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Abstract

The volume of an axis-parallel hyperbox in a high-dimensional design space is to be
maximized under the constraint that the objective values of all enclosed designs are below
a given threshold. The hyperbox corresponds to a Cartesian product of intervals for each
input parameter. These intervals are used to assess robustness or to identify relevant

parameters for the improvement of an insufficient design.

A related algorithm which is applicable to any non-linear, high-dimensional and noisy
problem with uncertain input parameters is presented and analyzed. Analytical solutions
for high-dimensional benchmark problems are derived. The numerical solutions of the
algorithm are compared with the analytical solutions to investigate the efficiency of the
algorithm. The convergence behavior of the algorithm is studied. The speed of convergence
decreases when the number of dimensions increases. An analytical model describing this
phenomenon is derived. Relevant mechanisms are identified that explain how the number
of dimensions affects the performance. The optimal number of sample points per iteration
is determined depending on the preference for fast convergence or a large volume. The
applicability of the method to a high-dimensional and non-linear engineering problem
from vehicle crash analysis is demonstrated. Moreover, we consider a problem from a

forming process and a problem from the rear passenger safety.

Finally, the method is extended to minimize the effort to turn a bad into a good design.
We maximize the size of the hyperbox under the additional constraint that all parameter
values of the bad design are within the resulting hyperbox except for a few parameter
values. These parameters are called key parameters because they have to be changed to
lie within their desired intervals in order to turn the bad into a good design. The size of
the intervals represents the tolerance to variability caused, for example, by uncertainty.
Two-dimensional examples are presented to demonstrate the applicability of the extended
algorithm. Then, for a high-dimensional, non-linear and noisy vehicle crash design problem,
the key parameters are identified. From this, a practical engineering solution is derived
which would have been difficult to find by alternative methods.
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Kurzfassung

Das Volumen einer achsenparallelen Hyperbox in einem hochdimensionalen Designraum
soll maximiert werden unter der Nebenbedingung, dass die Zielfunktionswerte aller enthal-
tenen Designs kleiner als ein vorgegebener Grenzwert sind. Die Hyperbox entspricht einem
karthesischen Produkt von Intervallen fiir jeden Eingangsparameter. Diese Intervalle wer-
den verwendet, um Robustheit zu bewerten oder um relevante Parameter zur Verbesserung
eines Designs, dessen Zielfunktionswert grosser als der vorgegebene Grenzwert ist, zu

identifizieren.

Ein entsprechender Algorithmus, der auf beliebige, nichtlineare, hochdimensionale und
verrauschte Probleme mit unsicheren Eingangsparametern anwendbar ist, wird prisentiert
und analysiert. Analytische Losungen fiir hochdimensionale Benchmarkprobleme werden
hergeleitet. Die numerischen Losungen des Algorithmus werden mit den analytischen
Losungen verglichen, um die Effizienz des Algorithmus zu bewerten. Das Konvergenz-
verhalten des Algorithmus wird untersucht. Die Konvergenzgeschwindigkeit nimmt mit
ansteigender Dimensionsanzahl ab. Ein analytisches Modell wird entwickelt, welches
dieses Phinomen beschreibt. Relevante Mechanismen werden identifiziert, die erkléaren,
wie die Dimensionsanzahl die Performance beeinflusst. Die optimale Anzahl an Stich-
proben pro Iteration wird bestimmt, abhéingig davon, ob man schnelle Konvergenz oder ein
grosses Volumen bevorzugt. Die Anwendbarkeit der Methode auf ein hochdimensionales
und nichtlineares Ingenieursproblem aus der Fahrzeugcrashanalyse wird gezeigt. Zudem

betrachten wir ein Problem des Tiefziehprozesses und des Schutzes der Insassen im Fond.

Schliesslich erweitern wir die Methode, um den Aufwand dafiir zu reduzieren, ein schlechtes
in ein gutes Design zu dndern. Wir maximieren das Volumen der Hyperbox unter der
zusitzlichen Nebenbedingung, dass alle Parameterwerte des schlechten Designs in der
Losungshyperbox enthalten sind bis auf wenige Parameterwerte. Diese Parameter werden
Stellhebel genannt, da sie so gedndert werden miissen, dass ihre Werte in ihren gewiinschten
Intervallen liegen, um das schlechte Design in ein gutes zu dndern. Die Intervallbreite

reprasentiert die Toleranz gegeniiber Variabilitit, die zum Beispiel durch Unsicherheit
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erzeugt wird. Zweidimensionale Beispiele werden présentiert, um die Anwendbarkeit des
erweiterten Algorithmus zu zeigen. Wir identifizieren Stellhebel fiir ein hochdimensio-
nales, nichtlineares und verrauschtes Fahrzeugcrashproblem. Daraus wird eine praktische

Ingenieurslosung abgeleitet, die mit anderen Methoden schwierig zu finden wire.
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Chapter 1
Introduction

In many engineering problems, uncertainty is naturally present, especially in the early
development phase. Uncertainty arises because some parameters cannot yet exactly be
specified or they may be changed over the course of development. There is in general a
lack of knowledge about the engineering system under consideration. Moreover, there
is no knowledge about the variability of the input parameters. This type of uncertainty
is called epistemic uncertainty since it is reducible if greater knowledge is provided, see
[29, 46,57, [75].

Classical optimization methods seek an optimum in the design space. Typically, they
do not consider the variability of design variables and do thus not take into account
uncertainty. Consequently, optimal designs may be non-robust and quite sensitive to
parameter variabilities, and, therefore, infeasible for practical applications. Some authors

even believe that optimization is actually just the opposite of robustness, see [48]].

As reliability is required in industrial engineering, developers of engineering designs
have to look for robust designs which avoid unexpected deviations from the nominal
performance, see [61]]. To this end, more advanced methods have been developed to

include uncertainties of the parameters and robustness criteria in the optimization.

Robust design optimization (RDO), as introduced in [76]], includes robustness measures in
the optimization problem. RDO helps to obtain a design that is less sensitive to variations
of uncontrollable input variables without eliminating the source of the uncertainty, see
[28,132,163]]. The impact of uncertainty or variation in the design parameters to the objective
function value of a design is considered. RDO creates a robust design for problems whose

objective function value is insensitive to uncertainties, see [2].

Reliability-based design optimization (RBDO) is a method to scale down the probability
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of failure of the classical optimum. RBDO minimizes an objective function subject to
probabilistic constraints which leads to a design feasibility under uncertainty. RBDO
provides thus an optimal design in the presence of uncertainty. Methods of RBDO are,
for example, the first and second order reliability method (FORM/SORM), see [86]. In
RBDO, it is assumed that the complete information of the input uncertainties is known, see
[28, 155, [72]]. This means, if there exists an inherent randomness in the non-deterministic
behavior of the physical system, i.e., aleatoric uncertainty, this uncertainty must be known
and described. Aleatoric uncertainty is known to be irreducible, except through design
modifications [46, 57, [75]].

Sensitivity analysis (SA) provides another approach to deal with uncertainty. Sensitivity
analysis is a method which estimates the variability of the objective function value, affected
by the variability of the input parameters. It is a method to identify the parameters which
have significant effects on the results, see [67]. Sensitivity analysis will give information
about the effects of the uncertainty but requires appropriate sensitivity measures. Methods
of determining such measures for each input parameter are, for example, ANOVA (analysis
of variance) and the Sobol’ method where Sobol’ indices are calculated, see [59, [70].

Uncertainty also arises when more than one design team is involved in the design of an
engineering development process and every design team must optimize their subsystem
without full information about the other subsystems. Every team has its own individual
subsystem with goals and constraints which must match the goals of the overall design.
Furthermore, the different disciplines (e.g. in vehicle crash development, vibration analysis,
durability, aerodynamic, etc.) may have conflicting objectives and the subsystems are often
coupled, see [1), 42]]. Some authors postulate that an appropriate method to solve such
problems is multidisciplinary design optimization (MDO) because different disciplines are

simultaneously optimized in MDQO, see [10} 36].

Unfortunately, MDO, RBDO, RDO and SA suffer from certain disadvantages. For MDO,
a model which comprises all relevant disciplines must be provided. Nevertheless, such
a model is usually not available for the design of complex engineering systems where
different teams are involved in the development process. RBDO and RDO deal with data
where the variability of input parameters is known. However, if the uncertainties of input
parameters are not completely known, other methods have to be used. When applying SA,
information on how to improve a non-robust or critical solution is limited: what parameter

needs to be adjusted and what value it should admit is unknown.

The method presented in this thesis identifies a maximum solution space for any high-

dimensional, non-linear, and noisy system. The computed solution space is such that it



guarantees a subcritical objective function value (or performance/output) with a defined
probability for all enclosed designs. The solution space is expressed by intervals for each
input parameter. Therefore, the solution space will be a hyperbox, given by the Cartesian
product of all the intervals to the input parameters. For a design to be good, the choice
of a parameter value within its assigned interval does not depend on the values of the
other parameters as long as they are within their respective intervals. In this sense, the
parameters are decoupled from each other. The intervals may be used to assess robustness
and sensitivity to uncertain input parameters which can be measured by the widths of the
associated intervals. Moreover, a hyperbox helps to identify relevant parameters to improve
a non-robust or bad design. They also may be combined with intervals of other disciplines

— their cross sections are global solution spaces.

In the literature, there are already approaches which can be applied to identify a maximum
hyperbox which includes only designs with subcritical objective function value. The first
approach, which is studied in [66], identifies the sought hyperbox by a method which
combines a cellular evolutionary strategy and interval arithmetic. However, this approach
is not applicable to objective functions which are not given analytically. In the second
approach, the sought hyperbox is identified by cluster analysis and fuzzy set theory (see
[6)60]). The drawbacks which arise with this approach are, first, that the fuzzy set theory
needs some additional information like the membership function of the parameters, which
is often not available in the engineering design development, and, second, that a very
large number of sample points is required — especially in high dimensions — to identify
the solution space due to only a single sampling procedure in the design space. The third
approach which is proposed in [22]] uses support vector machines to identify the maximum
hyperbox within the solution space. However, hyperboxes can be only identified if the data
are linearly separable. The three approaches are reviewed in detail in Subsections
2.3.3

An iterative algorithm, consisting of two phases, is presented in this thesis for the iter-
ative identification of the hyperbox described above, see Chapter [3| The algorithm was
introduced in [87] and improved and analyzed in [24]. The algorithm is applicable to any
high-dimensional, non-linear and noisy problem and requires no access to the analytical
expression of the objective function.

The algorithm starts from a candidate hyperbox built around a design with subcritical
objective function value, see Section [3.1] This design is identified by an algorithm called
differential evolution (see [73]]). Then, this candidate hyperbox is iteratively evaluated and
modified.



4 CHAPTER 1. INTRODUCTION

In the first phase, called the exploration phase, the landscape of the optimization problem
under consideration is explored as described in Section[3.2] This phase consists of four
steps. In the first step, a design of experiments is performed (e.g. by Monte Carlo sampling,
see [69]). The second step consists of a statistical evaluation of the candidate hyperbox by
computing the ratio of the number of good sample points and the total number of sample
points. In the third step, a subset is identified which contains only good designs of the
original design space. For the third step, we propose two different algorithms. The first
algorithm is called the optimal cutting algorithm because it identifies the maximum hyper-
box which contains only good designs within the sample. Unfortunately, the computational
costs are very expensive, especially in high dimensions. Therefore, we implement another
algorithm which is very cheap, but not optimal. However, the agreement of the numerical
results and the optimal solutions are reasonable which is confirmed in Chapter @ This
algorithm is called the fast cutting algorithm. In the fourth step, the hyperbox is moved
through the design space in order to find the hyperbox with maximum volume. This is
done by extending the candidate hyperbox in all parameter directions. The new boundaries
are calculated by adding to the upper boundary the widths of the intervals multiplied by
a given factor, and by subtracting from the lower boundary the widths of the intervals
multiplied by the same factor. The factor is chosen such that the new candidate hyperbox
is expected to contain a desired fraction of good sample points. The first phase is iterated

until the hyperbox does not move any more.

Then, the second phase starts, called the consolidation phase. This phase consists of
the application of the third step of the first phase, and an evaluation of the hyperbox
by Bayesian statistics which estimates the fraction of good design points. Especially, it
provides a confidence level of this estimate, see [45]. These steps are repeated until a

hyperbox is identified which contains only subcritical outputs with a predefined probability.

The similarity of the algorithm to on-line learning and query learning is discussed in [87].
The algorithm is similar to on-line learning because the candidate hyperbox is relocated
in each iteration step and new sample points are created within the modified candidate
hyperbox. In [[18]], on-line learning is introduced, and, in [15, 49], an example of on-line
learning is given. Sample points are added iteratively which successively improves the
support vector machines. In [13]], a strategy for the efficient selection of support patterns
by support vector machines is presented. Such a strategy is called query learning, cf. [18]].
Our method is similar to query learning because we zoom into the good space, and we use
only a few sample points in each iteration step. But there is a major difference between
on-line learning or query learning and our method because our method does not only seek
the boundary of the good space. Our method identifies the largest hyperbox within the



solution space.

The rest of this thesis is organized as follows. In Chapter [2, an example problem from
the engineering practice is presented which motivates the need for maximum hyperboxes
which guarantee a subcritical performance. The related problem statement is formulated.
An overview on known approaches for the numerical solution is given, and the drawbacks

are discussed.

In Chapter 3] the solution algorithm is proposed to identify the sought hyperboxes as
described before for arbitrary non-linear, high-dimensional and noisy problems. More-
over, different measures of the resulting hyperbox are introduced, and a measure for the

sensitivity of the solution hyperbox is shown.

In Chapter ] four illustrative examples are given to demonstrate the efficiency of the
proposed algorithm. The analytical solutions for these optimization problems are calculated.
The numerical results are then compared with these analytical solutions. Moreover, the

so-called corner problem is identified and investigated.

To analyze the reliability of the algorithm, the consolidation phase is studied in Chapter [5
The convergence behavior of the consolidation phase is studied. We derive an analytical
model which describes the behavior of the speed of convergence for a benchmark problem.
The relevant mechanisms which are related to the influence of the dimensionality and of
the number of sample points are identified, and the optimal number of sample points per

iteration is determined in dependence of the preference for speed or volume size.

In Chapter[6] different applications of the algorithm in the automotive industry are presented.
The first application of the algorithm is an engineering problem from vehicle front crash
design which confirms the applicability to high-dimensional and non-linear engineering
models. Different hyperbox measures and the resulting sensitivity of the solution hyperbox
are demonstrated at hand of this example. Then, the algorithm is applied to a forming
process whose simulation is based on a response surface model. Finally, the application to

the rear passenger safety is shown.

A procedure to identify key parameters with the aid of hyperboxes is presented in Chapter[7]
A design which fails the design goals is improved by changing the key parameters in order

to lie within the associated intervals.
In Chapter [8] some concluding remarks are given.

The appendix consisting of the Chapters [A]and [B|contains the theory of the optimization

under constraints and an extension of the analytical model which is introduced in Chapter|[5]
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Finally, we remark that some parts of this thesis are already published. Some parts of the
Chapters 2H6] are published in [24]. In [25], some parts of the Chapter [7| are published.

Acknowledgment

My hearty gratitude goes to my supervisor Prof. Dr. Helmut Harbrecht for his invaluable
support, patience and trust regarding my work. He spent endless hours to discuss all
different aspects of my thesis and to generate brilliant ideas. Moreover, he spared no effort
to take it upon himself to travel monthly the long way between Basel and Munich. For this
unbelievable support, I heartily thank. I have been amazingly fortunate to have a supervisor
like him.

I would like to thank Prof. Dr. Rolf Krause for taking over the role of the co-referee.

Also, I thank Dr. Markus Zimmermann for his intense supervision at BMW. He spent a lot
of time to discuss and to generate valuable ideas to approach both theoretical and applied
problems. He helped me to connect theory and practice. Especially, I would like to thank
for his engagement to succeed in ensuring that the developed method was applied in the
projects of vehicle safety at BMW.

I am also very grateful to my colleagues at BMW who supported me by answering any of
my questions about vehicles, crash tests and vehicle simulations: Dr. Frank Moeller and
Dominik Schuster (my group leaders at BMW), Dr. Martin Doernfelder, Johannes Fender,
Dr. Kathrin Grossenbacher, Johannes von Hasselbach, Johannes von Hoessle, Franz Hoiss,
Patrick Semrau, Dr. Martin Unger, Florian Woelfle and all other supporting colleagues.

I would like to thank my friend and my friends. I greatly value their friendship and I deeply

appreciate their belief in me.

My sincere and hearty gratitude goes to my mother Maria, my sister Geno and my brother

Philipp for their love, support and patience.



Chapter 2

Motivation and problem statement

In this chapter, an example problem from the engineering practice is given to illustrate
our problem setting which is then stated in Subsection [2.2] The problem statement is to
identify a maximum hyperbox which guarantees a subcritical performance. For identifying
numerically the maximum hyperbox which contains only subcritical designs, there are
already approaches in the literature. We overview on these approaches and the drawbacks

which arise with these approaches are discussed.

2.1 Motivation

As example problem, a model of a full-width front impact crash is considered, see Fig-
ure 2.1} The vehicle crashes head-on into a rigid concrete barrier at 56 km/h. In the vehicle
development, the maximum deceleration of the vehicle generated by the vehicle structure
is a relevant parameter to minimize the injury of car occupants in a front crash, see [[83]].
The deceleration time history is measured at the rocker panel and the B-pillar of the vehicle,
see [34].

deceleration

Figure 2.1: Simulation of a vehicle front crash.
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The maximum deceleration is entirely determined by the force-deformation characteristics
of the elements of the car structure, parametrized by F;, i = 1,2,...,d, see [38]. A
visualization of a force-deformation curve of a part of a front structure is shown in
Figure[2.2] Crash simulations show an inherently non-linear physical behavior with respect
to structural parameters. For this reason, the maximum deceleration is difficult to design. It
holds

apulse:f(FlaF2’~~-,Fd)'

For this function, an optimization could be run in order to find an optimum for the
maximum deceleration. Unfortunately, this solution cannot be realized exactly due to
uncertainties. Therefore, rather than computing one optimum, a range of solutions F'** <
F;<F,i=1,2,...,d,is sought. This can be expressed by a hyperbox which is obtained
by the Cartesian product of the d ranges. The hyperbox represents permissible intervals for

the degrees of freedom F;,i =1,2,...,d.

7,
= ‘.,o )
il / ] 3
O / 1 S
== //@@ V @/l .,'
= || -
o . g —e—classical optimum
Ll - 4 - o- realized solution
deformation

(a) (b)

Figure 2.2: Vehicle front crash: (a) vehicle front structure and (b) force-deformation
characteristic of a structural component of a front car structure with a classical optimum

and the realized solution due to uncertainties.

2.2 Problem statement

Let Qps € RY be a closed and convex set of admissible designs, called the design space.

Definition 2.2.1 (Hyperbox). Considerx'*" = (x!, x{™, ..., x!"), x? = (X", x3¥, ..., %)) C

Qps such that X < x*? component-by-component. Then, the hyperbox Qp, = Qb(,x(xlow x"P)
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is the Cartesian product
Qbox = Il XIzX"'XIdeDS

of intervals
L=, X" R foralli=1,2,....d.

1 2

A hyperbox is an axis-parallel, simply connected, and compact subset of Qpg. If we denote
the width of the i-th interval I; = [x/*",x"] by {; := x” — x/", then ¢, ¢,,..., ¢, are
the lengths of the edges of the hyperbox €,,.. Especially, £ = (¢,,¢;...,¢;) is given by
¢ := x"? — x'"_ The volume u(£2,,) of the hyperbox Q,, is thus given by

d
Qo) = | | 6
i=1

Let f : Qps — R be an objective function which denotes a scalar quantity of interest. In
practical applications, it represents a numerical simulation producing a result f(x) from
input parameters X. For the system f(x) and a given critical value f. € R, a hyperbox €,
is sought such that u(€,,,) — max subject to f(x) < f, for all x € Q,,,.

Definition 2.2.2 (Good design / bad design). A design X € Qpg which satisfies the con-
straint f(X) < f. is called a good design. A design x € Qpg which violates the constraint
f(X) < f. is called a bad design.

With these preparations at hand, we can state the following constrained, non-linear, and
high-dimensional optimization problem:
find x", x*? € Q¢ with X' < x*? component-by-component
(P)
such that u(Q,,,) — max subject to f(x) < f, for all x € Q,,,,.
This optimization problem is a shape optimization problem which shall be solved without
the use of gradients to be applicable to any engineering problem where the function f(x)
is not analytically given. The solution will be a hyperbox which results in fixed intervals
for each input parameter. In practice, these intervals define requirements for the related

components and will be used in the development process as design goals.

2.3 Known approaches

There are already approaches in the literature to solve optimization problems similar to (P).
In the following sections, we overview on these approaches, which can be grouped into

three main classes.
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2.3.1 Cellular evolutionary strategy

Let Qpg := [xll‘jgs,x'fijs] X [x’z‘jgs,ng’m] X oo X [xizgs, X sl € R¢ be the design space.
In [66], the problem
d

l_l lx; —m}| = max_ subject to x € G for all x € Q,, (P1)
x*,m*e

i=1

is considered with G := {x € Qpg : g(x) > 0}. The set Q,,, is defined by
Qo 1= [, XPT X [, 657 X o [l X

with X% := m — |x; — m}| and X" := m} + |x; —m| for all i = 1,2,...,d. By setting
g(x) = f. — f(x), this problem is equivalent to the optimization problem (P). It is solved by

using an approach which combines cellular evolutionary strategies and interval arithmetic.

Definitions

Cellular evolutionary strategy combines the evolutionary strategy technique ES (u, 1) with
concepts from cellular automata [[66]]. The evolutionary strategy is one type of evolutionary
algorithm where the candidates are represented by real-valued vectors. In an evolutionary
algorithm, a population of individuals (designs) evolves iteratively towards better solutions
by a selection process of the parents, by a recombination of the parents, by a mutation of
individuals and by a substitution strategy. The evolutionary algorithm starts with a randomly
generated population of individuals. Then, these individuals are evaluated by a fitness
measure which can be, for example, an output value which has to be minimized. Some
parents are selected based on their fitness. The parent selection is typically probabilistic.
This means, individuals with a good fitness have a higher chance to become parents than
individuals with a lower fitness. Then, a recombination of the parents is applied to obtain

an offspring [66]. For example, if the genes of the parents are
5|11314]6 and 2|3|1|6]5,

the genetic information is exchanged up from the third position, and the following offspring
is obtained
5[11316|5 and  2|3|1/4|6.
The resulting offspring is mutated, for example, by changing randomly one gene of the
individual
5|1131615 + 5|1|3|4|5,



2.3. KNOWN APPROACHES 11

and, then, the offspring is evaluated. Based on their fitness, individuals are selected for
the next generation. This process is iterated until an individual with a sufficient fitness is
found or a predefined number of evaluations is reached (see [19,44]). Algorithm I] gives
the pseudo-code of an evolutionary algorithm in accordance with [[19]].

begin

Initialize a population with random candidate solutions;
Evaluate each candidate;

repeat

1. Select parents;

2. Recombine pairs of parents;

3. Mutate the resulting offspring;

4. Evaluate new candidates;

5. Select individuals for the next generation;

until Termination condition is satisfied,

end

Algorithm 1: Pseudo-code of an evolutionary algorithm.

The technique ES(u, A) represents the canonical version of the evolutionary strategy and is
called comma-selection with u < A. Here, u is the number of parents and A denotes the
number of the offspring. The selection of the parents from the set of either the offspring is
deterministically, i.e., the fitness of the individuals is ranked, and the u best individuals are
chosen (see [44]). The pseudo-code of this algorithm is given in the Algorithm 2]

Cellular automaton is a discrete model and consists of a regular grid of cells. Each cell has

a neighborhood consisting of a set of cells.

In the cellular evolutionary strategy, the concepts of neighborhood, known from cellular
automata, are used for the selection of the parents. Each individual is located randomly
in a cell of an one-dimensional array. The parents are selected from the cells in the
neighborhood of the individual which is to be updated. This is in contrast to the general

evolutionary strategy where parents are selected from the whole population [S1} 84].

In interval arithmetic, interval numbers are used. These interval numbers replace real
numbers and are an ordered pair of real numbers representing the lower and upper bound of
a parameter range, see [31},54,56]]. Hence, an interval number is defined as X := [a, b] =
{x e R:a < x < b} with a,b € R. In interval arithmetic, a function f whose input is
an interval number X produces an interval number Y = [c,d] = conv{f(x) : x € X} with

¢,d € R. Interval arithmetic is here applied to evaluate the generated hyperbox.
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begin

Initialize a population with random candidate solutions;
Evaluate each candidate;

repeat

1. Select A parents;

2. Recombine pairs of parents;

3. Mutate the resulting offspring;

4. Evaluate new candidates;

5. Select u individuals for the next generation;

until Termination condition is satisfied,

end

Algorithm 2: Pseudo-code of the evolutionary strategy ES(u, A).
Algorithm

In order to solve the Problem (PI)), the following procedure is presented in [66]. First, the
variables x and m are chosen randomly. If one of the two variables is a bad design, then
new designs are generated until both variables x and m are good designs. If a design is a
good design, the design is called feasible. Then, a symmetric hyperbox Q,,, is generated by
using m as its center. Interval arithmetic is applied to check the feasibility of the hyperbox.
The hyperbox is feasible if it holds

f(x) < f, forall x € Q.

If the hyperbox is feasible, its volume is calculated. If the hyperbox is not feasible, new
design points x and m are generated. Algorithm [3|is the corresponding algorithm as
proposed in [66]. Here, the fitness function is defined as

d
Fitness(x, m) = l—[ |x; — myl.
i=1
The drawback of this algorithm is that the objective function f(x) has to be known
explicitly in order to apply interval arithmetic. Thus it cannot be treated as a black box.
Unfortunately, in most practical applications, the objective function is represented by a
numerical simulation, producing a result f(x) from input parameters x, and is not known

analytically. A black box is defined as follows (cf. [8]]).

Definition 2.3.1 (Black box). A black box is a mapping x Plickcbox f(X) which returns to

every value x € R a function value f(x) € R.
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begin
t=0;
feasible=false;
while feasible=false do
Generate random points X and m;
If x and m are feasible, then feasible=true;
end
P(0) =x;
while Termination condition is not satisfied do
fori=0to udo
for j =01t 7do
Select a new cell;
Select parents randomly in the neighborhood;
Recombination;
Mutation;
Generate a symmetrical hyperbox using m as center;
Check hyperbox feasibility using interval arithmetic;
if the hyperbox is feasible then
Evaluate the volume hyperbox;
Fitness(offspring)=volume;
else
‘ Fitness(offspring)=0;
end

Store new offspring in Y;

end
Replace the selected cell with the best element from Y;

end
r=t+1;

end

end

Algorithm 3: Pseudo-code of the cellular evolutionary strategy combined with

interval arithmetic.

Mathematically speaking, a black box is just a mapping x — f(x) where, however, no

additional information of f is given.
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2.3.2 Cluster analysis

Given a sample P = {X; € Qps : j=1,2,..., N}, the problem
Sup{:u(Qbox) . Qbox N Nbad = @, Qbox c QDS} (P2)
with
d
pQ) = [ [ =) and Ny = (x e P: f(0) > £}
i=1

is similar to the optimization problem (P)) with the difference that in the problem state-
ment (P2)) only discrete sets of designs are considered. In [6 60, this discrete optimization

problem is solved with the aid of cluster analysis and fuzzy set theory.

Definitions

Cluster analysis 1s a special type of learning machines. A learning machine is a data
mining method to solve pattern recognition problems (see [[7//]). The goal of data mining is
to extract as much knowledge as possible from a given set of data {x, y;} with x; € R? and
y; €R, j=1,2,...,N. This includes fitting models to given data as well as determining
patterns from data, see [20]. The definition of a clustering is given in Definition [2.3.2]
which is in accordance with [6]].

Definition 2.3.2 (Clustering). A cluster Cy C Nypoq is a non-empty set of sample points,

where Ngo0q i the set of good sample points, i.e.,

Ngaod:{xep:f(x)gfc}~

A clustering C = {Cp: € = 1,2,...,n¢c} of Ngooa is a complete, but not necessarily disjoint,
subdivision of Nyoeq into clusters, i.e., it holds

ne

Noood = U Ce
=1

for some 1 <n. <N.

Cluster analysis subdivides a given set of objects into clusters. Let d(x;, X ) be a distance
function between the points x; and x; Given a fixed number of clusters, we intend to
construct a clustering such that the degree of similarity between elements within each

particular cluster C, is maximum, i.e.,

> dx;,x;) > min  forall Cp, £=1,2,...,nc,

Xj,X/-/GC[
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while the degree of similarity between elements from different clusters C¢, Cy is minimum,
1.€.,
d(x;,x;) » max forallC,,Cp, (,0' =1,2,...,nc, (L #1.
x,;€CeXy€Cy
Hence, the objects within the same cluster are similar to each other and are different from
the objects in the other cluster. The larger the similarity within a cluster and the larger the

difference between clusters, the better the clustering (see [37]).

In [83]], a fuzzy set is defined as follows.

Definition 2.3.3 (Fuzzy set). A fuzzy set A C Qpg is characterized by a membership
function uy : Qps — [0, 1] which associates with each point in Qps a real number in the

interval [0, 1]. The value of us(X) at X represents the grade of the membership of X in A.

It holds x ¢ A if us(x) = 0 and x € A if us(x) = 1. Moreover, it holds s (x) € (0, 1) if it is
not sure that x € A or x ¢ A. The fuzzy set theory permits the gradual assessment of the
membership of elements in a set. Contrary, in the classical set theory, an element either
belongs or does not belong to a set. This corresponds to the indicator functions which are
special cases of the membership functions of fuzzy sets since the membership function

only takes the values O or 1. Therefore, fuzzy sets are a generalization of classical sets.

Algorithm

The method to solve the Problem (P2) consists of four main parts [60]. First, a sample is
produced within the design space (pg. Second, the generated sample points are subdivided
into good and bad designs with the aid of the fuzzy set theory. The third part consists in
classifying the good designs by applying a cluster analysis in order to detect non-connected
input spaces containing only good designs. Given a number of clusters n¢, the results of the
cluster analysis are point sets Cy, C, ..., Cp.. The hyperbox with the maximum volume
containing only good designs is identified as follows in the fourth part. For each C,, a
hyperbox is identified by determining two opposite vertices X’é’(’;” and x;"* on the basis of

available points x € Cy, i.e.,

>rnin(xC‘ Ce Ce )— 'max(xc" Ce Ce )—

L1 X120 X, L1 X120 X,
. Cy Cy Cy Ce Ce Ce
o mm(xz’] s Xy x2,nc[) e _ max(xz’1 s Xy xZ,nc{)
C[ - > Cg -
: Ce Cy Ce Ce Ce Cy
»mm(xd,l, Xgaseeos xd,ncf)_ »max(xd,l, Xy xdm[)_
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Cy
box

with n¢, denoting the number of designs in the cluster C,. Then, the hyperbox Q

min max

generated by x" and x{*** is shrunk to obtain a hyperbox for which it holds

Qe

box

N Npga = 0.

For each cluster C,, we thus obtain a hyperbox which contains only good sample points.
From all these hyperboxes, the hyperbox with maximum volume is selected as the resulting
hyperbox. The optimality of this hyperbox depends on the chosen number of clusters and
the way how the bad designs are removed. However, in [6, 60], it is not presented in detail
how the hyperboxes are shrunk.

Unfortunately, the fuzzy set theory needs some additional information like the membership
function of the parameters which is typically not available in the engineering design
development. Furthermore, the design space is sampled only once. Consequently, the
number of sample points has in the mean to be larger than the volume of the design
space divided by the volume of the solution space to detect good regions. Hence, for
high-dimensional problems with many relevant input parameters, a very large number of
sample points is required to identify the solution space.

2.3.3 Support vector machines

In [22], the problem

d d
ggg log ( D xl-) subject to ; wix; =b (P3)
is considered where Zflzl w;x; = b describes the linear hyperplane which separates the
design space Qps = [0, 1]¢ in a space with good designs and in a space with bad designs.
In Figure [2.3] the linear hyperplane (blue line) is illustrated which separates the good
designs (green circles) and the bad designs (red triangles). The good and bad designs
belong to a given sample P = {x; € Qps : j=1,2,...,N}. The hyperplane >4 wix;=b
is identified by using a support vector machine which is a special type of learning machine.
For problems where the bad and good design points are linearly separable, the problem is
similar to the optimization problem (P).

Remark 2.3.4. If the good design points are elements of the set {x; € Qps : W'X; > b},
the design space is transformed in a space Q} in which it holds {x; € Q. : w'x; < b}

for the good sample points.
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Figure 2.3: Linear separating hyperplane with the maximal hyperbox.

Definitions

Support vector machines are large margin classifiers because a set of data is subdivided in
classes such that the distance (margin) of the boundary between the classes to the nearest
training data point of any class is as large as possible. There are linear support vector
machines, as described below, and non-linear support vector machines, which are presented
in [12, 18} 152].

Linear support vector machines are introduced in [[12] as follows. Assume that N training
data {x;,y;} are given with y; € {—1,1} forall j = 1,2,..., N. A hyperplane is identified
which separates the data given as vectors in good data points with y; = 1 and bad sample
points y; = —1. The hyperplane serves as the boundary between the two classes. For each
point x on the hyperplane, it holds

wix—b=0

with w being perpendicular to the hyperplane. The perpendicular distance from the hyper-
plane to the origin is given by

1ol

[Iwll
with || - || being the Euclidean norm. In order to maximize the distance of the vectors which
are as close as possible to the hyperplane, the following optimization problem has to be

solved
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2 — :
|| — min } ©

subjecttoyj(X]T.w—b)— 1>0,j=1,2,...,N

Definition 2.3.5 (Support vectors). If such a hyperplane exists, the training data {X;,y;}
with j’ € {1,2,..., N} which satisfy

yj,(xJT,W -b)-1=0
are called support vectors.

Support vectors are the training data which are necessary to describe the hyperplane as
depicted in Figure [2.4] The associated optimization problem (Q) can be solved by means
of Lagrange multipliers (see e.g. [43]]).

1 N\
‘A
\ s A w A A
N
N N
NN
O \\ S A
N \\
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O O \\ \\
o
0 t
0 Xy margin 1

Figure 2.4: Linear separating hyperplane with the associated support vectors.

Algorithm

In [22], the Problem (P3)) is solved by identifying the hyperplane which separates the
classes in two groups. Then, the volume of a hyperbox is maximized within one of these
two classes assuming that a transform onto the space [0, 1]¢ was done. This yields an
optimization problem under inequality constraints which can be solved by means of

Lagrange multipliers.

Unfortunately, hyperboxes are only computable for linearly separable data and not for

general high-dimensional, non-linear and noisy problems. One could determine a separating
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hyperplane for non-linearly separable data if linear support vectors are applied with an
additional so-called slack variable which allows a few points to be misclassified, i.e., to be
on the wrong side of the separating hyperplane. However, the resulting hyperbox could
then include bad design points.
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Chapter 3

Algorithm

In this chapter, we describe an algorithm which solves the constrained optimization
problem (P). The algorithm has been introduced in [87] and identifies the maximum
hyperbox within the solution space for arbitrary non-linear, high-dimensional and noisy
problems. The method only requires function evaluations and, therefore, no access to the
analytical expression of f(x). Hence, the system f(x) will be treated as a black box. This
has the advantage that the function does not need to be analytically given, which is the
case in the most engineering problems where f(x) is evaluated by a numerical simulation.

Thus, the proposed optimization method is non-intrusive.

The starting point of the algorithm is a design x which fulfills the inequality f(x) < f.. It
can be found by a classical optimization like differential evolution (see e.g. [[73]]). Then, an
initial hyperbox is built around this admissible design and the algorithm’s first phase is
started. The first phase, called the exploration phase, is an iterative scheme which explores
the landscape of the objective function. Finally, the second phase of the algorithm, called
the consolidation phase, is performed. The consolidation phase includes an algorithm
which shrinks the hyperbox such that it contains only good designs at a given probability

level.

First, we present how the initial hyperbox is identified, second, the exploration phase
and the consolidation phase are introduced in detail, and, finally, some extensions of the

algorithm are given.

21
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3.1 Identifying the initial hyperbox

The optimization algorithm differential evolution is used to identify a good design x, which
means, X fulfills the inequality f(x) < f.. Differential evolution is a parallel direct search
mode, and the following procedure is proposed in [[73]]. An initial population of designs
(vectors) is chosen randomly and covers the entire parameter space. Then, the procedure
which is given in Algorithm[d]is iterated until a maximum number of populations is reached

or the cost function of a design in the population is smaller than a desired target value [73]].

begin

Initialize a population with random candidate solutions;

while Termination condition is not satisfied do

for each design in the population do

Design = target design;

Mutation. New parameter designs are generated by adding the weighted
difference between two population designs to a third design;
Crossover. The mutated design’s parameters are then mixed with the
parameters of another predetermined design, the target design, to yield
the trial design;

Selection. If the trial design yields a lower cost function value than the

target design, the trial design replaces the target design in the following

generation;

end

end

end

Algorithm 4: Pseudo-code of a differential evolution.

After identifying a good design, an initial hyperbox is built around this design, and the
exploration phase is started.

3.2 Exploration phase

The exploration phase consists of four basic steps which are outlined in the flowchart in
Figure [3.1] at the top.



3.2.

EXPLORATION PHASE

Candidate box created
around a good sample point

Candidate box sampled
by Monte Carlo sampling

> Statistical evaluation

Grow in all parameter
directions

PHASE 1
(exploration)

Remove the bad sample points
(cutting algorithm)

Candidate box sampled
by Monte Carlo sampling

Statistical evaluation

PHASE 2
(consolidation)

Remove the bad sample points
(cutting algorithm)

Does the box still move?

STOP

Candidate box is
the solution box

Figure 3.1: The flowchart of the algorithm to identify the maximum hyperbox.
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3.2.1 Sampling methods

In the first step, i.e. the hyperbox evaluation, a population of designs is created by using
a design of experiments technique such as Monte Carlo sampling or Latin hypercube

sampling in the candidate hyperbox

. low up low up . low up
and T ['xl,cand’ xl,cand] X [x2,cand’ x2,cand] X X [ d,cand’ xd,cand :

Given a random variable X(w) which is uniformly distributed, a Monte Carlo sample
of length N is a set of N independent realizations Xi, X», ..., Xy of the random variable
X(w) (cf. [30,80]). Thus, a Monte Carlo sampling is a stochastic sampling method where
independent deterministic models are chosen based on a uniform probability distribution
(cf. [69]).

Contrary to a Monte Carlo sampling, the Latin hypercube sampling is a more deterministic
sampling method for the uniformly distributed random variable X(w). A Latin hypercube
sampling with N sample points is obtained by the following rules (cf. [68]): The range of
each parameter is divided into N intervals which have the same width. The number of the
sample points is denoted by N. Hence, each interval has the same probability occurrence
1/N. Then, a value is randomly taken from each interval. The N values for parameter 1 are
randomly combined with the N values from Parameter 2. These pairs are then randomly
combined with the values of the third parameter and so on until N d-tuple are obtained
with d being the number of parameters.

3.2.2 Statistical evaluation

Stochastic sampling methods are employed to scan the space. The generated population
{x;} is divided in good sample points which fulfill f(x;) < f. and bad sample points for
which it holds f(x;) > f.. The hyperbox €., is then evaluated. The fraction of good
sample points is defined as follows.

Definition 3.2.1 (Fraction of good sample points). The ratio'a = N,/N of the number N,
of good sample points and the total number N of sample points is called the fraction of

good sample points.

The fraction of good sample points in €.,,4 1s computed. Then, the 95%-confidence interval
is calculated as described in Subsection [3.3.2]in order to evaluate the candidate hyperbox.
Moreover, the value of the fraction of good sample points is necessary to determine the
growth rate in the fourth step of the exploration phase. The growth rate is introduced in
Subsection 3.2.41
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3.2.3 Cutting algorithm

In the third step, the hyperbox is modified by removing all bad sample points. This is done
by an algorithm which identifies a hyperbox which includes only good sample points.

Remark 3.2.2. The algorithm will be called cutting algorithm as it removes the bad space
by relocating the boundaries. In this sense, it cuts off the bad space.

Optimal cutting algorithm
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Figure 3.2: Optimal cutting algorithm to select the hyperbox with the largest volume in
Qcand~

The input for the optimal cutting algorithm is a candidate hyperbox €2.,,; which contains N
sample points. The largest hyperbox which includes only good sample points is determined
according to the following rule which is applied to each good sample point.

A good sample point is chosen as the point of origin. The bad sample points which are

located in the same corner with respect to the point of origin are assigned to the same
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cluster Cy, see the sketch in Figure 3.2 which is indicated by (1.). Here, we find

Ci={x1,x4} and C; = {xy,Xx3}.

Then, for each cluster C;, possible combinations V,, are identified which contain all the
possible combinations of the bad sample points with an assigned parameter direction. Note
that in a combination, a parameter direction and a bad sample point, respectively, exist

only once. By considering, for example, the cluster C,, we will obtain
Vi=Q21}, Vo={22}, Vs=031}, Va={32}, Vs={(21,32}, Ve=1{22, 3 1}.

Each element of a combination V,, consists of a sample index and an assigned dimension.
For each combination V,,, we check if every element from V,,, which is larger than the
point of origin in the associated dimension, is maximal in the associated dimension with
respect to all the other elements from V,,. We check if every element from V,,, which is
smaller than the point of origin in the associated dimension, is minimal in the associated
dimension with respect to all the other elements from V,,. Moreover, we check if all bad
sample points within the considered cluster C; are removed by removing all the elements
from V,,. All combinations (T/m are selected from V,, which fulfill these conditions. For
example, for the cluster C,, only the combinations

Vi={21) and V,={22)
remain for the next step. Cluster C; contains
V;=1{41) and Vg={42).

See the sketch in Figure [3.2] which is indicated by (2.) for an illustration.

Then, one combination (T/m is picked from each Cy, and all the possible combinations W,

are built. This means, we obtain
Wy =V, Vi), Wo={Vi, Vi), Ws={Vo, Vil Wi={(Va, Vsl

By removing the bad sample points from ‘W, in their assigned directions, the hyperboxes
depicted in Figure (3.) are obtained. Then, for each ‘W, the volume of the resulting
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hyperbox is calculated, and the hyperbox with maximum volume is selected.

Data: a hyperbox Qs and a set S = {X; € Q,,4} of sample points
Result: hyperbox C Q. which contains only good sample points
forall the good sample points {x5°°? € S : f(x5°°?) < f.} do

forall the bad sample points {x"* € S : f(x**) > f.} do
assign all the x**¢ which are located in the same corner with respect to x$°°¢

to the same cluster C,
end

—

orall the clusters C, do
for r=1,2,...,min(d,|C/|) do
forall the combinations 7~ C 2 with |T| = r do
forall the permutations P of U < 2> with |U| = r do
assign e; = 714, ...,e, = 7,9, to the combination V,,;
end

end

end

forall the combinations V,, do
forall the elements e; € V,, do

. . d . . . .
if e is larger than x5°" in the associated dimension P, then

(1) check if e, s = 1,...,r is maximal in the associated
dimension £ with respect to all the other elements € V,,;

else
(1) check if e;, s =1,...,r, is minimal in the associated

dimension £ with respect to all the other elements € V,,;

end

end

(2) check if all x**¢ € C, are removed by removing all e; € V,,;
if (1) and (2) are fulfilled then V,, = V,,;

end

end
pick from each C; one (T/'m and built all the possible combinations W,,;
forall the combinations ‘W, do

remove all the x**¢ € W,,;

remember the hyperbox with maximum volume;

end

remember the hyperbox with maximum volume;

end

Algorithm 5: Pseudo-code of the optimal cutting algorithm.
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This procedure is repeated for each good sample point in order to obtain a hyperbox for
each good sample point. From these hyperboxes, the hyperbox with maximum volume is

chosen.

The pseudo-code of this algorithm is shown in Algorithm We denote by 2 the power
set of M which is the set which consists of all subsets N of M, i.e.,2M = {N : N € M}.
Moreover, two sample points X and X are in the same corner with respect to the point of
origin x8°°¢ if, for all i = 1,2, ...,d, either (x; > xf””d and x; > xf‘"’d) or (x; < x‘f””d and
T < xlgood)_

A good sample point serves as the point of origin. The point of origin defines uniquely
the clusters. Then, the maximal possible corners are identified within each cluster, see
Figure [3.3|for an illustration in d = 2. Here, every cluster includes two possible corners
of the resulting hyperbox. By building all the possible combinations, picking from each
cluster one admissible corner, the volume of each hyperbox is calculated, see Figure[3.3]
The optimal hyperbox is identified by choosing the hyperbox with maximum volume from

the obtained hyperboxes.

T S

-_—— - - - - -

2| | : X2 N X2 [ " X2 ‘

[ ]

X1 X1 X1 X1

Figure 3.3: The possible corners of the resulting hyperbox and the possible hyperboxes.

However, the computational complexity of the Algorithm [5is in general exponentially
expensive because the probability that more than one sample point is located in the same

cluster is very small in high dimensions.

If, for example, the point of origin is located in the center of the hyperbox, the probability
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of success p for a sample point to lie within a cluster is

p=1{5]-
Therefore, the probability that more than one point is located in the same cluster P({N >
1} € Cp) is

d
P((N>1)eC)=1-Np(l—p"" = (1= p)" with p = (%) |

For N = 100 and d = 10, we obtain
P({N>1}eC)~443-107,

while for N = 100 and d = 20, we already obtain 4.5 - 107°.

Consequently, the probability that at most one sample point is located in the same cluster
is very large. Thus, there are N possibilities to combine from each cluster one possible
corner with each other. This means, N¢ operations are necessary to calculate the maximum
volume. For N = 100 and d = 10, we obtain already N¢ = 10'% operations. Consequently,
the computational costs are very expensive especially in high dimensions. Therefore,
we present a fast cutting algorithm which is very cheap, but not optimal. However, the

convergence to optimal solutions is reasonable well as shown in Chapter [4]

Fast cutting algorithm

bad sample bad sample bad sample hyperbox for the
point x; point X, point x, point of origin x5
X2 N N X2 -

. ) ° >

X4 X4 X4

: ~ N point of origin Xs
-2 X1 2 (1) (2.) 3. (4.)

Figure 3.4: Cutting algorithm to select the hyperbox with the most good sample points in
Qcand-

A candidate hyperbox Q.,,; which contains N sample points is the input for the fast cutting
algorithm, i.e., the set S = {X; € Qg : f(X1) > -+ > f(Xy)} of sample points is given.
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The following procedure is repeated for each good sample point {x2°°¢ € S : f(x%°°¢) < f.}

to determine the largest hyperbox which includes only good sample points.

A good sample point is used as the point of origin, this means, it will always be included,
as visualized in the sketch of Figure [3.4| which is indicated by (1.).

Then, the bad sample point with the highest objective value (which we assume to be x; € S)
is removed by relocating the boundaries such that the fewest number of good sample points
is lost, see the sketch of Figure [3.4] which is indicated by (1.) for an illustration. If this
dimension is not unique, i.e., if there is more than one dimension which is associated with
the loss of the same fewest number of good sample points, then the one is chosen where
the most bad sample points are removed. If this dimension is not unique, the dimension is
randomly selected from the dimensions with the loss of the same largest number of bad

sample points.

The next bad sample point with the remaining highest value (say x, € S) is removed in
such a way that again the smallest number of good sample points are lost as shown in the
sketch of Figure [3.4|which is indicated by (2.).

This procedure is repeated until there are no more bad sample points. In Figure [3.4] this is
illustrated in the sketch which is indicated by (3.).

When all bad sample points have been removed, the hyperbox is shrunk in all dimensions
where a bad sample point was removed to the outermost remaining good sample point.

This step is displayed in the sketch of Figure |3.4] which is indicated by (4.).

After calculating the number of sample points which are contained in the resulting hyper-

box, the procedure is repeated for the remaining good sample points.

Consequently, for each good sample point, there will be a hyperbox which contains
only good sample points. In Figure [3.5] these hyperboxes are depicted. From all these
hyperboxes, the one with the most sample points will be selected as the new candidate

hyperbox.

Remark 3.2.3. Ifthis hyperbox is not unique, i.e., if there is more than one hyperbox which
contains the same largest number of good sample points, the new candidate hyperbox
is randomly selected from the hyperboxes with the same largest number of good sample

points.

The pseudo-code of the fast cutting algorithm is found in Algorithm [6]

One readily infers by checking the loops that the computational complexity of Algorithm 6]

is O(N>d) where N is the total number of sample points and d is the number of dimensions.
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X5 g
A
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hyperbox 1
A -~ // yp
hyperbox 2
/
9 —
X4

Figure 3.5: The two resulting hyperboxes from which the hyperbox with most good sample

points is chosen in Q4.

Optimal versus fast cutting algorithm

We want to compare the results of the optimal cutting algorithm with the results of the fast

cutting algorithm for one iteration step. Here, the design space is given by
Qps =10,0.75],

and the good space is defined by

d
d
{X < QDS . xX; < —}.
)

1

100 points are sampled by a Monte Carlo method in the design space and the respective
cutting algorithm is applied. This experiment is repeated 1000 times for each dimension
under consideration. The resulting mean of the volume ,u(QZZ{v )avg and the standard deviation
of the volume are plotted in Figure ford = 2,4,6,8 and 10 dimensions.

We observe in Figure that the volume of the resulting hyperboxes obtained by the
optimal cutting algorithm is larger in the mean than the volume of the resulting hyperboxes
obtained by the fast cutting algorithm for all dimensions under consideration. However,
the distance between the resulting volume obtained by the optimal cutting algorithm and
the one obtained by the fast cutting algorithm decreases when the dimension increases.
Consequently, the hyperboxes of the fast cutting algorithm and the optimal algorithm differ

only little, especially in high dimensions.

In Figure [3.6(b)| the standard deviations (J'(/J(Qg‘[’)fr )) of the resulting volumes are depicted.

The standard deviation obtained by the optimal cutting algorithm is smaller than the
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Data: a hyperbox Q.,,; and a set S = {X; € Qg 1 f(X1) > --- > f(Xy)} of sample
points
Result: hyperbox C Q. which contains only good sample points
forall the good sample points {x5°°? € S : f(x5°°?) < f.} do
forall the bad sample points {x"* € S : f(x*) > f.} do
for dimensioni=1,2,...,d do
if x2%¢ < 3" then
‘ count the good sample points X with x> > x; > xlo;
else

‘ count the good sample points x with x>/ < x; < x;”;

end

end

choose the dimensions i* where the fewest good sample points are removed;
choose the dimensions i** where the most bad sample points are removed
from the selected dimensions i*;

choose randomly the dimension i* from the selected dimensions i**;

if 004 < xfj"’d then cut to x/2";

else cut to x,’;

end
forall the dimensions i where a bad sample point is removed do
if x4 < x***’ then

‘ xf"w := min; x; ; for all remaining good sample points X;;

else

Mp - . . . .
‘ x;" := max; x; ; for all remaining good sample points X ;

end

end
remember the hyperbox with most good sample points;

end

Algorithm 6: Pseudo-code of the fast cutting algorithm.

standard deviation obtained by the fast cutting algorithm for all dimensions under consider-
ation. However, the difference between the optimal and the fast cutting algorithm decreases
when the number of dimensions increases. Therefore, the fast cutting algorithm is a good

alternative to the optimal cutting algorithm, especially in high dimensions.
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Figure 3.6: Optimal versus fast cutting algorithm: (a) Mean of the volume of 1000 runs.
(b) Standard deviation of the volume of 1000 runs.

3.24 Growing

In the fourth step, the hyperbox is modified by growing in all parameter directions to
enable the hyperbox to evolve towards beneficial directions with increasing hyperbox

size in connection with the third step. This is done by a modification of the parameter
of the k-th iteration by

[X§OW](/(+1) = [xl_OW](k) _

boundaries. The boundaries in the (k+ 1)-st iteration step are calculated from the boundaries
1

BOPI® — [x®) foralli=1,2,...,d
for the lower boundary and by

[P1%D = PP + O - [x®) foralli=1,2,....d
for the upper boundary.

number of sample points is constant, 8 has to be chosen according to the equation (3.2))
hyperbox.

If 3% would be constant over the iterations, this means 8 := S® for all iterations k, and the
to obtain with a certain probability at least one good sample point in the new candidate

We need the following definition, cf. [11].



34 CHAPTER 3. ALGORITHM

Definition 3.2.4 (Conditional probability). The conditional probability of the event A,
given that B has already occurred, is defined as

P(A|B) := % if P(B) > 0. (3.1)

® \where QX

Theorem 3.2.5. Let the good and bad space be uniformly distributed in Q,, ot
denotes the space of the hyperbox after applying the cutting algorithm in the k-th iteration

step. Let a; be the true fraction of good space in Qg?t. The conditional probability to obtain

+1

at least one good sample point in the new candidate hyperbox Qi_k d) given ay is at least

an

1—(1—(”3%)&

Proof. Define the event to obtain at least one good sample point in the (k + 1)-st iteration
step by

A= (NED > .
The probability to hit the good space is denoted by p. In the worst case, the set Q(L’;;;) \,u(QE.];)t
contains only bad space. Then, the probability of A given qy is
akﬂ(Qg;)t )N
M)

cand

P(Alak):l—(l—p)NZI—(l—

After applying the cutting algorithm in the k-th iteration step, the volume of the resulting

hyperbox is
d

piy =[5,
i=1

The volume of the new candidate hyperbox is

d
p@ir)y = | |, +289¢5,).
i=1

Hence, we obtain

. d k) d k)
ak,u(qu)[) _ Ak I—[i=1 [i,cut Ay I—[i=1 fi,cut Ay

p@D) I (6D, + 28960, (1+ 280y [T, 65, (1+289)

1,cut 1,cut

which implies
ay )N

PAla0 = 1= (1 - e
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This theorem yields the following result under the assumption that the fraction a; of good
space is known. The growth factor % has to be chosen such that the inequality

N

ag
P(Alay) > 1 - (l - —) >

is satisfied in order to ensure that we have with probability ¢ > 0 at least one good sample
point in the new candidate hyperbox.
However, in practice, we have only a certain confidence interval aﬁ("w < a < a,” (say, to
the confidence level r) for the fraction of good space at hand. From P(Alay) > P(Alai"w ,
we conclude that 8% has to be chosen according to

low

)

in order to ensure that there will be with probability ¢g/r at least one good sample point in

the next iteration.

To fulfill the inequality (3.2)) over the whole iteration process, i.e., 8 := B% for all iteration
steps k, either 8 has to be chosen very small or N has to be chosen very large. In the first
case, the candidate hyperbox would move very slowly, which means that many iteration
steps in the exploration phase may be necessary. To reduce the number of iteration steps
and, therefore, to accelerate the algorithm, the growth rate ¥ has to change over the
number of iterations to ensure that the resulting candidate hyperbox will contain good
sample points and the speed of the hyperbox is satisfactory. Therefore, the growth rate

B*V is calculated according to

k+1) . _ Ek (k)
pHY == ——p
Aarget

where k is the iteration index, @y is the fraction of good sample points in the iteration step

k, and a4, 18 the desired fraction of good sample points.

The growth rate SV is determined such that the fraction of good sample points levels off
at the desired fraction of good space during the exploration phase and to ensure that the

resulting candidate hyperbox will contain sufficiently many good sample points.

The growing process is illustrated in Figure|3.7|for the Rosenbrock function. The Rosen-

brock function is defined as
f(x1, %) = (1 = x1)? + 100(x; — x2)°. (3.3)

Here, the design space is given by Qps = [-2,2] x [-2, 3], see Figure [3.8(a)} The critical
value is chosen as f, = 20, see Figure In Figure the good and bad parts



36 CHAPTER 3. ALGORITHM

3)\
classical optimum
X2
solution box
) >
-2 X1 2

Figure 3.7: Iteration process starting in the classical optimum to move towards a beneficial

direction with increasing hyperbox size.

() (b) (©)

Figure 3.8: (a) The Rosenbrock function. (b) The Rosenbrock function with the critical
value. (c) The good and bad space of the input space of the constrained Rosenbrock

function.

of the design space of the Rosenbrock function constrained by f. = 20 are illustrated. In
Figure [3.7] it can be observed that the hyperbox moves away from the classical optimum
towards a beneficial direction with increasing box size. If the hyperbox does not move and
u(Qyp,,) does not significantly change anymore, the algorithm switches to the consolidation
phase.



3.3. CONSOLIDATION PHASE 37

3.3 Consolidation phase

The consolidation phase is an iterative scheme where each iteration consists of three basic
steps as seen in the flowchart in Figure

3.3.1 Sampling methods

In the first step, a sample of designs is created by using Monte Carlo sampling or Latin

hypercube sampling in the candidate hyperbox, cf. Subsection [3.2.1]

3.3.2 Statistical evaluation

Then, the candidate hyperbox is evaluated in the second step. This can be done by Bayes’
theorem, cf. [47]].

Theorem 3.3.1 (Bayes’ theorem). It holds

P(BIA)P(A
P(A|B) = % (3.4)

where P(A|B) and P(B|A), respectively, are the conditional probabilities of the events A

and B, respectively.

Proof. The conditional probability of the event A is given per definition by

P(A|B) = % = P(A N B) = P(A|B)P(B). (3.5)

The conditional probability of the event B is given by

P(BIA) = % = P(AN B) = P(BIA)P(A). (3.6)

From equation (3.5]) and equation (3.6), it follows

P(B|A)P(A
P = “ETEE,

and equation (3.4)) is shown. O

The lower and upper boundary of a Bayesian confidence interval [a;,,, a,,] with a certain

confidence level is calculated, using the following theorem according to [45]].
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Theorem 3.3.2. Let N € N be the total number of sample points and N, < N the number
of good sample points in the hyperbox Qegna = [¥'7 . x? Ix [x§ L xF 1x---%
%n o fo’C wmal- Moreover, let a denote the true fraction of the good space in the hyperbox

Q. ana- The prior distribution of a is assumed to be uniform. Then, the confidence level that

[x

the probability of the fraction of good sample points (probability of success) lies within a

given Bayesian confidence interval is

up
[ Y51 = OV Nedt

P(d"™ < a < d"|Ny(N)) = == :
i sNe(1 = NNeds

(3.7)

Here, a'” is the lower boundary of the confidence interval and a*? is the upper boundary

of the confidence interval.

Proof. The probability of getting N, good sample points from N sample points is P(a|Ng(N)).
This probability is given for P(N,(N)) # 0 by

P(anN N,(N
P(alN,(N) = % (3.8)
8
Applying Bayes’ theorem, we get
P(Ny(N)|a)P
g

with P(a) being the prior, which is the initial degree of belief in a, and P(a|N,(N)) being the
posterior probability, which is the degree of belief having accounted for N,(N). Moreover,
P(Ny(N)la)/ P(N4(N)) represents the probability of N,(N), cf. [4]. With

1
P(Ny(N)) = fo P(Ny(N)Is)P(s)ds,

it follows PON.(N))P(a)
a)P(a
P(alNy(N)) = ——= :
Jy P(Ng(N)[$)P(s)ds
Since the prior distribution of a is assumed to be uniform, it holds P(a) = 1 and we obtain
P(Ng(N)la)
P(alNy(N)) = ——— .
Jy PINo(N)s)ds

P(N,(N)l|a) is a binomial distribution since we have either good or bad sample points.

Hence, we conclude

(Ii)aNg(l —a)N N @ (1 — @)V

P(aIN,(N)) = —

- : (3.10)
J(; (IJ\Z.)SNg(l — )N Ned's j(;l sVe(1 — s)V"Neds
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The probability of the true fraction of the good space a in the hyperbox is thus given by
the S-distribution, cf. [41]]. The desired confidence level for a € [a", a“"] is finally

l [ (1 = )" Ned
P(a” < a < a"|Ng(N)) = f P(alN,(N))da = “1 ,
alow \f(; SNg(l _ S)N—Ngds
which completes the proof. |
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Figure 3.9: The width of the 95%-confidence interval around the probability of success.

For a uniform sampling of the input parameters, the probability of success corresponds
to the good fraction of the input space volume. In Figure [3.9] the width of the Bayesian
confidence interval around the probability of success is shown over the number of sample
points N for different values of N,/N. As it can be observed, the width of the confidence
interval decreases when the ratio N, /N increases. When there are 100 sample points and
N, /N = 1, which means that there are only good sample points, the true fraction of the
good space is with 95% probability between 0.97 and 1, see [45]. Therefore, the width of
the 95%-confidence interval is 0.03. The remaining 3% probability of failure is acceptable
for two reasons. First, the layout of, e.g., a vehicle is likely to change over the course
of the development process. Therefore, there is no need for a high accuracy. Second,
the final design will always be verified by a detailed simulation anyway. This width of
the 95%-confidence interval is assumed to be sufficiently small, especially in an early
development phase where the knowledge of the final state of a design is limited. Therefore,

100 sample points are used in general for the evaluation of the candidate hyperbox.



40 CHAPTER 3. ALGORITHM

3.3.3 Cutting algorithm

When there are bad sample points, the algorithm continues with the third step where the
cutting algorithm introduced in Section [3.2.3|is applied to remove the bad sample points.
When N, /N = 1, the algorithm will stop and the last candidate hyperbox is chosen to be
the final solution hyperbox.

3.4 Extensions of the algorithm

3.4.1 Measures for the hyperbox

The cutting algorithm is extended to obtain a hyperbox which is maximal regarding to
different measures of the solution hyperbox. Different measures will yield to different sizes
of the intervals of the resulting hyperbox. Within the cutting algorithm, a hyperbox is built
around each good sample point. From these hyperboxes, the next candidate hyperbox is
selected depending on the preferred measure of the hyperbox, see Algorithm

Classically, the hyperbox with most good sample points is chosen in order to obtain a
hyperbox with maximum volume. Consequently, a hyperbox which is as large as possible is

obtained if the standard mode (Mode 1) is selected. This measure is referred to as tt;(Qpy).

The intervals of some dimensions may be very small while intervals of other dimensions
may be very large. A small interval of a parameter allows only a little variability of the
parameter. However, in practical applications, variability of the input parameters is often
present due to uncertainty. Therefore, rather than a large volume, a hyperbox is desired
where the smallest interval is as large as possible. Consequently, we introduce a new
measure of the hyperbox. This measure consists of the smallest weighted width. Under
the assumption that larger parameter values yield larger variabilities, the interval width is
normalized by the mean of the appropriate interval. Consequently, the variability is taken
into account relative to the parameter under consideration. The minimal weighted width
is the minimum of the width of an interval normalized by the center of the appropriate

interval. It is calculated by

up xl_ow

H2(Qpox) = miin m (3.11)

with x;’p + xf”w #0,i=1,2,...,d. By maximizing this measure choosing Mode 2, a
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hyperbox with maximum smallest interval width is obtained.

Data: a hyperbox Q.. and aset S = {X; € Qu4nq : f(X1) > -+ > f(Xy)} of sample
points
Result: hyperbox € Q.,,; which contains only good sample points
forall the good sample points {x5°°¢ € S : f(x5°°¢) < f.} do
forall the bad sample points {x"* € S : f(x*) > f.} do
for dimensioni =1,2,...,d do
if xbd < xf””d then
‘ count the good sample points x with xf’“d > X > xf"w;
else

‘ count the good sample points x with x*/ < x; < x;”;

end

end

choose the dimensions i* where the fewest good sample points are removed;
choose the dimensions i** where the most bad sample points are removed
from the selected dimensions i*;

choose randomly the dimension i* from the selected dimensions i**;

if X004 < 1 °d then cut to X

else cut to x}’;

end

forall the dimensions i where a bad sample point is removed do
if x> < x5°* then

i
low

‘ x,” := min; x; ; for all remaining good sample points X ;

else
up o . . . .
‘ x;” := max; x; ; for all remaining good sample points X ;

end

end

switch mode do

case /: remember the hyperbox with the largest measure 11 (€2p,,);
case 2: remember the hyperbox with the largest measure 1;(€2p01);
case 3: remember the hyperbox with the largest measure p3(€2p,.);
case 4: remember the hyperbox with the largest measure 14(2p,.);

case 5: remember the hyperbox with the largest measure ps(€2p,,);

endsw

end

Algorithm 7: Pseudo-code of the cutting algorithm with extensions.
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In Mode 3, the maximum of the weighted function

u
P _ xlpw

Qo) 1= AN, + (1 = ) min ————— 3.12

Ha( Qo) 1= AN, + (1 = ymin o (3.12)

with 2 € [0,1] and x;” + x* # 0, i = 1,2,...,d, returns a hyperbox with most good
sample points if 4 = 1 and a hyperbox with the largest minimal weighted width if 2 = 0.
As usual, N, denotes the number of good sample points within the hyperbox. Therefore, a

compromise between large volume and large minimal weighted width is found.

The following modes are especially important for practical applications where the support
points of a curve describing the functional relationship between two quantities are the

input parameters.

Definition 3.4.1 (Corridor). Let I = [x™, x{"],L, = [, x3"],..., 1y =[x, X1 be

the permissible intervals for the input parameters xi, X, . . ., X; and let the input parame-

ters be the support points of a curve describing the functional relationship between two

quantities. We generate one curve c'” by linearly interpolating between the lower bound-
low low low

aries x™,x3" ..., x ;" and another curve c*? by linearly interpolating between the upper

boundaries x\", x," ..., x. Then, the space between both curves is called a corridor.
Remark 3.4.2. If each curve is attached to a component, the support points of one
component may generate a group of input parameters.

Choosing the Mode 4, the hyperbox with the largest minimal coupled weighted width is

the next candidate hyperbox. The minimal coupled weighted width is calculated by

: up low
mlniecoupl(xi —Xl.[ )

Ha(Qpoy) 1= min (3.13)

coupl maXiEcoupl((-x?p + Xfow)/z)

where maxiecoupl((x?p + xfow) /2) # 0 and coupl denotes a group of input parameters. The
smallest interval width of the parameters of a group is normalized by the largest mean of
the intervals of the group. By using the same normalization for all interval widths within a
group, the interval widths are equally weighted within a group in contrast to the measure
1. Consequently, the variability is taken into account relative to the parameter with the

largest center within the group under consideration.
In Mode 5, the hyperbox with the maximum of the function

min,cow v |y — x|,
R Ccoupl’} Ccoupl

:u5(Qbox) '= min (3.14)

up
coupl maxiécoupl(x,’ )

with maXecoup(x;”) # 0 is selected. The enumerator of (3:14) measures the width of
the corridor as illustrated in Figure The widths of the intervals are identical in
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Figure 3.10: Force-deformation corridors: the width of the corridor is in (a) larger than in
(b) while the widths of the intervals are identical. The corridor in (a) is smaller than the
corridor in (c) due to a normalization of the width by the maximum upper boundary.

Figure[3.10(a)| and [3.10(b)| while the width of the corridor is larger in Figure than in
Figure [3.10(b)] For example, in a front crash design problem where the force-deformation

curve of each group has to lie within its associated force-deformation corridor, it is easier
to lie within the corridor shown in Figure than to lie within the corridor shown in
Figure [3.10(b)| Therefore, the minimum of the widths of the corridors are to be maximized
in contrast to the measure p4 where the minimum of the widths of the intervals are to be
maximized. Moreover, the widths are normalized by the maximum upper boundary for
each group. By using the same normalization for all interval widths within a group, the
interval widths are equally weighted within a group. A variability relative to the largest
value within a group is taken into account. Therefore, the corridor in Figure is

smaller than the corridor in Figure

3.4.2 Sensitivity of the solution hyperbox

We want to obtain some information about the sensitivity of the lower and upper boundaries
of the solution hyperbox. The sensitivity of the lower / upper boundary of the i-th interval
indicates how many bad sample points are obtained if the i-th interval is extended to
the lower / upper boundary, see Figure [3.11] The hyperbox is extended by adding a
certain fraction of the width of the i-th interval to its upper boundary in order to obtain
the sensitivity of this upper boundary. If we want to obtain the sensitivity of the lower

boundary of the i-th interval, we subtract a certain fraction of the width of the i-th interval
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from its lower boundary in order to extend the hyperbox.
Definition 3.4.3 (Probed space). The extended space is called the probed space.
In order to rate the sensitivity, a sample is done in the probed space. If the sample contains

many bad sample points, extending the boundary worsens extremely the quality of the

hyperbox. In this sense, the hyperbox is sensitive with respect to the considered boundary.

Definition 3.4.4 (Very sensitive / a bit sensitive). The boundary is called very sensitive if
many bad sample points are gained by extending the hyperbox. If a few bad sample points

are obtained, the boundary is called a bit sensitive.

probed space, i=2

/X i

solution hyperbox probed space, i=1

Figure 3.11: The solution hyperbox is extended in the parameter direction i. The extended

space is called the probed space.

The following values indicate how sensitive a boundary is: The fraction of good space of

the probed space in the dimension i is calculated by
N. low
[a*]f" = [—g]
N Liagr
for the lower boundary of the i-th interval, and by

up
la"]}" = [%]

. ~Prob
I’Qbox

for the upper boundary of the i-th interval.
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Next, we calculate the fraction of good space of the hyperbox which is extended in the
parameter direction i, i.e., the fraction of good space of the solution hyperbox together
with the probed space. For this fraction of good space, we obtain in due consideration of
the area ratio between the solution hyperbox and the probed space

Ne Ne low low low low
[W]gw/ + [W:I QP"’” ('xz sol zprnb)/(xz sol ~ Xisol

[a**]{ow = = low low low
('xt sol zprob)/('xt sol xi,sol
up _ _low low
_ [Ng] xisol xi,sol " [Ng]
N low _ low N
N Q! Xi sol i,prob N i,Qf,f‘;”

for the lower boundary, and by

N, Ng 4P up low
[W]gml + [ N ] Qﬂmb (Xl prob xl Y()l)/(xl sol — xl sol

[a**]ttp — box —
(xl prob i, Y()l)/(xl sol xi,sol
up  _ _low up
_ [Ng] 'xi sol xi,sol [Ng:|
| A7 up up ENa
N Q! xl prob — “Visol N Q‘Z;ib
for the upper boundary.

If [a*]; or [a**]; is small, the boundary is very sensitive. The boundary is only a bit sensitive

if [a@*]; or [a™]; 1s large.
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Chapter 4
Results of the algorithm

In this chapter, the following four benchmark problems are considered to study the conver-

gence to optimal solutions.

3 4 1 1
r
X3 X5 X3 X
-2 0 0 0
-2 Xy 2 0 Xy 4 0 Xyr 1

(a) (b) (©) (d)

0 X, 1

Figure 4.1: Problems considered: (a) Problem 1 (Rosenbrock), (b) Problem 2 (convex
polytope), (c) Problem 3 (hyperbox) and (d) Problem 4 (tilted hyperplane).

e The solution space is given by restricting the two-dimensional Rosenbrock function
by a constant value in Problem 1, see Figure

e In Problem 2, the solution space is generated by a convex polytope as depicted in

Figure 4.1(b)]

e A hyperbox which defines the good space of the design space is inscribed in another
hyperbox which is the design space (see Figure d.1(c)). The ratio of the volume
of the good space and the volume of the design space is 0.5. This is considered as
Problem 3.

47
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e In Problem 4, the solution space is given by a tilted hyperplane which divides a

d-dimensional hyperbox I; X I x - -+ x I; € R in two equal volumes, cf. Figure

B.1(d)

In Figure the grey area indicates the bad space, and the white area shows the good
space.

4.1 Problem 1. Restricted Rosenbrock function as bound-
ary

The nonlinear optimization problem of maximizing a rectangle under the inequality con-

straint that the Rosenbrock function is smaller than a given constant is considered to

compare the numerical results of the proposed algorithm with the optimal solution. The re-
lated good and bad space of this problem under consideration is visualized in Figure

4.1.1 Analytical solution

Let f(x) be the two-dimensional Rosenbrock function (3.3)) and Qps = [-2,2] X [-2, 3].
We aim at finding the largest hyperbox

anx = [xllow’ xthp] X [xl2r)w’ x;p] c QDS
such that f(x) < f, = 20 for all x € Q,,,. To that end, we consider the function
2
g(z,a,p) := (1 — (xll"w +a(x’ - v ))
2
+ 100(x120w + BT = Xy - (xllow +a(x)’ — X ) )
where z := (x'V, x"*?) = (xlov, xlov x'P, x57). Then, any z in the set
L ) - 1 sy s M) . B y

K = {(x',x"P) € Qps X Qps : g(z,a,B) < 20 for all @, € [0, 1] and x*" < x"7}

defines obviously a hyperbox Q,,, such that f(x) < 20 for all x € Q,,,. Consequently, by
defining the quadratic objective function

02 0 0

1 0 0 -20

Qpor) = (7 = x")(xy" = x7") = 52" Dz with D = :
ﬂ( b ) (xl Xy )(-x2 Xy ) 2Z Z Wl 0 0 0 2
20 0 0
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we can formulate our problem as constrained optimization problem
u(Qyp,,) — max subjectto z € K. “4.1)

Since the set K is convex, this optimization problem admits a maximum (£2;,,) due to the
theorem of Weierstral3 (cf. [63]]).

Theorem 4.1.1 (Theorem of WeierstraB). Let K be a non-empty and compact subset of R¢
and let f : K — RY be a continuous function on K. Then, there exist the global minimum

and the global maximum of f.

The analytical solution of (#.1]) is found by means of Lagrange multipliers (see Appendix [A))
and has the values tabulated in the second column of Table @ entitled x; ,,,. The values

are rounded to three digits. A visualization of this maximum is found in Figure #.2]

-2
-2 X4 2

Figure 4.2: Problem 1. The hyperbox of maximum volume within the solution space.

4.1.2 Numerical solution

The constrained optimization problem (4.1)) is equivalent to the constrained optimization
problem (P) if f(x) is the Rosenbrock function (3.3) and f. = 20. We shall compare the
numerical results produced by the optimization algorithm with the analytical solution. The
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following process is executed to obtain the numerical results:

The algorithm is run 100 times, where the iterative process is started

with a good design which is randomly chosen.
(PR)

200 iterations of the exploration phase

and 100 iterations of the consolidation phase are run.

The distribution of the solution hyperboxes found by the algorithm is depicted in the
histograms in Figure (4.3(a)| for the parameters xll"w and x,” and in Figure 4.3(b)|for the

low up
parameters x," and x, .

140 : 140 :

Il lower boundary Il lower boundary
120¢ upper boundary || 120; upper boundary ||
100¢ ] 100¢

%) %)
c 801 c 80
[} (]
> >
g 60 g 60|
40¢ 40¢
20¢ 20t
% 0 2 % "0 2
X1 %

(2) (b)

Figure 4.3: Problem 1. Distribution of the hyperboxes found by the algorithm for (a)
coordinate x; and (b) coordinate x, for 100 simulations.

The columns of the Table @ entitled x; ,,, contain the mean of the coordinates of the final
hyperboxes of the 100 simulations, the columns entitled o(x;) are the related standard
deviations, the columns entitled &(x;) contain the absolute errors |x; 4, — X;opl, and the
columns entitled “error in %” contain the relative errors |x; 4o — X; opel/ Xi opr in %. The values
are rounded to three digits. These results confirm that the proposed algorithm approximates

the analytical solution.
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analytical numerical for N = 100

Xiopt Xiavg o(x;) e(x;) error in %
leow -0.525 | -0.510 | 0.0458 | 0.0150 2.86
xlzow —-0.145 | -0.161 | 0.0487 | 0.0160 11.0
x\" 0.547 0.533 | 0.0455 | 0.0140 2.56
Xy 0.436 0.432 | 0.00321 | 0.00400 0.917

Table 4.1: Problem 1. Analytical solution and related numerical results for 100 simulations.

4.2 Problem 2. A convex polytope as boundary

We consider the nonlinear optimization problem of maximizing a hyperbox within a convex
polytope. In Figure d.1(b)] a solution space which is generated by a convex polytope is
illustrated in two dimensions.

4.2.1 Analytical solution

Let Qpg :=[0,L;] X [0, L] X - -- X [0, L;] € R? be the design space and

Qpor =[x, XPT X [, K0P x -+ x [ X5P] € Qs

We will write z = (x, x"7) = (xlov, xlov, . xlov KPP, X0,

The inequality
: r nx2d n
g(z):=Az-b<0 with0=0,0,....,0] , AcR"* beR

describes the cross section of n € N half-spaces, called a convex polytope (see [27]).
The set

K = {(x'”,x"P) € Qps X Qps : g(z) < 0 and X" < x"7}
is a compact subset of R¢, because K is closed and bounded. Moreover, the constraint g(z)
is affine and
d
U Qo) = ﬂ(x;‘f’ — Xy with X < ¥ foralli = 1,2,....d
i=1

is a convex function. Therefore, the optimization problem

U(yp) — max subjecttoz € K 4.2)
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under affine inequality constraints admits a maximum p(€2p,.).
The maximum of (4.2) can be identified by means of Lagrange multipliers.

The Lagrangian which belongs to the optimization problem under consideration is

A b
d
Lz ) = |47 - )+ ' (Az—b) with A=|B| and b=|c|.
i=1 C 0
Here, the matrices B and C are given by
— [0 I] cR>M (= -0 € R2dx2d
’ I -I

where I denotes the (d X d)-identity matrix. Moreover, it holds
T
¢=|LiLy,....Ld| -
Due to the KKT-Theorem (cf. Section[A)), there exists a unique vector of Lagrange multi-
pliers A* € R*¥*"_ such that the following KKT-conditions are fulfilled:

V.o - | P 9L L oL AL oL |_,
EETT T L andow gdow T gl X7 axP T ol |

AZ <b component-by-component,
A, 20 fors=1,2,...,3d +n,
(/l*)T(KZ* - E) =0 component-by-component.

The KKT-point will be found by solving these equations.

First example

The following two-dimensional example is considered to compare the numerical results of
the algorithm with the optimal solution.

Let Qps := [0,4]? be the design space and

Qpor =[x, 2PT X [x5, %51 € Qs (4.3)
Each of the half-spaces
1 + 1 1 low _ l low + 1
l(z) = [4 xlldp szup }’ A3(Z) = [ lxllow 2 l()w
# t e — 1 37 =3+l 4.4)

As(z) = [-1xlw + L7 - 1], Ay(z) = [ = 3w — 1]
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Figure 4.4: Problem 2 (first example). Convex polytope in d = 2 dimensions with the

hyperbox of maximum volume.

constraints one of the corners of the hyperbox in the solution space. Therefore, the inequal-
ity

(0 0o 1 1] [ 1]
Ai(z) 0o 0 &+ 2 1
A -1 0 0 1 1
g(z) = (2) =Az-b<0 withA = % . 2 b= (4.5)
A3(Z) -5 T3 0 0 -1
Ay(2) -+ -2 0 0 -1
0 -3 1 0] |1

describes a convex polytope. For the specific values used in equation (@.4), we obtain the
convex polytope which is depicted in Figure [4.4]

The maximum hyperbox within this convex polytope is identified as described above with
d = 2. For

A;>0, sefl,4,6},

A; =0, otherwise,
the analytical solution is found and has the values tabulated in Table @.2]in the column

which is entitled x;,,,. The values are rounded to three digits. A visualization of this
maximum is depicted in Figure [4.4]
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analytical numerical for N = 50 numerical for N = 100

error error

Xiopt Xiavg | O (x;) &(x;) in % Xiavg | O (xi) &(x;) in %
xlow 1.18 1.18 | 0.101 0 0 1.17 | 0.074 | 0.0100 | 0.847
X 1.23 1.24 | 0.138 | 0.0100 | 0.813 | 1.24 | 0.108 | 0.0100 | 0.813
X’ 2.85 2.69 | 0.169 | 0.160 | 5.61 | 2.73 | 0.140 | 0.120 | 4.21
x5" 2.58 2.65 | 0.092 | 0.0700 | 2.71 | 2.63 | 0.073 | 0.0500 | 1.94
average - - 1 0.125 | 0.0600 | 2.29 — 10.0986 | 0.0475 | 1.95

Table 4.2: Problem 2 (first example). Analytical solution and related numerical results for
100 simulations with N = 50 and N = 100.

Second example

The convergence to the optimal solution is studied by considering the following two-

dimensional example.

Xy

10

Figure 4.5: Problem 2 (second example). Convex polytope in d = 2 dimensions with the

hyperbox of maximum volume.
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Let Qps := [0, 10]* be the design space and €, as in (#.3). The functions

MA@ =20+ b 1], As@) = [~ 3 L],
_1 low + lxMP 1
Ay(z) = 2 , Aq(z) = [10,0 _ 2dow _
2( ) [ 3 llow +x;!7 1 4( ) [ 3x2 ]

represent half-spaces, each of which constraints one of the corners of the hyperbox in the
solution space. Therefore, the convex polytop is defined by

[0 0 2 1] [ 1]
A1) 19 o 1 1
AQ(Z) 12 6
g(z) 1= =Az-b<0 withA=[-2 0 0 1|,b=]|1]. (4.6)
2
As(2) 31 0 0 1
Ay(z) st B
0 -2 10 g 1]

The convex polytope is illustrated in Figure {.5]

By maximizing a hyperbox within this convex polytope, the analytical solution is found for

>0, sef2,4,5},
A; =0, otherwise,

as described above by means of Lagrange multipliers. The analytical solution has the
values tabulated in the second column of Table 4.3 which are rounded to three digits. A
visualization of this maximum is found in Figure 4.5}

analytical numerical for N = 100

Xiopt Xiavg ‘ o(x;) ‘ e(x)) ‘ error in %
xll"w 2.02 2.38 | 0.403 | 0.360 17.8
x’2"w 3.79 3.97 | 0.245 | 0.180 4.75
x 7.40 7.68 | 0.335 | 0.280 3.78
x5" 7.01 7.21 | 0.205 | 0.200 2.85

Table 4.3: Problem 2 (second example). Analytical solution and related numerical results
for 100 simulations with N = 100.

Third example

The following example is considered to compare the numerical results with the optimal

solution in three dimensions.
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Let Qps := [0, 800]° be the design space and
Qbox = [ llow’ xlfp] X [xlzow, x;p] X [xg"w,xg’p] - QDS-

Each of the half-spaces

Ai(2) = |« - 627.84]. As(2) = | -2l — xow — Xl 4 1210]
As(z) = [x'fp - xlz”w] , Ay(z) = [x;p - xé"w]

constraints one of the corners of the hyperbox in the solution space. Thus, the inequality
A (z) 0O 0 O 001 627.84
A 0O -1 0 1 0O 0

g(z) = 2(2) =Az-b<0withA = , b= 4.7)

As(z) -1 -1 -1 0 0 O -1210
A4(z) 0O 0 -1 010 0

describes a convex polytope.

The maximum hyperbox is found as described above for d = 3. The values of the analytical

solution are tabulated in the second column of Table 4.4} and are rounded to three digits.

analytical numerical for N = 100
Xiopt Xiavg ‘ o(x;) ‘ e(xy) ‘ error in %
xiow 216 210 | 35.5 | 6.00 2.78
X 441 441 | 19.6 0 0
X 553 553 | 11.2 0 0

X" 441 437 | 16.8 | 4.00 0.907
x5 553 552 | 11.8 | 1.00 0.181
x5" 628 627 | 1.47 | 1.00 0.159

Table 4.4: Problem 2 (third example). Analytical solution and related numerical results for
100 simulations with N = 100.

4.2.2 Numerical solution

First example

If we express the constrained optimization problem (#.2)) with the specific values (4.5)
equivalently as
0, if g(xy, x2, x1, x2) < 0 component-by-component,

J(x,x) =

1, otherwise,
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and f. := 0.5, the optimization problem (4.2)) corresponds to the constrained optimization
problem (P). Therefore, we can numerically solve the problem by using the algorithm
presented in Chapter 3| The results of the numerical optimization obtained by executing the

process (PR)) for the convex polytope (#.5)) are listed in Table [d.2]for N = 50 and N = 100
sample points per iteration.

60 : ; 60 : :

Il lower boundary Il lower boundary
50! upper boundary || 50 upper boundary
40¢ 407

frequency
w
o

frequency
w
o

20¢ 20;
10} 10t
‘ ‘ Wl
0 2 4 0 0 2
Xl X2

(a)

(b)

Figure 4.6: Problem 2 (first example). Distribution of the hyperboxes found by the algo-

rithm for (a) coordinate x; and (b) coordinate x, for 100 simulations.

In Table@, the mean x; 4, of the coordinates of the final hyperboxes of the 100 simulations,
the related standard deviations o (x;), the absolute errors &(x;) and the relative errors

|Xi.ave — Xiopel/ Xiope are tabulated. The values are rounded to three digits.

We observe in Table 4.2] that the standard deviation decreases if the number of sample
points per iteration is doubled. The averaged error is 2.29% for N = 50 and 1.95% for
N = 100. Therefore, the error between the analytical solution and the mean of the numerical
solutions becomes smaller when the number of sample points per iteration is increased. In
Section[5.5] it is shown that N = 100 sample points are a good choice to converge fast and
to obtain a large volume in the consolidation phase of the algorithm. Therefore, N = 100

is chosen in the next test examples.

The distribution of the solution hyperboxes found by the algorithm is visualized for
N = 100 sample points in Figure[d.6(a)|for coordinate x; and in Figure[d.6(b)|for coordinate
x,. These plots illustrate that the proposed algorithm converges to the analytical solution

in the sense that the average of the numerical solutions approximately agrees with the
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analytical solutions.

Second example

If we set

0, 1ifg(xy,x2, x1, x2) < 0 component-by-component,
f(xi,x) =

1, otherwise,
and f. := 0.5, the constrained optimization problem (4.2) with the specific values (4.6)
can be equivalently expressed as the constrained optimization problem (P). The results
of the numerical optimization by performing the process are displayed in Table 4.3
for N = 100 sample points per iteration. The means x;,,, of the i-th coordinate of the
final hyperboxes of the 100 simulations, the related standard deviations o (x;), the absolute
errors &(x;) = |Xiag — Xiopl, and the relative errors |x; 4o — Xiopil/ Xiop: In % are shown in
Table 4.3] The values are rounded to three digits.

The distribution of the solution hyperboxes found by the algorithm is visualized via the
histograms in the Figure for the coordinate x; and in the Figure for the
coordinate x,. These plots and the values of the Table [4.3| validate again that the proposed

algorithm converges to the analytical solution.

50 : 50 :
Il lower boundary Il lower boundary
40! upper boundary 40! upper boundary
2 30/ g 30/
Q [}
= =
2 20¢ 2 20;
10 10
0 0 -
0 5 10 0 5 10
Xy %

(a) (b)

Figure 4.7: Problem 2 (second example). Distribution of the hyperboxes found by the

algorithm for (a) coordinate x; and (b) coordinate x, for 100 simulations.
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Third example

With

0, if g(xy, x2, x3, X1, X2, x3) < 0 component-by-component,

S(x1, x2, x3) 2= .
1, otherwise,

and f. := 0.5, the constrained optimization problem (4.2) with the specific values (4.7)
can be equivalently expressed as the constrained optimization problem (P)). Therefore,
problem (4.2) with the specific values can be solved numerically by using the
algorithm presented in Chapter [3] The results of the numerical optimization which are

obtained by executing the process (PR)) for the convex polytope (.7) are shown in Table
M.4]for N = 100 sample points per iteration. The mean of the coordinates of the final

hyperboxes of the 100 simulations, the standard deviations, the absolute errors, and the
relative errors are tabulated in Table 4.4] The values are rounded to three digits.

100 100 100

M lower boundary Ml lower boundary Ml lower boundary
upper boundary upper boundary upper boundary
> > >
(&) (&) (&)
c c c
$ 50 $ 50 $ 50
O (o O
o o o
0 I|||||||I| 0 IMI- 0 J|h
0 500 0 500 0 500
Xy X X3

(a) (b) ()

Figure 4.8: Problem 2 (third example). Distribution of the hyperboxes found by the
algorithm for (a) the coordinate x;, (b) the coordinate x, and (c) the coordinate x3 for 100

simulations.

The distribution of the solution hyperboxes found by the algorithm is visualized via
histograms for N = 100 sample points in the Figure for the coordinate x;, in the
Figure [4.8(b)| for the coordinate x, and in the Figure for the coordinate x3. These
plots and the values displayed in Table #.4] show that the proposed algorithm converges to

the analytical solution also in this three-dimensional example.
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4.3 Problem 3. A hyperbox as boundary

The maximization of a hyperbox with another hyperbox as boundary is considered in
d-dimensions for arbitrary d > 1. The convergence of the algorithm to the optimal solution
is shown in high dimensions.

Figure 4.9: Problem 3. A hyperbox which defines the good space of the design space,
inscribed in the unit d-cube.

4.3.1 Analytical solution

Forr < 1,let[0,7] X [0,7] X ---x[0,r] CR? be a hyperbox which defines the good space
of the design space. This hyperbox is inscribed in the d-dimensional unit cube

Qps :=[0,1]1x[0,1] x --- x [0,1] CR? (4.8)

which serves as the design space. The constant r = r(d) is chosen in such a way that the
fraction of the good space is always 0.5, thatis r = V0.5 (see Figurefor a visualization
in the case of d = 2 and d = 3 dimensions).

It holds that x/ = 0 for all i = 1,2,...,d. Therefore, for x; := x/”, i = 1,2,...,d, we
obtain the optimization problem

/J(Qbox) = X; — max (4‘9)

d
i=1
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under the affine inequality constraints
0<x;<r foralli=1,2...,d. (4.10)

The analytical solution to this optimization problem is easily calculated by x; = x,,, :=
V0.5 for all i = 1,2...,d. The value x,,, tends to 1 as d tends to infinity which is seen by
the values given in Table {.5]

dimension || d=2 |d=3|d=10|d=20|d=50|d =100
Xopt 0.707 | 0.794 | 0.933 | 0.966 | 0.986 | 0.993

Table 4.5: Problem 3. Optimal hyperbox for d = 2, 3, 10, 20, 50, 100 spatial dimensions.

Remark 4.3.1. The inequality (4.10) describes the cross section of finitely many half-

spaces. Thus, it describes a convex polytop.

4.3.2 Numerical solution

The solution of the optimization problem (4.9)) under the inequality constraint (4.10) is the

same as the solution of problem (P) with

0, ifx;<rforalli=1,2,...,d,
fx) =

1, otherwise,

and f. := 0.5. This optimization problem is solved numerically for d = 2,3 and d =
10, 20, ..., 100 spatial dimensions. The algorithm is run with N = 100 sample points per
iteration, and the process is executed.

The histograms in Figure d.10|for d = 2 and in Figure 4.T1|for d = 3 show the distribution
of the resulting hyperboxes. In Table {.6|for d = 2 and d = 3, respectively, the mean
of the i-th coordinate x;,,, of the numerical solutions, the standard deviations o(x;), the
absolute errors £(x;) and the relative errors in % are tabulated (rounded to three digits). The
agreement between the numerical solutions of the algorithm and the analytical solutions is

reasonably good.

To evaluate the results of the algorithm when the number of dimensions increases, the
boundaries of the resulting hyperboxes x;, are computed for every run ¢. Then, the mean
Xi avg Of X; ¢ 18 calculated for every coordinate i = 1,2, ..., d. The mean x,,, of the coordinate
means X, ., 1s displayed in Figure ford = 2,10,20,...,100 dimensions. Note
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42 analytical numerical for N = 100
Xiopt Xiavg ‘ o(x;) ‘ e(x;) ‘ error in %
X 0.707 0.700 | 0.00728 | 0.00700 0.990
X2 0.707 0.700 | 0.00748 | 0.00700 0.990
43 analytical numerical for N = 100
Xiopt Xiavg ‘ o(x;) ‘ e(x;) ‘ error in %
X 0.794 0.784 | 0.00950 | 0.0100 1.26
X2 0.794 0.784 | 0.00942 | 0.0100 1.26
X3 0.794 0.784 | 0.0101 | 0.0100 1.26

Table 4.6: Problem 3. Analytical solution and related numerical results for 100 simulations

for d = 2 and d = 3 dimensions.
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Figure 4.10: Problem 3. Distribution of 100 solution hyperboxes for d = 2 dimensions.

that the numerical solutions x,,, approximately agree with the analytical solutions, also
in high dimensions. The relative error |x,,, — X,/ X, 18 plotted in Figure 4.12(b)] It is
nearly independent of the number of dimensions, and it is smaller than 3%. Therefore, the

algorithm approximates the analytical solution well, also in high dimensions.
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Figure 4.12: Numerical and analytical solutions for Problem 3 (hyperbox) and Problem 4
(tilted hyperplane). (a) Mean of the averaged simulations in comparison with the optimal
solutions for N = 100 and d = 2, 10, 20, ..., 100. (b) The relative error for N = 100 and
d=2,10,20,...,100.

4.4 Problem 4. A tilted hyperplane as boundary

We consider now a d-dimensional problem with a tilted hyperplane as boundary of the
good space. The analytical solution is computed and the algorithm’s behavior for d — oo
is studied.
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4.4.1 Analytical solution

Let us consider the d-dimensional unit cube (4.8) as design space Qpgs. The boundary
of the good space is a diagonal hyperplane which contains the point [1,1,...,1]/2 and
has the normal vector [1,1,...,1]/ Vd. That is, the tilted hyperplane is described by the

equation
d
d
g(x) = Z Xi — 5

i=1
and intersects the design space in the middle. Note that the fraction of the good space is
50%, independently of d, see Figure for d = 2 and Figure d.13(b)|for d = 3.

14
|
AT
7 |
X, | | |
(NS S A B
|/ |
X}|_/____%
/ /
0 |
0 Xy 1
(@) (b)

Figure 4.13: Problem 4. Tilted hyperplane in d = 2 and d = 3 dimensions with the

maximum hyperbox.

The lower bounds are x/ = 0 foralli = 1,2,...,d. Therefore, for x; := x/”,i = 1,2,....d,

i

we obtain the optimization problem

d
U(Qpoy) = 1_[ x; — max subjecttox € K. 4.11)
i=1

Herein, the set
K :={xeQps:gx) <0}
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is a compact subset of R4, because the set is closed and bounded. Thus, the optimization
problem admits a solution on K, since the objective function u(€2y,,) is convex and the

constraint g(x) is affine. The solution can be found with the help of Lagrangian multipliers,

(11 1)
X=—-,—,...,—
2’27772

due to symmetry reasons. The associated hyperbox volume is

and is given by

1
opt
H Qbfjx) = ?

The solution is illustrated in Figure .13 for two and three spatial dimensions.

Remark 4.4.1. The inequality g(x) < 0 describes a half-space, and, therefore, it describes

a convex polytop.

4.4.2 Numerical solution

The constrained optimization problem is equivalent to the constrained optimization
problem (P) if we set f(x) = g(x) and f. = 0. We shall compare the numerical results
produced by the optimization algorithm with the analytical solutions. The algorithm is run
with N = 100 sample points per iteration by executing the process (PR).

For low dimensions, d = 2 and d = 3, the distribution of the solution hyperboxes found
by the algorithm is depicted in the histograms in Figure for d = 2 dimensions and in
Figure .15|for d = 3 dimensions, respectively. The mean of the i-th coordinate of the final
hyperboxes x; ., the associated standard deviation o (x;), the absolute error &(x;), and the
relative error are tabulated in Table 4.7|for d = 2 and for d = 3 dimensions, respectively.
The values are rounded to three digits. These results confirm that the proposed algorithm

approximates the analytical solution in d = 2 and d = 3 dimensions.

Next, we compare the numerical results produced by the algorithm with the analytical
solutions when the number of dimensions increases. We consider d = 2, 10, 20, ..., 100 di-
mensions. As in the previous problem, x; 4, is calculated for each coordinate i = 1,2, ...,d.
Then, the mean x,,, of the coordinate means versus the spatial dimension is plotted in
Figure In low dimensions, the results of the algorithm are in good agreement with
the optimal solution. In high dimensions, i.e. d > 10, the numerical results strongly deviate
from the analytical solutions. The relative error |xq,, — X,/ Xop: 15 found in Figure
The error strongly increases when the number of dimensions increases. The volume of the

solution hyperbox is larger than the optimal one in high dimensions.
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4> analytical numerical for N = 100
Xiopt Xiavg ‘ o(x;) ‘ e(x)) ‘ error in %
X 0.500 0.449 | 0.0598 | 0.0210 4.20
X2 0.500 0.523 | 0.0597 | 0.0230 4.60
43 analytical numerical for N = 100
Xiopt Xiavg ‘ o(x;) ‘ &(x;) ‘ error in %
X 0.500 0.515 | 0.0766 | 0.0150 3.00
X2 0.500 0.508 | 0.0728 | 0.00800 1.60
X3 0.500 0.519 | 0.0734 | 0.0190 3.80

Table 4.7: Problem 4. Analytical solution and related numerical results for 100 simulations

for d = 2 and d = 3 dimensions.

40 ‘ ‘ ‘ 40 ‘ ‘ ‘
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Figure 4.14: Problem 4. Distribution of 100 solution hyperboxes for d = 2 dimensions.

Although the numerical hyperbox boundaries deviate from the analytical hyperbox bound-
aries, the fraction of the bad space contained in the solution hyperboxes is small and of
the order 1/N. To identify this bad space, many sample points per iterations would be
necessary. This effect reflects the curse of dimensionality (see [[7]): If the interval widths
increase a little with respect to the analytical solution hyperbox, the volume of the associ-
ated hyperbox increases so fast that the available data become sparse. For N = 100 sample
points per iteration, the algorithm produces thus a hyperbox which is much larger than the
analytical solution. The fraction of the good space is nevertheless close to 100%. We call
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Figure 4.15: Problem 4. Distribution of 100 solution hyperboxes for d = 3 dimensions.

this effect corner problem.

In contrast to Problem 4, Problem 3 does not exhibit the curse of dimensionality. The
effect depends on the shape of the boundary between good and bad space. If the interval
widths increase a little with respect to the analytical solution hyperbox in Problem 3, a

high fraction of bad volume is produced which is thus identified by the algorithm.

In summary, the algorithm ensures that the fraction a of good space is close to 1. However,

the hyperbox boundaries may differ significantly from the analytical solution.

4.5 Corner problem

In this section, we investigate the corner problem in more detail. Therefore, we compare the
numerical results of the algorithm with respect to its deviation from the optimal hyperbox
in dependence on the type of the restricting boundary. The following problems will be

considered.

e In Figure the Problem 3 (hyperbox) which is described in Section 4.3]is

shown.

e Figure[d.16(b)|displays the Problem 4 (tilted hyperplane) which was introduced in
Section 4.4l

e The good space is constrained by a quadrant of a circle around the d-dimensional
vector 0 which is illustrated in Figure This example is considered as Problem

5 (quadrant of a circle around 0).
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Xy

1
2

S

(©) (d)
Figure 4.16: Problems considered: (a) Problem 3 (hyperbox), (b) Problem 4 (tilted hyper-
plane), (c¢) Problem 5 (quadrant of a circle around 0) and (d) Problem 6 (quadrant of a

circle around 1).

e Problem 6 (quadrant of a circle around 1) is seen in Figure 4.16(d)] The bad space
Viaa 1 @ quadrant of a circle around the d-dimensional vector 1, and the good space

is given by Qps \ Viua.
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4.5.1 Numerical results

The algorithm is run for Problem 3, Problem 4, Problem 5 and Problem 6 with N = 100
sample points per iteration. The exploration phase is repeated 100 times, starting with the
whole design space as initial guess. Then, the consolidation phase is run 100 times. Each
problem is considered in d = 2, 10, 20, ..., 100 dimensions.

The numerical results are shown in Figure In this Figure, the ratio of the volume
of the resulting hyperbox to the volume of the optimal hyperbox versus the number of

dimensions is displayed. Each of the points corresponds to the average of 100 simulations.

1030 ‘
—e— Problem 3
—e— Problem 4
1020 || —e—Problem 5
Zx —e— Problem 6| ,
s 3
G
>1\ 1010
o
&
G
=3
10°
-10
10 :
0 50 100
d

Figure 4.17: The volume of the resulting hyperbox divided by the volume of the optimal

hyperbox versus the number of dimensions for the Problems 3-6.

Problem 3. It can be observed that the ratio u(€,,,)/ y(QZ’O’ ;) decreases when the dimensions
increase. In addition, the diagram shows that the resulting hyperbox of the algorithm is
smaller than the optimal hyperbox for all dimensions. Consequently, the corner problem

does not show up for Problem 3.

Problems 4, 5 and 6. In contrast to Problem 3, the ratio u(€2,,4)/ ,u(QZ’O7 ;) increases when
the dimensions increase for Problem 4, and the volume of the resulting hyperbox of the
algorithm is always larger than the volume of the optimal hyperbox. The same behavior is
observed for the Problems 5 and 6. Therefore, the corner problem occurs in the Problems
4,5 and 6. Although the volume of the numerically computed hyperbox is much larger

than the solution hyperbox volume, the fraction of bad space contained in the numerical
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solution hyperboxes is small. To identify this bad space, many sample points per iteration

would be necessary. This reflects the curse of dimensionality as described in Section [4.4]

Comparing now the Problems 4, 5 and 6, the diagram in Figure illustrates that
the corner problem is stronger for Problem 6 than for Problem 4, because the deviation
of u(Q,,q) from u(QZ‘Z ;) is larger for Problem 6 than for Problem 4 for all dimensions
considered, especially in high dimensions. Problem 4 illustrates a larger deviation of
u(Qe,q) from y(QZi’ i) than Problem 5, and consequently, the corner problem is larger for
Problem 4 than for Problem 5. Consequently, the corner problem softens in the order

Problem 6, Problem 4, Problem 5.

4.5.2 Dependence on the boundary of the good space

We calculate the fraction a of good space in the hyperbox
Qbox = [07 S] X [Oa S] c QDS

for the Problems 3—6 in two dimensions. For all problems, the hyperbox volume p(€2;,,)

opt

) is 1/4. Moreover, for

is s? and the hyperbox volume of the optimal hyperbox u(Q

Problem 3, we obtain for the fraction a of good space

For Problem 4, the fraction a of good space is

B 2(s = 1/2)?

a=1
2

For Problem 35, it holds

- f\/l/Z—sz f\/]/Z—x% 1 dxydxy
2

a=
s
2 —m/8—s+/1/2 —s2 + 1/8(7T+2s\/§\/1 —2s2+23rcsin(\/1 —2s2))
—1- >
sV2 —4s% + arcsin(\/is)
+

42
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and for Problem 6, we obtain for a

S S
] f1— V1/2-(s-1)? fl— V1/2-(e-12 1 dx,dx,

2

)
(s — 1)(2s—2+ \/8s—2—4s2)

a =

252
(s = 1) V85— 2 —4s? + arcsin ( V2(s - 1))
B 452
V2ls — 1] Vs — 1 = 252 + arcsin ( Vas — 1 - 252)
B 452 '

Then, the first derivatives of the fraction of good space a with respect to u(€2p,,) in

Qo) = () ;), this means

da
Ap(Qpo) L=y’
and the associated second and third derivatives
d*a d*a
2@ and 255
AP (o) a0 = A (Qpox) lu(@po0=u@")

are calculated and listed in Table 4.8]

Problem 3 | Problem 4 | Problem 5 | Problem 6
da
-4 0 ’ :

du(Qpox) #(Qbox):ﬂ(gglg)jc)

d’a
= - - 16 -16
A2 (Qpor) Qo) =p(Q")

da
_Pa 384 288 256 320
A3 (Qpox) /J(QboX):/J(QZZi’)

Table 4.8: The first, second and third derivatives of the fraction of good space a with

opt
box)'

respect to ,u(Qbox) in :u(Qbox) = M(Q

We observe in the Table {.8|that the first derivative is —4 for Problem 3 and always O for
Problems 4, 5 and 6. The second derivative is positive for Problem 3 while the second
derivative is always —16 for Problems 4, 5 and 6. For Problem 3, the third derivative is
negative and positive for Problems 4, 5 and 6. Moreover, the third derivative increases in
the order Problem 5, Problem 4 and Problem 6.

The fraction a of good space versus the volume of the hyperbox is plotted in Figure [4.18§]

for the Problems 3—-6. We observe that the fraction of good space decreases very fast when
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Figure 4.18: The fraction a of good space versus the volume of the hyperbox for the
Problems 3-6.

the volume increases for Problem 3. Consequently, we do not have the corner problem.
Figure .18 shows for Problem 6 that the fraction of good space decreases very slowly
with increasing volume. Therefore, the corner problem is very large. For Problem 4, the
fraction of good space decreases faster than for Problem 6 with increasing volume and the
corner problem is smaller than for Problem 6. In Figure [4.18] the fraction of good space
decreases faster for Problem 5 than for Problem 4 with increasing volume. Consequently,

the corner problem is for Problem 4 larger than for Problem 5.

These considerations confirm the observations of the previous subsection, and let us
conclude that we do not have the corner problem if the first derivative is not equal to 0, i.e.,
if

da
. # 0.
d/.l(Qbox) u(Qm;x):IJ(QZZ_i)
If the first derivative is equal to 0, i.e., if
da -
d/l(Qbox) ,u(thx)Z,U(QZZ;) ,
and the second derivative is negative, i.e., if
d*a
IO <0
dﬂ (QbO)C) /l(Qbux):ﬂ(QZZ)’c)

then we will observe the corner problem. In addition, we can conclude that the corner
problem softens if the second derivative decreases.
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Moreover, the results of this and the previous subsection indicate that a concave boundary
of the good space yields a larger corner problem, i.e. a larger deviation of the resulting

hyperbox from the optimal hyperbox, than a convex boundary of the good space.
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Chapter 5

Convergence behavior in the
consolidation phase

The user of the algorithm seeks a hyperbox with a large measure p(€2,,). Furthermore,
a large fraction a of the good design space is required. The fraction a is typically small
during the exploration phase. The purpose of the consolidation phase is to increase this
fraction to a desired level, possibly at the cost of a smaller hyperbox volume. This chapter
studies how the number of dimensions and the number of sample points affect the quality

of the resulting solution hyperbox and the speed of convergence in the consolidation phase.

The following three problems are considered to study the convergence behavior in the

consolidation phase.

¢ A hyperbox which defines the good space of the design space is inscribed in another
hyperbox which is the design space (see Figure [5.1(a))). The ratio of the volume
of the good space and the volume of the design space is 0.5. This is considered as
Problem 3.

e In Problem 4, the good space is constrained by a tilted hyperplane which intersects a
d-dimensional hyperbox I; X I, X - - - x I; € R? in the middle, cf. Figure|5.1(b)

e Problem 7 is a high-dimensional and non-linear engineering problem from crash
analysis as described in the Section 2.1} The gray surface in Figure shows the
bad space of a two-dimensional cross section.

First, in Subsection [5.1] a convergence coefficient is introduced as a measure of the

convergence speed. In Subsection[5.2] an analytical model is derived which describes the

75
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1 1 - 1
.
X, X, X5
0 0 0
0 Xy r 1 0 X4 1 0 X4 1
(a) (b) ()

Figure 5.1: Problems considered: (a) Problem 3 (hyperbox), (b) Problem 4 (tilted hyper-
plane), and (c) Problem 7 (front crash).

behavior of the speed of convergence for Problem 3. Then, in Subsection[5.3] the Problems
3 (hyperbox), 4 (tilted hyperplane), and 7 (front crash) are considered to investigate the
influence of dimensionality on the convergence behavior. Afterwards, the Subsection |3E| is
dedicated to demonstrate that the speed of convergence and the volume of the resulting
solution hyperbox can be controlled by the choice of the sample size. In Subsection [5.5]
it is shown that typically the speed of convergence and the size of the resulting solution
hyperbox are in conflict with each other. The conflict is illustrated by appropriate Pareto
frontiers for all problems. Depending on the preference for speed or volume size, the

sample size may be chosen and the total number of required simulations may be estimated.

5.1 Convergence coeflicient

To quantify the convergence speed, we introduce the convergence coefficient which de-
scribes the dependence of the fraction N,/N of good sample points on the number of
function evaluations. The fraction of good sample points versus the number of iterations is
depicted for Problem 4 with d = 100 and N = 100 in Figure [5.2}

The convergence coefficient is defined as the ratio of ¢ and N, where the coefficient ¢ with
0 < ¢ < cis identified by a discrete least-squares fit in the iteration steps 0 < k < M. Here,

M is the number of iterations. That is, we seek the coefficients ¢ and b such that

M-1
Z (ax — a)* — min
=0
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where a; denotes the fraction of good sample points in the k-th iteration step, a; :=
1 — bexp(—ck) and b := 1 —ay.

Figure[5.2]displays the fraction of good sample points and the fitted curve a;. The agreement
is acceptable and the convergence coeflicient is used as a measure for the convergence
speed of the algorithm.

Remark 5.1.1. In the discrete least-squares fit, ¢ would be infinite if Ng/N = 1 holds
after only one iteration step. Therefore, the constant ¢ has an upper limit c. This limit ¢ is
calculated by a continuous least-squares-fit of a curve a, = 0.5 + 0.5x with ag = 0.5 and

a; = 1. This means that c is the minimum of the problem

1
f (ay — @,)’dx — min.
0

Consequently, we obtain ¢ = 3.7.

11

0.5 — Numerical results|,
— Fitted curve
0.4 ‘ ‘
0 100 200 300
k

Figure 5.2: Problem 4. Convergence speed of the fraction of good sample points: Numerical
results and fitted curve a; for d = 100 and N = 100.

5.2 Analytical model

An analytical model is derived to describe the behavior of the convergence speed for
Problem 3 in d € N dimensions.
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Figure 5.3: Problem 3. Candidate hyperbox in iteration step k for the analytical model.

As introduced in Subsection the design space is Qps := [0, 1]¢ and the good space of
the design space is the hyperbox [0, r]. In the k-th iteration of the cutting algorithm, we
suppose that the candidate hyperbox is [0, r + €, 11 X [0, 7 + ex2] X -+ X [0, 7 + €} 4]. This
hyperbox is sampled by a Monte Carlo method with the number N of sample points and the
cutting algorithm is applied. In the model, the boundaries are relocated in all dimensions i
where the dimension x; of a bad sample point x is larger than r, i.e. x; > r. Therefore, for
each dimension, it holds e, := ¢;; withi =1,...,d (see Figure@for an illustration in the
case of two dimensions). The size e, of the bad space in the (k + 1)-st iteration depends
only on the size e, of the bad space in the k-th iteration. This means that the sequence {e;}

constitutes a Markov chain, i.e., it holds
P(eiiileo, €1, ..., ex) = Plegsiler). (5.1)

A Markov chain is defined according to [30].
Definition 5.2.1 (Markov chain). Let the state space S be a finite or countable infinite set.

Then, the sequence Xy, X1, ... builds a Markov chain if the following Markov property
holds: For all N € Ny and for all xo, x1,...,xy € S with

P(Xo = x0, X1 = x1,..., Xy =xy) >0
it holds that

P(Xyi1 = xn+11Xo = x0, X1 = x1,.. ., Xy = an) = P(Xni1 = xy1lXy = xn). (5.2)
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Theorem 5.2.2. It holds
1
(r+e)"N+1

Eenler) = {(r Fe)MH - rN“}. (5.3)

Proof. Due to (5.1)), we get with [14]

E(€k+1|€k)=f k1 (X1, X2, .., XN)P1 (X)) Pa(X1) - - - pn(en)d (X1, X2, - .., XN).
RN

Herein, the probability density p;(x;) for a uniform sampling is independent of the number
J of the sample point x;, i.e., p(x) := pi(x) = pr(x) = --- = py(x), and given by

1/(r+e), if0<x<r+e,
px) = ,
0, otherwise.

Therefore, it follows that

ers1 (X1, .., XN)
E(ers1ler) = f ——d(x1, X2, ..., XN).
[0,r+ex ]V (r+eg)

Note that ¢, = ¢, if no bad sample point exists. Otherwise, e is reduced to the bad

sample point which has the smallest distance to the boundary position of the good space.
Therefore,

e, if 0 <max{x;:j=12,...,N} <,
Ci+l = . . ) (5.4)
min{x; —r:x;>r}, ifr<max{x;:j=12,...,N} <r+e,

and

1
E(ex+iler) = m{f erd(xixy...xN)
k [0,V
+f (m_in{xj—r:xj>r})a’(xl,xz,...,xN)}
[0,r+e; IN\[0,r]Y J

1 .
= — e, + (m_m{xj—r:xj>r})d(x1,x2,...,x,v) ;
(r+ex) [0,r+e N[0,V \

The integral on the right hand side of this expression is

f (m,in{xj—r:xj>r})d(x1,x2,...,x,v)
[0,r+e 1N\ [0,r]V J
) Z( )f f min{x; — r}d(xy, X, ..., X¢) d(X¢s1, X2, -5 XN)
=1 [0 Jrr+ex]t 1<J<€
N
- Z f min{x;}d(x, X2, ..., X¢).
=1 [0,e,]¢ 1S/t
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There are ¢! different combinations of the tuple (xi, x», .. ., x/). Thus, the domain [0, ;]

of integration is divided into ¢! identical subsets. Due to symmetry, we get

f min{x;}d(x, x2, ..., x¢)
[

0,e]¢ 15/=C

= 5’ f xlX{x1<x2<~~-<Xg} d('xbea .. ~axf)
[0.ec]¢
ek
= 5! f ( f X1 /\/{x1<x2} dxl)X{X2<X3<~--<X[} d('x2’ X35 00ny X[)-
[O,Kk][_l 0

el Xm+1 1
f Xt X Gom<simer} AXm = X dx, = ﬁi} forallm=1,2,...,-1,
0 0 m

With

it follows that

1 2
f mln{xj} d(XI, Xz, cee -xf) = Eg! f sz{xz<X3<~-<X/} d('x2’ x3a ) -xf)
[0.¢)¢ 1=/=¢ (0.1
1 1
3
= 5 - =L f X3 X (x3<x4<--<xp) d(X3, X4y ooy X[)
3 [0 ek]f 2
1 “
= Ef'f Xp d.X'g
{+1
_ &
e+ 1

Inserting this expression into the original integral, yields

€+l

E(exs1lex) = te )N{ ek"‘Z() €+1}
_ 1 o (N N€e£+l
_(r+ek)N;(€)r r+1

N
N+1(r+e)V — {+1

By using the binomial theorem

N+1
N+1
(I’+€k)N+1 — E ( ) N+1- fei, (55)
=0 ¢

it can be concluded that the expectation value of the width of the bad space in the (k + 1)-st

iteration is given by

E(ex+1lex) = {(r + ek)N+l _ rN”}_

N+1(r+e)V
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With the help of this theorem, we can approximate the expectation value of the fraction of

good sample points a,; by

LV " . < n . d
g D— ). 5.6
("+ €k+1) ] [ (r+ €k+1)] (F+E(€k+1|€k)) (56)

Because the dimensions are assumed to be independent of each other, the identity (%)
holds in (5.6). The approximation (%) in (5.6)) results from the following theorem.

E(ais1) = E

Theorem 5.2.3. Let z(w) = E(z) + y(w) be a random variable such that |y(w)| <y almost
surely. Then, for a smooth function f : z +— R, it holds

E(f(2)) = f(E(2)) + OGP). (5.7)

Proof. We shall abbreviate z = E(z). Due to y(w) = z(w) — zZ, the random variable y is
centered, i.e., E(y) = 0, because it holds

E(y) =E(z-2) =E(z) -z = E(z) - E(z) = 0.
The Taylor expansion of f in the neighborhood of 7 reads as
f@=f@+@=-2f @ +0WF) = f@ +yf @ +O0G).

Here, only y is stochastic, the other expressions are deterministic. For the expectation value
of f(z), we obtain by inserting the Taylor expansion of f

E(f(2)) = BE(f®@) + yf' @) + OG"))
= E(f@) + E(f' @) + OGD). (5.8)

Because 7 is deterministic, so also f(z), it holds
E(f@) = f@. (5.9)
Moreover, f’(z) is a deterministic scalar, and hence
E(yf'(@) =EM S @)
which, in view of E(y) = 0, yields
E(yf'(z)) = 0. (5.10)
Consequently, from equation (5.8), we obtain with (5.9) and (5.10)

E(f(z)) = f@) + OF°) = f(B(2)) + OG).
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Equation (5.7) implies that
E(f(2)) = f(E(2)

is an approximation of second order iny provided that the fluctuation of z is small.

In Figure[5.4] the results of the analytical formula (5.3) and the numerical results of the
algorithm are depicted for increasing dimensions where e, was chosen as E(e;.|e;). For
the numerical calculation, the constant r (which describes the boundary between the good
and bad space in one dimension) is chosen in such a way that the fraction of the good space
1s 50% of the design space for all dimensions under consideration. The prediction of the

convergence speed by the formula is in a good agreement with the result of the algorithm.

- - - Problem 3: d=10
- - = Problem 3: d=50
- - = Problem 3: d=100

0.4 —— Model for Problem 3: d=10
—— Model for Problem 3: d=50
—— Model for Problem 3: d=100
0.2 ‘ ‘ ‘ ‘

0 10 20 30 40 50
k

Figure 5.4: Problem 3. Fraction of good sample points in each iteration step for N = 100:

Comparison of the results of the algorithm and the calculation by the analytical model.

Remark 5.2.4. The model (5.6) has the following shortcomings: (i.) While the algorithm
removes a bad sample point by relocating only one boundary, a bad sample point in the
model is removed by relocating the boundary of every dimension i for whichr < x; < r+e,.
This effect is negligible for the following reason: the model should converge faster (more
bad space is removed per bad sample point). However, Figure exhibits the contrary
behavior: the convergence of the analytical model is slower than the convergence of the

algorithm. Therefore, this shortcoming is not dominating.

(ii.) The results of the analytical formula (5.3)) are recursively calculated, i.e., in every

iteration step the expectation of ey, is taken to calculate the expectation of ej., this means
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E(er1|E(ex|E(ex-1l...))). Therefore, the trajectory of the expectations of the values ey is

calculated. Note that this is not the average of the trajectories which is E(e;.leo).

(iii.) In the model, it is assumed that the boundary of the hyperbox will be relocated in
every iteration step to the bad sample point with the smallest distance to the boundary
position of the good space. In the algorithm, the boundary of the hyperbox will be relocated
in every iteration step to the good sample point with the smallest distance to the boundary
position of the good space. As a consequence, the numerical results for Problem 2 exhibit

a higher convergence speed than the results of the analytical model.

5.3 Influence of the dimensionality

The influence of dimensionality on the convergence speed is illustrated in Figure [5.5|for
Problems 3, 4 and 7. The fraction of good sample points versus the number of iterations
is shown for changing dimensions and N = 100. The convergence coefficient is found in
the legend of the plots. Note that for all problems the convergence speed decreases when

the dimension increases. This behavior is also observed via the analytical formula (5.6)),
cf. Figure 5.4

1 i 1
Z 0.8; Z 0.8 4
()] (2] Y
Pz 2 Pz
0.6 0.6 o
- d=10, c/N=0.0116 -~ d=10, c/N=0.0058 i ' [=="d=10, c/N=0.0065
- - - d=50, ¢/N=0.0052 - - - d=50, ¢/N=0.00072 W |- - - d=50, c/N=0.00034
0.4 —— d=100, ¢/N=0.0017 0.4 —— d=100, c/N=0.00039 0.4 ! | —d=100, ¢/N=0.00024
"0 50 100 "0 50 100 "0 50 100
k k k
(a) (b) (c)

Figure 5.5: Fraction of good sample points versus the number of iterations for N = 100
for (a) Problem 3 (hyperbox), (b) Problem 4 (tilted hyperplane), and (c) Problem 7 (front
crash).

The following mechanism describes the influence of dimensionality, which will be called
each bad sample point can be used for one dimension only: If, for example, there are 100

sample points in a hyperbox and the fraction of good points is 80%, then 20 bad sample



84 CHAPTER 5. CONVERGENCE BEHAVIOR IN THE CONSOLIDATION PHASE

points are used to remove bad space. In 10 dimensions, there will be enough sample points
to remove some of the bad space in each dimension because we find two bad sample points
for each dimension on average. The problem which arises in 100 dimensions is that the
bad sample space can be removed in 20 dimensions at most because a bad sample point
can be used to remove bad space in one dimension only. Bad space without bad sample
points cannot be removed. Consequently, the optimal hyperbox will be overestimated in
some dimensions. This is illustrated in Figure for Problem 2 in d = 2 dimensions
and one bad sample point. The grey area describes the bad space of the design space and
the white area describes the good space. This fact explains that the algorithm converges

slower in higher dimensions.

5.4 Influence of the number of sample points

The influence of the number of sample points per iteration on the convergence speed and
the hyperbox volume is studied in this subsection for the high-dimensional Problems 3, 4

and 7. Every point in the diagrams in Figure [5.6| displays the mean of five calculations.

5.4.1 Number of sample points versus convergence speed

Problem 3. Figure shows a maximum of the convergence coeflicient for d = 10 and
d = 50 dimensions. The reason for this maximum is that at this point the fraction N,/N
of good sample points reaches the value 1 in only one iteration step. Thus, ¢ = 3.7 (see
Subsection [5.1)). For N larger than the peak location, N,/N = 1 is also reached in only one
iteration step, and c¢/N decreases. Left of the peak, the convergence coefficient increases
with increasing number of sample points. This can be explained by the mechanism each bad
sample point can be used for one dimension only, see Subsection[5.3] For each dimension,
at least one bad sample point with x; > r has to exist to remove the bad space, see
Figure If the number of sample points increases, the number of dimensions where
bad volume can be removed increases. Consequently, the convergence speed increases

until there are sufficiently many bad sample points, i.e. in every dimension at least one.

Problem 4. Figure shows that the convergence coeflicient increases when the number
of sample points per iteration decreases independently of the number of dimensions. If
the number of sample points per iteration is small, the volume which is removed per bad
sample point is large, also the bad volume. To explain the mechanism, consider a two-
dimensional sample for Problem 3 in the design space [0, 1] % [0, 1]. Recall that the optimal
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solution is x; = x, = 0.5. Then, the distance between the optimal boundary location 0.5
and the sample point x; where the boundary of the candidate hyperbox will be located is

calculated in dimension i = 1, i.e.,
e=x;-05.

In Figure the measured distance ¢ is illustrated by four sample points. The distances
for L = 10000 repetitions for each number N of sample points are averaged and plotted in
Figure[5.8(b)} The average of the measure ¢ is always larger than 0 and increases with an
increasing number N of sample points. If £ > 0, the optimal hyperbox is overestimated,
therefore, this phenomenon is called overestimation due to sparse sampling. The larger the
overestimation the slower the convergence speed. Consequently, the convergence speed

decreases with increasing N.

Problem 7. Changing now to Problem 4 (front crash), according to Figure[5.6(c)] a behavior
can be observed that is similar to the one observed for Problem 3. The convergence
coefficient ¢/N decreases when the number N of sample points increases. This indicates

similar shapes of the boundaries separating good from bad space.

5.4.2 Number of sample points versus volume

In addition to the convergence speed of the fraction of good sample points, described by
the convergence coefficient ¢/N, the volume of the final hyperbox needs to be taken into

account.

In Figure can be observed that for Problem 3 the normalized volume increases a
lot when the number of sample points per iteration increases. Whereas, the corresponding
diagram for Problem 4 (see Figure shows that here the volume increases only a
little when the number of sample points per iteration is increased. The same is observed
for Problem 7, cf. Figure[5.6(f)|

The increase of volume for larger N can be explained by overestimation due to sparse
sampling which was explained in the previous Subsection[5.4.1] see Figure This
effect shows that with increasing number of sample points N, the average of the considered
distance ¢ increases, see Figure [5.8(b)| If the number of sample points is small, the volume
which is removed per bad sample point is large and the resulting volume is small. Therefore,
the volume of the final hyperbox increases with increasing number of sample points.

Another reason for the increasing volume is the impossibility of boundary corrections: To

explain this mechanism, Problem 3 is considered in one dimension. One sample with N
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sample points is made in the interval [0, 1]. The expectation of the distance &, between the
optimal point 7 = 0.5 and the sample point x; where the boundary will be after removing
the bad sample points is obtained from the following theorem.
Theorem 5.4.1. It holds

1 2
E(e,) = in{0.5 — x; : x; < 0.5} d(xy,. .., = 1- . (5.11
() j;) 1M[0,0.5Y mnt S pn ) N+1 ( 20+l ) G-1D

J

Proof. The proof is quite similar to the proof of Theorem [5.2.2] Let p;(x;) denote the
probability density which belongs to the sample x;. Since it is uniform and independent of
the number j, it holds

1/(l”+€k), ifOijSr+ek,
pi(x)) = .
0, otherwise,

forall j =1,2,...,N. Therefore, it follows

E(e,) = f eu(x1, x2, ..., xp)p1(x)pa(xy) - - - py(aen)d(xy, X, ..., Xy)
RN

Eul X1, 00y
= u(—)d(xl,xz,---,XN)-
[0r+ek]N

(r+e)V

We conclude that g, = 0 if no bad sample point exists. Otherwise, g, is the distance
between the boundary position of the good space and the good sample point with the
largest parameter value. We thus arrive at

0, if 0 <max{x;:j=12,...,N} <r,
&, = (5.12)

min{r — x; : x; <r}, ifr<max{x;:j=12,... N} <r+e.
Hence, we find

E(e,) = min{r — x; : x; < r}) d(xy, X2, ..., XN)

(l" + ek)N [O,r+ek]N\[O,r]N( J

N
1 N
) - dxi, ..., x0) |dxen, ...
(I’ + ek)N Z (f) f[;)r]N ¢ €+1'1111111N{r xj}( »f[;,r+ek]f (X] X[)) (X1 -xN)
1 N
(l" + ek)N Z (5) ﬁ) FN-¢ [+IIILIJEN{r - x]} d(xf+l’ KXp42s oo s xN)
N
T ek)N Z ( ) [0.rN-¢ fJHl<a/)<(N{xj = rhd(Xeer Xer2s -5 XN)

£=1

N
N
= Z max {x;} d(xe, Xeaz, - ).
(”+€k) 4 [ FOIN-C CHI<jEN
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There are (N — ¢)! different combinations of the tuple (xz1, Xz42, - - . , Xx). Thus, the domain

[-r, 0]¥~! of integration is divided into (N — ¢)! identical subsets. Symmetry implies

f max {x;}d(xei1, X425 -0 5 XN)
[-

rO]N t €+1<]<N

= (N - 5)! f )({)C[+]<X[+2<"'<XN} XN d(xf+1’ X425+ 05 -XN)
[-r,0]V-¢

0
= (N - 5)' f ( f X{X[+1<X[+2} dx€+1)X{xi+2<x“3<~~-<x1v} XN d(x€+2’ Xb435 445 xN)
[ rO]N—[—l —

r

0

1
=(N-10)! m(l" + xN)N_f_lxN dxy
r1—€+N
C{-N-1

With this equation, we obtain

1 N N pl=C+N
E(Eu):(r+ek)’v{_;(€) kg - N—l}
1 (N+1
:(r+ek)NZ;( 4 )

N+1

N+1\ ; niie SRS
N+l(r+ek)N{€Z( )krN - }

0

By using again the binomial theorem (5.3)), the expectation value of &, in the (k + 1)-st
iteration is thus given by

E(Su) — {(r+ek)N+1 VN+1 N+1}.

N+1@+e)V
With ¢, = 0.5 and r = 0.5, the desired result follows. O

Due to the rectangular boundaries of Problem 3, the optimal hyperbox will always be
underestimated, see Figure and g, is an underestimation measure. If the solution
hyperbox boundary is larger than 0.5, then E(g,) = 0. We observe in Figure that
with an increasing number N of sample points, the expectation E(g,) decreases. Therefore,
the volume of the resulting hyperbox increases.

In Problem 3, the dependency of the final hyperbox volume on the number of sample
points is greater than in Problem 4. Problem 3 has boundaries which are axis-parallel
and, therefore, the effect of the impossibility of boundary corrections is much stronger in
Problem 3 than in Problem 4.
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Figure 5.7: Mechanisms explaining over- and underestimation. (a) Problem 3. Each bad
sample point can be used for one dimension only and impossibility of boundary corrections.

(b) Problem 4. Overestimation due to sparse sampling.

5.5 Convergence speed versus hyperbox volume

Typically, there is a conflict between the fast convergence and the volume size of the
resulting hyperbox. For Problems 4 and 7, the convergence coeflicient decreases whereas
the resulting hyperbox volume increases upon increasing N. This conflict can be visualized
by a Pareto frontier, see Figure[5.6 For Problem 3, this conflict exists only for large N, that
is, right of the peak in Figure For small N however, both, convergence coeflicient
and volume size, increase, see Section [5.4]

A Pareto frontier can be defined in accordance with [62].

Definition 5.5.1 (Pareto frontier). An element x* € X is a Pareto optimal solution if the
following holds: if there exists a solution x’ € X such that f;(x') < f(x*) for an i, then
there exists a j with fi(x") > fi(x"). The set of all efficient solutions Xg is called a Pareto
optimal set. If x* is Pareto optimal, then 7* = f(x*) is called non-dominated point. The set

of all non-dominated points is referred as Pareto frontier.

If a large volume is desired, as many sample points as possible have to be chosen. This
will slow down the algorithm. If fast convergence is desired, as few sample points as
possible have to be chosen. The resulting hyperbox will be small. For computing the
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Figure 5.8: Mechanisms explaining over- and underestimation. (a) Expectation value of
the underestimation measure E(g,) for Problem 3. (b) Average avg(e) of the measure & for
Problem 4.

desired speed of convergence | ¢/N || 0.01 | 0.001 | 0.0001 | 0.00001
number of evaluations NM || 267 | 2661 | 26594 | 265928

Table 5.1: Convergence coeflicient and the total number of function evaluations required

for'a = 97% for a fraction of the good space of 50% in the initial candidate hyperbox.

optimal number of sample points, the following procedure is proposed: Depending on the
preference for speed or volume size, ¢/N is chosen using Figure[5.6] The total number of
required evaluations for a particular choice of ¢/N is tabulated in Table[S.1]for an ay = 50%,

where ay is the fraction of the good space in the initial candidate hyperbox.



Chapter 6
Applications

In this chapter, different applications of the algorithm to optimization problems in the
automobile industry are presented. These problems arise from front crash design, from a
forming process, and from rear passenger safety. We introduce the underlying problem

formulation and report on the results of the algorithm.

6.1 Front vehicle crash design

Results are presented for a vehicle front crash problem to demonstrate the applicability to
high-dimensional and non-linear industrial problems. In Subsection the front crash
problem has 64 degrees of freedom. In Subsection[6.1.5] the front crash problem has 89
degrees of freedom.

6.1.1 Evaluation

The numerical optimization of the USNCAP front crash is considered which was already
introduced in Section 2.1} The vehicle structure and the restraint systems are to be designed
such that the loads on crash test dummy and the deformation of the passenger cell stay
below critical threshold values. Design work is done on three levels, the vehicle level, the
component level and the detail level — this is similar to target cascading [39].

Design goals on the vehicle level

The primary focus of structural development in an early design phase lies on satisfying

the following design goal [21} 38}, [88]]: The maximum deceleration of the passenger cell

91
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measured at the bottom of the B-pillar should not exceed the critical threshold value a,,;se c,
that 1S, apuise < Apuise.- Note that this criterion is only sufficient for the preliminary design.

In final tests, the vehicle performance will be evaluated with respect to dummy loads.

Component properties on the component level

The structural behavior in a USNCAP-type front crash depends primarily on the distributed
vehicle mass and the resistance force of structural elements against deformation, expressed

as force-deformation characteristics
F = F(u),

see [21,138]]. F is a longitudinal force exerted by the structural component under the relative
longitudinal displacement u = u;, — u,, with u, and u, being the x-displacements of the
component boundaries, see Figure @ For a fixed vehicle mass, the maximum deceleration
is given by

aputse = FUE1 (), Fa(u), ..., Fo(u) (6.1)

where F(u) denotes the force-deformation characteristic of the k-th out of n components.

Detail level

The force-deformation characteristics depend again on geometrical and material detail

parameters p';, that is
Fi(u) = Fe(w; pi, p, - .. Py, (6.2)

with j being a parameter index and m being the number of detail parameters. Detail parame-
ters may be sheet metal thicknesses, profile geometries, yield strengths or hardening curves.
They will determine the force-deformation characteristics of each structural member and,

thus, also determine the overall structural behavior.

In classical vehicle design, detail parameters are varied, until the design goals on the
vehicle level are satisfied. In a new design approach, the component level was introduced
to enable the design of component properties such as force-deformation characteristics
without specifying the underlying detail parameters [38]]. This is useful, for example in an
early design phase, when detail parameters are difficult to be specified or simply unknown.
For a flexible and robust design, requirements on component properties are to be identified
as permissible intervals [87]. In a subsequent development step, detail parameters are then

specified such that all component requirements are satisfied.
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Figure 6.1: (a) Force-deformation characteristics of a component of the vehicle structure:
exact and discretized. (b) Detail vehicle model. (¢) Reduced model.

6.1.2 Crash simulation models

The front crash is modeled by differential equations. A numerical method to approximately
solve these differential equations is the finite element method which is introduced in
Subsection (6.1.3

Detail finite element model

In a detailed finite element model, all detail parameters are specified. For crash simulations,
this is typically a model of the entire vehicle. From this, all quantities on the vehicle level,
such as the vehicle deceleration, and on the component level, such as force-deformation
characteristics, can be computed. Force-deformation characteristics are derived from
section forces F(¢) and deformations u(#) for it(¢) > 0. A detail finite element model maps
the detail level onto the vehicle level and the component level.
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Reduced model

By contrast, the reduced model described in [21} 38] computes the vehicle behavior directly
from force-deformation characteristics, as in expression (6.1)). It maps the component level

onto the vehicle level. The reduced model is depicted in Figure[6.1fc).

The structural components of the vehicle are represented through one-dimensional force
elements. The nodes which connect the one-dimensional force elements of the finite
element model have only one degree of freedom each, namely the translation in x-direction,
1.e. in the direction of the movement of the vehicle. The reference force-deformation
characteristics of the detail finite element model which is presented in Subsection [6.1.T]are
mapped onto the force elements. In Figure [6.1]c), the one-dimensional force elements are
illustrated by red lines. The discrete mass distribution is similar to the detail finite element
model. The model accurately represents the reference model in forces and masses and,

therefore, in the resulting deceleration, obtained through time-integration.

Force-deformation characteristics contain more information than necessary. The mechan-
ical behavior of a structural member that is relevant for a USNCAP-type front crash
can be sufficiently well approximated by 4—10 discrete force values at specified support
points. Therefore, F(uy) is discretized as shown in Figure a). The maximum vehicle

deceleration is then given by

Apulse = f(Fl, F2, ceey Fd) (63)

with F; being the force values at specified support points of the force-displacement charac-
teristics, and d being the total number of discrete force values of the force elements which
are relevant for the crash design. To compute expression (6.3]), we use the reduced crash

model.

6.1.3 Finite element method

In order to numerically solve partial differential equations of elasto-plasto-problems, the
finite element method is used. In the finite element method, the surface of the entire vehicle
1s divided into a certain finite number of one-, two- or three-dimensional elements. We
consider first order finite elements. Beside special purpose elements (e.g. mass, springs,
dashpots), the model is mainly composed with structural (in one dimension e.g. beams,
trusses and in two dimensions e.g. shells, membranes) and continuum elements (e.g. solids).

The elements are connected by nodes. At the nodes, density and stress are discretized as
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nodal masses and nodal forces. Depending on the underlying theory of the elements, the
nodes have three or six degrees of freedom — translation and rotation — and conjugated
quantities — forces and moments as well as masses and rotary inertias. In dynamic appli-
cations, at the nodes, the inertia forces, the internal forces due to deformation and the
external forces (e.g. gravity) equilibrate each other. The following is found in [[16] and [[79].

The time dependent equation of motion in the dynamic equilibrium is

Mii + Fint(u’ ll) _Fext =0
Mi+Ca+Ku-F,, =0

with M being a diagonal matrix, C being the damping matrix and K being the stiffness
matrix. The vectors u, 1 and i are the displacement, velocity and acceleration vectors,
respectively. F,,, denotes the external nodal forces, and F;,; denotes the internal resisting
forces due to the deformation and damping of the material. The term Mii represents the
inertial forces generated by the acceleration ii. The dynamic equation is integrated in time

by starting from an initial condition at time zero
ll(O) = Uy, U(O) = l:l().

The central difference method is used as an explicit time integration method. Time steps
At, are taken. For the central difference expressions of the velocity and the acceleration, it
holds

l.ln — Upyep — Uy
2At,
ﬁn _ l:ln+1/2 - l‘111—1/2 — Wy — 2un + Uy
At, (At,)?

By substituting these expressions into the dynamic equation, we obtain

Wyt — 2un + W, Wy — Wy
+C +Ku-F,,=0.
(At,)? 2At, '

Because u,, and u,,_; are assumed to be known, we obtain

M CN L g M), (M CO
(At,)? ' 2A1,) " e At)?) " (AL 241,

During the impact, the system of equations is solved at each discrete point in time. This
method is called an explicit method because the solution u,,; is determined from the
dynamic equation at the previous time steps which is in contrast to an implicit method
where also the dynamic equation at the (n+ 1)-st time step is used to calculate u,,,; . Solvers

which use an explicit time integration method are called explicit dynamic solvers.
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6.1.4 Example 1

The optimization of a front vehicle crash design is considered by using the reduced model
introduced in Subsection[6.1.2] To simulate this model, the explicit dynamic solver Abaqus

explicit 1s applied.

Problem statement

The front car structure of the vehicle considered is modeled by sixteen components which
are relevant for the crash design. The number of parameters (force levels) per component
is four. In total, there are d = 64 parameters. The optimization problem under inequality
constraints is given as follows:
find F'", F*? € Qpg with F* < F“? component-by-component
(6.4)
such that (€2p,,) — max subject to a,,, = f(F) < f. forall F € Q,,,.

Here, the function f : Qpg — R is a mapping which is provided by a numerical simulation

of a front crash as described above.

Numerical results

To illustrate the function, two-dimensional cross sections of the design space are shown
in Figure [6.2] where circles define good designs which satisfy the constraint f(F) < f.
and triangles define bad designs which violate this constraint. Here, the highly non-linear

structure of the optimization problem (6.4) can be recognized.

The algorithm is applied to the optimization problem (6.4) with N = 100 sample points
per iteration. The solution is depicted in Figure|6.3|via normalized intervals [F", F;"] for
each parameter F; withi=1,2,...,64.

In Figure[6.4} the calculated force-deformation intervals of the components of the front car
structure are illustrated. A good and a bad design are also illustrated in Figure[6.4] The bad
design lies outside the hyperbox. Note however that not all designs which are outside of

the hyperbox have to be bad.

A sample with 100 randomly chosen force-deformation curves which are located inside
of the intervals are depicted in Figure [6.5|for three of the 16 components of the front car
structure. For all curves, the maximum crash pulse is subcritical. Hence, N, /N is equal to
1 and, according to Theorem [3.3.2] the true fraction of the good space is between 0.97 and
1 with 95% probability.
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Figure 6.2: Problem 7. Two-dimensional cross sections of the design space. Shown are
good (circles) and bad (triangles) design points.
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Figure 6.3: Problem 7. Normalized intervals for each parameter F;.

The fraction of good sample points is depicted in Figure During the exploration
phase, the fraction of good sample points oscillates between 0.7 and 0.9. In the consolida-
tion phase, this fraction tends towards 1. By reaching N, /N = 1, the true fraction of the
good space is between 0.97 and 1 with 95% probability.

In Figure[6.6(b)} the normalized volume is depicted for different phases of the algorithm.
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Figure 6.4: Problem 7. Force-deformation intervals for a vehicle structure. A bad and a

good design are shown.

component-1 component-10 component-16

force
force
force

. Fe Fe2 ) Fes Fea
deformation deformation deformation

Figure 6.5: Problem 7. Force-deformation intervals in case of the front crash with N = 100
sample points.

The volume grows in the exploration phase (Phase 1) of the algorithm and decreases in the

consolidation phase (Phase 2).

Figure shows the normalized volume over the fraction of good sample points. In
the exploration phase, the curve stagnates, and it converges in the consolidation phase.
The algorithm converges to a hyperbox with a fraction of good space of 100% which is
illustrated by normalized intervals in Figure [6.3] Hence, the algorithm is applicable to

high-dimensional and non-linear engineering problems.
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Figure 6.6: Problem 7. (a) The fraction of good sample points versus the number of
iterations. (b) The hyperbox volume versus the number of iterations. (c) The hyperbox

volume over the fraction of good sample points.

6.1.5 Example 2

To achieve economies of scale, as many parts as possible should fit in different kinds
of cars. As a consequence, the main parts of the front structure have to be the same for
different kinds of cars whereas each car has to fulfill its design goals. In the front crash,
the maximum deceleration generated by the vehicle structure of each car has to fulfill the
defined deceleration criterion. To calculate the maximum deceleration, reduced models are
applied which are described in Subsection [6.1.2] To simulate these models, the explicit

dynamic solver Abaqus explicit is used.

Problem statement

We consider eight vehicles which share some parts of the vehicle front structure as specified
in Figure Each column represents one car, and each row shows a part of the front
structure. The black points indicate that a vehicle contains the corresponding part. In total,
there are 15 parts. These parts consist of 1-3 components and each component is described
by its force-deformation characteristics. In Table 6.1} an overview is given over the parts,
the associated number of components and the number of the parameters which are the force
levels of the force-deformation curves per part. If the number of parameters is summed up,

the resulting total number of parameters is d = 89. The particular optimization problem
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under inequality constraints is given as follows:

find F", F*? € Qps with F” < F*? component-by-component
(6.5)
such that u(€;,,,) — max subject to f(F) < f, for all F € Q,,,.

Here, it holds f. = 0 and f(F) is defined as

acai;[ _ gpcare
. _pulse ¢
f(F) - mf}x[ f;carg )
with

al = f(Fcar(’)’ t=12,...,8

pulse

carrying beam
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front rail 2 ® o o o o @ {
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carrier 1
front axle
carrier 2
front axle
carrier 3
front axle carrier
crush box 1
front axle carrier
crush box 2
front axle carrier
crush box 3
front axle carrier
crush box 4

Figure 6.7: Eight vehicles which share some parts of the vehicle front structure.
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part name number of components | number of nodes

carrying beam wheel house 1 2 7
carrying beam wheel house 2 2 7
front rail 1 2 7

front rail 2 2 7

crush box 1 1 4

crush box 2 1 4

crush box 3 1 4

crush box 4 1 4

front axle carrier 1 3 10
front axle carrier 2 3 9
front axle carrier 3 3 10
front axle carrier crush box 1 1 4
front axle carrier crush box 2 1 4
front axle carrier crush box 3 1 4
front axle carrier crush box 4 1 4

Table 6.1: The parts of the vehicle front structure with the corresponding number of

components and the number of parameters per part.

Numerical results

In our numerical experiments, we shall compare different measures of choosing a hyperbox
in the cutting algorithm. In particular, we will compare the results when using the hyperbox
measures iy, (i, . . . , 45 Which are introduced in Section [3.4.1] The measures are selected
by choosing Mode 1, Mode 2, ..., Mode 5.

In Figures [6.8(a)], [6.8(b)] and [6.8(c)| the results of the algorithm which is run with the
standard mode (Mode 1) are illustrated. Then, the hyperbox with the most good sample

points is chosen. Because the fraction of good sample points in a uniform sampling
corresponds to the fraction of good space, a hyperbox with maximum volume will be
obtained. In Figure the fraction u;(€p,,) of good sample points versus the number
of iterations is illustrated. We observe that in the first phase, the fraction of good sample
points oscillates between 0.6 and 0.8. In the second phase, the fraction of good sample
points converges to 100%. Note that in the plots, the first and second phase of the algorithm
are separated by a dashed line. Figure [6.8(b)| shows the normalized volume versus the

number of iterations. The volume increases in the exploration phase and converges in
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the consolidation phase. In Figure the normalized volume versus the fraction of
good sample points is shown where a stagnation can be observed in the exploration phase.

Whereas, convergence is observed in the consolidation phase.

Next, the algorithm is run with Mode 2 where the hyperbox with the largest minimal
weighted width is selected. The results are displayed in Figures [6.8(d)| [6.8(e)] and [6.8(f)]
Maximizing the minimal weighted width results in a hyperbox where the smallest interval is

as large as possible. In Figure [6.8(d)] the fraction of good sample points versus the number
of iterations is shown. The curve oscillates in the first phase and converges in the second
phase. The measure u,(£2,,) versus the number of iterations is plotted in Figure
This graph grows in the first phase and converges in the second phase. Figure [0.8(f)| shows
the measure 1, (€2;,.) versus the fraction of good sample points. In particular, we observe

stagnation in the exploration phase and convergence in the consolidation phase.

The maximum of the weighted function, this means an optimization in Mode 3, returns a
hyperbox with the largest volume if A = 1. If A = 0, the hyperbox with the largest minimal
weighted width is selected, see Section @ Here, we choose 4 = 0.5. The results of
these calculations are depicted in Figure [6.8(g)} [6.8(h) and [6.8(1)l In Figure the

fraction of good sample points versus the number of iterations is illustrated. It oscillates in

the first phase and converges in the second phase. The measure p3(€2;,.) versus the number
of iterations is depicted in Figure [6.8(h)] The graph grows in the first phase and converges
in the second phase. The measure u3(€y,,) versus the iterations is shown in Figure

where stagnation in the first phase and convergence in the second phase is observed.

Figures [6.9(a)} [6.9(b)| and [6.9(c)| shows the results of the algorithm if it is executed in
Mode 4. Now, the hyperbox with the largest minimal coupled weighted width is selected.

Figure shows that the fraction of good sample points oscillates in the exploration
phase and converges in the consolidation phase. The measure p4(€2y,,) is growing in the
first phase and converges in the second phase as seen in Figure [6.9(b)l The stagnation

in the exploration phase and the convergence in the consolidation phase is illustrated in
Figure

In Figures [6.9(d)} [6.9(¢)| and [6.9(F)}, the results of the algorithm are plotted when Mode
5 is used. Then, the hyperbox with the maximum of the function us(Qy,,) (cf. (3.14)) is

selected. The fraction of good sample points versus the number of iterations is shown in

Figure [6.9(d)] It oscillates in the exploration phase and converges in the consolidation
phase. Figure illustrates that us(€2y,,) grows in the first phase and converges in the
second phase. The measure us5(€2;,.) versus the fraction of good sample points stagnates in
the exploration phase and converges in the consolidation phase, see Figure
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Figure 6.8: Fraction of good sample points versus iteration steps (a) Mode 1, (d) Mode 2
and (g) Mode 3. Hyperbox measure versus iteration steps (b) Mode 1, (¢) Mode 2 and (h)

Mode 3. Hyperbox measure versus fraction of good sample points (c) Mode 1, (f) Mode 2
and (i) Mode 3.
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Figure 6.9: Fraction of good sample points versus iteration steps (a) Mode 4 and (d) Mode
5. Hyperbox measure versus iteration steps (b) Mode 4 and (e) Mode 5. Hyperbox measure
versus fraction of good sample points (c) Mode 4 and (f) Mode 5.

For all the modes, essentially the same convergence behavior is observed. In the exploration
phase, the fraction of good sample points oscillates between 0.6 and 0.8 while the selected
hyperbox measure grows. In the consolidation phase, the fraction of good sample points
and the selected measure converge.

We obtain the hyperbox with the largest volume by choosing Mode 1. If Mode 2 is chosen,
the resulting hyperbox is a hyperbox with maximum smallest interval width at the expense
of the hyperbox volume. In Mode 3, a compromise between the hyperbox measures y; and
1 1s found. Mode 4 and Mode 5 consider that the input parameters are support points of a
curve. In Mode 4, the result is a hyperbox with maximum smallest interval width. Each

interval width is normalized by the largest mean of the intervals within the component it
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belongs to. In contrast to Mode 4, a hyperbox with maximum smallest corridor width is
obtained by choosing Mode 5. The widths are normalized by the maximum upper boundary
of each component. Therefore, by choosing Mode 5, large gradients of the lower and upper

boundaries, respectively, are avoided within a component.

If the convergence coeflicient is determined for the different modes, the values tabulated
in Table [6.2] are obtained. The convergence coefficient is between 0.0002 and 0.0003.
The order of magnitude of these values corresponds to the values which we observed
in Chapter [5| There, Figure shows that, for N = 100 sample points per iteration
and d = 100 dimensions, the convergence coefficient is 0.0003. In the same figure, we
observe that the convergence coefficient decreases when the dimension increases. In the
present example, the number of dimensions is 89 and the convergence coeflicient is also
between 0.0002 and 0.0003. Consequently, the values are in good agreement with these
from Chapter [3]

Mode 1 | Mode2 | Mode 3 | Mode 4 | Mode 5
c¢/N || 0.00027 | 0.00026 | 0.00024 | 0.00022 | 0.00024
ao 0.72 0.73 0.77 0.80 0.78

Table 6.2: Convergence coefficients for the different modes.

Next, in accordance with Section [3.4.2] the sensitivity of the boundaries of the solution
hyperbox are determined for the example under consideration. The fraction of good space

of the probed space in the dimension i is calculated by

low up
[a']" = [&] and [a"]}" = [&]

l
N . ~prob N . ~Prob
I’Qbox l’Qbox

for the lower and upper boundary, respectively. The results of these computations are
signified in Figure[6.10|by differently colored points. If [a*]; is larger than 0.95, the point is
green. This means that only a few bad sample points are gained by enlarging the hyperbox
in the dimension i. The point is yellow if [a*]; is between 0.7 und 0.95. If [a*]; is smaller
than 0.7, the point is red. For example, the lower boundary of the component 14 at the first
support point (associated with F,9) is only a bit sensitive because the point is green. The

upper boundary, however, is very sensitive because the point is red.

The optimization problem (6.5) under inequality constraints with d = 89 disintegrates
in two subproblems because these subproblems are independent of each other. This can
be observed in Figure The car in the last column — car 8 — does not share any part
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Figure 6.10: Sensitivities of the boundaries of the solution hyperbox indicated by colored

points.

with another car. Therefore, it can be considered independently of the other cars, and the
problem can be subdivided in two subproblems. The first subproblem (Subproblem A) has
d = 57 dimensions (see Table[6.3)), and the second subproblem (Subproblem B) has d = 32
dimensions (see Table [6.4)).

By solving Subproblem A independently of Subproblem B, we obtain the red and green cor-
ridors shown in Figure[6.11] The convergence coefficient of Subproblem A and Subproblem
B are tabulated in Table

part name number of components | number of nodes

carrying beam wheel house 2 2 7
front rail 2 2 7

crush box 2 1 4

crush box 3 1 4

crush box 4 1 4

front axle carrier 2 3 9
front axle carrier 3 3 10
front axle carrier crush box 2 1 4
front axle carrier crush box 3 1 4
front axle carrier crush box 4 1 4

Table 6.3: The parts of the vehicle front structure with the corresponding number of

components and the number of nodes per part for the Subproblem A.

If we solve the optimization problem under inequality constraints (6.3) with d = 89,
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part name number of components | number of nodes
carrying beam wheel house 1 2 7
front rail 1 2 7
crush box 1 1 4
front axle carrier 1 3 10
front axle carrier crush box 1 1 4

Table 6.4: The parts of the vehicle front structure with the corresponding number of

components and the number of nodes per part for the Subproblem B.
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Figure 6.11: The solution corridors of the optimization problem with d = 89 dimensions,

and the solution corridors of the optimization problem subdivided in two subproblems

because these two subproblems are independent of each other.

the blue corridors shown in Figure [6.11] are obtained. The corresponding convergence

coefficient is found in Table [6.5] Obviously, the convergence coeflicient decreases when

the dimension increases. This behavior confirms again the observations from Chapter [5]

Moreover, the order of magnitude of the different dimensions corresponds to the values
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Full problem | Subproblem A | Subproblem B

c¢/N 0.00027 0.00042 0.00084
ag 0.72 0.77 0.68

Table 6.5: The convergence coeflicient of the problem with d = 89, and the convergence

coeflicients of the independent problems with d = 57 and d = 32, respectively.

obtained in Chapter[5] Finally, Figure[6.1T]illustrates that the results for the two independent
subproblems and the results for the full problem agree reasonably well.

6.2 Forming process

In Subsection [6.2.1] the determination of a hyperbox for a forming process is motivated.
The evaluation of a stamped part is shown in Subsection [6.2.2] In Subsection [6.2.3] it
is explained how to obtain a response surface model of the forming process. Finally, a
specific example problem is presented in Subsection[6.2.4]

6.2.1 Motivation

The sheet metal forming for car body parts is influenced by variations of the process and the
material. Variations of the input parameters can result in significant variations of the part’s
quality. This can lead to additional costs to revise the parts or even to higher production
costs due to rejected parts, see [26, 81} 82]. Therefore, a robust forming process is required.
We simulate the forming process to access its robustness. Scattering input parameters of

forming simulations are, for example, the bead forces and the tool binder force.

The aim is to choose, for example, the bead forces and the tool binder force such that
problems of producibility like cracks and insufficient hardening are avoided. Because the
bead forces and the tool binder force underlie variations in the full-scale forming process,
intervals for the force levels are considered to access robustness of the forming process
and to improve the product characteristics.

6.2.2 Evaluation

The forming simulation is performed by the finite element method with explicit time
integration as introduced in Section The feasibility of a stamped part is evaluated by
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the risk of cracks and sufficient hardening. The risk of cracks is evaluated by a cracking
value as defined in [26]]. The cracking value is defined as the major strain of the strain state
under consideration normalized by the forming limit curve. A forming limit curve (FLC)
is depicted in Figure[6.12] It is obtained by measurements of the particular material. In the
same figure, a safety margin which is 80% of the FLC is shown. The space below the white
line indicates the undefined region of the diagram. The region of wrinkles is constrained
from above by the line ¢; = —¢,. Here, the wrinkle tendency is located below the line
¢, = —2¢,. Severe thinning exists for ¢3 > 0.3. Finally, an inadequate stretch is given for

¢3 < 0.02. Note that ¢; + ¢, = —¢3. In the green area, all elements of an ideal stamped
part are located.

0.6
<
C
©
7 0 3~\ -
S Severe thinning
© S
= /~
wrinkles s o
white line
0.0 inadequate stretch
-0.3 0 0.3

minor strain ¢»

Figure 6.12: Forming limit diagram.

If the FLC is described as a function FLC(¢,), the cracking value is given by normalizing
the present strain by the FLC

1

king, =
crackinge = = @)

for every element ¢ of the stamped part.

To ensure a sufficient hardening, a fraction of hardening is defined in accordance with [81].
Namely, the fraction of hardening of a stamped part is determined by dividing the number
of elements where the thickness reduction (thinning) is greater than 2% by the total number

of elements o
# elements > 2% thinning

hardening fy,. = # elements
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6.2.3 Response surface model

Instead of using a stamping simulation for the evaluation of a stamped part, we will use a
response surface model. A response surface model is an approximation of the simulation
model. The problem to obtain a response surface model can be formulated as follows
(see [5, 164]):

The design parameters X;,X,, ..., Xy € R? and the function values yi,y,...,yy € R are
given. We seek a function s : R? — R such that

s(x;)=y; forall j=1,2,...,N. (6.6)

Definition 6.2.1 (Radial basis function). A function y : R — R is called radial basis
function (RBF), if its value depends only on the distance to the origin, so that

y(x) = y(lxll).

The Table [6.6] contains some specific radial basis functions y(r).

Name of RBF y(r), r=0 Smoothness

multiquadric \/ 1 + (er)? | infinitely smooth
1

1+(er)?
_1
1+(er)?

generalized multiquadric || (1 + (er)*)B | infinitely smooth

inverse multiquadric infinitely smooth

inverse quadric infinitely smooth

gaussian e e’ infinitely smooth
thin plate spline r*log(r) | piecewise smooth
linear r piecewise smooth
cubic r piecewise smooth
monomial r2k-l piecewise smooth

Table 6.6: Examples of radial basis functions [64].

To solve the interpolation problem (6.6), we make the ansatz
N
s == > 4y(lIx = xh).
j=1

Here, a radial basis function is centered in each design parameter x;. The unknown

coeflicients A; € R are now determined by

N
S(Xk) =YV < Z/l]’}/(”Xk - Xj||2) = Yk for all k = 1,2, “ee ,N.
Jj=1
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This can be expressed as a linear system of equations ['A = y:

y(lx; —xill)  y(x = x2lk) ... ydIX = Xnll2) A1 N
vx2 —xill2)  y(xe = %xalb) ... y(lIX2 — Xnll2) L | »
YUxy = xi1ll)  y(xy = Xall2) ... y(Ixy —Xnll2) || AN N

The matrix I' is symmetric. To ensure uniqueness of the solution, I" has to be nonsingular.
Definition 6.2.2. The functiony : [0, 00) — oo is completely monotonic on (0, ), if y is
arbitrarily often differentiable and if (—1)!y©(r) > 0 for all r € (0, o) and € > 0.

In [53]], it is proven that the matrix I is positive definite and therefore invertible if x; # x;

for all j # k and if y is completely monotonic on (0, o).

6.2.4 Example

The optimization of a forming process of a wind draw is considered. The forming sim-
ulation uses the finite element method as introduced in Section [6.1.3] Here, the explicit

dynamic solver LS-DYNA is applied.

Problem statement

The input parameters are ten bead forces and one tool binder force. They are described
by the vector F = (Fy, F>, ..., Fi1). The ten beads of the wind draw are shown in Figure
@ A first constraint is that the maximum cracking value max, cracking,y is smaller
than a critical value f,, for a stamped part simulated with the forces F. Another constraint
consists of the fraction of hardening hardening s,y which has to be larger than a critical

value f,, for a stamped part simulated with the forces F.

To identify a hyperbox for the forces F, the following constrained optimization problem
will be solved by using the presented algorithm:

find F, F*? € Qpg with F* < F*? component-by-component

such that p(€,,) — max (6.7)

maxg crackingey— f"l ch —hardening frqcF

Tor ’ for

Every stamped part in the hyperbox has no cracks and provides a sufficient hardening. More-

subject to max( ) <Oforall F € Q.

over, the design space Qpg is of dimension 11, this means, F**" = (Fl*v, Flov . Flov
and F7 = (F\", F,", ..., F|7). The maximum cracking value and the fraction of hardening

are determined after performing a forming simulation with the forces F.
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bead 1 bead 6
bead 2 bead 7
bead 3 bead 8
bead 4 bead 9
bead 5 bead 10

Figure 6.13: A stamping simulation of a wind draw with ten beads.

Numerical results

In Figure [6.14] different stamping simulations of wind draws and the corresponding
elements in the forming limit curve are shown. Figure [6.14(a) shows a stamping simulation
of a wind draw with cracks. In the form limit diagram, some elements are in the region of
cracks. Consequently, the chosen bead forces and the tool binder force are not appropriate.
A stamping simulation of a wind draw without cracks but with insufficient hardening is
depicted in Figure [6.14(b). The gray surface indicates that most of the elements have less
than 2% thinning. A stamping simulation of a wind draw without cracks and with sufficient
hardening is illustrated in Figure[6.14|c).

Because a forming simulation of the wind draw needs about half an hour to be calculated,
two response surface models are constructed as described in Section[6.2.3] To generate
these models, 1000 forming simulations are executed. On the basis of these simulations, a
response surface model for the maximum cracking value and a response surface model for
the fraction of hardening are generated by a cubic radial basis function interpolant. The
coefficient of determination indicates how much the variance of one variable is determined

by the variance of another variable.

Definition 6.2.3 (Coeflicient of determination). Let X and Y be two random variables.
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Figure 6.14: (a) A stamping simulation of a wind draw with cracks and the form limit
diagram with the elements of the stamped part. (b) A stamping simulation of a wind draw
with insufficient hardening and the form limit diagram with the elements of the stamped
part. (¢) A stamping simulation of a wind draw without cracks and with sufficient hardening
and the form limit diagram with the elements of the stamped part.

Then, the coefficient of determination is defined by
2 __CoXY) _  E(X-EX)Y - EX))
et Var(X)Var(Y)  E((X - E(X)?)E(Y - E(Y))?)
where Cov(X, Y) denotes the covariance of X and Y and Var(X) and Var(Y) denote the

variance of X and Y, respectively.

Let {y;} be a given sample. We solve the integral of the coeflicient of determination by a

Monte Carlo method and approximate the coefficient of determination Rf,ms by

E;ress =1- M =1- sum of squares of residuals 6.8)

ZIJV: NCIE)s total sum of squares
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with N being the number of retests, y; being the predicted values, and y = % lel y; being

the mean of the y;.

By executing 100 forming simulations which gives the sample {y;}, the coeflicient of
determination of the response surface model for the fraction of hardening is approximated
and has the value R?,,_ = 0.97. The coefficient of determination of the response surface

press

model for the cracking value is approximated and has the value Efﬂm = 0.83. The

approximated coefficients of determination obtained here thus are reasonable well.

With these preparations at hand, intervals for the ten bead forces and the tool binder force
are calculated. In doing so, the values max; cracking;r and hardening ¢,y are calculated
by using the response surface models. The intervals shown in Figure [6.15] are the solution
of the optimization problem (6.7) computed by the presented algorithm using the standard
mode (Mode 1).

o o
o fo")

normalized force
o
D

Figure 6.15: Forming process: Normalized intervals for each parameter F;.

Within the intervals, every combination of forces produces with 95% probability a stamped
wind draw with sufficient hardening and without cracks under the assumption that the
response surface models predict the same bad space as the simulation model. The bad space
consists of stamped parts where max, cracking,y > f., and hardening y.cy < f.,. Thus,
our assumption means that the bad space obtained from the simulated forming process
coincides with the bad space obtained from the response surface models. The results of
the iteration process are visualized in Figure Figure illustrates the fraction of
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Figure 6.16: Forming process: (a) The fraction of good sample points versus the number
of iterations. (b) The hyperbox volume versus the number of iterations. (c) The hyperbox
volume versus the fraction of good sample points.

good sample points versus the number of iterations. In the exploration phase, the curve
oscillates and, in the consolidation phase, convergence is observed. We obtain for the
convergence coeflicient ¢/N = 0.003 with a, = 0.74. Here, the number of dimensions
is d = 11. Comparing the convergence coefficient with that in Chapter [5|for d = 10, we
conclude that the order of magnitude agrees. The normalized hyperbox volume versus the
number of iterations is shown in Figure [6.16(b)| The volume increases in the first phase
and converges in the second phase. In Figure the hyperbox volume versus the
fraction of good sample points is depicted. We observe stagnation in the first phase and

convergence in the second phase.

6.3 Rear passenger safety

In the Subsection [6.3.1] the motivation for an optimization problem for the rear passenger
safety is given. The evaluation of submarining is considered in Subsection [6.3.2] Finally, a
specific problem is presented in Subsection

6.3.1 Motivation

A main task of the rear passenger safety is to avoid submarining in a front crash. For an
illustration of submarining, see Figure Submarining occurs if the lap belt slips off the
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iliac crest and cuts into the soft abdomen region. It can result in serious internal injuries.
The key parameters to avoid submarining are the position of the belt anchor and the belt
lock of the seat belt. The belt anchor and the belt lock are illustrated in Figure[6.18]

No Submarining Submarining

Figure 6.17: Submarining and no submarining.

In the traditional car development process, one design team is responsible for the rear
passenger safety while another design team has to consider the package. In the automobile
industry, a package means that all different components in a car fit together. To avoid many
coordination meetings, the design team which is responsible for the rear passenger safety
may define solution spaces where submarining does not occur. To decouple the parameters
from each other, a hyperbox is thus sought for the relevant parameters.

6.3.2 Evaluation

To evaluate submarining, the front crash is simulated as presented in Section @ Then, the
distance of the vertebral column to the abdominal wall in the midplane of the dummy is

measured as seen in Figure[6.19]

If the minimal distance goes below a critical value during the simulation, submarining
occurs. In Figure[6.20] the distance versus the crash time is illustrated. The critical value
is indicated by a dashed line. The red line shows a simulation where submarining arises.
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Figure 6.18: The belt anchor and the belt lock of the seat belt.

Figure 6.19: The distance of the vertebral column to the abdominal wall in the midplane of
the dummy.

The green line corresponds to a simulation without submarining. The critical value is

empirically chosen.
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— submarining
— no submarining
—-- critical value

distance

time

Figure 6.20: Submarining occurs if the minimal distance becomes smaller than a critical

value in the simulation.

6.3.3 Example

A simulation of a front crash with a fifth female dummy is considered. A fifth female
dummy represents the smallest segment of the adult population. The simulation is per-
formed by using a finite element method as introduced in Section [6.1.3] Here, we use the

explicit dynamic solver Abaqus explicit.

Problem statement

The input parameters are the position of the belt anchor and the belt lock of the seat
belt. Consequently, there are six input parameters. They are described by the vector
b = (ay,ay,a;,l,, {y, ;). The parameters a,, a, and a, are the x-, y- and z-positions of the
belt anchor and the parameters ¢,, £, and ¢, are the x-, y- and z-positions of the belt lock.
The constraint is that the minimal distance min, d(¢) is above a critical value during the

simulation which means

mind(?) > d,,
t

cf. Figure [6.20]

In all, we arrive at the following optimization problem for the positions b:

find b, b"? € Qps with b’ < b*? component-by-component
such that u(Q,,) — max (6.9)

subject to min d(t) > d, for all b € Q,,,,.
t
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Every position of the belt anchor and the belt lock of the seat belt within the resulting
hyperbox avoids the submarining. The design space Qg is of dimension six, this means,
bl = (Blov, b, .. blY) and b = (B, B, ..., be").

Numerical results

Because a simulation needs about five hours to be calculated, a response surface model
is constructed to obtain a faster calculation of the output value. To generate this model, a
Monte Carlo sampling with 200 simulations is executed in the design space, see Figure[6.21]
On the basis of these simulations, a response surface model for the minimal distance is
generated by using a cubic radial basis function interpolant in accordance with Section[6.2.3]
The solution is a response surface model for the minimal distance. A retest is executed
by a Monte Carlo sampling with 30 simulations to evaluate the predictive quality of the
response surface model, see Figure [6.22] For our particular response surface model, the
2

approximated coefficient of determination is R, = 0.87. The approximated coefficient

of determination is given in equation (6.8).
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Figure 6.21: 200 sample points within the design space.

We apply the algorithm (Mode 1) to the optimization problem (6.9) by using the produced
response surface model to calculate the output value min, d(¢). The solution of the opti-
mization problem (6.9) are intervals for the six input parameter. The solution hyperboxes
are shown in Figure [6.24] Within the hyperboxes, every position is with 95% probability a
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Figure 6.22: Retest with 30 sample points to evaluate the predictive quality of the response

surface model.

good design under the assumption that the response surface models predict the same bad

space as the simulation.
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Figure 6.23: (a) The fraction of good sample points versus the number of iterations. (b)
The hyperbox volume versus the number of iterations. (c) The hyperbox volume over the

fraction of good sample points.

The behavior of the algorithm during the iteration is found in Figure In Figure
the fraction of good sample points versus the number of iterations is depicted. The con-
vergence coeflicient is ¢/N = 0.005 with ay = 0.65. Figure shows the normalized
hyperbox volume versus the number of iterations. The normalized hyperbox volume versus
the fraction of good sample points is illustrated in Figure The curve stagnates
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in the first phase while convergence is seen in the second phase. We observe that the
behavior of the algorithm is quite similar to the other problems under consideration. The
only difference consists in a larger convergence coeflicient, i.e. a faster convergence in the

consolidation phase, due to less dimensions.

Figure 6.24: Solution hyperbox.
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Chapter 7
Identifying key parameters

In this chapter, a procedure is presented to identify key parameters in high-dimensional
and non-linear systems which are subject to uncertainty. We aim at improving a design
which fails the design goals by changing the key parameters such that they lie within the
desired intervals.

Section motivates the need for a method to identify key parameters in order to turn
a bad design into a good design with comparatively little effort. In Section[7.2] a simple
example problem is considered. The mathematical problem statement for the hyperbox
optimization with constraints is given in Section[7.3] Section[7.4] presents the extensions of
the algorithm which was introduced in Chapter [3] to identify the key parameters in order
to improve a design with little effort. The applicability of the algorithm is validated by
two-dimensional example problems in Section In Section the proposed method is
applied to a non-linear and high-dimensional engineering crash problem.

7.1 Motivation

Designs that fail to meet their design goals may be improved by appropriately changing
relevant design parameters. When design parameters are subject to uncertainty, this can
be very difficult. The deviation between desired and realized parameter settings may lead
to catastrophic design failure, in particular when the design problem is non-linear and
the system response abruptly changes under parameter variation. Uncertainty is present
when parameters or component properties cannot be controlled exactly. As an example,
the force-deformation characteristic of a structural member is difficult to adjust by detail

parameters like the metal sheet thickness. This chapter is concerned with, first, identifying

123
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the key parameters that can be used to improve a design with least effort, and, second,
providing information on how these key parameters need to be modified in order to turn a

bad into a good design in the presence of uncertainty.

Classical approaches to identify relevant parameters are sensitivity analysis, classical
optimization and robust design optimization. Sensitivity analysis quantifies the importance
of input parameters for the variability of the output [3, |66} |67, [74]. Local sensitivity
analysis investigates the local influence of each input parameter on the output. This kind
of analysis is well suited for problems that can be well approximated by linear functions.
Local sensitivity measures are obtained by computing partial derivatives of the output
function with respect to the input parameters. Global sensitivity analysis takes the entire
design space into account to apportion the variability of the output parameter to the
variability in each input parameter. There are several measures used in global sensitivity
analysis: A regression coefficient quantifies the slope of a linear approximation, Pearson
correlation coefficient measures to what degree an input parameter determines the output
in a linear relationship. The Spearman correlation coefficient quantifies the monotony in
the relationship between one input parameter and the output. Sobol indices are particularly
tailored for multidimensional functions, see [33, 140, 58, [70, [78]]. The first order Sobol
index is a measure for the direct effect of an input parameter on the output. The higher
order indices quantify the influence of the interactions between the input parameters. The
fraction of the output variation that is related to each input parameter is measured by the
total order index, see [[58, 167,70, [78]].

Every sensitivity measure measures the importance of an input parameter in one particular
sense. As all the information on how input and output parameters are related is reduced to
one measure, other information is lost. Therefore, in the sensitivity measures mentioned
before, no information is included on how the parameters have to be changed in order to

obtain a particular result.

Contrary to sensitivity measures, classical optimization provides this information by
seeking an optimum in the design space. Unfortunately, however, classical optimization
does not take uncertainty into account. Optimal designs may be non-robust and quite
sensitive to parameter variabilities. Due to the underlying uncertainty, realizing an optimum

in a practical design may be impossible.

Both, sensitivity analysis and classical optimization are not concerned with uncertainty and
therefore of limited use for the purpose of this chapter. Robust design optimization does
take uncertainty into account by seeking a design point in a particular neighborhood with

little output variation or sufficient performance (see [10]]). The size of that neighborhood is
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specified in advance and represents parameter variability associated with an measured or
assumed underlying uncertainty. Robust design optimization prescribes the permissible
variability and cannot optimize the tolerance to variations.

The approach presented in Chapter [3]is similar to robust design optimization in that it also
computes a permissible region rather than one design point. The solution space, however,
is constructed to be as large as possible to make it easier to reach the target. Robust
design optimization does not seek a large solution space, it rather looks for a neighborhood
with good output performance and fixed size. For a robust design optimization problem
with a performance threshold value, this implies that, either, there is no solution if the
neighborhood was chosen too large, or, there is a solution with an associated neighborhood
which may not be as large as possible. Maximizing the solution space, however, provides a
target space which is as large as possible and therefore easier to reach.

In this chapter, the method which was presented in Chapter [3is extended with a focus on
reducing the effort to turn a bad design in a good design. A large solution space is sought
that already includes as many parameters from the bad design as possible by formulating
appropriate constraints. Parameters without constraints may lie outside of the solution

space and will have to be changed to fulfill the design goal.

7.2 A simple example problem

A simple example problem from crash analysis is considered as presented in [87]. The
load case is similar to a USNCAP front crash, where the vehicle hits a rigid barrier at a
speed of vy = 56 km/h with full overlap, see Figure

Figure 7.1: USNCAP front crash.

A model of the vehicle structure is used that consists of two structural components, see
Figure[7.2] The structural components 1 and 2 are the only deformable parts and have the

deformation measures u; and u,, respectively. The rest of the vehicle model is rigid. The
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Figure 7.2: Vehicle structure of the example problem consisting of two deformable compo-

nents.
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Figure 7.3: Force-deformation characteristics of the structural components 1 and 2.

deformable components have no mass, all mass is located on the rigid part. The forces
necessary to deform components 1 and 2 are F; and F, respectively, see Figure[7.3] F, and
F, are assumed to be constant while deforming. If the maximum deformations u;. and u,,

are reached, the forces may become arbitrarily large in order to avoid further deformation.

The crash performance is measured by the acceleration of the passenger cell and the order
of structural deformation, that is, whether component 1 or component 2 deform first. The
design goals for the reduced example problem are:

e The maximum deceleration should not exceed the critical threshold value a, .,
that iS, apulse < apulse,c-

e Component 1 should deform before component 2 deforms.

This translates to the requirements on F and F, that F; < F,, that the deformation force
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of component 2 is F, < mayyu. . and that the entire kKinetic energy is absorbed, that is

1 2
5Mvy < Fiuy. + Fous,.

With the performance function

1, if %mvé > Fiuy. + Fouy,
f(F1, F2) = 1, if Fy > F, (7.1)
Bl mdpuisec /;"_Ia" usec - otherwise,
pulse,c
the design goal is met, when
f(Fi,F,) <0. (7.2)

The solution space defined by expression (/.2) is shown for m = 2000 kg, a,ue. = 32 g,
vo = 15.6 m/s and u;. = up. = 0.3 m in Figure

800 800 800
> u —
FI I P
classical optimum
4 bad design 4 bad design 4 bad design
0 o good design " o good design 0 o good design
0 F, 800 0 F, 800 0 F, 800
(a) (b) (©)

Figure 7.4: Changes necessary to meet the design goal: (a) F; and F3, (b) only Fy, (c) only
F.

Now consider a design with F; = 275 kN and F, = 450 kN. It violates ([/.2)). In order to
identify what parameter may be changed and by how much in order to improve the design

with least effort, three scenarios are compared:

(a) A classical solution hyperbox with maximum volume is shown in Figure Both
components 1 and 2 have to be modified in order to meet the design goal.

(b) A solution hyperbox that includes F, = 450 kN is shown in[/.4(b)l In order to meet
the design goal, only component 1, that is, F, will have to be changed. Note that F; is
included in the solution hyperbox with a safety margin of +25 kN. This is necessary, since

F, cannot be controlled exactly.
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(c) Finally, a solution hyperbox that includes F'; = 275 kN is shown in Figure In
order to meet the design goal, only component 2, that is, F, will have to be changed. The

same safety margin as in scenario (b) is provided.

The solution hyperboxes of scenarios (b) and (c) are smaller than the one of scenario (a).
In this sense, designs from these hyperboxes are less robust and more difficult to realize.
However, scenario (a) requires redesigning two components, while scenarios (b) and (c)
only require redesigning one component. A designer, knowing that component 1 is easier
to redesign than component 2, would therefore prefer scenario (b). The deformation force

Fy would be the key parameter to meet the design goal.

This procedure can be generalized by seeking solution hyperboxes under the constraint that
certain parameters are included with a specified safety margin. The associated mathematical

problem statement is provided in the following section.

7.3 General problem statement

The optimization problem to maximize the size of the solution space as introduced in
Chapter 2 reads as
find XV, x“? € Qpg with X' < x“? component-by-component
P)
such that u(€,,,) — max subject to f(x) < f, for all x € Q,,,.
As motivated in the previous section, the classical problem statement is now enriched
by constraints to ensure that the parameter values are included in the resulting solution

hyperbox. More specifically, we shall consider the optimization problem
find X, x“7 € Q ; with X' < x“7 component-by-component

such that u(€,,) — max subject to f(x) < f, for all X € Q,, (P*)

up
cl

low

low
and x” < X

up
X, 2 X

low
c.k

hyperbox, respectively.

with x/" and x” being the constraint for the lower and upper boundary of the solution

7.4 Computing solution spaces with constraints

Algorithm [6] presented in Chapter [3] is extended to account for constraints and solve
problem (P*)). The extension is done by modifying the cutting algorithm, where candidate
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hyperboxes without bad designs are computed in three nested loops. In the original
algorithm, the largest hyperbox is chosen as the new candidate hyperbox for the next
iteration step. In the extended algorithm with constraints, an error measure is introduced

that quantifies to what degree constraints are violated. The constraint violation error &* is

defined as
g = Z wier + Z weer, (7.3)
k ¢

with k and ¢ being the indices of the lower and upper constrained parameter boundaries

and with
0’ if xlow < xlow,
& = Tk (7.4)
X2 — xlov - otherwise
and
s up up
. - 0, if x,” > X,oo (75)
[ —_ .
x,” —x.", otherwise.

wy and w, are weights of the constraints. If there are several hyperboxes satisfying all
constraints, that is, & = 0, the hyperbox with the largest number of good sample points is
chosen. The pseudo-code of the extended cutting algorithm is found in Algorithm [§ where

the extension is colored in blue, cf. Algorithm @

7.5 Analytical examples

Two-dimensional problems are considered to show the functionality of the modified

algorithm.

7.5.1 Problem 1: Rosenbrock function

In Section[4.1] we considered the non-linear optimization problem of maximizing the size
of a rectangle in case of the Rosenbrock function. In addition to the problem given there,

we impose the constraint that the variable x'* is smaller than a prescribed constant.

Analytical solution

If the constraint
X < -0.9 (7.6)
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Data: a hyperbox Q.,,; and a set S = {X; € Qg 1 f(X1) > --- > f(Xy)} of sample
points
Result: hyperbox C Q. which contains only good sample points
forall the good sample points {x5°°? € S : f(x5°°?) < f.} do
forall the bad sample points {x"* € S : f(x*) > f.} do
for dimensioni=1,2,...,d do
if x2%¢ < 3" then
‘ count the good sample points X with x> > x; > xlo;
else
‘ count the good sample points x with x>/ < x; < x;”;

end

end

choose the dimensions i* where the fewest good sample points are removed;
choose the dimensions i** where the most bad sample points are removed
from the selected dimensions i*;

choose randomly the dimension i* from the selected dimensions i**;

if 004 < xfj"’d then cut to x/2";

else cut to x'7;
1

end

forall the dimensions i where a bad sample point is removed do
if x4 < x***’ then

low «_ 15 I : .
‘ x,” := min; x; ; for all remaining good sample points X ;

else

Mp - . . . .
‘ x;" := max; x; ; for all remaining good sample points X ;

end

end
remember the hyperbox with smallest £?;
if £2=0 then
remember the hyperbox with most good sample points;
end

end

Algorithm 8: Pseudo-code of the extended cutting algorithm.

is added to the optimization problem (@4.1)), the analytical solution admits the values

tabulated in the second column of Table A visualization of this maximum is found in
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Figure[7.3]

-2
-2 X4 2

Figure 7.5: Problem 1 (additional constraints). The hyperbox of maximum volume with an
additional constraint.

analytical numerical for N = 100
Xiopt Xiavg o(x;) e(x;) error in %
xlov |l —0.900 | —0.903 | 0.0164 | 0.00300 0.333
X 0.405 0.410 | 0.0307 | 0.00500 1.23
X" -0.586 | -0.563 | 0.0966 | 0.0230 3.92
x5" 0.761 0.749 | 0.0880 | 0.0120 1.58

Table 7.1: Problem 1 (additional constraints). Analytical solution and related numerical
results for 100 simulations.

Numerical solution

The optimization problem (#.1]) with the additional constraint (7.6) is solved numerically
by using Algorithm [§] The results of the numerical optimization obtained by executing
the process are shown in Table [7.I] for N = 100 sample points per iteration. The
mean X;, of the coordinates of the final hyperboxes of the 100 simulations, the related
standard deviations o (x;), the absolute errors £(x;) = |X; 4 — Xiopl, and the relative errors
|Xi.avg = Xi.opil/ Xiop: are tabulated in Table [7.1]
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Figure 7.6: Distribution of the hyperboxes found by the algorithm for (a) coordinate x; and

(b) coordinate x, for 100 simulations.

The distribution of the solution hyperboxes found by the algorithm is visualized via
histograms in the Figure for the coordinate x; and in the Figure [7.6(b)| for the
coordinate x,. These plots show that the proposed algorithm converges to the analytical
solution in the sense that the average of the numerical solutions approximately agree with
the analytical solutions and fulfills the additional constraint (7.6)).

7.5.2 Numerical results of the simple example problem

The extended algorithm is applied to the simple example problem from Section All
three scenarios are computed with N = 100 designs per Monte Carlo sample. The first
candidate hyperbox includes the classical optimum at the lower tip of the solution space
triangle. The exploration phase and the consolidation phase are run for 20 and 10 iteration

steps, respectively. This procedure describes a simulation.

Figure[/.7|shows how the extended algorithm drives the evolution of the candidate hyperbox
for scenario (b). The constraints are chosen such that only F; has to be modified, that is,
the constraints are Fy* < FY = 425 kN and F,” > F.%, = 475 kN. The first row illustrates
the exploration phase: the algorithm enlarges the volume of the candidate hyperbox by
extending the hyperbox boundaries. It cannot extend the hyperbox boundaries in the

direction of F'y, as this would violate the constraints. In the consolidation phase, shown in
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the second row, bad designs are removed, until the final solution hyperbox is obtained that

satisfies the constraints.

800 800 800

0 literation step 1] 9 literation step 2| ) [iteration step 15|

0 F, 800 0 F, 800 0 F, 800
800 800 800
F, F» F,

0 [iteration step 21| 0 [iteration step 22| 0 [iteration step 30|

0 Fi 800 O Fi 800 0 F, 800

Figure 7.7: Evolution of the candidate hyperbox in the exploration phase (top row) and
consolidation phase (bottom row) for constraints of scenario (b) ensuring that only F
needs to be changed, that is, F¥* < F f”;” =425kN and F,” > FZS = 475 kN.

The numerical results of 100 simulations for scenario (a) are given in Table[7.2] The results
of an arbitrarily chosen simulation is depicted in Figure By F 4, the average of 100
simulations for each interval boundary of each input parameter is indicated. The standard
deviation is denoted by o (F;). The absolute &(F;) is calculated by |F; 4, — Fi | and the
relative error is calculated by &(F;)/F ;. In Figure the histograms of the results of

100 simulations are shown.

The values of the resulting hyperboxes of 100 simulations for scenario (b) are found in
Table An arbitrarily chosen simulation is seen in Figure The histograms of the
numerical results of 100 simulations are shown for F; and F, in Figure

Finally, in Table[7.4] the numerical results of 100 simulations are tabulated for scenario (c).
The solution hyperbox of an arbitrarily chosen simulation is shown in Figure The

histograms of the numerical results of 100 simulations are depicted for the coordinate F



134 CHAPTER 7. IDENTIFYING KEY PARAMETERS

800 800 800

0 F, 800 O F, 800 O F, 800

(@) (b) (©
Figure 7.8: Computed solution hyperboxes (a) without constraints, (b) constraints ensuring
that only F, needs to be changed (Fy" < F' = 425 kN, F;” > F.", = 475 kN), and

(c) constraints ensuring that only F, needs to be changed (F i”w <F f’lw = 250 kN and
F" > Fi’,’; = 300 kN).

analytical numerical for N = 100
Fiopt Fige | o(F;) | &(F;) | errorin %
F ll"w 291 291 | 14.0 0 0
F é"w 516 516 | 13.6 0 0
F 516 515 | 13.5 | 1.00 0.194
F)’ 628 626 | 1.46 | 2.00 0.318

Table 7.2: Simple example problem (scenario (a): F; and F, to be changed). Analytical

solution and numerical results.

analytical numerical for N = 100

Fiopi Fige | o(F;) | &(F;) | errorin %
Flow 382 380 | 3.21 | 2.00 0.524
Flov 425 428 | 3.30 | 3.00 0.706
F’ 425 427 | 3.17 | 2.00 0.471

1

Fy’ 628 625 | 2.73 | 3.00 0.478

low

Table 7.3: Simple example problem (scenario (b): only F; to be changed (F' é"w <SFY =

425 kN and F" > F37, ;=475 kN)). Analytical solution and numerical results.
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and the coordinate F, in Figure[7.11]

analytical numerical for N = 100

Fiopt Figg | o(F;) | e(F;) | errorin %
Flov 250 249 | 6.03 | 1.00 0.400
Flow 557 558 | 528 | 1.00 0.180
Fr 557 557 | 5.82 0 0

1

F)’ 628 627 | 0.717 | 1.00 0.159

low _

Table 7.4: Simple example problem (scenario (c): only F, to be changed (F' {OW SFY =

250kN and F\” > F T’; . = 300 kN)). Analytical solution and numerical results.

The numerical approximation and the analytical solution coincide within an error of less

than 1% for all scenarios under consideration.
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Figure 7.9: Simple example problem (scenario (a): F; and F to be changed). Distribution
of the hyperboxes found by the algorithm for (a) coordinate F; and (b) coordinate F5.

7.6 High-dimensional crash problem

A USNCAP front crash is considered. For the details of the modelling and the numerical
simulation, we refer to Section
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Figure 7.10: Simple example problem (scenario (b): only F; to be changed). Distribution
of the hyperboxes found by the algorithm for (a) coordinate F; and (b) coordinate F5.
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Figure 7.11: Simple example problem (scenario (c): only F, to be changed). Distribution
of the hyperboxes found by the algorithm for (a) coordinate F; and (b) coordinate F5.
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7.6.1 Why vehicle crash design is difficult

Improving bad designs is difficult because of non-linearity. All mappings between the
detail, component and vehicle level are typically highly non-linear. Non-linearity between
the component and the vehicle level can be observed in Figure For a bad design
with maximum deceleration @,z > Qpuise,c, the force-deformation characteristics of the
crash hyperbox and the front rail are modified. When making only the crash box stronger,
apuse becomes worse. Strengthening the front rail, improves a,,s., however it remains
supercritical. Combining the modification with worsening effect with the modification with
insufficient effect, produces a good design with a5 < @puise . The influence of the design
parameter force-deformation characteristic of the crash box is changed by modifying the
other parameter force-deformation characteristic of the front rail. This effect will be called

parameter interaction.

The parameter interaction between the force-deformation characteristics of the crash box
and the front rail can be explained physically: while deforming, structural members exert
a decelerating force on the vehicle that reduces the kinetic energy. When all structural
members completed their deformation, the remaining kinetic energy is absorbed in an
abrupt collision of the passenger cell with the engine block that is already in contact with
the barrier wall. This final collision is associated with a deceleration signal, that increases
with increasing remaining kinetic energy. One may assume that increasing the force of the
crash box should increase the initial force that decelerates the vehicle, and therefore reduce

the remaining kinetic energy and the maximum deceleration.

However, this is not the case for variant (2) in Figure the front rail behind the crash is
not strong enough to support the load of the crash box, resulting in a premature collapse of
the front rail. This leads to an even lower force to decelerate the vehicle in the beginning,
and, consequently, to a higher maximum deceleration. In variant (4), the front rail is
sufficiently strong, the influence of the parameter force-deformation characteristic of the

crash box is reversed, and the system exhibits the desired overall behavior.

In addition to parameter interaction, other non-linear phenomena are present in crash
design, such as abrupt changes of vehicle responses or non-monotonous dependencies on
design variables. Non-linearities make it difficult to assess the influence of each parameter,
and therefore obstruct the identification of the key parameters and their setting necessary

to turn a bad into a good design.
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crash box front rail vehicle response
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Figure 7.12: Force-deformation characteristics and their non-linear influence on the
maximum deceleration. (1) Original design. (2)&(3) 2 modifications yielding bad designs

each. (4) Combined modification yielding a good design.
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7.6.2 Application in crash design
Identification of a key component

A vehicle structure as shown in Figure [6.1(b) is considered. It consists of nine structural
members with force-deformation characteristics as shown in Figures [7.13](a). The force-
deformation characteristics are measured in a detail finite element model. The performance
in the USNCAP front crash is insufficient, because a,uise = Qpuise,i > Qpuise,c- In order to
identify the relevant components and the necessary modifications, solution spaces for the
force-deformation characteristics are computed.

Remark 7.6.1. In the present example, a bad vehicle design is given and all detail pa-
rameters are known. Rather than varying detail parameters according to the classical
design approach, however, the relevant component to be modified is identified by computing

appropriate solution spaces on the component level with the aid of the reduced model.

The solution space for a force-deformation characteristic is represented by an upper
and a lower boundary line in a force-deformation diagram, see the solid bold lines in
Figure [7.13(a). The region bounded by these two lines is called a corridor. Corridors are
approximated by linear interpolation between two support points.

A reduced crash model provides the mapping (6.3) for a total of d = 55 parameters F;. For
each component k, a solution space €2 is computed under the constraint, that all force-
deformation characteristics are included, except the one of component k. This procedure is
similar to the one that was applied in Section Unfortunately, no corridor is obtained
that strictly satisfied the constraints. Qs however, see Figure violates the constraints

only to a negligible degree for components 4, 6 and 9.

Remark 7.6.2. For component 4, the force-deformation characteristic lies outside the
corridor for very large deformations where the force measurement is assumed to be
inaccurate. For components 6 and 9, the force-deformation characteristic lies outside the

corridor for deformation intervals that are much smaller than the total deformation.

Noting that the force-deformation characteristic of component 5 lies below the associated
corridor, it can be concluded that

e component 5 is a key component, that is, its force-deformation characteristic is a

key parameter, and

e it needs to be reinforced to lie within its corridor and to turn the bad into a good

design.
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Design improvement

A straightforward reinforcement, for example by increasing the sheet metal thickness, is un-
fortunately not a good design measure: the force-deformation characteristic of component
5 is already at the upper limit for deformations close to 0. By analyzing the deformation of
component 5 during the crash, however, an appropriate design measure can be identified.
The detailed finite element simulation shows that at the deformation #* the deformation
force drops below the corridor. This happens exactly when the profile of component 5
collapses by forming a distinct fold as shown in Figure [7.13|(b).

The fold forms at a location that does not deform before the profile collapses. Therefore, a
local reinforcement of this location has no effect on the force-deformation characteristic
for u < u*, and the force-deformation characteristic does not cross the upper boundary line
for deformations close to 0. It does nevertheless increase the deformation force at u ~ u*,
as intended.
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Figure 7.13: (a) Force-deformation characteristics of design 1 with a,,;. > @pyise and
corridors Qs. (b) The front rail undeformed and deformed.

The corridor provides a target region for the required force-deformation characteristic. A
target region rather than a target point is necessary, as the component properties cannot
be controlled exactly, that is, the component properties are uncertain. Wide corridors are
necessary for successful design work under uncertainty.
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Figure 7.14: (a) Force-deformation characteristics of design 2 with a,,;. < @puise and

corridors Qs. (b) The reinforced front rail undeformed and deformed.

The reinforcement is realized by increasing the sheet thickness locally. The resulting
deformation and the force-deformation characteristics are shown in Figure All
force-deformation characteristics lie within their corridors, and the maximum deceleration
dropped below the critical value, see Figure[7.15]

Remark 7.6.3. The forces measured in components 5, 6, 8 and 9 cross the corridor lines

only in case of unloading, that is, when it < 0.

apulse,1

apulse,c
pulse,2

deceleration

time

Figure 7.15: Deceleration of the good and bad design.
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Note that the force-deformation characteristic of component 4 also changed, although
this was not intended. The local reinforcement in component 5 has a stiffening effect on
component 4, because they both share parts of the same structural member. This may be
regarded as uncertainty. As the corridor for component 4 is wide enough, there is enough
tolerance for the unintended variation: the force-deformation characteristic still lies within

the corridors, and the design remains a good design.

The physical explanation for the improvement is similar to the one in Section[7.6.1} The
reinforcement of the front rail, that is active at the deformation level u*, decelerates
the vehicle more in the beginning of the crash. The remaining kinetic energy and, thus,
the maximum deceleration become smaller. If component 5 had been reinforced such
that the force is increased for deformation levels close to O (which would result in a
force-deformation characteristic outside the corridor), a different component may collapse,

causing the initial deceleration to decrease and the maximum deceleration to increase.

Note that the local thickness at the reinforcement was identified as relevant detail parameter
by the physical information that was extracted from the force-deformation characteristics
and the associated target corridors. Identifying relevant detail parameters by variation
instead could be prohibitively expensive, because the local thicknesses of many possible

locations would have to be considered.

Using corridors for force-deformation characteristics as design goals helped identifying
a key component, a key parameter and an appropriate design measure. In the example
considered here, the design measure is small and modifies accurately the mechanical

behavior of the non-linearly interacting structural members.

Remark 7.6.4. To evaluate the corridors which were calculated on the basis of the reduced
crash model with respect to the detail finite element model, the members of the primary
load paths, this means the front rail, the crash box and the front axle carrier, were varied

in strength.

We made 20 variations by varying the strength of the front rail around the nominal value
with £0.35mm. Another 20 variations were obtained by varying the strength of the crash
box around the nominal value with £0.7mm. Finally, we made 20 variations of the strength
of the front axle carrier by varying the nominal value with +0.7mm. In total, 61 variations
were done. When evaluating whether a curve lies within the corridor, elastic loading and

unloading is disregarded.

We obtain 27 bad designs which are displayed by the red curves in Figure and 34
good designs which are shown by the blue curves in the Figure We observe in this
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figure that 19 designs lie within the corridors. All of these are good designs. Therefore, we

conclude that the corridors are valid with respect to the detail finite element models.

component-1 component-2 component-3

8 8 8 i
a ® 2 y N
N | ) AR Y)) »;
deformation deformation deformation
component-4 component-5 component-6

Yl

defo ato deformation N efomatin
component-7 component-8 component-9
[

Figure 7.16: 61 variations: 27 bad designs (red curves) and 34 good designs (blue curves).
19 designs lie within the corridors. All of these are good designs.
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Chapter 8
Conclusion

In the present thesis, we analyzed a new method to identify a hyperbox with maximum
volume in the design space such that all designs inside this hyperbox are subcritical. The
method can be applied to any high-dimensional, non-linear and noisy system. For a design
to be good, the choice of a parameter value within its assigned interval does not depend on
the values of the other parameters as long as they are within their respective intervals. In

this sense, the parameters are decoupled from each other.

Robustness can be measured by the size of the resulting intervals. Moreover, intervals
help to identify relevant parameters to improve a non-robust or critical solution. They may
be combined with intervals of other disciplines — their cross sections are global solution

spaces.

Several benchmark problems were constructed to study the convergence of the algorithm.
The convergence in the mean to the optimal solution was shown in low dimensions and
for problems with rectangular boundaries in high dimensions. In Problem 4 (tilted hyper-
plane), the volume of the hyperbox found by the algorithm is very large compared to the
optimal hyperbox in high dimensions. However, the bad volume contained in the computed
hyperboxes is small. If the widths of the intervals of a hyperbox are slightly larger than the
widths of the intervals of the analytical solution hyperbox, the volume of the considered
hyperbox is considerably larger than the volume of the analytical solution hyperbox in
high dimensions, that is, the available data become sparse. This effect reflects the curse of
dimensionality. Nevertheless, this observation does not affect the practical applicability
since the fraction of the good space is still close to 100%. This was demonstrated by an
engineering model for a front crash. Moreover, the dependency of the corner problem from

the boundary of the good space was investigated.

The convergence behavior of the consolidation phase of the algorithm was analyzed. It
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turned out that the convergence speed decreases when the number of dimensions increases.
The convergence coefficient was introduced to measure the convergence speed. The al-
gorithm was identified as a Markov chain. For a problem where the good space is a
hyperbox contained in the design space, an analytical model was derived which describes

the algorithm’s convergence behavior

Moreover, the conflict between the resulting volume and the convergence speed was
studied for several high-dimensional optimization problems. The volume of the solution
hyperbox increases when the number of sample points per iteration is increased. However,
the convergence slows down which is reflected by the decreasing convergence coeflicient,
i.e., more iterations are needed to converge. This conflict corresponds to a Pareto frontier.
Mechanisms explaining this behavior were identified as overestimation due to sparse
sampling, impossibility of boundary corrections and each bad sample point can be used
for one dimension only. For Problem 4 (tilted hyperplane) and Problem 7 (front crash), the
same convergence behavior was observed. This indicates that, in Problem 4, the boundary
of the good space has a similar shape as in Problem 7.

The presented method was applied to different engineering problems. The first problem
was a front crash design problem where corridors for the force-deformation characteristics
of the car’s components were calculated such that each curve within the corridors leads to
a subcritical deceleration maximum during the front crash. Then, we applied the algorithm
to a problem from a forming process. For the forming process, intervals were determined
for the bead forces and the tool binder force with the aid of a response surface model.
Within the intervals, it holds that the stamped part provides a sufficient hardening and does
not contain cracks. Finally, we presented a problem from the rear passenger safety where
intervals were determined for the positions of the belt anchor and the belt lock of the seat
belt. The goal was to avoid submarining which occurs if the lap belt slips off the iliac crest
and cuts into the soft abdomen region. All these results show the applicability and the
feasibility of the optimization algorithm to real life engineering problems.

The hyperbox can also be used to identify which parameters and how much they have to be
changed in order to reach the design goal. The method was extended such that a hyperbox
with maximum volume was identified which includes all parameter values of a bad design
except for a few parameter values. These few parameters were called key parameters
because they may be changed with little effort in order to lie within their intervals — so-
called target regions. Often, the effort is small if there are only a few key parameters. This
methodology was demonstrated with a simple example problem from crash analysis with

two input parameters. Different two-dimensional benchmark problems were considered
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to validate the accuracy of the algorithm. The applicability to large engineering problems
was validated by considering a front crash design problem. Starting from a bad design, the
corresponding target regions were calculated and the key parameters were identified. By
an appropriate modification, the design was changed to reach the design goal.
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Appendix A

Theory of the optimization under
constraints

In this appendix, we review briefly the mathematical theory of constrained optimization

problems. To this end, let us consider the following optimization problem under constraints,
see [23]]:

find x € R?
such that f(x) — min Q)
subjectto g,(x) <0, s=1,2,...,m, and h,(x) =0, t =1,2,..., p.

The following theory is given in [9} 23} 135} 143]].

A.1 Definitions

The definition of a tangential cone is given as follows.

Definition A.1.1 (Tangential cone). Let X C R? be a non-empty set. Then, a vector d € R?
is called tangential to X in x € X, if sequences {x*} C X and {t;} C R with t, | 0 exist such
that

. xf —x

x' — x and
Tk

for k — oco. The set of all these directions is called tangential cone of X in X € X and is
denoted by Tx(X), i.e.,

—d

k _
Tx(x) = {deRd - JxF} € X A, | 0 with x* —>XandX X —>d}.
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Next, we define a set of admissible points and a local minimum.

Definition A.1.2 (Set of admissible points). The set of admissible points X of the optimiza-
tion problem (Q)) is defined by

X:={xeR’: g(x)<0, s=1,2,...,m, and h,(x) =0, t = 1,2,..., p}.

Definition A.1.3 (Local minimum). The point x* € X is called a local minimum of the
optimization problem (Q)) if it holds

fx) < f(x) forallxe XNU
with U C R? being a neighborhood of X*.

Now, we introduce the definition of a linearized tangential cone.

Definition A.1.4 (Linearized tangential cone). Let x € X be an admissible point of the
optimization problem (Q)). Then, the set

Tin(x) ={d e R? : Vg, (x)Td <0, s € I(x), Vh,(x)Td=0,r=1,2,...,p}
is the linearized tangential cone of X in X. The set
Ix):={se{l,2,...,m}: gx) =0}
is the set of active inequality constraints in X.

The Lagrange function and the Lagrange multipliers are defined as follows.

Definition A.1.5 (Lagrange function / Lagrange multipliers). The Lagrange function of
the optimization problem under constraints (Q) is defined by

m p
LA p0) 1= f) + ) A + ) puh(x).
s=1 t=1

The parameters A = [A,], s = 1,2,...,m, and u = [u), t = 1,2,...,p, are called

Lagrange multipliers.
To define the Karush-Kuhn-Tucker condition and the Karush-Kuhn-Tucker point, we have
to assume that f, g, s =1,2,...,m,and h;, t = 1,2,..., p, are continuously differentiable.

Definition A.1.6 (Karush-Kuhn-Tucker condition / Karush-Kuhn-Tucker point). Consider
the optimization problem (Q).
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1. The conditions

ViL(x,A,u) =0
h(x)=0,t=1,2,...,p
A, 20, 5s=1,2,....m
g(x)<0, s=1,2,...,m
Agsx)=0, s=1,2,...,m

are called the Karush-Kuhn-Tucker conditions (KKT-conditions) of the optimization prob-
lem (Q) with

m P
ViL(x, A1) = V&) + ) 4,98, + ) 1, Vhi(x)
s=1 t=1

being the gradient of the Lagrange function L with respect to X.

2. Each vector (x*, A", u*) which fulfills the KKT-conditions is called Karush-Kuhn-Tucker
point (KKT-point) of the optimization problem (Q).

Definition A.1.7 (Abadie constraint qualification (Abadie CQ)). An admissible point x of
the optimization problem (Q)) fulfills the Abadie constraint qualification (Abadie CQ) if it
holds Tx(X) = T jin(X).

Definition A.1.8 (Mangasarian-Fromovitz constraint qualification (MFCQ)). Let the point
X be an admissible point of the optimization problem (Q)) and the set I(x) = {s €
{0,1,...,m} : g4(x) = 0} be the set of active inequality constraints. The vector X fulfills the

Mangasarian-Fromovitz constraint qualification (MFCQ) if the following conditions are

Sulfilled:

(a) The gradients
Vh(x), t=1,2,...,p

are linear independent.

(b) A vector d € RY exists with

Veg,(x)'d, s € I(x), and Vh,(x)'d =0, t=1,2,...,p.

The linear independence constraint qualification is defined as follows.

Definition A.1.9 (Linear independence constraint qualification (LICQ)). Let x € R? be an
admissible point of the optimization problem (Q) and I(x) = {s € {0, 1,...,m} : g\(x) =
0} the corresponding set of the active inequality constraints. Then, X fulfills the linear

independence constraint qualification (LICQ) if the gradients

Vg,(x), s € I(x), and VAh(x), t=1,2,...,p,
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are linear independent. This means that all elements of the set of all gradients
G=1{Vg,(x): s € X} U{Vh(x):1=12,..., p}
are linearly independent of each other.

Finally, we define a convex set and a convex function.

Definition A.1.10 (Convex). A set M C R? is called convex if it holds
ax+(1—-a)yeM

forall x,y e Mand a € [0, 1]. A function f : M — R is called convex if M is not empty

and convex and if it holds

flax+ 1 —a)y) < af(n) + 1 - a)f)

forall x,y € Mand a € [0, 1].

A.2 Theorems

With these preparations at hand, the following theorems can be formulated.

Theorem A.2.1 (KKT-conditions under Abadie CQ). Let x* € R be a local minimum of
the optimization problem (Q)) which fulfills the Abadie CQ. Then, Lagrange multipliers A*
and p* exist such that the triple (x*, 1*, u*) is a KKT-point of (Q).

The proof of the Theorem [A.2.T]and also of the following theorem can be found in [23].

Theorem A.2.2 (KKT-conditions under MFCQ). Let x* € R? be a local minimum of the
optimization problem (Q) which fulfills the MFCQ-condition. Then, Lagrange multipliers
A" and p* exist such that the triple (x*, ", p*) is a KKT-point of (Q).

Theorem A.2.3 (KKT-conditions under LICQ). Let x* € R? be a local minimum of the

optimization problem (Q) which fulfills the LICQ-condition. Then, there are unique vectors
of Lagrange multipliers A" and p* such that the triple (x*, 1*, ") is a KKT-point of (Q).

For the sake of completeness, we present the proof of this theorem as it can be found
in [23]].



A.2. THEOREMS 153

Proof. First, we show that the MFCQ-condition results from the LICQ-condition. There-
fore, let the LICQ-condition be fulfilled in x*. Then, the part (a) of the Definition[A.T.§]is
obviously fulfilled. In order to proof the existence of a vector d € RY with the properties
which are given in the part (b) of the Definition [A.1.8] we denote by I(x*) the set of active

inequality constraints and by m* the number of elements in /(x*).

Let A € R be a matrix which is built as follows: The first m* row vectors are the
gradients Vg (x*)T, s € I(x*), the following p row vectors are the gradients Vi,(x*)! with
t=1,2,..., p, and the remaining rows are filled up such that the matrix A is regular. This
is always possible due to the LICQ-condition.

Then, we define a vector b € R? as follows: The first m* entries of b are all equal to —1,
the following p components of b are all equal to 0, and the remaining components of b are
arbitrarily chosen.

Because the matrix A is regular, the linear system of equations Ad = b has a unique
solution d € R?. The definitions of A and b imply that the vector d fulfills all the properties
of the part (b) of the Definition [A.1.8] Therefore, we proved that the LICQ-condition
implies the validity of the MFCQ-condition.

Consequently, we can apply the Theorem Lagrange multipliers A* and g* exist such
that the triple (x*, 2", ") is a KKT-point of (Q).

The equation A* = 0 for s ¢ I(x*) follows from the KKT-condition. Thus, the uniqueness
of the Lagrange multipliers A} for s € I(x*) and y; forr = 1,2,..., p results from the

LICQ-condition and V,L(x*, A", u*) = 0. O
The KKT-conditions are necessary conditions. If the functions f and g,, s = 1,2,...,m,
are convex, and the functions k4, t = 1,2, ..., p, are linear, then the KKT-conditions are

also sufficient conditions for the optimality of x*.

Define
I(x") ={selx’): A, =0} and L(X'):={sel(x’):4; >0}

If we assume that f, g;, s = 1,2,...,m,and h;, t = 1,2,..., p, are twice continuously

differentiable, the following sufficient condition of second order can be formulated.

Theorem A.2.4 (Sufficient condition of second order). Let there exist a vector of Lagrange

multipliers A" and a vector of Lagrange multipliers u* for an admissible point X* € X such
that the KKT-conditions are fulfilled. Moreover, let be

d’'V2 L(x*, A, p)d >0 foralld € 7(x*, 2%, u*) \ {0}
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with

T, A1) =(deR?: Vg, (x)'d =0, s e L(x*), Vg,(x)d <0, s € I)(x),
Vh(x)'d=0,1=1,2,...,p.

Then, X* is the solution of the optimization problem (Q).

A proof of this theorem is again found in [23].



Appendix B

Extension of the analytical model

We consider the analytical model which was introduced in Section [5.2] This analytical
model describes the behavior of the convergence speed in the consolidation phase for
Problem 3 in d € N dimensions. Recall that we approximated the expectation value of the

fraction of good sample points a;,; by

d
E(ai1) = (;) (B.1)

r + E(ers1ler)

with

1 1
E(exsiler) = N+lo+ ek)N{(r + eV — AN

cf. Theorem[5.2.2
We want to extend the model described in equation (B.1]) such that it is applicable to the

exploration phase, too. In the exploration phase, first, the cutting algorithm is applied.
Then, the candidate hyperbox is modified by growing in all parameter directions to enable
the hyperbox to evolve towards beneficial directions with increasing box size. This is in
contrast to the consolidation phase where the candidate hyperbox is only modified by the

cutting algorithm.

Repeating the arguments of Section we conclude that the expectation value of the
fraction a;,; of good sample points in consideration of the exploration phase and the

consolidation phase is given as follows:

d

r . o

(—) , in the consolidation phase,
r+ E(ex1ler)

E(ak+1) ~ ¥

(B.2)

d
, 1n the exploration phase,
min(y + 7 + E(ernilen), 1)) *P P
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with

1 1
Hlewaled = 57 (r+ ek)N{(r + et =Nt

and y > 0 being a constant. Hence, the expectation value of the volume of the candidate

hyperbox ,u(Qg:;l)) in the (k + 1)-st iteration step is calculated by

d
(r + E(eps1 |ek)) , in the consolidation phase,
E(u(Q),, ) =

box

(B.3)
min(y + r + E(exs1lex), 1)) , in the exploration phase.

The fraction a;, of good sample points and the volume IJ(QZI;;U) of the candidate hyperbox
can be determined in the (k+1)-st iteration step by the equation and the equation (B.3)),
respectively. Successively, in Figure the volume (€2y,,) versus the fraction a of good
sample points calculated analytically are shown and compared with the numerical results.
For the diagrams, the exploration phase was repeated 100 times and the consolidation phase
was iterated 100 times. The rows correspond to different numbers of sample points per
iteration step, the columns correspond to different dimensions. The results of the algorithm
are plotted by blue dashed lines and the results of the analytical model are plotted by green
lines. In all diagrams except for N = 10, a stagnation in the exploration phase and the
convergence in the consolidation phase are observed.

Ford =2, N = 100 and N = 200, the results of the analytical model and the numerical
results agree reasonable well. For N = 1000, the agreement is very good. The same
behavior is observed for d = 3. For d = 10, the agreement is reasonable well for N = 200,
and the agreement is very good for N = 1000. For d = 50 and d = 100, the results of the
analytical model and the numerical results agree only well for N = 1000.

We conclude that, on the one hand, the agreement of the iteration process of the analytical
model and the numerical results increases if the number of sample points increases. On the

other hand, the agreement decreases if the number of dimensions increases.
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Figure B.1: Problem 3. d = 2and y = 0.1: (a) N = 10 (b) N = 100 (¢c) N = 200 (d)
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