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Summary 
 

Most herbaceous plants live in symbiosis with arbuscular mycorrhizal (AM) fungi. AM fungi colonize the 

roots of their host plant symbionts and provide them with mineral nutrients, especially phosphorus (P) 

and nitrogen (N) and receive, in exchange, photosynthetically fixed carbon.  

In this work, we focused on the role of N in the AM symbiosis formed between Glomus mosseae or 

Rhizophagus irregularis and different plants belonging to the Poaceae: sorghum (Sorghum bicolor), 

maize (Zea mays), rice (Oryza sativa), foxtail millet (Setaria italic) and purple false brome (Brachypodium 

distachyon). It had been shown that AM fungi can take up N in form of nitrate, ammonium and amino 

acid and transfer it to the plant in form of ammonium. Thus, we hypothesized that some plant 

ammonium transporters (AMT) might be up-regulated at the interface between plant and fungus in the 

AM symbiosis.  

As described in chapter 2, we established mycorrhized and non-mycorrhized sorghum plants and gave 

them different N treatments: no nitrogen, nitrate or ammonium. We found out that two AMTs, AMT3;1 

and AMT4 were induced in mycorrhized plants (AM-inducible AMTs) independently of their N status. In 

sorghum, the pattern of expression of AMT3;1 and AMT4 was assessed with a split-root experiment 

combined with laser microdissection technology. Expression of both AMTs was not systemic in the roots 

of the plant. However, at a small scale, systemic expression around cells containing arbuscules could be 

observed. We conclude that expression of AMT3;1 and AMT4 could be part of the prepenetration 

response of the plant, preparing the cells to receive a new arbuscule. In addition, using 

immunolocalization, we localized the protein of AMT3;1 at the level of mature arbuscules. 

As described in chapter 3, the up-regulation of AMT3;1 and AMT4 was conserved in all four Poaceae 

species studied. As the core Poaceae divided into two groups about 55 million years ago separating 

sorghum, foxtail millet and maize from rice and purple false brome, we assume that AMT3;1 and AMT4 

were already induced by AM fungi in a common ancestor of all these plants. 

In chapter 4, we looked at the fungal side and at the effect of the different N treatments on the 

expression of fungal transporters and enzymes of the N cycle. Our results show that the source of N has 
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an impact on the transcriptional regulation of enzymes from the fungal N cycle. Expression of the 

corresponding genes was modified in the fungal extraradical mycelium as well as in the intraradical 

mycelium.  

In chapter 5, we studied the time needed by the AM fungus Glomus mosseae to transfer N from a 15N-

labeled source to sorghum plants. Labeled N was present in the plant leaves already after 48 hours 

revealing a very rapid transfer. This finding highlights the underestimated role of AM symbiosis in N-

acquisition by the plant. 
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1. General introduction 
 

1.1 The mycorrhizal symbiosis 

The mycorrhizal symbiosis (from Greek, mykes – fungus and rhiza – root) is a mutualistic symbiosis 

formed between plants and fungi. The base of this mutualistic symbiosis is the bidirectional exchange of 

resources between both partners: the plant roots deliver products of the photosynthesis (carbon: C) to 

the fungi and in exchange receive mineral nutrients like nitrogen (N) or phosphorus (P). The fungi 

involved in the mycorrhizal symbiosis belong to different taxa (Zygomycota, Glomeromycota, 

Ascomycota and Basidiomycota) and colonize the roots of plant species throughout the plant kingdom 

(Anthocerophyta, Marchantiophyta, Bryophyta, Pteridophyta and Spermatophytes) (Smith & Read, 

2008). Different types of mycorrhizae are formed depending on the identity of both symbiosis partners. 

Here, we will focus on the most common one, the arbuscular mycorrhiza.  

 

1.2 The arbuscular mycorrhiza 

The arbuscular mycorrhiza (AM) is the most common type of mycorrhizal symbiosis (Smith & Smith, 

2011). It is formed between the roots of a majority of land plants and obligate symbiotic fungi belonging 

to the Glomeromycota (Schüssler et al., 2001). AM fungi were probably involved in the colonization of 

land by plants. Indeed, AM structures and spores were found on fossils from the Ordovician (460 Mya) 

(Redecker et al., 2000; Heckman et al., 2001) and Brundrett (2002) suggests a co-evolution of roots and 

mycorrhiza since more than 400 Million years.  

The name “arbuscular” comes from characteristic structures, the arbuscules (Fig.1.1) formed by some 

AM fungi in plant cortical cells. Arbuscules are the place of the nutrient exchange between plants and 

these fungi (Smith & Read, 2008). Outside the plant roots, AM fungi develop an extensive extraradical 

mycelium (ERM) interconnecting plants together and searching for mineral nutrients in the soil (Fig. 1.2). 

As propagules, they form large spores (up to 500 μm) containing storage lipid, carbohydrate and a large 

number of nuclei (Bécard & Pfeffer, 1993).  
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AM fungi are obligate symbionts and rely entirely on their plant partners for carbon (C) supply. In return, 

they deliver mineral nutrients to the plant and can improve drought and disease tolerance of the plant 

(Smith & Read, 2008). 

 

1.3 Diversity, host specificity and ecological importance of AM fungi 

It was first assumed that AM fungi were closely related to the phylum Zygomycota. However, in regard 

to the lack of Zygospores, the obligate symbiosis with host plants and rDNA phylogeny, Schüssler et al. 

(2001) revised this classification and placed the AM fungi in a newly defined phylum, the 

Glomeromycota. Members of the Glomeromycota appear to have haploid nuclei (Bianciotto et al., 1995; 

Hijri & Sanders, 2004) and sexual structures are absent. This led to the conclusion that Glomeromycota 

are asexual and clonal (Smith & Read, 2008). However, closely related strains of a same species can 

exchange genetic material (De La Providencia et al., 2005; Croll et al., 2009). Indeed, hyphae form AM 

fungi were shown to form functional anastomoses that allow the exchange of nuclear material among 

growing mycelia (Croll et al., 2009). Nonetheless, these gene exchanges are believed to be very rare 

(den Bakker et al., 2010; Corradi & Lildhar, 2012). 

Although asexual and clonal, the Glomeromycota harbor a high genetic diversity, even in single spores. 

Thus, different AFLP patterns or even variants of a given genes in one single spore were reported 

(Sanders et al., 1995; Rosendahl & Taylor, 1997; Jansa et al., 2002). It is still not totally clear, if the 

genetic diversity of a single spore is the consequence of genetically different nuclei present in one spore 

(heterocaryotism) (Kuhn et al., 2001) or of identical nuclei, each containing the same sequence variants 

(homocaryotism) (Pawlowska & Taylor, 2004; Hijri & Sanders, 2005). 

The actural taxonomic classification of the approximately 245 species of AM fungi described 

(http://schuessler.userweb.mwn.de/amphylo/belonging) is based on morphological and molecular 

criteria (Redecker et al., 2003). However, difficulties are faced during molecular characterization due to 

the high genetic diversity in single spores mentioned before.  

Lately, the AM fungal taxonomy was revised multiple times (Schüssler & Walker, 2010; Oehl et al., 2011) 

causing confusion and difficulties among scientists working on AM fungi. Redecker et al. (2013) 

published recently a consensus containing the last taxonomic revisions. According to former 
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classifications, (Schüssler et al., 2001; Walker & Schüssler, 2004; Msiska & Morton, 2009), they divided 

the Glomeromycota into four clades: the Paraglomerales, the Archaeosporales, the Glomerales and the 

Diversisporales.  

The Paraglomerales contains one family, the Paraglomeraceae with one genus, Paraglomus. 

The Archaeosporales contains three families with each one genus: the Ambisporaceae (genus 

Ambispora), the Geosiphonaceae (genus Geosipon) and the Archaeosporaceae (genus Archaeospora). 

The Glomerales contains two families: the Glomeraceae (genus Glomus, Funneliformis, Septoglomus, 

Rhizophagus and Sclerocystis) and the Claroideoglomeraceae (genus Claroideoglomus). 

The Diversisporales contains five families: the Gigasporaceae (genus Scutellospora, Gigaspora, 

Intraomatospora, Paradentiscutata, Dentiscutata, Cetraspora and Racocetra), the Pacisporaceae (genus 

pacispora), the Sacculosporaceae (genus Sacculospora), the Acaulosporaceae (genus Acaulospora) and 

the Diversisporaceae (genus Tricispora, Otospora, Diversispora, Corymbiglomus and Redeckera). 

Nomenclature of the widespread model fungus MUCL43194 or DAOM197198 was also clarified: this 

fungus pereviously called Glomus intraradices is newly named Rhizophagus irregularis (Redecker et al., 

2013). R. irregularis is a fast growing fungus colonizing many plants including M. truncatula, poplar 

(Populus trichocarpa), maize (Zea mays), rice (Oryza sativa), sorghum (Sorghum bicolor), Setaria italica 

and Brachypodium distachyon. It was shown to take up and transfer mineral nutrients like phosphorus 

(p), nitrogen (N) and sulfur (S) (Tian et al., 2010; Smith & Smith, 2011) and was used to identify signaling 

pathways during root colonization processes, nutrient assimilation and transport. Interestingly, 

transcriptomic data of R. irregularis confirmed the fungal dependence to plant carbohydrate supply 

(Tisserant et al., 2011).  

In view of the wide range of plant host species (perhaps 80-90% of land plants) and the low number of 

described AM fungal species, very low host specificity is assumed to exist (Smith & Read, 2008). The 

same AM fungus was shown to colonize different plants at the same site and one plant can be colonized 

by different AM fungi (van Tuinen et al., 1998; Fitter, 2005). However, Jansa et al. (2008) shown with 

real time PCR that the percentage of root colonization by coinoculated fungi varied depending on the 

host plant and on the fungal species. Additionally, Helgason et al. (2002) and Davison et al. (2011) 

observed non-random distribution of AM fungi among different host plants and suggested that some 

plant-fungus combinations might be more likely than others. Recently, Montesinos-Navarro et al. (2012) 

got similar results on plant-fungal networks. Moreover some AM fungi cannot be cultured in pot 
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cultures as described by Oehl et al. (2003) maybe due to the inappropriate host plant. These facts could 

indicate a degree of host specificity (Smith & Read, 2008). Among the described AM fungal species 

generalists (with low host preference) as well as specialists (with high host preference) might exist and 

different strategies of the host plant as well as of the AM fungi are very probable.  

AM fungi are present in very diverse ecosystems like tropical rainforests or temperate grasslands, and 

also in highly disturbed, nutrient-rich or poor, arid or wet habitats (Smith & Read, 2008). They have an 

impact aboveground on plant biomass and diversity. The response of individual plant species to AM 

fungi can vary a lot. Thus, some plant species exhibit biomass decrease of up to 45% in the presence of 

AM fungi in contrast to others where biomass increase in the same range was observed (Klironomos, 

2003). At the community level, presence of AM fungi can increase or in contrary decrease diversity and 

productivity (van der Heijden et al., 1998; Hart et al., 2003). The impact of AM fungi on plant diversity 

also seems to be linked to the identity of the plant dominating the community and its response to the 

association with AM fungi (van der Heijden & Horton, 2009). Interestingly, mycorrhizal growth response 

of a plant species in a community can be very different from the growth response of the same plant 

species grown individually (Facelli et al., 2010). This fact could be explained by the formation of a so-

called common mycorrhizal network (CMN) in plant communities. Indeed, due to the lack of specificity 

mentioned above, one AM fungus can colonize several plants, interconnecting them by a CMN. CMN 

promote plant interactions by allowing resource exchange directly from plant to plant (Simard & Durall, 

2004) thus influencing the plant community. CMN can also help seedling establishment (Wilkinson, 

1998). An interesting additional aspect of CMN is the carbon uptake from mycoheterotrophic plants 

through the CMN: these plants parasite the network. Mycoheterotrophic plants can have a reduced 

photosynthetic rate and become only part of their C from the CMN or be achlorophilous and rely 

entirely on their fungal partners to become C (Selosse et al., 2006). However, the presence of 

mycoheterotrophic plants does not seem to reduce the fitness of the other plants linked to the CMN 

(van der Heijden & Sanders, 2003). 

In addition to their effect on plant biomass and productivity, AM fungi have positive effects on drought 

and pathogen resistance of the plant (Newsham et al., 1995; Smith & Read, 2008) and influence the 

course of plant succession (Gange et al., 1990) 

Belowground, AM fungi influence the microbial diversity in the soil (Johnson et al., 2004) and affect 

growth of some soil bacteria and fungi (Filion et al., 1999). They also stabilize soil aggregates. Indeed, 
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AM fungi were shown to produce glomalin, a glycoprotein recalcitrant in the soil the concentration of 

which is correlated with aggregate stability (Wright & Upadhyaya, 1998).  

 

1.3 The root colonization process 

The establishment of the symbiosis is initiated by a mutual signal exchange between plants and fungi 

(Fig. 1). Plant roots were shown to stimulate germination of the spores (Graham, 1982), and the growth 

and branching of the fungal hyphae (Giovannetti et al., 1993) by releasing root exudates. The most 

important signals in these exudates proved to be the strigolactones (reviewed in Parniske, 2008). 

Indeed, strigolactones induce hyphal branching and alterate fungal physiology and mitochondrial 

activity (Akiyama et al., 2005; Besserer et al., 2006). The AM fungus, on its side, produces the so called 

“myc factors” (reviewed in Parniske, 2008). The presence of such “myc factors” was shown in 

experiments where plant symbiotic response was activated without direct contact with AM fungi 

(Kosuta et al., 2003). “Myc factors” turned out to be lipochitooligosaccharides resembling the “Nod-

factors” of rhizobia (Maillet et al., 2011). Interestingly, as the rhizobium-legume symbiosis appeared 

about 340 million years after the AM symbiosis (Maillet et al., 2011), “Nod-factors” could have been 

recruited and adapted from the “myc factors” explaining the similitude between both symbiosis 

pathways (Oldroyd & Downie, 2006; Parniske, 2008). 

After germinating and when entering in contact with the roots of a host plant, hyphae adhere to the 

root surface and form after 2-3 days appressoria called hyphopodia. Simultaneously and before any 

plant cell wall penetration by the fungus occurs, plant cells produce a prepenetration apparatus (PPA) 

(Genre et al., 2005) through which the hyphae can grow. Formation of the PPA is part of the processes 

involved in the reception of the fungus including among other things nuclear movements, alteration of 

the cytoskeletal activity and membrane proliferation (Genre et al., 2005). Moreover, genes regulation is 

modified during AM colonization not only in colonized but also in non-colonized cells (Gaude et al., 

2011).  

After penetrating the epidermis and the outer cortex, hyphae branch repeatedly inside the inner cortex 

cells to form arbuscules, tree like structures (Arum type) (Fig. 1.1) or coils (Paris type). Both arbuscules 

and coils are considerably increasing the surface of the fungal – plant interface and are the place of 

nutrient transfer. Arbuscules are usually short-lived (build and decay in about 7 days) (Smith & Read, 
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2008). The hyphae forming the arbuscules never penetrate the plasma membrane but always remain 

enveloped by it so that the fungus stays outside of the plant cell cytoplasm. The membrane enveloping 

the arbuscules is called periarbuscular membrane. It is derived from the plasma membrane but is 

functionally different: differential activities of specific enzymes, nutrient transporters and aquaporines 

have been reported (Gianinazzi-Pearson et al., 2000; Rausch et al., 2001; Harrison et al., 2002b; Glassop 

et al., 2005). The coils of the Paris type were less studied than the arbuscules of the Arum type. Here, 

hyphae are directly growing from one cell to the other without intercellular development. However, the 

rearrangement inside the cell (Cavagnaro et al., 2001) and the capability to exchange nutrients seems to 

be similar in the coils and in the arbuscules (Dickson & Kolesik, 1999). Additionally, coils also remain 

enveloped by the plant plasma membrane (Smith & Read, 2008). 

Vesicles are formed in the apoplast either intercellularly or intracellularly depending on the fungal 

species (members of the Gigasporaceae never form vesicles). They are thick-walled structures 

containing lipids and nuclei and are thought to be important storage organs (Fig. 1.1).  

After the establishment of the intraradical mycelium, an extensive extraradical mycelium is formed. 

Finally, new spores are formed on the extracellular hyphal tips but also sometimes inside the roots as in 

R. irregularis (Smith & Read, 2008).  
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Figure 1.1: Root colonization: The strigolactones are exudates released from the plant root inducing spore germination and 

hyphal branching. Myc factors from the fungus induce symbiosis-related genes. In contact with plant roots, AM fungi form 

hyphopodia. In response, plant produces a prepenetration apparatus (PPA) that guides the entering fungal hyphae through the 

root outer cortex. In the inner cortex, PPA like structures are made by the plant to host tree like structures called arbuscules 

where nutrient transfer takes place. Sometimes vesicles, which are thought to be storage organs, are formed in the apoplast. 

Outside of the roots, fungal extraradical mycelium develops. Modified after Parniske (2008). 

The extraradical mycelium (ERM) of the AM fungi (Figure 1.1 and 1.2) is very important for the nutrient 

uptake but also for the colonization of seedlings in perennial vegetation systems (Smith & Read, 2008). 

Two main types of ERM are present in the soil: (1) runner hyphae that are thick-walled and long-living 

and (2) branched absorbing structures (BAS) that are thin-walled and short-living hyphae. The runner 

hyphae search for nutrient patches and new host plants. They build a permanent base for the BAS 

hyphae that takes up nutrients and may associates with the roots of additional host plants. The 

diameter of the hyphae ranges from 10 to 15 μm for the thick-walled hyphae and from 1 to 7 μm for the 

thin-walled hyphae (Bago et al., 2004) allowing the latter ones to explore very fine soil pores. Hyphal 

networks can extend over very long distances: molecular fingerprinting revealed that a single fungal 

clone could possibly connect the roots of Hieraceum pilosella plants over 10m distance in an 

undisturbed sand-dune (Rosendahl & Stukenbrock, 2004). 
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Figure 1.2: Pot culture of AM fungal spores and hyphae from the extraradical mycelium of Glomus mosseae ISCB13. Scale: 

500 μm. Light microscopy picture done by myself.  

 

1.4 Nutrient exchange in the AM symbiosis 

The AM symbiosis is based on the reciprocal transfer of mineral nutrients and carbon (C) between AM 

fungi and plants. Plants forming AM symbiosis are mostly facultative symbionts and can grow in the 

absence of AM fungal colonization. In contrast, AM fungi are obligate symbionts and depend on the C 

from their host plant to complete their life cycle (Smith & Read, 2008). 

1.4.1 Carbon transfer 

In plants, sucrose (fructose β2↔1α glucose), the main form of sugar for long distance transport, is 

synthesized in the mesophyll and loaded into the phloem for transport before being released by sucrose 

transporters to a sink (Doidy et al., 2012). When released, sucrose can be stored or cleaved by sucrose 

splitting enzymes to yield glucose and fructose. AM fungi absorb about 20% of plant fixed carbon (C) and 

thus are an important sugar sink (Jakobsen & Rosendahl, 1990). Plant react to the presence of AM fungi 

by increasing photosynthetic and invertase activity, as well as transcript levels of plant sucrose 

transporter. Additionally, accumulation of sucrose and monosaccharide in plant roots colonized by AM 

fungi could be shown (Casieri et al., 2013). Sugar transfer between plant and fungi was demonstrated 

with 14C CO₂ labeling and with nuclear magnetic resonance spectroscopy (Pfeffer et al., 2001). The 
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transfer of sugar between plants and fungi occurs in the form of sucrose or monosaccharide. Indeed, 

plant sucrose transporters and plant monosaccharide transporters were found at the plant-fungus 

interface (Doidy et al., 2012). However, AM fungi seem to have a higher capacity to absorb glucose and 

fructose than sucrose (Shachar-Hill et al., 1995; Schüssler et al., 2006). As a matter of fact, expression 

and activity of plant sucrose cleaving enzymes were shown to be regulated in the presence of AM fungi 

and to influence the sugar fluxes between both partners (Hohnjec et al., 2003; Ravnskov et al., 2003). 

Once absorbed by the IRM of the fungi, glucose and fructose are rapidly incorporated into trehalose and 

glycogen (Shachar-Hill et al., 1995) to prevent accumulation in the cytoplasm. Additionally, lipids are 

synthesized in the IRM and transferred together with glycogen from the IRM to the ERM (Bago et al., 

2002). In the ERM, lipids are broken down to monosaccharide and trehalose or are stored in spores 

(Smith & Read, 2008). 

 

1.4.2 Mineral nutrient transfer 

BAS hyphae from the ERM of AM fungi (Bago et al., 2004) proliferate on nutrient rich patches or on 

organic matter (Joner & Jakobsen, 1995; Hodge et al., 2001; Cavagnaro et al., 2005) but relay on 

saprotrophic microorganisms to decompose organic matter (Hawkins et al., 2000; Whiteside et al., 

2009). From the soil, BAS hyphae take up mineral nutrients including phosphorus (P), nitrogen (N) or 

sulfur (S). This uptake is followed by the transport of nutrients from the ERM to the IRM. In the IRM, 

transfer occurs at the symbiotic interface between plants and fungi. Symbiotic interfaces are 

intracellular (interface with arbuscules or coils) or intercellular (interface with intercellular hyphae). 

However, intracellular interfaces are believed to be the main place of nutrient exchange. The interfaces 

are built as followed: the plasma membrane of the fungus is separated from the plant plasma 

membrane by an apoplastic interfacial compartment. For this reason, nutrient exchange requires the 

efflux from one partner and the uptake by the other (Smith & Read, 2008). The plant membrane at the 

symbiotic interface is called periarbuscular membrane (Pumplin & Harrison, 2009; Kobae & Hata, 2010). 

Interestingly, AM-mediated nutrient acquisition can be increased in plants by simultaneously harboring 

several fungal symbionts (Jansa et al., 2008) hypothesizing a degree of functional complementarity of 

different species in their nutrient acquisition.  
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Phosphorus transfer 

Phosphorus (P) is an important macro nutrient for plant growth. It is mainly absorbed by the plant in 

form of inorganic P (Pi), specifically H2PO4. However, it is often present only at very low concentrations 

in the soil (between 5 and 10 μM, Schachtman et al., 1998) and is nearly immobile (Hinsinger, 2001). For 

this reason a narrow so-called “depletion zone” is formed around plants roots: after rapid absorption of 

the available Pi, massflow of soil solution is unable to bring sufficient amount of Pi to plant roots (Smith 

& Read, 2008). Plants mycorrhized by AM fungi can absorb Pi through two different pathways; directly 

via the root epidermis including root hairs, or via the mycorrhizal pathway starting at the hyphae of the 

ERM (Smith & Read, 2008). Although both pathways absorb the same form of Pi, plants dramatically 

increase their P supply in association with AM fungi (Marschner & Dell, 1994) as fungal BAS hyphae 

forage the soil for nutrients beyond the depletion zone of the roots. They have a much smaller diameter 

(1-7 μm) than plant roots (>300 μm) and root hairs (5-17 μm) and get access to nutrients not accessible 

to the roots, which increase the explored soil volume of the plant (Drew et al., 2003; Schnepf et al., 

2011).  

In the ERM, Pi is taken up by fungal phosphate transporters (Pht) closely related to plant Phts. AM fungal 

Phts were cloned and appear to be high affinity transporters able to take up Pi in low concentration in 

the soil (Harrison & van Buuren, 1995; Maldonado-Mendoza et al., 2001; Benedetto et al., 2005). The 

absorbed Pi is then transformed to polyphosphate in the vacuoles to be translocated in vacuolar 

compartments from the fungal ERM to the IRM (Ezawa et al., 2004). In the IRM, polyphosphate is 

hydrolyzed to be transferred as Pi from the fungi to the plant. This whole transfer process is much faster 

than diffusion of Pi through the soil (Smith & Read, 2008). Consequently, hyphal transfer can overcome 

the limited P availability for plants resulting from the fast development of a depletion zone around the 

roots. 

Plant Phts are classified in three families: Pht1, Pht2 and Pht3 (Smith et al., 2003). The Pht1 family is 

further divided in four subfamilies (I-IV). Phts from the Pht1 family are responsible for a substantial part 

of total P uptake (Shin et al., 2004; Ai et al., 2009). A small group of Pht1 is induced by AM fungi. Most of 

these AM-inducible Phts are clustering together into the distinctive subfamily I, which contains Phts of 

monocots and dicots (Yang & Paszkowski, 2011; Casieri et al., 2013). These Phts are only expressed in 

AM plants as MtPT4 in Medicago truncatula or OsPT11 in rice (Harrison et al., 2002b; Paszkowski et al., 
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2002). Other AM-inducible Phts cluster in the evolutionary younger subfamily III containing only 

dicotyledonous species (Bucher, 2007). They have a basal expression also in non-mycorrhized plants 

(Rausch et al., 2001; Güimil et al., 2005; Maeda et al., 2006). 

At the symbiotic interface, AM-inducible Phts are believed to take up Pi delivered by the fungi. Indeed, 

AM-inducible Phts were localized mainly in cells harboring arbuscules (Rausch et al., 2001; Harrison et 

al., 2002b) and protein of an AM-inducible Pht, MtPT4, was found on the fine branches of developing 

mature arbuscules (Pumplin & Harrison, 2009). Moreover, M. truncatula mutants with a down-regulated 

MtPT4 expression showed a premature arbuscule death and a decreased colonization level (Javot et al., 

2007). The mutants had also significantly lower shoot P content than wild types in the presence of AM 

fungi. Similarly, L. japonicus mutants of LjPT3 had a reduced symbiotic P uptake and a reduced arbuscule 

development (Maeda et al., 2006).  

Plants can have more than one AM-inducible Pht raising the question of the redundancy of AM-

inducible Phts. In L. esculentum, mutants of the AM-inducible Pht LePT4 had a similar symbiotic P uptake 

and arbuscule development than wild type plants, indicating a possible redundancy with another AM-

inducible Pht1 (Nagy et al., 2005). However, in rice plants, Yang et al., (2012) found that only one of the 

two AM-inducible Pht1 was necessary for a functional symbiosis rejecting the hypothesis of a redundant 

function of both transporters in this plant.  

 

Nitrogen uptake and transfer 

In the soil, Nitrogen (N) is present in organic (No) and inorganic (Ni) form but No is the dominating form. 

Plants and the ERM of AM fungi can absorb Ni as nitrate or ammonium and some soluble forms of No 

like amino acids (Smith & Read, 2008). In contrast, the role of AM fungi in the mineralization of organic 

forms of N is still not totally clear. Hodge et al. (2001) observed that AM fungi enhance No 

decomposition as well as plant N capture but other work does not confirm these findings (Frey & 

Schüepp, 1993; Hawkins et al., 2000). Indeed, Ames et al. (1983) and Hawkins et al. (2000) both 

observed the transfer of 15N from an organic source but at a very slow and small rate, insufficient to 

influence the N status of the plants.  

Nitrate and ammonium are relatively mobile in the soil (nitrate more than ammonium) and can be 

transported to plant roots by mass flow, limiting the depletion zone around the roots. For this reason, 
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the question of the relevance of AM fungi in plant N nutrition was raised (Smith & Smith, 2011). 

Nevertheless, drought can restrict the mobility of nitrate and ammonium (Tinker & Nye, 2000) which 

could increase the relevance of AM fungi in N transfer (Tobar et al., 1994; Smith & Read, 2008). 

Additionally, N transfer by AM fungi could play an important role for plants growth on marginal soils, 

where nutrients are in short supply in soil. In the soil, plant roots also compete with microorganisms for 

N. The capability of microorganisms to absorb N was shown to be higher than the one of plants 

(Kuzyakov & Xu, 2013). Here, AM symbiosis enhances the competitive capacities of the plant to obtain 

the N they need. As a matter of fact, Mader et al. (2000) estimated the amount of N present in the plant 

and coming from the AM pathway to up to 42%. In monoxenic cultures of carrot roots, this amount was 

of about 30% (Govindarajulu et al., 2005). Tanaka & Yano (2005) found that even 74% of maize shoot N 

was derived from the AM fungi. 

More precisely, AM fungal ERM take up Ni as ammonium or nitrate. Thus, Govindarajulu et al. (2005) 

supplied 15NO3
- and 15NH4

+ to in vitro AM cultures of carrot (Daucus carota) colonized by Rhizophagus 

irregularis and observed the labeling of free amino acids in the ERM. In addition, in the AM fungus R. 

irregularis, ammonium transporters (AMT) were described (Lopez-Pedrosa et al., 2006; Pérez-Tienda et 

al., 2011).  

No is also taken up by the fungal ERM. Indeed, Whiteside et al. (2012) reported the uptake of No in the 

form of chitosan and glycine. Additionally, uptake of No from a labeled No patch was reported by Leigh et 

al. (2009). Like other fungi, AM fungi might have a preference for ammonium in comparison to nitrate 

because of the extra energy required to reduce nitrate to ammonium before its N can be incorporated 

into organic compounds (Marzluf, 1997). 

Although AM fungi are able to take up different forms of N, not all forms of N are transferred equally to 

the plant. Indeed, Ngwene et al. (2012) found out that more 15N was transferred to cowpea plants when 

the AM fungus R. irregularis had access to labeled nitrate compared to ammonium. In fact, the 15N 

shoot/root ratio of the plants was clearly higher in the 15NO3
- treatments. Ammonium was preferentially 

kept in the fungal mycelium or in plant roots indicating a much lower rate of transfer in the case of 

ammonium. However, contradictory results were obtained by Tanaka and Yano (2005): they observed 

that the AM fungus Glomus aggregatum can rapidly deliver ammonium-N to maize plants but not 

nitrate-N. These contrasting results might be due to the different AM fungi and host plant used in these 

experiments and could indicate a degree of functional complementarity of AM fungi.  
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Once internalized by the ERM, N has been showed to be assimilated and translocated to the IRM in form 

of amino acids, mainly in the form of arginine (Govindarajulu et al., 2005; Jin et al., 2005). More 

precisely, the Ni absorbed from the soil is converted to glutamine via glutamine synthase (GS) and then 

to arginine via Carbamoyl phosphate synthetase (CPS), Arginosuccinate synthase (ASS) and 

Arginosuccinate lyase (AL) in the urea cycle. The arginine obtained is transferred to the IRM but not to 

the plant as shown by labeling experiments using 14C (Govindarajulu et al., 2005). Indeed, arginine 

seems to be retransformed to glutamate via Ornithine oxoacid transaminase (OAT) and then to 

ammonium in the IRM to be transferred to the plant (Govindarajulu et al., 2005). This hypothesis has 

also been confirmed by studying the enzymatic activities in the ERM and in the IRM: Tian et al. (2010) 

shown that GS, CPS, ASS and AL were more expressed in the ERM and OAT more in the IRM. 

At the symbiotic interface, the transfer of ammonium from the IRM to the plant is expected to proceed 

by way of secretion of ammonium through unknown transporters present in the fungal plasma 

membrane into the periarbuscular space, followed by uptake through plant AMTs in the periarbuscular 

membrane (Fig.1.4). Here, a higher number of symbiotic interfaces could be important as Ames et al. 

(1983) reported that amount of N transferred to the plant was correlated with the percentage of root 

length colonized and with the hyphal length density.  
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Fig.1.4: Working model of nitrogen transport and metabolism in the symbiosis between plant roots and AM fungi. N moves 

(black arrows) from the soil into the fungal ERM, through a series of metabolic conversion reactions into Arginine, which is 

transported into the intraradical mycelium within the root (Host) and is there broken down; nitrogen is transferred to and 

assimilated by the host as ammonium (Tian et al., 2010). 

 

Plant ammonium transporters  

The first ammonium transporters isolated were MEP1 (Marini et al., 1994) from yeast and AtAMT1;1 

(Ninnemann et al., 1994) from Arabidopsis thaliana. Both were shown to be high affinity NH4
+ 

transporters (Km <0.5 μM) and were characterized in a yeast mutant defective in ammonium transport. 

Related proteins were found in bacteria (Siewe et al., 1996; Montesinos et al., 1998; van Dommelen et 

al., 1998), yeast (Marini et al., 1997) and animals (Caenorhabditis elegans), as well as in plants including 

Arabidopsis thaliana (AtAMT1;2 and AtAMT1;3 ; Gazzarrini et al. 1999), Brassica napus (BnAMT1;2; 

Pearson et al., 2002), Lotus japonicus (LjAMt1;1, LjAMT1;2 and LjAMT1;3: ; Salvemini et al., 2001; 

D’Apuzzo et al., 2004), Lycopersicon esculentum (LeAMT1;1, LeAMT1;2 and LeAMT1;3; Lauter et al. 

1996; von Wiren et al., 2000; Becker et al., 2002; Ludewig et al., 2002) and Oryza sativa (OsAMT1;1, 

OsAMT1;2 and OsAMT1;3 ; Sonoda et al., 2003). All these plant transporters had homology in the amino 



Chapter 1 General introduction 

21 

acid sequence over 70% and were classified in the AMT1 family (Fig.5) but not all of them were 

characterized as high affinity AMTs: AtAMT1;2 and AtAMT1;3 for example encoded low-affinity 

transporters with Km value of 25 to 40 μM (Gazzarrini et al., 1999).  

Three years after the discovery of AtAMT1;1, an entirely different AMT was discovered in A. thaliana: 

AtAMT2;1. It has only 25% homology with the other described A. thaliana AMTs and was shown to be 

more closely related to yeast MEP transporters than to the AMT1 subfamily (Marini et al., 1997). It was 

classified in a distinct family (Howitt & Udvardi, 2000; Loque & von Wiren, 2004), the AMT2 family. 

Members of the AMT2 family have introns in their DNA sequence in contrary to members of the AMT1 

family (except for LjAMT1;1; Salvemini et al., 2001). According to Suenaga et al. (2003), the AMT2 family 

can be further divided in three clades: AMT2, AMT3 and AMT4. Well-characterized members of the 

AMT2 family come from Glycine max (GmAMT4;1; Kobae et al., 2010), L. japonicus (LjAMT2;2; Guether 

et al., 2009b), and O. sativa (OsAMT2;1; Suenaga et al. 2003) (Fig.1.5).  
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Figure 1.5. Neighbor joining tree of the ammonium transporter (AMT) family, based on the full open reading frames. 
Bootstrap values are from 1000 replications. Sequence names consist of species code (first letter of genus and first letter of 
species name) and the AMT number. The scale indicates a distance equivalent to 0.1 amino acid substitutions per site. Species 
codes: Ec, Escherichia coli, Ne, Nitrosomonas europaea, Sc, Saccharomyces cerevisiae (chosen as outgroups); At, Arabidopsis 
thaliana, Gm, Glycine max, Lj, Lotus japonicus, Os, Oryza sativa, Ptr, Populus trichocarpa, Sb, Sorghum bicolor, Zm, Zea mays, 
Bd, Brachypodium distachyon, Si, Setaria italica. AM inducible AMTs are in red, AM-inducible AMTs from the Poaceae are in red 
and bold.  
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Plant AMTs have eleven transmembrane domains (Simon-Rosin et al., 2003; Sonoda et al., 2003; 

Couturier et al., 2007) similarly to AmtB from the bacteria E. coli (Zheng et al., 2004), GintAMT1 from the 

AM fungus G. intraradices (Lopez-Pedrosa et al., 2006) and AMT1 from the ectomycorrhizal fungus 

Hebeloma cylindrosporum (Javelle et al., 2003). Transport of ammonium through the pore also appears 

to be similar between plants, fungi and bacteria (Khademi et al., 2004) (Fig.1.6): NH4
+ is binding with 

high affinity to the pore, then transfers a proton to a pore-lining histidine residue. This proton is 

transported through the pore simultaneously with NH3 and goes back to the NH3 molecule shortly 

before it leaves the pore (Wang, S et al., 2012). In contrast, Human Rh-type AMTs were shown to have a 

different transport mechanism than plant AMTs (Mayer et al., 2006).  

 

 

Figure 1.6. Homology models of the E. Coli EcAmtB, S. bicolor SbAMT3;1, O. sativa OsAMT3;1, Z. mays ZmAMT3;1, B. 

distachyon BdAMT3;1, and S. italica SiMT3;1 transporters built using swiss-model web server.  
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Interestingly, some AMTs are up-regulated during mycorrhizal symbiosis in different plants, such as 

poplar (Populus trichocarpa: PtAMT1;2; Couturier et al., 2007), birdfoot trefoil (Lotus japonicus: 

LjAMT2;2; Guether et al., 2009b), and soybean (G. max: GmAMT3;1, GmAMT4;4, GmAMT4;1 and 

GmAMT1;4; Kobae et al., 2010). AM inducible AMTs are present in the AMT1, AMT2, AMT3 and AMT4 

cluster (Fig.1.5). Some AM-inducible AMTs seem to be conserved among plant families like AMT3;1 and 

could have evolved from a common ancestor. Others seem to have evolved independently (like 

GmAMT1;4 or PtAMT1;2). Interestingly, both PtAMT1;2 and LjAMT2;2 were characterized as high 

affinity AMTs.  

In L. japonicus, transcript of LjAMT2;2 was localized in arbusculated cells (Guether et al., 2009) using 

microdissection technology. Additionally, the highest uptake rate of this transporter at acidic pH 4.5 is 

fitting with the hypothesized localization at the periarbuscular membrane. Similarly, already described 

AM-inducible Phts were localized at the periarbuscular membrane (Harrison et al., 2002b; Balestrini et 

al., 2007). Nevertheless, transcript of LjAMT2;2 was also observed in non-colonized cortical cell near 

arbusculated cells raising the hypothesis that expression of AM-inducible AMTs is part of the 

prepenetration response of the plant.  

 

1.4.3 Reciprocity of nutrient exchange  

The question of the reciprocity of the exchange was addressed as the evolutionary success of the AM 

symbiosis supposed a regulation of nutrient exchange between both partners (Kiers & Denison, 2008). 

Reward mechanisms were studied first on the exchange of P and C between fungi and plants. 

Interestingly plant appeared to be able to reward with more C the fungi transferring more P (Kiers et al., 

2011). In a split-root experiment where both sides of the root system were mycorrhized with different 

AM fungi, a reward of the most beneficial fungus was also observed (Bever et al., 2009). In the opposite 

direction, AM fungi can reward an increased C transfer from the plant by delivering more P (Kiers et al., 

2011). However, different fungal responses to an increase in C supply were also observed: R. irregularis 

provided more P to the plant in direct exchange with more C but Glomus aggregatum did not (Kiers et 

al., 2011). Thus, the exchange of nutrients between plant and AM fungi is hardly one to one relation. 

Indeed, Walder et al. (2012) shown that different plants sharing a common mycorrhizal network do not 

invest and do not get the same amount of resources. In this study, sorghum (Sorghum bicolor) was 
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interconnected to flax (Linum usitatissimum) by G. mosseae or R. irregularis. The authors found out that 

sorghum invested much higher amounts of C in the common mycorrhizal network than flax when both 

plants were grown in mixed-cultures. However, flax obtained up to 94% of the N and P taken up by the 

fungi. Interestingly, G. mosseae and R. irregularis differed in their nutrient repartition between flax and 

sorghum revealing different strategies of these AM fungi. Interestingly, the biomass of sorghum was 

nearly not affected in mixed-culture even if it invested most C in the common mycorrhizal network. This 

finding supports the hypothesis that photosynthesis is not a limiting factor for plant growth (Körner, 

2003). 

Interestingly, a recent study by Fellbaum et al. (2012) shown that fungal N transfer might also be linked 

to C transfer from the plant. By manipulating the C supply to the fungi, the author shown that an 

increased C supply triggered the uptake and transport of N. They also found an influence of the C supply 

on the expression of fungal genes coding for enzymes of the N cycle. Expression of the enzymes 

argininosuccinate synthase, argininosuccinate lyase, carbamoyl-phosphate synthase, glutamate 

synthase, and glutamine synthetase 1 and 2 were up-regulated in the ERM of R. irregularis under 

conditions of increased C availability. 

All these results together underline the complex cross-talk between the symbiosis partners and show 

that both partners are controlling together the nutrient exchange during AM symbiosis.  

 

1.5 Host plants 

AM fungi have the capability to form a symbiosis with the roots of most land plants. Among the 

angiosperms, there are only a few exceptions: Colonization is unlikely to occur in families like 

Chenopodiaceae, Brassicaceae, Caryophyllaceae, Polygonaceae, Juncaceae and Proteaceae. Arabidopsis 

thaliana, the model organism used in plant biology and genetics belonging to the Brassicaceae family is 

a good example of a non-mycorrhizal plant: this is a severe disadvantage for studying molecular 

processes in the AM symbiosis. Nevertheless, also in non-mycorrhizal plant families, colonization can 

sometimes be observed (Veiga et al., 2013). As a matter of fact, environmental factors play an important 

role for AM colonization and changes could affect the mycorrhizal status of the plants (Smith & Read, 

2008). Indeed, some plant species from the family of the Chenopodiaceae were found to form AM 
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symbiosis in saline environments (Sengupta & Chaudhuri, 1990; van Duin et al., 1990). The genome of all 

plants might carry evolutionary footprints of present or former AM status and important genes for the 

AM symbiosis might be conserved between plant families. 

In temperate ecosystems, AM fungi are mostly colonizing herbs but also some trees as Populus, Acer, 

Malus or Salix. For this reason, AM fungi can be of crucial importance for reforestation programs and as 

inocula basis for annual plants. Interestingly, Populus and Salix are not only forming arbuscular 

mycorrhiza but can also form ectomycorrhiza (Walker & McNabb, 1984; Dhillion, 1994), another type of 

mycorrhizal symbiosis where the fungi stay outside of the roots and forms a Hartig net around root tips. 

In the case of poplar, the form of the symbiosis depends on the age of the plant, on soil depth, and on 

environmental factors like soil moisture (Lodge, 1989; Neville et al., 2002; Gehring et al., 2006). 

Remarkably, it was shown that both symbiosis forms have a different impact on plant gene expression. 

Actually, poplar gene expression of phosphate transporters can vary when plants are mycorrhized with 

ectomycorrhizal or with AM fungi (Loth-Pereda et al., 2011): PtPT10 was only induced in plants 

mycorrhized with G.mosseae or R. irregularis. The transporter was not expressed in the non-

mycorrhized roots or in the roots mycorrhized with Paxillus involutus or Laccaria bicolor. Also PtPT3, 

PtPT4/PtPT7 and PtPT5 shown a higher expression in the roots mycorrhized with G.mosseae or R. 

irregularis compared to non-mycorrhized roots or roots mycorrhized with P. involutus or L. bicolor. 

However, little is known about functional complementarity of both symbiosis forms when colonizing 

simultaneously the plant.  

Nevertheless, as mentioned before, in temperate ecosystems herbs are mostly forming AM symbiosis. 

Some of these herbs are of crucial importance in agriculture systems as for example cereals in the family 

of the Poaceae including maize, rice or sorghum. In my thesis, I focused on this plant family. 

 

1.5.1 The Poaceae 

The grass family Poaceae includes approx. 1000 extant species (Glémin & Bataillon, 2009). Maize, rice 

and sorghum are part of the plants domesticated by the human societies. Domestication of plants 

played an important role in the shift from hunting and gathering to agriculture. Through the 

domestication process, plant characteristics, like high yield, are selected and lead to a fast evolution of 

the species. Most of these plant alterations would be deleterious in the wild (Zohary, 2004).  



Chapter 1 General introduction 

27 

The Poaceae originated in the late Cretaceous (-80 million years ago (Mya)) (Prasad et al., 2005). In its 

evolution, the core Poaceae split into two major clades the BEP and PACCMAD clades (BEP: 

Bambusoideae, Ehrhartoideae, Pooideae and PACCMAD: Panicoideae, Arundinoideae, Centothecoideae, 

Chloridoideae, Aristidoideae, Danthonioideae) (Bouchenak-Khelladi et al., 2008), which diverged around 

or even before -55 Mya (Prasad et al., 2005) (Fig. 1.7). The subdomesticated and cultivated species 

found in the Poaceae belong to these two clades (BEP and PACCMAD) and are distributed in four 

subfamilies, two in each clade: the Ehrartoideae (rices) and the Pooideae (wheat, barley, rye and oat) in 

the BEP clade; and the Panicoideae (maize, sorghum, foxtail millet and sugar cane) and the 

Chloridoideae (finger millet and tef) in the PACCMAD clade. The Pooideae can be classified further in 

numerous tribes. Among them, the tribe Aveneae contains oat and the tribe Triticeae contains species 

such as wheat, barley and rye which emerged ca. 12 Mya (Gaut, 2002; Huang et al., 2002). Within the 

Panicoideae, a tribe of closely related species, the Andropogoneae, includes maize sorghum and sugar 

cane and emerged between 9 and 16 Mya (Gaut, 2002). 

Probably, domestication started with the Pooideae about 12000 years ago in the region of the Fertile 

Crescent (today Israel, Jordan , Syria, Irak, Libanon and parts of the Turkey) (Frankel et al., 1995). The 

Pooideae include only C3 species and were domesticated in boreal regions as well as in temperate 

regions. The Panicoideae and Chloridoideae were domesticated probably a little later in the tropics and 

subtropics and include also C4 species (Glémin & Bataillon, 2009). Interestingly, in America, maize was 

nearly the only domesticated cereal grass and other crops like potato, bean and pumpkin were playing 

an important role for the establishment of agriculture.  
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Fig. 1.7: Evolution of the Poaceae (modified after Glémin and Bataillon 2009) 

Domestication is usually associated with a loss of diversity in the genome due to a rather intense 

selection on a subset of wild genotypes with desirable characteristics. Indeed, it was shown that 

genomic diversity present in wild ancestors is higher than in the domesticated species (Glémin & 

Bataillon, 2009). However, the ability to form AM symbiosis did not get lost in domesticated grasses 

even under conditions of intensive agriculture that are common today. 

In the following paragraphs, the grasses used as models in my thesis are briefly presented. 
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Sorghum 

Sorghum (Sorghum bicolor) is an herbaceous plant belonging to the Panicoideae (Fig. 1.7). It is a C4 plant 

and can produce good yield under more arid conditions than most other cereal crops. Thus, it is an 

existential source of food, feed, or fiber for farmers living in the semi-arid tropics of Africa, Asia and 

South America (Paterson et al., 2009). The semi-arid tropics include most of India, South-East Asia, Sub-

Saharan Africa, most of southern Africa and part of Latin America. Typically, the semi-arid tropics have 

limited, erratic rainfall. Often, sorghum is grown in drought prone areas that are not suitable for maize 

cultivation. In the southern plains of the USA, sorghum is mainly grown for the production of biofuel. 

The total production of sorghum around the world in 2010 was of over 55 million tones and the total 

cultivated area over 40 million hectares (http://faostat3.fao.org/home/index.html). In 2010 the USA was 

the country with highest production of sorghum (8.7 million tones). Sorghum is the fifth most cultivated 

crop plant just after maize, rice, wheat and barley. 

The sorghum genome was sequenced and annotated (Paterson et al., 2009), revealing a relatively small 

genome (about 730 Mb). Its ability to form AM symbiosis makes sorghum to a good model plant to 

study AM-plant interactions at molecular level. 

 

Maize 

Maize (Zea mays) is the domesticated variant of the grass teosinte and originates from Central America 

(Doebley et al., 2006). As sorghum, it a C4 plant belonging to the Panicoideae (tribe Andropogoneae). 

Maize is a monoecious plant and develops unisexual male and female flowers in separated parts of the 

plant. Maize is used mainly for food, feed and biofuel production. It is the worldwide most cultivated 

crop plant with a production of 840 million tons per year, thereof 316 million tons in the USA in 2010 

(http://faostat3.fao.org/home/index.html). Additionally, maize is an important model organism for 

fundamental research into the inheritance and functions of genes, epigenetic silencing or transposition 

(Schnable et al., 2009). In contrast to sorghum, maize has undergone several genome duplications and 

its genome size increased to 2300 Mb over the last 3 million years (Schnable et al., 2009). 
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Rice 

Rice (Oryza sativa or Oryza glaberrima) belongs to the Ehrartoideae. It is a C3 plant which can be grown 

in relatively wet environment where no other crop are capable to grow. Rice is the second most 

cultivated crop after maize. It is of crucial importance especially in Asia and is the staple food for over 

half of the world’s population (www.rice2004.org). The worldwide rice production reached 696 million 

tons in 2010 thereof 197 million tons in China, the country producing most rice over the world 

(http://faostat3.fao.org/home/index.html).  

The genome of rice has a size of about 389 Mb, one of the smallest cereal genome sizes. Moreover, rice 

is relatively easily genetically transformed (stable transformation with Agrobacterium for example; Toki, 

1997), making rice an ideal model organism for the cereal grasses (Sequencing ProjectInternational Rice, 

2005).  

 

Brachypodium distachyon 

Brachypodium distachyon (Purple false brome) is a wild annual grass endemic to the Mediterranean and 

Middle East (Draper et al., 2001). It belongs to the Pooideae, like wheat, barley and most cool season 

cereals. Actually, it was the first member of the Pooideae the genome of which was fully sequenced 

(Initiative, 2010) (the genome is available at http://www.brachypodium.org/). Purple false brome has a 

relatively small genome size compared to the other Poaceae (about 272 Mb) and has a short generation 

time, making it a good model for plant molecular geneticists (Draper et al., 2001). 

 

Setaria italica 

Setaria italica (Foxtail millet) belongs to the Panicoideae like sorghum and maize. It is grown mainly in 

Asia. Setaria italica’s genome was sequenced and annotated recently (Zhang et al., 2012). Its genome 

size is similar to rice with about 490 Mb. The agricultural importance of foxtail millet is limited, due to its 

low productivity. However, foxtail millet is closely related to switchgrass (Panicum virgatum) and napier 

grass (Pennisteum purpureum) used for the production of biofuel. Additionally, high-throughput 

platforms for its transformation exist.  
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1.6 Aims and structure of this thesis 
 

In order to understand the factors regulating the transfer of mineral N from different AM fungi to an 

important crop plant, Sorghum bicolor, the following objectives were defined for this thesis:  

(I) identify and characterize of the AMTs of S. bicolor by genome analysis and qRT-PCR analysis 

to measure transcript accumulated in various nitrogen treatments and in the presence or 

absence of AM fungi 

(II) study the functional evolution of AM-inducible AMTs: did they evolve independently in S. 

bicolor and in other cereals like maize, rice, foxtail millet and purple false brome or were 

they present in a common ancestor of these plants? 

(III) find out the effect of different N sources on the N cycle of the AM fungi R. irregularis by 

studying the expression of gene coding for enzymes from the N cycle as well as ammonium 

and nitrate transporters under various nitrogen statuses. 

(IV) determinate the time course of N transfer between G. mosseae and sorghum 

(V) assess the importance of functional AM-inducible AMTs for a working AM symbiosis by 

producing transgenic rice plants in which these transporters are silenced 

 

Chapter 1 is an introduction on mycorrhizal fungi. 

In chapter 2, I present my results on the characterization of S. bicolor AMTs. These data provide 

information on the expanded family of AMTs present in the genome of S. bicolor, on their expression in 

different plant tissues and under different N status and mycorrhizal conditions. The AM-inducible AMTs 

were characterized in yeast to confirm their functionality. We also localized the transcript and the 

protein of one AM-inducible AMT in mycorrhized S. bicolor roots and elucidated the pattern of 

expression of this transporter using a combination of various and complementary methods: laser 

microdissection technology, western blots and immunolocalization. This chapter has been published 

already in “New Phytologist”. 

The question of the evolution of AM-inducible AMTs is raised in chapter 3. The aim of this study was to 

understand the stability of AM-inducible AMTs in an evolutionary point of view and to study the 
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polymorphism of these genes among different cereal plants. We studied the expression of two AM-

inducible AMTs (AMT3;1 and AMT4) in different plant species belonging to the family of the Poaceae. 

For all the plant studied, AMT3;1 was additionally characterized in yeast and it’s three dimensional 

structure was simulated revealing a very interesting conserved evolution. A publication on this study is 

in preparation. 

Chapter 4 highlights the role of N source in the transfer of N from the AM fungi to the plant. As shown 

by Tian et al. (2010), AM fungi can take up N in different forms and transform it into arginine to transfer 

it from their ERM to their IRM. Finally, the arginine is released in glutamate and ammonium to be 

transferred from the AM fungi to the plant. For this reason, different enzymes are expressed in the ERM 

and in the IRM of AM fungi depending on the N source. Here we studied the effect of different N 

sources on the expression of genes coding for enzymes described by Tian et al. (2010). Additionally, to 

complete the picture, we looked at the expression level of additional enzymes and of fungal ammonium 

and nitrate transporters. The plant side was also analyzed: expression level of the plant glutamine 

synthase under the different N sources was quantified. The publication on this study is in preparation. 

A short communication submitted to “Plant signaling and behavior” is presented in chapter 5. In 

contrast to P, N is relatively mobile in the soil compensating the depletion zone around roots. For this 

reason the question of the role of AM fungi for plant N nutrition has been raised. Here, we demonstrate 

the efficiency and rapidity by which the AM fungus G. mosseae to takes up N and transfers it to its plant 

partner. These data highlight the role of AM fungi for plant N acquisition. 

A paper by Florian Walder et al. of which I am a co-author is shown in the appendix I. Florian Walder 

made a PhD thesis on common mycorrhizal network at our institute. I contributed to this paper 

collaborating with Florian Walder and particularly by sampling, extracting RNA and synthesizing cDNA of 

the field S.bicolor plants as well as by designing quantitative PCR primers for the reference gene 

ubiquitin. 

In appendix II, two special techniques are explained :(I) lasermicrodissection and (II) amiRNA. In (I) a 

poster from Arnould et al. about laser microdissection technology is also shown. This poster was 

presented at the third “Journée Francophones Mycorhizes” in Nancy. It highlights the methods we 
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developed in collaboration with the group of Prof. Daniel Wipf (INRA, Dijon, France) to obtain high 

quantity and quality RNA and proteins using laser microdissection technology. 

Appendix III concerns the functional analysis of transgenic rice plants with silenced OsAMT3;1 or 

OsAMT4 transporters. After the results of chapter 2 and 3, it appears that AMT3;1 and AMT4 are up-

regulated in sorghum as well as in maize, rice, foxtail millet and purple false brome. Rice can be more 

easily transformed compared to sorghum. So, we produced transgenic rice plants which AMT3;1 and 

AMT4 genes were silenced, using the amiRNA technology. Our goal was to understand the importance 

of AM-inducible AMTs for a functioning symbiosis by silencing the AMT3;1 and AMT4. This work was 

made in collaboration with CIRAD Montpellier (France). Rice cali were transformed with artificial micro 

RNA constructs designed to silence OsAMT3;1 or OsAMT4. Regenerated plants containing only one copy 

of the construct were selected. Seeds of these selected plants were then planted in presence or absence 

of AM fungi to check functionality of the construct and preliminary results are shown in this chapter. We 

plan to publish these data together with additional experiments on the capability of the mutants to 

transport N in the presence of AM fungi. 
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2. The Family of Ammonium Transporters (AMT) in Sorghum bicolor: Two 

mycorrhizal-induced AMTs are expressed locally, but not systemically in 
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Supplemental Materials and Methods S1 

Plant growth conditions for tissue analysis  

Five different Hoagland solutions, modified after Gamborg & Wetter (1975), were prepared to obtain 

different N sources or N concentrations: "-N" (Ca(NO₃)₂·4H₂O, KNO₃ and NH₄H₂PO₄ from the original 

solution were replaced by CaCl₂·2H₂O, KCl and KH₂PO₄), 1xNO₃⁻  (NH₄H₂PO₄ was replaced by KH₂PO₄), 

0.3xNO3⁻ and 0.1xNO3 (mixtures of -N and 1xNO₃⁻) and 1xNH₄⁺ (Ca(NO₃)₂·4H₂O, KNO₃ and NH₄H₂PO₄ 

from the original solution were replaced by CaCl₂·2H₂O, KCl, NH₄Cl and KH₂PO₄). Additionally, for all the 

solutions, (NH₄)2MoO₄ was replaced by Na₂MoO₄. 

 

Identification and characterization of sorghum AMT transporters 

Sequences from the S. bicolor genome (v1.1) database were: SbAMT1;1 (Sb06g022230), SbAMT1;2 

(Sb04g026290), SbAMT2;1 (Sb09g023030), SbAMT2;2 (Sb03g038840), SbAMT3;1 (Sb03g041140), 

SbAMT3;2 (Sb01g001970), SbAMT3;3 (Sb04g022390), SbAMT4 (Sb01g008060). The accession numbers 

or gene models of UniProt data base were used: PtrAMT1;1 (B9HSW3), PtrAMT1;2 (B9IPE2), PtrAMT1;3 

(B9HKW8), PtrAMT1;4 (B9GRB5), PtrAMT1;5 (B9GRB4), PtrAMT1;6 (B9HP47), PtrAMT2;1, (B9HCZ0), 

PtrAMT2;2 (B9IGE2), PtrAMT3;1 (B9GHA5), PtrAMT4;1 (B9GS88), PtrAMT4;2 (B9IKS2), PtrAMT4;3 

(B9H8E7), PtrAMT4;4 (B9I5F0), PtrAMT4;5 (B9MX92). Arabidopsis thaliana (at NCBI): AtAMT1;1 

(At4g13510), AtAMT1;2 (At1g64780), AtAMT1;3 (At3g24300), AtAMT1;4 (At4g28700), AtAMT1;5 

(At3g24290), AtAMT2;1 (At2g38290), Lycopersicon esculentum: LeAMT1;1 (P58905), LeAMT1;2 

(O04161), LeAMT1;3 (Q9FVN0), Lotus japonicus: LjAMT1;1 (Q9FSH3), LjAMT1;2 (Q7Y1B9), LjAMT1;3 

(Q70KK9), LjAMT2;1 (Q93X02), Oryza sativa: OsAMT1;1 (Q7XQ12), OsAMT1;2 (Q6K9G1), OsAMT1;3 

(Q6K9G3), OsAMT2;1 (Q84KJ7), OsAMT2;2 (Q8S230), OsAMT2;3 (Q8S233), OsAMT3;1 (Q84KJ6), 

OsAMT3;2 (Q851M9), OsAMT3;3 (Q69T29), OsAMT4;1 (Q10CV4), Brassica napus: BnAMT1;2 (Q9FUH7), 

Populus tremula x tremuloides: PttAMT1;2 (Q5K411), Triticum aestivum: TaAMT1;1 (Q6QU81), TaAMT1;2 

(Q6QU80), TaAMT2;1 (Q6T8L6), Nitrosomona europeae: NeAMT/Rh1 (Q82X47), Escherichia coli: EcAMTB 

(P69681). 

 

The accession numbers of the Phytozome 6.0 database were used for soybean (Glycine max) as follows: 

GmAMT1.1 (Glyma20g21030.1), GmAMT1;2 (Glyma10g26690.1), GmAMT1;3 (Glyma10g31080.1), 

GmAMT1;4 (Glyma10g31110.1), GmAMT1;5 (Glyma1031130.1), GmAMT1;6 (Glyma20g36390.1), 
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GmAMT2;1 (Glyma07g18670.1), GmAMT2;2 (Glyma18g43540.1), GmAMT2;3 (Glyma01g30920.1), 

GmAMT3;1 (Glyma05g33010.1), GmAMT4;1 (Glyma09g41810.1), GmAMT4;2 (Glyma20g00680.1), 

GmAMT4;3 (Glyma19g43380.1), GmAMT4;4 (Glyma02g04960.1), GmAMT4;5 (Glyma02g16200), 

GmAMT4;6 (Glyma10g03600.1).  

PCR amplification of the full-length cDNAs, from the start to the stop codon, with primers designed using 

the nucleotide sequences of manually annotated gene models (Supplementary Table 1), was performed 

on a T3 thermocycler (Biometra, Labgene Scientific SA, Switzerland) using the Advantage 2 Polymerase 

Mix (Clontech). PCR reactions resulted in single bands on a 1% agarose gel (Promega, Madison, WI, USA) 

in 0.5% TAE (Tris Acetate-EDTA) stained with Midori Green according to manufacturer’s instructions 

(Labgene, Chatel-St-Denis, Switzerland). Amplified products were purified with ExoSAP treatment (USB, 

Cleveland, Ohio, USA) and direct cDNA sequencing was performed on a 3500 Genetic Analyser (Applied 

Biosystems, Courtaboeuf, France). 

 

RNA isolation and quantitative reverse transcription-PCR 

Mycorrhizal and non-mycorrhizal roots, as well as shoots, stems, stamina and pistils were ground in 

liquid nitrogen and total RNA was isolated using the RNeasy Plant Mini kit (Qiagen, Darmstadt, 

Germany). The DNA-free set (Ambion, Austin, USA) was used to digest DNA after RNA purification. Full-

length doubled-stranded cDNAs corresponding to mRNAs expressed in plant roots were obtained using 

the SMART–PCR cDNA Synthesis Kit (Clontech, Palo Alto, CA, USA). 

Quantification of AMT transcripts was performed using a two-step quantitative RT-PCR (qRT-PCR) 

procedure. Total RNA was measured with a spectrophotometer (Nanodrop ND-1000, Witec, Switzerland) 

and then reverse-transcribed (100 ng per reaction) using the iScript cDNA Synthesis kit (Bio-Rad, Paolo 

Alto, CA, USA). cDNAs were used as templates in real time quantitative PCR reactions with gene-specific 

primers designed using Primer 3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) and 

amplify 3.1 (http://engels.genetics.wisc.edu/amplify) (Supplementary Table S1). The following criteria 

were used: product size between 100 and 400 bp, melting temperature 60°C and a GC percentage > 

50%. Target gene expression was normalized to the gene encoding the S. bicolor ubiquitin (Protein 

5060159). Reactions of qPCR were run using the 7500 real-time PCR system (Applied Biosystems). The 

following cycling parameters were applied: 95°C for 3 min and then 40 cycles of 95°C for 30 s, 60°C for 1 

min and 72°C for 30 s. A control with no cDNA was run for each primer pair. For data analysis, the 
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geometric mean of the biological replicates (n = 4) was calculated. The primer efficiency ranged between 

90% and 110%. 

 

Immunolocalization 

Immunolocalization was performed essentially as described by Blancaflor et al. (2001) with minor 

modifications. Root pieces were fixed for 2 h in 4% formaldehyde and 5% (v/v) DMSO in PME buffer (50 

mM Pipes, 5 mM MgSO4, and 10 mM EGTA, pH 6.9), and hand sectioned with a razor blade. The root 

segments were fixed temporarily to a cover slip with a thin layer of agar as described by Brown and 

Lemmon (1995) and then were digested in 1% cellulase RS, 0.01% pectolyase Y23 (Karlan Research 

Products, Santa Rosa, CA), and 0.1% BSA in PME buffer for 10 min. After digestion, the segments were 

washed three times for 5 min each with PME buffer and then incubated in 1% BSA in PBS (135 mM NaCl, 

25 mM KCl, and 10 mM Na2HPO4), pH 7.5) for 30 min. The BSA was removed, and the segments were 

incubated overnight with SbAMT3;1 antibody (1:100) in PBS containing 0.5% (w/v) BSA. The segments 

were washed five times in PBS and incubated in the secondary antibody conjugate, a 1:800 dilution of 

donkey anti-rabbit IgG–AlexaFluor 488 conjugate (Molecular Probes, Eugene, OR) in PBS for 2 h. After 

five washes in PBS, the segments were incubated in 0.1 mg/mL wheat germ agglutinin–AlexaFluor 594 

conjugate (Molecular Probes, Eugene, OR) in PBS for two hours to stain the fungus (Genre & Bonfante, 

1997). After five more washes in PBS, the sections were mounted in 20% (w/v) Mowiol 4-88 containing 

0.1% (w/v) phenylenediamine in PBS, adjusted to pH 8.5 with NaOH, and viewed using a confocal and an 

epi-fluorescence microscope. 

 

Isolation of plasma membrane and soluble proteins 

300 mg of either non-mycorrhizal or mycorrhizal roots were ground in liquid nitrogen with a mortar and 

mixed with grinding solution I (0.5 M Tris-HCl buffer, pH 7.5, 50 mM EDTA, 0.1M KCl, 2 % (v:v) β-

mercaptoethanol, 2 mM phenylmethylsulfonyl fluoride, 0.7 M sucrose, 10mM thiourea) at a ratio of 5 : 1 

(volume/fresh weight). The mixture was centrifuged at 18000 g for 5 min at 4°C. The supernatant was 

collected to analyze soluble proteins and the pellet for cell wall proteins. 

The supernatant was mixed with cold acetone (2:1, v:v) and soluble proteins were precipitated at -20°C 

for a minimum of 2 hours. The mixture was then centrifuged at 18000 g at 4°C for 15 min. The pellet was 

resuspended and centrifuged as previously. The supernatant was removed, and the pellet was air dried 



Chapter 2  AM-inducible AMTs in sorghum 

52 

and then resuspended in 100 μl of Laemmli’s buffer. 

The pellet was resuspended in grinding solution II (330 mM sorbitol 2 mM Hepes, 10 mM KCl, 0.1 mM 

DTT, pH 7.8) and phenol (1:1, v:v) was added. After shaking, the aqueous phase and the phenol/water 

interface containing cell debris were kept for the extraction of plasma membrane proteins. Cell walls 

were recovered by mixing 800 μl of the above mentioned aqueous phase with 800 μl of Wessels solution 

(100 mM Tris-HCl pH 8.0, 10 mM MgSO4, 1 mM phenylmethylsulfonyl fluoride, 0.2 % (v:v) β-

mercaptoethanol) (Wessels et al. 1991). The suspensions were then centrifuged at 15000 g for 15 min at 

4°C. Pellets containing cell walls were washed three times with 800 μl of Wessels solution, twice with 

800 μl of water, once in 800 μl of cold acetone, and dried. Noncovalently bound proteins were extracted 

from cell walls by incubation of 5 mg of dried cell walls in 100 μl of Laemmli’s buffer (Laemmli 1970) at 

100°C for 10 min. 

 

Supplemental References 

Genre A, Bonfante P (1997) A mycorrhizal fungus changes microtubule orientation in tobacco root cells. 
Protoplasma 199: 30-38 
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N content in Sorghum
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Figure S2: Total N content in plants at the first (5 weeks post-inoculation), second (9 weeks post-inoculation) and 

third (13 weeks post inoculation) harvest in plants either non-colonized or colonized by arbuscular mycorrhizal fungi 

(Gi; Glomus intraradices, Gm; Glomus mosseae) and in the different N treatments (-N, 1× NH₄⁺, 1× NO₃⁻, 0.3× 

NO₃⁻ and 0.1× NO₃⁻).  
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Figure S3: Shoot (up) and root (down) dry weight (g) at the first (5 weeks post-inoculation), second (9 weeks post-

inoculation) and third (13 weeks post inoculation) harvest in plants either non-colonized or colonized by arbuscular 

mycorrhizal fungi (Gi; Glomus intraradices, Gm; Glomus mosseae) and in the different N treatments (-N, 1× NH₄⁺, 

1× NO₃⁻, 0.3× NO₃⁻ and 0.1× NO₃⁻).  
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Primer Sequence 5’→ 3’ 

SbAMT1;1Fw 
SbAMT1;1R 

GCTGTGGTTCGGCTGGTA 
GGACTTGAGGATGGTGGTGAA 

SbAMT1;2Fw 
SbAMT1;2R 

TCCATTGCTCCTCGTTGC 
GGCTTTGCTCCCTCTTCC 

SbAMT2;1Fw 
SbAMT2;1R 

TCCCGCCCGCCTACAGCT 
GTCACCATTCAGCTGTAG 

SbAMT2;2Fw 
SbAMT2;2R 

GCGGCTTCCTCTACCAGTG 
CCTCTCCCTGTCGCTCTTC 

SbAMT3;1Fw 
SbAMT3;1R 

GGCCTCGTCTGCATCACT 
GGGTGTCGTCCACTTGCT 

SbAMT3;2Fw 
SbAMT3;2R 

CCGCACGCACTCTATCTGTA 
TCGCTGCTTATTGGGGTTAG 

SbAMT3;3Fw 
SbAMT3;3R 

CGTCATTGCCTGGAACATC 
AGCATCATCCCCGATAAGC 

SbAMT4Fw 
SbAMT4R 

CGAACAACATTCTCCTGACG 
CCCGAACACGAAGCAGTC 

SbUbiFw 
SbUbiR 

CAAGGAGTGCCCCAACAC 
GGTAGGCGGGTAAAGCAAA 

EIF Fw 
EIF R 

CGTCGGTCTCACCACTGAA 
GACCTGAGCTTGGAAGGAAG 

SbPt11Fw 
SbPt11R 

CGTGGTTCCTTCTGGACATA 
TCTCGAACACCTCCTTGAGT 

Sb1;1Fw full-length 
Sb1;1R full-length 

CCCAAGATGTCGACGTGC 
TCACCTGTAGCCGGCCGCC 

Sb1;2Fw full-length 
Sb1;2R full-length 

CCGGTGGAGATGGCGACG 
TATGCCCCACTAGAACTC 

Sb2;1Fw full-length 
Sb2;1R full length 

CGAGCTCGATGGCGGCGT 
GTCACCATTCAGCTGTAG 

Sb 2-2Fw full length 
Sb2;2R full length 

CCACCGGAATGGCGTCGC 
CGGAGAGGAGCTACAGCT 

Sb 3;1Fw full length 
Sb3;1R full length 

CCGCGAGGATGGCGAGCC 
CGCCGTGCACGGCGTCGTCGCC 

Sb 3;2Fw full length 
Sb 3;2R full length 

CGTCGGCAACTAACATG 
TCAATTCGGGGTCGTGGACAC 

Sb 3;3Fw full length 
Sb3;3R full lenght 

GTGCCAGCCATGGCAGCA 
TCAAACATTCTGTGTAACTC 

Sb4Fw full length 
Sb4R full length 

CCTCCGAGCTGAGATGGC 
TCATATCATCTCGTCGGCTTTG 

 

Table S1: Specific primers for real-time quantitative PCR (grey) and for full-length gene amplification (white) 
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Model name Gene name Protein ID Strand Introns CDS (bp) Legth of the 
AA sequence 

Supporting 
EST 

Location Best blast hit 
with AMTs (%) 

Sequence logo of AMT1 and AMT2 signal  

Sb06g022230 SbAMT1-1 5057502 
 

+ 1 1602 
 

496 + 6:51467178-51475592 
 

Zea mays 
NM_00114735
6.1 
(96) 

DFAGSGVVHMVGGIAGLWGALIEGPR 

Sb04g026290 SbAMT1-2 5055467 
 

+ 0 1470 
 

489 + 4:56058065-56059793 
 

Zea mays 
NM_00113698
4.1 
(95) 

DFAGSSVVHMVGGIAGLWGALIEGPR 

Sb09g023030 SbAMT2-1 5060664 
 

+ 2 1476 
 

491 + 9:52669835-52672606 
 

Zea mays 
NM_00115431
1.1 
(94) 

DYSGGYVIHLSSGVAGFTAAYWVGPR 

Sb03g038840 SbAMT2-2 5036873 
 

- 2 1497 
 

498 + 3:66640934-66642611 
 

Oryza sativa 
NM_00105123
7.1 
(90) 

DYSGGYVIHLSSGIAGFTAAYWVGPR 
 

Sb03g041140 SbAMT3-1 5036989 
 

+ 1 1467 
 

488 + 3:68682524-68685235 
 

Zea mays 
NM_00115254
1.1 
(95) 

DYSGGYVIHLSSGVAGFTAAYWVGPR 

Sb01g001970 SbAMT3-2 5047758 
 

- 0 1452 
 

483 + 1:1689233-1693195 
 

Zea mays 
NM_00117487
2.1 
(93) 

DYCGGYVIHLSAGFAGFTAAYWVGPR 

Sb04g022390 SbAMT3-3 5055240 
 

+ 1 1455 
 

484 + 4:51883452-51888136 
 

Zea mays 
NM_00116584
6.1 
(93) 

DYSGGYVIHLSSGIAGLTAAYWVGPR 

Sb01g008060 SbAMT4 5028300 
 

- 1 1425 
 

474 + 1:6978013-6979495 
 

Oryza sativa 
AC091811.7 
(86) 

DFAGGYVIHLSSGIAGFTAAYWKKLI 

Table S2: Characteristics of the S. bicolor AMT gene family. 

 
 
 SbAMT1;1 SbAMT1;2 SbAMT2;1 SbAMT2;2 SbAMT3;1 SbAMT3;2 SbAMT3;3 SbAMT4 

SbAMT1;1  78.3 24.1 20.1 22.4 24.1 24.0 24.2 

SbAMT1;2 84.8  25.7 20.6 24.7 24.5 24.3 27.1 

SbAMT2;1 41.1 45.2  58.0 66.2 66.2 64.0 58.4 

SbAMT2;2 35.3 37.6 68.5  46.7 46.3 47.0 41.0 

SbAMT3;1 40.3 43.8 80.0 61.2  72.1 68.8 58.9 

SbAMT3;2 39.4 44.6 78.2 59.0 83.6  69.6 60.7 

SbAMT3;3 40.0 44.0 80.0 60.2 83.6 84.9  58.5 

SbAMT4 43.2 46.6 73.5 56.6 74.6 77.4 77.1  

 
Tab. S3: Amino acid sequence similarity (grey) and identity (white) between the AMT of S. bicolor: SbAMT1;1, 

SbAMT1;2, SbAMT2;1, SbAMT2;2, SbAMT3;1, SbAMT3;2, SbAMT3;3 and SbAMT4. 
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 Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 5 

 -N 
-AMF 

-N 
-AMF 

-N 
+AMF 

-N 
+AMF 

-N 
-AMF 

-N 
+AMF 

+N 
-AMF 

+N 
-AMF 

+N 
+AMF 

+N 
+AMF 

Root dry 
weight % 

49.4 +/- 
5.44 

50.6 +/- 
5.44 

52.75 +/-
3.47 

47.25 +/- 
3.47 

56.18 +/- 
6.05 

43.81 +/- 
6.05 

55.87 +/- 
8.20 

44.14 +/- 
8.20 

49.01 +/- 
19.37 

50.99 +/- 
19.37 

 Treatment 6 Treatment 7 Treatment 8 Treatment 9 Treatment 10 

 +N 
-AMF 

+N 
+AMF 

-N 
-AMF 

+N 
-AMF 

-N 
+AMF 

+N 
+AMF 

-N 
-AMF 

+N 
+AMF 

+N 
-AMF 

-N 
+AMF 

Root dry 
weight % 

62.46 +/- 
18.33 

37.53 +/- 
18.33 

49.86 +/- 
9.37 

50.13 +/- 
9.37 

42.32 +/-
7.85 

57.67 +/- 
7.85 

55.46 +/-
14.57 

44.53 +/- 
14.57 

51.37 +/- 
20.37 

48.63 +/- 
20.37 

 

Tab.S5: repartition of root dry weight between the two pots of the split-root experiment in percent 

 

 Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 5 

 -N 
-AMF 

-N 
-AMF 

-N 
+AMF 

-N 
+AMF 

-N 
-AMF 

-N 
+AMF 

+N 
-AMF 

+N 
-AMF 

+N 
+AMF 

+N 
+AMF 

Root dry 
weight % 

- - 30.33 +/-
7.37 

34.66 +/- 
9.07 

- 44.25 +/- 
6.65 

- - 36.66+/- 
3.51 

31.33 +/- 
4.73 

 Treatment 6 Treatment 7 Treatment 8 Treatment 9 Treatment 10 

 +N 
-AMF 

+N 
+AMF 

-N 
-AMF 

+N 
-AMF 

-N 
+AMF 

+N 
+AMF 

-N 
-AMF 

+N 
+AMF 

+N 
-AMF 

-N 
+AMF 

Root dry 
weight % 

48.33 +/- 
18.33 

37.53 +/- 
11.26 

- - 26.5 +/-
9.19 

36 +/- 
2.83 

- 60.66+/- 
8.73 

- 34 +/- 
2.16 

 

Tab.S6: Root length colonization in each pot of the split-root experiment in percent 
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Hoagland 
solution after 
Gabor & Wetter 
(1975) 
Solution D 

“-N” “1xNO3
-“ “1xNH4

+” “0.3xNO3
-“ “0.1xNO3

-“ 

39.805 mMol 
Ca(NO3)2∙4H2O 

39.805 mMol 
CaCl2∙2H2O 

39.805 mMol 
Ca(NO3)2∙4H2O 

39.805 mMol 
CaCl2∙2H2O 

11.941 mMol 
Ca(NO3)2∙4H2O 

3.9805 mMol 
Ca(NO3)2∙4H2O 

20.286 mMol 
MgSO4∙7H2O 

20.286 mMol 
MgSO4∙7H2O 

20.286 mMol 
MgSO4∙7H2O 

20.286 mMol 
MgSO4∙7H2O 

6.085 mMol 
MgSO4∙7H2O 

2.0286 mMol 
MgSO4∙7H2O 

65.273 mMol 
KNO3 

75.70 mMol KCl 65.273 mMol 
KNO3 

75.70 mMol KCl 19.582 mMol 
KNO3 

6.5273 mMol 
KNO3 

10.433 mMol 
NH4H2PO4 

10.433 mMol 
KH2PO4 

10.433 mMol 
KH2PO4 

10.433 mMol 
KH2PO4 

3.130 mMol 
KH2PO4 

1.0433 mMol 
KH2PO4 

   155.318 mMol 
NH4Cl 

  

 

Table S7: Modifications made to the Hoagland solutions after Gabor & Wetter (1975) to obtain the treatments "-N", “1xNO₃-” , 

“0.3xNO3
-”, “0.1xNO3

-” and “1xNH₄+”.  
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3.1 Abstract 

Previously, we have described the family of ammonium transporters in sorghum (Sorghum bicolor) and 

have shown that two of them, AMT3;1 and AMT4 are induced in roots upon colonization by arbuscular 

mycorrhizal (AM) fungi. In the present work, we have characterized the orthologues of AMT3;1 and 

AMT4 in various grasses (maize, rice, sorghum, Setaria italica and Brachipodium distachyon). Using 

quantitative PCR, we studied the expression of both transporters in plant roots grown in the presence or 

absence of nitrogen (NH4
+) supply and in the presence or absence of AM fungi. In none of the plant 

species, expression of the two AMT genes was affected by the presence or absence of NH4
+. However, 

we found a strong induction of both AMT genes in response to colonization by AM fungi in all plant 

species studied. This finding indicates that both AMT3;1 and AMT4 were present in a common ancestor 

of these four plants. Additionally, the products of the AMT3;1 genes were confirmed to function as 

ammonium transporters by yeast mutant complementation assays. Our homology models of the 

AMT3;1 ammonium transporters indicate that the these transporters, like the already characterized 

bacterial AmtB, are more likely to catalyze the uptake of charged ammonium (NH4
+ ) rather than the 

neutral form (NH3) as hypothesized before. 
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3.2 Introduction 

In a previous publication we described the expanded family of sorghum (Sorghum bicolor) ammonium 

transporters (AMT) including two mycorrhizal induced one (AM inducible AMTs), SbAMT3;1 and 

SbAMT4. SbAMT3;1 was clustering together with an AM inducible AMT from soybean: GmAMT3;1 

(Kobae et al., 2010). SbAMT4 was clustering with the AM inducible AMTs from lotus: LjAMT2;2 (Guether 

et al., 2009), and soybean: GmAMT4;1 (Kobae et al., 2010). However, other AM-inducible AMTs like 

poplar PtAMT1;2 or soybean GmAMT1;4 cluster separately, suggesting that AM-inducible AMTs evolved 

independently in different plant species.  

In this study, we wanted to test whether the two AM inducible AMTs of sorghum are conserved within 

the plant family of the Poaceae. The family of the Poaceae include approx. 1000 species (Glémin & 

Bataillon, 2009). In its evolution, the core Poaceae split into two major clades the BEP and PACCMAD 

clades (BEP: Bambusoideae, Ehrhartoideae, Pooideae and PACCMAD: Panicoideae, Arundinoideae, 

Centothecoideae, Chloridoideae, Aristidoideae, Danthonioideae) (Bouchenak-Khelladi et al., 2008), 

which diverged around or even before -55 million years ago (Mya) (Prasad et al., 2005). The five grasses 

we studied belong to these two clades (BEP and PACCMAD) and are distributed in three subfamilies: rice 

(Oryza sativa) in the subfamily of the Ehrartoideae and Brachypodium distachyon in the subfamily of the 

Pooideae both clustering in the BEP clade; and maize(Zea mays), sorghum (Sorghum bicolor) and Setaria 

italica in the subfamily of the Panicoideae clustering in the PACCMAD clade. These five plants were 

chosen because of their character as model plants, their agronomical importance (except for B. 

distachyon) and their phylogenitic relationship. Additionally, the genome of these plants was sequenced 

and annotated (Matsumoto, 2005; Paterson et al., 2009; Schnable et al., 2009; Initiative, 2010; Zhang et 

al., 2012).  

The orthologs of the sorghum AMT3;1 and AMT4 in the five plants studied cluster together in two 

clusters. We verified by qPCR that all genes were induced in response to colonization by AM fungi. This 

indicates that the common ancestor of all five plants already possessed both AM-inducible AMTs. 

Additionally, SbAMT3;1, ZmAMT3;1, OsAMT3;1, SiAMT3;1 and BdAMT3;1 were characterized in yeast to 

test their functionality. To complement the characterization we built homology models for the five 

proteins. By comparison with the AmtB transporter from E.coli for which a detailed computer simulation 

based on quantum chemistry has been performed (Wang, S et al., 2012), we suggest that all three 
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transporters bind the ionic form of ammonium (NH4
+) with high affinity and promote the uptake of NH4

+ 

rather than the neutral NH3 as previously hypothesized by Guether et al. (2009). 
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3.3 Materials and Methods 

Plant growth conditions for tissue analysis  

Seeds from Sorghum bicolor (L.) Moench (cultivar Pant-5), Zea mays (cultivar Maeva), Oryza sativa 

(cultivar Baviva), Setaria italica (cultivar Manta) and Brachypodium distachyon (wild type Bd21) were 

surface sterilized (10min in 2.5% KClO), rinsed with sterile deionized water several times during one day) 

and soaked in sterile deionized water over night. Seeds were pre-germinated on autoclaved Terra Green 

(Oil Dri US-special, American aluminiumoxide, type III/R; Lobbe Umwelttechnik, Iserlohn, Germany) at 

25°C for 24h and then grown in the dark at room temperature for 72h. The fungal strain G. mosseae 

ISCB13

Plants were watered twice a week during experiments. From the first week on, 8 ml of modified 

Hoagland solutions were applied weekly. Two different Hoagland solutions, modified after Gamborg & 

Wetter (1975), were prepared to obtain different N sources (Table.3.1): "-N" and “1xNH₄⁺”.  

 (Botanical Institute, Basel, Switzerland) was propagated by trap cultures set up as previously 

described (Oehl et al., 2004). To establish AM symbiosis, pre-germinated seeds were individually 

inoculated in pots containing a mixture of acid-washed Terragreen, sand and loess soil (5:4:1 w/w/w). 

About 100 spores were added to the mixture. For the controls (non-mycorrhizal plants), the same 

amount of autoclaved inoculum was added to the mixture. To correct for possible differences in 

microbial communities, each pot received one ml of filtered washing of AM fungal inoculum (van der 

Heijden et al., 1998). Plants were grown in a greenhouse with day-night temperatures of 28 and 15°C, 

respectively.  

 

Staining of AM fungi in plant roots 

From each analyzed plant, one subsample of 100mg of fresh roots was used to determine the degree of 

AM fungal colonization, as follows. Root subsamples were stained with trypan blue (0.005% w/v in lactic 

acid, glycerol, water, 1:1:1, w:w:w) at 60°C for 10 minutes in 15ml tubes in a water bath and destained 

24h in glycerol: 1%HCl (w:w). Root colonization was quantified according to the grid intersection method 

as described by Brundrett et al. (1984). Total percentage colonization comprised root intercepts 

containing hyphae, vesicles, spores and arbuscules. Differences between means of variables were 

analyzed by ANOVA (p≤0.05), using IBM SPSS 18.0 (Chicago, Il, USA). 
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AMT genes 

Sequencing, assembly and annotation of the plant genomes were described (Matsumoto, 2005; 

Paterson et al., 2009; Schnable et al., 2009; Initiative, 2010; Zhang et al., 2012). Complete S. bicolor, Z. 

mays, O. sativa, S. italica and B. distachyon DNA and protein sequences are available at the Phytozome 

website (www.phytozome.org). All sequences have been deposited at GenBank/European Molecular 

Biology Laboratory/DNA Data Bank of Japan. Using BLAST search at the NCBI GenBank 

(http://www.ncbi.nlm.nih.gov/) we identified orthologs of SbAMT3;1 and SbAMT4 in the genome of the 

different plants based on conserved domains, identities and E-values. Sequences of the cDNAs described 

here are available at the NCBI database under accession numbers JX29485, JX294859 and KC997569 to 

KC997576. 

 

Phylogenetic analyses 

For phylogenetic analysis, the AMTs amino acid sequences were aligned with ClustalW 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/) using the following multiple alignment parameters: gap 

opening penalty 15, gap extension penalty 0.3, and delay divergent sequences set to 25%; and the 

Gonnet series was selected as the protein weight matrix. Neighbor joining trees were constructed using 

Poisson correction model for distance computation in MEGA4 (Tamura et al., 2007). Bootstrap analysis 

was carried out with 1000 replicates. Branch lengths (drawn in the horizontal dimension only) are 

proportional to phylogenetic distances. Gene accession numbers of amino acids sequences are given in 

the Table.3.2. 

 

Samples, RNA isolation and quantitative reverse transcription-PCR 

The procedure used for RNA extraction and cDNA synthesis was as described by Courty et al. (2009) 

using the following conditions: mycorrhizal roots were ground in liquid nitrogen and total RNA was 

isolated using the RNeasy Plant Mini kit (Qiagen, Darmstadt, Germany). The DNA-free set (Ambion, 

Austin, USA) was used to digest DNA after RNA purification. Full-length doubled-stranded cDNAs 

corresponding to mRNAs expressed in plant roots were obtained using the SMART–PCR cDNA Synthesis 

Kit (Clontech, Palo Alto, CA, USA). Quantification of AMT transcripts was performed using a two-step 

quantitative RT-PCR (qRT-PCR) procedure. Total RNA was measured with a spectrophotometer 

(Nanodrop ND-1000, Witec, Switzerland) and then reverse-transcribed (100 ng per reaction) using the 
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iScript cDNA Synthesis kit (Bio-Rad, Paolo Alto, CA, USA). cDNAs were used as templates in real time 

quantitative PCR reactions with gene-specific primers from designed using Primer 3 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) and amplify 3.1 

(http://engels.genetics.wisc.edu/amplify) (Table 3). The following criteria were used: product size 

between 100 and 400 bp, melting temperature 60°C and a GC percentage > 50%. Primers used as 

controls or for analysis had an efficiency ranging between 90% and 110%. Target gene expression was 

normalized in each plant to the expression of ubiquitin (Sb: gene Sb01g005570, Zm:gene AAC49014, Os: 

gene AAL77200, Si: gene ADE62029, Bd: gene XP003569182). Reactions of qPCR were run using the 7500 

real-time PCR system (Applied Biosystems). The following cycling parameters were applied: 95°C for 3 

min and then 40 cycles of 95°C for 30 s, 60°C for 1 min and 72°C for 30 s. A control with no cDNA was 

run for each primer pair. For data analysis, the geometric mean of the biological replicates (n = 4) was 

calculated.  

Primers used as controls or for analysis had efficiency ranged between 90% and 110%. Primers for 

sorghum AMTs were design by Koegel et al. (2013). All used primers are listed in Tab.3.3. 

From each of the three S. bicolor, Z. mays, O. sativa, S. italica, and B. distachyon plants harvested three 

subsamples (about 100mg) of carefully washed roots, and of shoots, stem, pistils and stamina were snap 

frozen and stored at -80°C for further gene expression analysis.  

All full-length cDNAs were sequenced by cDNA walking PCR: amplification of the full-length cDNAs, from 

the start to the stop codon, with primers designed using the nucleotide sequences of manually 

annotated gene models (Table 2), was performed on a T3 thermocycler (Biometra, Labgene Scientific SA, 

Switzerland) using the Advantage 2 Polymerase Mix (Clontech). PCR reactions resulted in single bands 

on a 1% agarose gel (Promega, Madison, WI, USA) in 0.5% TAE (Tris Acetate-EDTA) stained with Midori 

Green according to manufacturer’s instructions (Labgene, Chatel-St-Denis, Switzerland). Amplified 

products were purified with ExoSAP treatment (USB, Cleveland, Ohio, USA) and direct cDNA sequencing 

was performed on a 3500 Genetic Analyser (Applied Biosystems, Courtaboeuf, France).  

 

C and N analysis 

The remainder of the root samples and the shoot material were dried at 80°C for 72h and weighed. 

These samples were ground in 1.5 ml Eppendorf® tubes using 1.1 mm diam. tungsten carbide balls 

(Biospec Products, Inc., Bartlesville, Oklahoma, USA) in a Retch MM301 vortexer (Retch Gmbh and Co., 
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Haan, Germany). Total N and C were measured using an on-line continuous flow CN analyzer coupled 

with an isotope ratio mass spectrometer (ANCA-SL MS 20-20 system, Sercon Ltd, Crewe, UK). 

 

Heterologous complementation of a yeast mutant defective in ammonium uptake 

The full length SbAMT3;1, ZmAMT3;1, OsAMT3;1, and BdAMT3;1 cDNA were cloned in pDR196 using 

Gateway technology (Invitrogen), as described earlier (Wipf et al., 2003). The resulting plasmids were 

called pDR196-SbAMT3;1, pDR196-ZmAMT3;1, pDR196-OsAMT3;1, and pDR196-BdAMT3;1. The yeast 

strain 31019b (MATa ura3 mep1Δ mep2Δ::LEU2 mep3Δ::KanMX2) (Marini et al., 1997) was transformed 

with pDR196-SbAMT3;1, pDR196-ZmAMT3;1, pDR196-OsAMT3;1, and pDR196-BdAMT3;1, according to 

(Dohmen et al., 1991). As control, we also cloned and transformed similarly the low-affinity transporter 

AtAMT1;3 from Arabidopsis thaliana described by Gazzarrini et al.(1999). 

For S. cerevisiae uptake studies, yeast cells were grown to logarithmic phase. Cells were harvested at an 

OD600 of 0.9, washed twice in water, and resuspended in buffer A (0.6 M sorbitol, 50 mM potassium 

phosphate, at the desired pH) to a final OD600 of 5. Prior to the uptake measurements, the cells were 

supplemented with 100 mM glucose and incubated for 5 min at 30°C. To start the reaction, 100 µl of this 

cell suspension was added to 100 µl of the same buffer containing at least 18.5 kBq [14C]-aspartate, 

specific activity 7.66 GBq/mmol (Amersham) and unlabeled amino acid to the concentrations used in the 

experiments. Sample aliquots of 45 µl were removed after 15, 60, 120, and 240 s, transferred to 4 ml of 

ice-cold buffer A, filtered on glass fiber filters, and washed twice with 4 ml of buffer A. The uptake of 

carbon-14 was determined by liquid scintillation spectrometry. Competition for aspartate uptake was 

performed by adding a five-fold molar excess of the respective competitors to 150 µM aspartate. 

Transport measurements were repeated independently and represent the mean of at least three 

experiments. 

 

Statistical analyses 

An analysis of variance (ANOVA) was performed on the total biomass, on the C and N content, and on 

the total and arbuscular colonization for each treatment separately, where the two latter parameters 

were arcsine‐transformed to fit the assumption of normal distribution. The ANOVA was based on N 

treatments and AMF treatments. Pairwise comparisons between the treatments were done with 

planned contrast analysis. Independent paired t‐tests were performed. A probability of P ≤ 0.05 was 
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considered as representing a significant difference. 

 

Modeling 

Homology models were built using swiss-model web server. Sequences were aligned to the sequence of 

EcAmtB using ClustalW. The X-ray structure of EcAmtB (Pdb Id:1U7G) was used as a template for 

homology modeling. Pairwise sequence identities were calculated from sequence alignments using 

Jalview Program. VMD program was used to analyze the modeled structures.  
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3.4 Results 

From the BLAST search at the NCBI website, highly homologous sequences to SbAMT3;1 and SbAMT4 in 

maize, rice, S. italica and B. distachyon were identified. Phylogenetic analysis based on protein - 

sequence alignment shown that SbAMT3;1, ZmAMT3;1, OsAMT3;1, SiAMT3;1 and BdAMT3;1 as well as 

SbAMT4, ZmAMT4, OsAMT4, SiAMT4 and BdAMT4 cluster together, with Bootstrap values of 85 and 59 

respectively (Fig.3.1). These genes are belonging to the AMT2 subfamily which has been split into four 

subclades, AMT2, AMT3 and AMT4 (Fig.3.1). AMT2 genes contain introns with size and splicing location 

roughly conserved in each subclade. The transmembrane prediction program TMHMM 

(http://www.cbs.dtu.dk/services/TMHMM/) shows that SbAMT3;1, ZmAMT3;1, OsAMT3;1, SiAMT3;1 

and BdAMT3;1 as well as SbAMT4, ZmAMT4, OsAMT4, SiAMT4 and BdAMT4 are coding for proteins 

predicted to have eleven transmembrane domains with an extracellular N-terminus and a cytosolic C-

terminus like other plant AMT members (Marini & Andre, 2000; Thomas et al., 2000). 

 

AM fungal colonization 

Average AM fungal colonization was between 35 and 40% after three month and was not significantly 

different between plant species (P=0.39). N treatment had no significant effect on AM fungal 

colonization (Fig.3.2). 

 

Plant growth and N nutrition 

Mycorrhized and non-mycorrhized sorghum, rice, S. italica and B. distachyon plants had a significant 

higher dry weight in the +N treatments compared to the –N treatments (Tab. 3.4). No significant 

difference was found in the maize plants between +N and –N treatments.  

Additionally, we could see a significantly higher N concentration in the +N treatments compared to the –

N treatments in sorghum, S.italica and B. distachyon in mycorrhized and non-mycorrhized plants 

(Tab.3.5). In maize, N concentration was higher in the +N treatment compared to the –N treatment only 

in the mycorrhized plants. In rice, we found a similar tendency (Tab.3.5). 

 

Gene expression in different tissues 

Quantitative PCR analyses on the different plant tissues shown that SbAMT3;1, ZmAMT3;1, and 
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OsAMT3;1 were expressed in all the studied tissues (mycorrhized and non-mycorrhized roots, leaves, 

stem, stamina and pistils). BdAMT3;1 was expressed only in the mycorrhized and non-mycorrhized roots 

as well as in the stamina. In all species, the highest expression of the AMT3;1 orthologs was measured in 

the roots of mycorrhized plants. The lowest expression of SbAMT3;1, OsAMT3;1 and SiAMT3;1 was 

measured in the pistils, the lowest expression of ZmAMT3;1 was measured in the stamina and the 

lowest expression of BdAMT3;1 was measured in the non-mycorrhized roots (Fig.3.3). 

The highest expression of the AMT4 transporters orthologs of all five plants was measured in the 

mycorrhized roots (Fig.3.3). Additionally, all five AMT4 were detected in the non-mycorrhized roots. 

Expression in the other tissues varied between plants (Fig.3.3). 

 

Effect of N on root gene expression 

We quantified the level of expression of ZmAMT3;1, OsAMT3;1, SbAMT3;1, SiAMT3;1 and BdAMT3;1 as 

well as ZmAMT4, OsAMT4, SbAMT4, SiAMT4 and BdAMT4 under two different N conditions in 

mycorrhized and non-mycorrhized plants (Fig. 3.4a+b). Plants were feed with Hoagland solution either 

without N or with NH4
+ (Tab.3.1) during three months. Afterward gene expression was studied in the 

plant roots. We could not see any significant difference in the expression of ZmAMT3;1, OsAMT3;1, 

SbAMT3;1, SiAMT3;1 and BdAMT3;1 between the treatments with and without N. The was true for 

ZmAMT4, OsAMT4, SbAMT4, SiAMT4 and BdAMT4. N treatment had no effect on the expression of 

these genes in the different plants. Only the mycorrhization had a significant effect on gene expression: 

mycorrhized plants had a significant higher gene expression compared to non-mycorrhized plants 

independently of the nitrogen treatment. 

 

Effect of mycorrhization on gene expression 

We found a very low expression of OsAMT3;1 in non-mycorrhized roots and in other plant tissues like 

leaves, stem, stamina and pistils confirming previous results. Similarly ZmAMT3;1, SbAMT3;1, SiAMT3;1 

and BdAMT3;1 had also a very low expression level in other tissues than mycorrhized roots. The 

expression pattern of SbAMT3;1, OsAMT3;1 and ZmAMT3;1 were very similar to each other. In 

mycorrhized roots, all five AMT3;1 studied were highly up-regulated compared to non-mycorrhized 

roots independently of the N treatment: maize was up to 18 times up-regulated, rice up to 40 times, 

purple false brome up to 60 times and sorghum and foxtail millet more than 60 times (Fig.3.4a) 
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In the five Poaceae species studied, AMT4 was also predominantly expressed in mycorrhized roots 

(Fig.3.3). Compared to the plants without mycorrhiza, this up-regulation was reaching 15 times by 

sorghum and maize, 40 times by rice and S. italica and 60 times by B. distachyon (Fig.3.4b). 

 

Yeast complementation 

A yeast mutant complementation test was used to demonstrate the NH4
+ transport function and to 

biochemically characterize ZmAMT3;1, OsAMT3;1, SbAMT3;1, SiAMT3;1 and BdAMT3;1. AtAMT3;1 was 

used as control. All five transporters were expressed through the yeast expression vector pDR196 (Wipf 

et al., 2003) in a mutant yeast strain, 31019b, which lacked the three endogenous NH4
+ transporter 

genes (MEP1, MEP2, MEP3) and was unable to grow on a medium containing <3mM NH4
+ as the sole N 

source (Marini et al., 1997). ZmAMT3;1cDNA, OsAMT3;1cDNA, SbAMT3;1cDNA, SiAMT3;1 cDNA and 

BdAMT3;1cDNA functionally complemented the yeast mutant efficiently, when 1 and 2 mM NH4
+ were 

supplied to the agar medium (Fig.3.5). As expected, AtAMT1;3 complemented as well, but the cells 

expressing the purple false brome transporter grew more vigorously. 

Preliminary results on the uptake capabilities: SbAMT3;1 had a Km of 87.65 μM and SbAMT4 a Km of 

18.99 μM indicating a higher affinity of SbAMT4. 

 

Modeling 

In order to acquire information on the transport mechanism in SbAMT3;1, OsAMT3;1, BdAMT3, SiAMT3 

and ZmAMT3;1 we built homology models of these proteins based on the X-ray structure of E.Coli 

ammonium transporter (EcAmtB). Since there is plenty of experimental and computational study on 

EcAmtB, comparison of modeled structures with the EcAmtB structure provides us important insight in 

the transport mechanisms of AMT3:1 transporters in plants. Sequence similarity between SbAMT3;1, 

OsAMT3;1, BdAMT3, SiAMT3, ZmAMT3;1 and EcAmtB are reported in Tab.6. Most of the amino acids 

important for the transport of ammonium in EcAmtB are also found along the pore of the five plant 

species (Fig. 3.6 and Tab. 3.6). Mutations with respect to EcAmtB are Ala162Ser, Ser219Asp, Met23Gln 

and Phe31Leu. The biggest impact would come from the mutation of a neutral serine to a negatively 

charged aspartic acid, which may increase the ammonium binding affinity.  



Chapter 3  Evolution of AMT3;1 and AMT4 

73 
 

3.5 Discussion 

The five grass species studied had an ortholog of AMT3;1 and AMT4 in their genome. As rice and B. 

distachyon separated from sorghum, maize and S. italica about -55 Mya, we assume that both genes 

were present in a common ancestor of these plants. AMT3;1 and AMT4 orthologs were clustering in the 

AMT2 subfamily which can be further divided into three clades, AMT2, AMT3 and AMT4 (Suenaga et al., 

2003)(Fig. 3.1). 

 

AM colonization 

Percent colonization was shown to vary frequently with different plant-fungus combination and can be 

related among other things to differences in rate of root growth (Smith & Read, 2008). Plants like 

cereals, that have a rapid root growth, tend to have a lower plateau values for the percent root 

colonization than those with slower root growth like leek (Smith & Read, 2008). Indeed, we found here 

colonization values between 32 and 50% in the different cereal plants (Fig.3.2), what is clearly less than 

for example 80% in leek (Sorensen et al., 2005). However, the level of colonization can’t be related to 

the AM fungal responsiveness (Alberton et al., 2005) meaning that plants with a lower colonization level 

might profit similarly to the AM symbiosis that plants with a higher colonization level.  

 

The expression of AMT3;1 

The expression of the five orthologs of AMT3;1 was very low in other tissues than mycorrhized roots 

confirming the results from Suenaga et al. (2003) on OsAMT3;1. Interestingly, ZmAMT3;1, OsAMT3;1, 

SbAMT3;1 and SiAMT3;1 were expressed in all the different plant tissues studied (mycorrhized and non-

mycorrhized roots, leaves, stems, stamina and pistils) in contrary to BdAMT3;1 expressed only in the 

mycorrhized and non-mycorrhized roots as well as in the stamina. This result is surprising as rice and B. 

distachyon cluster together in the BEP group (Glémin & Bataillon, 2009) and we expected a similar 

expression of AMT3;1 in both plants.  

The five orthologs of AMT3;1 were highly induced upon colonization by AM fungi: maize up to 18 times, 

rice up to 40 times, B. distachyon up to 60 times, S. italica and sorghum more than 60 times (Fig.3.3). 

This finding shown clearly a conserved induction of the five AMT3;1 orthologs upon colonization by AM 

fungi and indicated that the induction of AMT3;1 upon colonization by AM fungi might have been 

already present in a common ancestor of the five grasses studied. 
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Interestingly, the five orthologs of AMT3;1 studied here were clustering with an AM-inducible AMT from 

soybean GmAMT3;1 (Kobae et al., 2010). This result seems to indicate that the induction of AMT3;1 

upon colonization by AM fungi could even has been present in a common ancestor of the monocots and 

the dicots. Contrasting with this, the ortholog of AMT3;1 in poplar (PtAMT3;1) which also clustered with 

GmAMT3;1, SbAMT3;1, ZmAMT3;1, OsAMT3;1, SiAMT3;1 and BdAMT3;1 was detected specifically in 

senescing leaves (Couturier et al., 2007) and was not up-regulated in poplar roots colonized with the 

ectomycorrhizal fungus Paxillus involutus. This could be explained by the fact that in poplar, gene 

expression can vary when plants are mycorrhized with ectomycorrhizal or with AM fungi as it was shown 

for the expression of phosphate transporters (Loth-Pereda et al., 2011): PtPT10 was only induced in 

plants mycorrhized with G.mosseae or G.intraradices and was not expressed in the non-mycorrhized 

roots or in the roots mycorrhized with P. involutus or Laccaria bicolor. Also PtPT3, PtPT4/PtPT7 and 

PtPT5 shown a higher expression in the roots mycorrhized with G.mosseae or G.intraradices compared 

to non-mycorrhized roots or roots mycorrhized with P. involutus or L. bicolor. 

 

The expression of AMT4 

The grass species studied here had only one AMT gene clustering in the AMT4 clade contrasting with 

poplar (5) or soybean (6) (Fig.3.1) and suggesting a different organization of AMT genes in different 

plant families.  

The orthologs of AMT4 in the five grass species studied were highly induced upon colonization by AM 

fungi: sorghum and maize 15 times, rice and S. italica up to 40 times and B. distachyon up to 70 times. 

Interestingly, in addition to SbAMT4 we described in a former study (Koegel et al., 2013), three other 

AM-inducible AMTs were already described in the AMT4 clade: Lotus japonicas LjAMT2;2 (Guether et al., 

2009), and soybean GmAMT4;1 and GmAMT4;4 (Kobae et al., 2010). However, the AMT4 clade also 

includes non AM-inducible AMTs (Fig. 3.1) suggesting a less conserved evolution than AMT3;1. 

 

The transport of ammonium 

Ammonium transporters proteins are present in all domains of life, notably in bacteria (Siewe et al., 

1996; Marini et al., 2000), mammals and plants (Ninnemann et al., 1994). The AMT genes in plants, as 

AMT3;1 and AMT4 encode protein containing eleven putative transmembrane domains similarly to 

AmtB from E.coli (EcAmtB) (Zheng et al., 2004). Based on experimental studies of various proteins of the 
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AMT family, three transport mechanisms have been suggested: electroneutral NH3 transport (Khademi 

et al., 2004; Javelle et al., 2008), NH3/H+ cotransport (Boeckstaens et al., 2008; Javelle et al., 2008) and 

NH4
+ transport (Ninnemann et al., 1994; Siewe et al., 1996; Fong et al., 2007). A recent study by Wang et 

al. (2012) shown a detailed molecular mechanism consistent with the transport of NH4
+ in the EcAmtB 

transporter. It involves the binding of NH4
+, the transfer of a proton from NH4

+ to the histidine H168, and 

the subsequent diffusion of NH3 followed by the release of the proton from H168 along a water wire 

formed in the pore. Here, we found apparent structural similarity between the pores of EcAmtB and the 

AMT3:1 (Fig.3.6). Only four amino acids varied between EcAmtB and the five orthologs of AMT3;1 

studied (Tab. 3.7), which did not affect the transport capabilities of the pore, as suggested by our 

homology models (Fig. 3.6). In view of this, we propose that the same transport mechanism than the 

one described by Wang et al. (2012) takes place in the AMT3:1 ammonium transporters from sorghum, 

maize, rice, S. italica and B. distachyon. 

 

AM inducible AMTs are conserved in the Poaceae 

Our results support the hypothesis of Wang et al. (2010) that genes important for AM symbiosis were 

already present in a common ancestor of land plant and stayed conserved in most plants until today. 

The Poaceae split into two major clades the BEP and PACCMAD clades (Bouchenak-Khelladi et al., 2008; 

Glémin & Bataillon, 2009) (Fig. 3.7), which diverged around or even before -55 Mya (Prasad et al., 2005). 

Here we could show that AM inducible AMTs were already present in a common ancestor of both clades 

-55 Mya ago.  
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Figure 3.1. Neighbor joining tree of the ammonium transporter (AMT) family. Bootstrap values are from 1000 replications. 

Sequence names consist of species code (first letter of genus and first letter of species name) and the AMT number. The scale 

indicates a distance equivalent to 0.1 amino acid substitutions per site. Species codes: Ec, Escherichia coli, Ne, Nitrosomonas 

europea, At, Arabidopsis thaliana, Gm, Glycine max, Lj, Lotus japonicus, Os, Oryza sativa, Ptr, Populus trichocarpa, Sb, Sorghum 

bicolor, Zm, Zea mays, Bd, Brachypodium distachyon, Si, Setaria italica. AM inducible AMTs are in red and AM inducible AMTs 

from the Poaceae are in red bold front. 
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Figure 3.2: Percentage of the root length colonized by G. mosseae in the different plants under -N and NH4
+ treatments. Grey 

color indicates the percentage of arbuscules and white color the percentage of total colonization including arbuscules, hyphae, 

and vesicles. There was no significant difference between the different N treatments (P=0.6) and the different plant (P=0.39). 

Abbreviations: rice, Os; maize, Zm; purple false brome, Bd; sorghum, Sb; foxtail millet, Si. 
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Figure 3.3. Quantification by qRT-PCR of the transcript levels of the AMT3;1 and AMT4 genes in the tissues of the different 

plants. The values are the means of three replicates. Ubiquitin was used as the reference transcript. Abbreviations: rice, Os; 

maize, Zm; purple false brome, Bd; sorghum, Sb; foxtail millet, Si; G. mosseae, GM; control without AM fungi, CT. 
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Figure 3.4. Quantification by qRT-PCR of the transcript levels of ZmAMT3;1, OsAMT3;1, SbAMT3;1, SiAMT3;1 and BdAMT3;1 

(a) or ZmAMT4,OsAMT4, SbAMT4, SiAMT4 and BdAMT4 (b) in roots either non-colonized or colonized by arbuscular 

mycorrhizal fungi 13 weeks post-inoculation in the different N treatments (-N, +N (NH₄⁺)).  

The values are the means of four replicates. Ubiquitin was used as the reference transcript. Gene expression was normalized 

according to the “-AMF, 1×NH4
+” treatment. Differences in gene expression between the treatments were performed with a 

one-way ANOVA (Scheffe’s F test). Letters indicate a p-value < 0.05. 
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Figure 3.5. Complementation of a yeast mutant defective in ammonium uptake by (a) ZmAMT3;1, OsAMT3;1, SbAMT3;1, and 

(b) BdAMT3;1. 

Growth of the yeast strain 31019b, transformed with various constructs, on minimal medium supplemented with various NH4
+ 

concentrations (1, 2 or 3 mM) as a sole nitrogen source. All strains were incubated 5 days at 29°C. AtAMT2 from Arabidopsis 

thaliana was used as a control (Solenkamp et al., 2000). 

Abbreviations; pDR196 empty vector: mep1∆mep2∆mep3∆ + pDR196, AtAMT1;3: mep1∆mep2∆mep3∆ + pDR196-AtAMT2, 

SbAMT3;1: mep1∆mep2∆mep3∆ + pDR196-SbAMT3;1, OsAMT3;1: mep1∆mep2∆mep3∆ + pDR196-OsAMT3;1, ZmAMT3;1: 

mep1∆mep2∆mep3∆ + pDR196-ZmAMT3;1, BdAMT3;1: mep1∆mep2∆mep3∆ + pDR196-BdAMT3;1. 
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Figure 3.6: Homology models of the SbAMT3;1, OsAMT3;1, ZmAMT3;1, BdAMT3;1, and SiAMT3;1 transporters. Only key 

residues along the permeation pore are shown. The structure of the EcAmtB transporter, which served as template, is also 

illustrated. Abbreviations: rice, Os; maize, Zm; purple false brome, Bd; sorghum, Sb; foxtail millet, Si; Escherichia coli, Ec. 
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Figure. 3.7: Evolution of the Poaceae (Modified after Glémin & Bataillon 2009) 
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Table 3.1: Modifications made to the Hoagland solutions after Gabor & Wetter (1975) to obtain the treatments "-N", and 

“1xNH₄⁺”.  

 

Hoagland solution after 
Gabor & Wetter (1975) 
Solution D 

“-N” “NH4
+” 

39.805 mMol 
Ca(NO3)2∙4H2O 

39.805 mMol 
CaCl2∙2H2O 

39.805 mMol 
CaCl2∙2H2O 

20.286 mMol 
MgSO4∙7H2O 

20.286 mMol 
MgSO4∙7H2O 

20.286 mMol 
MgSO4∙7H2O 

65.275 mMol KNO3 75.70 mMol KCl 75.70 mMol KCl 
10.433 mMol NH4H2PO4 10.433 mMol 

KH2PO4 
10.433 mMol 
KH2PO4 

  155.318 mMol 
NH4Cl 

 

Table 3.2: Characteristics of the AMT3;1 genes (a) and of the AMT4 genes (b) in Sorghum bicolor, Zea mays, Oryza sativa, 

Brachypodium dystachion and Setaria italica 

a) 

Model name Gene name Organism Strand Introns CDS 
(bp) 

Length of the 
AA sequence 

Supporting 
EST 

Location Best blast hit with 
AMTs (%) 

Sequence logo of AMT1 and AMT2 
signal 

Sb03g041140 SbAMT3;1 Sorghum 
bicolor 

+ 1 1467 488 + 3:68682524-
68685235 

 

Zea mays 
GRMZM2G335218_T
01 

DYSGGyvIhlsSGvaGFtaaYWvGpR 

GRMZM2G335218 ZmAMT3;1 Zea mays + 1 1467 488 + 8: 166105184 - 
166106880 

Sorghum bicolor 
Sb03g041140 

DYSGGyvIhlsSGvaGFtaaYWvGpR 

LOC_Os01g65000 OsAMT3;1 Oryza sativa + 1 1497 498 + 1: 37735280 - 
37737641 

Brachypodium 
distrachyon 
Bradi2g56300.1 

DYSGGyvIhlsSGvaGFtaaYWvGpR 

Bradi2g56300 BdAMT3;1 Brachybodium 
distrachyon 

+ 0 1476 491 + 2: 54682765 - 
54684240 

Oryza sativa  
LOC_Os01g65000.1_
GX7M 

DYSGGyvIhlsSGvaGFtaaYWvGpR 

Si004697m SiAMT3;1 Setaria italica + 1 1470 489 + 5: 42463676 - 
42466199 

Zea mays 
GRMZM2G335218_T
01 

DYSGGyvIhlsSGvaGFtaaYWvGpR 

 

b) 

Model name Gene name Organism Strand Introns CDS 
(bp) 

Length of the 
AA sequence 

Supporting 
EST 

Location Best blast hit with 
AMTs (%) 

Sequence logo of AMT1 and AMT2 
signal 

Sb01g008060 SbAMT4 Sorghum 
bicolor 

- 1 1425 474 + 1: 6978013 - 
6979495 

Oryza sativa 
Os03g53780 

DFAGGyvIhlsSGiaGFtaaYWvGpR 

GRMZM2G473697 ZmAMT4 Zea mays - 1 1395 464 + 5: 7260902 - 
7262381 

Oryza sativa 
Os03g53780 

DFAGGyvIhlsSGiaGFtaaYWvGpR 

Os03g53780 OsAMT4 Oryza sativa + 2 1495 497 - 3: 30830441 - 
30831935 

Brachypodium 
distrachyon  
Bradi1g08587 

DFAGGyvIhlsSGiaGFtaaYWvGpR 

Bradi1g08587 BdAMT4 Brachybodium 
distrachyon 

- 1 1434 477 + 1: 6068637 - 
6070124 

Oryza sativa 
Os03g53780 

DFAGGyvIhlsSGiaGFtaaYWvGpR 

Si039811m SiAMT4 Setaria italica - 1 1425 474 + 9: 5543610 - 
5545092 

Oryza sativa 
Os03g53780 

DFAGGyvIhlsSGiaGFtaaYWvGpR 
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Table 3.3: Primers for RT-qPCR and full-length gene amplification. 

 RT-qPCR Forward RT-qPCR Reverse Full-length Forward Full-length Reverse 

SbAMT3;1 GGCCTCGTCTGCATCACT GGGTGTCGTCCACTTGCT CCGCGAGGATGGCGAGCC CGCCGTGCACGGCGTCGTCGCC 

ZmAMT3;1 GTGGCTGTGCTGGGTCAT TGGGATACAAGGGCGTGA ATGTCGACCACCGCCTA TCAGACGTTCTGCGTGT 

OsAMT3;1 CATCACGCTCATCCTCCTC CCTCTCCCTGTCCTTGGTC ATGTCGGGGGACGCGTT TCAGACGTTCTGCGTGACG 

SiAMT3;1 GGCCTCGTCTGCATCACT GGGTGTCGTCCACCTGCT ATGAGCATCGACGACCCTTTG TCAGACGTTCTGCGTGACGCC 

BdAMT3;1 GCGACGGAGAGAAGTACGAC GCTGAGTGGTCTCGATGTCA ATGGCGACCGCCGATTTC TTAGACGTTCTGCGTGACG 

SbUbi CAAGGAGTGCCCCAACAC GGTAGGCGGGTAAAGCAAA  

ZmUbi CCACTTGGTGCTGCGTCTTAG CCTTC TGAATGTTGTAATCCGCA 

OsUbi AATCAGCCAGTTTGGTGGAGCTG ATGCAAATGAGCAAATTGAGCACA 

SiUbi CAAGGAGTGCCCCAACAC GGTAGGCGGGTAAAGCAAA 

BdUbi GCCCAAGAAGCAAAAGCA GCGTCGTCCACCTTGTAGA 
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Table 3.4. Mean and Standard deviation of plant dry weight (g) colonized or not by G. mosseae in the different N treatments 

(-N and NH4
+). Differences in dry weight between the treatments were performed with a one-way ANOVA (Scheffe’s F test). 

Letters indicate a p-value < 0.05. 

 -AM fungi +AM fungi 

-N +N -N +N 

Sorghum (S. bicolor) 1.37 +/- 0.18 

a 

2.65 +/- 0.42 

b 

1.00 +/- 0.14 

a 

2.96 +/- 0.09 

b 

Maize (Z. mays) 6.65 +/- 1.01 

a 

7.69 +/- 2.41 

a 

6.95 +/- 0.43 

a 

8.09 +/- 0.42 

a 

Rice (O. sativa) 1.38 +/- 0.08 

a 

2.77 +/- 0.20 

c 

1.19 +/- 0.02 

a 

2.33 +/- 0.09 

b 

B. distachyon 0.65 +/- 0.04 

a 

0.77 +/- 0.03 

b 

0.57 +/- 0.01 

a 

0.72 +/- 0.04 

b 

S. italica 1.44 +/- 0.25 

a 

2.97 +/- 0.33 

b 

1.29 +/- 0.21 

a 

3.32 +/- 0.11 

b 
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Table 3.5. Mean and Standard deviation of N concentration in plants (mgN/gDW) colonized or not by G. mosseae in the 

different N treatments (-N and NH4
+). Differences in dry weight between the treatments were performed with a one-way 

ANOVA (Scheffe’s F test). Letters indicate a p-value < 0.05. 

 -AMF +AMF 

-N +N -N +N 

Sorghum (S. bicolor) 4.18 +/- 0.08 

a 

5.89 +/- 0.46 

b 

4.48 +/- 0.23 

a 

5.42 +/- 0.27 

b 

Maize (Z. mays) 6.91 +/- 0.25 

ab 

8.03 +/- 0.91 

bc 

6.67 +/- 0.27 

a 

8.42 +/- 0.53 

c 

Rice (O. sativa) 5.02 +/- 0.47 

ab 

5.66 +/- 0.87 

b 

4.34 +/- 0.26 

a 

4.86 +/- 0.02 

ab 

B. distachyon 5.52+/- 0.52 
a 

7.24 +/- 0.40 
b 

5.04 +/- 0.46 
a 

6.89 +/- 0.54 
b 

S. italica 5.18 +/- 0.12 

b 

6.77 +/- 0.46 

c 

4.60 +/- 0.26 

a 

6.55 +/- 0.33 

c 

 

 

Table 3.6 Pairwise sequence identities 

Sequence1 Sequence2 % Identity Sequence1 Sequence2 % Identity 

SbAmt3:1 ZmAmt3:1 92.2 EcAmtB ZmAmt3:1 31.9 

SbAmt3:1 OsAmt3:1 84.4 EcAmtB OsAmt3:1 31.6 

ZmAmt3:1 OsAmt3:1 86.37 EcAmtB SbAmt3:1 31.73 

SbAmt3:1 BdAmt3:1 84.7 EcAmtB BdAmt3:1 32.3 

SbAmt3:1 SiAmt3:1 91.2 EcAmtB SiAmt3:1 32.93 
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Table 3.7 Residues forming the pores of EcAmtB, ZmAmt3:1, SbAmt3:1, OsAmt3:1, BdAmt3:1 and SiAmt3:1. Different 

residues with respect to the ones in EcAmtB are highlighted in light blue color. Abbreviations: rice, Os; maize, Zm; purple false 

brome, Bd; sorghum, Sb; foxtail millet, Si; Escherichia coli, Ec. 

EcAmtB ZmAmt3 SbAmt3 OsAmt3 BdAmt3 SiAmt3 
His168 His208 His208 His211 His208 His209 
His314 His362 His362 His365 His362 His363 
Phe215 Phe255 Phe255 Phe258 Phe255 Phe256 
Phe107 Phe147 Phe147 Phe150 Phe147 Phe148 
Trp212 Trp252 Trp252 Trp255 Trp252 Trp253 
Val314 Val358 Val358 Val361 Val358 Val359 
Phe31 Leu50 Leu50 Leu49 Leu50 Leu51 
Ile28 Leu47 Leu47 Leu46 Leu47 Leu48 
Tyr32 Tyr51 Tyr51 Tyr50 Tyr51 Tyr52 

Leu114 Leu154 Leu154 Leu157 Leu154 Leu155 
Leu208 Leu248 Leu248 Leu251 Leu248 Leu249 
Thr273 Thr313 Thr313 Thr316 Thr313 Thr314 
Ile110 Ile150 Ile150 Ile153 Ile150 Ile151 
Met23 Gln42 Gln42 Gln41 Gln42 Gln43 
Val270 Val310 Val310 Val313 Val310 Val311 
Val167 Ile207 Ile207 Ile207 Ile207 Ile208 
Ala162 Ser202 Ser202 Ser205 Ser202 Ser203 
Trp148 Trp188 Trp188 Trp191 Trp188 Trp189 
Ser219 Asp259 Asp259 Asp262 Asp259 Asp260 
Phe103 Phe143 Phe143 Phe146 Phe143 Phe144 
Asp160 Asp200 Asp200 Asp203 Asp200 Asp201 
Asn216 Asn256 Asn256 Asn259 Asn256 Asn257 
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4.1 Abstract 

Arbuscular mycorrhizal (AM) can take up N in form of nitrate, ammonium or amino acid. In the 

extraradical mycelium of the fungi, arginine is synthesized and transported to the intraradical mycelium. 

There, arginine is broken down and ammonium is delivered to the plant. In this study, we assessed the 

effect of different N sources (without N, NO3
-, NH4

+, urea, glycine and arginine) on the expression of 

genes coding for enzymes of the N cycle and for N transporters in the AM fungus Rhizophagus irregularis 

and in sorghum (Sorghum bicolor) plants. Expression of the genes was significantly influenced by all the 

N sources and was different in the intraradical mycelium and in the extraradical mycelium. We also 

found that some plant genes were coregulated with fungal genes.  
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4.2 Introduction 

Current data show that AM fungi can take up inorganic N as ammonium or nitrate (Govindarajulu et al., 

2005), as well as organic N in the form of amino acids (Leigh et al., 2009). As a matter of fact, plant 

associated with AM fungi are able to take up several amino acid more efficiently than non-mycorrhized 

plants (Whiteside et al., 2012). Once taken up by the extra-radical mycelium, N is translocated to the 

intraradical hyphae in form of amino acids (mainly arginine) (Govindarajulu et al., 2005) and finally 

transferred to the plant as ammonium (Tian et al., 2010). The question of the relevance of AM fungi in 

plant N nutrition was raised since N has a high mobility in the soil limiting the depletion zone around 

roots (Smith & Smith, 2011). However, some studies could show that significant amount (21 to 75%) of 

plant root N was derived from the fungal extraradical mycelium (ERM) (Toussaint et al., 2004; 

Govindarajulu et al., 2005; Jin et al., 2005; Tanaka & Yano, 2005). Additionally, N supply can rescue the 

phenotype of a phosphate transporter mutant that was not able to do a functional AM symbiosis (Javot 

et al., 2011), showing the importance of N transfer.  

Interestingly, Tanaka & Yano (2005) found out that the amount of N delivered to the plant by the fungi 

depended on the N form supplied to the fungi. They shown that the rate of transfer was 10 times higher 

for NH4
+ than for NO3

- in maize plants mycorrhized by Glomus aggregatum. Another factor influencing N 

uptake by AM fungi is the C resource availability: an increase availability of C is related with an increased 

N uptake by the fungal ERM (Fellbaum et al., 2012). These results indicate a possible “reward” 

mechanism between plant and fungi.  

In fungi and in plants, enzymes involved in the assimilation of N into organic form are crucial for growth 

and transfer processes. Tian et al. (2010) described 11 fungal genes involved in the N primary 

metabolism and tested the expression of these genes 2h, 4h, 8h, 24h and 72h after the addition of 4 

mM KNO3 to the fungal ERM. The pattern of gene expression was different in the ERM compared to the 

intraradical mycelium (IRM). Indeed, a nitrate transporter (NT), two glutamine synthetase (GS1 and 

GS2), a carbamoyl-phosphate synthase (CPS), an arginosuccinate synthase (ASS), an arginosuccinate 

lyase (AL) and a glutamate synthase (GluS) were regulated in the ERM and not in the IRM after addition 

of KNO3. In contrary, an arginase (ARG), two ornithine aminotransferase (OAT1 and OAT2), an ornithine 

decarboxylase (ODC) and an urease (URE) were regulated in the IRM and not in the ERM under the same 

conditions. These data indicate the production of arginine in the ERM, its transport and breakdown in 

the IRM to permit the transfer of NH4
+ from the IRM to the plant. 
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Here, we studied the effect of different N sources on the expression of genes coding for enzymes of the 

N cycle and for N transporters in the AM fungus Rhizophagus irregularis (previously Glomus intraradices) 

and in sorghum. In R. irregularis, we analyzed the expression of 13 different genes coding for enzymes of 

the N metabolism and of four different genes coding for N transporters. In sorghum, we analyzed the 

expression of nine enzymes and eight transporters. Following N treatments were applied: without N, 

with NO3
-, with NH4⁺, with urea, with glycine and with arginine. Our results shown that N treatment 

significantly influenced the expression of different enzymes and transporter genes of the N cycle and 

had an effect on plant growth and N content. 
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4.3 Material and Methods 

Plant, arbuscular fungi and growth conditions  

Experiments were performed with sorghum (Sorghum bicolor (L.) Moench), cv Pant-5. This cultivar is 

closely related to BTx623, the sorghum cultivar used for genome sequencing (Paterson et al., 2009). 

Seeds of cv Pant-5, kindly provided by sorghum breeders of I.G.F.R.I. (CCS Agriculture University of 

Hissar, Haryana, India) and G.B. Pant University of Agriculture and Technology (Pantanagar, Uttaranchal, 

India) were surface sterilized (10min in 2.5% KClO and then rinsed with sterile deionized water several 

times for one day) and soaked in sterile deionized water over night. Seeds were pre-germinated on 

autoclaved Terra Green (Oil Dri US-special, American aluminiumoxide, type III/R; Lobbe Umwelttechnik, 

Iserlohn, Germany) at 25°C for 24h and then grown in the dark at room temperature for 72h. The fungal 

strain Rhizophagus irregularis BEG-75

 

 was propagated by trap cultures set up as previously described 

(Oehl et al., 2003). To establish AM symbiosis, pre-germinated seeds were individually inoculated in 

350ml pots containing a mixture of acid washed Terragreen, sand and loess soil (5:4:1 w/w/w). About 

100 spores were added to the mixture. For the non-mycorrhized plants, the same amount of autoclaved 

inoculum was added to the mixture. To correct for possible differences in microbial communities, each 

pot received one ml of filtered washing of AM fungal inoculum (van der Heijden et al., 1998). Plants 

were grown in a greenhouse with day-night temperatures of 28 and 15°C, respectively. Plants were 

watered twice a week during the whole experiment. From the first week on, 8ml of modified Hoagland 

solution was applied weekly. Five different Hoagland solutions modified after Gamborg & Wetter (1975) 

to obtain different N sources were prepared (Tab.4.1): “-N”, “NO₃⁻”  , “NH₄⁺”, “Glycine”, “Arginin e”, 

“Urea”. All treatments were independently repeated four times. A total of 40 pots were prepared. 

Staining of AM fungi in plant roots and quantification of root colonization 

From each analyzed plant, one subsample of 100mg of fresh roots was used to determine the degree of 

AM fungal colonization, as follows. Root subsamples were stained with trypan blue (0.005% w/v in lactic 

acid, glycerol, water, 1:1:1, w:w:w) at 60°C for 10 minutes in 15ml tubes in a water bath and destained 

24h in glycerol: 1%HCl (w:w). Root colonization was quantified according to the grid intersection method 

as described by Brundrett et al. (1984). Total colonization comprised intersections containing hyphae, 

vesicles, spores or arbuscules. Differences between means of variables were analyzed by ANOVA 

(p≤0.05), using SPSS 18.0. 
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Samples, RNA isolation and quantitative reverse transcription-PCR 

The pots were harvested 13 weeks after inoculation. Four soil subsamples of 50g were taken. Plant roots 

were carefully washed under tap water to remove root adherent substrate. Four subsample of 100mg of 

fresh roots were taken. RNA extraction from soil was done using Geneclean Turbo Kit (MP biomedicals, 

Santa Ana, CA, USA) according to manufacturer’s instructions. RNA extraction from roots and cDNA 

synthesis from root and soil samples was performed as described by Courty et al. (2009), using the 

following conditions: mycorrhizal roots were ground in liquid nitrogen and total RNA was isolated using 

the RNeasy Plant Mini kit (Qiagen, Darmstadt, Germany). The DNA-free set (Ambion, Austin, USA) was 

used to digest DNA after RNA purification. Full-length doubled-stranded cDNAs corresponding to mRNAs 

expressed in plant roots were obtained using the SMART–PCR cDNA Synthesis Kit (Clontech, Palo Alto, 

CA, USA).  

Quantification of AMT transcripts was performed using a two-step quantitative RT-PCR (qRT-PCR) 

procedure. Total RNA was measured with a spectrophotometer (Nanodrop ND-1000, Witec, 

Switzerland) and then reverse-transcribed (100 ng per reaction) using the iScript cDNA Synthesis kit (Bio-

Rad, Paolo Alto, CA, USA). cDNAs were used as templates in real time quantitative PCR reactions with 

gene-specific primers from Tian et al. (2010) or designed using Primer 3 (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi) and amplify 3.1 (http://engels.genetics.wisc.edu/amplify) (Table 4.2). 

The following criteria were used: product size between 100 and 400 bp, melting temperature 60°C and a 

GC percentage > 50%. Primers used as controls or for analysis had an efficiency ranging between 90% 

and 110%. Target gene expression was normalized to the gene encoding the G. intraradices beta-tubulin 

(gene AY326321). Reactions of qPCR were run using the 7500 real-time PCR system (Applied 

Biosystems). The following cycling parameters were applied: 95°C for 3 min and then 40 cycles of 95°C 

for 30 s, 60°C for 1 min and 72°C for 30 s. A control with no cDNA was run for each primer pair. For data 

analysis, the geometric mean of the biological replicates (n = 4) was calculated.  

 

C and N analysis 

The remainder of the root samples and the shoot material were dried at 80°C for 72h and weighed. 

These samples were ground in 1.5 ml Eppendorf® tubes using 1.1 mm diam. tungsten carbide balls 

(Biospec Products, Inc., Bartlesville, Oklahoma, USA) in a Retch MM301 vortexer (Retch Gmbh and Co., 

Haan, Germany). Total N and C were measured using an on-line continuous flow CN analyzer coupled 
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with an isotope ratio mass spectrometer (ANCA-SL MS 20-20 system, Sercon Ltd, Crewe, UK). 

 

Statistical analyses 

An analysis of variance (ANOVA) was performed on the gene expression for each treatment separately, 

where the two latter parameters were arcsine‐transformed to fit the assumption of normal distribution. 

The ANOVA was based on N treatments, ERM and IRM. Pairwise comparisons between the treatments 

were done with planned contrast analysis. Independent paired t‐tests were performed. A pr obability of 

P ≤ 0.05 was considered to be significant. 

Data were clustered by Java MultiExperiment View (MeV4.6.2) (Saeed et al., 2006) with Pearson 

correlation and average linkage clustering. 
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4.4 Results and discussion 

The actual pathway proposed for N uptake and transfer through AM symbiosis implicates the uptake of 

nitrate, ammonium or amino acid (2005; Leigh et al., 2009; Whiteside et al., 2012) and assimilation by 

the extraradical mycelium (ERM), followed by the synthesis of arginine and its transfer to the 

intraradical mycelium (IRM). In the IRM, enzymes for arginine breakdown are active and the resulting 

ammonium is transfer from the AM fungi to the plant (Tian et al., 2010). This pathway is supported by 

labeling and enzymatic activity measurements (Bago et al., 2001; Govindarajulu et al., 2005) as well as 

by molecular analyses. Indeed, Tian et al. (2010) studied the expression of genes coding for enzymes of 

the N cycle including two glutamine synthetase (GS1 and GS2), one carbamoyl – phosphate synthase 

(CPS), one argininosuccinate synthase (ASS), one arginosuccinate lyase (AL), one arginase (CAR), one 

ornithine decarboxylase (ODC), one ornithine aminotransferase 1 and 2 (OAT1 and OAT2), one urease 

(URE) and one glutamate synthase (GOGAT) and found different regulation levels of the enzymes in the 

ERM compared to the IRM. Here, we studied the effect of different N sources on the nutritional status of 

the plant as well as on the transcript regulation of genes coding for enzymes of the N cycle and genes 

coding for N transporters in the AM fungus R. irregularis and in sorghum plants. In addition to the AM 

fungal enzymes studied by Tian et al. (2010), we studied the expression of three nitrate reductases (NR), 

three ammonium transporters (AMT) and an asparagine synthtase (AspS). All fungal genes were studied 

in the ERM and in the IRM of the fungus. In the plant, we studied the expression of eight ammonium 

transporters (AMT-P) (Koegel et al., 2013), three glutamate synthase (GOGAT-P), one nitrate reductase 

(NR-P), one aminomethyl transferase (gvcT-P), two asparagine synthase (AspS-P), two glutamate 

dehydrogenase (GDH-P) and one glutamine synthase (GS) (Fig.4.1). 

Plant N nutrition and root length colonization: Root length colonization, dry weight and N content in 

S.bicolor plants were significantly lower in the treatment without N (-N) compared to the treatments 

with N (+N, NO3
+, NH4

-, urea, glycine and arginine) (Fig. 4.2, 4.3 and 4.4). Indeed, assimilation of N has 

effects on plant productivity, biomass and crop yield (Lam et al., 1996).  

Mycorrhized plants fed with glycine had a significantly higher N content and dry weight than 

mycorrhized plants fed with the other N sources (Fig. 4.3 and 4.4). These results show that the 

nutritional status of AM plants is influenced by the source of N added to the substrate similarly to non-

mycorrhized plants were different sources of N affected growth rate, leaf sucrose phosphate synthase, 
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starch formation and photosynthesis (Kerr et al., 1984; Raab & Terry, 1994). Interestingly, our results 

shown that AM plants feed with different organic N sources (Glycine or Arginine) differed significantly in 

their N content (Fig.4.4). This result could be explained by the fact that AM fungi do not take up 

different simple organic N sources with the same efficiency (Whiteside et al., 2012).  

Here, we did not find any differences in the N status of plants feed with different inorganic N sources 

(Fig. 4.4) in contrast to Ngwene et al. (2012) who shown that more 15N was transferred to cowpea plants 

when the AM fungus R. irregularis had access to labeled nitrate compared to NH4
+. In fact, the 15N 

shoot/root ratio of the plants was clearly higher in the 15NO3
- treatments. NH4

+ was preferentially kept in 

the fungal mycelium or in plant roots indicating a much lower rate of transfer in the case of NH4
+. 

However, contrasting results were obtained by Tanaka & Yano (2005): they observed that the AM 

fungus Glomus aggregatum could rapidly deliver N to maize plants when it had access to NH4
+ but not 

when it had access to NO3
-. These differences in the results obtained might be due to the different AM 

fungi and host plant used. It raises the question of the right N source to use as fertilizer in sustainable 

agricultural systems. 

 

Fungal and plant N cycle: The analysis in the IRM and in the ERM of 15 fungal genes coding for enzymes 

of the N cycle GS1 and GS2, CPS, ASS, AL, CAR, ODC, OAT1 and OAT2, URE, AspS, NR1, NR2, NR3, GOGAT 

and of genes coding for one nitrate (NT) and three ammonium (AMT1, AMT2, AMT3) transporters 

shown different expression pattern depending on the N source. Interestingly, the expression pattern of 

the analyzed genes was differing between the two organic N sources, glycine and arginine. This could be 

a reason for the differences in N nutritional status of the plants.  

In the ERM, transcript level of OAT1 and 2, AL, CPS, AspS, NR3 and AMT1 and 2 was below the detection 

limit. Expression of GOGAT was not detected in the ERM and in the IRM.  

Interestingly, relative expression of GS2-ERM was similar to GS2-IRM for the different N conditions (Fig. 

4.5) and was coregulated with ASS-IRM and GOGAT3-P. Expression of NT was also similar in the ERM and 

the IRM for the different N conditions and was coregulated with CAR-ERM, CPS-ERM, OAT-ERM and NR-

P (Fig. 4.5).  

The analysis of ten plant genes coding for enzymes of the N cycle (GOGAT1-P, GOGAT2-P and GOGAT3-

P, NR-P, gvcT-P, AspS1-P, AspS2-P, GDH1-P, GDH2-P, GS-P) and for ammonium transporters (Koegel et 
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al., 2013) revealed the down-regulation of most genes in the conditions +N (NO3
-, NH4

+, urea, glycine, 

arginine) compared to the condition –N (Fig. 4.1). Similarly, Sukanya et al. (1994) did not find 

accumulation of GS1 transcript in maize (Zea mays) under NH4
+ condition. GS1-P and gvcT-P were 

coregulated with AMT1-1-P and AMT1-2-P and with AMT3-ERM, URE-ERM and ASS-ERM (Fig. 4.5).  

In plants, AMTs were studied intensively and can be classified in two distinct subfamilies: AMT1 and 

AMT2 (Loque & von Wiren, 2004). The AMT1 subfamily forms a well defined group in monocots and 

dicots. The AMT2 subfamily can be further divided in three subclades (Suenaga et al., 2003) and is more 

closely related to bacterial AMTs than to the AMT1 subfamily. Interestingly, AMT1-1-P and AMT1-2-P, 

belonging to the AMT1 subfamily, were distinctively regulated than the AMT transporters belonging to 

the AMT2 subfamily (Fig. 4.5).  

As mentioned before, the pathway of N transport in the AM symbiosis (Bago et al., 2001; Govindarajulu 

et al., 2005; Tian et al., 2010) implies the expression of genes coding for N transport, assimilation and 

arginine synthesis in the ERM and the expression of genes coding for arginine and urea breakdown in 

the IRM. Indeed, we found a higher expression of AMT3 in the ERM and OAT1 and CPS were highly up-

regulated in the IRM (Fig. 4.6). However, we also found a high up-regulation of GS1, NR1, NR2 and NR3 

in the IRM compared to the ERM and URE was up-regulated in the ERM compared to the IRM (Fig.5.6). 

These data can be explained by the finding from Tian et al. (2010) that gene expression is varying 

strongly within some hours. Additionally, we could show that N source had an influence on gene 

expression. In ectomycorrhizal fungi, gene expression can also vary in the ERM compared to the Hartig 

net (Nehls et al., 2001): in the poplar – Amanita muscaria symbiosis, a phenylalanine ammonia lyase 

gene was differentially expressed in both tissues in response to glucose treatment. Additionally, N 

treatment influence the gene expression of ectomycorrhizal fungi (Chen et al., 2003). 

AM fungi are key soil microorganisms contributing to crop productivity and ecosystem sustainability 

(Gianinazzi et al., 2010): they do not only improve plant nutrition but also prevent erosion and increase 

stress resistance to drought and other factors (Smith & Read, 2008). For this reason, AM fungi are very 

important for sustainable agriculture. One point that agriculture has to face today is to achieve an 

increased production to feed the growing world population but at the same time to protect resources 

and to manage ecosystems in a more sustainable way. Here we could show an effect of different N 
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sources on the gene expression of sorghum plants and R. irregularis as well as on plant N status. In view 

of our results, the optimization of the N source could be of great interest for sustainable agriculture. 
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Table 4.1: Modifications made to the Hoagland solutions after Gabor & Wetter (1975) to obtain the treatments "-N", “NO₃⁻” , 

“NH₄⁺”, “Urea”, “Glycine” and “Arginine”.  

Hoagland 
solution after 
Gabor & Wetter 
(1975) 
Solution D 

“-N” “NO3
-” “NH4

+” “Urea” “Glycine” “Arginine” 

39.805 mMol 
Ca(NO3)2∙4H2O 

39.805 mMol 
CaCl2∙2H2O 

39.805 mMol 
Ca(NO3)2∙4H2O 

39.805 mMol 
CaCl2∙2H2O 

39.805 mMol 
CaCl2∙2H2O 

39.805 mMol 
CaCl2∙2H2O 

39.805 mMol 
CaCl2∙2H2O 

20.286 mMol 
MgSO4∙7H2O 

20.286 mMol 
MgSO4∙7H2O 

20.286 mMol 
MgSO4∙7H2O 

20.286 mMol 
MgSO4∙7H2O 

20.286 mMol 
MgSO4∙7H2O 

20.286 mMol 
MgSO4∙7H2O 

20.286 mMol 
MgSO4∙7H2O 

65.275 mMol 
KNO3 

75.70 mMol 
KCl 

65.275 mMol 
KNO3 

75.70 mMol KCl 75.70 mMol 
KCl 

75.70 mMol KCl 75.70 mMol KCl 

10.433 mMol 
NH4H2PO4 

10.433 mMol 
KH2PO4 

10.433 mMol 
KH2PO4 

10.433 mMol 
KH2PO4 

10.433 mMol 
KH2PO4 

10.433 mMol 
KH2PO4 

10.433 mMol 
KH2PO4 

   155.318 mMol 
NH4Cl 

77.652 mMol 
CH4N2O 

155.318 mMol 
C2H5NO2 

38.828 mMol 
C6H14N4O2∙HCl 
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Table 4.2: Specific primers for RT-qPCR. White color indicate primer for R. irregularis. Grey color indicate primers for S. bicolor. 

 Forward Reverse After 

AMT1 TGTGTCAGCATTGTCTTCAGT GGCAAGTGCGGGTGTAATAG  

AMT2 GTGCCAATGCCGCTAACA GCCAGAACAGAATCCCAAAG  

AMT3 GGGCTTGACTTTGCTGGT TTCGTCCCTTCCATGACC  

NR1 GCGCAGGAAATCGTCGTA CGCAATGGCACACCTTTC  

NR2 GCTTCGGTACAGGTCCATGA CGGTTGACAGGAAAACATCC  

NR3 GGAGAGGTGTTCCATTACGA CCCGAGAATCATCCATTG  

AspS GTTGAACGATGGATTCCAAGA CATTAGCAACATTATCATAAGCAGA  

CAR TGATGCGGTGAATCCTAAGAGA GATCAAGTGCATCAACGTCAAAG Tian et al. (2010) 

ASS GCATTGGTCGTATTGATATTGTTGA TTGTTCCCCCAGGAGTTTCA Tian et al. (2010) 

CPS GATCGCCGTCGTTGACTGT CGCGCCGCGTTTAACTAA Tian et al. (2010) 

GS1 AGTGGCCTTCGTTCAAAGACTAG CATCACCAGGTGCTTGATTAGTA Tian et al. (2010) 

GS2 CCAACATTGATCCTTATCGTGTC CTCCTAAATTAGAGAAAGAAAAAAAGGG Tian et al. (2010) 

URE CGCAAATGGGAGATGCAAAT CAGCACTTGCATAATGACCAAAC Tian et al. (2010) 

GOGAT TTCGCAGCCGGTGATTG CGACCCTCATTTATACCCCATACA Tian et al. (2010) 

18S TGTTAATAAAAATCGGTGCGTTGC AAAACGCAAATGATCAACCGGAC Tian et al. (2010) 

OAT1 GGTTCGAGCGGATATTGTCATAC AGGACTGCTGATATTGGGTAAACG Tian et al. (2010) 

OAT2 CGGGTAAGATGCTTTGTCAAGA GCCTGAAAGTGCTTTACCAAGTATAAC Tian et al. (2010) 

ODC TTGATTGCGTTACCAAAAATGG TCGAAATACAACCAGTCACCAAGA Tian et al. (2010) 

AL ACGGACTTGGCTGAATATTTGGT GCCCCTGCAATATGATGAGTTT Tian et al. (2010) 

NT GGCTTGCTGCGGTTCAGT CGACTAATCCTGATATTGCACCAA Tian et al. (2010) 

AMT1-1 GCTGTGGTTCGGCTGGTA GGACTTGAGGATGGTGGTGAA Koegel et al. (2013) 

AMT1-2 TCCATTGCTCCTCGTTGC GGCTTTGCTCCCTCTTCC Koegel et al. (2013) 

AMT2-1 TCCCGCCCGCCTACAGCT GTCACCATTCAGCTGTAG Koegel et al. (2013) 

AMT2-2 GCGGCTTCCTCTACCAGTG CCTCTCCCTGTCGCTCTTC Koegel et al. (2013) 

AMT3-1 GGCCTCGTCTGCATCACT GGGTGTCGTCCACTTGCT Koegel et al. (2013) 

AMT3-2 CCGCACGCACTCTATCTGTA TCGCTGCTTATTGGGGTTAG Koegel et al. (2013) 

AMT3-3 CGTCATTGCCTGGAACATC AGCATCATCCCCGATAAGC Koegel et al. (2013) 

AMT4 CGAACAACATTCTCCTGACG CCCGAACACGAAGCAGTC Koegel et al. (2013) 

GOGAT1 CAGAACACGAACCGAGCA CAGCAGGCAATCCACTCA  

GOGAT2 GCCCTCCCCTTCAGAGTC CATCAGCCCTCCAATACGA  

GOGAT3 GAATGGGCTCCGTCCAG CCAACCTCAGATGCGACA  

AspS1 CTGTTGCTTCACGGCACTTA CTTCCTCCAAGGCATCTATCC  

AspS2 ACCCCCTCGGTTCCATAC GAGAGCAGGACGCCAAAG  

GDH1 GCATCCGCTACCATCCTG CGTCAACCGCTCCAACTC  

GDH2 TATGGCAACGAGGGAAGC ATTGACGCCGCTGTTTTC  

gvcT GCACATCACGCCAGTTGA GCCTTCCGATTTCCTCCT  

NR CTGCCGAGGAAATGGAAC GTTGATGTGCGGGTGCTC  

Ubi CAAGGAGTGCCCCAACAC GGTAGGCGGGTAAAGCAAA  

GS TGCCCGCTACATTCTCG ACCCTGGATTGGCTTCG  
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Figure 4.1. N pathway with enzymes and transporters studied in R. irregularis (red) and in S. bicolor (blue). Modified after 
www.genome.jp/kegg. NT, nitrate transporter; AMT, ammonium transporter; NR, nitrate reductase; GS, glutamine synthetase; 
GDH, glutamate dehydorgenase; AspS, asparagine synthetase; gcvT, aminomethyltransferase; CPS, carbamoyl-phosphate 
synthase; ASS, arginosuccinate synthase; AL, arginosuccinate lyase; CAR, arginase; URE, urease; ODC, ornithine decarboxylase; 
OAT, ornithine aminotransferase. 
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Figure 4.2. Percentage of root length colonized after 13 weeks post inoculation in plants colonized by Rhizophagus irregularis 

in the different N treatments (-N, NO₃⁻, NH₄⁺, urea, glycine and arginine). Values are mean of four replicates. Differences in N 

content between the treatments were performed with a one-way ANOVA (Scheffe’s F-test). Letters indicate a P-value <0.05. 
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Figure 4.3: Dry weight (g) after 13 weeks post inoculation in plants colonized by Rhizophagus irregularis in the different N 

treatments (-N, NO₃⁻, NH₄⁺, urea, glycine and arginine). Values are mean of four replicates. Differences in N content between 

the treatments were performed with a one-way ANOVA (Scheffe’s F-test). Letters indicate a P-value <0.05. 
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Figure 4.4: Total N content after 13 weeks post inoculation in plants colonized by Rhizophagus irregularis in the different N 

treatments (-N, NO₃⁻, NH₄⁺, urea, glycine and arginine). Values are mean of four replicates. Differences in N content between 

the treatments were performed with a one-way ANOVA (Scheffe’s F-test). Letters indicate a P-value <0.05. 
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Figure 4.5. Hierarchical clustering showing the quantification by reverse transcript polymerase chain reaction (qRT-PCR) of 

the transcripts abundance of NT, AMT1, AMT2, AMT3,ASS, CPA, OAT1, OAT2, CAR, URE, GS1, GS2, GLO, AL, APS, UDC, NR1, 

NR2, NR3 in the IRM and in the ERM of Rhizophagus irregularis and GOGAT1, GOGAT2, GOGAT3, AspS1, AspS2, GDH1, GDH2, 

gvcT, NR, GS, AMT1-1, AMT1-2, AMT2-1, AMT2-2, AMT3-1, AMT3-2, AMT3-3, AMT4 in the plant (-P) in the different nitrogen 

(N) treatments (-N, NO3
-, NH4

+, urea, glycine arginine). The values are the means of four replicates. 18S was used as the 

reference transcript for the fungus. Ubiquitin was used as the reference transcript for the plant. Gene expression was 

normalized to the –N treatment. 
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Figure 4.6. Hierarchical clustering showing ratio IRM/ERM of the quantification by reverse transcript polymerase chain 

reaction (qRT-PCR) of the transcript abundance of NT, AMT1, AMT2, AMT3,ASS, CPA, OAT1, OAT2, CAR, URE, GS1, GS2, GLO, 

AL, APS, UDC, NR1, NR2, NR3 in the different nitrogen (N) treatments (-N, NO3
-, NH4

+, urea, glycine and arginine). The values are 

the means of four replicates. Beta-tubulin was used as the reference transcript. Data are log2 transformed. 
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5.1 Abstract 

We have recently described two ammonium transporters in Sorghum bicolor roots that are induced in 

the symbiosis with arbuscular mycorrhizal fungi. To study the role of ammonium transport in this 

symbiosis, we studied the transfer of ¹⁵N derived from ammonium in the soil to Sorghum bicolor plants 

via Glomus mosseae fungal mycelium, using compartmented microcosms. The hyphal compartment 

contained a source of 15NH4
+, which was not accessible to the roots in the plant compartment. We found 

an unexpected velocity and efficiency of symbiotic N transfer: ¹⁵N was present in plant roots and leaves 

already 48 hours after exposition of the arbuscular mycorrhizal fungi to 15NH4
+. Our data support the 

idea that the arbuscular mycorrhizal symbiosis contributes in an important way to plant nitrogen 

nutrition. 

 

5.2 Keywords 

Nitrogen, mycelium, arbuscular mycorrhizal fungi, transfer, sorghum 
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5.3 Main text 

We are interested in the arbuscular mycorrhizal symbiosis(Smith & Read, 2008; Smith & Smith, 2011), 

using sorghum (Sorghum bicolor) and Glomus mosseae as a model. Recently, we described the expanded 

family of ammonium transporters (AMTs) in sorghum (Koegel et al., 2013). We shown that two AMTs, 

SbAMT3;1 and SbAMT4, are up-regulated in mycorrhized plants and that SbAMT3;1 is localized at the 

plant-fungus interface. We wondered about the biological significance of ammonium transport in the 

symbiosis. 

 

Indeed, nitrate and ammonium, the two main sources of inorganic N present in the soil, have a high 

mobility, limiting the depletion zone around the roots (Smith & Smith, 2011). Nevertheless, different 

studies estimated that AM fungi delivered between 30% and 42% of the N taken up by the plant (Mader 

et al., 2000; Govindarajulu et al., 2005). In addition, AM fungi could play an important role in N nutrition 

under drought stress conditions or in marginal soil were nutrient supply is reduced, (Smith & Read, 

2008). This may be particularly relevant for the symbiosis that we study, since sorghum can grow under 

more arid conditions than most other grain crops, and makes it an existential source of food, feed, or 

fiber for many farmers living in the semi-arid tropics of Africa, Asia and South America (Paterson et al., 

2009).  

 

To determine the importance of AM fungi in the sorghum N nutrition, we set up an experiment using 

compartmented microcosms (Figure 1) where one plant and one hyphal compartment are connected, 

but separated by two 21μm nylon mesh unsheathing an air gap. The two compartments were filled with 

sterile (120°C, 20 min) growth substrate consisting of a mixture of Terragreen (American aluminum 

oxide, oil-dry U.S. special, type III R, 0.125 mm; Lobbe Umwelttechnik), sand (quartz sand from Alsace, 

0.125–0.25mm; Kaltenhouse), and Loess from a local site (5:4:1, w/w/w). Sorghum (Sorghum bicolor (L.) 

Moench), cv Pant-5 seedlings were inoculated with a 2-g (approximately 100 spores) inoculum of G. 

mosseae ISCB13, or with 2 g of sterilized (120°C, 20 min) inocula as a non-mycorrhizal control. In the 

center of the hyphal compartment, a 21μm nylon mesh bag of 15ml was inserted and kept empty before 

labeling. Twelve weeks after inoculation, the nylon mesh bag was filled with 13g of sand including 10mg 
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of ¹⁵N ammonium sulfate (Cambridge isotope Laboratory). Two ml of water was added to wet the 

labeled sand without inducing mass flow. The microcosms were watered with distilled water twice a 

week. In addition, every week, the compartments were amended with 8 mL of a Hoagland solution 

(Koegel et al., 2013). Plants were grown under controlled conditions (16 h of light at 28°C and 8 h of dark 

at 15°C, constant relative aerial humidity of 65%).  

 

A total of 40 microcosms were prepared. Four compartmented microcosms were harvested separately 

0, 12, 24, 48 and 72 hours after labeling. From the plant compartments, roots, green parts of the leaves 

and wilted, yellow leaves were harvested separately. In the mycorrhized systems, the AM fungal 

mycelium was harvested both in the plant and in the hyphal compartment. Total amount of N and of ¹⁵N 

were measured using a ThermoFinnigan FlashEAseries 1200 elemental analyzer. Liberated carbon 

dioxide and nitrogen were cleaned and dried through a series of chemical traps and separated by gas 

chromatography. Nitrogen isotopes were determined using a ThermoFinnigan DeltaV Advantage 

Continuous-Flow IRMS.  Sample data was corrected versus internal standards EDTA (-1.1 per mil) and 

ammonium oxalate (+32.7 per mil), both of which had previously been calibrated against international 

standards. 

 

No ¹⁵N was transferred to the non-mycorrhized plants (Supplementary Tab.1). In contrary, we found ¹⁵N 

already after 24 hours in the AM fungal mycelium from both the hyphal and from the plant 

compartment, indicating that the AM fungi were able to exploit the newly added ammonium very 

rapidly (Fig.2, Supplementary Tab.1). Mycorrhized plants received ¹⁵N rapidly as well: the percentage of 
15N was significantly higher in the mycorrhized compared to the non-mycorrhized plant systems (p=0.00, 

F=40.83) after 48 hours (Supplementary Tab.1). The ¹⁵N label was present both in roots and in green 

leaves, indicating a substantial transfer to the entire plant, except to the wilted yellow leaves, which did 

not display a ¹⁵N signal (Fig. 2 and 3, Supplementary Tab. 1). ¹⁵N concentration increased between 48 

and 72 hours, indicating a continuous transfer (Fig. 2, Supplementary Tab. 1). 

 

Interestingly, percentage of ¹⁵N from total N was higher in fungal mycelium than in the plant. However, 

plant tissues (except the wilted yellow leaves) contained more μg ¹ ⁵N than the fungal mycelium 

confirming the accumulation of ¹⁵N in the plant tissues (Fig. 3). 
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Our data underline the effectiveness of AM fungi in the absorption of ammonium and in symbiotic N 

transfer. It remains to be seen what the role of the plants' AM-inducible ammonium transporters have 

in this process. AM fungi are able to take up N is form of nitrate, ammonium or amino acids from the 

soil, far away from the plant (Govindarajulu et al., 2005; Leigh et al., 2009), and they are believed to 

transfer it to the arbuscules, through the extraradical mycelium, in the form of arginine (Tian et al., 

2010). There, they may produce ammonium and deliver it to the plant, which is then taken up by the 

plants' AM-inducible ammonium transporters at the symbiotic interface.  
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Figure 5.1: Compartmented microcosms. One plant and one hyphal compartment are separated by two 21μm nylon 

meshes and an air gap to prevent mass flow. A 21μm nylon mesh bag of 15ml was inserted in the center of the hyphal 

compartment and filled with 13g of sand including 10mg of ¹⁵N ammonium sulfate twelve weeks after inoculation. 
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Figure 5.2: Time course experiment on the transfer of (15NH4)2SO4 as N source from the soil to Sorghum bicolor 

plants via Glomus mosseae ISCB13 mycelium. 

15N was measured in different tissues after 0, 12, 24, 48, and 72 hours of labeling: roots, green leaves and wilted, 

yellow leaves of plants as well as in the AM fungal mycelium from the plant and from the hyphal compartment. 

Values are the means of four replicates. 
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Figure 5.3: Percentage of 15N and total 15N (μg) in the different tissues of mycorrhized sorghum plants harvested in 

the compartmented microcosms after 72h of labeling.  

Values are range of four replicates. 
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Supplementary table 5.1: Percentage of ¹⁵N of total N in plant and AM fungal mycelium.  

Values are the means of four replicates. Differences in relative gene expression between the treatments were performed with a 

one-way ANOVA (Scheffe’s F test). Different letters indicate significant differences between the harvesting time points within 

one treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hyphae Roots Green leaves Wilted yellow leaves 

 

Hyphal 

compartment 

Plant 

compartment 
-Myc +Myc -Myc +Myc -Myc +Myc 

0h 1.13 (a) 1.03 (a) 0.36 (a) 0.37 (a) 0.36 (a) 0.36 (a) 0.37 (a) 0.37 (a) 

12h 1.35 (a)  1.24 (a) 0.37 (a) 0.35 (a) 0.36 (a) 0.36 (a) 0.37 (a) 0.37 (a) 

24h 4.46 (b) 1.91 (ab) 0.36 (a) 0.37 (a) 0.36 (a) 0.36 (a) 0.37 (a) 0.37 (a) 

48h 8.15 (c) 2.97 (b) 0.37 (a) 0.71 (b) 0.36 (a) 1.39 (b) 0.37 (a) 0.37 (a) 

72h 9.94 (c) 4.75 (c) 0.36 (a) 1.05 (c) 0.36 (a) 1.77 (c) 0.37 (a) 0.37 (a) 
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6. General discussion 
 

6.1 Ammonium uptake mediated by AM fungi in agroecosystems 

N is a key element for plants and microorganisms’ growth but its mineral forms (ammonium and nitrate) 

are often limited in ecosystems. For this reason, microorganisms such as AM-fungi developed the 

capability to rapidly absorb N. However, in agro-ecosystems, microorganisms have a lower activity and 

biomass due to the absence of available C and cannot trap all the N added to the substrate (Kuzyakov & 

Xu, 2013). In this context farmers also often overfertilize field to improve plant growth. Reduced 

microorganisms activity and overfertilization result in N leakage which has negative effects on the 

environment such as groundwater pollution or soil degradation (Tilman et al., 2002). Here, the use of 

AM fungi could reduce the problem by making N present in the soil more rapidly available for the plant, 

thus reducing the need of N fertilizers. Interestingly, in chapter 4, we shown that different N sources 

had an impact on the gene expression of the fungi and on the dry weight of the plants. These data raise 

the question of the useful N source for a sustainable agriculture system to fully exploit AM fungi uptake 

and transfer capabilities improving plant growth under low-input systems. Indeed, AM fungi can take up 

different forms of N like nitrate, ammonium or amino acids (Govindarajulu et al., 2005; Whiteside et al., 

2012) and recent studies have shown that the assimilated N was transformed to arginine in the ERM of 

the fungi to be transferred from the ERM to the IRM. In the IRM, arginine was brokendown to allow the 

transfer of ammonium from the fungi to the plants (Tian et al., 2010). The presence of AM-inducible 

AMTs localized at the plant – fungus interface (chapter 2) confirm these findings. However, the transfer 

of N in form of nitrate between AM fungi and plants is not excluded. Ngwene et al. (2012) hypothesized 

two different N pathways for N transfer from the AM fungi to the plants: one for ammonium and one for 

nitrate. The authors suggested that nitrate, in contrast to ammonium, might not be assimilated to 

organically bound N but rather directly transferred to the plant. This way of N transfer would be much 

faster and more efficient. To confirm this hypothesis, regulation of nitrate transporters in plants under 

different N treatments should be assessed. Additionally, the form of N present in the ERM, in the IRM 

and in mycorrhized roots should also be analyzed under different N treatments. These data could help 

to manage the use of N fertilizer in agriculture. In view of the potential benefits of AM fungi, efforts 
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have to be made to lower the negative impact of intensive agricultural practices and plant selections on 

these fungi (Oehl et al., 2003; Kiers et al., 2007). 

 

6.2 Evolution of AM-inducible transporters: Comparison of AMTs and Phts 
 

Beside N, a main nutrient taken up and transferred by AM fungi to their plant partner is phosphorus (P) 

(Smith & Read, 2008). Interestingly, evolutionary characteristics of AM-inducible AMTs and Phts are very 

similar: PT11 type proteins of the PHT1 family form a monophyletic group within mycorrhizal 

angiosperms indicating functional conservation across the monocots and the dicots (Yang et al., 2012). 

The mycorrhizal function of PT11 might have evolved later or was alternatively lost in some lineages as 

plants like Physcomitrella patens have a PT11 protein but are not capable to form mycorrhizal symbiosis 

(Yang et al., 2012). Similarly, AMT3;1 type protein of the AMT3 cluster also forms a monophyletic group 

within mycorrhizal angiosperms (Fig. 1.5). The branch point between the five monocots AMT3;1 and 

poplar and soybean AMT3;1 demonstrates that these transporters share an ancient common ancestor. 

These findings attest from the evolutionary antiquity of proteins involved in symbiotic nutrient transfer. 

For the AMT3;1, the presence of mycorrhizal function in a common ancestor and its later lost in poplar 

appear as a credible hypothesis.  

More recently, the Poaceae acquired a second AM-inducible Pht1, PT13. It was found to be up-regulated 

upon colonization by AM fungi in rice, B. distachyon and sorghum (Hong et al., 2012; Yang et al., 2012; 

Walder et al., in Preparation). For this reason, a similarity in its function with PT11 can be assumed. 

Similarly to PT13 proteins found in the Poaceae, the AMT4 proteins are clustering together and their 

expression is induced by AM fungi showing the presence of this protein in a common ancestor of these 

plants. A related function of AMT4 proteins in the different Poaceae species can also be assumed. 

The question of the redundancy of AM-inducible Phts has been raised since mutants lacking one AM-

inducible Pht in tomato did not show any AM-related phenotype (Nagy et al., 2005). However, Yang et 

al. (2012) shown that the two AM-inducible Phts in rice had no redundant function. For AM-inducible 

AMTs, to my knowledge, no similar studies have been done. However, our results on the expression of 

AMT3;1 and AMT4 in different plant tissues and our characterization of the transporters in yeast 

(chapter 2) shown that both transporters have different expression pattern and different affinities for 
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ammonium transport, an indication for non-redundant function in the plant. By testing amiRNA mutants 

of OsAMT3;1 and OsAMT4, the two AM-inducible AMTs in rice (appendix III), we will map the precise 

function of both transporters and answer the question of their redundancy. 

 

6.3 The role of reciprocal nutrient exchange for a functioning AM symbiosis 
 

The main function of AM symbiosis is the reciprocal exchange of nutrients between plants and their 

fungal partners. AM fungi are obligate symbionts and receive all the C they need from their plant 

partners (Smith & Read, 2008).  

In the other direction, plants can take up nutrients directly with their roots and do not obligatorily need 

AM fungi. However, AM fungi are able to search a much bigger surface for nutrients and their very thin 

hyphae also permit them to enter smaller soil pores than plant roots (Smith & Read, 2008). For this 

reason, it is of advantage for a plant to associate with AM fungi.  

The question of the mechanism regulating AM symbiosis and of the importance of reciprocity in 

resource exchange has been raised. On one hand, the nutrient exchange doesn’t have to be reciprocal 

to allow functional AM symbiosis (Walder et al., 2012). On the other hand, a minimal delivery of P seems 

to be required for regular AM colonization. Indeed, rice plants lacking PT11, the Pht responsible for 

symbiotical P transfer in rice, shown a very reduced colonization and arbuscule level (Yang et al., 2012) 

similarly to M. truncatula mutants lacking the AM-inducible Pht, MtPT4 (Harrison et al., 2002b; Javot et 

al., 2007). Reciprocal rewards also seems to stabilize AM symbiosis: plants and AM fungi appear to 

detect and react to changes in nutrient transfer (Kiers et al., 2011).  

Our results shown that AM inducible AMTs evolved in cereal plants at about the same time than AM 

inducible Phts. Their functionality was confirmed by yeast characterization and computer simulation 

(Chapter 2 and 3). However, nothing is known about their role for the establishment of AM symbiosis. 

Thus, like AM-inducible Phts, AM-inducible AMTs might be crucial for arbuscule development and 

maintain inside plant cortical cells. We hypothesize that mutants lacking one AM-inducible AMT will 

have an impaired AM fungal colonization leading to a reduced or an absence of AM fungal mediated 

nutrient uptake. This hypothesis is supported by the fact that N depletion can recover the phenotype of 

the M. truncatula mutant mtpt4: arbuscule lifespan is similar in the mutant compared to the wild type in 

condition of low N supply (Javot et al., 2011). In contrast, in non-mutant cereal plants, we could show 
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that N treatment had no effect on root length colonization and on arbuscule level after 13 weeks. The 

expression of AM-inducible AMTs was also not modified. However, the combined effect of low N and 

low P on the expression of AM-inducible AMTs and its impact on the establishment of AM symbiosis 

would be of great interest here. Actually, it is well known that the deficiency of one mineral nutrient can 

influence the uptake of other nutrients (Schachtman & Shin, 2007). As shown by Wu et al. (2003), P 

starvation reduced photosynthetic activity, which affected C reduction and N assimilation. Thus, after 

24h of P starvation, expression of genes for nitrate reductase or glutamine synthetase was repressed 

(Wu et al., 2003). Similarly, P starvation of the plant combined with its N status could have an effect on 

the expression of AM-inducible AMTs.  

 

6.4 Conclusion and outlook 
 

In this work we focused on N transfer during AM symbiosis (chapter 5) and on the regulation of AM-

inducible AMTs (chapter 2 and 3). Here, micro RNA naturally present in plants could play an important 

role in the regulation of nutrient transfer during AM symbiosis as well as in the regulation of AM-

inducible transporters. For this reason, it would be interesting to assess all the micro RNA present in 

mycorrhized and non-mycorrhized plants under different N conditions. A special focus could be put on 

the role of miR399 and miR530, two micro RNA implicated in nutrition pathways (Cai et al., 2012). 

Furthermore, our study revealed two AM-inducible AMTs in sorghum, maize, rice, S. italica and B. 

distachyon. These transporters might be important for symbiotic N transfer. To test this hypothesis, the 

capability of the mutants lacking one AM-inducible AMT to transport N from a labeled source to the 

plant should be studied. A kinetic of the transport in the mutant compared to the wild-type could also 

bring interesting inputs. In overall, these data would provide very helpful information on the function of 

the different AM-inducible AMTs and on the importance of such transporters for the AM symbiosis. 

The main aspect of this work was the symbiosis between plants belonging to the Poaceae and AM fungi 

belonging to the Glomeromycota. Many plants belonging to the Poaceae are of agricultural interest and 

build the principal source of food for people around the world. However, intensive agricultural practices 

have negative impact on the environment. To meet the increasing global food demand, achieve 

ecological goals and face the global warming, it is important to find sustainable strategies maintaining 
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high plant yield under low fertilizer input. AM fungi are one possibility to achieve this goal: their 

capability to rapidly absorb N from the soil and to link different plants together (Smith & Read, 2008), 

thus promoting plant facilitation is of great interest. Indeed, it was shown that legumes fixing N in 

symbiosis with rhizobia can provide N to other plants via a common mycorrhizal network (Martensson 

et al., 1998). Particularly, the association between legumes fixing N and grasses, a mixed-culture model 

often used in traditional agriculture, could be a solution to the overfertilization and should be more 

intensively studied. Here we focused on the transfer of N via AM fungi and mapped important aspect of 

this transfer reveling the potential of AM fungi for plant N nutrition. Transfer of N is only one aspect of 

the mycorrhizal symbiosis. However this aspect was long underestimated and might play a very 

important role in the view of a more sustainable agriculture. 
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Abstract 

 

• Arbuscular mycorrhizal (AM) fungi are important plant symbionts, trading mineral nutrients 

beyond the reach of roots, in particular inorganic phosphate (Pi), in exchange to their hosts' 

photosynthetic products. 

• In a mixed-culture between flax (Linum usitatissiumum) and sorghum (Sorghum bicolor), flax 

took up much more of the Pi delivered by the common mycorrhizal network (CMN) than 

sorghum, although sorghum invested much more carbon into the CMN than flax (Walder et al., 

2012). Is this difference in Pi uptake due to differential regulation of Pi transporters in the two 

host plants?  

• A baseline was first established by identifying all eleven and nine members of the Pi transporter 

family Pht1 in sorghum and flax, respectively. Two Pht1 sorghum (SbPT10 and SbPT11) and four 

flax (LuPT2, LupT5 and LuPT8/LuPT9) transporters were expressed in the roots in the presence 

of AM fungi. When expression of the mycorrhiza-inducible Pi transporters was studied in mono-

cultures or mixed-cultures of flax and sorghum, it turned out that the expression of AM-

inducible Pht1 genes was only weakly related to mycorrhizal Pi uptake, but that it was 

differentially regulated depending on the fungal partner and the co-cultured plant.  

• We conclude that in both sorghum and flax, expression of AM-inducible Pht1 transporters is 

initiated by arbuscule formation, but that the differential Pi delivery by the CMN is not directly 

dependent on differential Pht1 gene expression in the two host plants.  



Appendix I  Sorghum phosphate transporters 

127 
 

Introduction 

Phosphorus (P) is an essential macronutrient playing a central role in developmental and metabolic 

processes in plants, and one of the most important growth-limiting factors in many natural and agro-

ecosystems (Marschner, 1995). The primary source of P for plants is inorganic orthophosphate (Pi). Pi 

concentrations in the soil solution are very low (1-10 µM) and rapidly drop to sub-micromolar levels at 

the root-soil interface, where a narrow depletion zone is generated because of the highly efficient Pi 

uptake systems of the roots, combined with the extremely slow diffusion of Pi in the soil solution 

(Hinsinger et al., 2005; Richardson et al., 2009). To overcome this limitation, Pi fertilizers are used 

extensively in agriculture. However, readily available P may be exhausted at the end of this century; 

therefore, it is a major challenge for plant research to increase P acquisition from the soil in a 

sustainable way (Vance et al., 2003; Cordell et al., 2009). 

 

Since cellular Pi concentrations are in the millimolar range, direct Pi uptake from the soil solution 

requires an energy dependent transport system; in the plant root, this function is fulfilled by the Pi/H+ 

symporters belonging to the Pht1 gene family, which are fueled by the protein gradient established at 

the plasma membrane (Rausch & Bucher, 2002). Indeed, many Pht1 genes are strongly expressed in the 

rhizodermal cells, including root hairs and in cortical root cells, indicating a role in direct Pi uptake from 

soil (Daram et al., 1998; Chiou et al., 2001; Ai et al., 2009). But expression has also been observed in 

leaves and inflorescences, indicating additional roles of Pht1 transporters such as remobilization of Pi 

from leaves (Rae et al., 2003), or Pi uptake in the elongating pollen tube (Mudge et al., 2002). Pht1 

genes were often over-expressed when plants were P limited (Bucher, 2007). 

 

In natural ecosystems, plants use a series of adaptations to increase the acquisition of poorly available P, 

of which the symbiosis with arbuscular mycorrhizal fungi (AMF) is one of the most important. AMF are 

soil fungi of the phylum Glomeromycota forming symbiotic association with about 80% of terrestrial 

plants (Parniske, 2008). AMF are not host specific; as a consequence, they may form common 

mycorrhizal networks (CMNs), colonizing simultaneously several plants from the same or different 

species (Bever et al., 2010). For mycorrhizal plants, AMF play a crucial role in Pi acquisition, accounting 
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for up to 90% of their P requirements (van der Heijden et al., 2008). AMF, with their extraradical 

hyphae, act as functional extensions of the root system and can access nutrients such as Pi much beyond 

the root-determined depletion zone (Richardson et al., 2009). In CMNs, some plants may increase their 

access to Pi by exploiting the CMN more efficiently than the interconnected plants (Zabinski et al., 2002; 

Walder et al., 2012). 

 

Plants engaged in a the arbuscular-mycorrhizal (AM) symbiosis can absorb Pi through two different 

pathways; (1) directly via the rhizodermis, including the root hairs, through high-affinity plant Pht1 

transporters, as described above, and (2) indirectly via the AM symbiosis. The indirect mycorrhizal 

pathway begins with Pi uptake by high-affinity fungal Pht1 transporters expressed in the extraradical 

hyphae (Smith & Smith, 2011). Pi is then translocated towards the roots and released from the 

arbuscule, by unknown mechanisms, to the periarbuscular space. There, it is taken up across the plant's 

periarbuscular membrane, most likely by AMF-inducible Pht1 transporters of the plant (Smith & Smith, 

2011). Such AMF-inducible Pi transporters have been identified in many plant species of monocots and 

dicots (Javot et al., 2007), including perennial trees (Loth-Pereda et al., 2011). They all belong to the 

family of Pht1 transporters but cluster in two different subgroups, named subfamily I and III (Bucher, 

2007). Most members of subfamily I are only expressed in arbuscule-containing cortical cells during AM 

symbiosis, as revealed by immunolocalization (Harrison et al., 2002a; Javot et al., 2007; Tamura et al., 

2012). AM-induced Pht1 genes of subfamily III were found to be expressed more generally in plant 

roots, but specifically induced in the cortical cells during AM symbiosis (Rausch et al., 2001; Maeda et 

al., 2006). Studies of mutants with reduced expression of these two types of AMF-inducible Pht1 genes 

revealed that both were important for symbiotic Pi uptake (Maeda et al., 2006; Javot et al., 2007). 

Recent investigations on the promoter region of AM-inducible Pht1 genes revealed that at least two cis-

regulatory elements, the mycorrhiza transcription factor binding sequence (MYCS) and P1BS, mediate 

the transcriptional activation of these Pi transporters (Chen et al., 2010). 

 

The study presented here is based on our recent finding that flax (Linum usitatissimum) and sorghum 

(Sorghum bicolor), connected by a CMN, had rather different terms of trade with their AMF partners 
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(Walder et al., 2012). In particular, flax took up more than ten times more of the Pi delivered by the 

CMN than sorghum, although sorghum invested much more carbon into the CMN than flax. Was this 

difference in Pi uptake due to differential regulation of Pi transporters in the two host plants? 

To study this question, we first established a comprehensive genome-wide inventory of Pi transporters 

of the Pht1 gene family in sorghum, based on its the genome sequence (Paterson et al., 2009), and 

identified eleven Pht1 transporter genes and their corresponding transcripts. We also assessed the 

genome organization and the evolutionary history of sorghum Pht1 genes, along with their expression 

patterns in various tissues. We then considered the expression of the transporters in the presence or 

absence of mycorrhizal fungi, and low or high concentrations of available Pi. Additionally, we identified 

nine Pht1 transporters of flax based on its the genome sequence (Wang, Z et al., 2012), two of which 

were AM-inducible. With these tools at hand, we examined the expression of the Pht1 transporters of 

flax and sorghum when they were engaged in a CMN with a nonspecific plant, as a model for a mono-

culture, or a heterospecific plant, as a model for a mixed-culture (Walder et al., 2012). The strong 

asymmetries in Pi partitioning between interconnected flax and sorghum plants, which were also 

influenced by the identity of the fungus forming the CMN (either Glomus intraradices or G. mosseae) 

were not reflected by correspondingly different expression levels of the Pht1 transporters, implying that 

posttranscriptional regulatory phenomena must be involved in the different terms of trade between the 

symbiotic partners. 
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Materials and methods 

Plant growth conditions and experimental set-up  

Seeds from Sorghum bicolor (cultivar Plant Chari 5) were surface sterilized (10min in 2.5% KClO) and 

then rinsed with sterile deionized water several times during one day) and soaked in sterile deionized 

water over night. Seeds were pre-germinated on autoclaved sand (Quartz sand of Alsace, 0.125 – 0.25 

mm, Kaltenhouse, France) for 72h in the dark at room temperature. To establish AM symbiosis, pre-

germinated seedlings were planted individually in 350ml pots containing a mixture of sand, acid washed 

Terragreen (American aluminum oxide, oil dry US special, type III R, 0.125 mm; Lobbe Umwelttechnik, 

Iserlohn, Germany) and Loess from a local site (4:1:1 [wt/wt/wt]) and were inoculated at the same time 

with 2 g AMF inoculum containing about 100 spores. Inocula of the two fungal strains, Glomus 

intraradices "TERI commercial" (Mathimaran et al., 2008) and G. mosseae ISCB 22 (Botanical Institute, 

University of Basel, Switzerland), were prepared as previously described (Oehl et al., 2003). For the non-

mycorrhizal plants, the same amount of autoclaved (120°, 20 min) inoculum was added. To correct for 

possible differences in microbial communities, each pot received 5 ml of filtered washing of AMF 

inoculum (Koide & Elliott, 1989). The pots were watered weekly with deionized water. Plants were 

grown in a greenhouse. Night temperature was set to 18°C and day temperatures varied between 23 

and 30°C depending on weather conditions. Additional lighting was provided with high-pressure 

mercury vapor lamps (Philips HPL-N, 400 W) to a day length of 16 h per day.  

To study the effect of phosphorus on gene expression, 8ml of full or P-free Hoagland Solution (with or 

without the component NH4H2PO4) was applied weekly (Zabinski et al., 2002) from the first week. The 

experiments were set up in a randomized block design with four replicates yielding in a total of 24 pots. 

For the studies on the gene expression in mono-culture or mixed-culture, the plant material was taken 

from the microcosms described previously, in which sorghum and flax plants were raised in separate 

compartments, connected by a common hyphal compartment (Walder et al., 2012). 

 

Staining of AMF in plant roots 

Trypan Blue staining was used to identify mycorrhizal structures inside the root (Phillips & Hayman, 
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1970). The percentage of root length colonized by hyphae, arbuscules and vesicles was estimated for 

each sub-sample by a modified line intersection method (McGonigle et al., 1990). A minimum of 50 line-

intersections per root sample was scored for AMF structures.  

 

DNA isolation from field samples and fungal diversity analyses 

Diversity of AMF species associated to sorghum roots harvested in a field site (northeastern France; 

47°62'N, 7°52'E; September 2011) was assessed. For each of the three plants, two subsamples (about 

100mg) of fresh roots were snap frozen and stored at -80°C. DNA was extracted and analyzed as 

described earlier (Courty et al., 2011). Briefly, after isolation of DNA with the NucleoSpin tissue KS kit 

(Macherey-Nagel), the ITS region of nuclear ribosomal DNA was amplified on a T3 thermocycler 

(Biometra), and the amplified fragments were then sub-cloned using the TOPO-TA cloning kit 

(Invitrogen). Sequences were manually corrected using Sequencher 4.2 (Gene Codes). To identify fungal 

species, BLASTN searches were carried out against the sequence databases at National Center for 

Biotechnology Information (http://www.ncbi.nlm.nih.gov/). 

 

Computational identification and characterization of sorghum and flax Pht1 genes 

Genes encoding Pi transporters of the Pht1 family were identified in silico using five approaches, based 

on the full genome sequence of S. bicolor (Paterson et al., 2009) available at the JGI interface and L. 

usitatissimum (Wang et al., 2012), available at the Phytozome interface website 

(http://www.phytozome.net): (1) known Pht1 protein sequences from Arabidopsis and other plants 

(e.g., Medicago truncatula, Oryza sativa, Lycopersicon esculentum, Populus trichocarpa) were used to 

query flax and sorghum gene catalog using TBLASTN, (2) these plant Pht1 gene sequences were also 

used in TBLASTN query against the JAZZ sequence assembly for sorghum (Paterson et al., 2009) and 

against the WGS sequence assembly for flax (Wang et al., 2012), (3) gene models with a predicted Pi 

permease domain (IPR004738) were identified using InterProScan and ScanProsite 

(http://www.expasy.org/tools/scanprosite/), (4) these putative Pht1 transporters were selected on the 

basis of a Pht1 conserved specific amino acid signature (Karandashov & Bucher, 2005), (5) confirmation 
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of these Pht1s models was based on expressed sequence tag (EST) support. Throughout the paper, JGI 

protein identification (ID) was used to identify these sorghum gene models. The final set of Pht1 

proteins comprised the following; SbPT1 (JGI Protein ID: 5050188), SbPT2 (JGI Protein ID: 5056998), 

SbPT3 (JGI Protein ID: 5030542), SbPT4 (JGI Protein ID: 5048813), SbPT5 (JGI Protein ID: 5050189), SbPT6 

(JGI Protein ID: 5058886), SbPT7 (JGI Protein ID: 5048812), SbPT8 (JGI Protein ID: 5033142), SbPT9 (JGI 

Protein ID: 5041365), SbPT10 (JGI Protein ID: 5041362) and SbPT11 (JGI Protein ID: 5036358). For flax, 

transcript names at the Phytozome interface website were used to identify these flax gene models. The 

final set of Pht1 proteins comprised the following; LuPT1 (Lus10022547), LuPT2 (Lus10016635), LuPT3 

(Lus10011826), LuPT4 (Lus10021191), LuPT5 (Lus10014754), LuPT6 (Lus10033886), LuPT7 

(Lus10003560), LuPT8 (Lus10012860) and LuPT9 (Lus10030506). Prediction of putative transmembrane 

(TM) segments for Pht1 proteins was performed using the programs TMHMM, TM pred and Top Pred 

(http://www.expasy.ch/proteomics). For sorghum, putative cis-acting elements were searched 2 kb 

upstream the start codon of the 11 Pht1 genes by DNA-pattern matching analysis. 

For phylogenetic analysis, the Pht1 amino acid sequences were aligned with ClustalX using the following 

multiple alignment parameters: gap opening penalty 15, gap extension penalty 0.3, and delay divergent 

sequences set to 25%; and the Gonnet series was selected as the protein weight matrix. Neighbor 

joining trees were constructed using the Jones-Taylor-Thornton (JTT) substitution rate matrix for 

distance computation in MEGA5. Bootstrap analysis was carried out with 500 replicates. Branch lengths 

(drawn in the horizontal dimension only) are proportional to phylogenetic distances. Gene models used 

for phylogenetic analysis are given in the Supplemental Materials and Methods. 

 

Samples, RNA isolation and quantitative reverse transcription-PCR 

The procedure used for RNA extraction and cDNA synthesis was as described by Courty et al. (2009) and 

in Supplemental Materials and Methods S1. Primers used as controls or for analysis had efficiency 

ranged between 90% and 110%. Target gene expression was normalized (Muller et al., 2002) to the gene 

encoding ubiquitin in sorghum (JGI Protein ID: 5060159) and in flax (Huis et al., 2010). Considering the 

high sequence similarity (>95%) of LuPT3 and LuPT4, LuPT6 and LuPT7, and LuPT8 and LuPT9, it was not 

possible to design specific PCR primers for the amplification of corresponding cDNAs (Supplemental 
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Table S5). All used primers are listed in Supplemental Table S1.  

From each of the three S. bicolor plants harvested in the field site described above, three subsamples 

(about 100mg) of roots, shoots, stem, pistils and stamina were snap frozen and stored at -80°C for 

further gene expression analysis. 

Concerning the effect of P nutrition in the single pot experiment and of common mycorrhizal networks 

in mono-culture or mixed-culture, plant roots were carefully washed under tap water to remove root 

adherent substrate. Three subsamples of 100mg of fresh roots were snap frozen and stored at -80°C for 

further gene expression analysis. 

 

Carbon, nitrogen and P analysis 

Shoots and root subsamples were dried 72h at 65°C and dry weights were estimated. Dried shoots and 

roots were homogenized and ground at 30 Hz in a ball mixer mill (MM2224, Retsch, Haan, Germany). 

Aliquots of 2 mg were weighed for elemental analyses. Contents of nitrogen and carbon were 

determined using an ANCA elemental analyzer/mass spectrometer (Europa Scientific Ltd., Crewe, UK). P 

content of shoots and roots was measured photometrically, using the molybdate blue method after acid 

digestion (Murphy & Riley, 1962). 

 

Statistical analyses 

An analysis of variance (ANOVA) was performed on the total biomass, on the C and N content, and on 

the total and arbuscular colonization for each treatment separately, where the two latter parameters 

were arcsine‐transformed to fit the assumption of normal distribution. The ANOVA was based on N 

treatments and AMF treatments. Pairwise comparisons between the treatments were done with 

planned contrast analysis. Independent paired t‐tests were  performed. A probability of P ≤ 0.05 was 

considered as representing a significant difference. 
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Results 

Annotation and distribution of sorghum Pht1 genes 

Fourteen different gene models coding for putative Pht1 transporters were identified in the predicted 

gene catalog resulting from the automated annotation of S. bicolor genome assembly (Version 6.0.176; 

http://genome.jgi-psf.org/Sorbi1/Sorbi1.home.html). Examination of these gene models revealed two 

truncated gene models (Protein ID: 5033055 and 5036201), and one gene model (Protein ID: 4801120) 

missing the Pht1 specific signature (Karandashov & Bucher, 2005). The remaining set of eleven putative 

Pht1 genes (for S. bicolor Pi transporter family 1) were named according to the Commission on Plant 

Gene Nomenclature as SORbi;Pht1;1 through SORbi;Pht1;11; for simplification, they will be called SbPT1 

through SbPT11 in this article. Except for SbPT3, ESTs have been identified for these 11 Pht1 

transporters, confirming that they are expressed (Supplemental Table S12). In the S. bicolor genome 

assembly, these 11 putative Pht1 genes were located on chromosomes 1, 2, 3, 6 and 7 (Supplemental 

Fig. S1). Interestingly SbPT1 and SbPT5, as well as SbPT4 and SbPT7, were present as pairs on 

chromosome 1, forming a sort of inverted repeats with an intervening putative promoter sequence of 

only 0.89 kb and 2.77 kb, respectively. However, the sequence similarity within these pairs was not 

particularly high (73.6 % and 75%, respectively; Supplemental Table S4), indicating that they have 

evolved independently. SbPT3, SbPT8, SbPT11 and SbPT6 are located on chromosome 1, 2, 3 and 7, 

respectively. SbPT2, SbPT9 and SbPT10 were all located on chromosome 6, but none of them appears to 

be tandem repeat sequences (Supplemental Fig. S1).  

 

All putative Pht1 proteins of sorghum belonged to the "major facilitator superfamily" (Pao et al., 1998) 

with 12 predicted trans membrane (TM) segments, separated into two blocks of six TM segments by a 

long hydrophilic loop, and hydrophilic N and C terminus (Supplemental Table S2). The Pht1 specific 

signature (GGDYPLSATIMSE) was conserved and identical for all Pht1 proteins. Eight out of 11 Pht1 

genes are intron-less in sorghum (Supplemental Table S2). The 2kb up-stream region of the Pht1 genes 

harbor potential regulatory elements involved in P and AM response, from one in SbPT5 to 17 in SbPT4 

(Supplemental Fig. S2). The most prominent element, P1BS (GNATATNC), exhibiting a crucial role in Pi 

starvation response, one copy of P1BS is present in the promoter region of SbPT1, SbPT3, SbPT4, SbPT6, 
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SbPT7 and SbPT8, and five copies in the promoter region of SbPT11. A root motif box (ATATT or AATAT) 

is present in the promoter region of all 11 Pht1 genes. Some of the promoter regions harbor two motifs- 

OSEROOTNODULE (AAAGAT) and NODCON2GM (CTCTT), which are conserved elements associated with 

AM and nodule induced leghaemoglobin gene regulation. Additionally, w-boxes (TTGACY) and 

“unknown elements” (TCTTGTT) were discovered.  

 

Identification of Pht1 genes of flax 

Nine different gene models coding for putative Pht1 transporters were identified in the predicted gene 

catalog resulting from the de novo prediction of flax (L. usitatissimum) genome assembly available at 

Phytozome interface. Commission on Plant Gene Nomenclature as LINus;Pht1;1 through LINus;Pht1;9; 

for simplification, they will be called LuPT1 through LuPT9 in this article. Except for LuPT4 and LuPT5, 

ESTs have been identified for six Pht1 transporters, confirming that they are expressed (Supplemental 

Table S3). Actually, some limitations on long-range accuracy of the flax genome restricted a precise 

localization of these nine putative Pht1 genes. All putative Pht1 proteins of flax belonged to the "major 

facilitator superfamily" (Pao et al., 1998) with 12 predicted TM segments (Supplemental Table S3) and 

contained the Pht1 specific signature (GGDYPLSATIxSE), slightly modified for LuPT8 and LuPT9 

(GGDYPLSAVIMSE). Two out of nine Pht1 genes are intron-less in flax (Supplemental Table S3).  

 

Phylogenetic analysis of the Pht1 transporters 

A neighbor-joining tree of Pht1 transporters was constructed by multiple sequence alignment, 

comparing the relevant protein sequences from sorghum and flax and with sequences from other plants 

and fungi (Fig. 1). As has been described for other monocotyledon plant species (Nagy et al., 2006), Pht1 

proteins of sorghum clustered into four subfamilies (Fig. 1). SbPT11 is the only transporter belonging to 

the subfamily I and appears to be closely related to AM-inducible Pht1 transporters ZmPT6 of Zea mays 

(Glassop et al., 2005), OsPT11 of Oryza sativa (Paszkowski et al., 2002) and BdPT7 from Brachipodium 

distachyon (Hong et al., 2012). Sorghum also harbors two non-orthologous Pi transporters SbPT9 and 

SbPT10, belonging to Pht1 subfamily IV, which also contains OsPT13, another AM-inducible Pi 



Appendix I  Sorghum phosphate transporters 

136 
 

transporter of O. sativa (Güimil et al., 2005). SbPT9 is closely related to the Pht1 transporters ZmPT5 of 

Z. mais (Nagy et al., 2006). SbPT8 clusters in a small subfamily harboring three other cereal Pht1 

transporters of B. distachyon (BdPT3), Triticum aestivum (TaPTmyc) and Hordeum vulgare (HvPT8); 

TaPTmyc and HvPT8 are known to be AM-inducible (Glassop et al., 2005). All Pht1 transporters of 

sorghum except SbPT11 belong to Pht1 subfamilies present only in monocotyledons. 

 

The nine Pht1 proteins of flax were distributed in two distinct subfamilies (Fig. 1). LuPT8 and LuPT9 

clustered in subfamily I harboring AM-inducible Pht1 transporters and was closely related to GmPT7 and 

PtPT8, two AM-inducible Pi transporter of Glycine max (Tamura et al., 2012) and Populus trichocarpa 

(Loth-Pereda et al. 2011), respectively. The six other Pht1 proteins clustered in subfamily III, specific for 

dicotyledonous plant species (Fig. 1). Except LuPT5, all genes encoding Pht1 were resulting from a recent 

duplication event (5-9 MYA, Wang et al., 2012).  

 

Gene expression of Pht1 transporters in different sorghum tissues 

Expression of Pht1 transporters in different tissues of sorghum was examined in plants from a grain 

field. The roots of these plants were colonized by AMF (degree of colonization 42 % ± 3 SEM, data not 

shown), primarily by G. mosseae, as revealed by sequence analysis of fungal ITS sequences (data not 

shown). In sorghum, ten out of 11 Pht1 genes were expressed in roots; only SbPt3 was not detectable in 

any of the tissues investigated (Fig. 2). Highest expression levels were measured for SbPT7 in all tissues 

and for SbPT11 in roots. SbPT2, SbPT6 and SbPT7 were constitutively expressed in all the tissues. SbPT1 

and SbPT10 were only detectable in mycorrhizal roots. SbPT4 was only expressed in vegetative tissues. 

SbPT9 was detected in mycorrhizal roots and leaves. Besides in mycorrhizal roots, SbPT11 was expressed 

in both female and male inflorescence, whilst SbPT5 and SbPT8 were only expressed in stamina. 
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Influence of Pi availability and AM colonization on Pht1 gene expression in sorghum roots 

The expression level of Pht1 genes studied in sorghum roots under conditions of low Pi supply, either in 

the absence of AMF or in the presence of G. intraradices or G. mosseae (Fig. 3). Expression of most Pht1 

genes was only minimally affected by mycorrhiza formation. However, expression levels of SbPT10 and 

SbPT11 were at least 1000 fold higher in mycorrhizal roots than in non-mycorrhizal ones. The expression 

of SbPT9 was significantly enhanced in roots colonized by G. mosseae, but not in those colonized by G. 

intraradices but not in (Fig. 3). SbPT11 was only detectable in mycorrhizal roots. In contrast, expression 

of SbPT1, SbPT2 and SbPT6 was significantly repressed in mycorrhizal roots. SbPT4, SbPT5 and SbPT7 

transcripts were not modified upon AM colonization. 

 

Additional Pi fertilizer only weakly affected sorghum plant growth performance, but P content of plants 

was significantly higher with additional Pi supply (Supplemental Fig. S3). All mycorrhizal plants exhibit an 

arbuscular colonization of 46 % ± 3 SEM without significant differences among P treatment and AMF 

species (p-value = 0.91). Plants growing in Pi-poor conditions were compared with plants growing with 

additional Pi fertilization in non-mycorrhizal roots and in roots colonized by G. intraradices or G. 

mosseae. Genes exhibiting a modification in expression of at least the factor two are considered to be 

up- or down-regulated. In non-mycorrhizal roots, Pi supply significantly repressed the expression of 

SbPT1 and SbPT8, but significantly enhanced SbPT6 (Supplemental Fig. S4). In contrast, in mycorrhizal 

roots, neither SbPT1 nor SbPT8 were down-regulated upon additional Pi fertilization. SbPT6 was also 

significantly over-expressed in mycorrhizal roots (Supplemental Fig. S4). Expression of the SbPT2, SbPT4, 

SbPT5, SbPT7, SbPT9, SbPT10 and SbPT11 was not or marginally modified by Pi availability. Remarkably, 

expression of SbPT5 was repressed with additional Pi supply in non-mycorrhizal roots and roots 

colonized by G. intraradices, but rather enhanced in roots colonized with G. mosseae. 

 

Pht 1 gene expression in sorghum and flax sharing a mycorrhizal network 

As shown in Figure 4, Pht1 genes of sorghum exhibited similar expression patterns upon mycorrhization 

in mono-culture as in single pot culture described above (Fig. 3). Again, SbPT8, SbPT9, SbPT10 and 
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SbPT11 were strongly induced in association with AMF; moreover, SbPT10 and SbPT11 were even only 

detected in mycorrhizal roots (Fig. 4). The expression of SbPT1 was repressed by the factor 100 in AM 

symbiosis. SbPT2 and SbPT5 were significantly up-regulated in association with G. intraradices, which 

contrasts to the repression measured in single pots (Fig. 3). SbPT6 was significantly repressed in roots 

colonized by G. mosseae and in roots colonized by G. intraradices in mixed-cultures. Similarly, 

expression of SbPT10 was more enhanced when colonized by G. mosseae than by G. intraradices (Fig. 4). 

However, different culture systems modified the expression of Pht1 genes in sorghum only marginally 

compared to the effect of AMF colonization. In normalized expression, only the expression level of 

SbPT6 was significantly reduced in mixed-cultures, as compared to mono-cultures, when associated with 

G. intraradices, and the expression level of SbPT10 was significantly increased in a CMN with flax formed 

by G. mosseae (Fig. 4). 

 

The expression level of LuPT1 was constant in mono- and mixed-culture, except in G. intraradices mixed-

cultures where it was down-regulated. In mono-culture, expression of LuPT3/LuPT4 was repressed in 

mycorrhizal roots, whilst the expression level of the AM-inducible Pht1 LuPT2, LuPT5 and LuPT8/LuPT9 

shown increased expression levels (Fig. 5). In flax, and in association with G. intraradices, LuPT6/LuPT7 

and LuPT5 were significantly up-regulated in mixed-culture compared to mono-culture, and LuPT2 was 

significantly down-regulated. In association with G. mosseae, LuPT8/LuPT9 were significantly less 

expressed in mixed-culture than in mono-culture and were showing similar expression levels as in non-

mycorrhizal roots (Fig. 5). In mixed-culture, LuPT2 was the only Pht1 significantly over-expressed in 

association with G. mosseae compared to G. intraradices. 

 

The differences in expression of AM-inducible Pht1 genes between mono- and mixed-culture are more 

precisely displayed in comparing their relative expression (Table 1). In sorghum roots associated with G. 

mosseae, SbPT9 and SbPT10 were more expressed in mixed-culture than in mono-culture, whereas in 

association with G. intraradices no difference was observed. In contrast, the AM-induced Pht1 genes of 

flax, LuPT8/LuPT9 and LuPT2 were repressed in mixed-culture when associated with G. mosseae and G. 

intraradices, respectively while LuPT5 was up-regulated when associated with G. intraradices. 
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Discussion 

Phylogenetic relation of Pht1 transporters 

The phylogenetic analysis revealed the relation of the 11 sorghum transporters (Fig. 1) with members of 

previously described Pht1 subfamilies (Karandashov & Bucher, 2005). Subfamily I harbors the AM-

inducible Pi transporters from both monocotyledonous and dicotyledonous plant species, indicating 

their evolution before the separation of the two plant groups. In sorghum SbPT11, the protein encoded 

by one of the AM-induced Pht1 genes, fall into this group. The three other AM-inducible Pi transporter 

of sorghum, SbPT8, SbPT9 and SbPT10, fall into divergent subfamilies harboring transporters of 

monocotyledonous plant species, which are partially AM-inducible. These subfamilies seems to be 

evolutionary younger than the subfamily I, because they comprise proteins solely from 

monocotyledonous species. This indicates a separate evolutionary gain of AM-inducibility of genes 

involved in P uptake, both in monocotyledonous and dicotyledonous species (Karandashov et al., 2004; 

Nagy et al., 2006). In addition, the Pht1 transporters SbPT1 to SbPT7 fall also in the monocot-specific 

subfamily IV. Genes coding for SbPT1 to SbPT8 have no introns, suggesting that they arise from 

duplication events from a primordial gene (Lynch & Conery, 2000). The tandem repeat sequences of 

SbPT1/SbPT5 and SbPT4/SbPT7 are likely to be most recent duplications. Concerning linum transporters, 

LuPT3 and LuPT4, LuPT6 and LuPT7, and LuPT8 and LuPT9 had an identity higher than 95 % and were 

resulting from a recent duplication event (5-9 MYA, Wang et al., 2012). Two out of the nine Pi 

transporters (LuPT8 and LuPT9) fall into the the AM-inducible Pi transporters subfamily I. The six other Pi 

transporters belong to subfamily III, specific from dicotyledonous species. 

 

Expression of Pht1 genes in different sorghum tissues 

Pht1 genes exhibit substantial differences in their expression in the various organs examined. SbPT2, 

SbPT6 and SbPT7 were constitutively expressed in sorghum and thus may be involved in P homeostasis 

(Jia et al., 2011). The transcripts coding for SbPT5, SbPT8 and SbPT11 were expressed in roots, but in 

addition, they were also strongly expressed in inflorescence, mainly in stamina, similar to their 

homologs from Arabidopsis and maize, which were suggested to fulfill Pi uptake in the elongating pollen 

tube (Mudge et al., 2002; Nagy et al., 2006). The specific expression of SbPT9 in leaves in addition to 



Appendix I  Sorghum phosphate transporters 

140 
 

roots indicates a role in Pi mobilization in leaves, as suggested for a homologous transporter in poplar 

(Loth-Pereda et al., 2011). SbPT1 was only detected in the roots and down-regulated upon P fertilization 

in non-mycorrhizal roots (Fig. 2 and 3), indicating a role in direct Pi uptake by the roots (Karandashov & 

Bucher, 2005; Ai et al., 2009). With respect to root expression, most interestingly, SbPT10 and SbPT11 

were detected in AMF-colonized roots (Fig. 3), and therefore probably involved in symbiotic Pi uptake 

(Smith et al., 2011). SbPT3 was not detected in any of the examined tissue types under the present 

experimental conditions (Fig. 1, 2, 4 and Supplemental Fig. S4). Thus, this Pht1 gene could be expressed 

under specific conditions, which were not included in our experimental set up, or, alternatively, its 

expression levels were too low to be detected. 

 

Physiological measurements have shown that P starved plants rapidly increase their capacity in Pi 

uptake by transcriptional up-regulation of Pht1 genes (Smith et al., 2003). One of the best-characterized 

regulatory elements involved in P regulation is the transcription factor PHR1, which activates a subset of 

P starvation induced genes by binding on cis-acting P1BS elements (Rubio et al., 2001; Nilsson et al., 

2007). In the promoter region of 7 of the 11 Pht1 genes of sorghum, we found at least one P1BS element 

(Supplemental Fig. S2), including SbPT1, SbPT6 and SbPT8. Interestingly, SbPT1 and SbPT8 were strongly 

down-regulated in non-mycorrhizal roots in response to P fertilization, while SbPT6 was clearly up-

regulated under the same conditions (Supplemental Fig. S4), indicating that similar regulatory elements 

may have opposite functions in gene expression. 

 

In the roots, two genes were practically exclusively expressed in the presence of mycorrhiza, namely 

SbPT10 and SbPT11 (Fig. 3). SbPT11 belongs to subfamily I of Pht1 genes, comprising mycorrhiza-

inducible Pht1 genes of both in monocots and dicots. It is also expressed in flower organs. SbPT10 is a 

member of the monocot-specific subfamily IV;. some members of the latter group have previously been 

shown to be AM-inducible (Fig. 1). Several plant species, e.g. O. sativa, L. esculentum, S. tuberosum 

possess multiple AM-induced Pht1 genes (Güimil et al., 2005; Nagy et al., 2005), resulting in a functional 

redundancy of symbiotic Pi transport (Nagy et al., 2005), whereas other plant species harbor a single 

AM-induced Pht1 gene which appears to be crucial for the symbiotic P acquisition (Javot et al., 2007).  
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AM-dependent induction of Pi transporters is often accompanied by the down-regulation of other Pht1 

genes; in particular those suggested being involved in the direct P uptake (Rausch et al., 2001; 

Paszkowski et al., 2002; Glassop et al., 2005). Such an AM-dependent down-regulation was apparent in 

the lowered transcript level of SbPT1 in mycorrhizal roots. Transcription of mycorrhiza-inducible genes 

has been suggested to be regulated by two cis-acting regulatory elements, P1BS and MYCS, in 

solanaceous species (Chen et al., 2011); P1BS, in particular, might have a double role as a regulatory 

element in response to Pi availability as well as to AM symbiosis (Smith et al., 2011). However, P1BS is 

only present in the AM-inducible Pht1 genes SbPT8 and SbPT11, whilst SbPT10 does not harbor a P1BS 

element in their promoter region (Supplemental Fig. S2). The transcriptional regulation of AM-inducible 

genes is still poorly understood; the discovery of more AM-specific regulatory elements, active in abroad 

range of mycorrhizal plants might shed new light on AM-inducibility. 

Role of transcriptional regulation of Pht1 transporters in Pi acquisition via a CMN 

In experimental monocultures, two individual sorghum plants connected to a CMN received an equal 

share of the Pi accessible only to the AMF, but G. mosseae was twice as effective to deliver Pi when 

compared to G. intraradices (Walder et al., 2012) This might be related to the stronger induction of the 

AM-inducible Pht1 genes (Fig. 3 and Supplemental Fig. 4S) by G. mosseae, as compared to G. 

intraradices. Interestingly, the sorghum roots harvested in the field were almost exclusively colonized by 

G. mosseae, indicating a preference under field conditions (Helgason et al., 2002; Davison et al., 2011). 

Our experiment thus reflected the interdependence of preference and compatibility in the sorghum - G. 

mosseae association.  

 

In mixed-culture sharing the mycorrhizal network with associated flax, sorghum acquired 6% of Pi via 

the CMN built by G. intraradices and 52% when built by G. mosseae (Walder et al., 2012). Expression of 

the two main AM-induced Pht1 genes of sorghum, SbPT10 and SbPT11, was very strongly induced even 

in the presence of G. intraradices, under conditions where sorghum received virtually no CMN-mediated 

Pi, and thus exhibited an inactive mycorrhizal pathway (Fig. 3 and 4). It is worth noting, however, that 

the expression of SbPT9 and SbPT10 was enhanced in mixed-culture with flax when the CMN was 
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formed by G. mosseae, i.e. under conditions where sorghum obtained more Pi through the mycorrhizal 

pathway (Table 1). In mixed-cultures, flax acquired the double amount of Pi compared to the flax mono-

culture via both CMNs (Walder et al., 2012), Nevertheless, when the CMN was formed by G. mosseae, 

the AM-induced Pht1 genes from flax were less expressed in mixed-cultures compared to mono-cultures 

and dropped down even to the non-mycorrhizal level (Fig. 5 and Table 1). 

 

Our data show, in accordance with current literature (Smith & Smith, 2011), that transcriptional 

regulation of specific members of the Pht1 transporter family occurs, both in sorghum and in flax, in 

response to mycorrhiza formation. However, in the situation of mixed-cultures between sorghum and 

flax engaged in a CMN, transcriptional regulation of these transporters is not related to the differential 

gain of P by the interconnected plants. Besides the expression level of the transporter genes, post-

transcriptional regulation and the rates of protein turnover influence the number and functioning of 

transporter in the plasma membrane (Smith & Smith, 2011). Transcriptional regulation appears to be 

crucial for the induction of Pht1 transporters during initialization of the symbiotic P exchange at 

periarbuscular membrane (Harrison et al., 2002), whereas fine-tuned regulation of the transport system 

probably may be more dependent on posttranscriptional regulation and protein turnover.  

 

Even if the expression of AM-inducible Pht1 genes of sorghum and flax were only marginally related to 

Pi supply via mycorrhizal network, the relative expression elucidated differences between the culture 

systems (Table 1). In mixed-culture and G. mosseae as fungal partner, SbPT9 and SbPT10 were up-

regulated, and LuPt8/LuPT9, and LuPT2 and LuPT5 were repressed and not regulated, respectively. In 

mixed-culture and G. intraradices as fungal partner, LuPt6/LuPT7 and LuPT5 genes were up-regulated 

whilst LuPT2 was down-regulated. Therefore, it appears that expression of AM-inducible Pht1 genes is 

affected not only by the fungal partner, but also by the interconnected plant species. To explain these 

data, jumping in applied ecology could help. A genotype has a traditional phenotype exhibited in 

association with individuals of the same species. However, in interacting with individuals of other 

species, the traditional phenotype is extended to another level, called community or ecosystem 

phenotype(Whitham et al., 2006). In other words, here, flax and sorghum plants interconnected via the 
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CMN are forming a unique "community phenotype" (Whitham et al., 2006), in which expression of the 

AM-inducible Pht1 genes could be mediated by complex interactions between the three partners 

(sorghum, flax, AMF species). 
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Tables and Figures 

Table 1. Relative expression of AM-induced Pht1 genes of sorghum and flax 

AMF species  Plant species 

  Sorghum  Flax 

  Pht1 gene  Rel. Expression  Pht1 gene  Rel. Expression 

           

G. intraradices  SbPT1  1.18 ± 0.40  LuPT2  0.5 ± 0.16 

  SbPT8  1.08 ± 0.16  LuPT5  3.3 ± 0.54 

  SbPT9  1.09 ± 0.34  LuPT8/LuPT9  0.9 ± 0.18 

  SbPT10  0.98 ± 0.47      

  SbPT11  1.43 ± 0.41      

           

G. mosseae  SbPT1  1.23 ± 0.41  LuPT2  1.8 ± 0.4 

  SbPT8  1.33 ± 0.24  LuPT5  1.5 ± 0.36 

  SbPT9  4.27 ± 1.32  LuPT8/LuPT9  0.6 ± 0.08 

  SbPT10  2.99 ± 0.39      

  SbPT11  1.00 ± 0.26      

 

Quantification by RT-qPCR analysis of the transcript levels of AM-induced Pht1 genes in sorghum and flax roots as 

affected by mono- and mixed-culture. Roots were colonized by Glomus intraradices and G. mosseae. Genes were 

considered to be biologically regulated, if modified by more than the factor two. Transcript levels in roots grown in 

mono-culture were used as control values for relative expression. Transcripts were normalized against ubiquitin. 

Values are means (± SEM) of four replicates. CMN-mediated Pi uptake was estimated by measuring 33P uptake only 

accessible for AMF hyphae. In comparison of the mono-cultures and the mixed-culture, sorghum received 0.1 and 

0.6 times less CMN-mediated Pi in association to G. intraradices and to G. mosseae, respectively. In contrast, flax 

received 2.1 and 1.8 times more CMN-mediated Pi in association to G. intraradices and to G. mosseae, respectively.
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roots colonized by Glomus intraradices or G. mosseae.  

5. Supplemental Figure S4. Quantification by RT-qPCR analysis of the transcript levels of the 11 sorghum 

Pht1 genes in sorghum roots in response to Pi availability.  

6. Supplemental Table S1. Primers for qRT PCR analysis of Pht1 transcripts of sorghum and flax. 
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8. Supplemental Table S3. Characteristics of the Linum usitatissimum Pht1 gene family. 
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Figure 1. Neighbor-joining tree for Pht1 transporters based on aligned sequences (727 amino acids). Sequence 

names consist of species code (first letter of genus and first letter of species name) and gene name (see 

Supplementary Material for details). Fungal Pht1 transporters and chloroplastic Pht2 transporters serve as outgroups. 

Roman numbers indicate four different plant Pht1 subfamilies thought to different in evolutionary age. The 11 

sorghum and the 9 flax Pht1 transporters are highlighted in bold black. Asterisks indicate Pht1 transporters known to 

be induced in response to mycorrhiza formation. 
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Figure 2. Quantification by qRT-PCR analysis of transcript levels of the 11 sorghum Pht1 genes in different tissue 

types. Sorghum plants were harvested in a farmer's field; it was found that roots were primarily colonized by G. 

mosseae isolates (42 % ± 3). Transcript levels were normalized against ubiquitin. Values are means of three 

replicates; error bars represent SEM. For each gene, different lowercase letters above bars indicate a significant 

difference (P≤0.05) among treatments, according to LSD test. 
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Figure 3. Quantification by qRT-PCR of the transcript levels of the 11 sorghum Pht1 genes in non-mycorrhizal 

roots (NM) and roots colonized by G. intraradices (Gi) or G. mosseae (Gm). Transcript levels were normalized 

against ubiquitin. Values are means of four replicates, error bars represent SEM. For each gene, different lowercase 

letters above bars indicate a significant difference (P≤0.05) among treatments, according to LSD test. 
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Figure 4. Quantification by qRT-PCR analysis of transcript levels of the 11 sorghum Pht1 genes in non-mycorrhizal 

roots (NM) or in roots connected to a mycorrhizal network built by Glomus intraradices (Gi) or G. mosseae (Gm) 

shared with a co-cultured sorghum (Mono) or with a co-cultured flax plant (Mixed). Transcript levels were 

normalized against ubiquitin. Values are means of four replicates, error bars represent SEM. Different lowercase 

letters above bars indicate a significant difference (P≤0.05) among treatments, according to LSD test. 
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Figure 5. Quantification by qRT-PCR analysis of transcript levels of the nine flax Pht1 genes in non-mycorrhizal 

roots (NM) or in roots connected to a mycorrhizal network build by Glomus intraradices (Gi) or G. mosseae (Gm) 

shared with a co-cultured flax (Mono) or with a co-cultured sorghum plant (Mixed). Transcript levels were 

normalized against ubiquitin. Values are means of four replicates, error bars represent SEM. Different lowercase 

letters above bars indicate a significant difference (P≤0.05) among treatments, according to LSD test. 
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Supplemental data 

The phylogenetic analysis presented in Fig. 1 is based on the putative amino acid sequences of Pi transporters based 

on DNA sequences, as archived in the UniProt data base. Sequences retrieved from NCBI GenBank were: 

Arabidopsis thaliana; AtPT1 (Q8VYM2), AtPT2 (Q96243), AtPT3 (O48639), AtPT4 (Q96303), AtPT5 (Q8GYF4), 

AtPT6 (Q9ZWT3), AtPT8 (AEE79268.1), AtPT9 (Q9S735); Medicago truncatula: MtPT1 (AAB81346), MtPT2 

(AAB81347), MtPT4 (AAM76743), MtPT2;1 (XP_003628943); Glycine max: GmPT1 (ACP19339), GmPT2 

(ACN80147), GmPT3 (ACP19343), GmPT4 (ACP19342), GmPT5 (ACP19340), GmPT6 (ACP19341), GmPT7 

(ACP19345), GmPT8 (ACP19338), GmPT9 (ACP19347), GmPT10 (ACP19346), GmPT11 (ACP19344); Lotus 

japonicus: LjPT1 (BAE93354), LjPT2 (BAE93355), LjPT3 (BAE93353); Lupinus albus: LaPT1 (AAK01938), 

LaPT2 (AAK38197); Lycopersicon esculentum: LePT1 (AAB82146), LePT2 (AAB82147), LePT3 (AAV97729), 

LePT4 (AAX85193); Ricinus communis: RcPT1 (XM_002531486), RcPT2 (XM_002524576), RcPT3 

(XM_002517998); Lycopersicon esculentum: LePT1 (AAB82146), LePT2 (NP_001234043), LePT4 

(NP_001234674), LePT5 (AAX85194); Solanum tuberosum: StPT1 (CAA67395), StPT2 (CAA67396), StPT3 

(AAV97729), StPT4 (AAW51149), StPT5 (AY885654), StPT2;1 (AAT35816); Solanum melongena: SmPT1 

(ABK63959), SmPT3 (ABK63963), SmPT5 (ABK63969) Nicotiana tabacum: NtPT1 (AAF74025), NtPT2 

(BAB21545), NtPT3 (ABK63964), NtPT4 (ABK63967), NtPT5 (ABK63970); Populus trichocarpa: PtPT1 

(XP_002315705), PtPT2 (XP_002332753), PtPT3 (XP_002332751), PtPT4 (XP_002306844), PtPT5 

(XP_002302047), PtPT6 (XP_002306623), PtPT7 (XP_002306845), PtPT8 (XP_002329198), PtPT9 

(XP_002300626), PtPT10 (XP_002331845), PtPT11 (XP_002307816), PtPT12 (XP_002300153), PtPT2;1 

(XP_002314598), PtPT2;2 (XP_002311765); Oryza sativa: OsPT1 (AAN39042), OsPT2 (AAN39043), OsPT4 

(AAN39045), OsPT5 (AAN39046), OsPT6 (AAN39047), OsPT7 (AAN39048), OsPT8 (AAN39049), OsPT9 

(AAN39050), OsPT10 (AAN39051), OsPT11 (AAN39052), OsPT12 (AAN39053), OsPT13 (AAN39054); 

Hordeum vulgare: HvPT1 (AAN37900), HvPT2 (AY187020), HvPT4 (AY187025), HvPT5 (AAO72435), HvPT6 

(AAN37901), HvPT7 (AAO72436), HvPT8 (AAO72440); Triticum aestivum: TaPT1 (CAC69857), TaPT2 

(CAC69855), TaPT8 (AAP49822), TaPTmyc (AH25730); Zea mays: ZmPT1 (NP_001105269), ZmPT2 

(NP_001105816), ZmPT3 (AAY42387), ZmPT4 (AAY42388), ZmPT5 (AAY42389), ZmPT6 (NP_001105776); 

Brachypodium distachyon: BdPT1 (XP_003558115), BdPT2 (XP_003560773), BdPT3 (XP_003557302), BdPT4 

(XP_003558800), BdPT5 (XP_003562075), BdPT6 (XP_003573982), BdPT7 (XP_003569484), BdPT8 

(XP_003573220), BdPT9 (XP_003573982), BdPT10 (XP_003581012), BdPT11 (XP_003581010), BdPT12 

(XP_003581013), BdPT13 (XP_003581014); Laccaria bicolor: LbPT1 (XP_001889013), LbPT2 (XP_001889026), 

LbPT3 (XP_001889028), LbPT4 (XP_001880970), LbPT5 (XP_001888254); Glomus intraradices : GiPT 

(AAL37552); Glomus mosseae: GmosPT (AAZ22389); Glomus versiforme: GvPT (AAC49132); Saccharomyces 

cerevisiae S88c: ScPHO84 (NP_013583). 
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RNA isolation and quantitative reverse transcription-PCR 

Mycorrhizal and non-mycorrhizal roots, as well as shoots, stems, stamina and pistils were ground in liquid nitrogen 

and total RNA was isolated using the RNeasy Plant Mini kit (Qiagen, Darmstadt, Germany). The DNA-free set 

(Ambion, Austin, USA) was used to digest DNA after RNA purification. Full-length doubled-stranded cDNAs 

corresponding to mRNAs expressed in plant roots were obtained using the SMART–PCR cDNA Synthesis Kit 

(Clontech, Palo Alto, CA, USA). 

Quantification of AMT transcripts was performed using a two-step quantitative RT-PCR (qRT-PCR) procedure. 

Total RNA was measured with a spectrophotometer (Nanodrop ND-1000, Witec, Switzerland) and then reverse-

transcribed (100 ng per reaction) using the iScript cDNA Synthesis kit (Bio-Rad, Paolo Alto, CA, USA). cDNAs 

were used as templates in real time quantitative PCR reactions with gene-specific primers designed using Primer 3 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) and amplify 3.1 

(http://engels.genetics.wisc.edu/amplify) (Supplementary Data, Table 1). The following criteria were used: product 

size between 100 and 400 bp, melting temperature 60°C and a GC percentage > 50%. Target gene expression was 

normalized to the gene encoding the S. bicolor ubiquitin (Protein 5060159). Reactions of qPCR were run using the 

7500 real-time PCR system (Applied Biosystems). The following cycling parameters were applied: 95°C for 3 min 

and then 40 cycles of 95°C for 30 s, 60°C for 1 min and 72°C for 30 s. A control with no cDNA was run for each 

primer pair. For data analysis, the geometric mean of the biological replicates (n = 4) was calculated. The primer 

efficiency ranged between 90% and 110%. 
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Supplementary Figures 

 

 

 

Supplemental Figure S1. Gene distribution of the 11 Pht1 genes on the 10 chromosomes (Ch) of Sorghum bicolor 

according to (Paterson et al., 2009). 
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Supplemental Figure S2. Putative cis-regulatory elements involved in Pi and AM response in the promoter region 

of the 11 Pht1 genes. The putative cis-regulatory elements were screened with DNA-pattern matching analysis 

within 2 kb upstream region of the start codon. P1BS, GNATATNC; root motif box, ATATT or AATAT; 

OSE1ROOTNODULE, AAAGAT; NODCON2GM, CTCTT; W-box, TTGACY and an unknown element, 

TCTTGTT. 
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Supplemental Figure S3. P content of plants as affected by Pi availability (low Pi availability (-P), high Pi 

availability with Pi fertilizer (+P)) in non-mycorrhizal roots (NM) and roots colonized by Glomus intraradices (Gi) 

or G. mosseae (Gm). Values are means of four replicates, error bars represent SEM. Different lowercase letters 

above bars indicate a significant difference (P≤0.05) among treatments, according to LSD test. 
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Supplemental Figure S4. Quantification by RT-qPCR analysis of the transcript levels of the 11 sorghum Pht1 

genes in sorghum roots in response to Pi availability. Roots were non-mycorrhizal (NM), or colonized by Glomus 

intraradices (Gi) and G. mosseae (Gm). Genes were considered to be biologically regulated if affected by more than 

the factor two. Transcript levels in roots without any Pi fertilization were used as control values for relative 

expression. Transcripts were normalized against ubiquitin. Values are means of four replicates, error bars represent 

SEM. Asterisk above bars indicate a significant difference (P≤0.05) according to Student’s t-test. 
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Supplemental Table S1. Primers for qRT PCR analysis of Pht1 transcripts of sorghum and flax. 

Name Sequence (5’-3’) 

SbPT1a GGCCAAGGTGCTCAAGAAG 
SbPT1b GGAGGAACTGCACCGAGAAG 
SbPT2a ACTAAGCAGCAGCCTCCGTA 
SbPT2b AAGCCACAAGGAAACCATTG 
SbPT3a TACTCGCGTATGAACATGCC 
SbPT3b TCCTCCTTATTGCCGATGTC 
SbPT4a GGCGCCGTCGTACCAGGACAA 
SbPT4b GAGCGCCGCCGGGATGGT 
SbPT5a GAGAATCTGGACGAGATCAC 
SbPT5b CAGGTTCTGGCTGTAGTAGG 
SbPT6a CAAGCTCGGCCGTAAGAAGG 
SbPT6b GCCAGAAGCGGAAGAAGCAC 
SbPT7a GGACACCAGCAAGGACAAC 
SbPT7b CGCGATGGAGCAGATGAC 
SbPT8a GCAGCGAGGCCAATGAGACT 
SbPT8b TTGGCTCCGGTAGGAAGCAG 
SbPT9a GAGGACGAGCCGTTCAAGAG 
SbPT9b CGCGACGGAGAAGAAGTACC 
SbPT10a CACCATGTGCTGGTTACTTC 
SbPT10b GATAATCGCCTGAGTACGTG 
SbPT11a CGTGGTTCCTTCTGGACATA 
SbPT11b TCTCGAACACCTCCTTGAGT 
SbUBIa CAAGGAGTGCCCCAACAC 
SbUBIb TGGTAGGCGGGTAAAGCAAA 

LuPT1a CGCCTGCGAAGACGATGAAC 
LuPT1b GCCGATGTGGTCGATTAGCG 
LuPT2a ATGGCTACCGCCGGCGAA 
LuPT2b GATTAGCGCGACCGTGAACCAG 
LuPT3/4a CGGGATGGTGTTTACGTTGT 
LuPT3/4b GGGCAAGTTGATTGAGTGAGT 
LuPT5a TTGCGATCGTGGTGTCGACT 
LuPT5b CGCCATACGTAGTCAGCTTGC 
LuPT6/7a GTTTTCAAAATCGCCAGAGC 
LuPT6/7b CCCTTGTGAGTCCAGTGGTT 
LuPT8/9a GATTCGAACGGGATCAAGAA 
LuPT8/9b GACGGCAACCACTTTCTCAT 
LuUBIa CTCCGTGGAGGTATGCAGAT* 
LuUBIb TTCCTTGTCCTGGATCTTCG* 

*LuUBIa and LuUBI were published (Huis et al., 2010). 
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Supplemental Table S3. Characteristics of the Linum usitatissimum Pht1 gene family. 
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Supplemental Table S4. Similarity/identity matrix of Sorghum bicolor Pht1 protein sequences. 
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Supplemental Table S5. Similarity matrix of Linum usitatissimum Pht1 protein sequences. 

 

 

 LuPT1 LuPT2 LuPT3 LuPT4 LuPT5 LuPT6 LuPT7 LuPT8 LuPT9 

LuPT1 - 80.2 63.1 62.1 60.4 61.7 62.4 46.4 45.4 

LuPT2  - 79.5 78.2 76.9 75.8 76.7 55.7 54.8 

LuPT3   - 96.5 73.5 74.5 74.3 57.7 57.3 

LuPT4    - 74.5 73.5 73.9 56.5 56.1 

LuPT5     - 79.6 79.7 56.2 55.8 

LuPT6      - 97.9 56.9 56.9 

LuPT7       - 56.5 56.2 

LuPT8        - 97.8 

LuPT9         - 
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I. Studying gene expression using microdissection technology 
 

Plant organs are made of different tissues with different cell types and functions. The processes 

happening in these tissues are distributed non-uniformly among cells. However, due to technical 

constraints, most studies are done on whole organs (Schnable et al., 2004) and information about the 

contribution of individual cells to the biology of the organism is not provided (Day et al., 2005). A good 

example is AM plants: to study AM processes, most of the approaches are made on whole plant or 

whole root RNA extracts (Hohnjec et al., 2005; Hildebrandt et al., 2007). However, only parts of the root 

cells contain mycorrhizal structures. Laser microdissection technology (LM) is a reliable method to study 

differences between cell populations (Nelson et al., 2006). This technology was developed firstly to 

isolate selected human cell populations from heterogeneous tissues (Emmert-Buck et al., 1996) and is 

now routinely used in pathology or in cancer biology research (Fend & Raffeld, 2000; Gillespie et al., 

2001). A big advantage of LM is that it does not require cell-specific markers or genetic lines and tissues 

can be viewed by conventional microscopy. In plant research, LM protocols for subsequent gene 

analyses have been developed for several plant species, including rice, maize and Arabidopsis (Asano et 

al., 2002; Nakazono et al., 2003; Casson et al., 2005). Additionally, LM protocol for subsequent protein 

analyses has been developed for Arabidopsis (Schad et al., 2005): after isolation of the cells and protein 

extraction, liquid chromatography combined with tandem mass spectrometry was adapted to study 

tissue specific protein repartition. LM was applied for the first time to study gene regulation in AM 

symbiosis by Balestrini et al. (2007): they analyzed gene expression in tomato roots colonized by 

G.mosseae. Then, Gomez & Harrison (2009) developed a method to collect cortical cells from M. 

truncatula colonized by G. versiforme. These studies confirmed the suitability of LM to study gene 

expression during AM symbiosis (Gomez et al., 2009).  

We developed high efficiency LM protocols for sorghum, medicago and poplar mycorrhized and non-

mycorrhized by AM fungi. Selected and collected cells are of high quantity and quality for RNA or protein 

analyses. Indeed, RNA concentrations reached 3240 pg/μl for sorghum, 1728 pg/μl for medicago and 

1282 pg/μl for poplar. RNA integrity numbers (RIN) upper 7 were obtained for all plants revealing a high 

quality of RNA extracts.  
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Additionally, we could analyze by tandem mass spectrometry more than 200 proteins isolated from 

mycorrhized and non-mycorrhized medicago plants. A poster from Arnould et al. 2012 showing these 

results is presented below. 
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II. Studying gene function using amiRNA technology 
 

Pathogen-derived resistance was observed in plants expressing virus derived genes (Wilson, 1993). This 

mechanism could be explained by the process of post-transcriptional gene silencing reported in 

transgenic plants containing sense and antisense transgenes. Indeed, plants expressing a virus-derived 

sense or antisense RNA had virus resistance induced by post-transcriptional gene silencing (Baulcombe, 

1996; Waterhouse et al., 1998). This finding has lead to the production of virus-resistant potato plants 

for commercial use (Baulcombe, 1996). The mechanism of post-transcriptional gene silencing was then 

used to study the function of specific genes by silencing them. Recently, artificial microRNA (amiRNA) 

technology has been developed to silence precisely single or multiple genes in plants. It exploits 

endogenous microRNA (miRNA) precursors to generate in vivo a single specific miRNA (Niu et al., 2006; 

Small, 2007; Tang et al., 2007; Ossowski et al., 2008). This miRNA targets messenger RNA (mRNA) and 

cleaves it at position 10 and 11 (Llave et al., 2002) silencing the gene. The amiRNA must not be perfectly 

complementary to the target site to cleave it meaning that one amiRNA can be designed to target one or 

several genes (Alvarez et al., 2006; Schwab et al., 2006). Additionally, the effect of one amiRNA can be 

augmented by using a strong promoter. amiRNA were efficiently used in the dicotyledonous plants 

Arabidopsis, tomato or tobacco (Alvarez et al., 2006; Schwab et al., 2006; Qu et al., 2007) but also in 

monocotyledonous rice plants (Warthmann et al., 2008). amiRNA targeting rice genes can be designed 

at the WMD3 interface (http://wmd3.weigelworld.org/cgi-bin/webapp.cgi). The importance of specific 

fungal genes for AM symbiosis was assessed by host-induced gene silencing: Helber et al. (2011) 

produced M. truncatula plants silencing a monosaccharide transporter (MST2) from Glomus sp DAOM 

197198. When colonizing the transformed plants, expression of MST2 was significantly reduced and AM 

fungal growth arrest was observed.  
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Abstract 

 

Arbuscular mycorrhizal (AM) fungi are important in plant Nitrogen (N) acquisition. Recent studies shown 

the transport of N in form of ammonium during AM symbiosis. Here, we hypothesize that induction of 

specific ammonium transporters (AMT) genes in Rice (Oryza sativa) during AM colonization might play a 

key role in functionality of the symbiosis. Rice is an important crop forming a symbiosis with arbuscular 

mycorrhizal (AM) fungi. We identified ten ammonium transporters (AMTs) in rice. Transcript profiling 

using quantitative real time PCR revealed that two AMTs (AMT3;1 and AMT4) are induced when rice 

roots are colonized by the AM fungi Glomus mosseae and Glomus intraradices ("AM-inducible AMTs"). 

Yeast complementation with a yeast mutant that lacks high-affinity ammonium transporters (see 

chapter 3) shown that AMT3;1 has high affinity transport activity. By knocking down AMT3;1 and AMT4 

through amiRNA technology, we want to assess the physiological role of these AM-inducible AMTs in the 

functionality of AM symbiosis. Our working hypothesis is that the transformants will show a reduction of 

ammonium uptake via AM fungi and growth retardation. 
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Introduction 

 

Rice (Oryza sativa) is the second world-leading crop (http://faostat3.fao.org/home/index.html). It can 

grow in wet environments where no other crops are able to grow. More than one billion people over the 

world depend on rice cultivation for their livelihood. In nature, many AM fungal species colonize rice 

roots (Solaiman & Hirata, 1995). AM fungi help the plant acquiring key mineral nutrients as Phosphorus 

(P) or Nitrogen (N) (Smith & Read, 2008). For this reason, AM fungi are of great interest for sustainable 

agriculture and have been the focus of many studies in the last decades (Abbott & Robson, 1982; Mosse, 

1986; Werner et al., 2005; Sawers et al., 2008).  

The role of AM fungi in plant N nutrition has been studied. AM fungi were shown to take up inorganic N 

as ammonium or nitrate (Govindarajulu et al., 2005), as well as organic N in the form of amino acids 

(Leigh et al., 2009). Once internalized, N is assimilated and translocated to the intraradical hyphae in 

form of amino acids, mainly in the form of arginine (Govindarajulu et al., 2005) and finally transferred to 

the plant as ammonium (Tian et al., 2010). In a root cell with an arbuscule, this transfer is expected to 

proceed by way of secretion of ammonium through unknown transporters present in the fungal plasma 

membrane into the periarbuscular space, followed by uptake through plant ammonium transporters 

(AMT) in the periarbuscular membrane. The periarbuscular membrane is derived from the plasma 

membrane and is the place where the plants takes up nutrients delivered by the fungi (Harrison et al., 

2002b; Kobae & Hata, 2010).  

Bioinformatic analyses of the rice genome revealed 10 genes coding for AMTs. The transcript level of 

these transporters was measured in rice in the presence or absence of AM fungi under different regimes 

of N nutrition and in different plant tissues as root, shoot, stem, stamina and pistils. Two AMTs, 

OsAMT3;1 and OsAMT4, were expressed predominantly in roots and were induced in the presence of 

AM fungi independently of the N treatment. OsAMT3;1 was functionally characterized in a yeast mutant 

lacking high-affinity ammonium transporters. A computer simulation of the pore also confirmed its 

faculty to transport ammonium (see chapter 3). 

Mutation of AM-induced transporters can bring new information about the role of these transporters in 

AM symbiosis. Indeed, rice plants lacking PT11, the PHT responsible for symbiotical P transfer in rice, 

shown a very reduced colonization and arbuscule level (Yang et al., 2012). Similarly, M. truncatula 
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mutants lacking MtPT4, a PHT located at the periarbuscular membrane and essential for symbiotic P 

transport (Harrison et al., 2002b), have arbuscule degenerating prematurely (Javot et al., 2007). 

Recently, artificial microRNA (amiRNA) technology has been developed to silence precisely single or 

multiple genes in plants. Before, posttranscriptional gene silencing was reported in transgenic plants 

containing sense and antisense transgenes. Indeed, plants expressing a virus-derived sense or antisense 

RNA had virus resistance induced by posttranscriptional gene silencing (Baulcombe, 1996; Waterhouse 

et al., 1998). These findings lead to the use of posttranscriptional gene silencing to study the function of 

specific genes by silencing them. amiRNA technology exploits endogenous microRNA (miRNA) 

precursors to generate in vivo a single specific miRNA (Niu et al., 2006; Small, 2007; Tang et al., 2007; 

Ossowski et al., 2008). This miRNA targets messenger RNA (mRNA) and cleaves it at position 10 and 11 

(Llave et al., 2002) silencing the gene. amiRNA targeting rice genes can be designed at the WMD3 

interface (http://wmd3.weigelworld.org/cgi-bin/webapp.cgi). Here, we tried to understand the 

mechanism regulating the mutualistic symbiosis between plants and AM fungi. By collaborating with 

REFUGE, an international hosting platform located in Montpellier, France we tried to elucidate gene 

function through functional genomics strategies using artificial miRNA technology. We transformed rice 

plants (Oryza sativa) to obtain plants silencing AMT3;1 and AMT4. We hypothesize that rice plant lacking 

an AM-inducible AMT will have a reduced N transfer through AM fungi. Additionally, changes in the 

arbuscule architecture and abundance are expected. We expect that our finding will help to understand 

more precisely the cross-talk between plant and fungi, and the way the mutualistic AM symbiosis stayed 

stable over the past 450 million years. 
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Material and Methods 

 

Identification and characterization of rice AMT genes 

Sequences from the O. sativa genome database were: OsAMT1;1 (Q7XQ12), OsAMT1;2 (Q6K9G1), 

OsAMT1;3 (Q6K9G3), OsAMT2;1 (Q84KJ7), OsAMT2;2 (Q8S230), OsAMT2;3 (Q8S233), OsAMT3;1 

(Q84KJ6), OsAMT3;2 (Q851M9), OsAMT3;3 (Q69T29), OsAMT4;1 (Q10CV4). 

For phylogenetic analysis, the AMTs amino acid sequences were aligned with ClustalW 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/) using the following multiple alignment parameters: gap 

opening penalty 15, gap extension penalty 0.3, and delay divergent sequences set to 25%; and the 

Gonnet series was selected as the protein weight matrix. Neighbor joining trees were constructed using 

Poisson correction model for distance computation in MEGA4 (Tamura et al., 2007). Bootstrap analysis 

was carried out with 1000 replicates. Branch lengths (drawn in the horizontal dimension only) are 

proportional to phylogenetic distances. Gene accession numbers of amino acids sequences are Populus 

trichocarpa: PtrAMT1;1 (B9HSW3), PtrAMT1;2 (B9IPE2), PtrAMT1;3 (B9HKW8), PtrAMT1;4 (B9GRB5), 

PtrAMT1;5 (B9GRB4), PtrAMT1;6 (B9HP47), PtrAMT2;1, (B9HCZ0), PtrAMT2;2 (B9IGE2), PtrAMT3;1 

(B9GHA5), PtrAMT4;1 (B9GS88), PtrAMT4;2 (B9IKS2), PtrAMT4;3 (B9H8E7), PtrAMT4;4 (B9I5F0), 

PtrAMT4;5 (B9MX92). Arabidopsis thaliana (at NCBI): AtAMT1;1 (At4g13510), AtAMT1;2 (At1g64780), 

AtAMT1;3 (At3g24300), AtAMT1;4 (At4g28700), AtAMT1;5 (At3g24290), AtAMT2;1 (At2g38290), 

Sorghum bicolor: SbAMT1;1 (Sb06g022230), SbAMT1;2 (Sb04g026290), SbAMT2;1 (Sb09g023030), 

SbAMT2;2 (Sb03g038840), SbAMT3;1 (Sb03g041140), SbAMT3;2 (Sb01g001970), SbAMT3;3 

(Sb04g022390), SbAMT4 (Sb01g008060), Nitrosomona europeae: NeAMT/Rh1 (Q82X47), Escherichia 

coli: EcAMTB (P69681). The accession numbers of the Phytozome 6.0 database were used for soybean 

(Glycine max) as follows: GmAMT1.1 (Glyma20g21030.1), GmAMT1;2 (Glyma10g26690.1), GmAMT1;3 

(Glyma10g31080.1), GmAMT1;4 (Glyma10g31110.1), GmAMT1;5 (Glyma1031130.1), GmAMT1;6 

(Glyma20g36390.1), GmAMT2;1 (Glyma07g18670.1), GmAMT2;2 (Glyma18g43540.1), GmAMT2;3 

(Glyma01g30920.1), GmAMT3;1 (Glyma05g33010.1), GmAMT4;1 (Glyma09g41810.1), GmAMT4;2 

(Glyma20g00680.1), GmAMT4;3 (Glyma19g43380.1), GmAMT4;4 (Glyma02g04960.1), GmAMT4;5 

(Glyma02g16200), GmAMT4;6 (Glyma10g03600.1).  
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Plant growth conditions for tissue analysis and to test functionality of the constructs 

Seeds from O. sativa (cultivar Baviva) were surface sterilized (10min in 2.5% KClO) and then rinsed with 

sterile deionized water several times during one day and soaked in sterile deionized water over night. 

Seeds were pre-germinated on autoclaved Terra Green (Oil Dri US-special, american Aluminiumoxide, 

type III/R; Lobbe Umwelttechnik, Iserlohn, Germany) at 25°C for 24h and then grown in the dark at room 

temperature for 72h. G. mosseae ISCB13

Plants were watered twice a week during experiments. From the first week on, 8 ml of modified 

Hoagland solutions, after Gamborg & Wetter (1975), were applied weekly. Two different Hoagland 

solutions were applied: “+N” (Ca(NO₃)₂·4H₂O, KNO₃ and NH₄H₂PO₄ from the original solution were 

replaced by CaCl₂·2H₂O, KCl, NH₄Cl and KH₂PO₄) and “-N” (Ca(NO₃)₂·4H₂O, KNO₃ and NH₄H₂PO₄ from the 

original solution were replaced by CaCl₂·2H₂O, KCl and KH₂PO₄). Additionally, for all the solutions, 

(NH₄)2MoO₄ was replaced by Na₂MoO₄. Shoots and roots were harvested separately 13 weeks after 

inoculation. 

 (Botanical Institute, Basel, Switzerland) fungal strain was 

propagated by trap cultures set up as previously described in detail (Oehl et al., 2004). To establish AM 

symbiosis, pre-germinated seeds were individually inoculated at the same time in pots containing a 

mixture of acid washed Terragreen, sand and loess soil (5:4:1 w/w/w). About 100 spores were added to 

the mixture. For the controls (non-mycorrhizal plants), the same amount of autoclaved inoculum was 

added to the mixture. To correct for possible differences in microbial communities, each pot received 

one ml of filtered washing of AM fungal inoculum (van der Heijden et al., 1998). Plants were grown in a 

greenhouse with day-night temperatures of ca. 28°C and ca. 15°C, respectively, photoperiod of 12h and 

humidity of 80%.  

 

Staining of AM fungi in plant roots and quantification of root colonization 

From each analyzed plant, one subsample of 100mg of fresh roots was used to determine AM fungal 

colonization. Root subsamples were stained with trypan blue (0.005% w/v in lactic acid, glycerol, water, 

1:1:1, w:w:w) at 60°C for 10 minutes in 15ml tubes in a water bath and destained 24h in glycerol: 1%HCl 

(w:w). Root colonization was quantified according to the grid intersection method as described by 

Brundrett et al. (1984). Total colonization comprised intersections containing hyphae, vesicles, spores or 

arbuscules. Differences between means of variables were analyzed by ANOVA (p≤0.05), using SPSS 18.0. 
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Samples, RNA isolation and quantitative reverse transcription-PCR 

Mycorrhizal and non-mycorrhizal roots as well as leaves stem, stamina and pistils were ground in liquid 

nitrogen and total RNA was isolated using the RNeasy Plant Mini kit (Qiagen, Darmstadt, Germany). The 

DNA-free set (Ambion, Austin, USA) was used to digest DNA after RNA purification. Full-length doubled-

stranded cDNAs corresponding to mRNAs expressed in plant roots were obtained using the SMART–PCR 

cDNA Synthesis Kit (Clontech, Palo Alto, CA, USA). 

Quantification of AMT transcripts was performed using a two-step quantitative RT-PCR (qRT-PCR) 

procedure. Total RNA was measured with a spectrophotometer (Nanodrop ND-1000, Witec, 

Switzerland) and then reverse-transcribed (100 ng per reaction) using the iScript cDNA Synthesis kit (Bio-

Rad, Paolo Alto, CA, USA). cDNAs were used as templates in real time quantitative PCR reactions with 

gene-specific primers designed using Primer 3 (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi) and amplify 3.1 (http://engels.genetics.wisc.edu/amplify) (Tab.1). The 

following criteria were used: product size between 100 and 400 bp, melting temperature 60°C and a GC 

percentage > 50%. Target gene expression was normalized to the gene encoding the O. sativa ubiquitin. 

Reactions of qPCR were run using the 7500 real-time PCR system (Applied Biosystems). The following 

cycling parameters were applied: 95°C for 3 min and then 40 cycles of 95°C for 30 s, 60°C for 1 min and 

72°C for 30 s. A control with no cDNA was run for each primer pair. For data analysis, the geometric 

mean of the biological replicates (n = 4) was calculated. The primer efficiency ranged between 90% and 

110%.  

 

Designing amiRNA 

Rice gene sequences were downloaded from NCBI (http://www.ncbi.nlm.nih.gov) and from TIGR5 for 

WMD (http://www.tigr.org/tdb/e2k1/osa1). Sequence homology of miRNA precursors to available rice 

cDNAs was determined by BLAST and multiple alignments were performed using Mega4 (Tamura et al., 

2007). The possible amiRNA candidate sequences were generated using WMD (Schwab et al., 2006; 

Ossowski et al., 2008). WMD3 (http://wmd3.weigelworld.org/) supports different plant species including 

Oryza sativa (TIGR v5) and designs 21bp sequences directed against one or several genes. The program 

suggests suitable amiRNA candidates after a two-step selection process based on empirically established 
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criteria for efficiency and specificity while minimizing possible off-target effects to other genes in the 

rice genome. The hybridization energy was chosen between -35 and -38 kCal.  

 

amiRNA Constructs 

According to (Warthmann et al., 2008), two (for AMT4) and three (for AMT3;1) 21 bp amiRNAs were 

selected to target different sites in the target mRNA. Additionally, appropriate amiRNA* sequences that 

would in pairing to the amiRNA exactly mimic the foldback structure of the endogenous OsAMT3;1 and 

OsAMT4 were designed. Each primary amiRNA construct was engineered from the vector pNW55, 

replacing the 21 bp of the natural osa-MIR528 miRNA from pNW55 as well as the partially 

complementary region of the miRNA* by modification PCRs in a similar way as described earlier (Schwab 

et al., 2006), following the PCR scheme in Figure 4.1. In detail, for each miRNA construct three 

modification PCRs were performed with primers G-4368+II, I+IV and III+G-4369 on pNW55 as template, 

yielding fragments of 256, 87 and 259 bp lengths, respectively. Primer I contains the amiRNA in sense 

orientation, primer II its reverse complement, primer III the amiRNA* sequence in sense and primer IV 

the amiRNA* sequence in antisense orientation. The primers G-4368 and G-4369 are vector primers and 

were the same for all amiRNA constructs. amiRNA primers were designed using the primer design 

function of WMD3. A list of all primers can be seen in Table 1. The three resulting fragments were gel 

purified with Zymoclean Gel DNA Recovery Kit (Zymo Research) and then fused by one PCR with the two 

flanking primers G-4368 and G-4369 on a mixture of 1 µl from each previous PCR as template. All PCRs 

were performed with Phusion DNA Polymerase (Biolabs) in a volume of 50 µl according to the 

manufacturer’s recommendation: The fusion product of 554 bp was again gel purified (Zymo Research), 

cloned using the BP clonase step from Gateway Cloning Technology (Invitrogen) in a pC2300overExp 

vector (from Emmanuel Guiderdoni, CIRAD, France). The sequence was verified by excised with 

HindIII/Acc65I and sequencing. All five amiRNA plant expression vectors were transformed into 

Agrobacterium tumefaciens. 
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Figure 4.1: PCR scheme to produce artificial miRNA constructs from pNW55. (a) The original miRNA 528 and miRNA* 

sequences of pNW55 (green) are replaced by the amiRNA sequences (red) designed for OsAMT3;1 and OsAMT4 during the first 

PCRs. Sequences in pNW55 complementary to the primers are in yellow and multiple cloning sites in blue. (b) The three PCRs 

on pNW55 as template (G-4368 + II, I + IV, III + G-4369) result in 3 DNA fragments. (c) Fusion PCR of the 3 PCR products from (b) 

with the primers G-4368 + G-4369 results in one DNA fragment for subsequent cloning. After Warthmann et al. (2008) 

 

Rice transformation and culture 

Rice seeds from the variety Nipponbare (japonica) were transformed with the transgenes according to 

modified protocols from Hiei et al. (1994) developed by the CIRAD Montpellier and selected on 

hygromycin (Fig. 4.2). Control plants were obtained by transformation with the empty binary vector 

pC2300overExp. All regenerated T0 transgenic plants were genotyped for the presence and the number 

of transgene copies. Plants with one or two copies were selected for seed production. Plants were 

grown in a greenhouse at the CIRAD Montpellier with 12h photoperiod at 28 °C (day), 23 °C (night) and 

80-90% humidity. 
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Table 4.1: Primer sequences for direct mutagenesis of pNW55 and for quantitative real time PCR 

OsAMT3;1 
 

SK_AI agTTAGAACTGCGTCGTTTCCGGcaggagattcagtttga 

SK_AII tgCCGGAAACGACGCAGTTCTAActgctgctgctacagcc 

SK_AIII ctCCGGATACGTCGCAGTTCTAAttcctgctgctaggctg 

SK_AIV aaTTAGAACTGCGACGTATCCGGagagaggcaaaagtgaa 

SK_BI agTACGACATGTTGTAGCGCCCGcaggagattcagtttga 

SK_BII tgCGGGCGCTACAACATGTCGTActgctgctgctacagcc 

SK_BIII ctCGGGCCCTAGAACATGTCGTAttcctgctgctaggctg 

SK_BIV aaTACGACATGTTCTAGGGCCCGagagaggcaaaagtgaa 

SK_CI agTCATCCACAGTATGGCGCCGCcaggagattcagtttga 

SK_CII tgGCGGCGCCATACTGTGGATGActgctgctgctacagcc 

SK_CIII ctGCGGCCCCAAACTGTGGATGAttcctgctgctaggctg 

SK_CIV aaTCATCCACAGTTTGGGGCCGCagagaggcaaaagtgaa 
OsAMT4 

SK_DI agTTATCCATATCATGTCGTCGAcaggagattcagtttga 

SK_DII tgTCGACGACATGATATGGATAActgctgctgctacagcc 

SK_DIII ctTCGACCACAAGATATGGATAAttcctgctgctaggctg 

SK_DIV aaTTATCCATATCTTGTGGTCGAagagaggcaaaagtgaa 

SK_EI agTACGTTGTTCGGAAGGGACGCcaggagattcagtttga 

SK_EII tgGCGTCCCTTCCGAACAACGTActgctgctgctacagcc 

SK_EIII ctGCGTCGCTTGCGAACAACGTAttcctgctgctaggctg 

SK_EIV aaTACGTTGTTCGCAAGCGACGCagagaggcaaaagtgaa 

pNW55 attB1-G-4368 GGGGACAAGTTTGTACAAAAAAGCAGGCTCTGCAAGGCGATTAAGTTGGGTAAC 

attB2-G-4369 GGGGACCACTTTGTACAAGAAAGCTGGGTGCGGATAACAATTTCACACAGGAAACAG 

qPCR 
primers 

OsAMT3;1Fw CATCACGCTCATCCTCCTC 

OsAMT3;1R CCTCTCCCTGTCCTTGGTC 

OsAMT4Fw GTGATCCTGTACGGCGACTG 

OsAMT4R AACGCCTCCCTGTCCTTCTC 
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Figure 4.2: Transformation cycle developed by the CIRAD Montpellier after Hiei et al. (1994). The date show the time at which 

the different steps were executed for the transformation with the amiRNA targeting OsAMT3;1 and OsAMT4. 
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Preliminary results 

 

AM-inducible AMTs in rice 

Two rice AMTs, OsAMT3;1 and OsAMT4 were induced upon colonization by G. mosseae (Fig. 4.3). Both 

also shown a higher expression in mycorrhized roots compared to other tissues (Fig. 4.4). OsAMT3;1 was 

detected in all the tissues studied in contrary to OsAMT4 that was not detected in the stem and in the 

pistils. 
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Figure 4.3. Quantification by qRT-PCR of the transcript levels of OsAMT3;1 and OsAMT4 in Oryza sativa roots either non-

colonized or colonized by arbuscular mycorrhizal fungi (Gm; Glomus mosseae) 9 weeks post-inoculation in the different N 

treatments (-N and +NO3
-).  

The values are the means of four replicates. Ubiquitin was used as the reference transcript. Gene expression was normalized to 

the “-AMF, 1×NO₃⁻” treatment. Differences in gene expression between the treatments were performed with a one-way 

ANOVA (Scheffe’s F test). Letters indicate a p-value < 0.05. 
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Figure 4.4. Quantification by qRT-PCR of the transcript levels of the two Oryza sativa AM-inducible AMT genes (AMT3; and 

AMT4) in different tissues. The values are the means of three replicates. Ubiquitin was used as the reference transcript. GM: G. 

mosseae, CT: control.  

 

 

amiRNA constructs 

Three amiRNA constructs were prepared for OsAMT3;1 and two amiRNA constructs were prepared for 

OsAMT4 (Tab.4.2). The amiRNA were selected to target different sites in the target mRNA (Tab.4.1). 

 

Regeneration and selection of amiRNA 

After transformation with Agrobacterium, selection with hygromycin was performed. Selected cali were 

regenerated and placed in tubes for 3 month. After this time, the regenerated plants were transferred 

to the greenhouse for seed production. Loss of plant material happened at every step and is resumed 

for each amiRNA construct separately in Tab. 4.2. Between 18 and 23 plants per amiRNA constructs had 

one to two insertions of the amiRNA constructs. These plants were selected to test functionality of the 

construct.  
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Table 4.2: Summary of the number of plants at each critical step of the regeneration and selection 

 Number of 
regenerated cali 

Number of plants 
transferred to the 
greenhouse 

Number of plant 
producing seeds 

Number of plants 
with one or two 
copies of the 
amiRNA 

AMT3;1_1 30 26 24 23 
AMT3;1_2 32 29 24 18 
AMT3;1_3 32 29 25 20 
AMT4_1 31 25 24 19 
AMT4_2 32 24 24 18 
Empty vector (ROE) 32 24 23 14 
 

Functional constructs 

To test the functionality of the construct, we will set up mycorrhized and non-mycorrhized pots with the 
61 AMT3;1 mutants and 37 AMT4 mutants obtained. Phenotype of colonization and gene expression will 
be assessed. 
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