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“A consciência da inconsciência da vida é o mais antigo imposto à inteligência. Há

inteligências inconscientes – brilhos do espírito, correntes do entendimento, mistérios e

filosofias – que têm o mesmo automatismo que os reflexos corpóreos, que a gestão que o

fígado e os rins fazem de suas secreções.”

“The consciousness of life’s unconsciousness is the oldest tax levied on the intelligence.

There are unconscious forms of intelligence – flashes of wit, waves of understanding,

mysteries and philosophies – that are like bodily reflexes, that operate as automatically as

the liver or kidneys handle their secretions.”

– Fernando Pessoa, Livro do Desassossego
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Synopsis

Chapter 1. Artificial metalloenzymes In this Chapter, the concept and approaches fol-

lowed in the design and optimisation of artificial metalloenzymes are presented. An overview

on the art of creating artificial metalloenzymes is provided, with a particular focus on the

biomolecular scaffolds and tools to optimise artificial metalloenzymes regarding the produc-

tion of the host protein.

Chapter 2. New strategies for the purification of streptavidin The time-consuming

production process of the host protein, streptavidin, is a bottleneck to high-throughput screen-

ing, and limits the application of directed evolution to artificial metalloenzymes. In this

Chapter, the critical issue of sensitivity of the catalysts to cell-based poisons is assessed, and

novel strategies to purify the protein in sufficient quantity and quality are presented.

Chapter 3. New platform for the expression of streptavidin Based on the advantages

of Pichia pastoris expression system reported in literature, the primary objective of this study

was to improve the expression levels of streptavidin through Pichia pastoris system relative

to Escherichia coli, and subsequent purification steps. The high level of functional protein

secreted would be suitable to perform high-throughput screening directly in the supernatant

with no further steps of purification.

Chapter 4. New scaffold for the creation of an artificial metalloenzyme In this

Chapter, the know-how on biotin-streptavidin technology was transferred to a new biomolec-

ular scaffold, human carbonic anhydrase II. Applicable force field parameters amenable to

molecular dynamics simulations of hCAII · inhibitor interactions were experimentally val-

idated. X-ray crystal structure analyses of the artificial metalloenzyme provided insights

on the coordination structures and non-covalent interactions between the metal moiety and

protein scaffold. Isotopically labelled proteins were expressed for NMR studies.

Chapter 5. Summary & outlook In this last Chapter, achievements are summarised,

and overall conclusions are drawn. Furthermore, lines of research are suggested.

ix
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Chapter 1

Artificial metalloenzymes

We must not forget that when radium was discovered, no one knew that it

would prove useful in hospitals. The work was one of pure science.

And this is a proof that scientific work must not be considered from the

point-of-view of the direct usefulness of it. It must be done for itself, for the

beauty of science, and then there is always the chance that a scientific discovery

may become like the radium: a benefit for humanity.

Marie Skłodowska-Curie

1.1 Concept and design of artificial metalloenzymes

Production of enantiomerically pure (enantiopure) compounds is a major issue in organic

chemistry in general, but also in pharmaceutical, flavour, and agrochemical industries, in

particular. Although, in an achiral environment, pure enantiomers have identical physical and

chemical properties (e.g. density, boiling point, and chemical reactivity) to their corresponding

mirror images, they are different chemical compounds. [1] Just like a left-handed person cannot

use a right-handed baseball glove, one enantiomer may not fit in the binding pocket of an

enzyme, where the other will. Thus, within biological systems, one enantiomer may often

exhibit different pharmacological properties than the other enantiomer, [2,3] since the molecules

with which they interact are also optically active. [4] Dobutamine, for example, belongs to this

group. Dobutamine is a chiral drug with enantiomers being agonists at different receptors

(Scheme 1.1). Whilst the (-)-isomer 1 has α1-blocking agonist activity, the (+)-isomer 2 is a

β1-adrenergic agonist. [5,6]

Scheme 1.1. (±)-Dobutamine enantiomers. (a) The (+)-isomer 2, an β1-adrenergic agonist. (b) The
(-)-isomer 1, an α1-blocking agonist.
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2 Chapter 1. Artificial metalloenzymes

There are many ways to afford enantiopure compounds, and enantioselective catalysis – homo-

geneous and enzymatic – proved to be the most efficient way. In biocatalysis, the activity and

(enantio)selectivity are due to the so-called “second coordination sphere”, which is the term

used to define subtle combinations of secondary interactions (hydrogen bonding, hydrophobic

interactions) provided by the protein. [6] Whereas in metal-catalysed enantioselective catalysis,

the activity and selectivity are almost exclusively dictated by the “first coordination sphere”

provided by the chiral ligand. [7–9]

Though their mode of action may be different, chemical catalysts and biocatalysts are on many

aspects complementary: range of reactions and substrates, operating conditions or enantiose-

lectivity. Furthermore, advantages (respectively disadvantages) of homogeneous catalysis are

disadvantages (respectively advantages) in enzymatic catalysis. [10] For example, biocatalysts

have a limited substrate scope due to the lock-and-key specificity, [11,12] and usually lead to

a single enantiomer. Nothwithstanding, they tend to be extremely selective and perform a

wide range of reactions in aqueous conditions, with high turnover numbers. In a single step,

biocatalysts can carry out transformations that might take two or more steps in a chemical

process, and they can even effect reactions that cannot be done by chemical means at all.

In comparison, traditional transition metal catalysts have a broad substrate scope, and both

enantiomers can be accessed by homogeneous catalysis, as the optical antipodes of the chiral

ligand are readily accessible. However, turnover numbers (TONs) are usually lower for metal

catalysts than for enzymes, and chemical catalysts are often used in organic solvents. [13] Con-

sidering the overall advantages and disadvantages of both systems, merging certain beneficial

aspects of bio- and homogeneous catalysis seemed to be of interest, and one of the most

promising approach.

The general concept of “artificial metalloenzymes”, in which a catalytically active transition

metal complex is embedded into a host biomolecular scaffold (typically a protein [14,15] or

DNA [16,17]), was originally introduced several decades ago. In the infancy period of the field

of asymmetric catalysis, Wilson & Whitesides devised the generation of an artificial enzyme

that relied on the incorporation of a metal-containing fragment into a host protein, thus cre-

ating a new supramolecular catalytic system. [18,19] After years of neglect, the development of

hybrid catalysts that combines the biological concepts for selective molecular recognition with

those of transition metal catalysis found a new renaissance, when significant efforts were made

to bridge the gap between homogeneous catalysis and biocatalysis. [6,20] These efforts resulted

in a remarkably versatile strategy that explores and combines the relative complementarities

of both worlds: the efficiency, robustness and wide scope of reactions of synthetic catalysts,

with the high selectivity under mild conditions of enzymes. [10,21] Therefore, the introduction

of a catalytic metal moiety, which ensures activity, in a chiral shell provided by the host

biomolecule, is expected to create transition metal complexes with a well-defined second co-

ordination sphere that display enzyme-like activities and selectivities. An attractive feature of
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these hybrid catalysts is that their performance can be improved by “chemo-genetic” optimi-

sation, [22] i.e. by independently modify the homogeneous catalyst by chemical optimisation,

and the biological scaffold by directed evolution or rational design (Section 1.4.1). [23,24]

The incentives for the creation of active and selective artificial metalloenzymes are both

practical and theoretical, as it holds key lessons for catalytic reactions mechanism and catalyst

design in general.

In summary, in protein-based asymmetric catalysis, the chirality of the protein is used to

induce enantioselectivity in a metal-catalysed reaction, by non-covalent binding of an achiral

ligand to the protein. Hence, the catalytically active organometallic centre is brought into

close proximity to the biomolecule binding pocket, which provides the chiral second coordina-

tion sphere and directs the catalysed reaction toward one of the enantiomers of the product,

thus resulting in an enantiomeric excess (Figure 1.1). This concept has been demonstrated

successfully in a plethora of classical asymmetric reactions, such as hydrolysis, [25,26] hydro-

genation, [19,23,27–38] transfer hydrogenation, [15,39,40] allylic alkylation, [41] sulphoxidation, [42]

epoxidation, [43–45] dihydroxylation, [46] Diels-Alder reaction, [23,47–50] transamination, [51] and

C-H activation. [52]

Biomolecular ligand environment (selectivity)

Transition-metal complex (catalytic activity)

Substrate interactions (e.g. specific binding, orientation)

Transition-metal complex interactions (e.g. transition-state stabilisation)

Prochiral substrate

Chiral substrate

Figure 1.1. Concept of artificial metalloenzymes. Authorised reprint from John Wiley and Sons. [20]

The design of enantioselective artificial metalloenzymes is based on three fundamental pa-

rameters:

i. The transition metal catalyst;

ii. The biomolecular scaffold;

iii. The anchoring strategy.

The following sections describe these parameters in more detail.

1.1.1 Transition metal catalysts

The principal challenge in this approach is, without doubt, the development of selective cata-

lysts that convert relevant substrates into desired products, with high (enantio)selectivity. The
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choice of the transition metal catalyst is mainly driven by the reaction under consideration.

The metal, its ligands (which perturb the electronic and steric properties of the metal centre),

coordination number and geometries are all relevant to catalysis. [53] For efficient asymmetric

catalysis, the transition metal catalyst should fulfil the following requirements: (i) be orthog-

onal to the biomolecular scaffold, thus inert to the chemical functionalities presented by the

biomolecule, [6,20] (ii) be compatible with the biomolecular scaffold, (iii) be tolerant to wa-

ter, as the use of artificial metalloenzymes implies working in aqueous solutions, [54] and (iv)

ideally, it should be inactive in its free form and active when embedded into the biomolecu-

lar host. [6] The reaction conditions affect the reactivity of the transition metal catalyst, and

therefore these must be cautiously selected and optimised.

1.1.2 Types of biomolecular scaffolds

In many cases, the biomolecular scaffold not only induces selectivity in the reaction, but

also affects the rate of the reaction; the kinetic effect can be either negative or positive. In

some cases, significant rate accelerations have been observed [46,52,55,56] whereas, in other cases,

when the catalyst resides in the protein shell, [16,27,57] the reaction is slower. Often the event

is substrate-dependent, and hampered by substrate-binding preferences of the enzyme active

site or by structural compatibility with certain activated complexes only. [58] Therefore, the

choice of biomolecular scaffolds is limited due to (i) the chemical properties of the scaffold,

such as pH and temperature stability, overall charge, and tolerance to organic solvents, [6]

(ii) the size of the binding pocket, which has to be sufficiently large to accommodate both the

transition metal catalyst and the substrates, [54] (iii) the catalytic chemistry envisaged. For

example, a DNA scaffold is susceptible to undergo oxidative DNA strand scission in a cat-

alytic oxidation [59,60] whilst this reaction is extensively explored with protein-based artificial

metalloenzymes.

Additionally, artificial metalloenzymes can be based on a scaffold that comprises (i) an existing

active site or binding pocket (i.e. proteins), which can be reengineered, or (ii) an active site

de novo created (i.e. nucleotides), which expands greatly the number of scaffolds that can be

used.

To date, proteins have been the most successful scaffold to achieve enantioselective catal-

ysis. Avidin (Av), [19,32] streptavidin (Sav), [34] serum albumin (SA), [44,61,62] apo-myoglobin

(apo-Mb), [37,38,63] papain, [64–66] tHisf, [14] photoactive yellow protein (PYP), [67,68] and car-

bonic anhydrase (CA) [43,54,69] are examples of protein scaffolds that have been used with

considerable success. Using an existing active site or binding pocket represents an attractive

approach because, after the initial design, the second coordination sphere can be in principle

reengineered to optimise the performance of the catalyst (genetic optimisation). The versa-

tility of these protein-based hybrid catalysts is illustrated by the artificial imine reductase
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Scheme 1.2. Artificial imine reductase based on the biotin-avidin technology. (a) [Cp*Ir(Biot-p-L)Cl]
4 pre-catalyst; (b) X-ray structure of an (R)-selective artificial ATH. The alanine residues at position 112
are highlighted in red, and the lysine residues at position 121, in blue; (c) The reaction conditions for the
production of salsolidine 3; (d) Proposed second coordination sphere mechanism, involving the protonation
via K121 residue. Authorised reprint from the Royal Society of Chemistry. [21]
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developed by Ward and co-workers. A three-legged piano stool complex, bearing an achiral

aminosulphonamide ligand (Biot-p-L) tethered to a biotin-anchor 4, was combined with strep-

tavidin (Sav) for the asymmetric transfer hydrogenation (ATH) of imines (Scheme 1.2). This

protein, which has an exceptionally strong affinity for biotin, contains a very large but shal-

low binding pocket that can accommodate both the catalyst and substrate. Chemo-genetic

optimisation of the system allowed the identification of two active and selective ATHs for

imine reduction, [Cp*Ir(Biot-p-L)Cl] ⊂ S112x (x = A or K). Introduction of a single point

mutation at position S112 allowed to access both enantiomers of salsolidine 3 in 96% ee (R)

with [Cp*Ir-(Biot-p-L)Cl] ⊂ S112A and 78 % ee (S ) with [Cp*Ir(Biot-p-L)Cl] ⊂ S112K,

respectively. [40]

Although, for catalytic purposes, proteins are primarily favoured by Nature, oligonucleotides

offer an attractive alternative to polypeptides as scaffolds for the incorporation of a catalyti-

cally active metal complex. A key example of this strategy is represented by the DNA-based

artificial metalloenzyme introduced by Roelfes and Feringa, for the syn hydration of α,β-

unsaturated ketones to yield enantioenriched 1,3-hydroxyketones (Scheme 1.3), a reaction

that has no equivalent in conventional homogeneous catalysis. Roelfes and co-workers de-

veloped a copper complex, [Cu(diamine)]2+ 5 Lewis acid tethered to an intercalating agent

(9-aminoacridine moiety), non-covalently bound to double-stranded DNA (ds-DNA). The cat-
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alytic performance was optimised by variation of both the achiral ligand and the macromolec-

ular structure.

The most selective catalyst was achieved with the sequence d(CAAAAATTTTTG)2 and

d(GCGCTATAGCGC)2 , and yielded the syn hydration product 6 in up to 82% ee R. [70]

Scheme 1.3. A DNA-based artificial metalloenzyme for the syn hydration of enones. Authorised reprint
from the Royal Society of Chemistry. [21,70]

N N

OMe

O

N

N

+ H2O

O

N

N

OH

Cu2+

(R)-
82% ee

H
N

N

MeO

5

6

This approach confirmed that nucleic acids have the ability to form precise binding pockets

for the specific recognition of substrates and cofactors, and to discriminate enantiomers of

target molecules and bind them with high enantioselectivity. [6]

The success in artificial metalloenzymes design relies mainly on the choice of the biomolecular

scaffold, as it not only determines the type of reaction that can be implemented, but also

influences the anchoring strategy.

1.1.3 Anchoring strategies

Three distinct methods concur to the design of hybrid catalysts, depending on whether the

metal complex is incorporated into the chiral microenvironment provided by the biomolecular

scaffold by (i) dative anchoring, i.e. modification of native metal cofactors, [44,71] (ii) covalent

anchoring to accessible reactive amino acid residues, typically cysteine or serine, [18,72] and

(iii) supramolecular anchoring, i.e. conjugation of metal ligands to native substrates, [19,34,73]

(Figure 1.2). A fourth anchoring strategy, dual anchoring, can be achieved by combination of

two of the methods above described. [74]

The aforementioned examples (Section 1.1.2) of artificial metalloenzymes based on the bi-

otin/streptavidin interaction and DNA-based asymmetric catalysis involve supramolecular

anchoring.
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(a) (b) (c)

Figure 1.2. Representation of the three anchoring strategies: (a) Dative anchoring; (b) Covalent anchoring;
and (c) Supramolecular anchoring. “M” denotes the catalytically active transition metal. The chemically
synthesised first coordination sphere if highlighted in red, and the biomolecular scaffold in grey.

To unveil the influence of the anchoring of the organometallic moiety in the positioning of the

metal cofactor and steric control of the substrate entrance will help to design better functional

hybrid catalysts, with predicted catalytic activity and selectivity. [75]

1.2 Catalytic scope

Countless reviews and book chapters covering the field of artificial metalloenzymes can be

found in literature. [6,20,21,76] This chapter section focuses on key examples for two reactions

catalysed by traditional transition metal catalysts, and ultimately by artificial metalloen-

zymes.

1.2.1 Asymmetric transfer hydrogenation of imines

Enantiopure amines are privileged compounds due to their application in pharmaceutical,

agrochemical, food and fine chemical industries as e.g. synthetic intermediates in chemi-

cal syntheses. [77] The asymmetric transfer hydrogenation (ATH) for reduction reactions has

emerged as a powerful and efficient route to access such compounds. ATH is an efficacious

strategy to reduce ketones or imines by a hydrogen donor other than hydrogen gas, with the

aid of homogeneous transition metal catalysts. [78–80]

The past two decades have witnessed the development of some of the most successful and

general catalysts for the asymmetric transfer hydrogenation. Until the 1990s, enantioselectiv-

ity and conversion of the reported catalysts (e.g. Wilkinson’s catalyst, [Rh(PPh3)3Cl]) [81–83]

were, in general, low. Remarkable advancements in ATH emerged with Shvo’s diruthenium

catalyst 7 [84] and Noyori’s ruthenium(II)-based catalyst ([RuCl(p-cymene)[(S,S )-TsDPEN]

8), Scheme 1.4. [85]
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Scheme 1.4. Shvo 7 and Noyori 8 complexes used for the transfer hydrogenation reaction.
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Noyori’s catalysts, RuII catalysts bearing monotosylated 1,2-diamines or amino alcohols, were

successfully applied in the asymmetric hydrogenation of a wide range of imines, affording enan-

tioselectivities up to 98%. [85] Since then, efforts have been devoted in the last decade toward

the development of catalytic systems for ATH of ketones and imines. [86] Recent progress in

the field has led to the discovery of related ligands and catalysts able to provide high efficiency

(activity and enantioselectivity, in some cases up to 99% ee) with low catalyst loadings, in the

asymmetric hydrogenation of imines. The main catalytic systems encountered for the hydro-

genation of cyclic imines are based on an arene or tetramethylcyclopentadienyl group (Cp)

-metal complex with a chiral bidentate ligand (monotosylated 1,2-diamine or amino-alcohols)

and a halide ligand. [87,88] Ruthenium is the most studied metal, but catalytic systems origi-

nally designed for transfer hydrogenation including iridium or rhodium [89] were also applied

in the reduction of cyclic imines. Alcohols (e.g. isopropanol) and the mixture of formic acid

and triethylamine (T-F) have been the most popular solvents as they also act as hydrogen

sources. [90–92] Upon the increasing demand for efficient and environment-friendly syntheses,

organometallic catalysis in aqueous media has been extensively studied and developed. Sev-

eral groups have hitherto reported the ATH of ketones in aqueous formic acid/sodium formate,

with water-soluble complexes. [93] Furthermore, these studies on catalytic systems for the re-

duction of cyclic imines led to consider tetrahydroisoquinoline-based scaffolds as benchmark

substrates for the implementation of new reactions. The synthesis of salsolidine [94] 3 was

considered to be a model substrate (Scheme 1.5).

Scheme 1.5. Asymmetric transfer hydrogenation of cyclic imines: preparation of salsolidine 3.
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During the course of this thesis, a new highly active artificial metalloenzyme, [Cp*Ir(Biot-

p-L)Cl ⊂ streptavidin was developed for the ATH of cyclic imines. After chemo-genetic

optimisation, up to 96% ee (R) with [Cp*Ir-(Biot-p-L)Cl] ⊂ S112A and 78% ee (S ) with

[Cp*Ir(Biot-p-L)Cl] ⊂ S112K were obtained for the reduction of a precursor of salsolidine. [40]

1.2.2 Asymmetric reductive amination of α-keto acids

Optically active pure amino acids play an important role as intermediates in the pharma-

ceutical industry and agrochemistry, both of each which require a high degree of purity and

large quantities of the compound(s). [95,96] In a worldwide market predicted to hit US $12.8

billions by 2017, [97] the synthesis of α-amino acids 10 has attracted a lot of attention in re-

cent years. [98] Several synthetic routes have been reported in literature for the synthesis of

enantiomerically pure amino acids from α-keto acids 11, some of which involve multiple steps

or use costly or hazardous reagents. [99–101] No methodology consensus has yet emerged for the

asymmetric synthesis of all non- and proteinogenic amino acids. [96] For example, the synthesis

of l-phenylalanine 12 can be achieved from the biotransformation of (E )-cinnamic acid 13,

with the enzyme phenylalanine ammonia lyase as catalyst (Scheme 1.6). [102] However, on an

industrial scale, l-phenylalanine 12 is obtained via an economical fermentation process, with

phenylalanine over-producers. [103]

Scheme 1.6. Lyase reaction for the production of l-phenylalanine 12.
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Asymmetric reductive amination represent a straightforward approach for accessing non-

proteinogenic (in particular) α-amino acids from the corresponding α-keto carboxylic acids,

in enantiomerically pure form, [96,104–106] using chemo-catalysts as well as enzymes as catalyst

components. The first non-enzymatic highly chemoselective synthesis of α-amino acids by

reductive amination of α-keto acids, using HCOONH4 in water, was reported by Fukuzumi

et al. [107] By employing an acid-stable mononuclear iridium hydride complex, all major types

of α-amino acids were synthesised, in pH-controlled reactions (Scheme 1.7).

Scheme 1.7. Synthesis of α-amino acids by reductive amination of α-keto acids 11 with ammonia in water.
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The breakthrough of this approach was the use of ammonium and formate as nitrogen and

hydride sources, respectively, to produce α-amino acids in water.

1.3 Biological scope

The results of reactions catalysed by artificial metalloenzymes have proven that asymmetric

catalysis can be achieved by selecting the proper protein as host. [32,34] Thus, protein scaffolds

should be stable, both over a wide pH range and at high temperature. In addition, crystal

structures of the biomolecule are crucial for genetic optimisation.

1.3.1 Streptavidin

Streptavidin (Sav) is the bacterial counterpart of the biotin-binding protein, avidin. Sav

is a homotetrameric protein, produced extracellularly by the bacterium Streptomyces avi-

dinii. Its extremely high affinity to biotin and its analogs (K a ∼ 1013 M−1) [108] is one of

the strongest non-covalent interactions found in biological systems. The biological role of

(strept)avidin appears to be that of a biotin scavenger, inhibiting bacterial proliferation. The

biotin-streptavidin system has been commonly described as the molecular version of velcro,

and it is widely applied in life science research, as well as in bio- and nanotechnology. [109–111]

Structure

Although structurally and functionally comparable to avidin, streptavidin (Sav, MW [Da]

16,425, pI 6.2, 159 amino acids) is a non-glycosylated tetrameric protein with eight stranded

β-barrels, which fold to give an antiparallel β-barrel tertiary structure (Figure 1.3.a).

The biotin-binding site is located at one end of each β-barrel, and is formed by inner amino

acids of the barrel and a tryptophan residue from the neighbouring subunit. [112] Ergo, strepta-

vidin homotetramer acts as a dimer of dimers. [113] The tryptophan from the adjacent monomer

(Trp120) act as a hydrophobic lid, and is involved in inter-monomeric contacts that stabilise

the tetrameric protein in the bound state. [114] The biotin-binding pocket is located at the

centre of each subunit in the tetrameric protein, at ∼ 9 Å below the protein surface, and is

partially occupied by five water molecules in the absence of biotin, which are displaced upon

biotin binding. [115]

The hydrogen bonding network (formed between the ureido oxygen and the hydrophilic

residues Asn23, Ser27 and Tyr43, and between the ureido nitrogen and Ser45 and Asp128),

which along with the hydrophobic compartment created by aromatic amino acids (Trp79,

Trp92, and Trp108, and Trp120 from the adjacent monomer, Figure 1.3.b) and a flexible

binding loop (L3,4) give rise to tight biotin anchoring. [116,117]
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(a) (b)

Figure 1.3. Ribbon diagram of (a) The binding pocket of streptavidin. Each monomer is represented in
red or grey, and each dimer is formed by a pair of both coloured monomers (red/grey = dimer); the biotin
molecule is shown as sticks, in two opposite monomers; (b) The hydrophobic interactions with biotin. The
residues Trp79, Trp92 and Trp108 of the monomer · biotin bound (in red) are represented in grey sticks, and
the residue Trp120 from the adjacent monomer is represented in blue stick, (PDB code: 2QCB).

Anchoring strategy

In the fledging period of the field of asymmetric catalysis, Whitesides & Wilson devised an in-

novative supramolecular catalytic system that took advantage of the very strong non-covalent

interaction between avidin and biotin. The strength of the avidin-biotin interaction ensured

quantitative binding of a biotin functionalised with a phosphine-based rhodium catalyst into

the chiral biomolecular environment (supramolecular anchoring). Whitesides reported the

asymmetric hydrogenation of an alkene, N-acetamidoacrylate, with catalytic amounts of the

artificial metalloenzyme, that yielded 41% ee for (S )-N-acetamidoalanine, with full conver-

sion. [19] However this concept seemed to have been forgotten for almost twenty years until, in

1999, Chan and co-workers revived it again by linking a chiral Pyrphos-Rh(I) to biotin for the

hydrogenation of itaconic acid, and achieved moderate enantioselectivity for the preparation

of methylsuccinic acids. [25] Yet, the real breakthrough in the field of artificial metalloenzymes

was delivered by Ward and co-workers, in 2003, when they reported on the generation of

an artificial metalloenzyme based on the biotinylated rhodium-diphosphine complexes 15 in

streptavidin as host protein, rather than the original host avidin (Scheme 1.8). A chemo-

genetic approach allowed the optimisation of the enantioselectivity for the hydrogenation of

acetamidoacrylic acid 16 (up to 96% ee in favour of (R)-acetamidoalanine in Sav S112G,

17). [32,34] This seminal discovery opened the field of artificial metalloenzymes, and has led to

the development of new hybrid catalysts based on the biotin-streptavidin system.
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Scheme 1.8. Optimisation of Wilson & Whitesides approach, using a streptavidin adduct of 15 and site-
specific mutagenesis.
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In summary, the biotin-streptavidin system is successful, for the following reasons: (i) the

strong biotin-streptavidin affinity (K a ∼ 1013 M−1) [108,118] allows unambiguous positioning

of the organometallic moiety into the protein scaffold, and subsequent improvement of the

catalytic performances; [109] (ii) the biotin affinity is not dramatically affected by the derivati-

sation of the valeric chain of biotin, by either introduction of linkers or modulation of the

chelators; [119,120] (iii) in the presence of biotin, streptavidin is exceptionally stable at extreme

pH (> 1.5), high temperatures (> 90 ◦C), high concentrations of organic solvents (> 50%

ethanol), and in the presence of surfactants (sodium dodecyl sulphate, SDS); [55,114] (iv) the

flexibility to modulate the catalyst reactivity by manipulation of the binding site of the pro-

tein; (v) the rapid estimation of free-biotin binding sites by titration of the protein with

biotin-4-fluorescein; [121] and (vi) Sav is easy to over-express in E. coli (about 200 mg per litre

of culture) and to purify by affinity chromatography. [114,122]

1.3.2 Human carbonic anhydrase II

Carbonic anhydrases (CAs, carbonate hydro-lyase, EC 4.2.1.1) are ancient metalloenzymes [123]

that are present all over the phylogenetic tree, with five distinct evolutionarily families: α-,

β-, γ-, δ- and ε-carbonic anhydrase isoforms. [124,125] The first enzyme was identified, in 1933,

in red blood cells of cows by Meldrum and Roughton. [126] Since then, CAs isozymes have

been found to be abundant in all mammalian tissues (α-class), plants (β-class), algae and

bacteria (γ-, δ- and ε-classes). [124] Although α-CA genes are also found in many plants, algae

and bacteria (e.g. in the bacterium Neisseria sicca, NsCA), [127] they predominate among

mammalians, and are the only CA gene family expressed by vertebrates. The α-CA class

is the best studied group, although recent reviews indicate a rapid expansion of knowledge

(structural information, mechanism, and inhibitors) for other CA families. [128–131]

In mammals, 16 α-CA isoforms were described so far, [132] and from these, seven genetically

distinct enzymes have been identified in humans. The presence of carbonic anhydrase isozymes

in so many different tissues, organs and cells makes CAs of particular pharmaceutical interest
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for the development of new therapeutic agents. [133] The activation or inhibition of CAs can

be used in the treatment of several diseases, such as obesity, osteoporosis, glaucoma and

cancer. [131,134,135] Although different in their sequences, all human carbonic anhydrases are

catalytically active, and act as efficient catalysts for the reversible hydration of carbon dioxide

to bicarbonate (Equation 1.1):

CO
2
+H

2
O ⇋ HCO−

3
+H+ (1.1)

They are among the fastest enzymes known, with a maximum turnover number, k cat, for the

CO2 hydration reaction that exceeds 1 x 10−6 s−1 (reviewed by [136]). [137] Therefore, they play

a crucial role in a myriad of physiological processes as varied as respiration and transport,

photosynthesis, ionic, acid-base and fluid balance, calcification, metabolism and cell growth,

among others. [136]

Structure

Human carbonic anhydrase II (hCAII, MW [Da] 29,227, pI 7.4, 259 amino acids) is a zinc-

containing enzyme, with a predominantly β-sheet structure that encloses a large solvent se-

questered hydrophilic cavity (approximately 55 x 44 x 39 Å, Figure 1.4). [138,139] The active

site of hCAII is located in this deep, cone-shaped cleft that reaches almost to the centre of

the enzyme. [139] Near the bottom of the cavity lies a Zn II ion tetrahedrally coordinated by

three first-shell amino acid ligands (His94, His96 and His119, and referred as Zn II(His)
3
) and

a single solvent molecule, called the “zinc-water”, that ionises to a hydroxide ion at physiolog-

ical pH (Figure 1.4.a). [140–142] All three “direct ligands” are preordered by a hydrogen bond

network. This zinc distorted coordination polyhedron is conserved among CA isozymes. [143]

Scheme 1.9. Direct and indirect ligands of the active site zinc ion. In grey: first-shell ligands, and in red:
second-shell ligands. These ligands govern the electrostatic environment of the Zn II ion, and modulate the
chemistry of the Zn II

−OH – . [144]
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In the native enzyme, the zinc ligands are fully saturated by hydrogen bond (H-bond) net-

works, forming a second-shell of “indirect” ligands (Scheme 1.9). This conserved active site hy-

drogen bond network enhances the nucleophilicity of the zinc-water bound molecule, and orien-

tates the substrate in a favourable location for the nucleophilic attack (Scheme 1.9). [133,145,146]

On one side of the active site of the protein lines predominantly hydrophobic residues and on

the other, hydrophilic residues (Figure 1.4.b). Without a ligand bound, the pocket is filled

by a network of water molecules, which provides direct contact to the solvent surrounding of

the enzyme.

(a) (b)

Figure 1.4. Ribbon diagram of (a) The active site of human carbonic anhydrase II. The active site zinc is
shown as orange space-filled sphere. It is coordinated by three histidine residues (His94, His96, and His119,
coloured in red) and by a water molecule (Wat263, coloured in blue). (b) The amphiphilic binding pocket
of human carbonic anhydrase II. The zinc ion is shown as orange space-filled sphere; hydrophobic residues
(Ile91, Val121, Phe131, Val135, Leu141, Val143, Leu198, Pro202, and Leu204) in blue, and hydrophilic residues
(Tyr7, Asn62, His64, Asn67, Gln92, His94, His96, Glu106, Glu117, His119, Thr199, and Thr200) in red (PDB
code: 1G54).

Anchoring strategy

Human carbonic anhydrase II has a narrow range of transition metals that yield an active

form of the isozyme. [147–149] Metal-substituted hCAII can be obtained by removal of the

active site metal by chelators, and replacement with different divalent transition metal ions

(e.g. Mn II, Fe II, Co II, Cu II, Ni II or Mo II). [150] The coordination geometry of the surrogates

in the protein plays an important catalytic role. Studies on the catalytic activity of metal-

substituted wild-type hCAII for the hydration of carbon dioxide indicated that only metals

able to easily adopt a tetrahedral coordination sphere, Zn II and Co II, provided significant

catalytic enhancement. [151] Co II-bound protein retained approximately 50% of the activity

compared to the native enzyme, whilst the other metal ions derivatives (Mn II, Fe II, Cu II, and

Ni II) had no or negligible activity. [147–149,152] This approach was more recently investigated
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by Kazlauskas et al. to modify the catalytic activity of hCAII. The substitution of Zn II

(Figure 1.5.a) by Mn II (Figure 1.5.b) originated a novel peroxidase able to enantioselectively

epoxidise olefins conjugated to an aromatic or aliphatic carbon. [43,69,153]

(a) (b)

Figure 1.5. Ribbon diagram of (a) Native hCAII with Zn II as active metal (PDB code: 1G54) (b) Modified
hCAII with Mn II as active metal (PDB code: 1RZD).

Inhibitors

Human carbonic anhydrase II is a target for therapeutic drugs [133,154] such as sulphonamide

derivatives, [155,156] and inorganic and organic anions. [131] In the case of sulphonamides, an

ionised sulphonamide nitrogen displaces the zinc-bound hydroxide to form a stable enzyme-

inhibitor complex with submicromolar to nanomolar affinity (Scheme 1.10). [134,157–164] Thus,

sulphonamide inhibitors can be extremely useful in the development of new metal-inhibitor

assemblies.

Scheme 1.10. Tetrahedral adducts are generated by substitution of the non-protein ligand by unsubstituted
sulphonamides and their bio-isosteres bound to the Zn II ion of the enzyme. [133]
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Biomolecular scaffold

Human carbonic anhydrase II is particularly well-suited for engineering a new artificial met-

alloenzyme, for the following reasons: (i) hCAII is a monomeric protein with a deep binding

pocket in which the organometallic complex can be completely embedded; (ii) the flexibility to

manipulate its active site via rational design, [140,145] thus modulating the catalyst reactivity;

(iii) the compatibility of human carbonic anhydrase II inhibitors with soft transition metals,

the possibility to derivate them, and their low dissociation constant; [119,165] (iv) hCAII is

easy to over-express in E. coli and to purify; [145] (v) its promiscuous esterase activity allows

monitoring the rate of p-nitrophenyl acetate hydrolysis, [166] and consequent binding profiles;

(vi) x-ray determination of hCAII structure is well-established, [167] and NMR studies may

elucidate the structure of the protein · inhibitor complex in solution. [168–170]

1.4 Tools for optimisation

The creation of artificial metalloenzymes has proven to be extremely versatile. The concept

combines the catalytic power of a transition metal complex with the chiral architecture of

a biomolecular host, and offers a strategy to improve or evolve independently one and the

other. This strategy has been coined by Distefano and Häring as the “chemo-genetic approach”

(Scheme 1.11). [22]

Scheme 1.11. Achiral ligands and protein scaffolds as source of novel hybrid catalysts. [64]
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The chemo-genetic approach is defined as the optimisation of (i) the chemical catalyst by

rational design, based on the structural information of the hybrid catalyst as a whole; [31,35] and

(ii) the biopolymer scaffold by rational design or in combination with evolutionary approaches,

e.g. designed and directed evolution. [9,76,171] These combinatorial approaches would benefit

from a combination with high-throughput screening.

In this subsection, the various strategies that can be followed for the design and optimisation

of the host protein are presented.

1.4.1 Directed evolution

Directed evolution or step-wise evolution is a strategy to rapidly evolve enzymes that ex-

hibit new or improved properties for a specific application, mimicking Nature’s evolution in

a shorter time scale. [172] A pre-requisite of this method is the capacity to generate large pro-

tein libraries by random mutagenesis in combination with high-throughput screening (HTS)

to identify the best variants. [173] In directed evolution, explicit understanding of either the

structure or the mechanism of action of the enzyme is not required. [174] Genetic diversity is

achieved by performing iterative cycles of (i) random mutagenesis (e.g. by error-prone PCR);

(ii) expression of the library of variants; and (iii) functional screening of the library and iden-

tification of variants with novel or improved properties. [171,175] The successful outcome of a

directed evolution experiment depends on the creation of a library of diverse variants. More

rounds of randomisation and selection follow the screening and selection of the most active

or selective mutants, until hybrid catalysts with improved properties are obtained. [23,42]

Through directed evolution approach, positions remote from the binding site are also probed.

On more than one occasion, it has been shown that subtle changes distanced from the bind-

ing pocket had a dramatic effect on the catalyst activity. [176] However, this approach present

some drawbacks and challenges. As the library size increases, the project becomes increas-

ingly dependent on high-throughput techniques, thus reliable screening methodologies should

be developed and validated. Otherwise, the quality and fitness of the protein library, i.e.

the number of hits and degree of hybrid catalyst improvement, can be a disappointment. [171]

Hence, highly efficient and chemo-selective anchoring of the organometallic complexes are re-

quired to avoid intermediate purification steps. [76] To overcome some of the aforementioned

pitfalls, Reetz and co-workers introduced the combinatorial active-site saturation test (CAST).

This focused library technique was directed at the residues directly associated with the bind-

ing site. Reetz et al. demonstrated the potential of the CAST methodology by fine-tuning

the enantioselectivity of an artificial metalloenzyme based on a biotinylated rhodium diphos-

phine complex embedded into streptavidin. After three iterative cycles of mutagenesis, the

enantioselectivity was increased from 23 to 65%. [177]
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1.4.2 Designed evolution

Whereas in directed evolution, variations of a gene are created randomly, in rational design,

mutations are inserted rationally built upon structural informations of the specific biomolec-

ular host. Therefore, modification of the protein scaffold is mainly based on the understand-

ing of the structural and mechanistic consequences of one specific change or set of changes.

The current knowledge of structure-function relationships in proteins is still insufficient to

make rational design a robust approach. [178] However, computational design is increasingly

applied in biocatalysis to obtain guidelines to direct mutagenesis efforts. [179] Designed evolu-

tion [180] combines rational design and combinatorial screening, which leads to the evolution

of the protein. [181] Guided by structural information of the hybrid metalloenzyme or the apo-

scaffold, critical residues are identified and then subjected to saturation mutagenesis, either

consecutively or simultaneously. The generated small-sized library is then combined with

the organometallic moiety, and screened for the desired catalytic activity. Ward et al. have

successfully applied this approach to the design of e.g. artificial hydrogenases, with improved

enantioselectivities (96% ee). [40,171] If intuition (rational design) and computational method-

ology can be applied to design desired (artificial) enzymes for more complex reactions, directed

evolution can be used to fine-tune activity. [182]

1.4.3 Screening techniques

In order to identify the best recombinant protein, a screening or selection procedure is re-

quired, which involves the development of a high-throughput assay that is sensitive to the

properties targeted in the directed evolution process, and allows the identification of positive

hits. Colorimetric or fluorometric high-throughput screening (HTS) techniques link enzyme

activity to an easily detectable chemical response. They can be qualitative, if for example,

the assay is colony based and the signal only delivers a “yes or no” answer. A successful

colorimetric high-throughput colony-based solid phase assay has been developed by Turner

and co-workers. The method was based on a coupled horseradish peroxide (HRP) assay, using

3,3’-diaminobenzidine (DAB) as dye on the solid phase, and pyrogallol red (PGR) as dye in

the liquid phase. [183]

An optimum HTS approach, for artificial metalloenzymes based on biotin-streptavidin tech-

nology, can be described as a three-step process, with a feedback loop: (i) fast preparation of

organometallic moieties and biomolecular scaffolds, with systematically varied properties; (ii)

testing of the catalytic properties of the hybrid catalysts; and (iii) processing and evaluation

of the experimental data, for modification and improvements of the next generation of hybrid

metalloenzymes. The loop is repeated until certain criteria are fulfilled, and positive hits

are scaled-up for detailed evaluation and characterisation. [30] This approach is well-suited for
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the design and production of small libraries of hybrid catalysts, as both chemical and ge-

netic diversity can be exploited. In a larger scale, however, it is not applicable, since each

variant is examined separately for the product formation using analytical methods such as

HPLC, which is considered as low-throughput technique. The time-consuming sample prepa-

ration and analytical process is presently the only alternative, since a colorimetric assay is

not available.

1.4.4 Expression systems

The choice of the expression system and an early assessment of process scalability issues have

become the prime concern to minimise risk factors associated with protein production. To

date, in laboratory-scale, microbial and yeast cell expression systems are the most common

systems being utilised. Both of these systems have their own advantages and disadvantages

for the production of functional streptavidin.

Escherichia coli

In many cases of heterologous protein expression, the best choice of host system are bacteria,

because of their rapid growth rate, low demands on growth medium, and ease of genetic mod-

ification. [184] An optimised protocol to produce soluble and functional T7-tag mature strep-

tavidin in Escherichia coli has been developed by Ward et al. The use of BL21(DE)3pLysS

cell strain, optimisation of critical parameters such as glucose concentration, pH and time of

induction, and a single denaturing-renaturing step and affinity chromatography reproducibly

yielded 230 mg/L of soluble protein. [122] One disadvantage of bacterial cells in the production

of streptavidin is the laborious and time-consuming process of purification, which seriously

limits the applicability of directed evolution and high-throughput screening (HTS) of artificial

metalloenzymes.

In the following subsections, an overview of the techniques developed to optimise the produc-

tion process of streptavidin, namely the purification processes, are presented.

Crude protein The first step in the purification of a cytoplasmic recombinant protein ex-

pressed in E. coli is the lysis of the cell to release the target protein. The widely and routinely

used cell lysis methods involve mechanical/physical or biological/chemical techniques. The

recovery and yields from these techniques are often variable. The physical lysis of bacteria can

be achieved by sonication, homogenisation (French press and Manton-Gaulin homogeniser),

or freeze/thaw of the cells. Homogenisation and sonication generate heat and/or foaming,

which are detrimental to many proteins. The freeze/thaw technique involves flash-freezing
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the cell resuspension in a dry ice/ethanol or liquid nitrogen bath, and then thawing it at

room temperature or 37 ◦C. This method can be lengthy since many cycles of freeze/thaw are

necessary for efficient lysis, but it is effective for the release of recombinant proteins expressed

in the cytoplasm of E. coli. Enzymatic lysis is achieved by digestion of the peptidoglycan

layer of the bacterial cell wall upon addition of lysozyme or the use of a specific E. coli strain

containing the T7 lysozyme gene, e.g. BL21(DE)3pLysS or Rosetta(DE)3pLysS, which pro-

vides additional stability to the target gene but also allows the lysis of the cells by quick

freeze/thaw treatment. Osmotic lysis by addition of specifically developed detergent-based

solutions, composed of particular types and concentrations of detergents, buffers, salts and

reducing agents, is usually efficient in both lysing and solubilising the cells. However, most cell

lysis or cellular disruption methods cause the release of biological molecules, including nucleic

acids (DNA and RNA), organelles, native proteins and lipids from inside the bacterial cells.

These contaminants have to be removed, as they can cause viscosity problems or interfere

with subsequent purification steps or screening tests. DNA can be digested by addition of

DNase I to the cell lysate or removed by precipitation with polyethyleneimine or protamine

sulphate followed by centrifugation. The remaining unbroken cells, lipids, and particulate

matter can be removed from the protein solution by an ultracentrifugation step.

Although efforts have been deployed to implement high-throughput screening of protein-based

artificial metalloenzyme libraries using crude protein extracts, such efforts have been ham-

pered by the presence of potential catalyst inhibitors, e.g. reduced glutathione, GSH. [76]

Protein precipitation Until the beginning of the twentieth century, non-chromatographic

methods (e.g. precipitation, crystallisation and partitioning) were the only available tech-

niques for protein purification. Progress in chromatography revolutionised the approach to

purify proteins, and nowadays, those early techniques are widely used, either separately

or in combination with chromatography methods (e.g. ion exchange, affinity, hydropho-

bic interaction and reversed phase, immobilised metal affinity, and size exclusion), to en-

sure the quality, quantity and purity of the target protein. Selective precipitation of pro-

teins can be used to recover the protein of interest from a crude extract. [185] The solu-

bility of the protein of interest can be reduced by ionic precipitation (addition of ammo-

nium sulphate), [186,187] pH (trichloroacetic acid (TCA) or trichloroacetic acid/sodium deoxy-

cholate (TCA-DOC)), [188–190] and organic solvents (cold ethanol (Cohn’s method), acetone or

dimethoxyethane (DME)). [191,192] Protein precipitation by organic solvents is mainly due to

charge repulsion, whilst the mechanism of salting out is ascribed to the influence of the salt

on the water structure and surface tension. [193] The pH exert its effect through the decrease

of the protein solubility when at its isoelectric point (pI). [194]

The first step for the purification of a cytoplasmic protein by precipitation is the preparation

of a crude lysate, which contains a complex mixture of proteins, macromolecules, cofactors
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and nutrients from the cell cytoplasm and culture medium. The crude protein extract is then

obtained by removal of cellular debris, from the lysis of the host cells, by centrifugation and

recovery of the supernatant. The second step involves addition of a precipitation agent, and

recovery of the precipitated protein by centrifugation.

Small-scale purification A more recent approach, implemented by structural genomics

initiatives and commonly used in pharmaceutical development, focuses on small-scale high-

throughput protocols for cloning, stable expression, and purification of proteins. On a small-

scale, the parallel processing typically involves the use of multi-well plates.

Figure 1.6. Processing flowchart small-scale purification of protein. The recombinant protein can be ex-
pressed in deep well plates, shake flasks, or in a fermentor.

It is a typical engineering solution that can be applied at any stage (up- or downstream) of

the process. Concerning high-throughput purification, biotech companies have facilitated the

process by commercialising ready-to-use filter spin plates pre-packed with affinity resins, that

can be applied in a manual or automated platform. This method is commonly performed on

E. coli cultures expressing the target protein(s) grown in 96 deep-well plates, generating e.g. a

library of variants for mutational analysis. Cells can be lysed directly in their growth medium,

and applied to a filter plate affinity resin, thus eliminating the centrifugation and pipetting

steps. However, this system can also be used with larger cultures, following the standard

cell lysis and soluble fraction separation steps. The crude extracts are pipetted into the pre-

packed wells of the plate, and the wash and elution steps applied either by centrifugation or

vacuum (Scheme 2.2).

Neutralisation of reduced glutathione Crude proteins preparations from bacterial cell

cytosols may be laden with reduced glutathione (GSH, Scheme 1.12). This tripeptide (l-γ-

glutamyl-l-cysteinyl-glycine) is one of the most abundant and ubiquitous non-protein thiol

in prokaryotic and eukaryotic cells. In bacteria, it can accumulate to concentrations exceed-

ing 10 mM. [195–197] In addition to its key role in the regulation of cellular metabolism by

maintaining the proper oxidation state of protein thiols, glutathione also acts as a scavenger

of toxic compounds (hydroxyl radicals, chlorine compounds) and stresses (oxidative and os-

motic). [198–200]
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Scheme 1.12. Structure of reduced glutathione.
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One way to minimise the deleterious interactions between the GSH present in the crude

protein extract and the organometallic catalyst is to oxidise or neutralise the glutathione.

This can be achieved using (i) chemical agents such as 1,4-benzoquinone, 1,1’-azobis(N,N -

dimethylformamide) (aka diamide), and azoester, which oxidise GSH to glutathione disul-

phide, GSSH (the oxidised form of GSH) [201–206] or (ii) electrophilic agents such as SN2

electrophiles (aliphatic, allylic and benzylic halides, e.g. diethylmaleimide, N -ethylmaleimide

(NEM), and bromobenzene), [207,208] α,β-unsaturated carbonyl derivatives and vinyl sulphones

(acting as Michael acceptors), and α-halogenated carbonyls, [209–211] which form conjugates

with GSH. However, these substances can be toxic and can have nonspecific effects on proteins

and other components of the cells. [212]

Advantages & disadvantages Most recombinant proteins can be cloned and expressed

in E. coli, as it is a well-documented expression system for its advantages of (i) low cost; (ii)

ease of genetic manipulation; (iii) rapid growth rate; and (iv) high protein yield. However,

E. coli expression system has some limitations, as some target proteins (i) are insoluble

and aggregate in inclusion bodies; (ii) require post-translational modifications in order to be

completely functional, and the bacterium cells do not perform such modifications; and (iii) are

toxic to E. coli cells (e.g. streptavidin), preventing to reach high-cell densities, thus impairing

its yield in production processes.

In the context of artificial metalloenzymes, the secretion of the desired protein to either the cell

periplasm or culture medium would be a step further toward in vivo catalysis with artificial

metalloenzymes, by providing a high quality sample, free of unwanted foreign proteins and/or

contaminants, albeit the overall yield would still be a bottleneck to high-throughput screening.

Pichia pastoris

To address the issues aforementioned, Pichia pastoris expression system was evaluated as

expression platform for the production of streptavidin. P. pastoris is one of the known genera

of methylotrophic yeast, which metabolises methanol as a sole carbon and energy source.
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Methanol utilisation pathway The success of methylotrophic yeasts in the production

of recombinant proteins relies mainly on their strong and tight regulated promoters of the

methanol utilisation pathway (MUT pathway). Since the initial reactions of the MUT pathway

are compartmentalised within peroxisomes, these subcellular organelles are strongly induced

upon methanol as sole carbon source, and proliferate massively after induction, accounting

for up to 80% of the cytoplasmic space. [213] The peroxisomal localisation of the three key

enzymes for methanol metabolism is essential to allow the methylotrophic yeast cells to grow

on methanol. [214]

In the first step of the methanol utilisation pathway, methanol is oxidised to formaldehyde

and hydrogen peroxide by the enzyme alcohol oxidase (AOX, EC 1.1.3.13), and the hydrogen

peroxide is broken down to water and oxygen by the enzyme catalase (CAT, EC 1.11.1.6).

Both enzymes are sequestered in peroxisomes, due to the hydrogen peroxide toxicity (see

Figure 3.1). Formaldehyde is either oxidised by two subsequent dehydrogenase reactions

(dissimilation pathway) or assimilated in the cell metabolism by condensation with xylulose

5-phosphate (Xu5P). The latter reaction is catalysed by dihydroxyacetone synthase (DAS,

EC 2.2.1.3), which converts Xu5P and formaldehyde into the C3-compounds dihydroxyace-

tone (DHA) and glyceraldehyde 3-phosphate (GAP). These subsequent compounds are fur-

ther metabolised in the cytosol. [215–218] The AOX protein is only expressed during methanol

metabolism, but then at very high levels.

Scheme 1.13. Methanol utilisation pathway of Pichia pastoris. 1: Alcohol oxidase (AOX); 2: Formalde-
hyde dehydrogenase; 3: Formate dehydrogenase; 4: Catalase (CAT); 5: Dihydroxyacetone synthase (DAS);
6: Dihydroxyacetone kinase; 7: Triosephosphate isomerase; 8: Fructose 1,6-bisphosphate aldolase; and 9:
Fructose-1,6-bisphosphatase. BDH: Butanediol dehydrogenase; GSH: Glutathione; DHA: Dihydroxyacetone.
GAP: Glyceraldehyde-3-phosphate; DHAP: Dihydroxyacetone phosphate; FBP: Fructose-1,6-bisphosphate;
F6P: Fructose-6-phosphate; Xu5P: Xylulose-5-phosphate; and Pi: Phosphate.
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Metabolism Although several promoters, either constitutive or inducible, are available for

Pichia pastoris, the two forms of alcohol oxidases (AOX1 and AOX2) has been the favoured

choice in most studies and applications. Alcohol oxidase I promoter (PAOX1) being the pre-

dominantly one expressed in Pichia cell. Its extraordinary strength and tight regulation by

carbon sources, and availability in a commercial kit are the main reasons for its intensive use.

Being tightly repressed by carbon sources such as glucose, glycerol or ethanol, transcription

from the AOX1 gene is highly induced upon shifting the cells to methanol as sole carbon

source, whilst upon carbon starvation very low derepression of transcription occurs. [218,219]

Pichia pastoris phenotypes Three utilising-methanol phenotypes of P. pastoris (Mut+,

MutS and Mut−) are currently available for the production of heterologous proteins. [220,221]

The most used strain is the methanol utilisation plus phenotype, Mut+ that grows on methanol

at the wild-type rate. The expression cassette is inserted into HIS4 (histidinol dehydrogenase)

locus, and both AOX1 and AOX2 genes are intact and active. The other two types of host

strains, the methanol utilisation slow (MutS) and minus (Mut−) phenotypes have respectively

deletions in one or both AOX genes. In MutS , the expression cassette is inserted within the

AOX1 locus, thus the AOX1 gene is knocked out and the cells must rely on the alternative

and weaker AOX2 gene, which slows down the methanol-uptake rate; in Mut−, both AOX1

and AOX2 genes are deleted, thus lowering the growth rate. [222] In general, Mut+ strains,

used in this study, are characterised by a higher growth rate and productivity when compared

to MutS and Mut− strains, although recent reports have shown that a strain with MutS phe-

notype was superior over a strain with Mut+ phenotype, in both productivity and efficiency

when expressing recombinant horseradish peroxidase C1A. [223] To this date, for any given re-

combinant protein, it remains unclear which strain would perform better, and the information

available in literature is conflicting in this respect. [224]

Construct Upstream of the multiple cloning site (MCS), the vector contains the 5’AOX1

promoter sequence followed by the secretion signal sequence, α-mating factor (α-MF), from

Saccharomyces cerevisiae. By inserting the mutagenic vector in between the 5’AOX1 promotor

region and the AOX1 locus in P. pastoris genome, the gene encoding the desired protein is

transcribed at the same time as AOX1 induction by methanol, and as a fusion product

to the secretion signal. This secretion signal directs the expressed protein of interest out

of the cells, and into the culture media, which greatly facilitates downstream processing,

namely purification. Following the MCS is the native AOX1 transcription termination and

polyadenylation signal (TT). The vector also contains the Sh ble gene from Streptoalloteichus

hindustanus, which confers resistance to the antibiotic Zeocin useful in both bacteria and yeast

[Invitrogen, Pichia Expression Kit - Version M]. Zeocin resistance has been correlated with

integrated vector copy number, where selection on increased antibiotic levels often indicates
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the presence of multi-copy integrants. [225]

Several procedures for molecular genetic manipulation of Pichia pastoris are similar to those

of Saccharomyces cerevisiae, one of the most widely studied eukaryotic organism. For exam-

ple, transformation by electroporation of a linearised expression plasmid, which stimulates

homologous recombination between the chromosomal sequence and the plasmid, leads to the

integration of the vector into the genome at a specific locus. This procedure is simplified by

the significant set of Pichia strains and vectors commercially available.

Post-translational modifications Pichia pastoris, unlike bacterial expression systems,

performs a variety of post-translational modifications typically associated with higher eukary-

otes, including disulphide bond formation, processing of signal sequences, correct folding, and

O- and N -glycosylation. Such modifications may critically influence the function of an ex-

pressed protein. Secreted proteins are likely to be glycosylated. The most common and best

studied is N -linked glycosylation, where oligosaccharides are uniquely added to asparagine

found in Asn-X-Ser/Thr recognition sequences in proteins, where X can be any amino acid

except proline. Another type of glycosylation is O-linked glycosylation, which involves adding

O-oligosaccharide chains, composed of solely mannose residues, to the hydroxyl group of ser-

ine and threonine of the secreted protein. [226,227] Hyperglycosylation leads to heterogeneity of

a recombinant protein product in both carbohydrate composition and molecular weight, and

is often undesirable since it may complicate for example the purification of the protein. [228]

Biotin requirements Biotin plays an essential role as cofactor for biotin-dependent car-

boxylases, which are involved in carboxylation and decarboxylation reactions of important

metabolic pathways e.g. fatty acid biosynthesis, amino acid metabolism and gluconeogen-

esis. [229] Animals rely on their dietary uptake of biotin, whereas most microorganisms and

plants have the ability to synthesise de novo the vitamin. In contrast to the vast majority of

microorganisms, some yeast species exhibit biotin auxotrophy, i.e. are unable to synthesise

biotin themselves. One example is Pichia pastoris, which requires addition of high dosage of

biotin during cultivation (4 x 104 g/L). [230] Jungo et al. has extensively studied the biotin

requirements for the production of recombinant avidin, the egg-white counterpart of strepta-

vidin, in Pichia pastoris. Substitution of biotin by two unrelated compounds, aspartic acid

and oleic acid, did not completely replace biotin, as wash-out occurred after six liquid resi-

dence times and overall protein productivity was lowered. However, low amounts of biotin

(20 µg/L) did have a positive effect on the stable chemostat cultures, as biotin-free avidin

was obtained. [231]

Proteolytic degradation In general, recombinant proteins expressed extracellularly in

Pichia pastoris can potentially be proteolytically degraded in the culture medium by pro-
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teases (cell-bound, intracellular protease from lysed cells and/or extracellular proteases). Due

to proteolysis, several problems can be foreseen: (i) reduction or loss of biological activity

by truncation of the product; (ii) low product yield due to degradation of the product; and

(iii) contamination of the product by degradation intermediates in downstream processing

due to their physicochemical similarity and/or affinity characteristics. [232] Several strategies

based on the modification at the cultivation, strains (protease-deficient strains, e.g. SMD

1163 and SMD 1168), and recombinant protein level can be employed to minimise proteolysis

in Pichia. [233,234] For example, in an attempt to minimise the proteolysis of an urokinase-type

plasminogen activator, 0.01% (v/v) Triton X-100 was added to a feeding medium, which par-

tially reduced the proteolysis and increased the secretion level. [235] P. pastoris was incubated

at temperatures as low as 15 ◦C, leading to reduced protease levels and greatly enhanced

periods of scFv production, [236] although incubation temperatures between 23 and 30 ◦C are

recommended by Invitrogen. Maintaining the culture at low pH (3.0) during the methanol

induction phase has been reported to be effective in protecting the product proteolysis of an

insulin-like growth factor (IGF-1). [237]

Advantages & disadvantages The Pichia system presents several advantages when com-

pared to other expression systems. Pichia pastoris (i) is easy to genetically manipulate and

is genetically stable; (ii) can grow on solely methanol as carbon and energy source, thus

the fermentation processes are simple to scale-up without loss of yield and are inexpensive;

(iii) reaches high cell densities (up to 130 g/L dry cell weight, dcw) [238] on a simple basal

salts medium; (iv) is capable of post-translation modifications (disulphide bonds, N - or O-

glycosylations and proteolytic processing); and (v) produces high yield of proteins, either

intra- or extracellularly with, in the case of secretion, high recombinant protein levels into

an almost protein-free medium. Many examples of yields in the grams per litre range have

been reported for several target proteins, including full-length antibodies. [239–243] However,

heterologous secretion is not guaranteed to work as it is more demanding than intracellu-

lar expression. Like any other system, Pichia is no panacea and has drawbacks. Although

many remain unpublished, cases of failure or significantly low expression of recombinant pro-

teins continue to accumulate. [244–246] The most common issue encountered is the proteolysis

of secreted proteins, though a number of ways to overcome this impediment are now avail-

able. [247,248] Another common problem is related to truncated mRNA from yeast transcrip-

tional terminators, which result in some genes not giving any detectable protein. [249,250] The

main disadvantages of Pichia are (i) Pichia cells have to be freshly prepared before use; (ii)

the tedious and labour intensive screening process of different clones; (iii) the variation in

expression yields between those clones; and (iv) the long induction phase, usually of several

days (up to 12 days).
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1.5 Scope of this thesis

Artificial metalloenzymes can be defined as the fusion of chemo- and enzymatic catalysts by

insertion of non-specific achiral catalytic moieties into the chiral environment of a protein

cavity, thereby broadening the scope of both fields. Presently, the field of artificial metal-

loenzymes is at an exciting stage, with interesting features already demonstrated [251] and a

growing reaction repertoire, but has not yet reached maturity. [40,52] To exploit the full po-

tential of catalytic reactions using hybrid catalysts is far from trivial and as the ability to

screen for novel properties remains limited. Albeit computational simulations are advanced,

directed/designed evolution of such selective catalysts remains challenging, hence their de-

velopment relies to a great extent on trial-and-error. [13] Hitherto, screening and evaluation

of ligands for activity or of proteins for selectivity still remains an elaborate process, as all

library members have to be evaluated individually. High-throughput analysis to simultane-

ously evaluate large hybrid catalyst libraries within a short time-frame has therefore become

increasingly important.

The key focuses of this research were the development of (i) novel purification strategies to

simplify the challenge of producing functional protein (streptavidin), in sufficient quantity and

appropriate purity for high-throughput screening of organometallic moieties; (ii) a reiterative

approach to protein expression: re-design of streptavidin construct, moving to a more complex

expression system, Pichia pastoris, to increase the production of streptavidin and simplify the

purification process; and (iii) the design and synthesis of a novel biomolecular scaffold, human

carbonic anhydrase II, for the creation of a new artificial metalloenzyme.

This thesis addresses the issues and feasibility of purification and expression processes and,

highlights bottlenecks that arose using these technologies, key learning’s and where to go from

now.

Quoting Frances H. Arnold “it is apparent that many solutions exist for any given problem,

and there are often many paths that lead uphill, one step at a time.” [252]
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Chapter 2

New strategies for the purification of
streptavidin

We must have perseverance and above all,

confidence in ourselves. We must believe

that we are gifted for something.

Marie Skłodowska-Curie

Abstract

This Chapter reports on the attempts to develop a simple and straightforward technique to

produce functional and pure streptavidin for high-throughput screening (HTS) of organometal-

lic complexes. Three categories of protein precipitation techniques (organic solvent, acid and

salt), with and without a previous step of dialysis against a chaotropic agent (guanidinium-

chloride or urea), and small-scale affinity purification (SSP) in a 24-well plate format were

tested as fast-purification methods. The “neutralisation” of reduced glutathione (GSH) present

in crude extracts was also investigated. The potential of the methodologies developed was

tested on the asymmetric transfer hydrogenation of imines and/or on the reductive amination

of α-keto acids.

The pitfalls and practical issues surrounding high-throughput protein purification – in the

context of screening protein-based artificial metalloenzymes – rely on the practicability and

reproducibility of the method in parallel experiments, and on the final yield of the protein.

Albeit promising and time-saving, protein precipitation was found to be inadequate when

dealing with small amounts of protein, whereas small-scale purification was hindered by the

amounts and final concentrations of protein obtained, though one positive hit for the produc-

tion of (S )-phenylalanine was identified through this method.

The “neutralisation” of reduced glutathione by addition of a chemical agent, 1,1’-azobis(N,N -

dimethylformamide), holds great potential for high-throughput pre-screening of hybrid cat-

alysts, as it ultimately enabled catalysis on a scale that was no longer limited by sample

preparation. The whole purification process of streptavidin was shorten from 12 days to just

five.

43
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2.1 Introductory remarks

The basis of screening and selection methodologies for artificial metalloenzymes relies on

the linkage between the host protein and a catalytically active organometallic moiety, and

the reaction performed by this newly created artificial metalloenzyme. This system can be

optimised via a chemo-genetic approach, that is the design of the primary coordination sphere

(i.e. the ligands that directly coordinate to the metal ion) and of the second coordination

sphere (i.e. the amino acid residues around the ligand). [1–3] The latter plays an important

role, as it modifies the local environment of the achiral metal moiety by providing a chiral

environment around it, and induces enantioselectivity by interacting with the metal and/or the

prochiral substrate through weak interactions. [3–5] However, the number of variables at play

in the expression and purification of a single protein dwarf those involved in synthesising new

catalysts. To accelerate the screening process by constructing a large library of streptavidin

mutants requires the development of protocols to reduce or simplify the challenge of producing

protein in sufficient quantity and appropriate purity.

2.1.1 A long process: from the gene to the protein

Expressing and purifying proteins, especially in the work-horse host organism Escherichia

coli, remains a major bottleneck in high-throughput screening.

Scheme 2.1. Processing flowchart of streptavidin expression in E. coli. The genetic optimisation based on
VMD docking studies, the subsequent site-directed mutagenesis, and the expression of the protein are standard
procedures, which cannot be optimised time-wise. Depending on external factors (e.g. outsourced services:
time of delivery of primers and sequencing), these two processes can last at best between five to seven days.
The downstream processing can take up to 12 days to be completed. The time length of the whole process is
in average three to four weeks.
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Historically, the production (expression and purification) of functional streptavidin involved a

small number of selected variants, and a tedious and extremely time-consuming process, which

resulted in screening on a low-throughput mode, and on a protein-by-protein basis. A complete

rethinking of the production strategy was required to transform this process into a genuine

high-throughput screening. Hence, an arsenal of methods (protein precipitation, small-scale

purification, and neutralisation of reduced glutathione) was established to streamline steps in

the purification process, identified as one of the bottlenecks of the pipeline (Scheme 2.1).

2.1.2 Asymmetric transfer hydrogenation of imines

The reduction of cyclic imines by asymmetric transfer hydrogenation (ATH) was selected as

the model reaction to screen the potential of the three high-throughput purification methods

developed herein. A new generation of biotinylated complexes developed and synthesised

by Dr Jeremy Zimbron and Mr Marc Dürrenberger was used throughout this Chapter. The

new scaffold involved d6-transition metal (iridium and rhodium) piano stool complexes that

contained a pentamethylcyclopentadienyl moiety (Cp*) tethered to biotin for incorporation

into the biomolecular host, streptavidin. The resulting artificial metalloenzymes were tested

in the ATH of imines, using the catalytic conditions described by Ogo et al. and the precursor

of salsolidine 3, 1-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline, as substrate (Scheme 2.2). [6]

Scheme 2.2. Asymmetric transfer hydrogenation of imines for the production of salsolidine, 3.
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First generation of biotinylated complexes

The first generation of biotinylated complexes used for the asymmetric transfer hydrogenation

was based on the highly active and selective catalyst [η6-(arene)Ru(Biot-q-L)Cl] 19 developed

by Letondor et al. (Scheme 2.3). [7]

Scheme 2.3. Biotinylated complexes developed by Ward and co-workers for the asymmetric transfer hy-
drogenation of ketones 19 and imines 4. [7,8]

N

NH2

Ru ClNH
HN

HN

O
H

H

O
S
O O

S

η6-arene

19
S

NH
HN

HN

O

S
O

N

O

NH2

Ir

H
H

Cl

O

4



46 Chapter 2. New strategies for the purification of streptavidin

Second generation of biotinylated complexes

A second generation of biotinylated complexes with direct attachment of the biotin to the

arene cap and an ethylene spacer, [η5-Me4Cp-(CH2)2-N -Biot)MCl2]2 was developed by Dr

Jeremy Zimbron (Scheme 2.4), and were used as starting material for the synthesis of diverse

mononuclear biotinylated piano stool complexes bearing an additional bidentate ligand. To

place the metal in close proximity to histidines (either in position 112 or 121), the ethylene

spacer was used between the biotin anchor and the Cp*. [9] The bioconjugation of the dimers

with streptavidin mutants bearing a suitable histidine residue yielded dually anchored artificial

metalloenzymes. [9,10]

Scheme 2.4. Biotinylated dimeric rhodium 20 and iridium 21 complexes.
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Scheme 2.5. Anticipated biotinylated monomeric rhodium 22 complex embedded into S112H or K121H.
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Genetic optimisation

In silico docking experiments were performed by Dr Maurus Schmid on the structure of

streptavidin against the biotinylated complexes, 20 and 22 (Figure 2.1). This simulation was

a valid alternative to laborious and time-consuming large-scale mutagenesis, as it allowed the

identification of potential residues that may influence the binding of the catalyst but also the

type of spacer needed between the biotin anchor and the (Cp*)-M (M = Ir or Rh).
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(a) (b)

Figure 2.1. Docking simulation of the biotinylated monomeric rhodium (22) complex, embedded into
(a) S112H or (b) K121H (the histidine is provided by the adjacent Sav monomer of the homotetrameric
structure). Streptavidin is represented as solvent accessible surface (red: anionic-; blue: cationic-; white:
apolar-; and grey: polar residues). The side-chains of streptavidin at positions 112 and 121 are represented as
sticks. Pictures by MS. [9]

As a result of this study, double mutants based on S112H and K121H templates were designed,

expressed and “purified” using one of the methods aforementioned. Based on S112H template,

mutations at residues N49x (x = A, S, W, F, D, E, R, and C), K121x (x = A, W, F, D, E,

R, and C) and L124x (x = A) were introduced. Using K121H as template, a second round of

mutagenesis was performed on the residue S112x (x = A, W, F, D, E, R, and C).

2.1.3 Asymmetric reductive amination of α-keto acids

Based on the previous work reported by Fukuzumi et al. for the synthesis of α-amino acids

catalysed by bipyridine iridium complexes (Scheme 2.6), using HCOONH4 as an amine and

hydrogen source, [11] two artificial metalloenzymes were developed (i) by combination of func-

tionalised piano stool complexes associated with bidentate ligands or (ii) by hybrid catalysts

formed with complex 22 ⊂ S112H and 22 ⊂ K121H, for the synthesis of a natural α-amino

acid (phenylalanine 12). [10]

Scheme 2.6. Reductive amination of α-keto acids 11 for the synthesis of racemic α-amino acids 10.
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Substrate scope

The artificial metalloenzymes, 22 ⊂ Sav mutants, were tested on the enantioselective synthesis

of the α-amino acid, phenylalanine 12 (Scheme 2.7).

Scheme 2.7. Reductive amination of α-phenylalanine 12.
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Genetic optimisation

To gain structural insight and to fully exploit the catalytic potential of the complex 20,

in silico screening of the biomolecular scaffold (K121H mutant as a template) against the

organometallic moiety was carried out by Dr Maurus Schmid for a second round of genetic

optimisation. The leucine at position 110 was identified as a possible hit, as it lies in close

vicinity of the metal centre. Therefore, K121H-L110x mutants were expressed and purified

via small-scale purification (SSP).

Figure 2.2. Model of the biotinylated rhodium catalyst 22 embedded into the host protein, Sav K121H.
Residue leucine at position 110 is highlighted in red.
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2.1.4 Research project

One of the major bottlenecks of high-throughput screening of hybrid catalysts is the lack of

a simple, robust and fast system for protein purification. This was the impetus for improving

the production process of mutant proteins, and downstream screening efficiency of artificial

metalloenzymes in catalytic reactions. Three new experimental strategies were developed

and tested with two newly synthesised d6-transition metal (iridium and rhodium) piano stool

complexes, for the transfer hydrogenation of imines and/or the reductive amination of α-keto

acids.

2.2 Results & discussion

Driven by the need to effectively and efficiently screen large libraries of artificial metalloen-

zymes, new protocols to produce streptavidin were developed. The results presented herein

are a compilation of selected data obtained in collaboration with Dr Jeremy Zimbron and

Dr Yvonne Wilson.

2.2.1 Screening on crude protein extracts

Crude protein extracts are prepared by removal of cellular debris generated by cell lysis, and

contain a complex mixture of proteins from E. coli cells cytoplasm, and additional macro-

molecules such as cofactors and nutrients. Crude extract may be used for some applications

in biotechnology, however, if purity is an issue, subsequent purification of the protein is per-

formed. It has to be stressed that studies on screening organometallic moieties on crude

protein extracts, i.e. non-purified protein, or on proteins purified by other means than by

conventional affinity chromatography have been previously conducted in the research group

of Prof. Ward. [12–14] The first method developed to accelerate the optimisation process was

based on the extraction-immobilisation with biotin-sepharose to capture streptavidin from

crude cellular extracts. This straightforward protocol afforded > 92% ee for the enantiose-

lective hydrogenation of N -protected dehydroamino acids, and > 90% ee for the transfer hy-

drogenation of prochiral ketones. [12,13] The second method involved thermal treatment (with

and without a dialysis step) as a rapid purification method of crude streptavidin. This pro-

tocol was tested on the palladium catalysed asymmetric allylic alkylation, and > 70% ee was

obtained, although conversion was very low (< 5%). [14] In order to assess the degree of inhibi-

tion of the catalyst 4, [Cp*Ir(Biot-p-L)Cl], by contaminants present in crude protein extracts,

preliminary experiments were performed with the hybrid catalysts, 4 ⊂ Sav (wt, S112A and

S112K), for the asymmetric transfer hydrogenation of imines (Scheme 2.2).
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Table 2.1. Results for the production of salsolidine 3 using the biotinylated piano stool complex 4 ⊂ Sav
(wt, S112A or S112K).a

Entry Protein Description Conv.b [%] ee
b [%]

1 wild-type purified by affinity chromatography quant. 60 (R)
2 S112A purified by affinity chromatography 99 81 (R)
3 S112K purified by affinity chromatography 93 64 (S)
4 wild-type crude protein extract, dialysedd 20 40 (R)

5 S112A crude protein extract, dialysedd 15 46 (R)

6 S112K crude protein extract, dialysedd 10 rac.
7 pET11bc crude protein extract, dialysedd 17 rac.

a The reactions were carried out at RT for 24 h, using 1 mol% complex 4 (690 µM final
concentration) and 0.33 mol% tetrameric streptavidin at pH 7.25 (MOPS buffer, 2.9 M)
containing 3.65 M HCOONa. Total reaction volume: 200 µL.
b Determined by HPLC after extraction.
c pET11b: Emply plasmid.
d Crude protein extract, dialysed 1x against guanidinium-HCl, pH 1.5, 1x against 20 mM
Tris-HCl, pH 7.4, and 2x against deionised water (dH2O).

Having realised that the catalyst 4 was moderately active in dialysed crude protein extracts

(Table 2.1, entries 4 to 7, conv.≤ 20%), the degree of protein purity was optimised by precip-

itating the cell-free extracts.

2.2.2 Screening on proteins purified by precipitation

In order to achieve an acceptable level of purity for screening, a series of protein precipitation

techniques, preceded or not by dialysis, were tested (Figure 2.3).

Figure 2.3. Mind map of the protein purification techniques used to purify streptavidin from crude protein
extracts. The dialysis step consisted in a three-stage procedure: 24 h dialysis against guanidinium-HCl or urea,
followed by 24 h dialysis against Tris-HCl, and a final dialysis for 48 h against deionised water (dH2O). DME:
dimethoxyethane; TCA: trichloroacetic acid; and TCA-DOC: trichloroacetic acid + sodium deoxycholate.



2.2. Results & discussion 51

The viability and effectiveness of the methods were first assessed by SDS-PAGE analysis

(Figure 2.4). The salting-out precipitation was carried out with ammonium sulphate at con-

centrations between 10 and 90% of total saturated salt solution. Best results were obtained at

a concentration of 50%, as the protein was mainly in the precipitate, and none was detected

in the supernatant (data not shown). Although TCA (trichloroacetic acid) precipitation is

considered one of the most efficient protocol for the precipitation of proteins, recovery of

streptavidin was not achieved using this technique, nor the addition of the carrier deoxy-

cholate (DOC) improved the final yield (data not shown). [15,16] These purification techniques

were not pursued further, due to non-reproducibility of the method ((NH4)2SO4) or to low

recovery of the target protein (TCA and TCA-DOC). Precipitation by addition of organic

solvents (ethanol, acetone and DME) proved to be successful. Best results were achieved

when dialyses against guanidinium-HCl/Tris-HCl/dH2O forego the precipitation step, as seen

on Figure 2.4, lanes 7 to 9. The sample of lane 9 was partially loaded on the gel, as a jelly

precipitate was formed and could not be completely dissolved. Dialysis against urea (instead

of guanidinium-HCl) was also effective in removing contaminants (Figure 2.4, lanes 10 to 12),

when compared to the samples treated only by precipitation (Figure 2.4, lanes 4 to 6). Thus,

dialyses were effectual in removing small molecular weight species.

(a) (b)

Figure 2.4. SDS-PAGE of different techniques used to precipitate wild-type streptavidin. (a) B4F analysis.
(b) Coomassie Blue staining analysis. Lane 1: Sav purified by affinity chromatography; Lane 2: Empty lane;
Lane 3: Sav unpurified; Lane 4: Sav precipitated in ethanol; Lane 5: Sav precipitated in acetone; Lane 6:
Sav precipitated in DME; Lane 7: Sav dialysed in guanidinium-HCl and precipitated in ethanol; Lane 8:
Sav dialysed in guanidinium-HCl and precipitated in acetone; Lane 9: Sav dialysed in guanidinium-HCl and
precipitated in DME; Lane 10: Sav dialysed in urea and precipitated in ethanol; Lane 11: Sav dialysed in
urea and precipitated in acetone; Lane 12: Sav dialysed in urea and precipitated in DME.

The two methods (dialysis combined with precipitation, or precipitation only) were taken a

step further. Preliminary experiments were carried out to determine the catalytic activity

of 4 in the presence of proteins purified by precipitation (wild-type streptavidin and empty

plasmid) for the asymmetric transfer hydrogenation of imines (Scheme 2.2). The empty

plasmid (pET11b) does not express Sav but contains all native proteins from E. coli, thus it

was used as a negative control.
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Table 2.2. Results for the production of salsolidine 3 using the biotinylated piano stool complex 4 ⊂ wt
Sav or pET11b.a

Entry Protein Protein
concentration [µM]

Conditions Conv.b [%] ee
b [%]

1 pET11b 67d crude extract –e n.d.e

2 pET11b 67d dialysedc 17 rac.

3 pET11b 67d dialysedc , ethanol precipita-
tion

–e n.d.e

4 pET11b 67d dialysedc , acetone precipita-
tion

quant. rac.

5 pET11b 67d dialysedc , DME precipita-
tion

16 rac.

6 pET11b 67d ethanol precipitation –e n.d.e

7 pET11b 67d acetone precipitation –e n.d.e

8 pET11b 67d DME precipitation –e n.d.e

9 wild-type 191 crude extract –e n.d.e

10 wild-type 67 purified 58 51 (R)
11 wild-type 340 purified quant. 57 (R)
12 wild-type 178 dialysedc 20 40 (R)
13 wild-type 163 dialysedc , ethanol precipita-

tion
83 51 (R)

14 wild-type 20 dialysedc , acetone precipita-
tion

24 13 (R)

15 wild-type 39 dialysedc , DME precipita-
tion

31 18 (R)

16 wild-type 63 ethanol precipitation 16 rac.
17 wild-type 63 acetone precipitation –e n.d.e

18 wild-type 40 DME precipitation –e n.d.e

a The reaction were carried out at RT for 24 h, using 1 mol% complex 4 vs substrate (690 µM final metal
concentration, 69 mM substrate) and 0.33 mol% tetrameric streptavidin at pH 7.25 (MOPS buffer,
2.9 M) containing 3.65 M HCOONa. Total reaction volume: 200 µL.
b Determined by HPLC after extraction.
c Crude extract, dialysed 1x against guanidinium-HCl pH 1.5, 1x 20 mM Tris-HCl pH 7.4, and 2x
deionised water.
d The concentration of pET11b is approximative, as there is no method to quantify the proteins present
in E. coli cells.
e n.d. not determined – peaks were too small to determine conversion or ee.

The positive control (wt Sav purified by conventional affinity chromatography) was performed

at low and normal catalytic concentration (67 and 340 µM, Table 2.2: entries 10 and 11,

respectively) as it was anticipated that purification by precipitation would yield very low

amounts of target protein. Initial results with the empty plasmid were not promising (entries

1 to 8), as very low conversions were obtained for all samples, except for the dialysed/acetone

precipitated sample (entry 4). These results confirmed the sensitivity of the catalyst toward

macromolecules present in E. coli cells. However, [Cp*Ir(Biot-p-L)Cl] ⊂ wt Sav yielded

exceptional results (entries 9 to 18), even at low protein concentrations (20 to 178 µM). Indeed

and compared to the quantitative conversion and 57% ee (R) obtained with purified wt Sav at

690 µM [Cp*Ir(Biot-p-L)Cl] concentration, nearly identical results was obtained with wt Sav

purified by dialysis/ethanol precipitation (entry 13). This hybrid catalyst exhibited 51% ee
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(R) and 83% conversion at low catalyst concentrations (85 µM). Another promising method

was the dialysis/DME precipitation, which rendered 31% conv. and 18% ee (R) (entry 15) at

a concentration of catalyst as low as 20 µM.

Complex 4 was screened with S112x (x = A or K) to narrow down the four best techniques

to one (Table 2.3, entries 1 to 12).

Table 2.3. Selected results for the production of salsolidine 3 using the biotinylated piano stool complex
4 ⊂ Sav S112A or S112K.a

Entry Protein Protein
concentration [µM]

Conditions Conv.b [%] ee
b [%]

1 S112A 96 purified 78 64 (R)
2 S112A 69 dialysedc 20 48 (R)
3 S112A 23 dialysedc , ethanol precipita-

tion
48 67 (R)

4 S112A 39 dialysedc , DME precipita-
tion

51 55 (R)

5 S112A 80 ethanol precipitation 18 rac.

6 S112A 96 DME precipitation –d n.d.d

7 S112K 96 purified 40 44 (S)

8 S112K 79 dialysedc –d n.d.d

9 S112K 30 dialysedc , ethanol precipita-
tion

21 36 (S)

10 S112K 39 dialysedc , DME precipita-
tion

25 36 (S)

11 S112K 110 ethanol precipitation –d n.d.d

12 S112K 39 DME precipitation –d n.d.d

a The reaction were carried out at RT for 24 h, using 1 mol% complex 4 (690 µM final concentration)
and 0.33 mol% tetrameric streptavidin at pH 7.25 (MOPS buffer, 2.9 M) containing 3.65 M HCOONa.
Total reaction volume: 200 µL.
b Determined by HPLC after extraction.
c Crude extract, dialysed 1x against guanidinium-HCl, pH 1.5, 1x 20 mM Tris-HCl, pH 7.4, and 2x
deionised water.
d n.d. not determined – peaks were too small to determine conversion or ee.

Even at low protein concentration (≥ 30 µM), the correct enantiomer was obtained for both

mutants tested: (R) for S112A, and (S ) for S112K. From this screening, it was confirmed

that the techniques involving dialyses and precipitation with ethanol or DME were promising

methods (entries 3, 4, 9 and 10). The whole purification process was shortened from 12 days

down to five days. Both approaches yielded similar results: 67% ee (R) and 48% conversion

vs 55% ee (R) and 51% conversion for S112A (entries 3 and 4), and 36% ee (R) and 21%

conversion vs 36% ee (R) and 25% conversion for S112K purified by dialysis plus ethanol

or DME precipitation, respectively (entries 9 and 10). Consequently, these strategies were

performed on another system based on the catalyst 22 and Sav mutants, S112H and K121H

(Table 2.4).
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Table 2.4. Selected results for the production of salsolidine 3 using the biotinylated piano stool complex
22 ⊂ Sav S112H or K121H.a

Entry Protein Protein
concentration [µM]

Conditions Conv.b [%] ee
b [%]

1 S112H 442 purified quant. 38 (S)
2 S112H 240 dialysedc , ethanol precipita-

tion
30 37 (S)

3 S112H 238 dialysedc , DME precipita-
tion

24 34 (S)

4 S112H 148 ethanol precipitation –d n.d.d

5 S112H 151 DME precipitation –d n.d.d

6 K121H 469 purified 99 78 (R)
7 K121H 228 dialysedc , ethanol precipita-

tion
58 48 (R)

8 K121H 206 dialysedc , DME precipita-
tion

27 33 (R)

9 K121H 157 ethanol precipitation –d n.d.d

10 K121H 162 DME precipitation 16 rac.

a The reaction were carried out at 55 ◦C for 12 h, using 2 mol% complex 22 (680 µM final concentration,
34 mM substrate) and 0.66 mol% tetrameric streptavidin at pH 6.5 (MOPS buffer, 3.1 M) containing
3.88 M HCOONa. Total reaction volume: 200 µL.
b Determined by HPLC after extraction.
c Crude extract, dialysed 1x against guanidinium-HCl, pH 1.5, 1x 20 mM Tris-HCl, pH 7.4, and 2x
deionised water.
d n.d. not determined – peaks were too small to determine conversion or ee.

The use of simple precipitation, with ethanol or DME (without dialyses), was ruled out as

purification methods, since they consistently yielded no/low conversion and no enantiomeric

excess (entries 4, 5, 9 and 10). Again, no difference could be distinguished between the two

methods involving dialysis and precipitation (EtOH or DME) as both exhibited moderate

conversion and ee (entries 2, 3, 7 and 8) compared to the controls (entries 1 and 6), although

for these hybrid catalysts (20 ⊂ Sav S112H or K121H) higher concentrations of the host

protein were needed.

A library of 19 mutants (expressed in 50 mL scale) was screened using this approach. The

screening, however, did not yield any promising results (data not shown). Most likely due

to the very low amount of protein obtained (as a sum of low protein expression in small-

scale cultures and method of purification), conversions and enantioselectivities could not be

determined.

Albeit promising and time-saving, the purification of proteins by precipitation was found to

be inadequate for high-throughput screening. When dealing with small amounts of protein

(e.g. crude extracts from small-scale cultures), the recovery of the precipitated pellet was

painstaking and very labour-intensive. It would be (almost) impossible to perform this tech-

nique in a smaller scale, i.e. 24 or 96-well plate format. Furthermore, reproducibility of results

(protein concentration vs catalysis) was low, when working at low protein concentrations with

different systems. To implement high-throughput screening, the method of choice to produce
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the biomolecular host should be well developed and reliable to avoid false “positive/negative”

hits.

In another attempt to develop a steady method to purify the target protein in parallel, small-

scale affinity purification in a 24-well plate was implemented (Section 2.2.3).

2.2.3 Screening on proteins purified on a small-scale

Based on the automated high-throughput purification of hexahistidines-tagged proteins, a

24-well affinity chromatography module was created by packing 2-iminobiotin sepharose resin

(400 µL, wet volume) into each well of the plate. The purification procedure was optimised

relatively to (i) the volume of beads in each well (400 µL); (ii) the wash and elution buffers

(deionised water and formic acid, respectively); (iii) the number and volume of washing steps

(four times 1 mL of deionised water); and (iv) the number and volume of elution steps (pre-

elution: 150 µL of 100 mM formic acid, pH 2.34; elution: 250 µL of 200 mM formic acid, pH

2.11).

Based on docking studies, modifications of residues with close contacts with the metal centre

were introduced, assuming that those have more influence on catalysis that distant ones. A

library of 20 mutants was produced, by introducing a second mutation into the templates

S112H (K121x and N49x) or K121H (L110x and aviloop). The loop L3-4 in streptavidin

(Asn49 and Ser88) is three residues shorter compared to the analogous loop in avidin (Thr38,

Ala39, Thr40, Ser73, and Ser75), which is why Sav has a slightly lower affinity for biotin

compared with avidin. [17] Mutating the loop of Sav with the longer loop from avidin should,

in principle, result in higher binding affinity toward biotin.

Asymmetric transfer hydrogenation of imines

With the aim of testing this newly developed method, the library of genetically modified

proteins was produced via small-scale purification (SSP). The biotinylated piano stool complex

22 was incorporated into Sav mutants, and the resulting hybrid catalysts were screened for

activity and selectivity for the ATH of imines. Table 2.5 summarises the results using double

mutants of S112H and K121H. As controls, the single mutants S112H and K121H were purified

by conventional affinity chromatography (large scale) and via SSP, and were also tested on

the ATH of imines.

For the designed mutants, a second mutation introduced into the templates S112H (K121x

and N49x) or K121H (L110x and aviloop) inhibited the transfer hydrogenation catalysed by

the artificial metalloenzymes (entries 3 to 13, and 10 to 22, respectively). Overall, very low

conversions and enantioselectivities were obtained. However, even at low protein concentra-

tion, S112H bearing a second, potentially coordinating residue (glutamic acid and histidine)

at position 121 (entries 3 to 5) revealed a modest reaction yield (43% and 22% conversion,
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and 31% and 17% ee, respectively), and mutant S112H-K121W rendered the (S )-enantiomer

in 27% conversion and 19% ee. Thus additional contacts between the substrate and the

biomolecular scaffold may compete (matched or mismatched) with interactions between the

substrate and the Cp*.

Table 2.5. Selected results for the production of salsolidine 3 using the biotinylated piano stool complex
22 ⊂ library of mutants. Sav S112H and K121H were used as template for a second round of mutagenesis.a

Entry Protein Protein concentration [µM] Conv.b [%] ee
b [%]

1 S112Hd 296 99 42 (S)
2 S112He 60 53 rac.
3 S112H-K121E 125 43 31 (S)
4 S112H-K121W 125 27 19 (R)
5 S112H-K121H 125 22 17 (S)
6 S112H-K121D 165 17 rac.
7 S112H-K121F 125 –g n.d.g

8 K121Hd 275 quant. 78 (R)
9 K121He 100 83 71 (R)
10 K121H-K121A 125 –g n.d.g

11 K121H-N49S 180 21 12 (S)
12 K121H-N49A 40 –g n.d.g

13 K121H-N49E 70 –g n.d.g

14 K121H-N49F 120 –g n.d.g

15 K121H-N49C 30 –g n.d.g

16 K121H-S112A 125 17 rac.
17 K121H-L110A 70 –g n.d.g

18 K121H-L110C 320 –g n.d.g

19 K121H-L110K 80 –g n.d.g

20 K121H-L110E 60 –g n.d.g

21 K121H-L110D 40 –g n.d.g

22 K121H, aviloopf 30 –g n.d.g

a The reaction were carried out at 55 ◦C for 12 h, using a fixed concentration of
salsolidine precursor (68 mM with 20 ⊂ S112H, and 45.8 mM with 20 ⊂ K121H) at pH
5.0 (MOPS buffer, 3.1 M) containing 3.8 M HCOONa. Total reaction volume: 200 µL.
b Determined by HPLC after extraction.
c Protein concentration determined on a NanoDrop.
d Purified by conventional affinity chromatography.
e Purified by small-scale affinity chromatography.
f Aviloop = L3,4 loop of Sav exchanged with the corresponding loop of avidin. [17]
g n.d. not determined – peaks were too small to determine conversion or ee.

The overestimation of the protein concentration would be another plausible explanation for

the results presented in Table 2.5. To ensure maximal protein concentration, the proteins were

eluted in a minimal volume, i.e. 250 µL, which precluded the titration by biotin-4-fluorescein.

Hence, the protein concentration was quantified on a NanoDrop spectrophotometer (A280),

assuming four free-biotin binding sites. This overestimation might have lead to false “negative”

hits. Moreover, it is known that protein expression in small-scale is often drastically lower

than in large-scale culture. One example is K121H, which was expressed in a fermentor. When
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purified by conventional or small-scale purification, K121H afforded high conversion and ee

(entries 8 and 9). On the other hand, the protein S112H was expressed in a fermentor (entry

1) and in a 50 mL culture (entry 2), and moderate conversion (53%) and racemic product

were obtained for the sample purified in small-scale. In this system, the final concentration of

the organometallic catalyst is a key issue, as high concentrations (e.g. 50 – 500 µM) yield the

most active and selective hybrid catalysts. [14] Therefore, these results suggested that protein

expression levels in small-scale cultures should be optimised since the application of this

purification method is hindered by the amount and final concentrations of protein obtained.

During the course of this project, test experiments were conducted to express streptavidin

in the auto-induction medium developed by Studier, [18] but no recombinant expression was

detected (data not shown). A modified medium, based on the same principle of temperature-

induction, was tested and yielded large amounts of Sav (∼ 130 mg/L), in a small-scale culture

(Section 6.2.1). Nonetheless, further experiments using this medium, under different condi-

tions, should be conducted as these preliminary results were promising (Section 6.2).

This purification system was further investigated by screening the biotinylated Rh complex

20 embedded into Sav isoforms against a more challenging enantioselective reaction, such as

the reductive amination for the production of unprotected chiral α-amino acids.

Non-enzymatic reductive amination of α-keto acids

Based on in silico studies, the library of mutants, K121H-L110x (x = A, E, K, D, and C) and

K121H-S112H, was screened for the preparation of phenylalanine 12 using the catalyst 22

(Table 2.6). The proteins were purified via SSP, in the same manner as the library screened

for the asymmetric transfer hydrogenation of imines.

The catalysis experiments carried out with the library of double mutants afforded modest

to good conversions, but racemic product. The hybrid catalyst 20 ⊂ K121H-S112H yielded

racemic product (entry 8), possibly due to the competitive coordination of the metal by the two

histidine residues. Notwithstanding, this screening effort led to the identification of one double

mutant, K121H-L110C, which yielded nearly quantitative amounts of (S )-phenylalanine with

25% ee (entry 7).

To confirm the result of this screening, K121H-L110C was produced in large-scale and pu-

rified by conventional affinity chromatography. The new active artificial metalloenzyme,

20 ⊂ K121H-L110C was tested on the production of phenylalanine 12 under optimised cat-

alytic conditions, by Dr Jeremy Zimbron. Quantitative conversion, 97% yield, 97% selectivity,

and 24% ee for (S )-Phe were obtained, confirming the positive hit of the screening.
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Table 2.6. Results for the production of phenylalanine 12 using the biotinylated piano stool complex
22 ⊂ library of mutants.a

Entry Protein Protein
concentration

[µM]

Conv.b [%] Yieldb [%] Selectivityb [%] ee
b [%]

1 S112H 916c quant. 87 87 rac.
2 K121H 916d quant. 91 91 24 (S)
3 K121H-L110A 110e 86 73 85 rac.
4 K121H-L110E 180e 83 68 82 rac.
5 K121H-L110K 215e 84 68 81 rac.
6 K121H-L110D 50e 60 44 74 rac.
7 K121H-L110C 90e 91 82 90 25 (S)
8 K121H-S112H 105e quant. 82 82 rac.

a The reactions were carried out at 55 ◦C for 12 h, at pH 8.0 in 4.90 M HCOONH4. Total reaction volume:
200 µL. Conversion: quantity of α-keto acid transformed; yield: quantity of α-amino acid produced; and
(chemo)selectivity: production of amino acids over α-hydroxy acids.
b Determined by HPLC after extraction.
c Using 1 mol% complex 22 vs substrate (680 µM final metal concentration, 68 mM substrate and
0.33 mol% tetrameric S112H (obtained by conventional affinity chromatography) corresponding to 916 µM
biotin binding sites).
d Using 1 mol% complex 22 vs substrate (458 µM final metal concentration, 45.8 mM substrate and
0.5 mol% tetrameric K121H (obtained by conventional affinity chromatography) corresponding to 916 µM
biotin binding sites).
e Using 2 mol% complex 22 vs substrate and 1 mol% tetrameric streptavidin obtained by small-scale
affinity chromatography. Protein concentration determined using a NanoDrop spectrophotometer.

A third approach was developed with the aim of neutralising potential catalyst poisons present

in crude protein extracts, thus excluding downstream purification.

2.2.4 Screening on crude protein extracts free of reduced glutathione

Previous studies indicated that the cytosolic pool of reduced glutathione (GSH) present in E.

coli cells may play a critical role in inhibiting catalysis. [19] To verify that the activity of the

organometallic catalyst was inhibited by GSH present in crude protein extracts, a method to

“neutralise” reduced glutathione was developed. Chemical agents such as 1,4-benzoquinone,

1,1’-azobis(N,N -dimethylformamide) (aka diamide), 4-(2-bromoacetyl)-benzoic acid and di-

azene, and electrophilic agents such as maleimide and phenyl vinyl sulphone (PVS) were

tested. The asymmetric transfer hydrogenation of imines was chosen as model reaction, us-

ing the catalyst 4. To analyse the effect of the six aforementioned agents on GSH, purified

Sav S112A was spiked with 5 mM GSH, and treated with the agents at final concentrations

ranging from 2.5 to 10 mM (Table 2.7). The purified protein was first incubated for 15 min

with GSH, and then treated with the agent, for 24 h at RT. Elapsed the time, addition of the

catalyst to the treated sample afforded the hybrid catalyst, and substrate was added to start

the reaction. Reactions were incubated for another 24 h, at 30 ◦C.
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Table 2.7. Results for the production of salsolidine 3 by “neutralisation” of reduced glutathione, using the
biotinylated piano stool complex 4 ⊂ Sav S112A (purified/spiked).a

Entry “Neutralising” agent Concentration [mM] Conv.b [%] ee
b [%]

1 diamide 0 –c n.d.c

2 diamide 2.5 94 57
3 diamide 5.0 95 81
4 diamide 10.0 95 80
5 phenyl vinyl sulphone 0 –c n.d.c

6 phenyl vinyl sulphone 2.5 86 72
7 phenyl vinyl sulphone 5.0 82 72
8 phenyl vinyl sulphone 10.0 quant. 57
9 1,4-benzoquinone 0 –c n.d.c

10 1,4-benzoquinone 2.5 56 75
11 1,4-benzoquinone 5.0 81 60
12 1,4-benzoquinone 10.0 60 72
13 diazene 0 –c n.d.c

14 diazene 2.5 42 62
15 diazene 5.0 38 42
16 diazene 10.0 33 40
17 maleimide 0 –c n.d.c

18 maleimide 2.5 37 20
19 maleimide 5.0 47 41
20 maleimide 10.0 18 rac.
21 4-(2-bromoacetyl)-benzoic acid 0 –c n.d.c

22 4-(2-bromoacetyl)-benzoic acid 2.5 12 rac.
23 4-(2-bromoacetyl)-benzoic acid 5.0 19 rac.
24 4-(2-bromoacetyl)-benzoic acid 10.0 15 rac.

a The reactions were carried out at 30 ◦C for 24 h, using 1 mol% complex 4 (500 µM final concentration)
and 0.33 mol% tetrameric streptavidin at pH 6.5 (MOPS buffer, 0.6 M) containing 3 M HCOONa.
Catalyses were performed on purified S112A spiked with 5 mM GSH, and treated with increasing
concentrations of chemical or electrophilic agents (0 to 10 mM). Total reaction volume: 200 µL.
b Determined by HPLC after extraction.
c n.d. not determined – peaks were too small to determine conversion or ee.

These preliminary reactions confirmed that GSH acted as a catalyst poison. As shown in

Table 2.7, in the presence of 5 mM GSH and no agent added (0 mM, entries 1, 5, 9, 13, 17

and 21), no catalytic activity was detected. However, at concentrations as low as 2.5 mM,

moderate conversions (≤ 45%) and ee (≤ 50% (R)) were obtained for the samples treated

with 1,4-benzoquinone, diazene and maleimide (entries 10, 14 and 18). Above 85% conv. and

60% ee were obtained for samples treated with diamide and PVS (entries 2 and 6). Activity

of the catalyst was not greatly enhanced after the addition of higher concentrations of agent,

signifying that there should be a fine balance between the amount of neutralising agent added

and the GSH present in the crude protein extracts. In excess, some of these substances are

known to be toxic and to have non-specific effects on proteins. 4-(2-bromoacetyl)-benzoic

acid had little effect on spiked protein (15% conv. and ee), thus it was excluded from further

experiments. The same approach was used using Sav S112K as biomolecular scaffold. To

further investigate their effect, the list of “neutralising” agents to test was narrowed down to

the four best performing ones (Table 2.8).



60 Chapter 2. New strategies for the purification of streptavidin

Table 2.8. Results for the production of salsolidine 3 by “neutralisation” of reduced glutathione, using the
biotinylated piano stool complex 4 ⊂ Sav S112K (purified/spiked).a

Entry “Neutralising” agent Concentration [mM] Conv.b [%] ee
b [%]

1 diamide 0 –c n.d.c

2 diamide 2.5 89 94
3 diamide 5.0 64 70
4 diamide 10.0 60 71
5 phenyl vinyl sulphone 0 –c n.d.c

6 phenyl vinyl sulphone 2.5 37 48
7 phenyl vinyl sulphone 5.0 68 61
8 phenyl vinyl sulphone 10.0 95 27
9 1,4-benzoquinone 0 –c n.d.c

10 1,4-benzoquinone 2.5 60 73
11 1,4-benzoquinone 5.0 66 54
12 1,4-benzoquinone 10.0 74 28
13 diazene 0 –c n.d.c

14 diazene 2.5 36 53
15 diazene 5.0 34 49
16 diazene 10.0 37 53

a The reactions were carried out at 30 ◦C for 24 h, using 1 mol% complex 4 (500 µM final
concentration) and 0.33 mol% tetrameric streptavidin at pH 6.5 (MOPS buffer, 0.4 M) containing
3 M HCOONa. Catalyses were performed on purified S112K spiked with 5 mM GSH, and treated
with increasing concentrations of chemical or electrophilic agents (0 to 10 mM). Total reaction
volume: 200 µL.
b Determined by HPLC after extraction.
c n.d. not determined – peaks were too small to determine conversion or ee.

This second round of experiments confirmed the results obtained with Sav S112A. Diamide

was identified as the most promising “neutralising” agent, as it rendered 94% ee and 89%

conv. at 2.5 mM (entry 2). Similar conversion but lower ee were obtained at higher concen-

tration of PVS (10 mM, entry 8), 95% and 27%, respectively. The agent, 1,4-benzoquinone,

yielded moderate conversion (30%) and ee (50%) at all concentrations tested (entries 9 –

12). Although good conversion and ee were obtained with the hybrid catalyst pre-treated

with diazene (60% conv. and 60% ee (S ) at 2.5 and 5 mM, entries 14 and 15, respectively),

this agent was not used in further experiments as DMSO (final concentration 10% v/v) was

required to solubilise it. Control experiments were carried out to assess the effect of DMSO

on the catalyst. For S112A, the effect was minimal (97 vs 81% conversion, and 76 vs 75%

ee, with and without DMSO, respectively), whereas for S112K, the catalyst shown reduced

activity upon addition of the organic solvent (93 vs 26% conversion, and 72 vs 65% ee, with

and without DMSO, respectively).

The correct enantiomer was obtained for both artificial metalloenzymes, i.e. (R) for S112A

and (S ) for S112K, thus excluding artefact reactions.

On the basis of these preliminary results, the three best agents were tested on crude extracts

of Sav S112A and S112K (Table 2.9).
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Table 2.9. Results for the production of salsolidine 3 by “neutralisation” of reduced glutathione, using the
biotinylated piano stool complex 4 ⊂ Sav S112A or S112K (crude protein extracts).a

Entry Protein “Neutralising” agent Concentration [mM] Conv.b [%] ee
b [%]

1 S112A diamide 0 –c n.d.c

2 S112A diamide 2.5 35 45 (R)
3 S112A diamide 5.0 39 52 (R)
4 S112A diamide 10.0 31 43 (R)

5 S112Ad diamide 0 –c n.d.c

6 S112Ad diamide 2.5 36 53

7 S112Ad diamide 5.0 95 81

8 S112Ad diamide 10.0 37 53
9 S112K diamide 0 –c n.d.c

10 S112K diamide 2.5 57 75 (S)
11 S112K diamide 5.0 57 75 (S)
12 S112K diamide 10.0 51 74 (S)

13 S112Kd diamide 0 –c n.d.c

14 S112Kd diamide 2.5 36 53

15 S112Kd diamide 5.0 64 69

16 S112Kd diamide 10.0 37 53
17 S112A phenyl vinyl sulphone 0 –c n.d.c

18 S112A phenyl vinyl sulphone 2.5 20 26 (R)
19 S112A phenyl vinyl sulphone 5.0 21 30 (R)
20 S112A phenyl vinyl sulphone 10.0 45 41 (R)
21 S112K phenyl vinyl sulphone 0 –c n.d.c

22 S112K phenyl vinyl sulphone 2.5 –c n.d.c

23 S112K phenyl vinyl sulphone 5.0 –c n.d.c

24 S112K phenyl vinyl sulphone 10.0 49 33 (S)
25 S112A 1,4-benzoquinone 0 –c n.d.c

26 S112A 1,4-benzoquinone 2.5 20 39 (R)
27 S112A 1,4-benzoquinone 5.0 23 34 (R)
28 S112A 1,4-benzoquinone 10.0 37 44 (R)
29 S112K 1,4-benzoquinone 0 –c n.d.c

30 S112K 1,4-benzoquinone 2.5 55 72 (S)
31 S112K 1,4-benzoquinone 5.0 64 69 (S)
32 S112K 1,4-benzoquinone 10.0 63 57 (S)

a The reactions were carried out at 30 ◦C for 24 h, using 1 mol% complex 4 (500 µM final concentration)
and 0.33 mol% tetrameric streptavidin at pH 6.5 (MOPS buffer, 0.4 M) containing 3 M HCOONa.
Catalyses were performed on Sav S112A and S112K crude protein extracts, treated with increasing
concentrations of chemical or electrophilic agents (0 to 10 mM). Total reaction volume: 200 µL.
b Determined by HPLC after extraction.
c n.d. not determined – peaks were too small to determine conversion or ee.
d Purified, spiked with 5 mM GSH.

The catalysis experiments carried out with crude protein extracts confirmed the applica-

bility of this method to neutralise potential cells contaminants/inhibitors, such as reduced

glutathione. The most significant results emerging from this screening process, regarding

conversion and enantioselectivity, were achieved with diamide and 1,4-benzoquinone for both

metalloenzymes (35% conv. and 45% ee for S112A, and 58% conv. and 75% ee for S112K

treated with 2.5 mM diamide; 21% conv. and 40% ee for S112A, and 55% conv. and 72%

ee for S112K treated with 1,4-benzoquinone). PVS had similar effect on S112A scaffold as
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1,4-benzoquinone (i.e. it yielded similar conv. and ee), but had a almost no effect on S112K,

except at the highest concentration (10 mM, 49% conv. and 33% ee).

The above results suggested that the optimal concentration of agent to be used should be 2.5

or 5 mM, as in most cases, best reaction yields were obtained with these concentrations. An

excess of neutralising agent might be harmful to either the organometallic moiety and/or the

biomolecular scaffold. At 10 mM, conversion and enantioselectivity tended to decrease 5 to

10% in terms of conversion and ee.

This study has proven that pre-treatment of crude protein extracts by chemical agents was

an effective and reliable method. In Table 2.10, an overview of the results is given for Sav

S112A and S112K, using diamide as “neutralising” agent.

Table 2.10. Summary of results for the production of salsolidine 3 using the biotinylated piano stool
complex 4 ⊂ Sav S112H or S112K (purified, purified/spiked with GSH/treated and untreated, and crude
protein extracts/treated and untreated).a

Entry Protein Description Conv. [%] ee [%]

1 S112A purified 99 81 (R)

2 S112A purified, spiked with 5 mM GSH –b n.d.b

3 S112A purified, spiked with 5 mM GSH, treated with 5 mM
diamide

95 81 (R)

4 S112A crude protein extract –b n.d.b

5 S112A crude protein extract, treated with 5 mM diamide 39 52 (R)
6 S112K purified 93 64 (S)

7 S112K purified, spiked with 5 mM GSH –b n.d.b

8 S112K purified, spiked with 5 mM GSH, treated with 5 mM
diamide

64 69 (S)

9 S112K crude protein extract –b n.d.b

10 S112K crude protein extract, treated with 5 mM diamide 57 75 (S)

a The reactions were carried out at 30 ◦C for 24 h using 1 mol% complex 4 (500 µM final
concentration), 5 mM substrate, 100 µM free binding sites per monomeric Sav, in 0.4 M MOPS buffer
(200 µL total volume) containing 3 M HCOONa, pH 6.5.
b n.d. not determined – peaks were too small to determine conversion or ee.

Although the results were usually inferior to those obtained with purified proteins, particularly

in terms of conversion (entries 1, 3 and 5 for S112A; entries 6, 8 and 10, for S112K), such

protein hosts, obtainable by a simple one-step “purification”, hold great potential for high-

throughput pre-screening of the relative performance of the hybrid catalysts.

2.3 Conclusion & outlook

In the quest to apply Darwinian protocols to artificial metalloenzymes, any group working

in the field faces the greatest challenge of producing and purifying, in parallel, hundreds

of mutant proteins. Scouting for the best purification routine, three different experimental

approaches – protein precipitation, small-scale purification and “neutralisation” of reduced
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glutathione – were investigated to “purify” the highest amount of functional product per unit

volume per unit time, to screen on artificial metalloenzymes.

The protein precipitation scheme yielded satisfactory results, as moderate conversions (≤ 60%

conv.) and enantioselectivities (≤ 50% ee) were obtained using crude extracts dialysed against

guanidinium-chloride and precipitated by addition of ethanol or dimethoxyethane. However,

this procedure brought to light the pitfall of the amount of protein present in crude extracts,

which was later on confirmed when implementing the small-scale purification strategy. A

library of 20 mutants (expressed in 50 mL scale) prepared using both purification approaches

was screened for ATH and reductive amination of α-keto acids. The library screened exerted

no remarkable effect in activity and selectivity with one exception, K121H-L110C. This dou-

ble mutant yielded 91% conversion and 25% ee for the production of (S )-phenylalanine, by

reductive amination of α-keto acids. This positive hit was confirmed by producing the isoform

in large-scale and testing it under the same reaction conditions, ergo validating the small-scale

purification strategy when the concentration of the host protein is suitable for catalysis. Out

of the three schemes presented herein, the “neutralisation” of reduced glutathione present

in crude extracts by addition of 2.5 mM of diamide (1,1’-azobis(N,N -dimethylformamide))

met the most demanding requirements, for high-throughput screening of protein-based hy-

brid catalysts, with promising conversions (> 40%) and good enantioselectivities (>50%). To

consolidate this “purification” strategy, recombinant protein production in E. coli should be

maximised, as poor protein concentration in the reaction leads to lower conversions compared

to standard conditions.

Successful heterologous protein (over)production in E. coli involves many factors, and tech-

niques to optimise them have been thoroughly explored. Reviews by Jana & Deb and Peti

& Page summarise these optimisation strategies. [20,21] Recently, Li et al. reported high

yield production of triple-labelled and unlabelled proteins from 50 mL bacterial cell cultures.

They developed a bacterial expression method that combined tightly controlled traditional

isopropyl-β-d-1-thiogalactopyranoside (IPTG) induction expression with high-cell density of

auto-induction expression, and routinely produced 14 to 25 mg and 15 to 35 mg of triple-

labeled and of unlabeled proteins, respectively. [22] If high yields can be achieved for the

expression of isotopically labelled protein, which is known to typically yield very low amounts

of target protein, then this method should be investigated in the production of unlabelled

streptavidin to improve protein production in small-scale.

The presented data provided sufficient evidence that the “neutralisation” of reduced glu-

tathione in crude protein extracts can be implemented as a purification method to fast-screen

hybrid catalysts, in enantioselective reactions. The overall time of protein production was

shorten to five days. High yield production of streptavidin allied with the “neutralisation” of

glutathione by addition of diamide would pave the way toward high-throughput screening of

artificial metalloenzymes.
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Chapter 3

New platform for the expression of
streptavidin

Nothing in life is to be feared, it is only to be

understood. Now is the time to understand

more, so that we may fear less.

Marie Skłodowska-Curie

Abstract

This Chapter examines the use of the methylotrophic yeast Pichia pastoris as host for the

production of recombinant mature streptavidin (Sav). The streptavidin gene was inserted into

P. pastoris expression vector, pPICZαA, in-frame with Saccharomyces cerevisiae α-mating

factor (α-MF) secretion signal to extracellularly deliver the target protein. The recombinant

plasmid of pPICZαA-Sav was linearised by SacI, and transformed by electroporation into two

different strains of Pichia, X–33 and KAI–3. Multi-copy insert transformants were selected,

and cultivated in shake flasks. Secreted streptavidin, with a higher molecular weight size than

Sav expressed in Escherichia coli was identified by SDS-PAGE and Western blot. Monomeric

Sav displayed a molecular weight of 15.9 kDa, as assessed by ESI mass spectrometry. N-

terminal amino acid sequencing indicated the presence of four residues (E-A-E-A), which

indicated that the pro-sequence (α-MF) was partially cleaved. In a fed-batch fermentation,

Sav was secreted at approximately 650 mg/L of culture supernatant. The secreted mature

streptavidin displayed identical properties to streptavidin produced in E. coli for the creation

of artificial imine reductase upon incorporation of a biotinylated piano stool catalyst.

3.1 Introductory remarks

Streptavidin (Sav) is a ∼ 60 (4 x 15) kDa homotetrameric protein, isolated from the bac-

terium Streptomyces avidinii. Like its namesake avidin, streptavidin binds four equivalents of

biotin per tetramer, with an affinity virtually unmatched in nature (Ka ∼ 1013 M−1). [1] It has

been used for a variety of biochemical applications, e.g. immobilisation, cell-surface labelling,

or delivery of diagnostic agents. [2–5] Several homologous high-affinity biotin-binding proteins

have been identified from a variety of organisms. [6–11] In recent years, Sav has been utilised

67
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as a host protein for biotinylated organometallic catalysts. Such hybrid catalysts have shown

promising properties for enantioselective reactions. [12,13] By combining chemical and genetic

strategies (chemo-genetic optimisation), both activity and selectivity of the artificial metal-

loenzyme can be optimised and fine-tuned. [14] From the biological point-of-view, developing

new classes of artificial metalloenzymes requires a major effort, as large amounts of purified

protein are needed. Several groups in the field have started to address this issue by inves-

tigating the potential of screening on either cells or semi-purified cell lysates. [15–17] In 2006,

Streu and Meggers reported the cleavage of allylcarbamates by [Cp*Ru(COD)Cl] complex,

inside mammalian cells. [15] Another approach was investigated by Reetz and co-workers who

applied a simple heat treatment to purify in parallel several variants of the thermostable syn-

thase, tHisF. Although conjugation with ligands, ligand/metal entities, and organocatalysts

was achieved, no catalytic results were then reported. [16] Catalytic results using tHisF were

later on published for the asymmetric Diels-Alder reaction of azachalcone and cyclopenta-

diene (best results obtained with mutant Cu II/HHD–4xala, with 73% conversion and 40%

ee), using this time purified protein evolved by site-directed mutagenesis. [18] More recently,

Ward and co-workers investigated an alternative methodology, by purifying the protein ex-

tracts by ethanol precipitation. Sav mutant, S112A, yielded similar ee and conversion, at

low catalyst concentration (down to 39 µM), with both standard (purified by affinity chro-

matography) and precipitated proteins (64% ee (R) vs 61% (S ) and 77% conversion vs 65%,

respectively). [17] Despite these promising results, alternative routes should be investigated, as

screening on crude protein extracts or proteins purified by other means than the conventional

chromatographic methods lead to e.g. lower conversions due to low protein concentrations

and inhibition of catalysis by debris present in the cell lysates (DNA, thiols, lipids, and other

proteins). [17,19–21]

3.1.1 From bacterium to yeast

Hitherto, all screening studies conducted in the field of artificial metalloenzymes have been

performed with purified proteins, which compromises the applicability of a Darwinistic ap-

proach. Therefore it is imperative to develop alternative and reliable methods for the produc-

tion of functional proteins.

To this end and influenced by the several reasons that account for the rising popularity of

Pichia pastoris expression system, the cDNA of Sav was cloned into the methylotrophic yeast

pPICZαA expression vector (Figure 3.1). As a eukaryote, P. pastoris has the ability to (i)

produce correctly folded foreign proteins at high levels, either extracellularly or intracellu-

larly; (ii) stably integrate expression plasmids at specific sites in the P. pastoris genome in

either single or multiple copies; (iii) grow to a very high cell density in bioreactors; (iv) in-

troduce post-translational modifications; and (v) have one of the strongest and most tightly
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regulated eukaryotic promoters for controlled gene expression, the alcohol oxidase I (AOX1 )

promoter. [22,23]

(a)

(b)

Figure 3.1. Diagrammatic representation of the construct made for the expression of streptavidin in Pichia

pastoris. From left to right (5’ to 3’), the vector contains the 5’-alcohol oxidase 1 promoter (AOX1 ), the
α-factor (α-MF, the secretion signal from S. cerevisiae), either the multiple cloning site (MCS) or the insert
of Sav gene, and finally the 3’AOX1 TT represents the native AOX1 transcription termination region. (a)
pPICZαA vector only. (b) Streptavidin insert in Pichia expression vector, without the polyhistidine affinity
tag factor (HF) addition.

In this work, the vector chosen for expression in Pichia pastoris was the pPIZαA vector from

Invitrogen. It is a vector that uses the tightly regulated methanol-inducible AOX1 promoter,

and allows for secretion of the protein to the medium using the α-MF. This makes the sub-

sequent purification simpler, since there is no need to disrupt the yeast cells to access the

recombinant protein. Very low levels of endogenous proteins of Pichia pastoris are secreted

to the medium, thus recombinant proteins expressed with an export signal will constitute the

majority of the proteins in the culture supernatant. Pichia pastoris X–33 (Invitrogen) and

KAI–3 (donated by Prof. Callewaert, University of Ghent, Belgium) were used as platform

strains. Both strains are methanol utilisation plus. The Pichia strain KAI–3 was genetically

engineered such that the genomic OCH1 (α-1,6-mannosyltransferase Och1p gene) is inacti-

vated eliminating hypermannosylation, and an α-1,2-mannosidase is over-expressed to trim

mannose residues from eight to a total of five, thereby better resembling the glycosylation

structures of the human counterpart. [24]

3.1.2 Research project

Several technical problems need to be solved before a Darwinian approach to enantioselective

catalysis using artificial metalloenzymes can be put into practice. First, a very efficient ex-

pression system of the host protein is required to provide enough protein for subsequent purifi-

cation, conjugation with introduction of a ligand/metal moiety and catalysis, since screening

new ligands requires large quantities of the polypeptide. [16] Second, because complexation

between the biomolecular host and the organometallic catalyst can also occur with foreign

proteins or be hampered by contaminants, an efficient separation of the host from other pro-

teins present in crude extracts or supernatant prior to screening is imperative. [31] To date,

streptavidin has been recombinantly expressed in E. coli [25–27] and in B. subtilis cells, [28,29]



70 Chapter 3. New platform for the expression of streptavidin

with acceptable yields for E. coli system (230 mg/L) and deceiving ones for Bacillus system

(20 to 90 mg/L). More recently, functional core streptavidin has been expressed at high-levels

in Pichia pastoris (4.0 g/L), using immobilised yeast cells, 2.0 M glycerol, a feeding flow rate

of 0.11 mL · min−1, and aeration by air injection dispersed with a porous stone combined

with agitation at 500 rpm. [30]

Aiming to address these fundamental problems, the expression system Pichia pastoris was

investigated to increase production of recombinant wild-type mature streptavidin and simplify

the purification process.

3.2 Results & discussion

To differentiate between streptavidin expressed in E. coli and in P. pastoris, the latter was

named Sav918, following an internal code from the Paul Scherrer Institute (Villigen PSI Ost,

Switzerland), where this work was carried out.

3.2.1 Strain and genetic construct

The gene encoding a recombinant mature streptavidin (Sav), without the T7-tag, was success-

fully PCR amplified using synthetic oligonucleotides. Two stop codons (TAG and TGA) were

added to the sequence, in order to express Sav without the C-terminal peptide containing the

c-myc epitope and the hexahistidine tag (6xHis).

Figure 3.2. Plasmid map of streptavidin gene in pPICZα vector (pSav918). The 3’- and 5’-nucleotide
sequences (fragment sequenced, in grey) confirmed the insertion of Sav gene (dark pink) in frame with the
pro-peptide of S. cerevisiae mating α-factor (in light pink) and downstream of the AOX1 promoter (in orange).

The resulting 478 base pairs (bp) insert, encoding the proteolytic signals for KEX2 and STE13

cleavage fused to the mature streptavidin, was joined with the multiple cloning site region,
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downstream of Saccharomyces cerevisiae α-mating factor secretion signal of the expression

vector pPICZαA (Figure 3.2 and Figure 3.3).

Figure 3.3. Nucleotide sequence of the artificial streptavidin reading frame (Sav918) and its translation.
The vector-derived sequences are in italic, and in square brackets, the yeast α-factor part. The proteolytic
cleavage sites, KEX2 and STE13, are indicated by triangles. No consensus sites for N -glycosylation are
present. In bold, the 30 potential O-glycosylation sites (serine or threonine residues). Asterisks represent the
tandem stop codons, which are used to prevent read-through. The residues numbering of Sav expressed in E.

coli was kept for ease of comparison.

The DNA sequence analysis (GATC, Germany) confirmed the presence of a single open reading

frame coding for a translation product of 237 amino acids (aa), consisting of the yeast α-factor

peptide signal (89 aa) and streptavidin (148 aa, Figure 3.4 and Figure 3.3).

Sav            MASMTGGQQMGRDQAGITGTWYNQLGSTFIVTAGADGALTGTYESAVGNAESRYVLTGRY 60
Sav918         -----------RDQAGITGTWYNQLGSTFIVTAGADGALTGTYESAVGNAESRYVLTGRY 49
                          *************************************************

Sav            DSAPATDGSGTALGWTVAWKNNYRNAHSATTWSGQYVGGAEARINTQWLLTSGTTEANAW 120
Sav918         DSAPATDGSGTALGWTVAWKNNYRNAHSATTWSGQYVGGAEARINTQWLLTSGTTEANAW 109
               ************************************************************

Sav            KSTLVGHDTFTKVKPSAASIDAAKKAGVNNGNPLDAVQQ 159
Sav918         KSTLVGHDTFTKVKPSAASIDAAKKAGVNNGNPLDAVQQ 148
               ***************************************

Figure 3.4. Alignment of the sequences of Sav918 (in pPICZαA) and Sav (in pET11b), confirming the
complete removal of the N-terminal peptide T7-tag (first eleven amino acids) [CLUSTAL 2.1 multiple sequence
alignment].

Additionally, to confirm the successful construction of pSav918, a restriction analysis using

five different restriction enzymes (Eco88I, EcoO109I, HindII, HinfI, and NaeI) was carried out

(data not shown). The pPICZαA vector has a single SacI restriction site in the AOX1 locus
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that permits linearisation of the vector for efficient integration into the host’s 5’-AOX1 region

(Figure 3.5). Hence, the linearised pSav918 was introduced by electroporation into two Pichia

strains, X–33 (Invitrogen) and KAI–3 [24] (phenotype: Mut+). Positive yeast transformants

were first screened on YPDS plates, based on the Zeocin resistance conferred by the vector,

supplemented or not with biotin (Figure 3.6).

(a) (b)

Figure 3.5. Thin agarose gels. (a) PCR product of the amplification of Sav gene, 478 bp (in duplicate,
lanes 1 and 2). (b) Linearisation of Sav plasmid (pSav918, 3,910 bp). Lane 1: non-linearised construct, and
lane 2: linearised construct by SacI. Independent run gel documented in 0.7% thin agarose gel in 0.5% SB
buffer. Marker III (EcoRI + HindIII) and Marker VIII (Böhringer).

Selection of Zeocin resistant clones, which potentially carry multiple plasmid copies, was

successful in both KAI–3 and X–33 Pichia strains. Several dozens of colonies were obtained

in plates inoculated with 100 µL of cells (Figure 3.6), and several hundred on plates with

300 µL. Five clones of each construct (X–33 and KAI–3 strains), and from plates containing

or not biotin were selected for growth on methanol medium, in small-scale (50 mL cultures),

in a total of 35 clones. Clones were numbered from 1 to 20 and from A to J for KAI–3 and

X–33 transformants, respectively. This numeration was used throughout this Chapter.

(a) (b)

Figure 3.6. YPDS selective plates of pSav918 introduced into the KAI–3 strain. (a) With 0.2% biotin.
(b) Without biotin. 100 µL of electroporated cells were spread on both plates.

The sequence numbering of Sav918 differs from the one from Sav (expressed in E. coli), since
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the first 11 amino acid residues referring to the T7-tag were removed. Therefore, residue 1 in

Sav918 corresponds to residue 12 in Sav, and so on. For ease of comparison, the numbering

of Sav expressed in E. coli was kept throughout this Chapter.

3.2.2 Expression and detection of streptavidin in Pichia pastoris

Recombinant Sav918 was expressed in vitro using pPICZαA expression vector and P. pastoris

X–33 and KAI–3 expression strains. A screening to find clones that produced recombinant

protein at high level was performed in shake flasks. The recombinant protein was secreted into

the culture medium, after induction by methanol (final concentration: 0.5% per 24 h). The

inoculum culture (buffered minimal glycerol medium – BMGY, pH 6.0) was supplemented

with 0.2% biotin, and cells were washed twice with ultrapure water to remove the excess of

biotin, before resuspension in culture medium (buffered minimal methanol medium – BMMY,

pH 6.0). The cultures were initially grown for 72 to 96 hours at 30 ◦C. Samples were collected

directly from each of the cultures, at different time points (0, 3, 6, 9, 12, 24, 36, 48, 56, 72,

and 96 h post induction, Figure 3.8).

Stable transformants were readily obtained by positive selection for vector-induced antibiotic

resistance for both strains tested. Out of the 35 clones screened (data not shown), 20 isoforms

were secreted as soluble proteins into the culture medium, all in functional form. Furthermore,

production levels of these 20 isoforms were found to be variable, depending on the transfor-

mant, which further underscores the necessity of screening multiple clones for expression of

functional protein (Figure 3.7 and Figure 3.8).

(a) (b)

Figure 3.7. SDS-PAGE of the non-concentrated supernatant of ten clones screened for expression of strep-
tavidin, after 96 h of induction time. Streptavidin wild-type expressed in E.coli (1 mg/mL sample) was used
as positive control; the high molecular weight band corresponds to a oligomeric form of the protein (a) B4F
analysis. (b) Coomassie Blue staining analysis. An equal volume (15 µL) of samples was loaded on the gel.

To confirm the presence of Sav918, SDS-PAGE was performed and gels were revealed by B4F

before being stained with silver (for lower expression levels, 1 – 10 ng), or Coomassie Blue

(for higher levels of expression, 50 – 100 ng, Figure 3.7.b).
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As displayed in Figure 3.7, a recombinant protein with an apparent molecular weight of ∼ 80

kDa was observed. The difference of migration of Sav secreted by P. pastoris or expressed

in E. coli, in its tetrameric form, is further discussed in 3.2.6. relates to the fact that Sav is

not fully denatured by SDS, as highlighted by its binding to B4F (Figure 3.7.a). The upper

band above 100 kDa on the control band (lane C, Figure 3.7) represent an oligomeric form

of Sav. No streptavidin was found in the cell pellets as assessed by B4F. The clones that

revealed high-level of expression were used for further expressions under different conditions,

and allowed a first characterisation of recombinant streptavidin.

(a)

(b)

Figure 3.8. Representative growth curves for Pichia pastoris strains, KAI–3 and X–33, grown at 30 ◦C in
small-scale cultures, following methanol induction. For ease of reading, only five clones are plotted. (a) X–33
clones. (b) KAI–3 clones. Cells were initially grown in BMGY prior to transfer to BMMY to enable methanol
induction of the AOX1 promoter. Cultures were incubated at 30 ◦C. Aerated at 225 rpm, and supplemented
with 0.5% (v/v) MeOH every 24 h. Optical density (OD600) readings were taken at different time points, in
duplicate. OD levels represented are the mean value of the two readings. The numbering of clones reports to
an internal numbering system.
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Pichia growth was observed by increasing optical density (OD600) values during induction,

which indicated viability of the cells and consumption of the inducing agent, methanol

(MeOH) (Figure 3.8). This, in turn, indicates induction of the AOX1 promoter by which

the gene of interest is driven. Each growth curve of KAI–3 and X–33 showed an increase in

cell density over time, which was generally followed by a plateau after 72 hours. Streptavidin

was detected 24 h after induction. The final cell densities ranged in OD600 values from 11 to

38 for both strains.

From the 20 positive isoforms, six transformants that showed the highest expression level were

chosen (clones 1, 7 and 11 from KAI–3, and A, C and D from X–33) for further cultivation

studies.

3.2.3 Expression under different conditions

Given that the main aim of optimisation is to maximise the protein production, this process

was only initiated once positive clones were identified. Variables that could affect the growth

rate and productivity of Pichia pastoris cells or the quality of the recombinant protein were

defined. Five factors: pH (unbuffered, and buffered to 5.0 or 6.0), addition of casamino acids

(final concentration: 1% w/v) and biotin (final concentration: 0.2% w/v), concentration of

methanol for induction (final concentration: 0.5 vs 1% v/v), and volume of the culture (200

vs 600 mL) and their effects, alone and/or in combination, were investigated. Temperature

and pH are two of the most crucial parameters that influence protein production in various

expression systems. Working with Pichia pastoris at low pH allows protease degradation to be

avoided, and low temperature during the methanol induction phase can result in an increase

in the production of recombinant protein. The effect of temperature, albeit important, was

not investigated. Another important factor is the methanol concentration as Pichia pastoris

metabolises methanol as a sole carbon and energy source, and the promoter regulating the

production of alcohol oxidase is the one used to drive heterologous protein expression in P.

pastoris. Thus, high levels of methanol can be toxic to the cells, and low level may not be

enough to initiate transcription. The other parameters listed above were chosen to either

increase the final yield or avoid proteolytic degradation. [32–34]

Initial experiments of this study were carried out in BMGY supplemented with 0.2% (w/ v)

biotin, and BMMY, at pH 6.0 and 30 ◦C (Figure 3.9, Exp1). Pure methanol (final con-

centration 0.5%, v/v) was added to the medium twice daily, instead of once, in order to

decrease concentration shifts in BMMY medium. The effect of biotin in the inoculum and

culture medium was investigated. When no biotin was added to the inoculum, the biomass

and optical density at 600 nm decreased greatly (Figure 3.9, Exp2). Therefore, biotin was

added in excess (0.2%, v/v) to provide enough vitamin to the cells during biomass generation

(inoculum). The cells were then washed twice with ultrapure water to remove the excess



76 Chapter 3. New platform for the expression of streptavidin

of biotin prior to induction in methanol, this way preventing the binding of streptavidin to

biotin and ensuring the expression of biotin-free streptavidin. The addition of casamino acids

(1%, w/v) used to prevent proteolytic degradation had no significant effect on biomass nor

optical density (Figure 3.9, Exp5, pH 6.0; Exp6, pH 5.0). Optimum growth was observed

at pH 5.0 and unbuffered medium (Figure 3.9, Exp3, pH 5.0; Exp4, unbuffered). The final

concentration of methanol in the medium had little to no effect onexpression of Sav (data not

shown). A 2- and 2.5-fold differences in OD600 and biomass, respectively, were noted between

using 10% and 30% of the volume capacity of the 2000 mL baffled shake flask (Figure 3.9,

Exp7, 200 mL; Exp8, 600 mL).

Figure 3.9. Representative growth curves (biomass vs optical density) for Pichia pastoris, under different
cultivation conditions. The biomass and optical density (at 600 nm) report to final values, at the end of
induction time (72 h). (Exp1) standard conditions: 0.2% (v/v) biotin in BMGY, 0.5% (v/v) MeOH in
BMMY, at 30 ◦C, pH 6.0; (Exp2) no biotin in BMGY; (Exp3) pH 5.0; (Exp4) unbuffered; (Exp5) pH 6.0 +
1% casamino acids (w/v); (Exp6) pH 5.0 + 1% casamino acids (w/v); (Exp7) volume of culture: 200 mL,
10% of total volume capacity; (Exp8) volume of culture: 600 mL, 30% of total volume capacity. wcw = wet
cell weight.

Figure 3.10. Cell density (OD600) and expression pattern of streptavidin in the culture medium with P.

pastoris KAI–3. The culture was carried out in BMMY, pH 5.0, at 30 ◦C for 72 h. Sav concentration was
determined by fluorescence quenching with biotin-4-fluorescein as described in Section 6.2.4
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After a series of experiments, optimal expression conditions for streptavidin were obtained as

follows: optimal pH was 5.0 (Figure 3.10), optimal induction time points was on the third day,

and methanol daily addition concentration of 0.5% (v/v). Under these conditions, high-level

expression transformant of P. pastoris strain was obtained, purified and retained for further

studies. Yields up to 50 mg/L and 150 mg/L were achieved from a 50 mL and a 200 mL

culture, respectively.

In a first approach, some of the well-known avenues for the optimisation of protein production

were assessed, allowing a rational optimisation. In a second approach, the production process

should be further characterised and validated by some controls, in order to achieve a more

comprehensive model and to demonstrate the robustness of the procedure, its reproducibility

and reliability.

3.2.4 High-cell density fed-batch fermentation

One of the highest expression transformant (clone 1) was chosen for upscaled protein produc-

tion in a 1.8 L working-volume fermentor. Long-limiting glycerol batch phase ∼ 98 h) under

oxygen-sufficient conditions not only increased volumetric productivity but also reduced the

need of methanol and oxygen. When dissolved oxygen (dO2) increased abruptly indicating

that glycerol was exhausted, the glycerol feed was stopped for a starving phase of 1.5 h. The

methanol feed started when the culture reached OD600 of 200, at pH 6.0, 30 ◦C, and dO2 set

at 20%. After induction with methanol, pH was set to 5.0 to inhibit proteases and samples

were withdrawn every 12 h for SDS-PAGE analysis. Samples taken during growth on glycerol

(0 to 96 h), lacked expression of streptavidin, which reflected repression of the AOX1 pro-

moter after substrate limited growth during the glycerol fed-batch phase, i.e. during biomass

generation. Streptavidin expression was initiated upon change of the carbon source, from

glycerol to methanol.The dry cell weight (dcw) increased from 54 g/L after the glycerol fed-

batch phase to 235 g/L at the end of the methanol induction. The recombinant streptavidin

secreted into the medium by P. pastoris continuously increased with methanol induction,

and reached the peak at 50 h after induction. After 64 h of induction, an OD600 of 870 was

reached, and the culture was so dense (more like a paste) that oxygen transfer was inefficient.

The fermentation was stopped and the broth was harvested.

In contrast to small-scale cultures, large-scale fermentation in 2.7 L fermentor yielded higher

production over a shorter fermentation time (150 mg/L in 72 h compared to 650 mg/L in 64 h).

SDS-PAGE analysis of the culture supernatant of Sav918 indicated a major protein smeared

band at a molecular weight of ∼ 80 kDa (Figure 3.11). To undoubtedly identify the protein,

a Western blot (WB) analysis was carried out. The WB showed a positive reaction of the

Sav918 supernatant with polyclonal antibody against streptavidin, and this immunoreaction
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became stronger after concentrating the sample (Figure 3.11.c).

(a) (b) (c)

Figure 3.11. 10% SDS-PAGE and Western blot analysis of the fermentation of P. pastoris clone 1_Sav918.
(a) B4F analysis. (b) Coomassie Blue staining. (c) Western blot analysis. Lanes 1 and 2: control, Sav
expressed in E. coli, at 200 ng and 1 µg/well, respectively; Lane 3: supernatant, at time = 48 h (GY fed-
batch); Lane 4: Sav918 concentrated, before purification; Lanes 5, 6 and 7: supernatants, at time = 100, 120
and 164 h, respectively (MeOH fed-batch); Lanes 8 and 9: 200 ng and 1 µg/well of purified Sav918. An equal
volume (10 µL) of samples was loaded on the gel.

3.2.5 Purification of streptavidin expressed in Pichia pastoris

The recombinant protein was purified to homogeneity using a single affinity chromatography

purification step (2-iminobiotin sepharose). The procedure prior purification for the recombi-

nant Sav918 expressed in a fermentor with defined medium was the same as that employing

complex medium in small-scale cultures. After cultivation, the broth was centrifuged, filtered

and the supernatants of each clone were prepared for affinity chromatography by gravimetry

for small-scale culture, and using an ÄKTA purifier for larger volumes, i.e. fermentation.

(a) (b)

Figure 3.12. SDS-PAGE analysis of Sav918 after column purification. (a) B4F analysis. (b) Coomassie
blue staining. Lane 1: supernatant at time = 164 h; Lanes 2 and 4: controls, Sav expressed in E. coli, 1 and
0.5 mg/mL, respectively; Lane 3: empty; Lane 5: flow-through; Lane 6: supernatant at time = 45 h; Lane 7:
supernatant at time = 100 h; Lane 8: Sav918 before purification; Lanes 9, 10 and 11: pooled fractions of the
third, second and first purifications, respectively; Lane 12: pooled fractions of gel filtration; Lane 13: waste.
An equal volume (15 µL) of samples was loaded on the gel.
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The crude Sav918 samples were concentrated by ultrafiltration, and subsequently equilibrated

to pH 9.8 with the appropriate binding buffer, prior to their application to the chromato-

graphic column. After chromatographic purification, the purity of proteins were analysed by

SDS-PAGE (Figure 3.12).

The final waste fraction was analysed by SDS-PAGE (Lane 13 in Figure 3.12), along with

the pooled fractions, to confirm that none of the recombinant protein remained unpurified.

Overall, over 95% of the protein was recovered and purified. After visualisation with B4F

and Coomassie Blue staining, the gel did show strong bands that indicated the presence of

functional streptavidin (Figure 3.12).

Following these processes, a total of 975 mg purified Sav918 from 1.5 L fermentation broth

was obtained, which corresponded to ∼ 11 µM of Sav918.

3.2.6 Biochemical properties

Glycosylation analysis

The molecular weight of Sav918 produced in Pichia Pastoris was greater than that expressed

in E. coli. In complex medium (small-scale cultures), a broad and diffuse band between

60 and 80 kDa derived from SDS-PAGE analysis of crude and purified Sav918. This could

suggest that the recombinant protein was O-glycosylated, since there was no putative N -

glycosylation site but 30 potential O-glycosylation sites instead, in the deduced amino acid

sequence of streptavidin (GlycoMod tool, Expasy). [35] When glycosylated, the protein band

is smeared due to the polydisperse nature of the glycan chains.

To determine whether the protein was glycosylated or not, a basic, simple and chromogenic

method was used. [36] Sav918 was resolved on a 12% SDS-PAGE, and the gel was stained

for glycoproteins, using the periodic acid-Schiff (PAS) reaction, which reveals glycosylated

proteins by magenta bands that begin to appear during the staining reaction and slowly

intensify thereafter.

All three clones, expressed in small-scale (i.e. in complex medium), tested positive for O-

glycosylation, as a faint magenta band was detected (Figure 3.13). Proteins with “poorer”

glycan trees and fewer glycosylation sites have bands of low staining intensity when compared

with heavily glycosylated proteins. [37] However, Sav918 expressed in minimal medium (i.e.

in a fermentor) appeared to not be glycosylated. Although bands were of higher molecular

weight on the gels as the samples from shake flasks, bands were not smeared, and MS analysis

confirmed that Sav918 expressed in a fermentor was not glycosylated (Figure 3.14). The

difference of migration of tetrameric Sav secreted by P. pastoris or expressed in E. coli relates
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(a)

(b)

Figure 3.13. SDS-PAGE analysis of Sav918 O-glycosylation by periodic acid-Schiff (PAS) reaction. The
gel was oxidised in a 1:3 (%) periodic acid:acetic acid solution, and reacted with Schiff’s reagent, acidified
fucsin until a magenta colour developed. The gel was then reduced with 1% sodium metabisulfite. (a) B4F
analysis. (b) PAS staining. The supernatant of three different clones were tested for glycosylation: two clones
from KAI–3 strain (clones 1 and 7) and clone from X–33 (clone A). All three clones were positive on the test,
by revealing magenta bands upon staining. Sav expressed in E. coli was used as negative control. An equal
volume (15 µL) of samples was loaded on the gel.

to the fact that Sav is not fully denatured by SDS, as highlighted by its binding to B4F

(Figure 3.14). Therefore, folded Sav binds less SDS than it would in its denatured state. Less

negative charge translates to slower migration in the gel. The higher mobility of the Sav from

E. coli is probably due to the T7-tag, which can bind SDS. Recently, Gamboa-Suasnavart et al.

have reported on the production of recombinant APA protein from Mycobacterium tubercolosis

in Streptomyces lividans, and showed that O-mannosylation was affected by culture conditions

in shake flasks. Depending on culture conditions (e.g. shear and oxygenation), carbohydrate

composition differed from two mannose residues in conventional shake flasks to up to five

mannose residues in coiled and baffled flasks. [38] However, little is known about the influence

of culture medium on oligosaccharide structures of P. pastoris-secreted proteins. Literature

reports on the detection of lesser amounts of phosphorylated glycans in recombinant proteins

grown in salts medium, in comparison with proteins obtained from complex medium. Neutral

oligomannosides predominated in the glycosylation pattern. [39–41] The reason why and how

carbon sources modify glycosylation should be further studied. [39,40]

Mass spectrometry analysis

Electron spray mass spectrometry analysis of the purified streptavidin detected a single com-

ponent of 15,878 Da (Figure 3.14). This mass is precisely that predicted for the fully proto-

nated encoded protein without N-terminal methionine (15,878.3 Da), taking into account the

two protonated histidine residues. Importantly, this spectrum allowed the exclusion of any

glycosylation on Sav. The complete report of the characterisation of Sav918 can be found in
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the Appendices Section.

The N-terminal amino acid sequence was determined for the expressed Sav918 as E-A-E-A-

R-D-Q-A, which meant that the proteolytic site STE13 was retained. [42] In Pichia pPICZαA

vector, the effective cleavage of the fusion protein formed by the α-factor signal and the

recombinant protein sequences occurs in two steps: (i) the signal sequence Glu-Lys-Arg*Glu-

Ala-Glu-Ala is preliminary cleaved by the KEX2 gene product, between the arginine and the

glutamine (site of cleavage marked with *); (ii) the Glu-Ala repeats are further cleaved by

the STE13 gene product.

Figure 3.14. Positive ESI-MS spectrum of Sav918 in 1% acetic acid. Calculated mass of the protein:
15878.3 Da. Calculated mass of the main peak: 15878.3

There are some cases where STE13 cleavage is inefficient, and Glu-Ala repeats are left on the

N-terminal of the expressed protein of interest. This is generally dependent on the protein of

interest, when the protein fold may impair the recognition and proteolytic cleavage by STE13

or the amount of protein expressed exceeds the catalytic capacity of the protease. [43] The

complete report of the N-terminal sequencing can be found in the Appendices Section.

Biotin-binding analysis

The functionality of Sav918 and biotin-free binding sites were confirmed by titrating crude

and purified proteins with biotin-4-fluorescein (B4F, Figure 3.15).

The titration with B4F confirmed that the presence of residual amounts of biotin in the
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PTM1 solution added to the fermentation broth did not hindered the biotin-binding capacity

of streptavidin produced in Pichia pastoris. Previous studies by Jungo et al. have shown that

addition of 20 µg/L of biotin (for a cell density of 8 g/L) resulted in stable chemostat cultures

on methanol, with the production of recombinant biotin-free avidin. [33] In this case, the final

concentration of biotin in the culture medium was minimal (below 5 µmol). For the example

of B4F titration given in Figure 3.15, the number of free-biotin binding sites (fbs) for purified

Sav918 was 3.2, hence 0.8 binding sites might have been “blocked” by the biotin present in

the medium.

Figure 3.15. Determination of the biotin free-binding sites (fbs) in streptavidin expressed in E. coli

(MWtetramer = 63,150 Da) and in P. pastoris (MWtetramer = 63,510 Da). The biotin-binding activity for
recombinant Sav was detected by fluorescence quenching. Titration of 100 µM of purified samples of Sav
produced in a fermentor. Sav control: Sav expressed in E. coli (grey lines); Sav918: Sav expressed in P.

pastoris (red lines) The arrows indicate the equivalence point, 3.2 for Sav918 (red) and 3.6 for Sav control
(grey).

Nevertheless, the protein obtained via fermentation was tested as biomolecular host for Cp*Ir

moiety for the reduction of 1-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline (Section 6.2.6).

The biotinylated catalyst was incorporated into Sav918 (crude and purified forms), and tested

in the asymmetric transfer hydrogenation of imines, using the catalytic conditions described

in Scheme 3.1.

Considering that the fermentation medium does not correspond to the catalytic conditions, a

buffer exchange against the catalysis buffer was performed on the crude sample of Sav918. The

final concentration of the sample was calculated by B4F titration, and an equivalence point

was observed at 4.4 nmoles of biotin-4-fluorescein, which corresponds to 11 µM streptavidin,

assuming a tetrameric form of the protein, with all four binding sites.
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Scheme 3.1. Asymmetric transfer hydrogenation of imines for the production of salsolidine. The reactions
were carried out in a total volume of 200 µL, at room temperature for 24 h using the following final concen-
trations (when possible): 50 µM complex, 5 mM substrate, and 100 µM tetrameric streptavidin produced in
Pichia pastoris, at pH 6.5 (MOPS buffer, 0.6 M) containing 3 M HCOONa.
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Table 3.1. Selected results for the production of salsolidine 3, using the biotinylated piano stool complex
4 ⊂ Sav918.a

Entry Protein Descriptiona Conv.b [%] ee
b [%]

1 Sav produced in E.coli and purified by affinity
chromatography

76 61 (R)

2 Sav918 purified by affinity chromatography 79 64 (R)
3 Sav918 concentrated supernatant from fermentation 16 25 (R)

a The reaction was carried out at 30◦C for 24 h, using 1 mol% complex 4, 100 mol% substrate
and 100 µM tetrameric streptavidin at pH 6.5 (MOPS buffer, 0.6 M) containing 3 M
HCOONa. Total reaction volume: 200 µL.
b Determined by HPLC after extraction.

The results presented in Table 3.1 confirmed that the artificial metalloenzyme created with

Sav918 (entry 2) had similar catalytic performance as with Sav expressed in E. coli (entry 1),

since similar conversion and ee were obtained. Regarding catalysis performed with super-

natant (entry 3), further studies have to be conducted, namely optimisation of the reaction

conditions in terms of working concentrations, as low protein concentration may lead to low

conversion compared to standard conditions (100-fold more concentrated).

3.3 Conclusion & outlook

The very high reported levels of protein secretion in high-density cultures, such that the

product can comprise over 80% of the protein in the medium have made Pichia an attractive
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expression system for many researchers. Yet, Pichia is no “magic bullet” and secretion is

complex and dependent not only on gene dosage and Mut phenotype, but also on signal

sequence processing, proteolysis and glycosylation, which can affect the yield and quality of

product.

Pichia pastoris has proven to be a suitable expression system for the heterologous expression

of streptavidin, which was successfully expressed, in a fermentor, at 650 mg/L in the culture

medium. Sufficient amounts of Sav for bioconjugation with an organometallic catalyst and

subsequent catalysis were obtained through the expression of Sav in P. pastoris. However, for

this application, the production in the prokaryotic host has to be further optimised to provide

sufficient amounts of protein in the medium, in a shorter period of time.

Improvement of the expression levels and time of production in P. pastoris can be achieved by

switching from the AOX1 promoter to the constitutive strong promoter from glyceraldehyde-

3-P dehydrogenase (GAP), which is readily available for heterologous expression of proteins in

Pichia pastoris. In the GAP promoter-based system, the generation of biomass and produc-

tion of protein occur simultaneously, in medium containing glycerol or glucose as sole carbon

source. However, this constitutive system has one limitation: the protein of interest cannot

be toxic to the host. [44,45] Though (strep)avidin is believed to show cell toxicity due to its

high affinity with biotin, Mattanovitch and co-workers engineered a biotin-prototrophic yeast

strain, which was transformed with plasmids containing the protein genes of enhanced green

fluorescent protein and porcine trypsinogen, under control of the GAP promoter, proving that

both systems are compatible and could be used for the secretion of Sav. [46]

However, a simpler approach to optimise this system would be to investigate the influence

of pH, temperature, methanol concentration, cell density, medium composition or additives

(casamino acids, sorbitol, EDTA) on protein expression in P. pastoris, since not all were tested

during this project. Design of experiments (DoE) should be use to properly assess the effect

of each parameters, on its own or in combination, on protein expression. A broader range of

the factors should also be investigated, e.g. pH from 3.0 to 6.0, methanol concentration from

0.5 to 3%, and temperatures from 15 to 30 ◦C.

Another approach to improve artificial metalloenzymes based on streptavidin-biotin system

would be the use of cell-free protein expression. [47] Since the end of the 1990s, efforts have

been directed in the development and optimisation of E. coli derived cell-free system. This

system is suitable for expression of toxic proteins, [48] and although yields are known to be

lower than of cell-based protein production, cell-free expression systems are more convenient

for screening of constructs.Thus implementation of high-throughput screening [49,50] would be

possible, and the presence of biotin in streptavidin binding sites would be no longer an issue.
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Chapter 4

New scaffold for the creation of an artificial
metalloenzyme

I was taught that the way of progress was

neither swift nor easy.

Marie Skłodowska-Curie

Abstract

The design and synthesis of novel biomolecular scaffolds, which can incorporate organometal-

lic moieties, are an important goal in the discovery of new artificial metalloenzymes. The

proposed research intended to investigate the versatility of human carbonic anhydrase II

(hCAII) as host protein for the design of specific organometallic · protein assembly. This

Chapter reports on the design and production of hCAII variants based on:

i. the design and synthesis of metal complex scaffolds (work carried out by Dr Fabien Mon-

nard) and the x-ray crystallographic studies of hCAII in complex with an organometallic

moiety (work carried out by Dr Tillmann Heinisch);

ii. the rational design of variants based on Molecular Dynamics Simulations (MDS) and

Molecular Mechanics /Generalised Born Surface Area (MM-GBSA) calculations (work

carried out by Dr Maurus Schmid);

iii. and the study of pseudo-contact shifts in solution state NMR for the determination of

the structure of an inhibitor · human carbonic anhydrase II in solution (work carried

out by Mr Kaspar Zimmermann).

A second ligand generation of catalysts based on a 2-picolylamine ligand bearing a sulpho-

namide anchor showed improved binding affinities toward wild-type hCAII. After one round

of genetic optimisation, the novel hybrid catalyst afforded an enantiomeric excess of 29% (S )

for the synthesis of salsolidine. The success of this chemo-genetic approach was only possible

thanks to computational simulations and crystal structures. Force field parameters amenable

to molecular dynamics simulations of hCAII · inhibitor interactions were experimentally val-

idated. Five different single cysteine constructs were isotopically expressed, and site-specific

labelling of hCAII with paramagnetic lanthanides was successfully achieved.

89
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4.1 Introductory remarks

Human carbonic anhydrase II is a structurally and functionally well-defined protein; it is a

zinc-containing enzyme that catalyses the interconversion of carbon dioxide and water into

bicarbonate and protons, and one of the most active enzymes known, with a kcat/KM ∼ 1.5

x 108 M−1· s−1, approaching the limit of diffusion control. [1–3] The ellipsoidal enzyme is a

monomeric, single polypeptide chain of 259 amino acids, with a molecular mass of 29.3 kDa,

and its x-ray structure has been resolved to 1.54 Å. [4] The numbering system of human

carbonic anhydrase I is used throughout this Chapter. In this system, residues Asn62, Asn67

and Thr200 correspond to residue Asn61, Asn66 and Thr199 in the numbering system of

human carbonic anhydrase II. [5]

4.1.1 Human carbonic anhydrase II as potential new biomolecular scaffold

A variety of highly enantioselective artificial metalloenzymes have been created by using

covalent, dative, or supramolecular anchoring strategies. [6–8] However, the choice of a protein

scaffold has been limited by the necessity of a sufficiently large pocket to accommodate the

catalyst and substrates.

Ergo, a new biomolecular scaffold featuring a deeper binding pocket in which the organometal-

lic complex could be completely embedded, was investigated. The combination of human car-

bonic anhydrase II and a sulphonamide anchor as model system for the design of organometal-

lic ·protein assemblies was based on Emil Fischer’s “lock-and-key” hypothesis, [9] and the fol-

lowing criteria:

i. the exceptionally large binding pocket (15 Å deep, and 15 Å diameter at its mouth) of

the enzyme,

ii. the well-established conserved mode of binding of sulphonamides to hCAII,

iii. the compatibility of human carbonic anhydrase II inhibitors with soft transition metals,

the possibility to derivate them, and their low dissociation constant,

iv. the well-characterised assays to determine binding profiles,

v. and the fact that carbonic anhydrase isozymes are over-expressed in certain forms of

cancers, which makes this system interesting for therapeutic applications. [10–12]

Furthermore, hCAII is easily over-expressed in E. coli cultures and purified by affinity chro-

matography. [13] Therefore, hCAII mutants, with optimised reactive sites to which to couple

ligands, can easily be generated.
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4.1.2 Sulphonamides as inhibitors

In 1940, Mann and Keilin discovered that sulphanilamides and certain related substances were

powerful and specific inhibitors of mammalian carbonic anhydrase isozymes, at concentrations

as low as 2 x 10−6 M. [10,14] Most of known inhibitors containing a sulphonamide/sulphamate

moiety (e.g. the clinically used derivatives acetazolamide, dorzolamide, and brinzolamide,

Scheme 4.1) can coordinate the catalytic Zn II ion of the enzyme active site, through their

deprotonated nitrogen atom, which coordinates to the zinc ion and an extended network of

hydrogen bonds, involving the “gatekeepers” residues Thr199 and Glu106 (Scheme 4.2). These

residues also participate to the anchoring of the inhibitor molecule to the metal ion, whereas

the organic part (heterocyclic/aromatic) of the inhibitor interacts with the hydrophobic and

hydrophilic residues of the cavity.

Scheme 4.1. Structure of carbonic anhydrase inhibitors. All three inhibitors – acetazolamide (25), dor-
zolamide (26) and brinzolamide (27) – are used in the treatment of glaucomas. Acetazolamide is also used
to treat epileptic seizures, cystinuria, idiopathic intracranial hypertension, and durla extasia. Dorzolamide,
developed by Merck, was the first drug obtained from structure-based drug design. [15]
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4.1.3 Structure of human carbonic anhydrase II

One of the keys to modern drug design is the understanding of biological phenomena at

atomic resolution. In particular, knowledge of three-dimensional (3D) structures and confor-

mational dynamics of proteins provides direct information on unique interactions with other
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macromolecules, which is necessary to understand and design catalytic functions. The two

conventional methods for the determination of protein structure are x-ray crystallography and

nuclear magnetic resonance (NMR) spectroscopy. Through these techniques, the coordination

chemistry in a protein scaffold can be determined, and rational design and future applications

for hybrid catalysts can be developed.

Crystallographic structures

In 1972, the first crystal structure of a mammalian α-CA, human carbonic anhydrase II

(hCAII, previously called “CA C”) was described by Anders Liljas and co-workers. [17] It was

reviewed later on, in 2000, by Stams and Christianson. [18]

(a) (b)

Figure 4.1. Ribbon diagram of the active site of human carbonic anhydrase II (PDB code: 1G54) (a)
Tertiary structure is coloured as following: α-helices in red, β-sheets in dark grey and loops in light grey; the
active site zinc is shown as orange space-filled sphere and it is coordinated by three histidine residues (His94,
His96, and His119) coloured in grey and by a water molecule (Wat263, coloured in blue). (b) Stereo-drawing
showing the two aromatic clusters in hCAII. In red, the first cluster (Trp5 and 16, Tyr7, and Phe20), and in
dark grey, the second cluster (Phe66, 70, 93, 95, 176, 179, 226 and Trp97).

hCAII has a 16% helical structure (10 helices, 42 residues) and a dominating 10-fold β-

sheet (29%, 18 strands and 77 residues) that extends throughout the entire molecule and is

the predominant secondary element. Except for two pairs of parallel strands, the β-sheet

is antiparallel. Through its tertiary structure determination, Liljas et al. showed that the

protein exists of only one domain (Figure 4.1) [18] devoid of disulphide bridges. Furthermore,

all lysine residues are located at the surface of the enzyme, which are in close contact to

the side chains of the neighbouring molecules. Two hydrophobic clusters formed by aromatic
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residues were noted within the folding pattern of hCAII. [19,20]

NMR structures

In February 2013, 9,740 3D NMR structures of proteins and nucleic acids in solution were

registered in the Brookhaven Protein Data Bank (PDB), which accounted for only 10% of

the total of structures deposited. The scarcity of 3D NMR structures of macromolecules

reflects one of its major drawbacks - its size limitation to proteins with molecular weights

between 20 and 30 kDa. [21,22] However, recent advances in NMR spectroscopy have enabled

solution 3D NMR studies of larger biomolecules. [23] One of these promising methods relies

on the measurement of pseudo-contact chemical shifts (PCS) induced by a covalently bound

paramagnetic metal ion (Scheme 4.3). In order to measure the paramagnetic effects, two NMR

spectra are recorded with and without the lanthanide chelating tag. [24] By superimposition of

the resulting NMR spectra, the PCS of nuclear spins can be easily measured as the difference

(in ppm) of the chemical shifts between the two spectra. The paramagnetism originating from

a single paramagnetic centre (dysprosium, lutetium or thulium) can be described in terms of a

magnetic susceptibility tensor, χ, spanned by three principal axes (χx, χy, and χz) (Equations

4.1 and 4.2).

∆χax =
χz − (χx + χy)

2
(4.1)

∆χrh = χx − χy. (4.2)

Scheme 4.3. High-affinity lanthanide chelating tag, ∆(δδδδ) [Ln(M8-Spy)]. “Ln” refers to thulium (Tm
31), dysprosium (Dy 32) or lutetium (Lu 33), and “M8” to the eight methyl groups attached to rigidify the
DOTA moiety.
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This alternative structural technique provides the precise information on the location of the

inhibitors/metal complexes in the protein scaffold, in solution.
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4.1.4 Research project

The development of a novel class of enantioselective artificial metalloenzymes is one of the most

attractive targets in the field of inorganic and catalytic chemistry, since these hybrid catalysts

show remarkable chemo-selectivity and reactivity in aqueous media. For this purpose, covalent

modification of the protein and cofactors have usually been utilised to attach a metal complex

to a protein scaffold.

This Chapter focused on the dative insertion of metal complexes into human carbonic anhy-

drase II environment. It included the screening of stable metal complex/protein composites,

crystal structures, and molecular design for regulating enantioselectivity of the target cat-

alytic reactions. The purpose of this work was to create a library of hCAII variants focusing

different objectives:

i. in order to test hCAII as scaffold for artificial metalloenzymes, hCAII wild-type (wt

hCAII) was expressed to evaluate its affinity toward complexes synthesised by Dr Fabien

Monnard (FM), and monitored by protein crystallography (Dr Tillmann Heinisch, TH).

In addition several other mutations were introduced into the active site replacing amino

acids that are relevant for the binding of designed hCAII inhibitors.

ii. the mutants hCAII L198x (x = A, Q, F, H) were created in the context of validating

Molecular Dynamics Simulation (MDS) calculations performed by Dr Maurus Schmid

(MS) and to evaluate their affinity toward benzenesulphonamide inhibitor.

iii. the double mutants C206S-S50C, -S166C, -S173C, -S217C and -S220C were expressed

(isotopically labelled forms) to investigate NMR pseudo-contact shifts (PCS) introduced

by [M8-SPy] ligands (Mr Kaspar Zimmermann, KZ, and PD Dr Daniel Häußinger, DH)

when tagged to the protein.

4.2 Results & discussion

The results presented herein are a compilation of data obtained in collaboration with Dr Fabien

Monnard (FM), Dr Maurus Schmid (MS), Dr Tillmann Heinisch (TH), Kaspar Zimmermann

(KZ), and PD Dr Daniel Häußinger (DH). It is noted throughout the text who performed

which experiment.

4.2.1 Production of human carbonic anhydrase II

The plasmid pACA encoding for human carbonic anhydrase II (hCAII) was a generous gift

from Prof. Dr Carol A. Fierke (University of Michigan, USA). [13] This construct consists of
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the hCAII gene [25] behind a T7 RNA polymerase promoter, an f1 origin of replication, [26,27]

and ampicillin (ampr) and chloramphenicol (cmr) resistance genes in pMa5-8 vector (Fig-

ure 4.2). [27] The construct of this plasmid has an alanine residue at position 2 instead of

a serine, with no effect on protein expression or catalytic properties, [28] and was used as a

template for PCR.

Strain and genetic construct

The construct coding for hCAII (Figure 4.2) was amplified by transformation into Escherichia

coli DH5α cells, and the size of the plasmid was verified by restriction analysis. The results

of the digestion of pACA plasmid were analysed on an agarose gel (Figure 4.3).

Figure 4.2. Plasmid map of pACA. Human carbonic anhydrase II gene (782 bp) was inserted behind a T7
promoter, into pMA5-8 vector (4089 bp) containing ampr and cmr markers for antibiotic resistance, and f1
origin of replication.

PstI generated three fragments of 4,849, 4,396 and 2,004 bp, and HindIII, two fragments of

4,853 and 3,969 bp (Table 4.1). The double digestion using NcoI and EcoRI generated one

fragment of ∼ 4,737 bp (although it seems that the plasmid DNA “broke” in between position

4,396 and 4,853 bp, generating a third, faint band), and a second of 3,754 bp. No negative

control was performed, as the empty plasmid pMa5-8 was not available.

When uncut, the DNA of pACA migrated only ∼ 4 kb, which might be an indication that
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Table 4.1. Restriction map details of pACA plasmid.

Description HindIII PstI NcoI EcoRI

Sequence AACGTT CTGCAG CCATGG GAATTC
Site length 6 6 6 6
Overhang 5’ 3’ 5’ 5’
Frequency 2 3 1 1
Cut position (bp) 3,969/4,853 2,004/4,396/4,849 4,737 3,754
Fragment size (kb) 0.9, 3.9 0.45, 2.0, 2.3 1.0 3.9

it was in Form II (nicked circle DNA)1. When linearised by single or double digestions, the

plasmid presented the correct size (see Figure 4.3, and details in Table 4.1).

Figure 4.3. Analysis of restriction map of pACA plasmid. The DNA ladder is BenchTop 1kb Ladder
(Promega AG - Dübendorf, CH). 2 and 4 µL of uncut DNA were loaded on the 1.2% agarose gel, and 4 µL
for the other samples.

After confirmation of the correct construct to express human carbonic anhydrase II, pACA

PCR product was transformed into E. coli XL-1 Blue super-competent cells, and sent to

sequencing to confirm the authenticity of the construct (Figure 4.4).

1Nicked circle DNA (Form II or “relaxed circle”) is the slowest conformation of uncut DNA. A nick can
occur during isolation of the plasmid due to mechanical shearing of DNA or enzyme activity. In bacteria,
topoisomerase I enzyme will nick one strand of the helix so that DNA polymerase have access to DNA for
replication.The superhelical tension relaxes once one of the strands has been cut, and the tightly-wound ball
becomes a floppy circle
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Figure 4.4. Sequence of pACA plasmid. In beige, loops; in grey, α-helices; in red, β-strands; in italic,
“direct” and “indirect” binding site ligands; in bold, active site residues; and in red bold, “substrate binding”
residues.

The expression system was optimised for high protein yields. Up to 400 mg pure protein was

achieved from 1 L expression culture in shake flasks. Optimised site-directed mutagenesis [29]

allowed the creation of the desired mutants.

Expression and detection of human carbonic anhydrase II

Even though there is a trend to standardise as much as possible protein expression processes, it

has been shown that even subtle changes would powerfully increase the productivity. Human

carbonic anhydrase II expression was initially carried out following the protocol provided by

Prof. Fierke, until improvement was required to circumvent the low expression yields obtained

in the production of isotopically labelled protein. The know-how obtained in the expression

of labelled hCAII was transferred to standard expressions, reducing the production time and

achieving higher expression yields, in commonly employed shake flasks.

According to Fierke’s protocol, over-expression of hCAII can be obtained through a three-step

process, (i) an inoculum (5 mL LB medium inoculated with one medium-sized colony (E. coli

BL21(DE3) transformant), incubated for 6 to 7 h, at 37 ◦C and 250 rpm; (ii) a pre-culture

(25 mL of fresh LB medium, inoculated with the 5 mL inoculum), incubated overnight growth

at 37 ◦C and 250 rpm; and (iii) the culture carried out in minimal medium supplemented with

ZnSO4, and inoculated with 0.5% (v/v) of the pre-culture (or starting OD600 = 0.0125). The

temperature was kept constant at 37 ◦C, until induction time at which it was lowered to
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30 ◦C. Cultures were incubated at 250 rpm for 3 hours (or until OD600 = 0.8 – 1.0), and were

induced by addition of IPTG and ZnSO4. Three hours later, 8 µg/mL phenylmethylsulphonyl

fluoride (PMSF, prepared in isopropanol) was added to the culture broth, to inhibit serine

proteases growth. After additional growth for 3 h at 30 ◦C, cells were harvested (4,400 rpm,

4 ◦C for 15 min).

Figure 4.5. Example of the cellular growth of a 1 L culture, in 3 L non-baffled Erlenmeyer flasks, using
the initial and final procedures. The arrow indicates the induction time. The “final procedure” and “initial
procedure” cultures were induced at OD600 ∼ 0.8, and were incubated at 250 rpm, for 6 h post-induction, and
at 25 and 30 ◦C (post-induction), respectively.

Although this protocol was, initially, strictly followed, cells took often more than 3 hours to

be at an optical density of 0.8 – 1.0, and to be inducible. Final OD600 did not exceed 2.5, and

final wt hCAII yield was of ∼ 25 mg per litre of culture. Some parameters, such as the E. coli

expression strain (changed from BL21(DE3) to BL21(DE3)pLysS, to avoid the sonication step

in the recovery of the enzyme and achieve tighter expression control), the culture temperature

after induction (18, 25 and 30 ◦C), and the time of induction (OD600 = 0.8 – 1.0 or OD600 =

1.0 – 1.3), were investigated. The first round of optimisation yielded 180 mg of pure protein

per litre of culture.

The optimised procedure for the expression of human carbonic anhydrase II is as described

below. The main differences with Fierke’s protocol lied on the E. coli expression strain

(BL21(DE3) vs BL21(DE)pLysS), the volume of the inoculum and pre-culture (inoculum:

5 mL vs 15 mL, and pre-culture: 15 mL vs 60 mL), centrifugation step before inoculation of the

pre-culture and main culture (to remove β-lactamase, and minimise proteolysis), resuspension

of main culture pellet in 20% glucose, [30] and culture temperature after induction set to 25 ◦C

instead of 30 ◦C (Figure 4.5 and Figure 4.6).
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Figure 4.6. Visualisation of the increased wt hCAII yield after optimisation, by SDS-PAGE analysis. Sol-
uble and insoluble fractions, at different stages of the expression, visualised by Coomassie Blue staining. The
control “C” was purified wt hCAII, 200 µg/mL. The “M” reports to the molecular weight marker from NE
Biolabs. Lane 1: “zero” hour (0 h) reports to a sample taken before induction, confirming no leaky expression
in the absence of the inducer, IPTG; Lanes 2 to 6: 1, 2, 3, 4, and 6 hours post-induction, respectively.

To ascertain the maximum recovery of expressed enzyme from E. coli expression cells, several

extractions were performed, as shown on Scheme 4.4. Five extractions were necessary for

complete recovery of the protein from the cell pellet (Figure 4.7). The supernatants resulting

from these extractions were pooled and purified as a single batch.

Scheme 4.4. Extraction of hCAII from E. coli expression cells. The pellet obtained from 1 L culture was
resuspended in activity buffer (50 mM Tris-SO4, pH 8.6 and 0.5 mM ZnSO4), supplemented with 10 µg/
mL PMSF and 1 µg/mL DNase I. The resuspension was incubated under vigorous agitation, until complete
reduction of the viscosity of the cell lysate. The resulting lysate was centrifuged at 12,000 rpm, for 20 min,
4 ◦C. This procedure was repeated another five times (six extractions, in total).
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Figure 4.7. SDS-PAGE analysis of the extraction of hCAII from E. coli expression cells.

The first two extractions allowed almost complete recovery of wt hCAII. No enzyme was

recovered after the fifth extraction (Figure 4.7, Lane 6).

Purification of human carbonic anhydrase II

The rapid purification of a recombinantly over-expressed protein from a complex mixture

of proteins can be achieved by affinity chromatography, which takes advantage of the high

affinity of a protein for specific ligands or chemical groups. The purification of human car-

bonic anhydrase II by affinity is based on the biological specificity that the enzyme has for

sulphonamide inhibitors. p-amino-methylbenzene sulphonamide has identical inhibitory ca-

pacity as its derivative, toluene sulphonamide (a known inhibitor of CAs, K i = 0.1 µM), [31]

and it can be covalently attached to agarose (p-amino-methylbenzene sulphonamide agarose,

Sigma-Aldrich). The agarose-bound enzyme can be eluted by adding a high concentration

of a competitive inhibitor, such as a monovalent anion. Two elution methods, using either

SCN – [32] or ClO –
4 /CH3COO – [33] were tested for the purification of human carbonic anhy-

drase II, and the best result (analysed by SDS-PAGE) was implemented as the method of

choice to purify hCAII.

Elution with sodium perchlorate and sodium acetate - protocol 1

The second method tested for the purification of hCAII was described by Gould and Tawfik. [33]

The column was equilibrated with activity buffer (50 mM Tris-SO4, pH 8.6 and 0.5 mM

ZnSO4), and the enzyme was loaded onto the sulphonamide column producing agarose-bound

enzyme. The column was first washed with five CVs of buffer (50 mM Na2SO4, 50 mM

NaClO4, and 25 mM Tris at pH 8.8) to remove any unbound contaminants. The bound

enzyme was eluted by addition of 200 mM NaClO4 and 100 mM NaCH3COO, at pH 5.6, and

5 mL eluted fractions were collected (Figure 4.8).
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Figure 4.8. Elution profile of wt hCAII, eluted with sodium perchlorate/sodium acetate (protocol 2).
After washing the column with 125 mL of 50 mM Na2SO4, 50 mM NaClO4, and 25 mM Tris at pH 8.8, the
enzyme was eluted with 200 mM NaClO4 and 100 mM NaCH3COO, at pH 5.6. The protein fractions from
the main peak were pooled and analysed by SDS-PAGE.

Elution with potassium thiocyanide - protocol 2

Based on the work of Bering and Kuhns, [32] wt hCAII, resuspended in activity buffer (50 mM

Tris-SO4, pH 8.0 and 0.5 mM ZnSO4), was slowly loaded at a flow rate of 1 mL/min onto

a column packed with p-amino-methylbenzene sulphonamide agarose, previously equilibrated

with the activity buffer. The column was subsequently washed with five column volumes

(CVs) of Tris/Na2SO4 buffer. The sulphonamide-bound enzyme was eluted with 10 CVs of

25 mM Tris, pH 8.3 and 0.4 M KSCN, and 5 mL fractions were collected.

The presence of wt hCAII, and purity of the fractions collected in both methods (protocols 1

& 2) were analysed on 12% SDS-PAGE (Figure 4.9).
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(a) (b)

Figure 4.9. SDS-PAGE analysis of wt hCAII, (a) eluted with sodium perchlorate/sodium acetate
(protocol 1) or (b) potassium thiocyanide (protocol 2), at different stages of purification. Electrophoresis
was performed on 12% resolving gel and 4% stacking gel, and proteins were stained by Coomassie Blue. “M”
stands for marker; (a) Lane 1: unpurified sample; Lane 2: sample from the wash step; Lanes 3 to 10: fractions
collected, 1 to 8; (b) Lane 1: unpurified sample; Lane 2: empty lane; Lane 3: sample from the wash step;
Lanes 4 to 12: fractions collected, 1 to 9.

As shown in Figure 4.9, potassium thiocyanide was not the best elution buffer compared to

the one containing sodium perchlorate and sodium acetate. KSCN was a “weak” inhibitor to

compete with sulphonamide, as the same amount of wt hCAII was present in the wash and

elution fractions. The peak obtained by FPLC was broad (data not shown), and ten column

volumes (250 mL total volume) were not sufficient to elute the enzyme completely. These

results were somehow surprising as a trend is observed in anion inhibition, and thiocyanide

ligand (SCN – ) is known to have a higher association constants with zinc than ClO –
4 and

CH3COO – . [34]

Mass spectrometry analysis

Figure 4.10 presents an ESI-MS mass spectrum measured for wt hCAII. The most abundant

isotopic mass (mm.a.) of the isozyme was determined to be 29,099.4 Da, which is in good

agreement with the calculated value (mm.a. = 29,098.9 Da, calculated with “Compute pI/

Mw” from ExPASy), [35] with the initial methionine removed and the second residue changed

from serine to alanine.

Figure 4.10. Positive ESI-MS spectrum of wt hCAII in methanol/formic acid (50:0.05, v/v), pH 3.0 – 4.0
and acetonitrile/acetic acid/TFA (50:0.1:11, v/v), pH 0.0 – 1.0. Calculated mass of the protein: 29,098.9 Da.
Calculated mass of the main peak: 29,099.4 Da.
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In Table 4.2 are listed the calculated and determined mass of hCAII variants.

Table 4.2. Calculated and determined masses of human carbonic anhydrase II variants. For the labelled
proteins, the first mass corresponds to the selectively labelled sample (15N Leu), and the second mass to the
uniformly labelled one (15N).

Protein Calculated Mw [Da] Determined Mw [Da]

wt 29,098.9 29,099.4
A2V-F131V 29,078.9 29,050.8

H64A 29,032.8 n.d.a

H64A-E106Q 29,031.8 n.d.a

I91A 29,056.8 29,052.0
Q92G 29,017.8 29,011.7

Q92G-V121G 29,116.9 29,119.6
V121G 29,056.8 29,056.00
F131A 29,022.8 29,014.7
K170A 29,041.8 29,044.0
L198A 29,188.0 29,156.4
L198F 29,132.9 29,133.0
L198H 29,122.8 29,123.6
L198Q 29,113.8 29,115.0
P202W 29,188.0 29,189.0

C206S-S50C 29,098.9 29,116.0/29,446.5b

C206S-S166C 29,098.9 29,116.3/29,448.7b

C206S-S173C 29,098.9 29,116.4/29,450.0b

C206S-S217C 29,098.9 29,116.5/29,450.2b

C206S-S220C 29,098.9 29,117.3/29,449.7b

a n.d. - Not determined.
b Determined by KZ.

4.2.2 Studies on human carbonic anhydrase II as potential biomolecular scaffold

The high affinity of human carbonic anhydrase II toward sulphonamide inhibitors allows the

insertion of achiral metal catalysts into the chiral environment of the protein when linked to

a sulphonamide anchor. Thus, dative incorporation of an active organometallic moiety into

the active site of human carbonic anhydrase II was explored.

The synthesis and characterisation of organometallic complexes, inhibition studies and catal-

ysis were carried out by FM, who also performed docking experiments along with MS. X-ray

crystallographic studies were performed by TH.

Library of mutants

In the absence of x-ray crystallographic information of the hybrid catalyst, the decomposition

per residue of the binding free energies (∆EMM +∆Gsolv) offered the possibility to rationally

design mutants (Figure 4.11).
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Figure 4.11. Per residue free energies ∆EMM+∆Gsolv for ligand ⊂ hCAII combinations. The list of ligands
tested (1 – 15) can be found in Scheme 4.8. Picture by MS.

Based on docking calculations, a small library of mutants were designed, expressed and tested

for their binding affinity.

Library of piano stool complexes

The first approach relied on wild-type human carbonic anhydrase II expressed in E. coli as

biomolecular scaffold and a d6-piano stool complex containing an arylsulphonamide anchor

as a catalyst ([(η6-arene)Ru(bispy)Cl]+, Scheme 4.5. The conjugation of the Ru complexed

with wt hCAII was confirmed by x-ray crystallography, and the catalytic activity of the arti-

ficial metalloenzyme ([(η6-C6Me6)Ru(bispy)Cl]+ ⊂ wt hCAII) toward p-nitrophenyl acetate

(PNPA) was evaluated.

The second approach relied on a small library of hCAII mutants constructed based on com-

putational studies and a second generation of catalysts bearing a 2-picolylamine derivative

(Scheme 4.6). The hybrid catalysts were screened for the transfer hydrogenation of 1-methyl-

6,7-dimethoxy-3,4-dihydroisoquinoline.

Studies on the catalytic properties

The inhibition constant, K i, was determined by steady-state kinetic experiments (FM). Lig-

ands or complexes with inhibition constants on the order of mM were titrated against hCAII.

Organometallic compounds with a d6 electron count act as precursors of Lewis acid catalysts
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Scheme 4.5. Bispyridine-type complex, [(η6-C6H6)RuCl2]2.
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Scheme 4.6. 2-picolylamine-type complex, [(Cp*)IrCl2]2.
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in various organic reactions, and hold the potential of use as therapeutic agents. [36] In this

respect, the perspective of using optically active organometallic ligands, such as three-legged

piano stool complexes, as chiral catalysts seemed appealing.

First generation of catalysts

A small library of three-legged Ru(II) piano stool complexes bearing an arylsulphonamide

moiety – for anchoring purposes – was designed in silico. Due to the consistency of the binding

mode found for arylsulphonamide ⊂ hCAII inhibitors, [16] docking was performed manually

with Maestro. [37] For this reason, the structurally characterised sulphonamide of the model

arylsulphonamide ⊂ hCAII structure (PDB code: 1G54) [38] was deleted, the structure was

refined and used as a template to superimpose the arylsulphonamide-bearing piano stool

complexes. This docking process yielded two alternative structures with minimal van der

Waals contacts for [(η6-C6Me6)Ru(bispy)Cl]+. Molecular dynamic simulations were carried

out on both structures (performed by FM and MS), and sampling of the simulations revealed

a preference for the structure depicted in Figure 4.12, which was synthesised for further studies

(performed by FM).
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(b)

Figure 4.12. (a) Resulting structure of [(η6-C6Me6)Ru(bispy)Cl]+ ⊂ wt hCAII, from docking experiments
and molecular dynamic simulations (PDB code: 1G54). The zinc ion (orange filled sphere) interacts with the
arylsulphonamide anchoring group of the three-legged piano stool complex (coloured by elements). (b) Piano
stool complexes.

The binding profiles of [(η6-arene)Ru(bispy)Cl]+ toward wt hCAII were determined by mea-

suring the initial rates of the hydrolysis of p-nitrophenyl acetate at 25 ◦C, pH 8.0. [39–41] The

formation of product was monitored spectrophotometrically at the isosbestic point for the

corresponding nitrophenol and nitrophenolate ion (348 nm). The binding constants, Ki, were

calculated using Equation 4.3 for the reaction with p-nitrophenyl acetate, and fitted using

Gnuplot (v.4.2., least-squares method, FM). The non-enzymatic rates estimated from the

blank reactions (all components except wt hCAII) were subtracted from the observed total

initial rates (Table 4.3).
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v =
v0Ki

Ki + {[I]t − 0.5(A −
√

A2 − 4[I]t[E]t)}
(4.3)

with v0 being the initial rate of the enzyme-catalysed reaction in the absence of inhibitor, Ki

the inhibition constant, A = [I]t + [E]t +Ki the inhibitor total concentration, and [E]t the

enzyme total concentration. [42]

The data in Table 4.3 illustrates the interactions between hCAII and the metal moieties. Com-

pared to the parent carboxylic acid 4-carboxybenzenesulphonamide, all complexes bearing the

bispy ligand displayed increased affinity. Interestingly, [(η6-biphenyl)Ru(bispy)Cl]+ displayed

the highest affinity toward hCAII compared to [(η6-C6H6)Ru(bispy)Cl]+, which illustrates

the subtle complementarity between the piano stool moiety and the binding pocket.

Table 4.3. Dissociation constants of [(η6-arene)Ru(bispy)Cl]+ ⊂ wt hCAII, with η6-arene: benzene, p-
cymene, C6Me6, or biphenyl.

Inhibitor K i [nM]

[(η6-benzene)Ru(bispy)Cl]Cl 40 194 ± 19
[(η6-p-cymene)Ru(bispy)Cl]Cl 41 275 ± 13
[(η6-C6Me6)Ru(bispy)Cl]Cl 42 329 ± 16
[(η6-biphenyl)Ru(bispy)Cl]Cl 43 145 ± 12

Crystallographic studies

X-ray crystal structure studies of the metal · protein hybrids provide valuable information

on the interactions of the metal centre, to better understand and design the second coordi-

nation sphere. Structural insight of wt hCAII complexed with a ruthenium moiety bearing

a bispy ligand, [(η6-C6Me6)Ru(bispy)Cl]+, was obtained by soaking the enzyme in a solu-

tion of the metal-complex (Figure 4.13). Diffraction data were collected at the Synchrotron

(Swiss Light Source, Paul Scherrer Institut - Villigen, Switzerland) to 1.3 Å resolution. After

refinement of the crystal structure, it was established that, upon ligand binding, the phenyl

group of residue Phe131 underwent conformational change, from tense (F131-T) to relaxed

conformation (F131-R) to prevent clashes, and to form a CH/π interaction. [43]
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Figure 4.13. Crystal structure of [(η6-C6Me6)Ru(bispy)Cl]+ ⊂ wt hCAII (PDB code: 3PYK) [43] (a)
Overview of the complex embedded in the enzyme scaffold. The zinc ion (orange filled sphere) is deeply buried
inside the binding site of hCAII and interacts with the sulphonamide group of the piano stool complex.(b)
Close-up view of the piano stool complex. The complex is positioned at the entrance of the cone-shaped
binding site and interacts with the hydrophobic wall side chains. Work carried out by TH.

The crystal structure indicated that the amino acids residues adjacent to the zinc active

site provided a well-defined chiral environment to control the tacticity, and illustrated the

subtle complementarity between the piano stool moiety and the cone-shaped cavity of hCAII

(residues V121, F131, V135, L141, L198, P202, and L204).

Second generation of catalysts

The catalytic potential of [(Cp*)IrCl2]2 ⊂ hCAII was evaluated using the transfer hydrogena-

tion of 1-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline as a model system (Scheme 4.7) The

reactions were performed with 1.8 mol% complex (0.35 mM final concentration), 20 mM sub-

strate, 0.4 mM protein in 0.4 M MOPS buffer solution (200 µL, 5% DMSO) containing 3 M

sodium formate, pH 7.5, for 44 h at 40 ◦C (work carried out by FM). Results are presented

in Table 4.4.

Scheme 4.7. Asymmetric transfer hydrogenation of imines for the production of salsolidine 3.

catalyst (0.35 mM)
hCAII (0.4 mM)

HCOONa (3 M)
Substrate (20 mM)

pH = 7.5

∗∗ NHN
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3
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Table 4.4. Results obtained for the transfer hydrogenation of 1-methyl-6,7-dimethoxy-3,4-
dihydroisoquinoline with hCAII variants.a

Entry Complex Proteinb Conv.c [%] TON ee
c [%]

1 35 wild-type 33 18 27 (S)
2 35 H64A 11 6 n.d.
3 35 I91A 99 55 29 (S)
4 35 K170A 59 33 30 (S)
5 35 E106Q-H64A 21 12 3 (S)
6 35 F131A 12 6 6 (S)
7 35 F131A-A2V 24 13 1 (S)
8 35 Q92G 15 8 3 (S)
9 35 Q92G-V121G 25 14 1 (S)
10 35 L198Q 11 6 23 (S)
11 35 L198A 6 3 6 (R)
12 35 L198F 13 7 23 (S)
13 35 L198H 13 7 23 (S)

a The reaction was carried out at 40 ◦C for 20 h using 1.8 mol% complex
(0.35 mM final concentration), 20 mM substrate, 0.4 mM protein, in
0.4 M MOPS buffer (200 µL total volume, 5% DMSO) containing 3 M
formate, pH 7.5.
b ESI-MS of hCAII isozymes are reported in Table 4.2.
c Determined by normal phase HPLC after extraction.

In comparison with wt hCAII (Table 4.4, entry 1), best results were obtained with mutants

I91A and K170A (entries 3 and 4, respectively). The presence of a smaller residue (alanine)

around the active metal catalyst affected only the catalyst activity and had a minor effect

on the ee value. No significant enantioselectivity was obtained with the remaining mutants.

Upon optimisation of the catalysis conditions (catalyst loading, temperature and time of the

reaction), wt hCAII afforded 53% conversion and 56% ee in favour of the (S ) enantiomer

and mutant I91A, 75% conversion and 58% ee (S ). These results were obtained for reactions

carried out at room temperature for 20 h and under the same catalyst loading conditions as

above described. [44]

A crystal structure of these newly created artificial metalloenzymes gave structural insights

on the guest-host interactions (PDB code: 3ZP9), [44] and will allow further rational design of

the biomolecular scaffold.

4.2.3 Arylsulphonamides as inhibitors

The application of docking methods and parameters to study inhibitors-enzyme interactions

of human carbonic anhydrase II system was explored. More specifically, the docking of aryl-

sulphonamides (Scheme 4.8), which constitute the best characterised and most common class

of inhibitors.
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Molecular Mechanics - Generalized Born Solvent Approximation (MM-GBSA) was selected

to estimate ligand-binding free energies for a given set of arylsulphonamides. This simulation

strategy was validated by comparison of the results with published biophysical data and with

a simulation using a Quantum Mechanics/Molecular Mechanics (QM/MM) implementation

with the Self-Consistent Charge Density-Functional Tight-Binding (SCCDFTB) module in

CHARMM. Furthermore, point mutations of the amino acid residues identified as critical to

binding of arylsulphonamides were computationally investigated, and binding free energies

were determined (work carried out by MS and FM).

Scheme 4.8. Structures of arylsulphonamide inhibitors used for computational studies. These predictions
carried out by MS were compared with experimental biophysical data (performed by FM) from hCAII variants
expressed recombinantly in E. coli.
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Library of hCAII L198x mutants

Leucine at position 198 was identified, by computation, as critical in terms of energetics

contribution in the affinity of benzenesulphonamide (44) for wt hCAII, and three mutants
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were designed and produced recombinantly in E. coli : L198A, L198F and L198Q. Human

carbonic anhydrase II variants were expressed in 1 L shake flasks, and were purified by affinity

chromatography. Between 200 and 300 mg of pure protein ( > 95% purity) were obtained for

each mutant, as confirmed by SDS-PAGE analysis and ESI-TOF MS.

Benzenesulphonamide (Scheme 4.8, 25) was the inhibitor of choice to determine the affinity

toward the identified protein, hCAII Leu198 and its variants (A, F and Q). Inhibition data

for all four variants (wild-type, and L198x, x = A, F and Q) with benzenesulphonamide

are presented in Table 4.5. The corresponding thermodynamics were determined using the

esterase activity assay, and fitted raw data are presented in Figure 4.15.

Figure 4.14. Benzenesulphonamide 44 docked into human carbonic anhydrase II. This inhibitor was chosen
for the affinity studies, as it is commercially available. The residue chosen for mutagenesis, Leu 198 is
represented in red sticks, the metal centre, zinc as an orange sphere, and the inhibitor in sticks coloured
by elements.

An inhibition constant, Ki, of 1100 nM was determined for wt hCAII, which was in good

agreement with the reported data ranging from 200 – 1500 nM. [16] The experimentally mea-

sured dissociation constants of 44 for the L198x mutants are reported in Table 4.5.
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Figure 4.15. Steady-state kinetic data for the inhibition of hCAII mutated proteins by benzenesulfonamide
(44). The initial rates of the enzyme-catalyzed hydrolysis of p-nitrophenyl acetate substrate were measured
as a function of inhibitor concentration. [Enzyme] = 1 µM, [p-nitrophenyl acetate] = 0.5 mM. The solid,
smooth lines are the best fits of the data according to Equation 4.3 for the Ki of wt (•), L198A (•), L198F (•),
L198Q (•). Picture by FM.

The experimentally measured inhibition constants of benzenesulphonamide 25 are summarised

in Table 4.5.

Table 4.5. Final set of parameters for dissociation constant, Kd, for benzenesulfonamide 44 with asymptotic
standard error for hCAII mutants (see Figure 4.15). [42]

Entry Protein Dissociation
constant [nM]

Published dissociation
constant [nM]

1 wild-type 1100 ± 40 200 – 1500 [16]

2 L198A 5500 ± 270 -
3 L198F 1700 ± 130 -
4 L198Q 1800 ± 100 -

In spite of a slight over-estimation of the computed free binding energies between hCAII L198x

mutants, the experimentally determined energies correlated well with the computed ones (see

Figure 4.16).

As illustrated for hCAII L198x mutants, the influence of point mutations at a key position can

be predicted from atomistic simulations. Albeit subtle when compared to the range of ligands

tested, the influence of point mutations translates into an order of magnitude difference for

the corresponding Kd, between wt hCAII and mutant L198Q. Thus, these results demonstrate

the applicability of this theoretical model as working hypothesis for the reactive complex.
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Figure 4.16. Correlation between computed ∆EMM +∆Gsolv (black triangles) and ∆G (blue squares) and
experimentally determined ∆G for wt hCAII (full symbols) and hCAII mutants (empty symbols). Complex
25 was used for all variants except for F131V, which was tested in silico against 35. Picture by MS.

4.2.4 Pseudo-contact shifts in solution-state NMR

A lanthanide chelating tag (Scheme 4.3) was used to attach paramagnetic lanthanide metals

to human carbonic anhydrase II, introducing pseudo-contact shifts (PCS). [24] PCS provide

valuable information on the structure and the dynamics of proteins in solution.

The 15N-HSQC and 1D 19F spectra reported in this subsection were recorded and analysed

by Mr Kaspar Zimmermann and PD Dr Daniel Häußinger.

Library of C206S-S50x mutants

Five serine residues, solvent-accessible but outside of the conical cleft of the enzyme, were

chosen for mutagenesis (S50, S166, S173, S217 and S220, Figure 4.17). Single point mutating

these residues to Cys generated a chemical handle for thiol-selective coupling. [45,46] Human

carbonic anhydrase II has an endogenous Cys at position 206, which was mutated to Ser

in order to preclude side reaction at this site, thus generating double mutants for each Ser

construct (Cys206→Ser, Serx (x = 50, 166, 173, 217 or 220)→Cys). Mutation of Cys206 to

serine does not affect the activity nor the stability of the enzyme, as demonstrated by Krebs

and Fierke, and Mårtensson et al. respectively. [45,47]
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Figure 4.17. Human carbonic anhydrase II complexed with [(η6-C6Me6)Ru(bispy)Cl]+ (PDB code: 3PYK).
In red spheres, the solvent-accessible serine residues chosen for mutation to cysteine; in green sphere, the
cysteine at position 206; in blue spheres, the 26 Leucine residues of hCAII; in orange sphere, the zinc II ion;
and in sticks, the metal complex embedded into the protein scaffold.

The high number of Leucine residues in hCAII (26 in total) was decisive regarding to the

choice for site-specific isotopic labelling.

All five single cysteine constructs were isotopically labelled (uniform 15N and specific 15N

Leucine), and the construct C206S-S50C was also deuterium labelled, in E. coli expression

system (Table 4.6). The latter form of labelling proved to be challenging as very low yields of

protein were obtained from the two cultures that were carried out (∼ 30 mg/L). In order to

obtain maximum sensitivity in heteronuclear 3D experiments, 2H, 13C, 15N labelled mutant

was denatured and renatured to exchange all amide 2H with 1H. The efficiency of hCAII

refolding limited the amount of protein that was recovered. About 50% of the protein was

recovered, properly folded.

Table 4.6. Yields [ mg/L ] of human carbonic anhydrase II mutants (C206S-SyC), isotopically labelled. For
uniformly 15N labelled proteins, the cultures were carried out to a final volume of 2 L, and for specific 15N
Leu to a final volume of 3 L.

Protein Uniform, 15N [ mg/L ] Specific, 15N Leucine [ mg/L ]

C206S-S50C 95 230
C206S-S166C 95 140
C206S-S173C 85 180
C206S-S217C 60 180
C206S-S220C 80 165
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HSQC spectra

Unambiguous 15N-HSQC NMR spectra of selectively labelled hCAII were obtained (Fig-

ure 4.18.a), allowing the quick assignment of the PCS shifted peaks of the protein samples

tagged with [Tm(M8-SPy)], and the measurement of the corresponding PCS.

(a) (b)

Figure 4.18. Overlay of 2D [15N - 1H]-HSQC spectra of hCAII C206S-S50C acquired with [Tm(M8-SPy)]
(peaks shown in red) and [Lu(M8-SPy)] (peaks shown in black), at 298 K and pH 6.8. For illustrative purpose,
solid lines connect selected pairs of diamagnetic and paramagnetic cross-peaks. (a) Selective 15N Leu labelled.
(b) Uniform 15N labelled. Spectra by KZ.

These pseudo-contact shifts allowed the determination of the initial parameters of the χ-

tensor (data not shown), and consequently the assignment of 80% of the amide resonances of

the [Tm(M8-SPy)] tagged uniformly labelled samples. These assignments allowed the further

refinement of the χ-tensor.

Below an example of the superimposition of the spectra of hCAII C206S-S50C, untagged and

tagged with the dysprosium 32 and thulium 31 complexes (Figure 4.19).
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Figure 4.19. Manifestation of PCSs in [15N-1H]-HSQC NMR spectra of hCAII C206S-S50C. The example
shows the superimposition of three 15N-HSQC spectra of the protein, untagged and tagged with Dy 3+ and
Tm 3+, respectively. In blue, the untagged protein; in red, the protein tagged with [Dy(M8-SPy) 32]; and in
green, the protein tagged with [Tm(M8-SPy) 31]. The spectra were recorded at 298 K and pH 6.8. Spectra
by KZ.

To further investigate the interactions between the biomolecular scaffold and the catalyst

in solution state, the pseudo-contact chemical shifts were recorded for a fluorinated in-

hibitor (Figure 4.20), N -(2,3-difluorobenzyl)-4-sulphamoylbenzamide (61), synthesised by

FM (Scheme 4.9). This system was chosen as it had been previously reported by Chris-

tianson and co-workers (PDB code: 1G52). [38]

Scheme 4.9. Structure of the fluorinated ligand-inhibitor used in NMR studies.
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Figure 4.20. 1D 19F spectra of inhibitor 61. (a) The inhibitor without the protein. (b) The inhibitor in
the presence of hCAII C206S-S166C. (c) The inhibitor in the presence of hCAII C206S-S166C tagged with
[Tm(M8-SPy)]. The PCS are highlighted in red. Spectra by KZ.

The recorded 1D 19F-NMR spectra of 61 ⊂ hCAII C206S-S166C labelled with [Tm(M8-SPy)]

was in good agreement with the published x-ray structure. According to the experimental PCS

and the initial calculations, the fluorine position deviate as much as 5 Å, from the expected

position in the crystal structure.

4.3 Conclusion & outlook

Human carbonic anhydrase II was expressed in E. coli with the purpose of creating a new

biomolecular scaffold to host an organometallic moiety. After optimisation of the production

conditions (up- and downstream), up to 400 mg of pure protein per litre of culture was

obtained in shake flasks. The screening of a small library of rationally designed mutants

allowed the identification of I91 as an important residue for the enantioselective reduction of

prochiral imines using [(Cp*)IrCl2]2. X-ray crystal structure studies of the first generation of

ligands confirmed that hCAII had a suitable hydrophobic cavity to anchor the complex. More

recently, efforts were directed toward crystallographic investigations for the elucidation of the

second generation of ligands embedded in hCAII. The structure provided more insight into the
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origin of the observed enantioselectivity, and will allow further chemo-genetic modifications,

in order to optimise the first and second coordination spheres of this novel hybrid catalyst.

Docking experiments have proven to be a useful tool for rational design of the host protein.

Indeed, the influence of mutations at a key position (L198x) in hCAII on ligand binding

affinities were correctly predicted from atomistic simulations. The experimentally determined

binding constants of the designed mutants for the reactive benzenesulphonamide correlated

very well with the computed binding free energies. This indicates that docking could be used

to some extent to construct hCAII variants with a designed specificity.

A rigid, high-affinity lanthanide chelating tag, [M8-SPy] was successfully bound to labelled

hCAII. The pseudo-contact chemical shifts were determined by selectively 15N Leucine labelled

hCAII tagged with [Tm(M8-SPy)]. As a first approach to better understand the position

and interactions between the inhibitor and the protein in solution, PCS of a difluorinated

inhibitor bound to hCAII were obtained by simple 1D 19F NMR spectra. The conformational

information obtained from NMR with that obtained from x-ray crystallography indicated a

deviation of 5 Å, between structures, confirming that crystal and solution structures of the

inhibitor ⊂ protein differ. In order to further investigate this intriguing observation, an active

fluorinated active catalyst was synthesised, and NMR studies are presently undergoing to

solve the artificial metalloenzyme structure in solution. NMR and x-ray structure studies will

glean more detailed and precise structural information on the position and orientation of the

catalyst inside the protein cavity.
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Chapter 5

Summary & outlook

One never notices what has been done;

one can only see what remains to be

done.

Marie Skłodowska-Curie

Artificial metalloenzymes have emerged as a promising approach to merge beneficial aspects

of bio- and homogeneous catalysis, and the scope of transformations enabled by metal-

mediated reactions. Since activity and selectivity, including enantioselectivity, of natural

(metallo)enzymes are due to the second coordination sphere interactions provided by the

protein, artificial metalloenzymes aim at harnessing those interactions to create transition

metal complexes that display catalytic activity for enantioselective syntheses. However, the

design of new artificial metalloenzymes is rather challenging and extremely labour intensive,

mainly due to the necessity to screen organometallic moieties on purified biomolecular scaf-

folds. Therefore, only very small mutant libraries (< 50 clones) can be handled in a slow

and tedious overall process. More sophisticated screening methods are required for future

reactions.

During the course of this thesis, various strategies to optimise production of streptavidin in

E. coli were developed and tested as high-throughput screening methods for the asymmetric

transfer hydrogenation and/or reductive amination reactions. The main aim was to reduce the

time of protein production, and protect the organometallic catalyst from cell-based catalyst

poisons (e.g. reduced glutathione). The first two approaches (protein precipitation and small-

scale purification) rendered satisfactory results, with low to moderate overall reaction yields.

The main obstacles, however, consisted of tedious individual purification of variants, and low

amount of protein available from small-scale cultures. Presently, the best currently available

expression system of streptavidin does not deliver enough protein to fulfil the requirements for

efficient and extensive screening, in small-scale. Thus, it is not possible to implement these

purification methods in e.g. microtiter plates. The last approach based on the neutralisation

of glutathione present in cell-free protein extracts revealed very promising and reproducible

results (> 40% conversion and > 50% enantioselectivities), and can be easily implemented

in parallel screening. In order to develop a more efficient variation of this strategy, two

options appeared to be logical: (i) improve the expression system for streptavidin in E. coli

considerably, since low concentration of the biomolecular scaffold leads to lower conversions
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compared to standard conditions; or (ii) turn to an alternative expression system that would

yield high levels of secreted protein in the supernatant, allowing directed evolution, high-

throughput expression, direct screening in the supernatant, and thus evolution of hybrid

catalysts.

To fulfil the listed requirement, Pichia pastoris was tested as expression system for het-

erologous production of streptavidin. High-level of mature Sav was obtained in a fed-batch

fermentation. Enantioselective catalysis performed by an artificial metalloenzyme created

with crude supernatant of Sav expressed in Pichia pastoris was investigated and evaluated.

Success of its application, however, was limited owing to the low-level of secreted protein

before concentration. Similar catalysis results were obtained with purified protein expressed

either in E. coli or P. pastoris. Further studies on Sav expressed in P. pastoris, mutagenesis

of critical potential O-glycosylation sites, and optimisation of the culture parameters should

be conducted. The use of cell-free based expression systems should also be investigated as it

would allow to overcome processing bottlenecks, e.g. presence of GSH and biotin.

Human carbonic anhydrase II was investigated as potential scaffold for protein-based hybrid

catalysts. The expression of hCAII was optimised up to a degree that high yield was achieved

in shake flasks cultures in the order of 400 mg per litre, thus protein concentration was not an

issue. A successful example of this system was the construction of a highly enantioselective

imine reductase by chemo-genetic optimisation. A promising 29% ee was found for the imine

reduction reaction of a salsolidine precursor using one of the created constructs. The combined

use of rational, structural and computational design (designed evolution) had great advantages

for the production of artificial metalloenzymes with novel and improved activity. Further

development of these catalyst systems with use of both synthetic (e.g. optimisation of ligand

structure) and biomolecular tools (e.g. optimisation of protein environment) for optimisation

can lead, in the future, to very efficient and enantioselective conversions. Current efforts

aim to solve the NMR structure of this hybrid catalyst to gain insights of the system in

solution-state.

In summary, in order to generate and identify protein variants to enhance enantioselectivity

in artificial metalloenzymes, directed evolution, screening and selection techniques have to be

improved. State-of-the-art libraries have to be generated to make engineering of biomolecular

scaffolds more efficient and effective. To this end, library construction techniques, which com-

bine classical methods such as error-prone PCR and rational methods, have to be combined

with computational, structural and statistical approaches. A colorimetric or fluorescence

assay should be developed to ease the process of screening of large libraries accurately.

Advances in the artificial metalloenzyme field would bring the scientific community closer to

realising the dream of tailor-made hybrid catalysts with high catalytic efficiency and selectivity

for biotechnological and pharmaceutical applications.



Chapter 6

Materials & methods

In Science, we must be interested in

things, not in persons.

Marie Skłodowska-Curie

6.1 General experimental section

6.1.1 Standard methods & reagents

Standard methods, such as primers design, DNA extraction and purification, polyacrylamide

gel electrophoresis, protein chromatography (affinity, anion exchange, gel filtration), and spec-

trophotometric quantification of cell growth were carried out according to published protocols,

with minor adjustments (when necessary).

DNase I was purchased from Roche Diagnostics AG (Basel, Switzerland), pre-stained protein

marker was either “Broad Range” from New England BioLabs Inc. (Allschwill, Switzerland)

or “BenchMark” from Invitrogen (Carlsbad, CA USA), primers were ordered from Microsynth

AG (Balgach, Switzerland), ampicillin and chloramphenicol were purchased from Applichem

GmbH (Darmstadt, Germany) and Zeocin from Invitrogen (Carlsbad, CA USA), Pfu Turbo

polymerase was from Stratagene (La Jolla CA, USA), isopropyl-β-d-1-thiogalactopyranoside

(IPTG) and dithiothreitol (DTT) from Apollo Scientific (Stockport, UK) and biotin-4-fluores-

cein (B4F) from ANAWA Trading SA (Zurich, Switzerland). All other standard chemical

and biological reagents were purchased from Sigma-Aldrich or Fluka (St. Louis, MO USA),

Acros Organics (Geel, Belgium), Fischer Chemicals AG (Zurich, Switzerland), LuBio Sci-

ence (Lucerne, Switzerland), Affymetrix (Santa Clara, CA USA), Applichem (Darmstadt,

Germany), Merck (Billerica, MA USA) or Thermo Scientific (Waltham, MA USA). Suppli-

ers of more specific kits and reagents are referenced throughout the text, in their respective

section. Reagents and solvents were of the highest commercially available grade and used

without further purification, and solutions were prepared in deionised water, unless otherwise

indicated.

6.1.2 Equipment

Polymerase chain reactions (PCR) were performed in an Eppendorf Mastercycler Gradient

(Hamburg, Germany). DNA concentration was determined on ThermoFisher Scientific Nan-
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oDrop 1000 spectrophotometer (Waltham, MA USA). Electroporation was done using Bio-

Rad GenePulser electroporator. Polyacrylamide (non- and denaturing) and agarose gel elec-

trophoresis were carried out using Bio-Rad Mini-PROTEAN and Sub-Cell systems, respec-

tively. Resulting gels were analysed with Molecular Image Gel Doc XR (Reinach, Switzer-

land). Western blot was carried out on Biometra Fastblot B34 system (Châtel-Saint-Denis,

Switzerland) connected to a BioRad PowerPac HC system. Blots were analysed with GE

Healthcare Life Sciences ImageQuant RT ECL imager (Glattbrugg, Switzerland).

Fermentations carried out at the University of Basel (Unibas) were performed in a 20 L work-

ing volume NLF22 fermentor, from BioEngineering AG (Wald, Switzerland). Fermentation

conducted at the Paul Scherrer Institute (PSI Ost Villigen, Switzerland) was carried out in

a 1.5 L working volume, custom-made fermentor also from BioEngineering AG. Shake flasks

and 96-well plate cultures were carried out in either an Infors HT Ecotron (Bottmingen,

Switzerland) or a New Brunswick Scientific INNOVA 44 (Edison NJ, USA).

Electronic absorption of cell growth were recorded on a Agilent | Varian Inc. Cary UV-Vis

5000 spectrophotometer (Englewood, CO USA), and electronic absorption and emission were

recorded on Tecan Safire microplate reader (Männedorf, Switzerland) running SoftMax Pro

software. Streptavidin expressed in Pichia pastoris was concentrated by tangential flow filtra-

tion, using Merck Millipore Prep/Scale Spiral Wound TFF-6 Module PLGC 10K Regenerated

cellulose system (Billerica, MA USA) connected to a Verderflex peristaltic pump from Verder

Ltd (Essex, UK). ÄKTAprime Plus (Unibas) and ÄKTAExpress (PSI) chromatography sys-

tems (FPLC), from GE Healthcare (Glattbrugg, Switzerland), were used in the purification of

proteins. Purified proteins were lyophilised in a Labonco benchtop lyophiliser FreeZone 2.5 L

(Kansas City, MO USA). The determination of the molecular mass of the proteins was per-

formed by electrospray ionisation time-of-flight mass spectrometry, ESI-TOF MS, at Unibas

Biozentrum (Basel, Switzerland). The instrument used was a Bruker Daltonics, micrOTOF,

ESI/TOF MS benchtop type (Fällanden, Switzerland). The determination of the molecular

mass and N-terminal sequencing of streptavidin expressed in Pichia pastoris was performed

by the “Functional Genomics Center Zurich”, from the University of Zurich (Switzerland).

Catalysis reactions were performed in a magnetically stirred multireactor, RR 98072, Radleys

Discovery Technologies (Essex, UK), a HLC Biotech heating thermomixer MR23 from Huber

& Co, AG (Reinach, Switzerland), or in an incubator shaker (Infors HT Ecotron or New

Brunswick Scientific INNOVA 44).

The conversion (conv.) and enantiomeric excess (ee) of the reduction products were deter-

mined by chiral phase HPLC, in an Agilent or Hewlett Packard 1100 Series systems equipped

with a G1322A degasser, a G1312A binary pump, a G1316A column compartment, a G1315A

diode array detector and a G1329A autosampler unit (Englewood, CO USA).
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6.2 Experimental section of Chapter 2

6.2.1 General procedure for the production of streptavidin

Some methods described herein were developed and/or optimised by previous members of the

Ward group, namely Dr Nicolas Humbert and Dr Alessia Sardo. [1,2]

Cloning & mutagenesis

pET11b-Sav plasmid

The original pET11b-Sav plasmid was a generous gift from Prof. Santambrogio (University of

Milan, Italy) who cloned streptavidin (Sav) coding sequence downstream of the T7 promoter [3]

and gene 10 leader sequences (Figure 6.1). Cloning the gene of interest using BamHI site

resulted in the replacement of the first 13 amino acids of the N-terminal by an immunological

marker, the T7 epitope tag, which increases the solubility of recombinant Sav in the cytoplasm

of Escherichia coli.

Figure 6.1. Plasmid map of streptavidin gene in pET11b vector. In the absence of the molecular mimic
of allo-lactose, IPTG, the lac repressor (in purple) binds to the lac operon, preventing the binding of E. coli

RNA polymerase and, consequently, the transcription of T7 RNA polymerase (blue) and streptavidin gene
(red).

In this study, the construct of T7-tagged streptavidin was transformed into Escherichia coli

BL21(DE3)pLysS strain (genotype: F− ompT lon hsdSB(r−Bm−

B) dcm gal λ(DE3) [pLysS

(cmr)], produced in-house) for high-level expression of recombinant protein. This strain is

deficient in proteases Ion and ompT, and it confers increased stability and limits the pro-

teolytic cleavage of the expressed protein. BL21(DE3)pLysS is lysogenic for λ-DE3, which
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carries a chromosomal copy of the viral T7 bacteriophage gene I, encoding T7 RNA poly-

merase under the control of the lac UV5 promoter (inducible protein expression by addition

of isopropyl-β-d-1-thiogalactopyranoside, IPTG). pLysS plasmid carries the gene encoding T7

lysozyme, which lowers the background expression level of target genes under the control of

the T7 promoter without interfering with the level of expression achieved following induction

by IPTG.

Site-directed mutagenesis

pET11b plasmid containing a BamHI cloning site as well as a gene encoding for streptavidin

fused with a T7-tag was used as a template for PCR. Primers were designed following the

method described by Zheng et al., [4] and tested in silico to minimise hairpin formation. [5]

Primers were obtained from Microsynth (Balgach, Switzerland). PCR reactions were prepared

by addition of 5 µL 10x Pfu buffer (Stratagene), 2 µL of 10 mM dNTP, 2.5 µL DMSO (final

concentration 5%), 1.5 µL Pfu Turbo polymerase (Stratagene), 1.5 µL of 10 mM primers (sense

and antisense), 35 µL H2O to 1 µL of template. The cycle conditions were: initial denaturation

(95 ◦C, 5 min), followed by 16 or 25 cycles of 1 min at 95 ◦C; 1 min at 60 ◦C (or adjusted

to the melting temperature of the primers), and a final elongation at 68 ◦C for 1 h. The

resulting PCR product was kept at 10 ◦C until further analysis. PCR products were analysed

by 0.7% agarose gel electrophoresis (1.4 g agarose in 0.5% v/v Tris-borate-EDTA (TBE) and

10 µL ethidium bromide (10 mg/mL stock solution)) after the initial DNA template (wild-type

sequence) was digested by DpnI (4 h at 42 ◦C). The gel was analysed under fluorescent light,

using Bio-Rad Gel Doc XR+ software. Ultra-competent XL1-Blue E. coli cells (genotype:

recA1 endA1 gyrA96 thi -1 hsdR17 supE44 relA1 lac [F’ proAB lac1q Z∆M15 Tn10(Tetr)],

produced in-house) were transformed with 5 µL of PCR product. Plasmids were purified using

Promega Wizard Plus SV Miniprep DNA purification system (Dübendorf, Switzerland), and

were sequenced either by Starseq (Mainz, Germany) or Microsynth (Balgach, Switzerland).

The list of primers (sense and antisense) used for each project of this Chapter, and their

characteristics (melting temperature, silent mutation, etc.) are listed in Table 6.1 to Table 6.3.

Table 6.1. List of primers (s: sense; a: antisense) for the construction of Sav mutants, used as templates for
a second round of mutagenesis. wt Sav was used as template (e.g. Sav S112A stands for the serine residue
at position 112 mutated to an alanine). In lowercase, the mutation introduced, and in italic, a silent mutation
(to avoid hairpin formation and/or self-annealing).

Mutant Primers (5’→3’) Tm (◦C) Length (bases)

S112H s G CTG ACC cat GGt ACC ACC GAG GCC AAC GCC TGG 72.9 34
a GTT GTG GGT CAC CGA CGA CTG GGT aCC atg GTG G 70.4 34

K121H s C GCC TGG cac TCC ACG CTG GTC GGC CAC GAC ACC 75.3 34
a CGT GGA gtg CCA GGC GTT GGC CTC GGT GGT GCC 74.3 33
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Table 6.2. List of primers (s: sense; a: antisense) the second round of mutagenesis. Sav S112H was used
as template. In lowercase, the mutation introduced, and in italic, a silent mutation (to avoid hairpin formation
and/or self-annealing).

Mutant Primers (5’→3’) Tm (◦C) Length (bases)

K121W s GCC TGG tgg TCC ACG CTG GTC GGC CAC GAC ACC 74.7 33
a CGT GGA cca CCA GGC GTT GGC CTC GGT GGT GCC 74.7 33

K121A s GCC TGG gcg TCC ACG CTG GTC GGC CAC GAC ACC 75.6 33
a CGT GGA cgc CCA GGC GTT GGC CTC GGT GGT GCC 75.6 34

K121F s C GCC TGG ttc TCC ACG CTG GTC GGC CAC GAC ACC 74.1 34
a GT GGA gaa CCA GGC GTT GGC CTC GGT GGT GCC 72.1 32

K121D s C GCC TGG gac TCC ACG CTG GTC GGC CAC GAC ACC 75.3 34
a GT GGA gtc CCA GGC GTT GGC CTC GGT GGT GCC 73.4 34

K121C s C GCC TGG tgt TCC ACG CTG GTC GGC CAC GAC ACC 74.1 34
a CGT GGA aca CCA GGC GTT GGC CTC GGT GGT GCC 73.1 33

K121E s GCC TGG gag TCC ACG CTG GTC GGC CAC GAC ACC 74.3 33
a CGT GGA ctc CCA GGC GTT GGC CTC GGT GGT GCC 74.3 33

K121R s GCC TGG cgg TCC ACG CTG GTC GGC CAC GAC ACC 75.6 33
a CGT GGA ccg CCA GGC GTT GGC CTC GGT GGT GCC 75.6 33

N49A s GTC GGC gcc GCC GAG AGC CGC TAC GTC CTG 73.9 30
a T CTC GGC ggc GCC GAC GGC CGA CTC GTA GG 73.9 30

N49S s GTC GGC tcc GCC GAG AGC CGC TAC GTC CTG 72.6 30
a T CTC GGC gga GCC GAC GGC CGA CTC GTA GG 72.6 30

N49W s GTC GGC tgg GCC GAG AGC CGC TAC GTC CTG 73.2 30
a T CTC GGC cca GCC GAC GGC CGA CTC GTA GG 73.2 30

N49F s GTC GGC ttt GCC GAG AGC CGC TAC GTC CTG 70.7 30
a T CTC GGC aaa GCC GAC GGC CGA CTC GTA GG 70.7 30

N49D s GTC GGC gat GCC GAG AGC CGC TAC GTC CTG 71.9 30
a T CTC GGC atc GCC GAC GGC CGA CTC GTA GG 71.9 30

N49E s GTC GGC gaa GCC GAG AGC CGC TAC GTC CTG 71.9 30
a T CTC GGC ttc GCC GAC GGC CGA CTC GTA GG 71.9 30

N49R s GTC GGC cgt GCC GAG AGC CGC TAC GTC CTG 73.2 30
a T CTC GGC acg GCC GAC GGC CGA CTC GTA GG 73.2 30

N49C s GTC GGC tgt GCC GAG AGC CGC TAC GTC CTG 71.9 30
a T CTC GGC aca GCC GAC GGC CGA CTC GTA GG 71.9 30

L124A s GG AAG TCC ACG gca GTC GGC CAC GAC ACC TTC ACC 72.7 35
a G GCC GAC tgc CGT GGA CTT CCA GGC GTT GGC CTC GG 75.5 36
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Table 6.3. List of primers (s: sense; a: antisense) the second round of mutagenesis. Sav K121H was used
as template. In lowercase, the mutation introduced, and in italic, a silent mutation (to avoid hairpin formation
and/or self-annealing).

Mutant Primers (5’→3’) Tm (◦C) Length (bases)

S112A s G CTG ACC gcc GGt ACC ACC GAG GCC AAC GCC TGG 75.3 34
a GTT GTG GGT CAC CGA CGA CTG GGT aCC ggc GTG G 72.9 34

S112W s G CTG ACC tgg GGT ACC ACC GAG GCC AAC GCC TGG 74.1 34
a GGT GGT ACC cca GGT CAG CAG CCA CTG GGT GTT G 71.7 34

S112E s G CTG ACC gag GGC ACC ACC GAG GCC AAC GCC TGG 75.3 34
a GGT GGT GCC ctc GGT CAG CAG CCA CTG GGT GTT G 72.9 34

S112R s G CTG ACC cgt GGC ACC ACC GAG GCC AAC GCC TGG 75.3 34
a GGT GGT GCC acg GGT CAG CAG CCA CTG GGT GTT G 72.9 34

S112C s G CTG ACC tgc GGC ACC ACC GAG GCC AAC GCC TGG 75.3 34
a GGT GGT GCC gca GGT CAG CAG CCA CTG GGT GTT G 72.9 34

S112F s G CTG ACC ttt GGC ACC ACC GAG GCC AAC GCC TGG 73.1 34
a GGT GGT GCC aaa GGT CAG CAG CCA CTG GGT GTT G 70.6 34

S112D s G CTG ACC gat GGC ACC ACC GAG GCC AAC GCC TGG 74.3 34
a GGT GGT GCC atc GGT CAG CAG CCA CTG GGT GTT G 71.9 34

S112K s G CTG ACC aag GGC ACC ACC GAG GCC AAC GCC TGG 75.5 34
a GGT GGT GCC ctt GGT CAG CAG CCA CTG GGT GTT G 73.1 34

L110A s G TGG CTG gcg ACC TCC GGC ACC ACC GAG GCC AAC 75.3 36
a GCC GGA GGT cgc CAG CCA CTG GGT GTT GAT CCT CGC 74.7 36

L110E s GG CTG gag ACC TCC GGC ACC ACC GAG GCC AAC GCC 76.1 35
a GCC GGA GGT ctc CAG CCA CTG GGT GTT GAT CCT CG 72.6 35

L110K s GG CTG aag ACC TCC GGC ACC ACC GAG GCC AAC GCC 75.0 35
a GC CTC GGT GGT GCC GGA GGT ctt CAG CCA CTG GG 74.1 34

L110W s G TGG CTG gca ACC TCC GGC ACC ACC GAG GCC AAC GC 75.5 36
a GCC GGA GGT tgc CAG CCA CTG GGT GTT GAT CCT CGC 73.5 36

L110F s G TGG CTG ttc ACC TCC GGC ACC ACC GAG GCC AAC GC 73.5 36
a GCC GGA GGT gaa CAG CCA CTG GGT GTT GAT CCT CGC 71.0 36

L110D s G TGG CTG gat ACC TCC GGC ACC ACC GAG GCC 74.3 36
a GCC GGA GGT atc CAG CCA CTG GGT GTT G 72.3 36

L110R s G TGG CTG agg ACC TCC GGC ACC ACC GAG GCC 75.5 36
a GCC GGA GGT cct CAG CCA CTG GGT GTT G 73.5 36

L110C s G TGG CTG tgt ACC TCC GGC ACC ACC GAG GCC AAC GC 74.3 36
a GCC GGA GGT aca CAG CCA CTG GGT GTT GAT CCT CGC 72.3 36

Expression in 50 mL cultures

This protocol describes how to express in parallel several Sav variants, in 50 mL culture, in

suitable amounts for enantioselective catalysis screening.

For high gene expression, the plasmid containing Sav gene was transformed into ultra-competent

E. coli BL21(DE3)pLysS cells.

After thawing on ice 100 µL of BL21(DE3)pLysS cells, 8 µL of dithiothreitol (DTT, 200 mM

stock) and 3 µL of plasmid (0.2 – 0.5 µg of DNA) were added and mixed gently. The mixture

was left on ice for 15 min, and then plated on pre-warmed lysogeny broth (LB-Miller) plates

(containing 60 µg/mL ampicillin (amp), 34 µg/mL chloramphenicol (cm), and 2% w/v glu-
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cose). The plates were inverted and incubated overnight at 37 ◦C, for plasmid multiplication.

All solutions used were autoclaved (121 ◦C, 15 min) or filter-sterilised (0.22 µm sterile filter).

Expression in TP medium

[Inoculum] After overnight incubation of the plate at 37 ◦C, a medium sized colony was

chosen to inoculate 5 mL TP medium (20 g/L bactotryptone, 15 g/L bactoyeast extract, 8

g/L NaCl, 2g/L Na2HPO4, and 1 g/L KH2PO4), containing the appropriate amounts of an-

tibiotics (60 µg/mL amp and 34 µg/mL cm), and 2% w/v glucose. The 50 mL baffled shake

flask was incubated overnight in an orbital shaker, at 37 ◦C and 250 rpm.

[Culture] A baffled shake flask containing 50 mL of cell culture medium (same composition

as the inoculum medium, 60 µg/mL amp and 34 µg/mL cm, but no glucose) was inoculated

with the overnight inoculum (1:10 dilution). Cells were grown at 37 ◦C and 415 rpm, for

3 h. Addition of 0.4 mM IPTG induced protein expression. A sample of the culture (1 mL)

was taken just prior addition of IPTG, and before harvesting. The culture was centrifuged

(4,400 rpm, 10 min, 4 ◦C), the supernatant deactivated (by addition of sodium hypochlorite)

and discarded, and cell pellets were fast-frozen in liquid nitrogen and kept at -20 ◦C until

further analysis/work-up.

[Glycerol stocks] Glycerol stocks of the variants were prepared by mixing 500 µL of the

remaining pre-culture with 500 µL of 100% glycerol. The mixture was homogenised by vor-

texing, flash-frozen in liquid nitrogen, and stored at -80 ◦C for further use.

Expression in auto-induction medium

[Inoculum] After overnight incubation of the plate at 37 ◦C, a medium sized colony was

chosen to inoculate 5 mL LB medium (10 g/L bactotryptone, 5 g/L bactoyeast extract, and

10 g/L NaCl), containing the appropriate amounts of antibiotic (60 µg/mL amp and 34 µg/

mL cm), and 2% w/v glucose. The 50 mL baffled shake flask was incubated overnight in an

orbital shaker, at 37 ◦C and 250 rpm.

[Culture] One litre culture medium was prepared as follow: 7.1 g/L Na2HPO4, 6.8 g/L

KH2PO4, 20 g/L bactotryptone, 5 g/L bactoyeast extract, 5 g/L NaCl were dissolved in

960 mL deionised water, and autoclaved (liquid cycle, 121 ◦C, 15 min). The following solutions

were prepared and autoclaved/filter-sterilised separately, and added to the culture medium

prior to inoculation: 60% v/v glycerol (10 mL, final concentration: 0.1%), 10% w/v glucose

(5 mL, final concentration: 0.05%), 8% w/v lactose (25 mL, final concentration: 0.2%), 1 M

MgSO4 (2 mL, final concentration: 2 mM), 60 µg/mL amp, and 34 µg/mL cm.

The autoinduction medium (50 mL) was inoculated with the whole overnight inoculum, and

incubated at 37 ◦C until OD600 reached 0.2 – 0.3. The shake flasks were then transferred to
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another orbital shaker pre-heated to 23 ◦C (induction point)1, and the culture incubated for

another 35 h. Samples of the culture (1 mL) were taken just before temperature induction,

and every 5 h until the end of the expression. The culture was centrifuged (4,400 rpm, 10 min,

4 ◦C), the supernatant deactivated (by addition of sodium hypochlorite) and discarded, and

cell pellets were fast-frozen in liquid nitrogen, and kept at -20 ◦C until further analysis/

work-up.

Expression in 20 L fermentor

[Seed culture] After overnight incubation of the plate at 37 ◦C, a medium sized colony or

a tip dipped in the 25% glycerol stock inoculated 300 mL sterile TP medium (20 g/L bac-

totryptone, 15 g/L bactoyeast extract, 8 g/L NaCl, 2g/L Na2HPO4, and 1 g/L KH2PO4),

containing the appropriate amounts of antibiotics (60 µg/mL amp and 34 µg/mL cm), and

2% w/v glucose. The 1 L baffled shake flask was incubated overnight in an orbital shaker, at

37 ◦C and 250 rpm.

[Fermentation] The fermentation was carried out in a 30 L capacity BioEngineering NFL22

fermentor (Wald, Switzerland). 20 L sterile TP medium (recipe aforementioned) were inocu-

lated with the whole seed culture (i.e. 300 mL). Cells were grown at 37 ◦C and 1,000 rpm,

for 3 hours or until OD600 reached 1.8 – 2.2. Addition of 0.4 mM IPTG induced protein

expression. A sample of the culture (1 mL) was taken just prior addition of IPTG, and ev-

ery hour until harvesting. Three hours after induction, the broth was harvested, centrifuged

(4,400 rpm, 10 min, 4 ◦C), the supernatant deactivated (by addition of sodium hypochlorite)

and discarded, and cell pellets were fast-frozen in liquid nitrogen, and kept at -20 ◦C until

further analysis/work-up.

6.2.2 Purification procedure

Preparation of samples

From a large-scale expression (20 L fermentation)

Streptavidin variants were expressed in E. coli, and the harvested cell pellets frozen at -20 ◦C

for a minimum of 15 h. Wet cell pellets were thawed and resuspended in Tris-HCl buffer

(20 mM, pH 7.4, 500 – 1000 mL for 150 – 450 g pellet). Two to 3 mg of DNase I (Roche

Diagnostics, Switzerland) and 1 mM phenylmethylsulphonyl fluoride (PMSF) were added, and

the resuspended cells were incubated at RT under vigorous shaking until total degradation of

1To lower the temperature of an orbital shaker from 37 ◦C to 23 ◦C in a short period of time was not
possible, thus compromising the effect of temperature (heat-shock) in the protein induction. The solution was
to transfer the culture from one shaker to another, pre-warmed to 23 ◦C, thus ensuring the desired effect of
temperature.
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nucleic acids. The sample was dialysed against 6 M guanidinium hydrochloride pH 1.5 (24 h,

at RT). The proteic extract was centrifuged (18,000 x g, 30 min, 4 ◦C) to remove cell debris.

Two further dialyses were performed (20 mM Tris-HCl, pH 7.4, followed by 50 mM Na2CO3,

0.5 M NaCl, pH 9.8, 4 ◦C) to prepare the proteic extract for affinity chromatography.

From a small-scale expression (50 mL culture in shake flasks)

The pellet (∼ 3 g from a 50 mL culture) was thawed and resuspended in deionised water

(three times wet cell weight in mL). One microlitre of 10 mg/mL DNase I (Roche Diagnostics,

Switzerland) and 1 mM PMSF were added, and the resuspended cells were incubated first at

37 ◦C for 2 h, and then at RT under vigorous shaking until total degradation of nucleic acids.

The proteic extract was centrifuged (18,000 x g, 30 min, 4 ◦C) to remove cell debris. pH was

adjusted to 9.8 by addition of 5 M Na2CO3, pH 9.8 to prepare the proteic extract for affinity

chromatography.

By affinity chromatography

Affinity chromatography on ÄKTAprime Plus chromatography system

The dialysed protein extract was filtered (Whatman paper filter) and applied to a 2-iminobiotin

sepharose (Affiland, Belgium) column equilibrated with three column volumes (CV) of bind-

ing buffer (50 mM Na2CO3 pH 9.8, and 500 mM NaCl). The column was washed with seven

CV of binding buffer, and streptavidin was eluted with 1% acetic acid (5 CV). A final three

CV wash was performed with binding buffer. Collected fractions (10 mL) were pooled and

immediately dialysed against Tris-buffer (10 mM Tris-HCl, pH 7.4) for 24 h at 4 ◦C, distilled

water for 24 h and finally two times against ultrapure water for 24 h, at 4 ◦C. The purified

and dialysed protein was flash-frozen in liquid nitrogen, lyophilised, and stored at 4 ◦C until

use.

Affinity chromatography on a 24-well plate format (Small-Scale Purification, SSP)

The extract (1.5 mL) was applied to 400 µL/well 2-iminobiotin sepharose (Affiland, Belgium)

packed in a 24-deep well plate (in-house fabricated), and equilibrated at pH 9.8 (50 mM

Na2CO3 pH 9.8, and 500 mM NaCl). Streptavidin was eluted with 1% v/v formic acid. The

pH was immediately corrected with 5 M NaOH (to pH 5.0) or 32% NH3 (to pH 8.0), for

the imine reduction and reductive amination reactions, respectively. The purified protein was

quantified on a Nanodrop spectrophotometer (ε = 41,490 M−1cm−1, MWmonomer calculated

from ExPASy Protparam tool), [6] and shock frozen using liquid nitrogen, lyophilised, and

stored at 4 ◦C until use. The protein was resuspended in the appropriate buffer used in catal-

ysis (MOPS/formate for the imine reduction and HCOONH4 for the reductive amination),
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and the final working concentration was confirmed by Nanodrop.

By protein precipitation

Resuspended cell-free protein extracts (2.5 mL) were transferred to fresh 15 mL tubes, and ice-

cold pure ethanol (7.5 mL) was added at room temperature whereupon precipitation occurred.

The tubes were left to stand at room temperature for 10 min before centrifugation (4,400 rpm,

10 min, 20 ◦C), and subsequent removal of the supernatant. The pellets were washed (1x 2 mL

90% ethanol, 1x 2 mL 80% ethanol), resuspended in the reaction buffer (400 µL), and the solids

separated by centrifugation (4,400 rpm, 10 min, 20 ◦C). The quantity of biotin-free binding

sites in the resulting supernatants was determined by back-titration with biotin-4-fluorescein

(Section 6.2.4).

6.2.3 Characterisation of recombinant streptavidin

Analysis by electrophoresis

The samples taken from the culture and/or fermentation were treated in the same way. All gels

used in Chapter 2 were 12% SDS-PAGE, and were freshly cast for all experiments. Samples

were not heated prior electrophoresis, nor did the loading buffer contain DTT.

The 12% resolving layer solution was prepared using 6 mL 30% acrylamide/bis solution,

5 mL ultrapure water, 3.8 mL resolving buffer made with 1.5 M Tris-HCl (pH 8.8), and 75 µL

20% SDS. Polymerisation was initiated upon addition of 100 µL 15% ammonium persulphate

(APS, in dH2O) and 6 µL tetramethylethylenediamine (TEMED). The stacking layer (4%

acrylamide final concentration) was prepared by mixing 1 mL 30% acrylamide/bis solution,

3.4 mL ultrapure water, 1.5 mL stacking buffer (0.5 M Tris-HCl, pH 6.8) and 30 µL 20% SDS.

Polymerisation was initiated by adding 40 µL of 15% APS and 6 µL TEMED. The stacking

gel was poured on top of the polymerised resolving gel, the combs were inserted, and the gel

was left for polymerisation, for 30 min. When ready, the gel was clamped to the chambers,

and placed into the tank containing 1X SDS buffer (25 mM Tris-HCl, 0.192 M glycine, and

0.1% w/v SDS), to prevent dryness of the gel.

Preparation of samples

Cells were lysed by activating the gene encoding T7 lysozyme using three cycles of “freezing/

thawing”, and were resuspended in a volume (in µL) of ultrapure water equivalent to 40 times

the optical density (600 nm) of the culture at the moment of sampling, supplemented with

DNase I (1 µL of 1 mg/mL in 5 mM Tris-HCl pH 7.5, 75 mM NaCl, 0.5 mM MgCl2, and

50% v/v glycerol). The samples were vortexed, and incubated at RT, under vigorous shaking
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(rotating shaker, 300 rpm), until complete digestion of the nucleic acids (30 – 60 min). The

bacterial extracts were then centrifuged (14,000 rpm, 5 min at RT). The soluble fraction

(supernatant) was transferred to a new microcentrifuge tube, and the insoluble fractions were

resuspended by vortexing, in the same volume of ultrapure water as previously (i.e. in µL,

40x OD600).

SDS-PAGE by B4F detection

Twenty microlitre of each soluble and insoluble fractions, and a positive control (20 µL of pure

protein diluted in ultrapure water, to a final concentration of 1 mg/mL) were mixed with 1 µL

0.6 mM biotin-4-fluorescein (B4F, dissolved in DMSO), and incubated for 10 min at RT. B4F

dye bound to Sav makes the protein easily visible when exposed to UV light, and confirms the

biotin-binding of the protein. 10 µL 3X loading buffer (50 mM Tris-HCl pH 6.8, 1% w/v SDS,

2% v/v β-mercaptoethanol, 10% w/v sucrose, 0.006% w/v bromophenol blue) were added to

each samples, which were quickly vortexed to ensure homogeneous mixing of the sample and

the loading buffer, and immediately charged on the gels. The gels ran at a constant voltage of

120 V, for 90 min. After running, the gels were removed from the electrophoresis apparatus,

and placed directly onto the transilluminator, where they were exposed for a few seconds

(∼ 10 – 20 sec) to UV light. The protein binding activity is easily identified by the reaction of

B4F in the presence of the Sav, which yields bands that emit sufficiently in the visible region.

SDS-PAGE by Coomassie Blue staining

After resolving the gels by UV light, they were transferred to a plastic box containing staining

solution (100 mL, 0.25% w/v Coomassie Brilliant Blue R-250, 50% v/v methanol, and 7.5%

v/v glacial acetic acid), and incubated for 2 h or overnight, under gentle rocking. The staining

solution was discarded and replaced by destaining solution (100 mL, 20% v/v methanol, 10%

v/v acetic acid), and the gel was incubated, on the rocker, for another 3 h or until the protein

pattern started to be visible. The gel was left overnight in deionised water; a Kimwipe placed

in the solution rapidly removed the excess of stain in the solvent. The destained gels were

then photographed for analysis.

6.2.4 Quantification methods

B4F titration

The number of free binding sites of streptavidin was measured by the specific quenching of

biotin-4-fluorescein in the presence of the protein, which is detectable by measurement of its

fluorescence at 485 nm excitation (12 nm slit) and 520 nm emission wavelength (12 nm slit),

as described by Kada et al. [7]
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For the measurement of free binding sites, 100 µM of pure tetrameric Sav was resuspended

in deionised water. A working solution of 2 µM Sav was prepared by dissolving the 100 µM

protein stock solution in assay buffer (0.1 mg/mL BSA in 0.1 M phosphate buffer, pH 7.0).

The 0.6 mM stock solution of B4F was prepared in pure DMSO, and kept at -80 ◦C until

use. A working solution of 40 µM B4F was obtained by a 1:15 dilution in assay buffer. The

Nunc 96 MicroWell black plate, from Thermo Scientific (Roskilde, Denmark) was prepared

by first adding 100 µL of 2 µM Sav solution to each well of one lane. Then, 40 µM B4F in

increments of 2 µL, from 8 to 30 µL, were added to each well. Finally, assay buffer was added

to each well to a final volume of 130 µL per well. Each lane was performed in triplicate. The

plate was shortly centrifuged (1 min, at 1,000 rpm) to remove air bubbles. The fluorescence

of each well was measured with an UV microplate reader, with the following measurements

parameters setup (Table 6.4):

Table 6.4. Measurement parameters setup.

Excitation wavelength: 485 nm Fluorescence top gain: 50
Emission wavelength: 520 nm Number of flash: 10
Excitation bandwidth: 12.0 nm Lag time: 0 µs
Emission bandwidth: 12.0 nm Integration time: 40 µs
Z-Position: 6900 µm Plate definition file: NUN96ft.pdf
Unit: RFU Shake duration (linear normal): 30 s

The evaluation of the number of free binding sites was done by identifying the quenching

breakpoint (intersection of the linear regression of the lines, grey and red, Figure 6.2):

Figure 6.2. Example of a plot from a B4F titration (Sav S112A). The red line represents the first series of
data, and the grey, the second series. On the x-axis, the number of free binding sites, and on the y-axis, the
fluorescence intensity (in arbitrary units, AU).

y = mx+ b (6.1)
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(m1 −m2)

(b2 − b1)
= quenching breakpoint (6.2)

which corresponds to the number of free binding sites, 3.7 from the plot example.

Per protein batch, three samples were weighed in, measured and the intersection calculated

for each one. Then, the average of these three intersection values was taken as the number of

free binding sites of the Sav variant analysed.

B4F back-titration

This protocol is a modified version of the protocol described above, and allows the calculation

of monomeric Sav concentration in cell-free protein extracts (cfe).

The working solution of 40 µM B4F was prepared as described previously, and the solution of

protein was used directly from the resuspension. The assay buffer was prepared by dissolving

0.1 mg/mL BSA in 0.1 M phosphate buffer, pH 7.0. The Nunc 96 MicroWell black plate

from Thermo Scientific (Roskilde, Denmark) was prepared by first adding 10 µL of 40 µM

B4F solution to each well of two lanes. Then, resuspended Sav was added to each well, in

increments of 1 µL from 4 to 15 µL, of 5 µL from 15 to 50 µL, and finally of 10 µL from 50

to 100 µL. Finally, assay buffer was added to each well to a final volume of 120 µL per well.

Each set of two lanes, covering the nominal concentration of 80 to 2000 µM, was performed

in triplicate. The plate was shortly centrifuged (1 min, at 1,000 rpm) to remove air bubbles.

The fluorescence of each well was measured with an UV microplate reader, with the same

parameters setup as above (Table 6.4).

The evaluation of the nominal concentration of monomeric streptavidin was done by iden-

tifying the quenching breakpoint (intersection of the linear regression of the grey and red

lines, Figure 6.3) knowing that 4 x 10−10 mol of B4F (amount of B4F added to each well)

correspond to 4 µM monomeric Sav.

y = mx+ b (6.3)

(b2 − b1)

(m1 −m2)
= quenching breakpoint (6.4)

which corresponds to the nominal concentration of monomeric streptavidin. For the example

given, 1642.38 µM of monomeric streptavidin, which corresponds to ∼ 164 nmol free binding

sites per mg of lyophilised cfe.
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Figure 6.3. Example of a plot from a B4F back-titration (wt Sav cfe). The red line represents the first series
of data, and the blue, the second series. On the x-axis, the nominal concentration of monomeric streptavidin,
and on the y-axis, the fluorescence intensity (in arbitrary units, AU).

Analysis by mass spectrometry

The determination of the molecular mass of streptavidin and mutants was performed by

electrospray ionisation (ESI) with a time-of-flight (TOF) mass spectroscopy (MS) at the

Biozentrum (University of Basel, Switzerland).

A stock solution of protein was prepared by dissolving 0.5 – 1 mg of protein in ultrapure water

to a final concentration of 1 mg/mL. The analyte solution was diluted, in a plastic HPLC vial

(100 µL), to the proper final concentration of 0.1 mg/mL in 1:1 mixture of methanol:water, pH

adjusted to 2.5 with formic acid, just before running the sample. Before analysing the protein

sample by mass spectroscopy, it is important to remove any precipitate and salts present in the

sample. In case of precipitation, the sample was centrifuged for 1 min, at maximum speed, and

the pellet discarded. The sample was desalted using Millipore ZipTip pipette tips (Billerica,

MA USA), which could also be used to concentrate the sample (if necessary), following the

supplier’s protocol. The Agilent 1100 HPLC system, equipped with binary pump and solvent

degasser, autosampler and column compartment, was equilibrated with a mixture of mobile

phase, i.e. 50:50 acetonitrile:water with 0.1% formic acid, at 0.15 mL/min flow rate, until

stabilisation of the signals (i.e. after 3 to 5 min). For positive-ion mode, 0.1% acid (either

formic or acetic) was added into the analyte solution to enhance protonation, and increase

sensitivity. The output of the HPLC separation was introduced into the ESI source of the

Bruker Daltonic MicrOTOF time-of-flight LC-MS system. Solvent A: 0.1% formic acid in

water and solvent B: acetonitrile. The solvent composition was varied from 10% B to 95% B

over 30 minutes. 20 µL of the diluted sample was injected. The resulting data was analysed

using Bruker Daltonics DataAnalysis software (Bruker Daltonics, Germany).
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6.2.5 General procedure for the production of streptavidin in cell-free protein extracts

The work described herein was performed in collaboration with Dr Yvonne Wilson (YW) who

designed the cell-free protein extracts and neutralisation of reduced glutathione experiments.

Preparation of cell-free protein extracts

Bacterial pellet from cells expressing streptavidin variants was resuspended in deionised water

containing 1 mM PMSF and DNase I. The cell suspension was incubated (37 ◦C, 250 rpm)

for 2 h before centrifugation (18,000 x g, 30 min, 4 ◦C). The concentration of biotin-binding

sites in the supernatant was estimated by B4F back-titration before transfer to 50 mL PP

tubes. The volume in each tube was noted, and these were frozen at -80 ◦C overnight. The

samples were placed in a lyophiliser, and the water was removed under reduced pressure until

completion. The mass of dried cell-free protein extracts in each tube was noted, allowing

an approximate value of free biotin-binding sites per mg dry extracts to be calculated. As

a negative control, cell-free protein extracts from the bacterial pellet of cells containing the

pET11b plasmid with no Sav gene insert (empty plasmid) were prepared and lyophilised as

described above.

Neutralisation of reduced glutathione

Several reagents (referred herein as “neutralising agents”) were tested in order to oxidise/

neutralise reduced glutathione (GSH) present in cell-free protein extracts.

The lyophilised cell-free protein extract was resuspended in 1.33 M MOPS, pH 6.5, to a

final concentration of 200 µM monomer. A 40 mM stock solution of neutralising agent was

prepared in catalysis buffer (1.33 M MOPS, 3.32 M HCOONa, pH 6.5), and was further

diluted to obtain a 2x serial dilution of 20, 10, and 5 mM. The protein resuspension (100 µL)

was transferred to four different microcentrifuge tubes (2 mL), and to each different tube

100 µL of neutralising agent was added, at different concentration (20, 10 and 5 mM). In the

fourth tube, no neutralising agent was added (0 mM, negative control). The reaction tube

was incubated for 24 h, at RT. The final concentrations in each tube were of 10, 5, 2.5, and

0 mM of neutralising agent, and 100 µM Sav monomer. As negative control, purified protein

(50 µL, 400 µM monomer) was spiked with 5 mM reduced glutathione (50 µL of 10 mM stock

solution in catalysis buffer, from Alfa-Aesar (Karlsruhe, Germany), and incubated for 2 h at

RT. Then, each tube was treated as for the cell-free protein extracts samples, i.e. with 20,

10, 5, and 0 mM neutralising agent (100 µL), incubated at RT for 24 h.

After 24 h, the catalysis reactions were carried out as described in Section 6.2.6, adding as

positive control, purified protein.
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6.2.6 General procedure for enantioselective catalysis

The conditions described herein are the optimised conditions developed by Dr Jeremy Zim-

bron (JZ) and Mr Marc Dürrenberger (MD), for their respective catalytic system. [8,9] These

conditions (temperature, pH, working concentrations) varied over time and after optimisation

processes, and are not exhaustingly described in this thesis.

Experimental procedure for the transfer hydrogenation of imines

The work described herein was performed in collaboration with Dr Jeremy Zimbron (JZ) and

Mr Marc Dürrenberger (MD), who synthesised the complexes and developed the analytical

methods used in Chapters 2 and 3, respectively. [8,9]

All experiments were carried out with degassed solutions (nitrogen flushed).

Preparation of stock solutions

For experiments performed in collaboration with JZ, the final concentrations of buffer were

4 M sodium formate and 3.2 M of MOPS in ultrapure water, and adjusted to pH to 5.0,

by addition of concentrated formic acid (HCOOH) solution. A 2 M (final concentration)

stock solution of substrate, 1-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline, was used for the

synthesis of salsolidine by asymmetric transfer hydrogenation (ATH).

The [Rh] dimeric complex was dissolved in 0.05 M DMSO, and stored under nitrogen, at 4 ◦C,

until use.

For experiments performed in collaboration with MD, the final concentrations of buffer were

3 M sodium formate and 0.6 M of MOPS in ultrapure water, and adjusted to pH to 6.5, by

addition of concentrated formic acid (HCOOH) solution. A 0.2 M (final concentration) stock

solution of substrate, 1-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline, was used for the syn-

thesis of salsolidine by ATH. A stock solution of protein was prepared to a final concentration

of 100 µM free binding sites per monomer. The final concentration of the biotinylated (Cp*)Ir

complex 4 was 4 mM, and was prepared in pure DMSO.

Catalysis with protein purified by conventional affinity chromatography, JZ

Streptavidin was directly weighted into the reaction tubes (0.916 mM, final free binding sites

concentration). A stock solution of 4 M sodium formate and 3.2 M MOPS (192 µL, pH

5.0) was added to the reaction tube, and the solution was stirred for 5 to 10 min, until

complete dissolution of the protein. The dimer complex 20 (1.37/0.92 µL for a final metal

concentration of 680/458 µM; 0.75/0.50 equivalents [M] vs Sav S112H/Sav K121H free binding

sites, respectively) was added to the reaction tube, and stirred for another 15 min, at RT.
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Finally, the salsolidine precursor (6.8/4.58 µL for a final concentration of 68/45.8 mM for Sav

S112H/Sav K121H, respectively) was added to the Sav complexed with the dimer complex

20. The reaction tubes were placed in a magnetically stirred multireactor purged three times

with nitrogen, heated to 55 ◦C, and ran for 24 h.

Catalysis with protein purified by conventional affinity chromatography, MD

The volumes of solutions (protein, catalyst and substrate) varied based on the free binding

sites concentration of the protein. Ideally, a final concentration of 100 µM free binding sites

concentration per monomer, 50 µM catalyst 4 (1 mol%) and 5 mM salsolidine precursor

(100 mol%) were used, which was translated in volumes of 192.5 µL of protein solution,

mixed with 2.5 µL of catalyst for 10 min, and 5 µL substrate. The reactions were run in

2 mL microcentrifuge tubes, at 37 ◦C (or 30 ◦C), for ± 24 h, either in a shaking incubator or

a heating thermomixer.

Catalysis with cell-free protein extracts obtained by precipitation, JZ

Depending on the final concentration of free-biotin binding sites, 189 – 198 µL of protein

(equivalent to ∼ 70 – 240 µM of protein) were pipetted into a reaction tube, mixed for 10 min

with the appropriate volume for 0.5 equivalents of metal vs protein, and 1 mol% complex

20 vs substrate. The reaction tube was placed in a magnetically stirred multireactor purged

three times with nitrogen, heated to 55 ◦C, and ran for 24 h.

Reaction work-up

After completion of the reaction, 500 µL of ultrapure water and 50 µL of 20% NaOH were

added to the reaction mixture, which was extracted three times upon addition of 2 mL of

pure CH2Cl2 or two times 1 mL of pure CH2Cl2, in the case of the reactions performed with

proteins purified by precipitation. The organic phase was dried over Na2SO4, filtered through

a 0.45 µm filter, and subjected to HPLC analysis.

Analytical method

The conversion (conv.) and enantiomeric excess (ee) of the reduction products were deter-

mined by chiral HPLC using Daicel Chemical Industries Chiralpak IC column - 20 µm, 250

x 4.5 mm (Tokyo, Japan), eluted with a mixture of CH2Cl2/i -PrOH/DEA 98:2:0.1 at 1 mL/

min (UV-detection at 280 nm). For the samples treated for oxidation of GSH, a mixture of

CH2Cl2/i -PrOH/DEA 99.8:0.2:0.06 was used for elution of the reduction products.

The absolute configurations were assigned by comparison of commercial enantiopure samples

of salsolidine (6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline) and the salsolidine pre-
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cursor (1-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline):

(R)-6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline 3, t = 10.19 min;

(S )-6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline 3, t = 6.86 min;

1-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline, t = 8.37 min.

The conversion was determined using the response factor (1.946) reported previously by Dr

Thibaud Rossel. [8]

Experimental procedure for the reductive amination of α-keto acids

The work described herein was performed in collaboration with Dr Jeremy Zimbron (JZ) who

synthesised the complex and developed the analytical method used in Chapter 2.

Preparation of stock solutions

A stock solution of 5 M ammonium formate was prepared in ultrapure water, and pH adjusted

to 8.0 by addition of concentrated ammonia solution (18 M). The dimer complex 20 was

dissolved in 0.05 M DMSO and stored under nitrogen, at 4 ◦C, prior to use. Just before

setting-up catalysis reactions, a stock solution of 2 M substrate solution was prepared by

dissolving the α-keto acid in 5 M ammonium formate, and stirred for 1 h to favour the

formation of the amine.

Catalysis with purified protein by standard affinity chromatography, JZ

The protein was directly weighted into the reaction tubes (final concentration of 0.916 mM free

binding sites), dissolved in 194.5 µL of 5 M HCOONH4, and stirred until the dissolution of the

protein was complete. The metal complex 20 was added in the same conditions as described

in 6.2.6, for Sav S112H and Sav K121H. For other mutants screened, 0.5 equivalents [Rh] vs

protein was used. The substrate was added to a final concentration of 45.8 mM. The reaction

tubes were placed in a magnetically stirred multireactor purged three times with nitrogen,

heated to 55 ◦C, and ran for 12 h.

Catalysis with purified protein by SSP, JZ

The lyophilised protein purified by SSP was resuspended in a minimum volume of 5 M

HCOONH4, depending on the initial concentration of the protein prior to lyophilisation

(volume varied between 150 – 195 µL), and the final working protein concentration was

confirmed by Nanodrop (ε = 41,490 M−1cm−1, MWmonomer calculated using ExPASy Prot-
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Param tool). [6] The catalyst and substrate volumes were adjusted to the concentration of the

protein, in order to maintain (when possible) the same conditions as for the purified protein

samples. The reaction tubes were placed in a magnetically stirred multireactor purged three

times with nitrogen, heated to 55 ◦C, and ran for 12 h.

Reaction work-up

After completion of the reaction, 1.2 mL pure methanol was added to the reaction mixture,

stirred for 15 min, and centrifuged at maximum speed (14,800 rpm, for 5 min). An aque-

ous solution containing 2 mM CuSO4 was added in a 1:1 ratio to 600 µL of the reaction

supernatant. The resulting solution was subjected to chiral HPLC analysis.

Analytical method

The conversion, selectivity and enantioselectivity of the reduction products were determined

by chiral HPLC, using a Phenomenex Chirex 3126 (d)-penicillamine LC column - 5 µm, 50 x

4.6 mm (Torrance, CA USA). The yield was calculated by multiplying the selectivity by the

conversion.

The enantiomer separation of (rac)-phenylalanine, phenylpyruvic acid and (rac)-phenyllatic

acid was achieved by a gradient method (line a: 80% MeOH, 20% H2O, and 2 mM CuSO4,

22% from 0 to 14 min, and 37% from 14 to 40 min; line b: 2 mM H2O/CuSO4, 78% from

0 to 12 min, and 63% from 14 to 40 min), on a heated column at 40 ◦C, at a flow rate of

1.25 mL/min, and UV-detection at 247 nm.

The absolute configurations were assigned by comparison with commercial enantiopure sam-

ples of phenylpyruvic acid, phenylalanine and phenyllactic acid. Phenylpyruvic acid 12, t =

5.93 min;

(S )-phenylalanine, t = 7.51 min;

(R)-phenylalanine, t = 10.11 min;

(S )-phenyllactic acid, t = 27.79 min;

and (R)-phenyllactic acid, t = 33.58 min.

The calculated response factors, at 247 nm, for phenylalanine was 1.6021, and for phenyllactic

acid, 2.2601. [8]
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6.3 Experimental section of Chapter 3

6.3.1 General procedure for the production of streptavidin

The work described in Chapter 3 was carried out in the group of Prof. Dr Kurt Ballmer-

Hofer, at the Laboratory of Biomolecular Research (LBR), Paul Scherrer Institute (PSI Ost

Villigen, Switzerland). The molecular biology was performed under the direction of PD Dr

Rolf Jaussi, and the initial screening of positive clones and fed-batch fermentation with the

help and orientation of Mr Thomas Schleier.

Pichia pastoris KAI–3 strain [10] was a generous gift from Prof. Callewaert (University of

Ghent, Belgium).

Construction of the expression vector

In this Chapter, the yeast Pichia pastoris was selected for the expression of streptavidin

wild-type. The expression vector pPICZα was used as template. This vector (c.a. 3,600

base-pairs in size) contains a 5’AOX promoter region, which targets the plasmid integration

to the AOX1 locus in the P. pastoris genome, an α-factor-signal sequence that signals the

secretion of the protein, the DNA sequence encoding for the protein of interest (wt Sav), and

a Zeocin resistance used for selection.

The primers and construct numbering, used throughout this Chapter, reports to the internal

database system of the LBR at the PSI.

Preparation of streptavidin insert

The primers were designed using Vector NTI software (Invitrogen, Carlsbad, CA USA). Two

stop codons were introduced at the 3’-end to express the proteins without a C-terminal hex-

ahistine tag, which is encoded on pPICZαA plasmid. The streptavidin insert was obtained

by PCR using the following primers:

sense (5’–GAGAGGCTGAAGCTCGGGATCAGGCCGGCATC–3’, Tm = 70.8 ◦C) and

antisense (5’–CTAAGGCTACAAACTCACTACTGCTGAACGGCGTCG–3’, Tm 67.9 ◦C),

and a plasmid template of Sav, yielding a 478 bp fragment. The PCR reaction was prepared,

on ice, by mixing 1 µL of DNA template (10 ng), 1 µL primers mix (1 µL of sense primer

+ 1 µL of antisense primer + 38 µL dH2O), 23 µL dH2O and, just before running the PCR

reaction, 25 µL of Phusion High Fidelity PCR Master Mix (Finnzymes, Espoo, Finland).

The thermocycler block (Techne TC-312, Burlington, NJ USA) was pre-heated to 98 ◦C, for

∼ 30 sec. The PCR conditions were: 2 min at 94 ◦C followed by 20 cycles of 15 s at 98 ◦C,

stepdown cycle of 30 s at 60 ◦C (first cycle) – 50 ◦C (last cycle), and 30 s at 72 ◦C; and by
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20 cycles of 15 s at 98 ◦C, 30 s at 55 ◦C, and 30 s at 72 ◦C, with a final extension of 1 min

at 72 ◦C. The reaction was kept at 10 ◦C until DpnI digestion.

Preparation of Pichia pastoris vector

The vector was amplified using the primers

sense: 5’–TGAGTTTGTAGCCTTAGACATGACTG–3’ and

antisense: 5’–AGCTTCAGCCTCTCTTTTCTCGAGAG–3’,

and pPICZαA (Invitrogen) as template, resulting in a fragment of 3463 bp. The crude PCR

products were treated with 20 U DpnI enzyme (that disassembles only methylated DNA)

for 18 h at 37 ◦C, and purified using MinElute Reaction Cleanup kit (Qiagen, Valencia, CA

USA); in the case of the vector, PCR purification was performed only after linearisation (see

below). The PCR products digested with DpnI were analysed on 0.7% w/v thin agarose gel

(1.4 g agarose dissolved in 0.5X v/v sodium tetraborate (SB), and 3 µL ethidium bromide.

The gel ran at 225 V for 15 min). [11] The vector was linearised with SacI (unique restriction

site, from Fermentas GmbH, St. Leon-Rot, Germany). In an PCR tube, 50 µL of DNA were

mixed with 50 µL of restriction enzyme buffer (1X NEBuffer1: 10 mM Bis-Tris-Propane-HCl,

10 mM MgCl2, 1 mM DTT, pH 7.0), 370 µL dH2O, and 30 µL SacI. The linearisation reaction

was incubated at 37 ◦C, for 2h20.

Ligation of DNA insert into Pichia pastoris vector

The purified vector and insert DNA were then joined by CloneEZ reaction (GenScript, Pis-

cataway, NJ USA), following the instructions of the supplier. In summary, 2 µL of linearised

vector was added to a mixture of 1 µL of CloneEZ buffer, 3.5 µL DNA insert, 1 µL CloneEZ

enzyme and 2.5 µL of dH2O.

Bacterial transformation

The recombined vector was used to transform E. coli One Shot Mach1-T1R chemically com-

petent cells (genotype: F φ80lacZ∆M15 ∆lacX74 hsdR(r−Km−

K) ∆recA1398 endA1 tonA).

The ligation mixture from CloneEZ (5 µL) was added to 50 µL of thawed competent cells,

containing 1 µL of 10.8 M TMSO, and mixed gently. The transformation reaction was incu-

bated on ice for 30 sec. The cells were heat-shock for 1 min at 42 ◦C, without shaking, and

placed again on ice for 2 min. Pre-warmed SOC medium (450 µL, 20g/L bactotryptone, 5 g/L

bactoyeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM

glucose) was added to the reaction vial, and incubated horizontally for 1 h, at 37 ◦C, 230 rpm

in a shaking incubator. The different volumes of the transformation mix (50, 100 and 200 µL)

were spread on a pre-warmed low salt lysogeny broth (LB) agar Zeocin selective plate (10 g/L

bactotryptone, 5 g/L NaCl, 5 g/L bactoyeast extract, 15 g/L agar + 25 µg/mL Zeocin), and
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incubated at 37 ◦C, overnight. For plasmid isolation, a single overnight-grown colony was

grown in 5 mL of pre-warmed selective media (low salt LB containing 25 µg/mL Zeocin and

saturating concentration of biotin [0.2% final concentration]). The cultures were shaken at

37 ◦C, overnight before isolating the plasmid (GenElute HP Plasmid kit, Sigma-Aldrich, St.

Louis, MO USA). The construct bearing Sav gene was linearised with SacI, the digest was

confirmed by 0.7% thin agarose gel electrophoresis before proceeding with electroporation.

Restriction enzyme analysis

The plasmid containing the insert was verified by restriction analysis. The chosen enzymes

were Eco88I, Eco0109I, HindII, NaeI and HInfI. The first restriction enzyme cut the sequence

twice (fragments of 1.3 and 2.5 kb), whilst Eco0109I, HindII, and NaeI cut three times (frag-

ments of 0.14, 1.0 and 2.7; 0.6, 0.8 and 2.4; and 0.4, 1.1, and 2.3 kb, respectively), and HInfI

five times (fragments of 0.3, 0.4, 0.6, 1.0 and 1.5 kb). The quantities of reactants and reac-

tion conditions were used as described by the suppliers (Fermentas GmbH, and New England

Biolabs Inc. for Eco0109I). The 1X Tango buffer was common to all four restriction enzymes

from Fermentas GmbH, Eco88I, HindII, NaeI and HInfI (1X Tango: 33 mM Tris-acetate,

10 mM magnesium acetate, 66 mM potassium acetate, and 0.1 mg/mL BSA, pH 7.9); for

Eco0109I, NEBuffer 4 (20 mM Tris-acetate, 10 mM magnesium acetate, 50 mM potassium

acetate, 0.1 mg/mL BSA, and 1 mM DTT, pH 7.9) was used. The digestion reactions were

prepared by mixing 1 µL DNA with 1 µL buffer, 0.5 µL enzyme and 7 µL dH2O, and were

incubated for 2 h at 37 ◦C. Restriction fragments were separated on 0.7% w/v thin agarose

gel. The gel was analysed under fluorescent light. The construct was sequenced to confirm

that Sav gene was in the correct orientation for expression, and cloned in frame with the

α-factor signal sequence and the C-terminal peptide.

The correct sequence obtained was named "Sav918", and this annotation is used throughout

this thesis.

Preparation and transformation of Pichia pastoris strains

Once the plasmid containing the correct insert (Sav918) was sequenced, enough plasmid DNA

to transform Pichia pastoris cells (5 – 10 µg of plasmid per transformation) was generated.

Two overnight cultures of 50 mL each (low salt LB medium containing 25 µg/mL Zeocin),

and supplemented with 0.2% biotin (in 20 mM NaOH) were purified using GenElute HP

Plasmid Midiprep kit from Sigma-Aldrich (St. Louis, MO USA). DNA was concentrated

by isopropanol precipitation for integration into the genome of Pichia pastoris X–33 (wild-

type, Invitrogen) and KAI–3 [10] (based on GlycoSwitch) strains. Sodium acetate (222 µL of

3 M, final concentration of 0.3M), 2 mL of DNA (resulting from the plasmid purification),

and 1.6 mL 100% isopropanol (i -PrOH, 1:7 dilution) were placed in a microcentrifuge tube,
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inverted 10x after the addition of i -PrOH, and incubated on ice for 15 min, and centrifuged

for 15 min at maximum speed. The supernatant was carefully removed, and the pellet was

washed two times with 70% ethanol (EtOH, 2 mL) at RT to remove the excess of salt. At

each wash with EtOH, the tube was gently inverted two times, and centrifuged at maximum

speed for 2 min. The ethanol was removed, the tube centrifuged again for 1 min, and dried at

RT with the lid open. The pellet was finally resuspended in 100 µL "T low E" buffer (10 mM

Tris, pH 8.0 and 0.1 mM EDTA). The DNA precipitation by isopropanol allowed a five-fold

concentration of the plasmid, i.e. initial concentration: 120 ng/µL vs final concentration:

570 ng/µL.

Both Pichia pastoris X–33 and KAI–3 strains were prepared and transformed in the same

manner. The X–33 and KAI–3 cells (80 µL) were thawed on ice and transferred to ice-

cold 0.2 cm electrotransformation cuvettes from Bio-Rad (Munich, Germany). The linearised

plasmid (10 µL) was added to the cells, and incubated for 5 min on ice. The cuvette was tapped

a few times on the bench to make sure that the cells sat evenly on the bottom of the cuvette,

thus guaranteeing a correct electroporation. The cells were pulsed at 200 Ω (resistance),

25 µF (capacitance) and 1.5 kV (electric potential). Immediately after pulsing, 1 mL of ice-

cold 1 M sorbitol (1.82 mg in 10 mL deionised water, and filter-sterilised) was added, and the

suspension transferred to a sterile 1 mL microcentrifuge tube. After regeneration for 2 h at

30 ◦C without shaking, aliquots were plated on YPDS agar selective plates (10 g/L bactoyeast

extract, 20 g/L peptone, 20 g/L dextrose, 1 M sorbitol, 20 g/L agar, and 100 µg/mL Zeocin,

with and without 0.2% biotin), and grown for three days at 30 ◦C.

Culture conditions and expression

Media for small-scale experiments in shake flasks were prepared as described in Invitrogen

User Manual, which required the preparation of several different stock solutions, as described

below. All solutions were stored at 4 ◦C until use, and have a shelf-life of approximately one

year, unless otherwise indicated. A saturated biotin stock solution (2%) was used instead of

a 0.02% solution.

10X YNB: 67 g of yeast nitrogen base, with ammonium sulphate and without amino acids

was dissolved in 500 mL of deionised water. The solution was heated to completely dissolve

YNB. The solution was filter-sterilised. 10X D (20% dextrose): 200 g of d-glucose was

dissolved in 1000 mL of deionised water, and autoclaved. 1 M potassium phosphate buffer,

pH 6.0: 132 mL of 1 M K2HPO4 and 868 mL of 1 M KH2PO4 were combined, and the

pH adjusted to 6.0, if necessary by addition of phosphoric acid or KOH. The solution was

sterilised by autoclaving and stored at room temperature. 50000X B (2% biotin)2: 2 g of

2The concentration of the stock solution of biotin recommended by Invitrogen is 500X, which is equivalent
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biotin was dissolved in 100 mL of 20 mM NaOH, pH 12.0. The addition of NaOH (at a

final concentration in the medium of 0.04 mM) did not influence the final pH of the medium.

10X GY (10% glycerol): 100 mL of glycerol was mixed with 900 mL of deionised water,

and autoclaved. 10X M (5% methanol): 5 mL of pure methanol was mixed with 95 mL of

deionised water, and filter-sterilised. The shelf-life of 10X M is approximately two months.

Inoculum and seed cultures were prepared using the buffered glycerol-complex medium (BM-

GY), which contained (per litre) a combination of 10 g of bactoyeast extract, 20 g of peptone,

100 mM potassium phosphate buffer, pH 6.0 (100 mL of 1 M stock solution), 1X YNB (100 mL

of 10X stock solution), 1X GY (100 mL of 10X stock solution), and 0.004% biotin (2 mL of

2% stock solution).

The main culture was prepared using the buffered methanol-complex medium (BMMY), which

contained per litre: 10 g of bactoyeast extract, 20 g of peptone, 100 mM potassium phosphate

buffer, pH 6.0 (100 mL of 1 M stock solution), 1X YNB (100 mL of 10X stock solution), 1X

M (100 mL of 10X stock solution), and no biotin was added.

The defined basal salts medium (BSM) used for the fed-batch fermentation contained per litre:

26.7 mL of 85% phosphoric acid, 0.93 g of calcium sulphate dihydrate, 18.2 g of potassium

sulphate, 14.9 g of magnesium sulphate heptahydrate, 4.13 g of potassium hydroxide, and

40 g of glycerol in 1 L ultrapure water. The solution was sterilised at 121 ◦C for 15 min, and

after cooling down to room temperature, 4.3 mL of PTM1 mineral salts solution was added.

The PTM1 mineral salts solution contained per litre: 6 g of cupric sulphate pentahydrate,

0.08 g of sodium iodide, 3 g of manganese sulphate hydrate, 200 mg of sodium molybdate

dihydrate, 20 mg of boric acid, 500 mg of cobalt chloride, 20 g of zinc chloride, 65 g of ferrous

sulphate heptahydrate, 200 mg of biotin, 5.0 mL of sulphuric acid, and ultrapure water to a

final volume of 1 L. The solution was filter-sterilised and stored at room temperature.

50 mL expression control

From YPDS agar selective plates, five clones from X–33 and 15 clones from KAI–3 strains

were chosen for a first production in a 50 mL format, in a total of 35 clones screened for

streptavidin expression. In this first production, the two best producers of each strain were

determined, and used for a scale-up culture of 200 mL. Different conditions were experimented

(unbuffered medium, buffered at pH 5.0 and 6.0, and addition of 1% casamino acids) to

overcome the proteolytic degradation of secreted recombinant protein, encountered in Pichia

pastoris expression system. [12,13] Early in the morning, for each clone, 5 mL BMGY was

inoculated with a tip dipped in an isolated colony. The 50 mL PP tubes were properly

labelled, and incubated at 30 ◦C, 225 rpm, for 12 h in the dark, as Zeocin is light sensitive

to 0.02% biotin.
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(the doors of the incubator were covered with aluminium foil and the inside lamps covered, to

minimise the degradation of the antibiotic). After the inoculation time of the first inoculum

elapsed, the cells were spun down (4,000 rpm, 5 min) and resuspended in fresh 50 mL BMGY

medium with 100 µg/mL of Zeocin. This second inoculum was incubated overnight (± 18 –

20 h), at 30 ◦C and 225 rpm. Next day, cells were spun down (4,000 rpm, 5 min), and washed

twice with ultrapure water to remove excess of biotin. To induce the protein expression, the

medium was changed from BMGY to BMMY. The washed cells were resuspended in 50 mL

BMMY medium with no antibiotic added, to a final OD600 of ∼ 10. Pure methanol was

added twice a day to a final concentration of 0.5% per day, to reduce fluctuations in methanol

concentration over time.

To follow the evolution of the protein expression, samples (500 µL) were taken at different

time points (0, 24, 48, 72, and 96 h). After clearing the medium from cells, the supernatants

were analysed by SDS-PAGE (Section 6.2.3).

Dimethyl sulphoxide (DMSO) and glycerol were used for the long-term storage of positive

clones (final concentration of 7 and 50%, respectively). DMSO can be used as an alternative

to glycerol for the freezing of cells, as it prevents the formation of ice crystals, thus preventing

damage of the cells. In the case of stocks prepared in DMSO, 900 µL of the first inoculum

was cooled down on ice before adding 100 µL DMSO. Cells were frozen slowly, in a -80 ◦C

freezer. In the case of stocks prepared in glycerol, 50 µL of the first inoculum were mixed with

500 µL of glycerol and fast-frozen in liquid N2. To be noted, that when using stocks prepared

in DMSO, cells have to be thawed very quickly, and washed once with medium before use.

200 mL scale-up expression

The growth of Pichia pastoris cells are limited by the oxygen mass transfer in baffled shake

flasks. Invitrogen recommends a working volume of 10 to 30% of the total flask volume.

As the only large volume baffled flasks available in our lab were of 2000 mL volume (BD

Falcon - Erlenmeyer culture flasks baffled, BD Biosciences, Franklin Lanes, NJ USA), two

expression volumes of scaled-up cultures were experimented: 200 and 600 mL, i.e. 10 and

30% of the total flask volume, respectively. Both working volume expressions followed the

same procedure, thus only the 200 mL scale-up expression is described herein. As mentioned

previosuly, the two best producers of each strain were used for a scale-up culture. The addition

of antifoam was also investigated. [14]

The inoculum was prepared by inoculating 25 mL of BMGY medium supplemented with

100 µg/mL of Zeocin, in a 250 mL baffled flask, using a single colony. The culture was grown

at 30 ◦C in a shaking incubator (250 rpm) until the culture reached an OD600 of ∼ 4 – 6

(approximately 16 – 18 hours). The cells were in log-phase growth. The cells were harvested

by centrifugation at 3,000 x g for 5 min at room temperature. The supernatant was decanted,

and the cell pellet washed twice with ultrapure water. The cell pellet from the last wash was
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resuspended to an OD600 of ∼ 1.0 in 200 mL BMMY medium to induce expression. The

culture flask was incubated at 30 ◦C and 250 rpm. Pure methanol to a final concentration

of 1% methanol was added every 24 h to maintain induction, and avoid fluctuations of the

inducer.

At different time points (in hours: 0, 6, 12, 24 (day 1), 36, 48 (day 2), 60, 72 (day 3), 84,

and 96 (day 4)), 500 µL of the expression culture was transferred to a 1.5 mL microcentrifuge

tube. These samples were centrifuged at maximum speed for 2 – 3 min at room temperature.

The supernatant was transferred to a separate tube, and both supernatant and pellet were

frozen quickly in liquid N2. Samples were stored at -20 ◦C until ready to assay, i.e. to analyse

expression levels, and determine the optimal time post-induction to harvest.

High-cell density fed-batch cultivation

The most common medium for high-cell density fermentation of methylotrophic yeast P.

pastoris is the defined basal salt medium (BSM) along with trace salts medium (PTM1). The

fermentation media were prepared according to the recommendations of Invitrogen Manual

[Pichia Fermentation Process Guidelines, Version B, 053002], and to an internal protocol

written by Mr Thomas Schleier [“Pichia Fermentation for Beginners”]. The pH value of the

glycerol batch and fed-batch was adjusted to pH 6.0 with 25% ammonia solution and/or 3 M

phosphoric acid, and to pH 5.0 for the methanol fed-batch.

The DMSO stock solution of clone 1 (50 µL) was grown overnight in 5 mL BMGY medium

with 25 µg/mL of Zeocin, at 30 ◦C and 250 rpm. This inoculum was used to inoculate

200 mL of BMGY medium (0.25% (v/v), with 25 µg/mL of Zeocin) in a 2000 mL baffled

flask, and incubated at 30 ◦C and 180 rpm, until the culture reached an OD600 of 15. This

inoculum seed was transferred into a 2.7 L fermentor (BioEngineering AG, Wald, Switzerland)

containing 1.5 L defined basal salt medium (BSM) plus 4.35 mL/L trace salt solution (PTM1).

After 21 h of generating biomass, the process control system detected a decrease in dissolved

oxygen (dO2) upon depletion of glycerol from the BSM medium, and a glycerol feed (50% w/v

containing 12 mL/L PTM1) was started at a feed rate of 10 mL/h for the duration of 12 h.

The temperature was kept at 30 ◦C, and pH was adjusted to 6.0 by automatic addition of

25% ammonia. Dissolved oxygen was maintained above air saturation (>20%, 0.1 – 0.3 vvm)

by adjusting the stirrer speed to 1,500 rpm. Antifoam 204 (1:20, Sigma-Aldrich) was added

automatically on demand. The protein production was induced by addition of methanol, after

98 h inoculation, at an OD600 of 200. The glycerol-feed was stopped c.a. 1 h before starting

the methanol-feed (starving phase). The methanol concentration was initially set to 0.5%

v/v (feed rate of 3.6 mL/h, for 2 to 3 h) to adapt the cells to growth on methanol. The

carrier gas (6 bar) was connected to maximise oxygen concentration in the medium (>20%).
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Once the culture was adapted to methanol, the inducer concentration was set at 1% v/v final

concentration, at a constant feed rate of 16 mL/h for the remaining time of the fermentation.

The first 500 mL of 100% methanol contained 12 mL/L PTM1, whilst the methanol added

afterward did not contain any. At induction, pH was adjusted to 5.0. The entire methanol

fed-batch lasted approximately 64 h, and was stopped at a final OD600 of 890.

Due to the amount of glycerol and methanol added during the fed-batch phases, c.a. 800 mL

of broth had to be removed twice from the fermentor.

6.3.2 Purification procedures

The purification of protein secreted by Pichia pastoris was only carried out for 200 and 600 mL

cultures, and the fermentation.

All buffers were filtered through a Millipore pre-filter and a 0.22 µm filter (Type GVWP),

and degassed under vacuum and strong stirring.

Preparation of samples

The yeast cells were removed by centrifugation (4,500 rpm, 30 min at 4 ◦C), and the cell-free

medium (supernatant) further clarified through a Millipore Glass Fibre pre-filter (top) and

a MF membrane filter 0.45 µm HA (bottom), using a Millipore stainless steel filter holder

90 mm, connected to a Watson Marlow 505U peristaltic pump (set at 140 rpm). Concentration

of the protein and buffer exchange were performed on a Millipore Prep/Scale-TFF system.

For example, the fermentation broth (1800 mL) was concentrated to 300 mL (void volume

of the system: 200 mL), then topped-up to 1000 mL with binding buffer, and concentrated

again to 300 mL. This procedure was repeated twice, and the pH verified to ascertain correct

buffer exchange. To minimise the effect of proteases, 1 mL of 200 mM of PMSF (17 mg/mL

in isopropanol) was added to the concentrated sample of Sav918.

The supernatant from the 200 mL scale-up expression was equilibrated in binding buffer by

dialysis, MWCO: 10 kDa from SpectrumLabs (Irving, TX USA).

Gel filtration

A 10 mL sample of the recombinant protein produced by fermentation was purified via gel

filtration, due to the uncertainty about the protein binding capacity for iminobiotin affinity

chromatography (i.e. biotin-free binding sites to couple to the resin since the fermentation

medium was supplemented with a residual amount of biotin).
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The protein solution was loaded on a Superdex 200 10/300 GL gel filtration column (GE

Healthcare) equilibrated with binding buffer containing 50 mM Tris-HCl pH 8.5 and 500 mM

NaCl and 10 mM imidazole. The elution was carried out with the same buffer solution, at a

flow rate of 1 mL/min, and 200 µL fractions were collected. The peak fractions were analysed

by SDS-PAGE, pooled and dialysed overnight at 4 ◦C once against Tris-HCl pH 7.4 and twice

against ultrapure water. Concentration of the protein was calculated by measuring the optical

density at 280 nm on a NanoDrop (from ExPASy Protparam tool: MWmonomer = 15,478 Da,

ε = 41,940 M−1· cm−1), [6] and by weight after lyophilisation.

Affinity chromatography

Affinity chromatography was carried out as described in Section 6.2.2. Concentration of

the protein was calculated by measuring the optical density at 280 nm on a NanoDrop (from

ExPASy Protparam tool: MWmonomer = 15,478 Da, ε = 41,940 M−1· cm−1), [6] and by weight

after lyophilisation.

6.3.3 Characterisation of recombinant streptavidin

Analysis by electrophoresis

Preparation of samples

The samples taken during cultivations were cleared of cells by centrifugation (5,500 rpm,

30 min, at 4 ◦C), the supernatant was collected and filtrated through a 0.45 mm membrane

(Millipore). The samples from other processes (e.g. purification and concentration) were pre-

pared as described in their respective sections. Samples were not heated prior electrophoresis

(unless otherwise stated), nor the loading buffer contained DTT.

SDS-PAGE

Gel analysis of Sav918 was performed as described by Laemmli, [15] using 10 or 12% acrylamide

gels, followed by B4F detection and staining (Coomassie Brilliant Blue, silver, periodic acid/

Schiff) or immunoblotting. For 12% gels, see description in Section 6.2.3. For 10% gels,

the stacking layer (6% acrylamide final concentration) was prepared by mixing 2 mL 30%

acrylamide/bis solution, 5.3 mL ultrapure water, 2.5 mL stacking buffer (0.5 M Tris-HCl, pH

6.8) and 50 µL 20% SDS. Polymerisation was initiated by adding 65 µL of 15% ammonium

persulphate (APS, in dH2O) and 10 µL tetramethylethylenediamine (TEMED). The 10%

resolving layer solution was prepared using 5.35 mL 30% acrylamide/bis solution, 6.35 mL
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ultrapure water, 4 mL resolving buffer made with 1.5 M Tris-HCl (pH 8.8), and 80 µL 20%

SDS. Polymerisation was initiated upon addition of 100 µL 15% APS and 16 µL TEMED.

Native-PAGE

Native gels (12% acrylamide) were prepared following the PSI internal recipe. The stacking

layer (4% acrylamide final concentration) was prepared by mixing 6.4 mL 30% acrylamide/

bis solution, 5.6 mL ultrapure water, and 4 mL stacking buffer (0.5 M Tris-HCl, pH 6.8).

Polymerisation was initiated by adding 133 µL of 10% APS and 13.3 µL TEMED. The 12%

resolving layer solution was prepared using 1 mL 30% acrylamide/bis solution, 5 mL ultrapure

water, and 1 mL resolving buffer made with 1.5 M Tris-HCl (pH 8.8). Polymerisation was

initiated upon addition of 30 µL 10% APS and 10 µL TEMED.

Analysis by B4F detection

Analysis of SDS-PAGE by B4F detection was performed as described in Section 6.2.3.

Analysis by Coomassie Blue staining

Analysis of SDS-PAGE by Coomassie Blue staining was performed as described in Section

6.2.3.

Analysis by silver staining

Silver staining is set as the standard of rigour for “ultra-sensitive” staining methods. The

modified silver stain protocol (Bio-Rad Silver Stain, Cat No. 161-0443(7), LIT34 Rev B),

optimised for mini gels (∼ 7 cm x 8 cm x 0.75 mm), was used as it gives clear backgrounds

and consistent results in less time than the standard protocol.

After running the gels and removing them from the glass plates (and after B4F detection),

gels were transferred for 30 min or overnight in a fixative solution (40% methanol/10% acetic

acid (v/v)). The gels were then incubated in Bio-Rad 1X oxidiser (10X stock solution dilute

in deionised water), for 5 min, and washed several times afterward (6 to 7 times, for 15 min)

with larges volumes of water, to leach the oxidiser out of the gels without removing it from

the proteins. Followed incubation in silver reagent for 20 min, and a quick rinse with water

for 30 sec maximum. Finally, the gels were developed for 30 sec or until a brown smokey

precipitated appeared, with Bio-Rad developer solution, and this step was repeated as many

times and for about 5 min, until the solution remained clear and the desired intensity achieved.

The reaction was stopped by incubating the gels for 15 min in 5% acetic acid.
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Analysis by periodic acid-Schiff staining

To determine if Sav918 was glycosylated, a simple and basic method was to resolve the protein

on 12% SDS-PAGE, and to stain the gel for glycoproteins using one of the chromogenic gel

staining procedure based on the periodic acid-Schiff (PAS) reaction. [16] The gel was fixed in

50% methanol, washed and oxidised by immersion for an hour in 1% periodic acid dissolved

in 3% acetic acid, and then thoroughly flushed with water for 1 h. The periodic acid oxidised

two vicinal diol groups to form an aldehyde, which reacted with the Schiff’s reagent (0.5%

reduced, acidified fuchsin) to give a magenta colour within 1 h incubation. Stained gels were

incubated in reducing agent, 1% sodium metabisulphite and stored in 3% acetic acid. [17]

Analysis by Western blot

Roti-PDVF 0.45 µm membrane (Carl Roth GmbH Karlsruhe, Germany) were incubated for

5 min in 100% methanol, washed with ultrapure water and kept in water until use. After

protein separation by 12% native-PAGE (150 V, for 90 min), gels were incubated with the

membranes in transfer buffer (48 mM Tris-base, 39 mM glycine, 0.0375% SDS, and 20%

methanol), for 15 min. The gels were transferred onto the membranes, using a semi-dry system

(2 h, 30 mA/gel). After transfer, the membranes were washed in 1X TBST (50 mM Tris-HCl

pH 8, 200 mM NaCl, 0.05% Tween 20) for 1 min, followed by a 30 min incubation in 3% BSA.

The membranes were rolled “facing in”, placed in a 50 mL PP tube, and incubated overnight at

room temperature in 1:5,000 dilution of rabbit polyclonal anti-streptavidin antibody (Sigma-

Aldrich) in 3% BSA, on a rocking/rolling table. Next day, the membranes were washed three

times with TBST, for 10 min each time. The membranes were incubated in the the secondary

antibody, 1:10,000 dilution in 3% BSA of goat anti-rabbit IgG alkaline phosphatase conjugated

antibody (Southern Biotech, Birmingham, AL USA)), for one hour. Again, the membranes

were washed three times with TBST, for 10 min each time. The blots were embedded in Lumi-

Phos WB solution (ThermoScientific) on both sides, and analysed using ImageQuantRT ECL

with 2 min exposure.

Quantification by B4F titration

Quantification of biotin-free binding sites was carried out as described in Section 6.2.4 for

pure protein, and for the fermentation supernatant.

Analysis by mass spectrometry

The analyses described herein were performed in the Protein Analysis Group at the Functional

Genomics Center Zurich (Switzerland). The mass determination of Sav918 was performed by

Dr Serge Chesnov, and the N-terminal sequencing by Dr Peter Hunziker. The complete

reports are presented in the Appendices Section.
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A sample of Sav918 (in 1% acetic acid) was first analysed by ESI-MS. The detected mass

was precisely that predicted for the fully protonated encoded protein, without the N-terminal

methionine, and taking into account the two protonated histidine residues. The protein was

also routinely digested by trypsin. The chymotryptic peptides were then desalted on Millipore

C18 ZipTips, and analysed by MALDI-MS in the reflectron-ion mode. The data was analysed

using Bruker Daltonics flexAnalysis application.

The amino acids were sequentially cleaved from the N-terminal of a sample of Sav918 (in 1%

acetic acid) via Edman Degradation. In this case, a Invitrogen ProSorb sample preparation

cartridge was used to concentrate the sample onto a PVDF membrane, and to clean the sample

from salts. The PVDF membrane was wet with 10 µL methanol, and 1.5 µL of sample was

first diluted into 100 µL of 0.1% TFA before being added to the reservoir of the cartridge. The

sample should be in contact with the the absorbent filter, and the fluid should transfer to the

PVDF membrane. The membrane was washed once with 0.1% TFA, and dried before removal

from the cartridge. The PVDF membrane was carefully cut out of the membrane with a razor

blade, and the sample was then ready to be placed in the sequencer. The sequencing was

analysed using SequencePro Data Analysis application (Invitrogen/Applied Biosystems).

Deglycosylation of sample

The deglycosylation of a sample of Sav918 was carried out using the Protein Deglycosylation

Mix from New England Biolabs Inc., and following supplier’s instructions.

For a denaturing reaction: O-glycolylated Sav918 (100 µg) was dissolved into 18 µL

deionised water, and 10X glycoprotein denaturing buffer was added to a final volume of

20 µL. Sav918 was denatured by incubation at 100 ◦C, for 10 min. The denatured Sav918

was cooled down on ice, centrifuged for 10 sec, and 5 µL 10X G7 reaction buffer, 10% NP-40

and 15 µL dH2O were added to the reaction. Before incubation at 37 ◦C for 4 h, 5 µL of

deglycosylation enzyme cocktail was added and gently mixed.

For a non-denaturing reaction: O-glycolylated Sav918 (100 µg) was dissolved into 40 µL

deionised water, and 5 µL of 10X glycoprotein denaturing buffer was added. To the reaction,

5 µL of deglycosylation enzyme cocktail was added and gently mixed, followed by incubation

at 37 ◦C for 4 h.

A control (fetuin, provided by the supplier) was treated the same way for both reactions. The

samples were analysed by SDS-PAGE.
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6.4 Experimental section of Chapter 4

6.4.1 General procedure for the production of human carbonic anhydrase II

The plasmid pACA encoding for human carbonic anhydrase II (hCAII) was a generous gift

from Prof. Carol A. Fierke (University of Michigan, USA). [18] This construct consists of

the hCAII gene [19] behind a T7 RNA polymerase promoter, an f1 origin of replication, [20]

and an ampicillin (ampr) and chloramphenicol (cmr) resistance genes in pMa5-8 vector (Fig-

ure 6.4). [21] The construct of this plasmid has an alanine residue at position 2 instead of

a serine [22] with no effect on protein expression or catalytic properties, and was used as a

template for PCR.

Figure 6.4. Plasmid map of hCAII gene in pMa5-8 vector. The heterologous gene expression of hCAII in
E. coli is tightly controlled by the strong and efficiently regulatable T7 gene 10 promoter (in white). The
transcriptional read-through from this promoter is minimised by the presence of a duplicated T7 transcription
terminator sequence (in white), for the T7 RNA polymerase. Opposed to pET-vectors, read-through tran-
scription from other plasmid promoters is minimised by the clockwise orientation of the T7 promoters relative
to the anticlockwise orientation of the replication origin.

The numbering system of human carbonic anhydrase I was used throughout Chapter 4. In this

system, residues Asn62, Asn67 and Thr200 correspond to residue Asn61, Asn66 and Thr199

in the numbering system of human carbonic anhydrase II. [23]

Cloning & mutagenesis

pACA plasmid

The construct coding for hCAII was amplified by transformation into E. coli DH5α cells (geno-

type: F− Φ80lacZ∆M15 ∆(lacZYA-argF) U169 recA1 endA1 hsdR17 (r-K, m+
K) phoA supE44

λ-thi -1 gyrA96 relA1), following Invitrogen protocol with minor changes. Fifty microlitre of
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DH5α chemically competent cells were thawed on ice. Ten nanograms of DNA were added to

the cells, mixed gently, and incubated on ice for 30 min. Cells were heat-shocked for exactly

20 sec in a 42 ◦C water bath without shaking, and immediately placed on ice for 2 min 950

µL of pre-warmed SOC medium was added to the tube, followed by incubation at 37 ◦C for

1 h at 250 rpm in a shaking incubator. 20 µL to 200 µL from the transformation were spread

on pre-warmed selective lysogeny broth (LB-Miller) plates (containing final concentrations of

60 µg/mL ampicillin (amp) and 34 µg/mL chloramphenicol (cm)). The different volumes was

to ensure that at least one plate would have well-spaced colonies. The plates were inverted

and incubated overnight at 37 ◦C. Three colonies were selected for a mini-plasmid preparation

using Promega AG Wizard Plus SV Miniprep DNA purification system (Dübendorf, Switzer-

land), and analysed by sequencing at Microsynth AG (Balgach, Switzerland). The size of the

plasmid was verified by restriction analysis. The chosen enzymes were NcoI, EcoRI, HindIII,

and PstI. The first two restriction enzymes cut the sequence just once, whilst PstI and HindIII

cut two and three times, respectively. The quantities of reactants are listed in Table 6.5, and

follow the instructions given by the supplier (Promega AG).

Table 6.5. List of components for a restriction enzyme digestion [Promega technical manual]. The buffers
used were buffer E (1X: 6 mM Tris-HCl, pH 7.4, 6 mM MgCl2, 100 mM NaCl, and 1 mM DTT), and buffer
H (90 mM Tris-HCl, pH 7.4, 10 mM MgCl2, and 50 mM NaCl).

Component Volume (µL)

Sterile, ultrapure water 16.3
10 X buffer 2
Acetylated BSA, 10 µg/µL 0.2
DNA, 1 µg/µL 1.0

The samples were mixed by pipetting, followed by the addition of the restriction enzyme:

Restriction enzyme, 10 U/µL 0.5
Final volume 20

For the simple digestions (HindIII and PstI), the buffer corresponding to the restriction en-

zyme was used (buffer E and H, respectively); for the double digestion (NcoI + EcoRI), buffer

H was used as it is compatible with both enzymes. The digestions were incubated for 2 h

at 37 ◦C. At the end of the reaction, 4 µL of 6X loading buffer (24.4% v/v glycerol, 0.032%

w/v bromophenol blue, 0.02% w/v xylene cyanol) were added to the reaction mixture, which

was loaded on 0.7% w/v agarose gel (1.4 g of agarose in 0.5% v/v Tris-borate-EDTA (TBE)

buffer and 10 µL of ethidium bromide (10 mg/mL stock solution)). The gel was analysed

under fluorescent light, using Bio-Rad Gel Doc XR+ software.

Site-directed mutagenesis

hCAII mutants were made by site-directed mutagenesis using the expression vector containing
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wt hCAII (pACA) as template or, in the case of double mutations, the template used was one

of the first mutation. Site-directed mutagenesis experiments were carried out following the

procedure described by Zheng et al., [4] and tested in silico to minimise hairpin formation. [5]

The PCR primers were ordered to Microsynth (Balgach, Switzerland). The list of primers

(sense and antisense) used for each subproject of this Chapter, and their characteristics are

listed below (from Table 6.6 to Table 6.8).

Table 6.6. List of primers (s: sense; s: antisense) used for the construction of hCAII mutants (e.g. Q92G
stands for glutamine residue at position 92 mutated to glycine), to test the affinity of ligands synthesised by
FM. In lowercase, the mutation introduced, and in italic, a silent mutation (to avoid hairpin formation and/or
self-annealing).

Mutant Primers (5’→3’) Tm (◦C) Length (bases) Comment

H4A s ATG GCC CAT gca TGG GGG TAC
GGC AAA CAC AAC GG

70.2 35 Part of the histidine
cluster at the entrance
of the cavity [24]

a GCC CTA GGG CCA tgc ATG GGC
CAT GGT ATA TC

68.5 32

H64A s AAC AAT GGT gct GCT TTC AAC
GTG GAG TTT G

62.2 31 Loss of catalytic proton
shuttle [25]

a GTT GAA AGC agc ACC ATT GTT
GAG GAT CCT C

63.5 31

I91A s TAC AGA TTG gct CAG TTT CAC
TTT CAC TGG GGT TC

64.5 35 Proton transfer in
catalysis [26]

a GTG AAA CTG agc CAA TCT GTA
AGT GCC ATC CAG GGG

67.7 36

Q92G s C AGA TTG ATT ggg TTT CAC TTT
CAC TGG GG

62.5 30 Indirect ligand-metal
network [27]

a G AAA GTG AAA ccc AAT CAA TCT
GTA AGT G

56.6 29

V121G s CTT CAC TTA ggt CAC TGG AAC
ACC AAA TAT GGG

63.2 33 Widens the hydropho-
bic pocket [18]

a GTT CCA GTG acc TAA GTG AAG
TTC TGC AGC

63.7 30

F131A s TAT GGG GAC gcg GGG AAA GCT
GTG CAG CAA CCT G

70.6 34 Proton transfer in
catalysis [26]

a AGC TTT CCC cgc GTC CCC ATA
TTT GGT GTT CC

67.2 32

K170A s CC ATT AAA ACA gcc GGC AAG
AGT GCT GAC TTC A

65.7 34 Part of the active site
cluster /involved in
proton transfer [24]

a CT CTT GCC ggc TGT TTT AAT
GGA ATC CAG C

63.7 30

P202W s CTG ACC ACC CCT tgg CTT CTC
GAA TGT GTG ACC TGG

71.0 36 Decreased folded-state
stability, maintained
activity [28]

a CA TTC GAG AAG cca AGG GGT
GGT CAG TGA GCC TGG G

72.3 36
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Table 6.7. List of primers (s: sense; a: antisense) used for the construction of hCAII L198x variants (x
= alanine, phenylalanine, glutamine and histidine), to test their affinity towards benzenesulphonamide and
validate predictions from computational simulations (MS). In lowercase, the mutation introduced.

Mutant Primers (5’→3’) Tm (◦C) Length (bases)

L198A s CC TAC CCA GGC TCA gcg ACC ACC CCT CCT CTT CCT G 72.7 35
a G AGG AGG GGT GGT cgc TGA GCC TGG GTA GGT CC 73.5 33

L198F s CC TAC CCA GGC TCA ttt ACC ACC CCT CCT CTT CCT G 70.2 35
a G AGG AGG GGT GGT aaa TGA GCC TGG GTA GGT CC 71.0 33

L198Q s CC TAC CCA GGC TCA cag ACC ACC CCT CCT CTT CCT G 71.5 35
a G AGG AGG GGT GGT ctg TGA GCC TGG GTA GGT CC 71.9 33

L198H s CC TAC CCA GGC TCA cac ACC ACC CCT CCT CTT CCT G 70.2 35
a G AGG AGG GGT GGT gtg TGA GCC TGG GTA GGT CC 68.5 33

Table 6.8. List of primers (s: sense; a: antisense) used for the construction of hCAII C206x-SyC variants
(x = alanine or serine, and y = residue 50, 166, 173, 217 or 220), for chemical pseudo-contact shifts studies
(KZ, DH). In lowercase, the mutation introduced, and in italic, a silent mutation (to avoid hairpin formation
and/or self-annealing). C206A and C206S (marked with *) were used as templates for the second mutation
of a serine residue. For expression, only C206S-SyX (marked with **) was used.

Mutant Primers (5’→3’) Tm (◦C) Length (bases)

C206A* s CTT CTG GAG gct GTG ACC TGG ATT GTG CTC AAG 67.3 33
a CCA GGT CAC agc CTC CAG AAG AGG AGG GG 69.7 29

C206S** s CTT CTG GAG gct GTG ACC TGG ATT GTG CTC AAG 66.1 33
a CCA GGT CAC aga CTC CAG AAG AGG AGG GG 68.1 29

S50C s CTG TCT GTT tgc TAT GAT CAA GCG ACT TCC CTG 64.4 33
a TTG ATC ATA gca AAC AGA CAG GGG CTT CAG 62.5 30

S166C s GTG CTG GAT tgc ATT AAA ACA AAG GGG AAG AGT GC 64.5 35
a GT TTT AAT gca ATC CAG CAC ATC AAC AAC 58.2 29

S173C s AAG GGC AAA tgc GCT GAC TTC ACT AAC TTC G 63.5 31
a GAA GTC AGC gca TTT GCC CTT TGT TTT AAT G 61.0 31

S217C s AAG GAA CCC ATC tgc GTC AGC AGC GAG CAG GTG 69.8 33
a GCT GCT GAC gca GAT GGG TTC CTT GAG CAC AAT CC 69.0 35

S220C s AGC GTC AGC tgc GAG CAA GTG TTG AAA TTC CG 66.0 32
a CAC TTG CTC gca GCT GAC GCT GAT GGG TTC 67.8 30

PCR reactions were prepared by addition of 5 µL 10x Pfu buffer, 2 µL of 10 mM dNTP (final

concentration 0.4 mM), 2.5 µL DMSO (final concentration 5%), 1.5 µL Pfu Turbo polymerase,

1.5 µL of 10 µM primers (sense and antisense), 35 µL H2O to 1 µL of template. The cycle

conditions were: initial denaturation (95 ◦C, 5 min), followed by 16 cycles of 1 min at 95 ◦C;

1 min at 60 ◦C; 15 min at 68 ◦C. The final elongation was performed at 68 ◦C for 1 h. PCR

products were analysed by 1.2% agarose gel electrophoresis (2.4 g w/v agarose in 0.5% v/v

TBE and 10 µL ethidium bromide (10 mg/mL)).

The initial DNA template (wild-type sequence) was digested by DpnI (4 h at 42 ◦C). Five

microlitre of PCR product was used to transform ultra-competent XL1-Blue E. coli cells

(genotype: recA1 endA1 gyrA96 thi -1 hsdR17 supE44 relA1 lac [F’ proAB lac1q Z∆M15

Tn10(Tetr)], produced in-house). Plasmids were purified using Promega Wizard Plus SV
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Miniprep DNA purification system, and were sequenced either by Starseq (Mainz, Germany)

or Microsynth (Balgach, Switzerland).

Expression in rich induction medium

The initial protocol to express human carbonic anhydrase II was kindly provided by Prof.

Carol A. Fierke (University of Michigan, USA). It was, in time, adapted to the lab equipment

and material available at the University of Basel, and continuously optimised, based on the

best results obtained.

For high gene expression, the plasmid was transformed into E. coli BL21(DE3)pLysS cells

(genotype: F− ompT lon hsdSB(r−Bm−

B) dcm gal λ(DE3) [pLysS (cmr), produced in-house).

After thawing on ice 100 µL of ultra-competent E. coli BL21(DE3)pLysS cells, 8 µL of dithio-

threitol (DTT, 200 mM stock) and 3 µL of plasmid (0.2 – 0.5 µg of DNA) were added to the

ultra-competent BL21(DE3)pLysS cells and mixed gently. The mixture was left on ice for

15 min, and then plated on pre-warmed LB plates (containing final concentrations 60 µg/mL

amp, 34 µg/mL cm, and 2% w/v glucose). The plates were inverted and incubated overnight

at 37 ◦C, for plasmid multiplication.

All solutions used were autoclaved (121 ◦C, 15 min) or filter-sterilised (0.22 µm sterile filter).

In microlitre scale

Prior to committing resources toward larger scale culture/fermentation, solubility and expres-

sion of hCAII variants were tested on a microlitre scale. The results of this analysis was used

to guide decision making (temperature, time of induction, etc.) for larger scale production.

[Inoculum] In a 96-well plate, 300 µL of lysogeny broth (LB-Miller: 5 g/L bactoyeast extract,

10 g/L bactotryptone, and 10 g/L NaCl), containing 0.2% w/v glucose, 100 µg/mL amp and

34 µg/mL cm, were transferred to each well of the plate, and inoculated with one colony from

a LB plate. The plate was covered with a breathable film and incubated at 37 ◦C, 250 rpm,

overnight.

[Culture] In a 96 deep-well plate, 475 µL of rich induction medium (RI: 20 g/L bactotryptone,

10 g/L bactoyeast extract, and 5 g/L NaCl, and 1x M9 salts (6 g/L of Na2HPO4, 3 g/

L of KH2PO4, 500 mg/L NaCl, 1 g/L NH4Cl))3, [29] containing 0.2% w/v glucose, 60 µM

ZnSO4, 100 µg/mL amp and 34 µg/mL cm, were transferred to each corresponding well,

and inoculated with 25 µL of pre-culture. The tips used to transfer the pre-culture to the

culture medium were left in the well to help with aeration. The plate was incubated at 37 ◦C,

250 rpm for 3 h. Due to the small volumes used in 96 well plates, optical density (OD600) of

cultures were not controlled over time, and induction was done arbitrarily after three hours.

3The rich induction medium and the 1X M9 salts are prepared separately and combined just prior to use.
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Enzyme expression was induced by addition of 1.5 µL of RI containing 250 µM isopropyl-

β-d-1-thiogalactopyranoside (IPTG) and 450 µM ZnSO4. The temperature was lowered to

18 ◦C, to prevent the expression of the enzyme in inclusion bodies; the plate was incubated for

another 15 h, at 250 rpm. The culture was stopped by centrifugation, at 4,400 rpm, 4 ◦C. The

supernatant was discarded, and the pellet was frozen at - 20 ◦C until SDS-PAGE analysis.

In 1 L scale

Due to the high levels of hCAII obtained in a 1 L scale (up to 400 mg/L of 90 – 95% pure

enzyme), most expressions were performed in this scale.

[Inoculum] After overnight incubation of the plate at 37 ◦C, a medium sized colony was

chosen to inoculate 15 mL LB medium (10 g/L bactotryptone, 5 g/L bactoyeast extract,

and 10 g/L NaCl), containing the appropriate amounts of antibiotics (100 µg/mL amp and

34 µg/mL cm). The 75 mL baffled shake flask was incubated for 6 to 7 h in an orbital shaker,

at 37 ◦C and 250 rpm.

[Pre-culture] After 6 to 7 hours incubation, the inoculum was centrifuged at 4,400 rpm, for

10 min, at 4 ◦C. The supernatant was deactivated (by addition of sodium hypochlorite) and

discarded, and the pellet was resuspended in 60 mL fresh LB medium, containing 0.2% w/v

glucose, 100 µg/mL amp and 34 µg/mL cm. The 250 mL baffled shake flask was incubated

overnight in an orbital shaker, at 37 ◦C and 250 rpm.

[Culture] A baffled shake flask containing 1 L of culture medium (620 mL of RI, 0.36X M9

salts, 0.4 % w/v glucose, 60 µM ZnSO4, 100 µg/mL amp, and 34 µg/mL cm) was inoculated

with the pellet of the overnight cell culture (centrifuged at 4,400 rpm, 4 ◦C for 10 min).

Cells were grown at 37 ◦C and 250 rpm, for 3 to 4 hours or until OD600 was between 0.8

and 1.0. Addition of 250 µM of IPTG supplemented with 500 µM ZnSO4 induced protein

expression, and ensured the correct folding of the expressed protein. The shaker temperature

was set to 25 ◦C, and shake for another 3 hours. A sample of the culture (1 mL) was taken

just prior addition of IPTG, and then every hour. The samples were centrifuged (4,400 rpm,

5 min, 4 ◦C), the supernatant was discarded, and the pellet was kept at -20 ◦C until SDS-

PAGE analysis. After 3 hours of induction with IPTG/ZnSO4, 8 µg/mL PMSF (dissolved in

DMSO) was added to the culture, to inhibit proteases action. After 6 h incubation at 25 ◦C,

the cells were harvested (4,400 rpm, for 15 min at 4 ◦C). The supernatant was deactivated

and discarded, and cell pellets were fast-frozen in liquid nitrogen and kept at -20 ◦C until

further analysis.

[Glycerol stocks] Glycerol stocks of the variants were prepared by mixing 500 µL of the

remaining first inoculum with 500 µL of 100% glycerol. The mixture was homogenised by

vortexing, flash-frozen in liquid nitrogen, and stored at -80 ◦C until use.
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In 20 L scale

Human carbonic anhydrase II wild-type was expressed only once in a 30 L fermenter (BioEngi-

neering AG, Wald, Switzerland). Therefore, the fermentation conditions were not optimised,

and the setup of the fermenter was based on the protocol in use for streptavidin fermentations.

[Seed culture] 150 mL of LB medium (10 g/L bactotryptone, 5 g/L bactoyeast extract,

and 10 g/L NaCl), containing 0.2% w/v glucose and antibiotics at the same concentrations

as in LB plates (100 µg/mL amp, 34 µg/mL cm), were inoculated with a single colony of

transformed BL21(DE3)pLysS E. coli cells, and incubated overnight, in an orbital shaker

(37 ◦C, 250 rpm).

[Fermentation] The whole seed culture was mixed with 0.4% w/v glucose, and then poured

in the 30 L fermenter containing 20 L cell culture (RI medium: 20 g/L bactotryptone, 10 g/L

bactoyeast extract, and 5 g/L NaCl; 1X M9 salts: 6 g/L of Na2HPO4, 3 g/L of KH2PO4,

500mg/L NaCl, 1 g/L NH4Cl, 60 µM ZnSO4, 100 µg/mL amp and 34 µg/mL cm). The broth

was fermented at 37 ◦C, under strong agitation (1,000 rpm), aeration (1.5 bar of air), and

constant addition of Sigma antifoam 204 (Buchs, Switzerland). When optical density (OD600)

reached ∼ 0.8 (approximately 4 h after inoculation), the cells were induced by addition of

IPTG (250 µM) and ZnSO4 (450 µM). The temperature of the vessel was set to 30 ◦C,

and 1 mL sample was taken just prior addition of IPTG/ZnSO4, and then every hour. The

samples were centrifuged (4,400 rpm, 5 min, 4 ◦C), the supernatant was discarded, and the

pellet was kept at -20 ◦C until SDS-PAGE analysis. Three hours after induction, 8 µg/mL

PMSF was added to the broth, to inhibit serine proteases action. When expression time was

elapsed (∼ 6 h after induction), bacterial cells were harvested (4,400 rpm, 4 ◦C, 15 min).

The supernatant was deactivated (by addition of sodium hypochlorite) and discarded, and

the pellet was kept at -20 ◦C until further analysis/work-up.

Expression in stable isotope medium

The first two steps (inoculum and pre-culture) to express labelled mutants were common to

the uniform and specific isotopes labelling. Due to the use of deuterated water (D2O) in the

triple isotope labelling expression, the inoculum and pre-culture were prepared differently.

Between the three methods of labelling, the main differences lie on the medium preparation,

and time of expression.

All solutions used were autoclaved (121 ◦C, 15 min) or filter-sterilised (0.22 µm sterile filter).

Uniform 15N isotope labelling

[Inoculum] Early morning, in a 75 mL baffled shake flask, 15 mL of LB medium (supple-

mented with 0.2% w/v glucose, 100 µg/mL amp, and 34 µg/mL cm) was inoculated with a
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tip dipped into 50% glycerol stock of the variant to express, and grown for 6 - 7h at 37 ◦C,

250 rpm.

[Pre-culture] The inoculum was centrifuged at 4,400 rpm, for 10 min, 4 ◦C. The supernatant

was discarded, and the pellet resuspended in 2.5 mL LB medium. Early in the evening (± 6

to 7 hours post-incubation of the inoculum), in a 250 mL baffled shake flask, 50 mL of LB

medium (containing 0.2% w/v glucose, 100 µg/mL amp, and 34 µg/mL cm) were inoculated

with 2.5 mL of resuspended inoculum, and incubated overnight at 37 ◦C, 250 rpm.

[Main culture] Uniformly 15N-labelled variants was achieved by allowing the cells to grow in

a defined medium consisting of 1X M9 salts preparation (2 g/L Na2HPO4, 1 g/L KH2PO4, and

500 mg/L NaCl), 1g/L 15NH4Cl (filter-sterilised), 2 mM MgSO4, 0.1 mM CaCl2, 0.2% w/v

glucose, 0.5 mM ZnSO4, 1X FeSO4 (prepared fresh and filter-sterilised just before use, as this

solution is extremely prone to oxidation and precipitation), 1X vitamin mix (Sigma-Aldrich,

Buchs, Switzerland), 100 µg/mL amp, and 34 µg/mL cm, in 1 L final volume. OD600 of the

pre-culture was recorded before centrifugation (OD600 ∼ 6.0, otherwise levels of expression

were very low). The inoculum was centrifuged under sterile conditions, at 4,400 rpm, 4 ◦C for

5 min. The supernatant, was discarded, and the pellet resuspended in 50 mL of fresh culture

medium (see above). The main culture was inoculated with the 50 mL of resuspended pre-

culture, and incubated in the shaker, at 250 rpm and 37 ◦C, until OD600 ∼ 0.6. The shaker

temperature was set to 25 ◦C, and expression was induced with 250 µM IPTG and 450 µM

ZnSO4, when OD600 reached 1.0 – 1.3. One millilitre sample was taken before induction, and

afterwards every hour until the end of expression. The cells were incubated for another 4 to 6

hours, and OD600 was continuously monitored. To prevent leaking of labelling, the expression

was not left for more than 6 hours post-induction, even if OD600 was still increasing. At

the end of the expression, the culture flasks were placed on ice, and harvested at 4,400 rpm,

4 ◦C for 15 min. The supernatant was deactivated (by addition of sodium hypochlorite) and

discarded, and the cell pellets were stored overnight at -20 ◦C. The samples were treated the

same way as the main culture.

Specific 15N Leucine isotope labelling

[Inoculum] See above for details.

[Pre-culture] See above for details.

[Main culture] OD600 of the pre-culture was recorded before centrifugation (OD600 ∼ 6.0,

otherwise levels of expression were very low). The pre-culture was centrifuged at 4,400 rpm,

for 20 min, 4 ◦C. The supernatant was discarded, and the pellet resuspended in 20 mL of

minimal medium from the 1 L main preparation. Incorporation of selectively 15N-labelled

Leucine was accomplished by growth in 1 L culture medium, containing 1X M9 salts (4.5 g/L
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Na2HPO4, 3 g/L KH2PO4, and 500 mg/L NaCl)4, 1X amino acids mix (see Table 6.9), 0.2%

w/v glucose, 2 mM MgSO4, 1X FeSO4, 0.1 mM CaCl2, 10 µM ZnSO4, 100 µg/mL amp, and

34 µg/mL cm. Fifty millilitre of the culture medium were used to dissolve 60 mg of 15N Leu,

which was filter-sterilised and reserved until induction time. Twenty millilitre of resuspended

pellet from the inoculum were used to inoculate the main culture. The 3 L baffled shake flask

was placed in the shaker, and incubated at 250 rpm, at 37 ◦C, until OD600 ∼ 0.8. The shaker

temperature was set to 25 ◦C, and expression was induced when OD600 reached 1.0 – 1.3, by

addition with 250 µM IPTG, 450 µM ZnSO4, and 50 mL medium containing 60 mg of 15N

Leu. The cells were left to express for 4 to 6 hours (OD600 was continuously monitored, and

samples pre- and post-induction were taken for SDS-PAGE analysis).

At the end of expression, the culture flask was placed on ice. Cells and samples were harvested

at 4,400 rpm, 4 ◦C for 15 min. The supernatant was deactivated and discarded, and the pellets

were stored at -20 ◦C.

Table 6.9. 1X amino acids recipe. The amino acids are listed in the order of which they have to be mixed.
15N Leucine was added at the induction time.

Order Amino acid mg/L Comments

1 Alanine 500 Dissolved well
2 Arginine 400 Dissolved well
3 Aspartic acid 400 Dissolved well
4 Glutamic acid 650 Dissolved well
5 Glycine 550 Dissolved well
6 Histidine 100 Dissolved well
7 Isoleucine 230 Dissolved well
8 Leucine (15N labelled) 60 Floated on the surface, but dissolved well
9 Lysine-HCl 420 Floated on the surface, but dissolved well
10 Methionine 250 Floated on the surface, but dissolved well
11 Proline 100
12 Serine 2100
13 Threonine 230
14 Valine 230 Floated on the surface, but dissolved well
15 Phenylalanine 130 Floated on the surface, but dissolved well
16 Tryptophan 50 Floated on the surface, but dissolved well
17 Asparagine – –
18 Cysteine-HCl 50
19 Tyrosine 170
20 Glutamine 400 Added at the end to avoid heating. Very unstable.

2H,13C and 15N isotopes labelling

Stock solutions were prepared in deuterated water (D2O), and filter-sterilised. To minimise
2H/1H proton exchange, the media were used immediately after preparation, and were never

autoclaved. To successfully implement complete replacement of protonated solvent with

deuterated solvent and, subsequently obtain high levels of deuterium incorporation, E. coli

cells containing hCAII C206S-S50C plasmid were directly diluted from dH2O LB media into

4No ammonium chloride (NH4Cl) salt was added in the medium used for specific labelling.
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LB media containing high levels of D2O (> 90%) without the need of intermediate steps of

dilution. [30]

[Inoculum] In early morning, in a 15 mL snap-cap PP tube, 5 mL of LB medium (containing

no glucose, 100 µg/mL amp, and 34 µg/mL cm) were inoculated with a tip dipped into 50%

glycerol stock of the variant to express. The inoculum was incubated for 6 – 7 h at 37 ◦C,

250 rpm.

[Pre-culture] Early in the evening (± 6 – 7 hours after beginning of the inoculum), the

inoculum was centrifuged (4,400 rpm, 4 ◦C, 10 min), and resuspended in 50 mL of LB medium

in 90% v/v D2O (with 0.2% w/v 13C-glucose, 100 µg/mL amp, and 34 µg/mL cm). The pre-

culture was incubated at 37 ◦C, 250 rpm, overnight.

[Main culture] Optical density of the inoculum was verified (OD600 ∼ 6.0) to guarantee

an optimum level of expression. Upon confirmation of correct OD600, the inoculum was

centrifuged (4,400 rpm, 4 ◦C, 10 min) in a sterile PP tube. The pellet was resuspended in

15 mL of the culture medium (see below). In a 3 L baffled shake flask, 1X M9 salts (1.5 g/L

Na2HPO4, 750 mg/L KH2PO4, and 375 mg/L NaCl) was combined with 1 g/L 15NH4Cl,

0.2% w/v 13C-glucose, 2 mM MgSO4, 1X FeSO4, 0.1 mM CaCl2, 10 µM ZnSO4, 1X vitamin

mix, 100 µg/mL amp, and 34 µg/mL cm, in 99% v/v D2O.

The main culture was inoculated with 15 mL resuspended inoculum. The culture was incu-

bated in a shaker, at 250 rpm and 37 ◦C, until OD600 ∼ 0.8. The shaker was cooled down

to 25 ◦C, and expression was induced at OD600 ∼ 1.0 – 1.3, with 250 µM IPTG and 450 µM

ZnSO4. The cells were incubated for another 10 to 16 hours (16 hours post-induction was

set as a limit, to prevent leaking of labelling and loss of plasmid). Optical density at 600 nm

was continuously monitored, and samples were taken for SDS-PAGE analysis. Glucose levels

were also monitored (“Roche Diagnostics Diabur-Test 5000”, Basel, Switzerland) as the cul-

ture should be stopped whenever the glucose in the medium was completely consumed. At

the end of the expression, cells and samples were harvested at 4,400 rpm, 4 ◦C for 15 min.

The cell pellets were stored at -20 ◦C overnight.

D2O from pre-cultures and culture supernatants was recovered, and regenerated by distilla-

tion.

6.4.2 Purification procedures

Depending on the final use of the enzyme, isolation of human carbonic anhydrase II from

E. coli lysates to apparent homogeneity was achieved by one, two or three steps purification

procedure, involving anion exchange (DEAE Sepharose Fast Flow, GE Healthcare, Glattburg,

Switzerland), immobilised metal affinity chromatography (HiTrapTM IMAC HP, GE Health-

care), and affinity chromatography (p-amino-methylbenzene sulphonamide agarose, Sigma-
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Aldrich, Buch, Switzerland).

The three steps purification was only applied for crystallography purposes, as it rapidly yielded

x-ray quality crystals, suitable for diffraction analysis.

Preparation of samples

The bacterial pellet from a culture and/or fermentation were treated the same way.

Cells were lysed by activating the gene encoding T7 lysozyme using three cycles of “freezing/

thawing”, and were resuspended in 25 mL lysis buffer (50 mM Tris-SO4 pH 8.6, 50 mM

NaCl, and 0.5 mM ZnSO4) containing the protease inhibitor phenylmethanesulfonyl fluoride

(PMSF, 10 µg/mL). Cells resuspension was incubated under vigorous shaking (∼ 300 rpm,

rotating shaker) at room temperature (RT) for 30 min, DNase I (1 µg/L) was added, and cells

were left for an hour under the same conditions as previously described, or until complete

digestion of nucleic acids. The lysate was clarified by centrifugation (10,000 rpm, for 45 min

at 4 ◦C). The supernatant was recovered, and the process (25 mL resuspension, shaking,

and centrifugation) was repeated another two times (three extractions in total), to insure the

maximum recovery of hCAII extract. Cell debris was deactivated and discarded, at the third

and final centrifugation. The supernatant, resulting of the three extractions, was dialysed

for 4 h against activity buffer (50 mM Tris-SO4, pH 8.6, and 0.5 mM ZnSO4), and filtered

through a 0.45 µm filter.

Weak anion exchange chromatography

This purification step was done at room temperature, in a gravity column (“Glass Econo-

Column”, BioRad, Reinach, Switzerland), packed with 25 mL chilled DEAE Sepharose Fast

Flow resin (for 1 L culture). The anion exchange column was equilibrated with one resin

volumes (RV) of 1 M Tris-SO4, pH 8.6, followed by two RV of 0.5 M Tris-SO4, pH 8.6, and

finally four RV of activity buffer (50 mM Tris-SO4, pH 8.6, 0.5 mM ZnSO4) supplemented

with 1mM DTT. The dialysed crude extract of hCAII was slowly loaded into the column.

The first flow-through was collected, and the column was washed with one RV of activity

buffer. The first wash was collected and kept separately from the first flow-through. The

washing step was repeated twice, and each fraction were collected separately. An SDS-PAGE

was carried out to identify the fractions containing hCAII. After confirmation of the presence

of enzyme, fractions were pooled and dialysed against activity buffer, overnight at 4 ◦C.

The DEAE Sephacel resin was regenerated by performing one wash with two RV of 1 M

Na2SO4, and three washes with two RV of 0.5 M Na2SO4, or until the flow-through was

clear. The final wash was with two RV of 8 M urea, which was rinse out with deionised water

(dH2O). The column was stored in 50% ethanol.
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Immobilised metal affinity chromatography

The first step of this purification is the removal of the copper ion from the HiTrapTM IMAC

HP column and its replacement with zinc ion. The Co II stripping was achieved by washing

the column with 200 mL of stripping buffer (20 mM sodium phosphate, 500 mM NaCl, 50 mM

EDTA, pH 7.4), followed by a wash with 200 mL binding buffer (20 mM sodium phosphate,

500 mM NaCl, and 1 mM imidazole), and a final wash with 200 mL of dH2O. The column

was charged with Zn II ion by loading 10 mL 0.1 M ZnSO4, and washed with 100 mL distilled

water and 100 mL binding buffer, to adjust the pH. The column was then ready for use.

The dialysed suspension of hCAII was applied to a 15 mL (3x 5 mL) Sepharose-Zn II-IDA

affinity column (connected to an ÄKTAprime FPLC) equilibrated with activity buffer, at a

flow-rate of 0.5 mL/min. The column was washed with five column volumes (CV) of activity

buffer. The bound enzyme was eluted by a linear gradient of 1 – 200 mM imidazole in activity

buffer. The peak fractions (4 to 5 mL) containing hCAII were pooled and dialysed two times

against ultrapure water for 24 h, at 4 ◦C and against activity buffer overnight, at 4 ◦C.

Inhibitor affinity chromatography

The purification step by affinity chromatography (p-amino-methylbenzene sulphonamide aga-

rose) can be performed on its own, as this procedure yielded 250 – 400 mg of protein, assessed

by SDS-PAGE to be >95% pure. The XK 16 column (GE Healthcare, Glattburg, Switzer-

land), was packed with approximately 25 mL of resin, and equilibrated with five CV of activity

buffer. The protein (either from previous steps of purification or directly from the first dialysis

after extraction) was loaded onto the column at a very low rate (1 mL/min) to ensure complete

binding to the resin. The affinity gel was washed with 5 CV of wash buffer (50 mM Na2SO4,

50 mM NaClO4, and 25 mM Tris, pH 8.8). The bound enzyme was eluted with 10 CV of

elution buffer (200 mM NaClO4, 100 mM NaAc, pH 5.6). Collected fractions (10 mL) were

pooled and dialysed at 4 ◦C against activity buffer for 24 h, dH2O for another 24 h, and

finally against ultrapure water, overnight. The final dialysed hCAII solution was flash-frozen

in liquid nitrogen and lyophilised. After complete lyophilisation, the purified enzymes were

kept at 4 ◦C until use.

6.4.3 Characterisation of recombinant human carbonic anhydrase II

Analysis by electrophoresis

Preparation of samples

The samples taken from the culture and/or fermentation were treated the same way. Cells were
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lysed by activating the gene encoding T7 lysozyme using three cycles of “freezing/thawing”,

and were resuspended in a volume (in µL) of ultrapure water equivalent to 40 times the optical

density of the culture at the moment of sampling, supplemented with 1 µL of 1 mg/mL DNase

I (in 5 mM Tris-HCl pH 7.5, 75 mM NaCl, 0.5 mM MgCl2, and 50% glycerol). [29] The samples

were vortexed, and incubated at RT, under vigorous shaking (rotating shaker, 300 rpm), until

complete digestion of the nucleic acids (30 to 60 min). The bacterial extracts were then

centrifuged (14,000 rpm, 5 min, RT). The soluble fraction (supernatant) was transferred to a

new microcentrifuge tube, and the insoluble fractions were resuspended by vortexing, in the

same volume of ultrapure water, as previously (i.e. in µL, 40x OD600). 20 µL of each soluble

and insoluble fractions, and a positive control (20 µL of pure protein diluted in ultrapure

water, to a final concentration of 1 mg/mL) were mixed with 10 µL 3X loading buffer (50 mM

Tris-HCl pH 6.8, 1% w/v SDS, 2% v/v β-mercaptoethanol, 10% w/v sucrose, 0.006% w/v

bromophenol blue). The samples were quickly vortexed to ensure homogeneous mixing of the

sample and loading buffer, and immediately charged on a 12% gel.

SDS-PAGE by Coomassie Blue staining

The 12% running gel was prepared by combining 5 mL of ultrapure water, 6 mL of acrylamide/

bis-acrylamide (30% /0.8% w/v), 3.8 mL of 1.5M Tris-HCl pH 8.8, 75 µL of SDS (20% w/v),

100 µL of ammonium perchlorate (APS, 15% w/v), and 6 µL of tetramethylethylenediamine

(TEMED). The 5% stacking gel was prepared by mixing 3.4 mL of ultrapure water, 1 mL of

acrylamide/bis-acrylamide (30%/0.8% w/v), 1.5 mL of 0.5 M Tris-HCl pH 6.8, 30 µL of SDS

(20% w/v), 40 µL of APS (15%), and 6 µL of TEMED. The stacking gel was poured on top of

the polymerised running gel, the combs were inserted, and the gel was left for polymerisation,

for 30 min. When ready, the gel was clamped to the chambers, and placed into the tank

containing 1X SDS buffer (25 mM Tris-HCl, 0.192 M glycine, and 0.1% w/v SDS), to prevent

dryness of the gel.

Twenty microlitre of each sample and 6 µL of the protein marker (“Prestained Protein Marker,

Broad Range” from New England BioLabs Inc., Bioconcept, Allschwill, Switzerland) were

loaded onto the gel, and ran at 200 V, until the blue colour of the bromophenol blue present

in the 3X loading buffer reached the end of the gel (± 1.5 h). The gel was transferred to a

plastic box containing staining solution (100 mL, 0.25% w/v Coomassie Brilliant Blue R-250,

50% v/v methanol, and 7.5% v/v glacial acetic acid), and incubated for one hour, under gentle

rocking. The staining solution was discarded and replaced by destaining solution (100 mL,

20% v/v methanol, 10% v/v acetic acid), and the gel was incubated, on the rocker, for another

3 h or until the protein pattern started to be visible. The gel was left overnight in ultrapure

water; a Kimwipe placed in the solution rapidly removed the excess of stain in the solvent.

Rapid staining of the gel was achieved by heating – almost to boiling – the staining solution,

containing the gel, in a microwave oven. The gel was then placed for 5 min at RT, on the
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rocker, during which the gel shrank. The staining solution was discarded and replaced by

destaining solution. The gel was again heated – almost to boiling – in a microwave oven,

and placed again under gentle rocking. [31] The protein pattern was visible after 30 min, but

overnight destaining was still necessary for image scanning. The gel was analysed using Bio-

Rad Gel Doc XR+ transilluminator and software (Reinach, Switzerland).

Analysis by mass spectrometry

The determination of the molecular mass of human carbonic anhydrase II wild-type and

mutants was performed as described in Section 6.2.4.
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perfeito é desumano, porque o humano é imperfeito.”

“We worship perfection because we can’t have it; if we had it, we would reject it. Perfection

is inhuman, because humanity is imperfect.”

Fernando Pessoa – Autobiografia sem factos


