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Abstract

The distance dependence and atomic-scale contrast recently observed in nominal contact po-

tential difference (CPD) signals simultaneously recorded by the Kelvin probe force microscopy

(KPFM) using non-contact atomic force microscopy is addressed theoretically. In particular, we

consider probing an insulating surface where the applied bias voltage affects electrostatic forces

acting on the atomic scale. Our approach is a multiscale one. First, the electrostatics of the

macroscopic tip-cantilever-sample system is treated, both analytically and numerically. Then the

resulting electric field under the tip apex is inserted into a series of density functional theory

calculations for a realistic neutral but reactive silicon nano-scale tip interacting with a NaCl(001)

sample. Theoretical expressions for amplitude modulation (AM) and frequency modulation (FM)

KPFM signals and for the corresponding local contact potential differences (LCPD) are obtained

and evaluated for several tip oscillation amplitudes A up to 10 nm. For A = 0.01 nm, the com-

puted LCPD contrast is proportional to the slope of the atomistic force versus bias in the AM

mode and to its derivative with respect to the tip-sample separation in the FM mode. Being

essentially constant over a few Volts, this slope is the basic quantity which determines variations

of the atomic-scale LCPD contrast. Already above A = 0.1 nm, the LCPD contrasts in both

modes exhibit almost the same spatial dependence as the slope. As the most basic quantity, the

slope is shown to be approximately expressed in terms of intrinsic charge distribution and dipole

moment and their variation due to the chemical interactions. The slope is also influenced by the

macroscopic bodies.

As a second part, we introduce a method to measure the distances between atomic con-

figurations which is useful when seeking the tip-apex structures. The broad application of this

method includes conformational search and machine-learning based interatomic potentials.
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Introduction

Kelvin probe force microscopy (KPFM), which was introduced twenty years ago, [1, 2] has be-

come an attractive, and indeed unique, non-contact technique to determine the electric surface

characteristics of materials on the atomic scale. It has been successfully applied to the mapping

of local variations of work function or surface potential along inhomogeneous surfaces of a broad

range of materials. [3, 4, 5] KPFM is nowadays a popular tool with a wide variety of applications

on semiconducting [6, 7] and insulating [8] surfaces, from quantum dots [9], molecules and solar

cells [10, 11, 12] to charge states of an atom. [13]

A lot of work has been done both to improve the experimental technique and to theoretically

explain the physics behind. Yet, the interpretation of the KPFM images, like images obtained

by other scanning probe microscopy techniques, is not necessarily straightforward. The aim

of this work is to shed some light on this complicated problem by a combined theoretical and

computational approach.

The first and main part of this thesis, is devoted to explaining the multiscale approach

developed for simulating KPFM experiments. In chapter 1, the contributions to the tip-sample

interactions, and their relation to the detected signal in experiment are briefly explained. Chap-

ter 2 presents an introduction to the fundamentals of the KPFM method. The electrostatic

interactions are specially important in KPFM, and therefore we address them separately and

in details in chapter 3. The results are generally applicable to any scanning probe microscopy

where the bias-dependent interactions are present. The electrostatics of a conducting tip of a

scanning probe microscope against a flat conductor coated with a thin or thick dielectric layer is

treated analytically and numerically. In particular, exact and compact approximate expressions

for the capacitance, force, force gradient, electric field profiles and their effective widths are de-

rived for a spherical model tip by generalizing known solutions for the conducting sphere and
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Introduction

sample problem. These expressions allow convenient modelling of various measurements involv-

ing voltage-biased probes, estimation of lateral resolution and prediction of trends as a function

of relevant parameters.

In chapter 4, by combining the macroscopic and atomistic contributions to the electrostatic

force, expressions for the Kelvin signal both in AM- and FM-KPFM, and both for small and large

amplitude oscillations are derived. Then, in chapter 5 an approximate variant of the multiscale

method is presented. This also provides a microscopic insight into the physics of the phenomenon

based on the polarization effects.

In the second part of the thesis, a method is introduced for measuring dissimilarities between

molecular structures in computer simulations. In order to characterize molecular structures we

introduce configuration fingerprint vectors which are counterparts of quantities used experimen-

tally to identify structures. Components of such vectors can be associated to individual atoms

and can then serve as an atomic fingerprint that identifies an atom within a structure. The Eu-

clidean distance between the configuration fingerprint vectors satisfies the properties of a metric

and can therefore safely be used to measure dissimilarities between configurations in the high

dimensional configuration space. We show that these metrics correlate well with the root-mean-

square distance (RMSD) between two configurations if this RMSD is obtained from a global

minimization over all translations, rotations and permutations of atomic indices. We introduce

a Monte Carlo approach to obtain this global minimum of the RMSD between configurations

where atomic fingerprints are used to enhance the performance of the procedure.

2



Chapter 1

Probe-Sample Interactions

Three decades after the invention of the scanning tunneling microscope (STM), [14] diverse scan-

ning probe microscopy (SPM) techniques have become available for the study of local chemical

and physical surface properties of materials as well as for manipulating them down to the atomic

scale. A probing tip scans the surface at distances comparable to atomic distances and senses the

topmost atomic layers of the surface, providing a surface image. In STM, sensing the surface is

done by measuring the current flow of the electrons that tunnel through the vacuum gap between

the tip and a conducting sample. Contrary to STM, scanning force microscopy [15] (SFM) can

be applied to both conducting and non-conducting samples, [16] because it senses the surface via

the tip-sample local interactions rather than via the current.

Imaging a surface using an atomic force microscope (AFM) is performed by monitoring the

deflection of a micro-cantilever interacting with the surface and then interpreting it as a signature

of the interaction. The cantilever beam with a micro-tip of a few microns height attached to one

end and driven at the other end, namely the probe, is therefore the heart of the AFM.

In the so-called static operation mode, the force acting on the probe is determined using

the Hooke’s law via measuring the bending of the cantilever beam of known stiffness. To prevent

the tip to suddenly jump to the surface due to a strong attraction, the AFM tip is at contact

(i.e. close proximity) with the surface where the probe is repelled from it. In this contact mode,

feedback electronics keeps the deflection of the probe (and hence the force exerted on it) constant

during the scan by adjusting the voltage fed into the piezoelectric which controls the height. The

hight of the cantilever at each lateral position (x, y) is considered as the topography map of the

3



1. Probe-Sample Interactions

surface.

1.1 Interplay between interactions and dynamics

Much higher resolutions (down to atomic scale) can be achieved if the AFM works in the so-called

dynamic mode where tip and sample are usually not in contact. In this case the cantilever is

externally driven to oscillate at or close to its resonance frequency f1 (or one of the harmonics)

and the force between probe and sample is determined via measuring the perturbing effect of

the sample on either the amplitude or the frequency of the natural oscillations of the tip. The

technique is called amplitude modulation (AM) or frequency modulation (FM) depending on

whether the modulation of the amplitude or the frequency according to the tip-sample interaction

is exploited to extract information about the characteristics of the sample.

If not interacting with the sample surface, the free cantilever tends to oscillate at its reso-

nance frequency f1 if driven at this frequency. Upon the s-dependent interaction with the sample,

s being the tip-sample separation, the oscillation frequency alters depending on the vertical gra-

dient of the force F exerted on the probe. An extra stiffness

kts ≡ −∂F
∂s

is added to the cantilever flexural stiffness k due to the tip-sample interactions and the resonance

frequency is perturbed as

f

f1
=

√

k + kts
k

≃ 1 +
kts
2k

= 1− 1

2k

∂F

∂s
.

Then, the amplitude of the driven oscillation at f1 is reduced rapidly. To retain the oscillation

amplitude, one needs either to amplify the driving force or to readjust its frequency. In the FM-

AFM, the amplitude is kept constant with a feedback mechanism which changes the frequency

of the driving force to always match f , the shifted frequency. The frequency-shift ∆f = f − f1

is then recorded as a function of (x, y).

In the repulsion regime, the force-gradient ∂sF < 0 and the cantilever seems stiffer (∆f > 0).

If ∂sF > 0, on the other hand, the effective stiffness is lowered and ∆f is negative. For tip

oscillation with ultrasmall amplitudes, the frequency shift is, to a very good approximation,

given by [17]

∆f

f1
= − 1

2k

∂F

∂s
. (1.1)

In practice, however, the amplitude of the oscillation of the tip can be orders of magnitude larger

than s. Then ∆f is proportional to the force gradient averaged over a cycle, namely

∆f

f1
= − 1

2k

〈∂F

∂s

〉

(1.2)

4



1.2. Dispersion Interactions

which is given by [18]

kA
∆f

f1
= − 1

2π

∫ 2π

0
F [d+A(1 + cosφ)] cosφdφ, (1.3)

where A is the oscillation amplitude and d the closest tip-sample distance. This issue is addressed

in details in 4.3.2.

1.1.1 Contributions

The total force between the probe and sample has three main contributions from

• van der Waals (vdW)

• electrostatic

• and chemical

interactions. Accordingly, the frequency shift consists of three contributions ∆f = ∆fvdW +

∆fel +∆fchem. The two first are long range and dominant at large separations where they cause

an attractive force on the tip. The chemical interactions are dominant at very short separations

and responsible to the atomic-scale resolved images.

1.2 Dispersion Interactions

The vdW forces are independent of the bias voltage and therefore are not important in the case of

KPFM simulations. Therefore we address them only briefly here. The vdW interactions are long

range and attractive (in the relevant separations here). The origin of the vdW interactions is the

quantum fluctuation resulting in fluctuating electromagnetic fields from one material interacting

with another.

The dispersion interaction between two atoms a distance r away can be described by an

empirical potential based on quantum mechanics [19] as

VvdW(r) = −C6

r6
, (1.4)

where C6 is a constant depending on the polarizability which in turn is related to the first ionizions

energies of the atoms. The total vdW force between the macroscopic tip and sample within the

Hamaker’s approximation [20] is obtained from

FvdW = −ρtipρsample

∫

tip

∫

sample
∇VvdW(|r− r′|)drdr′, (1.5)

5



1. Probe-Sample Interactions

where the integrals are taken over the volumes of tip and sample and ρ denotes the number

density of atoms in them. One can rewrite the latter expression as

FvdW = −H

π2

∫

tip

∫

sample
∇ 1

|r− r′|6drdr
′, (1.6)

where H = π2C6ρtipρsample ∼ 10−19 J is the Hamaker constant and depends on the material

properties independently from the geometries. For instance, for the setup used in chapter 4,

namely a Si tip over NaCl surface, the geometric mean of Hamaker constants for Si and NaCl

extracted from tabulated values, [21, 22] gives H = 1.17× 10−19 J.

Apart from H, the vdW force depends only on the geometries. For many simple geometries

the integral in Eq. (1.6) can be evaluated. [23] In particular for the sphere-plane (mimicking

tip-sample) separated by s one can use the approximation

Fvdw = −HR
6s2

(1.7)

where R is the sphere radius. For a spherical Si tip of radius 20 nm atop a NaCl flat surface at

separation s = 1 nm, the vdW interaction is 0.39 nN; with s = 0.5 nm the force is 1.56 nN. For

more realistic geometries including the tip cone see Ref. [24].

1.3 Electrostatic Interactions

The electrostatic interactions between the macroscopic bodies of probe and sample, in the most

general form, reads

Fel = g(s)V 2 (1.8)

where V = Vb − VCPD (Eq. (2.2)) is the electric potential difference and

g(s) =
1

2

∂C(s)

∂s
(1.9)

is a function of the macroscopic geometries. In chapter 3 we evaluate the capacitance C for

realistic tip-cantilever-sample geometries. In order to get a feeling, we exemplify here again the

simplest relevant geometry, namely a conducting spherical tip of radius R over a perfect conduct-

ing plane a distance s away. For this geometry the commonly used approximate expression [25]

is

g(s) = − πǫ0R
2

s(R+ s)
, (1.10)

where ǫ0 = 8.85 pN/V2 is the vacuum permittivity. Then, for typical values e.g. R = 20 nm

and s = 1 nm, the electrostatic attraction is 0.53 nN for V = 1 Volt; if s = 0.5 nm the force is

1.09 nN.
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tip asperity

frozen bases

sample 
surface

controllable 

distances

Figure 1.1: Illustration of the nano tip-sample system used to evaluate the short range interac-
tions. Tip position is defined in terms of controllable distances between the frozen bases.

1.4 Chemical Interactions

The chemical forces, including covalent, ionic and/or metallic forces, can be repulsive or attractive

in the relevant range of SPM. Indeed it is the chemical forces that provides the ability of high

resolution imaging of the surface states. Because of their short-range nature, the interactions

between only a few foremost atomic layers of tip and sample, as shown schematically in Fig. 1.1

need to considered in simulation. The base atoms of tip and of sample are kept frozen in their

bulk positions and the remainder are allowed to relax in response to the chemical interactions

upon changing the nominal relative position of the nano tip with respect to the sample. The

latter position is defined based on the position of the frozen atoms.

The chemical force on the nano-tip is the vector sum of the forces on the individual atoms

Fchem =
∑

i∈tip

Fi =
∑

i∈tip-base

Fi, (1.11)

where Fi denotes the total force on atom i. Note that only the frozen atoms in the base contribute

to the sum. The reason is that for any of the relaxed atoms Fi,relaxed = 0 (at least up to a tolerance

depending on the noise of the force evaluation).

Equivalently, one can use

Fchem ≡ −∂Uchem

∂Rtip
, (1.12)

where Rtip is the tip position with respect to the sample. Evaluating the potential energy of the

chemical interactions Uchem is not easy in general. In particular, in case of KPFM, the electric

field generated by the biased tip would polarize the atoms in the contact point and this way

Uchem is a function of bias and macroscopic geometries.
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1. Probe-Sample Interactions

1.4.1 Force fields

The simplest way to describe the chemical interactions is to approximate them with empirical

force fields. Force field are sum of a few additive terms which describe the two or many particle

interactions. If only pairs are considered, then

Fchem =
∑

i∈tip

∑

j∈sample

Fij ,

where Fij is the force on atom i in tip from atom j in sample. For instance, the Lennard-Jones

potential gives the interaction between two atoms as a function of their distance rij , namely

VLJ,ij =
A

r12ij
− B

r6ij
. (1.13)

(Then Uchem =
∑

i>j VLJ,ij .) The first term is repulsive but non-vanishing only at too short

distances. It is supposed to describe the Pauli repulsion when the atoms are too close together

such that the atomic orbitals overlap. The second term is attractive and like Eq. (1.4) describes

the dispersion effects. If the free parameters A and B are fitted to experimental or quantum

mechanical results, this simple potential can be a good approximation usable e.g. for inert gas

molecules.

Another force field is the Morse potential [26]

VMorse,ij = D0

[

1− e−a(rij−r0,ij)
]2

(1.14)

where r0,ij is the equilibrium distance at which the pairwise potential energy reaches its minimum

D0 and the constant a characterizes the widths of the potential. Again both repulsive and

attractive terms exist.

There are more number of force fields that have been used in atomistic simulations of AFM.

For instance, for ionic systems the shell model, which takes into account the polarization of the

electron shells, has been implemented in the SciFi code. [27] Since we never used force fields in

this work, we do not explore further this issue here, but as a final remark we mention that the

interaction between the whole atomic cluster (mimicking the tip asperity) and the surface can

proximately be described using e.g. the LJ or Morse potentials. The particle-particle distance is

then replaced by the tip-sample distance and the free parameters are fitted to the more accurate

calculations like those explained in the following.

1.4.2 Quantum mechanical methods

Empirical force fields are not able to describe the chemical interactions within the accuracy

required for interpreting many of the atomically resolved images by the modern SPM techniques.
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1.4. Chemical Interactions

Indeed, physical and chemical properties of the systems in that range essentially depend on

the details of the electron-electron and electron-core interactions. During the last century, the

quantum mechanics theory has been shown to be pretty accurate to describe the material at this

level. However, analytically solving the fundamental underlying equation, i.e. the Schrödinger’s

equation, is impossible except for trivial systems. The power of supercomputers along with

considerable theoretical progress has been able to overcome, to some extend, this difficulty. By

loosing some accuracy because of introducing some approximations, nowadays the numerical

solutions to real-world problems are possible.

Density functional theory

Among a number of existing first-principles method for electronic structure calculations, the

density functional theory (DFT) is applicable to extended systems as big as those required in

simulations of AFM, i.e. containing few hundred atoms. Because of high computational demand-

ing, one can do such calculations only for a limited number of tip positions. However, compared to

other numerical methods to solve the Schrödinger’s equation, the accuracy versus computational

efficiency of DFT has made it a suitable tool for calculating accurately the chemical interactions

in simulating the AFM. We also used DFT throughout this thesis.

DFT greatly simplifies theN -electron problem by mapping it intoN one-electron Schrödinger’s

equations:

[

− ~
2

2m
∇2 + Veff(r)

]

φi(r) = εiφi(r), (1.15)

where i = 1, 2, · · · , N . Each electron i feels a local effective potential Veff generated by all

electrons. In the Kohn-Sham [28] formalism, the effective potential is determined self-consistently

through an iterative process, which is done numerically.

In principle, DFT is an exact theory. In practice, however, it is not exact because of required

approximations for the exchange-correlations term. Nevertheless, in many applications including

solid state physics, the accuracy is sufficient compared to the experiment. DFT is essentially

based on two Hohenberg-Kohn theorems [29] showing that electron density n(r) =
∑

|φi(r)|2 can

be considered as the basic quantity, hence the name of DFT. The theorems say that for a set

of interacting electrons subject to an external potential Vext there exists a ground-state electron

density n0(r) which minimizes the functional

E[n(r)] = F [n(r)] +

∫

n(r)Vext(r)dr. (1.16)

Usually

Vext(r) =
N∑

i

qi
|r−Ri|

9



1. Probe-Sample Interactions

i.e. identical to the electrostatic potential offered to the electrons by N nuclei of charges qi and

positions Ri.

As a common practice, the universal functional

F [n(r)] = T [n(r)] +
1

2

∫∫
n(r)n(r′)

|r− r′| drdr
′ + Exc[n(r)]

includes contributions form the kinetic (T ) and Hartree energies, as well as a contribution

Exc[n(r)] which represents the exchange and correlations (XC) between the electrons.

So far, there is no exact closed-form expression for the XC term. Different approximate

forms have been suggested. The simplest, yet surprisingly good in many applications, is the local

density approximation (LDA) in which the XC term depends merely on the electronic density in

space

ELDA
xc [n(r)] =

∫

n(r)ǫxc[n(r)]dr

where ǫxc is the exchange-correlation density.

When doing calculations, more error sources come into play. One is the error due to mod-

eling the electron-nucleus interaction by pseudopotentials. Another error is because of non-

completeness of the basis set used to expand the wave function. In this work we used the BigDFT

package [30] which uses a wavelet basis set. This makes it possible to reduce the mentioned error

depending on how fine is the used grid.

Geometry optimization

In order to find the relaxed geometry of the atoms the total energy is minimized with respect

to atomic positions Ri. Within the Born-Oppenheimer approximation, the motion of nuclei and

electrons are split to two independent problems; nuclei are frozen while when the electronic wave

function is being calculated. Using methods such as the steepest descent or conjugate gradients,

the atomic cores are moved according to the corresponding energy gradients (forces). Then, the

electronic wave function has to be determined by solving the Schrödinger equation’s for the new

atomic positions; the forces are updated and the cores are accordingly moved and so forth until

the forces become small enough. This makes the ab initio geometry relaxation computational

demanding for large systems. Once the Hellmann-Feynman the free atoms are relaxed, the forces

acting on the nano tip are summed up to get the chemical force exerted on the tip as function of

the tip position (see Fig. 1.1).

Hellmann-Feynman forces

Fortunately, the Hellmann-Feynman theorem makes it possible to calculate all force components

on all atomic cores at once from the converged ground state electronic wave function ψ(r) at
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1.4. Chemical Interactions

each geometry relaxation step. According to this theorem, to get the gradient of the energy E

with respect to an external parameter λ one calculates the expectation value of the gradient of

the Hamiltonian Ĥ with respect to λ, namely

∂E

∂λ
=

〈

Ψ(λ)
∣
∣
∣
∂Ĥ

∂λ

∣
∣
∣ψ(λ)

〉

.

If the parameter λ is an atomic position, then the energy gradient is the force acting on the

corresponding core. The forces acting on each atomic core has two sources, one from all other

cores in the system and the other from the electrons which are determined by the electron density

n(r) = 〈ψ|ψ〉. Therefore, the force acting on atom i with core charge qi and located at Ri is

given by

Fi = qi

N∑

j 6=i

qj
Rj −Ri

|Rj −Ri|3
− qi

∫
r−Ri

|r−Ri|3
n(r)dr.
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Chapter 2

Principles of KPFM

2.1 Basic Concepts

2.1.1 Work function: metals versus insulators

For a conducting crystal, the work function corresponds to the energy difference between the

vacuum level outside the surface at a distance large compared to the lattice spacing, yet small

compared to the lateral dimensions of a homogeneous patch, and the bulk Fermi level. In this

range, which is typical for conventional KPFM measurements, the potential acting on an electron

outside the surface approaches the local vacuum level and becomes constant, except in the vicinity

of surface steps or patch boundaries. Differences between local vacuum levels are solely due to

electrostatic contributions which give rise to fringing electric fields around such boundaries.[31, 32]

Below about a lattice spacing from the surface, the potential exhibits smooth 3D variations on

the atomic scale.

If the sample is covered by a thin overlayer of foreign material, the work function can change

owing to electron transfer and structural relaxation at the interface. [33] Similar changes can occur

at the surface of a doped semiconductor, owing to band bending in a subsurface depletion layer.

As long as electrochemical equilibrium occurs the Fermi level is aligned throughout the sample

with the Fermi level of the back-electrode. However, if the sample is a wide-bandgap insulator,

e.g. an alkali halide crystal, this equilibration may require very long times, so that the bulk

Fermi level is not well-defined. Charge rearrangements and relaxation occur at the interface with

the back electrode and cause an additive shift of the local vacuum level outside the surface with
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2. Principles of KPFM

respect to the Fermi level of the back electrode. In a real, thick enough insulator with charged

impurities, such a shift will also be affected by the distribution of migrating charged defects at

the interface, the surface and in the bulk of the sample. [8, 4]

2.1.2 Contact potential difference (CPD)

When two macroscopic objects characterized with different work functions, e.g. Wtip andWsample

of an AFM tip and the probed sample, are electrically connected, an electric current flows through

the connection until the Fermi levels become aligned. The objects are then charged and a so-called

contact potential difference (CPD) of

VCPD =
Wtip −Wsample

e
(2.1)

is developed between them, where e = −1.60217657× 10−19 C is the elementary charge.1 For an

insulating sample Wsample must be referred to the Fermi level of the back-electrode but shifted

due to the existence of the insulator (which is also affected by sample preparation), as explained

above. What is interesting in practice is, however, the variation of the CPD throughout the

surface, but not its absolute value.

The capacitor made out of the tip-sample combination has a capacitance C(s) which depends

on their geometries and relative positions, and in particular on their separation s. If the tip is

biased at Vb with respect to the grounded sample, the effective potential difference between tip

and sample is2

V = Vb − VCPD. (2.2)

The amount of the charge transfered because of electrical connection, namely

q(s, Vb,CPD) = C(s)(Vb − VCPD) (2.3)

would be zero if a bias voltage of Vb = VCPD is applied to compensate the CPD, as depicted in

Fig. 2.1. Note that vanishing q (i.e. V ) means also vanishing the electrostatic interaction between

the capacitor electrodes (i.e. tip and sample) which reads 1
2
∂C
∂s V

2. This allows for measuring

CPD and hence the work function of the sample with respect to the tip (whose work function is

known).

KPFM is essentially based on the same concept; the electrostatic contribution to the os-

cillation of an atomically sharp tip scanned over the sample surface is minimized as much as

1 Note that since e < 0, if the work function of a sample is higher than that of another sample, the CPD is
also higher for the former.

2If the bias Vb is instead applied to the sample while the tip is grounded, then V = Vb + VCPD.
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2.2. Measurement

Figure 2.1: Illustration of CPD measurement. (a) Energy levels of electron in isolated tip and
sample. The work function W is the difference between the vacuum and Fermi levels. (b) Upon
electrical connection, the Fermi levels align via electron transfer towards the object with lower
Fermi level (tip in this case). The amount of charge transfer and the resulting electrostatic inter-
action between the charged objects depends on CPD. (c) By compensating CPD with external
bias, the charge and force are nullified. The applied bias therefore determines the CPD.

possible by tunning the DC bias, as detailed in the following section. This provides maps of the

atomic-scale variation of the surface potential. When the resolved resolution is within atomic-

scale [34, 35, 36, 37, 7] or less, [13, 12] one indeed measures the variation of the local CPD, known

as the LCPD,

VLCPD(x, y) =
Wtip −Wsample(x, y)

e
, (2.4)

where (x, y) denotes the lateral position of the tip over the sample surface. In practice, the

detected LCPD also depends on the tip-height from the surface, as will be discussed in chapters 4

and 5.

2.2 Measurement

Since the capacitive electrostatic force is a quadratic function of Vb, so is also the corresponding

contribution to the frequency shift. One way to measure CPD is therefore the direct method in

which VCPD is determined from the extremum of the parabolic curve ∆f1(Vb) measured by slowly

sweeping Vb at each measurement point.[38, 36, 39, 40]

Much faster and more sensitive measurement of LCPD is attained in the combined NCAFM-

KPFM where both topography and LCPD are imaged simultaneously. [2] In most state-of-the-art

NCAFM experiments a micro-fabricated cantilever with a tip at its free end (typically etched out

of doped single-crystal silicon) oscillates with a constant amplitude at the frequency of a flexural
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2. Principles of KPFM

resonance, which is fundamental mode i.e. f1. [41, 16] Distance-dependent tip-sample forces cause

a frequency shift ∆f1 which can be very accurately measured [17] and used for distance control.

The applied bias consists of an AC voltage with angular frequency ω modulating the DC

voltage:

Vb(t) = VDC + VAC cosωt. (2.5)

Assuming that the electric response is linear and in-phase with VAC, the electrostatic force acting

on the tip can be decomposed into three spectral components:

F(t) =
1

2

∂C

∂s
V 2
b

= FDC + Fω cosωt+ F2ω cos 2ωt (2.6)

where

FDC =
∂C

∂s

(1

2
(VDC − VCPD)

2 +
1

4
V 2
AC

)

, (2.7)

Fω =
∂C

∂s
(VDC − VCPD)VAC, (2.8)

F2ω = −1

4

∂C

∂s
V 2
AC. (2.9)

In the Amplitude Modulation (AM) KPFM, [42] the second resonance mode of the cantilever

is excited electrically (i.e. ω = 2πf2) while f1 is used independently for the normal NCAFM

operation. The KPFM-related signal is therefore the demodulated lever deflection at f2. This

signal is proportional to Fω and thus to (VDC−VCPD)VAC, as in Eq. (2.8). In the FM-KPFM, [43]

on the other hand, the first resonance mode is used also for the KPFM operation and is electrically

modulated at ω ≪ 2πf1. Now, the detected signal corresponding to the KPFM operation is

the modulation of the resonance frequency shift which is proportional to ∂sFω and thus again

proportional to (VDC − VCPD)VAC.

Therefore, in either case the feedback circuit minimizes the corresponding detected signal

by instantly adjusting VDC = VCPD while scanning the tip parallel to the sample surface at a

distance controlled by the (non-modulated) shift ∆f1. [16] VCPD is recorded continuously and

provides the CPD map of the scanned surface.

Because the scope of this thesis is theoretical, we do not further discuss experimental details

e.g. on the signal-to-noise ratio. We only mention that both FM-KPFM, [34, 44, 45, 46, 36] and

AM-KPFM [35, 37, 7] can detect lateral atomic-scale variations of VLCPD in the range where ∆f1

exhibits similar variations on surfaces of semiconductors, as well as of ionic crystals.

2.2.1 Experimental evidence

When an AFM tip approaches a surface, short-range forces contribute to the tip-sample in-

teraction and give rise to atomic-scale contrast in NCAFM. The short-range force component
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perpendicular to the surface can be extracted from measurements of ∆f1 versus the closest tip

approach distance d in an oscillation cycle.[47, 48] The contrast observed in VLCPD in the same

distance range cannot only be due to the long-range electrostatic force, but must be due to a

short-range bias-dependent force.

Arai and Tomitori were the first to infer the existence of such a force from ∆f1(Vb) curves

recorded with a cleaned and sharpened silicon tip closer than 0.5 nm to a 7×7 reconstructed

Si(111) surface. [49] In particular, above a Si adatom, they found a narrow peak growing with

decreasing d superposed on the usual parabolic dependence around the plotted minimum of

−∆f1(Vb) in their Fig. 1, i.e. for Vb ≃ VCPD. Later the same authors pointed out that an even

sharper peak appeared at the same bias in the simultaneously recorded tunneling current. [50]

This seemingly supported their original suggestion that the additional attractive force causing the

peak in −∆f1(Vb) arose from the increased overlap due to the bias-induced energetic alignment

of dangling bonds states localized at the tip apex and on Si surface adatoms. The formation of a

covalent bond between those states has been shown to be responsible for the observed NCAFM

contrast on the 7×7 reconstructed Si(111) surface. [51] In extensive recent measurements on the

same system, however, Sadewasser et al. [36] reported parabolic ∆f1(Vb) curves, but detected

a rapid drop by about -1 V followed by a gradual increase in VLCPD above a Si adatom with

decreasing d in the range where the extracted short-range force showed a similar behavior. The

apparent discrepancy with respect to Arai and Tomitori’s observations is not so surprising because

tunneling is seldom observed with clean silicon tips, although it is routinely measured in STM,

as well as in NCAFM on conducting and even semiconducting samples when using metal-coated

silicon tips. [52, 53]

An appreciable position- and distance-dependent DC tunneling current complicates the

interpretation of LCPD measurements. This problem does not arise with insulating samples, but

conversion to a DC transport current below the surface of a weakly doped semiconductor can cause

a significant voltage drop within the sample owing to the finite bias required to compensate the

LCPD. Especially in quasistatic measurements of ∆f(Vb) away from the compensation voltage, a

strong DC electrostatic “phantom” force is generated which gives rise to atomic-scale contrast in

NCAFM at separations where none is expected. [54, 55] Nevertheless, Arai and Tomitori’s basic

idea that bias-induced alignment of spatially localized surface states can lead to an enhanced site-

dependent attractive force remains plausible even if a DC tunneling current cannot be sustained.

Thus Krok and coworkers [46] suggested that the lower LCPD which they found across protruding

In rows on the c(2×8) reconstructed InSb(001) surface was due to a bias-induced local electron

transfer from a polar dangling bond on the electronegative Sb atom presumably picked by the

Si tip to the nearest electropositive surface In atoms. The same authors also showed that the

LCPD contrast between different lateral positions decays exponentially with increasing d < 1nm.
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2.3 Theoretical Aspect

Understanding the connections between the observed contrast in VLCPD and the atomic-scale vari-

ations of the electrostatic potential just outside the surface has been a challenging task, especially

on unreconstructed cleavage faces of rocksalt-type crystals. [37] Above a flat homogeneous surface

VLCPD must, in principle, approach the corresponding VCPD at somewhat larger tip-sample sep-

arations. In practice, however, this ideal behavior is often masked by a slow dependence caused

by the finite lateral resolution of surface inhomogeneities, e.g. islands of materials with different

work functions. This effect is less pronounced in FM- than in AM-KPFM. [56, 57, 46, 58]

2.3.1 Previous models

Several researchers developed models and computational schemes based on classical electrostatics

which treated the tip and the sample (sometimes also the cantilever) as macroscopic bodies in

order to interpret the resolution of KPFM images of inhomogeneous surfaces on lateral scales

of several nanometers and above. [59, 60, 61, 62, 63, 64, 65, 66, 67] On the other hand, only

few authors considered atomistic nano-scale tip-sample systems, either neglecting [36, 68, 69]

or including the macroscopic contributions via simple approximations. In the first theoretical

study of combined NCAFM-KPFM on an ionic crystal sample, [37, 70, 5] a formally correct

partitioning was proposed between capacitive and short-range electrostatic forces induced by the

effective macroscopic bias V . This analytic treatment also provided qualitative insights into the

origin of atomic-scale LCPD contrast, although underestimating the capacitive force caused a

quantitative disagreement with experimental results.

More reliable results were obtained for a NaCl(001) sample interacting with a model tip

consisting of a conducting sphere terminated by a small charged NaCl cluster by allowing local

atomic deformations. [71] These atomistic simulations were based on the SciFi code [27] which

has provided detailed insights into NCAFM on ionic compounds. [72, 73]

The few simulations of KPFM based on DFT computations have been concerned with silicon

model tips interacting with reconstructed Si surfaces, both clean and containing substitutional

impurities. None of those purely microscopic calculations took into account the macroscopic

capacitive contribution to the KPFM signal, however. Thus Sadewasser et al. [36] obtained

qualitative agreement between variations of the perpendicular dipole moment and of the local

chemical potential of their microscopic subsystem, both computed at zero bias, and the dis-

tance dependence of VLCPD measured by FM-KPFM on the benchmark-like Si(111) 7×7 surface.

Masago and coworkers [68] defined the VLCPD within a tight-binding based DFT formalism as the

difference between the Fermi levels (electrochemical potentials) of their tip and sample micro-

scopic subsystems, which were forced to carry opposite charges determined so as to minimize the
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force on their nanotip. Although overlap between tip and sample wave-functions was neglected,

qualitatively correct VLCPD images of charged surface and subsurface defects were obtained based

on Coulomb interactions between Mulliken charges treated as point objects. Very recently the

same authors included wave-function overlap to first order [69], and generated VLCPD images

showing partially occupied dangling bonds on the on the 5×5 analog of the Si(111) 7×7 surface

at a smaller distance (0.4 nm) where a covalent bond begins to form between a dangling bond at

the tip apex and a Si adatom.

Whereas bias-induced electron transfer is plausible for narrow-bandgap semiconductors like

those previously mentioned, it is unlikely for overall neutral cleaved (001) surfaces of wide-

bandgap insulators like alkali halides which neither have gap states, nor are reconstructed, but

are only weakly rumpled. [74] In Ref. [37] the atomic-scale LCPD contrast observed on KBr(001)

was attributed to opposite surface cation and anion displacements in response to local electric

fields induced by the macroscopic (in accordance with our definition) field. However, the authors

approximated the electric field Ez by V/R i.e. that at the surface of an isolated conducting

spherical tip of radius R, the local unit cell polarizability by the bulk crystal (Clausius-Mossotti)

expression, and neglected the macroscopic surface polarization. Although essentially constant

on the scale of a nanometer-size nanotip, the latter, together with Ez is actually nonuniform

on a lateral scale of order
√
Rs for separations s ≪ R. They evaluated the macroscopic and

microscopic surface charges densities σm and σµ induced on a conducting model tip by their Ez

and by the displaced surface ions, respectively. Using Eq. (3.30) they computed the modulation

of the electrostatic force. After further justified approximations, they obtained opposite LCPDs

above cations and anions which increased exponentially with d. In a subsequent article, [70] the

same authors added a macroscopic force roughly representing the interaction of the cantilever

with the back electrode, but still obtained a surprisingly large maximum in the absolute LCPD

for d ≃ 0.6 nm. In a subsequent publication [71], more reliable results were obtained with the

SciFi code [27] for a cubic NaCl cluster partly embedded into a conducting sphere interacting

with a NaCl(001) sample similar to ours via empirical shell-model potentials. Cluster ions inside

the sphere were fixed while the protruding cluster ions formed a small nanotip with a net charge

+e at the apex. The protruding ions were allowed to relax and to induce image charges in the

electrodes. The results obtained can be considered representative of what is expected for a small,

charged nanotip interacting with an ionic crystal. A common justification for such a model is that

real tips often pick up sample material and that simulations based on the same code produced

reasonable results when compared to NCAFM measurements on ionic crystals, alkali halides in

particular. [72, 73] However, in those and in previous SciFi computations [75] using a larger pro-

truding ionic nanotip against an overall neutral defect-free sample slab, the inclusion of electrode

polarization was deemed unnecessary. Indeed, contributions from images charges of close anion-
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cation pairs tend to cancel out if R ≫ s. More importantly, according to the Supplementary

Material of Ref. [76], the distance dependence of VLCPD calculated analytically for a single charge

or dipole fixed below a conducting sphere facing a biased planar counter-electrode coincides with

the results of full SciFi computations including image charges. This is observed down to a sep-

aration s of 0.7 nm for a small charged nanotip similar to that assumed in Ref. [71], whereas

the much smaller VLCPD obtained for the larger nanotip assumed in the above-mentioned SciFi

computations is compatible with a smaller permanent dipole moment. The coincidence implies

that at larger separations the electrode polarizations induced by the charge q and by the effec-

tive bias V = Vb − VCPD are decoupled. Coupling presumably arises at separations approaching

interatomic distances where ions (or atoms) inside the microsystem become appreciably polar-

ized (electronically and/or owing to induced displacements) by local fields [77], thus leading to

the site-dependent LCPD contrast superposed on the z-dependent long-ranged LCPD obtained

in Ref. [71]. In the absence of localized, point-like net charges (or permanent dipoles) in the

microsystem, the resulting force due to polarization of the microsystem and of the electrodes is

proportional to V 2. It is, however, overwhelmed by the macroscopic capacitive contribution if

the nanotip dimensions are small compared to R.

2.3.2 Present model

Earlier studies mentioned that the short-range tip-sample interaction is bias-dependent but pro-

vided no recipe to investigate it theoretically. Moreover, they did not clarify how long-range

and short-range bias-dependent forces are connected and the role of each in the observed KPFM

signals. We answer all of these questions and obtain and analyze in detail theoretical expressions

for the site-dependent LCPD. Our approach is not limited to particular materials, but results

are presented for the system described in chapter 4 which is representative of a neutral, but

polarizable reactive clean Si tip interacting with an ionic crystal.

In the present work, which is based on separate classical electrostatics and ab initio calcu-

lations, we propose a more rigorous and accurate approach for coupling interactions acting on

widely different length scales. The bias voltage is applied between the conducting probe and

the grounded back electrode below the dielectric sample. The electric field generated between

the macroscopic tip and sample, obtained from classical electrostatic treatment, is applied to the

microscopic system consisting of a protruding nanotip a few Å away from a slab sample. Taking

into account both interactions, an unambiguous definition of the Kelvin signal is provided. Based

on highly accurate density functional calculations for nano-scale tip-sample systems for a realistic

Si tip close to a NaCl(001) slab as an example of current interest, we conclude that the slope

of the microscopic short-range force is the basic quantity that should be extracted from KPFM

measurements. Expressions for VLCPD in AM- and FM-KPFM are obtained and evaluated, first
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2.3. Theoretical Aspect

for ultrasmall, then for finite tip oscillation amplitude A. Their magnitude and dependence on A

are explained in detail. Experimental limitations and evidence for the predicted trends, as well

as desirable measurements are also briefly discussed.
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Chapter 3

Electrostatic Interactions

Among various interactions with the probing tip, the ubiquitous long-range electrostatic (ES)

force is of special importance in SPM techniques involving voltage-biased conducting tips. [78] In

electrostatic force microscopy (EFM) [79] the ES force is directly measured, whereas in Kelvin

probe force microscopy (KPFM) [80] the contact potential difference (CPD) is mapped by com-

pensating an AC signal related to the ES force. Those techniques, as well as scanning capacitance

microscopy (SCM) can be used to determine the local charging properties of dielectric samples

or surface layers and of semiconductor devices protected by insulating layers. In particular, two-

dimensional electron gas (2DEG)-based structures can be controlled by voltages applied to a

back-electrode (gate) and to top gates confining the 2DEG laterally. SCM is being extensively

used to map lateral doping profiles, [81] but can also detect the quantum capacitance due to

the occupation of confined electronic states e.g. in the quantum Hall effect. [82] Furthermore,

scanning gate microscopy (SGM) studies, where a biased conducting tip locally perturbs electron

waves or shifts the levels of confined states past the Fermi energy, have allowed one to map

induced variations in the conductance of quantum constrictions, [83] quantum dots [84] and of

increasingly complex structures of current interest.

In particular in the KPFM experiments, owing to electric field penetration into the dielectric

sample, the tip shank and the cantilever significantly affect the capacitive force and its gradient

even at sub-nanometer tip-surface separations where atomic-scale contrast appears. A main

outcome is the electric field as function of the bias and probe-sample geometry which would be

included into atomistic calculations.
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3. Electrostatic Interactions

In this chapter, we first investigate the electrostatics of a model spherical tip over dielectric

samples from an analytic point of view. Then, a more realistic tip-lever geometry is treated

numerically.

I. Analytic Approach

Typical insulator thickness h, tip radius R and average tip-sample distance s being of the same

order (tens of nanometers) in such measurements, their lateral resolution has often been roughly

assumed to be ∼ R. Although 3D numerical solutions of the Poisson equation yield an accurate

description of the tip-induced electrostatic potential for each particular probe-sample geometry,

analytic expressions for the capacitance, the ES force and its vertical gradient as functions of

R, s and h are highly desirable. The same holds also for the electric field profiles at the top and

bottom surfaces of a uniform dielectric layer in contact with a flat back-electrode. Their widths

provide useful estimates of the lateral resolution of local CPD or surface charge variations, but

also of tip-induced conductance changes in buried semiconductor devices, at least if the field

distribution at the interface is narrower than the structure lateral dimensions but exceeds the

lateral screening length.

For flat conducting samples, Hudlet et al. [25] proposed an approximate analytic model

which is surprisingly accurate, also for atomically thin insulating layers on metals. [76] Dielectric

samples or layers on a conducting back-electrode, however, have been predominately simulated

numerically because of the complexity introduced by partial field penetration (see, e.g., Refs. [85,

86] and references therein). In this chapter we obtain exact and novel approximate analytic

results for a spherical model tip facing such a slab. The derived expressions can be used for

further analysis of experiments on the above-mentioned types of samples. Our formalism can

also be generalized to multilayer slabs.

3.1 Spherical tip atop a semi-infinite dielectric

The classical electric potential between a cylindrically symmetric conducting probe at potential

V facing a dielectric slab grounded on the bottom can be calculated by means of the image

charges method. In order to obtain an analytic solution, we model the tip as a sphere of the

same radius R as the apex, see Fig. 3.1(a). Additional contributions to the capacitance C and

the ES force F from the tip shank and the supporting sensor can be important for thick dielectric

slabs. [86] However, they vary more slowly than the contribution from the tip apex, so that our

approximation captures the main features of ES properties at tip-sample distances s < R.

The problem of a sphere facing a semi-infinite dielectric is solved by combining two textbook
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3.1. Spherical tip atop a semi-infinite dielectric

Figure 3.1: (a) The probe tip modelled as a conducting sphere of the same radius R as its apex
at a separation s from a dielectric slab of thickness h. The tip is biased at V while the bottom
back electrode is grounded. Image charges which sum up to the charge on the sphere are located
between z1 and z∞. (b) Positions of image charges below the surface of the dielectric slab due to
a point charge at zn.

problems, [87] namely a point charge q at a distance r from the center of the conducting sphere

or at a distance zq from the surface of the dielectric. If an image charge −qR/r is placed at

a distance R2/r from the sphere center on the same radial line as q, the sphere surface is an

equipotential. In the second problem, the electric potential outside the dielectric can be obtained

by adding the Coulomb potentials of q and of an image charge −βq at −zq on the normal to the

surface, where

β =
ǫ− ǫ0
ǫ+ ǫ0

,

ǫ and ǫ0 being the permittivities of the dielectric and of vacuum (or that of the external medium),

respectively. The potential inside the dielectric is that of single point charge (1 − β)q at zq if

that region were vacuum (or equivalently, of a point charge (1+β)q at zq if the whole space were

filled with the dielectric). Physically, each image charge represents the effect of the polarization

induced at the surface of the sphere or of the dielectric.

In the combined problem, i.e. sphere against dielectric, a charge q1 = 4πǫ0RV located at

the center of the sphere (z1 = R + s) tends to make the surface of the sphere an equipotential

at V . The image −βq1 at −z1 below the dielectric surface, however, modifies the potential on

the sphere surface. A second charge q2 = βq1R/2z1 is then placed at z2 = z1 − R2/2z1 to bring

the sphere potential towards V , which induces in turn an image −βq2 at −z2 and so forth. The
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3. Electrostatic Interactions

resulting convergent series of point charges inside the sphere

qn+1 =
βqnR

z1 + zn
(q1 = 4πǫ0RV ) (3.1)

zn+1 = z1 −
R2

z1 + zn
(z1 = R+ s) (3.2)

together with their corresponding images below the dielectric surface {−βqn,−zn} satisfy the

boundary conditions both on the sphere and dielectric surfaces. The attractive force on the

sphere can be obtained by summing the Coulomb forces between the charges inside the sphere

and their images inside the dielectric

F (s, V ) =
1

4πǫ0

∞∑

n,n′=1

−βqnqn′

|zn + zn′ |2 . (3.3)

The Green’s function (GF) of the surface is

G±
n =

1
√

ρ2 + (z − zn)2
− β

√

ρ2 + (z ± zn)2
(3.4)

where G+
n and G−

n refer to z ≥ 0 and z ≤ 0 regions, respectively. The electric potential Φ(ρ, z) =
1

4πǫ0

∑
qnGn and the electric field E = −1

4πǫ0

∑
qn∇Gn can be obtained outside the sphere, above

or inside the dielectric slab.

3.1.1 Electric field profile

The z-component of the electric field just above the surface of the sample (z = 0)

Ez =
1 + β

4πǫ0

∞∑

n=1

qnzn

(ρ2 + z2n)
3/2

(3.5)

is especially relevant in AFM and STM experiments because it polarizes atoms or ions and thus set

up microscopic local fields which influence atomic-scale contrast. [77] For tip-sample separations

s where such contrast appears, Ez approaches a uniform value EN ≡ Ez(ρ = 0) and can be

inserted into atomistic model potential [70, 77] or ab initio simulations. [86]

Figure 3.2(a) shows how Ez gradually weakens as ρ increases. Its effective width can be

characterized by ρ1/2 at which Ez = EN/2. When β ≃ 0 as well as for s > R, ρ1/2 approaches

the point-charge-like asymptotic linear relation
√

22/3 − 1(R+ s) ≃ 0.766(R+ s), as can be seen

in Fig. 3.2(b). Over a perfect conductor (β = 1), on the other hand, ρ1/2 ≃
√
2Rs for sufficiently

small s/R, as seen in the inset, hence formally vanishes upon contact because EN then becomes

infinite. Keeping in mind that for commonly used solid dielectrics [88] β ≥ 0.6, the behavior

highlighted in the inset indicates that ρ1/2 is considerably smaller than R if s≪ R.
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3.1. Spherical tip atop a semi-infinite dielectric

An alternative definition of the half-width directly related to the capacitance is based on

the charge distribution at each surface. We define an effective area S∗ such that

D∗
⊥S

∗ ≡ q∗ =

∫

S
D⊥dS,

where q∗ is the total charge on the surface of area S, D⊥ is the normal component of the electric

displacement vector and D∗
⊥ ≡ D⊥,max. First we calculate the angular half-width θC for a

conducting sphere separated by s from a semi-infinite dielectric. We have

q∗ =
∞∑

n=1

qn

S∗ = 2πR2(1− cos θC)

D∗
⊥ = ǫ0Ez(0, s) =

1

4π

∞∑

n=1

qn

( 1

(zn − s)2
+

β

(zn + s)2

)

.

If β = 0, zn − s = R and θC = π as required for an isolated sphere. For a perfect conductor

(β = 1), on the other hand, θC ≃ 45◦ at a separation s = R/10, as seen in Fig. 3.3 (a). These

plots can be used to judge whether the approximation of the tip by a sphere is justified, e.g. θC

should at least be smaller than 90◦ minus the cone half-angle for a conical tip terminated by a

spherical cap.

Over the sample surface, we consider instead the polarization surface charge density P⊥ =

(ǫ− ǫ0)E
−
z (ρ, 0), [87] where E

−
z (ρ, 0) =

β−1
4πǫ0

∑
qnzn/(ρ

2 + z2)3/2, thus

q∗ = −β
∞∑

n=1

qn

S∗ = πρ2P

P ∗
⊥ =

−β
2π

∞∑

n=1

qn
z2n
.

Therefore

ρP =

√
√
√
√2

∞∑

n=1

qn

/ ∞∑

n=1

qn
z2n
. (3.6)

For a single point charge at zn, we obtain ρP =
√
2zn (independent of β) which also coincides

with the value at which the parallel component Eρ is maximum. When s ≫ R or β ≪ 1, ρP of

the sphere approaches the point charge-like asymptotic linear behaviour, i.e. ρP =
√
2(s + R),

because then all charges vanish except q1 at z1 = s + R. As shown in Fig. 3.3 (b), for a perfect

conductor (β = 1) ρP ≃
√
2sR, i.e. like ρ1/2 , and is significantly smaller than R if s≪ R.
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3.1. Spherical tip atop a semi-infinite dielectric

3.1.2 Closed-form expressions for capacitance, force, force gradient and field

Following Ref. [89], one can write Eq. (3.1) as a second order homogeneous difference equation

with constant coefficients

1

qn
=

2 coshα

β

1

qn−1
− 1

β2
1

qn−2
(n ≥ 3)

the solution of which is a linear combination of exp(±nα) where

coshα =
z1
R

= 1 +
s

R
.

Substituting the known expressions for q1 and q2, we obtain

qn = 4πǫ0RV sinhα
( βn−1

sinhnα

)

, (3.7)

zn = R sinhα cothnα (n ≥ 1), (3.8)

which are a simple generalization of the solution for a semi-infinite conductor (β = 1) [89] for

arbitrary β and provide a convenient expression for the capacitance

C =
1

V

∞∑

n=1

qn = 4πǫ0R sinhα×
∞∑

n=1

βn−1

sinhnα
. (3.9)

Being the capacitance Csph = 4πǫ0R of the sphere alone in vacuum, the constant leading term in

C can be ignored because only variations of C (i.e. of C −Csph) with tip position are of interest.

Corresponding expression for the attractive electric force on the tip (F = C ′V 2/2 where

C ′ = dC/ds) is given by

F = 2πǫ0V
2

∞∑

n=2

βn−1

sinhnα

(
cothα− n cothnα

)
. (3.10)

Similarly, the vertical force gradient (dF/ds) is given by

F ′ =
2πǫ0V

2

R sinhα

∞∑

n=2

βn−1

sinhnα

[ n2

sinh2 nα
− 1

sinh2 α
+ n cothnα(n cothnα− cothα)

]

. (3.11)

In dynamic EFM or SCM experiments with stiff deflection sensors F ′ is proportional to the

resonance frequency shift which is used to control the tip-sample separation s. [16]

Finally, the maximum electric field outside the surface, i.e. EN ≡ Ez(ρ, z = 0), reads

EN =
V

R

( 1 + β

sinhα

) ∞∑

n=1

βn−1 sinhnα

cosh2 nα
. (3.12)
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3. Electrostatic Interactions

3.1.3 Limiting values

Except for α=0 and β=1, qn decays exponentially towards zero. For an ideal conductor (β = 1)

these expressions diverge in the limit s → 0 (i.e. α → 0). For dielectrics, the resulting series for

all quantities converge. We obtain qn(s = 0) = q1β
n−1/n, zn(s = 0) = R/n and

Cmax = −4πǫ0R
( ln(1− β)

β

)

. (3.13)

Like C, −F and F ′ are monotonically decreasing functions of s. Their upper bounds attained at

s = 0 (α = 0), namely

Fmax = −2

3
πǫ0V

2
[ ln(1− β)

β
+

1

(1− β)2

]

,

F ′
max =

4πǫ0V
2

45R

[ ln(1− β)

β
+

1

(1− β)2
+

21β

(1− β)4

]

,

are finite if β < 1 as shown in Fig. 3.4. The result for F (s=0) is stated without proof in Ref. [90].

Finally,

EN,max =
V

R

1 + β

(1− β)2
.

They all provide useful upper bounds on the corresponding quantities in case of a realistic

probe tip of apex radius R. [86] Their dependences on β are plotted in Fig. 3.4. As an example,

the limiting values for NaCl (ǫr = 5.9, β = 0.71) are Cmax/πǫ0R = 6.98, Fmax/πǫ0V
2 = −6.77

(i.e. Fmax = −0.188 nN/V2 independent of the sphere radius), F ′
max/πǫ0V

2R−1 = 188.7 and

EN,max/V R
−1 = 20.4.

3.1.4 Approximate expressions

For s/R < 0.1 many terms in Eqs. (3.9-3.12) are required to get a reasonable accuracy. However,

the truncation error is dramatically reduced, as illustrated in Table I, by adapting a procedure

proposed for the sphere-conductor problem. [27]. Equation (3.8) shows that zn approaches z∞ =

R sinhα as exp(−2nα) whereas qn decays as βn−1 exp(−nα). If the charge series is truncated at

some qk for which zn>k ≃ z∞, the remainder can be summed up analytically as a correction term

q(k)corr ≡
∞∑

n=k+1

qn ≃ qk+1

1− βe−α
=

q1β
k/(1− βe−α)

sinh((k + 1)α)/ sinhα
(3.14)

lumped at z∞ where we have used qn+1/qn>k ≃ βR/(z1 + z∞) = βe−α. Moreover, Eq. (3.14)

leads to compact, accurate analytical expressions. For example

C(1) − Csph ≃ 2πǫ0R
(β/(1− βe−α)

coshα

)

, (3.15)

C(2) − Csph ≃ 2πǫ0R
( β

coshα
+
β2/(1− βe−α)

4 cosh2 α− 1

)

(3.16)
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Figure 3.4: The upper bounds of C, −F , F ′ and EN (in units πǫ0R, πǫ0V
2, πǫ0V

2R−1 and
V R−1, respectively) as a function of β, attained for a conducting sphere touching (s = 0) the
semi-infinite dielectric surface. The relevant range for typical values [88] βPMMA ≃ βSiO2

= 0.59,
βNaCl = 0.71 (circles), βAl2O3

= 0.80, βSi = 0.86, βHfO2
= 0.92 and βLiNbO3

= 0.93 − 0.98, is
shaded.

Table 3.1: Relative error in calculating C using k point charges in addition to q
(k)
corr.

β = 0.71 (NaCl) β = 1 (conductor)

s/R k=1 2 10 20 1 2 10 20 Eq. (3.17)

0.1 .02 .004 10−7 10−15 .05 .01 10−7 10−13 0.02
0.2 .008 .001 10−11 <10−16 .02 .002 10−8 <10−16 0.02
0.5 .001 10−5 10−16 <10−16 .003 10−4 10−14 <10−16 0.01

approximate Eq. (3.9) within 5% and 1%, respectively, as seen in Table 3.1. Our novel formu-

las should be useful in theoretical modeling and data interpretation. Without the correction,

Eq. (3.16) becomes 2πǫ0Rβ/(1 + s/R) with an error larger than 33% at s = R/10. However, it

gives the correct asymptotic behavior C − Csph = 2πǫ0βR
2/s for s ≫ R. The prefactor of the

approximation proposed by Hudlet et al [25] for a conducting sample, i.e.

C − Csph = 2πǫ0R ln
(

1 +
R

s

)

, (3.17)

was adjusted to match this asymptotic behavior, although their basic assumption (constant field

along field lines perpendicular to the sphere and sample surfaces) is reasonable only for small

s/R. Nevertheless, Eq. (3.17) is remarkably accurate at moderate separations, as demonstrated

in the last column of Table I.
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3. Electrostatic Interactions

3.2 Point charge above a dielectric slab

Next we consider the intermediate problem of a point charge at (ρ = 0, zn ≥ 0) against a dielectric

slab of thickness h; see Fig. 1(b). When h → ∞, the GF is given by Eq. (3.4). For finite h,

Gn is, however, modified because the field lines become perpendicular to the surface of the back-

electrode. Appropriate expressions are derived and plots of the resulting field profiles and of

their half-widths are presented below. Compared to the treatment in Ref. [91], the GF approach

is more convenient, especially for extending to the case of a multilayer slab for which similar

boundary conditions are applied at each interface.

3.2.1 Green’s function

In cylindrical coordinates, the Green’s function (GF) above and below the slab surface has the

form [87]

G+
n =

∫ ∞

0

(

e−k|z−zn| +A1e
−kz

)

J0(kρ)dk, (3.18)

G−
n =

∫ ∞

0

(

A2e
−kz +A3e

+kz
)

J0(kρ)dk, (3.19)

J0 being the zero order Bessel function of the first kind. Recall that
∫ ∞

0
e−k|z−zn|J0(kρ)dk =

1
√

ρ2 + (z − zn)2
.

The boundary conditions 1

G−
n (ρ,−h) = 0

G+
n (ρ, 0) = G−

n (ρ, 0)

∂G+
n

∂z

∣
∣
∣
z=0

= ǫr
∂G−

n

∂z

∣
∣
∣
z=0

determine the coefficients

A1 = −
( β + e−2kh

1 + βe−2kh

)

e−kzn ,

A2 = −e−2khA3,

A3 =
( 1− β

1 + βe−2kh

)

e−kzn .

Using

1

1 + βe−2kh
=

∞∑

m=0

(−β)me−2mkh

1These conditions are not satisfied by the GF proposed for z > 0 in Ref. [85].
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2
n) vs ρ/zn just outside the sample for a point charge
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half-width ρ1/2 while its variation with h is depicted in the inset; ρ1/2 =0.766zn for β = 1. (b)
Same as (a) but just outside the coated back-electrode; ρ1/2 =0.766(h+ zn) for β = 0.

we obtain expressions for GF for any field point (ρ, z) above the surface

G+
n =

1
√

ρ2 + (z − zn)2
− β

√

ρ2 + (z + zn)2
− (1− β2)

∞∑

m=0

(−β)m
√

ρ2 + (z + znm)2
(3.20)

and inside the slab

G−
n = (1− β)

∞∑

m=0

(−β)m
( −1
√

ρ2 + (z + znm)2
+

1
√

ρ2 + (z + 2h− znm)2

)

(3.21)

where

znm = zn + 2(m+ 1)h. (3.22)

Eqs. (3.20,3.21) reduce to Eq. (3.4) for h → ∞, and the GF of a perfect conductor is

obtained for β = 1. Above a dielectric slab of finite h, however, G+
n includes additional terms

because qn induces, in addition to the first image −βqn at −zn, an infinite sequence of alternating

image charges −(1 − β2)(−β)mqn at equidistant positions −znm, as depicted in Fig. 3.1(b). All

those image charges sum up to −qn, as required.
Inside the slab, G−

n simply corresponds to a series of point charges (1− β)(−β)mqn, m ≥ 0,

located at znm − 2h and their mirror images with respect to the back-electrode plane.
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3. Electrostatic Interactions

3.2.2 Electric field profiles

In Fig. 3.5, we show Ez profiles induced just outside the slab surface and its interface with the

back-electrode by a point charge. With increasing ǫ, i.e. β, the field above the surface is enhanced,

whereas Ez above the back-electrode drops because of reduced penetration into the dielectric;

concomitantly, the respective half-widths slightly decrease. With increasing h/zn, ρ1/2 increases

monotonically at the back-electrode interface and stays only slightly below the linear dependence

ρ1/2 =
√

22/3 − 1(h+ zn) ≃ 0.766(h+ zn) obtained when β = 0. On the sample surface, however,

ρ1/2 ≃ 0.766zn, apart from a small peak rising to 0.88zn around h/zn = 0.7 upon decreasing β.

This behaviour can be related to the spreading of field lines emanating from qn at a given angle

which end perpendicular to the sample surface if β = 1, but perpendicular to the back-electrode

otherwise and remain between those for β=1 and β = 0 (vacuum instead of dielectric layer).

For a biased sphere centered at z1 = s + R, Fig. 3.2(a) shows a more pronounced field

enhancement caused by the image charges qn>1 closer to the surface, and ρ1/2 is somewhat

smaller, except when β → 0, but this limit corresponds to a missing sample.

3.3 Spherical tip atop dielectric slab

In the problem of a biased conducting sphere against a finite dielectric slab, each qn inside the

sphere generates an infinite series of images on the slab side at positions −znm, and each of those

induces an image closer to the sphere center to bring it towards an equipotential. The images

within the sphere are recursively given by

Q(m, qn, zn) =







qnβR/(z1 + zn), m = −1

qn(1− β2)(−β)mR/(z1 + znm) m ≥ 0
(3.23)

Z(m, zn) = z1 −
R2

z1 + znm
. (3.24)

When h → ∞ or β = 1, all images vanish except Q(−1, qn, zn) = qn+1 and Eqs. (3.1,3.2)

are ecovered. Now, to solve the combined sphere-slab problem, one puts the first point charge

q1 = 4πǫ0RV at the sphere center z1 = R + s. An infinite series of images Q(m, q1, z1) is then

induced inside the sphere, each of which has in turn an infinite images Q[l, Q(m, q1, z1), Z(m, z1)]

and so on. In a numerical treatment, the infinite series can be truncated as soon as Q becomes

small enough. For relevant parameters, Q is at least 10−16 times smaller than q1 when m > 10;

for the same reason only a limited number of nested sums must be considered. In Fig. 3.6 we

illustrate the convergence of our procedure for a particular example. The normalized capacitance

of the system is C/πǫ0R = 7.22 compared to 5.86 and 7.46 in the case of a semi-infinite slab and

a perfect conductor, respectively, as given by Eq. (3.9).
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Figure 3.6: The normalized magnitudes of image charges vs. their positions generated within a
conducting sphere of radius R at a distance s = 0.2R from an NaCl slab (β = 0.71) of thickness
0.2R. The largest point charge of magnitude one is at the sphere center (z1 = 1.2R), while
no charges appear below z∞ = 0.66R, z being measured from the slab surface. The first series
of image charges given by Eq. (3.23) with m = −1 are shown with circles and define an h-
independent upper bound. Further charges with magnitudes larger than 10−4 are shown in red
(positive) and green (negative).
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Figure 3.7: Computed normalized capacitance (a) vs s/R for h = R/10 and h = R (inset) and
vs h/R for s = R/10 (b) and s = R (c) of a conducting sphere of radius R separated by s from
a dielectric slab of thickness h. In (a) the dashed lines correspond to Eq. (3.17). In (b) and (c)
the dashed lines on the left correspond to a sphere at an effective separation s + h/ǫr from the
back-electrode (see text) and those on the right to the sphere at separation s from a semi-infinite
dielectric.
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3. Electrostatic Interactions

3.3.1 Capacitance

The capacitance C is obtained from the total charge on the sphere , namely

CV = q1 +
∞∑

m=−1

Q(m, q1, z1) +
∞∑

l,m=−1

Q[l, Q(m, q1, z1), Z(m, z1)] + · · · . (3.25)

A systematic summation of the resulting nested series with a prescribed precision is possible as

described above. The resulting dependence of the capacitance of the sphere-slab system as a

function of s/R and h/R is depicted in Fig. 3.7. First of all, the dashed lines in Fig. 3.7(a)

show that for β = 1, Eq. (3.17) agrees within 2% over the whole examined range of s/R. With

increasing s/R, C first becomes almost independent of β at a value which grows with h/R, then

approaches the capacitance Csph of the isolated sphere as 2πǫ0R
2/s. Similarly, at large h/R,

C approaches values given by Eq. (3.9) shown by dashed lines on the right side in Fig. 3.7(b).

The slow approach reflects the influence of the additional image charges. Note that β = 1 and 0

correspond to a biased sphere at respective separations s and s+ h from a perfect conductor.

A smooth interpolation between those two limits is obtained by replacing s with s + h/ǫr,

where ǫr = ǫ/ǫ0, while keeping β = 1 in Eq. (3.9). As shown by dashed lines on the left side in

Fig. 3.7(b), the resulting approximation is within 1% of the exact C(s/R, h/R) for h ≤ R/3 if

s = R/10. For larger separations s ∼ R the deviation remains within 1% as long as h ≤ R, see

Fig. 3.7(c). In view of its remarkable agreement with Eq. (3.9) for β = 1, Eq. (3.17) together

with the same substitution provides an almost as good but simple approximation to the exact C for

small enough h/R. The same combination s+ h/ǫr appears in the denominator of C in the case

of a parallel-plate capacitor of thickness s + h partially filled with a dielectric slab of thickness

h. However, the proposed approximation remains valid when the field profiles at the top and

bottom surfaces of the dielectric slab are far from uniform, e.g. if s≪ h < R. This is evidenced

by the Ez(ρ) profiles and by their respective half-widths as discussed in the following.

3.3.2 Electric field profiles

The electric field profiles for a conducting sphere atop a dielectric slab are shown in Figs. 3.8

and 3.9. To compute Ez(ρ, z) = −∑
qk∂zG

±
k /4πǫ0, where the GF is given by Eqs. (3.20-3.21),

we used the same point charges qk which are kept in evaluating Eq. (3.25) as shown in Fig. 3.7.

With increasing β, the field just outside the surface is enhanced, whereas Ez just above the back-

electrode drops because of reduced penetration into the dielectric. Concomitantly, the respective

half-widths slightly decrease.

At the sample surface (insets of Figs. 3.8(a) and 3.9(a)), ρ1/2 decreases towards values

matching those in Fig. 3.2(b) at the same s if h → ∞, but towards a common value which

agrees with that in Fig. 3.2(b) for β = 1 if h → 0. A weak maximum consequently appears,
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3. Electrostatic Interactions

around h ∼ R which, however, is absent if s = 0.1R. If β is close to 1 (undoped or depleted

semiconductor capping layer), ρ1/2 remains close to the β = 1 value for all h. Thus, like in

Fig. 3.2(b), the half-widths at the surface are significantly below R, while their spread increases,

if s/R is small. At the back-electrode interface (insets of Figs. 3.8(b) and 3.9(b)), ρ1/2 increases

monotonically with increasing h/R and stays below the line ρ1/2 = 0.766(s + R + h) obtained

when β = 0 for a lumped charge at the sphere center, as illustrated in the inset of Fig. 3.5(b),

albeit at the separation s+ h from the back-electrode. Therefore, this line is approached only if

s + h becomes comparable to R. In the opposite limit, ρ1/2 ≃
√

2(s+ h)R, in accordance with

Fig. 3.2(b) When h → 0 (missing dielectric layer) the half-widths on the back-electrode and on

the surface coincide with the β = 1 values in Fig. 3.2(b), namely ρ1/2/R = 1.02 if s = R/2 and

0.45 if s = R/10. Nevertheless ρ1/2 at the back-electrode considerably exceeds the half-width at

the surface in the common experimental situation when the closest approach distance s≪ h ≤ R.

II. Numerical Approach

In the following we first discuss previous numerical approaches, then present our own compu-

tationally simple, yet flexible finite-difference (FD) scheme with controlled accuracy to treat

electrostatic tip-sample interactions on macro- and mesoscopic scales. Calculating the cantilever-

tip-sample electrostatic interaction is, in fact, an intricate electrostatic boundary-value problem.

One difficulty is due to the distance-dependent redistribution of the surface charge density on an

electrode at constant bias voltage.

For the model macroscopic system of a semi-infinite sample and spherical tip, we obtained in

Sec. 3 exact expressions for the interaction energy and forces by the analytic method of images.

For more realistic geometries including tip and cantilever, even without extrinsic charges, the

problem is still nontrivial. The main difficulty is due to the presence of several length scales

determined by the nontrivial shape of the AFM probe. For a conducting tip represented as a

cone with a spherical end cap above a conducting plane, a simple assumption (constant electric

field along each field line approximated by a circular arc normal to the surfaces) led to an analytic

expression for the force on the tip. [25] Recent numerical calculations [92, 76] showed that Hudlet’s

expression is surprisingly accurate. Somewhat different analytical expressions and estimates for

the lateral resolution in AM- and FM-KPFM were obtained for similar probes, also including a

tilted cantilever. [62]

Evidently, the difficulty mentioned above is present also for numerical methods which di-

rectly deal with Poisson’s equation. We first overview a few existing numerical approaches and

then present our new method.

38



3.4. Previous approaches

3.4 Previous approaches

3.4.1 Numerical Images Charges Method

For cylindrical geometries, many authors proposed numerical schemes based on the image charge

method which is applicable to simple geometries involving spherical and planar surfaces. [87] Thus

Belaidi et al [93] placed N point charges on the symmetry axis and determined their positions

and strengths by forcing the potential on the tip surface to be V by a nonlinear least squares fit.

The previously mentioned authors also described how contributions of the spherical cap, the tip

shank and the cantilever to the macroscopic force lead to characteristic distance dependencies

on scales determined by the geometry and dimensions of those parts. A linearized version of the

numerical image charge method where the positions of axial point and line charges were fixed was

applied to study tip-shape effects for conductive and dielectric samples [63, 90] and thin films

on conducting substrates [85], also including the influence of the cantilever[94]. It is not known

to what extent the boundary conditions must be satisfied for a given accuracy in the numerical

image method, unlike in the analytic method where the positions and strengths of the image

charges change with tip-sample separation and the boundary conditions are fully satisfied.

3.4.2 Poisson Solvers

A more systematic approach to multi-length-scale problems is the boundary element method

(BEM) [64, 65, 92]. In this method the 3D (2D) differential Poisson’s equation is transformed

into 2D (1D) integral (Green’s functions) equations on the surfaces of conductive or dielectric

components, including CPD discontinuities and surface charges if desired. [66] The accuracy of

BEM is controlled by the mesh resolution and is applicable to complex probe-sample systems,

e.g. including a realistic cantilever [95]. The size of the resulting linear system of equations is

small compared to volumetric discretization methods. However, because of the memory require-

ment of O(N2) to store the fully populated matrix and complexity of O(N3) to solve the linear

equations, BEM has mostly been applied to systems with a relatively small number N of grid

points, e.g. problems of high symmetry and homogeneity for which it is feasible to derive the

Green’s function analytically. Somewhat earlier a few authors adapted Green’s function methods

developed for more complex near-field optics problems to investigate lateral resolution in KPFM

on inhomogeneous samples [60, 63]. One advantage of BEM is that the LCPD of such samples

can be expressed as a 2D convolution of the CPD and/or of a fixed surface charge distribu-

tion with a point-spread function which depends only on the relative position of the scanning

probe. [64, 92, 95] The distance-dependent lateral resolution can be quantified by the width of

that function. Moreover, if one assumes that only one of those distribution is present, its can be

determined by inversion of the BEM matrix upon discretization on the adjustable BEM mesh. [66]
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3. Electrostatic Interactions

Conceptually more straightforward approaches involving surface elements have been applied

to conductive probe and sample systems. In the simplest one, the tip surface is approximated as a

regular staircase (or, equivalently, as an array of capacitors in parallel), [60, 96, 57]. More accurate

methods rely on adjustable meshes. Thus the finite element method (FEM) was used to calculate

the electrostatic force acting on a conical tip, [61] while a commercial FEM software was recently

applied to simulate a realistic cantilever and tip of actual shape and dimensions over a conducting

flat sample with a CPD discontinuity. [97] More sophisticated software packages have been used to

solve the Poisson’s equation in the presence of space charges, e.g. for structured samples involving

doped semiconductors [59, 98]. Numerical methods which involve 3D discretization require a very

large number of grid points even if the mesh is carefully adjusted; the computational box must

therefore be truncated at some finite extent.

3.5 Finite-difference method

As an alternative we present a finite-difference method (FDM) on a 3D non-uniform grid which is

capable of dealing with realistic sizes of the cantilever, tip and sample. Inhomogeneous metallic

and dielectric samples as well as thin dielectric films on metal substrates, can be straightforwardly

treated with this method. The most attractive feature of our FDM compared to FEM or BEM

computations is its ease of implementation. Since the electrostatic potential varies smoothly and

slowly at distances far from the tip apex, we use a grid spacing which increases exponentially

away from this region. Consequently, the number of grid points depends logarithmically on the

truncation lengths, and an extension of the computational box costs relatively few additional

grid points. It allows us to simulate the cantilever as well as thick dielectric samples according

to their actual sizes in experiments.

The capacitance C(s) between the probe and the sample back-electrode depends only on

the tip-sample separation s, provided that their geometries are fixed. [89] The macroscopic elec-

trostatic energy due to the effective voltage difference V = Vb − VCPD between the conducting

tip and back-electrode is given by Uc(s, V ) = 1
2C(s)V

2. The electrostatic force exerted on the

tip is proportional to the capacitance-gradient C ′(s) = ∂C/∂s < 0

FM (s, V ) = −∂U
∂s

= +

(
∂Uc

∂s

)

V

= +
1

2
C ′(s)V 2 < 0. (3.26)

Similarly, the force-gradient is proportional to C ′′(s) = ∂2C/∂s2. We emphasize the difference

between the total electrostatic energy U of the macroscopic system and the capacitive energy Uc

which leads to the positive sign on the RHS of Eq. (3.26). Because this a very common mistake

by many authors, the reason is restated here.
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Figure 3.10: (a) Schematic of the macroscopic model AFM probe-sample system with cylindrical
symmetry: a 15 nm high cone with 15o half-angle terminated by a spherical cap of radius R =
20 nm is attached to a disk of thickness 0.5 µm. The radius of the disk is 35 µm which matches
the area of a typical cantilever. The sample is a 1-mm thick dielectric slab with the relative
permittivity ǫ/ǫ0 = 5.9 of NaCl. An effective bias of V = 1 Volt is applied to the conducting
probe while the back electrode at the bottom and the surrounding enclosure of height and radius
106R = 20 mm (not shown) are grounded. (b) 2D (r, z) map of the macroscopic electrostatic
potential Φ normalized to V for the model system in (a). The white region corresponding to Φ = 1
reflects the probe geometry; successive contours differ by 0.01. The sample-vacuum interface is
indicated by the horizontal line at z = 0 and the tip-sample separation is 1 nm. (c), (d) Zooms
into the apex-surface proximity region in (b) with ×103 and 3× 104 magnifications, respectively.
The staircase shape of the contours reveals the resolution of the nonuniform mesh at different
locations.

3.5.1 Sign of the macroscopic electrostatic force

Using the virtual work method, the macroscopic electrostatic tip-sample interaction can be cal-

culated from the potential energy stored in the capacitor formed between the tip and the back-

electrode. The (real) force acting on the tip Fs, which is considered constant during a virtual

arbitrary infinitesimal tip displacement δs, performs a virtual work δw = Fs · δs = −δU , where

U = Uc+Ub is the total energy of the system including contributions from both the capacitor and

41



3. Electrostatic Interactions

the biasing battery which maintains a fixed potential difference V between the both electrodes.

In response to this displacement, the battery transfers a charge δQ between the electrodes in

order to keep their potential difference fixed. It costs a change of δUb = −δQ · V in the energy

of the battery. Whereas the energy of the capacitor changes by δUc = 1
2δQ · V , which implies

Ub = −2Uc, i.e.

δU = δUc + δUb = −δUc.

The electrostatic force is therefore

Fs = −δU
δs

= +
δUc

δs
= +

1

2

δC

δs
V 2

and is always attractive because δC/δs < 0.

3.5.2 Discretization

The electrostatic energy

Uc(s, V ) =
1

2

∫

ǫ(r)|∇Φ|2 dr

can be determined once the electrostatic potential Φ(r; s, V ) is known at any point r in space.

In general, when the dielectric constant ǫ(r) varies in space, Φ satisfies the generalized form of

Poisson’s equation

∇ · [ǫ(r)∇Φ(r)] = −ρ(r), (3.27)

ρ being the charge density. Minimization of the energy-like functional

I [Ψ(r)] =
1

2

∫

ǫ(r) |∇Ψ|2 dr−
∫

ρΨdr. (3.28)

subject to Dirichlet boundary conditions leads to Φ, the solution of the Poisson’s equation

Eq.(3.27) with the same boundary conditions. [87] Using a discretized variational approach, we

therefore minimize the functional

I ({Ψn}) =
∑

n

(
1

2
ǫn |∇Ψ|2

n
− ρnΨn

)

vn. (3.29)

3.5.3 Implementation

On a non-uniform grid, we delimit the volume vn of the volume element assigned to node n by

neighboring nodes. Then, Ψn, ρn, ǫn and the electric field −∇Ψn are evaluated at the center

of the volume element by linear interpolation between the nodes adjacent to n in orthogonal

directions. This ensures that the field is effectively evaluated to second order in the product of
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3.5. Finite-difference method

grid spacings and that discontinuities in ∇Ψn and ǫn at material interfaces are correctly treated.

Although the formalism is general and can be applied to any 3D system on a judiciously chosen

nonuniform 3D orthogonal grid, in the following examples we consider a cylindrically symmetric

setup without free charges in order to allow comparison with most previous computations. In

cylindrical coordinates, each volume element is a truncated tube of height h
(z)
k with inner and

outer radii ri, ri+1, respectively, and vn = π(ri+1+ri)h
(r)
i h

(z)
k , h

(r)
i = ri+1−ri and h(z)k = zk+1−zk

being respectively the radial and vertical spacings of the appropriate nonuniform grid. The

radial and vertical components of ∇Ψ are approximated on the circle of radius ri + 0.5h
(r)
i at

zk + 0.5h
(z)
k as (Ψi+1,k −Ψi,k)/h

(r)
i and (Ψi,k+1 −Ψi,k)/h

(z)
k . Since the FD approximation of

the electric field is a linear combination of the potential values on nearest neighbor nodes, the

functional in Eq. (3.29) is quadratic and the minimization condition ∂I/∂Ψn = 0 yields a system

of linear equations AΦ = b where the vector b describes imposed boundary values and charge

distributions. Because Amn = ∂2I/∂Ψm∂Ψn is a sparse, symmetric and band matrix, the system

can be solved efficiently by an iterative procedure, which may, however, suffer from conditioning

problems due to the nonuniformity of the grid. For an accurate solution, a mesh with high

enough resolution is required in regions where Φ(r; s, V ) varies strongly. We used the PARDISO

package [99, 100] to solve the resulting huge system of equations. An implementation of our FDM

is distributed under GNU-GPL license as the CapSol code [101].

Once Φ(r, s, V=1) is determined for several separations s, the system capacitance is obtained

as C(s) =
∫
ǫ(r)|∇Φ|2 dr ≃ ∑

n
ǫn |∇Φ|2

n
vn. Then a simple second order FD approximation is

used to evaluate C ′(s) and C ′′(s) from C(s). The electrostatic force acting on an arbitrary area

S of a conducting part can also be evaluated as

FS =
1

2ǫ0

∫

S
σ(s)2n̂dS, (3.30)

where σ(s) = −ǫ∂Φ/∂n is the surface charge density guaranteeing that the tip surface is an

equipotential, and n̂ is the unit vector normal to the surface element dS. For a system with

cylindrical symmetry the net force on a part of the probe delimited by two cylinders of radii

r1 < r2 is vertical and given by F = πǫ0
∫ r2
r1

|∇Φ|2rdr, however we prefer to use Eq. (3.26) to

calculate the total macrosocopic force on the probe. In the following subsections we validate

the performance of our FDM by comparisons with previous results obtained by other methods

for cylindrically symmetric systems. We mainly consider the macroscopic model system which is

shown schematically in Fig. 3.10(a) and is described in the caption. The conducting probe consists

of a conical tip terminated by a spherical cap of radius R attached to a cantilever modelled as a

disk of the same area as a typical cantilever,[60] and the sample by a thick dielectric slab. Dirichlet

boundary conditions are applied on a very large cylindrical box. Figures 3.10(b-d) show a typical

computed 2D (r, z) map of the electrostatic potential normalized to effective potentital V at three
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magnifications. Note that the grid spacing changes by six orders of magnitude (hundredths of

nm around the tip apex to tens of µm near the box walls). The indented contours reveal the

resolution of the grid at different locations, e.g. R/400=0.05 nm in the gap between tip and

sample in this case. Figure 3.10(d) clearly shows that for a separation of 1 nm a large fraction of

the voltage drop occurs within the thick dielectric sample. Whereas the contour spacing between

the tip apex and the surface is constant to a good approximation, it gradually increases inside

the dielectric, in contrast to what occurs in a parallel plate capacitor. Actually the capacitance

remains finite for an infinitely thick sample even in the (macroscopic) contact limit s→ 0.

3.5.4 Convergence and Accuracy
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Figure 3.11: Convergence analysis with respect to the finest grid spacing h0 for a conducting
sphere of radius R in front of a thick dielectric of relative permittivity ǫ/ǫ0 = 5.9. Points
computed by our FDM for the macroscopic capacitance C, the force ∝ C ′ and force gradient
∝ C ′′ are compared to the analytic solution for a semi-infinite dielectric The sphere-surface
separation is s = R/20 and the computational box extends to 106R in the radial and vertical
directions. The straight line in the log-log plot indicates the expected quadratic error scaling (see
text).

Grid spacing

We first test our implementation for the problem of a conducting sphere of radius R separated

by s from a semi-infinite dielectric surface for which an analytic solution of controllable accuracy

is available. Such a convergence analysis also yields the parameters needed to achieve a desired

accuracy. Compared to the analytic solution of the sphere-dielectric system, the convergence

with respect to the finest grid spacing h0 shows a nearly quadratic error scaling (Fig. 3.11)

as is expected for a second order FDM. In order to consistently preserve the shape of the tip
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Figure 3.12: Convergence analysis with respect to the radial and vertical extents of the FDM
computational box for the macroscopic system described in the caption of Fig. 3.10, the tip-
sample separation and finest mesh size being s = R/20 and h0 = R/100, respectively. The
normalized capacitance of the system approaches the same asymptotic value upon increasing the
truncation length in one direction while the other one is sufficiently large and fixed. Relative
deviations with respect to the asymptotic value are shown in the inset. The arrow indicates the
truncation length adopted in subsequent FDM computations.

approximated by the orthogonal mesh, the tip-sample separation must be changed in steps of h0.

Then the errors of the second order FD approximations of C ′ and C ′′ are quadratic versus h0, even

if C is known exactly. Once these errors are added to those of C in the Poisson’s solver, the overall

errors in C ′ and C ′′ are larger than the error in C, although they remain quadratic versus h0, as

seen in Fig. 3.11. The accuracy could be improved by using higher order FD approximations for

the electric field by using further neighboring points. However, a corresponding improvement of

the approximation of curved surfaces on the orthogonal FD-mesh is then also required. Note that,

for consistency, the surface of the sphere must be approximated as a staircase with variable step

heights and widths which also change when the grid-spacing is changed. At larger separations,

the error scaling deviates from quadratic towards linear behaviour. Then the absolute value of

the error is small and a larger grid-spacing can be used. The capacitance, force and force-gradient

of our test system at a rather small separation of s = R/20 can be calculated within a relative

error of 0.005 compared to the analytic solution if h0 = R/100. For the cantilever-tip-sample

system [Fig. 3.10(a)] a uniform grid with h(r) = h(z) = h0 = R/100 is used around the tip apex

up to a distance of twice the tip apex radius in both radial and vertical directions. Outside this

range the grid becomes gradually coarser with a growth factor of 1.01.
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Figure 3.13: Normalized macroscopic electrostatic force (inset) and force-gradient computed
by our FDM versus the normalized tip separation s/R from a dielectric (ǫ/ǫ0 = 40.0) and a
conducting (ǫ/ǫ0 = ∞) sample compared to BEM computations (Ref.[92]), as well as to Hudlet’s
approximation (Ref. [25]) in the second case (see text). The cantilever is absent, as assumed in
those two treatments, but the remaining parameters are as described in the caption of Fig. 3.10(a).

Space truncation

A convergence analysis with respect to the size of the computational cylinder is shown in Fig. 3.12

for the model system described in Fig. 3.10. The capacitance approaches the same asymptotic

value when the truncation length in a particular direction is increased while the other one is kept

fixed and sufficiently large. If the computational box extends to 106R in the radial and vertical

directions, the relative deviation of the capacitance from its asymptotic value is only 10−7 (as

indicated by the arrow in Fig. 3.12). We use these cutoff parameters in all subsequent FDM

computations reported here.

Comparison

In Fig. 3.13 we compare results obtained by our FDM with previous accurate BEM computations

[92] for a system like in Fig. 3.10(a) but without the cantilever for a conducting and a dielectric

(ǫ/ǫ0 = 40) sample. The force and the force-gradient evaluated by the two methods are in

very good agreement for both kinds of samples. For the conducting sample, Hudlet’s analytic

approximation [25] deviates by only a few percent from the numerical results. In the following

we show that the contribution of the cantilever can be quite appreciable for a dielectric sample.
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Figure 3.14: Effect of the cantilever (size) on the macroscopic electrostatic force (inset) and force-
gradient at different normalized tip separations from a conducting (a) and dielectric (b) sample.
The cantilever is modelled as either a small or a large disk with radii of 20 and 35 µm, respectively.
Other parameters are as in caption of Fig. 3.10(a). The solid lines show corresponding results
for a tip approximated by a conducting sphere with radius R = 20 nm obtained by summing the
analytic series for semi-infinite samples of both kinds.

3.6 Results

3.6.1 Force and force-gradient

The macroscopic electrostatic force and force-gradient versus the normalized tip-surface separa-

tion s/R for the system in Fig. 3.10 are shown in Fig. 3.14 for three different geometries: without,

with a small and a large cantilever modelled as disks of thickness 0.5 µm. The small disk radius

is equal to the width of a typical rectangular AFM cantilever (20µm) while the total area of the

large disk (of radius 35 µm) matches the area of the rectangular cantilever. The presence of the

cantilever increases the capacitance and the electrostatic force. Because the cantilever is more

than 10 µm away from the surface, its contribution to the force is often considered constant for

tip-sample separations smaller than R, and therefore does not contribute to the force gradient.

Our calculations [Fig. 3.14(a)] confirm that this is in fact true for a conductive sample. In this

case, the main contribution to the force-gradient comes from the spherical cap, as can be seen

from the solid line which corresponds to the analytic solution for a conducting spherical tip.

However, the conical shank of the tip and the cantilever affect the force at large separations, as

shown in the inset and noticed earlier. [59, 93, 25, 60] On the other hand, if s/R is small, as

shown in Fig. 3.14(b) and also emphasized in previous work [90, 94, 85], over a thick dielectric

sample both the force and the force-gradient are significantly decreased, owing to field penetration

into the sample.

47



3. Electrostatic Interactions

0

1

2

3

4

5

6

7

8

9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
/V

R
-1

s/R

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.3 0.4 0.5 0.6

E
/V

 (
n

m
-1

)

z (nm)

Tip apex
Surface
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3.6.2 Electric field

A quantity of particular relevance in our multi-scale approach is the macroscopic electric field

in the vacuum gap between the spherical tip end and the sample surface which polarizes the

microscopic system. The variation of the electric field normalized to V/R at two points on the

symmetry axis in the vacuum gap just below the tip and just above the surface versus their

normalized separation is shown in Fig. 3.15. The same quantities are shown magnified in the

inset for nanotip separations relevant for atomic-scale contrast, i.e. z = s − h <∼0.6 nm, differ

little and drop only weakly with increasing z. In the same distance range the z-component of the

electric field is two orders of magnitude stronger than the radial component parallel to the surface.

These features are also clearly illustrated by the essentially equispaced horizontal equipotential

contour lines in the vacuum region shown in Fig. 3.10(d). This important observation greatly

simplifies the desired coupling to atomistic calculations: we can consider the electric field Ez

at the midpoint of the macroscopic tip-surface distance s = z + h as a uniform external field

acting on the isolated microscopic tip-sample system. The connection between those two scales

is schematically illustrated in Fig. 4.1.

Figure 3.14 shows that for a conducting sample the force gradient can be accurately de-

scribed by a spherical tip if s < R, although the force itself is increasingly underestimated at

larger separations [25, 38]. In contrast, for a thick dielectric sample, the same description only
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provides the order of magnitude of FM at small s/R, but exhibits a faster decrease with increasing

separation and overestimates F ′
M . Figure 3.15 reveals that a spherical model tip overestimates

the electric field Ez under the tip at all separations, which then approaches V/R on the sphere

(and zero on the surface) when s ≫ R. This occurs because the induced surface charges can

spread to the conical shank and the cantilever in the more realistic model. The contributions of

those parts to the force FM become nevertheless stronger than that of the sphere alone already

at small s/R. In general, if s/R → 0, the electric field under the tip, hence the force and the

force gradient are enhanced owing to an increasingly localized surface polarization of both tip and

sample, but remain finite if the sample is a dielectric, as explicitly demonstrated by the solution

for a spherical tip. Comparison with that solution (the solid curves in Fig. 3.14) shows that

even at small separations contributions from both the conical shank and the cantilever contribute

to the force, whereas mainly the conical shank affects the force gradient. Hence, ignoring those

contributions causes an overestimation of the force-gradient if the sample is an insulator.

In the original analytic work of Bocquet, Nony and collaborators the nonuniform macro-

scopic surface polarization of the dielectric sample and also the resulting electric field and force

enhancements at small s/R were not taken into account. More importantly, only the polariza-

tion of the back-electrode was considered, leading to a capacitive force on the assumed spherical

tip [37] and also on the cantilever [70] underestimated by orders of magnitude (as discussed in the

first part of this chapter). In a subsequent publication which assumed a similar setup [71], the

macroscopic surface polarization was presumably correctly included, although details were not

provided. Fig. 3.15(b) shows that contrary to conducting surface, where the electric field (and

force-gradient) can be precisely described by a single sphere, for case of a thick dielectric slab

it can give only the order of magnitude of the electric field. Like force-gradient, the sphere-slab

model overestimation of the electric field by a factor of two in this especial case. It worths to tone

that replacing the sphere-slab system with a sphere within an effective dielectric ǫ0 ≤ ǫ̃ ≤ ǫ [37]

which gives the electric field on the sphere surface as E/V R−1 = 2ǫ̃/(ǫ̃ + ǫ0) < 2 on the sample

surface as E(s)/V R−1 = 2ǫ̃/(ǫ̃+ ǫ0)(1 + s/R)2 < 2 underestimates the electric field strength (cf

Fig.3.15). When using a sphere model, one should notice this over- and underestimation of the

field intensity which influences the strength of the polarization effects in the atomic-scale. It plays

the most important role in interpreting the LCPD as will be discussed in more details in the next

Section. (Also, note that a plane-capacitor approximationpredicts a very small E = V/(s+ h/ǫ)

for a dielectric slab with large thickness h.)
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Conclusions

In summary, the electrostatic interactions of a conducting model with different types of sample

surfaces was addressed from two approaches, namely analytically and numerically. First, using the

method of image charges for a biased model spherical tip facing a semi-infinite dielectric, we found

a simple generalization of the solution for the sphere-planar conductor problem. Approximate,

but accurate compact formulas were obtained for the capacitance and related quantities of current

interest in scanning gate or scanning capacitance experiments on doped semiconductors or 2DEGs

capped by insulating layers, besides electrostatic force microscopy of insulating thin films on metal

substrates. Note that the tip is typically oscillated at or close to a resonance frequency of the

force sensor used to control the closest approach distance; probed quantities must therefore be

averaged over the tip trajectory. [16, 86] Green’s functions for field points above and inside a

dielectric slab with finite thickness grounded at the bottom were used to setup a systematic

numerical solution. For experimentally relevant situations, where the tip apex radius exceeds the

tip-sample separation s and the slab thickness h, our numerical results are within 1% of the total

capacitance for the sphere-planar conductor problem at an effective separation s + h/ǫr. The

computed field profile widths at the slab surface and at the back-electrode interface indicate that

the common assumption of a tip-surface capacitor in series with a sample capacitor of effective

radius comparable to the tip apex radius R is seldom justified. We recommend instead to use

the above-mentioned approximation. A worthwhile next step would be to include screening by

non-ideal conductors, e.g. buried 2DEGs or surface layers, e.g. graphene or metallic surface

states.

In the second approach, we addressed the same problem from a numerical approach. The

electrostatic problem of the macroscopic bodies of the voltage-biased AFM probe (including the

tip and the cantilever) against the grounded sample, treated as macroscopic perfect conductors

or insulators, is solved by a finite-difference method with controlled accuracy on a non-uniform

mesh by minimizing an energy-like functional which leads to solution of the Poisson’s equation.

The method is capable of treating complex geometries with widely different dimensions, but is

illustrated here for systems with cylindrical symmetry. The solution yields the electric potential

and field distributions and the capacitance C(s) of the system from which the electrostatic force

FM acting on the probe and its gradient are calculated as functions of the macroscopic tip-

sample separation s. By comparing results obtained with and without the cantilever, as well as

with the analytic solution for a tip approximated by a conducting sphere, the contributions of

the cantilever, the conical tip shank and of its spherical end can be recognized. If the sample is a

thick insulator, all three affect the macroscopic force, whereas the last two affect the force gradient

even at sub-nanometer separations relevant for atomic-scale contrast.
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Chapter 4

Multiscale Modeling of KPFM

In this chapter, the multiscale approach for simulations of KPFM with atomic resolution is

described in details. Based on the results of previous chapter and evaluating the chemical inter-

actions subject to external bias in this chapter, expressions for VLCPD in AM- and FM-KPFM

are obtained and evaluated, first for ultrasmall, then for finite tip oscillation amplitude, and their

magnitude and dependence on are explained. In chapter 3 we showed that both tip and can-

tilever contribute to the electrostatics force and its gradient over a nonconducting surface where

the electric field penetrates into the sample. Here we show that how this electric field affects the

atomic-scale contrast in KPFM images. We also explain how the influence of the effective bias V

can be included into atomistic calculations, as well as shortcomings of previous attempts to do so.

We critically discuss previous atomistic calculations, as well as experimental evidence for short-

range electrostatic interactions. Highly accurate density functional calculations for nano-scale

tip-sample systems are then discussed and illustrated for a realistic Si tip close to a NaCl(001)

slab as an example of current interest.

Experimental limitations and evidence for the predicted trends, as well as desirable mea-

surements are also briefly discussed. The same framework is used in the next chapter where the

multiscale is simplified by introducing some approximations.
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4. Multiscale Modeling of KPFM

Figure 4.1: Sketch of the AFM setup showing its macroscopic and microscopic parts on two very
different scales. The macroscopic tip-sample separation is s = z + h, where h is the nanotip
height and z is the distance between the apex atom and the sample surface. (Both h and z are
nominal values with atomic relaxation due to chemical interactions excluded.) Zoom window:
the macroscopic electric field E depicted by the black field lines is applied as an external field to
the atomistic subsystem.

4.1 Multiscale Approach

The method is multiscale in the sense that it couples the interactions of different types acting

on widely different length scales, i.e. from a fraction of nm in the contact point to about a

mm in the macroscopic bodies, as schematically illustrated in Fig. 4.1. The macroscopic system

treated by classical electrostatics consists of the probe (cantilever plus tip) and of a sample

described by its bulk dielectric constant. The bias voltage Vb is applied between the probe and

the grounded back electrode, considered as perfect conductors. The microscopic system consists

of a protruding nanotip less than 1 nm away from a slab of a few sample layers, both treated

atomistically. Applying the electric field generated by the macroscopic tip and sample to the

microscopic system leads to an unambiguous definition of VLCPD on defect-free, overall neutral

surfaces of crystalline materials. This provides the desired well-defined relationship between the

bias-voltage and short-range forces which was lacking in previous approaches to LCPD contrast

based on DFT computations. [36, 68, 69]

4.2 Bias-Dependent Chemical Interactions

4.2.1 Model and Method

Computations are performed within the local-density approximation to density functional the-

ory (DFT) using norm-conserving HGH pseudopotentials [102] and the BigDFT package. [30]

Relying on a wavelet basis set with locally adjustable resolution, this package calculates the
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self-consistent electron density, the total energy and its electrostatic component with selectable

boundary conditions [103] i.e. periodic in two directions and free in the third in our case. This

allows us apply an external field perpendicular to the surface without artifacts which can arise

from periodic images in the z direction when using plane-wave of mixed basis sets. The voltage

biased macroscopic system determines the uniform electric field Ez ∝ V = Vb − VCPD applied to

the microscopic part.

As illustrated in the zoom window of Fig. 4.1, our microscopic system consists of a nanotip

of height h protruding from the spherical end of the macroscopic tip and of a wider two-layer slab

of sample atoms. Figure 4.2 illustrates the microscopic system used in the DFT computations

reported here. The nanotip at the very end of a silicon tip is modelled as a cluster with a fixed

(001) base of eight Si atoms with all dangling bonds passivated by H atoms in order to mimic

the connection to the rest of the tip. The remaining Si atoms were pre-relaxed using the Minima

Hopping Method [104] previously employed to generate low-energy structures of silicon clusters

and of similar model tips. [105, 106] The free Si atoms adopted a disordered configuration with

several exposed under-coordinated atoms. In particular the protruding apex atom is threefold

coordinated and hence has a dangling bond with a small dipole moment pointing towards the

surface. As will be discussed later, the relatively large size of this model nano-tip makes it possible

to capture most of the charge redistribution induced in the tip apex due to the tip-sample short

range interactions.

As we verified, a distance five times the lattice constant of NaCl is large enough to get

rid of the electrostatic interaction between this nano-tip and its images in the main in-plane

symmetry directions along which periodic boundary conditions applied. Therefore our sample

slab consists of two 10×10 NaCl(001) layers containing 200 ions in total. For such a large system,

it is sufficient to perform calculations only at one single k-point, namely center of the surface

Brillouin zone. Pre-relaxation of the sample only caused a small rumpling which preserved the

basic periodicity of the truncated (001) surface. Although the silicon model tip and the sample

were initially individually pre-relaxed, all tip and sample atoms were subsequently frozen in some

of our KPFM simulations. In this way we could assess pure electronic polarization effects without

effects due to the interaction-induced displacements of ion cores.

The silicon model tip was positioned so that its foremost atom was 6.5 Å above a sodium

or chlorine surface ion, then moved towards the sample in steps of 0.2 Å. At each step the Kohn-

Sham equations are solved iteratively. The topmost layer of the Si tip and the bottom layer of

the slab are kept fixed while other ions are free to relax until the Hellman-Feynman force exerted

on each ion becomes smaller than 1 pN. This extremely tight tolerance is, however, required only

when detecting the variation of the force upon small changes in the bias is required. As explained

in chapter 1, the force Fµ exerted on the model tip is obtained by summing the z-components of
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4. Multiscale Modeling of KPFM

Figure 4.2: The microscopic model system used in the DFT calculations. The apex of a silicon
AFM tip is modelled as a pre-relaxed Si29H18 cluster. All eight atoms in the top layer are
passivated by hydrogen atoms and kept fixed at their bulk positions. The model sample consists
of two NaCl(001) layers each containing 10×10 ions with the bottom layer kept frozen. Periodic
boundary conditions are applied only along the lateral directions.

the forces over atoms of the tip. Since the free atoms are well relaxed, their contribution to that

force is not significant and was used to ensure that the error is small enough.

4.2.2 Force spectroscopy

Figure 4.3 shows the microscopic force versus the tip-apex separation from Cl and Na surface

sites. The same procedure is repeated at each tip-sample separation for a few field strengths

Ez corresponding to −2 ≤ V = Vb − VCPD ≤ 2 Volts. For such biases and distances where Fµ

becomes site-dependent, a nearly uniform macroscopic electric field of ∼ 0.15 V/nm occurs in

the vacuum gap per unit bias voltage, as shown in the inset of Fig. 3.15. No instabilities caused

by electronic and/or atomic rearrangements appeared in that range of parameters.

4.2.3 Force varsus bias

The variation of the microscopic force as a function of bias voltage at the particular separation z =

0.3 nm is shown in the insets in Fig. 4.3. In contrast to the macroscopic capacitive force, the short-

range force depends linearly on the applied bias voltage. Theoretical considerations which explain

this linear behavior will be presented in the next chapter where we show that this linear term

is remarkably close to the interaction between distance-dependent but bias-independent charge

densities on the tip and sample with the macroscopic electric field. Earlier studies obtained such

a term by treating native ions or charged atoms adsorbed on the sample surface and/or the tip

apex as point charges. [37, 76, 77] Deviations from the linear behavior could occur for larger

biases, especially near instabilities, as observed in computations for a charged nanotip. [71]
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Figure 4.3: Microscopic force on the Si nanotip above Na and Cl surface ions from ab initio
calculations without an applied electric field. Insets: variation of the force as a function of the
macroscopic bias voltage at a tip-surface separation of 0.30 nm indicated by arrows.

Slope a

The basic quantity which determines the deviation of the LCPD from the background CPD is the

voltage-independent slope of the short-range force with respect to the applied voltage

a(R) =
∂

∂V
Fµ(R;E(V )), (4.1)

where R = (x, y, z) denotes the tip position. As discussed in chapter 2, the background CPD

is not a well-defined quantity for an insulator. For a real doped silicon tip-NaCl(001) sample, it

would be different from the CPD of our microscopic system if charge equilibrium is achieved, as

enforced by the self-consistency of the computations. Besides, no CPD is explicitly included in

the description of the macroscopic system. Thus the effective bias V = Vb − VCPD would differ

from that in a real system. Nevertheless, as long as this bias is in the Volt range, the slope a is

unaffected.

The slope a, shown in Fig. 4.4(a), exhibits characteristic site-dependent distance dependence

at separations less than 5 Å, and is larger above the more polarizable Cl ion. The underlying

physics will be explored in the next chapter. The microscopic force-gradient F ′
µ is also a linear

function of bias voltage; The variation of its slope

a′(R) ≡
∂F ′

µ

∂V
=

∂

∂z

∂Fµ

∂V
=
∂a

∂z
(4.2)

with distance, calculated by a second order finite difference approximation, is shown in Fig. 4.4(c).

Figures 4.4(b) and (d) show that a and a′ are stronger if relaxation due to chemical interactions

is not performed; but the contrast appears below nearly the same distance and exhibits almost

the same distance dependence. Thus, for the assumed neutral Si nanotip, the contrast is mainly

due to electronic polarization rather than to bias-induced ion displacements.
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Figure 4.4: Distance-dependence of a and a′ above Na and Cl surface ions with (a,c) or with-
out(b,d) relaxation of the free atoms and ions during the tip approach. The difference between
Na and Cl sites (i.e. the contrast) is shown by red (filled) symbols.

4.2.4 Contribution to the total force

In the approximation that the macro- and microscopic systems are coupled only through the

macroscopic electric field (the required corrections are discussed in the following), the z-component

of the V -dependent total force exerted on the tip is

F − FvdW = FM (s;V ) + Fµ(R;E(V )) (4.3)

where, as before, s = z + h and V = Vb − VCPD. However, some corrections might need to be

considered beyond this approximation as well be discussed in the following. The macroscopic

electrostatic force is quadratic FM = 1
2C

′(s)V 2 contrary to the microscopic force Fµ which was

shown to be linear in V .

Note that the vdW force, being only a function of the mesoscopic geometries, is bias- and

site-independent, and is therefore henceforth ignored, although it affects the overall resonance

frequency shift ∆f in a NCAFM measurement.
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4.2.5 Corrections

Microscopic capacitance: The first correction is due to an additional capacitive contribution
1
2δC

′V 2 caused by the presence of a polarizable nanoscale material (nanptip) in the gap between

the macroscopic bodies. Owing to the small lateral dimensions of the nanotip compared to the

radius of the macroscopic tip end, this correction is small, [77] although it can become noticeable

and site-dependent if the nanotip is strongly polarizable and nearly contacts the sample. [71, 77]

In chapter 5 we show that this term is small for our model system.

Constant charge/dipole shift: The second correction arises if the microsystem contains a

localized net charge [27] or permanent dipole moment [107]. This leads to a site-independent

LCPD with an approximate power-law approach towards a background CPD of several Volts.

The interaction of the nanotip charge distribution with the macroscopic field E could in principle

be included in our description at separations s where E can no longer be considered uniform. In

that range, however, the charge or dipole might be approximated as point objects, as justified in

the case of a conducting sample in the Supplementary Material of Ref. [76]. Because the charge

or dipole are intrinsic (i.e. V -independent), their interaction with external field is proportional

to V , so that this correction would give rise to long-range contributions to the slopes a and a′

(see next chapter). [76, 77] In the case of our neutral Si nanotip and sample slab, this correction

is small.

Nanotip size: The third correction arises because in reality the nanotip is in electrical

contact with the macroscopic tip, and the electron density at the interface differs from that near

the top of the isolated cluster used as the nanotip if it is small. Then the charge distribution

near the apex, which dominates Fµ could also be affected. We used a rather large model tip in

order to get rid of this shortcoming.

4.3 Computed KPFM signals

The force gradient is more sensitive than the force to short-range interactions which are re-

sponsible for atomic-scale contrast in NCAFM and KPFM. Direct detection of the gradient is in

principle possible if the variation of Fµ over the peak-to-peak oscillation amplitude remains linear,

e.g. if it is comparable to the spacing 0.2 Å of the computed points in Fig. 4.3. We first consider

this simple limit which is commonly assumed in the KPFM literature, but is seldom achieved

in NCAFM experiments. This is useful to explain the idea behind connecting our simulations

results to experimentally measured signals. Finally, we address the finite amplitude oscillations

which is relevant to the experiments.
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Figure 4.5: (a) Sketch of the cantilever-tip probe oscillating in its fundamental mode with a finite
amplitude A. Dependencies of the first (b) and second (c) gradients of the capacitance on the
macroscopic separation s = z + h calculated for the setup shown in Fig. 3.10(a), and of their
cycle averages (d) and (e) tip oscillation amplitudes A =0.01, 0.1, 1 and 10 nm as a function
of the closest approach distance of the nanotip apex d = zmin. The averages are calculated
using Eqs. (4.14) and (4.15). The weight functions w(ζ) and ζw(ζ) are plotted as a function of
ζ = z − d−A in (a).
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4.3. Computed KPFM signals

4.3.1 Ultrasmall amplitude limit

As explained in chapter 2, the electrostatic contribution to the tip-sample force is minimized in

the KPFM technique by applying a bias voltage which consists of a modulating AC voltage with

angular frequency ω in addition to the DC voltage

Vb(t) = VDC + VAC cosωt (4.4)

resulting in an effective potential difference

V = (VDC − VCPD) + VAC cosωt. (4.5)

Ignoring the vdW force in Eq. (4.3), the total force is then decomposed into three spectral

components

F (t) = FDC + Fω cosωt+ F2ω cos 2ωt (4.6)

which is different from Eq. (2.6) in the sense that Fµ is also now contributing

Fω =
[d(FM + Fµ)

dVb

]

VAC

=
[

C ′(s) (VDC − VCPD) + a(R)
]

VAC, (4.7)

where we have assumed that the response to VAC is linear and instantaneous. Note that Fω is

the only relevant component because VLCPD is operationally defined by nulling the KPFM signal

generated by this force component. This fact is discussed in the following for the two common

KPFM methods, i.e. AM and FM.

AM-KPFM

In the ultrasmall amplitude limit, the deflection signal detected in AM-KPFM is proportional to

Fω cosωt which is nulled if

VDC = V AM
LCPD = VCPD − a(R)

C ′(s)
. (4.8)

Because the background VCPD is not well-defined as discussed before, and only a(R) is site-

dependent, we consider only the deviation of VLCPD from VCPD which is responsible for atomic-

scale contrast, i.e.

LAM ≡ V AM
LCPD − VCPD = − a(R)

C ′(s)
. (4.9)

As illustrated by the points for A = 0.01 nm in Fig. 4.5(d) for a dielectric sample, the z-

dependence of C ′ is weak over the range (s = z + h < 1 nm) where a(R) is appreciable (see
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4. Multiscale Modeling of KPFM

Fig. 4.4(a)). Therefore V AM
LCPD − VCPD differs from a(R) by an essentially z-independent factor.

Depending on the nanotip height h, this may no longer hold in the case of a conductive sample or

thin dielectric film on a conductive substrate. Note that the ultrasmall amplitude A = 0.01 nm

is equivalent to A→ 0 in our calculations, as will be discussedin this section.

FM-KPFM

In FM operation mode, the frequency shift is the detected signal. We assume that the total

frequency shift is obtained from the sum of the different contributions present in Eq. (4.3),

namely

∆f −∆fvdW(s) = ∆fM (s;V ) + ∆fµ(R;E(V )). (4.10)

In FM-KPFM the contribution of the modulated electrostatic force component Fω to the fre-

quency shift of the first resonant mode ∆f1 is detected and nulled. In the ultrasmall amplitude

limit ∆f1 is proportional to the force-gradient [17] (see Eq. (1.1)), and would therefore be nulled

if

F ′
ω =

[
C ′′(s) (VDC − VCPD) + a′(R)

]
VAC

is nullified. The FM-counterpart of Eq. (4.9) is therefore

LFM ≡ V FM
LCPD − VCPD = −a

′(R)

C ′′(s)
. (4.11)

The site- and distance dependence of LFM is again mainly determined by a′(R) because in

the range s < 1 nm where a′ is appreciable C ′′ the denominator of Eq. (4.11) is almost constant,

cf. Fig. 4.4(c) and the points for A = 0.01 nm in Fig. 4.5(e). The calculated LCPD deviations

for A = 0.01 nm in the AM and FM modes are plotted in Figs. 4.6(a) and (e).

For the ultrasmall amplitude A=0.01 nm, which would likely not provide an adequate

signal-to-noise ratio in practice, the calculated LFM is about hundred times stronger than LAM

and exceeds the range of validity (±2 V) of our DFT computations (see the horizontal lines in

Figs. 4.6(e,f)), as well as the range of experimentally measured values. Hence this result cannot

be trusted and it is important to consider averaging over the range covered by the finite tip

oscillation, as is explained in the following.

4.3.2 Finite amplitude oscillations

In NCAFM with cantilevers the oscillation amplitude A is between several and a few tens of

nanometers, so that the macroscopic capacitive electrostatic force can change by several orders
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Figure 4.6: Calculated deviations L = VLCPD − VCPD for AM- (left column) and FM-KPFM
(right column) versus closest tip apex-sample distance for tip oscillation amplitudes A = 0.01 nm
(a,e),A = 0.1 nm (b,f), A = 1 nm (c,g), and A = 10 nm (d,h). In (e,f) the dashed horizontal
lines indicate the range of validity of our DFT calculations (±2 V).
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4. Multiscale Modeling of KPFM

of magnitude over an oscillation cycle. In practice, the detected AM and FM KPFM signals are

given by differently weighted averages, namely [7]

〈Fω〉 =
1

2π

∫ 2π

0
Fω[d+A(1 + cosφ)]dφ

and [18]

kA
∆fω
fω

= − 1

2π

∫ 2π

0
Fω[d+A(1 + cosφ)] cosφdφ

where k is the flexural stiffness of the cantilever and d = zmin is the closest tip apex-sample

separation. Substituting the force from Eq. (4.7) and setting these averages to zero, one obtains

LAM = −〈a(R)〉w
〈C ′(s)〉w

, (4.12)

LFM = −
〈a′(R)〉1/w
〈C ′′(s)〉1/w

, (4.13)

where the cycle averages depend both on d and A and are defined as

〈g〉w ≡ 1

π

∫ A

−A
w(ζ)g(d+A+ ζ)dζ, (4.14)

〈g′〉1/w ≡ 1

πA

∫ A

−A
ζw(ζ)g(d+A+ ζ)dζ

=
1

πA2

∫ A

−A

1

w(ζ)
g′(d+A+ ζ)dζ. (4.15)

As depicted in Fig. 4.5(a),

ζ = z − (A+ d)

whereas the weight functions

w(ζ) = 1/
√

A2 − ζ2

and ζw(ζ) have square root singularities at the turning points of the oscillation. Note that if

A → 0 then 〈g〉w tends to g(d + A). Similarly, the expression on the second line of Eq. (4.15)

justifies the notation 〈g′〉1/w and shows that this quantity tends to g′(d+A) when A→ 0, besides

helping to relate the distance dependence of LFM to those of a′ and C ′′(s). However, because a

is computed with high precision, whereas a′ is obtained by interpolation, we use the expression

on the first line for numerical purposes. Furthermore, since a is known only at equispaced

separations zi where the DFT computations have been performed, the integrals in Eqs. (4.14)

and (4.15) must be discretized. The adopted procedure, which deals with the singularities of the

weight function w(ζ) at the integration limits, [108] is presented below. An important result is

that the discretized version of the expression in the first line of Eq. (4.15) reduces to the second

order FD approximation of g′(d + A) when 2A matches the spacing between adjacent zi values,

in accordance with the expression on the second line.
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4.4. Results

4.3.3 Discretized integrals for finite tip oscillation amplitudes

Assuming that N + 1 equispaced data points {zi} are sufficiently close together such that g(z)

remains almost constant within an interval length δ = 2A/N , the integration in Eq. (4.14) can

be approximated by a finite sum

〈g(z)〉w ≃ 1

π

N∑

i=0

wigi

where gi ≡ g(zi) is either gi = a(zi) or gi = C(zi + h); Since w(ζ) = 1/
√

A2 − ζ2 we obtain

wi =

∫ ζ+i

ζ−i

w(ζ)dζ = arcsin(
ζ+i
A

)− arcsin(
ζ−i
A

)

where

ζ±i = (i± 1

2
)δ −A

are the midpoints between ζi and ζi±1. Taking into account the rapid variation of w(ζ) near

the integration limits defined as ζ−0 = −A and ζ+N = A, the square root singularities of w(ζ) at

those turning points are approximately included with this modified trapezoid integration method.

Sufficiently far from those points wi ≃ w(ζi)δ so that the standard trapezoid approximation is

recovered. The analogous approximation for Eq.(4.15) namely

〈g′(z)〉1/w = 〈g(z)〉ζw ≃ 1

π

N∑

i=0

w∗
i gi

involves [108]

w∗
i =

1

A

∫ ζ+i

ζ−i

ζw(ζ)dζ =

√

1−
(ζ−i
A

)2
−

√

1−
(ζ+i
A

)2
.

Note that in the A → 0 limit only the data points at the two limits are taken into account.

Indeed, if N = 1, A = δ/2 and W0 = W1, hence 〈g〉w = (g0 + gN )/2, and W ∗
0 = −W ∗

1 , hence

〈g′〉1/w = (gN−g0)/2A, so that Eqs. (4.12) and (4.13) consistently approximate the corresponding

zero-amplitude equations, Eqs. (4.9) and (4.11). Similarly, if N=2, A = δ and one obtains

w0 = w2, w1 = 0 and w∗
0 = −w∗

2, w
∗
1 = 0 and Eqs. (4.9,4.11) are again recovered.

4.4 Results

Owing to the very different z-dependencies of a(z) and C ′(s), shown respectively in Figs. 4.4(a)

and 4.5(b), their cycle averages depend in different ways on d and A. The same holds for a′(z)
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4. Multiscale Modeling of KPFM

and C ′′(s), shown respectively in Figs. 4.4(c) and 4.5(c). Figures 4.5(d) and 4.5(e) show the cycle

averages of C ′ and C ′′ versus the closest tip-apex approach distance d for oscillation amplitudes

A = 0.01, 0.1, 1 and 10 nm, whereas the cycle-averages of VLCPD calculated from Eqs. (4.12)

and (4.13) are plotted in Fig. 4.6 for AM-KPFM (left column) and FM-KPFM (right column)

for the same amplitudes in the range where a(z) is finite. In that range, the cycle averages

for A = 0.01 nm agree with the non-averaged quantities. Since the primary quantities were

calculated at points spaced by 0.02 nm, this is not surprising in view of the remarks at the end

of the preceding subsection. Thus, apart from small deviations introduced by the discretization

procedure, the points in Figs. 4.6(a) and 4.6(e) which were actually calculated for A = 0.01 nm

coincide with those given by Eqs.(4.9) and (4.11), and exhibit essentially the same distance

dependencies as a(d) and a′(d), as already discussed in 4.3.1.

Already above A = 0.1 nm, however, the LCPD contrasts in both modes exhibit almost the

same spatial dependence as a(d), although their respective magnitudes decrease if A is increased.

Nevertheless, LFM significantly exceeds LAM; this can be understood as follows. As seen in

Figs. 4.5(d) and 4.5(e), 〈C ′′〉1/w drops much faster than -〈C ′〉w if A is increased. As explained

in the discussion of Fig. 3.14(b) this behavior reflects the increasing influence of the relative

contributions of the tip shank and of the cantilever to C ′(s) in the range covered by the peak-

to-peak oscillation. Especially 〈C ′〉w is affected by the cantilever contribution which causes the

very gradual levelling of C ′(s) apparent in Fig. 4.5(b). As seen in Fig. 4.5(c), this slowly varying

contribution tends to cancel out in C ′′(s), and, according to the second line in Eq. (4.15), in

〈C ′′〉1/w as well.

On the other hand, 〈a〉w and A〈a′〉1/w essentially coincide once a exceeds the range where

a is noticeable. Indeed, the main contributions to those averages come from the vicinity of z = d

where the integrands in Eqs. (4.14) and (4.15) (first line) match. Expanding w(ζ) about this

turning point, one finds that 〈a〉w ∼ A−1/2 whereas 〈a′〉1/w ∼ A−3/2, just like ∆f1 behaves in

NCAFM. [18] According to Fig. 4.5(b,c) the same argument cannot be applied to 〈C ′′〉1/w for

A ≤ 10 nm, and not at all to 〈C ′〉w because C ′(s) varies only slowly up to s = R = 20 nm.

Fig. 4.7 shows how the finite oscillation amplitude affects the relevant cycle averages, as well as

∆VLCPD in the AM mode (left column) and in the FM mode (right column) at the closest tip

apex-sample separation d = 0.30 nm indicated by arrows in Fig. 4.3.

The same trends persist at all separations d < 0.5 nm where LCPD contrast appears. 〈a〉w
drops as A−1/2, and 〈a′〉1/w drops as A−3/2 already beyond A = 0.1 nm, while 〈C ′〉w varies only

little and 〈C ′′〉1/w begins to drop somewhat slower than A−1 only above A = 1 nm. The resulting

amplitude dependencies in both modes reflect the different dependencies of the numerators and

denominators in Eqs. (4.12) and (4.13).
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Figure 4.7: Amplitude dependencies of the cycle averages 〈a〉w and 〈a′〉1/w (a,b), 〈C ′〉w and

〈C ′′〉1/w (c,d) and of the resulting deviations LAM and LFM (e,f) at a closest tip apex separation
of d=0.3 nm above Cl and Na surface sites. Dashed lines show the corresponding powers of A.

4.4.1 Discussion

Expressions formally similar to Eqs. (4.9) and (4.11) were previously suggested. There are essen-

tial differences, however. In some works, the denominators came from a short-range polarization

contribution ∝ V 2 (see next chapter) to the microscopic force Fµ rather than from the much

larger capacitive force FM which is seriously underestimated [70] or completely ignored. [68, 69]

Barth et al [76] used the correct capacitive term in the denominators but the numerators are

obtained from a classical methods, constant point charges or fixed dipoles which were applica-

ble only to separations larger than the onset of the chemical interactions. They showed that a

point charge or fixed dipole attached to the tip apex would shift the KPFM signal by a constant

value [76] but then not the contrast.

Nony et al [70] also noticed that 〈a〉w and A〈a′〉1/w almost coincide when A exceeds a

few nanometers. This results in a comparable VLCPD for AM and FM modes if A exceeds a

few nanometers. However, by including the correct FM and taking into account the different
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4. Multiscale Modeling of KPFM

amplitude dependencies of the denominators in Eqs. (4.12) and (4.13), we conclude that the

contrast should remain larger in the FM than in the AM mode for a given closest approach

distance d and oscillation amplitude A. This prediction is independent of the particular system

considered, but the mode-dependent signal to noise ratio must also be considered. Thus Kawai et

al. [7] calculated the minimum detectable CPD as a function of A and showed that it is smaller in

the AM mode. Taking into account the discussions of Figs. 3.14 and 4.5, 〈C ′〉w would be larger if

the cantilever area is larger whereas 〈C ′′〉1/w would be unaffected, whereas both quantities would

be larger if the cone angle is broader or if the sample is a metal rather than an insulator, but

〈C ′′〉1/w would be more strongly affected. On the other hand 〈a〉w and 〈a′〉1/w would be larger

if the tip apex is charged [71] rather than neutral, or if the sample is a semiconductor with a

reconstructed surface which exposes partially charged species like Si(111) 7×7 [36, 7]. From this

point of view the system studied here is especially challenging. Furthermore, the contrast ratio

slowly decreases if A is increased, e.g. by a factor which drops from about 100 to 10 for oscillation

amplitudes between 0.01 and 10 nm in our example.

4.4.2 Experimental Limitations

For a meaningful comparison with NCAFM-KPFM measurements it is important to take ex-

perimental limitations into account. In view of the long-range LCPD variations due to surface

and bulk inhomogeneities on real samples, one should compare computed atomic-scale LCPD

variations with the difference between the LCPD measured at sub-nanometer separations d in

the middle of a flat homogeneous island or terrace and the extrapolated long-range, essentially

site-independent LCPD. This procedure would also suppress most of the long-range contributions

to 〈a〉w and 〈a′〉1/w which would arise in the case of a charged or strongly polar tip [76]. Moreover,

the comparison should be done with the same tip at constant d (slow distance control) because

atomic-scale variations of d at constant ∆f1(x, y, d) would induce such variations in the LCPD

even if the latter is site-independent but has a different distance dependence as ∆f1.

For the distance controller to function properly, ∆f1 must be chosen on the branch where

this frequency shift becomes more negative if d is decreased. Furthermore, the maximum restoring

force kA must be much larger than the maximum tip-sample attraction [18]. For measurements

with standard NCAFM cantilevers (k ∼ 20-40 N/m) this criterion is typically satisfied by using

oscillation amplitudes A > 5 nm, and atomically resolved imaging is typically performed at

distances d ∼ 0.4-0.5 nm. According to Fig. 4.6 the LCPD contrast which is then predicted to be

20-100 mV in the FM mode and a few mV in the AM mode approaches the experimental limits

in both modes. Even if the AM-KPFM signal is enhanced by setting the modulation frequency

at the second flexural resonance of the cantilever, the LCPD contrast predicted by our model

would remain the same. This contrast would be stronger if the tip were charged. Unfortunately,

66



4.5. Summary and Outlook

available data showing atomic-scale contrast on (001) surfaces of NaCl and KBr is insufficient

for a meaningful comparison between AM and FM KPFM. However, LCPD maps obtained with

sputter-cleaned Si tips and similar measurement parameters on Si(111) 7×7 surfaces show that

the contrast between Si adatoms and corner holes in the FM-mode [36] is about ten times stronger

than in the AM-mode [7]. Moreover, data obtained from a direct determination of the maximum

of ∆f1 versus bias voltage Vb agreed well with those obtained by nulling the FM-KPFM signal

at the modulation frequency [36].

The sizable LCPD contrast of several Volts predicted in the FM mode for amplitudes A <

0.1 nm should, however, be readily observable when using a tuning fork instead of a cantilever.

Owing to the much higher stiffness k ≃ 1800 N/m of this deflection sensor, the above-mentioned

criterion can be satisfied with such amplitudes close to the ultrasmall limit [16]. Combined

NCAFM-KPFM measurements using such tuning forks with PtIr tips have only been done at

low temperature by the time-consuming direct method mentioned before. [40, 39] Unfortunately,

no FM-KPFM measurements showing atomic-scale LCPD contrast on alkali halide (001) surfaces

have so far been reported.

4.5 Summary and Outlook

A general multiscale approach was proposed to compute electrostatic forces responsible for

atomic-scale contrast in KPFM performed simultaneously with NCAFM. The approach is not re-

stricted to particular sample or tip materials and can be used for conductors and semiconductors

thin/thick films and samples. The problem is split into two parts coupled in a remarkably simple

but novel fashion. The electrostatic problem of the voltage-biased AFM probe over a grounded

sample, is solved first. The solution provides not only the electrostatic interaction but also the

electric field distribution in the contact point. Instead of the bias voltage Vb, the nearly uniform

electric field obtained in that range is then applied as an external field to the microscopic part

which can be treated by empirical atomistic or first principles methods. The ab initio BigDFT

wavelet code employed here enabled us to compute the short-range bias-dependent force on the

tip apex represented by a cluster with an unprecedented accuracy of 1 pN. For the Si-nanotip-

NaCl(001) system considered here, this microscopic force Fµ is a linear function of the bias in

the investigated range −2 ≤ Vb − VCPD ≤ 2 Volts. We argue that this is a general result, except

close to atomic-scale instabilities caused by strong enough forces which could arise at very small

separations and/or very large effective biases.

Adding the macroscopic and microscopic bias-dependent forces, expressions are obtained for

the KPFM signals in the AM and the FM modes. The atomic-scale deviation of LCPD from its

common asymptotic value CPD at large separations is the ratio of the derivatives a =
dFµ

dVb

∣
∣
∣
Vb=VCPD
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and C ′ = dC
dz averaged over the tip oscillation amplitude with different weights in AM- and FM-

KPFM. We explain the amplitude dependence of the atomic-scale LCPD contrast in both modes

and predict that for typical amplitudes used in measurements with standard NCAFM cantilevers,

this contrast should be much stronger in the FM mode. This is a consequence of the contributions

of the cantilever and the tip shank to the KPFM signal in the AM mode, which are stronger

on insulating samples. The same conclusion has previously been reached in comparisons of AM-

and FM-KPFM measurements of long-range LCPD variations; such variations are caused by

interactions of the biased probe with CPD inhomogeneities and surface charges on scales of several

nanometers and above on conducting samples partly covered with ultrathin overlayers of different

materials [56, 57]. However, the strong mode-dependent influence of distant contributions to C ′

on the atomic-scale LCPD contrast has, to our knowledge, not been recognized because previous

work on this topic assumed that only the tip apex mattered at sub-nanometer separations.

Because VLCPD depends on measurement parameters, it is desirable to extract the more fun-

damental quantity a from combined KPFM measurements, just like the microscopic force Fµ is

extracted from NCAFM measurements using, e.g. a widely accepted inversion algorithm [48] or

one based on the direct inversion of the discretized version of the first line of Eq.(4.13) described

in 4.3.3 by back-substitution [108]. In the next chapter, we show that a is approximately given

by the gradient of the normal component of the dipole moment multiplied by the electric field

normalized to Vb − VCPD. Since L = VLCPD − VCPD is predicted to be stronger in FM-KPFM,

whereas its distance dependence is governed by the weighted average 〈a′〉1/w modes, the most

appealing way to obtain a(d) would be to extract a′ then integrate it from the range where L

vanishes down to the desired separation d. The averages 〈a′〉1/w and 〈C ′′〉1/w can be separately

obtained from direct measurements of the frequency shift ∆f1 as a function of bias [36], namely

from the shift of the maximum and the curvature of parabolic fits at several (x, y, d) positions.

The signal/noise ratio of those averages can be improved by using AC modulation and lock-in

detection at the modulation frequency. The averages could then be determined from the zero

intercept LFM and the slope of the FM-KPFM signal 〈∆fω〉w versus DC bias. An analogous

procedure could be applied to determine 〈a〉w and 〈C ′〉w from the AM-KPFM signal 〈Fω〉w, then
a itself by inversion, using suitably modified algorithms [108, 109]. Because the AM-KPFM sig-

nal/ratio is much superior if the modulation frequency f is at the second cantilever resonance [7],

LAM could be determined more accurately even if it is smaller than in FM-KPFM. In any case,

note that the slope a reflects variations of the electrostatic potential outside the sample surface

which are, however, locally enhanced by the proximity of the tip apex. Since the latter is in

turn also polarized and deformed [110], a cannot simply be described as the convolution of the

unperturbed electrostatic potential with a merely distance-dependent tip point-spread function,

as in macroscopic electrostatics. [64]
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4.5. Summary and Outlook

Complications due to averaging over the tip oscillation amplitude are to a certain extent

avoided with tuning fork deflection sensors which enable direct measurements of 〈∆fω〉w vs. bias,

using amplitudes approaching the ultrasmall limit [40, 39]. Spectacular results have thus been

obtained on isolated molecules adsorbed on a thin epitaxial NaCl(001) film by using tips with

well-defined apex species stable at low temperature [111]. Most recently, LFM contrast reflecting

changes in the intramolecular charge distribution has been observed upon a configurational switch

triggered by a judiciously applied pulse [12]. Our results shown in Figs. 4.6(e), (f) and (d) show

that LFM and a′ still have a significant amplitude dependence between A = 0.1 and 0.01 nm, so

that inversion is still necessary to obtain accurate results for typical amplitudes used with tuning

fork sensors.

Since such measurements use hard metal tips, while metal-coated tips are also used in

NCAFM and/or KPFM measurements with cantilevers it would desirable to develop appropriate

nanotip models and to perform simulations like those described here. In particular, the recently

fabricated sharp and stable W and Cr coated silicon tips [107, 53] and the stable atomic-scale

resolution achieved with Cr-coated cantilevers at separations exceeding the usual range d <

0.5 nm merit further attention. Atoms or molecules intentionally picked by the apex and/or

adsorbed on the sample [40, 111, 77, 12] would be worth studying using our approach in order

to take into account modifications of their electronic and geometric structure due to bonding

and charge transfer. Another class of systems which merit further investigations involve silicon

nanotips with a picked-up cluster of foreign material, NaCl in particular, which have so far been

studied by DFT in the absence of a sample [112] or represented by a cluster of the same material

as the sample using empirical interaction potentials [72, 71].

Note finally that all macroscopic probe models, including ours, provide a better description

of metallic or metal-coated tips than of real silicon tips. Indeed, even if the native oxide is removed

by sputtering, a silicon layer of few nanometers depleted of charge carriers still separates the tip

surface from the highly doped conducting tip interior. Although it was taken into account in

previous treatments of KPFM of semiconductor devices [3], this depletion layer remains to be

included when modelling Si tips, e.g. by allowing a smaller effective radius R of the equipotential

at the applied bias voltage and a larger effective separation s from the sample surface.
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Chapter 5

Microscopic Description of Atomic

Scale Variation of CPD

Describing the underlying mechanism of the atomic variation in the KPFM images has been

challenging and has attracted great interest. Since the development of KPFM techniques, the

KPFM signals have been considered as local contact potential difference, because it is essentially

the macroscopic CPD which in addition shows local variations if a sharp tip is used. The equa-

tions derived in the multiscale model in the preceding chapter demonstared, however, that the

long range electrostatic forces, which determine the curvature of the frequency-shift parabola

versus bias, play a crucial role in the quantity which is measured as KPFM signal. Furthermore,

the experimentally measured KPFM signals are averaged quantities and do not represent the

instantaneous variation of some local quantity unless the cantilever is driven with an ultra-small

amplitude. As a consequence, one should be careful in ascribing the measured quantity to a

local potential difference. In fact our model suggests that the KPFM signals represent a quantity

which arises from a tight coupling between the macroscopic capacitive force and the slope of short

range bias-dependent forces with respect to the applied voltage. Working in the same multiscale

framework of the previous chapter, we present in this chapter a theory for atomic-scale variation

of CPD.
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5. Microscopic Description of LCPD

How to define LCPD?

Several ways to attribute the calculated quantities to the LCPD have been proposed in the

literature. Perhaps the most trivial definition, inspired also by its name surface potential, is to

simply consider the electrostatic potential evaluated on a horizontal plane at a given distance

from the surface. A Gaussian convolution (with a width of the same order as the tip radius)

of this quantity was successfully used to reproduce the LCPD images of a random distribution

of surface charged impurities. [113] The spatial resolution is, however, far from a nm scale and

only slightly smaller than the tip radius. Mohn et al. [12] showed that the component normal to

the surface of the electric field evaluated on such a plane a few Å above a free naphthalocyanine

molecule looks very similar to the high resolution LCPD map of the molecule adsorbed on a NaCl

thin film imaged by exploiting a CO molecule-terminated tip-apex. The reason why instead of

the electrostatic potential its gradient is connected to the LCPD in this picture is that the tip-

apex is indeed polarized by the electric field arising directly from the charge distribution of the

molecule.

On the other hand, the nano tip could explicitly be included in the model. Model tip-

sample systems considered simply as fixed charges/dipoles [76] and/or polarizable atoms, [37,

77] have previously been used to predict correctly the contrast on a nanometer scale. To get

atomic resolution for more sophisticated surfaces, more realistic models and atomistic calculations

are required. In a joint experimental-theoretical study, Sadewasser et al. [36] showed that the

changes in the surface dipole moment and consequently in the chemical potential induced by

bond formation upon the approach of a nano-tip towards a semiconducting surface appear in the

same tip-sample separations where the atomic scale contrast in the KPFM signal is detected.

The reason is that the CPD depends on a variety of parameters, including on the work function

which is shifted due to the surface dipole. [114] Masago et al. [68] defined quantitatively the

LCPD as the difference between the Fermi levels of the tip and sample subsystems in a combined

system. This definition is essentially applicable for large separations where the overlap of the

wave functions of the tip and surface atoms is negligible. Using a perturbation approach, it was

also applied to smaller distances about 4 Å where the chemical interactions matter. [69]

Almost all proposed quantitative models [115, 37, 71, 68, 69, 4, 5, 86] are commonly based on

the experimental definition of the LCPD, namely finding a macroscopic bias which minimizes the

bias-dependent tip-sample interactions for each tip position. In all of the mentioned references,

this interaction is expressed as a quadratic function of the bias. The extremum of this parabola

deviates from the macroscopic VCPD and this deviation which is determined by the ratio of

the coefficients of the linear to the quadratic terms, as seen in Eq. (5.3). Different authors

have, however, tried to obtain this ratio from completely different approaches. In chapter 4, we

critically discussed the shortcomings of some approaches, and presented a multiscale framework
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5.1. Multiscale definition of LCPD

which takes into account all contributions, macroscopic and atomistic. Here, we introduce some

simplifications to obtain general expressions for the signals detected in the KPFM technique in

terms of induced changes in the dipole moment. Short- and intermediate-range contributions are

split. Based on this, we provide some microscopic insights into the problem of the atomic origin

of the LCPD contrast. In particular, it turns out that the distance dependence of the LCPD

contrast follows the dependence of the dipole moment. Comparable results are obtained for the

same setup used in the previous chapter, i.e. a realistic silicon nano-scale tip interacting with a

NaCl(001) sample treated by density functional theory (DFT).

5.1 Multiscale definition of LCPD

When the electrostatic force is to be compensated, the bias voltage VDC is close to the CPD and

thus the effective potential difference V = VDC − VCPD is small, and the short range force can

therefore be approximated to the second order by

Fµ(R;V )− Fµ(R;V = 0) ≃ a(R)V + b(R)V 2 + · · · . (5.1)

This in addition to the macroscopic capacitive force FM = 1
2C

′V 2 gives the total V -dependent

force1

F (R, V ) = a(R)V +
[1

2
C ′(s) + b(R)

]

V 2, (5.2)

where C ′ = ∂sC < 0 is the capacitance gradient, s equals z plus a constant and R ≡ (x, y, z) is

nominal position of the tip-apex with respect to surface (see Fig. 4.1).

The vertex of the parabola in Eq. (5.2) occurs at

VDC = − a

2b+ C ′
+ VCPD

rather than at VCPD. In the AM mode with ultra-small amplitude oscillations (where the compen-

sated signal is proportional to Eq. (5.2), see chapter 2) the position of the vertex is operationally

obtained either by sweeping VDC or via a feed-back circuit, and recorded as the LCPD map of

the scanned surface. In this case, the local deviation of LCPD from the macroscopic CPD,

L ≡ VLCPD − VCPD,

at some scan point R is

LAM(R) = − a

2b+ C ′
. (5.3)

1 Although we showed in chapter 4 that Fµ is almost linear when V changes in the range of few Volts, we keep
the quadratic term for the sake of completeness. Finally, it will be shown that the microscopic contribution to the
quadratic term originated from b(R) is dominated by the macroscopic counterpart.
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5. Microscopic Description of LCPD

The deviation is clearly both site- and capacitance dependent.

In the FM mode, on the other hand, where the minimized signal is the frequency shift and

thus proportional to the gradient of Eq. (5.2), one sees that the vertex occurs as

VDC = − a′

2b′ + C ′′
+ VCPD,

resulting in

LFM(R) = − a′

2b′ + C ′′
. (5.4)

Owing to their atomic origin, a and b decays beyond the short-range interactions while

for intermediate separations L approaches a constant value. Apart from b and b′, expressions

obtained for L are identical to those in chapter 4. For finite-amplitude oscillations, averaging

over the oscillation cycles is performed as explained in that chapter. However, the amplitude

should be of order of 1 Å or less to achieve atomic resolution.

5.1.1 Computational details

Our test microsystem consists of a model tip facing a flat slab illustrated in Fig. 5.1 and described

in more detail in chapter 4. The model tip is a 29-atom Si cluster while the (001) surface of the

NaCl sample is modeled with a two-layer slab, containing in total 200 ions. Periodic boundary

conditions are applied along the lateral directions while free boundary conditions are applied in

the vertical direction along which the electric field is also applied. The bottom layer of the sample

and the base (top) layer of the tip are frozen while other atoms are fully relaxed upon approaching

the tip to the sample in steps of 0.2 Å. The nominal tip-sample separation s is defined as the

distance between the tip apex atom and the sample surface ignoring the relaxations induced by

mutual interactions, and is therefore equal to the distance between the frozen layers minus a

constant.

As justified in chapter 3, the uniform vertical electric field Ez imposed on the microsystem for

a specified macroscopic bias voltage V is obtained from the solution of the classical electrostatic

problem for a realistic macroscopic AFM probe-sample model. The macroscopic sample is a

1-mm thick dielectric slab (ǫr = 5.9 for NaCl) grounded at the bottom. The probe is a 15 µm

high conducting cone with an opening angle of 15◦ terminated by a spherical cap of radius 20 nm.

The cone is attached to a cantilever approximated by a disk of radius 10 µm.

DFT calculations were performed within the local density approximation (LDA) using norm-

conserving HGH pseudopotentials [102] to represent the effect of the atomic cores on the self-

consistently determined valence electron density n. The BigDFT package, which relies on a

wavelet basis set to expand wave-functions on an adjustable grid in real space [30], was employed
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5.1. Multiscale definition of LCPD

Figure 5.1: Perspective view of the microsystem used in the DFT calculations showing Cl (green),
Na (violet), Si (yellow) and H (white) atoms. Red (lighter gray) and blue (darker gray) isosurfaces

of ∆n = ±0.002 e/Å
3
depict, respectively, electron excess and depletion generated due to tip-

sample chemical interactions at a nominal separation 3.2 Å from a Cl ion. The plane of the 2D
maps in the following figures is shown in gray and is perpendicular to the surface and passes
through a row of alternating Na and Cl ions and the tip apex.

to treat the combined as well as the isolated tip and sample. In order to obtain the difference

density

∆n = n− ntip0 − nsample
0 (5.5)

due to wave-function overlap and to the relaxation of the atomic cores in response to Hellman-

Feynman forces, computations for each separation were performed in the same grid for the com-

bined and the isolated subsystems. Contrary to common practice, the densities ntip0 and nsample
0

of the isolated (but relaxed separately) tip and sample were subtracted from the total density

n computed at the relaxed positions of the atomic cores in the interacting microsystem. Sim-

ilarly, n(E) is computed at core positions shifted by the imposed electric field E, and a fixed

computational grid was used when computing the difference

nind = n(E)− n(E = 0) (5.6)

induced by the electric field.

On the sample side, the valence electron density (which integrates to eight electrons per

NaCl pair) is almost entirely concentrated around the closed-shell Cl anions. As a consequence,

the most pronounced differences ∆n or nind have the appearance of the 3pz orbitals on Cl ions

75



5. Microscopic Description of LCPD

with their electron excess lobes pointing along the displacement vectors of the corresponding Cl+7

cores in the surface layer. Figure 5.1 shows the atomic arrangement of the microsystem together

with isosurfaces of ∆n. The mentioned orbitals appear on a few anions under the tip pointing

towards the dangling bond on the foremost Si atom.

5.1.2 Microsystem and charge density

Consider the microscopic region of the contact point containing all the atoms of tip and all the

atoms of the sample that contribute to the short range interactions.2 The charge density

ρ ≡ −n(r) +
∑

k

qkδ(r− rk), (5.7)

where n is the electron density while qk denotes the core charge of atom k at position rk, has

three contributions

ρ(r;R,E) = ρ0(r) + ∆ρ(r;R) + ρind(r;R,E). (5.8)

Here

ρ0(r) ≡ ρtip0 (r) + ρsample
0 (r)

is the charge density of a fictitious prototype system composed of the non-interacting nano-tip

and nano-sample with charge densities ρtip0 and ρsample
0 , respectively. Due to chemical interaction

of the nano-tip and nano-sample, a charge density ∆ρ(r;R) has been induced in the system as a

function of tip position R. If the system is subject to an external electric field E(r) (proportional

to the bias voltage), a charge density is also induced which is approximated to the first order by

ρind(r;R,E) = γ ·E.

The vector field

γ(r;R) ≡ ∂ρ

∂E

∣
∣
E=0

(5.9)

describes the local electric polarizability as a function of tip position R.

The electric field developed by the macroscopic bodies inside the microscopic region connects

the two length scales. This multi-scale feature is absent, for instance in the DFT-based tight

binding simulation method for KPFM [68]. In this work a R-dependent charge distribution

similar to Eq. (5.8) is used but the external electric field due to the macroscopic parts is missing.

2 V -independent forces, e.g. vdW interactions, do not enter into the play in this context.
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5.1. Multiscale definition of LCPD

Chemically exited changes in electron density and atom core positions

Figure 5.2 shows 2D maps of the total valence electron densities n (left) and the difference ∆n

(center), as well as integral of ∆n (right) on planes parallel to the surface for the tip apex facing a

Na (top row) and a Cl (bottom row) surface sites at a short representative separation, i.e. 3.2 Å.

For this separation, the microscopic force on the tip is close to maximum attraction above a

Na surface site, but slightly repulsive above a Cl surface site (see Fig. 4.3) in consistence with the

shown displacement patterns of the relaxed cores. At this close separation, density changes due

to incipient bonding of the tip apex atom to the nearest Cl anions are visible in the n maps, but

are quite prominent in ∆n. This strong change is responsible for the decrease of the system dipole

moment upon tip approach above a Cl site apparent in Fig. 5.4(b). The contribution of each Cl

3pz-like polarization to the dipole moment is to large extent cancelled by the displacement of each

Cl7+ core. Nevertheless, DFT results show that a net contribution about a factor seven smaller

is still left. Above the Na site, displacements of surface ions just aside the tip apex atom reveal

that they have been pushed away by non-electrostatic (Pauli) repulsion. This also happens when

the tip apex is above a Cl site for adjacent Cl anions along 〈110〉 directions which are not visible

in the cutting plane. Less pronounced and more distorted Si 3pz-like polarization clouds appear

around under-coordinated Si atoms at the apex and on the sides of the model tip. In the apex

vicinity, electron accumulation above the Na site switches to electron deficiency above the Cl site.

Further away, the Si4+ core displacements and the concomitant density changes have appreciable

components orthogonal to the surface normal, hence contribute less to the total dipole moment

than the apex region.

Electrically induced changes in electron density and atom core positions

Figure 5.3 shows 2D maps and contours of nind induced by an uniform external electric field

above a Na (left) and a Cl (right) surface sites. The maps clearly reveal the roughly three times

stronger electron accumulation lobes pointing towards the tip apex on the nearest Cl anions

compared to Na cations also seen in Fig. 5.1. In contrast to Fig. 5.2, more distant anions are

also polarized. Even those in the fixed bottom layer are polarized, albeit less by almost an order

of magnitude compared to those in the top layer, which show a pattern of core displacements

consistent with the field direction. In a thicker slab, internal layers would be even less polarized

owing to dielectric screening, which is however, underestimated by the LDA functional adopted

here.
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5. Microscopic Description of LCPD

Figure 5.2: 2D maps of the valence electron density n (left) and its deviation ∆n = n− n0 from
the superposed densities n0 of the isolated subsystems (center) and plane integrals

∫
∆ndxdy as

a function of z (right) at a nominal separation of 3.2 Å of the tip apex Si atom from a Na (top)
and Cl (bottom) ion. The map plane is normal to the surface and passes through the foremost
atom of the tip as shown in Fig. 5.1. ∆p illustrates the induced dipole moment. The horizontal
dashed lines indicate z with the minimum plane-integrated ∆n. In the difference maps dots show
the positions of atomic cores, while core displacements induced upon tip approach are depicted
by centered arrows magnified by suitable factors for better visualization. Contours of constant
n and ∆n values differing by a constant factor

√
10 allow one to recognize regions where those

quantities decay exponentially. The region with |∆n| < 10−4 e/Å3 is white, while red and blue
regions depict electron excess and depletion, respectively; the two first contour sets correspond
to ∆n = ±10−3.5,±10−3 e/Å3.
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5.1. Multiscale definition of LCPD
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Figure 5.3: 2D maps of the induced electron density nind by uniform external electric field (gray
arrows) corresponding to a macroscopic tip bias of 2 Volts for a nominal separation of 3.2 Å (for
which Ez = 0.316 V/nm) above a Na (left) and a Cl (right) surface site. Side curves show plane
integrals

∫
ninddxdy as a function of z. The horizontal dashed lines indicate z with the minimum

plane-integrated nind. Dots show the positions of atomic cores, while centered arrows scaled by
a factor of 50 show their field-induced displacements. The region with |∆n| < 10−4 e/Å3 is
white, while red and blue regions depict electron excess and depletion, respectively. The two first
contour sets correspond to ∆n = ±10−3.5 and ±10−3 e/Å3.

5.1.3 Dipole Moment

The dipole moment of the system changes in response to chemical interactions and electric field

in the same way as the charge density

p ≡
∫

rρ(r)dr

= p0 +∆p(R) + αE. (5.10)

p0 ≡
∫
rρ0(r)dr = p

tip
0 + p

sample
0 is the permanent dipole moment of the prototype system3 and

∆p(R) = −
∫
r∆n(r)dr +

∑

k qk∆rk arises from chemical interactions. The electrically induced

dipole moment is αE where the elements of the polarizability tensor are

αij(R) ≡ ∂pi
∂Ej

∣
∣
∣
E=0

=

∫

riγjdr ; i, j ∈ {x, y, z} (5.11)

where γ is defined by Eq. (5.9).

3 If the Fermi levels are not aligned in the isolated tip and sample subsystems, an offset correction is also
required.

79



5. Microscopic Description of LCPD

-2

-1

0

1

2

3

4

-8 -6 -4 -2 0 2 4 6 8

p
 [

au
]

E [x10-4au]

(a)
po+∆p

α=dp/dE

 0.0

 0.4

 0.8

 1.2

 1.6

-1

-0.8

-0.4

0

0.4

p
o
+∆

p
 [

au
]

∆
p

 [
au

]

(b)

po=1.2 [au]

 2.7

 2.8

 2.9

2.5 3.0 3.5 4.0 4.5 5.0

α
 [

x1
03 au

]

 

z [°A]

(c)
Na
Cl

Figure 5.4: (a) Calculated electric dipole moment normal to sample surface as a function of
electric field (note that 10−4 au ≈ 0.0514 V/nm). Symbols show the calculated values at field
strengths corresponding to V = 0,±2 Volts, while lines are drawn to help eye. Red color is used
for the tip on top of a Na ion and blue for on Cl. Each line corresponds to one tip position which
could easier be followed from (b). (b) p0 +∆p = p(E = 0) as a function of tip-height, calculated

as the intercept of lines in (a), where p0 = ptip0 + psample
0 and ∆p is the interaction-induced dipole

moment. 1 au ≈ 2.54 Debye. (c) Polarizability α = ∂p/∂E, calculated as the slope of lines in
(a). 103 au = 16.5 pN.nm3/V2.

The dipole moment in the z direction for the model system calculated with DFT is shown in

Fig. 5.4(a). The moment is almost linear versus the electric field strength when the bias voltage

applied to macroscopic electrodes varies from -2 to +2 V. First of all, this linearity verifies our

assumption that higher than the first order terms which are already omitted Eqs. (5.8) and (5.10)

are not significant.

The intercepts of these lines gives the dipole moment at zero bias (i.e. pz(Ez = 0)) for

different tip positions, as plotted in Fig. 5.4(b) as a function of separation from Na and Cl sites.

Indeed, this characterizes the chemically excited dipole moment which strongly depends on tip

position.

On the other hand, the slopes of the lines in Fig. 5.4(a) give the polarizability α, as plotted

in Fig. 5.4(c), which depends only weakly on the tip position. In this case α varies within 10%,

and hence we ignore the R-dependence of α.
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5.1. Multiscale definition of LCPD

5.1.4 Energy

The electrostatic energy of the microscopic system subject to an external electric fieldE = −∇φext
is

uµ =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′| drdr
′ +

∫

ρ(r)φext(r)dr. (5.12)

Using Eq. (5.8), terms with different V -dependencies are split:

uµ =
1

2

∫∫
[ρ0(r) + ∆ρ(r)][ρ0(r

′) + ∆ρ(r′)]

|r− r′| drdr′

+

∫
(
ρ0 +∆ρ

) (
φext + φind

)

︸ ︷︷ ︸

∝V

dr+

∫

ρind
(
φext +

1

2
φind

)

︸ ︷︷ ︸

∝V 2

dr. (5.13)

Finally, we obtain the quantities required to evaluate Eq. (5.3), i.e. a and b. Assuming that

φind =
∫ ρind(r

′)
|r−r′| dr

′ modulates φext only slightly, recalling that Fµ = −∂suµ and using Eqs. (5.1)

and (5.13), we obtain

a(R) = − 1

V

∂

∂s

∫

(ρ0(r) + ∆ρ(r))φext(r)dr, (5.14)

b(R) = − 1

V 2

∂

∂s

∫

ρind(r)φext(r)dr. (5.15)

Therefore the linear V -dependence is merely due to the interaction of the intrinsic (i.e. nonin-

duced) charge density with the external electric field of the macroscopic tip, while the quadratic

term is caused by the induced charges with this field. If one considers the involved sizes, and

as will also been shown later on, the latter is much smaller than the macroscopic capacitive

interactions.

5.1.5 Approximate expressions for local deviation from CPD

Atomic resolution is achieved only at small separations. In this case, the electric field underneath

the tip-apex is nearly uniform and parallel to the tip axis. This means that φext can be simply

approximated as a linearly decreasing function from V on the tip surface towards the sample

surface (our interested region is the contact point). The integrals in Eqs. (5.14) and (5.15) can

then be expressed in term of dipole moments:

a ≃ − 1

V

∂

∂s

[

(p0 +∆p)E
]

, (5.16)

b ≃ − 1

V 2

∂

∂s
(pindE). (5.17)

81



5. Microscopic Description of LCPD

p0 +∆p = p(E = 0) is the dipole moment at zero bias while pind is the induced dipole moment

due to applying an electric field E. We emphasize that a and b are V -independent, because

pind, E ∝ V . Therefore, for convenience, we introduce a purely geometrical function

E =
E

V

which is E(s) = 1/s in the simplest case, i.e. for a parallel-plane capacitor. In general, E is

the solution of the Poisson’s equation4 for the given macroscopic tip-sample system, as plotted

in Fig. 3.15 for our test system as well as for a spherical tip above a dielectric. Recalling that

pind = αE, where α = αzz is the polarizability of the system, we have

a ≃ −∂s(p0E)− ∂s(∆pE), (5.18)

b ≃ −∂s(αE2). (5.19)

5.2 Discussion

5.2.1 Linear terms: short- and intermediate range contributions

The two terms in Equation (5.18) can be considered as intermediate- and short range terms,

respectively. Accordingly, it is useful to have the corresponding contributions to L separated as

V
AM/FM
LCPD = L

AM/FM
ir + LAM/FM

sr + VCPD. (5.20)

This formula is valid for an ultrasmall amplitude oscillation; extension to finite amplitude is

straightforward. The intermediate-range term Lir is caused by the interaction of p0 with the

external field, while the short-range term Lsr by the interaction of the chemically induced dipole

∆p0 with the field.

Intermediate range shift: Lir

The permanent dipole moment p0 is not necessarily due a dipole, but also exists if a nonzero net

charge, either extended or point-like, exists for which p0 =
∫
rρ0dr (e.g. for a net point charge

q it gives p0 = qrq, Caused either by fixed point charges or dipoles, the shift introduced to the

background CPD is given by

LAM
ir =

∂s(p0E)
2b+ C ′

, LFM
ir =

∂2s (p0E)
2b′ + C ′′

. (5.21)

First of all, the shift depends strongly on the macroscopic parts via E and C. The shift also

depends on whether the charge/dipole is fixed on the sample surface or carried by the tip.

4 The macroscopic capacitance C(s) is also obtained by solving the Poisson’s equation.
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5.2. Discussion

If the charge/dipole is carried by the tip the shift is site-independent5 and hence does not

feel the electric field variations during the tip lateral motion, but it is distance-dependent because

it feels the change in the field due to vertical motion of tip. Such a shift which is determined

by the macroscopic parameters via E and C, both should be noticed when the LCPD maps are

interpreted and could be exploited to characterize a charged or polarized tip.6 [76]

In contrast, if the charge/dipole is on the surface (∂sp0 = 0), the intermediate shift changes

with the tip lateral position. The imaging resolution of such an object is strictly determined by

the tip geometry and its separation from the surface. If the tip is sharp and close, the surface

charge/dipole senses well the variation of E developed by the tip during its lateral motion. The

size of the spot appearing in the LCPD map is therefore of the same order as the effective

width of the field. In 3.1.1 we showed that the latter, if considered to be the field half-width, is

considerably smaller than the tip radius. Even if the spot size is an order of magnitude smaller

than the tip radius id is still somehow larger than the atomic resolution.

Short range shift: Lsr

The chemical interaction (and bond formation) between the foremost atoms of the tip and the

sample change the dipole moment as ∆p. This short range term, which is also affected by the

electric field and macroscopic capacitance, is responsible for the atomic-scale contrast. Again, a

sharp tip over a conducting surface generates rapidly spreading field lines and the contrast in the

LCPD is therefore enhanced. The short range shifting away from LLR + VCPD is given by

LAM
sr =

∂s(∆pE)
2b+ C ′

, LFM
sr =

∂2s (∆pE)
2b′ + C ′′

. (5.22)

5.2.2 Capacitive terms: microscopic versus macroscopic contributions

Equation (5.19) can be rewritten as b ≃ −2αEE ′ provided that the polarizability is constant, as

seen in Fig. 5.4(c) for our test system for which it is about 45 pN.nm3/V2. From the inset of

Fig. 3.15 for a realistic macroscopic probe-sample we know E ≃ 0.15 nm−1 and E ′ ∼ −0.049 nm−2.

Equation (5.19) then gives b ≃ −2αEE ′ = 0.66 pN/V2, namely more than two orders of magnitude

smaller than −C ′ ≃ 135 − 140 pN/V2 at the same separations (see Fig. 4.5(b)). We conclude

that 2b+C ′ ≈ C ′. Similarly, for the FM mode where one needs 2b′+C ′′, we see that for our test

system C ′′ ≃ 15 − 20 mN/m.V2 (see Fig. 4.5(c)) dominates b′ ≃ 0.87 mN/m.V2 by more than

an order of magnitude. Therefore, both in AM and FM modes, the macroscopic quadratic term

5For a point charge q fixed to the tip ∂p0/∂s = q, because ∂zq/∂s = 1. Then a = qE+qzqE
′ is site-independent

but s-dependent.
6 Equation (5.21) becomes identical to Eqs. (1) and (2) in Ref. [76] where polarizability and chemical interactions

are absent (α,∆p = 0), E = 1/s and conducting sphere-plane approximation is used.
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5. Microscopic Description of LCPD

well dominates its microscopic counterpart. This result is in contrast to the finding/assumption

of Refs. [37, 68, 69]. For materials different from our test case, α could be larger than that of our

Si-NaCl system, but it is unlikely that it can compensate this two-order of magnitude difference.

However, to make it applicable to potential problems where this is not the case, we still keep both

quadratic terms in our formalism. Even if b(R) (or its gradient in the FM mode) is very large,

since α is almost constant, the atomic-scale variation of the LCPD is still essentially determined

only by a(R).

In fact, the last term in Eq. (5.13) can be considered as the energy of a microscopic capacitor

made of the polarizable atomic contents in the gap of the macroscopic tip-sample capacitor. The

capacitive energy is quadratic versus the bias and is comes from the interaction between the

electric field with the charges it induces on the macroscopic bodies and microscopic contact region.

The much larger physical size of the former suggests that it dominates the latter. However, this

is not necessarily also valid for the vertical gradients.

5.3 Case Study

5.3.1 NaCl(001) surface

The characteristic variation of ∆p when s < 5 Å in Fig. 5.4(b) suggests that the atomistic origin

of the LCPD contrast comes from the chemically induced dipole moments. We plot in Fig. 5.5

LAM =
(pE)′
C ′

,

where the dipole moment p is calculated when E = 0. Evaluating the latter expression is much

easier and less computationally demanding compared to minimizing FM + Fµ as explained in

chapter 4 (see Eq. (4.9) and plotted in Fig. 4.6(a) (it is also plotted here for comparison). All

other panels of Fig. 4.6 could be reproduced with such a very good agreement because the basic

quantity i.e. the slope a is already approximated very well using Eq. (5.18).

Figure 5.5 resembles Fig. 5.4(b) with a very similar general trend. In other words, tracking

the variation of ∂s∆p with tip position can already provide a qualitative picture of the LCPD

variation. But to obtain a quantitative value, it should be combined with E and C ′ in the proposed

way.

5.3.2 Copper phthalocyanine (CuPc) molecule

As the next case study, we compare the calculated LCPD with the experimental result for a

copper phthalocyanine (CuPc) molecule. The molecule is adsorbed either on the Cu(111) surface

or on a two-layer NaCl film coating it. These are modeled in simulation as slabs of four Cu
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Figure 5.5: Shift in CPD calculated from LAM = (pE)′/C ′ (filled symbols) as a function of tip-
height from Na and Cl sites on NaCl(001) surface. The same quantity calculated using Eq. (4.9)
and plotted in Fig. 4.6(a) is also shown by blank symbols for comparison. Since C ′ is identical
in both cases, the excellent agreement demonstrates that the basic quantity a is approximated
very well by Eq. (5.18); Consequently, all panels of Figs. 4.6 and 4.7 are reproduced (not shown)
using this approximated a.

layers and two NaCl layers, respectively. The tip apex is modelled with a 5-atom pyramid Cu

cluster (see Fig. 5.6) mimicking a tip which has picked up Cu atoms. Tip is laterally moved

along lines parallel to the symmetry axes of the molecule at a constant distance of 2.0 Å from the

molecular plane. Since the relaxed geometry of the molecule on either surface is curved with lobes

approaching the surface, the tip height is measured from the central Cu atom of the molecule.

The experiment [116] was performed in the FM mode with an ultrasamll amplitude oscillations

(tip vertical moment is always witnin 0.2 Å) and hence we do not need to average over a cycle;

see 4.3.3.

The shift from CPD is calculated by

LFM =
(pE)′′
C ′′

.

Finite difference is used to calculate vertical gradients from the values on two adjacent separations

±0.1 Å away. Equation (3.17) was used7 with the appropriate approximation for thin films as

explained in 3.3.1, namely s→ s+ h/ǫr where ǫr = 5.9 for two-monolayer NaCl film of thickness

h = 0.56 nm. We used R = 20 nm as the tip radius and s = 0.7 nm for its separation from the

substrate.

7 Within the approximation that Hudelt et al. [25] used, C′′ = 2πǫ0R[1/s2 − 1/(R+ s)2] and E = 1/s.
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Figure 5.6: Shift in CPD calculated from LFM = (pE)′′/C ′′ above a CuPc molecule absorbed on
NaCl two-layer film. The tip is modeled by th pyramid Cu5 cluster and is moved along a line
parallel to the symmetry axis of the molecule as indicated in the side view shown on the right.

The calculated shift from CPD, LFM, for the CuPc on the NaCl layers is plotted in Fig. 5.6.

As in the experiment, it reveals a peak on top of the central Cu atom and two valleys aside,

showing an excellent agreement within sub-nm lateral resolution.

For the case of CuPc adsorbed on the Cu(111) surface, LFM is shown in Fig. 5.7. The relaxed

geometry of the molecule over the surface, shown in Figure, no longer shows fourfold symmetry.

Two wings of the molecule get aligned with the [112̄] direction of the Cu(111) surface such that

the center of their hexagons, like the central Cu atom, lie on the bridge sites of the surface. The

two other are aligned with the [11̄0] direction and the hexagons are located on the surface hollow

sites. Note that one of the hollow sites is fcc while the other is hcp. Such asymmetry, reflected

also in imaged LCPD, is well seen in the calculated LCPD plots. The range of the variation of the

LCPD throughout the molecule is a few times smaller compared to the NaCl case, in agreement

to the experiment.

Conclusions

In summary, the atomic-scale deviation from the macroscopic CPD was studied by splitting the

electrostatic energy into contributions based on their dependences on the bias voltage and on their

short- or intermediate range character. The curvature of the force-bias parabola is determined

by the bias-induced charges with the electric field E caused by the biased tip, whereas the linear

term which shifts the vertex and thus the LCPD is mainly determined by the interaction of
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Figure 5.7: Same as Fig. 5.6 but for the CuPc molecule absorbed on Cu(111) surface. The scan
lines are parallel to the molecular axes as shown on the top view of the relaxed geometry on the
right.

chemically excited charges with the field. The latter is simply given by pE where p is the total

dipole moment in absence of E. We showed how the LCPD image, which is believed to be the

local contact potential difference between the tip and the probed sample, is a related to both the

charge distribution at the contact point and the tip-sample geometry. The values predicted by

the proposed simple expressions show excellent qualitative agreement with experiment.
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Chapter 6

Metrics for measuring distances in

configuration spaces

Quantifying dissimilarities between molecular structures is an essential problem encountered in

physics and chemistry. Comparisons based on structural data obtained either from experiments

or computer simulations can help identifying or synthesising new molecules and crystals. A

broad diversity of structures can only be obtained if identical configurations are eliminated. It is

therefore highly desirable to have numerically affordable fingerprints that allow in a reliable way to

detect identical configurations in the presence of noise which can either arise from experimental

measurements or from structural relaxations in numerical simulations. Maintaining a broad

diversity of structures is also a prerequisite for efficiency in any structure prediction method

in material science and solid state physics [117, 118, 119, 120, 121] and conformer search in

structural biology and drug discovery. [122, 123, 124, 125, 126, 127, 128] In the latter case,

most of the proposed approaches [129, 130, 131, 132] use approximate methods that reduce

the structure description information, e.g. by excluding the side chains in a protein or a two

dimensional representations of the molecule, [133] to speed up the searching procedure. [134] In

the case of solid state physics, fairly accurate dissimilarity measures are required. Within the

structure prediction methods based on the evolutionary algorithms, [117] the required diversity of

populations can only be maintained if strongly similar configuration are eliminated. Within the

Minima Hopping structure prediction method, [118] an identification of identical configurations

is required as well to prevent trapping in funnels that do not contain the global minimum. Some
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6. Metrics for measuring distances in configuration spaces

machine learning approaches [135] are also based on similarity measures.

It is natural to characterize the dissimilarity between two structures p and q by a real

number d(p, q) ≥ 0. In order to give meaningful results d(p, q) should satisfy the properties of a

metric, namely

• coincidence axiom: d(p, q) = 0 if and only if p ≡ q,

• symmetry: d(p, q) = d(q, p),

• triangle inequality: d(p, q) + d(q, r) ≥ d(p, r).

The coincidence axiom ensures that two configurations p and q are identical if their distance

is zero, and vice versa. The triangle inequality is essential for clustering algorithms. If it is not

satisfied, then it could happen that a configuration that belongs to one cluster in configuration

space is also part of another cluster even though the distance between the two clusters is very

large in the configuration space.

Since measuring distances between configurations is required in many applications, a con-

siderable effort has been made to find cheap, yet reliable, distance measures that are not affected

by the alignment of the two structures whose distance is being measured and by the indexing

of the atoms in the structures. In the field of chemoinformatics a large number of different de-

scriptors have been proposed to establish relations between structure and functionality. [136] For

example, a structure can be represented by a binary string whose elements are set depending on

whether some specific patterns exist in the structure. Then the similarity between structures is

described by the Tanimoto coefficient. [132, 137] Another class of approaches is based on a gener-

alizations of standard physical descriptors such as coordination numbers. Cheng et al. [138] used

for instance the statistical properties (average, variance and bounds) of the coordination num-

bers while Lee et al. [139] used their weighted histograms in order to characterize the structures.

Histogram-based methods were also used for the identification of crystalline structures. [140] All

these methods have several tuning parameters such as the width of histogram bins or cutoff radii

for the determination of coordination numbers [139] and their performance can critically depend

on the choice of these parameters.

In this work we will introduce a family of parameter free metrics for measuring distances

in configuration spaces. We show that these metrics fulfil all the mathematical requirements and

demonstrate their excellent performance for a representative set of benchmark systems including

covalent, metallic (simple or transition), ionic and organic structures. In the case of periodic

systems, additional complexity comes into play because of non-uniqueness of the elementary cell.

In the present work, our focus is on isolated molecules. The configurations in our test set are

metastable low energy configurations obtained during a structure search using the Minima Hop-
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6.1. RMSD

ping Method [118] on the density functional theory (DFT) level as implemented in the BigDFT

code. [30]

6.1 RMSD

A configuration of n alike atoms is uniquely represented by R ≡ (r1, r2, . . . , rn) ∈ R
3×n, where

the column vector ri represents the Cartesian coordinates of atom i. A distance based on the

naive Frobenius norm

‖Rp −Rq‖ =
( n∑

i=1

‖rpi − r
q
i ‖2

)1/2
(6.1)

can not be used to compare two configurations p and q, because it is not invariant with respect to

translations or rotations of one configuration relative to the other. For this reason the commonly

used root-mean-square distance (RMSD) is defined as the minimum Frobenius distance over all

translations and rotations. By minimizing
∑n

i ‖r
p
i + d − r

q
i ‖2 with respect to the translation

vector d one obtains
∑n

i (r
p
i + d− r

q
i ) = 0, i.e. the required translation is the difference between

the centroids d = 1
n

∑n
i r

q
i − 1

n

∑n
i r

p
i . Therefore we will assume in the following that all ri are

measured with respect to the centroids of the corresponding configuration which allows us to

drop the minimization with respect to the translation d. Then, finding the rotation U around

the common centroid which minimizes

RMSDl(p, q) =
1√
n
min
U

‖Rp −URq‖ (6.2)

is a local minimization problem and hence we denote this version of the RMSD by RMSDl. The

Kabsch algorithm [141] provides the solution to this problem based on the Euler angles. We

perform the local minimization by an alternative method based on quaternions [142] which is

more stable and numerically very cheap. [143, 144]

The RMSDl is however not invariant under index permutations of chemically identical

atoms. If the configuration p and q are identical, Eq. (6.2) will be different from zero if we

permute for instance in Rq the positions r
q
i and r

q
j of atoms i and j. The minimum Frobenius

distance obtained by considering all possible index permutations for an arbitrary rotation U is

RMSDP(p, q) =
1√
n
min
P

‖Rp −URqP‖, (6.3)

P being an n × n permutation matrix. This assignment problem is solved in polynomial time

using the Hungarian algorithm. [145] However, what is really needed is a solution of the combined

problem of the global minimization over all rotations and permutations, namely

RMSD(p, q) =
1√
n
min
P,U

‖Rp −URqP‖. (6.4)
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6. Metrics for measuring distances in configuration spaces

The global minimum RMSD fulfills all the properties of a metric. The coincidence and symmetry

properties are easy to see. Using the standard triangle inequality, the proof of the triangle

property is as follows:

RMSD(p, q) +RMSD(q, r)

=
1√
n
min
P,U

‖URpP−Rq‖+ 1√
n

min
P,U

‖Rq −URrP‖

=
1√
n
‖UpqR

pPpq −Rq‖+ 1√
n
‖Rq −UrqR

rPrq‖

≥ 1√
n
‖UpqR

pPpq −Rq +Rq −UrqR
rPrq‖

≥ 1√
n
‖Rp −UrpR

rPrp‖

= RMSD(p, r)

where min
P,U

‖URpP−Rq‖ is shown by ‖UpqR
pPpq −Rq‖ for convenience.

6.1.1 Iterative global minimization of RMSD

Since U and P are not independent, no algorithm exists which can find the global RMSD within

polynomial time. Just doing a search by alternating rotation and permutation steps using local

minimizations and the Hungarian algorithm, respectively, is not guaranteed to converge to the

global minimum with a finite number of steps. Trying out all possible permutations would lead

to a factorial increase of the computing time with respect to n and this approach is therefore not

feasible except for very small systems. We use a two-stage method for finding the global RMSD

with moderate computational effort. The flowchart of the algorithm is depicted in Fig. 6.1 with

the two different stages shown on the left and right sides. In the first stage we try to find the

optimal global alignment of the two structures being compared. We first align two of the three

principal axes of inertia of one configurations with the corresponding axes of the other one. A

trial alignment is always followed by the application of the Hungarian algorithm to find the index

permutation that gives the smallest RMSD. [146] The index matching in the Hungarian algorithm

is done in the Cartesian space by associating to each atom i ∈ p the closest atom j ∈ q such that
∑n

i ‖r
p
i − r

q
j‖ is minimal. In other words, the columns of the n × n matrix made by ‖rpi − r

q
j‖

are reordered such that its trace is minimal. The implementation of the Hungarian algorithm

based on Ref. [147] finds the optimal index permutation within polynomial time and with a small

prefactor. After this initial index matching, a rotation using quaternions is applied to refine the

molecular alignment. If the required rotation is significant, the atomic index assignment should

be repeated. This whole procedure is iterated until the atomic indices remain fixed after applying
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6.1. RMSD

Table 6.1: Number of remaining distinct configurations, average RMSD and average CPU-time
(on single 2.4 GHz Intel core) for superimposing one pair of configurations at different steps of the
two-stage RMSD global minimization. In the axes alignment (AA) stage, the principal axes of
inertia as well as three molecular sets of axes obtained from vectorial atomic fingerprints are used.
Every molecular alignment is always followed by the application of the Hungarian algorithm to
find the optimal index permutation. In the Monte Carlo (MC) stage, random permutations are
tried out which are followed by local minimization to get the optimal rotation. Because of the
stochastic nature of the MC part, the reported values might change in different runs.
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6. Metrics for measuring distances in configuration spaces

Figure 6.1: Flowchart of the algorithm of global minimization of RMSD in two major steps. The
loop on the right runs over several sets of axes and matches atoms of a pair of configurations
via aligning their molecular axes. The left loop shows the Monte Carlo (MC) permutation of
identical particles while the parameters are dynamically tuned to obtain an acceptance rate close
to 50%. The dashed line means that the right loop can be excluded.
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the rotation. This procedure has allowed us to detect all identical configuration in this first stage,

as seen in Table 6.1.

Since all the global alignment methods are empirical and can fail we apply several of them

successively. After the first global alignment based on the principal axes of inertia we apply some

more alignments steps based on axes which are derived from local atomic fingerprints (see next

section). We set up an overlap matrix with s and p type Gaussian orbitals (see Appendix A)

and find its principal eigenvector (i.e. the eigenvector with the largest eigenvalue; see Fig. A.1).

Defining wi = sipi, where si and pi are respectively s- and p-type components of the principal

eigenvector belonging to atom i we can form two axes W and W′

W =

n∑

i

wi, (6.5)

W′ =
n∑

i

wi × ri (6.6)

where the sum runs over the atoms, ri represents the positions of atoms with respect to the

center of mass and × denotes the cross product. First, we align Wq with Wp and then rotate q

around it such that the plane made by (Wq,W′q) coincides with the plane made by (Wp,W′p).

Depending on the width of the Gaussian used to construct the overlap matrix, several sets of axis

may be constructed and tried one-by-one in this stage. If the alignment according to a new set of

axes results in a smaller RMSD, we accept it. In Table 6.1 we show the results of the alignment

of the principal axes of inertia as well as three sets of (W,W′) axes obtained by three different

Gaussian widths α.

If a small enough RMSD is not found, we enter into an iterative stage (see left side of

Fig. 6.1) where randomly chosen atoms are permuted within a thresholding Monte Carlo (MC)

approach followed by applying the optimal rotation. In the thresholding MC step, two chemically

identical atoms are selected according to a uniform random distribution. If by swapping them the

RMSD is reduced, the permutation is accepted. To exclude the possibility of getting stuck in a

local minimum, the permutation is also accepted if it causes the RMSD to increase by less than an

adjustable parameter ξ. This parameter is dynamically updated at each step: if the acceptance

rate so far is less/greater than 50%, then ξ is increased/decreased by a factor of 1.1. In this

way, the average acceptance rate approaches 50% during the minimization. The iteration stops

when the global minimum RMSD does not decrease any more for a large number of iterations.

As seen in Table 6.1, the number of required MC iterations depends on the system size. For

instance, for the biomolecule 104 MC iterations (which take on average 0.13 second on a single

2.4 GHz Intel core) are sufficient to find the global minimum RMSD between two configurations

of this molecule. For a more systematic investigation of the scaling, we take the global minima of

the Lenard-Jones (LJ) clusters with different sizes and apply random displacements of the unit
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Figure 6.2: Number of MC iterations (averaged over 10 pairs of LJ clusters) to obtain the
permutations corresponding to the global minimum of RMSD a function of number of particles
n. The dashed line shows 41 exp(n/4) which is obtained by least square fit. For comparison, n!
is plotted with solid line.

magnitude to every atom (i.e. the RMSD between the randomized structures is almost one in the

LJ length units). The averaged number of required MC iterations to get the asymptotic value of

the RMSD (as obtained by 107 iterations), as a function of the cluster size n is shown in Fig. 6.2.

Even though the number of iterations increases exponentially it is several orders of magnitude

smaller than the number of possible permutations, i.e. n!.

6.2 Fingerprint Distances as Metrics

While the RMSD can be considered as the most basic quantity to measure the dissimilarities,

finding the global minimum RMSD is numerically costly. Only in case that two structures are

nearly identical the global minimum of RMSD is calculated with a polynomial computational time

because no MC permutation is then required. Otherwise, even if the above described algorithm is

used, the computational time increases exponentially with the number of permutable particles. In

the following we will therefore introduce a family of metrics which are cheaper to calculate than

the global RMSD yet in good agreement with it. We consider symmetric N ×N matrices whose

elements depend only on the interatomic distances rij = ‖ri − rj‖ of an n-atom configuration.

Vectors V containing eigenvalues of such a matrix form a configurational fingerprint which allows
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6.2. Fingerprint Distances as Metrics

to identify a structure. The normalized Euclidean distance

∆V(p, q) =
1√
N

‖Vp −Vq‖ (6.7)

measures the dissimilarly between p and q with no need to superimpose them. Although we

use the eigenvalues to form the vector V for describing entire structures throughout this work,

one can also fill the vector V by the elements of selected eigenvectors. Then each element of V

corresponds to an atom and the ensemble belonging to one atom forms an atomic fingerprint or

descriptor of the local environment of the atom. For instance, if the principal eigenvector of the

overlap matrix of one s and one p-type GTO per atom is used (as in Eqs. (6.5) and (6.6)), each

individual atom is accordingly described by four numbers, as depicted in Fig. A.1

Since the matrix depends only on interatomic distances, the same holds true for the eigen-

values and eigenvectors, and V is thus invariant under translations, rotations and reflections of

the configuration. In order to make ∆V also independent of the atomic indices, the elements

of each V are sorted in an ascending order. This sorting can introduce discontinuities in the

first derivative of the fingerprint distance with respect to changes in the atomic coordinates (e.g.

when there is a crossing of eigenvalues) but does not destroy the important continuity of the

fingerprint distance itself.

The coincidence axiom for a configurational fingerprint is satisfied if the dimension N of the

matrix is sufficiently large and if therefore the resulting fingerprint vector is sufficiently long. We

show in Appendix C that how a hypersurface of constant fingerprint can be constructed if the

length of the fingerprint is short. What we would like to show however is the opposite, namely

that no distinct configurations with identical fingerprints exist if the fingerprint is long enough.

Since the fingerprint distance is a non-linear function, it can in principle not be excluded that

two distinct configurations with identical fingerprints exist even if the fingerprint vector is longer

than the threshold value. Since we recommend for a unique identification fingerprints which

are considerably longer than the threshold value, namely fingerprints of length 3n or even 4n it

is however extremely unlikely that such configurations exist and the coincidence axiom can be

taken to be fulfilled. To confirm this assumption numerically as well, we did extensive numerical

searches where we tried to find a second configuration which has a fingerprint which is identical

to the fingerprint of a reference configuration. The initial guess for the second configuration was

random and then this second configuration was moved in such a way as to minimize the difference

between the fingerprints. All these numerical minimizations lead to non-zero local minima, i.e.

we were not able to find numerically any violation of the coincidence axiom for vectors of length

3n− 3 based on the Hessian matrix and vectors of length 4n based on an overlap matrix with s

and p orbitals.

Even though the eigenvalue vector is much shorter than the vector containing all matrix
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6. Metrics for measuring distances in configuration spaces

Figure 6.3: Correlation of the pairwise Euclidean distances based on vectors consisting either
of all of the sorted elements of the overlap matrix (a) or eigenvalues of this matrix (b) and the
RMSD for 1000 metastable configurations of a 26 atom gold cluster. The gap in the fingerprint
distances between identical and distinct configuration is larger if eigenvalues are used (panel a).

elements, the fingerprint distances based on the eigenvalues are better than those obtained by

sorting all the matrix elements depending on interatomic distances into a vector. One can in

some cases construct distinct so-called homometric configurations [148] for which the fingerprint

vectors of the sorted matrix elements are identical whereas the eigenvalue vectors are not identical

and allow thus to distinguish between them. In addition, our empirical results of Fig. 6.3 show

that the gap between identical and distinct pairs is larger for the eigenvalues than for the sorted

matrix elements. Because the geometry relaxations were stopped when the force on each atom is

within 0.01 eV/Å, identical configurations are in practice identical only up to some finite preci-

sion,i.e the atomic positions of the configurations are contaminated by noise. Two configurations

are considered to be identical (i.e. belong to the same cluster) if their distance is below a cer-

tain threshold. An unambiguous threshold for distinguishing between distinct and non-distinct

configurations can only be found if a well detectable gap exists in the distance space. Hence the

existence of a large gap is an important benefit of a fingerprint method.

In an application to Ni clusters Grigoryan et al. [149] used the sorted interatomic distances

to find the similarities between an (n − 1)-atom cluster and (n − 1)-atom parts of an n-atom

cluster. This similarity measure also leads to a gap which is smaller than the one obtained from

eigenvalue based fingerprints of either the corresponding rij matrix or the matrices proposed in

this article (cf. Figs. 6.4 and 6.5). So it seems to be a general feature that fingerprints based on

the eigenvalues are better than those based on sorted matrix elements.

In the following we will describe several matrix constructions which can be used for finger-

printing. These matrices are closely related to measurable quantities that are traditionally used

by experimentalists to identify structures.
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6.2. Fingerprint Distances as Metrics

Figure 6.4: Correlation of Euclidean distance of the sorted interatomic distances with RMSD for
the metastable configurations of the Si32 and Mg26 clusters. The gap that allows to discriminate
distinct from non-distinct configurations is smaller in both cases compared to the fingerprints
based on eigenvalues.

6.2.1 Hamiltonian Matrix

Emission and absorption spectra arise from transitions between discrete electronic energy levels.

Each element has its characteristic energetic levels and therefore atomic spectra can be used

as elemental fingerprints. When atoms are assembled into structures the electronic states of

the constituent atoms are modified depending on the arrangement of the atoms. A computa-

tional analogue to electronic energy levels probed by various spectroscopic experiments are the

Kohn-Sham (KS) energy eigenvalues, even though they do not represent the physical excitation

energies. Since the Hamiltonian matrix depends only on the interatomic distances, the sorted KS

eigenvalues are invariant to translations, rotations, reflections and permutations of atoms.

We examine fingerprints that are based on the occupied KS eigenvalues only as well as

fingerprints that are based both on the occupied and unoccupied eigenvalues. The former were

obtained from the self-consistent eigenvalues calculated in a large wavelet basis, [30] whereas, for

simplicity, the latter were obtained from the non-self-consistent input guess eigenvalues calculated

in a minimal Gaussian type atomic orbitals (GTO) basis set for a charge density which is a

superposition of atomic charge densities. The configuration distances obtained from the occupied

KS eigenvalues, denoted by ∆KS(p, q), show an excellent correlation with the RMSD for all three

test sets, see Fig. 6.5. Even though the vector VGTO is in all cases longer than the vector VKS

(e.g. two times longer in case of the Si cluster), fingerprint distances based on the former do not

better correlate with the RMSD than fingerprint distances based on the latter, although, as will

be discussed in Sec. 6.3, the coincidence theorem is not satisfied.
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6. Metrics for measuring distances in configuration spaces

Figure 6.5: Comparison of RMSD based distances between configurations with fingerprint based
distances. The fingerprints are based on the eigenvalues of the Kohn-Sham Hamiltonian ma-
trix (first row), the overlap matrix (second row) and the Lennard-Jones Hessian matrix with
the RMSD for sets of semiconductor (silicon), simple metal (magnesium), organic (6-benzyl-1-
benzyloxymethyl-5-isopropyl uracil), transition metal (silver), covalent fullerene-type (C48B12)
and ionic (calcium fluoride) clusters. Shown on top are representative configurations. Each set
consists of a few hundred configurations, all being low-energy local minima within DFT, except
those of Ca10F20 which are local minima of the Tosi-Fumi potential (parameters from Ref. [150]).
For the latter system the Kohn-Sham eigenvalues are obviously not calculated. For the five sets
where Kohn-Sham eigenvalues can be calculated their number is determined by the occupied
valence states and is given, respectively from left to right, by 64 = 2n, 26 = n, n < 70 < 2n,
26 = n and n < 114 < 2n, n being the number of atoms. For the overlap matrix, results for
both s-only (red) and s-and-p (green) overlap matrices are shown, leading to fingerprint vectors
of lengths n and 4n, respectively. For the Hessian matrix 3n− 3 eigenvalues are non-zero. Even
in the cases where the length of the fingerprint vector is shorter than 3n− 6 the agreement with
the RMSD is good and allows always to identify distinct and non-distinct configurations.
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6.2.2 Overlap Matrix

A matrix which has similar properties as the Hamiltonian matrix is the overlap matrix (OM)

expressed in terms of GTOs. Contrary to the Hamiltonian, all elements of the OM can easily be

calculated analytically (Appendix A). In the simplest case where only uncontracted s-type GTO’s

are used, the resulting fingerprint consists of n scalars. Information about the radial distribution

can be incorporated in the OM by adding p and d type GTO’s. In this way the configurational

fingerprint vector becomes also longer than 3n − 6 and the coincidence axiom is expected to be

satisfied. By including both s and p type GTO’s in the overlap matrix, the number of eigenvalues

becomes 4n and all of our attempts to reduce ∆V(p, q) to very small values failed when p and q

are distinct.

If the fingerprint is used to calculate distances between our test set of local minima con-

figurations, it turns out that adding p-type orbitals gives only a marginal improvement, in the

sense that the distance gap separating identical and distinct configurations gets larger. Adding

additional d-type orbitals has virtually no effect. This is related to the fact that it is very unlikely

that two local minima lie on the hypersurface that leaves the fingerprint invariant. The width of

the GTO’s was in all our tests given by the covalent radius of the atom on which the GTO was

centered.

6.2.3 Hessian Matrix

The vibrational properties, which are frequently used experimentally to identify structures, are

closely related to the Hessian matrix which consists of the second order derivatives of the energy

with respect to the atomic positions. The vibrational frequencies are up to a scaling factor related

to the mass of the atoms equal to the square root of the eigenvalues of the Hessian matrix. This

matrix also belongs to the class of matrices with the desired properties. Unfortunately the

calculation of the Hessian is rather expensive in the context of a DFT calculation and can also

be cumbersome with sophisticated force fields. We will therefore not further pursue approaches

based on an Hessian which is calculated within the same high level method as the energy and

forces. It however turns out that eigenvalues or eigenvectors of the Hessian matrices which are

derived from another cheaper potential such as the LJ potential give also good fingerprints. This

is shown in Fig. 6.5 for our six test systems after the lengths were scaled to the equilibrium

bond-length of the LJ potential.

6.3 Discussion

Various n× n matrices, have been used previously to characterize molecular configurations. The

definition of a molecular descriptor can be based on either eigenvalues, spectral moments (defined
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6. Metrics for measuring distances in configuration spaces

Figure 6.6: Two distinct configurations of the Si5 cluster with an identical set of SPRINT coordi-
nates, i.e. 3.59 (green), 4.37 (red), 4.85 (blue), using the parameters given in the Supplementary
Material of Ref. [151]. The planar structure shown in (a) is a local minimum in LDA-DFT. The
numbers show the bond-lengths in Å.

as the kth power of the eigenvalues, where the natural number k ≤ n is then the order of the

moment) or even the elements of the eigenvector associated with the largest eigenvalue (i.e.

the principal eigenvector) of many matrices e.g. adjacency, Laplacian, distance and reciprocal

distance, distance-path, etc.; for review see Ref. [136]. The contact matrix from the graph

theory exhibits discontinuities when the atomic distances cross the cutoff radius. By introducing

a smooth cutoff these discontinuities disappear and the resulting matrix has been used as a

fingerprinting tool in the SPRINT method. [151] Presumably not only the contact matrix but

also other matrices from spectral graph theory such as the Laplace matrix could be used in a

similar way. We did for instance not find significant differences in performance between the

contact and Laplacian matrices. We found however that fingerprints based on either of them

are rather sensitive to the form of the smooth cutoff function. Tuning of the parameters of

this cutoff function is therefore required to obtain good results. In both cases, the resulting

atomic fingerprints are real scalars which mostly contain information about the number of nearest

neighbours of each atom and might be insufficient to characterize the chemical environment of an

atom. Better chemical environment descriptors can however be obtained by adding information

about the radial distribution of the neighbours. [152, 153] The Coulomb matrix is another matrix

whose eigenvalues have been used to characterize configurations. [135] The off-diagonal elements

of this n-by-n matrix are the pairwise Coulomb repulsions qiqj/rij , while the diagonal is filled

with q2.4i /2, qi being the core charge of atom i.

As discussed before, such a fingerprint of length n is not long enough to satisfy the coin-

cidence axiom and can thus fail to detect structural differences. This has already been shown

for the Coulomb matrix. [154] We show in Fig. 6.6 two distinct configurations of a Si5 cluster

which have identical sets of SPRINT coordinates. Note that the Si atoms with identical SPRINT

coordinates in the configuration shown in Fig. 6.6(b), have very different environments. This

shows that SPRINT, like any other n×n matrix-based fingerprint, fails to describe uniquely the

entire structure and/or the chemical environment of an atom.
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6.4 Summary

In summary, we have shown that the RMSD, the most natural measure of dissimilarity between

two configurations, satisfies the properties of a metric when it is obtained by a global minimization

over all rotations and index permutations. We have presented a Monte Carlo method to calculate

the global minimal RMSD which does not require to try out all possible index permutations

and which is thus computationally feasible. At the same time we have introduced fingerprints

which are much cheaper to calculate because they do not require a structural superposition.

Nevertheless the fingerprint based distances correlate in all our test cases with the RMSD, in

the sense that small RMSD distances correspond to small fingerprint distance and vice versa.

In contrast to numerous previously proposed fingerprints they satisfy the coincidence axiom and

allow therefore to distinguish distinct from non-distinct configurations in a unique way. Within

a DFT calculation the metric based on the Kohn-Sham eigenvalues is a good choice since the

eigenvalues are a byproduct of any DFT calculation and thus no extra effort is required to

obtain them. For the coincidence axiom to be satisfied, the number of bound eigenstates whose

Kohn-Sham eigenvalues can be included in the fingerprint vector has however to be larger than

3n − 6. If Kohn-Sham eigenvalues are not available, the method based on the eigenvalues of

the overlap matrix constructed from s and p orbitals is recommended, since it leads to matrices

whose elements can be calculated analytically and because the fingerprint vector is long enough

(4n) to make the probability of a violation of the coincidence axiom vanishingly small. Even

if the coincidence axiom is violated, it turns out in practice that it is very rare that different

physically reasonable metastable configurations give rise to identical fingerprints. For our test sets

of low energy local minima configurations metrics which violated the coincidence axiom therefore

allowed nevertheless in all cases to distinguish between distinct and non-distinct configurations.

In other applications where small movements away from metastable configurations lead to a

change of physical properties, such as in force fields based on machine learning, a violation of the

coincidence theorem can however not be tolerated. All the proposed variants of our approach are

parameter free and no parameter tuning is therefore required.
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Appendix A

Overlaps between GTO’s

The normalized Gaussian type orbitals (GTO) centered at the atomic positions ri in Cartesian

coordinates are given by

φli(r) = Nl(x− xi)
lx(y − yj)

ly(z − zi)
lze−αi‖r−ri‖

2

where l = (lx, ly, lz) and Nl is the normalization factor. Depending on the angular moment

L = lx + ly + lz the functions are labeled as as s-type (L=0), p-type (L=1), d-type (L=2) and so

on. We take the Gaussian width αi inversely proportional to the square of the covalent radius of

atom i throughout this work.

The Gaussian product theorem says that the product of two Gaussian functions is again a

Gaussian function. Therefore the overlap integrals between a pair of GTO’s, namely

〈φli|φl
′

j 〉 =
∫

drφli(r)φ
l
′

j (r) (A.1)

can be evaluated analytically. This gives the normalization factors as

Nl(αi) =
1

√

〈φli|φli〉
= (2αi/π)

3/4√nlxnlynlz , nk =
(4αi)

k

(2k − 1)!!
. (A.2)

All GTO’s are recursively obtained by differentiating

φsi (r) =
(2αi

π

)3/4
e−αi‖r−ri‖

2
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with respect to the Cartesian components of ri. For instance

φpxi (r) = 2
√
αi(x− xi)φ

s
i (r)

can also be expressed as

φpxi (r) =
1√
αi

∂φsi (r)

∂xi
. (A.3)

The general formula for the overlap integrals, i.e. the elements of the overlap matrix, is

given, e.g., by Eq. (3.5) in Ref. [155] and can also be calculated from recursion relations. [156]

For convenience, we restate the simplified relations for the special cases involving s and p-type

GTO’s all in terms of the basic quantity

Sij = Sji =
(2

√
αiαj

αi + αj

)3/2
exp

[ −αiαj

αi + αj
r2ij

]

(A.4)

where rij = ‖ri − rj‖, which is indeed the s-s overlap integral

〈φsi |φsj〉 = Sij

Using Eq. (A.3) we obtain

〈φpxi |φsj〉 =
1√
αi

∂Sij
∂xi

= −
(2

√
αiαj

αi + αj

)

(xi − xj)Sij (A.5)

and

〈φpxi |φpx′j 〉 =
(2

√
αiαj

αi + αj

)[

δx,x′ − 2αiαj

αi + αj
(xi − xj)(x

′
i − x′j)

]

Sij (A.6)

where x, x′ ∈ {x, y, z} and δ denotes the Kronecker delta. The derivative of the basic quantity

Sij with respect to the atomic positions

∂Sij
∂xk

= (δik − δjk)
(−2αiαj

αi + αj

)

(xi − xj)Sij (A.7)

is required to calculate the derivative of the overlap matrix elements, which in turn determine

the derivative of its eigenvalues

Dν,xk
≡ ∂Vν
∂xk

= 〈ν
∣
∣
∂O

∂xk

∣
∣ν〉, (A.8)

where the eigenvector |ν〉 corresponds to the eigenvalue Vν of the overlap matrix O.

Eigenvectors associated to small eigenvalues seem not to contain any useful information.

We therefore use the principal eigenvector of the overlap matrix as an atomic fingerprint, see

Fig. A.1. This vector gives the coefficients required to construct the pseudo-orbital with the

largest pseudo charge density. This charge density has similarities to a true charge density since

it is large in regions between neighboring atoms where covalent bonding can occur (Fig A.2).
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Figure A.1: Description of atomic environments for a Si32 cluster using the combined scalar and
vectorial atomic fingerprints. Each atomic fingerprint consists of a scalar and a vector which
are the corresponding s and (px, py, pz) components of the principal eigenvector of the 4n × 4n
overlap matrix. The color of the vectors indicates the value (red corresponds to small values and
blue to large values) of the scalar (s-type) fingerprint.

Figure A.2: Contributions from an oxygen (a) or hydrogen atom (b) to the total (c) pseudo-charge
density |ψ(r)|2 on the molecular plane for a water molecule. The coefficients of the orbitals φli
from which the pseudo-wavefunction ψ is made, are the elements of the principal eigenvector of
the overlap matrix constructed from s and p-type GTO’s.
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Appendix B

Closed-form of superimposing

rotation

A quaternion Q = (Q0,Q1,Q2,Q3) is an extension of the idea of complex numbers to one real

(Q0) and three imaginary parts. According to the Euler’s rotation theorem, a rotation in space

which keeps one point on the rigid body (centroid in our case) fixed, can be represented by four

real numbers: one for the rotation angle and three for the rotation axis (we assume that the

center of rotation is on the origin). A unit quaternion, i.e. ‖Q‖2 = Q2
0 +Q2

1 +Q2
3 +Q2

4 = 1, can

represent conveniently this axis-angle couple as

Q =
(

cos
(θ

2

)
, û sin

(θ

2

))

where θ is the rotation angle around the unit axis û = âi+ b̂j+ck̂. The corresponding orthogonal

rotation matrix is

U =






Q2
0 +Q2

1 −Q2
2 −Q2

3 2Q1Q2 − 2Q0Q3 2Q1Q3 + 2Q0Q2

2Q1Q2 + 2Q0Q3 Q2
0 −Q2

1 +Q2
2 −Q2

3 2Q2Q3 − 2Q0Q1

2Q1Q3 − 2Q0Q2 2Q2Q3 + 2Q0Q1 Q2
0 −Q2

1 −Q2
2 +Q2

3




 . (B.1)

The optimum rotation U which minimizes RMSD, indeed maximizes the correlation between

Rp and Rq, i.e. the atomic Cartesian coordinates with respect to the common center of mass.

Based on quaternions, [142] the optimum U is given by Q which is identical to the principal
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eigenvector of the 4×4 symmetric, traceless matrix

F =









Rxx +Ryy +Rzz Ryz −Rzy Rzx −Rxz Rxy −Ryx

Ryz −Rzy Rxx −Ryy −Rzz Rxy +Ryx Rxz +Rzx

Rzx −Rxz Rxy +Ryx −Rxx +Ryy −Rzz Ryz +Rzy

Rxy −Ryx Rxz +Rzx Ryz +Rzy −Rxx −Ryy +Rzz









(B.2)

where R is the correlation matrix whose elements are Rxy =
∑n

i x
p
i y

q
i and so. Note that, Eq. (6.2)

is then given by

RMSD(p, q) =

√

1

n

(

‖Rp‖2 + ‖Rq‖2 − 2λ∗
)

(B.3)

where λ∗ is the largest eigenvalue of F .
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Appendix C

Constant-fingerprint hypersurfaces

Using a constructive iterative procedure, we show in the following that the coincidence axiom for

a configurational fingerprint is not satisfied if the dimension of the matrix is not sufficiently large

and if therefore the resulting fingerprint vector is not sufficiently long. Consider two configurations

p and q which are close. The difference of the fingerprint vectors is then given by a first order

Taylor expansion

Vp −Vq ≃ D(q)(Rp −Rq). (C.1)

Note that, instead of the 3 × n matrix notation here we use a column vector R ∈ R
3n for

representing the atomic coordinates. Since V is a column vector of length N , the first derivative

D(q) ≡ ∂V
∂R

∣
∣
R=Rq is a N × 3n matrix. We assume that D has always the largest possible rank for

the three types of matrices discussed in more detail in this Section. For the Hamiltonian matrix

this maximal rank rmax equals min(N, 3n−6) if all N eigenstates included in the fingerprint vector

are bound. For the overlap matrix rmax equals min(N − 1, 3n− 6) because the diagonal elements

are independent of the configuration. For the Hessian matrix rmax = 3n − 6 for configurations

that are local minima with respect to the interaction potential and rmax = 3n − 3 for all other

cases. [157]

If rmax is less than 3n − 6 one can find on a hypersurface of dimension 3n − 6 − rmax (i.e.

the nullity of D) configurations with identical fingerprint vectors, which are given as a solution

of the equation

DδR = 0. (C.2)

Formulated in words, configurational displacement vectors δR which are in the null space of D
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Figure C.1: (a) Schematic illustration of the exploration of the hypersurface defined by V = Vref

consisting of iterative movements along δR (in the null space of D) followed by Newton step(s)
δR′ to come back to the hypersurface. Panel (b) shows two configurations (in red and green) of a
Si8 cluster whose fingerprint vectors of length n, obtained from an overlap matrix with one set of
s-type GTO’s, are identical. Panel (c) shows the evolution of the RMSD during the exploration
of the hypersurface leading from the red structure to the green structure. Panels (d) and (e)
contain the some information as panels (b) and (c) but for a fingerprint of length 2n obtained
from an overlap matrix with two sets of s-type GTO’s. In both cases ‖V −Vref‖ is vanishingly
small.
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leave the fingerprint invariant to first order. For configurations which are further apart the first

order approximation breaks down but Eq. (C.2) can still be used as a starting point for mapping

out such a hypersurface iteratively. We perform a move with a small amplitude along a vector

δR in the null space of D. To correct for the small second and higher order deviations of the

eigenvalues away from the hypersurface of constant eigenvalues defined as V = Vref we then solve

DδR′ = Vref −V (C.3)

for the required displacement δR′. Like Eq. (C.1), the latter equation does not have a unique

solution and we can therefore choose an arbitrary set of rmax coordinates which we want to

modify in order to go back onto the hypersurface of constant eigenvalues. If the corresponding

rmax × rmax matrix made out of D was ill-conditioned, we select another set of rmax atomic

modification coordinates to ensure that Eq. (C.3) is solved accurately. Since this moving back

to the hypersurface requires only tiny displacements a single solution of the linear system is

sufficient. If this was not the case it could be repeated which would correspond to a Newton

iteration. By iterating this procedure of moves along the null space followed by moves that

bring us exactly back on the hypersurface we can obtain clearly distinct configurations whose

fingerprints are identical up to machine precision. Such examples are shown in Fig. C.1 where

the procedure is also illustrated schematically. Note that at each iteration we orthogonalize δR

of the previous iteration to the row space of current D. This reduces the probability of moving

backwards to the starting point.
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