 mmol, 2.4 eq.) and 203 mg (8.37 mmol, 3 eq.) of Mg 

turnings was prepared 0.5M Grignard reagent in THF.  This Grignard solution was cooled to -

78°C and 642mg (2.79 mmol, 1 eq) of (iBuO)3B was added in 4 mL THF dropwise via 

syringe. Reaction mixture was then warmed to room temperature and stirred overnight. After 

30 min stirring at 60°C was the cooled reaction mixture quenched by 5% HCl (aq.). Then was 

performed extraction with 3 x 20 mL of Et2O and the organic phase dried over MgSO4. The 

crude reaction mixture was codistilled with 3 x 10 mL of isobuthanol at 40°C. Then by 

distillation on kugelrohr (120°C/0.08 Torr) the product 1.3 g (91% yield) was obtained as 

colorless oil. 

 

C10H15BF12O (510.12 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 8.02 (s, 6H, ArH), 3.87 (br s, 2H, CH2), 1.99 

(br s, 1H, CH), 0.98 (d, J = 6.6 Hz, 6H). 
19F-NMR  (376.5 MHz, CD3CN, 300K) δ -64.14. 
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Potassium bis(3,5-bis(trifluoromethyl)phenyl)(isobutoxy)difluoroborane (CF3-107) 

Following the protocol for preparation of Ph-107 it was used 1.3 g (2.55 mmol, 1eq.) of (3,5-

(CF3)2Ph)2BOiBu CF3-64 and 0.597 g of KHF2 in 10 mL of methanol. It was obtained 1.232 

g (94% yield) of CF3-107 as white solid. 

 

C16H6BF14K (514.11 g.mol-1) 
1H-NMR  (400.1 MHz, DMSO-d6, 300K): δ (ppm) 7.8 (s, 4H, ArH), 7.68 (s, 2H, ArH). 
11B-NMR  (160.5 MHz, DMSO-d6, 295K) δ 4.0 (br s). 
19F-NMR  (376.5 MHz, DMSO-d6, 300K) δ -62.42, -164.1. 

 

 

Potassium difluoro(3-methoxyphenyl)(4-methoxyphenyl)borate (MeO-107) 

 

Following the protocol for preparation Ph-107 was used 1 g (4.34 mmol, 1eq.) of (iBuO)3B 

and 10.5 mL (1M in THF) p-MeOPhMgBr. It was prepared ester MeO-64 which was 

hydrolyzed to borinic acid by column chromatography on silicagel (EtOAc/Hex 1:2). 

Colorless oil was dissolved in MeOH and leaved react with 1.02 g (13.03 mmol, 3eq.) KHF2. 

Recrystallization from chloroform/Et2O afforded 900 mg (69% yield) of the MeO-107 as a 

white solid. 

 

C14H14BF2KO2 (302.17 g.mol-1) 
1H-NMR  (400.1 MHz, DMSO-d6, 300K): δ (ppm) 7.16 (d, J = 8.3 Hz, 4H, ArH), 6.58 (d, J = 

8.3 Hz, 4H, ArH), 3.62 (s, 6H, MeO). 
19F-NMR  (376.5 MHz, DMSO-d6, 300K) δ -155.64. 

IR  (ν~ [cm−1]) 3016w, 2954w, 1652s, 1604s, 1512m, 1463m, 1332w, 1280m, 1238m, 1213m, 

1199m, 1110s, 1031m, 1012m, 985s, 904s, 821s, 792m, 729m, 663m. 
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Protonated (S)-(4-benzyl-4,5-dihydrooxazol-2-yl)fluorobis(4-methoxyphenyl)borate 

(MeO-108-H) 

Following procedure for Ph-108-H 50 mg (0.31 mmol, 1 eq.) of the oxazoline 87 was 

dissolved in 5 mL of THF and 0.19 mL (1.7M in n-hexane, 1.05 eq.) tert-butyllithium was 

added at -78°C. Followed by addition of 94 mg (0.31 mmol, 1eq.) of MeO-107 in 2 mL THF . 

Then the reaction mixture was leaved warm overnight in the cooling bath to room 

temperature. After column chromatography on silica gel (n-hexane/EtOAc 2:1) was obtained 

86 mg (62% yield) of the product MeO-108-H as a white thin needles crystals which were not 

suitable for X-ray analysis. 

 

C24H25BFNO3 (405.19 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 10.11 (br s, 1H, N-H), 7.39 – 7.32 (m, 4H, 

ArH), 7.32 – 7.23 (m, 3H, ArH), 7.07 – 7.01 (m, 2H, ArH), 6.84 (dd, J = 8.5, 7.1 Hz, 4H, 

ArH), 4.61 (dd, J = 9.8 Hz, 1H, OCH2), 4.43 (dd, J = 9.7, 7.1 Hz, 1H, OCH2), 4.05 – 3.95 (m, 

1H, NCH), 3.78 (s, 3H, OMe), 3.78 (s, 3H, OMe), 2.91 (dd, J = 13.9, 5.5 Hz, 1H, CH2), 2.70 

(dd, J = 13.9, 8.2 Hz, 1H, CH2). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 295K): δ (ppm) 158.3 (d, J = 6.4 Hz), 134.3 (CAr), 133.2 

(d, J = 4.4 Hz, CArH), 133.1 (d, J = 5.1 Hz, CArH), 129.2 (CArH), 129.1 (CArH), 127.64 (CArH), 

113.0 (d, J = 8.0 Hz, CArH), 76.3 (OCH2), 57.1 (NCH), 55.1 (OMe), 55.0 (OMe), 39.7 (CH2). 
11B-NMR  (160.5 MHz, CDCl3, 295K) δ 1.9 (br s). 
19F-NMR  (376.5 MHz, CDCl3, 300K) δ -194.13. 

MS (EI, 70 eV, 100°C): m/z (%): 244 (100, M+ - oxaz. ), 131 (13), 91 (52), 43 (5). 

MS (EI, 70 eV, 250°C): m/z (%): 386 (6, M+ - F ), 296 (28), 227 (100), 176 (24), 88 (22). 

MS (FAB NBA + KCl) m/z (%): 444 ([M+(K+)]  , 17), 386 ([M-(F)] , 71), 298 ([M-(Ar)] , 

100), 256 (26), 222 (12), 137 (11), 91 (35), 39 (44). 
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(S)-(4-benzyl-4,5-dihydrooxazol-2-yl)fluorobis(4-methoxyphenyl)butylborate (MeO-108-

Bu) 

 

10 mg (24.67 µmol) of MeO-108-H was dissolved in 2 mL of THF and 31 µL (1.6M in n-

hexane) of n-BuLi was added at -78°C and warmed  to room temperature. After warming up 

the reaction mixture was stirred for 10 min. During this time color change from colorless to 

ocher and after quenching by methanol-d4 it discolored again. This result was not 

reproducible and from the very small amount of the sample obtained in the first experiment 

was not possible to perform further analysis than 1H, 11B and 19F NMR. 

 

 C28H33BDNO3 (444.39 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.35 – 7.27 (m, 4H, ArH), 7.25 – 7.19 (m, 3H, 

ArH), 6.84 – 6.78 (m, 3H, ArH), 4.16 (dt, J = 14.5, 7.2 Hz, 1H, OCH2), 4.03 (t, J = 8.9 Hz, 

1H, OCH2), 3.79 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 3.77 – 3.71 (m, 1H, NCH), 3.60 (t, J = 

6.6 Hz, 2H, CH2(Bu)), 2.81 (dd, J = 13.8, 7.2 Hz, 1H, CH2(Bu)), 2.68 (dd, J = 13.8, 7.2 Hz, 

1H, CH2(Bu)), 1.53 (dq, J = 8.3, 7.0 Hz, 1H, CH2(Bu)), 1.37 (ddd, J = 17.0, 13.7, 7.3 Hz, 2H, 

CH2(Bu)), 0.92 (t, J = 7.4 Hz, 3H, CH3(Bu)). 
11B-NMR  (160.5 MHz, CDCl3, 295K) δ 6.7. 

 

 

((Diphenylphosphino)methyl)lithium[62] (82) 

 

To methyldiphenylphosphine 2 g (10 mmol, 1,86 mL) in 20 mL of Et2O was dropwise added 

6.24 mL (1,6M n-hexane solution) of n-BuLi at room temperature and stirred 72 hours. Then 

was the resulting suspension filtered under Ar and washed with 12 mL of dry n-pentane to 

obtain 404 mg (26% yield) of product 82 as a highly hygroscopic white crystals. 
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((Diphenylphosphino(BH3))methyl)trimethylsilane (109) 

 

To a solution of 100 mg (467 µmol) MePPh2.BH3 in 1.5 mL THF was added 0.32 mL (1,6M 

in n-hexane, 1.1eq.) n-BuLi at 0°C stirred 0.5h then continued for 1.5 hour at room 

temperature. Me3SiCl 65µl (514 µmol 1,1eq, d=0.856) was added and the reaction mixture 

was stirred for 30 minutes at room temperature. Reaction mixture was quenched with sat. sol. 

NH4Cl and product was extracted into Et2O, washed with brine and dried over MgSO4. It was 

obtained 126 mg of the product as white solid. 

 

C14H24BPSi (286.23 g.mol-1) 
1H-NMR  (500 MHz, CDCl3, 295K) δ ppm 7.69 (m, 4H, ArH), 7.42 (m, 6H, ArH), 1.57 (d, 

J=15.8 Hz, 2H, CH2), -0.01 (s, 9H, Me3Si). 
13C-NMR  (126 MHz, CDCl3, 295K) δ ppm 132.47 (d, J = 55.0 Hz, quart. CAr), 131.36 (d, J = 

9.8 Hz, CArH), 130.40 (d, J = 2.5 Hz, CArH), 128.58 (d, J = 9.8 Hz, CArH), 12.50 (d, J=25.0 Hz, 

CH2), 0.36 (s, Me) 
31P-NMR (202 MHz, CDCl3, 295K) δ ppm 13.63 (q, J = 55.0 Hz). 

MS (EI, 70 eV): m/z (%): 272 (100, M+ - BH3 ), 181 (7), 135 (34), 121 (8), 73 (18). 

 

 

((Diphenylphosphino)methyl)trimethylsilane palladium, allyl chloride complex 109-Pd 

200 mg (826 µmol) of Ph2BF2K was dissolved in 5 mL THF and 90 mg (826 µmol, 104 µl) 

Me3SiCl was added at -78°C via syringe and stirred for 1 hour. Then solution of 170 mg 

LiCH2PPh2 (826 µmol) in 2.5 mL THF was added at -78°C. Solution of 156 mg (826 µmol, 

1eq.) of the oxazoline 87 was dissolved in 10 mL THF and 0.57 mL t-BuLi (1,7M in hexane, 

1eq.) was added at -78°C and stirred for 30 min. Then the reaction mixture containing Ph2BF 

and phosphine was dropwise added via cannula and leaved warm in the cooling bath 

overnight. 15 mg (826 µmol, 1eq.) of [Pd(allyl)Cl]2 was added to the reaction mixture and this 

Ph2P(BH3)CH2SiMe3

P SiMe3
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Ph
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mixture was stirred for 30 min at 65°C. After column chromatography on silica gel 

(hexane/EtOAc 3:1->1:1) was afforded 83 mg of 109-Pd. 

 

C22H37ClPPdSi (502.46 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.63 (dd, J = 18.8, 11.4 Hz, 4H, ArH), 7.43 

(d, J = 5.4 Hz, 6H, ArH), 5.62 – 5.48 (m, 1H, CH), 4.72 (t, J = 7.3 Hz, 1H, CH2), 3.67 (dd, J = 

13.7, 10.0 Hz, 1H, CH2), 3.59 (d, J = 6.4 Hz, 1H, CH2), 2.73 (d, J = 12.0 Hz, 1H, CH2), 2.11 – 

2.01 (t, J = 14.1 Hz, 1H, CH2P), 1.94 (t, J = 14.1 Hz, 1H, CH2P), -0.05 (s, 9H, Me3Si). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 135.22 (dd, J = 42.9, 40.2 Hz, CAr), 

132.14 (dd, J = 35.8, 12.5 Hz, CArH), 129.69 (d, J = 19.1 Hz, CArH), 128.07 (d, J = 10.1 Hz, 

CArH), 116.49 (CH), 78.48 (d, J = 31.9 Hz, CH2), 56.77 (CH2), 14.17 (d, J = 12.0 Hz, CH2P), -

0.01 (SiMe3). 
31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) 17.2. 

MS (ESI): m/z (%): 422 (100, M+ - Cl- ). 

 

 

(S)-4-(tert-butyl)-2-(diphenylboryl)-4,5-dihydrooxazole dimer (105) 

0.91 mL (1,7 M in n-hexane) t-BuLi was dropwise added to 196 mg (1,54 mmol) of oxazoline 

28-tBu in 40 mL THF at -78°C and stirred 30 min. This solution was added via precooled 

cannula to a precooled solution of the 309 mg of Ph2BCl in 5 mL of toluene at -78°C. Then 

was reaction the reaction leaved warm in cooling bath overnight. Solvent from the reaction 

mixture was evaporated and residue was redissolved in 5 ml of benzene. Precipitate was 

filtered over celite and benzene was evaporated to obtain 240mg of slightly orange foam. 

After chromatography on 16g of silica gel was obtained in 3rd fraction 42 mg white solid 105. 

 

C38H44B2N2O2 (502.39 g.mol-1) 
1H-NMR  (500.1 MHz, C6D6, 300K): δ (ppm) 7.49-7.28 (m, 10H, ArH), 3.71-3.68 (m, 1H, 

CH2), 3.49-3.46 (m, 1H, NCH), 3.20-3.17(m, 1H, CH2), 0.36 (s, 9H, C(CH3)3). 
11B-NMR  (160.5 MHz, CDCl3, 295K) δ 3.9. 

MS (EI, 70 eV): m/z (%): 582 (4, M+), 505 (43, M+-Ph), 345 (12, M+-Ph-oxaz.). 
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2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane[70] (100) 

A mixture of 12 mL of triisopropylborate (52 mmol, d=0.818) and 6 g of dry pinacol (52 

mmol) was heated for 3 h under stirring at 115°C. The isopropanol was distilled off and the 

residue was distilled at 174°C at atmosferic pressue to obtain 8.772 g (90% yield) of 100 as 

colorless liquid. 

 

C9H19BO3 (186.06 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 1.17 (dd, 6H), 1.23 (s, 12H), 4.31 (sept., 1H). 
13C{1H}-NMR (125.8 MHz, CDCl3, 300K): δ (ppm) 82.5 (C(CH3)2), 67.4 (CH), 24.4 (CH3), 

24.6 (CH3),. 

 

 

Diphenyl(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)phosphine[69] (101) 

Solution of o-lithiated triphenylphosphine was prepared from 250 mg (0.73 mmol) of (2-

bromophenyl)-diphenylphosphine which was dissolved in 5 mL THF and 0.5 mL (1,6M in n-

hexane, 1.1eq) n-BuLi was added at -78°C and stirred for 15 min. To this pregenerated 

lithium salt was added 0.26 mL (0.81 mmol, d=0.916, 2eq.) of isopropylpinacolborane 100 

and leaved warm overnight in the cooling bath. The reaction solvent was removed in vaccum 

and the residual solid was washed with 3 x 5 mL of Et2O at -30°C to obtain 160 mg (56% 

yield) of 101 as white solid. 

 

C24H26BO2P (388.25 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.82 - 7.74 (m, 1H, ArH), 7.34 - 7.12 (m, 

12H, ArH), 6.78 - 6.68 (m, 1H, ArH), 1.05 (s, 12H, CH3). 
11B-NMR  (160.5 MHz, CDCl3, 295K) δ 31.0. 
31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) -4.0.  
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(2-(1,3,2-dioxaborolan-2-yl)phenyl)diphenylphosphine [71] (104)  

 

Solution of o-lithiated triphenylphosphine was prepared from 200 mg (0.59 mmol) of (2-

bromophenyl)-diphenylphosphine which was dissolved in 5 mL THF and 0.4 mL (1,6M in n-

hexane, 1.1eq) n-BuLi was added at -78°C and stirred for 15 min. To this lithium salt was 

added 0.81 mL (0.81 mmol, d=0.811, 6eq.) of triisopropylborane and leaved warm overnight 

in the cooling bath. Reaction was quenched with water followd by extraction with 

dicholomethane. Dry crude product was redissolved in 6 mL of glykol/toluene (1:5) mixture 

and stirred for 2 hours at 100°C. Toluene layer was speparated and evaporated. White solid 

residue was washed 2 x 5 mL Et2O at -78°C to obtain 70 mg (34% yield) of 104 as white 

solid. 

 

C20H18BO2P (332.14 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.84 - 7.81 (m, 1H, ArH), 7.36 - 7.29 (m, 

12H, ArH), 6.93 - 6.90 (m, 1H, ArH), 4.14 (s, 4H, CH2). 
11B-NMR  (160.5 MHz, CDCl3, 295K) δ 32.3. 
31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) -3.9.  
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8.5 NeoPHOX ligands 

 

(4S,5R)-methyl 5-methyl-2-phenyl-4,5-dihydrooxazole-4-carboxylate[144] (135) 

To the solution of threoninemethylester hydrochloride 10g (58.96 mmol, 1 eq.) in 50 mL  

DCM was added  12 g (64.86 mmol, 1.1 eq.) of ethyl phenylimidatehydrochloride and  9 mL 

(64.86 mmol, 1.1 eq.) of Et3N. Reaction mixture was stirred at room temperature for 48 hours 

and then all solids were filtered of and the filtrate was poured into a NaHCO3 and extracted 

with DCM. On order to remove excess of ethylbenzoate there was performed distillation 

under reduced pressure on Kugelrohr (90°C/0.08Torr). Distillation was continued at 

125°C/0.08 Torr where product was obtained as colorless liquid 10.502 g (87% yield). 

 

C12H13NO3 (219.24 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 7.97 (dd, J = 5.2, 3.3 Hz, 2H, ArH), 7.52 – 

7.45 (m, 1H, ArH), 7.44 – 7.35 (m, 2H, ArH), 4.98 (dq, J = 12.6, 6.3 Hz, 1H, OCH), 4.46 (d, 

J = 7.5 Hz, 1H, NCH), 3.80 (s, 3H, OMe), 1.52 (d, J = 6.3 Hz, 3H, CHCH3). 

 

 

2-((4S,5R)-5-methyl-2-phenyl-4,5-dihydrooxazol-4-yl)propan-2-ol[144] (136) 

35.7 mL (3M in Et2O, 2,5eq) MeMgBr was dropwise added to a refluxing solution of the 

starting 9,4 g (42.88 mmol) oxazoline 135 and then refluxed for 3 hours. After cooling to 

room temperature the reaction mixture was quenched by NH4Cl (sat. sol.) and followed by 

extraction with 3 x 20 mL of Et2O. All volatiles were removed under reduced pressure to 

obtain 6.327 g (67% yield) of 136 as slightly ochre oil. This was used for the next 

experiments without further purification. 
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C13H17NO2 (219.28 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 8.05 – 7.90 (m, 2H, ArH), 7.59 – 7.36 (m, 3H, 

ArH), 4.70 (p, J = 6.4 Hz, 1H, OCH), 3.73 (d, J = 6.9 Hz, 1H, NCH), 2.22 (br s, 1H, OH), 

1.46 (d, J = 6.3 Hz, 3H, CHCH3), 1.34 (s, 3H, CH3), 1.21 (s, 3H, CH3). 

 

 

(2S,3R)-methyl 2-(3-chloro-2,2-dimethylpropanamido)-3-hydroxybutanoate (138) 

5 g (29.48mmol) methylthreonine hydrochloride was dissolved in 50 mL DCM and 12.5 mL 

(88.44 mmol, 3eq.) of Et3N was added at 0°C then 3,8 mL (29.48 mmol, d=1.199) of the 3-

chlorpivaloyl chloride was dropwise added and stirred overnight at room temperature. Then 

was the reaction mixture poured into the 10 mL NaHCO3 (sat. solution) diluted by Et2O and 

then water layer was extracted with 3 x 30 mL of Et2O and combined organic phases were 

dried over MgSO4 and distilled on the Kugelrohr (170°C/0.1 Torr). It was obtained 7,125 g 

(96% yield) of the colorless oily product. Analyticaly pure sample could be obtained by 

column chromatography on silicagel EtOAc (Rf=0.45), stained by KMnO4. 

 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 6.51 (d, 1H, J = 8.3 Hz, NH), 4.61 (d, 1H, J = 

8.6 Hz, N-CH), 4.38 (m, 1H, CH-O), 3.77 (s, 3H, COOCH3), 3.71 (d, 1H, J = 10.6 Hz, 

CH2Cl), 3.57 (d, 1H, J = 10.6 Hz, CH2Cl), 1.37 (s, 3H, CH3), 1.33 (s, 3H, CH3), 1.23 (d, 3H, J 

= 6,6 Hz, CH3). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 175.4 (C=O), 171.5 (COO), 68.0 

(CHOH), 57.2 (CH), 52.7 (COOCH3), 52.6 (CH2Cl), 44.5 (C(CH3)2), 23.8 (C(CH3)2), 23.2 

(C(CH3)2), 20.1 (CH3). 

[αααα]20
D -7.0 (c 1.01, CHCl3) 

MS (FAB) m/z (%) 254 (33), 253 (13), 252 ([M+H]+, 100), 234 (16), 202 (8), 192 (12), 119 

(7), 116 (10), 102 (22), 93 (8), 91 (22)  

IR  (ν~ [cm−1]) 3387m, 2974m, 2956m, 2936w, 2875w, 1744s, 1648s, 1523m, 1475w, 1437m, 

1391w, 1349w, 1290m, 1208m, 1083w, 1021w, 997w, 853w, 811w, 731w. 

Elementar analysis for C10H18ClNO4 (251.71) calcd %: C, 47.72; H, 7.21; N, 5,56; found: C, 

47.47; H, 7.12; N, 5.54.  
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(4S,5S)-methyl2-(1-chloro-2-methylpropan-2-yl)-5-methyl-4,5-dihydrooxazole-4-

carboxylate (140) 

1.121 g (4.45 mmol, 1eq.) of the amide 138 and 1.380g (5.79 mmol, 1.3eq.) of the Burgess 

reagent were dissolved in 40 mL THF and refluxed for 4 hours, then the THF was removed 

under reduced pressure and residue was redissolved in Et2O and all solids were filtered off. 

Residual yellowish oil 1.203 g was distilled on the Kugelrohr (110°C/0.08 Torr) to obtain 924 

mg (89% yield) of the product as colorless oil. By using DAST for oxazoline closure the 

obtained yield is 93%. Product could be purified by column chromatography EtOAc/Hex (1:5, 

Rf = 0.25). 

 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 4.88 (m, 1H, OCH), 4.76 (d, 1H, J = 10.0 Hz, 

N-CH), 3.73 (s, 3H, COOCH3), 3.63 (m, 2H, CH2Cl), 1.33 (s, 6H, 2xCH3), 1.26 (d, 3H, J = 

6.5 Hz, CH(CH3)). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 173.2 (C(quart)), 170.3 (COO), 77.8 

(OCH), 71.3 (NCH), 52.2 (CH2Cl), 52.0 (COOCH3), 39.0 (C(CH3)2), 23.6 (C(CH3)2), 23.6 

(C(CH3)2), 16.0 (CH3). 

MS (EI, 70 eV): m/z (%): 233 (1, M+), 198 (22, [M−Cl]+), 174 (100, [M−(COOMe)]+),  140 

(9), 84 (65), 55 (15) 

[αααα]20
D +51,7° (c 1,12, CHCl3) 

IR  (ν~ [cm−1])  2984m, 2957m, 1736s, 1655s, 1439m, 1386m, 1362w, 1321w, 1290w, 1253w, 

1196s, 1174s, 1141w, 1118m, 1044s, 1000w, 973w, 945w, 917w, 892w, 832m, 751w, 634w. 

Elementar analysis for C10H16ClNO3 (233.69) calcd %: C, 51.40; H, 6.90; N, 5.99; found: C, 

51.22; H, 6.82; N, 6.11. 
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2-((4S,5S)-2-(1-chloro-2-methylpropan-2-yl)-5-methyl-4,5-dihydrooxazol-4-yl)propan-2-

ol (141) 

Method 1: 300 mg (1.28mmol) of the oxazoline 140 was dissolved in 7 mL Et2O and 0.86 mL  

of MeMgI (3M in THF 2eq.) was added at -78°C and leaved warm overnight in the cooling 

bath. The reaction mixture was quenched by NH4Cl (sat. sol.) and then extracted with 3 x 15 

mL of Et2O dried over Na2SO4 and solvent was evaporated. Afterwards was the oily material 

distilled on Kugelrohr (110°C/0.1 Torr) to obtain 120 mg of the trude product. Then was 

performed column chromatography on silica, EtOAc/Hex (1:1) which afforded 110 mg (37% 

yield) of the product 141 as colorless oil. 

 

Method 2: 2 g (8.58 mmol, 1eq.) of the oxazoline 140 was dissolved in 30 mL THF and 5.7 

mL (3M in THF, 2 eq.) MeMgCl was dropwise added at -78°C and leaved slowly warm in the 

dry ice cooling bath overnight. The reaction mixture was quenched by NH4Cl and then 

extracted with Et2O dried over Na2SO4. After solvent evaporation was obtained 1.882 g of the 

crude product. Then distillation on Kugelrohr (100°C/0.2 Torr) afforded 1.600 g (80%) of the 

product 141. 

 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 4.75 (m, 1H, OCH), 3.89 (d, 1H, J = 9.0 Hz, 

N-CH),  3.63 (d, 2H, J = 2.5 Hz CH2Cl), 1.46 (d, 3H, J = 7.0 Hz, CH(CH3), 1.34 (s, 3H, CH3), 

1.31 (s, 3H, CH3), 1.30 (s, 3H, CH3), 1.27 (s, 3H, CH3)). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 171.0 (C(quart.)), 79.4 (OCH), 71.8 

(NCH), 71.8 (COH(quart.)), 52.6 (CH2Cl), 39.0 (C(CH3)2 (quart.)), 28.4 (C(CH3)2), 26.2 

(C(CH3)2),  23.7 (C(CH3)2), 23.7 (C(CH3)2), 16.1 (CH3). 

MS (FAB) m/z (%) 237 (5), 236 (32), 235 (13), 234 ([M+H]+, 100), 218 (13), 216 (10), 174 

(15), 91 (16), 59 (12), 55 (14).  

[αααα]20
D +22.6° (c 1,15, CHCl3) 

IR  (ν~ [cm−1])  3449m, 2977s, 2939m, 2873m, 2353w, 2343w, 1718m, 1657s, 1468m, 1444m, 

1383m, 1364m, 1284m, 1227w, 1180m, 1137m, 1118m, 1076w, 1019m, 948m, 924w, 882w, 

825w, 792w, 745w. 
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2-((4S,5S)-2-(1-(diphenylphosphino)-2-methylpropan-2-yl)-5-methyl-4,5-dihydrooxazol-

4-yl)propan-2-ol (142) 

 107 mg (457 µmol) of neopentyl chloride 141 was dissolved in 5 mL THF and 0.29 mL n-

BuLi (1.6M in n-hexane, 1eq.) was added at 0°C followed by addition of 0.92 mL KPPh2 

(0.5M in THF, 1 eq.) then was the reaction mixture warmed to room temperature and refluxed 

overnight (15 hours). The solvent was evaporated in vacuum and residue was redissolved in 

20 mL MTBE and 6 mL NH4Cl (sat. sol.) was added. Phases were separated and the water 

layer was extracted with 3 x 10 mL of MTBE then with brine and dried under Na2SO4. 

Chromatography on silica EtOAc/Hex (1:2) afforded 120 mg (68% yield) of the product as 

transparent oil which solidifed in the fridge within few days. 
 

1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.50 (m, 2H, ArH), 7.41 (m, 2H, 

ArH), 7.31 (m, 6H, ArH), 4.52 (m, 1H, OCH), 3.74 (d, 1H, J = 9.1 Hz, N-CH),  2.72 (s, 1H, 

OH), 2.55 (dd, 1H, J = 14.3, 4.9 Hz, CH2Cl), 2.37 (dd, 1H, J = 14.4, 3.3 Hz, CH2), 1.49 (d, 

3H, J = 6.6 Hz, CH(CH3), 1.32 (s, 3H, CH3), 1.29 (s, 3H, CH3), 1.27 (s, 3H, CH3), 1.24 (s, 

3H, CH3). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 173.2 (C=N), 140.0 (d, J = 11.0 Hz, 

CAr),  139.0 (d, J = 11.0 Hz, CAr),  133.3 (d, J = 20 Hz, HCAr), 132.8 (d, J = 20 Hz, HCAr), 

128.7 (CArH), 128.45 (CArH), 128.4 (d, J = 2 Hz, CArH), 128.3 (d, J = 2 Hz, CArH), 79.2 (OCH), 

75.6 (NCH), 72.2 (COH), 41.0 (d, J = 15 Hz, CH2), 37.2 (d, J = 18 Hz, (C(CH3)2), 29.0 

(HOC(CH3)2), 27.7 (d, J = 8 Hz, C(CH3)2), 27.4 (d, J = 10 Hz, C(CH3)2), 26.15 (HOC(CH3)2), 

16.1 (CHCH3). 
31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) -21.3. 

MS (FAB) m/z (%) 386 (4), 385 (25), 384 ([M+H]+, 100), 326 (2), 325 (13), 324 (43), 306 

(11), 285  (17), 284 (32), 228 (6), 227 (38),  202 (10), 201 (18), 199 (11), 185 (27), 183 (13), 

136 (7), 91 (6).  

[αααα]20
D 16.1 (c 1.00, CHCl3). 
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(142-Ir) 

30 mg (78 µmol) of the free ligand 142 with 26 mg (39 µmol) of bis(1,5-

cyclooctadiene)diiridium(I) dichloride dissoved in 3 mL DCM was refluxed for 2.5 hours. 

After that was 90 mg (1.3eq.) of NaBArF and stirred for another 30 min at room temperature. 

The reaction mixutre was imobillized on silica and putted on column, washed with 100 mL 

Et2O and then switched to DCM and in one fraction was isolated product 142-Ir as orange 

solid. Sample was several times codistilled with CHCl3 in order to remove moisture from the 

sample. It was obtained 119 mg (99% yield) of the product 142-Ir as orange solid. 

 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.82 (dd, J = 11.0, 7.3 Hz, 2H, ArH), 7.72 (s, 

8H, HArF-o), 7.62-7,54 (m, 3H, ArH), 7.53 (s, 4H, HArF-p), 7.39 (m, 3H, ArH), 7.05-7.01 (m, 

2H, ArH), 5.27 (m, 1H, COD-CH), 4.84 (m, 1H, COD-CH), 4.82 (m, 1H, OCH), 3.78 (d, J = 

8.8 Hz, 1H, NCH), 3.50 (dd, J = 7.1, 3.3 Hz, 1H, COD-CH), 2.61 (m, 3H, COD-H, COD-

CH2), 2.55 (d, J = 10 Hz, CH2P), 2.32 (m, 2H, COD-CH2), 2.21 (s, 3H, C(CH3)2), 2.13 (m, 

1H, COD-CH2), 2.01 (s, 1H, OH), 1.89 (m, 1H, COD-CH2), 1.64 (m, 1H, COD-CH2), 1.57 (d, 

J = 6.9 Hz, 3H, CHCH3), 1.49 (d, J = 2.5 Hz, 3H, C(CH3)2), 1.43 (m, 1H, COD-CH2), 1.10 (s, 

3H, OC(CH3)2), 0.56 (s, 3H, OC(CH3)2). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 180.3 (C=N), 161.7 (q, J = 50 Hz, CArFi), 

134.9 (CArH), 134.8 (HCArF-o), 132.8 (CArH), 132.5 (d, J = 55 Hz, CAr), 131.3 (CArH), 131.2 (d, 

J = 10 Hz, CArH), 130.0 (d, J =  11 Hz, CArH), 129.1 (qq, J = 3 Hz, J = 32 Hz, HCArF-m), 129.1 

(CArH), 128.3 (d, J = 54 Hz, CAr), 124.6 (q, J = 273 Hz, CF3) 117.5 (HCArF-p), 96.1 (d, J = 12 

Hz, COD-CH), 94.2 (d, J = 12 Hz, COD-CH), 82.8 (OCH), 75.00 (NCH), 70.7 (OC(CH3)2), 

63.6 (COD-CH), 60.8 (COD-CH), 38.9 (C(CH3)2), 36.3 (COD-CH2), 33.9 (d, J = 6 Hz, 

C(CH3)2), 33.5 (d, J = 32 Hz, CH2P), 32.0 (COD-CH2), 28.5 (COD-CH2), 26.9 (d, J = 12 Hz, 

C(CH3)2), 26.4 (OC(CH3)2), 26.1 (COD-CH2), 24.5 (OC(CH3)2), 14.8 (CHCH3). 
31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) 9.5. 
19F{1H}-NMR  (376.5 MHz, CDCl3, 300K): δ (ppm) -62.6. 
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MS (MALDI-TOF) m/z (%): 684 ([M−(BArF)]
+, 100). 

[αααα]20
D 1.3 (c 0.70, CHCl3). 

IR  (ν~ [cm−1])  2971w, 1610w, 1439w, 1353m, 1271s, 1110s, 1000w, 886m, 838m, 744w, 

711m, 681m, 667m 

 

 

2-((4S,5S)-2-(1-(diphenylphosphino)-2-methylpropan-2-yl)-5-methyl-4,5-dihydrooxazol-

4-yl)propan-2-yl acetate (142-OAc) 

 50 mg (0.13 mmol, 1 eq.) of ligand 142 was dissolved in 3 mL DCM and 76µl (0.65 mmol, 

70 mg, 5 eq.) of 2,6-lutidine was dropwise added at 20°C followed by 20 µl (0.29 mmol, 2.2 

eq.) AcCl and then stirred overnight (16 hours) at room temperature. Solvents were removed 

in vakuum and the column chromatography on silica gel (EtOAc/Hex 1:4) afforded 42mg 

(76% yield) of 142-Ac as colorless oil. 

 
1H-NMR  (400 MHz, CDCl3, 295K): δ (ppm) 7.45 (m, 4H, ArH), 7.31 (m, 6H, ArH), 4.30 (m, 

1H, OCH), 4.08 (d, J = 9.1 Hz, 1H, NCH), 2.45 (ddd, J = 52.9, 14.3, 3.8 Hz, 2H, CH2), 1.96 

(s, 3H, CH3), 1.60 (s, 3H, CH3), 1.45 (s, 3H, CH3), 1.40 (d, J = 6.8 Hz, 3H, CHCH3), 1.32 (s, 

3H, CH3), 1.28 (s, 3H, CH3). 
31P{1H}-NMR  (162 MHz, CDCl3, 295K): δ (ppm) 22.08. 

MS (EI, 70 eV): m/z (%): 425 (1, M+), 366 (13), 324 (31), 284 (95), 227 (100), 183 (30), 121 

(20),  91 (5). 

 

 

(142-Ir-OAc) 
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Following the general procedure as for preparation 142-Ir. Complexation of the 42 mg (99 

µmol) of the ligand 142-OAc with 67 mg  (99 µmol) of bis(1,5-cyclooctadiene)diiridium(I) 

dichloride in 3 mL DCM and 113 mg (128 µmol, 1.3 eq.) of NaBArF resulted in 128 mg (82% 

yield) of the product 142-Ir-OAc as orange solid. 

 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.76 (dd, J = 11.0, 7.6 Hz, 2H, ArH), 7.72 (s, 

8H, HArF-o), 7.60 (m, 1H), 7.53 (m, 6H, ArH, HArF-p), 7.38 (m, 3H, ArH), 7.02 (m, 2H, ArH), 

4.94 (m, 1H, COD-CH), 4.87 (m, 1H, OCH), 4.81 (br s, 1H, COD-CH), 4.56 (d, J = 8.2 Hz, 

1H, NCH), 3.62 (br s, 1H, COD-CH), 2.57 (m, 5H, CH2P, COD-CH2, COD-CH), 2.31 (m, 

2H, COD-CH2), 2.20 (s, 3H, C(CH3)2), 2.12 (m, 1H, COD-CH2), 1.93 (s, 3H, Ac), 1.88 (m, 

1H, COD-CH2), 1.65 (s, 3H, OC(CH3)2, , 1H, COD-CH2), 1.61 (d, J = 7.3 Hz, 3H, CHCH3), 

1.49 (d, J = 2.8 Hz, 3H, CH3, CHCH3), 1.40 (m, 1H, COD-CH2), 0.82 (s, 3H, OC(CH3)2). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 181.0 (C=N), 170.1 (C=O) 161.7 (q, J = 

50 Hz, CArFi), 134,9 (CArH), 134.8 (HCArF-o), 132.8 (d, J = 3 Hz, CArH), 131.9 (d, J = 55 Hz, 

CAr), 131.3 (d, J = 3 Hz, CArH), 131.2 (CArH), 131.1 (CArH), 129.7 (d, J = 11 Hz, CArH), 129.2 

(d, J = 11 Hz, CArH), 128.9 (qq, J = 3 Hz, J = 32 Hz, HCArF-m), 124.6 (q, J = 273 Hz, CF3), 

117.5 (HCArF-p), 94.7 (d, J = 11 Hz, COD-CH), 93.5 (d, J = 13 Hz, COD-CH), 83.9 (OCH), 

80.9 (OC(CH3)2), 70.3 (NCH), 63.7 (COD-CH), 60.6 (COD-CH), 39.0 (d, J = 2 Hz, C(CH3)2), 

36.5 (d, J = 5 Hz, COD-CH2), 33.4 (d, J = 6 Hz, C(CH3)2), 33.1 (d, J = 32 Hz, CH2P), 32.3 

(COD-CH2), 28.3 (COD-CH2), 27.0 (d, J = 12 Hz, C(CH3)2), 25.8 (COD-CH2), 25.5 

(OC(CH3)2), 22.1 (C=OCH3), 21.9 (OC(CH3)2), 14.7 (CHCH3). 

MS (MALDI-TOF) m/z (%): 726 ([M−(BArF)]
+, 100). 

31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) 9.1. 
19F{1H}-NMR  (376.5 MHz, CDCl3, 300K): δ (ppm) -62.6. 
11B-NMR  (160.5 MHz, CDCl3, 300K): δ (ppm) -6.6. 

[αααα]20
D -15.6 (c 1.00, CHCl3). 

IR  (ν~ [cm−1])  2972w, 1739m, 1609w, 1582w, 1474w, 1437w, 1353s, 1272s, 1114s, 1049w, 

1020w, 1000w, 938w, 886m, 838m, 736m, 710m, 681m, 669m 

Elementar analysis for C65H56NO3BF24PIr (1589.13) calcd %: C, 49.13; H, 3.55; N, 0.88; 

found: C, 48.86; H, 3.50; N, 0.93 
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(4S,5S)-2-(1-(diphenylphosphino)-2-methylpropan-2-yl)-5-methyl-4-(2-

((trimethylsilyl)oxy)propan-2-yl)-4,5-dihydrooxazole (142-TMS) 

50 mg (0.13 mmol, 1 eq.) of the starting alcohol 142 was dissolved in 3 ml DCM and 76µl 

(0.65 mmol, 5 eq.) of 2,6-lutidine was dropwise added at 20°C. Then 67µl (0.26 mmol, 2eq, 

58 mg, d=0,859) of TMSOTf was added and stirred for 1 hour. Solvent was evaporated on 

high vacuum and residue redissolved in Et2O, the precipitate was filtered off and sample was 

dried in high vacuum. After column chromatography on silica EtOAc/Hex/Et3N (1:10:0,5) 

was obtained 40 mg (67% yield) of the product 142-TMS as colorless oil. 

 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 7.47 (m, 4H, ArH), 7.31 (m, 6H, ArH), 4.28 

(m, 1H, OCH), 3.63 (d, J = 9.1 Hz, 1H, NCH), 2.46 (ddd, J = 51.0, 14.3, 3.7 Hz, 2H, CH2), 

1.47 (d, J = 6.8 Hz, 3H, CH(CH3)), 1.34 (s, 3 H), 1.32 (s, 3 H), 1.29 (s, 3 H), 1.23 (s, 3 H), 

0.11 (s, 9 H). 
31P{1H}-NMR  (162.0 MHz, CDCl3, 300K): δ (ppm) -22.3. 

 

 

(142-Ir-TMS) 

Following the general procedure as for preparation 142-Ir. From 15 mg of the ligand 142-

TMS (33 µmol, 1 eq.), 11 mg of [Ir(cod)Cl]2 (16 µmol, 0.5 eq.) in 3 mL DCM and 37 mg of 

NaBArF (42 µmol, 1.3 eq.) was obtained 43 mg (80% yield) of 142-Ir-TMS  as orange solid. 

By crystallization of the product 142-Ir-TMS  in CHCl3 solution which was overlayed by n-

heptane were obtained crystals suitable for X-Ray analysis. 

 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.75 (m, 10H, ArH), 7.58 (m, 7H, ArH), 7.37 

(m, 3H, ArH), 7.01 (m, 2H, ArH), 4.80 (m, 3H, CH2, OCH), 3.56 (m, J = 8.6 Hz, 2H, NCH, 
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COD-CH), 2.55 (m, 5H, COD), 2.28 (br s, 2H, COD-CH2, COD-CH), 2.17 (s, 3H, C(CH3)2), 

2.08 (m, 1H, COD-CH2), 1.85 (m, 1H, COD-CH2), 1.70 (d, J = 7.1 Hz, 3H, CHCH3), 1.61 (m, 

1H, COD-CH2), 1.51 (d, J = 2.8 Hz, 3H, C(CH3)2), 1.39 (s, 3H, O-C(CH3)2), 1.30 (m, 1H, 

COD-CH2), 0.85 (s, 3H, O-C(CH3)2), -0.10 (s, 9H, Si(CH3)3) 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 180.3 (C=N), 161.7 (q, J = 50 Hz, CArFi), 

135.0 (d, J = 11 Hz, CArH), 134.8 (HCArF-o), 132.6 (CArH), 131.2 (d, J = 5 Hz, CArH), 131.1 

(CArH), 129.6 (d, J = 11 Hz), 129.1 (CArH), 128.8 (q, J = 32 Hz, HCArF-m), 124.6 (q, J = 273 

Hz, CF3), 117.5 (HCArF-p), 94.2 (d, J = 12 Hz, COD-CH), 93.1 (d, J = 12 Hz, COD-CH), 84.2 

(OCH), 74.4 (SiOC(CH3)2), 74.2 (NCH), 63.0 (COD-CH), 59.7 (COD-CH), 38.8 (C(CH3)2), 

36.3 (COD-CH2), 33.3 (C(CH3)2), 32.9 (COD-CH2) 32.2 (d, J = 32 Hz, CH2P), 29.7 

(SiOC(CH3)2), 28.3 (COD-CH2), 27.1 (C(CH3)2), 26.6 (CH3COSi), 25.8 (COD-CH2), 15.2 

(CH3CH), 1.08 (SiMe3). 
31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) 8.8. 
19F{1H}-NMR  (376.5 MHz, CDCl3, 300K): δ (ppm) -62.6. 

MS (MALDI-TOF) m/z (%): 756 ([M−(BArF)]
+, 100).  

[αααα]20
D -17.0 (c 0.69, CHCl3). 

IR  (ν~ [cm−1])  2971w, 2903w, 1610w, 1588w, 1438w, 1351m, 1272s, 1159m, 1117s, 1047w, 

1028w, 989m, 886m, 837m, 744w, 715m, 681m, 667s  

Elementar analysis for C66H62NO2BF24SiPIr (1619.27) calcd %: C, 48.96; H, 3.86; N, 0.87; 

found: C, 48.69; H, 3.92; N, 1.12 

 

 

(4S,5S)-2-(1-chloro-2-methylpropan-2-yl)-5-methyl-4-(2-((triethylsilyl)oxy)propan-2-yl)-

4,5-dihydrooxazole (141-TES) 

 70 mg (1eq) of the alcohol (3) was dissolved in 3ml dry DCM and the solution was cooled to 

-78°C followed by addition of the 173.4 µl (160mg, d=0,925, 5 eq.) of the 2,6-lutidine and 

then 135.4 µl (158 mg, d=1.169, 2 eq.) of the TESOTf and stirred for 2hours at -78°C. 

Saturated NaHCO3 was added slowly and the reaction mixture was warmed to room 
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temperature. Layers were separated and the organic layer was washed with water and brine. 

Organic layers were dried over Na2SO4 and concentrated in vacuo. Chromatography on silica 

(EtOAc/Hex 1:9) afforded 62mg of the product as colorless oil. 

 
1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 4.69 (m, 1H, OCH), 3.79 (d, J = 9.3 Hz, 1H, 

NCH), 3.62 (m, 2H, CH2), 1.52 (d, J = 6.8 Hz, 3H, CH(CH3)), 1.36 (s, 3H, CH3), 1.29 (s, 3H, 

CH3), 1.28 (s, 3H, CH3), 1.24 (s, 3H, CH3), 0.94 (q, J = 8.1 Hz, 9H, CH3), 0.59 (q, J = 8.0 Hz, 

6H, CH2). 

 

 

(4S,5S)-2-(1-(diphenylphosphino)-2-methylpropan-2-yl)-5-methyl-4-(2-

((triethylsilyl)oxy)propan-2-yl)-4,5-dihydrooxazole (142-TES) 

 Method 1: 62 mg (0.178 mmol) of the chloride 141-TES was dissolved in THF and cooled to 

0°C, 0.36 mL of KPPh2 (0,5M in THF, 1 eq.) was dropwise added at 0°C and then warmed to 

room temperature and refluxed overnight. The solvent was evaporated in vacuum and residue 

was redissolved in 20 ml MTBE and 6 mL NH4Cl. Phases were separated and the water layer 

was extracted with 3 x 10 mL MTBE then with brine and dried under Na2SO4. After 

chromatography on silica (EtOAc/hex 1:20) was afforded 22 mg (25%) of the product 142-

TES as a colorless oil recalculated according to the total amount of the fraction which 

contained 30% starting material and was not possible to separate those two species by 

column. Final purification has been done in the next reaction step during complexation.  

 

Method 2: 50 mg (0.13 mmol, 1eq) of the starting alcohol 142 was dissolved in 3 ml DCM 

and 76 µl (0.65 mmol, 5 eq.) of 2,6-lutidine were dropwise added at 20°C. Then 59µl (0.26 

mmol, 2eq, 69mg, d=1.169) of TESOTf was added and stirred for 3 hours. Solvent was 

evaporated on high vacuum and residue redissolved in Et2O, the precipitate was filtered off 

and sample was dried on vacuum. Column chromatography on silica EtOAc/Hex (1:9) 

afforded 47 mg (73% yield) of the product 142-TES as colorless oil. 
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1H-NMR  (400.1 MHz, CDCl3, 300K): δ (ppm) 7.46 (q, J = 7.4 Hz, 4H, ArH), 7.30 (m, 6H, 

ArH), 4.32 (m, 1H, OCH), 3.63 (m, 1H, NCN), 2.46 (ddd, J = 60.7, 14.3, 3.8 Hz, 2H, CH2), 

1.46 (d, J = 6.9 Hz, 3H, CH3), 1.34 (s, 3H, CH3), 1.31 (s, 3H, CH3), 1.28 (s, 3H, CH3), 1.23 (s, 

3H, CH3), 0.95 (t, J = 7.9 Hz, 9H), 0.60 (t, J = 8.2 Hz, 6H). 
31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) -22.3. 

 

 

(142-Ir-TES) 

 

Following the general procedure as for preparation 142-Ir. From 20 mg of the ligand 142-

TES (40 µmol, 1 eq.), 11 mg of [Ir(cod)Cl]2 (20 µmol, 0.5 eq.) in 3 mL DCM and 37 mg of 

NaBArF (52 µmol, 1.3 eq.) was obtained 65 mg (99% yield) of 142-Ir-TES as orange solid. 

By crystallization of the product 142-Ir-TES in CHCl3 solution which was overlayed by n-

heptane were obtained crystals suitable for X-Ray analysis. 

 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.76 (dd, J = 10.9, 7.7 Hz, 2H, ArH), 7.72 (s, 

8H, HArF-o), 7.60 (m, J = 7.3, 7.3 Hz, 1H, ArH), 7.54 (m, 2H, ArH), 7.52 (s, 4H, HArF-p), 7.39 

(m, 3H, ArH), 7.01 (m, 2H, ArH), 4.84 (m, 1H, OCH), 4.76 (br s, 2H, 2 x COD-CH), 3.57 (m, 

2H, NCH, COD-CH), 2.58 (m, 4H, 2 x COD-CH2), 2.47 (m, 1H, COD-CH), 2.28 (m, 2H, 

CH2P), 2.18 (s, 3H, C(CH3)2), 2.08 (m, 1H, COD-CH2), 1.85 (m, 1H, COD-CH2), 1.73 (d, J = 

6.9 Hz, 3H, CHCH3), 1.62 (m, 1H, COD-CH2), 1.51 (d, J = 2.5 Hz, 3H, C(CH3)2), 1.41 (s, 

3H, O-C(CH3)2), 1.36 (m, 1H, COD-CH2), 0.80 (m, 12H, CH3CH2, O-C(CH3)2 ), 0.40 (m, 6H, 

CH2CH3). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 180.5 (C=N), 161.9 (q, J = 50 Hz, CArFi), 

134.9 (d, J = 11 Hz, CArH), 134.8 (HCArF-o), 132.8 (CArH), 131.2 (d, J = 5 Hz, CArH), 131.1 

(CArH), 129.6 (d, J = 11 Hz), 129.0 (CArH), 128.8 (q, J = 32 Hz, CArF-m), 124.6 (q, J = 273 Hz, 

CF3), 117.5 (HCArF-p), 94.4 (d, J = 12 Hz, COD-CH), 93.1 (d, J = 12 Hz, COD-CH), 84.5 

(OCH), 74.2 (OC(CH3)2), 74.0 (NCH), 63.0 (COD-CH), 59.9 (COD-CH), 38.9 (C(CH3)2), 

36.4 (COD-CH2), 33.4 (d, J = 5 Hz, C(CH3)2), 32.5 (d, J = 34 Hz, CH2P), 30.0 (CH3COSi), 
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28.4 (COD-CH2), 27.1 (d, J = 12 Hz, C(CH3)2), 26.1 (CH3COSi), 25.9 (COD-CH2), 15.2 

(CH3CH), 6.9 (CH3 ethyl), 6.5 (CH2 ethyl). 
31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) 9.0. 
19F{1H}-NMR  (376.5 MHz, CDCl3, 300K): δ (ppm) -62.6. 
11B-NMR  (160.5 MHz, CDCl3, 300K): δ (ppm) -6.6. 

MS (MALDI-TOF) m/z (%): 798 ([M−(BArF)]
+, 100). 

[αααα]20
D -19.1 (c 0.73, CHCl3). 

IR  (ν~ [cm−1])  2959w, 2923w, 2883w, 2855w, 1611w, 1574w, 1460w, 1439w, 1352s, 1273s, 

1215w, 1158s, 1115s, 1047w, 1027w, 890m, 837m, 803w, 715m, 680m. 

 

 

(4S,5S)-4-(2-((tert-butyldimethylsilyl)oxy)propan-2-yl)-2-(1-(diphenylphosphino)-2-

methylpropan-2-yl)-5-methyl-4,5-dihydrooxazole (142-TBDMS) 

50 mg (0.13 mmol, 1eq) of the starting alcohol 142 was dissolved in 3 mL DCM and 76µl 

(0.65 mmol, 5 eq.) of 2,6-lutidine were dropwise added at 20°C. Then 60 µl (0.26 mmol, 69 

mg, d=1.151, 2eq.) of TBDMSOTf was added and stirred for 1 hour. Then solvent was 

evaporated on high vacuum and residue redissolved in Et2O, the precipitate was filtered off 

and sample was dried on vacuum. After column chromatography on silica EtOAc/Hex (1:9, 

Rf=0.25) was obtained 44 mg (68% yield) of the product 142-TBDMS as colorless oil. 

 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.56 – 7.40 (m, 4H, ArH), 7.38 – 7.23 (m, 6H, 

ArH), 4.43 – 4.29 (m, 1H, OCH), 3.62 (d, J = 9.3 Hz, 1H, NCH), 2.47 (ddd, J = 55.6 Hz, 14.4 

Hz, 3.7 Hz, 2H, CH2P), 1.46 (d, J = 6.9 Hz, 3H, CHCH3), 1.34 (s, 3H, (CH3)2CO), 1.32 (s, 

3H, (CH3)2C), 1.28 (s, 3H, (CH3)2C), 1.28 (s, 3H, (CH3)2CO), 0.86 (s, 9H, (CH3)2tBuOSi), 

0.11 (s, 3H, (CH3)2tBuOSi), 0.10 (s, 3H, (CH3)2tBuOSi). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 172.6 (C=N), 140.1 (d, J = 13 Hz, CAr), 

139.89 (d, J = 13 Hz, CAr), 133.3 (d, J = 20 Hz, CArHo), 133.0 (d, J = 20 Hz, CArHo), 128.6 – 

128.2 (m, CArHm,p), 79.7 (OCH), 76.2 (NCH), 76.0 (OC(CH3)2), 41.1 (d, J = 17 Hz, CH2P), 

N

O

Ph2P

O Si



 

  
 
218 

36.8 (d, J = 17 Hz, C(CH3)2), 30,7 (OC(CH3)2), 27.5 (d, J = 10 Hz, C(CH3)2), 27.1 (d, J = 11 

Hz, C(CH3)2), 26.3 (OC(CH3)2), 26.1 (C(CH3)3), 18.3 (C(CH3)3), 16.5 (CHCH3), -1.7 

(Si(CH3)2), -1.7 (Si(CH3)2). 

 

 

(142-Ir-TBDMS) 

Following the general procedure as for preparation 142-Ir. Complexation of the 44 mg (88 

µmol, 1eq) 142-TBDMS with 30 mg (88 µmol, 0.5eq) bis(1,5-cyclooctadiene)diiridium(I) 

dichloride in 3 mL DCM and reflux for 2.5 hour. After that 102 mg (115 µmol, 1.3eq) of 

NaBArF was added and stirred for another 30 min at room temperature. The reaction mixture 

was imobillized on silica and putted on column, washed with 100 mL Et2O and then switched 

to DCM and in two fractions was isolated 109 mg (75% yield) of the product 142-Ir-TBDMS  

as yellow solid. 

1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.81 – 7.75  (m, 10H, 2 x ArH, 8 x HArF-o), 

7.60 – 7.58 (m, 1H, ArH), 7.55 – 7.52 (m, 6H, 2 x ArH, 4 x HArF-p), 7.40 – 7.36 (m, 3H, ArH), 

7.06 – 7.02 (m, 2H, ArH), 4.88 (m 1H, OCH), 4.78 (br s, 2H, 2xCOD-CH), 3.60-3.59 (m, 1H, 

COD-CH), 3.56 (d, J = 8.3 Hz, 1H, NCH), 2.70 – 2.53 (m, 4H, CH2P, COD-CH2), 2.51 – 2.45 

(m, 1H, COD-CH), 2.31-2.29 (m, 2H, COD-CH2), 2.22 (s, 3H, C(CH3)2), 2.12 – 2.07 (m, 1H, 

COD-CH2), 1.90-1.83 (m, 1H, COD-CH2), 1.79 (d, J = 7.0 Hz, 3H, CHCH3), 1.66-1.61 (m, 

1H, COD-CH2), 1.55 (d, J = 2.9 Hz, 1H, C(CH3)2), 1.42 (s, 3H, O-C(CH3)2), 1.40 – 1.34 (m, 

1H, COD-CH2), 0.95 (s, 3H, O-C(CH3)2), 0.74 (s, 9H, SiC(CH3)3), 0.05 (s, 3H, SiC(CH3)2), -

0.28 (s, 1H, SiC(CH3)2). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 180.6 (C=N), 161.7 (q, J = 50 Hz, CArFi), 

135.2 (d, J = 12 Hz, CArH), 134.8 (HCArF-o), 132.6 (d, J = 2 Hz, CArH), 132.2 (d, J = 55 Hz, 

CAr), 131.2 (CArH), 131.1 (CArH), 129.6 (d, J = 11 Hz, CArH), 129.0 (d, J = 10 Hz, CArH), 128.9 

(q, J = 32 Hz, HCArF-m), 128.8 (d, J = 54 Hz, CArH), 124.6 (q, J = 273 Hz, CF3), 117.5 (HCArF-

p), 94.2 (d, J = 10 Hz, COD-CH), 93.0 (d, J = 13 Hz, COD-CH), 84.5 (OCH), 74.4 (NCH), 
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74.4 (OC(CH3)2), 62.8 (COD-CH), 59.7 (COD-CH), 38.9 (d, J = 2 Hz, (C(CH3)2), 36.4 (d, J = 

5 Hz, COD-CH2), 33.7 (d, J = 7 Hz, C(CH3)2), 33.0 (d, J = 32 Hz, CH2P), 32.2 (COD-CH2), 

28.3 (COD-CH2), 29.7 (O-C(CH3)2), 26.8 (d, J = 12 Hz, C(CH3)2), 25.7 (COD-CH2), 25.7 

(SiC(CH3)3), 26.1 (O-C(CH3)2), 17.8 (SiC(CH3)3), 15.0 (CHCH3), -2.0 (SiC(CH3)2), -2.4 

(SiC(CH3)2). 
31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) 8.6. 
11B-NMR  (160.5 MHz, CDCl3, 300K): δ (ppm) -6.6. 

MS (MALDI-TOF) m/z (%): 798 ([M−(BArF)]
+, 100). 

[αααα]20
D -21.8 (c 0.86, CHCl3). 

IR  (ν~ [cm−1])  2952w, 2859w, 1610w, 1582w, 1471w, 1442w, 1353m, 1273s, 1158m, 1115s, 

1047w, 1019w, 1001w, 966w, 886m, 837m, 778w, 744w, 734w, 712m, 682m, 671m. 

Elementar analysis for C69H68NO2BF24SiPIr (1661.35) calcd %: C, 49.88; H, 4.13; N, 0.84; 

found: C, 49.59; H, 4.19; N, 0.91 

 

(S)-methyl 2-phenyl-4,5-dihydrooxazole-4-carboxylate[121] (143-1) 

L-serine methylester hydrochloride 1.5g (9.64 mmol, 1eq) in 15 mL DCM and 1.824 g (9.64 

mmol) phenylimidate hydrochloride were mixed in the flask under inert atmosphere and 1.37 

mL (1eq) dry TEA was added to the reaction mixture. Resulting suspension was stirred for 48 

hours at room temperature. Then all solids were filtered off and filtrate was quenched by 

NaHCO3 and extracted by 3 x 10 mL of DCM. The crude product was distilled on Kugelrohr 

125°C/0.08 Torr. It was obtained 1.286 g (65% yield) of the product as colorless oil. 

 

C11H11NO3 (205.21 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.97 (d, J = 8.2 Hz, 2H, ArH), 7.48 (t, J = 7.4 

Hz, 1H, ArH), 7.39 (t, J = 7.5 Hz, 2H, ArH), 5.00 – 4.88 (m, 1H, NCH), 4.74 – 4.65 (m, 1H, 

OCH2), 4.58 (ddd, J = 10.4, 8.9, 1.5 Hz, 1H, OCH2), 3.80 (s, 3H). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 171.64 (C=N), 166.30 (C=O), 131.88 

(CArH), 128.60 (CArH), 128.36 (CArH), 126.94 (CAr), 69.55 (OCH2), 68.63 (NCH), 52.72 

(OCH3). 
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(S)-2-(2-phenyl-4,5-dihydrooxazol-4-yl)propan-2-ol[121] (143-2)  

 

To a solution of 1.23 g (6.0 mmol, 1 eq.) of the starting ester 143-1 in 15 mL THF cooled to -

78°C, was dropwise added 4 mL of MeMgCl (3M in THF, 2 eq.) and then was the reaction 

mixture was leaved warm overnight. After quenching by NH4Cl (sat. sol.) was performed 

extraction with 3 x 10 mL of into Et2O. Crude product was purified by column 

chromatography on silica gel (DCM/MeOH, 6:1, Rf=0.6). It was obtained 946 mg of the 

slightly ochre solid as product 143-2. 

 

C12H15NO2 (205.25 g.mol-1) 
1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.91 (d, J = 7.7 Hz, 2H, ArH), 7.42 (t, J = 7.4 

Hz, 1H, ArH), 7.34 (t, J = 7.7 Hz, 2H, ArH), 4.43 – 4.33 (m, 1H, OCH2), 4.29 (t, J = 8.4 Hz, 

1H, OCH2), 4.17 (dd, J = 10.0, 8.4 Hz, 1H, NCH), 2.11 (br s, 1H, OH), 1.27 (s, 3H, CH3), 

1.12 (s, 3H, CH3). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 165.24 (C=N), 131.71 (CArH), 128.49 

(CArH), 128.37(CArH), 127.26 (CAr), 75.48 (NCH), 71.58 (C(CH3)2), 69.00 (CH2), 26.77 (CH3), 

25.10 (CH3). 

 

 

(S)-methyl 2-(3-chloro-2,2-dimethylpropanamido)-3-hydroxypropanoate (144) 

1 g (6.43 mmol, 1eq.) of L-serine methylester hydrochloride was dissolved in 10 mL DCM 

and 2.7 mL (19.28 mmol, 3eq) of Et3N was added at 0°C stirred for 30 min then 0.83 mL 

(6.43 mmol, d=1.199, 1 eq.) of the 3-chlorpivaloyl chloride was dropwise added and stirred 1 

hour at room temperature. Then was the reaction mixture poured into the saturated solution of 

NaHCO3 diluted by Et2O and then the water layer was extracted several times with Et2O and 

combined organic phases were dried over MgSO4. To obtain analytically pure sample the 
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chromatography on silicagel was performed using EtOAc (neat) as eluent (Rf=0.4). It was 

obtained 1.208 g (79% yield) of the product 144 as colorless oil. 

 
1H NMR  (500 MHz, CDCl3) δ = 6.85 (d, J=7.1 Hz, 1H, NH), 4.64 – 4.57 (m, 1H, N-CH), 

3.92 (ddd, J = 43.8, 11.3, 3.5 Hz, 2H, CH2O), 3.80 (s, 3H, CO2Me), 3.61 (dd, J=38.7, 10.8 

Hz, 2H, CH2-Cl), 1.32 (s, 3H, CH3), 1.30 (s, 3H, CH3). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 175.3 (C=O), 171.0 (COO), 62.8 

(CH2OH), 54.9 (CH), 52.7 (COOCH3), 52.7 (CH2Cl), 44.3 (C(CH3)2), 23.5 (C(CH3)2), 23.1 

(C(CH3)2). 

MS (FAB) m/z (%) 238 ([M+H]+, 100), 239 (10), 220 (19), 178 (14), 102 (70), 91 (28), 55 

(9). 

IR  (ν~ [cm−1]) 3382br w, 2954w, 1739m, 1651s, 1517m, 1252w, 1248w, 1286m, 1209m, 

1101w, 1078m. 

[αααα]20
D= 21.0 (c 1.10, CHCl3). 

Elem. anal.: calc.: C, 45.48; H, 6.79; N, 5.89; found: C, 45.15; H, 6.72; N, 5.80 

 

 

(S)-methyl 2-(1-chloro-2-methylpropan-2-yl)-4,5-dihydrooxazole-4-carboxylate (145) 

700 mg (2.95 mmol, 1 eq.) of the amide 144 was dissolved in 15 mL DCM and cooled to -

78°C, then DAST 0.43 mL (3.24 mmol, d=1.22, 1.1 eq.). After stirring for another 1 hour was 

610 mg (4.42 mmol, 1.5eq) of the solid anhydrous K2CO3 added and the reaction mixture was 

leaved warm to room temperature. The reaction was poured into the sat. solution of NaHCO3 

and then extracted with 3 x 20 mL DCM. After drying over MgSO4 and concentrating of the 

sample in the vacuum was obtained 660 mg of the crude product as ochre oil. Then was the 

crude product distilled on Kugelrohr (110°C/0.08 Torr) to obtain 612 mg (95% yield) of the 

146 as colorless oil. 
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1H NMR  (500 MHz, CDCl3) δ 4.75 (dd, J = 10.5, 7.7 Hz, 1H, CH-oxaz.), 4.50 (dd, J = 8.7, 

7.7 Hz, 1H, CH2-oxaz.), 4.41 (dd, J = 10.5, 8.7 Hz, 1H, CH2-oxaz.), 3.77 (s, 3H, CO2Me), 

3.62 (q, J = 10.8 Hz, 2H, CH2-Cl), 1.33 (s, 3H, CH3), 1.31 (s, 3H, CH3). 

13C NMR  (126 MHz, CDCl3) δ 173.27 (OC=N), 171.58 (C=O), 69.69 (CH2-oxaz.), 68.14 

(CH-oxaz.), 52.65 (CO2CH3), 52.28 (CH2-Cl), 39.06 (CH(CH3)2), 23.73 (CH3), 23.65 (CH3). 

MS (EI, 70 eV): m/z (%): 219 (33, M+), 187 (30), 119 (18), 91 (100),  55 (41). 

IR  (ν~ [cm−1]) 3406w, 2955w, 1728m, 1649s, 1633m, 1499m, 1472w, 1435m, 1387w, 1364w, 

1329w, 1244m, 1171m, 1140w, 962w, 905w, 770m. 

Elem. anal.: calc.: C, 49.21; H, 6.42; Cl, 16.14; N, 6.38; O, 21.85; found: C, 48.27; H, 6.13; 

N, 6.08 

 

 

(S)-2-amino-3-methylbutane-1,3-diol hydrochloride (146) 

To the 100 mg (487 µmol) of the oxazoline 143-2 was added 8 mL of 20% HCl (aq.) and the 

mixture was heated to 75°C for 4.5 hours while reaction color turns brownish. Reaction 

progress was tracked by TLC. After cooling to room temperature was the reaction mixture 

extracted 3 x 15 mL Et2O in order to remove benzoic acid and the water residue was 

evaporated to dryness on the rotavap followed by 5 x 10 mL azeotropic distillation with 

toluene. Sample was dryied overnight on high vacuum to obtain 61 mg (79% yield) of the 

product 146. 

 

C5H14ClNO2 (155.62 g.mol-1) 
1H-NMR  (500.1 MHz, D2O, 300K): δ (ppm) 3.95 (dd, J = 12.2, 3.7 Hz, 1H), 3.67 (dd, J = 

12.1, 9.4 Hz, 1H), 3.28 (dd, J = 9.3, 3.5 Hz, 1H), 1.34 (s, 3H), 1.25 (s, 3H). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 69.30 (C(CH3)2), 61.29 (NCH), 58.43 

(OCH2), 26.60 (CH3), 23.21 (CH3). 
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(S)-2-(2-(1-chloro-2-methylpropan-2-yl)-4,5-dihydrooxazol-4-yl)propan-2-ol (147) 

270 mg (3.19 mmol) of the oxazoline 146 was dissolved in 15 mL THF and 0.98 mL (3M in 

THF, 2.4 eq.) MeMgCl was dropwise added at 0°C and stirred at this temperature for 1.5 hour 

and then quenched by NH4Cl and extracted with 3 x 20 mL Et2O, dried over Na2SO4 and 

concentrated in vacuum. It was obtained 245 mg of the yellowish oil as crude, which was 

subjected to column chromatography on silicagel EtOAc/MeOH (9:1, Rf=0.25) to obtain 210 

mg (78% yield) of the product 147 as colorless oil. 

1H NMR  (400 MHz, CDCl3) δ 4.24 (dd, J = 8.9, 3.8 Hz, 2H, CH2-oxaz.), 4.04 (dd, J = 10.0, 

7.7 Hz, 1H, CH-oxaz.), 3.65 – 3.59 (m, 2H, CH2-Cl), 1.92 (br s, 1H, OH), 1.33 (s, 3H, 

C(CH3)2), 1,31 (s, 3H, C(CH3)2), 1.28 (s, 6H, HO-C(CH3)2), 1.13 (s, 3H, HO-C(CH3)2). 

IR  (ν~ [cm−1])  3382m, 2974m, 2963m, 2947m,  1733m, 1652s, 1644s,  1633s, 1610s,  1570m, 

1470m, 1387m, 1366m, 1201w,  1179s, 1154s,  1117s, 976m, 944m, 921m, 886w, 834w, 

734w, 666w. 

 

(S)-2-(2-(1-(diphenylphosphino)-2-methylpropan-2-yl)-4,5-dihydrooxazol-4-yl)propan-2-

ol (148) 

100 mg (455 µmol) of 147 was dissolved in 15 mL THF and then 1.1 mL (0,5M in THF, 

1.2eq) of KPPh2 was added. Then the reaction mixture was refluxed overnight. The solvent 

was evaporated in vacuum and residue was redissolved in 15 mL Et2O and 3 mL NH4Cl and 2 

mL of water was also added to dissolve residual solids. Phases were separated and the water 

layer was extracted with 3 x 20 mL Et2O and dried over Na2SO4. It was recorded NMR of the 

crude 210mg where was probably product about -21ppm in 31P and also HPPh2 . The cure 
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mixture (210 mg) was purified by column chromatography on silica EtOAc/Hex (1:1, 

Rf=0.35, 1:2, Rf=0.25) to afford 65 mg (39% yield) of the product 148 as white solid. 
 

1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.51−7.58 (m, 2H, ArH), 7.43−7.40 (m, 2H, 

ArH), 7.34−7.28 (m, 6H, ArH), 4.26-4.24 (m, 1H, OCH), ), 4.05-4.02 (m, 1H, OCH), 3.95-

3,93 (m, 1H, N-CH),  2.63 (br s, 1H, OH), 2.57 (dd, 1H, J = 14.2, 4.9 Hz, CH2Cl), 2.37 (dd, 

1H, J = 14.2, 3.5 Hz, CH2Cl), 1.32 (s, 3H, O(CH3)2), 1.28 (s, 3H, C(CH3)2), 1.24 (s, 3H, 

C(CH3)2), 1.11 (s, 3H, O(CH3)2). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 174.0 (C=N), 139.1 (d, J = 10.0 Hz, 

CAr),  138.6 (d, J = 10.0 Hz, CAr),  133.1 (d, J = 19 Hz, HCAr), 132.8 (d, J = 19 Hz, HCAr), 

128.7 (CArH), 128.5 (CArH), 128.5 (CArH), 128.4 (CArH), 74.8 (NCH), 71.5 (OC(CH3)2), 68.7 

(OCH2), 41.2 (d, J = 14 Hz, CH2P), 37.3 (d, J = 18 Hz, (C(CH3)2), 27.9 (d, J = 7 Hz, 

C(CH3)2), 27.4 (HOC(CH3)2), 27.3 (d, J = 9 Hz, C(CH3)2), 25.0 (HOC(CH3)2). 
31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) 21.4. 

 

 

(S)-4-(2-((tert-butyldimethylsilyl)oxy)propan-2-yl)-2-(1-(diphenylphosphino)-2-

methylpropan-2-yl)-4,5-dihydrooxazole (148-TBDMS) 

45 mg (122 µmol, 1eq.) of the starting alcohol 148 was dissolved in 3 mL DCM and 70µL 

(610 µmol, 5 eq.) of 2,6-lutidine were dropwise added at 20°C. Then 56 µl (244 mmol, d = 

1.151, 2. eq.) of TBDMSOTf was added and stirred for 1 hour at room temperature. Then 

solvent was evaporated on high vacuum and residue redissolved in Et2O, and sample of the 

crude reaction mixture 60 mg was dried on vacuum. After the column chromatography on 

silica EtOAc/Hex (1:9, Rf = 0.25) was afforded 32 mg (54% yield) of the product 148-

TBDMS. 
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1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.48 – 7.44 (m, 4H, ArH), 7.33 – 7.28 (m, 6H, 

ArH), 4.20 – 4.17 (m, 1H, OCH2), 3.77-3.69 (m, 1H, NCH, 1H, OCH2), 2.52-2.41 (m, 2H, 

CH2P), 1.35 (s, 3H, (CH3)2CO), 1.29 (s, 3H, (CH3)2CO), 1.24 (s, 3H, (CH3)2C), 1.13 (s, 3H, 

(CH3)2C), 0.82 (s, 9H, (CH3)2tBuOSi), 0.07 (s, 3H, (CH3)2tBuOSi), 0.07 (s, 3H, 

(CH3)2tBuOSi). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 173.3 (C=N), 139.7 (d, J = 13 Hz, CAr), 

139.6 (d, J = 13 Hz, CAr), 133.2 (d, J = 20 Hz, CArHo), 132.8 (d, J = 20 Hz, CArHo), 128.4 – 

128.3 (m, CArHm,p), 75.7 (OC(CH3)2), 74.7 (NCH), 68.7 (OCH2), 41.1 (d, J = 17 Hz, CH2P), 

36.7 (d, J = 17 Hz, C(CH3)2), 28,7 (OC(CH3)2), 27.5 (d, J = 9 Hz, C(CH3)2), 27.1 (d, J = 10 

Hz, C(CH3)2), 26.3 (OC(CH3)2), 25.8 (C(CH3)3), 18.2 (C(CH3)3), -2.1 (Si(CH3)2), -2.2 

(Si(CH3)2). 
31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) -23.4. 

MS (EI, 70 eV): m/z (%): 483 (2, M+), 468 (8), 426 (46), 406 (42),  310 (78), 274 (12), 227 

(53), 173 (100) 121 (21), 73 (38). 

IR  (ν~ [cm−1])  2963m, 2947m, 2927m, 2883m, 2853m, 1733w, 1680m, 1580w, 1470m, 

1437m, 1359m, 1303w, 1251m, 1186s, 1160s, 1118s, 1102m, 1051s, 1034s, 1004m, 985m, 

897w, 822s, 772s, 738s, 714s, 652s. 

 

 

(148-Ir-TBDMS)  

Following the general procedure as for preparation 142-Ir. Complexation of 30 mg (62 µmol, 

1 eq.) 148-TBDMS with 21 mg (31 µmol, 0.5 eq.) of bis(1,5-cyclooctadiene)diiridium(I) 

dichloride in 3 mL DCM. 72 mg (81 µmol, 1.3 eq.) of NaBArF was added and stirred for 

another 30 min at room temperature. The reaction mixture was immobilized on silica and 

putted on column, washed with 100 mL Et2O and then eluted with DCM and in two fractions. 

It was obtained 79 mg (77% yield) of the product 148-Ir-TBDMS  as yellow solid. 
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1H-NMR  (500.1 MHz, CDCl3, 300K): δ (ppm) 7.81 – 7.72  (m, 10H, 2 x ArH, 8 x HArF-o), 

7.60 – 7.55 (m, 1H, ArH), 7.55 – 7.49 (m, 6H, 2 x ArH, 4 x HArF-p), 7.41 – 7.35 (m, 3H, ArH), 

7.08 – 6.96 (m, 2H, ArH), 4.88 (dd, J = 9.7 Hz, 4.0 Hz, 1H, OCH2), 4.83 (m, 1H, COD-CH), 

4.81 – 4.75 (m, 1H, COD-CH), 4.37 (t, J = 9.7 Hz, 1H, OCH2), 3.81 (dd, J = 9.8, 4.0 Hz, 1H, 

NCH), 3.67 – 3.61 (m, 1H, COD-CH), 2.68 – 2.48 (m, 4H, CH2P, COD-CH2), 2.48 – 2.42 (m, 

1H, COD-CH), 2.28 (m, 2H, COD-CH2), 2.24 (s, 3H, C(CH3)2), 2.13 – 2.02 (m, 1H, COD-

CH2), 1.84 (m, 1H, COD-CH2), 1.61 (m, 1H, COD-CH2), 1.51 (d, J = 2.9 Hz, 1H, C(CH3)2), 

1.43 – 1.31 (m, 1H, COD-CH2), 1.38 (s, 3H, O-C(CH3)2) 0.84 (s, 3H, O-C(CH3)2), 0.69 (s, 

9H, SiC(CH3)3), 0.03 (s, 3H, SiC(CH3)2), -0.26 (s, 1H, SiC(CH3)2). 
13C{1H}-NMR  (125.8 MHz, CDCl3, 300K): δ (ppm) 180.2 (d, J = 2 Hz, C=N), 161.8 (q, J = 

50 Hz, CArFi), 135.1 (d, J = 12 Hz, CArH), 134.8 (HCArF-o), 132.8 (d, J = 2 Hz, CArH), 132.3 (d, 

J = 55 Hz, CAr) 131.2 (d, J = 2 Hz, CArH), 131.1 (d, J = 10 Hz, CArH) 129.6 (d, J = 11 Hz, 

CArH), 129.1 (d, J = 10 Hz, CArH), 128.9 (q, J = 32 Hz, HCArF-m), 128.7 (d, J = 54 Hz, CArH), 

124.6 (q, J = 273 Hz, CF3), 117.5 (HCArF-p), 94.2 (d, J = 10 Hz, COD-CH), 92.1 (d, J = 13 Hz, 

COD-CH), 73.9 (NCH), 73.5 (OC(CH3)2), 71.6 (OCH), 63.3 (COD-CH), 60.3 (COD-CH), 

38.9 (C(CH3)2), 36.4 (COD-CH2), 33.8 (d, J = 5 Hz, C(CH3)2), 33.2 (d, J = 32 Hz, CH2P), 

32.4 (COD-CH2), 28.7 (O-C(CH3)2), 28.1 (COD-CH2), 27.0 (d, J = 12 Hz, C(CH3)2), 25.6 

(COD-CH2), 25.4 (SiC(CH3)3), 24.2 (O-C(CH3)2), 17.8 (SiC(CH3)3), -2.5 (SiC(CH3)2), -2.9 

(SiC(CH3)2). 

MS (MALDI-TOF) m/z (%): 784 ([M−(BArF)]
+, 100). 

[αααα]20
D= -17.4 (c 0.70, CHCl3). 

31P{1H}-NMR  (202.5 MHz, CDCl3, 300K): δ (ppm) 9.2. 

IR  (ν~ [cm−1])  2963w, 2947w, 1610w, 1580w, 1437w, 1351m, 1271s, 1160m, 1114s, 1103s, 

1199s, 1196s, 1001m, 970m, 895w, 886m, 838m, 777m, 743m, 715s, 710s, 668s. 

Elem. anal.: calc.: C, 49.88; H, 4.13; N, 0.84; found: C, 49.59; H, 4.19; N, 0.91. 

 

 

Burgess reagent [145] 

25 g of chlorosulfonylisocyanate was placed into the 250 mL three necked flask fitted with 

stirrbar and dropping funnel and chloro-calcium drying tube on the condenser diluted with 50 
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mL of dry benzene. From the dropping funnel was dropwise added 6.2 mL dry MeOH in 8 

mL of benzene over 30 min and then stirred for additional 0.5 hour. Product was filtered over 

Schlenk filtration apparatus and dried on vacuum line. Then it was dissolved in 200 mL of dry 

benzene a heated by heatgun to help dissolve all crystals. This solution was added in course of 

40 min to a 46 mL of Et3N in 50 mL dry benzene at 10°C and stirred for another 30 min. 

Resulting mixture was then filtered under inert atmosphere and filtrate was evaporated on the 

rotavap and the residue was recrystallized from THF. It was obtained 12.3 g of Burgess 

reagent which was stored in the freezer for further experiments. 

 

 

General procedure for Allylic substitution 

 

1,8 mg of [Pd(allyl)Cl]2 (0.01mmol) and 0.025 mmol of the approproate ligand in 1.2 mL 

DCM was in the Young tube degassed by freeze-pump-thaw and then stirred for 2 hours at 

50°C. In the second Young tube containing the substrate, 252 mg (1 mmol) 

diphenylallylacetate (or CyOBz) in 4 mL DCM was mixed with dimethylmalonate 396 mg (3 

mmol), BSA 0.73 mL (610 mg, 3 mmol, d=0.832) and 1 mg of the dried KOAc. This solution 

was also degassed by three freeze-pump-thaw cycles and then the solution of the catalyst was 

added. Resulting reaction mixture was stirred at room temperature 24 hours. Then was the 

reaction diluted by Et2O and quenched by addition of 20 mL of NH4Cl (sat. sol.). Aqueous 

layer was extracted with 3 x 15 mL Et2O and combine organic extracts were dried over 

MgSO4. After column chromatography on silica gel (Hexane/EtOAc/Et3N 18:1:1) was 

obtained product as a white solid. Enantiomeric excess was determined by HPLC or GC. 

 

 

Separation: HPLC (Diacel Chiracel AD-H, heptane/ispropanol 97:3, 0.9 mL.min-1, 20°C, 254 

nm): tR = 16.3 (R), 17.9 (S) min. 

 

 

Ph Ph

MeOOC COOMe



 

  
 
228 

Separation: GC (β-cyclodextrine PM, 130°C, 100kPa): tR = 21.7 (R), 23.7 (S) min. 

 

 

General procedure for the hydrogenation reaction and used analytical methods 

 

All hydrogenations reactions were performed at room temperature, 50 bar of H2 gas, with the 

substrate concentration 0.2 mol/L and catalyst concentration 1 mol %. As a solvent was used 

crown cap dichloromethane purchased from Aldrich. 

 

E-1,2-Diphenylpropene: 

GC: Restek Rtx-1710 column (30 m × 0.25 mm × 0.25µm), 60 kPa He, (100°C - 2min -7 K / 

min – 250°C -10 min): tR = 18.2 min (product), 23.8 min (starting material) 

HPLC : (Diacel Chiracel OJ (2.6 × 250 mm), heptane/isopropanol 99:1, 0.5 mL/min, 20°C, 

220 nm,  tR = 15.6 min (R), 23.8 min (S) 

 

 

Ethyl E-2-methylcinnamate: 

GC: Chiraldex γ-cyclodextrin TFA G-TA (30 m × 0.25 mm × 0.12µm) 60 kPa H2, (85°C – 

50 min -10 K / min – 160°C): tR = 42.9 min ( (R)product), 44.9 min ( (S)product), 57.0 min 

(starting material) 

 

 

 

MeOOC COOMe

*

CO2Et
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E-2-Methyl-3-phenylprop-2-enol: 

GC: Restek Rtx-1710 column (30 m × 0.25 mm × 0.25µm), 60 kPa He, (100°C - 2min -7 K / 

min – 250°C -10 min): tR = 14.6 min (product), 16.5 min (starting material) 

HPLC : (Diacel Chiracel OD-H (2.6 × 250 mm), heptane/isopropanol 95:5, 0.5 mL/min, 

40°C, 200 nm, tR = 15.3 min (+), 17.5 min (-) 

 

 

E-Phenyl-(1-phenylethylidene)amine: 

GC: Restek Macherey-Nagel Optima 5-Amin (30 m × 0.25 mm × 0.5µm), 60 kPa He, (150°C 

-7 K / min – 250°C -10 min): tR = 12.8 min (product), 13.2 min (starting material) 

HPLC : (Diacel Chiracel OD-H (2.6 × 250 mm), heptane/isopropanol 99:1, 0.5 mL/min, 

20°C, 210 nm, tR = 24.6 min (S), 33.0 min (R) 

 

OH

N
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8.6  Diastereoselective hydrogenation of Diels-Alder products 

 

 

1-(4-methylcyclohex-3-en-1-yl)ethanone (164) 

 
Solution of (R) or (S) limonene 5 mL (4.21g, 30.9 mmol) in 50 mL of DCM was cooled to -

78°C under N2 and mCPBA 6.93 g (30.9 mmol, 77%) was added as a solid. After stirring for 

30 min was the cooling bath removed and the reaction mixture was warmed and stirred 

another 2 hours at room temperature. Then was the mixture recooled back to -78°C and ozon 

was bubled through the glass bubler into the reaction flask until the blue color was observed 

(20-30min). Resulting solution was purged by bubling O2 at -78°C and then with N2 while 

warming up to 0°C. Then Zn dust 20 g (309 mmol, 10 eq.) was added followed by addtion of 

6.2 g (37.1 mmol, 1.2 eq.) of KI and 25 mL of glacial acetic acid. This suspension was well 

stirred overnight at room temperature and then decanted. Residual solids were repeatedly 

washed with Et2O and continued with neutralization by Na2CO3 (sat. sol.) and subsequent  

extraction with 3 x 30 mL of Et2O. Combined organic extracts were dried over MgSO4 and 

concentrated in vacuum. Column chromatography on silica gel (5% Et2O/n-pentane) afforded 

1.315 g (31% yield) of the product as a yellowish oil. 

 

C9H14O (138.21 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 295K): δ (ppm) 5.39 (s, 1H,C=CH), 2.60 – 2.43 (m, 1H, 

CHC=O), 2.21 – 2.10 (m, 4H, COCH3, CH2), 2.05 – 1.90 (m, 3H, CH2), 1.65 (s, 3H, CH3), 

1.62 – 1.51 (m, 1H, CH2). 
13C{1H}-NMR  (100.6 MHz, CDCl3, 295K): δ (ppm)  212.07 (C=O), 134.00 (C=CH), 119.41 

(C=CH), 47.40 (CH-C=O), 29.66 (CH3), 28.16 (CH2), 27.21 (CH2), 25.06 (CH2), 23.57 

(CH3). 

 

 

 

 

 

O
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(R)-2,2,2-trifluoroethyl 4-methylcyclohex-3-enecarboxylate[146] (177) 

0.32 mL (0.5M in Tol, 0.16mmol) oxazaborolidine was added to a precooled solution of 37 

mg (CF3SO2)2NH (0.133 mmol) in 0.7 mL tolueme at -25°C and stirred for 10 minutes. Then 

isoprene 74µl (50 mg, d = 0.681) and 84µl (102 mg, d = 1.216) of 2,2,2-trifluoroethylacrylate 

in 0.7 mL toluene was added. The reaction mixture was stirred for 8 hours at 0°C and then 

quenched with 20 µL of triethylamine and warmed to room temperature. By column 

chromatography on silica gel in 2% Et2O/n-pentane (Rf=0.45) was obtained 129 mg (88% 

yield) of the product as a colorless low boiling liquid. 

 

C10H13F3O2 (222.20 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 295K): δ (ppm) 5.46 – 5.29 (m, 1H), 4.64 – 4.26 (m, 2H), 2.68 

– 2.52 (m, 1H), 2.35 – 2.15 (m, 2H), 2.15 – 1.89 (m, 3H), 1.83 – 1.68 (m, 1H), 1.65 (s, 3H). 
19F{1H}-NMR  (376.5 MHz, CDCl3, 300K): δ (ppm) -73.9. 

GC-MS: (EI, 70 eV, Rt=12.7 min): m/z (%): 222 (15, M+), 122 (32), 94 (100), 79 (54), 67 

(29), 55 (15). 

 

 

2,2,2-trifluoroethyl 4-methylcyclohexanecarboxylate (180) 

Substrate 177 15 mg was reduced with Pd/C in 0.5 mL of MeOH at 1 bar of H2 at room 

temperature. There was observed also about 10% of the trasesterified product as methylester. 

 

C10H15F3O2 (224.22 g.mol-1) 

GC-MS: (EI, 70 eV, Rt=4.35 min; 4.43 min): m/z (%): 224 (23, M+), 155 (30), 124 (39), 97 

(40), 82 (67), 70 (100), 67 (25), 55 (81), 41 (23). 
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(S)-1,4-dimethylcyclohex-3-enecarbaldehyde[147] (178) 

To a solution of oxazaborolidine 0.124 mL (0.5M in Tol, 0.062mmol) in 0.5 mL DCM at -

40°C was added sloution of 13.7 mg AlBr3 (0.05 mmol) in 0.3 mL DCM and after stirring 30 

min was the temperature lowered to -78°C and then isoprene 426.4 mg (350 µl, 6.26 mmol) 

followed by methacroleine 87.6 mg (102 µl, 1.25 mmol) were added. After stirring 16 hours 

at -78°C was reaction quenched by addition of 0.2 mL Et3N and warmed up to room 

temperature. After column chromatography on silica (15 cm) in 2% Et2O in n-pentane Rf=0.5 

(KMnO4 stain), was obtained 157 mg (91% yield) of the product 178. 

 

C9H14O (138.21 g.mol-1) 
1H-NMR  (250.1 MHz, CDCl3, 295K): δ (ppm) 9.46 (s, 1H), 5.46 – 5.29 (m, 1H), 2.43 – 2.22 

(m, 1H), 2.03 – 1.90 (m, 2H), 1.90 – 1.77 (m, 2H), 1.63 (s, 3H), 1.59 – 1.45 (m, 2H), 1.03 (s, 

3H). 

GC-MS: (EI, 70 eV, Rt=9.88 min): m/z (%): 138 (73, M+), 123 (45), 109 (32), 95 (95), 81 

(34), 67 (100), 55 (28), 41 (27). 

 

 

1,4-dimethylcyclohexanecarbaldehyde (181) 

C9H16O (140.22 g.mol-1) 

GC-MS: (EI, 70 eV, Rt=8.19 min): m/z (%): 140 (5, M+), 111 (62), 84 (9), 69 (100), 55 (38), 

41 (21). 

 

 

2-phenylbut-3-en-2-ol[148] 
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To the 36 mL (1M in THF, 1.2 eq.) vinylmagnesiumbromide was at room temperature added 

3.51 mL (30 mmol, 1 eq.) of acetopehnone in a rate to keep gentle reflux of a reaction 

mixture. Stirring was then continued for another 1 hour. Then was reaction quenched by 10 

mL of sat. sol. of NH4Cl and extracted by Et2O and dried over Na2SO4. The crude product 

was distilled on Kugelrohr 70°C /0.1 Torr to obtain 3.75 g (84% yield) of the product as 

colorless liquid. 

 

C10H12O (148.20 g.mol-1) 
1H-NMR  (250.1 MHz, CDCl3, 295K): δ (ppm) 7.43 – 7.31 (m, 2H, ArH), 7.30 – 7.19 (m, 2H, 

ArH), 7.19 – 7.08 (m, 1H, ArH), 6.05 (dd, J = 17.3, 10.6 Hz, 1H, C=CH), 5.17 (dd, J = 17.3, 

1.1 Hz, 1H, C=CH2), 5.02 (dd, J = 10.6, 1.1 Hz, 1H, C=CH2), 2.23 (s, 1H, OH), 1.53 (s, 3H, 

CH3). 

 

 

Buta-1,3-dien-2-ylbenzene[148] (175) 

396 mg (2.28 mmol, 0.09 eq.) of aniline hydrobromide (prepared from aniline in DCM and 

63% HBr and recrystalized from EtOH) 56 mg (506 µmol, 0.02 eq.) of hydrochinon and 3.75 

g (25.3 mmol, 1eq.) of 2-phenylbut-3-en-2-ol were heated to 100-150°C and the product was 

continuously distilled over the 14 cm Vigreux column and fraction with the boiling point 

around 70°C/20 Torr was collected. Obtained distillate was then purified by column 

chromatography on silicagel in 2% Et2O/n-pentane to obtain 1.23 g (37% yield) as colorless 

liquid. 

 

C10H10 (130.19 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 295K): δ (ppm) 7.42 – 7.29 (m, 5H, ArH), 6.65 (dd, J = 17.3, 

11.0 Hz, 1H, C=CH), 5.32 (d, J = 0.8 Hz, 1H, CH2), 5.28 – 5.17 (m, 3H, CH2). 
13C{1H}-NMR  (100.6 MHz, CDCl3, 295K): δ (ppm)  148.28 (C-Ph), 139.75 (CH), 138.18 

(CAr), 128.30 (CArH), 128.14 (CArH), 127.49 (CArH), 117.17 (CH2), 116.91 (CH2). 

 

 

 

Ph
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(3S,4S)-3-methyl-2,3,4,5-tetrahydro-[1,1'-biphenyl]-4-carbaldehyde[132] (179) 

To a solution of 89 mg (683 µmol) of the phenylbutadiene in 0.7 mL CH3NO2/H2O (95/5 v/v 

1.0 M) was added 35 mg (137 µmol) of the catalyst at 0°C and followed by addition of trans-

crotonaldehyde 149 mg (2.12 mmol, d=0.846, 176 µl). The solution was stirred at 0°C for 24 

hours and then placed directly onto a silicagel column and eluted with 5% EtOAc/n-pentane 

to obtain 100 mg (73% yield) of the product (regioisomers ratio 1:4) as a colorless oil. 

 

C14H16 (200.28 g.mol-1) 
1H-NMR  (400.1 MHz, CDCl3, 295K): δ (ppm) 9.71 (d, J = 3.2 Hz, 1H, CH=O), 7.39 – 7.35 

(m, 2H, ArH), 7.34 – 7.29 (m, 2H, ArH), 6.16 – 6.05 (m, 1H, C=CH), 2.62 – 2.11 (m, 6H, 

CH, CH2), 1.14 (d, J = 6.4 Hz, 3H, CH3). 

GC-MS: (EI, 70 eV, Rt=32.42 min (major); 32.48 min (minor) ): m/z (%): 200 (73, M+), 182 

(15), 169 (100), 155 (51), 143 (68), 129 (68), 115 (45), 104 (15), 91 (70), 77 (24), 65 (10), 55 

(11), 41 (8). 

 

 

(1S,2S)-2-methyl-4-phenylcyclohexanecarbaldehyde (182) 

C14H18O (202.29 g.mol-1) 

GC-MS: (EI, 70 eV, Rt=31.96 min; 32.00 min): m/z (%): 202 (55, M+), 184 (16), 169 (17), 

157 (13), 143 (14), 131 (44),  117 (44), 104 (83), 91 (100), 78 (13), 69 (13), 55 (13), 41 (19). 
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8.7  Crystallographic data 

 

The X-ray structures were measured by Dr. Markus Neuburger (Department of Chemistry, 

University of Basel) on Bruker Nonius KappaCCD difractometer using graphite-

monochromated Mo Kα-radiation and solved using Direct methods (Sir97,[149] Superflip[150] or 

SHELX[151]) and refined in Crystals[152] by Dr. Markus Neuburger. Least-squares refinement 

against F was carried out on all non-hydrogen atoms. Chebychev polynomial weights were 

used to complete the refinement.[153] The absolute configuration and enantiopurity could be 

determined by definement of the flack parameter.[154] Data were recorded at 123 K. Crystals 

were usually grown by dissolving a compound in dichloromethane or chloroform and 

carefully ovelayed with n-heptane. Then they were mounted with paraffin on a glas fibre 

gomiometer head. 
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compound 98-catechol 98 

formula C38H34B2N2O8 C32H28B2N2O6 

formula weight (g.mol-1) 668.32 558.21 

shape block block 

color colorless colorless 

temperature [K] 123 123 

crystal size [mm3] 0.070 · 0.090 · 0.270 0.070 · 0.120 · 0.330 

crystal system orthorhombic orthorhombic 

space group P 21 21 21 P 21 21 21 

a [Å] 8.4230(2) 8.5678(3) 

b [Å] 10.6624(2) 12.6340(4) 

c [Å] 36.6293(8) 26.1131(8) 

α [°]  90 90 

β [°]  90 90 

γ [°]  90 90 

volume [Å]3 3289.66(12) 2826.63(16) 

Z 4 4 

density (calc.) [g.cm-1] 1.349 1.312 

µ(Mo Kα) [mm-1] 0.094 0.090 

transmission (min/max) 0.99 / 0.99 0.99 / 0.99 

Θ range for data collection [°] 1.989 - 30.251 1.791 - 40.262 

radiation (λ [Å]) 0.71073 0.71073 

F(000) 1400 1168 

measured reflections 56135 123904 

independent reflections 5468 (merging r = 0.051) 9730 (merging r = 0.057) 

observed reflections 4684 (I>2.0σ(I)) 6330 (I>2.0σ(I)) 

parameters refined 451 452 

R 0.0449 0.0501 

Rw 0.0630 0.0784 

goodness of fit on F 1.0467 1.1201 

flack parameter - - 
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compound 142-Ir-TES 142-Ir-TMS  

formula C70H69BCl3F24IrNO2PSi C67H63BCl3F24IrNO2PSi 

formula weight (g.mol-1) 1780.72 1738.64 

shape block block 

color orange orange 

temperature [K] 123 123 

crystal size [mm3] 0.060 · 0.130 · 0.240 0.070 · 0.150 · 0.240 

crystal system orthorhombic orthorhombic 

space group P 21 21 21 P 21 21 21 

a [Å] 14.8070(10) 15.1113(5) 

b [Å] 17.4577(12) 17.7434(7) 

c [Å] 28.8726(19) 27.3178(10) 

α [°]  90 90 

β [°]  90 90 

γ [°]  90 90 

volume [Å]3 7463.5(9) 7324.6(5) 

Z 4 4 

density (calc.) [g.cm-1] 1.585 1.577 

µ(Mo Kα) [mm-1] 2.038 2.075 

transmission (min/max) 0.77 / 0.88 0.73 / 0.86 

Θ range for data collection [°] 1.546 - 27.899 1.770 - 29.136 

radiation (λ [Å]) 0.71073 0.71073 

F(000) 3560 3464 

measured reflections 68593 113578 

independent reflections 17796 (merging r = 0.028) 19676 (merging r = 0.032) 

observed reflections 16608 (I>2.0σ(I)) 16944 (I>2.0σ(I)) 

parameters refined 938 1022 

R 0.0239 0.0252 

Rw 0.0286 0.0329 

goodness of fit on F 1.0808 1.1085 

flack parameter -0.010(2) -0.008(2) 
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compound 142-Ir-TBDMS  148-Ir-TBDMS  

formula C69H68BF24IrNO2PSi C68H66BF24IrNO2PSi 

formula weight (g.mol-1) 1661.35 1647.32 

shape block block 

color orange orange 

temperature [K] 123 123 

crystal size [mm3] 0.060 · 0.170 · 0.220 0.070 · 0.180 · 0.210 

crystal system orthorhombic orthorhombic 

space group P 21 21 21 P 21 21 21 

a [Å] 13.0330(3) 12.9974(3) 

b [Å] 19.5152(4) 19.2190(4) 

c [Å] 27.7197(6) 27.4554(5) 

α [°]  90 90 

β [°]  90 90 

γ [°]  90 90 

volume [Å]3 7050.3(3) 6858.3(2) 

Z 4 4 

density (calc.) [g.cm-1] 1.565 1.595 

µ(Mo Kα) [mm-1] 2.042 2.098 

transmission (min/max) 0.71 / 0.88 0.69 / 0.86 

Θ range for data collection [°] 1.727 - 37.789 1.733 - 37.789 

radiation (λ [Å]) 0.71073 0.71073 

F(000) 3328 3296 

measured reflections 297104 296707 

independent reflections 37854 (merging r = 0.044) 
36782 (merging r = 
0.042) 

observed reflections 30699 (I>2.0σ(I)) 31942 (I>2.0σ(I)) 

parameters refined 1031 930 

R 0.0246 0.0222 

Rw 0.0326 0.0265 

goodness of fit on F 1.0931 1.0944 

flack parameter -0.0085(19) -0.0087(15) 
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