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Abstract

Interactions between proteins and their ligands play crucial roles in many biological processes,

such as metabolism, signaling, transport, regulation or molecular recognition. Understanding

the molecular basis of protein-ligand interactions is thus of great interest, not only for modeling

complex biological systems but also for applications in drug discovery. However, structural

details for most of these interactions have not been characterized experimentally. Therefore,

computational methods have become increasingly important for investigating biological systems

at an atomistic level.

This work aims at a better understanding of the molecular basis of disease related viral

methyltransferases, their interactions with small molecules and the catalytic mechanism, which

may on the long perspective help to develop a treatment against neglected tropical diseases.

Furthermore, we aim to advance the current methods for the computational prediction of a

protein’s molecular function and its biological role in the cell. In addition, we aim to complement

currently available computational strategies for estimating protein ligand interaction energies.

Dengue fever is a rapidly emerging, still neglected tropical disease which causes significant

mortality and morbidity in humans. For the discovery of novel classes of compounds inhibiting

dengue virus methyltransferase, a combination of structure-based virtual screening and enzy-

matic inhibition assays is employed. From the shortlist of 263 candidates selected by virtual

screening, ten compounds are found to specifically inhibit the target enzyme with IC50 values in

the low µM range. Promising compounds are selected for further experimental characterization

and the inhibitory activity of the two most active compounds is confirmed.

For obtaining a better understanding of the molecular basis of the target enzyme’s function,

molecular dynamics simulations and mixed quantum mechanics/molecular mechanics calcula-

tions are employed to investigate the mechanisms of the enzymatically catalyzed reaction at

an atomistic level. Based on a structural model of the target protein in complex with its RNA

substrate, the impact of mutations on ligand binding, geometric arrangements and reaction

energy barriers are evaluated computationally. In addition, for a detailed characterization of

the underlying chemical reactions, ab initio electronic structure calculations are performed on

model systems approximating the biological structure.

The reliable prediction of ligand binding sites is crucial for characterizing proteins with

unknown function. Therefore, the use of computational predictions of protein function and

ligand binding sites for proteins without experimental structures are assessed in a blind and

objective way. Limitations in the current prediction methods are analyzed and suggestions for
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a more reliable evaluation are given. Following those suggestions, an extended and fully auto-

mated assessment is implemented in the Continuous Automated Model EvaluatiOn (CAMEO)

framework.

Computational identification of protein-ligand interactions can greatly facilitate the drug

discovery process. Thus, we establish a straightforward, rapid scoring function that aims to

identify the best poses out of an ensemble of pre-docked poses, by quantifying the degree of

burial and the electrostatic interactions of the ligand in a binding site. The scoring function

is evaluated on a set of high quality protein-ligand complex structures, where the results show

promisingly high retrieval rates for selecting the best poses from a pool of decoy poses.

Finally, a novel human-computer interface device is described which facilitates the interac-

tion with the computational representation of complex biological systems by employing natural

and intuitive movements.
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Chapter 1

Introduction

1.1 Protein-Ligand Interactions

Proteins are biological macromolecules that play a central role in all living cells. They are

involved in virtually every physiological process like metabolism, catalysis, signal transduction,

cell cycle and transport and they perform structural and mechanical functions such as in the

cytosceleton and in muscles.

In most of these processes interactions between proteins and their ligands play crucial roles.

Most of these interactions are unspecific and transient in nature (e.g. interactions with water

and ions), some are persistent and may play a structural or functional role (e.g. certain metal

ions) and others might be transient but nevertheless highly specific, often resulting in essen-

tial changes of the protein or the ligand (e.g. enzyme-substrate complexes or receptor-ligand

complexes). Understanding the molecular basis of protein-ligand interactions is thus of great

interest, not only for understanding complex biological systems but also for clinical applications.

Although protein-ligand interactions are crucial for the function of a protein, in many cases

they are unknown. Despite the kind of ligands interacting with a protein is often known from bio-

chemical analyses, elucidating the structural details of these interactions requires elaborate and

time-consuming studies by X-ray crystallography or nuclear magnetic resonance spectroscopy.

Therefore, computational methods have become increasingly important to investigate biologi-

cal systems at an atomistic level. Today, as examples, in-silico approaches facilitate the func-

tional characterization of proteins,1 allow the identification of possible interactions with small

molecules based on three-dimensional protein structures2 or help to investigate the molecular

mechanism of enzymatic catalysis.3

Ultimately, the function of a protein is determined by its three-dimensional structure, which

in turn is governed by its amino acid sequence. Therefore, in cases where no experimentally

determined three-dimensional structures are available, comparative modeling techniques can

provide insights. These methods rely on the observation that the three-dimensional structure

of a protein family is robust against sequence changes.4 This allows to build structural models

based on similarity to proteins with known structure.

Studies of the interactions of small chemical molecules with the binding site of a disease

1



1.1. PROTEIN-LIGAND INTERACTIONS

related protein can help to develop specific inhibitors with applications both as research tools

for probing the effect of inhibition in a protein network as well as early lead compounds for

developing new drugs.

2



1.2. ESTIMATION OF PROTEIN-LIGAND INTERACTIONS

1.2 Estimation of Protein-Ligand Interactions

Computational approaches have been developed for a broad variety of applications in molecular

biology, ranging from the identification of ligand binding sites, through estimation of protein-

ligand interaction energies to detailed descriptions of the electronic structure of catalyzed reac-

tions.

1.2.1 Prediction of Ligand Binding Sites

The number of protein structures with unknown biological function is steadily increasing. To

bridge this rapidly growing gap between known sequences and unknown function, numer-

ous computational and experimental techniques have been developed to help identifying the

structure-function relationship.5,1, 6

Among these methods, computational approaches for determining the precise location of

ligand binding sites and protein residues involved in ligand interaction, directly from a protein’s

sequence, is of high relevance for life science research. Various approaches for the predic-

tion of ligand-binding sites have been proposed,7 based on sequence conservation,8,9, 10,11,12,13

geometric criteria of the protein surface14,15,16,17,18 or homology transfer from known struc-

tures.19,20,21,22

Recently, methods based on homology transfer have been shown to exhibit excellent results

in a blind assessment of prediction methods.23,24,25 These methods follow a general scheme:

starting from an input sequence, a three dimensional structure is build based on homology

modeling techniques. With this model, a database of protein structures with bound ligands

is queried to identify proteins with similar structure. Superimposing these structures onto

the query structure aligns the bound ligands onto the query and allows to identify contacting

protein residues which form the binding site.22 A number of variations to this scheme have been

implemented including residue conservation,22 constrained ligand docking26 or local functional

site identification.27

Despite the good results of these methods, they are limited to cases where homologous

proteins with known ligands are detectable, which is not commonly the case. When homologue

structures are available, but their binding sites are unknown, geometric methods, trying to

identify the deepest clefts on the protein surface, yield good results. Where no homologue

structure of the query protein is detectable, only methods based on sequence conservation are

applicable.

1.2.2 Protein-Ligand Docking and Virtual Screening

Computational methods for docking small molecules into the binding sites of biological macro-

molecules and for scoring their potential interactions with the protein are widely used in drug

discovery for hit identification and lead optimization.28 They often help to identify possible

drug candidates from a large library of available chemical compounds.

3
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Based on the three dimensional structure of the target protein, docking programs try to

predict the best fit of a ligand into the binding pocket. For this, chemical compounds are

computationally placed into the target protein binding site and their interaction energy is esti-

mated. Current algorithms used in virtual screening make a number of approximations in order

to achieve reasonable computational speeds necessary for screening of large compound libraries.

These approximations reduce the numbers of degrees of freedom which are explicitly treated, of

which some are replaced with implicit degrees of freedom. This includes constraining of protein

motions, implicit treatment of solvent molecules or evaluation of interaction energies based on

molecular mechanics force fields or empirical scoring functions.29

In general there are two aims of docking studies: First, the accurate modeling of the binding

pose and second, the correct prediction of binding free energies.30

For the sampling of the small molecule’s conformational space, a number of algorithms are

employed, based on genetic algorithms, incremental build strategies or Monte Carlo sampling.

It has been found that most methods for virtual screening work reasonably well in reproducing

a close-to-native orientation of the ligand if properly configures and applied to well-behaved

systems. However, their ability to predict binding free energies is often very limited.31,28,30

1.2.3 Estimation of Protein-Ligand Binding Affinities

Various approaches have been developed for a more accurate estimation of protein-ligand binding

free energies. These calculations often employ molecular dynamics simulations or Monte Carlo

sampling of a full system in explicit solvent. However, such methods are very time consuming

and are thus only applicable to a small number of compounds.

Most accurate results are obtained with free energy pathway methods, like free energy

perturbation (FEP), which sample the whole path from initial to final state. However, these

methods are computationally too costly to be routinely applied in a drug discovery process.29

Therefore, numerous approaches have been developed which try to obtain similarly accurate

results at lower computational costs. Generally, those methods are end-point methods which

consider only the initial and final state. These methods include MM-PBSA / MM-GBSA32 and

linear interaction energy (LIE)33 which are nowadays commonly applied to study the interaction

of ligands with biological macromolecules.

1.2.4 Estimation of Reaction Energy Barriers

Mixed Quantum-Mechanical/Molecular-Mechanics Calculations

For describing chemical reactions, quantum-mechanical (QM) methods are often required. How-

ever, the application of such methods are limited to systems with a few hundred atoms. On

the other hand, even small biological systems, contain orders of magnitude more atoms and are

thus incompatible with a full QM treatment. Therefore, mixed quantum-mechanical/molecular-

mechanics (QM/MM) approaches have become the method of choice for modeling reactions in

biological systems.3

4
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These methods use a QM treatment of the chemically active region, whereas the surrounding

is modeled as molecular-mechanics (MM). Combining these methods allows to simulate complex

biological systems with good accuracies and reasonable computational costs. These methods

can give detailed insights into enzyme catalyzed reactions and other electronic processes, like

charge transfer or electronic excitation.34

Potential of Mean Force

The free energy changes as a function of an inter- or intramolecular coordinate is of high

relevancy for the computational investigation of physically relevant processes like chemical re-

actions, ligand migration or conformational changes. The free energy surface along a reaction

coordinate is called potential of mean force (PMF). The highest energy point on a PMF is of

particular interest, since it corresponds to the transition state of the process, from which kinetic

quantities, like rate constants, can be computed. The PMF considers not only the interaction

between the solute particles but also incorporates solvent effects if the system is in solution.

Although the PMF is of high relevancy, it is difficult to obtain for complex systems like

solvated macromolecules which have many minimum energy conformations. Unfortunately,

standard unrestrained molecular dynamics simulations do not adequately sample high energy

regions of phase space which contribute significantly to the free energy and thus, yield inaccurate

values for the PMF.

One method to overcome these sampling problems is umbrella sampling. In umbrella sam-

pling, the potential energy function is modified in order to adequately sample high energy

regions. Bias potentials are placed along a reaction coordinate in order to drive the system

from one state to another. The steps along the path are covered by subsequent umbrella win-

dows. In each window, an MD simulation is performed from which the change in free energy can

be computed. Subsequently, all windows are combined using the weighted histogram analysis

method in order to obtain the free energy profile along the reaction coordinate.35

5
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1.3 Flavivirus

Flaviviruses are small, enveloped RNA viruses, belonging to the Flaviviridae family, together

with Hepaciviruses and Pestiviruses.36 The Flavivirus genus contains numerous recognized viral

species, which are predominantly transmitted by arthropod vectors, mainly Aedes mosquitoes.

There are 40 known flaviviruses capable of causing diseases in humans.37 Of those some are

medically important pathogens causing significant mortality and morbidity in humans. This

includes all four serotypes of dengue virus (DENV1-4), Japanese encephalitis virus (JEV), tick-

borne encephalitis virus (TBEV), West Nile virus (WNV) and yellow fever virus (YFV).38 Al-

though vaccines are available for YFV, JEV and TBE, none have been developed for other

flaviviral diseases. Currently, there are no specific antiviral drug treatments available against

flaviviruses, and disease control is often limited to vector control.

1.3.1 Dengue Fever

Dengue fever (DF), which is caused by all four dengue virus serotypes, is among the most

important emerging diseases. In the last 25 years, a dramatic global expansion of DF and the

more severe and potentially lethal form of the disease, dengue haemorrhagic fever (DHF) and

dengue shock syndrome (DSS), has occurred.37 Nowadays, dengue is predominantly prevalent

in all tropical regions with annually 50-100 million cases of DF, 500’000 cases of DHF/DSS

and around 20’000 death worldwide. For dengue virus, four closely related serotypes have

been isolated, where each serotype is sufficiently different, that no cross-protection can occur.

Furthermore, sequential infection with different DENV serotypes in long intervals can produces

unusually severe disease.39

Vaccine development for DENV has been a challenge for decades, mainly due to the inability

of vaccines to protect simultaneously against all four distinct serotypes.40 In the absence of

vaccines, specific drug treatments are needed, but none were developed so far.

1.3.2 Dengue Virus

Like all flaviviruses, dengue virus is a enveloped, single stranded, positive sense RNA virus. The

genome is packaged by viral capsid protein (C) in a host-derived lipid bilayer, into which 180

copies of the envelope protein E in complex with the membrane protein (M) are embedded.

This results in a smooth and spherical virion with a diameter of 50 nm (Figure 1.1).41

The single stranded, 11 kb positive sense RNA genome has a single long open reading frame

which is flanked by 5’- and 3’-untranslated regions (UTR), which have secondary structure that

is essential for the initiation of translation and for replication. The 5’ end of the genome has a

type 1 cap, whereas the 3’ end lacks a poly-A tail.42 In the host, the viral RNA is translated

into a polyprotein which is cleaved by both host and viral proteases into three structural and

seven non-structural (NS) proteins (Figure 1.2).43

The non-structural proteins are involved in viral RNA replication. The best characterized

proteins are NS3 and NS5. NS3 has three distinct activities: serine protease in complex with

6
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Figure 1.1: Depiction of the flavivirus virion. Source: ViralZone www.expasy.org/viralzone, Swiss Institute
of Bioinformatics

Figure 1.2: Flavivirus genome (top) and polyprotein (bottom) with cleavage sites. (Source: ViralZone
www.expasy.ch/viralzone, Swiss Institute of Bioinformatics)

NS2B, required for polyprotein processing; helicase/NTPase activity, required for unwinding

double stranded replicative form of RNA; RNA triphosphatase, required for capping of nascent

viral RNA. NS5 has three enzymatic functions: S-adenosyl-L-methionine (SAM) dependent

methyltransferase (MTase)44,45 and guanylyltransferase46 required for maturation of the RNA

cap; RNA-dependent RNA polymerase (RdRp) required for RNA replication. NS1 is required

for flaviviral replication and presumably involved in negative-strand synthesis. NS2A is a trans-

membrane protein involved in membrane generation during virus assembly. NS4A is a membrane

protein involved in the formation of the viral replication complex. NS4B inhibits type I interferon

response of host cells.47

A type 1 cap structure is found at the 5’-end of both viral and cellular eukaryotic RNA.48

It is essential for viral replication, since it ensures RNA stability by protecting against RNases

and it enhances recognition by the ribosomes.49,50 The capping process results from four

chemical reactions, catalyzed by viral enzymes (Figure 1.3). Starting from the unaltered 5’-

7
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end, consisting of the final nucleotide to which a triphosphate is attached at the 5’ position, an

RNA triphosphatase (presumably NS3) removes the terminal phosphate group. In the following

step, a guanylyltransferase (NS5) transfers one molecule of guanosine monophosphate to the

5’-diphosphate RNA. Finally, the terminal guanosine moiety is methylated in the N7-position by

a methyltransferase (NS5), which leads to a cap 0 structure. In addition, a methyltransferase

(NS5) further methylates the 2’-hydroxy group of the first RNA nucleotide which leads to the

cap 1 structure.44 For all flaviviruses, a cap 1 structure with the form 7MeGpppA2′OMeG-RNA is

always present in mature viral RNA, where the first two nucleotides (A,G) are strictly conserved

among all flaviviruses.48

Figure 1.3: Schematic overview of the processes involved in RNA capping.

1.3.3 NS5 Methyltransferase

One of the viral enzymes involved in the capping process, is the NS5 methyltransferase (MTase)

which is located at the N-terminal domain of the NS5 protein. This enzyme shares a common

fold with many SAM dependent methyltransferases although sequence identity within this family

is very low (10-15%).44,51

Twelve X-ray crystal structures of the dengue MTase domain complexed with S-adenosyl-L-

homocystein (SAH), ribavirin triphosphate (RTP), as well as a variety of RNA cap analogues,

have been published. So far, no full length NS5 crystal structure, consisting of the N-terminal

MTase and the C-terminal RdRp domains, has been solved.

The enzyme has two specific binding sites where ligands have been co-crystallized: The

position of SAH indicates the binding of the methyl donor, SAM. RNA cap analogues bind to a

shallow second pocket. The two binding sites are connected by a common Y-shaped positively

charged cleft, which suggests the placement of capped RNA along the cleft, positioning the

first RNA nucleotide close to SAM, compatible with 2’O-methylation (Figure 1.4).44,52,53

8
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Figure 1.4: Structure of the dengue virus methyltransferase domain.

Although competitive inhibitors are known for both sites of the dengue MTase, the medicinal

chemistry of DENV is still in its very early stage.54 SAH, as well as sinefungin and dehydrosine-

fungin have been characterized as efficient sub-micromolar competitive inhibitors of the MTase.

The structural similarity to SAM strongly suggests their interaction with the SAM pocket.55 A

virtual screening campaign, identified a further inhibitor based on structural similarity to SAM,

which inhibits MTase activity in the medium-micromolar range.56 Furthermore, RTP has been

found to inhibit dengue MTase, but shows only weak activity.52 An additional inhibitor with

activity in the low micromolar range was found, which is expected to bind to the RNA cleft.57

Recently, Lim et al. have developed a small molecular inhibitor based on SAM analogs, which

selectively blocks DENV MTase.58 In addition, using high throughput screening, Stahla-Beek

et al have discovered the first inhibitor of the enzyme’s guanylyltransferase activity.59

The NS5 MTase catalyzes both the guanine N7 and the ribose 2’O methylation, generating

sequentially GpppA-RNA → 7MeGpppA-RNA → 7MeGpppA2′OMe-RNA (Figure 1.5).44,60,50

For both reactions in flaviviruses, no mechanisms at an atomistic level is known and no structure

with a short capped RNA in a conformation suitable for methyltransfer has been solved.

Sequence alignment revealed that the four residues Lys61, Asp146, Lys181 and Glu217 are

conserved among many MTases. From biochemical and mutagenesis studies, it has been shown

that those four residues are critical for the functioning of the methyltransfer reactions and

thus the replication of the virus itself. However, different dependencies on the residues within

this motive were found for the N7 and the 2’O methylation reaction, which suggests different

underlying mechanisms.60 In addition, further mutagenesis studies identified two distinct sets

of amino acids on the enzyme’s surface required for the N7 and the 2’O methylation, which

9
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Figure 1.5: Overview of the two methyltransfer reactions catalyzed by the NS5 MTase. Reactants:
unmethylated RNA (1), S-adenosyl-L-methionine (3). Products: doubly methylated RNA (2), S-adenosyl-
L-homocysteine (4).

suggests that the RNA adopts two different binding modes.61 In addition, for the N7 reaction, it

has been found that it can only take place on RNA templates comprising at least 74 nucleotides

of the viral 5’ UTR sequence.50

From the structures of vaccinia virus VP39 2’O-MTase and mutagenesis studies of RrmJ

MTase, a mechanism for the 2’O methylation has been suggested for those enzymes.62,63 It was

proposed that the methyltransfer from SAM to the 2’-hydroxy group of the RNA ribose moiety

proceeds as a nucleophilic SN2 type reaction and that it is catalyzed by the conserved residues

in the Lys61-Asp146-Lys181-Glu217 tetrade, which mediates deprotonation of the 2’-hydroxy

group.64,65 From the structure of the distantly related Ecm1 N7-MTase, an in-line mechanism

with no direct contact of the protein was suggested for the N7-methylation. There, the catalysis

seems to be achieved through close proximity of the guanosine N7-atom and the SAM methyl

group.66

10
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1.4 Objectives

This work aims at a better understanding of the molecular basis of disease related viral methyl-

transferases, their interactions with small molecules and the catalytic mechanism, which may on

the long perspective help to develop a treatment against neglected tropical diseases. Further-

more, we aim to advance the current methods for the computational prediction of a protein’s

molecular function and its biological role in the cell. In addition, we aim to complement currently

available computational strategies for estimating protein ligand interaction energies.

This thesis is organized as follows: First, the results from our study on the identification

of novel dengue virus methyltransferases are given, followed by a description of the further ex-

perimental characterization of the inhibitory effects of selected promising compounds. Second,

the computational and experimental analysis of the mechanism of action of the dengue virus

methyltransferase is described. Third, insights of the assessment of ligand binding site prediction

methods are presented, indicating current limitations in prediction methods and their assess-

ment. In addition, the subsequent implementation of these suggestions is described. Fourth,

the development of a rapid scoring function for identifying the correct pose of a ligand bound

to a protein is presented. Finally, a novel human-computer interface device is described.
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Chapter 2

Identification and Validation of Novel Dengue

Methyltransferase Inhibitors

The search for lead compounds which inhibit the dengue methyltransferase can be significantly

facilitated by using computational methods. We are using high-throughput structure-based

virtual screening of a library of over five million purchasable compounds to reduce the library

to a list of a few hundred candidates which are tested in vitro. Subsequently, the experimental

binding affinities can be used to increase the accuracy of our predictions and to select further

compounds for experimental verification.

The focus of our study is to obtain a better understanding of the molecular properties of

viral methyltransferase active sites and their interactions with small molecules, which will guide

our search for novel lead compounds against neglected tropical diseases.

For the discovery of novel classes of compounds inhibiting dengue MTase, a combination

of large-scale structure-based virtual screening and enzymatic inhibition assays was employed.

The virtual screening approach was based on a multi-stage docking strategy and was applied

to a library of over five million commercially available compounds. The funnel like strategy

included multiple Glide67 docking steps of selected subsets with increasing accuracy as well as

a refinement and a selection step. Promising compounds were subsequently assayed in vitro

using a scintillation proximity assay55 at the Novartis Institute for Tropical Diseases (NITD) in

Singapore.

Additionally, ligand based virtual screening methods were applied to retrieve additional

active compounds. Thus, we constructed a pharmacophore model, based on experimental

data obtained by this study and common receptor-ligand interactions predicted by our docking

calculations. This model was used to obtain further candidates from the initial compound library

which were subsequently assayed in vitro.

From the list of 263 candidates which were assayed experimentally, ten compounds were

found to specifically inhibit dengue MTase with IC50 values in the low µM range. Due to the

broad setup of the initial library, those active compounds represent a set of diverse chemotypes

and predicted binding modes, leading to a variety of different starting points for further drug

discovery efforts.

During compound screening, numerous false positive hits were encountered, which non-
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specifically inhibit the dengue MTase. Thus, we have tested computational methods to predict

non-specific inhibition due to compound aggregation. Those methods use supervised machine

learning techniques to classify specific from non-specific inhibitors based on calculated physic-

ochemical properties. While our trained classifier performs well within one dataset, misclassi-

fication rates are significantly increased when applied to a completely new set of compounds.

Our results suggest that prediction of aggregation behavior is not transferable between assay

conditions or biological targets. Thus, such classifiers cannot be used to eliminate predicted

non-specific compounds prior to in vitro assays.

To further characterize the active compounds and to validate their specific interaction with

the dengue MTase, additional experimental assays were performed. Of the ten active compounds

identified through our virtual screening approach, five promising compounds were selected for

further follow-up experimental assays to confirm their specific inhibition of the MTase and to

distinguish between inhibitory activity of the 2’O and the N7 MTase function. Thereby, the

inhibitory activity of the two most active compounds was confirmed.

In addition, we have developed an isothermal titration calorimetry (ITC) assay in order to

measure binding constants of the selected active compounds. Due to solubility issues only a

subset of three compounds was assayed in the ITC experiment, however, their binding to the

dengue MTase could not be confirmed.

For obtaining a better understanding of the important interactions governing protein-ligand

binding, for the validation of predicted binding modes as well as for future structure-based

compound optimizations, we started efforts to obtain X-ray crystal structures of the inhibitors

bound to the MTase.
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2.1. SCREENING FOR NOVEL INHIBITORS

2.1 Screening For Novel Inhibitors

In the following, a published manuscript is included:

“Novel Inhibitors of Dengue Virus Methyltransferase: Discovery by in Vitro-Driven

Virtual Screening on a Desktop Computer Grid”

My contributions to this joint work were the following:

In-depth analysis of high-throughput docking results

Development of pharmacophore hypotheses based on experimentally validated high-throughput

docking hits

Pharmacophore based screening for additional compounds and subsequent rescoring of

obtained hits

Retrospective analysis of refinement and rescoring procedures

Modeling of compound aggregation behaviour
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Dengue fever is a viral disease that affects 50-100 million people annually and is one of the most
important emerging infectious diseases in many areas of the world. Currently, neither specific drugs nor
vaccines are available. Here, we report on the discovery of new inhibitors of the viral NS5 RNA
methyltransferase, a promising flavivirus drug target. We have used a multistage molecular docking
approach to screen a library of more than 5 million commercially available compounds against the two
binding sites of this enzyme. In 263 compounds chosen for experimental verification, we found 10
inhibitors with IC50 values of <100 μM, of which four exhibited IC50 values of <10 μM in in vitro
assays. The initial hit list also contained 25 nonspecific aggregators. We discuss why this likely occurred
for this particular target. We also describe our attempts to use aggregation prediction to further guide
the study, following this finding.

Introduction

Dengue fever is a viral disease that is transmitted between
humanhosts byAedesmosquitoes, particularlyAedes aegyptii.
In 1997, 20 million cases of dengue fever were estimated to
occur annually.1,2 Partially because of increased urbanization
and failure to effectively control the spread of the insect vector,
more recent estimates suggest this number has risen to 50-100
million, and dengue fever is now seen as one of the most
important emerging infectious diseases in many areas of the
world.3-5 Mild cases of dengue fever result in severe flulike
symptoms, including fever, headache, and myalgia, but more
severe cases can progress into a hemorrhagic fever and shock
syndrome with considerable lethality.6 Current treatment
practice is nonspecific and symptomatic with a regimen of
analgesics and fluid replacement, as neither specific drugs nor
vaccines are available.1

Dengue virus is a plus-strand RNA virus belonging to the
Flavivirus genus of the Flaviviridae family. Four serotypes
have been isolated (DENV1-DENV4), and exposure to each
of the serotypes conveys only partial immunity.Moreover, the
presence of heterologous antibodies against a serotype other
than the present infection may precipitate the more severe
forms of dengue fever in patients.7 In the absence of efficient
and cost-effective vaccines, the development of inhibitors of
viral or cellular enzyme targets as antiviral therapeutic agents
is of particular interest.

The dengue genome, a single RNA strand 10.7 kb in length,
is translated into a single polyprotein and later cleavedbyviral

and cellular proteases into 10 mature proteins. Three of the
proteins have a structural role (C, prM, and E). In addition,
seven nonstructural proteins (NS1, NS2A, NS2B, NS3,
NS4A, NS4B, and NS5) are formed.8

Of the latter, NS3 andNS5 are the best understood to date,
and both enzymes exhibit multiple domains and functions.9,10

NS5 is the largest (900 amino acids) and most conserved
protein in the dengue genome (67% sequence identity among
serotypes 1-4).8 It contains the RNA methyltransferase
(MTase)a domain, as well as the RNA-dependent RNA
polymerase necessary for virus replication. In this study, we
focus on the discovery of compounds inhibiting the NS5
MTase, which has been proposed as a promising drug target
against flaviviruses by us and others.11-13

The 50 end of the dengue genome contains a type 1 cap
structure, followed by the nucleotides AG, which are conserved
in all flaviviruses.14 Appropriate capping of cellular and viral
RNA is known to increase translation efficiency aswell asRNA
half-life.15,16 Host RNA is transcribed in the nucleus and
processed by the cellular capping machinery. Dengue virus
replication, however, occurs at the membrane of the endoplas-
mic reticulum; hence, a viral MTase is required for capping of
the nascent viral RNA. Of the four steps necessary in Flavivirus
cap formation, the final twomethylation reactions are catalyzed
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by NS5 MTase with S-adenosyl-L-methionine (SAM) as the
methyl donor, generating S-adenosyl-L-homocysteine (SAH)
as a byproduct.17,18 The cap guanine is methylated at the N7
position, resulting in a type 0 cap structure. Subsequently, the
first RNA base, adenosine, is methylated at the 20-OH group
of the ribose, resulting in the formation of a type 1 cap
structure.

The three-dimensional (3D) structure of the dengue NS5
MTase domain was the first FlavivirusMTase structure to be
determined by X-ray crystallography.18 Structures of the
MTase complexed with S-adenosyl-L-homocysteine (SAH),
the nonhydrolyzable GTP analogue GDPMP, ribavirin tri-
phosphate (RTP), and a variety of RNA cap analogues
(GpppA, GpppG, 7MeGpppA, 7MeGpppG, and 7MeGppp-
G20OMe) have been published.17-20

Dengue MTase has an overall globular fold and shares a
common fold withmany SAM-dependentMTases, consisting
of a seven-stranded β-sheet enclosed by four R-helices
(subdomain 2).21 This domain is surrounded by subdomain
1, an N-terminal extension of a helix-turn-helix motif,
followed by a β-strand, an R-helix, and subdomain 3, a
C-terminal extension consisting of an R-helix and two
β-strands, spatially located between subdomain 2 and the
N-terminal extension.18 The enzyme has two specific binding
sites where ligands have been cocrystallized (cf. Figure 1). The
position of SAH indicates the binding site of the methyl
donor, SAM. RNA cap analogues bind to a shallow second
pocket formed between subdomains 1 and 2 (cf. Figure 1A).
The two binding sites are connected by a common Y-shaped
cleft, which suggests the placement of capped RNA along the
cleft, positioning the first RNA nucleotide close to SAM,
compatible with 20-O-methylation. These positions are in
accordance with observed positions of the RNA and cofactor
in a complex structure of vaccinia virus VP39 MTase.22

Here, we present the results of our efforts to find novel
classes of compounds inhibiting dengue MTase, potentially
blocking viral replication. We have used a combination of
large-scale structure-based computational analysis and en-
zyme inhibition assays. On the basis of structural analysis of
dengueMTase, separate binding sites forRTP and SAMwere
targeted. For both sites, competitive inhibitors are known:
SAH, sinefungin, and dehydrosinefungin have been charac-
terized as efficient submicromolar competitive inhibitors of
this MTase, and structural similarity to SAM strongly sug-
gests their interaction with the SAM pocket.23 Furthermore,
two inhibitors of dengue MTase were published concomitant
to this work. An inhibitor (IC50=60.5 μM) has been found by
Luzhkov et al. based on structural similarity to SAM,13 and a
docking study by Milani et al. has found aurintricarboxylic
acid (ATA) to be a low-micromolar inhibitor of dengue
MTase (IC50 = 2.3 μM).24 On the basis of the specific
structural interactions of RTP (IC50=101 μM)19 and nucleo-
tide or cap analogues with the RNA cap binding site, we
consider this site a valid second target for inhibitors.

Our virtual screening approach was based on initial high-
throughput docking calculations performed on a library of
more than 5 million commercially available compounds.
Using a personal computer (PC) grid to harness the idle
computing power of our university’s PCs, we were able to
perform these calculations without prior focusing of the
compound library. After the compounds had been docked,
compound poses were refined, and promising candidates were
assayed in vitro. Insights from these assays combined with
pharmacophoric searches based on the predicted binding

mode of actives were then used to select further compounds
for follow-up testing. In the following, we will discuss our
combined screening study, as well as the results obtained
computationally and in vitro.

Materials and Methods

Chemical Compounds. All compounds in the docking data-
base were associated with purchasing information, and com-
pounds selected for inhibition assays were obtained from a
variety of vendors. Compounds 1-9 (Table 1) were obtained
from the NCI DTP Open Chemical Repository (http://dtp.nci.
nih.gov) with the following compound codes: NSC12451,
NSC15765, NSC26899, NSC49419, NSC54771, NSC84407,
NSC91788, NSC14778, and NSC140047, respectively. Com-
pounds 10-12, 14, 15, 17, 18, 20, 21, 27, and 33 were obtained
from ChemBridge Corp. (San Diego, CA) (codes 5654575,
6490771, 7018889, 7936171, 7208655, 7746191, 7778100,
5219400, 7364286, 5255882, and 5917902, respectively). Com-
pounds 13, 24, 26, and 35 were from Enamine Ltd. (Kiev,
Ukraine) (codes T0520-2463, T0511-8111, T5237786, and
T5285909, respectively). Compounds 16, 19, 22, and 23 were
from InterBioScreen (Moscow, Russia) (codes STOCK1N-
55803, STOCK2S-36613, STOCK3S-13122, and STOCK5S-
06910, respectively). Compounds 25 and 28 were from Inter-
Chim (Montluc-on, France) (codes STOCK1N-17364 and UZI/
9041345, respectively). Compounds 29 and 30were fromAurora
Fine Chemicals (San Diego, CA) (codes Kenb-0135169 and
Kina-0056391, respectively). Compound 31was fromAmbinter
SARL (Paris, France) (code PHAR058572). Compound 32was
from TimTec LLC (Newark, DE) (code ST057026), and com-
pound 35 was from Life Chemicals (Burlington, ON) (code
F0777-1485).

Molecular Modeling. (i) Analysis of Dengue Methyltransfer-
ase Mutations and Structural Variability. For structural studies
and for docking, anX-ray crystallographic structure of DENV2
MTase with bound SAH andRTPwas used [Protein Data Bank
(PDB) entry 1R6A]. To assess the conservation of protein
residues, we extracted dengueMTase sequences froma database
of all dengue sequences inUniProtKB release 14.0 using a blastp
search with the sequence of PDB entry 1R6A as a query.25,26

From the retrieved set of sequences, redundant sequences were
removed, and 127 unique sequences were aligned using Clus-
talW with standard parameter settings.27 Next, identity histo-
gram values (Ip) were calculated at each position, where Ip=
(M - 1)/(N - 1), with p being the position in the alignment, M
the number of prevalent residues in row p, and N the total
number of residues in row p. Finally, residues were colored by
identity histogram values in the Chimera software package.28

To study the structural variability seen in dengue MTase
crystal structures, we obtained all available X-ray structures
from the PDB20 and optimally superposed their backbone
atoms to the reference structure (PDB entry 1R6A). The average
per-residue root-mean-square distances (rmsd) between the
1R6A structure and all other structures were calculated using
VMD version 1.8.629 and colored accordingly.

(ii) Library of Purchasable Chemical Compounds. The com-
pound library for screening was collected as follows. The all-
purchasable subset of the ZINC V5 database, comprising ∼2.7
million molecules from a variety of vendors, was obtained from
http://zinc5.docking.org/.30 To this collection were added 2.4
million nonredundant compounds from the Schr€odinger in-
house CACDBdatabase of commercially available compounds.
Ligands were prepared for docking using the LigPrep process
(Schr€odinger Suite 2007, Schr€odinger LLC, NY). Briefly, the
procedure was as follows. Ligands were desalted, neutralized,
and parametrized using the OPLS 2005 force field. Next,
tautomers and ionization states expected to occur in the pH
range of 5.0-9.0 were generated using ionizer (Schr€odinger
Suite 2007). Wherever the stereochemistry of chiral centers
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Figure 1. Sequence and structural conservation ofDENV2MTase. (A-C) Sequence conservation of dengueMTase. Sequence conservation is
expressed as the identity histogram (I ) of an alignment of 127 nonredundant dengueMTase sequences retrieved fromUniProtKB. (A) Overall
structure of DENV2 MTase in complex with RTP (left) and SAH (right). Ligands are displayed as element-colored licorice sticks. Surface
gradient: from light gray (I=1) to yellow (I=0.947, i.e., 95% identical residues) to red (I=0.323, i.e., 33% identical residues). (B) RNA cap
binding site.Residues surrounding the inhibitorRTPare shownas licorice sticks, colored by degree of conservation as in panelA.RTP is shown
in element-colored sticks (only one of three phosphate groups is shown). Residues undergoing key interactions with the ligand are labeled, and
hydrogen bonds are depicted as cyan lines. (C) SAM binding site. Residues surrounding the reaction byproduct SAH are shown as licorice
sticks, colored by degree of conservation as in panel A. SAH is shown in element-colored sticks. Residues undergoing key interactions with the
ligand are labeled, and hydrogen bonds are depicted as cyan lines. (D-F) Structural variation calculated as a per-residue root-mean-square
distance (rmsd) between the displayed structure and all other available DENV2MTase crystal structures with and without bound ligands. (D)
Overall MTase structure. The average rmsd is expressed as a color gradient: from light gray (rmsd = 0.0 Å) to yellow (rmsd = 1.0 Å) to red
(rmsd g 2.0 Å). (E) RNA cap binding site with residues close to the inhibitor RTP, colored as in panel D. (F) SAM binding site with residues
close to the reaction byproduct SAH, colored according to the rmsd as in panel D. Surfaces were calculated using the MSMS package.57
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was not specified, a maximum of two chiral centers was expanded
into stereoisomers. Up to two low-energy conformations were
produced for ligands with flexible ring systems. Ligand structures
were minimized in implicit solvent using bmin (Schr€odinger Suite
2007). The final library consisted of 5428096 structures.

(iii) Protein Preparation. In preparation for virtual screening,
the enzyme structure from PDB entry 1R6A was modified as
follows. All sulfate ions andwatermolecules found in the crystal
structure were removed with the exception of HOH11, a struc-
tural water molecule found close to SAH.Moreover, the pose of
the flexible Lys22 residue was replaced with an alternate rota-
mer, opening up the front of the RNA cap site to potentially
accommodate larger ligands.

(iv) Ligand Docking and Compound Selection Procedures.

Virtual screening and docking were performed using Glide
version 4.5 (Schr€odinger Suite 2007) using default docking
parameter settings. A set of docking grids was generated in-
dependently for the RNA cap site and the SAM binding site
using the default parameters. For the SAM site, the ligand’s
ability to form ahydrogen bond to the backboneNofVal132 (as
observed with SAH)was required as a docking constraint. Next,
a “funnel” strategy was employed for virtual screening. Initially,
all compounds were docked using Glide in HTVS (High-
throughput Virtual Screening) mode. After this rapid screening,
the following compounds were selected for the next round. (1)
All compounds ranked in the top 10% by GlideScore were
picked. (2) All isomers (enantiomers, tautomers, and ring con-
formers) or alternate protonation states of compounds selected

under 1 were chosen. (3) All docked poses forming a hydrogen
bond to the Val132 backbone nitrogen were selected using a
relaxed distance criterion of 3 Å. In the next round, these
compounds were docked into the respective binding sites, using
the Glide SP (Standard Precision) protocol. From this stage,
compounds were selected as follows. (1) The top 10% of the
compounds for each binding site byGlideScore were chosen. (2)
Isomers of compounds selected in step 1 were included if found
in the top 20% of compounds. These compounds were finally
docked using the Glide XP (Extended Precision) procedure, and
the 4000 top-ranked molecules from each binding site were
selected for further refinement. Details on the number of
compounds selected in each step are given in Results.

Following docking, selected compounds were passed through
further refinement steps. (1) Additional input conformations for
each selected compound were generated by reconstructing the
geometry of each of the hit compounds and minimizing in
implicit solvent or vacuum using the OPLS-AA or MMFF94
force fields31,32 using MacroModel (Schr€odinger Suite 2007).
Alternate conformations were docked using Glide XP, and only
the best-scoring pose was retained. The rationale for this
enhanced sampling procedure was to ensure that found poses
and scores are not influenced by subtle biases in the starting
conformations of compounds induced by the force field. (2) We
next applied a correction term to the docking score to account
for internal ligand strain. The ligand strain correction term was
calculated by optimizing the docked pose of the free ligand
resulting from step 1 with torsion angle restraints and then

Table 1. Predicted Binding Pocket and Measured Inhibition of Docked Compounds

Cpd IDa
binding

pocket

IC50 ( μM)

(Hill coefficient)

IC50 (μM)

with 0.1% TX100 (μM)

(Hill coefficient)

activity

retained EC50 (μM) CC50 (μM)

1 NSC12451 SAM 29.9 (n.d.) >100 (n.d.)

2 NSC15765 SAM 14.3 (1.9) 43.4 (2.3) yes >100 >100

3 NSC26899 SAM 25.3 (3.1) >100 (n.d.)

4 NSC49419 SAM 27.59 (2.5) >100 (n.d.)

5 NSC54771 SAM 27.53 (2.9) >100 (n.d.)

6 NSC84407 SAM 31.43 (2.3) >100 (n.d.)

7 NSC91788 SAM 29.03 (1.4) >100 (n.d.)

8 NSC14778 SAM 1.52 (3.1) 9.46 (2.5) yes >100 >100

9 NSC140047 SAM 8.78 (1.9) 4.47 (2.2) yes >100 >100

10 ZINC 02911543 RNA cap 7.56 (1.5) 7.14 (1.4) yes >100 >100

11 ZINC 01174529 RNA cap 6.83 (2.9) >100 (n.d.)

12 ZINC 03461039 RNA cap 7.11 (2) >100 (n.d.)

13 ZINC 03287966 RNA cap 8.81 (2.3) >100 (n.d.)

14 ZINC 01078518 RNA cap 9.28 (2.4) 64.2 (4.4) yes 12 22.7

15 ZINC 01138375 RNA cap 11.35 (3.2) >100 (n.d.)

16 ZINC 02129857 RNA cap 11.92 (1.9) >100 (n.d.)

17 ZINC 01112283 RNA cap 13.16 (2.5) >100 (n.d.)

18 ZINC 02849675 RNA cap 17.64 (2.8) >100 (n.d.)

19 ZINC 00632055 RNA cap 20.32 (1.3) >100 (n.d.)

20 ZINC 01467812 RNA cap 37.46 (1.5) >100 (n.d.)

21 ZINC 02826899 SAM 2.91 (2.7) >25 (n.d.)

22 ZINC 01878835 SAM 4.29 (4.1) >25 (n.d.)

23 ZINC 01758620 SAM 9.62 (2.1) >100 (n.d.)

24 ZINC 00633950 SAM 12.84 (1.7) >100 (n.d.)

25 CACDB 1751080 SAM 16.87 (2.2) 79.8 (0.9) yes 10.9 30.7

26 ZINC 02642996 SAM 16.09 (1.6) >100 (n.d.)

27 ZINC 01226983 SAM 21.11 (2) >100 (n.d.)

28 ZINC 02750651 RNA cap 2.81 (1.6) 19.55 (1.3) yes >100 >100

29 CACDB964942 RNA cap 13.50 (1.7) 87.1 (2.3) yes 50.0 75.1

30 CACDB1563494 SAM 9.84 (2.1) >100 (n.d.)

31 ZINC 01832826 RNA cap 4.42 (1.8) 44.5 (4.1) yes >100 >100

32 ZINC 01078734 RNA cap 12.39 (1.8) >100 (n.d.)

33 ZINC01196449 RNA cap 7.99 (1.3) >100 (n.d.)

34 ZINC02379945 RNA cap 14.50 (1.4) >100 (n.d.)

35 ZINC03369470 RNA cap 4.80 (2.1) 4.91 (1.6) yes >100 >100
aCompound structures are depicted in Table S4 of the Supporting Information. n.d. = not determined.
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without such restraints. A portion of the difference in minimized
energies (25% of the strain energy in excess of 4 kcal/mol) was
used to calculate the correction term, which is applied to the
original Glide docking score. (3) We then applied the Prime
MM-GBSA rescoring protocol (Schr€odinger Suite 2007). This
procedure estimates the ligand binding free energy by performing
minimization of the receptor-ligand complex, or the receptor
and ligand alone. After refinement, a sorted list of the top
compounds for each binding site was generated using the best-
scoring Glide XP score of the multiple conformations, the strain-
corrected XP score, and theMM-GBSA binding free energy, and
three ranks were assigned to each compound, along with a
consensus rank, calculated as the mean of the individual ranks.
In summary, the refinement procedure first resampled ligand
conformations and then provided the Glide XP score and
two additional scores (strain-corrected Glide XP scores and
MM-GBSAbinding free energy estimates), as well as a consensus
score for the selection of ligands for experimental verification.

For retrospective analysis, initial (nondocked) conformations of
all 263 compounds tested in assays (regardless of activity) were
collected and docked into both binding sites using Glide XP. Next,
refinement and rescoring procedures as described above were ap-
plied to all resulting poses. To allow comparisons between the bin-
ding sites, all compound scores were converted into Z scores. The
better-scoring pose of the two binding sites was then used in the
generation of enrichment plots. With two exceptions, all the dif-
ferent scoring schemes employed in this process selected the same
binding pocket as predicted in our previous docking attempts. We
predicted compound 8 to dock into the SAM site, but as it does not
formtheH-bondtoVal132, itspose in theRNAcapsitewaschosen.
This bond was not required in the initial screening of the NCI
library. For compound 31, only the Prime MM-GBSA approach
favored a pose in the SAM site over the RNA cap site, which was
predicted by all other scores along with our previous predictions.

(v) Pharmacophore Searches. Pharmacophore generation
and database searching were performed using Phase version
2.5 (Schr€odinger LLC). Three different 3D pharmacophore
hypotheses were generated on the basis of (A) a cluster consist-
ing of five compounds [10, 13, 17, 20, and 32 (Table 1)],
including the confirmed hit compound 10, (B) compound 10

alone, and (C) the cocrystallizedMTase ligands ribavirin mono-
phosphate and guanosine monophosphate. Pharmacophoric
features were chosen so that they resembled the interac-
tions between the ligands and the protein predicted by docking
(A and B) or present in the cocrystallized structures33 (C).

To allow flexible pharmacophore matching, a conforma-
tional search was performed on all compounds of the library
of purchasable chemical compounds described above. For sub-
sequent filtering of the full compound library, Phase default
parameters were applied and all features defined in the pharma-
cophore hypotheses were required to match.

All compounds returned by the pharmacophore searches were
subsequently docked to the RNA cap binding site and scored
using Glide XP version 4.5 (Schr€odinger LLC). The best-scoring
pose for each compound was saved for further evaluation. As
pharmacophore (A) resulted in a large number of hits, resultswere
clustered by similarity, using MACCS structural keys finger-
prints, a Tanimotometric, and a degree of similarity of 60%using
MOE 2007.09 (Chemical Computing Group, Montreal, QC). A
diverse result set was obtained by picking the representative with
the best GlideScore from each cluster.

Aggregation Prediction. (i) Test Sets. Three test sets were
assembled to evaluate different predictors of compound aggre-
gation. Briefly, theDenV test set consists of themolecules tested
in this study, and the Med and AmpC test sets are taken from
previously published studies on aggregation behavior.34-36 See
the Supporting Information for details.

(ii) Decision Tree Aggregation Prediction. We assembled a
decision tree similar to that which Seidler et al. derived using
recursive partitioning.37 See the Supporting Information for details.

(iii) Random Forest Modeling of Aggregation Behavior. We
applied the random forest method38 to model aggregation in a
manner similar to the approach published by Feng et al.35 See
the Supporting Information for details.

Computational Infrastructure.While visual analysis of protein
and small-molecule structures, as well as analysis of physico-
chemical properties, was performed on standard Linux work-
stations, the preparation and filtering of the library for docking
were performed on a Beowulf-type Linux cluster. Still, these
resources were not sufficient to allow us to execute the planned
large-scale molecular docking campaigns against theMTase. In
the early stages of the project, we therefore built up a grid
computing infrastructure at that time consisting of approxi-
mately 300 desktop PCs running theWindows 2000 orWindows
XP operating system located in our institution’s laboratories
and classrooms, as well as some laboratory computers from
another academic institution. These computers were tasked
with docking or pharmacophore search jobs using Univa UD
GridMP version 5.3. Schr€odinger Suite 2007 supported this
resource management system natively. As these types of com-
putations are embarrassingly parallel, this resource’s ready
availability allowed us to screen large libraries for suitable
compounds within reasonable amounts of time.

In Vitro Assays. (i)Methyltransferase Activity Assay.Unless
otherwise stated, all compounds were first tested at a single
maximum concentration of 25 or 100 μM followed by IC50

determinations with 2-fold serial dilutions starting from 25 or
100 μM following a previously described protocol.23 In brief,
inhibitors were assayed in a 96-well white opaque plates
(Corning Costar, Lowell, MA) in 50 mM Tris-HCl (pH 7.0),
10 mMKCl, 2 mMMgCl2, 2 mMMnCl2, 0.05% (v/v) CHAPS,
2 mM DTT, and 5 units of RNasin inhibitor (Promega,
Madison, WI). Typically, 25 nM DENV2 MTase enzyme
and 40 nM biotinylated RNA substrate were preincubated
with the test compounds at room temperature for 20 min,
and the reaction was initiated by addition of 0.56 μM
[methyl-3H]AdoMet (72 Ci/mmol) (Amersham Biosciences,
Piscataway, NJ). Under these conditions, the inhibitory effect
of the reaction end product is negligible, as the amount of SAH
produced during the reaction time (5-10 nM SAH produced in
20 min) is too small to have a significant impact on enzyme
activity, as shown in Figures 3 and 4 of Lim et al.23 To detect
aggregators, the assay was varied as follows. Detergent sensiti-
vity experiments were performed via addition of 0.01 or 0.1%
Triton X-100 to the reaction mix.39,40 For spin-down experi-
ments, compound solutions were centrifuged for 15 min at
14000 rpm and room temperature before addition. For IC50

shift assays, 8 or 80 nM DENV2 MTase was used to reach a
10-fold difference in enzyme concentration. All other conditions
were kept the same.

Reactions were stopped with buffer containing 100 mMTris-
HCl (pH 7), 50 mM EDTA, 300 mM NaCl, 8 mg/mL strepta-
vidin SPA beads (Amersham Biosciences), and 125 μM cold
S-adenosyl-L-methionine. Plateswere read in aTriluxmicrobeta
counter (Perkin-Elmer, Boston, MA) with a counting time of
1 min/well. All data points were measured in duplicate wells.
IC50 curves were plotted with average counts per minute against
the log of compound concentration. The standard deviationwas
calculated by the nonbiased n - 1 method, where standard
deviation={[n

P
x2 - (

P
x)2]/[n(n - 1)]}1/2. Nonlinear regres-

sion (curve fit) and the equation for the sigmoidal dose response
(variable slope) from GraphPad Prism version 3.02 (GraphPad
Prism, Inc., San Diego, CA) were used to interpolate values for
IC50. The equation is as follows:

Y ¼ bottomþðtop-bottomÞ=½1þ 10ðlog IC50 -XÞ�Hill slope�
whereX is the logarithm of concentration andY is the response.
Y starts at bottom and goes to top with a sigmoid shape. This is
identical to the “four-parameter logistic equation”.41,42
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(ii) Cell-Based Flavivirus Immunodetection (CF-I) Assays and
Cytotoxicity Assay. The ability of compounds to inhibit dengue
replication in a cell-based system (EC50) as well as the cyto-
toxicity of test compounds (CC50) was assayed as previously
described.43

Results

Structural Analysis of DENV2 Methyltransferase. Viruses
are known to benefit from short generation times and fast
evolution rates in escaping host defense reactions as well as in
developing resistance against therapeutic molecules.44,45 Inhi-
bitors must remain efficient against different serotypes and
common mutations to qualify for further development.
Figure 1A shows the conservation of individual MTase resi-
dues among peptide sequences from clinical isolates deposited
in the UniProt database,25 mapped onto the surface of
DENV2 MTase in complex with RTP and SAH. For each
residue, surface color is determined by the identity histogram
value of an alignment of 127 uniqueDENVMTase sequences,
shown in a spectrum from light gray (100% conservation)
through yellow (95% conservation) to red (33% conserva-
tion). The Y-shaped central cavity is clearly visible, with the
RNA cap located at the left-hand pocket (occupied by RTP
in the structure shown) and SAM located to the right in
place of SAH. As shown in Figure 1B, the RNA cap binding
site is rather shallow and open. The aromatic ring of Phe25
undergoes π-stacking interaction with aromatic ring systems
of the ligand. Hydrogen bonds can be formed from the ribose
moiety to backbone oxygens of Asn18 and Lys14. The
backbone oxygens of Leu20 and Leu17 likewise accept
H-bonds, stabilizing the “front end” of ribavirin or the cap
guanine. Moreover, electrostatic interactions between the
phosphate groups of RTP and Lys29, Ser150, and Ser214
further stabilize ligand binding. The binding pocket of SAM
(Figure 1C) is considerably more closed than the cap binding
site. Important interactions are hydrogen bonds at both
ends of the elongated SAM molecule, with Asp131 and
Val132 fixing the adenine moiety and Gly86, Ser56, and
Asp146 fixing the amino acid moiety at the opposite end.
The elongated binding pocket is lined with predominantly
apolar residues. Figure 1C also shows the catalytic tetrad
comprised of Lys61, Asp146, Lys181, and Glu217 essential
for RNA 20-O-methylation.17,46

Most current docking algorithms treat the protein as a
rigid structure. It is therefore of great importance to inves-
tigate and account for possible structural rearrangements
between the unliganded and liganded states. Figure 1D
shows the variations present in the availableX-ray structures
of the dengue MTase with the average per-residue root-
mean-square distance (rmsd) mapped onto the surface of
dengue MTase in complex with RTP and SAH. The varia-
bility of each residue is encodedby a color gradient from light
gray (0 Å rmsd) to yellow (1 Å rmsd) to red (g2 Å rmsd).
Overall, the structural variability is small andmainly located
on the outer, solvent-exposed surface of the protein. The
RNA cap binding site (Figure 1E) and the SAM binding site
(Figure 1F) show very little structural variability.

The small number of mutations observed in the MT-
ase active sites and the relative rigidity of the enzyme’s active
sites, as witnessed by structural comparisons, make the
MTase binding sites evolutionary and structurally stable
targets for rigid protein molecular docking approaches.

Validation of the Docking and Assay Pipeline. In light of
the small number of known inhibitors of the MTase, we

favored structure-based over ligand-based computational
approaches for the identification of promising inhibitory
compounds. As a first step in validating our approach, we
therefore redocked the cocrystallized ligands RTP and SAH
into their respective binding pockets. These calculations
were performed usingGlide 4.5 in XPmode. The best-scored
resulting poses were found to generally reproduce the bind-
ing mode of the crystallized ligands with heavy atom
rmsd values of 0.74 and 1.33 for RTP and SAH, respecti-
vely (Figure 2).

Despite the fact that the RNA cap site is rather shallow,
the redocked pose of RTP closely resembles that of the
crystallized compound. Notably, the terminal nitrogen of
Lys14 was designated as protonated in our protein prepara-
tion procedure, inducing a slight difference in the position of
the ribose 30-hydroxyl group with regard to the experimental
structure. As the original data contain coordinates for only
ribavirin monophosphate modeled into the Fo - Fc and
2Fo - Fc electron density maps,19 the positions of the RTP
β- and γ-phosphates were predicted, with the γ-phosphate
stabilized by hydrogen bonds to Arg57 and Lys29. Redock-
ing of SAH resulted in a pose similar to that of the SAH
modeled into the electron density maps with a few differ-
ences. As a structural water molecule is absent, the sugar
20-oxygen forms a directH-bond to the backbone nitrogen of
Glu111 rather than a water-mediated interaction as in the

Figure 2. Redocking of RTP and SAH. (A) Crystallized pose of
RTP shown with green carbons. The best redocked pose of RTP is
shown with orange carbons. Surrounding residues undergoing
important interactions are colored light blue. (B) Crystallized pose
of SAH shown with green carbons. The best redocked pose of SAH
is shownwith orange carbons.Main interacting residues are colored
light blue.
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experimental structure. This leads to a tilt in the plane of the
adenine and a loss of the hydrogen bonds to Val132 and
Asp131. Finally, the amino acidmoiety of the SAHmolecule
is well anchored toAsp146, Trp87, Gly86, and Ser56 in a less
strained conformation than that observed in the published
structure. Comparable poses were also obtained for further
known ligands of dengue MTase, GDPMP, SAM, and
sinefungin (data not shown).

Our first effort was to screen a small set of 127000
compounds from the National Cancer Institute Develop-
mental Therapeutics Program (NCI DTP).47 Separate dock-
ing calculations were set up targeting either the RNA cap or
SAM binding site. This study was conducted before the
development of the protocol described in Materials and
Methods and used a somewhat different procedure. Glide
4.5 was used in HTVS mode as a rapid first pass, mainly to
eliminate compounds unlikely to fit to the binding pockets.
Resulting poseswere ranked byGlideScore, and the top 40%
of hits against each binding site (79888 poses for the RNA
cap site and 79946 poses for the SAMsite)were extracted and
redocked using Glide in SP mode. From the SP results, 100
compounds per site were chosen, on the basis of their ranked
GlideScore and visual inspection for plausibility. Of this
compound list, 40 were randomly selected for in vitro testing
for dengue MTase inhibition. Of 36 compounds obtained
from the NCI, nine compounds (Table 1, compounds 1-9)
were found to be inhibitors of theMTase in vitro and will be
further discussed below. With the workflow from computa-
tion to inhibition data in place, we now were ready to screen
the large library of commercially available compounds
previously compiled.

High-Throughput Docking. Both binding sites were next
targeted in molecular docking campaigns using the whole
compound library described above. During the whole pro-
cedure, the two binding sites were treated separately. For
each site, compounds were docked using the funnel strategy
described inMaterials andMethods. After the first screening
step, 1.01 � 106 compounds for the RNA cap site and
6.72 � 105 compounds for the SAM site were docked using
the SP protocol; 1.09 � 105 compounds (RNA cap site) and
7.7� 104 compounds (SAMsite) were finally subjected to the
XP procedure, and the 4000 top-ranking molecules from
each binding site were selected for further refinement.

To prevent the lowest-energy pose finally retained from
being influenced by artifacts of minimization on a 3D grid,
each hit molecule was reconstructed and minimized under
different conditions (solvent and force field). These addi-
tional input conformations were docked, and only the best-
scored pose was retained for each compound (3392 com-
pounds for the RNA cap site and 3365 compounds for the
SAM site), discarding isomers along with suboptimal poses.

Candidate Selection and Inhibition Assays.Next, we calcu-
lated additional scores for the docked compounds. First, a
correction term for ligand strain was applied to the Glide-
Score. Second, ligand binding energies were estimated using
the MM-GBSA protocol in Prime version 1.6. The three
scores were subsequently combined into a rank-based con-
sensus score. Final short lists for each binding site were as
follows: the 200 top compounds by consensus and the top
100 compounds by each of the individual scores. These
overlapping criteria resulted in approximately 350 com-
pounds per binding site, which were visually inspected and
prioritized by a jury panel drawn from our institutions,
involving four or five independent jurors. In this step,

different criteria were considered: diversity of chemical
moieties covered by selection, credibility of pose based on
experience in protein X-ray crystallography, similarity to
known inhibitor poses, and presence of one or more key and
additional intermolecular contacts with penalization of very
close distance contacts. The consensus opinion of the jurors
was used to produce a short list of 100 prioritized compounds
for each binding site.

In total, 183 compounds could be obtained from vendors
and were assayed for their ability to inhibit the transfer of a
3H-labeled methyl group from SAM to a short synthetic
GTP-capped RNA oligonucleotide using a scintillation
proximity assay.23 Initial testing for MTase inhibition was
conducted at a single concentration (25 or 100 μM), and IC50

concentrations were then determined for compounds show-
ing substantial inhibition (>40%) in these experiments. Of
the compounds tested, 23 were found to be inhibitors of
DENV2MTase with a spectrum of IC50 values ranging from
2.62 to 37.46 μM (Table 1, compounds 10-32).

Pharmacophore Screening. To retrieve further active com-
pounds from the compound database, we next built a five-
feature pharmacophore hypothesis from the predicted bind-
ing modes of compounds 10, 13, 17, 20, and 32 in the RNA
cap site, reasoning that factors important for ligand binding
may be inferred from the predicted binding poses of hit
compounds. From a 3D superposition of these five com-
pounds, a pharmacophore hypothesis was built using Phase
version 2.5, consisting of pharmacophore features common
to all compounds, resembling the protein-ligand interac-
tions as predicted by docking. The hypothesis consists of five
pharmacophoric features: two aromatic rings corresponding
to (1) the diphenylamino ring stacking with Phe25, (2) the
benzenesulfonatemoiety, aswell as hydrogen bond (3) donor
and (4) acceptor features representing the diamino/amide
moiety interacting with Ser150 and Ser214, and (5) a nega-
tively charged group on the sulfonate moiety, interacting
with Lys29 and Arg212 (Figure 3).

Searching through the compound database resulted in
4200 hits to the pharmacophore, which were subsequently
docked into theRNAcapbinding site and scored usingGlide
XP. To reduce the number of compounds but retain struc-
tural diversity, the 308 most diverse structures with the best
GlideScore were selected on the basis of structural similarity.
Resulting poses were visually evaluated by a jury as de-
scribed above. Eighteen compounds were selected and sub-
sequently tested in vitro as described above.Dose-dependent
inhibition of compounds 33-35 was found to exhibit IC50

values between 4.8 and 14.5 μM (Table 1). Additional
pharmacophore searches of the compound database were
performed using six-feature models derived from either
compound 10 only or the experimental structures of GMP
and RTP in the binding pocket, retrieving 149 and 193
compounds, respectively. Of these, five and four compounds
were selected for in vitro assays as described above, respec-
tively, but no further inhibitors of MTase were found.

Testing Hit Compounds for Unspecific Inhibition. Of the
compounds tested for inhibition, a large fraction exhibited a
Hill coefficient substantially larger than unity. A large Hill
coefficient signifies that a small increase in inhibitor con-
centration leads to an anomalously large change in inhibi-
tion, which can stem from positive ligand cooperativity,
enzymes with equivalent binding sites, but also from non-
ideal, nonspecific behavior that leads to abrupt enzyme inhi-
bition above a critical concentration. One such mechanism
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is aggregation,48 which has been recognized as a major cause
of false positives in high-throughput screening.37,39,49,50 The
addition of the nonionic surfactant Triton X-100 (0.1%) to
the assay solution is often used to prevent the formation of
compound aggregates without influencing enzymatic activ-
ity.While the addition of 0.1%TritonX-100 to our assay did
not abolish inhibition by sinefungin, it had a marked effect
on the majority of the previously chosen compounds.

Of the 35 compounds, 10 retained inhibitory activity (IC50

< 100 μM) in this assay (Table 1, compounds 2, 8-10, 14,
25, 28, 29, 31, and 35) (Figure 4), and 25 were rejected,
exhibiting essentially flat dose-response curves in the pre-
sence of surfactant. The IC50 values of four of the actives
changed e3-fold compared to measurements without sur-
factant: 14.3 μM for 2, 4.47 μM for 9, 7.14 μM for 10, and
4.91 μM for 35. Compound 8 exhibited a 6.18-fold change
with the addition of Triton X-100 but retained an IC50 value
of <10 μM. Compounds 14, 25, 28, 29, and 31 have IC50

values shifted more than 3-fold from the values obtained
without TritonX-100 and do not saturate theMTase enzyme
at the highest inhibitor concentrations (50 and 100 μM) used
in the assays (Figure 4). In Figure 5, the two-dimensional
structures and predicted binding modes are shown for hits
with IC50 values of <10 μM. As these low-micromolar
inhibitors are of particular interest, we performed two addi-
tional experiments to further rule out aggregation as the
cause of inhibition.

First, compounds were assayed after centrifugation at
14000 rpm for 15 min (spin-down assay) to deplete the
solution of any colloid particles. IC50 values obtained under
these conditions are comparable to those obtained in
previous assays with Triton X-100: 6.22 μM vs 9.46 μM
(Cpd 8), 10.52 μMvs 4.47 μM (Cpd 9), 10.68 μMvs 7.14 μM
(Cpd 10), and 4.34 μM vs 4.91 μM (Cpd 35). Second, IC50

values of the compounds were assayed in the presence of 8 or

80 nM MTase. Nonaggregating compounds should be in-
sensitive to this shift in enzyme concentration. Compounds 8
and 10 exhibit relatively small changes in IC50, whichmay be
attributed to experimental variation: 2.3-fold for Cpd 8

[from 3.16 μM (8 nM) to 7.14 μM (80 nM)] and 1.3-fold
for Cpd 10 [from 7.62 μM (8 nM) to 10.24 μM (80 nM)]. The
two remaining compounds, 9 and 35, exhibit larger shifts:
6.4-fold for Cpd 9 [from 3.27 μM (8 nM) to 20.82 μM (80
nM)] and 8.0-fold for Cpd 35 [from 1.32 μM (8 nM) to
10.6 μM (80 nM)].

All 10 active compounds were further assessed by the CF-I
assay to examine their activities against dengue virus repli-
cation. The assay is based on quantitative immunodetection of
dengue virus E protein production in target cells.43 EC50 and
CC50 values are reported in Table 1. Of the tested compounds,
only compounds 14 (EC50=12 μM), 25 (EC50=10.9 μM), and
29 (EC50=50 μM) elicited a response in the cellular assays.
Unfortunately, these compounds also exhibit cytotoxicity in
the midmicromolar range (CC50 values of 22.7, 30.7, and
75.1 μM, respectively).

Modeling of Aggregation Behavior. The unexpected elimi-
nation of many compounds that initially tested positive
due to their action as aggregators prompted us to further
investigate this nonspecific effect. Different computational
approaches that are trained on experimental data to predict
aggregation behavior of chemical compounds have been
published.35,37 For our study, we were interested in how well
similar predictors can be applied to different biological
targets and assay conditions, as training and validation sets
are usually measured under identical conditions. To assess
the transferability of the proposed methods and evaluate
them for our biological target, we have assembled three data
sets of compounds with known aggregation properties in
their respective assays: one based on the data from this work
and two based on previously published large-scale aggrega-
tor detection assays.

We adapted the decision tree proposed by Seidler et al.37 to
molecular descriptors available to us and applied this pre-
dictor to the three test sets (Table S2 of the Supporting
Information). Of the 182 compounds assayed from the large
docking study, 23 initially appeared to be active in vitro. Of
these, one compound was reliably not aggregating (IC50 <
10 μM in the presence of detergent). In this data set, our
decision tree classifier underestimated the overall aggrega-
tion tendency: 15 (65%) of these compounds were predicted
to aggregate. Furthermore, compound 10, the highest-
affinity nonaggregator, was wrongly classified. Overall, the
aggregation tendency was predicted correctly 61% of the
time. Prior to in vitro testing of the 27 compounds selec-
ted from the pharmacophoric search, we ran the same
aggregation predictor against this data set. Six (22%) of
the compounds were predicted to aggregate. Despite the
imperfections of the aggregation predictor, this value was
sufficiently low, compared to the 65% prediction for the
first-round actives, that we were confident that the second-
round compounds would exhibit a significantly weaker
aggregation tendency.

We also evaluated the use of a random forest classifier as
described by Feng et al.35 to predict aggregators in the three
test sets, on the basis of calculated physicochemical proper-
ties. Validation within test sets yielded acceptable false
positive (FP) and false negative (FN) rates (see the diagonal
elements in Table S3 of the Supporting Information), com-
parable to results reported elsewhere.35When random forest

Figure 3. Pharmacophore query. Predicted binding modes of five
compounds, obtained by docking to the RNA cap binding site and
pharmacophore hypothesis created from the predicted binding
modes. Ligands are shown as licorice sticks with colored carbons.
Compound numbers in the legend refer to Table 1. Surrounding
residues are labeled and shown with blue carbons. The pharmaco-
phore hypothesis consists of five features: two aromatic rings
(orange rings), one hydrogen bond acceptor and one donor (red
and blue spheres with arrows, respectively), and one negatively
charged group (red sphere).
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models trained on the full data set for one assay condition
were applied to data obtainedwith other biological targets or
assay conditions (Table S3 of the Supporting Information),
significantly larger false positive and false negative rates

resulted. In summary, we found both predictors to suffer
from a weak ability to discriminate nonaggregating com-
pounds (specificity), particularly when applied to conditions
other than those on which they were trained.

Figure 4. Dose-dependent inhibition of MTase activity. Recombinant NS5 MTase was preincubated with RNA cap analogue and varying
concentrations of inhibitor. After addition of radiolabeled SAM, the transfer of the labeled methyl group to the RNA substrate was quantified
using a scintillation proximity assay. Boxes and dashed lines show data for inhibitionmeasuredwithout addition of TritonX-100, and triangles
and solid lines represent measurements in the presence of 0.1%Triton X-100.Measured counts per minute were normalized by dividing by the
top curve value. (A-J) Inhibition of MTase by compounds 2, 8-10, 14, 25, 28, 29, 31, and 35 (see Table 1).
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Of the 27 compounds selected for laboratory screening
from our pharmacophoric searches, 23 came from models
that included compound 10, the best nonaggregating hit
from the large-scale docking study. It is tempting to spec-
ulate that the reason this data set exhibited the lower fraction
of aggregators among the apparent hits might be that the
nonaggregator found in the earlier search was used to derive
these models. It is not possible to draw this conclusion, given
the limited number of compounds tested. However, the
limited results we have obtained do suggest as a subject for
future investigation that similarity to nonaggregating hits
found in an early screen could be a useful criterion to
incorporate into the development of a second-generation
data set for a later screen.

Retrospective Analysis of Refinement and Rescoring Pro-

cedures. As the exact procedures for compound screening,
refining, and rescoring evolved over the course of this work,
we next performed a coherent retrospective analysis of the
total set of 263 compounds tested for MTase inhibition in
this work. In this analysis, the enrichment of compounds
active in the inhibition assay (2, 8-10, 14, 28, 29, 31, and 35)
was calculated at different steps of the procedure. All
compounds were first passed through the final screening
pipeline: (1) docking to the two binding sites using Glide XP,
(2) refinement using resampled ligand conformations, and
(3) generation of two additional scores (strain-corrected
Glide XP scores and Prime MM-GBSA binding free energy
estimates), as well as a consensus score. We next plot-
ted enrichment of actives before and after the refinement

procedure (Figure 6A). Following the procedure applied in
docking the large compound library, we next compared
enrichment of actives achieved with each of the scores
(Glide XP score of the refined pose, Glide XP score with
internal strain correction, and Prime MM-GBSA binding
free energy) and a consensus score, the rank-based average of
individual scores (Figure 6B). As the number of actives in
this data set is rather small, results from these analyses
necessarily remain indicative, rather than conclusive. Never-
theless, our data suggest that the choice of rescoring scheme
has an impact on the resulting hit list, whereas the impact of
resampling ligand conformations is at least in our system less
apparent.

Discussion

In this work, we describe the outcome of a combined
computational and experimental study searching for novel
inhibitors of dengue NS5 MTase among commercially avail-
able compounds. The viral methyltransferase possesses two
binding sites that can be targeted in principle. However, the
RNA cap site is rather shallow and solvent-exposed, so that
molecules interacting firmly with this site are challenging to
find. The second site binds the ubiquitous cofactor SAM,
which invokes problems of specificity and off-target activity.
For instance, the submicromolar inhibitor of dengue MTase
sinefungin showed promise as an antibiotic, antiviral, and
antiparasitic agent but was not further pursued because of its
severe nephrotoxicity and lack of specificity.51-53

Figure 5. Structure and binding mode of DENV2MTase inhibitors. (A) Structure of DENV2MTase inhibitors with IC50 values of<10 μM.
Compound numbers refer to Table 1, followed by the IC50 value. The predicted target site is given in parentheses (SAM, SAMsite; RNA,RNA
cap site). (B) Crystallized pose of SAH shown as green licorice sticks. Compound 8 is shown with orange carbons, and compound 9 is shown
with pink carbons. (C) Crystallized pose ofRTP shown as green licorice sticks. Compounds 10 and 35 are shownwith orange and pink carbons,
respectively.
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After an initial investigation of the target for suitability, we
launched two virtual screening campaigns. Since little infor-
mation was published about inhibitors of dengueMTase and
their binding mode at the outset of the project, we pursued a
broad-sweeping approach, using molecular docking to screen
a library of several million compounds, rather than a small
focused library. This approach was leveraged by the ready
availability of computing resources through a computing grid
that put more than 300 idle desktop PCs at our disposal.

The hits foundmust be considered starting points. The lack
of an effect in cell-based assays observed with seven of the
compounds may indicate cell permeation or stability pro-
blems, and the compounds (14 and 29) eliciting a response in
these assays show an onset of cytotoxicity close to the half-
maximal efficient dose.Nevertheless, these compounds inhibit
the enzyme in in vitro assays, represent diverse chemotypes
and predicted binding modes due to the study design, and
therefore provide a number of inroads toward more focused
approaches, which are currently under investigation.

Having at our disposal a set of 263 compounds characterized
in inhibition assays, we retrospectively investigated the effect of
decisive steps in our compound selection procedure on the
resulting hit list. Notably, this set is a mixture of actives and
very difficult decoys. All compounds initially docked well to
one of the binding sites, were scored high, and were selected by
a human panel as promising. Thus, absolute enrichment is not
as interesting as are the differences between enrichments
obtained by the various methods. In our system, increased
sampling of starting conformations had no positive effect on
the outcome, indicating that found poses and scores were not
influenced by starting conformation biases. This is a positive
finding. It indicates that the docking approach used here was
not hampered by artifacts introduced by grid-based energy
minimization. The comparison of different scoring procedures
proves to be more interesting. In this case, where we try to
discriminate between compounds scored closely together,
Prime MM-GBSA binding free energies seem to provide the
best enrichment of true actives for this target, closely followed
by the consensus score obtained by the rank average of all three
scoring methods used. Future virtual screening efforts against
dengueor closely relatedMTasesmaybenefit from this finding.

Why did our virtual screening result in the discovery of
many aggregators? Since, in a virtual screen, there is no

opportunity for multiple copies of the ligand to interact with
each other, there must be some other explanation for this
observation. Most likely, the explanation lies in the fact that
the binding sites studied here lend themselves to binding by
long, flat molecules which, due to their shape and aromatic
nature, have a strong tendency to aggregate. If this is correct,
we would expect high-ranking virtual screening candidates
obtained against binding sites more polar or more compact
than those studied here to exhibit a much weaker tendency to
aggregate. To putmatters into perspective, the overall percen-
tage of aggregators picked up in our study (25 of a total of
263 compounds tested, or 9.5%) is lower than that found in
another study, where 19% of randomly chosen druglike
compounds were acting as aggregators.35While docking does
not select against aggregators, it does not select for them,
either.

We tested two computational methods to predict com-
pound aggregation to see if nonspecific binders can be identi-
fied before the in vitro stage. When a trained classifier is
applied to a set of compounds assayed under different condi-
tions, the level of misclassification is significantly increased in
a manner independent of the training set used, making these
predictions of limited practical use. As the tested models take
compound properties but not the conditions of the assay into
account, this is not surprising. Interestingly, the decision tree
model proved to be more transferable than the random forest
models.

As described earlier, we were confident, on the basis of the
results of aggregation prediction, that the second-round
compounds would exhibit a lower fraction of aggregates than
the first-round actives. Laboratory results were in accordwith
this expectation. Of 27 compounds assayed, only two (7.4%)
turned out to be aggregators. Of the three apparent hits, one
(33%) turned out tobe a nonaggregating hit, compared toone
of 23 compounds (4.3%) from the large-scale docking screen.
Apparent hits in the phamacophoric screen were considerably
more enriched in nonaggregators than the hits from the large-
scale docking screen.

As the majority of compounds selected from the pharma-
cophoric searches came frommodels that included compound
10, the best nonaggregating hit, it is tempting to speculate that
similarity to nonaggregating hits found in an early screen
could be auseful criterion to incorporate into the development

Figure 6. Enrichment of active vs inactive inhibitors. The number of actives recovered is plotted on theY-axis against the size of the database
screened on the X-axis. (A) Enrichment obtained with standard Glide XP docking (XP, orange) and with the best-scored Glide XP pose after
increased sampling of starting conformations (XXP, black). (B) Enrichment obtained with individual scoring schemes and consensus score:
Glide XP Score (XXP, black), Glide XP Score with internal strain correction (XPþstrain, red), Prime MM-GBSA (MM-GBSA, blue), and
rank-based consensus score (Consensus, green).
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of a second-generation data set for a later screen, whichwould
be a worthwhile topic for a future study.

In summary, our results, as well as the observations of
others, do not suggest the broad use of computational meth-
ods in filtering out aggregators for two reasons. First, avail-
able methods lack accuracy and transferability between
different assay conditions. Second, a number of active ligands
andmarketed drugswere found to be bona fide aggregators in
inhibition assays37 but pharmacologically active at concen-
trations lower than that at the onset of aggregation. This
strongly suggests that the right way to control aggregation is
by preventing it from interfering with the inhibition assay
wherever possible. Aggregation prediction has a role, how-
ever, in the smart selection of limited follow-up compound
sets from primary hits.

The cost of a screening campaign is a major concern,
especially when neglected diseases are being targeted. We
explored the extent to which in vitro experiments can be
replaced by comparably inexpensive computational analysis.
Roughly 5.5million compoundswere initially considered, and
263 molecules were assayed in the laboratory. Of these, 10
were initially characterized as inhibitors. When only com-
pounds exhibiting IC50 values of <10 μM and a Hill coeffi-
cient ofe2.5 were selected, four of the 10 compounds remain
(8-10 and 35) as potentially interesting inhibitors. To further
rule out aggregation as their mode of action, we applied two
additional assays to these candidates. While the spin-down
assay validated all four compounds, only two of the com-
pounds (8 and 10) did not exhibit marked shifts in IC50 when
the enzyme concentration was changed 10-fold, strengthening
the case for these two compounds in particular.

Compounds showing inhibition in the higher micromolar
range (inparticular, compounds 2 and 28) areworth following
up, as well, but may reveal themselves to be insufficiently
specific in further tests. The future use of compounds 8-10

and 35 (Table 1 and Figure 6) should be considered in light of
their properties. The object of this investigation was to find
tool compounds and starting points for further optimization,
using a set of commercially available compounds. While the
compounds identified are not druglike in their properties and
may not readily enter cells, they can serve as tools for
cocrystallization or as starting points for scaffold hopping
and bioisostere replacements. Interestingly, compound 8 exhi-
bits a striking similarity to ATA, a low-micromolar inhibitor
of DENV2 MTase found in a docking study published while
this manuscript was being prepared.24 Compound 9 is cur-
rently under further investigation in a program directed at
identifying SAM competitive inhibitors.

In conclusion, the outcome of our study demonstrates that
iterative combination of virtual screening and validation in the
laboratory is a viable approach for the discovery of new hits
against drug targets and can serve as a model for similar
endeavors against other diseases. Computing power is becom-
ing increasingly inexpensive or even free, as volunteers openly
welcome requests for support of projects with a charitable
aspect. Indeed, a number of grid-based drug discovery efforts
have recently been launched.54-56 However, we strongly be-
lieve that the key to success is not access to virtually unlimited
computing capacity, but rather establishing a tight interaction
cycle between the computational and experimental parts of the
project even before the first calculation takes place.
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2.2 Prediction of Non-Specific Inhibitors

2.2.1 Introduction

High-throughput (HTS) and virtual screening (VS) are commonly used techniques to discover

novel hit compounds in the early phase of drug discovery. A major limitation of both methods

is the fact that numerous false positive hits are obtained when compounds are tested exper-

imentally. One contributing factor are nonspecific or ’promiscous’ inhibitors which affect the

assay read-out but do not specifically inhibit the target protein.68 One common mechanism

for such promiscous behaviour is the formation of colloidal aggregates of organic molecules

which non-specifically inhibit enzymes.69 Those compounds behave strangely with a weak

structure-activity relationship, steep dose-response curves, poor selectivity and non-competitive

inhibition.70 To overcome this issue, numerous experimental techniques have been developed

including high-throughput assays to detect detergent sensitivity or measure particle forma-

tion.71,72,73 In addition, different computational approaches that are trained on experimental

data to predict aggregation behavior of chemical compounds have been published.71,69 Those

methods are based on calculated physicochemical properties of the compounds and use super-

vised machine learning techniques to classify specific from non-specific inhibitors. They have

been shown to predict aggregation with good accuracy within one dataset. It was unclear,

however, how well such predictors can subsequently be transferred to different biological targets

and assay conditions.

In our study to identify novel inhibitors for the dengue virus methyltransferase,74 numerous

compounds that initially tested positive were eliminated due to their action as aggregators as

identified by an assay measuring detergent sensitivity. This prompted us to further investigate

this nonspecific effect. The overall results of this study are summarized in Section 2.1 and

detailed information about the employed method and the obtained results are given here.

For our study, we were interested in how well similar predictors can be applied to different

biological targets and assay conditions, as training and validation sets published in the literature

are usually measured under identical conditions.

2.2.2 Materials and Method

Test Sets

(A) Dengue MTase test set (DenV): The 263 compounds tested during the screening for dengue

MTase inhibitors described above were classified as 237 non-aggregators and 25 aggregators,

based on detergent sensitivity in the inhibition assay described previously. Compounds losing

their inhibitory activity in presence of 0.1% Triton-X 100 were classified as aggregators, whereas

compounds either showing no inhibition or retaining their inhibitory activity in the presence of

detergent were classified as non-aggregators.

(B) Medium-size test set (Med): Data on the aggregation behavior of 1030 molecules has

been published75,71,73 and the experimental results, based on dynamic light scattering and
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a high-throughput detergent sensitive inhibition assay against AmpC β-lactamase, have been

made available online (http://shoichetlab.ucsf.edu). From the 1030 molecules, all compounds

showing ambiguous aggregation behavior were removed, leading to a set of 653 non-aggregators

and 263 aggregators.

(C) AmpC β-lactamase test set (AmpC): Recently, a set of 70563 molecules from the

National Institutes of Health Chemical Genomics Center (NCGC) library was assayed in a high-

throughput screen for detergent-dependent inhibition of AmpC β-lactamase.73 Out of the

70563 molecules tested, 1204 were found to be unambiguously detergent-sensitive. From this

dataset, obtained from http://shoichetlab.ucsf.edu, 402 non-aggregators and 82 aggregators

were randomly picked as an additional test set.

Decision-tree based Aggregation Prediction

For a rapid attempt to predict aggregation behavior, we assembled a decision tree similar to

that which Seidler, et al. derived using recursive partitioning.69 Since we did not have access

to machinery for generating the same set of descriptors, we employed descriptors that had

similar meaning and used an iterative manual process to optimize the cut-off parameters for

our own substitute descriptors to give the best agreement against the 111-compound training

set supplied by Seidler et al. Table A.1 compares the descriptors and parameters we used with

those of Seidler et al.

Random Forest based Aggregation Prediction

Compounds were predicted as aggregators or non-aggregators, based on calculated physico-

chemical descriptors, using a Random Forest (RF) model.76 All compounds were prepared in

their neutral form using the LigPrep protocol. For each compound, all 251 physicochemical

descriptors available in MOE version 2007.09 (Chemical Computing Group, Montreal, Canada)

were calculated. For each test set described above, 70% of the compounds were randomly

selected to train a RF model, which was then tested on the remaining 30% of the data. To

determine average false positive and negative rates, 100 iterations were performed per test set,

each time producing 1000 unpruned trees from subsets of the 251 descriptors. To correct for

the imbalanced dataset, the majority class was down-sampled during training of the RF model.

For cross-validation between test sets, a RF model was trained on all compounds of a test set

and then used to predict aggregators in the other two test sets. 100 iterations were carried out

for each test set as described above. All calculations were performed using R version 2.5.16.77

2.2.3 Results and Discussion

To assess the transferability of the proposed methods and evaluate them for our biological

target, we have assembled three data sets of compounds with known aggregation properties in

their respective assays. We evaluated both a decision tree based method adapted from Seidler
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et al.69 and a Random Forest based classifier as proposed by Feng et al.71 Both are described

in Section 2.2.2.

Decision-tree based Aggregation Prediction

The decision tree proposed by Seidler et al.69 was adapted to molecular descriptors available to

us. Subsequently, this predictor was applied to the three test sets. Table 2.1 shows the results

obtained on the training set of Seidler et al. using descriptors with the parameters shown in

Section A.1 of the Appendix. With this decision tree, we achieved a prediction accuracy of

86.5%, which is not as good as the 93.4% accuracy reported by Seidler et al., but which was

useful for our purposes. 43.2% of the compounds in the training set were aggregators; we

predicted 42.3% aggregators, indicating that our false-positive and false-negative rates were

approximately equal.

Table 2.1: Results of the decision-tree based prediction of aggregation behavior for three independent test
sets.

Training Med AmpC DenV

FP 0.17 0.35 0.29 0.21
FN 0.11 0.03 0.11 0.06
Sensitivity: TP/(TP+FN) 0.88 0.95 0.87 0.93
Specificity: TN/(TN+FP) 0.84 0.74 0.75 0.82

Of the 182 compounds assayed from the large docking study, 23 initially appeared to be

active in vitro. Of these, one compound was reliably not aggregating (IC50 < 10 µM in

the presence of detergent). In this data set, our decision tree classifier underestimated the

overall aggregation tendency: 15 (65%) of these compounds were predicted to aggregate.

Furthermore, compound 10, the highestaffinity nonaggregator, was wrongly classified. Overall,

the aggregation tendency was predicted correctly 61% of the time.

Random Forest based Aggregation Prediction

We also evaluated the use of a random forest classifier as described by Feng et al.71 to predict

aggregators in the three test sets. Validation within test sets yielded acceptable false positive

(FP) and false negative (FN) rates (see diagonal elements in Table 2.2), comparable to results

reported elsewhere.71

However, when random forest models trained on the full data set for one assay condition

were applied to data obtained with other biological targets or assay conditions (see off-diagonal

elements in Table 2.2), significantly larger false positive and false negative rates resulted. In

summary, we found both predictors to suffer from a weak ability to discriminate nonaggregating

compounds (specificity), particularly when applied to conditions other than those on which they

were trained.
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Table 2.2: Results of Random Forest-based prediction of aggregation behavior for three test sets. Trans-
ferability of method is evaluated by performing all nine combinations of training and test set.

test set
Med AmpC DenV

aver stdev aver stdev aver stdev

tr
a
in
in
g
se
t

M
ed

FP 0.23 0.03 0.04 0.01 0.08 0.02
FN 0.25 0.05 0.94 0.02 0.76 0.05

Sensitivity: TP/(TP + FN) 0.76 0.50 0.55
Specificity: TN/(TN + FP ) 0.77 0.56 0.76

A
m
p
C

FP 0.88 0.01 0.42 0.05 0.95 0.01
FN 0.03 0.01 0.39 0.11 0.06 0.04

Sensitivity: TP/(TP + FN) 0.82 0.60 0.43
Specificity: TN/(TN + FP ) 0.53 0.59 0.50

D
en

V

FP 0.59 0.03 0.39 0.02 0.38 0.06
FN 0.09 0.01 0.62 0.04 0.37 0.22

Sensitivity: TP/(TP + FN) 0.82 0.50 0.63
Specificity: TN/(TN + FP ) 0.61 0.50 0.63

2.2.4 Conclusion

To summarize, our results show that the accuracy of current computational approaches to

predict compound aggregation is limited. In particular, both predictors suffer from a weak

ability to discriminate nonaggregating compounds (specificity). In addition, the transferability

of a predictor trained on one dataset to a different target set was investigated. The results

suggest that prediction of aggregation behavior is not transferable between assay conditions or

biological targets. Aggregation seems to be not only a property of the compound itself but

rather depends on numerous other factors in the assay.

Thus, our results, as well as the observations of others, do not suggest the broad use

of computational methods in filtering out aggregators but suggest to limit false-positive hits

based on aggregation by directly preventing them from interfering with the inhibition assay.

However, aggregation prediction might have a significant role in the clever selection of follow-

up compounds from primary hits for which a particular classifier could be trained.
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2.3 Experimental Characterization of Novel Inhibitors

2.3.1 Introduction

Based on a multi-stage virtual screening campaign for identifying inhibitors of the dengue

methyltransferase, ten compounds were found to specifically inhibit dengue MTase with IC50

values in the low µM range. In order to further characterize the identified inhibitors, a proce-

dure for the production of purified recombinant dengue MTase was setup in-house, additional

experimental assays were conducted and crystallization trials were performed on the five most

promising compounds.

Compounds were followed-up using two inhibition assays to determine their inhibitory effect

both on the 2’O and the N7 methylation reaction. In addition, an isothermal titration calorime-

try based assay was developed in order to determine binding of the compounds to the MTase.

Observing inhibition in two additional assays and determine compound binding could further

help to validate their specific interaction with the dengue MTase.

2.3.2 Materials and Method

Protein Expression and Purification

Methyltransferase Plasmid The gateway vector pDEST14 which encode

DENV2MTase Wild Type has been provided by Prof. Bruno Canard.1

Transformation of E. coli

For plasmid isolation After mutagenesis PCR and DpnI digestion, 5 µl were used to

transform 50 µl of competent E. coli TOP10 cells. Cells were thawed on ice, supplemented

with plasmid DNA and incubated for 20 min on ice. Subsequently, cells were heat shocked for

90 sec at 42 °C in a thermomixer and incubated on ice for another 2 min. After addition of

250 µl of LB medium, the reaction mixture was incubated for 1 h at 37 °C with shacking and

subsequently plated onto LB agar plates containing 34 µg/ml chloramphenicol and 100 µg/ml

ampicillin for selection of positive transformants. Some transformed clones were chosen for

plasmid isolation in order to sequence their insert and verify the nucleotide sequence.

LB Media: 10 g Bacto-Tryptone, 5 g Bacto-Yeast extract and 10 g NaCl in 900 ml H2O.

Adjust volume to 100 ml with H2O and sterilize by autoclaving and store at RT.

For protein expression Prior to each protein expression experiments for preparative pur-

poses, fresh transformants have been used to inoculate overnight cultures. Transformants have

been generated as previously described (see for plasmid isolation part). Instead of E. coli TOP10

cells, Rosetta BL21(DE3) pLysS cells are used in this case.

1Prof. Bruno Canard, AFMB, CNRS/University Aix-Marseille, 163 Avenue de Luminy, 13288 Marseille,
France
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Recombinant Protein Expression

Wild Type DENV2MTase Following transformation, a single colony was grown in

50 ml of LB medium at 37 °C overnight supplemented with the proper antibiotic. The culture

was diluted 1/25 in the final volume of TB medium containing 34 µg/ml chloramphenicol and

100 µg/ml ampicillin and incubated with shacking at 37 °C until an O.D. of 0.5 was reached.

After cooling down the cells to room temperature, expression was induced with 0.5 mM IPTG

and incubated overnight at 25 °C. Cells were harvested by centrifugation at 5000g for 10 minutes

at 4 °C. The bacterial pellet was resuspended in lysis buffer and stored at -20 °C.

TB Phosphate: Dissolve 2.31 g KH2PO4 (i.e. 0.17 M) and 12.54 g K2HPO4 (i.e. 0.72 M)

in 90 ml H2O. Adjust volume to 100 ml with H2O and sterilize by autoclaving and store

at RT.

TB Media: 12 g Bacto-Tryptone, 24 g Bacto-Yeast extract and 4 ml glycerol in 900 ml

H2O. Sterilize by autoclaving and cool to <60 °C. Add 100 ml of sterile 10 x TB phosphate

and store at RT.

Lysis Buffer: 50 mM TrisHCl pH 8, 0.3 M NaCl, 5% Glycerol, 0.1% Triton X-100.

SDS-PAGE Electrophoresis To estimate protein solubility and expression level, SDS-

PAGE electrophoresis have been performed. 12% acrylamide resolving gels were prepared and

protein samples were mixed with 5 x SDS + 1 x DTT loading buffer and boiled at 95 °C for

5 min before loading. Electrophoresis run was carried out at room temperature applying 40 mA

per gel. After electrophoresis, gels were stained with Coomassie solution and finally washed

in Destaining solution. The same procedure was also used to evaluate the purity of protein

fractions after purification.

Running Buffer: 25 mM TrisHCl pH 8.3, 0.2 M Glycine, 0.1% SDS

Coomassie solution: 100 ml acetic acid, 400 ml ethanol, 500 ml H2O, 2.5 g Coomassie

BB R250

Destaining solution: 50 ml acetic acid, 200 ml ethanol, 750 ml H2O

Crude Extract Preparation

Cell disruption The thawed cell suspension was placed on ice, resuspended in Lysis

Buffer with a homogenizer and complemented with a tablet of EDTA-free complete protease

inhibitor cocktail (Roche) and 10 µg/ml DNase prior to cell disruption. 2 rounds of microflu-

idizer at 12000 psi were performed to break the cells.

34



2.3. EXPERIMENTAL CHARACTERIZATION OF NOVEL INHIBITORS

Ultracentrifugation Cells debris was removed by centrifugation at 35000 rpm for 30 min

at 4 °C (Beckman, Ti70 rotor). The supernatant was sterile filtered (0.45 µm, Millipore) before

loading it on a Nickel-NTA affinity column.

Chromatographic Purification

The purification of DENV2MTase include two steps: Ni-NTA affinity and size exclusion

chromatography. All chromatographic steps were performed at 4 °C using an ÄKTA purifier

(GE Healthcare) and monitored at 280 nm.

Ni-NTA affinity chromatography The filtered crude extract was loaded on a Histrap

HP 5 ml column. The purification parameters are listed below:

Flow rate: 1 ml/min

Column Equilibration: 3 CV

Wash Out Unbound Samples: 3 CV

For WT MTase:

1st elution step: 6 CV of 15% Buffer B

2nd elution step: 15 CV of 45% Buffer B

Buffer A: 50 mM TrisHCl pH 8, 0.3 M NaCl, 20 mM imidazole

Buffer B: 50 mM TrisHCl pH 8, 0.3 M NaCl, 0.5 M imidazole

For Mutants:

1st elution step: 6 CV of 6% Buffer B supplemented with 10% glycerol

2nd gradient elution step: 21 CV of 6-60% of Buffer B supplemented with 10% glycerol

Buffer A: 50 mM TrisHCl pH 8, 0.5 M NaCl, 20 mM imidazole 10% glycerol

Buffer B: 50 mM TrisHCl pH 8, 0.5 M NaCl, 0.5 M imidazole 10% glycerol

15 ml fractions were collected and analyzed by SDS-PAGE. DENV2MTase containing frac-

tions were pooled and concentrated using Vivaspin 20, MWCO 10k centrifugal concentrator

(Sartorius) to a final volume of 15 ml for size exclusion chromatography.

Size exclusion chromatography Size exclusion chromatography was carried out with

a preparative HiLoad 26/60 Superdex 75 prep grade column (GE Healthcare). 15 ml sample

was injected to the column and eluted with 50 mM Bicine pH 7.5, 0.8 M NaCl, 10% glycerol,

1 mM DTT with a flow rate of 1 ml/min. 15 ml fractions were collected and analyzed by SDS-

PAGE. Fractions containing pure DENV2MTase were pooled and concentrated using Vivaspin

20, MWCO 10k centrifugal concentrator (Sartorius) and depending on the following steps stored

on ice, at 4 °C or at -20°C.
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Isothermal Titration Calorimetry Experiments

Sample Preparation

Protein Buffer Exchange Isothermal titration calorimetry (ITC) is very sensitive and

small buffer mismatches can generate large heats of dilution with each injection, which can

mask heat changes from ligand binding. For this reason, protein buffer exchange has to be

performed, the usual technique is dialysis. Unfortunately, this method could not be applied due

to protein stability problems. Therefore, as an alternative, analytical SEC chromatography has

been used with Superdex 75 10/300 GL column (GE Healthcare).

Due to solubility limitations of some ligands and stability problems of some mutants, different

buffers have been tested for ITC experiments.

� 50 mM Bicine, 0.8 M NaCl, 10% Glycerol, 1 mM DTT, pH 7.5

� 20 mM Tris, 0.2 M NaCl, pH 7.5, 5 mM TECEP

� 20 mM Tris, 0.2 M NaCl, 10% Glycerol, pH 7.5, 5 mM TECEP

� 20 mM Tris, 0.2 M NaCl, 10% Glycerol, pH 7.5, 5 mM TECEP 10% DMSO

Ligand Preparation Selected inhibitors for ITC experiment are listed in Table 2.3.

Ligands have been weighted and solubilized in the buffer used for protein size exclusion chro-

matography (see protein buffer exchange paragraph).

Table 2.3: Compounds selected for ITC, from the list of inhibitors identified by the screening approach
described in Section 2.1.
a IC50 values are for the 2’O reaction.74

Name ID MW IC50 a predicted soluble
(g/mol) (µM) binding pocket

NSC14778 1 288 1.51 SAM yes
ZINC02750651 8 566 2.81 RNA cap no
ZINC02911543 7 377 7.56 RNA cap yes
NSC140047 2 303 8.78 SAM yes
ZINC03369470 9 365 4.80 RNA cap no

To establish ITC experiment and to evaluate impact of mutations on the wild type

DENV2MTase a number of ligands with known inhibitory effect have been used, as summarized

in Table 2.4.

Table 2.4: Ligands used for establishing ITC assays and for evaluating effects on binding affinity of single
point mutations.

Abbrev. Name MW Spectroscopic Binding
Parameters Pocket

GTPγS Guanosine-5’-(γ-thio)-triphosphate, Lithium salt 539.24 g/mol 252 nm, 13700 cm−1 M−1 RNA cap
RTP Ribavirin-5’-triphosphate, Sodium salt 484.14 g/mol 220 nm, 7700 cm−1 M−1 RNA cap
SAH S-Adenosyl-L-homocysteine 384.40 g/mol 260 nm, 15400 cm−1 M−1 SAM
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Protein and Ligand Quantification The concentration of proteins and binding lig-

ands in solution was determined, according to the Lambert-Beer law, by measuring the ab-

sorption at the corresponding wavelength. For potential inhibitors, the molecular extinction

coefficient is unknown. Therefore, the concentration was calculated from the weighted amount

which have been weighted on a high-precision laboratory balance.

Cell Loading and Syringe Filling

The reference cell usually contains water or buffer and does not need to be changed after

every experiment.

Prior to loading the sample cell and injection syringe, the protein and ligand solution are

filtered (0.22 µm, Millipore), degassed to remove residual air bubbles and cooled down. The

cell reactant, i.e. the protein solution in our case, is added to the sample cell of the calorimeter

using a long needle glass syringe. 2 ml of protein solution is prepared to fill the cell which has

a volume of 1.3-1.5 ml. Any excess solution remaining in the reservoir is removed.

The injection syringe is filled with approximately 300 µl of ligand solution and a purge/refill

command is performed to push out potentially present air bubbles. 1 ml of solution is required

to properly fill the injection syringe and to fully remove air bubbles.

ITC Measurement

All the measurements were performed at constant temperature of 22 °C. The first injection

was set to a very small volume of 3 µL because heat disparities can appear due to a injection

volume error arising from backlash in the drive screw mechanism of the syringe. To avoid this

problem we also run a short down motion of the plunger to absorb the backlash from the up

motion of the purge/refill command.

The chosen time interval between two consecutive injections was 200 sec in order to ensure

that thermodynamic equilibrium was reached prior to the next injection.

Experimental parameters

Number of injections: 30

Run temperature: 22 °C

Reference power: 15 µcal/s

Initial delay: 200 s

Syringe solution: Ligand concentration depending on experiment

Cell solution: Protein concentration depending on experiment

Stirring speed: 300 rpm

Injection volume: 10 µL

Duration of injection: 20 s

Spacing: 200 s
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Data analysis Data analysis was performed using an ITC analysis software based on

ORIGIN 7.0. Blank experiments have been performed to validate the measured binding curves.

The heat of dilution from the “end plateau” of the sigmoidal curve was used as reference data

and the average of these values was subtracted from the entire sample data. After subtraction,

thermodynamic parameters were determined with the “One Set of Sites” curve fitting model.

Inhibition Assays

2’O MTase Inhibition Assay Inhibition of 2’O MTase activity by inhibitor candidates was

assayed in vitro based on an assay adopted from Luzhkov et al.56

Briefly, 0.5 µM of purified recombinant dengue MTase in 50 mM Tris (pH 7.5) and 5 mM

DTT was premixed with an inhibitor candidate at 20 or 100 µM final inhibitor concentration.

The reaction was started by a premix of 5 µM [3H]SAM (0.3 - 2 µCi) and 0.3 µM short capped

RNA 7MeGpppAC5 in the same buffer. The reaction was incubated at 30 °C for 3 h. To stop

the reaction, 14 µl samples were spotted into 96 wellplates containing 100 µl of 20 µM ice

cold SAH. Samples were transferred to glass-fiber filtermats and were washed twice with 0.01

M ammonium formate (pH 8.0) twice with water and once with ethanol. Scintillation fluid was

added and RNA methylation was measured using a scintillation counter.

N7 MTase Inhibition Assay Inhibition of N7 MTase activity by inhibitor candidates was

assayed in vitro based on an assay adopted from Milani et al.57

0.5 µM of purified recombinant dengue MTase in 50 mM Tris (pH 7.0), 50 mM NaCl

and 2 mM DTT was premixed with an inhibitor candidate at 16 or 80 µM final inhibitor

concentration. The reaction was started by a premix of 80 µM [3H]SAM (0.3 - 2 µCi) and

0.3 µM radiolabeled capped DENV1−351 RNA in the same buffer. The reaction was incubated

at 22 °C for 1 h. To stop the reaction, samples were heated to 70 °C for 5 min. Samples were

transferred to glass-fiber filtermats and were washed twice with 0.01 M ammonium formate (pH

8.0) twice with water and once with ethanol. Scintillation fluid was added and RNA methylation

was measured using a scintillation counter.

Protein Crystallization and Soaking

Crystals of the dengue MTase were grown by vapor diffusion at room temperature. 1 µl or

0.5 µl of protein solution at 18.5 mg/ml was mixed with 0.5 µl or reservoir solution and was

allowed to equilibrate for two weeks in a hanging drop setup.

Different crystallization buffers were screened in 24 wellplates, consisting of ammonium

sulfate (1.6 to 2.1 M or 1.9 to 2.4 M) and 0.15 M sodium citrate (pH 5.3 to 5.6). Crystals

suitable for X-ray diffraction were obtained under the following conditions: 1.9 M ammonium

sulfate, 0.15 M sodium citrate at pH 5.2 and 5.3 in a mixture of 1 µl protein and 0.5 µl

crystallization buffer. Subsequently crystals were soaked for 1 h in 2.5 mM inhibitor solution

containing 5% DMSO to enhance compound solubility.
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All samples crystallized in P3121 symmetry, space group 152 with cell dimensions a=118,

b=118, c=56 and angles=90°, 90°, 120°. Structures were solved by molecular replacement

using the published structure 1R6A. Statistics are given in Table 2.5.

Table 2.5: Statistics of data collection of X-ray structures where the crystals were soaked with inhibitors.

Space group P3121
Cell parameters (Å) a = b = 117.739, c = 56.019
Resolution range (Å) 49.10 - 2.67
No. of total reflections 88020
No. of unique reflections 12761

2.3.3 Results and Discussion

Inhibition Assays

To further characterize the active compounds, to validate their specific interaction with the

dengue MTase and to distinguish between inhibitory activity of the two catalyzed reactions,

additional experimental assays were performed in a collaboration with Prof. Bruno Canard.

To that end, inhibition assays for both the 2’O and the N7 reactions were further refined and

selected inhibitor candidates were assayed. All results are given in Figure 2.1.

Figure 2.1: Inhibition of the dengue MTase 2’O reaction (A) and the N7 reaction (B) by selected com-
pounds.

Compound NSC14778 inhibits the 2’O reaction at low concentrations (3% activity at 100

µM, 19% at 20 µM). In addition, at 80 µM in also inhibits the N7 reaction with a reduction of

nativ methylation activity to 27%. At 16 µM concentration, no inhibition of the N7 reaction

is observed. The fact that this compound inhibits both reaction is an indication that it binds
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either to the SAM binding pocket or the RNA binding groove. This was correctly predicted by

the original docking calculations which selected this compound based on docking to the SAM

pocket.

Compound ZNC02750651 inhibits the 2’O reaction at low concentrations (2% activity at

100 µM, 5% at 20 µM). No inhibition of the N7 reaction is observed for this compound. This

suggests that this compound binds to the RNA cap pocket which should influence only the 2’O

reaction. Again, this was correctly predicted by the docking calculations which selected this

compound based on docking to the RNA cap pocket.

Sinefungine, a known inhibitor of SAM dependent methyltransferases, was used as a positive

control and shows strong inhibition at low concentrations with a reduction of native methylation

activity to 20% and 0% for the 2’O and the N7 reaction.

All other compounds, do not show inhibition of either reaction in the assays present.

Crystallization

Obtaining X-ray crystal structures of inhibitors bound to the MTase would further our under-

standing of the important interactions governing protein-inhibitor binding and could validate

predicted binding modes. This would be highly beneficial for future structure-based compound

optimizations. Therefore, in a collaboration with Prof. Bruno Canard, we started efforts to

obtain X-ray crystal structures of the inhibitors bound to the MTase.

Using the previously described purified protein of the dengue MTase domain, single crystals,

suitable for X-ray diffraction were obtained using a hanging drop setup (Figure 2.2) and were

subsequently used for soaking experiments with active compounds obtained by the previously

described inhibitor screening efforts.

Figure 2.2: Crystals of the dengue MTase suitable for X-ray diffraction.

Structures were solved of crystals soaked with compounds NSC14778, NSC14047 and

ZINC02911543 with resolutions from 2.5 to 3 Å. Samples containing the active compounds
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aurintricarboxylic acid (ATA)57 and sinefungine were of too low quality.

The structures of NSC14778 and NSC14047 show clearly absence of inhibitor molecules. In

both structures, one molecule of SAH was observed in the SAM binding pocket. The structure

of ZINC02911543 seems more promising with observed additional electron density. However,

the actual data does not permit to say for sure that something else than SAH is bound to the

MTase.

Isothermal Titration Calorimetry

Isothermal titration calorimetry (ITC) based binding assays were performed for selected inhibitor

candidates. For assay validation three compounds with known inhibitory effect were assayed,

i.e. GTPγS and ribavarin triphosphate, binding to the RNA cap pocket, as well as SAH, binding

to the SAM pocket. For all compounds, a clear binding curve was observed.

Of the inhibitors, only three compounds (NSC14778, ZINC02911543, NSC140047) were

soluble at the concentrations necessary for ITC measurements, whereas the two compounds

ZINC02750651 and ZINC03369470 were insoluble. All ITC results are shown in Figure 2.3.

Binding of the three assayed compounds could not be confirmed. A possible reason for this is

discussed below.

Flaviviral MTases are often found to co-purify with one molecule of SAH or SAM bound

to the protein. As neither of these co-factors are added during expression, purification or

crystallization, SAH must originate from E.coli and co-purify with the methyltransferase.44,78

The fact that SAH stays bound to the protein during affinity and size exclusion chromatography

purification steps indicate that SAH either binds very tightly to the protein or has a very slow

off rate. In addition, Lim et al.58 measured the content of bound SAH to the protein under

assay conditions and found that 70% of MTase molecules were occupied by a SAH or SAM

molecule.

Therefore, the ITC assay for compounds binding to the SAM pocket might be problematic

since during a typical injection cycle (i.e. 3 min in our assay) no exchange between inhibitor

and SAH is expected to occur. This is also indicated by the low stoichiometry (i.e. N = 0.3;

expected N = 1.0) obtained for binding of SAH to wild type MTase.

Compound NSC14778 and NSC140047 are predicted to bind to the SAM pocket. In fact,

for NSC14778 it was experimentally found that it inhibits both the N7 and the 2’O reaction,

which indicates that it binds to the SAM pocket. Therefore, for those compounds, the ITC

measurement might not be reliable.

Compound ZINC02750651 on the other hand, is the only inhibitor where inhibition assays

indicated binding to the RNA cap pocket. This would be an excellent candidate for comparison,

however, this compound is insoluble in the concentrations necessary for the ITC assay.

2.3.4 Conclusion

Of the ten active compounds identified through our virtual screening approach, five promising

compounds were selected for further follow-up experimental assays. Of those, we were able to
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Figure 2.3: ITC measurements of inhibitors. (A) Three inhibitor candidates obtained from virtual screen-
ing efforts (red, blue, green) in comparison to GTPγS (black). (B) GTPγS individually to show the
approximate sigmoidal curve shape. (C) Ribavarin triphosphate (blue) in comparison to GTPγS (black) as
positive controls.

confirm the inhibitory activity of the two most active compounds from our previous assays on

the 2’O reaction. In addition, we were able to show that one of those compound inhibits also

the N7 reaction.

The selected compounds were further used in crystal soaking experiments. For three of

them, crystals suitable for X-ray diffraction were obtained. However, in two cases, the inhibitor

candidate was not present in the structure whereas in the third case, additional electron density

is observed, but the results do not permit to give a clear answer about the presence of an
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inhibitor.

In addition, an assay based on isothermal titration calorimetry was developed to determine

binding of a compound to the MTase. Of the selected compounds, three were assayed by ITC

whereas the other two were insoluble under the necessary assay conditions. However, binding

of the three assayed compounds could not be confirmed. One possible cause might be a pre-

occupied SAH binding pocket which renders ITC based measurements unfeasible for compounds

binding to the SAM pocket. To further quantify this effect, HPLC based determination of the

SAH content and the quantification of the SAH exchange rate based on a pulse-chase experiment

are necessary.
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Chapter 3

Computational Analysis of the Methyltransferase

Reaction

3.1 Introduction

Although flaviviral methyltransferases are attractive drug targets,61,79 little is known about the

mechanism underlying their function. The enzyme is known to catalyze two distinct reactions

on an RNA cap structure with a specific sequence,60,53,50 but so far the mechanism of the two

methylation reactions at an atomistic level is not known. Thus, to obtain a better understanding

of the molecular basis of this disease related enzymatic function, we aim at the elucidation of

the underlying mechanisms using computational methods.

The enzyme is known to catalyze two distinct methylation reactions on an RNA cap struc-

ture with a specific sequence, but so far neither the structure nor the mechanism of the two

methylation reactions are known at an atomistic level. Thus, we have modeled the protein

in complex with the RNA for the 2’O reaction, based on available template structures and

published mutagenesis data.

In order to characterize the underlying chemical reactions, high level ab initio electronic

structure calculations were performed on model systems approximating the biological reactions.

Reaction pathways and geometries were investigated and we found that the protein environment

substantially lowers the reaction barrier, mediated by an active site lysine residue.

Based on the modeled complex structures, we applied a computational alanine scanning

protocol employing molecular dynamics simulations and mixed QM/MM calculations in order

to identify protein hot-spots and to further characterize the effect of mutations on different

aspects of the system. We observed the influence of protein single point mutations on the

geometric arrangement between methyl donor and acceptor, on the binding affinities of the

SAM co-factor and on the reaction energetics.

Based on the results obtained by the computational alanine scanning procedure, previously

uncharacterized protein residues were selected for further characterization using both computa-

tional and experimental methods.

Furthermore, to understand the RNA sequence specificity of the enzyme, we used the

modeled structure in complex with different RNA cap structures of mutated sequences. Based
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on molecular dynamics simulations, protein residues critical for RNA sequence specificity of the

enzyme were identified and the possibility for forming an intramolecular hydrogen bond between

distinct RNA elements was observed, whose absence might be detrimental for RNA sequence

specificity.
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3.2 Modeling of the Protein-RNA Complex

Since no structure of a flaviviral methyltransferase in complex with a short capped RNA is

available, we have modeled the structure of the RNA bound DENV MTase, based on avail-

able template structures and published mutagenesis data, in order to investigate RNA binding,

protein flexibility and enzymatic reaction mechanism.

3.2.1 Method

RNA Structure Modeling

For the 2’O-methylation, the VP39 MTase structure was used as a template. The structure of

VP39 MTase (PDB code: 1av6) was superposed to the structure of DENV NS5MTase (PDB

code: 2p41). The cap-guanosine and the first phosphate was taken from 2p41 and manually

combined with the following two phosphates and the first three translated nucleotides obtained

from 1av6. In an iterative manner, the obtained structure was manually adjusted and optimized

in implicit solvent using the software MacroModel until a geometrically suitable structure was

reached. This structure showed key protein-RNA interactions, similar to the interactions in 1av6,

and no clashes between the protein and the RNA molecules were present. The nucleotides were

replaced to yield the naturally occurring RNA sequence GpppAGU. The structure was solvated

in a rectangular box of TIP3P waters. The structure was further optimized, first the solvent,

then the whole system was heated to 300K and equilibrated for 300 ps before free molecular

dynamics was performed. The structure stayed stable during 20 ns of MD simulation.

Ligand-Induced Structural Rearrangements

System Setup Structural rearrangements of the protein upon ligand binding was investi-

gated using MD simulations. Two simulation systems were setup. First, the protein without

ligands (apo simulation), second, the protein with SAM and GpppAGU RNA, modeled as de-

scribed before (holo simulation).

The systems were solvated in a rectangular box of pre-equilibrated TIP3P waters and neu-

tralized with chloride and potassium ions (0.15 M concentration). In the presence of the fixed

solutes, the solvent was first minimized for 5000 steps of steepest descent (SD) minimization

followed by an equilibration step of 300 ps at 298 K. Then the entire system was subjected

to 5000 steps of SD minimization and equilibrated for 1 ns. Free molecular dynamics was

then performed for 20 ns. All minimization and molecular dynamics runs were performed using

NAMD (version 2.7b2)80 with the CHARMM27 all-atom force field.81,82 MD simulations were

performed at constant temperature (i.e. 298 K) and pressure (i.e. 1 bar) using particle-mesh

Ewald (PME) electrostatics and a timestep of 1 fs.

For both systems, two individual free MD runs were carried out, using the same starting

conformation, but different random seeds.
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Analysis of Differences For each of the four MD runs, a frame was extracted every 100

ps, leading to 200 frames per trajectory.

When comparing two different runs, an all-against-all comparison was performed, where

each frame extracted from the first trajectory was optimally superposed against all the frames

from the second trajectory individually, leading to 40000 superpositions. For each superposition,

a per-residue root mean square distance (RMSD) was calculated and the per-residue average

over all superpositions was reported. All analysis was performed using the OpenStructure

framework.83

This comparison was performed within one set (e.g. both runs without ligands) and between

the two sets (i.e. one run without ligands, one with ligand). To obtain ligand induced differences,

the results obtained within the apo simulations was subtracted (or divided) from the results

obtained between the holo and apo simulations.

3.2.2 Validation of the Structural Model

Since no structure of a flaviviral methyltransferase in complex with a short capped RNA is

available, we have modeled the structure of the RNA bound DENV NS5MTase in order to

investigate RNA binding, protein flexibility and enzymatic reaction mechanism, as described

in section 3.2.1. The resulting conformation is shown in Figure 3.1 and structural stability is

shown in Figure 3.2.

Figure 3.1: Modeled structure of RNA bound to dengue NS5MTase: (A) overall structure, (B) binding
site. The RNA is shown in orange, SAM is shown in green.

For the N7 reaction, it has been shown that it can only take place on RNA templates

comprising at least 74 nucleotides (nt) of the viral 5’ UTR sequence.50 However, the underlying

reason is unclear. This RNA stretch is folded into a three-dimensional structure which might

significantly influence the interaction with the MTase. A size comparison between the MTase

and the first 74 nt of RNA is given in Figure 3.3. Therefore, it was not possible to obtain a

structural model of a short RNA cap showing a conformation suitable for the N7 methyltransfer

reaction.
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Figure 3.2: Stability of the modeled protein-RNA complex in MD simulations, measured by the rmsd
of the complex (top panel) and the relevant distances (bottom panel) between methyl donor and acceptor
(red) and between proton donor and acceptor (black).

Figure 3.3: Schematic representation of a model of the complex between the DENV MTase (red) and the
first 74 RNA nucleotides (blue) which are essential for the N7 reaction.

3.2.3 Ligand-Induced Structural Rearrangements

For analyzing structural rearrangements of the protein upon ligand binding, molecular dynamics

simulations have been performed on two different systems: (A) the NS5MTase without any
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3.2. MODELING OF THE PROTEIN-RNA COMPLEX

ligands (apo system), (B) the NS5MTase in complex with SAM and RNA (holo system),

modeled as described in Section 3.2.2.

Structural changes have been analyzed by comparing per-residue RMSDs between two MD

simulations of the apo system with RMSDs between one MD simulation of the holo system

and one of the apo system (see Section 3.2.1 for more detail). This comparison is shown in

Figure 3.4 and the difference was mapped onto the protein structure as shown in Figure 3.5.
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Figure 3.4: (A) Ligand induced structural changes, plotted as the per-residue RMSD difference between
two sets (black: different sets (apo/holo), red: same sets (apo/apo)). (B) Subtraction (black) and division
(blue) of the two curves in (A).

Overall, structural rearrangements are small, especially within the SAM and GTP binding

pocket as well as in the active site. Most prominent, but still small structural changes are

observed in helix A3 (residues 31 to 41) and the C-terminal loop structure (residues 239 to

249). Both substructures are interacting with each other, and the former is directly involved

in binding of the 3’ end of the RNA. Upon ligand binding, a slight movement away from the

protein core is observed.

For the loop covering the SAM pocket (residues 99 to 106) it has been hypothesized that it

could form a flap, which was present in an open and a closed form.60 Although this loop shows

higher flexibility, our calculations do not support this hypothesis, since no significant difference

was observed between the apo and the holo simulations.
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Figure 3.5: Ligand induced structural changes mapped onto the protein structure. (A) Rmsd difference
(i.e. holo-apo) shown from white (difference: 0.0) to red (difference: 1.5). (B) Rmsd ratio (i.e. holo/apo)
shown from white (ratio: 1.0) to red (ratio: 2.5).
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3.3 Methylation of Guanosine N7 and Adenosine 2’O in Model

Systems

In order to characterize the chemical reactions involved in the guanosine N7 and the adenosine

2’O methyl transfer reactions, ab initio electronic structure calculations were performed on

model systems approximating the biological reactions.

Based on minimized structures of the reactants, the transition state and the products we

have explored geometric arrangements, energetics of the reaction and transfer of charges both

for the 2’O and the N7 reaction.

3.3.1 Method

Three different model systems were generated to study reaction energetics on simplified systems.

One for the N7 reaction and two for the 2’O reaction where the proton acceptor was modeled

either by a lysine like molecule or a water molecule.

Reaction energy profiles were calculated for the model system. All geometry optimizations

and energy calculations were performed in Gaussian0384 using the B3LYP85 density functional

theory method and the 6-311++G(d,p) basis set.86 Solvation effects were included both during

optimization and energy calculations based on the C-PCM implicit solvent model.87 For all

model systems, the reactant and the product complexes were fully optimized in implicit solvent

first. Then, using the obtained structures, transition state optimization with QST388 was carried

out. For all fully optimized structures, vibrational analyzes were performed on the same level of

theory in order to confirm the nature of stationary points and to compute thermal corrections

to the Gibbs free energy. From the obtained energies, a free energy profile for the reaction

was created. In addition, point charges were computed based on natural bond orbital (NBO)

analysis.89

3.3.2 Geometry

For this study, model systems were used to study the methyl transfer reaction catalyzed by

flaviviral methyltransferases using quantum chemical calculations. Two model systems were

designed, one for the 2’O reaction and one for the N7 reaction.

The model for the 2’O reaction consists of the following three groups: (1) a model of the

methyl donor SAM, which is truncated one carbon away from the reactive sulfur atom. (2) a

model of the methyl acceptor ribose moiety, which is truncated two carbon atoms away from

the reactive 2’ hydroxy group. (3) A model of the side chain of Lys181, truncated one carbon

atom away from the Nζ, which acts as a proton acceptor. The geometry optimized structures

of this model are shown in the top panel of Figure 3.6.

The model of the N7 reaction consists of two groups: (1) the same model of the methyl

donor SAM. (2) an N-Methylimidazole as a model of the methyl acceptor guanosine. For this

reaction, no proton needs to be abstracted, thus, those two groups are sufficient to describe
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Figure 3.6: Optimized structures of reactants, products and transition states obtained by ab initio calcu-
lations for the three different model systems: (top) 2’O reaction with a NH2CH3 molecule to act as proton
acceptor, (middle) 2’O reaction with a water molecule as proton acceptor, (bottom) N7 reaction

the reaction. The geometry optimized structures of this model are shown in the bottom panel

of Figure 3.6.

In addition, a third model was designed to investigate the uncatalyzed 2’O reaction. This

model consists of the same groups as the model for the catalyzed 2’O reaction, except that

the proton acceptor moiety is replaced by a water molecule that accepts the transferred proton.

To stabilize this water molecule, two additional waters were added, which are hydrogen bonded

to the active water but do not directly participate in the reaction. The geometry optimized

structures of this model are shown in the middle panel of Figure 3.6.

Figure 3.6 shows the optimized structures of all model systems for reactant state (left row),

transition state (middle row) and product state (right row). In all reactions, the methyl groups

are transferred in a SN2 type nucleophilic substitution reaction, where the lone pair of the

acceptor group attacks the positively charged methyl group. This reaction involves a inversion

of the methyl group with a planar methyl conformation in the transition state. In all reactions,

a nearly linear arrangement between the donor, the transferring methyl group and the acceptor

is observed. Geometric parameters were extracted from the optimized structures as shown in

Figure 3.7 with the values are given in Table 3.1 and Table 3.2 for the 2’O and the N7 model

systems, respectively.

The distance between the methyl donor and acceptor atoms show similar behaviors for all

reactions. Starting from the reactant complex, this distance is shortened in the transition state
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Figure 3.7: Schematic representation of the model systems for the 2’O and the N7 reaction. All reported
distances and angles are indicated in read labels. For the 2’O reaction, only the system with a NH2CH3

molecule as proton acceptor is shown since all geometric parameters are directly transferable.

Table 3.1: Geometric parameters obtained from minimized structures for model systems of the 2’O reac-
tion. Either NH3CH3, mimicking Lys181 (left columns), or a water molecule (right columns) is present in
the model system to act as a proton acceptor.

NH2CH3 proton acceptor H2O proton acceptor

reactants transition product reactants transition product
complex state complex complex state complex

d1 (Å) 1.82 2.39 4.00 1.82 2.39 3.82
d2 (Å) 4.78 4.36 5.43 4.82 4.36 5.25
d3 (Å) 2.96 1.97 1.43 2.99 1.97 1.44
d4 (Å) 0.99 1.04 1.72 0.98 1.00 1.49
d5 (Å) 2.86 2.66 2.77 2.80 2.62 2.52
d6 (Å) 1.87 1.63 1.05 1.83 1.63 1.03
a1 (°) 176.9 177.0 176.2 177.7 177.1 175.7
a2 (°) 174.3 175.0 174.9 173.5 171.2 174.1

Table 3.2: Geometric parameters obtained from minimized structures for model systems of the N7 reaction.

reactants transition product
complex state complex

d1 (Å) 1.82 2.30 3.98
d2 (Å) 4.94 4.40 5.44
d3 (Å) 3.12 2.11 1.47
a1 (°) 177.4 180.0 176.6

by 0.54 Å and 0.42 Å for the N7 and the 2’O reaction, respectively. For the product state, a

significant increase in the afore mentioned distance is observed compared to the reactant state.

In the N7 reaction, it is increased by 0.5 Å and in the 2’O reaction by 0.65 Å. Thus, a significant

compression of the structure in the transition state is observed which facilitates the reaction

process by lowering the energy barrier (as discussed below).
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For both models of the 2’O reactions, the methyl group is transferred onto a hydroxy moiety,

yielding a methoxy group as the result of the reaction. Since a protonated methoxy moiety in

instable, the proton needs to be abstracted by a proton acceptor. In the protein environment,

this is performed by the Nζ atom of Lys181 which was shown to be present in a deprotonated

state.64,65 In the uncatalyzed reaction, however, this would be performed by a water molecule.

The geometry of both model systems for the 2’O reaction are very similar for the reactant and

the transition state. For the product state, however, significant differences can be observed.

For the uncatalyzed reaction, the distance between the methyl donor and acceptor is decreased

by 0.18 Å. In addition, the distance between the proton donor and acceptor is reduced by 0.25

Å which leads to a smaller distance between the proton donor and the transferred hydrogen

atom, reduced by 0.23 Å. Thus, the transferred hydrogen atom is more strongly bound to the

methoxy group which indicates that the water molecule is a worse proton acceptor compared to

the model of the lysine. This effect is even stronger when the two additional water molecules

are removed from the model system (i.e. leaving only the reactive water molecule). In that

case, no proton transfer is observed yielding a protonated methoxy group in the product state

(data not shown).

3.3.3 Energy Profiles

Figure 3.8 shows the Gibbs free energies calculated as described in Section 3.3.1 for all geome-

tries of the optimized structures of all model systems for reactant (left), transition (middle) and

product state (right). Table 3.3 summarizes all free energies.
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Figure 3.8: Gibbs free energy profile for reactants, product and transition state, obtained from ab initio
model system calculations for the N7 (orange) and the 2’O methyltransfer reaction. For the 2’O reaction,
either NH3CH3, mimicking Lys181 (black), or a water molecule (blue) is present in the model system to act
as a proton acceptor.
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Table 3.3: Summary of the Gibbs free energies for reactants, product and transition state, obtained from
ab initio model system calculations for the N7 and the 2’O methyltransfer reaction. For the 2’O reaction,
either NH3CH3, mimicking Lys181, or a water molecule is present in the model system to act as a proton
acceptor.

2’O reaction 2’O reaction N7 reaction
(NH2CH3 proton acceptor) (H2O proton acceptor)

reactant complex 0.00 0.00 0.00
transition state 17.59 21.43 13.74
product complex -16.91 -6.34 -23.49

For both the 2’O as well as the N7 system, the calculations reveal that the reactions are

exergonic processes where the product state is energetically significantly lowered compared to

the reactant state with an energetically unfavorable transition state in between. The Gibbs free

energy difference between product and reactant is -23.5 kcal/mol for the N7 reaction and -16.9

kcal/mol for the 2’O reaction. For the transition state, an energy barrier of 13.7 kcal/mol

and 17.6 kcal/mol is observed for N7 and 2’O, respectively. From experimentally determined

kcat value,
90 the activation barrier of the 2’O reaction can be estimated using transition state

theory. This yields an estimated activation barrier of 15.2 kcal/mol for the 2’O reaction. Thus,

the calculated activation energy barriers are in a similar range indicating that the postulated

SN2 type methyl transfer reaction is energetically feasible.

Comparing the N7 to the catalyzed 2’O reaction, shows that the product state of the N7

reaction is lowered by 6.6 kcal/mol and the reaction barrier is reduced by 3.9 kcal/mol.

Comparing the catalyzed 2’O methyl transfer reaction to the uncatalyzed one, a significant

reduction of the product state free energy can be observed when going from modeling the

reaction in water to modeling the protein catalyzed reaction. The product state energy is

lowered by 10.6 kcal/mol. In addition, the reaction energy barrier is lowered by 3.8 kcal/mol.

This corresponds to a reaction rate enhancement of ∼700 times.

In summary, for the 2’O reaction, the data suggests the importance of a lysine residue,

representing Lys181 in the active site of the protein, which acts as a proton acceptor and signif-

icantly stabilizes the product state and reduces the activation barrier compared to the reaction

in aqueous solution. The N7 methyl transfer reaction on the other hand, has a significantly

lower energy barrier to overcome in aqueous solution and is thus more likely to occur without

direct protein interactions. In conclusion, the data agrees well with the mechanistic hypothesis,

where the 2’O reaction needs direct involvement of protein residues, whereas the N7 methy-

lation does not need direct contact with the protein as long as the two reactants are in close

proximity.66

3.3.4 Energy Landscapes

Figure 3.9 shows the two dimensional potential energy landscapes computed at the B3LYP/6-

311++G(d,p) level, for the model system of the N7 (left panel) and the 2’O reaction (right

panel). Enthalpies of partially optimized systems are reported. They were computed on a grid
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using two correlated reaction coordinates. First, the distance between the acceptor atom and

the transferring methyl group (x-axis; distance d3 in Figure 3.7). Second, the distance between

the acceptor and the donor atom (y-axis, distance d2 in Figure 3.7).

Figure 3.9: Two dimensional potential energy landscape for model systems of the N7 (left) and the 2’O
reaction (right). Energies are shown for two reaction coordinates: (x-axis) distance between the acceptor
atom and the transferring CH3 group; (y-axis) distance between the acceptor and the donor atoms.

Although, the absolute values do not fully correspond to the afore mentioned Gibbs free

energies obtained from fully optimized systems, they clearly indicate important features of

the potential energy landscape. For both reactions, two distinct minima are shown. One

corresponding to the reactant state with acceptor-methyl group distances above 2.5 Å and an

energetically more favored minimum corresponding to the product state with acceptor-methyl

group distances around 1.5 Å. The two minima are connected by a saddle point corresponding

to the transition state. When the system is moved along its minimum energy pathway from the

reactants through the transition state to the products, the system first compresses where the

donor-acceptor distance (y-axis) reduces from ∼5 Å to ∼4.5 Å and then expands again to its

product state with a donor-acceptor distance of ∼5.5 Å. Thus, this compression significantly

reduces the activation barrier compared to a direct movement without changing the donor-

acceptor distance. This needs to be considered when evaluating effects on the reaction energy

barrier caused by external perturbations, like single point mutations of the protein environment.

3.3.5 Point Charges

Partial charges obtained from natural population analysis89 performed on the afore mentioned

optimized model structures are shown in Figure 3.10. The charges are mapped onto the N7

and the 2’O systems using a color gradient from red (-0.8e) to green (0.8e). Partial charges

for substructures of the model systems are summarized in Table 3.4.

The computed point charges clearly indicate that the methyl group is transferred as a cation

with an overall change in the partial charges of the full SAM group of 0.98e for the N7 and
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Figure 3.10: NBO point charges from ab initio calculations mapped onto the model systems for the N7
(left) and the 2’O reaction (right). The color gradient ranges from -0.8 (red) to 0.8e (green).

0.99e for the 2’O reaction. The effect is more pronounced for the 2’O reaction, where the

charge is localized more strongly on the transferred methyl group compared to the N7 reaction,

yielding a higher charge on the methyl group both in the transition state and in the product.

In comparison, for the N7 reaction, the charge is more distributed between donor, methyl

group and acceptor, yielding a higher charge on SAM and the N-methylimidazol moiety in the

transition state.

In the product state of the N7 reaction, the charge is located predominantly on the carbon

atom at position 2 of the N-methylimidazol moiety with a point charge of 0.30e, whereas for

the 2’O reaction, the charge is located to a large extend on the proton which was transferred

to the model lysine moiety, with a charge of 0.46e.

3.3.6 Two Step Reaction

The catalytic lysine residue is envisioned to function as proton acceptor in two distinct ways:

First, a two step mechanism involving the following steps: (1) deprotonation of the 2’-hydroxy

group by the catalytic lysine residue prior to the methyl transfer reaction. This leads to the

formation of a 2’-oxyanion. (2) transfer of the methyl group onto the 2’-oxyanion.
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Table 3.4: Partial charges computed by natural bond orbital analysis for substructures of the model
systems for the 2’O and the N7 reaction. The following substructures were used: (SAM) model of SAM
without the reactive methyl group, thus consisting of CH3SCH3, (CH3) reactive methyl group, (ribose)
model of the ribose moiety without the reactive methyl group, (lysine) model of the lysine side chain for
the 2’O reaction, (guanine) model of the guanine acceptor for the N7 reaction.

2’O reaction N7 reaction
SAM CH3 ribose lysine SAM CH3 guanine

reactants 0.92 0.07 0.05 -0.05 0.90 0.08 0.01
TS 0.41 0.32 0.12 0.15 0.48 0.25 0.27
products 0.01 0.34 0.03 0.63 0.01 0.19 0.80

Second, a concerted mechanism where during the methyl transfer, the proton is transferred to

the the catalytic lysine. Thus, prior to the reaction, the proton acceptor does not deprotonate

the 2’-hydroxy group but steers its orientation. NMR experiments indicate that the latter

mechanism is used in the enzymatic reaction of vaccinia virus mRNA cap specific 2’O MTase

VP39.64

Geometry optimized model structures are in agreement with the latter mechanism, where

the proton is bound to the ribose model compound both in the reactants and the transition

state. The distance between the 2’-oxygen atom and the proton is 0.99 Å and 1.04 Å for

reactants and transition state, respectively.
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Figure 3.11: Potential energy curve for the proton transfer obtained by moving the proton from the ribose
proton donor (H-N distance: 1.9 Å) to the lysine proton acceptor (H-N distance: 1.0 Å). (A) the system
is in the reactant state (methyl group bound to the SAM donor). (B) the system is in the product state
(methyl group is bound to ribose acceptor).

To confirm this, a linear scan was performed by moving the proton from the 2’O hydroxy

group to the Nζ of the lysine model moiety. During the scan, the methyl group was kept in

the reactant state and thus bound to the SAM model compound. Therefore, the endpoint of

the scan yields a 2’-oxyanion. The energy profile is shown in Figure 3.11A. The calculations
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estimate the costs of the proton transfer prior to the methyl transfer to ∼10 kcal/mol. The

profile increases monotonically and no significant minimum was observed which would stabilize

the oxyanion conformation.

It should be noted that when the methyl group is moved to its product state, i.e. bound to

the ribose moiety, minimization of the structure yields a spontaneous proton transfer with no

observable barrier in between. This was confirmed by a linear scan of the proton position when

the methyl group is in its product state (Figure 3.11B). This scan estimates the energy gain for

the proton transfer in the product state to ∼20 kcal/mol.
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3.4 Impact of Single Point Mutations

Mutagenesis experiments can greatly help in understanding the mechanism of how an enzyme

catalyzes a reaction by identifying the effect of single point mutations on different aspects of

the system.

Although the effect on methylation activity of numerous single point mutations of DENV

MTase were investigated experimentally, the underlying cause of a reduced methylation activity

is still unknown since only relative methylation activity compared to wild type (WT) was mea-

sured. However, a reduced activity could have many different reasons, e.g. reduced substrate

binding affinities, incorrect arrangement of the methyl-donor/acceptor pair, increased reaction

energy barrier, misfolding of the protein.

Thus, we investigate the effect of mutations at an atomistic level using computer simula-

tions. Therefore, numerous mutagenesis experiments were performed in-silico. To validate the

simulations and to determine the contribution of each studied residue to the enzyme’s func-

tion, different observables were computed from the simulations and compared to experimental

measurements of methylation activity.

Based on a computational alanine scanning procedure, hot-spot residues were identified

which significantly influence the reaction by modulating the geometric arrangement between

methyl donor and acceptor, the methyl donor binding affinity or the reaction energy barrier.

Selected hot-spot residues were further analyzed both computationally and experimentally in

order to gain a better understanding of their role in the enzyme’s function.

3.4.1 Materials and Methods

Plasmid and Primers

Mutants of the dengue MTase were produced based on the wild type plasmid described pre-

viously. Primers were designed according to the instructions from Stratagene manual and

synthesized by Microsynth AG. The used primers are listed in Table 3.5.

Site Directed Mutagenesis

Mutants were prepared with Quick change II XL Site-Directed Mutagenesis (Stragagene), ac-

cording to manufacturer instructions. 20 ng of plasmid DNA encoding Wild Type MTase were

added to 50 µl of a mixture containing 0.2 mM of dNTPs, 6% of DMSO, 1x PfuTurbo Buffer,

0.2 µM of each primer and 2.5 U of PfuTurbo DNA polymerase. DNA was amplified with

18 cycles of PCR: denaturing at 95 °C for 50 sec, annealing at 55 °C for 50 sec, extension at

68 °C for 7 min. After mutagenesis PCR, 1 µl of DpnI restriction enzyme was added to the

amplification reaction and incubated for 1 h at 37 °C to digest non-mutated supercoiled dsDNA.
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Table 3.5: Primers used for the production of DENV2MTase mutants.

Primer Name Tm 5’ - sequence - 3’

DENV2*Glu-79 F 74.7 GAA GGG AAA GTA GTG GAG CTC GGT TGC GGC
DENV2*Glu-79 R 82.4 GCC GCA ACC GAG CTC CAC TAC TTT CCC TTC
DENV2*Asn-79 F 73.8 GAA GGG AAA GTA GTG AAC CTC GGT TGC GGC
DENV2*Asn-79 R 80.9 GCC GCA ACC GAG GTT CAC TAC TTT CCC TTC
DENV2*Ser-79 F 74.7 GAA GGG AAA GTA GTG AGC CTC GGT TGC GGC
DENV2*Ser-79 R 82.4 GCC GCA ACC GAG GCT CAC TAC TTT CCC TTC
DENV2*Thr-88 F 71.2 GGC AGA GGA GGC TGG ACC TAC TAT TGT GGG
DENV2*Thr-88 R 75.6 CCC ACA ATA GTA GGT CCA GCC TCC TCT GCC
DENV2*Asn-88 F 69.6 GGC AGA GGA GGC TGG AAC TAC TAT TGT GGG
DENV2*Asn-88 R 74.0 CCC ACA ATA GTA GTT CCA GCC TCC TCT GCC
DENV2*Asp-217 F 68.0 CGA AAC TCC ACA CAT GAT ATG TAC TGG GTA TCC
DENV2*Asp-217 R 66.6 GGA TAC CCA GTA CAT ATC ATG TGT GGA GTT TCG
DENV2*Asn-217 F 72.2 CGA AAC TCC ACA CAT AAC ATG TAC TGG GTA TCC
DENV2*Asn-217 R 63.8 GGA TAC CCA GTA CAT GTT ATG TGT GGA GTT TCG
DENV2*Gln-217 F 73.4 CGA AAC TCC ACA CAT CAG ATG TAC TGG GTA TCC
DENV2*Gln-217 R 65.6 GGA TAC CCA GTA CAT CTG ATG TGT GGA GTT TCG
DENV2*Phe-219 F 67.8 CCA CAC ATG AGA TGT TCT GGG TAT CCA ATG CC
DENV2*Phe-219 R 67.8 GGC ATT GGA TAC CCA GAA CAT CTC ATG TGT GG
DENV2*His-219 F 71.4 CCA CAC ATG AGA TGC ACT GGG TAT CCA ATG CC
DENV2*His-219 R 65.8 GGC ATT GGA TAC CCA GTG CAT CTC ATG TGT GG

Protein Expression and Purification

Small scale expression and solubility screening of DENV2MTase Mutants 50 ml

cultures of each mutant have been cultivated in the same conditions as the wild type (see above).

2 ml aliquots have been withdrawn before induction and after induction at following time points:

2 h, 4 h, 6 h and overnight. Extracted cell culture samples were centrifuged at 13000 rpm for

10 min and the supernatant was discarded. The remaining cell pellet was resuspended in 1 x

Bugbuster + 200 µg/ml lysosyme + 10 µg/ml DNase solution, and incubated 20 min at room

temperature with shaking. After centrifugation with 13000 rpm for 10 min, supernatants were

collected and treated for SDS-PAGE analysis.

Protein Purification Mutated dengue MTase was expressed and purified as described in

Section 2.3.2.

Isothermal Titration Calorimetry

Binding of S-adenosyl-L-methionine (SAH) and Guanosine-5’-(γ-thio)-triphosphate

(GTPγS) was determined using isothermal titration calorimetry as described in Section 2.3.2.

Computational Mutagenesis

Computational mutagenesis were performed using the following two distinct protocols.

Post-processing Protocol In the post-processing protocol, only simulations of the wild

type MTase are performed. From a molecular dynamics trajectory of the unmutated WT protein-

62



3.4. IMPACT OF SINGLE POINT MUTATIONS

ligand complex solvated in a cubic box of TIP3P water molecules, snapshots are extracted every

8 ps to obtain a representative ensemble of complex structures. For each snapshot the protein

residue under consideration is mutated as follows. First, all side chain atoms which are not

common in the WT and the mutated residue are removed. Second, all missing atoms of the

mutated residue are added based on standard internal coordinates as implemented in CHARMM.

Third, coordinates of the mutated residue are optimized in vacuum for 150 steps of steepest

descent minimization. The structure obtained like this is used for further analysis.

Full MD Protocol In the full MD protocol, MD simulations both of the WT and the

mutated protein-ligand complex are performed. Starting from the same initial structure as for

WT MTase, all atoms not belonging to the protein, the RNA or the SAM molecule are removed.

The protein residue under consideration is mutated using the same procedure as described in

the post-processing protocol. The structure obtained after energy minimization, is subsequently

used as the input structure for MD simulations using the same protocol as for WT MTase.

Molecular Dynamics Simulation

Molecular dynamics simulations are performed on the native complex as well as on single point

mutants thereof, containing the dengue MTase, the capped RNA fragment of the form Gpp-

pAGU and the methyl donor SAM.

For MD simulations, the initial starting conformation of the WT complex was obtained after

MD based equilibration of the modeled complex structure as described in Section 3.2.1. For

consistency, all atoms not belonging to the protein, the RNA or the SAM molecule are removed.

Using the same structure, mutations were introduced as described before.

The systems were solvated in a rectangular box of pre-equilibrated TIP3P91 waters and

neutralized with chloride and potassium ions (0.15 M concentration). In the presence of the

fixed protein-ligand complex, the solvent was first minimized for 200 steps of steepest descent

(SD) minimization. Second, the solute was minimized for 100 steps of SD minimization in the

presence of fixed solvent in order to eliminate all unfavorable steric contacts possibly introduced

by mutations. Subsequently, the solvent was further minimized for 1000 SD minimization steps

followed by 2000 steps of full system minimization. Then, the solvent was equilibrated for

1 ns at 298 K. Subsequently, the entire system was equilibrated for 3 ns. Free molecular

dynamics was then performed using two different approaches. First, a single long trajectory was

computed for 20 ns. Second, ten individual short trajectories of 2 ns length were computed

using the same input structure, but a different random number seed for the langevin thermostat.

All minimization and molecular dynamics runs were performed using NAMD (version 2.7b2)80

with the CHARMM27 all-atom force field.81,82 MD simulations were performed using periodic

boundary conditions at constant temperature (i.e. 298 K) and pressure (i.e. 1 bar) using

particle-mesh Ewald (PME) electrostatics and a timestep of 1 fs. Cutoffs for van der Waals

(vdW) interactions were set to 12 Å using a switching scheme.

For the RNA and SAM ligands, published CHARMM force field parameters were used.92,93,94
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Trajectory Analysis

For the analysis of MD trajectories, snapshots were extracted from MD simulations. For WT

and mutated MTase using the full MD mutation protocol, protein-ligand complex structures

were extracted every 8 ps, yielding a total of 2500 snapshots for each system, obtained either

from one long simulation or from ten individual simulations. Subsequently, all snapshots were

analyzed as described below.

Binding Affinities Free energy of binding (∆Gbind) between the SAM co-factor and the

protein were computed using the MM-GBSA32 method.

In the MM-GBSA method, ∆Gbind is calculated as the ensemble average of the free energies

of the complex system (Gcomp) and the unbound protein (Gprot) and ligand (Glig) as follows:

< ∆Gbind >=< Gcomp > −(< Gprot > + < Glig >) (3.1)

The configurational ensembles of the free protein and ligand were generated from a single

simulation of the complex by extracting the unbound protein and ligand structures.

The binding free energy is computed as the sum of the molecular mechanics gas phase

binding energy (∆EMM ), the solvation free energy (∆Gsolv) and entropic contributions (T∆S).

∆Gbind = ∆EMM +∆Gsolv − T∆S (3.2)

where ∆EMM consists of electrostatic and van der Waals interactions:

∆EMM = ∆Eele +∆EvdW (3.3)

The solvation free energy is separated into polar (∆Gpolar) and non-polar (∆Gnon−polar)

contributions, where former are approximated using the analytical generalized Born (GB) GB-

MV2 model95,96 implemented in CHARMM and latter using the solvent accessible surface area

(SASA):

∆Gsolv = ∆Gpolar +∆Gnon−polar (3.4)

∆Gsolv = ∆GGB +∆GSASA (3.5)

The entropic contributions (T∆S) consist of translational, rotational and vibrational con-

tributions:

∆S = ∆Strans +∆Srot +∆Svib (3.6)

∆Strans and ∆Srot are functions of the mass and moments of inertia, whereas ∆Svib can

be calculated from a normal mode analysis. Since calculations of ∆Svib are computationally

very expensive, entropic contributions were calculated only every 25th snapshot, using normal
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mode analysis as implemented in CHARMM on a fully minimized structure.

The relative free energy of binding between a mutant and the wild type complex (∆∆G) is

computed as follows:

∆∆G = ∆Gmutant −∆GWT (3.7)

Structural Rearrangements Structural rearrangements of mutant MTases were quan-

tified using the following three measures, based on trajectories obtained from the full MD

mutagenesis protocol.

� relative donor-acceptor arrangement, defined as follows:

r = ∥rCH3−O(WT )− rCH3−O(mutant)∥+ ∥rO−N (WT )− rO−N (mutant)∥ (3.8)

where rCH3−O is the distance between the transferring methyl group and the acceptor

2’-oxygen atom and rO−N is the distance between the acceptor 2’-oxygen atom and the

proton accepting Nζ atom of Lys181.

� relative RMSD of SAM compared to WT.

� relative RMSD of the RNA cap compared to WT. The RNA cap included the cap nu-

cleotide and the following two translated nucleotides.

Intrinsic pKa of Active Site Lysine The intrinsic pKa value of the proton acceptor

residue Lys181 was calculated for each mutant using the Poisson-Boltzmann electrostatic pro-

gram APBS (version 1.3.0).97 Every 10th snapshot extracted from multiple short simulations

generated using the full MD mutagenesis protocol was subjected to the analysis.

Reaction Energy Barriers Reaction energy barriers were computed using molecular dy-

namics based umbrella sampling in a mixed quantum mechanics/molecular mechanics

(QM/MM) system. The approximate DFT method, self-consistent charge density functional

tightbinding (SCC-DFTB98,99) was used for the QM level as implemented in CHARMM. The

CHARMM27 all-atom force field was used for the MM level.

As starting structures, four snapshots were extracted from a standard MD simulation of the

WT system. Mutations were introduced using the post-processing alanine scanning protocol

described before. The system was set up in an analogous fashion as for MD simulations.

The QM system included all atoms of SAM, the side chain of Lys181 and the first translated

RNA nucleotide. Link atoms between the QM and MM part were placed between Cα and Cβ

atoms of the Lys181 side chain and between C3′ and O3′ as well as C4′ and C5′ atoms of the

RNA.

Reaction energy profiles were computed using umbrella sampling as implemented in

CHARMM in order to sample the reaction coordinate. The following reaction coordinate was

used:
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rx =
dist(A− CH3)

dist(A−D)
(3.9)

where A is the RNA 2’ oxygen methyl acceptor atom, D is the SAM sulfur donor atom and

CH3 is the transferred methyl group.

The reaction coordinate equals to 0.65 for the reactant state and to 0.30 for the product

state. 33 equidistantly spaced umbrella potentials were used, applying a force constant k of

10000 kcal/mol/A2. For each window, the system was minimized and equilibrated for 2 ps,

followed by a 10 ps production run.

The final reaction energy profiles were obtained by combining the results from the individual

simulations using the weighted histogram analysis method as implemented in the program

WHAM (version 2.0.2).100

For validation, two additional umbrella sampling runs were performed on the WT system.

First, an umbrella sampling run with longer simulation times, i.e. 10 ps equilibration and 20 ps

production run. Second, an umbrella sampling run with twice as many umbrella windows. For

both runs, the observed reaction energy profile was the same within the error margin, determined

as the standard deviation computed from individual simulations.

3.4.2 Results of Computational Alanine Scanning

To identify protein residues which significantly modulate the enzymatic reaction, and to further

investigate the underlying cause for the observed effect, computational alanine scanning was

performed. The idea behind computational alanine scanning101 originates from experimental

mutagenesis studies,102 where the influence of a protein residue is approximated by mutating it

to alanine. This relies on the assumption that alanine has a neutral influence due to its small

and non-polar side chain while being chiral and structurally rigid compared to glycine.

In the following, results of the computational alanine scanning are reported, divided into

their effects on the geometric arrangement between methyl donor and acceptor, the methyl

donor binding affinity, the reaction energy barrier and the intrinsic pKa value of the active site

proton acceptor group.

Geometric Arrangement

The geometric arrangement between the methyl donor (SAM), the methyl acceptor (RNA

2’ hydroxy group) and the proton acceptor (protein Lys181) were investigated for wild type

and single point mutations of dengue MTase using molecular dynamics simulations. The rel-

ative donor/acceptor arrangements of all alanine mutants compared to WT are plotted in

Figure 3.12 against the experimental determined methylation activity obtained from the litera-

ture.103,61,104,105,45,106,58

The figure shows the relative geometry obtained for each mutant on the x-axis and the

experimental methylation activity on the y-axis. All mutants with no experimental results

available are shown as red dots below the x-axis. The gray bar indicates uncertainties in

66



3.4. IMPACT OF SINGLE POINT MUTATIONS
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y219a
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d79as88as211a
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Figure 3.12: (A) Relative donor/acceptor arrangements of all alanine mutants plotted against the exper-
imental determined methylation activity. Mutants with no experimental results available are shown as red
dots below the x-axis. The gray bar indicates uncertainties in computational results of WT. (B) Results
mapped onto the surface of the MTase where all mutated residues are marked in green and residues yielding
significant rearrangements are highlighted in red.

computational results of WT calculated as the standard deviation observed between 10 individual

2 ns simulations. Uncertainties observed in mutant simulations are in a comparable range as

for WT but were omitted for clarity.

In addition, the results are mapped onto the surface of the MTase where all mutated residues

are marked in green and residues yielding significant rearrangements are highlighted in red.

All results are in agreement with experimental values, since no false negatives are observed,

i.e. mutants which are experimentally active but inactive in our simulations. On the other hand,

we observe certain mutants which are inactive in experiment, but are predicted to be active from

our simulations. This is expected, since the observable investigated here, i.e. orientation of

donor/acceptor, is only one of many possible reasons to obtain a reduced methylation activity.

Thus, for those mutants, we do not observe a difference which is significant. This indicates a

different mechanism of inactivation for those mutants.

To further characterize the underlying cause of the structural rearrangement observed here,

the relative RMSD of SAM and of the RNA cap was investigated as shown in Figures 3.13 and

3.14.

The results are again in agreement with experimental methylation activity. They indicate

that the mutants S88A, D79A, D146A, K181A and E217A influence the arrangement of the

SAM methyl donor and the mutants K14A, F25A, K61A, W87A, D146A and Y219A affect the

conformation of the RNA cap structure.

Binding Affinities

Binding free energies of the methyl donor SAM to the MTase were investigated using the

MM-GBSA approach. Two distinct computational mutagenesis protocols were used where MD

simulations were performed either on the WT only (post-processing protocol) or on all mutants

individually (full MD protocol) as described before in more detail. Similar methods have been
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d146a
k181a

e217a

d79as88a

WT

Figure 3.13: (A) Relative SAM RMSD of all alanine mutants plotted against the experimental determined
methylation activity. Mutants with no experimental results available are shown as red dots below the x-axis.
The gray bar indicates uncertainties in computational results of WT. (B) Results mapped onto the surface
of the MTase where all mutated residues are marked in green and residues yielding significantly increased
SAM RMSD are highlighted in red.

WT

k61ak14a
w87a y219a

f25a

d146a

Figure 3.14: (A) Relative RNA cap RMSD of all alanine mutants plotted against the experimental
determined methylation activity. Mutants with no experimental results available are shown as red dots below
the x-axis. The gray bar indicates uncertainties in computational results of WT. (B) Results mapped onto
the surface of the MTase where all mutated residues are marked in green and residues yielding significantly
increased RNA cap RMSD are highlighted in red.

used for studying protein-ligand and protein-protein interactions.107,108,109 Results from the

post-processing protocol are shown in Figure 3.15.

The MM-GBSA binding free energies based on the post-processing mutagenesis protocol

are in agreement with experimental results as no false negatives were observed. In addition,

for the K14A mutant, binding of SAM to the MTase was experimentally confirmed using the

previously described ITC assay. Computationally, this was also observed in MM-GBSA binding

free energies using the post-processing mutagenesis protocol, where ∆∆G = -0.3 kcal/mol for

the K14A mutant. In contrast, when using the full MD mutagenesis protocol and MM-GBSA

energies were computed as the average of ten individual MD simulations, two false negatives

were observed. For those cases, predicted binding affinities were significantly reduced for the
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WT

d146a

d79a

w87a
s56a

d131a

Figure 3.15: (A) Relative binding free energy of SAM to the MTase as computed by MM-GBSA. Results
for all alanine mutants plotted are against the experimental determined methylation activity. Mutants
with no experimental results available are shown as red dots below the x-axis. The gray bar indicates
uncertainties in computational results of WT. (B) Results mapped onto the surface of the MTase where
all mutated residues are marked in green and residues yielding significantly lowered binding affinities are
highlighted in red.

following two mutants which retain their methylation activity in experiments: F133A (65%

activity), E111A (57% activity). Similar findings, with more pronounced effects, were observed

when using one long (20 ns) MD simulation instead of 10 individual short (2 ns) simulations.

In addition, the experimentally examined mutant K14A, is predicted not to bind (∆∆G = 12.2

kcal/mol), which contradicts our experimental ITC binding results. Results on the geometric

arrangement of the RNA cap and inspection of the MD trajectories suggest that the mutant

K14A induces a structural rearrangement of the RNA cap and thus the protein’s active site

which in turn influences the calculated MM-GBSA binding free energies. This suggests that

MM-GBSA binding free energies are less reliable if the protein or the ligand undergoes structural

rearrangements.

To summarize, only the post-processing mutagenesis protocol yields binding affinity results

in agreement with experimental results. Similar findings have been reported for computational

alanine scanning when probing protein-protein iterfaces.107 Although this protocol is more

accurate for our study, it does not incorporate structural rearrangements taking place upon

mutation, which could lead to false positive predictions (i.e. mutants which are experimentally

inactive but do not show reduced binding affinity in the simulations).

Overall, the results predict mutants S56A, D79A, W87A, D131A and D146A to significantly

reduce the binding affinity of SAM to the MTase and thereby inhibiting the methyltransfer

reaction.

Reaction Energetics

Reaction energy barriers were computed for a selected subset of mutations using molecu-

lar dynamics based umbrella sampling in a mixed quantum mechanics/molecular mechanics

(QM/MM) system. The approximate DFT method self-consistent charge density functional
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tightbinding (SCC-DFTB98,99) was used for the QM level whereas the CHARMM27 all-atom

force field was used for the MM level. SCC-DFTB is a computationally efficient method compa-

rable to widely used semi-empirical methods such as AM1 and PM3 with reasonable accuracy.

This makes it possible to perform extensive sampling of condensed phase systems. The SCC-

DFTB method has been applied successfully to numerous biomolecular systems.110,111

Since QM/MM calculations are computationally extremely costly, only WT and the following

four protein residues were investigated as they are located closely to the reactive center: K61A,

D146A, E217A, Y219A. All of these abolish methylation activity for the 2’O reaction. For the

WT system, a energy barrier of 19.4 ± 2.0 kcal/mol was obtained. This is in a similar range as

the barrier computed from experimentally observed kcat using transition state theory (∆GTS
exp

= 15.2 kcal/mol) and agrees well with the results obtained from QM calculations on 2’O

model systems (∆GTS
model = 17.6 kcal/mol). Relative reaction energy barriers and fluctuations

observed between four input structures are given in Figure 3.16.

wt k61a d146a k181a e217a y219a
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

  
re

la
tiv

e
 r

e
a

ct
io

n
 b

a
rr

ie
r 

(k
ca

l/m
o

l)

Figure 3.16: (A) Reaction energy barriers relative to WT, computed by umbrella sampling in a QM/MM
system. Error bars were determined as the standard error obtained from four individual starting structures.
(B) Results mapped onto the surface of the MTase where all mutated residues are marked in green and
residues yielding significantly increased reaction energy barriers are highlighted in red.

The results show an increased reaction barrier for the mutants E217A and K61A. No signif-

icant increase is observed for mutant D146A and Y219A. In addition, for the mutant K181A, a

significant increase in the reaction barrier by 4.7 kcal/mol is observed. In the native protein,

Lys181 acts as the proton acceptor. Therefore, for the mutation K181A, a water molecule was

modeled in the position of Lys181 Nζ and included into the QM region. This water molecule

then acts as a proton acceptor. The increase in the reaction energy barrier for this mutant are

comparable to the results obtained from QM calculations on 2’O model systems (∆∆GTS
model

= 3.8 kcal/mol).
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Intrinsic pKa of Active Site Lysine

During the reaction, the protein residue Lys181 acts as a proton acceptor and thus, its proto-

nation state is critical for the efficiency of the reaction, where a lowered pKa value improves

the reaction. It has been shown in VP39 methyltransferase that this residue has a significantly

lowered pKa value (pKa: 8.5) compared to an isolated lysine (pKa: 10.5).64,65

Although VP39 MTase shows significant structural differences to DENV MTase, the active

site is highly conserved both from a sequence as well as from a structural point of view.

Therefore, intrinsic pKa values of Lys181 were computed for all complex structures of all studied

single point mutants of DENV MTase based on the Poisson-Boltzmann continuum electrostatics

methods. Calculations on WT MTase show a comparable reduction for DENV MTase with a

predicted Lys181 pKa of 9.2.
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Figure 3.17: Calculated intrinsic relative pKa values of Lys181 for WT dengue MTase and all studied
single point mutations.

Predicted pKa values for all mutants are given in Figure 3.17. No significant change of

the pKa value was observed for most mutants. Only for two mutations a significant decrease

over WT was observed: E217A (pKa: 7.6, WT pKa: 9.2), D146A (pKa: 7.8) whereas for one

mutation a significant increase was observed: K61A (pKa: 10.0).

The enzyme’s active site consists of the following four residues Lys181, Asp146, Lys61 and

Glu217, where the two negatively charged residues are hold together by the two lysines. For the

reaction to occur, Lys181 must be deprotonated, and thus, the two negatively charged residues

are only hold together by one positive charge of Lys61. If this charge is removed (K61A), the

protonated and therefore positively charged form of Lys181 is favored in order to stabilize the

two negative charges. Thus, the pKa value of Lys181 is increased compared to WT. On the

opposite, if one of the negative charges is removed (e.g. D146A, E217A), the deprotonated form

of Lys181 is favored and thus, the pKa of Lys181 is reduced. However, as described previously,

mutation of D146A, E217A or K61A leads to a structural rearrangement which inhibits the
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reaction.

3.4.3 Summary of Computational Alanine Scanning

The results from all computational alanine scanning computations are summarized in Figure 3.18

and Table 3.6.

Figure 3.18: Summary of the effect of single point mutations on different aspects of the methyltransfer
reaction. The following effects are mapped onto the protein surface: structural rearrangements of the RNA
cap (red), structural rearrangements of the SAM co-factor (blue), reduced SAM binding affinity (magenta),
increased reaction barrier (cyan). Residues where mutations to alanine did not have an effect are colored
in green.

For most mutants with a significant effect on methylation activity, computations indicate

an underlying cause, except for mutants K29A, E35A, R38A and I146A where all computed

observables do not indicate any significant change. This discrepancy is caused by the fact that

the former three residues are located at the far end of the RNA binding groove and are thus

not appropriately reflected by the observables analyzed. The latter residue, on the other hand,

is located in the SAM binding pocket but the chemical change of the isoleucine to alanine

mutation is relatively small and thus, does yield a calculated binding free energy difference (2.7

kcal/mol) just below the significance threshold.

3.4.4 Experimental and Computational Analysis of Selected Mutants

Based on results from computational alanine scanning calculations, residues were selected for

further computational and experimental mutagenesis experiments.

The following mutations were characterized experimentally using ITC based binding affinity

measurements: D79E, D79N, S88T, E217D, E217Q, Y219F, Y219H. The obtained binding

curves of SAH and GTPγS are shown in Figures 3.19 and 3.20.
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Table 3.6: Summary of the effect of single point mutations on different aspects of the methyltransfer
reaction. a The �—� sign indicates that there is no data available in the literature.

experimental SAM SAM RNA cap protonation reaction
activity (%) a

mutant 103,61,104,105,45,106,58 binding orientation orientation state barrier

K14A 2 x

L17A 41

K22A 81

F25A 4 x

K29A 15

E35A 2

R38A 18

S56A 5 x

K61A 0 x x x

D79A — x x

W87A 4 x x

S88A — x

K105A 61

H110A 58

E111A 57

D131A 3 x

V132A —

F133A 65

D146A 0 x x x

I147A 15

S150A 55

K181A 6 x x

S211A —

T215A 104

E217A 0 x x

Y219A 8 x

As described previously, ITC based SAH binding measurements are difficult. Despite this

fact, qualitative results can still be obtained when measuring SAH binding. The results show

that SAH binds to the WT MTase (black dots) and all mutants of Tyr219 (i.e. Y219F, Y219H).

However, all studied mutants of Asp79 (i.e. D79E, D79N), Ser88 (i.e. S88T) and Glu217 (i.e.

E217D, E217Q) do not bind SAH.

Binding of the RNA was determined using GTPγS as a short cap analog. For all observed

mutants, the binding was retained. As a control experiment, binding of GTPγS to the mu-

tant K14A was measured. Lys14 is located in the RNA cap pocket and is known to abolish

methylation activity. Our ITC experiments confirm that binding of GTPγS is eliminated in this

mutant.

Mutations of Asp79

Asp79 is located in the SAM binding pocket. The side chain of Asp79 interacts with the amino

group of SAM through a water mediated interaction. Thus, mutation of Asp79 to alanine

abolishes this interaction. So far, no published methylation activities are available for mutants
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Figure 3.19: Experimentally determined ITC binding curves measured for SAH binding to WT DENV
MTase and mutants thereof.

Figure 3.20: Experimentally determined ITC binding curves measured for GTPγS binding to WT DENV
MTase and mutants thereof.
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of Asp79. Simulations however, indicate a reduced SAM binding affinity and a conformational

change of SAM, incompatible with the reaction.

Experimentally, ITC measurements of mutations to Glu and Asn were performed. The

mutation to Glu elongates the side chain by one carbon atom but retains the charge. Thus, it

probes the dependencies on size effects. On the other hand, the mutation to Asn changes the

negatively charged native residue while retaining the same size. Both mutants were shown to

abolish SAH binding in the ITC experiments.

Computational mutagenesis experiments are in good agreement with those findings. Sig-

nificantly reduced SAM binding affinities were predicted with ∆G shifts of 14.4 kcal/mol and

18.7 kcal/mol for the mutants Asp79Glu and Asp79Asn, respectively. As opposed to Asp79Ala

mutant, both mutants did not show significant structural rearrangements during MD simula-

tions with relative SAM rmsds of -0.12 Å and 0.25 Å and relative RNA rmsds of -0.16 Å and

-0.17 Å.

Mutations of Ser88

Ser88 is located in the second shell of the SAM binding pocket. It is hydrogen bonded to the

previously described Asp79 and thereby it constrains the position of the latter which is involved

in SAM binding. So far, no published methylation activities are available for mutants of Ser88.

Experimentally, mutation to Thr was performed, which retains the capability of forming

hydrogen bonds while being sterically more demanding and conformationally less flexible. Due

to the close proximity to Val100 and Val124, the hydroxy group of Thr needs to adopt a different

orientation compared to the native Ser hydroxy group, where in this conformation, the hydrogen

bond to Asp79 is not retained. In the ITC experiments, the Ser88Thr mutant looses the ability

to bind SAH.

Computationally, no shift was observed in the SAM binding free energy compared to WT

(∆∆G = 0.5 kcal/mol). Since the residue Ser88 does not directly interact with SAM it likely

influences SAM binding affinity through structural rearrangements. This aspect cannot be

covered by the employed computational method since the computational mutagenesis protocol

does not adequately incorporate structural rearrangements.

Mutations of Glu217

Glu217 is located in the protein’s active site and belongs to the conserved and essential residues

of the catalytic tetrade consisting of Lys181, Asp146, Lys61 and Glu217. Glu217 interacts

directly with the proton acceptor residue Lys181. The correct positioning of Lys181 is essential

for an efficient reaction and Glu217 helps to constrain this position. Experimentally, mutant

Glu217Ala was shown to abolish methylation activity.

ITC binding affinity measurements were performed on mutants Glu217Asp and Glu217Gln.

Mutations to Asp retain the negative charge on the carboxy group but shorten the side chain by

one carbon atom. Mutations to Gln retain the side chain length but render the residue neutral
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while retaining the ability to form hydrogen bonds. Both mutants were found to eliminate SAH

binding while binding to GTPγS was retained.

Computationally, for both mutants, no significant shifts in SAM binding free energies were

observed (Glu217Asp: ∆∆G = 0.0 kcal/mol, Glu217Gln: ∆∆G = 1.4 kcal/mol). Like for the

mutants of Ser88, SAM binding is likely influenced through structural rearrangements induced

by the mutation which are not adequately covered in the computational mutagenesis protocol.

By monitoring the geometry between methyl donor, acceptor and proton acceptor in ten

individual MD trajectories for each mutant, significant conformational rearrangements were

observed in the mutants. These can be attributed to conformational rearrangements of the

proton acceptor Lys181 as indicated by a significant increased relative rmsd of the Lys181

residue compared to WT (Glu217Asp: 0.8 ± 0.14 Å, Glu217Gln: 0.7 ± 0.09 Å).

Mutations of Tyr219

Tyr219 is located in the protein’s active site. It is hydrogen bonded to the carboxy group of

Asp146 of the catalytic tetrade. No direct interactions with SAH or the RNA were observed.

Published activity data of mutant Tyr219Ala shows no methylation activity.

Experimentally, SAH binding affinities were measured for the mutants Tyr219Phe and

Tyr219His. In both cases, binding affinities are retained at WT levels. Calculated SAH binding

free energies are in agreement, where no significant shifts in predicted SAM binding free energies

were observed.

For the mutation Tyr219Ala, a change in the donor-acceptor geometry was observed. This

is not the case for the Tyr219Phe mutation. However, for the latter mutation, a significant

increase was observed in the relative reaction energy barrier by 2.8 ± 1.33 kcal/mol. Therefore,

computations suggest that the Tyr219Phe mutant inhibits the methylation reaction through

modulating the reaction energy barrier.

3.4.5 Conclusion

Using complementary computational methods, we have build an in-silico approach to identify

the effect of a single point mutation on different aspects governing the enzyme’s catalytic

activity.

Results of a computational alanine scanning procedure are qualitatively in good agreement

with experimentally determined methylation activity. In addition, they indicate the role of each

studied residue, thereby yielding information not easily accessible through experiments. In this

way, protein residue patches were identified which modulate the geometric arrangement between

methyl donor and acceptor, the methyl donor binding affinity or the reaction energy barrier.

Based on a computational alanine scanning procedure, previously uncharacterized hot-spot

residues were identified which were predicted to significantly influence the catalyzed reaction.

Selected hot-spot residues were further analyzed both computationally and experimentally in

order to gain a better understanding of their role in the enzyme’s function. In addition, the
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results agree well with experimental binding free energies in cases where mutations do not

induce significant structural rearrangements.
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3.5 RNA Sequence Specificity

Although flaviviral methyltransferases are attractive drug targets,61,79 little is known about

the atomistic details of the mechanism underlying their function. The enzyme is known to

catalyze two independent methyltransfer reactions onto two distinct positions of the RNA 5’-

cap structure: the guanine N7 position on the cap nucleotide and the ribose 2’O hydroxy group

on the first transcribed nucleotide.60,53,50,106 Dong et al.112 have shown that distinct RNA

elements with a specific sequence are required for the methylation of the two RNA positions,

indicating that specific RNA binding conformations and methyltransfer mechanisms are required.

So far, the underlying reason for this sequence specificity, however, has not been elucidated in

detail and the mechanism of the two methylation reactions at an atomistic level is not known.

Therefore, we are investigating effects on the methyltransfer reaction introduced by mutated

RNA sequences at an atomistic level using molecular dynamics simulations.

Since structural details about the guanine N7 reaction are largely unknown, we focus on the

ribose 2’O methyltransfer reaction. For the 2’O reaction, it has been experimentally determined

that the identity of the cap nucleotide as well as the following two transcribed nucleotides, i.e.

GpppAG-RNA, are essential for the reaction.112 Those nucleotides are conserved within all

flaviviruses. A chemical drawing of the cap structure and its interactions with the protein are

shown in Figure 3.21.

Figure 3.21: Schematic representation of wild type dengue RNA cap-1 structure located at the 5’ termini.
Specific interactions with the protein observed during molecular dynamics simulations are indicated in red.
The location of the methyl donor SAM is indicated in green letters.
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3.5.1 Method

System Setup

Wild type (WT) and nine mutated RNA sequences were modeled in the binding site of the

dengue NS5 methyltransferase. Starting from the native sequence, the structures of the nine

mutated sequences were generated by mutating the appropriate nucleotide to all other nu-

cleotides, using Maestro (Schrodinger, LLC). Each base was subjected to a full conformational

search using MacroModel (Schrodinger, LLC) with default parameters, while keeping the pro-

tein and the rest of the RNA fixed. The minimum energy structure was used as a starting point

for molecular dynamics simulations. System setup and simulation procedure was the same as

described in Section 3.2.1.

Protein-RNA Contact Distances

An RNA-protein contact map was computed as follows. First, the set of atoms in contact with

the protein was defined as all atom of protein residues where at least one atom of the residue

was closer than 8 Å from the RNA in the initial WT structure. Second, for each of the atoms

in this set, the closest distance to any atom of the RNA was computed. This was repeated for

every 10th frame of the MD trajectory. Mean and standard deviation were computed over the

whole trajectory. Subsequently, for each mutant those values were plotted against the same

distance in WT. All distances deviating by more than 30% were labeled by their residue number.

In addition, for a global measure of the agreement between WT and mutant, an rmsd between

the corresponding distances was computed. All analysis was done in OpenStructure (version

1.2.1).83

RNA Per-Residue RMSD

For each nucleotide, the RMSD between every 10th frame of the MD trajectory and the initial

structure was computed. Mean and standard deviation were computed over the whole trajectory.

Hydrogen Bonding Distance

The hydrogen bonding distance between the 2nd nucleotide and the γ-phosphate group of the

trisphophate linker was computed for every 10th frame of the MD trajectory and mean and

standard deviation over the whole trajectory.

Reaction Energy Barriers

Reaction energy barriers were estimated using QM/MM based umbrella sampling simulations

with the SCC-DFTB method as described in Section 3.4.1.
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3.5.2 Results and Discussion

Overall Structural Rearrangements

Since a correct alignment of the methyl donor and acceptor is essential for the reaction to occur

efficiently, structural effects of mutated RNA sequences were investigated first. Therefore,

molecular dynamics simulations were performed for MTase complexed to mutated RNA cap

structures. For each position in the RNA sequence that is essential for the 2’O reaction, all

possible RNA mutants at that position were modeled. Subsequently, those simulations were

compared to simulations performed for MTase complexed to wild type RNA cap structure.

To quantify structural rearrangements of mutant RNA sequences in comparison to WT RNA

sequence, a contact map between the RNA and the surrounding protein atoms was computed

as described in Section 3.5.1. Plots for the three RNA mutants most closely related to the

WT RNA sequence (i.e. ApppAGU, GpppGGU, GpppAAU) are shown in Figure 3.22, all plots

are given in Appendix A.1. Points on the diagonal indicate no difference between WT and

the mutant, whereas points above the diagonal indicate an elongated distance in the mutant

compared to WT. In addition, a global measure of the agreement between WT and mutant was

computed as the rmsd between the corresponding distances in mutant and WT distance maps.

The value is shown in the plot.

As shown in Figure 3.22 the most significant structural rearrangements are observer for all

mutants of the cap-nucleotide, indicated by significant distance changes and the highest overall

distance rmsd of 0.92 Å for the RNA sequence ApppAGU. All mutants of the 1st nucleotide

show the smallest structural rearrangements with an distance rmsd of 0.34 Å for the RNA

sequence GpppGGU. Mutants of the 2nd nucleotide show some structural rearrangements with

a distance rmsd of 0.51 Å for the RNA sequence GpppAAU.

Cap Nucleotide Mutations

In the native structure, the cap nucleotide is strongly interacting with the protein by forming

direct hydrogen bonds from the guanosine amine group to the backbone carbonyl groups of

residues Leu20 and Leu17. When mutating this position to any other nucleotide, the RNA is no

longer capable of forming this direct interaction with the protein. Thus, a less stable binding of

this residue to the GTP pocket is observed, leading to a significant structural rearrangement of

the RNA during the 20 ns of MD simulation as observed by the significantly elongated distances

between RNA and protein residues 20, 21, 22 and 24 shown in Figure 3.22. All those residues

are located in the GTP pocket, indicating the largest structural rearrangements to occur in that

subpocket.

To quantify structural rearrangements of the cap-nucleotide, Table 3.7 shows the rmsd values

of the cap nucleotide obtained during MD simulations, both for WT and all RNA mutants. It is

clear that all mutants of the cap nucleotide show a significantly increased cap nucleotide rmsd

compared to WT or all mutants of all other nucleotides.

Figure 3.23 shows a superposed snapshot obtained from the MD simulations of WT (blue)
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Figure 3.22: Differences in RNA-MTase contacts between WT and mutated RNA. Contacts are measured
by their distances observed in MT simulations of the MTase bound to SAM and WT or mutated RNA.
The three RNA mutants most closely related to the WT RNA sequence are shown: (A) cap-nucleotide
(ApppAGU), (B) 1st nucleotide (GpppGGU), (C) 2nd nucleotide (GpppAAU). Residues with significantly
modified distances are labeled by their number.

and ApppAGU mutant (green) which clearly visualizes the weaker interactions in the mutant

leading to a partial unbinding of the cap nucleotide in the GTP pocket and therefore to a

rearrangement of the overall RNA.

1st Nucleotide Mutations

Although the first transcribed nucleotide is located closely to the active side where the reaction

takes place, no significant structural rearrangement was observed when mutating this residue.

However, when investigating the interactions with the protein, it was found that the amine group

of the guanine in the mutated RNA is pointing directly towards the reactive sulfur of SAM. Thus,

the environment of the reaction is modified considerably which might have a significant effect

on the energetics of the catalyzed reaction. However, this hypothesis could not be confirmed

by reaction energy barrier calculations where no significant change was observed (∆∆GTS =

0.5 ± 1.6 kcal/mol).
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Figure 3.23: Snapshots extracted from MD simulations of MTase in complex with SAM and WT RNA
GpppAGU (blue) or cap mutant RNA ApppAGU (green). The MTase structure is represented by its
molecular surface whereas the RNA is shown in sticks. For clarity only the cap and the first two RNA
nucleotides are shown.

2nd Nucleotide Mutations

For mutants of the second transcribed nucleotide, some structural rearrangements are observed

when visual inspecting the MD trajectories. This rearrangement leads to a non-optimal geometry

between the methyl-donor and acceptor.

During the whole simulation of the native structure, the guanosine at the second transcribed

position is hydrogen bonded through the amine group at the 2 position to the side chain

carboxyl group of Glu111. This interaction might participate in constraining the position of

the bound RNA to a conformation suitable for the reaction. When this nucleotide is mutated

to an adenosine, the hydrogen bond can no longer be formed. Recently, however, data for the

WNV single point mutation of Glu111 to alanine was published which shows a reduction of the

methylation efficiency to 57% of the WT efficiency.45 This indicates, that the loss of the afore

mentioned interaction is insufficient to fully describe the almost complete loss of activity for

the RNA mutants at this position.

Inspection of the MD trajectories showed that the mutated RNA takes up a more compact

conformation compared to WT RNA. This seems to be induced by an intramolecular hydrogen

bond between the second nucleotide and the γ-phosphate group of the triphosphate linker, as

indicated in Figure 3.24 This hydrogen bond is possible in all mutants of the second nucleotide,

however not in the WT RNA. To quantify this finding, the above mentioned distance is measured

over the whole trajectory and the mean values are given in Table 3.7. The observed distance is

significantly shorter in all mutants of the second nucleotide compared to wild type RNA or all

mutants of the other RNA positions.

Although the data does not allow to draw the following conclusion significantly, due to the

large fluctuations observed in the simulations, it is interesting to note that within the mutants
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Figure 3.24: Snapshots extracted from MD simulations of MTase in complex with SAM and WT RNA
GpppAGU (blue) or 2nd-nucleotide mutant RNA GpppAAU (green/element color). The MTase structure
is represented by its molecular surface whereas the RNA is shown in sticks. The hydrogen bond between
the 2nd-nucleotide and the γ-phosphate of the triphosphate linker is indicated with a dashed yellow line.
For clarity only the cap and the first two RNA nucleotides are shown.

Table 3.7: RNA sequence specificity of dengue methyltransferase. Enzymatic activity is obtained from
the literature. Two observables obtained from molecular dynamics simulations are shown: (A) RMSD of
the cap-nucleotide from the starting geometry, (B) hydrogen bonding distance between the 2nd-nucleotide
and the γ-phosphate of the triphosphate linker.

experimental cap nucleotide h-bonding distance (Å)
RNA sequence activity44,112 RMSD (Å) γPO4 - 2nd-nucleotide

GpppAGU (WT) 100% 0.56 4.17

ApppAGU 0% 1.87 4.20
CpppAGU 1.51 4.02
UpppAGU 1.45 4.11

GpppGGU 0% 0.63 3.54
GpppCGU 0.63 4.28
GpppUGU 0.68 4.45

GpppAAU 33% 0.61 3.21
GpppACU 0% 0.53 2.40
GpppAUU 19% 0.65 2.89

of the second nucleotide, there is a good agreement between the observed hydrogen bonding

distance and the experimentally observed methylation activity, i.e. the distance is shorter the

lower the activity is.

3.5.3 Conclusion

Based on molecular dynamics simulations, we have investigated RNA sequence specificity and

the effects of mutated RNA cap sequences on the methyltransfer reaction.
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We have found that the guanine cap nucleotide interacts strongly with the protein’s back-

bone in the RNA cap pocket. Any mutation of this nucleotide leads to an RNA structure which

in unable to form these interactions and therefore, starts to dissociate from the protein structure

within 20 ns of molecular dynamics simulations.

In addition, simulations highlight that the identity of the 2nd translated RNA nucleotide

must be a guanine since any mutations thereof results in RNA conformations where the methyl

acceptor group is positioned in locations unsuitable for the 2’O methylation reaction. Molecular

dynamics simulations suggest that in all mutants of this nucleotide an intramolecular hydrogen

bond is formed between the 2nd nucleotide and the γ-phosphate group of the triphosphate

linker. The only nucleotide where this is not possible is guanine where no hydrogen bond donor

is located in the appropriate region. To validate this hypothesis, experimental characterization

of mutated RNA structures with non-natural nucleotides should be performed where formation

of an the afore mentioned intramolecular hydrogen bond is inhibited.
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3.6 Conclusion

Using a diverse set of computational methods, we were able to address a number of open

questions concerning the mechanism of the catalyzed methyltransfer reactions.

First, a structure of the enzyme bound to the RNA and the SAM co-factor has been mod-

eled, based on available template structures and published mutagenesis data. The model was

validated and structural rearrangements induced by binding of SAM or the RNA were assessed

by molecular dynamics simulations. The results suggest that overall, structural rearrangements

upon ligand binding are small, especially within the SAM and the RNA binding pocket as well

as in the active site. Therefore, those sites can be considered structurally stable targets for

structure-based drug discovery efforts.

Second, in order to characterize the underlying chemical reactions, ab initio electronic struc-

ture calculations were performed on model systems mimicking the biological reactions. Calcu-

lations on such model systems reveal that both the 2’O and the N7 reaction are energetically

favored processes, where the N7 reaction produces a significantly more stable product and

shows a lower activation barrier than the 2’O reaction. Comparison between the catalyzed and

uncatalyzed 2’O reaction, revealed the importance of a lysine residue which acts as a proton

acceptor and significantly stabilizes the product state and reduces the activation barrier.

Furthermore, an in-silico approach was developed to identify the effects of single point mu-

tations on different aspects of the catalyzed reaction. Using this approach in a computational

alanine scanning procedure helped to identify protein residue patches which modulate the ge-

ometric arrangement between methyl donor and acceptor, the methyl donor binding affinity

or the reaction energy barrier. In addition, previously uncharacterized hot-spot residues were

identified and analyzed further using computational and experimental methods in order to gain

a better understanding of their role in the enzyme’s function.

In addition, we have investigated RNA sequence specificity of the enzyme and effects of

mutated RNA cap sequences on the methyltransfer reaction. Based on molecular dynamics

simulations, protein residues critical for RNA sequence specificity of the enzyme were identified

and the possibility for forming an intramolecular hydrogen bond between distinct RNA elements

was observed, whose absence might be detrimental for RNA sequence specificity.
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Chapter 4

Ligand Binding Site Prediction

The reliable prediction of ligand binding sites is crucial for characterizing proteins with unknown

function. Therefore, the use of computational predictions of protein function and ligand binding

sites for proteins without experimental structures are assessed in a blind and objective way.

Limitations in the current prediction methods are analyzed and suggestions for a more reliable

evaluation are given. Following those suggestions, an extended and fully automated assessment

is implemented in the Continuous Automated Model EvaluatiOn framework.

4.1 Introduction

In the post-genomic era, the number of protein sequences with unknown structure is constantly

growing at an exponential rate. Similarly, the number of protein structures with unknown

biological function is steadily increasing. To bridge this rapidly growing gap between known

sequences and unknown function, numerous computational and experimental techniques have

been developed to help predicting the biological function.5,1, 6

Among these methods, computational approaches for identifying the precise location of

ligand binding sites and protein residues involved in ligand interaction are of high relevance

for life science research, with applications in functional characterization of novel proteins, drug

design and enzyme engineering. Various approaches for the prediction of ligand-binding sites

have been proposed, based on sequence conservation, geometric criteria of the protein surface,

or homology transfer from known structures.7

Relevant biological questions, however, can only be addressed if predictions are specific and

accurate. Therefore, evaluating the performance of prediction methods in a blind and objective

way is crucial. To achieve this goal, ligand binding site prediction methods have been assessed

since the 6th edition of the Critical Assessment of Techniques for Protein Structure Prediction

(CASP) experiment.113,114

4.1.1 Critical Assessment of Protein Structure Prediction

CASP is a community-wide experiment, with the goal to evaluate and advance the methods

for protein structure prediction. CASP is a blind experiment where the predictors receive a set
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of protein sequences for which the structure is unknown. When the experimentally determined

structures are released, predictions are evaluated by an independent assessor to identify the

current state of the art in the protein structure prediction field.

It should be noted that CASP is a double blind experiment where all predictors are given the

same question at the same time, ensuring that the same data is available to all predictors. This

is important to guarantee a fully independent, objective and comparable evaluation of current

methods. The experiment is held biannually.

The main focus of CASP lies in the evaluation of template based modeling techniques

(TBM) but it includes a number of additional categories for the evaluation of template free

modeling, model refinement, model quality prediction, disorder prediction and function pre-

diction. In the latter category, the prediction of ligand binding sites are assessed. Here, the

predictors are given a set of protein sequences with unknown structures and are asked to identify

the residues involved in ligand binding.

4.2 Assessment of Ligand Binding Site Prediction in CASP9

In the following, a published manuscript is included:

“Assessment of ligand-binding residue predictions in CASP9”
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INTRODUCTION

To perform their functions, proteins interact with a plethora of

small molecules within the cell. Most of these interactions are

unspecific and transient in nature (e.g., interactions with water and

ions), some are persistent and may play a structural or functional

role (e.g., certain metal ions), and others might be transient but

nevertheless highly specific, often resulting in essential changes of

the protein or the ligand (e.g., enzyme-substrate complexes or re-

ceptor-ligand complexes). Hence, the identification of a protein’s

functionally important residues, such as ligand-binding sites or cat-

alytic active residues, is a crucial step toward the goal of understand-

ing the protein’s molecular function and its biological role in the

cell. Although protein ligand interactions are crucial for the func-

tion of a protein, in many cases they are unknown. Although the

kind of ligands interacting with a protein is often known from bio-

chemical analyses, elucidating the structural details of these interac-

tions requires elaborate and time-consuming studies by X-ray crys-

tallography or NMR. Therefore, computational tools have been

developed aiming at predicting the precise location of binding sites,

and specifically which amino acid residues in a protein are directly

interacting with ligands. Various approaches for the prediction of

ligand-binding sites have been proposed,1 both from structure and
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ABSTRACT

Interactions between proteins and their ligands

play central roles in many physiological processes.

The structural details for most of these interactions,

however, have not yet been characterized experien-

tially. Therefore, various computational tools have

been developed to predict the location of binding

sites and the amino acid residues interacting with

ligands. In this manuscript, we assess the perform-

ance of 33 methods participating in the ligand-

binding site prediction category in CASP9. The

overall accuracy of ligand-binding site predictions

in CASP9 appears rather high (average Matthews

correlation coefficient of 0.62 for the 10 top per-

forming groups) and compared to previous experi-

ments more groups performed equally well. How-

ever, this should be seen in context of a strong bias

in the test data toward easy template-based models.

Overall, the top performing methods have con-

verged to a similar approach using ligand-binding

site inference from related homologous structures,

which limits their applicability for difficult de novo

prediction targets. Here, we present the results of

the CASP9 assessment of the ligand-binding site

category, discuss examples for successful and chal-

lenging prediction targets in CASP9, and finally

suggest changes in the format of the experiment to

overcome the current limitations of the assessment.

Proteins 2011; 79(Suppl 10):126–136.
VVC 2011 Wiley-Liss, Inc.

Key words: protein function; protein structure;

evaluation; assessment; binding site; active site; co-

factor; ligand; CASP.

126 PROTEINS VVC 2011 WILEY-LISS, INC.



from sequence, based on sequence conservation,2–7 geo-

metric criteria of the protein surface,8–12 or homology

transfer from known structures.13–17

The function prediction category (FN) was introduced

in the 6th Critical Assessment of Protein Structure Predic-

tion (CASP), where predictions for Gene Ontology molec-

ular function terms, Enzyme Commission numbers, and

ligand-binding site residues were evaluated.18,19 Because

very little new functional information becomes available

during and after the experiment, the first two categories

were difficult to assess. Therefore, since CASP8, the predic-

tion task has been to identify functionally important resi-

dues such as ligand-binding residues or catalytic resi-

dues.20 Here, we present the assessment of 33 groups par-

ticipating in the recent CASP9 experiment. In the ligand-

binding site prediction category (FN), the sequence of a

protein with unknown structure was provided to predic-

tors. The task was to predict the residues directly involved

in ligand binding in the experimental control structure.

This approach differs significantly from typical ligand-

binding studies (like docking or virtual screening), where

the chemical identity of the ligand is given, and the correct

geometric orientation of the molecule in the receptor pro-

tein is to be determined.21–25 In CASP, however, the

chemical identity of the ligand is unknown at the time of

prediction, and only the interacting residues are predicted.

In summary, all top performing groups have applied a

similar approach, using ligand information derived from

homologous structures in the PDB.26 In comparison with

CASP8,20 we could not observe a significant progress by

the top groups, but rather a larger number of groups per-

forming at the same level. We believe that this observation

is caused on one side by the bias in the data set to ‘‘easy’’

template-based predictions with only a very small number

of difficult de novo targets in recent rounds of CASP. This

gives strong advantage to methods using PDB information

directly, but discourages the development of methods

addressing the more challenging de novo cases. Another

limiting factor is the binary format of the prediction task,

which does not allow specifying probabilities for specific

residues or differentiating between types of ligands.

MATERIALS AND METHODS

Prediction targets

All CASP9 target structures were analyzed for nonsol-

vent, nonpeptidic ligand groups in the deposited protein

structures. Based on literature information, UniProt27

annotations, structures of closely related homologues

(Table SI, Supporting Information), and conservation of

functionally important residues, we aimed at identifying

ligands with biological/functional relevance for the spe-

cific protein. All targets, including those containing

ligands classified as ‘‘nonbiologically relevant,’’ were fur-

ther analyzed to indentify cases where a ligand clearly

mimicked the interactions of known biologically relevant

ligands for this target.

Binding site definition

For each prediction target, binding site residues were
defined as those residues in direct contact with the ligand in
the target structure, that is, all protein residues with at least
one heavy atom within a certain distance from any heavy
atom of the ligand. The distance cutoff was defined by the
CASP organizers as the sum of the van der Waals radii of the
involved atoms plus a tolerance of 0.5 Å. In addition, differ-
ent tolerance values ranging from 0 to 2.0 Å were evaluated.

In cases where multiple chains with bound ligands were

present in the target structure (e.g., homo-oligomeric

assemblies), the definition of the binding site residues for

individual chains were combined into a single binding site

definition. For targets where ligands were observed to bind

in the interface between multiple chains, the oligomeric

structure as defined by the authors and PISA28 (five cases)

or only PISA (1 case) was used for the binding site defini-

tion. Analysis of structures and ligand-binding sites was

performed using OpenStructure (version 1.1).29

For targets in which only part of the relevant ligand
was present, the binding site definition was extended to
include the entire biologically relevant ligand. In these
cases, two separate evaluations of the prediction perform-
ance were conducted. First, denoted as ‘‘extended binding
site,’’ all atoms of the partial and the extended ligand
were used to define the binding site in the same way as
described earlier. Second, denoted as ‘‘partial binding
site,’’ only atoms of the partial ligand were used to define
the binding site, whereas all residues exclusively in con-
tact with the extended part of the ligand were treated as
neutral and excluded from the evaluation.

Binding site prediction evaluation

As in the previous assessment,20 binding site predic-

tion performance was measured using the Matthews cor-

relation coefficient30 (MCC), which accounts both for

over and under predictions. For each target, residue pre-

dictions were classified as true positives (TP: correctly

predicted binding site residues), true negatives (TN: cor-

rectly predicted nonbinding site residues), false negatives

(FN: incorrectly under predicted binding site residues),

and false positives (FP: incorrectly over predicted non-

binding site residues) based on the binding site definition

described before. The MCC was computed using Eq. (1):

MCC ¼ TP3TN�FP3FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞ�ðTPþ FNÞ�ðTNþ FPÞ�ðTNþ FNÞp

MCC ranges from 11 (perfect prediction), over 0

(random prediction) to 21 (inverse prediction). Empty sub-

missions that did not include any binding site predictions

and missing predictions were assigned a MCC score of zero.
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To reduce the effects of target difficulty on the ranking,

MCC scores were standardized by computing Z scores

among all predictions P for a given target Tusing Eq. (2):

zP;T ¼ MCCP;T �MCCT

rT

In this equation, MCCP,T is the raw MCC score for target

T given by predictor P, MCCT is the mean MCC score for

target T, and rT is the standard deviation of MCC scores

for target T. The overall performance for each predictor

was computed as the mean of Z scores over all targets,

which was subsequently used for obtaining a final ranking.

In addition to the MCC score, we computed the recently

published binding site distance test (BDT).31 BDT takes

the actual three-dimensional locations of the predicted res-

idues into account and scores residues differently, accord-

ing to the distance between the predicted and the observed

binding site. Predictions close to the binding site score

higher than more distant predictions. The BDT score

ranges from 0, for a random prediction to 1, for a perfect

prediction.

Robustness and significance

Statistical significance of the ranking and robustness

with regard to composition of the target data set was

assessed using two different methods. First, two-tailed

Student’s paired t-tests as well as Wilcoxon signed rank

tests32 between all predictor groups were performed

based on MCC scores for each target. Both t-tests and

Wilcoxon signed rank tests were performed using R (ver-

sion 2.11.1).33 Second, bootstrapping was performed,

where scores were computed on a randomly selected sub-

set of three-fourth of all targets (i.e., 23 of 30 targets).

Seventy-five rounds of bootstrapping were executed for

different target subsets, and for each bootstrapping

experiment, mean, minimum, and maximum Z scores

per group were calculated as previously described. Addi-

tionally, the rank for each prediction group was calcu-

lated, and mean, minimum, and maximum ranks over all

bootstrapping experiments were computed.

To assess the performance of groups on different types of

ligands, we have analyzed the prediction performance sepa-

rately on targets including only metal ions (10 targets) and

on targets including only nonmetal ligands (17 targets).

Mixed targets including both metal and nonmetal ligands

(three targets) were not considered in this subanalysis.

RESULTS AND DISCUSSION

Overall performance

In the CASP9 protein-binding sites prediction category

(FN), the predictors were given a protein sequence with

unknown structure and asked to identify the residues

involved in ligand binding. According to the CASP format,

the predictions were binary, and, thus, classified each resi-

due as either binding-site or nonbinding-site residue. As

defined by the organizers, only protein-small molecule

interactions were considered in this category. The assess-

ment of this category consisted of the following three

steps: (1) identification of biologically relevant ligands in

the target structures, (2) definition of binding site resi-

dues, and (3) assessment of the prediction performance.

One dominant factor in assessing the correctness of

ligand-binding site prediction is the availability of experi-

mental data and the evaluation of the biological relevance

of the specific ligand binding. Whether a certain ligand is

observed in an experimental structure is first and foremost

determined by the specific purification procedure, by the

experimentalist’s choice of using this ligand for a co-crys-

tallization experiment, and the specific experimental con-

ditions (ligand concentration, pH and buffer conditions,

ionic strength, precipitant, etc.). If a ligand is not observed

in a specific experimental structure, it could still bind

under different conditions, that is, it cannot be considered

as a ‘‘true negative’’ data point for the assessment. On the

other hand, if a certain ligand is observed in a target struc-

ture, we can classify the residues within this structure into

‘‘binding’’ and ‘‘nonbinding’’ with regard to this specific

ligand. Note that a target protein might be able to bind

different ligands under different experimental conditions,

and only a subset of them might be present in the target

structure at hand. For example, the structure of an enzyme

might be crystallized in complex with the cofactor, but

without substrate or product molecules.

Although the identification of ligands in CASP9 was

based only on experimentally observed ligands, it was still

not straightforward to categorize their biological rele-

vance. Although in 73% of the target structures in

CASP9, various ligands were present, most of them were

not considered biologically relevant but rather as origi-

nating, for example, from solvent, crystallization precipi-

tant, or buffers. For the assessment, however, we included

only ligands that we considered to be biologically rele-

vant. The decision on biological relevance was done by

manual curation, primarily based on the type and loca-

tion of the ligand, literature information, and UniProt27

annotations. In addition, information from structurally

closely related homologues and conservation of function-

ally important residues was used to guide the selection

process. Using this approach, 16 target structures with

biologically relevant ligands were selected of the 109 tar-

gets available in CASP9 for the assessment.

In addition, we have analyzed all remaining heteroa-

tomic groups, if they occupied binding sites that mim-

icked the interactions of a known biologically relevant

ligand for this protein. In these cases, we defined an

‘‘extended binding site’’ consisting of all residues in con-

tact with the known biologically relevant ligand. We were

careful to include only targets where the assignment was

unambiguous in order to avoid the inclusion of false bind-
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ing site definitions. Using this approach, the number of

target structures in the FN category was extended by 14,

yielding a total of 30 targets in this category (Table I).

Within the selected targets, 10 were found in complex

with metal ions (Ca, Fe, Mg, Mn, Na, and Zn) and further

17 targets in complex with nonmetal ligands (Table I). The

latter included amino acids and derivatives, nucleotides,

sugars, fatty acids, and others. Additionally, in three cases,

nonmetal ligands were coordinated to metal ions (Mg, Mn,

and Zn). In most of the targets, the ligand-binding site was

located within a monomer, while, for six targets, the ligand

was bound in the interface between multiple chains:

T0515, T0547, T0591, T0636 (dimeric structures), T0629

(trimeric structure), and T0632 (tetrameric structure). The

ligands were bound between all chains of the oligomeric

structure, except for T0632 where the ligand is bound to

only three of the four chains.

Following the identification of biologically relevant

ligands, the binding site residues for those targets were

defined as those residues directly in contact with the

ligand. Atoms were considered to be in contact if they

were within a distance of the sum of their van der Waals

radii plus a tolerance distance. The list of binding site

residues used in the assessment for each target is pro-

vided in Table SI (Supporting Information). The toler-

ance distance was defined as 0.5 Å by the CASP organiz-

ers. We tested the influence of different values for the tol-

erance distance of the binding site definition and their

influence on the assessment of prediction performance.

No significant differences in the overall prediction per-

formances were observed for different tolerance distances

(Fig. S1, Supporting Information).

The majority of FN targets in CASP9 were classified as

template-based modeling targets (TBM), and only two tar-

gets were free modeling (FM) targets: (1) target T0629,

where the ligand binding domain had no template struc-

ture Figure 8(C), (2) target T0604, where the ligand was

bound between two domains where one was a template-

based modeling (constituting 90% of the binding site resi-

dues) and one a free modeling domain (constituting 10%

of the binding site residues). This strong bias in the data

set has direct consequences for the assessment, as it is to be

expected that template-based prediction methods will per-

form much better than de novo methods in this context.

In total, 33 groups submitted predictions in the

CASP9 FN category. A summary of the predictions is

given in Figure 1. Among the participating groups, 18

were registered as ‘‘human predictors’’ and 15 as

‘‘servers’’ (Table II). Most groups predicted at least 25 of

the assessed 30 targets, that is, 12 groups (6 humans and

6 servers) predicted between 25 and 29 of the assessed

targets and 15 groups (6 humans and 9 servers) predicted

all 30 targets; six human groups returned predictions for

only six or less targets. Binding site prediction perform-

Table I
Summary of CASP9 Targets with Bound Ligands

Target PDB Partial ligand Extended ligand Chemical class Interface CASP category

T0515 3MT1 SO4 PLP, LYS Nonmetal A–B TBM
T0516 3NO6 IMD PF1 Nonmetal TBM
T0518 3NMB NA Metal TBM
T0521 3MSE CA, CA Metal TBM
T0524 3MWX GOL GAL Nonmetal TBM
T0526 3NRE PEG GLA Nonmetal TBM
T0529 3MWT MN Metal TBM
T0539 2L0B ZN, ZN Metal TBM
T0547 3NZP PLP PLP, LYS Nonmetal A–B TBM
T0548 3NNQ ZN Metal TBM
T0565 3NPF CSA DGL, ALA Nonmetal TBM
T0570 3NO3 MG, GOL Metal, nonmetal TBM
T0582 3O14 ZN Metal TBM
T0584 3NF2 SO4 DST, IPR Nonmetal TBM
T0585 3NE8 ZN Metal TBM
T0591 3NRA LLP Nonmetal A–B TBM
T0597 3NIE ANP Nonmetal TBM
T0599 3OS6 SO4 ISC Nonmetal TBM
T0604 3NLC FAD Nonmetal TBM / FM
T0607 3PFE ZN ZN, BES Metal, nonmetal TBM
T0609 3OS7 TLA GAL Nonmetal TBM
T0613 3OBI EDO GAR, NHS Nonmetal TBM
T0615 3NQW MN, SO4 MN, GPX Metal, nonmetal TBM
T0622 3NKL SO4 NAD Nonmetal TBM
T0625 3ORU ZN Metal TBM
T0629 2XGF FE, FE, FE, FE, FE, FE, FE Metal A–B–C FM
T0632 3NWZ COA Nonmetal A–B–C TBM
T0635 3N1U CA Metal TBM
T0636 3P1T TLA HSA, PLP Nonmetal A–B TBM
T0641 3NYI STE Nonmetal TBM
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ance was measured using Z scores of Matthews correla-

tion coefficients (see Methods section).** The comparison

between all groups is shown in Figure 2, where the error

bars indicate minimum and maximum Z scores obtained

by bootstrapping on a randomly selected subset of three-

fourth of the targets. The error bars indicate a fluctua-

tion in the average Z score for each group. However, in

case of a correlated movement in the score, this would

not influence the groups ranking. Therefore, the rank for

each prediction group was computed in each bootstrap-

ping experiment and the average, minimum, and maxi-

mum rank over all bootstrapping experiments is shown

in Figure 3.

The top 12 predictors clearly distinguished themselves

from the following 21 groups and show a significantly bet-

ter performance. Two predictors from the Zhang group

(FN096, Zhang and FN339, I-TASSER_FUNCTION) show

a better performance in terms of MCC compared to the

following 10 participants, whereas the performance among

the latter group is comparable. Because many predictors

seemed to perform similarly, statistical tests were used to

assess the significance of the differences between these

groups. Paired t-tests on all targets between all pairs of

predictors were performed. The results are shown in Table

III, with cells shaded according to computed P values.

According to the t-test, the differences between the top

ranked group (FN096, Zhang) and groups FN339 (I-TAS-

SER_FUNCTION), FN242 (Seok), and FN035 (CNIO-

Firestar) are not statically significant, while the differences

between FN096 and the remaining predictors are signifi-

cant. In addition, the nonparametric Wilcoxon signed

rank test was performed, which yielded comparable results

to the t-tests (Table SII, Supporting Information).

Recently, McGuffin and coworkers published an alter-

native binding site distance test (BDT).31 Opposed to

MCC, BDT takes the actual three-dimensional positions

of the predicted residues into account and scores residues

differently, according to the distance between the pre-

dicted and the observed binding site. Hence, BDT limits

the boundary effects originating from ambiguous defini-

tion of binding sites. When applying the BDT score on

the predictions (Fig. S2, Supporting Information), for the

top ranked groups, no significant deviations to the

MCC-based prediction assessment were observed.y

As described earlier, for 14 targets, the partial binding

sites were individually extended around the observed

ligand to reflect a binding site accommodating the most

Table II
Groups Participating in the FN Category in CASP9

ID Rank Name Type Group

FN017 22 3DLIGANDSITE1 S Michael Sternberg
FN035 5 CNIO-FIRESTAR H Gonzalo Lopez
FN057 21 3DLIGANDSITE3 S Michael Sternberg
FN072 23 3DLIGANDSITE4 S Michael Sternberg
FN094 8 MCGUFFIN H Liam McGuffin
FN096 1 ZHANG H Yang Zhang
FN097 30 KOCHANCZYK H Marek Kochanczyk
FN102 15 BILAB-ENABLE S Shugo Nakamura
FN104 7 JONES-UCL H David Jones
FN110 6 STERNBERG H Michael Sternberg
FN113 9 FAMSSEC H Katsuichiro Komatsu
FN114 10 LEE H Jooyoung Lee
FN132 27 MN-FOLD S Chris Kauffman
FN147 28 GENESILICO H Janusz Bujnicki
FN154 33 JAMMING H Gabriel del Rio
FN193 24 MASON S Huzefa Rangwala
FN207 26 ATOME2_CBS S Jean-Luc Pons
FN236 12 GWS S Jooyoung Lee
FN240 32 TMD3D H Hiroshi Tanaka
FN242 4 SEOK H Chaok Seok
FN303 20 FINDSITE-DBDT S Jeffrey Skolnick
FN311 31 ALADEGAP H Kei Yura
FN315 3 FIRESTAR S Gonzalo Lopez
FN316 18 LOVELL_GROUP H Simon Lovell
FN339 2 I-TASSER_FUNCTION S Yang Zhang
FN353 17 SAMUDRALA H Ram Samudrala
FN402 13 TASSER H Jeffrey Skolnick
FN415 25 3DLIGANDSITE2 S Michael Sternberg
FN425 19 INTFOLD-FN S Liam McGuffin
FN446 16 KIHARALAB H Daisuke Kihara
FN452 11 SEOK-SERVER S Chaok Seok
FN453 14 HHPREDA S Johannes Soeding
FN458 29 BILAB-SOLO H Mizuki Morita

Figure 1
Overview of predictions per group. Predictions for targets which were

assessed in the FN category (i.e., targets with a relevant binding site) are

displayed in dark colors, additional predictions, which were not assessed

(i.e., targets without an experimentally confirmed binding site) are

displayed in light colors. Human groups are shown in purple, servers in

orange.

yThe largest change in ranking by three positions would be for group FN110.

**As described in Materials and Methods section, the authors decided that assign-

ing a MCC score of zero to empty submissions, which did not include any bind-

ing site predictions and to missing predictions would most appropriately reflect a

‘‘real life’’ prediction situation in the assessment. Please note that this policy has

consequences for the final ranking as it penalizes methods, which are not able to

make predictions for some targets, and encourages the more risky development of

novel methods as there is no implicit penalty for making predictions for challeng-

ing targets.
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probable biologically relevant ligand. To investigate the

influence of this extension, the assessment was performed

both on all residues of the extended binding site and sep-

arately on all the residues of the partial binding site while

treating the residues exclusively in the extended binding

site as ‘‘neutral’’ for the analysis. For the top-ranked

groups, no significant differences in the overall prediction

performances were observed between partial and

extended binding site definitions (Fig. S3, Supporting

Information).yy

Assessment by type of binding sites

In addition to the overall performance, subsets of the

targets were evaluated individually, according to the

ligand’s chemotype. The distinct chemical properties of

metal ions and organic ligands give raise to diverse bind-

ing sites. Thus, it could be expected that various predic-

tion methods perform differently. To address this ques-

tion, we have analyzed the prediction performance sepa-

rately on all targets including only metal ligands (10

targets) and on targets including only nonmetal ligands

(17 targets). The mean Z score per group separated into

metal and nonmetal targets are shown in Figure 4.

Within the top 10 groups, most of them show a better

performance for nonmetal targets, with the exception of

FN242 (Seok) and FN114 (Lee). Especially group FN114

shows a better performance on metal ligands, compared

to an average performance on the full set of targets.

Among the CASP9 FN targets, in six cases, the ligand

binds in the interface between multiple chains of an oli-

gomeric protein complex. Although, the number of inter-

face targets is very limited, we were interested in the

question if the prediction of ligand-binding sites of inter-

face targets is more difficult than noninterface targets.

We compared the average prediction performance, both

according to mean MCC values, as well as the number of

very good predictions (MCC > 0.85), for interface versus

noninterface targets. No significant difference was

observed; thus, on average, in those target categories, it

seems equally difficult to predict the binding site resi-

dues. However, it should be considered that four of the

six targets are ‘‘trivial’’ oligomers, where a simple blast

query returns a homologues template-ligand complex

with the correct oligomeric state.

Human versus server predictions

Looking at the top 10 groups, 8 of them were regis-

tered as ‘‘humans,’’ and only 2 as ‘‘servers.’’ Overall, there

is a striking difference between the average performance

of human groups and server groups with a mean Z score

of 0.47 and 0.15, respectively. Although predictor groups

registered as ‘‘human’’ performed considerably better

than ‘‘servers,’’ the role of human beings in the predic-

tion process was difficult to evaluate. Several aspects

seemed to contribute to this observation: human predic-

tors had access to multiple servers for structure modeling

and various server binding site predictions, while server

predictors have to rely on their own method only. While

human predictors can make use of additional annotation

from biological knowledge bases and scientific literature,

servers have to rely on structured machine-readable in-

formation. A major bottleneck in this context seems the

lack of consistent annotation of ligands found in PDB

entries with respect to their biological relevance. It

Figure 3
Mean rank based on bootstrapping experiment for the top 20 predictor

groups. Error bars show minimum and maximum rank obtained from

bootstrapping experiment. Human predictors are shown in purple,

servers in orange.

Figure 2
Mean Z scores over all targets for the top 20 predictor groups. Error

bars show minimum and maximum average Z scores obtained from

bootstrapping experiment. Human predictor groups are shown in

purple, servers in orange.

yyThe largest difference was observed for group FN113, which would change rank

by three positions.
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appears that human predictors benefit from the longer

prediction time mainly by their ability to distinguish rel-

evant from irrelevant ligand predictions.

Prediction methods have converged to a
similar approach

When comparing the methods of the top performing

groups, it seems that they have converged to similar

approaches, which are based on homology transfer from

related structures in the PDB. By identifying homologous

protein structures with bound ligands, putative binding

site residues in the target model are classified by spatial

proximity after alignment or superposition. The methods

differ in their specific implementations with regards to

the underlying structure databases (PDB vs. curated

binding site libraries), target representation (alignment to

structure vs. full atomic models), superposition to related

structures to identify putative binding sites, and the use

of residue conservation information in the prediction

process. The major drawback of these homology-based

inference methods is that they rely on the availability of

related protein structures with bound ligands and are

thus unable to make predictions for novel proteins with-

out prior ligand information.

Although many groups have used similar approaches

to make their predictions, we observed a surprising het-

erogeneity of performance within targets. As shown in

Figure 5 (and Figure S4), the 12 top performing groups

show overall a similar spectrum of results, with a few

nearly perfectly predicted targets and some poorly pre-

dicted targets. Interestingly, when analyzing the results

for individual targets, at least one good prediction was

achieved across all groups (MCC value of at least 0.56;

on average 0.84; see Fig. 6), and even predictors with a

poor overall performance, can yield the best individual

prediction for certain targets, as shown in Figure 7.

Thus, either the performance of the different methods is

highly target specific, or there is a considerable random

component in the prediction process in combination

with a strong influence by the small and biased target

data set.

Prediction examples

Obviously, target T0604 was the most difficult target

in the FN category in CASP9, with a maximum MCC

score of 0.56 for the best prediction, and an average score

of 0.29. The protein is a putative FAD-dependent oxidor-

eductase with a bound FAD molecule (PDB : 3nlc). The

protein is monomeric and forms a large binding pocket

for the ligand. The structure is shown in Figure 8(A) to-

gether with the binding site predictions of group FN035

(CNIO-FIRESTAR) as one of the best predictions for this

target. The top performing methods were able to accu-

rately predict the lower part of the binding site around

the adenine moiety, whereas all of them failed for the

upper part of the binding site around the flavin moiety.

Figure 4
Mean Z scores of the top 20 groups, separated by the ligand’s

chemotype. Metals are shown in blue, nonmetals are shown in green.

Table III
P Values Computed by Paired t-Test of All Against All Predictors

FN096 FN339 FN315 FN242 FN035 FN110 FN104 FN094 FN113 FN114 FN452 FN236

FN096 — 0.24 0.01 0.08 0.06 0.01 0.01 0.00 0.00 0.00 0.00 0.00
FN339 0.24 — 0.27 0.20 0.28 0.20 0.05 0.04 0.02 0.05 0.02 0.02
FN315 0.01 0.27 — 0.81 0.56 0.63 0.17 0.20 0.03 0.14 0.12 0.07
FN242 0.08 0.20 0.81 — 0.85 0.90 0.31 0.28 0.27 0.19 0.10 0.09
FN035 0.06 0.28 0.56 0.85 — 0.88 0.44 0.52 0.38 0.45 0.45 0.31
FN110 0.01 0.20 0.63 0.90 0.88 — 0.33 0.28 0.27 0.30 0.33 0.18
FN104 0.01 0.05 0.17 0.31 0.44 0.33 — 0.88 0.88 0.89 0.93 0.93
FN094 0.00 0.04 0.20 0.28 0.52 0.28 0.88 — 0.99 0.98 0.94 0.79
FN113 0.00 0.02 0.03 0.27 0.38 0.27 0.88 0.99 — 0.99 0.95 0.76
FN114 0.00 0.05 0.14 0.19 0.45 0.30 0.89 0.98 0.99 — 0.96 0.56
FN452 0.00 0.02 0.12 0.10 0.45 0.33 0.93 0.94 0.95 0.96 — 0.83
FN236 0.00 0.02 0.07 0.09 0.31 0.18 0.93 0.79 0.76 0.56 0.83 —

Significant differences between two groups are indicated by cells with white background. For clarity, only the 12 top performing predictors are shown, sorted by their

overall performance.
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This stems from the fact that this target structure has

only remote homologues, which differ significantly in the

flavin binding site region. This example clearly demon-

strates the limitations of prediction methods that are

based on homology transfer.

Target T0629 is the only target in the current ligand-

binding target set, which was classified as free modeling

target and thus has no template structure. The protein

(PDB: 2xgf) is the bacteriophage T4 long tail fiber recep-

tor-binding tip. It contains a long fiber like structure,

which is formed by three chains and binds seven iron

atoms. Each iron atom is complexed by six histidine resi-

dues. Each protein chain contributes two histidines to

each binding site, where the two histidines are in a His-

X-His motive, with X being either Ser, Thr, or Gly. The

target structure is shown in Figure 8(C) together with

the binding site predictions of group FN114 (Lee), the

best predictor for this target among the top 10. Common

to all predictions for this target is that they correctly pre-

dicted a subset of the seven binding sites—most likely

due to local similarity to another metal binding protein

Figure 6
Overall target difficulty. MCC value of the best overall prediction for

each target.

Figure 7
Number of targets where a particular group returned the best

prediction. Groups are sorted by their overall performance. For one

target, multiple groups can perform equally.

Figure 5
MCC scores for the 12 top performing groups for all targets. Targets were sorted by their respective MCC score, individually for each group.

CASP9 Ligand-Binding Assessment

PROTEINS 133



with a His-X-His motif - but no predictor identified all

sites correctly.

The structure of target T0632 (PDB : 3nwz) is a

homo-tetramer, which binds coenzyme-A. This ligand is

interacting with three of the four chains of the protein,

which seems to present a challenge for binding site resi-

due prediction observed by a low average MCC of 0.22.

An excellent prediction was obtained by group FN096

(Zhang) with an MCC of 0.72, which is depicted in Fig-

ure 8(B) along with the target structure. Many residues

were well predicted despite originating from different

chains. In this prediction, the largest errors originate

from missing some binding site residues due to an elon-

gated terminus compared to structurally closely related

templates.

CONCLUSION

The task of predicting binding sites from a protein’s

sequence is of high relevance for life science research,

ranging from functional characterization of novel pro-

teins to applications in drug design, and consequently

the ligand-binding site prediction category in CASP has

received increasing attention over the past years. In

CASP9, it attracted a total of 33 predictors—10 more

groups than in CASP8. In contrast to the previous

CASPs, where only three predictors yielded reliable pre-

dictions,20 in this assessment, nearly half of the predic-

tion groups yielded reliable predictions for the majority

of targets. Two groups (FN096, Zhang; FN339, I-TAS-

SER_FUNCTION) performed better than the rest (when

accounting for missing target predictions in the assess-

ment), while the following ten prediction groups per-

formed comparably well. This is not very surprising with

respect to the observation that in this round all top per-

forming groups based their methods on approaches,

which are similar to the best performing strategy in pre-

vious CASP experiments (i.e., Sternberg34 and Lee15).

Limitations of the current format and
recommendations for future experiments

The very low number of target structures with relevant

ligands is a major limitation to the assessment as it does

not allow to draw significant conclusions on the specific

strengths and weakness of different prediction methods,

for example, with regard to target difficulty or type of

the ligands. Only 30 of the total 109 CASP9 targets

(28%) were considered to have a biologically relevant

ligand bound in the target structures and were thus

assessed in the FN category. It is likely that some of the

Figure 8
Examples of binding site predictions. All ligands are shown in spheres render mode. The protein backbone is shown in cartoon mode with each

chain colored separately. All side chains of observed and predicted binding site residues are shown in licorice sticks. Correctly predicted residues

(true positives) are colored in green, incorrectly under predicted binding site residues (false negatives) in yellow and incorrectly over predicted

nonbinding site residues (false positives) in red. A: Target T0604 with predictions of group FN035. B: Predictions of group FN096 for target T0632.

C: Group FN114’s predictions for target T0629.
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remaining target proteins would bind interesting ligands

under different experimental conditions, but such con-

clusions can not be made with the available data. In the

previous CASP8 experiment, the total number of targets

in this category was 27, illustrating that this is a recur-

ring problem—and not specific to this round of CASP.

Another rather drastic limitation of the FN category is

the binary prediction format that classifies residues as ei-

ther ligand binding/nonbinding based on a hard distance

cutoff. Consequently, all ligands are currently treated uni-

formly, independent of their chemical type, and all

potential binding sites are treated uniformly, independent

of their affinity (or binding probability) for different

ligands. Moreover, most targets in the FN category were

straightforward TBM targets with numerous, closely

related template structures, and only one of the 30 tar-

gets was categorized as free modeling (FM). However,

exactly this class of target structures is of highest interest

for computational ligand-binding site prediction, where

no obvious information about the location of their bind-

ing sites is available. We suggest the following modifica-

tions to the assessment of ligand-binding site predictions

to enable the community to benefit even further from

future rounds of this experiment:

� In order to accumulate a sufficiently large number

of prediction targets, the assessment of this category

should be done continuously based on a weekly

PDB prerelease. This would allow assessing the per-

formance in different ranges of target difficulty, sim-

ilar to other CASP categories and faciliate analyzing

the strengths and weakness of different approaches.

During the CASP meeting in Asilomar, we have sug-

gested that the CAMEO project (Continuous Auto-

mated Model EvaluatiOn) of the Protein Model Por-

tal35 could contribute to this effort.

� Binding sites differ chemically and structurally from

each other, for example, a metal ion binding site has

different characteristics compared to, for example, a

sugar-binding site. We therefore suggest that the

assessment of binding site residue predictions should

be made according to chemotype categories of the

ligand expected to be bound. We propose the follow-

ing categories: ‘‘metal ions’’ (e.g., Na, Ca, Zn, Fe,

Mn, and Mg), ‘‘inorganic anions’’ (e.g., SO4 and

PO4), ‘‘DNA/RNA’’ for poly-ribonucleic acid binding

sites, and ‘‘organic ligands’’ for cofactors, substrates,

and receptor agonists/antagonists (e.g., NAD, FAD,

ATP, SAM, CoA, and PLP). More fine-grained

assessment categories might be necessary if more

specific prediction methods emerge in the future.

� The binary prediction of binding site residues should

be replaced by a continuous probability measure,

thus reflecting the likelihood for a residue to be

involved in binding a ligand of a certain type. For

example, a certain residue might be predicted as

having a high probability to bind a metal ion, but a

low probability to bind an organic ligand. The

assessment of continuous prediction variable (e.g.,

using ROC type analysis) would better reflect the

spectrum of ‘‘high affinity’’ and ‘‘low affinity’’ sites

of different types.

� The experimentalist solving a protein structure typi-

cally will have more insights and experimental evi-

dence for the biological role and relevance of ligands

observed in a protein structure than the informa-

tion, which is publicly available to assessors during

the CASP experiment. It would therefore be benefi-

cial to capture the information about the biological

role of ‘‘HETATM’’ records during PDB deposition.

Predicting binding sites from a protein’s sequence has

the potential for yielding high impact on life science

research—if the predictions are specific and accurate

enough to help addressing relevant biological questions.

We hope that with the suggested modifications, the

assessment of ligand-binding site predictions will be

more suited to evaluate the current state of the art of

prediction methods, identify possible bottlenecks, and

further stimulate the development of new methods.
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4.3. CAMEO LIGAND BINDING

4.3 CAMEO Ligand Binding

4.3.1 Introduction

In the post-genomic era, the number of protein structures with unknown biological func-

tion is steadily growing. To bridge this rapidly growing gap between known sequences and

unknown function, numerous computational and experimental techniques have been devel-

oped.5,1, 6 Among these methods, structural comparison of the three dimensional shape to

homologous proteins with known function can often help to assign the function of unknown

proteins.19 However, the accuracy of such an approach is often insufficient since proteins with

the same global fold can have different biological functions. In addition, for many applications

knowing the global function of a protein is insufficient and it is critical to elucidate the structural

details of how the protein interacts with its ligands.115 Hence, the identification of a protein’s

functionally important residues, such as ligand-binding sites or catalytic active residues, is a

crucial step toward the goal of understanding the protein’s molecular function and its biological

role in the cell. Although those interactions are crucial for the function of a protein, they are

often unknown and require elaborate and time-consuming studies by X-ray crystallography or

NMR. To facilitate this process, numerous computational methods have been developed with

the goal of identifying the precise location of ligand binding sites and the protein residues directly

involved in interacting with the ligand.7

Predicting binding sites from a protein’s sequence is of high relevance for life science re-

search, ranging from functional characterization of novel proteins to applications in drug design

and enzyme engineering. Consequently, the development of automated methods for predicting

ligand-binding sites has received increasing attention over the past years.

However, relevant biological questions can only be addressed if predictions are specific

and accurate. Therefore, evaluating the performance of prediction methods in a blind and

objective way is crucial. To achieve this goal, ligand binding site prediction methods have been

assessed since the 6th edition of the Critical Assessment of Techniques for Protein Structure

Prediction (CASP) experiment.113,114 This process has been extended and fully automated in

the Continuous Automated Model EvaluatiOn (CAMEO) framework as a new category.

In CAMEO Ligand Binding we continuously evaluate the accuracy and reliability of ligand

binding site prediction services in a blind and fully automated manner to assess the current

state of the art of prediction methods, identify possible bottlenecks, and further stimulate the

development of new methods.

As mentioned before, ligand binding site (LB) predictions have been assessed in recent

CASP experiments.25,24,23,113 However, the setup in CASP has shown some major limitations

which prevented to draw significant conclusions:

� A very low number of challenging target structures with relevant ligands.

� A limited prediction format which treats all ligands uniformly, independent of their chem-

ical type and treats all potential binding sites uniformly, independent of their affinity for

different ligands.
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Hence, in CAMEO a number of changes were made to alleviate the shortcomings of previous

CASP LB experiments:

� First, in CAMEO participating servers are evaluated continuously, every week, based on

all newly released PDB structures in order to accumulate a sufficiently large number of

prediction targets.

� Second, in CAMEO we have modified the ligand binding site prediction format to allow

a more fine-grained prediction and a more detailed assessment.

� Third, binding sites differ chemically and structurally from each other e.g. a metal ion

binding site has different characteristics compared to a sugar binding site. We therefore

assess ligand binding site predictions according to chemotype categories of the ligand

expected to be bound.

� Fourth, the prediction of binding site residues employs continuous probability measures

as opposed to the binary prediction format used in CASP, thus reflecting the likelihood

for a residue to be involved in binding a ligand of a certain type.

4.3.2 CAMEO Workflow

Figure 4.1: Schematic overview of the general CAMEO workflow. Every Friday afternoon, CAMEO sends
the sequences of the weekly PDB prerelease to all registered servers. Each Wednesday, upon release of the
structures, CAMEO Ligand Binding evaluates all predictions received prior to that date.

The workflow used in CAMEO is schematically depicted in Figure 4.1. It consists of three

independent steps.

Collecting all PDB prerelease sequences (i.e. sequences ready to be released within the

next release cycle), filtering them to remove duplicates and subsequently submitting them

to all participating servers.
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Collecting the responses from the participating servers and checking for format errors.

Evaluating automatically all predictions received prior to the new PDB release and pre-

senting the results on the CAMEO web pages.

It should be noted that CAMEO functions in a blind and fully automated fashion. This

is important to guarantee a fully independent, objective and comparable evaluation of current

methods.

For CAMEO Ligand Binding, the biological role of ligands can be annotated by the users

through a web-based, consensus �wisdom of the crowd� approach available as the CAMEO

Structure Annotation System.

4.3.3 Prediction Targets

All protein sequences from the weekly PDB prerelease with a minimum length of 30 amino

acids are submitted to the participating ligand binding site prediction servers five days before

the structures are published. Predictions are only accepted if deposited before the new PDB

release. Upon release of the target structures, all protein structures containing biologically

relevant ligands are used for further evaluation of the accuracy of the prediction servers.

4.3.4 Ligand Annotation

All ligands present in the newly released PDB structures are classified based on their biological

relevancy (i.e. ’biological relevant’ or ’biological irrelevant’). Classification is based on manual

inspection of all newly released protein structures. The user is assisted by an automatic ligand

classification algorithm which suggests the biological relevancy for each ligand in a protein

structure, based on the following criteria:

distance between protein and ligand atoms must be within a certain cutoff distance

commonly observed irrelevant ligands (e.g. common buffers, crystallization molecules)

are excluded

covalently bound post-translational modifications are removed

All automatic assignments can be overwritten by the user through a publicly available, web-

based structure annotation platform, which we have developed for straightforward inspection of

protein-ligand complex structures.116 This allows the user to easily navigate through all ligands

of a structure using 3D visualization. Additional structural information is displayed and a direct

access to the corresponding publication is given in order to facilitate the user’s decisions. All

ligands can be annotated according to the ligand classification scheme (see Section 4.3.5) and

all annotations are stored in a database for further access. In addition, literature references can

be added and discussions among users is possible within the annotation system.

Assignment of the biological role of a ligand in a structure has been one of the major

limiting factors in the field of binding site and function prediction but is not limited to this
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field. Thus, building a publicly available resource of manually curated ligand annotations has

a great potential for improving current methods for protein structure and function prediction.

Annotating ligands in CAMEO is a community effort. Thus, all people in the research community

are invited to annotate their favorite structures. By using such a �wisdom of the crowd�

approach a consensus answer can be obtained directly and controversial cases can be identified.

4.3.5 Ligand Classification Scheme

For the functional annotation of ligands present in CAMEO target structures, a new ligand

classification scheme has been developed as shown in Figure 4.2. This classification scheme is

based on a ligand-centric functional annotation approach as opposed to a binding-site-centric

approach. For each ligand class a corresponding ligand classification number (LC number) was

assigned consisting of a number for each depth level of the tree, separated by dots in order to

easily determine the super class for a given LC number and to facilitate possible extensions of

the current ontology.

post-translational
modification

[1.2.1]

chemical
modification

[1.2.2]

ligands
[1]

structural ligand
[1.3.1.5]

signaling ligand
[1.3.1.4]

product
[1.3.1.2]

substrate
[1.3.1.1]

cofactor
[1.3.1.3]

natural
[1.3.1]

synthetic
[1.3.2]

non-covalently
bound
[1.3]

impurities
[1.1.3]

solvent
[1.1.2]

buffer
[1.1.1]

irrelevant
[1.1]

covalently bound
[1.2]

Figure 4.2: Current ligand classification ontology used in the CAMEO Structure Annotation System. For
each ligand class its classification number is shown in square brackets.

Currently, the ontology consists of three super classes: irrelevant ligands [1.1], covalently

bound ligands [1.2] and non-covalently bound ligands [1.3]. The first super class includes buffers

[1.1.1], solvents [1.1.2] and other impurities [1.1.3]. The second super class includes natural

post-translational modifications [1.2.1] like glycosylations or phosphorylation and chemical mod-

ifications [1.2.2] like addition of MTSL spinlabels. The third super class includes natural [1.3.1]
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and synthetic [1.3.2] non-covalently bound ligands where the former is further divided into sub-

strates [1.3.1.1] and products [1.3.1.2] of enzymatic reactions, functional cofactors [1.3.1.3] like

ATP or SAM, signaling ligands [1.3.1.4] like steroid hormones and structural ligands [1.3.1.5]

like structurally important metals ions. For CAMEO ligand binding, the evaluation is currently

limited to the last super class.

4.3.6 Ligand Categorization

All ligands are categorized into four predefined categories and predictions are assessed individ-

ually for each category where at least one ligand was observed in the target structure. Ligand

categorization is based on the preliminary ligand classification (chemtype) of the PDB, as de-

fined in the chemical component dictionary117 under the item ’ chem comp.pdbx type’.

Table 4.1: Definition of ligand categories in CAMEO LB and rules that are applied to categorized ligands
according to the ligand classification (chemtype) of the PDB.
aAll chemtypes of the organic category are included if covalently linked to ligands in the respective category.

Category Description Enclosed PDB Chemtype Examples

I ions HETAI, HETIC ZN, SO4, ACT, NH4, IOD
(non polymeric)

O organics HETAIN, ATOMS, ATOMN, ATP, FAD, SAM, GLA, F3S
ATOMP, HETAC, HETAD
(non-polymeric: resnum ≤ 2)

N poly-nucleotides ATOMN + organicsa A, DA, G, U, T
(polymeric: resnum > 2)

P poly-peptides ATOMP + organicsa ALA, KCX, LLP, PTR
(polymeric: 2 < resnum ≤ 10)

The following four CAMEO ligand categories are currently evaluated: ions (I ), organics (O),

poly-nucleotides (N) and peptides (P). Each category is defined as a subset of the available

PDB chemtypes, as summarized in Table 4.1. All ions must be monomeric and thus, consist of

a single residue. Organics can be monomeric or dimeric. Peptides and poly-nucleotides must

consist of at least three residues and at maximum of 10 and 200 residues, respectively. In order

to include capped peptides and poly-nucleotides, residues of the organic type are allowed in the

latter two categories given that they are covalently linked to the peptide or nucleotide.

4.3.7 Assessment

Preparation of Target Structures

Upon release, all target structures are obtained from the PDB118 in the mmCIF file format, are

filtered and prepared for further use through the following steps.

All structures which fail to align to the sequence which was sent to the predictors (i.e.

SEQRES sequence) are discarded.
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All non-standard amino acids are converted to their respective standard amino acid to

match the exact sequence that was sent to the predictors.

All biological assemblies defined by the PDB are considered.

Covalently linked residues are grouped together into ligand entries.

Each ligand entry is uniquely categorized into one ligand class.

Calculation of the Reference

Based on the prepared target structure, a reference binding site prediction is calculated for

each biological assembly of each protein-ligand complex. The reference contains a binding site

probability value for each heavy atom of the protein which is observed in the released structure.

This value is computed based on the protein-ligand distance (r) using a sigmoidal curve of the

following form:

pref =
1

1 + exp(1.5 ∗ r − 7.5)

Thus, a distance of 5 Å yields a binding site probability value (pref ) of 0.5 whereas a

distance of 3 Å and 7 Å leads to a probability close to 1.0 or 0.0, respectively.

pref values are computed for each ligand category individually by considering only the subset

of ligands corresponding to that category. In addition, for ligands belonging to the categories I

and O, pref values are computed individually for each specific ligand found in the structure.

In case multiple protein chains are present in the biological unit, the reference is computed

for each protein chain individually. In this step, all ligands of a particular category are included,

not just the ones contained in the current chain. This allows to compute probabilities for ligands

bound in the interface between multiple chains.

In case multiple biological assemblies are defined, an individual reference is generated for

each biounit as previously described.

Compare Prediction with Reference

Each prediction is evaluated by comparing it to the reference as described in Section 4.3.8. A

number of considerations apply for numerous special cases.

Multiple chains If the prediction contains multiple chains with matching sequences, each

chain is scored against the reference and the mean score of all chains is reported.

If the reference contains multiple chains with the same SEQRES sequence, the prediction

is evaluated against each chain of the reference and the highest score is reported.

In case that both the reference and the prediction contain multiple matching chains, each

prediction chain is evaluated against each reference chain. To obtain the overall score, the best

score for each chain in the prediction is averaged over all available prediction chains.
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Multiple biological assemblies In case where multiple biological assemblies are defined

in the mmCIF file, a reference is generated for each biounit. Since none of these assemblies is

a priori more correct then the others, the prediction is assessed against each of those references

and the value for the biounit with the best score is reported.

Level of Prediction When comparing a prediction against a reference, the reference always

contains p-values for each atom present in the structure. The prediction however, can contain

p-values for all atoms or for all residues or mixed for some atoms and some residues. Therefore,

for the comparison, prediction values at the atom level are used if available. Otherwise, for

each atom present in the reference, the p-values of the corresponding residue are used. If no

p-values are given both for the atom as well as the corresponding residue, all p-values are set

to 0.0.

Specific Compound Predictions When predictions are given for specific compounds in

addition to the ligand categories, the reported score is exclusively computed based on the

compound predictions, if the following condition applies: For each ligand category individually,

all compounds observed in the target structure must be present in the prediction. Predictions

for additional compounds which are not present in the structure are neglected. If the condition

is not fulfilled, the reported value is based solely on the category prediction values.

4.3.8 Scoring

Predictions are currently scored based on four different methods. Receiver operating char-

acteristics (ROC) area under the curve,119 Pearson’s correlation coefficient, Spearman’s rank

correlation coefficient120 and Matthew’s correlations coefficient.121

ROC area under curve is a measure for the ability of a classifier to produce relative scores,

i.e. predicting higher values for residues in the binding site compared to those not in the binding

site. For ROC curves, a cutoff p-value must be defined on the reference. For CAMEO this

cut-off is set to a p-value of 0.5 corresponding to a distance of 5 Å.

Pearson’s correlation coefficient is a measure of the linear dependence between the

prediction and the reference and does not need any cutoff. However, it has two drawbacks: (1)

it is highly dependent on the mathematical function used to generate the reference, (2) it is

heavily influenced by p-values for residues that are far away from the binding site, where the

correct ordering, from a biological point of view, is of limited importance.

Spearman’s rank correlation coefficient quantifies the non-parametric statistical de-

pendency between the prediction and the reference. Opposed to Pearson’s correlation coeffi-

cient, it is independent of the mathematical function used to generate the reference, however,

it is still heavily influenced by p-values for residues that are far away from the binding site.
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Matthew’s correlation coefficient is implemented for comparison with the results of

previous CASP experiments24,25 where it was used as a measure to evaluate the ligand binding

site prediction category. It is a measure that accounts both for over and under-prediction.

However, it needs both a cutoff value for the reference as well as one for the prediction to classify

all p-values into positives and negatives. Thus, the advantage gained by introducing continuous

probability prediction values is lost. As with ROC, the cutoff p-value for the prediction and the

reference was chosen as 0.5 corresponding to a distance of 5 Å in the target structure.

4.3.9 Baseline Servers

For comparison of server performances, three näıve servers were added to establish a baseline

for what a straightforward method would predict. Each of these servers focuses on a specific

approach: (1) sequence conservation, (2) homology transfer and (3) geometric binding pocket

identification.

Näıve Conservation

A server that computes the conservation of each residue in a query sequence using sequence con-

servation information only. This server focuses on the most difficult case where no homologue

structure of the query protein is detectable.

Given a query sequence, the server performs the following three operations: (1) sequence

search in a protein database: a blast122 search is performed on the NR-90 database. All HSPs

with an E-value of less than 0.1 are accepted. (2) multiple sequence alignment: using the list of

HSPs obtained from blast, a multiple sequence alignment is built using ClustalW.123 (3) com-

putation of conservation values: conservation scores for each amino acid in the query sequence

are computed from the multiple sequence alignment according to the ConSurf method.124 The

raw conservation scores are used to assign ligand binding site probabilities with equal values for

all four ligand categories.

Näıve Homology

A server that computes ligand binding sites by homology transfer based on ligands found in

homologous structures in the PDB. This server focuses on the most straightforward case where

there is at least one homologue structure which contains biological relevant ligands.

The ligand binding predictions are created from models generated by SWISS-MODEL.125,126

Ligands present in the template structure are inserted into the protein model if certain criteria

are met:

If a compound is included in a list of selected biologically important compounds1, its binding

site, defined as all residues within 3 Å of the ligand, is superposed onto the model and all ligand

1currently the following small molecules are taken into account in the SWISS-MODEL pipeline:
cations: CA, CO, CU, CU2, FE, FE2, MG, MN, MO, NA, NI, ZN
cofactors: ADP, AMP, ATP, BTN, COA, BGC, GLC, GDP, GMP, GTP, GSH, FAD, FMN, HEM, HEA,
HEB, NAD, NAP, NDP, NAI, PLP, SAM, THG, TPP, UDP, CDP, SF4, FES
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heavy atoms are copied into the model. If the ligand clashes with the model, i.e. any protein-

ligand distance is less than 1.5 Å, or the RSMD of the binding site residues is larger than 2 Å,

the ligand is rejected.

For each atom in the protein the distance between its position and the position of all the

ligand atoms is computed and used to calculate the prediction score. If multiple ligands of

the same category are present, the maximum of the computed score for this category or that

specific compound is reported.

The score is calculated with a capped linear function bounded between zero and one using

the following formula:

score(d) =


1 if d < 3

2− (13 ∗ d) if 3 ≤ d ≤ 6

0 if d > 6

where d corresponds to the distance between the protein and ligand atom.

Näıve Pocket

This baseline server predicts ligand binding sites according to an analysis of the shape of the

protein structure as computed based on a homology model of the input sequence. This server

focuses on an intermediate case where there is at least one homologue structure which however,

does not contain any biological relevant ligands.

First, a comparative model is built using SWISS-MODEL.125,126 Second, all ligands in the

modeled structure are discarded and the molecular surface of the protein is computed using

MSMS.127 A three dimensional grid spanning the whole protein is generated. On every point

of that grid, the number of surface points within a distance of 10 Å is counted and stored as a

value on that grid point. The computed grid is then smoothed using a Gaussian filter with a

smoothing radius of 4 Å. Subsequently, for each atom of the protein structure, the probability

of being a ligand binding site is computed from a trilinear interpolation of the values of the 8

closest grid points. The values are then scaled to match the range of 0.0 to 1.0. The method

is described in detail in Section 4.4.

4.3.10 Prediction Format

Although, predictions in the format used by the predictioncenter128 during previous CASP

experiments25,24,23 are accepted, a new format which follows the suggestions from the last

assessment for the ligand binding category during CASP925 is implemented, allowing much

more detailed predictions.

This new format consists of three sections separated by the "|" symbol:

The first section is a unique identifier for a residue or atom. It has two mandatory fields,

the residue name (”r”) and the residue number (”n”). In addition, two optional fields

can be specified, the chain name (”c”) and/or the atom name (”a”).
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The second section contains predicted p-values for four ligand categories: ions (”I”),

organics (”O”), poly-nucleotides (”N”) and peptides (”P”). Predictions for all four cat-

egories are mandatory. The values are probabilities resembling the likelihood of binding

a ligand belonging to a specific category.

The last section is optional and allows the assignment of p-values for specific ligands

denoted by their three letter PDB code.

The following additional details about the new prediction format should be noted:

� All values must be specified as a key-value pair, where the value is separated from the

key by a ”=” sign. All key-value pairs must be terminated by a ”;” sign.

� The order of the key-value pairs within one of the three sections is irrelevant, whereas

the order of the three sections is fixed.

� All predicted values must be in a range from 0.0 to 1.0.

� To simplify the prediction format, lines can be omitted if they contain only zero values

for the predictions, both in the categories and the compounds section.

� Predictions can be made at the residue and/or atom level. In the case of the latter, the

atom name must be specified in the unique identifier section (key: ”a”).

� Predictions are mandatory for all four ligand categories, whereas for specific compounds

they are optional.

A general format description is given here:

r=<resname>; n=<resnum>; [c=<chainname>;] [a=<atomname>;] | ←↪
I=<ion prob>; O=<org prob>; N=<nucl prob>; P=<pep prob>; | ←↪
[<compound ID1>=<compound prob>;] [<compound ID2>=<compound prob>;] ...

where text in between �< >� brackets are placeholders for actual values and all key-value pairs

in between �[ ]� brackets are optional. The ←↪ sign indicates that this represents one line in a

file.

Two examples of the new prediction format are given in Appendix A.2.1.

Conversion from CASP format Predictions using the binary CASP format are accepted

and internally converted to the new prediction format. Since the latter is much more detailed,

numerous limitations apply when converting.

Predictions are converted into p-values of 0.0 (non-binding site) and 1.0 (binding site),

with no values in between.

Predictions for all four categories are set to the same value.
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Predictions for specific compounds are not assigned.

Predictions are assigned on the residue level only and no specific predictions at the atom

level are done.

Predictions containing residue numbers outside of the sequence range are discarded, ex-

cept for residue number 0, indicating that no binding site was predicted.

4.3.11 Results and Discussion

Number of Relevant Targets

A major limitation of previous CASP LB experiments was the limited number of target structures

that could be evaluated for the ligand binding site category. Although, the number of target

structures in recent CASPs was around 120, only about one fourth of those (i.e. around 30

structures) had biologically relevant ligands bound, and only very few of them were hard cases

where either no structure or no ligand information was present in the PDB. To alleviate this

shortage of ligand binding sites, CAMEO evaluates all servers weekly based on all newly released

PDB structures to obtain a large number of target structures.

Figure 4.3: Number of targets per week evaluated by CAMEO Ligand Binding.

We have analyzed the number of CAMEO LB targets with biologically relevant ligands over

a period of 35 weeks. The results are summarized in Figure 4.3 where the number of targets

for each category is shown over time. Overall, 1647 structures were evaluated. On average 47

structures were assessed every week, with a minimum of 1 and a maximum of 114. Of those,

48.1% contained ions, 72.8% organic ligands, 6.8% poly-nucleotides and 5.1% poly-peptides.

It should be noted that using CAMEO LB, the number of targets available in a single week

is larger than the number of targets present in a full round of CASP.
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Category Predictions

Figure 4.4 shows the CAMEO LB target 4EQP 1 (CAMEO date: 2012.04.27). The structure is

a Staphylococcal nuclease which is bound to a calcium ion and the organic inhibitor thymidine-

3’,5’-diphosphate (THP). The target contains two binding sites. The first contains the calcium

ion which is bound through the side chains of Asp21, Asp40 and Glu43 and the backbone car-

bonyl of Thr41. The second binds the organic ligand THP which is in direct contact with Arg35,

Lys84, Tyr85, Arg87, Leu89, Tyr113, Tyr115. The prediction from the homology based baseline

server is mapped onto the structure. Binding site residues are shown in sticks representation

and are colored according to the predicted p-values using a gradient from red (non-binding site)

to green (binding site).

Figure 4.4: Structure of a Staphylococcal nuclease (4EQP) bound to a calcium ion and the organic inhibitor
thymidine-3’,5’-diphosphate (THP). The ligands are shown in sphere representation, with the calcium ion
colored in cyan, and THP in element coloring. Predictions from homology based baseline server (näıve
homology) are mapped onto the structure using a gradient from red (non-binding site) to green (binding
site). The ROC score of both ligand categories is reported at the lower right hand side.

This target is an excellent example of the strength of using the new prediction format

allowing to give different predictions for different ligand categories. The näıve homology server

predicted only the binding site of the calcium ion but not of the organic ligand THP, since the

latter is not in the list of commonly observed, relevant organic ligands used by this server for
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prediction. From Figure 4.4 it is obvious that the binding site of the ion is perfectly predicted

with an ROC auc of 1.0. However, since no prediction for the organic category was given, the

performance is assigned a score of a random prediction (ROC auc of 0.5). If this target was

predicted and assessed as a whole, as was done in recent rounds of CASP, a ROC auc score of

0.69 would be obtained. This example clearly shows the strength of predicting and assessing

multiple ligand categories individually. The overall score would indicate a rather weak prediction

performance (ROC auc of 0.69) which clearly does not appropriately reflect the real prediction

performance, which in this example is excellent for the ion binding site but poor for the organic

ligand binding site.

Specific Compound Predictions

If specific compound predictions are given for all ligands present in the target structure, the

prediction performance will be assessed on these specific predictions instead of the corresponding

category. This has the advantage in the case where, for example a protein has two binding sites

for two distinct metal ions but in the target structure only one of the two is occupied.

To demonstrate the effect, we have generated an example based on the CAMEO ligand

binding target 3RVH 1 (CAMEO date: 2012.05.04). The structure is a lysine-specific histone

demethylase JMJD2A. The structure contains two metal ions: a structurally important zinc ion

and a nickel ion substituting for the catalytically relevant iron ion. In addition, the protein is

bound to an organic small-molecule inhibitor (HQ2) which is in direct contact with the catalytic

metal ion. The two metal ions bind to two distinct binding sites located 15 Å apart. The näıve

homology prediction server gives predictions at the specific compound level and predicts both

metal ion binding sites correctly. To investigate the difference in the prediction performance

between specific compound predictions and category predictions, the structural zinc ion in the

target structure was removed prior to the assessment, yielding a target structure where only

one metal ion binding site was present. Subsequently, the prediction was evaluated using both

the category or the compound predictions exclusively.

Table 4.2: Comparison between the evaluated prediction performance when assessed either based on
categories or based on specific compounds exclusively. All scores are computed for the ion category.

assessed on
categories compounds

ROC auc 0.994 0.997
Spearman’s correlation coefficient 0.395 0.538
Pearson’s correlation coefficient 0.474 0.651

From Table 4.2 a significant increase can be observed for Spearman’s and Pearson’s corre-

lation coefficient when specific compounds are predicted. A much smaller increase is observed

for ROC auc, since ROC only accounts for relative scores and in both cases, all high probability

binding site residues are well scored.
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Oligomeric State

Figure 4.5 shows the CAMEO LB target 4G8S 1 (CAMEO date: 2012.08.03). The structure is

a nitroreductase from Geobacter sulfurreducens PCA which forms a homodimer. It binds the

organic cofactor riboflavin-5’-phosphate (FMN) which is located in the interface between the

two protein chains and is in contact with 13 residues of chain A and 9 of chain B. The target is

a relatively easy case, where the close homologue 4DN2 (sequence identity: 76%, superposition

rmsd: 1.0 Å), also a homodimer, binds the same ligand in the same location. The prediction

from the INTFOLD-FN server is mapped onto the structure. Binding site residues are shown

in sticks representation colored according to the predicted p-values using a gradient from red

(non-binding site) to green (binding site).

Figure 4.5: Homodimeric structure of a nitroreductase from Geobacter sulfurreducens PCA (4G8S) bound
to the organic cofactor riboflavin-5’-phosphate (FMN). Predictions from the server INTFOLD-FN are
mapped onto the structure using a gradient from red (non-binding site) to green (binding site). The
ROC score of both ligand categories is reported at the lower right hand side.

From Figure 4.5 it is obvious that INTFOLD-FN only predicts binding site residues from

one single chain and thus does not consider the correct oligomeric state. This is also true for all

other registered non-näıve servers. The performances are generally good as shown in Table 4.3.

It is obvious that the performance could be further improved by considering the oligomeric state

of the target structure for the prediction as clearly demonstrated by the näıve homology server,
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Table 4.3: Comparison of the prediction performance for CAMEO ligand binding target 4G8S 1.

INTFOLD-FN HHfunc server5 näıve homology

ROC auc 0.83 0.71 0.83 0.98
Spearman’s correlation coefficient 0.55 0.42 0.55 0.77
Pearson’s correlation coefficient 0.70 0.54 0.70 0.81
Matthew’s correlation coefficient 0.78 0.59 0.77 1.00

which is the only server that currently takes the correct oligomeric state into account.

Web-based Representation of the Results

All servers are evaluated based on a number of different scores and all raw numbers are reported

on the CAMEO Ligand Binding web site. To facilitate the interpretation of these numbers,

CAMEO Ligand Binding presents them in more user friendly graphical representation as the

averaged performance (according to ROC auc) of each server against the number of targets

that were predicted by the server. Thus, a server on the upper left hand corner performs very

well on a small number of selected targets but does not give predictions for all the other targets.

On the other hand, a server on the right hand side, might on average perform less good than

the previously described server, but gives predictions for nearly all targets. Depending on the

users application, both approaches might be valid and thus the user can select what is needed

or combine predictions from multiple servers in order to obtain the best suited predictions. In

addition, to observe the development of a server, plots of its performance over time are given

on the CAMEO Ligand Binding web site.

4.3.12 Conclusion

CAMEO Ligand Binding has been publicly released recently.129 Despite the short period since

the announcement, it is already used by the ligand binding site prediction community. In this

short time, three external servers, coming from the McGuffin and the Söding groups, have

joined.

CAMEO Ligand Binding has already shown significant improvements over recent CASP lig-

and binding site prediction experiments by evaluating a significantly increased number of targets

and by allowing to predict binding sites in a more fine grained manner through categorization

and continuous prediction values.

CAMEO Ligand Binding has already proven to be useful by identifying possible bottlenecks

in current prediction methods like for example the incorrect use of the oligomeric state of target

and template structures. CAMEO LB also helps the server administrators by testing the server

on a weekly basis, by notifying them in case where no predictions are received and by reporting

server response times to obtain a measure for the technical performance.

CAMEO Ligand Binding helps the users of ligand binding site prediction methods by identi-

fying which methods are best suited for a particular use-case. This is achieved by assessing the
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prediction performance on individual ligand categories and by identifying strength and weak-

nesses of each server, like the difference between highly accurate servers which predict only

few targets and less accurate servers which predict nearly all targets. The information obtained

through CAMEO could further help the user to combine multiple server predictions in order to

obtain the best predictions for a particular purpose.

CAMEO Ligand Binding is continuously extended and improved in order to challenge all

participating servers and to provide the most useful information to the community. Ultimately,

CAMEO should be able to determine which methods should be chosen in order to yield the best

predictions for a particular target sequence.

115



4.4. GEOMETRY BASED LIGAND BINDING SITE PREDICTION

4.4 Geometry Based Ligand Binding Site Prediction

4.4.1 Introduction

A quantitative comparison of the performance of ligand binding site prediction methods is not

always straightforward. In particular, different methods perform differently based on the data

available for a particular prediction case. For example, a method that depends on homology

transfer from related structures might not perform well in the case where either no homologue

structure is available or where no ligands are bound in the homologue structures. Whereas, in

such a case, a method depending only on sequence conservation might yield a good perfor-

mance. However, comparing methods with each other that use completely different underlying

methodologies might be problematic.

To alleviate this problem, methods might be compared to a näıve baseline method which uses

the same methodology in a conservative manner, without incorporating the latest developments

in the field. Thus, for CAMEO Ligand Binding, we have developed three baseline servers, each

focusing on a individual approach as described in Section 4.3.9: (1) sequence conservation, (2)

homology transfer and (3) geometric binding pocket identification. Here, we describe the latter,

näıve geometric binding pocket identification server, named näıve pocket. This server focuses

on an intermediate case where homologue structures are present, but they do not contain any

ligand information.

4.4.2 Method

The geometric prediction server is based on BScore (see 5). Briefly, BScore uses the molecular

surface to define the protein shape and analyzes the distribution of surface vertices to identify

binding pockets. The following steps are performed:

The solvent excluded surface of a protein structure is computed by MSMS (version

2.6.1)127 using a probe radius of 1.4 Å and a sampling density of 6.

A 3-dimensional orthogonal grid is produced with a grid spacing of 1 Å and the dimension

of the protein lengths plus a margin of 3 Å on each side. For each point on this grid, the

number of surface points that are within a certain cutoff distance rmax is computed. In

addition, surface points can be excluded based on the direction of the surface normal n⃗j

and a cutoff angle γmax.

The computed grid is smoothed using a Gaussian filter with a smoothing radius σ.

The score b(r⃗i) on grid point i at position r⃗i is computed as

b(r⃗i) =

j

δj(P⃗j , r⃗i) (4.1)

where
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δj(P⃗j , r⃗i) =

1 if ∥P⃗j , r⃗i∥ ≤ rmax and γ ≤ γmax

0 if ∥P⃗j , r⃗i∥ > rmax or γ > γmax

(4.2)

where P⃗j is the position of surface vertex j and γ is the angle between the vector from the grid

point r⃗i to the surface vertex P⃗j and the surface normal n⃗j computed as

γ = arccos


(r⃗i − P⃗j) · n⃗j

∥r⃗i − P⃗j∥ · ∥n⃗j∥


(4.3)

4.4.3 Results and Discussion

Set of Protein-Ligand Complexes

All crystal structures used in CAMEO Ligand Binding from December 2011 to January 2012

containing ligands in the organic category were used as a training set. The crystal structures

were obtained from the PDB,130,118 all ligands were removed and predictions were performed

on these structures. Reference prediction entities were generated for all biologically relevant

ligands (according to the CAMEO LB classification) and the predictions were assessed using

the CAMEO LB pipeline.

Parameter Optimization

As shown in Section 4.4.2 the method depends on the parameters rmax, γmax and σ). To

optimize the method to obtain the best performance, those parameters were systematically

varied as follows:

rmax: 2 to 10 in steps of 2

γmax: 20,45,90,135,180°

σ: 0 to 20 in steps of 2

The performance of the method was evaluated for each parameter combination by computing

the area under the curve (AUC) of the receiver operating characteristics (ROC), Spearman’s

rank correlation coefficient (rank) and Pearson’s correlation coefficient (correl) for each structure

of the set of protein-ligand complexes described previously. For each of the three scores, the

overall performance was computed by averaging the score over all structures in the test set.

Prediction Performance on Crystal Structures

The performance of the näıve pocket server, as evaluated on the previously described set of

crystal structures, is shown in Figure 4.6. Independent of the metric used for evaluating the

preformance (i.e. ROC auc, rank, correl), similar behavior is obtained. Overall, the performance

dependents highly on all three parameters as follows:

Cutoff Distance (rmax) Generally, good performance is obtained for a broad range of cutoff

distances from 5 to 10 Å. Independent of the other parameters, an increase of the cutoff distance
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Figure 4.6: Performance of the näıve pocket server evaluated on X-Ray structures using three different
scores: ROC area under curve (top panel), Spearman’s rank correlation coefficient (middle panel), Pear-
son’s correlation coefficient (bottom panel). The scores are shown using a color gradient from blue (lower
performance) to red (better performance) and are plotted against the three parameters of the scoring func-
tion: cutoff angle γmax (individual plots from left to right), cutoff distance rmax (x-axis within one plot),
smoothing factor σ (y-axis within one plot).

yields an increase in performance, with a maximum at 10 Å.

Cutoff Angle (γmax) When discarding surface points where their surface normal vector

points away from the grid point, i.e. decreasing the curoff angle, the performance of the

method is improved. The optimal performance is obtained using a cutoff angle between 20 and

45°.

Smoothing Factor (σ) Using a Gaussian function to smooth the scores of the grid has a

significant impact on the binding site prediction performance, where both no smoothing (i.e.

σ = 0) or extensive smoothing (e.g. σ > 10) yields poor performance but intermediate smooth-

ing shows a significant improvement with a maximum performance at 4.0.

Overall, prediction performances are encouraging where optimal parameters yield a good

ROC auc of 0.855. For the näıve pocket server included in CAMEO Ligand Binding, the

following parameters were chosen which give rise to the optimal performance without severely

limiting the number of included surface vertex points: γ = 45°, rmax = 10 Å, σ = 4.0.
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Figure 4.7: Performance of the näıve pocket server in the organic ligand binding site category of CAMEO
LB. (A) The ROC AUC averaged over all CAMEO LB targets of the last seven month is plotted against
the number of modeled targets for all participating servers. (B-D) Comparison of weekly scores between all
participating servers: (B) ROC AUC, (C) Spearman’s rank correlation coefficient, (D) Pearson’s correlation
coefficient.

Prediction Performance on Models

In addition to crystal structures, the näıve pocket server is applicable to homology models and

was evaluated on comparative protein structure models produced by SWISS-MODEL.125,126

The server was added to CAMEO Ligand Binding in January 2012, and its performance over

the first seven month is shown in Figure 4.7 (server name: näıve pocket). Since the server only

predicts binding sites for organic ligands, only this category is evaluated.

The accuracy according to ROC auc is comparable to non-näıve servers. However,

näıve pocket is one of the few servers which predicts nearly all targets (97%), significantly

more than all non-näıve servers currently included in CAMEO Ligand Binding (Figure 4.7 A,B).

The performance according to Spearman’s rank correlation and Pearson’s correlation coefficient

is relatively low with a correlation coefficient of 0.32 and 0.31, respectively (Figure 4.7 C,D).

The high ROC score but the low correlation scores highlight, that näıve pocket is able to cor-

rectly classify residues into binding site and non-binding site residues, but has limited ability to

correctly rank the residues within the two classes.
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4.4.4 Conclusion

The näıve geometric prediction server depends on a reliable protein structure to determine

binding pockets and is both applicable to experimentally determined protein structures as well

as protein structure models originating from comparative modeling.

Although, the methodology used by the näıve pocket predictor for identifying ligand binding

sites is straightforward, its capability to predict binding sites for organic ligands is promisingly

high and outperforms most other servers. This clearly illustrates that current binding site

prediction methods have to advance further in order to predict binding sites accurately and

reliably.

In addition, by combining such a straightforward prediction server with other methodologies

like homology transfer, further improvements of the prediction performance could be easily

achieved which might lead to one of the top performing methods in the field.

120



Chapter 5

BEscore: a Novel Method for Rapid Scoring of

Protein-Ligand Complexes

5.1 Introduction

Computational methods have a significant impact on the drug discovery process for example by

greatly accelerating the identification of early hit compounds.28,131 In cases where 3-dimensional

structural information is present, or where accurate models can be built, virtual screening using

molecular docking is often the method of choice, due to its good compromise between accuracy

and computational efficiency.

In spite of major progress in recent years docking is often still hampered by the generation

of a large number of false positive hits. Amongst other shortcomings, one underlying reason

for false positive predictions is the generation of many incorrect, but highly scored, ligand con-

formations. This problem becomes particularly important when applying post-filtering methods

such as protein-ligand interaction footprint filtering132 or re-scoring based on free energy meth-

ods133,134 which rely on finding the best poses, i.e. those which are close to the experimentally

observed placement of the ligand. Despite those limitations of scoring functions, an expert’s

eye, however, can often distinguish the best poses from decoys by visual inspection.135 For

example, a set of docking results usually offers a number of poses with different yet plausible

hydrogen bonding patterns. With visual inspection most of the unreliable poses can be filtered

out. In our experience these are often the less buried ones,74 and in most cases an expert

would prefer placements with an intimate binding of the ligand in sub-pockets, even at the

expense of fewer polar interactions. This is in agreement with the notion that, generally, steric

complementarity plays a larger role in molecular recognition than polar and electrostatic inter-

actions.136 Such a visual inspection approach has been commonly applied in successful docking

studies137,138,139 where manual inspection of selected ligand poses was performed as a manual

post-filtering step. Although it is a promising approach, it clearly cannot be performed in a

high-throughput docking experiment due to its high time demand and its subjectivity.

The inability of scoring functions to always detect the best poses is just one part of the scor-

ing function problem. This problem has been extensively discussed and reviewed.136,140,141,142,143,144

A number of validation studies on scoring functions and docking have also been published,136,144,145,146,147,148,149,150,151
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complemented by articles on the intrinsic difficulties and flaws associated with such stud-

ies.152,153

As a consequence we have developed a scoring function that aims to identify the best poses

by quantifying the degree of burial and the electrostatic interactions of the ligand poses in a

binding site. Here, we present the initial results of these investigations.

5.2 Method

5.2.1 Shape Term (Degree of Burial)

In the approach pursued here the ligand binding cavity is converted into a representation that

reflects just the shape of the protein surface. The method relies only on a 3-dimensional protein

structure, obtained from experiment or through comparative modeling. It does not require

affinity data, atom typing or elaborate deduction of potentials. The shape term in the new

scoring function aims to assess docking poses based on their degree of burial in a ligand binding

pocket. Such measures have so far been used for detecting cavities on a protein surface,15,154

which implies that the degree of burial can be useful for identifying protein surface depressions

and quantitatively describing their geometric characteristics. Here, the degree of burial is used

for re-scoring the poses of docking calculations.

The starting point for deriving the local degree of burial b(r⃗i) for a given protein at a given

position r⃗i is the shape of its ligand binding site, which is represented by the points of the

solvent excluded surface calculated by MSMS (version 2.6.1).127 A schematic representation

is shown in Figure 5.1. From the surface points the b(r⃗i) values are calculated over the r⃗i

coordinates of an orthogonal three-dimensional grid. For each position r⃗i on this grid, the local

degree of burial b(r⃗i) in the binding site is estimated by counting the surface points P⃗j , within

a given distance rmax from the orthogonal grid point r⃗i:

b(r⃗i) =

j

δj(P⃗j , r⃗i) (5.1)

where

δj(P⃗j , r⃗i) =

1 if ∥P⃗j , r⃗i∥ ≤ rmax

0 if ∥P⃗j , r⃗i∥ > rmax

(5.2)

Gaussian Weighting

As an alternative to applying a simple distance cutoff, Gaussian functions can also be used for

calculating the local degree of burial. The Gaussian weighted version of this score is designated

bg(r⃗i):
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Figure 5.1: Schematic representation of the BScore and BScoreg method. (A) The protein is represented
in light gray with its surface (black line) as defined by surface vertices (black dots) and their normal vectors
(black arrows). The score is computed on each grid point (colored dots) where the value is shown in a color
gradient from yellow (low score) to red (high score). (B) Cut-out of plot (A) representing the different terms
used in Equation 5.1- 5.10

bg(r⃗i) =

j

C · e−α(∥P⃗j−r⃗i∥−rmax)2 (5.3)

where C is a normalization factor to make bg(r⃗i) independent of α

C =
1

√
2π


1
2α

(5.4)

Gaussians allow the surface to be scanned within a given distance range. In this way

a distance-weighted measure for the protein-ligand contact area is calculated, which is more

related to the vdW interaction energy than the simple distance cutoff functional form.

Surface Directionality

To introduce surface directionality, surface points are excluded based on the direction of the

surface normal n⃗j relative to the current grid point r⃗i. This applies to both versions of the

score:

bdir(r⃗i) = δdir(γ) · b(r⃗i) (5.5)

bg,dir(r⃗i) = δdir(γ) · bg(r⃗i) (5.6)

where
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δdir(γ) =

1 if γ ≤ γmax

0 if γ > γmax

(5.7)

where γmax is an adjustable cutoff angle and γ is the angle between r⃗i − P⃗j and the surface

normal n⃗j computed as

γ = arccos


(r⃗i − P⃗j) · n⃗j

∥r⃗i − P⃗j∥∥n⃗j∥


(5.8)

Atomic and Total Score

The atomic score b(x⃗k) for an atom k at position x⃗k in a ligand pose is calculated as its local

degree of burial, as given in the scoring grid. bdir(x⃗k) is calculated using a trilinear interpolation

of the eight orthogonal grid points closest to the atom. The total shape score Bscore for a

particular ligand pose is then the sum of the atomic contributions b(x⃗k) at each atom position

x⃗k (see equation 5.9). The same applies to bg,dir(x⃗k) leading to the total shape score Bscoreg

of equation 5.10.

Bscore =

atoms
k

bdir(x⃗k) (5.9)

Bscoreg =

atoms
k

bg,dir(x⃗k) (5.10)

Direct Scoring

The orthogonal scoring grid is used in order to reduce computational costs when scoring many

ligand poses. The scores bdir or bg,dir need to be evaluated only on each grid point and the

atomic scores can be computed extremely fast by trilinear interpolation. However, interpolation

introduces an error which is dependent on the grid spacing and, in case of bg, on the width

of the Gaussian weighting function (α). Therefore, the scores can also be computed directly

on the atom positions which avoids this error. However, in this case, the scores must be

evaluated for each atom of each ligand pose separately which can lead to a significant increase

in computational costs.

5.2.2 Electrostatic Term

Since Bscore and Bscoreg can be seen as approximations of the intermolecular van der Waals

(vdW) energy between the ligand and the receptor, the introduction of an additional electro-

static correction term seems to be reasonable. For this purpose, the molecular electrostatic

potential ϕ(r⃗i) generated by the protein is calculated and stored over the r⃗i coordinates of an

orthogonal three-dimensional grid using the Poisson-Boltzmann methods implemented in APBS
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(version 1.3).97 The MMFF94 force field,155,156,157,158,159 as implemented in OpenBabel (ver-

sion 2.3.1),160 is used for calculating partial charges qk for all ligand and protein atoms. The

electrostatic interaction energy between the receptor and a ligand atom k at position x⃗k with

a partial charge qk is approximated as the product of the partial charge qk and the value of ϕ

at position x⃗k. In this case the same interpolation procedure is used as for the estimation of

b(x⃗k) and bg(x⃗k). This leads to the following form for Escore, the electrostatic part of our

scoring function:

Escore =

atoms
k

qk · ϕ(x⃗k) (5.11)

5.2.3 BEscore

By linearly combining the shape and the electrostatic terms described above, we introduce the

new scoring functions BEscore and BEscoreg:

BEscore = Bscore− ω · Escore (5.12)

BEscoreg = Bscoreg − ωg · Escore (5.13)

where ω and ωg are linear weighting factors balancing the relative contributions of the two

terms.

The new scoring functions are implemented using OpenStructure (version 1.2.2).83

5.3 Sets of Receptor-Ligand Complexes

We applied our new scoring function to three different sets of receptor-ligand complexes. One

set consists of the same receptor bound to different ligands (i.e. cross-docking), while the other

two sets includes different receptors, each binding a different ligand (i.e. re-docking).

5.3.1 Thrombin Set

Thrombin inhibitor complex structures with a resolution of less than 2.0 Å were selected from

the PDB.130,118,161 Structures with covalently bound ligands and peptides were ignored. All

structures were aligned by superimposing the protein structures on the PDB structure 1etr162 us-

ing the binding site superposition algorithm implemented in Maestro (version 9.3, Schrodinger,

LLC, New York, NY, 2012). The target structure 1etr was prepared by the Protein Preparation

Wizard in Maestro (Suite 2011, Schrodinger, LLC). Hydrogen atoms were added to all ligands

and the most stable protonation states and tautomers at pH 7.0 was generated using Epik (ver-

sion 2.2, Schrdinger, LLC).163 Standard precision (SP) Glide (version 5.7, Schrdinger, LLC)67

was employed as the docking tool using default parameters. As in previous work of Graves et
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al164 the scoring function is supposed to discriminate ligand poses which are far away from the

X-ray ligand structure (decoys) from the best poses.

Therefore, we generated a large set of differently placed protein-ligand complex confor-

mations. For this purpose the experimentally observed ligand structure was used as starting

geometry in the subsequent docking calculations. All poses were generated in various docking

runs with 1etr as receptor. All ligands were excluded for which no acceptable conformation was

found by the Glide docking run (i.e. symmetry corrected rmsd ≤ 2.0Å). This yielded a set of

66 thrombin inhibitor structures. On average 164 complex structures were generated with a

minimum of 56 and a maximum of 276. Of those, on average, 17 are considered correct with

an rmsd ≤ 2.0Å, with a minimum of 2 and a maximum of 90. Thus, this dataset gave rise

to a retieval rate of 10.2% when selecting ligand poses randomly. For re-scoring purposes, the

functions b(r⃗i), bg(r⃗i) and ϕ(r⃗i) (see equations 5.1,5.3 and 5.11) were evaluated on the points

of a three-dimensional orthogonal grid for the PDB structure 1etr, and were then applied to all

66 thrombin structures.

5.3.2 Astex Diverse Set

This set is a high-quality test set designed for the validation of protein-ligand docking perfor-

mance.165 It contains the structures of 85 diverse protein-ligand complexes retrieved from the

PDB. These complexes share the following main characteristics: the ligands are drug-like; no

particular target is represented more than once; the proteins are all drug discovery or agrochem-

ical targets; only high quality structures are included. Major protein families are represented

in the set, with 11 kinases, 9 nuclear receptors, 5 serine proteases and 3 members of the

phosphodiesterase family.

Although the Astex diverse set is a high quality test set, a number of significant problems

were observed, mainly due to wrongly parametrized co-factors observed in the structure. Thus,

all complexes were visually inspected and manually cleaned prior to the docking. Subsequently,

for each protein-ligand complex we applied the same preparation, docking and re-scoring pro-

cedure as for the thrombin test set using Glide SP. On average 141 poses were generated with

a minimum of 22 and a maximum of 447 of which, on average, 36 were correctly placed, with

a minimum of 3 and a maximum of 152. This yields a random retrieval rate of 28.8%. No

alignment had to be performed and the functions b(r⃗i), bg(r⃗i) and ϕ(r⃗i) (see equations 5.1,5.3

and 5.11) were individually calculated on the points of three-dimensional orthogonal grids for

each receptor.

5.3.3 S3DB

S3DB166 is a database of manually curated protein-ligand complex structures, based on the

ligand-protein database167 which contains a diverse set of protein families and ligand chemo-

types.

Similar to the Astex diverse set, all complex structures in S3DB were prepared for docking

by the Protein Preparation Wizard in Maestro (Suite 2011, Schrodinger, LLC). Structures

126



5.4. VALIDATION

generating errors in Maestro were excluded from further analysis. For each complex structure

the corresponding ligand was docked using standard precision Glide. Structures where no correct

pose (i.e. rmsd ≤ 2.0Å) was generated were discarded. This lead to a set of 145 protein-ligand

complex structures. On average, 127 poses were generated (minimum: 20, maximum: 311)

of which, on average, 29 are correctly places (minimum: 1, maximum: 150). This yields a

random retrieval rate of 24.7%. No alignment had to be performed and the functions b(r⃗i),

bg(r⃗i) and ϕ(r⃗i) (see equations 5.1,5.3 and 5.11) were individually calculated on the points of

three-dimensional orthogonal grids for each receptor.

5.4 Validation

In order to assess the prediction performance we computed four commonly used measures:

retrieval rate,164 enrichment area under curve (AUC), ∆RMSD and Pearson’s correlation coef-

ficient.

Retrieval Rate

Given a set of receptor-ligand complexes such as the thrombin or the Astex diverse sets described

in the previous section, the retrieval rate is the percentage of complexes where the ligand pose

ranked best by the scoring function is within 2.0 Å symmetry corrected root mean square

deviation (rmsd) of the X-ray structure.

Enrichment AUC

Enrichment area under the curve is a measure for the ability of a scoring function to rank

correct poses higher than incorrect ones, where correct poses are defined as conformations with

an symmetry corrected rmsd ≤ 2.0Å.

∆RMSD

For a set of docking poses for a particular ligand, ∆RMSD is the difference in symmetry

corrected rmsd between the best scored pose and the crystal structure.

In the following paragraphs all four scores resulting from Bscore, Bscoreg, Escore,

BEscore and BEscoreg have been calculated for the thrombin, the S3DB and the Astex

diverse set.

5.4.1 Shape Term

According to our model the shape term of the scoring function can have two functional forms:

Bscore (equation 5.9) and Bscoreg (equation 5.10) both of which depend on different param-

eters (equations 5.2 and 5.3).
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Figure 5.2: Evaluation of the performance of Bscore based on the Astex diverse set using (A) retrieval rate,
(B) enrichment AUC, (C) ∆RMSD and (D) Pearson’s correlation coefficient averaged over all complexes in
the test set.

Bscore

Equation 5.2 depends only on the parameter rmax, whereas when including surface directionality

(Equation 5.5), the parameter γmax is added. Figure 5.2 and 5.3 show the performance for the

Astex diverse set and the thrombin set (see Appendix A.3 Figure A.3 for the S3DB test set)

for different γmax values. For the Astex diverse set and the S3DB set the highest performance

values were obtained for an rmax value between 3.2 and 3.4 Å and γmax between 15 and 30°,

with retrieval rates of 56.5% and 52.4% and enrichments of 68.9% and 65.3%, respectively. For

the thrombin set, a broader maximum is observed with the same optimal γmax value (30°) but

slightly larger optimal rmax values (in the range of 4.0 to 4.5 Å) were observed, with retrieval

rates of 52.5% and enrichments of 86.4%.

Since the Astex diverse set and the S3DB set represent a broader spectrum of binding site

properties and ligand chemotypes and the optimal values obtained for those two sets are in

good agreement, the optimal values for Bscore parameters were chosen as follows:

rmax = 3.4 Å and γmax = 30°
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Figure 5.3: Evaluation of the performance of Bscore based on the thrombin set using (A) retrieval rate,
(B) enrichment AUC, (C) ∆RMSD and (D) Pearson’s correlation coefficient averaged over all complexes in
the test set.

Bscoreg

Equation 5.3 depends on two parameters, rmax and α, and when including surface directionality

(Equation 5.6), the parameter γmax is added. Figures 5.4 and 5.5 show the retrieval rates as

a function of rmax and α for different γmax values for the Astex diverse set and the thrombin

set, respectively (see Appendix A.3 Figure A.4 for the S3DB test set). For the thrombin set the

highest retrieval rates (56.1%) and enrichments (75.2%) are achieved for rmax values around

3.0 Å, ln(α) values between 0 and 3 and γmax value 45°. In the case of the Astex diverse set

the highest retrieval rates (up to 65.9%) and enrichments (69.6%) are observed for rmax values

between 2.3 and 2.4 Å, ln(α) values between 2 and 4 and a γmax value 45°. For the S3DB set

similar optimal parameters were obtained as for the Astex diverse set (rmax between 2.3 and

2.4 Å, ln(α) between 0 and 4, γmax 45°) with highest retrieval rates (60.0%) and enrichments

(65.9%).

The distribution of the retrieval rates for the sets depicted in Figures 5.4, 5.5 and Figures A.4

and the fact that the Astex diverse set and the S3DB set represent a broader spectrum of binding

site properties and ligand chemotypes, led us to choose optimal values for Bscoreg parameters
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Figure 5.4: Evaluation of the performance of Bscoreg based on the Astex diverse set using (A) retrieval
rate, (B) enrichment AUC, (C)∆RMSD and (D) Pearson’s correlation coefficient averaged over all complexes
in the test set.

with the following values:

rmax = 2.4 Å, ln(α) = 4.0 and γmax = 45°

The optimal rmax values for Bscore and for Bscoreg (rmax = 3.4 Å and rmax = 2.4 Å,

respectively) are not far from typical vdW contact distances. This suggests that the Bscore

and Bscoreg values approximate the vdW energy, which correlates with the size of the contact

surface area.

Directionality

When adding the directionality term γmax to Bscore or Bscoreg, a significant improvement in

the performance scores can be observed compared to when using no directionality restrictions

(i.e. γmax = 180°).

For Bscore the retrieval rate increases from 38% to 56.5% (Astex diverse set, Figure 5.2),

from 34% to 52.4% (S3DB set, Figure A.3) and from 28% to 52.5% (thrombin set, Figure 5.3).

The enrichments increase from 62% to 68.9% (Astex diverse set), from 62% to 65.3% (S3DB

set) and from 84% to 86.4% (thrombin set).

For Bscoreg the retrieval rate increases from 55% to 65.9% (Astex diverse set, Figure 5.4),
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Figure 5.5: Evaluation of the performance of Bscoreg based on the thrombin set using (A) retrieval rate,
(B) enrichment AUC, (C) ∆RMSD and (D) Pearson’s correlation coefficient averaged over all complexes in
the test set.

from 46% to 60.0% (S3DB set, Figure A.4) and from 44% to 56.1% (thrombin set, Figure 5.5

). The enrichments increase from 65% to 69.6% (Astex diverse set), from 63% to 65.9% (S3DB

set) and from 73% to 75.2% (thrombin set).

5.4.2 Electrostatic Term

The electrostatic potential ϕ(r⃗i) in equation 5.11 (and consequently Escore) depends, among

other parameters, on the value of the dielectric constant ε which is assigned to the interior of

the protein, and on the type and concentration of mobile ions. We tested the effect of these

two parameters on the scoring performance of the electrostatic term alone. For ε we tried

different values ranging from 1 to 80. For the mobile ion charge density we tested the following

three configurations: the absence of mobile ions (in this case the Poisson-Boltzmann equation

becomes a Poisson equation) and the presence of 0.15 mol/L or 0.30 mol/L of sodium chloride

(NaCl).

The performance of Escore is shown in Figure 5.6 for the Astex diverse set and Figure 5.7

for the thrombin set (see Appendix A.3 Figure A.5 for S3DB). The highest retrieval rates

and enrichments for the Astex diverse set (60.0% and 63.8%, respectively) and the S3DB set

(49.1% and 66.9%, respectively) are obtained for a dielectric constant between ε between 20
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Figure 5.6: Evaluation of the performance of Escore based on the Astex diverse set using (A) retrieval rate,
(B) enrichment AUC, (C) ∆RMSD and (D) Pearson’s correlation coefficient averaged over all complexes in
the test set.

and 30 and in the presence of 0.15 to 0.30 mol/L NaCl. For the thrombin set, Escore based

retrieval rates are low (21.2%) whereas enrichments are in a similar range as for the other sets.

Optimal retrieval rates are obtained for ε values around 6.0 and in the presence of 0.15 to 0.30

mol/L NaCl. Those parameters yield also optimal enrichments (63.5%) when not considering

enrichments at a mobile ion concentration of 0.00 mol/L, in which case the average is dominated

by a small number of outliers.

Since the Astex diverse set and the S3DB set represent a broader spectrum of binding site

properties and ligand chemotypes, the optimal values for Escore parameters were chosen as

follows:

ε = 25, mobile ion concentration = 0.15mol/L

5.4.3 Summary of Individual Terms

The optimized retrieval rates and enrichment values are summarized in Table 5.1. We emphasise

the fact that the retrieval rates obtained using the local degree of burial alone (65.9% for the
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Figure 5.7: Evaluation of the performance of Escore based on the thrombin set using (A) retrieval rate,
(B) enrichment AUC, (C) ∆RMSD and (D) Pearson’s correlation coefficient averaged over all complexes in
the test set.

Astex diverse set and 56.1% for the thrombin set, using the Gaussian functional form) are

higher than the retrieval rates obtained using the electrostatic term alone (60.0% for the Astex

diverse set and 21.2% for the thrombin set). The same holds true for enrichment values.

This confirms the notion that, generally, steric complementarity plays a larger role in molecular

recognition than polar and electrostatic interactions.136 It should be mentioned that reasonable

polar interactions were already generated by the docking program prior to these re-scoring

calculations.

5.4.4 Comparison to Van der Waals Interaction Energies

Since the shape terms are related to standard van der Waals (vdW) interactions and might

simply approximate the latter, we compare the results obtained with Bscore or Bscoreg for

the Astex diverse set with vdW interaction energies as computed by Glide SP. Correlations

are computed for all poses of each target of the Astex diverse set and a histogram of the

correlation coefficients is shown in Figure 5.8. On average, a correlation coefficient of -0.51 and

-0.48 is obtained for Bscore and Bscoreg, respectively. This intermediate average correlation
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Figure 5.8: Histogram of the correlation between the shape terms (A: Bscore, B: Bscoreg) and standard
van der Waals interactions as computed by Glide SP. Correlations are computed for all poses of each target
of the Astex diverse set.

coefficient indicates a certain degree of similarity between the two methods but clearly shows

that there are significant differences between the two.

5.4.5 BEscore

As defined in equations 5.12 and 5.13, BEscore or BEscoreg linearly combines Bscore or

Bscoreg with Escore via the ω or ωg parameter. In order to determine the optimal value of ω

and ωg for both equations, we used the optimised parameters for Bscore, Bscoreg and Escore

as described in the previous paragraphs:

Bscore: rmax = 3.4 Å, γmax = 30°

Bscoreg: rmax = 2.4 Å, ln(α) = 4.0, γmax = 45°

Escore: ε = 25, mobile ion concentration = 0.15mol/L

Figure 5.9 shows the retrieval rate of BEscore as a function of ω for the Astex diverse

sets, the thrombin set and the S3DB set. The highest retrieval rates and enrichments for the

Astex diverse set (65.9% and 73.3%, respectively) are obtained for ω = 360, for the thrombin

set (53.0% and 86.3%, respectively) for ω = 180, while for the S3DB set (67.2% and 72.1%,

respectively) for ω = 160. Figure 5.10 shows the retrieval rate of BEscoreg as a function of

ωg for both sets. For the Astex diverse set the highest retrieval rates and enrichments (71.8%

and 73.5%, respectively) are observed at ωg = 330, for the thrombin set (45.5% and 84.3%,

respectively) for ωg = 230 and for the S3DB set (69.3% and 72.7%, respectively) for ωg = 230.

The optimized retrieval rates and enrichment values are summarized in Table 5.1.

On averageBEscoreg exhibits higher retrieval rates and enrichments compared toBEscore.

From the distributions in Figures 5.9 and 5.10 we chose as optimal value for ω = 180 and

ωg = 240.
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Figure 5.9: Evaluation of the performance of BEscore based on the Astex diverse set, the S3DB set and
the thrombin set using (A) retrieval rate, (B) enrichment AUC, (C) ∆RMSD and (D) Pearson’s correlation
coefficient averaged over all complexes in the test set.

Table 5.1: Summary of the results obtained from optimizing the parameters of Bscore, Bscoreg, Escore,
BEscore and BEscoreg. The retrieval rates and enrichments obtained with the optimal parameters are
shown for the three test sets. a Best parameters were optimized for each set individually. b Selected
parameters were selected to perform well on all sets.

best parametersa selected parametersb

Astex S3DB Thrombin Astex S3DB Thrombin

Bscore retrieval 56.5% 52.4% 52.5% 57.6% 52.4% 45.5%
enrichment 68.9% 65.3% 86.4% 68.5% 65.3% 84.9%

Bscoreg retrieval 65.9% 60.0% 56.1% 62.4% 57.2% 43.9%
enrichment 69.6% 65.9% 75.2% 68.9% 64.9% 71.9%

Escore retrieval 60.0% 49.1% 21.2% 57.6% 49.1% 18.2%
enrichment 63.8% 66.9% 63.5% 63.7% 66.8% 62.9%

BEscore retrieval 65.9% 67.2% 53.0% 62.4% 65.5% 53.0%
enrichment 73.3% 72.1% 86.3% 73.7% 72.1% 86.3%

BEscoreg retrieval 71.8% 69.3% 45.5% 69.4% 69.3% 45.5%
enrichment 73.5% 72.7% 84.3% 73.7% 72.7% 84.2%

5.5 Analysis of Surface Point Distribution

The distribution of surface points around ligand atoms was analyzed for the 85 protein-ligand

complexes of the Astex diverse set.

For each complex, all ligand poses were divided into correct and incorrect poses according to
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Figure 5.10: Evaluation of the performance of BEscoreg based on the Astex diverse set, the S3DB set and
the thrombin set using (A) retrieval rate, (B) enrichment AUC, (C) ∆RMSD and (D) Pearson’s correlation
coefficient averaged over all complexes in the test set.

their all-atom RMSD values of ≤ 2.0 Å (correct) and > 4.0Å (incorrect). For each atom of each

ligand pose, a histogram of the distribution of surface points versus the distance from the atom

is computed. For each ligand pose the per-atom distributions are summed and a normalized

histogram is computed. For both, the correct and the incorrect poses, the distributions from all

contributing ligand poses are averaged and scaled to the range from 0.0 to 1.0. The difference

between the distribution of correct and incorrect poses is plotted in Figure 5.11. The actual

distributions are shown in Figure A.2 in Appendix A.3. The procedure was repeated with

different cutoff values for angle between the vector from the atom to the surface vertex and

the normal vector of the surface vertex (γmax).

For all different γmax values, a maximum in the distribution difference is observed at r =

2.3Å. This corresponding to a distance range where the correct poses show an increased surface

point density compared to the incorrect poses. Thus, exclusively selecting distances in a range

around 2.3 Å should yield the highest separation between correct and incorrect poses and thus

the best scoring performance.

Figure 5.12 shows an enlarged part of the surface point distribution difference for γmax =

180° as a representative example. The maximum of the difference between the distributions

(black line) can be fitted well by a Gaussian curve (red line) with a peak (rmax) at 2.3 Å and

a width (ln(α)) of 2.1. This indicates that selecting a Gaussian shaped function to weight the

individual contribution of surface points to the per-atom BScoreg seems reasonable.
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Figure 5.11: Difference between the distributions of surface vertex points around the ligands of the Astex
diverse set. Ligands are categorized into correct (rmsd ≤ 2.0 Å) and incorrect poses (rmsd > 4.0Å) based on
their rmsd to the crystal structure. The difference between the scaled distributions of correct and incorrect
poses is plotted for different γmax angles: (A) 15°, (B) 30°, (C) 45°, (D) 90°, (E) 135°, (F) 180°.

When comparing the distributions for different γmax values, a more pronounced difference

is observed for small γmax values up to γmax = 45°. This indicates that small γmax values

should better discriminate correct from incorrect ligand poses. Since the number of included

surface points decreases with smaller γmax, the noise in the distributions increases. Thus, an

optimal γmax is in the range of 30 - 45°.

It is worth noting that the values for rmax and α obtained through the surface point

distribution are in excellent agreement with the values obtained from parameter optimization

of Bscoreg (rmax = 2.4Å, ln(α) = 4.0).

5.6 Results

5.6.1 Astex Diverse Set

Figure A.6 (Appendix A.3) shows BEscoreg as a function of the rmsd for each docked pose

from the relative X-ray ligand position for the 85 complexes in the Astex diverse set. The

following combination of parameters was used: rmax = 2.4 Å, ln(α) = 4.0, γmax = 45° and

ωg = 240. For those parameters the retrieval rate is 69.4%, the enrichment is 73.7%, ∆RMSD

is 1.95 Å and the correlation coefficient is -0.52.

Figure 5.13 shows an example for the target structure 2bm2 of the Astex diverse set with

atomic Bscoreg values mapped onto the ligand structures using a gradient from blue (low

score) to red (high score). The ligand pose (A) resembles closely the X-ray ligand conformation

(rmsd = 0.2 Å) and has a high score (Bscoreg = 2160) whereas pose (B) is incorrectly placed

with an rmsd of 3.0 Å and has a lower score (Bscoreg = 1499). The coloring represents well,
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Figure 5.12: Fit of a Gaussian curve (red line) to the difference between the distributions of surface vertex
points around the ligands of the Astex diverse set (black line) for γmax = 180°.

which parts of the ligand are incorrectly placed and not in intimate contact with the protein

surface.

In 59 cases the top ranked structure was within 2.0 Å rmsd. In three additional cases the

best ranked structure was between 2.0 and 2.5 Å rmsd and in three more cases between 2.5

and 3.0 Å rmsd, while in the remaining 20 cases the top ranked structure deviated more than

3.0 Å rmsd from the X-ray structure.

If not only the best ranked pose, but the two, five or ten best ranked poses are considered,

the retrieval rate increases significantly from 69.4% to 76.5%, 87.1% and 94.1%, respectively.

This illustrates that in most cases accurate poses are found within the first few top ranked

conformations. In fact, only five complex structures did not yield a correctly placed ligand pose

within the ten best ranked structures.

5.6.2 Thrombin Set

Figure A.8 (Appendix A.3) shows BEscoreg as a function of the rmsd for each docked pose

from the relative X-ray ligand position for the 66 thrombin inhibitor complex structures. The

same combination of parameters as in the paragraph above was used. The retrieval rate is

45.5%, the enrichment is 84.2%, ∆RMSD is 3.24Å and the correlation coefficient is -0.57.

In 30 cases the top ranked structure was within 2.0 Å rmsd of the X-ray ligand crystal

structure. For additional six cases the deviation was found to be between 2.0 and 2.5 Å rmsd

and in four more cases between 2.5 and 3.0 Å. The remaining 26 cases the top ranked structure

deviated more than 3.0 Å rmsd from the X-ray structure.

The thrombin set shows a relatively low retrieval rate but a high enrichment, which suggests

that when including not only the best ranked pose in the calculation, the retrieval rates should

increase significantly. Retrieval rates increase from 45.5% to 50.0%, 74.2% and 87.9% for
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Figure 5.13: Two arbitrarily chosen poses for target 2bm2 of the Astex diverse set with atomic Bscoreg
values mapped onto the ligand structures using a gradient from blue (low score) to red (high score). The
protein is represented as a molecular surface, whereas the ligand is shown in stick representation. The ligand
pose (A) resembles closely the X-ray ligand conformation (rmsd = 0.2 Å) whereas pose (B) is incorrectly
placed with an rmsd of 3.0 Å. The overall score is computed as the sum of atomic Bscoreg contributions.

including the two, five and ten best ranked poses, respectively. Thus, when including the ten

best ranked poses, only eight out of the 66 thrombin structures did not yield a correctly placed

ligand pose.

5.6.3 S3DB

Figure A.7 (Appendix A.3) shows BEscoreg as a function of the rmsd for each docked pose

from the relative X-ray ligand position for the 66 thrombin inhibitor complex structures. The

same combination of parameters as in the paragraph above was used. The retrieval rate is

69.3%, the enrichment is 72.7%, ∆RMSD is 2.05Å and a correlation coefficient of -0.46 was

found.

In 100 cases the top ranked structure was within 2.0 Å rmsd of the X-ray ligand structure.

In ten additional cases the rmsd of the top ranked pose is between 2.0 and 2.5 Å and in twelve

cases between 2.5 and 3.0 Å. The remaining 23 structures exhibit an rmsd greater than 3.0 Å.

As with both the Astex diverse set as well as the thrombin set, the retrieval rates increase

139



5.7. COMPARISON TO X-SCORE AND GLIDE SP

significantly when not only the top ranked pose is considered. Retrieval rates increase from

69.3% to 77.2%, 90.4% and 95.6% when including the two, five and ten best scored poses,

respectively.

5.7 Comparison to X-Score and Glide SP

For a direct comparison, we compared our results to the Glide SP67 results and additionally

applied the X-Score scoring function168 to the Astex diverse sets.

For X-Score, retrieval rates of 68.2% and enrichments of 73.5% were obtained. Those

values are very similar to what we obtained with BEscoreg (retrieval rate: 69.4%, enrichment:

73.7%). Thus, BEscoreg seems to be able to compete well with X-Score and thus other

comparable scoring functions.

For Glide standard precision, retrieval rates of 83.5% and enrichments of 77.2% were ob-

tained. Although the performance values obtained using BEscoreg (retrieval rate: 69.4%,

enrichment: 73.7%) are slightly lower than what was obtained using Glide SP, the performance

of BEscoreg is still very promising, especially when considering it’s simplicity compared to a

full blown scoring function as Glide SP.

5.8 Combining with X-Score and Glide SP

Our new scoring function BEscoreg is intended for re-scoring of docking poses and thus as

a post docking filtering step. As such, ligand poses generated by a docking/scoring method

would then be filtered based on BEscoreg with the aim of reducing false positive placements.

To validate such a strategy, BEscoreg has been combined with the two scoring functions

X-Score and Glide SP on the Astex diverse set. All ligand poses, generated as described

above, where first scored using X-Score or Glide SP score and were subsequently re-scored

using BEscoreg. Only the ten poses ranked best according to BEscoreg where retained and

retrieval rates according to X-Score or Glide SP score were computed. Using this strategy,

retrieval rates could be significantly improved for X-Score from 68.2% to 76.5% and slightly for

Glide SP from 83.5% to 84.7%.

5.9 Discussion

The retrieval rates obtained for the Astex diverse set (69.4%) and for the S3DB set (69.3%)

using BEscoreg are very promising and they outperform a number of commonly used scoring

functions. Retrieval rates between 70 and 80% for identifying the best docking poses from a

number of poses can be reached with a number of scoring functions, including CHARMM,169

DOCK,170 DOCK6,171 ChemScore,172 DrugScorePDB,173 AutoDock,174 EADock175 and Lead

Finder176 while the PMF function177 achieved about 60%. A study by Velec et al. presented

DrugScoreCSD, a knowledge-based scoring function with a retrieval rate of 87% for 100 protein-
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ligand complexes,178 and even higher retrieval rates of 91% have been claimed for ICM.146,179

These are, to the best of our knowledge, the highest figures reported to date. The study

by Velec also reported retrieval rates for a number of scoring functions, including, for exam-

ple, Cerius2/PLP (76%), DrugScorePDB (72%), AutoDock (62%), Cerius2/PMF (42%), and

SYBYL/Chemscore (35%). These few examples highlight the difficulties of comparing pose re-

trieval rates, which can differ significantly depending on the targets, the number of decoys, and

the way in which the pool of decoy poses are generated. In our study, we used up to 447 poses

generated by Glide SP, in contrast to up to 100 decoys used in Velecs work, and an unknown

number in the ICM study. This underlines the influence of the pose/decoy generation method,

and the need for a publicly available and commonly agreed standardised test set that comprises

a well defined set of decoys for different protein-ligand complex structures which adequately

cover the space of potential poses, and allow for more objective benchmarking procedures.

Since comparing different methods on different sets of protein-ligand complex structures or

different numbers of correct and decoy poses is difficult,152 we compare our results directly with

other commonly used scoring functions. We compared our results to the Glide SP67 results

and additionally applied the X-Score scoring function168 to the Astex diverse sets. X-Score

gave comparable results whereas Glide SP slightly outperformed BEscoreg. The performance

of BEscoreg is thus very promising, especially when considering it’s simplicity compared to a

full blown scoring function as Glide SP. In addition, two points should be considered. First,

the Astex diverse set is a very commonly used test set to evaluate and train scoring functions.

Since this set was released previous to the current version of Glide SP, it is likely that the Glide

SP scoring function has been trained in order to obtain good results on this test set. Second,

Glide SP might have an advantage since it was used in order to generate the ligand poses and

thus, Glide SP scores were optimized in contrast to BEscoreg values which were only used for

re-scoring.

Since BEscoreg is intended for re-scoring of docking poses and thus as a post docking

filtering step, we evaluated the performance of BEscoreg when used to filter docking poses

scored with the scoring functions X-Score and Glide SP. Using this strategy, retrieval rates were

significantly improved for X-Score and slightly for Glide SP. This first proof of concept shows

that such a strategy has high potential and that BEscoreg could significantly improve the

current methodologies by reducing the problem of a large number of false placements.

Another important aspect is the general applicability of the scoring function parameters

which could in principle be adjusted for a particular protein family or for a particular class

of ligands. An ideal scoring function should of course be invariant of target, cavity and ligand

characteristics. To better reach this goal we have chosen to work with the three different sets of

protein-ligand complexes presented in section 5.3. In section 5.4 we have pursued an extensive

analysis and validation of all the scoring function parameters: rmax, α, γmax, ω, ωg, ε and the

ion salts concentration. This has shown that in the case of BEscoreg the optimal values for

α, γmax, the ion salts concentration and ω are very similar for the three sets of protein ligand

complexes. The optimal values of rmax, α and ε are nearly identical for the Astex diverse
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set and the S3DB set but show some small differences for the thrombin set. However, using

an intermediate value for all parameters the retrieval rate for both sets drops only about 2.5%

whereas the enrichments stays constant. This proves that our scoring function is robust towards

its parameters.

The method opens up a number of new options for structure-based drug design. For

example, re-scoring could be done on selected portions of the cavity, in order to find fragments

that can bind to particular sub-pockets of a binding site. A ligand efficiency measure180,181 for

the degree of burial for ligands could be introduced. Re-scoring grids derived from a series of

superimposed structures could be easily derived. These would, for example, allow representation

of the highest possible degree of burial in a binding site exhibiting flexibility, and could help to

account for small induced fit effects. In addition, multiple scoring grids could be easily derived

for protein structures including different solvent molecules. Thus, the effect of displaceable

water molecules could be accounted for. Obviously, another option is to complement the array

of existing scoring functions for use with consensus scoring approaches.182,183,184,185

These prospects, the simplicity of the method and the promising results proves that our

scoring function is a potentially powerful tool for structure-based drug design that could com-

plement the array of computational methods, and provide an alternative way of looking at

protein-ligand shape complementarity in virtual screening.
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Chapter 6

Design and Evaluation of a Novel, Intuitive

Human-Computer Interface Device

6.1 Introduction

Structural biology is a branch of biology interested in understanding the three dimensional

structure of biological macromolecules. Characterizing macromolecular structures is one of the

key approaches for obtaining a detailed understanding of their biological function, how they

are regulated, how they interact with other molecular systems and how modifications of their

structure affect their function. Since biological macromolecules, like proteins and nucleic acids,

are detrimental to most processes in living cells, a detailed understanding of their structure and

function leads to a broad range of applications in life-science research, ranging from functional

characterization of novel proteins to applications in drug design and protein engineering.

Since structural biology provides vast amount of data, it is often challenging to access

and interpret this data without being overwhelmed.186 Most often, structural information is

accessed through means of molecular visualization, which is used not only by structural experts

but has become widely accepted in the biological research community.187 In order to efficiently

access structural information, sophisticated visualization techniques based on computer graphics

and intuitive means to interact with the molecular representation are required. Although,

visualization tools have significantly improved over the last decades, both in their rendering

quality as well as their user-friendliness,188 however, systems to interact with those tools in an

intuitive and natural way are largely missing.

Picking up small objects, moving them around and reorienting them is clearly a straight-

forward task in the real world that can be done within seconds. However, performing similar

movements in a virtual world is often much more challenging, since current human-computer

interface devices do not reflect those natural movements.

Traditionally, interaction with a virtual three-dimensional environment is performed using

standard computer peripherals like keyboard and mouse. Those input devices are inexpensive

and commonly available, but have been designed to perform two-dimensional movements. The

virtual scene, however, requires movements along six degrees of freedom. Therefore, using

standard equipment to interact with a three-dimensional scene, is often unintuitive and imposes
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a substantial hurdle to non-expert users. Over the years, numerous dedicated input devices, de-

signed for movements in a three-dimensional environments, have been developed,189,190,191,192

of which currently, to our knowledge, only the SpaceMouse� is commercially available.193

In a recent attempt to introduce fundamental principles of structural biology to a non-expert

audience, we have experimented with both a user interface based on a SpaceMouse� as well as

a standard computer mouse/keyboard combination. Using a stereographic display, a simplified

three-dimensional representation of a protein structure, i.e. its molecular surface, was shown

to the user. In addition, a known small molecular inhibitor of that protein was displayed. The

user could manipulate the position and orientation of the inhibitor by applying translation and

rotation movements. A snapshot of the system is shown in Figure 6.1

Figure 6.1: Visualization of the protein ligand system used during the demonstration of the basics of
structure based drug discovery. The molecular surface of the protein is shown in gray, the small molecular
inhibitor is shown in a sphere representation, where each sphere indicates an atom and the colors indicate
different elements.

For most users, independent of their age and computer experience, a substantial hurdle was

introduced by either of the afore mentioned user interface devices. In fact, this barrier was so

high that most users could only focus on how to interact with the virtual environment while

being completely distracted from the scientific content that was displayed.

This experiment clearly indicates that there is a need for a natural and intuitive user interface

device designed specifically for tasks common to the field of structural biology and related

areas. A transparent human-computer interface could substantially facilitate the interaction

and improve the user experience. This would attract a broader community of life scientists and

therefore could lead to a better use of the available data produced by structural biology studies.

Therefore, we have designed and evaluated a new user interface device which allows to use

natural movements to interact intuitively with the afore mentioned virtual biological system.
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6.2 Interface Device Design

The new user interface device uses a combination of an inertial measurement system (IMU) to

follow the rotation of the user’s hand and an optical motion sensing system, i.e. a Microsoft

Kinect� sensor to track the hand’s position. The device represents an isotonic sensor, measuring

its travel and applies direct position control with a linear relationship between the sensor and

the virtual object movement. It is designed with large screen environments in mind and is based

on inexpensive consumer grade equipment.

It has been shown that a number of design decisions are crucial for designing an intuitive

user interface device:

Movement Separation Positioning of an object in a three-dimensional environment re-

quires at least six degrees of freedom (DOF), three for object translation and three for rotation.

A strict separation between the three translational and the three rotational DOFs was shown

to be an integral part of a user-friendly device.194 This point has only been poorly incorporated

in the SpaceMouse�, where translation often triggers a slight rotation and vice versa.

Movements of real objects are clearly separated into a rotational and a translational compo-

nent performed by individual body parts. Translations, are mainly performed by movements of

the elbow and shoulder. Rotations however, are often executed by the finger tips and the wrist

– for example when rolling an object between the fingers. The latter movements have been

shown to yield precise rotational input.195 Therefore, the new device was designed to mimic

the same movements as used for real object manipulation.

Shape Mismatch Generally, the device held in the users hand is nothing like the object

manipulated in the virtual environment. Although numerous attempts were taken to match

the shape of the input device to the virtual object,196,197 we decided to use a spherical device

for three reasons: First, a spherical input device behaves isotropically and thus can easily be

rotated and does not interfere with the user. Second, an input device in the shape of the virtual

object requires auto-fabrication of a new device for each represented system.198,199 Although,

nowadays this is feasible, it significantly limits the interchangeability of the device. Third, such

a device would need accurate alignment of the absolute orientation between the real and the

virtual object in order to produce a realistic impression on the user.

Device Location It has been shown that the location of the input device can have an

effect on its usability.200,201 Usually, the input device is held to the side of the computer

and therefore movements do not correspond directly to the natural movements involved for

manipulating real objects. However, having an input device where the movements correspond

to natural movements requires lifting of the device off the ground. Although this might be

fatiguing, in our experience, it significantly improves the design.
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6.2.1 Hardware Architecture

The hardware used in our new input device is separated into two devices. Translation detection

is based on an off-the-shelf Microsoft Kinect� sensor. Rotation detection however, is based on

a custom made hardware as described in more detail below.

Rotation Input Device

The core of the system is based on an 8-bit microcontroller (Atmel ATmega324-PA) which is

interfaced to different hardware modules. The block diagram of the hardware design is shown

in Figure 6.2 and the board layout in Figure 6.3. The direction of the communication process

is indicated by arrows between the components labeled with the respective interface bus. The

core microcontroller has three main tasks: communication with the inertial measurement unit

(IMU), communication with the host computer and processing/filtering of the IMU data stream.

low dropout
voltage regulator

(MC33375ST)

battery 
management unit

(MCP73831T)

lithium-polymer
battery

5V in to device

microcontroller
(ATMega324-PA)
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Figure 6.2: Schematic representation of the hardware architecture of the rotation input device. The core
of the system is based on a microcontroller which interfaces different hardware modules. The direction
of the communication process is indicated by arrows between the components labeled with the respective
interface bus.

The inertial measurement unit (Sparkfun Razor 9DOF SEN-10736) senses both linear and

angular acceleration as well as the absolute magnetic field in three axis each. It uses low-cost

consumer-grade MEMS based sensor components, i.e. an Analog Devices ADXL345 triple-axis

accelerometer, an InvenSense ITG-3200 triple-axis gyroscope and a Honeywell HMC5883L triple-
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Figure 6.3: Front (A) and back (B) copper layer and silkscreen showing the layout of the custom made
printed circuit board of the rotation input device.

axis magnetometer. The sensor values are processed by an on-board ATmega328 microcontroller

which uses the firmware by Bartz et al.202 (version 1.4.0) to compute heading, attitude and yaw

information from the raw sensor values. The results are transmitted to the core microcontroller’s

UART1 port using the RS-232 protocol.

The core microcontroller communicates with the host computer through two distinct inter-

faces. First, a cable-based USB interface and second, a wireless class 1 Bluetooth interface

with a range of up to 100m. Both interfaces are bidirectional. The incoming signals from

the PC are translated to the RS-232 protocol using either an FT232RL USB-UART converter

chip or an RN41 Bluetooth-UART converter module, for USB and Bluetooth communication

protocols, respectively. Since the ATmega324-PA has two separate UART ports, but one is

occupied by the IMU, the communication with both converter chips share the UART0 port.

Since RS-232 is a point-to-point interface, sharing of a port between multiple devices is not

natively supported and would even lead to the destruction of the interface chips if both devices

communicate at the same time. Thus, we implemented a simple solution, using two Schottky

diodes and a 100kΩ pull-up resistor to emulate open collector output ports on the two interface

chips. Schematics of the electronic circuit are shown in Appendix A.4. This solution allows the

core microcontroller to send data through both interfaces in parallel and to receive data from

both interfaces in a sequential manner.

The microcontroller interfaces with an array of push buttons to sense a compression of the

input device casing. This allows for an easy, omnidirectional input signal which can be operated

independent of the orientation of the device. The output signal caused by a compression event

is arbitrarily configurable and can be used for example to activate/deactivate the input device.

In addition, the system has an expansion connector which allows to connect up to eight analog

or digital sensors, like flex or force sensors or additional push buttons. Additionally, both the

I2C as well as the SPI bus are connected to an output header in order to add any input or

output modules based on those protocols.
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The device is able to produce optic, acoustic and haptic feedback. To accomplish this, three

output modules are interfaced to the microcontroller. First, a full-color light emitting diode

(ASMT-YTB2-0BB02) connected through a parallel interface. This allows to produce any

color combination to communicate status information and for general visual feedback. Second,

a piezoelectric buzzer, interfaced through a general purpose input-output (GPIO) pin where the

frequency is controlled by a hardware pulse-width modulated (PWM) signal to emit a variable

pitch acoustic signal. Third, a vibration motor connected to an appropriate motor controller

(DRV8830) which is interfaced to the microcontroller through the I2C bus. This allows to

produce haptic feedback through vibration of the input device. All output modules can be

steered by signals from the input modules, events on the IMU data stream or commands from

the host computer which are all interpreted by the core microcontroller.

The system also incorporates a 1000 mAh lithium polymer battery and the corresponding

battery management unit (MCP73831T). Thus, charging of the battery is simply performed

by connecting the device through the USB interface. The battery voltage of 3.7 V is then

regulated to the appropriate 3.3 V used by all components by a low dropout linear voltage

regulator (MC33375ST). Thus, the device incorporates all modules for power management and

can be charged without removing the battery. The lifetime of the battery is in the range of

days.

6.2.2 Software Architecture

The software used in our new device interfaces with the two hardware devices. A schematic

overview of the software architecture is given in Figure 6.4.

processing and
comunication unit

inertial
measurement unit

Microsoft Kinect

USB host controllervirtual serial port

OpenNI / NITE
QT serial port

library

OpenStructure device driver interface

OpenStructure scene

QT signals

Figure 6.4: Schematic representation of the software architecture.
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As described above, the inertial measurement unit, used for rotation input, is connected

to a microcontroller platform responsible for signal processing and communication with the

host computer through a wireless Bluetooth communication link. On the host computer, the

Bluetooth kernel module emulates a serial port. Based on the QT serial port library QExtSe-

rialPort203 a general device driver interface was implemented in OpenStructure,83 allowing to

connect to any device using the RS-232 serial port communication protocol.

The Microsoft Kinect� sensor, used for translation input, is connected to the host computer

through the USB interface. Based on the OpenNI framework204 and the NITE middleware205

skeleton tracking is performed. In OpenStructure a driver was implemented that interfaces with

the NITE skeleton tracking and extracts the three-dimensional coordinates of the user’s joints.

The driver interface now allows to attach either any graphical object or the camera itself

to any hardware controller. This in turn allows the object’s position and orientation to be

controlled by the input devices. The flexibility of this interface has the advantage, that multiple

input devices can be combined or different graphical objects, e.g. protein and ligand, can be

controlled by different input devices.

6.3 User Experience

In order to illustrate computational approaches in structural biology and their application in

modern life science to the general public, we have developed �Drug The Bug� – a 3D projection

display installation with intuitive, interactive structure manipulation capabilities based on the

newly developed user interface. This system demonstrates the basic ideas of structure based

drug design approaches.

The software is written in Python and is based on OpenStructure,83 an open-source, modu-

lar, flexible, molecular modeling and visualization environment. Within the application, different

molecular systems can be chosen, each consisting of a known protein-ligand complex structure

obtained from the PDB.118 The user can interactively manipulate the position and orientation

of the ligand with the aim of finding the orientation which fits best into the binding pocket of

the corresponding target protein. For simplicity, the position of the protein atoms as well as the

internal degrees of freedom of the ligand are fixed. This is thus, a simplified version of what

molecular docking programs like Autodock,174 Glide67 or Dock170,171 do, which are commonly

used in structure based drug discovery.

The biological system is visualized as two individual objects. First, the protein structure is

represented by its molecular surface computed by MSMS.127 This is a reduced representation

of the actual structure which allows for easier identification of surface exposed binding pockets.

Second, the ligand is represented in sphere mode where each atom is drawn as a sphere with

its radius set to the standard van der Waals radius of the corresponding element.

Molecular recognition between a protein and its ligand is manifold. To estimate bind-

ing affinities computationally, current methods employ numerous approximations.29 Binding

affinities are often estimated based on a combination of scores accounting for geometric fit,
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electrostatic complementarity or van der Waals interaction energy. To illustrate these concepts,

�Drug The Bug� displays different scores to the user. First, steric clashes between the ligand

and the protein are displayed by coloring the protein surface. A color gradient is used to indi-

cate the severeness, where white corresponds to no clash and red to a severe clash. Second,

geometric complementarity and electrostatic interactions between the ligand and the protein

are computed using BEscore (see Section 5) and the ligand atoms are colored accordingly using

a gradient from blue (no interaction) to green (good interaction). All scores are continuously

updated to give an immediate feedback to the user. To allow this rapid score update, BEscore

is precomputed on all points of a three dimensional grid encompassing the whole protein. The

score for each atom of a given ligand orientation can then be computed extremely fast through

trilinear interpolation of the values at the eight closest grid points.

Figure 6.5: (A) A participant of the recent demonstration holding a prototype of the new input device in
her right hand. (B) Photo of the current prototype.

The installation has been displayed on several occasions to the general public and was used

for teaching of undergraduate students. A snapshot of a participant using a prototype of the

input device is shown in Figure 6.5. The project was very well received by a highly diverse range

of people with different age, computer experience and scientific or technical education. The

barrier that was observed in previous experiments, where commercially available input devices

like a standard computer mouse or the dedicated SpaceMouse� was used, were significantly

reduced. This was clearly indicated by the fact that most users did neither need a thorough

explanation of how the interface worked nor did they need any training. It was commonly

observed that the user forgot about the device and was fully immersed into the virtual world.

6.4 Conclusion

We have described here a new user interface device for three-dimensional virtual environments

which fully relies on natural movements that the user knows from everyday motions. The new

user interface device uses a combination of an inertial measurement system and an optical
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motion sensing system. The system is an isotonic sensor which directly translates real space

movements into the same movements in the virtual world. This renders it highly intuitive and

is a step forward to a fully transparent user interface which does not distract the attention of

the user from what is on the screen but allows him to fully dive into the virtual world.

The device has been intensively used in our newly developed interactive 3D projection

display installation – �Drug The Bug� – which illustrates computational approaches in structural

biology and their applications in modern life science to the general public. Due to the use of

this device, the barrier between the user and the virtual environment was substantially reduced

compared to earlier events where other input methods were used. This allowed the users to

focus entirely on the scientific content of the demonstration. �Drug The Bug� is an excellent

basis for further developments of interactive structure visualization and manipulation techniques

including approaches like continuous energy minimization206 or interactive molecular dynamics

simulations.207

The device opens up a number of new options for the intuitive interaction with three-

dimensional biological structures. It is able to produce optic, acoustic and haptic feedback

through the incorporation of a full-color light-emitting diode, a piezoelectric speaker and a

vibration motor. Thus, a bidirectional communication between the user and the software appli-

cation is possible where different feedback channels can be activated depending on the event.

For example, when the device is used for docking of a ligand, unfavorable steric clashes between

the ligand and the protein could be reported to the user by vibrating the input device, with the

strength of the vibration depending on the magnitude of the clash. Future developments could

incorporate additional communication channels, like olfactory or temperature output, to exploit

the full spectrum of human sensory channels.
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Chapter 7

Summary and Outlook

In this study we have successfully employed a combination of structure-based virtual screening

methods and enzymatic inhibition assays in order to discover inhibitors of the dengue virus

methyltransferase. Ten hit compounds were initially identified and the inhibitory activity of the

two most active compounds was confirmed in additional inhibition assays. Due to solubility

issues only a subset of three compounds was assayed in a subsequent ITC experiment, however,

their binding to the dengue MTase could not be confirmed. One underlying reason for this might

be a pre-occupied SAM binding pocket which renders ITC based measurements unfeasible for

compounds binding to the SAM pocket. This effect should to be further quantified, for example

by determination of the co-purified SAH content and by quantification of the SAH exchange

rate.

The investigation of the catalytic mechanism of the dengue MTase addressed a number of

open questions concerning the mechanism of the methyltransfer reactions.

By characterizing the underlying chemical reactions based on ab initio electronic structure

calculations applied to model systems approximating the biological reactions, it was found that

the 2’O and the N7 reactions are energetically favored processes, where the N7 reaction produces

a significantly more stable product and shows a lower activation barrier than the 2’O reaction.

Comparison between the catalyzed and uncatalyzed 2’O reaction, revealed the importance of a

lysine residue which acts as a proton acceptor and significantly stabilizes the product state and

reduces the activation barrier.

Furthermore, an in-silico approach was developed to identify the effects of single point mu-

tations on different aspects of the catalyzed 2’O reaction. In a computational alanine scanning

procedure protein residue patches were identified which modulate either the geometric arrange-

ment between methyl donor and acceptor, the methyl donor binding affinity or the reaction

energy barrier. In addition, previously uncharacterized hot-spot residues were identified and

analyzed further using computational and experimental mutagenesis in order to gain a better

understanding of their role in the enzyme’s function. The analysis indicate that those mutations

either modulate SAM binding or increase the reaction energy barrier. With the knowledge ob-

tained in this study, we hope to facilitate the rational development of inhibitors against dengue

fever and related diseases caused by flavivirus.
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The evaluation of methods for predicting ligand binding sites for proteins with unknown

structure during the CASP9 experiment highlighted the state of the art of current prediction

methods. The results demonstrate that all top performing methods are based on homology

transfer from known structures. However, such methods are limited to cases where a closely

related protein structure with bound ligand is available which is not commonly the case. Thus,

there is a clear need for the development of new methods allowing de-novo predictions of ligand

binding sites. The setup of the ligand binding site prediction category in CASP has shown some

major limitations primarily caused by a very low number of challenging target structures with

relevant ligands and a restricted prediction format which treats all ligands uniformly, independent

of their chemical type. To overcome those limitations, an extended assessment of ligand binding

site predictions was implemented into the CAMEO framework introducing a format more suitad

for high accuracy predictions. This allows now to continuously evaluate the accuracy and

reliability of ligand binding site prediction services in a blind and fully automated manner to

assess the current state of the art of prediction methods, identify possible bottlenecks, and

further stimulate the development of new methods.

We have successfully developed a rapid scoring function to identify the best ligand poses out

of an ensemble of pre-docked poses. By quantifying the degree of burial and the electrostatic

interactions of the ligand in a binding site promisingly high retrieval rates were achieved for

selecting the best poses from a pool of decoy poses. Inspection of the scoring functions results

indicates some limitations of the current method and suggests possible improvements to be

addressed by further development. The main issue being an appropriate inclusion of water

mediated interactions to further improve the scoring function’s performance on protein-ligand

complexes where molecular recognition is governed by water mediated interactions.
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Appendix A

Appendix

A.1 Dengue

A.1.1 Identification and Validation of Novel Dengue Methyltransferase

Inhibitors

Table A.1: Comparison of the decision-tree criteria used by the original work of Seidler et al and by our
work.

Seidler et al. Criterion Criterion, our work
Daylight clogp ≤ 3.633 QikProp clogPow < 3.1
Electrotopological S sssN ≤ 2.287 Max Epik pKa for tertiary N < 7
Max conj path ≤ 18.5 Largest contiguous set of sp2 atoms < 19.5
Contains COOH Contains COOH
Daylight clogP ≥ 5.389 QikProp clogPow ≥ 4.7
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A.1. DENGUE

A.1.2 Computational Analysis of the Methyltransferase Reaction

Figure A.1: Differences in RNA-MTase contacts between WT and mutated RNA. Contacts are measured
by their distances observed in MT simulations of the MTase bound to SAM and WT or mutated RNA.
All RNA mutants are shown: (left column) mutants of cap-nucleotide, (middle column) mutants of 1st

nucleotide, (right column) mutants of 2nd nucleotide. Residues with significantly modified distances are
labeled by their number.
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A.2 CAMEO Ligand Binding

A.2.1 CAMEO Ligand Binding Format Examples

Minimum example of ion binding site

Listing A.1 shows an example of the new CAMEO ligand binding site prediction format using

the bare minimum required for a valid prediction that format.

Listing A.1: Example format of a ion (zinc) binding site in structure 3ZTT.

1 r=SER; n=198; | I=0.000; O=0.000; N=0.000; P=0.000; |

2 r=GLU; n=199; | I=1.000; O=0.000; N=0.000; P=0.000; |

3 r=GLY; n=200; | I=0.000; O=0.000; N=0.000; P=0.000; |

4 r=ALA; n=201; | I=0.513; O=0.000; N=0.000; P=0.000; |

Extended example of ATP and Mn binding site

Listing A.2 shows an extended example of the new CAMEO ligand bindings site prediction for-

mat. In addition to the minimum fields required, predictions are given for each atom individually

(key: a=) and predictions for specific compounds are given (keys: ANP= and MN=)

Listing A.2: Example format of an ion (manganese) and an organic ligand (ATP) binding site in structure

3QAM.

1 r=GLU; n=170; a=N; | I=0.000; O=0.000; N=0.000; P=0.000; | ANP =0.000; MN =0.000;

2 r=GLU; n=170; a=CA; | I=0.047; O=0.412; N=0.000; P=0.000; | ANP =0.412; MN =0.047;

3 r=GLU; n=170; a=C; | I=0.337; O=0.668; N=0.000; P=0.000; | ANP =0.668; MN =0.337;

4 r=GLU; n=170; a=O; | I=0.372; O=1.000; N=0.000; P=0.000; | ANP =1.000; MN =0.372;

5 r=GLU; n=170; a=CB; | I=0.249; O=0.424; N=0.000; P=0.000; | ANP =0.424; MN =0.249;

6 r=GLU; n=170; a=CG; | I=0.000; O=0.077; N=0.000; P=0.000; | ANP =0.077; MN =0.000;

7 r=GLU; n=170; a=CD; | I=0.000; O=0.000; N=0.000; P=0.000; | ANP =0.000; MN =0.000;

8 r=GLU; n=170; a=OE1; | I=0.000; O=0.000; N=0.000; P=0.000; | ANP =0.000; MN =0.000;

9 r=GLU; n=170; a=OE2; | I=0.000; O=0.000; N=0.000; P=0.000; | ANP =0.000; MN =0.000;

10 r=ASN; n=171; a=N; | I=0.331; O=0.353; N=0.000; P=0.000; | ANP =0.353; MN =0.331;

11 r=ASN; n=171; a=CA; | I=0.401; O=0.307; N=0.000; P=0.000; | ANP =0.307; MN =0.401;

12 r=ASN; n=171; a=C; | I=0.000; O=0.000; N=0.000; P=0.000; | ANP =0.000; MN =0.000;

13 r=ASN; n=171; a=O; | I=0.000; O=0.000; N=0.000; P=0.000; | ANP =0.000; MN =0.000;

14 r=ASN; n=171; a=CB; | I=0.528; O=0.251; N=0.000; P=0.000; | ANP =0.251; MN =0.528;

15 r=ASN; n=171; a=CG; | I=0.987; O=0.584; N=0.000; P=0.000; | ANP =0.584; MN =0.987;

16 r=ASN; n=171; a=OD1; | I=1.000; O=0.939; N=0.000; P=0.000; | ANP =0.939; MN =1.000;

17 r=ASN; n=171; a=ND2; | I=0.859; O=0.637; N=0.000; P=0.000; | ANP =0.637; MN =0.859;

18 r=LEU; n=173; a=N; | I=0.000; O=0.000; N=0.000; P=0.000; | ANP =0.000; MN =0.000;

19 r=LEU; n=173; a=CA; | I=0.000; O=0.000; N=0.000; P=0.000; | ANP =0.000; MN =0.000;

20 r=LEU; n=173; a=C; | I=0.000; O=0.000; N=0.000; P=0.000; | ANP =0.000; MN =0.000;

21 r=LEU; n=173; a=O; | I=0.000; O=0.000; N=0.000; P=0.000; | ANP =0.000; MN =0.000;

22 r=LEU; n=173; a=CB; | I=0.000; O=0.175; N=0.000; P=0.000; | ANP =0.175; MN =0.000;

23 r=LEU; n=173; a=CG; | I=0.000; O=0.509; N=0.000; P=0.000; | ANP =0.509; MN =0.000;

24 r=LEU; n=173; a=CD1; | I=0.000; O=0.898; N=0.000; P=0.000; | ANP =0.898; MN =0.000;

25 r=LEU; n=173; a=CD2; | I=0.000; O=0.696; N=0.000; P=0.000; | ANP =0.696; MN =0.000;
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A.3 BEscore

Figure A.2: Distributions of surface vertex points around the ligands of the Astex diverse set. Ligands
are categorized into correct and incorrect poses based on their rmsd to the crystal structure. The scaled
distributions are plotted for both categories for different γmax angles: (A) 15°, (B) 30°, (C) 45°, (D) 90°,
(E) 135°, (F) 180°.
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Figure A.3: Evaluation of the performance of Bscore based on the S3DB test set using (A) retrieval rate,
(B) enrichment AUC, (C) ∆RMSD and (D) Pearson’s correlation coefficient averaged over all complexes in
the test set.

Figure A.4: Evaluation of the performance of Bscoreg based on the S3DB test set using (A) retrieval rate,
(B) enrichment AUC, (C) ∆RMSD and (D) Pearson’s correlation coefficient averaged over all complexes in
the test set.
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Figure A.5: Evaluation of the performance of Escore based on the S3DB set using (A) retrieval rate, (B)
enrichment AUC, (C) ∆RMSD and (D) Pearson’s correlation coefficient averaged over all complexes in the
test set.

178



A.3. BESCORE

Figure A.6: BEscoreg values (y-axis) plotted against symmetry corrected rmsd for each docked pose
against the respective X-ray ligand conformation (x-axis) for the 85 complex structures in the Astex diverse
set.
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Figure A.7: BEscoreg values (y-axis) plotted against symmetry corrected rmsd for each docked pose
against the respective X-ray ligand conformation (x-axis) for the 145 complex structures in the S3DB set.
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Figure A.8: BEscoreg values (y-axis) plotted against symmetry corrected rmsd for each docked pose
against the respective X-ray ligand conformation (x-axis) for the 66 complex structures in the thrombin set.
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A.4 Human-Computer Interface Schematics

Figure A.9: Overview schematic drawing of the rotation input device.
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Figure A.10: Schematic drawing of the individual building blocks of the rotation input device.

183




	Introduction
	Protein-Ligand Interactions
	Estimation of Protein-Ligand Interactions
	Prediction of Ligand Binding Sites
	Protein-Ligand Docking and Virtual Screening
	Estimation of Protein-Ligand Binding Affinities
	Estimation of Reaction Energy Barriers

	Flavivirus
	Dengue Fever
	Dengue Virus
	NS5 Methyltransferase

	Objectives

	Identification and Validation of Novel Dengue Methyltransferase Inhibitors
	Screening For Novel Inhibitors
	Prediction of Non-Specific Inhibitors
	Introduction
	Materials and Method
	Results and Discussion
	Conclusion

	Experimental Characterization of Novel Inhibitors
	Introduction
	Materials and Method
	Results and Discussion
	Conclusion


	Computational Analysis of the Methyltransferase Reaction
	Introduction
	Modeling of the Protein-RNA Complex
	Method
	Validation of the Structural Model
	Ligand-Induced Structural Rearrangements

	Methylation of Guanosine N7 and Adenosine 2'O in Model Systems
	Method
	Geometry
	Energy Profiles
	Energy Landscapes
	Point Charges
	Two Step Reaction

	Impact of Single Point Mutations
	Materials and Methods
	Results of Computational Alanine Scanning
	Summary of Computational Alanine Scanning
	Experimental and Computational Analysis of Selected Mutants
	Conclusion

	RNA Sequence Specificity
	Method
	Results and Discussion
	Conclusion

	Conclusion

	Ligand Binding Site Prediction
	Introduction
	Critical Assessment of Protein Structure Prediction

	Assessment of Ligand Binding Site Prediction in CASP9
	CAMEO Ligand Binding
	Introduction
	CAMEO Workflow
	Prediction Targets
	Ligand Annotation
	Ligand Classification Scheme
	Ligand Categorization
	Assessment
	Scoring
	Baseline Servers
	Prediction Format
	Results and Discussion
	Conclusion

	Geometry Based Ligand Binding Site Prediction
	Introduction
	Method
	Results and Discussion
	Conclusion


	BEscore: a Novel Method for Rapid Scoring of Protein-Ligand Complexes
	Introduction
	Method
	Shape Term (Degree of Burial)
	Electrostatic Term
	BEscore

	Sets of Receptor-Ligand Complexes
	Thrombin Set
	Astex Diverse Set
	S3DB

	Validation
	Shape Term
	Electrostatic Term
	Summary of Individual Terms
	Comparison to Van der Waals Interaction Energies
	BEscore

	Analysis of Surface Point Distribution
	Results
	Astex Diverse Set
	Thrombin Set
	S3DB

	Comparison to X-Score and Glide SP
	Combining with X-Score and Glide SP
	Discussion

	Design and Evaluation of a Novel, Intuitive Human-Computer Interface Device
	Introduction
	Interface Device Design
	Hardware Architecture
	Software Architecture

	User Experience
	Conclusion

	Summary and Outlook
	Acknowledgments
	References
	Appendix
	Dengue
	Identification and Validation of Novel Dengue Methyltransferase Inhibitors
	Computational Analysis of the Methyltransferase Reaction

	CAMEO Ligand Binding
	CAMEO Ligand Binding Format Examples

	BEscore
	Human-Computer Interface Schematics


