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Bone tissue engineering – where we are – the problems – the future

Bone has an amazing self-healing capacity and is one of the very few tissues in the

adult body that can heal itself without leaving scar tissue. One of the reasons why bone heals

well by itself (i.e. compared to articular cartilage) is its high level of vascularization.

Nevertheless, there are certain injuries where the normal healing capacity of bone is not

sufficient, like in large fracture gaps, non-unions or after tumor resection. A promising way to

heal these kinds of defects is by using tissue-engineered grafts. In bone tissue engineering,

the tissue defects or gaps are filled with constructs (grafts) that will be integrated into the

surrounding bone matrix and will eventually be replaced by newly formed bone through the

process of bone remodeling. Vascularization of the bone graft is essential, as already proven

by Cutting et al. in 1983 when he showed that vascularized autologous bone grafts were

superior to unvascularized grafts [1]. In fact, according to a review by Brandi, the importance

of the bone vascular system was already recognized by Albrecht von Haller in 1763 (though

not in conjunction with bone repair), when he stated that “the origin of bone is the artery

carrying the blood and in it the mineral element” [2]. Later, Trueta et al. showed that bone

vascularization is not only important for calcium homeostasis, but also plays a pivotal role

during bone tissue regeneration, mostly by supplying the damaged tissue with oxygen,

nutrients, growth factors and precursor cells [3, 4]. Insufficient vascularization is one of the

main problems encountered when dealing with critical-size full-thickness bone defects. The

present methods to heal these kinds of large defects combine long-term (external or internal)

fixation of the fracture with implantation of an autologous or allogenic bone graft. Since

allografts bring up immunological as well as ethical problems, autologous bone grafting is to

date the golden standard in orthopedic, oral- and plastic surgery. But despite the obvious

advantages of autografts, like its capacity for osteoconduction as well as -induction and

restricted immune reaction, there are also significant drawbacks, like its limited availability

(largely depending on the amount and shape of the autograft), as well as the induction of a

secondary defect at the donor site, followed by possible infection and morbidity at the donor

site [5, 6]. Therefore alloplastic grafts are becoming more and more interesting as an

alternative to autologous bone grafts. The obvious advantages are safety, virtually unlimited

supply and optimal adaptation to a specific situation.

Common components of an alloplastic graft include a scaffold, cells and biological factors.



Chapter I: General Introduction

5

The scaffold

The scaffold principally provides the structural basis of a graft. But the demands on a

scaffold that could replace autologous grafts go much further than that. An ideal scaffold

should be biocompatible, biodegradable, porous, permeable to incoming cells, chemicals and

blood vessels, as well as supportive, inert, non-immunogenic, and of course it should be

easily available. Tissue engineered scaffolds should act as temporary matrices. Eventually,

blood vessels will invade the scaffold, new tissue will be formed and the scaffold will slowly

be resorbed by osteoclasts. The new tissue will be continuously remodeled and will

ultimately be reorganized into normal, healthy tissue [7, 8]. Commonly used scaffolds are

divided into natural scaffolds and synthetic (alloplastic) scaffolds. Natural scaffolds (i.e.

based on collagen or hyaluronic acid) are biodegradable, biocompatible and do not result in

harmful degradation products. However, some of them also have serious drawbacks like

limited cell adhesion, possible immunogenic response, inhibition of endothelial proliferation

(hyaluronic acid, HA) [9], structural weakness (fibrin glue) [10] or sub-optimal release of

incorporated growth factors (alginate, agarose) [11, 12]. Examples of ways to overcome

some of these problems at least partially include linkage of RGD-sequences to HA [13] or

heparin addition to alginate, agarose and fibrin glue [10, 14]. Synthetic scaffolds that have

been used in tissue engineering include ceramics (i.e. ß-tricalcium phosphates,

hydroxyapatites), polymers (i.e. polyurethanes PU, poly-L-lactic acids PLA, poly-D,L-lactic

acids PGLA, poly-glycolic acids PGA) and combinations. Problems with these kinds of

scaffolds include insufficient biodegradability (hydroxyapatite), hydrophobicity (PLA) [15],

excessive leakage (PLGA) [16] or potential toxicity of degradation products [15].

Polyurethane scaffolds

Polyurethanes (PU) are polymers containing a characteristic –NH-CO-O- linkage in

the chain. PU consists of flexible soft- and stiff hard-segments. Stable PU have been used

successfully in many medical devices, including many kinds of prostheses, tubings, catheters

and blood bags [17]. Recently, efforts have been made to design non-toxic biodegradable

PU to be used in tissue engineering by introducing labile units (non-aromatic compounds)

into the stable PU chains [18]. The more elastic material properties of polyurethanes allow a

mostly frictionless integration into the host tissue. The controllable degradation rate and

hydrophilic/hydrophobic ratio allows for optimal adaptation to the situation [19]. More

hydrophilic PU can be used as adhesion barriers, while more hydrophobic PU attract proteins

and support the attachment and growth of cells. Those PU can be used as biodegradable

scaffolds for bone tissue engineering. A recent study using polymers in the regeneration of

bi-cortical defects of the iliac crest in sheep have shown promising results [20].
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The cells

The main task of cells in tissue engineering is to produce a cell distribution and matrix

composition similar to the healthy in vivo situation. Implantation of an empty osteoconductive

scaffold will attract cells into the scaffold that eventually will form new bone tissue. This

approach works quite well for smaller defects (up to 3cm), and can be drastically accelerated

by seeding suitable cells into the scaffold before implantation [21-29]. In bone tissue

engineering, one obvious possibility would be to preseed scaffolds with mature autologous

culture-expanded osteoblasts. However, harvesting a piece of bone induces a severe

secondary defect at the donor site. Furthermore, there are different types of bone (cortical,

cancellous) containing different cell populations, which are at different maturation stages. A

more promising strategy is the use of mesenchymal stem cells (MSC) which can be easily

isolated from bone marrow aspirates using a much less invasive harvesting procedure. In

addition, the use of mesenchymal stem cells would allow the recapitulation of natural bone

formation and repair. Isolated MSC from bone marrow aspirates could be seeded directly into

the scaffold or, if needed, be expanded in vitro before being seeded into the scaffold.

Alternatively, one could induce a defined mature phenotype by stimulation of MSC with

suitable differentiation factors in vitro, before seeding them into the scaffold.

However, the limited long-term viability of these cells after implantation of the graft is a

limiting factor. The cells have to survive in an inhospitable environment until neo-

vascularization takes place, which will enable oxygen and nutrient supply to reach them. This

is the biggest problem of a large defect (>3cm). Therefore, accelerated vascularization of

critical-size bone grafts would be of great clinical value. One approach to improve neo-

vascularization could be to optimize the properties of the scaffold (i.e. chemical composition,

linker proteins or sequences, pore size, pore linkage). Another approach could be to seed

the scaffolds with an optimized cell-factor mixture prior to implantation, to promote vascular

formation within the graft.

Mesenchymal stem cells (MSC) in vitro

Stem cells are defined through their self-renewability (their division-capacity) and their

capacity to generate specialized cells. There are various types of stem cells, differing in the

time-point of their appearance during the development of an organism and in their versatility.

Pluripotent stem cells can give rise to all adult cell types. One example is embryonic stem

cells (ES), which derive from very early embryos (inner layer of the blastocyst). These cells

theoretically proliferate indefinitely in culture while retaining the potential to differentiate into

virtually any cell type [30]. Stem cells collected from older embryos or even adult tissue are

more restricted. They have limited proliferation capacity and generally differentiate within
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their tissue of origin (i.e. within the mesenchymal or hematopoietic system). Recent studies

have proposed trans-differentiation between different cell types of different germ layers, but

this topic is very controversial and still highly under discussion [31, 32]. Due to the current

legal and moral discussions about the usage of ES in clinical and therapeutic applications,

adult stem cells are, at this time, the precursor cell pool of choice.

In the bone marrow, hematopoiesis is supported by the stromal system [33, 34], which

consists of multipotent precursors for many mesenchymal cell types (called mesenchymal

stem cells, MSC) as well as reticular endothelial cells and macrophages [35-39]. In in vitro

experiments, marrow-derived cells were able to support and maintain hematopoietic cells

when used as a feeder layer, which underlines the hematopoiesis-supporting task of the

stromal component of bone marrow [33, 40]. The bone marrow stromal system has been

shown to be highly regenerative after high doses of irradiation, chemotherapy or marrow

ablation in young patients (<4yrs), although in older patients, the same treatments will result

in serious damage [41]. This is one of the reasons why it is still under discussion whether the

adult stromal system contains true stem cells, or just a very heterogeneous mixture of

lineage-specific undifferentiated precursor cells. MSC are recruited to their tissue of origin

through the blood circulation, where they differentiate into a specific mature cell type under

the influence of the local microenvironment. An extensive transdifferentiation potential

between mature cell types within the mesenchymal cell family has recently been shown,

replacing the earlier belief that mesenchymal stem cells were restricted to a certain cell type

once they have reached their tissue of fate and are differentiated into a mature cell [42].

In 1970, Friedenstein was the first to isolate MSC by plating bone marrow-derived cells on

plastic, where the adherent fraction would form fibroblastic colonies (each colony originating

from one single stromal cell clone). These colonies were termed colony-forming unit

fibroblastic (CFU-F) [43]. Under the right culture conditions, they could give rise to

osteoblasts (CFU-O) and chondrocytes (CFU-C) [44-49] as well as to other mesenchymal

cell types including adipocytes [50] and tenocytes [51]. Aubin and others have shown that

single CFU-F can be very heterogeneous in size, morphology and differentiation potential

[37, 52, 53]. Studies looking at the three main mesenchymal lineages (osteogenic,

chondrogenic, adipogenic) have shown that the MSC population consisted of tripotential

( 30%), bipotential (osteo-chondrogenic (60-80%), but no osteo-adipogenic or chondro-

adipogenic) and unipotential (osteogenic, no chondrogenic or adipogenic) precursors.

Interestingly, their chondrogenic and adipogenic but not osteogenic potential was lost over

culture time [50, 54]. This suggests that the adult stromal system consists of a very

heterogeneous precursor population containing just a small fraction of possibly pluripotent

stem cells, but a large fraction of pre-committed mesenchymal precursors of varying
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differentiation potential, and that the default cell lineage of the these precursors is the

osteoblastic one. Another fact supporting the hypothesis that MSC contain no or very little

real stem cells is that MSC can be expanded almost indefinitely (>260 population doublings)

when transformed with the telomerase gene [55], but they reach senescence after 35-40

population doublings when untransformed [56]. Also, their progenitor properties are gradually

lost with extensive culture expansion [57]. Addition of b-FGF to MSC cultures has been

shown to enhance their proliferative potential while keeping the cells in a more

undifferentiated state. This was demonstrated by an increased Stro-1 expression (a marker

prominently expressed by CFU-F), a decreased number of ALP-positive clones, a longer

preservation of the typical fibroblastic phenotype and the potential to differentiate into

osteoblasts, chondrocytes or adipocytes even after extensive expansion [58-60].

Today, bone marrow aspirate is considered to be the most enriched and easily accessible

source of mesenchymal precursors from which MSC can quickly be isolated, expanded and

differentiated into various lines in vitro. Other possible sources of mesenchymal precursors

include trabecular bone [61], blood [62], periosteum [63, 64], dermis [65], muscle [66, 67], fat

[68] and the synovial membrane [69]. These alternative sources of MSC are, however, less

used due to lower MSC concentrations than that found in the bone marrow, as well as to

more complex and less standardized harvesting, expansion and differentiation methods.

The terms mesenchymal stem cells (MSC) and bone marrow stromal cells (BMSC) are

generally used quite interchangeably even though BMSC and MSC are not exactly the same.

Both cell pools are believed to derive from the same ancestor, but MSC appear more

undifferentiated and show a more homogenous and fibroblastic cell phenotype, while BMSC

are less homogenous and show fibroblastic as well as stromal (hematopoiesis-supporting)

characteristics and might include endothelial cells and macrophages [40, 70, 71].

Blood vessels – endothelial cells

Blood vessels are part of the circulatory system, transporting blood to and from

almost any part of the body. This is achieved by branching of the macrovasculature (arteries,

veins) into microvasculature (arterioles, venules) and finally into capillaries. The capillaries

serve to redistribute blood and its nutrients whilst lowering the pressure head, allowing blood

to diffuse into the tissue and thereby allowing better nutrient distribution. The blood vessels

found in bone are mainly microvascular vessels and capillaries. Capillaries have an inner

lining of endothelial cells, which provides a surface that prevents blood cell attachment and

thrombus formation. This endothelial layer is surrounded by pericytes that share a common

basal lamina with the endothelial cells [72]. The basal lamina is approximately 40-50 nm thick

and serves as a separation and isolation layer between the connective tissue and the
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endothelium. It is composed of the lumina lucida (adjacent to the endothelial cells and made

of the proteoglycan laminin and type IV collagen) and the lumina densa (made of type VII

collagen). In addition to pericytes, microvascular vessels are surrounded by smooth muscle

cells and fibroblasts. Pericytes and smooth muscle cells are responsible for expansion and

contraction of the vessels. Pericytes have also been suggested to serve as osteoblastic

precursors [73, 74].

Blood vessel formation can take place by three distinct processes: vasculogenesis,

angiogenesis and arteriogenesis [75]. Vasculogenesis is the de novo vessel-forming process

that takes place during early embryonic development. Endothelial cells differentiate from their

precursors, the angioblasts, and proliferate within a previously avascular tissue to form a

primitive tubular capillary network. Vasculogenesis is followed by angiogenesis, during which

this initial vascular network is remodeled into more complex networks through vessel

enlargement, sprouting, and bridging. Another (non-sprouting) angiogenic mechanism is the

intussusceptive microvascular growth (IMG), during which existing vessel lumens are divided

by formation of interstitial tissue folds. Arteriogenesis is the process of structural enlargement

and remodeling of preexisting small arterioles into larger collateral vessels. There are many

biological factors known to be involved in the molecular mechanisms of all these processes.

Some of these factors have been known for a long time and are not specific for blood vessel

formation (FGF, PDGF, TGF- ) [75-78], while others are believed to be more specific and

critical. Those include members of the vascular endothelial growth factor family (VEGF) and

of the angiopoietin family [79-81]. During bone remodeling and repair, new microvascular

vessels invade the injured site mainly through the process of angiogenesis.

Bone cell – endothelial cell interactions

Sufficient vascularization is very important for normal bone turnover and repair [82].

Endothelial cells are located inside the blood vessels forming a single layer, adhering tightly

to the basement membrane of the vessel’s wall, providing a non-thrombogenic surface to

which platelets and other blood cells fail to adhere. Furthermore, they mediate the passage

of nutrients and other solutes across the blood-tissue barrier. In bone development, the

appearance of osteoblasts coincides with blood vessel invasion [83]. This suggests that

endothelial cells could be a major source of modulators of bone development, turnover and

repair. This hypothesis is also supported by the fact that the replacement of the cartilage

during endochondral bone formation is accompanied by the capillary invasion from the

mineralized cartilage, following the release of angiogenic factors from the hypertrophic

chondrocytes [84, 85]. Guenther et al. were the first to report in vitro interactions between

endothelial cells and bone cells by showing that bovine aortic endothelial cells produce a
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mitogen for rat calvarial cells [86]. Several EC-produced factors that affect bone cells and

vice versa have been discovered and several studies covering the topic of endothelial cell –

osteoblastic cell interactions have been performed over the last few years [87-96].

Nevertheless, the outcomes of these studies were very diverse and experiments were often

performed only over a rather short time period (for a more detailed discussion see chapter II),

leaving many unknowns about the long-term effect of such interactions, especially in a 3D

environment.

The biological factors

At a fraction site, one of the first elements to appear are platelets. This is followed by

platelet activation, aggregation and clotting. Chemotactic factors are released attracting

various types of cells. Neutrophilic granulocytes are usually the first cells to enter the wound

site, followed by monocytic phagocytes (which differentiate into macrophages at the site of

inflammation), then fibroblasts, osteoblasts, vascular endothelial cells and various precursor

cells [97]. The factors that are produced by platelets during the very early phase of bone

repair include FGF, PDGF, IGF, TGF- , TGF-ß and VEGF [98-101]. Local administration of

exogenous TGF- 1, TGF- 2, PDGF-BB or b-FGF at fracture sites results in improved bone

formation and/or chondrogenesis [102-109]. It is understood that the formation of new tissue

is very dependent on the local dose and timing of these growth factors and cytokines.

VEGF and angiopoietin

VEGF is the best-characterized factor active during vascularization and angiogenesis.

It induces hyperpermeability of vessels [110], degradation of the surrounding extracellular

matrix and allows endothelial (precursor-) cell-recruitment, migration and reorganization into

sprouting tubules (this complicated process involves also FGF, PDGF and TGF- ). Adult

blood vessels are stabilized through angiopoietin-1 (Ang1) by binding to (and therefore

activating) its receptor Tie2. During angiogenic remodeling, for example as a response to

hypoxia [111] or tissue rupture, angiopoietin-2 (Ang2) is up-regulated and binds Tie2

receptor, thereby preventing Ang1 from binding. The action of Ang2 depends largely on

VEGF. Ang2 mediated vessel destabilization can lead to endothelial cell death and vessel

regression in the absence of VEGF, or to vessel sprouting in the presence of VEGF [112].

Matrix metalloproteinases also play a pivotal role in the matrix degradation during vessel

sprouting [113]. The new vessel tubules are then remodeled and covered by pericytes,

fibroblasts and potentially smooth muscle cells, which form a new extracellular matrix of

basal lamina in response to TGF- . The vessels then enter a quiescent state. Ephrins, even
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though initially characterized in the nervous system, have recently been shown to also play a

role during angiogenic remodeling. They are most probably involved in the establishment of

the venous versus the arterial system [114].

From:
Ramsauer M, D’Amore P, Getting Tie(2)d up in angiogenesis, J Clin Invest, 110:1615-1617 (2002)

The factor generally (and therefore also in this thesis) referred to as VEGF is correctly

named VEGF-A and is a member of a family also containing VEGF-B, -C, -D and placenta

growth factor (PLGF). VEGF is by far the most studied and understood member of this

family. VEGF-B seems to be involved in coronary vascularization and growth, but its role is

not really understood yet [115]. VEGF-C and –D are believed to regulate lymphatic

angiogenesis [116]. Through alternate mRNA splicing, four different isoforms of VEGF are

produced: VEGF121, VEGF165, VEGF189 and VEGF 206 with 121, 165, 189 and 206 amino

acids after signal sequence cleavage [117]. VEGF165 is the predominant isoform [118]. The

165, 189 and 206 splice variants have heparin-binding domains, which help to anchor them

in the extracellular matrix (ECM). These domains are also responsible for the higher

mitogenic activity of VEGF165, VEGF189 and VEGF 206 compared to the non heparin-binding

isoform VEGF121 [119]. VEGF121 is freely diffusible, while VEGF189 and VEGF206 are almost
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completely sequestered in the extracellular matrix. VEGF165 has intermediate characteristics:

A fraction of it is freely diffusible; the other fraction is bound to the cell surface and the

extracellular matrix [120]. These observations suggest that VEGF165 has an optimal

combination of bioavailability and mitogenic potential and indeed, it is the main active VEGF

during angiogenesis [117].

VEGF can bind to several different cell surface tyrosine kinase receptors. VEGF binds to

VEGFR1 (formerly known as Flt-1) and VEGFR2 (Flk-1/KDR). VEGF-B and PLGF bind only

to VEGFR-1. VEGF-C and –D bind to VEGFR-2 and -3 (Flt-4). In addition there are a number

of accessory receptors such as the neuropilins, which are believed to be mainly involved in

modulating the binding to the main VEGF receptors [121]. VEGFR2 seems to mediate the

growth and permeability actions of VEGF whereas VEGFR1 is suggested to have a negative

role (decoy receptor), but its exact function is still under debate [122]. Interestingly, VEGFR2

binds VEGF with lower affinity than VEGFR1 [123-125]. There is also a soluble splice variant

of VEGFR1 (sFlt-1), which has been shown to compete with the binding of VEGF to VEGFR1

[126]. Mice lacking VEGFR2 fail to develop a vasculature and show low numbers of

endothelial cells, while mice lacking VEGFR1 show excess formation of endothelial cells with

abnormal tube formation [127, 128]. Another VEGF-receptor, VEGFR3, seems to be critical

for the development of the lymphatic vessel system [129].

VEGF works in close relation with other factors, especially with angiopoietins. Angiopoietins

are ligands for a family of receptor tyrosine kinases called Tie. The two most important

angiopoietin family members are Ang1 and Ang2, both binding to Tie2. Knockout

experiments have shown that mouse embryos lacking Ang1 or Tie2 developed a rather

normal primary vasculature (unlike VEGF knockouts), but this vasculature failed to undergo

further remodeling. Over-expression of Ang1 in skin resulted in a modest increase in vessel

number, but in a significant increase in vessel size as well as in resistance to leak [130]. On

the other hand, VEGF over-expression primarily increased the number of vessels, but these

were leaky [131]. Over-expression of both factors resulted in an unprecedented

hypervascularity resulting from increased vessel number and size. Interestingly, the vessels

were still resistant to leak (induced by VEGF or inflammatory agents) [130]. Ang2 plays a

very confusing role by being able to act as an agonist or antagonist to Tie2. The suggested

role of Ang2 is a signal for destabilization of the vessel during the initiation of angiogenesis. It

has been suggested that autocrine Ang2 has a different effect than paracrine Ang2 and that

the effect of this factor depends largely on the presence of other factors including VEGF or

Ang1 [132-134].
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Modified from:
Yancopoulos et al., Vascular-specific growth factors and blood vessel formation, Nature 407:243 (2000)

The importance of VEGF during coupling of bone formation with cartilage resorption was

demonstrated by Gerber et al., who showed that blocking VEGF results in suppression of

blood vessel invasion, connected with impaired trabecular bone formation and expansion of

the hypertrophic chondrocyte zone [135]. More recent in vivo data indicates that VEGF is not

only important for bone vascularization, but also plays a role in the differentiation of

hypertrophic chondrocytes, osteoblasts and osteoclasts [136, 137]. VEGF is secreted by

many cell types including hypertrophic chondrocytes, osteoblasts and osteoblast-like cells

and its expression is influenced by many cytokines, growth factors and hormones (i.e. IGF-1,

PGE1, PGE2, Vit.D3, PTH, TGF- , BMP-2, -4, -6) [93, 138-141]. Several groups have

reported a direct effect of VEGF on osteoblastic cells (stimulation of migration, proliferation

and differentiation) [93, 142, 143], however opposite findings suggest that further studies are

necessary to resolve this controversy [91, 141]. Since angiopoietins have been discovered a

few years later than VEGF, their exact role in angiogenesis and bone formation is less



Chapter I: General Introduction

14

understood. Ang1 and 2 have been detected in similar regions within bone as VEGF

(cartilage-bone interface, remodeling sites). They are also expressed by various cell types

including osteoblasts, osteoclasts and marrow space cells [144]. Angiopoietins do not seem

to have a direct mitogenic effect on endothelial cells, even though the Tie2 receptor becomes

activated.

Platelet-rich plasma (PRP)

Platelet-rich plasma (PRP) is autologous plasma with a platelet concentration around

five times higher than that found in blood. It also contains an increased number of growth

factors in their natural ratios upon platelet activation. Known growth factors released by

activated PRP include PDGF-AA, PDGF-AB, PDGF-BB, TGF-b1, TGF-b2, VEGF and EGF

[145]. The obvious advantage of PRP over the use of recombinant growth factors is the fact

that it can be produced from the patient’s blood intraoperatively. Recombinant human growth

factors are usually synthesized by Chinese hamster ovarian cells transfected with human

genes, and are delivered at non-physiological doses. In addition, while PRP forms a gel that

is a prerequisite for growth factor delivery, recombinant growth factors are delivered using a

synthetic carrier or a carrier processed from animal proteins. The PRP gel, in addition to

containing the platelet released growth factors, will also be able to entrap cells, thus making

PRP an easy and inexpensive source of autologous matrix and biological factors.

Platelet activation cascade: Platelets adhere to ruptured vessel walls by binding to von Willebrand factor and
are activated upon exposure to collagen. The release of agonists like thrombin or ADP (generated at the sites of
vascular trauma) results in a conformational shape change of the platelets, followed by degranulation, and the
release of many growth factors and cytokines. The platelets then bind to circulating fibrinogen through their GP

IIb-IIIa receptors to form large platelet-fibrin aggregates.
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The key molecular players in osteogenesis

In a classic study, Urist described ectopic bone induction by intramuscular

implantation of demineralized bone matrix (DBM) in rabbits and rats. This was a key

discovery, which stimulated the search for a bone-inducing substance in the bone matrix.

Subsequent investigations demonstrated that low-molecular weight proteins could be

extracted from demineralized bone matrix [146]. These proteins showed more osteogenic

activity than DBM, and were therefore termed bone morphogenetic proteins (BMPs) [147-

150]. Today, several signaling molecules in addition to BMPs are known to play a role in

controlling skeletal development, including other members of the transforming growth factor

family (TGF- ), FGF, secreted factors of the Wnt-family and members of the hedgehog

family [151-153]. The following paragraphs will describe the proteins and transcription factors

involved in osteoblastic differentiation that will be investigated and evaluated in this thesis:

BMP: Around 20 genes coding for BMPs have been identified so far, and several

recombinant BMPs have been shown to have a unique activity, which is to induce ectopic

bone formation [147, 154-156]. Osteoblasts secrete BMP into their matrix during bone

formation. BMPs (except for BMP-1 which is a peptidase) are members of the TGF-

superfamily, known to regulate cell proliferation, differentiation and death in various tissues

[154, 157-160]. Many studies confirmed the hypothesis that BMPs are involved in the

regulation of osteoblastic and chondrocytic differentiation by identifying skeletal abnormalities

in individuals with mutations in BMP genes [161-167]. The mechanism off ectopic bone

formation by recombinant BMPs was investigated using osteoblastic differentiation in in vitro

experiments. Several BMPs enhance typical osteoblastic markers like ALP, type I collagen,

osteocalcin and MMP-13 [168]. In addition, BMPs stimulate the formation of mineralized

bone-like nodules in vitro [169].

Runx2: Runx2 (Cbfa1) is the -subunit of a heterodimeric transcription factor consisting of

Runx2 and the -subunit Cbf . Runx2 is a structural homologue of the runt-gene product in

Drosophila. It contains a conserved region (the Runt domain), which is required for

dimerization with the -subunit as well as for binding to OSE2 (osteoblast-specific cis-acting

element), first discovered in the mouse osteocalcin gene 2 promotor (OG2) [170, 171]. There

are two more -subunits, Runx1 and Runx3, but none of them seems to be involved in

osteoblastic differentiation and bone formation [172, 173]. In Runx2-null mice, the

osteoblastic differentiation is completely blocked [174]. Cbf -null mice show much less

deficiency in bone formation than Runx2-null mice, indicating that Runx2 can control bone

formation to a limited degree in the absence of Cbf [175, 176]. Runx2 is not osteoblast-

specific; it also plays a role in the differentiation of hypertrophic chondrocytes [174, 177].

Over-expression of Runx2 in chondrocytes results in an accelerated endochondral
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ossification [178]. Regulation of osteoblastic differentiation by members of the TGF-

superfamily (i.e. TGF- 1 and BMP-2) is believed to act through interactions of Smads with

Runx2 [179].

In summary, Runx2 is required for early osteoblastic differentiation as well as hypertrophic

chondrocyte differentiation.

Osterix: Osterix (Osx, SP7) is a zinc-finger containing transcription factor highly specific for

osteoblasts [180]. Osx-null mice show normal cartilage development but completely lack

bone formation: A dense mesenchyme emerges in the zone of hypertrophic chondrocytes

accompanied by blood vessels and osteoclasts. However, the mesenchymal cells are

blocked in their differentiation. Arrested differentiation in these cells was shown by

significantly reduced type I collagen expression, as well as undetectable osteoblastic

markers including osteonectin, osteopontin, bone sialoprotein and osteocalcin. Interestingly,

Runx2 expression levels were normal. This observation, together with the finding that Runx2-

null mice showed no Osx transcripts suggests, that Osx and Runx2 are part of the same

osteoblastic differentiation pathway and that Osx acts downstream of Runx2. This is also

supported by studies comparing Runx2-null and Osx-null mice. In Runx2-null mutants,

hypertrophic chondrocyte differentiation is inhibited and there is no invasion of the

hypertrophic zone by blood vessels and osteoclasts. In Osx-null mutants though,

hypertrophic chondrocyte differentiation is not impaired and the hypertrophic zone is invaded

by blood vessels and osteoclasts, but osteoblastic differentiation does not occur.

Interestingly, Runx2-null mutants show a significant decrease in VEGF expression by

chondrocytes, which could explain the lack of blood vessel invasion into the hypertrophic

cartilage zone of these mutants.

Based on the studies described above, a model for osteoblastic differentiation was proposed

[181]: Mesenchymal progenitor cells differentiate first into preosteoblasts under the control of

Runx2/Cbf . These preosteoblasts are bipotent, thus have the ability to differentiate into

either chondrocytes or osteoblasts upon the right stimuli. However, when Osx is turned on,

these bipotent cells are driven towards the osteoblastic pathway, while if Sox-9 is turned on

they will differentiate into the chondrogenic lineage. Interestingly, studies comparing the

effect of Sox9 inactivation before and after chondrogenic mesenchymal condensations have

indicated that expression of Sox9 was required for the establishing of bipotential osteo-

chondro-progenitor cells [182]. Once the chondrogenic mesenchymal condensation was

completed, Sox9 was no longer needed for the osteoblast lineage, and Osx was suggested

to be the negative regulator of Sox9. So Osx seems to be the regulator that segregates the

osteoblastic from the chondrogenic differentiation pathway.
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Dlx5: Dlx5 (distal-less homeobox 5) is a bone inducing transcription factor that is expressed

in differentiating osteoblasts [183]. Dlx5-null mice show severe craniofacial abnormalities

with delayed ossification and of the cranium and abnormal osteogenesis [184]. Interestingly,

it has been shown that BMP-2 induction of Osterix expression is mediated by Dlx5 (and not

by Runx2) [185].

Osteoblastic markers

Progression of osteoblastic differentiation is currently best described by the temporal

expression of bone matrix proteins [186]. The relevant markers investigated in this thesis are

quickly introduced below:

Collagen type I (COL1): Type I collagen is the major organic component of the bone matrix

and is found in mineralized and non-mineralized areas. Interestingly, the collagen in

mineralized tissue aligns differently from that in non-mineralized tissue to leave space for the

apatite crystals [187, 188]. Type I collagen is secreted by osteoblasts prior to matrix

mineralization [189] and is one of the early markers during osteoblastic differentiation [190].

Osteocalcin (OC): OC (earlier name bone GLA-protein) is the major non-collagenous

protein in bone (10-20%). It’s synthesized only by mature osteoblasts, therefore represents a

late marker of osteogenesis [52, 190, 191]. OC is generally found in mineralized tissue and is

a very useful marker to follow the osteoblastic differentiation in the rat model, although in

human it is less useful [192] (see also our findings in chapter II).

Osteopontin (OP): OP is a phosphorylated glycoprotein expressed very early in bone cell

differentiation and again later following mineralization. OP is highly abundant in bone, but

can also be found in hypertrophic chondrocytes, kidney and in very small amounts in the

brain and lungs. OP binds very firmly to hydroxyapatite and probably plays a role in the

attachment and spreading of bone cells (it contains an RGD sequence) [52, 190, 193].

Osteonectin (ON): ON is a calcium and hydroxyapatite-binding glycoprotein that is also

found in the lung, ovaries and other tissues. However, it is highly abundant in bone and a

common marker of osteoblastogenesis [190, 191, 194].

Bone Sialoprotein II (BSP): BSP is a phosphorylated bone specific glycoprotein mainly

found in mineralized tissue. It appears late during osteogenesis [52, 190, 191, 195, 196].

Collagenase 3 (MMP-13): The matrix metalloproteinases (MMPs) are a family of

proteinases that are able to degrade extracellular matrix components (in particular collagens)

[197]. MMP-13 was discovered in 1994 in connection with breast carcinomas [198] and was

later found to be a major player during endochondral bone formation by efficiently degrading

type II collagen, but also aggrecan and type I and IV collagens. MMP-13 is under the control
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of the transcription factor Runx2 and is expressed as a late differentiation marker in

osteoblasts [199].

ALP: Alkaline Phosphatase is a cell-surface ectoenzyme that hydrolyses monophosphate

esters. Its precise physiological role is not completely clear yet. One important function is to

cleave phosphate groups from OP, ON, OC and BSP to make them available for the process

of matrix mineralization. ALP activity rises in early stages of culture, peaks before the onset

of mineralization and decreases after mineralization (not expressed in osteocytes) [200, 201].

Matrix mineralization: Matrix mineralization is most often measured by 45Ca2+ -isotope

incorporation into the matrix and by Van Kossa staining [202]. Determination of calcium

incorporation is a very powerful tool to judge osteoblastic differentiation not only because it is

a very late event in osteogenesis but also because it measures the performance of an active

“bone-forming” process.
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Thesis aims

The overall goal of this PhD thesis was to define a construct to be used in bone tissue

engineering that has the potential to improve in vivo vessel formation within the construct.

Bone healing is always in very close association with vessel formation and ingrowth [3, 4,

203-208]. It has even been shown, that bone formation is blocked, if endothelial invasion is

inhibited [209]. We were therefore interested in the involvement of endothelial cells in bone

formation.

Our first aim was to study the interactions of endothelial cells (EC) and

mesenchymal stem cells (MSC) to investigate the hypothesis that EC influence

MSC differentiation into an osteoblastic phenotype, and that this effect is

modulated by soluble factors and/or direct contact.

One of the first events in a fracture is the formation of a blood clot to prevent further bleeding.

The platelets in these clots then release factors and cytokines responsible for cell recruitment

and other initial events during early fracture repair (see section “The biological factors”).

Platelet-rich plasma (PRP) has been suggested to have the potential to improve bone

healing.

Our second aim was to test the usability of PRP as a source of autologous

biological factors and if it could stimulate MSC differentiation into an osteoblastic

phenotype.

Bone defects of less than 3cm can usually be healed using autologous bone grafts.

However, the grey zone is defects between 3 and 8cm, which are still a major clinical

problem. Surgeons have tried to use scaffolds made of synthetic or natural materials that

promote the migration, proliferation and differentiation of bone cells. However, these

approaches have been shown to be only limited successful. Furthermore, the absence of an

appropriate blood vessel network in such large defects is an additional concern.

Therefore, our third and last aim was to develop a construct based on the

outcome of aims 1 and 2, and to evaluate its potential to form vessel-like

structures in vitro, as well as its capacity to induce MSC differentiation into

osteoblasts.
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Chapter II

Human endothelial cells inhibit human MSC

differentiation into mature osteoblasts in vitro by

interfering with Osterix expression

Meury TR, Alini M.

Our first experiments were based on the initial hypothesis of this PhD:

MSC differentiation into osteoblasts is modulated by interactions with EC

To investigate this hypothesis, we decided to use 2D co-culture systems for simplicity

and reproducibility reasons. Two non-direct contact co-culture systems were chosen

(trans-wells and conditioned medium). Direct contact co-cultures were left out due to

the difficulty of culturing EC and osteoblastic cells in the same culture medium for

long term without addition of growth factors or cytokines that enhance EC survival,

and due to the difficulty in separating contributions of each cell type when analyzing

markers.

This chapter is a manuscript submitted for publication to J Cell Biochem.
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Introduction

Mesenchymal stem cells (MSC) derive from the adherent, mononucleated

fraction of bone marrow [1]. It has been shown, that this cell pool contains precursors

for several mesenchymal tissue cells including osteoblasts, fibroblasts, chondrocytes,

adipocytes and myoblasts [2-4]. Bone marrow stroma is actually suggested to be the

main source for osteoblastic precursors [3]. Recruitment, proliferation and

differentiation of MSC into mature osteoblasts are regulated by many factors

including cytokines, systemic hormones, growth factors and other regulators [5].

These factors are released by the osteoblastic cells themselves, but also by cells that

are part of the tightly connected vascular system, such as endothelial cells [6-8] or

pericytes [9]. Endothelial precursors can be isolated from bone marrow, as well as

from peripheral blood [10;11]. During embryonic development, the major vascular

network is formed by vasculogenesis, mediated mainly by factors belonging to the

vascular endothelial growth factor (VEGF) family [12]. VEGFs bind to several

receptors including Flt-1 (VEGFR-1) and KDR (VEGFR–2 or Flk-1) that have been

identified on many cells types, including endothelial and osteoblastic cells [13-15].

VEGFs promote vascular endothelial cell proliferation and induce vascular leak and

permeability, which allows the initial network to be remodeled by angiogenic

sprouting [16;17], a process in which the immature and poorly functional vascular

network is remodeled into a complex network of mature and stable blood vessels

[18]. It is widely accepted that there must be communication between endothelial

cells and osteoblastic cells in order to regulate blood vessel formation, osteoblast

differentiation and bone turnover, processes that are all very tightly connected [19-

24]. In vivo and in vitro experiments suggest a paracrine communication between

endothelial cells and osteoblastic cells using gap junctions to mediate the angiogenic

process required for bone formation and repair [25]. VEGF is believed to play an

important role in these processes [6;9;26-29]. It was shown, in a mouse model, that

angiogenesis, bone formation and callus mineralization in femoral fractures do not

occur, if VEGF activity is inhibited [8]. In vitro studies have shown that VEGF has a

stimulatory effect on osteoblastic differentiation [30], however it does not seem to

have a direct effect on osteoblastic precursor cell proliferation [7;31]. VEGF is

definitely not the only factor involved in these communication processes. There are

several other factors that are expressed and secreted during bone healing and that

can affect osteoblastic cells or endothelial cells, including PDGFs, TGFs, FGFs,

angiopoietins and endothelins [32-35].
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In vitro studies about the influence of endothelial cells on osteoblastic differentiation

have shown a remarkable variety of results [6;7;9]. These differing results are partly

due to the different cell (lines) and culture conditions used as well as due to different

donor age and biopsy site. In addition, we hypothesize that the differentiation state of

endothelial cells, following stimulation with different factors, could play an important

role on how they influence MSC differentiation. In the present study, we have grown

endothelial cells with or without VEGF stimulation and investigated their effect on

MSC differentiation towards the expression of an osteogenic phenotype.
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Materials and Methods

Origins of human cells

Bone marrow aspirates were taken from patients undergoing routine

orthopedic surgery involving iliac crest exposure, after informed consent. Bone

marrow aspirates (20mL) were harvested into CPDA-containing Sarstedt monovettes

using a biopsy needle that was pushed through the cortical bone. Aspirates were

processed within 12-24 hours after harvesting.

Isolation and expansion of human MSC

Bone marrow aspirates were homogenized by pushing them a few times

through a syringe. The aspirate was then diluted 1:4 with IMDM (Gibco 42200-022)

containing 5% (v/v) FBS (Gibco 10270-106) and centrifuged at 200g for 5min at room

temperature (RT). The top layer (approx. 1cm) containing mostly fat tissue was

removed. Per 1mL of undiluted sample, 2.6mL of Ficoll (Histopaque-1077, Sigma

#1077-1) were pipetted into a 50mL Falcon tube and the aspirate was added

carefully on top of the Ficoll. After centrifugation at 800g for 20min at RT, the

mononucleated cells were collected at the interphase using a syringe. To 1mL of

collected interphase solution, 5mL of IMDM/5%FBS were added, the tube was gently

mixed and centrifuged at 400g for 15min at RT. The pellet was resuspended in the

same amount of IMDM/5%FBS, centrifuged again and resuspended in

IMDM/5%FBS. Cell number was determined using Methylene Blue in a

hemocytometer. The cells were seeded at densities of 8-10 *106 mononucleated cells

per 150cm2 T-flask in IMDM containing 10% FBS, nonessential aminoacids (Gibco

11140-035) and PenStrep (100U/mL, Gibco 15140-122). After 5 days, the

monolayers were washed with Tyrode’s balanced salt solution (TBSS) to remove

non-adherent cells, and fresh medium containing 5ng/mL b-FGF (R&D 233-FB) was

added as previously reported [36-38]. Medium was changed every 2-3 days and

cells were subcultured 1:3 at subconfluence. The adherent cells after one subculture

were termed mesenchymal stem cells (MSC). Only cells between passages 2-4

(approx. 12-18 populations doublings) were subsequently used [39].

Expansion of HUVEC

Primary Human Umbilical Vein Endothelial Cells (HUVEC) were obtained

from Cascade Biologics (cat# C-003-5C). The cells were expanded in IMDM

containing 10%FBS, nonessential aminoacids, PenStrep, 20ug/mL ECGS (Sigma E-
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2759) and 90ug/mL heparin (Sigma H-3149). Only cells between passages 2-4 were

subsequently used.

Stimulation of HUVEC with VEGF

HUVEC were expanded in IMDM containing 10% FBS, nonessential

aminoacids, 20ug/mL ECGS, 90ug/mL heparin and PenStrep. At about 75% of

confluency, 25ng/mL VEGF (Sigma V-7259) were added and the cells were

stimulated for 3 days [8]. The HUVEC monolayers were then either used to produce

HUVEC-conditioned medium (see Conditioned medium (VEGF stimulated or non-

stimulated) on MSC cultures)) or were trypsinized and used for indirect contact co-

cultures.

MSC cultures

MSC were seeded in 24-well plates (Falcon BD 353504) at densities of

10’000 to 30’000 cells/well in 1mL of medium and were left to attach for 2-3 hours.

Culture medium for the MSC culture systems contained IMDM, 10% FBS,

nonessential aminoacids, 0.1mM ascorbic acid-2-phosphate (Sigma A-8960) and

10mM -glycerophosphate (Sigma G-6251) with 10nM dexamethasone (osteogenic

medium) or without dexamethasone (non-osteogenic medium). Dexamethasone was

purchased at Sigma (D-2915). Media were changed twice a week.

Conditioned medium (VEGF stimulated or non-stimulated) on MSC cultures

HUVEC-conditioned medium was produced by washing the VEGF stimulated

(see section “Stimulation of HUVEC with VEGF”) or non-stimulated HUVEC

monolayers 2x with phosphate buffered saline (PBS) and then culturing them for 24h

in IMDM containing 10% FBS and PenStrep. After 24h, the medium (defined as

VEGF-stimulated or non-stimulated HUVEC-conditioned medium) was removed,

filtered (0.22µm), and stored at -20°C until used. This HUVEC-conditioned medium

was added in a 1:10 mixture to MSC monolayers cultured in osteogenic or non-

osteogenic medium in 24-well plates. Chondrocyte-conditioned medium (Chondro-

CM) using primary bovine chondrocytes and fibroblast-conditioned medium (Fibro-

CM) using the human hTERT-BJ1 fibroblast cell line were also similarly prepared and

applied accordingly.

Indirect contact cultures of MSC and HUVEC (VEGF stimulated or non-stimulated)

To MSC monolayers, VEGF stimulated (see section “Stimulation of HUVEC

with VEGF”) or non-stimulated HUVEC were added in cell culture inserts (0.4µm
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pore size, Falcon BD 353495) at a density of 10’000 cells/insert. Fresh HUVEC were

added once a week to the system to provide a fresh supply of endothelial cell

secreted factors. These experiments were also performed in osteogenic or non-

osteogenic medium.

Recovery Experiment

MSC were grown in osteogenic (or non-osteogenic) medium supplemented

1:10 with non-stimulated HUVEC-conditioned medium, as described above. At

different time points, medium supplementation with HUVEC-conditioned medium

(non-stimulated) was stopped, and the MSC were grown in osteogenic (or non-

osteogenic) medium. On day 27, the osteogenic differentiation stage of MSC was

evaluated by determining matrix mineralization and OSX gene expression.

Inhibition experiment

MSC were grown in osteogenic medium (non-osteogenic medium as negative

control). At different time points, the medium was switched to osteogenic medium

containing non-stimulated HUVEC-conditioned medium (1:10). After 28 days, the

osteogenic differentiation was evaluated by determining ALP activity and OSX gene

expression.

DNA quantification

The protocol used for DNA quantification was based on the method described

by Labarca et al. [40], which involves the binding of Hoechst 33258 to the minor

groove of the DNA double helix resulting in a measurable enhancement in

fluorescence. MSC were digested by adding 0.5mL proteinase K (0.5mg/mL

proteinase K in phosphate buffer containing 3.36mg/mL disodium-EDTA) solution

directly to the wells and incubating the plates at 56°C for 1h. Thereafter, the digested

cells were transferred to Eppendorf tubes to avoid evaporation and were further

digested overnight at 56°C. After appropriate dilution with Dulbecco’s phosphate

buffered saline (DPBS) containing 0.1% (v/v) H33258 (from 1mg/mL stock,

Polysciences Inc, 09460), the samples were measured using a PE HTS 7000 Bio

Assay Reader at 360nm excitation and 465nm emission wavelength.

Quantification of matrix mineralization using 45Ca2+ isotope

1.25µCi/mL of 45Ca2+ isotope (Amersham CES3) were added to each well and

the plates were incubated at 37°C for 6h [41]. The medium was removed and the

monolayers were washed 3x with IMDM to remove unincorporated 45Ca2+. Then
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0.5mL of 70% formic acid were added to each well and the plates were incubated at

65°C for 1h. The formic acid solution was then transferred to 3.5mL of scintillation

liquid (OptiPhase HiSafe’3 by Perkin Elmer) and the amount of radioactivity was

measured using a Wallac 1414 WinSpectral liquid scintillation counter.

Quantification of alkaline phosphatase activity

The medium was completely removed and the monolayers were washed

once with PBS. The cell layers were extracted by addition of 500µL of 0.1%Triton-X

in 10mM Tris-HCl (pH 7.4) and incubation at 4°C on a gyratory shaker for 2h (See

Sigma Technical Bulletin Procedure No.104). ALP activity was measured

colorimetrically by measuring the p-nitrophenol production during 15min incubation at

37°C with p-nitrophenyl phosphate as substrate (Sigma Kit No.104) on a Perkin

Elmer Bio Assay Reader HTS 7000.

Quantification of VEGF amounts in the culture supernatant

Culture medium was collected and VEGF (165,121)-protein content was

measured using a DuoSet ELISA Development System for human VEGF by R&D

Systems (DY293) on a Perkin Elmer Bio Assay Reader HTS 7000.

RNA Isolation and Reverse Transcription

Monolayers were extracted using 500µL of TRI-Reagent (MRC Inc. TR-118)

with 5ul/mL of Polyacryl-carrier (MRC Inc. PC-152) for 10min at RT and transferred

to Eppendorf tubes. 150mL of 1-Bromo-3-Choro-Propane were added, the tubes

vortexed for 15sec and then centrifuged at 12’000g for 15min at 4°C. The colorless

layer on the top was transferred into a new tube and 750µL of isopropanol were

added, then the tube was centrifuged at 12’000g for 10min at 4°C. Sample

supernatants were removed and pellets were washed in 1mL of 75% EtOH by

vortexing and centrifuging at 10’000g for 5min at 4°C. Pellets were air-dried and re-

suspended in 30µL of DEPC-treated water. After 15min at 60°C, tubes were

immediately transferred to ice. The total RNA amount and purity was assessed by

measuring the absorbance at 260nm and 280nm. Reverse transcription was

performed using 1µg of total RNA sample, which was mixed with 2µL of 10x TaqMan

RT Buffer (500mM KCl, 100mM Tris-HCl, pH 8.3), 4.4µL of 25mM magnesium

chloride, 4µL of dNTP mixture (2.5mM of each dNTP), 1µL of random hexamers

(50µM), 0.4µL of RNase inhibitor (20U/mL) and 0.5µL of MultiScribe Reverse

Transcriptase (50U/µL) (all from Applied Biosystems); DEPC-treated water was

added to bring the final reaction volume to 20µL. Reverse transcription was
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performed using a Thermal Cycler 9600 by Applied Biosystems. cDNA samples were

appropriately diluted with Tris-EDTA buffer before being used for real-time RT PCR.

Real-time RT PCR

Oligonucleotide primers and TaqMan probes were designed using the Primer

Express Oligo Design software (Ver. 1.5, Applied Biosystems). The nucleotide

sequences were obtained from the GenBank database and the probes were

designed to overlap an exon-exon junction in order to avoid amplification of genomic

DNA (Table I). Primers and probes for amplification of 18S ribosomal RNA, used as

endogenous control, were from Applied Biosystems. All other primers and labeled

TaqMan probes were from Microsynth (Balgach, CH). TaqMan probes were labeled

with the reporter dye molecule FAM (6-carboxyfluorescein) at the 5´end and with the

quencher dye TAMRA (6-carboxy-N, N, N´, N´-tetramethylrhodamine) at the 3´end.

The PCR reaction mixture contained TaqMan Universal PCR master mix without

AmpErase UNG (Applied Biosystems), 900nM primers (forward and reverse), 250nM

TaqMan probe, and 2 l of cDNA sample for a total reaction volume of 25 l. PCR

conditions were 95°C for 10min, followed by 42 cycles of amplification at 95°C for

15sec and 60°C for 1min using the GeneAmp 5700 Sequence Detection System

(Applied Biosystems, Foster City, CA). Relative quantification of mRNA targets was

performed according to the comparative CT method with 18S ribosomal RNA as

endogenous control (ABI PRISM 7700 Sequence Detector User Bulletin 2, PE

Applied Biosystems 1997).

Van Kossa staining

MSC monolayers were rinsed with TBSS. A silver nitrate solution (5%) was

added and the cells were exposed to strong light for 20min. After rinsing 3 times with

distilled water, the cells were incubated in fresh 5% sodium thiosulfate for 10min.

After rinsing 3 times with distilled water, 0.1% nuclear fast red solution was added

and the cells were incubated for 10min, before being washed again with distilled

water. Samples were left in distilled water and pictures were taken immediately.

Statistical analysis

The data are expressed as mean±SEM unless stated otherwise. Statistics

were performed using the non-parametric Mann-Whitney U-test, which compares the

medians of two independent distributions. P < 0.05 was considered statistically

significant.
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Table I. Primers and Probes for Real-Time RT-PCR

Target Gene Sequence (5’ 3’)

Collagen I

Forw CCC TGG AAA GAA TGG AGA TGA T
Rev ACT GAA ACC TCT GTG TCC CTT CA

Probe CGG GCA ATC CTC GAG CAC CCT

Osteonectin
Forw ATC TTC CCT GTA CAC TGG CAG TTC

Rev CTC GGT GTG GGA GAG GTA CC

Probe CAG CTG GAC CAG CAC CCC ATT GAC

MMP-13
Forw CGG CCA CTC CTT AGG TCT TG

Rev TTT TGC CGG TGT AGG TGT AGA TAG

Probe CTC CAA GGA CCC TGG AGC ACT CAT GT
BMP-2

Forw AAC ACT GTG CGC AGC TTC C

Rev CTC CGG GTT GTT TTC CCA C
Probe CCA TGA AGA ATC TTT GGA AGA ACT ACC AGA AAC TG

Osteocalcin

Forw AAG AGA CCC AGG CGC TAC CT

Rev AAC TCG TCA CAG TCC GGA TTG
Probe ATG GCT GGG AGC CCC AGT CCC

Osteopontin

Forw CTC AGG CCA GTT GCA GCC
Rev CAA AAG CAA ATC ACT GCA ATT CTC

Probe AAA CGC CGA CCA AGG AAA ACT CAC TAC C

Runx2
Forw AGC AAG GTT CAA CGA TCT GAG AT

Rev TTT GTG AAG ACG GTT ATG GTC AA

Probe TGA AAC TCT TGC CTC GTC CAC TCC G

BSP II
Forw TGC CTT GAG CCT GCT TCC

Rev GCA AAA TTA AAG CAG TCT TCA TTT TG

Probe CTC CAG GAC TGC CAG AGG AAG CAA TCA

Osx, Sox 9, Collagen II and PPAR :

Primers and Probes: Assay-On-Demand by Applied Biosystems
(Assays: Hs00541729_m1, Hs00165814_m1, Hs00264051_m1,

Hs00234592_m1)

Probes were modified at the 5’ end with the FAM fluorescent dye (6-
carboxyfluorescein) and at the 3’ end with the TAMRA fluorescent dye (6-
carboxy-N,N,N’,N’-tetramethylrhodamine). Assay-On-Demand probes had a
non-fluorescent quencher at the 3’end.
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Results

Bone marrow aspirates from seven human donors (age range 44-66 years)

were obtained. Each experiment was done with cells from at least three different

donors. Due to the high variability in the osteogenic potential of MSC between

donors, some data are shown from one representative experiment, although, the

same trends were observed in all three experiments, and they are summarized in

Table II. The MSC used for the experiments were expanded using b-FGF to increase

the cell number while keeping them in a tripotential state capable of osteogenic,

chondrogenic and adipogenic differentiation [36-38].

Table II. Summary of the mean data observed in each single experiment

Col 1 gene expression day 24 rel to MSC in OM

Condition A B C

MSC in osteogenic medium (OM) 1.00 1.00 1.00

MSC in OM with HUVEC 0.59 0.59 0.73

MSC in OM with HUVEC (VEGF) 0.49 0.54 0.52

ON gene expression day 24 rel to day 1 and to MSC in OM

Condition A B C

MSC in osteogenic medium (OM) 1.00 1.00 1.00

MSC in OM with HUVEC 0.28 0.52 0.69

MSC in OM with HUVEC (VEGF) 0.25 0.20 0.65

BMP-2 gene expression day 24 rel to day 1 and to MSC in OM

Condition A B C

MSC in osteogenic medium (OM) 1.00 1.00 1.00

MSC in OM with HUVEC 0.24 0.17 0.78

MSC in OM with HUVEC (VEGF) 0.16 not detectable 0.69

MMP-13 gene expression day 24 rel to day 1 and to MSC in OM

Condition A B C

MSC in osteogenic medium (OM) 1.00 1.00 1.00

MSC in OM with HUVEC 0.55 0.01 0.99

MSC in OM with HUVEC (VEGF) 0.06 0.01 0.71

Indirect contact co-culture versus conditioned medium culture

Two different types of HUVEC-MSC culture systems were used; the first,

using a trans-well system, allowed indirect 2-way communication between the two

cells types; and the second, HUVEC-conditioned medium, allowed 1-way

communication from HUVEC to MSC but not vice versa. Since no significant

differences in the results could be observed between the two culture types, we will
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not distinguish anymore between them, and we will generally discuss our results as:

Effect of HUVEC on MSC differentiation.

Effect of HUVEC on MSC differentiation in non-osteogenic medium

In preliminary experiments, the effect of HUVEC on MSC differentiation when

cultured in non-osteogenic medium was investigated. HUVEC did not show any

effect on ALP activity or matrix mineralization of MSC compared to the control (no

HUVEC). This suggested that HUVEC were not able to replace the positive effect of

dexamethasone on MSC differentiation into osteoblasts in these in vitro culture

systems (data not shown).

Effect of HUVEC on MSC differentiation in osteogenic medium (OM)

As a positive control, MSC were cultured in osteogenic medium without

HUVEC. As expected, this led to an increase of several osteoblastic markers, such

as matrix mineralization and ALP activity (Figures 1-3).

Furthermore, we observed an elevated expression of typical early and late

osteoblastic marker genes including collagen 1 (COL1), osteonectin (ON), matrix

metalloproteinase 13 (MMP-13), and bone morphogenetic protein 2 (BMP-2), when

compared to MSC cultured in non-osteogenic medium (Figure 4a-d).

Figure 1: Representative graph of ALP activity of MSC: MSC grown in osteogenic medium (OM)
showed a clear increase in ALP activity compared to MSC in non-osteogenic medium. HUVEC
significantly (P < 0.005) reduced the increase in ALP activity of MSC. VEGF-stimulated HUVEC further
reduced ALP activity (P < 0.05). Statistical analyses were performed for day 24 (n=6).
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Figure 2:
45
Ca isotope incorporation of MSC at day 24 of culture (n=9): MSC grown in osteogenic

medium (OM) showed high matrix mineralization, while MSC in non-osteogenic medium did not.

Cultures of MSC and HUVEC showed a significant decrease in matrix mineralization when compared to
MSC grown alone. This inhibitory effect was enhanced, when HUVEC were previously stimulated with
VEGF.

Figure 3: Van Kossa staining of MSC grown in osteogenic medium (a) and MSC grown in osteogenic
medium supplemented with HUVEC-conditioned medium (b). Calcium deposition is clearly inhibited by
the presence of HUVEC.
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The addition of non-stimulated HUVEC to MSC cultures significantly decreased ALP

activity (Figure 1), matrix mineralisation (Figures 2 and 3) and mRNA levels of COL1,

ON, MMP-13 and BMP-2 (Figure 4). There was a slight increase in the DNA content

of MSC upon addition of non-stimulated HUVEC, but this increase was not significant

(data not shown).

Figures 4a-d: Representative graphs of mRNA levels of Collagen type I (a), Osteonectin (b), MMP-13
(c) and BMP-2 (d) measured by real-time RT-PCR: MSC cultured in osteogenic medium (OM) resulted
in an upregulation of osteoblastic marker genes compared to MSC in non-osteogenic medium. Cultures
with HUVEC decreased the expression of these marker genes significantly, an effect that was

enhanced, when HUVEC were previously stimulated with VEGF. Day 24 data from all three experiments
are summarized in Table II.

Osterix (OSX) was expressed at almost undetectable levels early in culture. After 24

days, MSC cultured in non-osteogenic medium still showed low OSX expression,

while MSC in osteogenic medium expressed OSX prominently. HUVEC significantly

decreased OSX gene expression of MSC, suggesting an inhibitory effect on MSC

differentiation (Figure 5).
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Figure 5: Osterix (OSX) mRNA levels relative to MSC in OM at day 24 (n=4): At day 1, OSX mRNA
levels were almost undetectable in all cultures (data not shown). At day 24, MSC grown in non-
osteogenic medium showed low OSX expression, while MSC grown in osteogenic medium (OM)
showed elevated OSX expression. This expression was significantly down-regulated by HUVEC. Again,
VEGF-stimulated HUVEC showed a more pronounced inhibitory effect.

Interestingly, Sox-9 expression levels dropped with culture time and reached almost

undetectable levels in all cultures supplemented with osteogenic medium, including

those with HUVEC (Figure 6). When VEGF-stimulated HUVEC were added to MSC,

we observed an even more inhibitory effect on the measured markers than with non-

stimulated HUVEC (Figures 1-6).

Figure 6: mRNA levels of the chondrocytic marker Sox-9 at day 24 relative to day 1 (n=4): The
expression of Sox-9 dropped significantly after 24 days in all cultures, suggesting that none of these
culture conditions propagates a chondrocytic phenotype. However, MSC cultured in osteogenic medium
(OM) showed a more significant reduction of Sox-9 expression than MSC cultured in non-osteogenic

medium. Unstimulated HUVEC had no effect on the inhibition of Sox-9 expression by OM, but VEGF-
stimulated HUVEC significantly further decreased Sox-9 expression of MSC. Collagen 2 (COL2),
another chondrocytic marker, was almost undetectable in all cultures during the whole experiment (data
not shown).
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We have also evaluated osteopontin (OP), osteocalcin (OC), bone sialoprotein II

(BSP) and Runx2 gene expression. OP was highest at the very beginning of all

cultures, then dropped and rose again with time in culture. Interestingly, MSC

cultured in non-osteogenic medium showed higher OP expression than MSC in

osteogenic medium (data not shown). When MSC were cultured with HUVEC, OP

expression was further decreased. OC expression was constantly low in all culture

systems, and almost undetectable in osteogenic medium. Addition of HUVEC didn’t

show any effect on OC (data not shown). Bone sialoprotein II (BSP) gene expression

was decreased by HUVEC (data not shown). Runx2 expression was always higher in

cultures with osteogenic medium and slightly increased in all cultures over time.

HUVEC didn’t change this pattern (data not shown).

Recovery Experiment

In order to evaluate whether the observed inhibitory effect of HUVEC on MSC

differentiation was reversible, we cultured MSC in osteogenic medium with the

addition of non-stimulated HUVEC-conditioned medium (1:10) and replaced it at

different time points with only osteogenic medium. As expected, MSC that were

exposed to osteogenic medium containing non-stimulated HUVEC-conditioned

medium (1:10) during the whole experiment showed inhibition of 45Ca+2 incorporation.

Upon removal of non-stimulated HUVEC-conditioned medium, all these MSC

cultures showed matrix mineralization similar to the positive control (Figure 7).

Interestingly, MSC that were in contact with HUVEC-conditioned medium for a longer

period of time (17 and 24 days) incorporated more calcium into their matrix upon

HUVEC-conditioned medium removal, than MSC that were in contact with HUVEC-

conditioned medium for a shorter period of time (3 and 10 days) (Figure 7). OSX

gene expression was also analyzed and showed a similar picture (data not shown).
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Figure 7:
45
Ca incorporation of

MSC in osteogenic
medium (OM) at day 27
after removal of HUVEC
at different time points
(n=4): Calcium deposition

by MSC was inhibited by
HUVEC, but upon
removal of HUVEC, MSC
showed again significant
matrix mineralization.
Interestingly, it seemed
that the longer MSC were
cultured with HUVEC-

conditioned medium, the
higher was the amount of
45
Ca incorporated into

their extracellular matrix,
aftff er rerr movavv l of HUVEVV C-condititt oii ned medium (a(( )a . OSXSS gene expx rerr ssioii n showed a similar response
upon removal of HUVEC-conditioned medium (data not shown).

Inhibition experiment

To investigate at which times HUVEC could interfere with the MSC

differentiation process, we cultured MSC in osteogenic medium and then replaced it

with osteogenic medium containing non-stimulated HUVEC-conditioned medium

(1:10) at different time points. The analysis of OSX gene expression showed, that

osteoblastic differentiation was suppressed shortly after the medium was switched to

medium containing non-stimulated HUVEC-conditioned medium (1:10). Even after 21

days of osteogenic stimulation, addition of non-stimulated HUVEC-conditioned

medium resulted in a 4-5x decrease in OSX expression at day 28 compared to MSC

in osteogenic medium (Figure 8b). ALP activity showed a similar pattern (Figure 8a).

Figure 8a/b: Representative graphs of ALP activity (a) and OSX gene expression (b) of MSC: At
different timepoints, the osteogenic medium (OM) was replaced by HUVEC-conditioned medium. The
differentiation process was suppressed by the addition of HUVEC-conditioned medium, as judged by
the inhibition of ALP activity (a) and suppression of OSX expression levels (b).
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Chondro-CM and Fibro-CM on MSC

To investigate, if the inhibitory effect described in the previous sections was

specific to HUVEC, we cultured MSC in osteogenic medium supplemented with

chondrocyte-conditioned medium as well as with fibroblast-conditioned medium. Both

Chondro-CM and Fibro-CM did not alter the calcium incorporation by MSC or the

expression of osterix, while HUVEC-CM, in accordance with the results described

above, was able to significantly down-regulate calcium incorporation as well as

osterix gene expression (Figures 9a/b).

Figures 9a/b:
45
Ca incorporation (a) and OSX gene expression (b) of MSC in osteogenic medium

supplemented with endothelial- (HUVEC-CM), chondrocyte- (Chondro-CM) or fibroblast-conditioned
medium (Fibro-CM).

45
Ca-incorporation was significantly down regulated by HUVEC-CM, while

Chondro-CM or Fibro-CM had no effect. Osterix gene expression showed the same pattern.
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VEGF protein levels in culture media

We have measured the VEGF protein levels at several time points in the

culture supernatant to investigate whether VEGF concentrations would be altered in

the co-cultures compared to MSC alone. The highest amount of VEGF was observed

in MSC cultured in non-osteogenic medium, while in osteogenic medium VEGF was

down regulated. HUVEC had no effect on VEGF protein levels measured in the

culture supernatant (data not shown).
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Discussion

In the present study, we have investigated the effect of HUVEC on MSC

differentiation towards the expression of an osteoblastic phenotype. The

differentiation of MSC by osteogenic medium was inhibited following exposure to

HUVEC. This was reflected by a significant decrease in matrix mineralization, ALP

activity and in reduced expression of specific osteoblastic genes, including MMP-13,

COL1, BMP-2 and ON. Interestingly, OC gene expression seems not to be an

appropriate differentiation marker in human cells, as previously reported [42].

HUVEC were co-cultured with MSC for up to 28 days in two different types of culture

systems: indirect contact and HUVEC-conditioned medium. The direct contact co-

culture system was not used due to the difficulty of identifying specific markers of

either HUVEC or MSC when cultured together, as well as to the lack of a suitable

culture medium that could support the growth of MSC and HUVEC together for more

than just a few days, without addition of growth factors (EGF, PDGF, VEGF,

bFGF…). Interestingly, the observed inhibitory effect of HUVEC on MSC

differentiation was seen in both co-culture systems, indicating that HUVEC secrete

one or several factors that can delay MSC differentiation. Furthermore, it appears

that this factor(s) acts by inhibiting OSX expression and therefore arresting MSC

differentiation at a pre-osteoblastic stage (Figure 10). It has been shown that Runx2

plays a role in the commitment-step to osteo-chondro progenitor cells whereas OSX

acts mainly on the terminal differentiation of osteoblasts and on distinguishing the

osteogenic pathway from the chondrogenic one [43]. This might explain why Runx2

is not affected by HUVEC. The suppression of OSX expression by HUVEC could

even be induced at later stages of MSC differentiation, just before mineralization of

the extracellular matrix would have started. In addition, the reversibility of the HUVEC

inhibitory effect on MSC differentiation was demonstrated by our recovery

experiment, which showed that upon removal of HUVEC-conditioned medium, MSC

could rapidly further differentiate towards the expression of an osteoblastic

phenotype. Interestingly, this last experiment also indicates that MSC exposed to

HUVEC for longer periods of time, seem to differentiate even faster towards an

osteoblastic phenotype upon removal of HUVEC, when compared to MSC that have

never been in contact with HUVEC (Figure 7).
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Figure 10: A simplified schematic representation of the different stages of the differentiation of MSC into

osteoblasts: We postulate, that HUVEC may have the ability to arrest osteoblastic differentiation in a
pre-osteoblastic stage by inhibiting OSX gene expression. The inhibitory effect of HUVEC does not
result in an increase of chondrocytic or adipocytic markers. In vivo, this could lead to an accumulation of
pre-osteoblasts at sites of bone turnover and repair.

It is also important to note that MSC exposed to HUVEC-CM showed no

COL2 expression (data not shown) and extremely low expression of Sox-9, two

typical markers of the chondrogenic phenotype (Figure 6). There was also no

increase in the expression of the adipocytic marker PPAR-gamma over time (data

not shown). These observations suggest that HUVEC-conditioned medium does not

drive MSC towards the expression of a chondrogenic or an adipogenic phenotype.

Together, our data from this in vitro system suggest that endothelial cells can

increase the osteogenic potential of osteoprecursor cells while keeping them in a pre-

osteoblast state (but at a later stage than the bipotential precursor stage for

chondrocytes and osteoblasts, since Runx2 expression is unchanged by HUVEC). In

addition, this effect is specific to HUVEC, since chondrocyte- as well as fibroblast-

conditioned medium did not show this inhibitory effect on MSC. This would correlate

with the in vivo potential of endothelial cells to recruit large numbers of osteogenic

precursor cells at sites of bone modeling or remodeling. Further studies are

necessary to verify this speculation.

Few studies have focused on the interactions of endothelial cells and osteoblastic

cells in the past years, and the outcomes of these studies were somewhat divergent.

While the positive influence of endothelial cells on osteoblastic cell proliferation has

been reported quite consistently, their influence on osteoblastic cell differentiation

seems rather controversial [6;7;9]. Wang et al. reported an increase in ALP activity in

human osteoblast-like cells when cultured in HUVEC-conditioned medium [6], while
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Jones et al. showed a decrease in ALP activity of MSC when cultured on EC feeder

layers [9]. Villars et al. showed a decrease in ALP activity in all non-direct contact co-

cultures, but an increase in ALP activity in direct contact co-cultures, but also a

decrease in osteocalcin synthesis in direct contact co-cultures [7]. Kaigler et al.

showed increased ALP activity as well as OC secretion only when MSC and EC were

co-cultured in direct contact [44]. Guillotin et al. showed that different kinds of primary

endothelial cells were able to induce ALP activity of osteoprogenitors when co-

cultured in direct contact for up to 6 days, while transformed endothelial cells lines

showed no effect [45]. Stahl et al. used EC and osteoblasts in an in vitro 3D

spheroidal co-culture model. They described spontaneous organization of

osteoblasts and endothelial cells into a core and a surface layer as well as changes

in the gene expression patterns of both cell types, including an increase in ALP

activity and down-regulation of VEGF after 48h, but did not distinguish between the

two cell types during analysis [46;47]. Furthermore, all the studies mentioned above

were carried out for a rather short period of time. Our preliminary studies showed no

effect of EC on MSC differentiation in non-osteogenic medium (in no-direct contact

co-cultures), which is in accordance with the above reports.

During the formation of a vascular network, endothelial progenitors originating from

hemangioblasts differentiate into mature endothelial cells, which then participate in

the processes of vasculogenesis and angiogenesis to form a mature vascular

network. Especially in bone, this capillary network is constantly remodeled, which

includes destabilization of vessels and sprouting of new branches, processes that are

believed to require a change in the differentiation/maturation state of the vessel-

covering endothelial cells. Therefore, this change in “maturation” of endothelial cells

might influence their effect on MSC differentiation. These vessel remodeling

processes are controlled by several factors, the most important one probably being

VEGF [48]. Indeed, as observed in the present study, stimulation of HUVEC by

VEGF further increases their inhibitory action on MSC differentiation. This inhibition

could not be reproduced by VEGF itself. In fact, we could not detect any VEGF

protein (results not shown) in the HUVEC-conditioned media (both VEGF-stimulated

and non-stimulated) added to the MSC, as previously also reported by Villars et al.

[7]. This conclusion is also supported by the observations that VEGF expression in

MSC is decreased by glucocorticoids both in vivo and in vitro; that VEGF protein was

detected in MSC cultures but its level did not show any changes upon addition of

HUVEC-conditioned medium or HUVEC in indirect contact; and that Stahl et al. even

measured a down-regulation of VEGF in their 3D direct contact co-culture model

[46;47]. Furthermore, MSC cultured in non-osteogenic media (no dexamethasone)
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showed higher levels of VEGF, again indicating that glucocorticoids suppress VEGF

expression.

In conclusion, we have shown that HUVEC specifically have an inhibitory

effect on dexamethasone-induced MSC differentiation in vitro. This effect is most

probably due to a yet unknown HUVEC secreted factor(s), which suppresses OSX

expression, therefore arresting MSC differentiation at a pre-osteoblastic stage.

Furthermore, prior stimulation of HUVEC with VEGF resulted in a further increased

inhibitory effect of HUVEC on MSC differentiation. A tempting speculation arising

from these data is that HUVEC might regulate the rate at which MSC differentiate

into osteoblasts, by initiating the recruitment of osteoprecursor cells at sites of bone

remodeling and by keeping them in a pre-osteoblastic stage. This would avoid

mineral deposition within vessels, but once these pre-osteoblastic cells extravasate

out of the vessel and continue their homing to the remodeling/repair site, they will

rapidly differentiate into mature osteoblasts and lay down new osteoid tissue.
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Chapter III

Effect of Ang1 and a combination of Ang1 and VEGF

on osteoblastic differentiation of MSC

Meury TR, Alini M

After the interesting results obtained following VEGF-stimulation of HUVEC (see

chapter II), we decided to investigate another factor involved in angiogenesis. While

VEGF is mainly responsible to induce vascular leak, angiopoietin-1 (Ang1) is

involved in the stabilization and maturation of blood vessels. We therefore decided to

investigate the effect of Ang1 stimulated HUVEC on MSC differentiation.

This chapter is not planned as a publication in the current form.
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Introduction

Vasculogenesis and angiogenesis are critical processes during bone

development, turnover and repair [1-5]. In vitro and in vivo studies have shown, that

endothelial cells interact closely with osteoblastic cells [6-13] (see also chapter II).

Angiopietin-1 (Ang1) is probably the best-described angiogenic factor next to

vascular endothelial growth factor (VEGF). VEGF is the most critical driver of

vascularization and is mainly responsible for induction of vascular permeability and

leak [14, 15]. Ang1 works in concert with VEGF [16, 17] but is restricted to later

stages of angiogenesis where it plays a main role during the maturation and

stabilization of blood vessels. This was illustrated by studies showing that mice

lacking Ang1 develop a rather normal primary vasculature (unlike mice lacking

VEGF), but the vasculature fails to undergo further remodeling and maturation [18].

Interestingly, recent studies have shown synergistic actions of VEGF and Ang1

during angiogenesis [19, 20], neovascularization [21, 22] and other in vivo assays

[23, 24].

In chapter II, we were able to show that VEGF had a significant effect on how human

umbilical vein endothelial cells (HUVEC) influence human mesenchymal stem cell

(MSC) differentiation. Unstimulated HUVEC were able to down-regulate

dexamethasone-induced osteogenic differentiation of MSC in vitro. This inhibitory

effect was significantly enhanced when HUVEC were previously stimulated with

VEGF (see chapter II).

The aim of the present study was to investigate the effect of HUVEC stimulated with

Ang1 or a combination of VEGF and Ang1 (VEGF/Ang1) on MSC differentiation in

vitro.
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Materials and Methods

Origins of human cells

Bone marrow aspirates were taken from patients undergoing routine

orthopedic surgery involving iliac crest exposure, after informed consent. Bone

marrow aspirates (20mL) were harvested into CPDA-containing Sarstedt monovettes

using a biopsy needle that was pushed through the cortical bone. Aspirates were

processed within 12-24 hours after harvesting.

Isolation and expansion of human MSC

Bone marrow aspirates were homogenized by pushing them a few times

through a syringe. The aspirate was then diluted 1:4 with IMDM (Gibco 42200-022)

containing 5% (v/v) FBS (Gibco 10270-106) and centrifuged at 200g for 5min at room

temperature (RT). The top layer (approx. 1cm) containing mostly fat tissue was

removed. Per 1mL of undiluted sample, 2.6mL of Ficoll (Histopaque-1077, Sigma

#1077-1) were pipetted into a 50mL Falcon tube and the aspirate was added

carefully on top of the Ficoll. After centrifugation at 800g for 20min at RT, the mono-

nucleated cells were collected at the interphase using a syringe. To 1mL of collected

interphase solution, 5mL of IMDM/5%FBS were added, the tube was gently mixed

and centrifuged at 400g for 15min at RT. The pellet was resuspended in the same

amount of IMDM/5%FBS, centrifuged again and resuspended in IMDM/5%FBS. Cell

number was determined using Methylene Blue in a hemocytometer. The cells were

seeded at densities of 8-10 *106 mono-nucleated cells per 150cm2 T-flask in IMDM

containing 10% FBS, nonessential amino acids (Gibco 11140-035) and PenStrep

(100U/mL, Gibco 15140-122). After 5 days, the monolayers were washed with

Tyrode’s balanced salt solution (TBSS) to remove non-adherent cells, and fresh

medium containing 5ng/mL b-FGF (R&D 233-FB) was added as previously reported

[25-27]. Medium was changed every 2-3 days and cells were subcultured 1:3 at sub-

confluence. The adherent cells after one subculture were termed Mesenchymal stem

Cells (MSC). Only cells between passages 2-4 (approx. 12-18 populations doublings)

were subsequently used [28].

Expansion of HUVEC

Primary Human Umbilical Vein Endothelial Cells (HUVEC) were purchased

from Cascade Biologics (cat# C-003-5C). The cells were expanded in IMDM

containing 10%FBS, nonessential amino acids, PenStrep, 20ug/mL ECGS (Sigma E-
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2759) and 90ug/mL heparin (Sigma H-3149). Only cells between passages 2-4 were

subsequently used.

Stimulation of HUVEC with Ang1 or VEGF/Ang1

HUVEC were expanded in IMDM containing 10% FBS, nonessential amino

acids, 20ug/mL ECGS, 90ug/mL heparin and PenStrep. At about 75% of confluency,

100ng/mL Ang1 (R&D Systems 923-AN) or a combination of 100ng/mL Ang1 and

25ng/mL VEGF (Sigma V-7259) were added and the cells were stimulated for 3

days. The concentrations used in this study were chosen based on publications by

Hayes et al. (Ang1) [29] and Street et al. (VEGF) [30]. The HUVEC monolayers were

either used to produce HUVEC-conditioned medium (see Conditioned medium on

MSC cultures)) or were trypsinized and used for indirect contact co-cultures.

MSC cultures

MSC were seeded in 24-well plates (Falcon BD 353504) at a density of

20’000 cells/well in 1mL of medium and were left to attach for 2-3 hours. Culture

medium for the MSC culture systems contained IMDM, 10% FBS, nonessential

amino acids, 0.1mM ascorbic acid-2-phosphate (Sigma A-8960) and 10mM -

glycerophosphate (Sigma G-6251) with 10nM dexamethasone (osteogenic medium)

or without dexamethasone (non-osteogenic medium). Dexamethasone was

purchased at Sigma (D-2915). Media were changed twice a week.

Conditioned medium on MSC cultures

HUVEC-conditioned medium was produced by washing the VEGF/Ang1

stimulated (see section “Stimulation of HUVEC with Ang1 or VEGF/Ang1”) or non-

stimulated HUVEC monolayers twice with phosphate buffered saline (PBS) and then

culturing them for 24h in IMDM containing 10% FBS and PenStrep. After 24h, the

medium was removed, filtered (0.22µm), and stored at -20°C until used. This

conditioned medium was added in a 1:10 mixture to MSC monolayers cultured in

osteogenic or non-osteogenic medium in 24-well plates.

Indirect contact cultures of MSC and HUVEC (VEGF/Ang1 stimulated or non-
stimulated)

To MSC monolayers, VEGF/Ang1 stimulated (see section “Stimulation of

HUVEC with Ang1 or VEGF/Ang1”) or non-stimulated HUVEC were added in cell

culture inserts (0.4µm pore size, Falcon BD 353495) at a density of 10’000
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cells/insert. Fresh HUVEC were added once a week to the system to provide a fresh

supply of endothelial cell secreted factors. These experiments were also performed

in osteogenic or non-osteogenic medium.

Quantification of matrix mineralization using 45Ca2+ isotope

1.25µCi/mL of 45Ca2+ isotope (Amersham CES3) were added to each well and

the plates were incubated at 37°C for 6h [31]. The medium was removed and the

monolayers were washed 3x with IMDM to remove unincorporated 45Ca2+. Then

0.5mL of 70% formic acid were added to each well and the plates were incubated at

65°C for 1h. The formic acid solution was transferred to 3.5mL of scintillation liquid

(OptiPhase HiSafe’3 by Perkin Elmer) and the amount of radioactivity was measured

using a Wallac 1414 WinSpectral liquid scintillation counter.

Quantification of alkaline phosphatase activity

The medium was completely removed and the monolayers were washed

once with PBS. The cell layers were extracted by addition of 500µL of 0.1%Triton-X

in 10mM Tris-HCl (pH 7.4) and incubation at 4°C on a gyratory shaker for 2h (See

Sigma Technical Bulletin Procedure No.104). ALP activity was measured

colorimetrically by measuring the p-nitrophenol production during 15min incubation at

37°C with p-nitrophenyl phosphate as substrate (Sigma Kit Nr.104) on a Perkin Elmer

Bio Assay Reader HTS 7000.

RNA Isolation and Reverse Transcription

Monolayers were extracted using 500µL of TRI-Reagent (MRC Inc. TR-118)

with 5ul/mL of Polyacryl-carrier (MRC Inc. PC-152) for 10min at RT and transferred

to Eppendorf tubes. 150mL of 1-Bromo-3-Choro-Propane were added, the tubes

vortexed for 15sec and then centrifuged at 12’000g for 15min at 4°C. The colorless

layer on the top was transferred into a new tube and 750µL of isopropanol were

added, then the tube was centrifuged at 12’000g for 10min at 4°C. Sample

supernatants were removed and pellets were washed in 1mL of 75% EtOH by

vortexing and centrifuging at 10’000g for 5min at 4°C. Pellets were air-dried and re-

suspended in 30µL of DEPC-treated water. After 15min at 60°C, tubes were

immediately transferred to ice. The total RNA amount and purity was assessed by

measuring the absorbance at 260nm and 280nm. Reverse transcription was

performed using 1µg of total RNA sample, which was mixed with 2µL of 10x TaqMan

RT Buffer (500mM KCl, 100mM Tris-HCl, pH 8.3), 4.4µL of 25mM magnesium
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chloride, 4µL of dNTP mixture (2.5mM of each dNTP), 1µL of random hexamers

(50µM), 0.4µL of RNase inhibitor (20U/mL) and 0.5µL of MultiScribe Reverse

Transcriptase (50U/µL) (all from Applied Biosystems); DEPC-treated water was

added to bring the final reaction volume to 20µL. Reverse transcription was

performed using a Thermal Cycler 9600 by Applied Biosystems. cDNA samples were

appropriately diluted with Tris-EDTA buffer before being used for real-time RT PCR.

Real-time RT PCR

Oligonucleotide primers and TaqMan probes were designed using the Primer

Express Oligo Design software (Ver. 1.5, Applied Biosystems). The nucleotide

sequences were obtained from the GenBank database and the probes were

designed to overlap an exon-exon junction in order to avoid amplification of genomic

DNA. Primers and probes for amplification of 18S ribosomal RNA, used as

endogenous control, were from Applied Biosystems. All other primers and labeled

TaqMan probes were from Microsynth (Balgach, CH). TaqMan probes were labeled

with the reporter dye molecule FAM (6-carboxyfluorescein) at the 5´end and with the

quencher dye TAMRA (6-carboxy-N, N, N´, N´-tetramethylrhodamine) at the 3´end.

The PCR reaction mixture contained TaqMan Universal PCR master mix without

AmpErase UNG (Applied Biosystems), 900nM primers (forward and reverse), 250nM

TaqMan probe, and 2 l of cDNA sample for a total reaction volume of 25 l. PCR

conditions were 95°C for 10min, followed by 42 cycles of amplification at 95°C for

15sec and 60°C for 1min using the GeneAmp 5700 Sequence Detection System

(Applied Biosystems, Foster City, CA). Relative quantification of mRNA targets was

performed according to the comparative CT method with 18S ribosomal RNA as

endogenous control (ABI PRISM 7700 Sequence Detector User Bulletin (2), PE

Applied Biosystems 1997). For a list of primers and probes see chapter II, Table I.

Statistical analysis

The data are expressed as mean±SEM. Statistics were performed using the

non-parametric Mann-Whitney U-test, which compares the medians of two

independent distributions. P < 0.05 was considered statistically significant.



Chapter III: Effect of Ang1 and a combination of VEGF/Ang1 on osteoblastic differentiation of MSC

66

Results

Experiments were performed with bone marrow aspirates from 3 different

donors (age range 39-66). The MSC used during the experiments were expanded in

standard medium supplemented with b-FGF to keep them in a tripotential state,

capable of differentiating along the osteogenic, chondrogenic and adipogenic

pathways [25, 26, 28].

In accordance to the results we obtained previously (see chapter II), there was no

difference in the inhibitory effect of HUVEC on MSC differentiation between indirect

co-cultures and HUVEC-conditioned medium cultures. The results presented in the

following paragraphs therefore are combined data from all experiments, independent

of the culture type (indirect co-cultures and HUVEC-conditioned medium).

Effect of (stimulated or unstimulated) HUVEC on MSC differentiation in non-
osteogenic medium

In non-osteogenic medium, HUVEC had no effect on MSC differentiation.

This pattern was not changed when HUVEC were previously stimulated with Ang1 or

a combination of Ang1 and VEGF (Figures 1 and 2 left side).

Effect of (stimulated or unstimulated) HUVEC on MSC differentiation in osteogenic

medium (OM)

As expected, osteogenic medium (OM) significantly up-regulated the

expression of several osteoblastic markers like calcium incorporation, ALP activity

and gene expression of Osx, BSPII, MMP-13, ON and Col1 when compared to MSC

in non-osteogenic medium (Figures 1-4). As shown before (see chapter II), the

addition of unstimulated HUVEC to MSC in OM results in a significant down-

regulation of osteoblastic markers, as prominently seen in significantly lowered

calcium incorporation, ALP activity and gene expression (Figures 1-4).

When HUVEC were previously stimulated with Ang1, they showed a very

comparable inhibitory effect on MSC differentiation as unstimulated HUVEC. The

same observation was made for HUVEC that were stimulated with a combination of

VEGF and Ang1 (VEGF/Ang1).



Chapter III: Effect of Ang1 and a combination of VEGF/Ang1 on osteoblastic differentiation of MSC

67

Figure 1:
45
Ca

2+
incorporation by MSC at day 24: MSC in OM incorporated significantly more calcium

into their matrix than MSC in non-osteogenic medium (*), as expected. While endothelial cells (EC) did
not have an influence on MSC in non-osteogenic medium, they significantly down-regulated calcium
incorporation of MSC in OM. Stimulation of HUVEC with Ang1 or VEGF/Ang1 did not show any further
significant effect compared to unstimulated HUVEC (in non-osteogenic or osteogenic medium).

Figure 2: ALP activity of MSC at day 12: MSC in osteogenic medium (OM) showed significantly more
ALP activity that MSC in non-osteogenic medium (*), as expected. In non-osteogenic medium EC did
not show an effect, but in OM, ALP activity in MSC was significantly down-regulated by EC. Stimulation
of HUVEC with Ang1 or VEGF/Ang1 did not show any further significant effect compared to
unstimulated HUVEC (in non-osteogenic or osteogenic medium).
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Figure 3: Expression of the Osterix gene by MSC at day 24: While MSC in OM expressed Osx
prominently; MSC in non-osteogenic medium (*) did not. HUVEC significantly decreased Osx
expression of MSC in OM. Stimulation of HUVEC with Ang1 or VEGF/Ang1 did not have a significant
effff eff ct on Osx expx rerr ssioii n comparerr d tott unstitt mii ulall ted HUVEVV C.

Figure 4a-d: Gene expression of Collagen type I, BSP II, MMP-13 and Osteonectin at day 24: MSC in
OM expressed Col1, BSPII, MMP-13 and osteonectin prominently, while MSC in non-osteogenic
medium (*) showed significantly much lower levels. HUVEC significantly decreased the expression of
Col1, BSPII and MMP-13 by MSC in OM independent of being stimulated or not with Ang1 or
VEGF/Ang1.
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Discussion

Even though the generally accepted roles for VEGF and Ang1 during

angiogenesis are rather oppositely (destabilization versus maturation of blood

vessels), there are several recent in vivo studies that have shown Ang1 and VEGF

also to act synergistically during angiogenesis and vasculogenesis [19-24]. There is

very little literature about the in vitro effect of Ang1 on any cell type and its

interactions with VEGF. Huang et al. showed that Ang1 alone had no effect on

endothelial cell proliferation, but enhanced cell growth in the presence of VEGF [32].

Ang1 and VEGF have been shown to enhance endothelial cell migration and survival

in a dose-dependent manner [33, 34]. However, Ang1 opposes the effect of VEGF on

vascular permeability. In fact, Wang et al. have shown that VEGF-induced vascular

leak required the translocation and activation of protein kinase C and that this

pathway was efficiently blocked by Ang1 [35].

Since in an earlier study we were able to show that HUVEC had an inhibitory effect

on MSC differentiation in OM, and that this inhibitory effect could be amplified by

using VEGF-stimulated HUVEC (see chapter II), we were interested in investigating if

a similar effect could be observed with Ang1-stimulated or VEGF/Ang1-stimulated

HUVEC.

Our results showed, that Ang1-stimulated HUVEC were neither able to mimic the

inhibitory observed with VEGF-stimulated HUVEC, nor did it have a stimulatory effect

on osteogenic MSC differentiation. Interestingly, when MSC were exposed to

VEGF/Ang1-stimulated HUVEC, there was also no change in the expression levels of

osteoblastic markers compared to MSC exposed to unstimulated HUVEC. This

indicates that Ang1 might override the inhibitory effect of VEGF-stimulated HUVEC

on MSC differentiation.

Further studies will be necessary to evaluate whether higher concentrations

of Ang1 might be necessary to induce a detectable effect on MSC differentiation [33,

34]. In addition, experiments involving Ang2 alone or in combination with VEGF

should also be performed, since action of Ang2 is highly dependent on VEGF.

Finally, based on the findings described in chapter V, it should be as well considered

to repeat the 2D-experiments (including those with VEGF) in a 3D environment.
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Chapter IV

Definition of a PRP production protocol and the effect

of PRP on osteoblastic differentiation of MSC in vitro

Meury TR, Kupcsik L, Heini P, Becker S, Stoll T, Alini M

In this chapter, we focused on another important component of a bone construct: The

biological factors. We decided to investigate if platelet-rich plasma (PRP) due to its

autologous origin and its highly concentrated factor mixture could influence MSC

differentiation. In addition, due to its capacity to form a gel upon activation, PRP

could also serve as a matrix for cells. Since there was no consistent routine protocol

to produce PRP, we decided to first define a reliable PRP isolation and activation

protocol. Then we studied the influence of PRP on MSC differentiation into bone

forming cells.

This chapter is a manuscript submitted for publication to J Orthop Res.
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Introduction

Platelets play a pivotal role during wound healing. Upon being activated, they

adhere to the exposed sub-endothelium and form a clot by binding to circulating

fibrinogen molecules that cover the injured site and allow the healing process to

begin. This clot is stabilized by a thick fibrin-mesh, which forms under the control of

liver-produced thrombin. In addition, platelet activation and degranulation results in

the release of a high number of biological factors, which attract more platelets to the

site of injury, but also growth factors and cytokines that can target other cell types

(including PDGF, VEGF, IGF, EGF, FGF and TGF) [1, 2]. Many of those factors have

been known to play a direct role in normal bone turnover and in the events during

early bone healing [3]. This led to the idea to use platelets in bone repair in the form

of platelet-rich plasma (PRP) [4, 5]. PRP is autologous plasma that has a platelet

concentration above baseline (~1Mio platelets/µL vs. ~0.2Mio platelets/µL), but a

native fibrinogen concentration. A highly beneficial effect of PRP addition to bone

grafts, eventually in combination with mesenchymal stem cells is suspected.

However, the few studies performed using PRP in fracture repair resulted in only

moderately successful outcomes. Some groups have observed an increased bone

formation [4, 6-10], some an increased implant resorption [11], others have reported

improved osseointegration [10, 12, 13] or increased vascularization [11].

Nevertheless, several studies have shown no beneficial influence of PRP on bone

healing whatsoever [14-18].

The interpretation of all these studies is not simplified by the fact that they were

performed using many different species, including dog [11, 12, 14], rat [8, 17], mini-

pig [16, 19], goat [7], rabbit [6] and human [4, 9, 10, 15, 18] and many different defect

sites and types. Furthermore, there is great inconsistency in the techniques used for

PRP preparation. Some groups have used common protocols (1- or 2-step

centrifugations using normal lab equipment) [8, 11, 12], while others used

commercially available systems [19-21]. PRP preparations from these different

systems can hardly be compared, since the resulting platelet concentrations as well

as the growth factor concentrations released by the platelets are preparation

dependent [4, 22, 23]. Furthermore, while some groups activated the PRP (mostly by

addition of bovine Thrombin and CaCl2) [9, 11, 12, 16], others did not. In addition, a

few studies have shown, that PRP alone has a positive effect on bone healing, while

others only report a beneficial effect in combination with autologous precursor cells

[9, 11, 12].
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Our aim was to define a simple and quick procedure to produce PRP using

regular lab equipment. Additionally, we wanted to compare different activation

methods and evaluate their efficiency and efficacy. Also, there is a lack of in vitro

data concerning the influence of PRP on different cell types. A positive effect of PRP

on the proliferation [22, 24-28] and migration [27, 29] of several cells types including

MSC, stromal cells, osteoblastic cells or EC was reported quite consistently, but its

effect on cell differentiation remains unclear. We therefore evaluated the potential

effect of PRP on bone precursor cells in a controlled in vitro environment by

investigating its effect on human mesenchymal stem cell differentiation into

osteoblasts.
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Materials and Methods

Origin of bone marrow and blood aspirates

Bone marrow (60mL) and blood (100mL) aspirates in CPDA-containing

Sarstedt monovettes were received from patients undergoing routine orthopaedic

surgery involving iliac crest exposure, after informed consent (KEK Bern 126/03).

Blood aspirates were stored at RT under gentle agitation and bone marrow aspirates

were stored at 4°C under gentle agitation until processed within 24 hours after

harvesting. The platelets were counted using a Digitana Sysmex FS-3000.

MSC isolation and culture

Bone marrow aspirates were homogenized by pushing them a few times

through a syringe. The aspirate was then diluted 1:4 with IMDM (Gibco 42200-022)

containing 5% (v/v) FBS (Gibco 10270-106) and centrifuged at 200g for 5min at room

temperature (RT). The top layer (approx. 1cm) containing mostly fat tissue was

removed. To 1mL of undiluted sample, 2.6mL of Ficoll (Histopaque-1077, Sigma

#1077-1) were pipetted into a 50mL Falcon tube and the aspirate was added

carefully on top of the Ficoll. After centrifugation at 800g for 20min at RT, the

mononucleated cells were collected at the interphase using a syringe. To 1mL of

collected interphase solution 5mL of IMDM/5%FBS were added, the tube was gently

mixed and centrifuged at 400g for 15min at RT. The pellet was resuspended in the

same amount of IMDM/5%FBS, centrifuged again and resuspended in

IMDM/5%FBS. Cell number was determined using Methylene Blue in a

hemocytometer. The cells were seeded at densities of 8-10x106 mononucleated cells

per 150cm2 T-flask in IMDM containing 10% FBS, nonessential aminoacids (Gibco

11140-035) and PenStrep (100U/mL, Gibco 15140-122). After 5 days, the

monolayers were washed with Tyrode’s balanced salt solution (TBSS) to remove

non-adherent cells, and fresh medium containing 5ng/mL basic-FGF (R&D 233-FB)

was added as described previously [30-32]. Medium was changed every 3 days and

cells were subcultured 1:3 at sub-confluence. The adherent cells after one subculture

were termed mesenchymal stem cells (MSC). Cells between passages 2-4 were

subsequently used.

PRP preparation

The blood aspirates were transferred from the CPDA-cuvettes into 15mL

Falcon tubes, and were centrifuged at 200g for 30min at RT. The resulting plasma
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supernatants were pooled, transferred into a new 15mL Falcon tube, and centrifuged

at 2’000g for 5min at RT to get a platelet pellet. The resulting supernatant is called

platelet-poor plasma (PPP). Platelet-rich plasma (PRP) was produced by

resuspending the resulting pellet in the PPP (1/10th of the initial blood volume). Since

PRP has a tendency to gel, even when added in low concentrations to culture

medium, fibrinogen was removed by resuspending the platelet pellet in PBS (1/10th of

the initial blood volume) instead of plasma supernatant. This platelets-containing

PBS was termed platelet-released growth factors (PRGF). PRGF was stored at -

20°C until used to supplement MSC cultures. PRP was used immediately to evaluate

PRP activation efficiency.

PRP/PRGF activation

PRP or PRGF was activated using the following protocols:

Thrombin: 100U/mL of bovine Thrombin (Sigma T-4648) dissolved in PBS or 100mM

CaCl2 (10%) was added to the PRP or PRGF samples. The samples were kept at

37°C for 30-60min.

Freeze-Thaw cycles: PRP or PRGF in cryo-tubes (4.5mL, NUNC) were put in liquid

N2 for 1min to freeze “instantly”, then the tubes were transferred to a 37°C water-bath

to thaw for 5min. This procedure was repeated 5 times. After, the PRP or PRGF was

kept at 37°C for 30-60min. To some samples, 100mM CaCl2 (10%) was added

before the freeze-thaw cycles.

Fridge: The PRP or PRGF was frozen at -20°C for 30min, then kept at 37°C for 30-

60min. To some samples, 100mM CaCl2 (10%) was added before freezing.

Sonication: The PRP or PRGF was sonicated using a SONOPLUS-Ultraschall

Homogenisator (GM-70, UW-70, SH-70G) by Bandelin at 20 kHz for 10sec on ice,

and then kept at 37°C for 30-60min. To some samples, 100mM CaCl2 (10%) was

added before sonication.

Platelet activation efficiency by ELISA

To estimate platelet activation efficiency of the methods described above, the

release of PDGF-AB, -BB, and VEGF was determined. Following activation, the

samples were centrifuged at 18’000g for 2min to pellet debris and the gel that formed

after activation (only samples containing CaCl2). The resulting supernatant was

diluted 1:50 in PBS containing 0.1% BSA and human VEGF, PDGF-AB and -BB

protein content was measured using a DuoSet ELISA Development System by R&D
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Systems (PDGF-AB: DY222, PDGF-BB: DY220, VEGF: DY293B) on a Perkin Elmer

Bio Assay Reader HTS 7000.

MSC culture supplementation with PRGF

MSC were typsinized, washed, counted and seeded in 24-well (Falcon BD

353047) or 12-well plates (Falcon BD 353043) at densities of 10’000 to 15’000

cells/cm2 and were left to attach over night in IMDM supplemented with 10% FBS.

Culture medium during the experiments consisted of IMDM, 10% FBS, nonessential

amino acids, 0.1mM ascorbic acid-2-phosphate (Sigma A-8960) and 10mM -

glycerophosphate (Sigma G-6251). To some cultures (positive control), 10nM

dexamethasone (Sigma D-2915) was added. Media were changed twice a week.

Some cultures were supplemented with 1, 5, 10 or 20% activated PRGF (containing

no CaCl2).

45Ca incorporation assay

1.25µCi/mL of 45Ca2+ isotope (Amersham CES3) were added to each well and

the plates were incubated at 37°C o/n. The medium was removed and the cell

monolayers were washed 3x with IMDM to remove unincorporated 45Ca2+. Then

0.5mL of 70% formic acid were added to each well and the plates were incubated at

65°C for 1h. The formic acid solution was transferred to a scintillation tube containing

3.5mL of scintillation liquid (OptiPhase HiSafe’3 by Perkin Elmer) and the amount of

radioactivity was measured using a Wallac 1414 WinSpectral liquid scintillation

counter.

Van Kossa staining

MSC monolayers were rinsed with TBSS. Fresh silver nitrate solution (5%)

was added and the cells were exposed to strong light for 20min. After rinsing 3 times

with distilled water, the cells were incubated in fresh 5% sodium thiosulfate for 10min,

before being rinsed again 3 times with distilled water. Then the cells were incubated

in 0.1% nuclear fast red solution for 10min, before being rinsed again with distilled

water. Samples were left in distilled water and pictures were taken immediately.

ALP activity assay

The medium was completely removed and the MSC monolayers were

washed once with PBS. The cell layers were extracted by addition of 500µL of
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0.1%Triton-X in 10mM Tris-HCl (pH 7.4) and incubation at 4°C on a gyratory shaker

for 3h (See Sigma Technical Bulletin Procedure No.104). ALP activity was measured

colorimetrically by measuring the p-nitrophenol production during a 15min incubation

at 37°C with p-nitrophenyl phosphate as substrate (Sigma Kit No.104) on a Perkin

Elmer Bio Assay Reader HTS 7000.

RNA isolation and reverse transcription

Monolayers were extracted using 500µL of TRI-Reagent (MRC Inc. TR-118)

with 5ul/mL of polyacryl-carrier (MRC Inc. PC-152) for 10min at RT and transferred to

Eppendorf tubes. 150mL of 1-Bromo-3-Choro-Propane were added, the tubes

vortexed for 15sec and then centrifuged at 12’000g for 15min at 4°C. The colorless

layer on the top was transferred into a new tube and 750µL of isopropanol were

added, then the tube was centrifuged at 12’000g for 10min at 4°C. Sample

supernatants were removed and pellets were washed in 1mL of 75% EtOH by

vortexing and centrifuging at 10’000g for 5min at 4°C. Pellets were air-dried and re-

suspended in 30µL of DEPC-treated water. After 15min at 60°C, tubes were

immediately transferred to ice. The total RNA amount and purity was assessed by

measuring the absorbance at 260nm and 280nm. Reverse transcription was

performed using 1µg of total RNA sample, which was mixed with 2µL of 10x TaqMan

RT Buffer (500mM KCl, 100mM Tris-HCl, pH 8.3), 4.4µL of 25mM magnesium

chloride, 4µL of dNTP mixture (2.5mM of each dNTP), 1µL of random hexamers

(50µM), 0.4µL of RNase inhibitor (20U/mL) and 0.5µL of MultiScribe Reverse

Transcriptase (50U/µL) (all from Applied Biosystems); DEPC-treated water was

added to bring the final reaction volume to 20µL. Reverse transcription was

performed using a Thermal Cycler 9600 (by Applied Biosystems). cDNA samples

were appropriately diluted with Tris-EDTA buffer before being used for real-time RT

PCR.

Real-time RT PCR

Oligonucleotide primers and TaqMan probes were designed using the Primer

Express Oligo Design software (Ver. 1.5, Applied Biosystems). The nucleotide

sequences were obtained from the GenBank database and the probes were

designed to overlap an exon-exon junction in order to avoid amplification of genomic

DNA. Primers and probes for amplification of 18S ribosomal RNA, used as

endogenous control, were from Applied Biosystems. All other primers and labeled

TaqMan probes were from Microsynth (Balgach, CH). TaqMan probes were labeled
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with the reporter dye molecule FAM (6-carboxyfluorescein) at the 5´end and with the

quencher dye TAMRA (6-carboxy-N, N, N´, N´-tetramethylrhodamine) at the 3´end.

The PCR reaction mixture contained TaqMan Universal PCR master mix without

AmpErase UNG (Applied Biosystems), 900nM primers (forward and reverse), 250nM

TaqMan probe, and 2 l of cDNA sample for a total reaction volume of 25 l. PCR

conditions were 95°C for 10min, followed by 42 cycles of amplification at 95°C for

15sec and 60°C for 1min using the GeneAmp 5700 Sequence Detection System

(Applied Biosystems, Foster City, CA). Relative quantification of mRNA targets was

performed according to the comparative CT method with 18S ribosomal RNA as

endogenous control (ABI PRISM 7700 Sequence Detector User Bulletin (2), PE

Applied Biosystems 1997). The sequences of the primer and probes used are shown

in Table I.

Statistics

All results are shown as mean±SEM. Statistical analyses were performed

using the non-parametric Mann-Whitney U-test, which compares the medians of two

independent distributions. P < 0.05 was considered to be statistically significant.
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Table I. Primers and Probes for Real-Time RT-PCR

Target Gene Sequence (5’ 3’)

Collagen I

Forw CCC TGG AAA GAA TGG AGA TGA T

Rev ACT GAA ACC TCT GTG TCC CTT CA
Probe CGG GCA ATC CTC GAG CAC CCT

Osteonectin

Forw ATC TTC CCT GTA CAC TGG CAG TTC
Rev CTC GGT GTG GGA GAG GTA CC

Probe CAG CTG GAC CAG CAC CCC ATT GAC

MMP-13

Forw CGG CCA CTC CTT AGG TCT TG
Rev TTT TGC CGG TGT AGG TGT AGA TAG

Probe CTC CAA GGA CCC TGG AGC ACT CAT GT

BMP-2
Forw AAC ACT GTG CGC AGC TTC C

Rev CTC CGG GTT GTT TTC CCA C

Probe CCA TGA AGA ATC TTT GGA AGA ACT ACC AGA AAC TG
Osteocalcin

Forw AAG AGA CCC AGG CGC TAC CT

Rev AAC TCG TCA CAG TCC GGA TTG

Probe ATG GCT GGG AGC CCC AGT CCC
Osteopontin

Forw CTC AGG CCA GTT GCA GCC

Rev CAA AAG CAA ATC ACT GCA ATT CTC
Probe AAA CGC CGA CCA AGG AAA ACT CAC TAC C

Runx2

Forw AGC AAG GTT CAA CGA TCT GAG AT
Rev TTT GTG AAG ACG GTT ATG GTC AA

Probe TGA AAC TCT TGC CTC GTC CAC TCC G

BSP II

Forw TGC CTT GAG CCT GCT TCC
Rev GCA AAA TTA AAG CAG TCT TCA TTT TG

Probe CTC CAG GAC TGC CAG AGG AAG CAA TCA

Osx and Dlx5:

Primers and Probes: Assays-On-Demand by Applied Biosystems

Osx: Hs00541729_m1

Dlx5: Hs00193291_m1

Probes were modified at the 5’ end with the FAM fluorescent dye (6-

carboxyfluorescein) and at the 3’ end with the TAMRA fluorescent dye (6-
carboxy-N,N,N’,N’-tetramethylrhodamine). Assay-On-Demand probes had a
non-fluorescent quencher at the 3’end.
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Results

The average age of the patients in this study was 49 years (youngest 28,

oldest 79). There were no obvious differences in the results obtained from the

different donors (12 males, 4 females).

PRP production

Preparation: Two different common storage temperatures were tested for the blood

aspirates, 4°C and room temperature (24°C). Aspirates that were stored at 24°C over

night showed significantly higher intact platelet numbers in blood, plasma and PRP

than aspirates that were stored at 4°C over night (Figure 1a). Also PDGF-AB and –

BB protein levels were approximately 2.5x higher when the blood was stored at 24°C

rather than at 4°C (Figure 1b).

Figures 1a/b: Comparison of storage temperatures for PRP (n=6): PRP stored at room temperature
over night showed significantly higher (P<0.05) numbers of undamaged platelets than when stored at
4°C (a). Also, PDGF levels released by activated platelets that were stored at room temperature were
significantly higher (P<0.05) than the levels released by platelets stored at 4°C (b).

Different combinations of centrifugation speeds were tested to obtain an optimal

protocol for PRP preparation. A single-step protocol (150g, 10min) was compared to

two 2-step protocols (30min at 200g followed by 5min at 200g and 30min at 200g

followed by 5min at 2’000g). To better estimate the efficiency of the 2-step protocols,

the number of the remaining platelets in PPP was also determined. A first

centrifugation step at 200g for 30min at RT, followed by a second centrifugation step

at 2’000g for 5min at RT showed the best platelet yield (Figure 2).
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Figure 2:
Comparison of
different PRP-
preparation protocols

(n=6): Numbers of
platelets were
measured before
and after different
centrifugations. PRP-
preparation using
two consecutive
centrifugation steps

(200g for 30min
followed by 2’000g
for 5min) showed the
highest platelet yield
in PRP and almost
no platelet leftovers
in PPP.

PRP/PRGF Activation: Platelet activation was estimated by measuring the release of

PDGF-AB, PDGF-BB and VEGF protein by the platelets upon appliance of different

activation methods, without addition of CaCl2 to avoid gel formation. The release of

PDGF-AB and –BB upon activation was comparable for all activation methods

(Figure 3). VEGF levels were extremely low and often not detectable at all (data not

shown). When the same activation methods were used in the presence of CaCl2, gels

formed within 5-30min in all samples. The samples were then centrifuged at 18’000g

for 3min to pellet the gel and the supernatant was used for the ELISA. Interestingly,

PDGF levels were significantly lower in the presence of CaCl2 than without (data not

shown).

Figure 3:
Comparison of

different platelet
activation methods
(n=5): PRP activation
efficiency was
determined by the
PDGF levels after
activation. All tested
methods resulted in
similar PDGF levels,

suggesting that all
activation methods
are equally effective.
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There was no correlation between the platelet number in blood or PRP before

activation and the resulting protein levels measured after activation (data not shown).

Effect on MSC

The activated PRP was centrifuged at 18’000g for 10min at RT to pellet the

gel and the supernatant was used to supplement the culture medium at a 1:10 ratio.

After the addition of PRP, the MSC culture medium showed again a strong tendency

to coagulate after a few hours, even without CaCl2 addition. We therefore

supplemented MSC medium with PRGF (no fibrinogen), which did not show any

coagulation. Comparison of the PDGF-AB and –BB levels in PRP and PRGF showed

also very similar values, allowing us to conclude that the effect of PRGF on MSC

should be analogous to that of PRP. So all experiments described below were

carried out using PRGF (Figure 4).

Figure 4:
Comparison of PRP
and PRGF protein

levels upon
activation (n=6):
PRP and PRGF
were activated using
the sonication and
the fridge methods
and PDGF-AB and
–BB levels were

determined. There
was no significant
difference between
PRP and PRGF.
This justifies the
replacement of PRP
by PRGF as cell
culture medium

supplement.

Ca incorporation

The effect of PRGF on matrix mineralization by MSC was estimated by

measuring 45Ca2+ incorporation into the MSC extracellular matrix (Figure 5) and by

Van Kossa staining (Figure 6). MSC grown in medium supplemented with PRGF

showed an up-regulation of 45Ca2+ incorporation by up to 400-fold compared to

unsupplemented MSC. This effect was independent of the activation method used

and was significantly higher than the effect of dexamethasone (Figure 5).
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Van Kossa staining of MSC monolayers at day 14 showed slightly elevated calcium

deposition in cultures supplemented with Dex (middle), compared to MSC grown

without Dex (left). Supplementation with PRGF (right) resulted in a significant up-

regulation of calcium deposition by MSC (Figure 6).

FiFF gi ure 5:
45
Ca

2+
incorporation by

MSC at days 14 and
21, relative to
unsupplemented (no
PRGF, no Dex) MSC
(n(( =9): MSC
supplemented with Dex
M(( SC +Dex) served as
a positive control.
Supplementation of

MSC with PRGF
rerr sulted in significantly
higii her calcium
inii corporation than MSC
lone, even more than
MSC +Dex. This result
waww s independent of the
RGF activation

method used.

Figure 6: Van Kossa staining of MSC monolayers at day 14: left: unsupplemented MSC, middle: MSC
supplemented with Dex, right: MSC supplemented with PRGF.

P<0.05
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ALP Activity

As expected, ALP activity in MSC supplemented with Dex was significantly

higher than in MSC cultured without supplementation. Interestingly, PRGF did not

show any effect on ALP activity of MSC (Figure 7).

Figure 7:
ALP activity of MSC (n=4):
MSC supplemented with
Dex (MSC +Dex) showed
significantly elevated ALP
activity compared to
unsupplemented MSC
(MSC). Supplementation of

MSC with PRGF (MSC
+PRGF) showed no effect
of ALP activity.

Gene expression

The change in expression levels of several osteoblastic marker genes by

MSC was analyzed. PRGF significantly increased the gene expression of Col1, BSP,

ON, OP and BMP-2 in MSC at day 28 compared to MSC without PRGF (Figure 8).

MMP-13 was expressed at very low levels in all cultures but was increased

significantly by PRGF (data not shown). Interestingly, there was no significant effect

of PRGF on the expression of the osteoblastic transcription markers Dlx5, Runx2 and

Osterix (data not shown).

Figure 8:
Gene expression of typical
osteoblastic marker genes
by MSC at day 28 (n=6):
The type I collagen (Col1),

bone sialoprotein (BSP),
osteonectin (ON),
osteopontin (OP) and bone
morphogenetic protein 2
(BMP-2) were significantly
(P<0.05) up-regulated in
MSC supplemented with
PRGF.
Data is expressed as

mRNA levels in
MSC+PRGF relative to
unsupplemented MSC.
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Dose dependency

We also evaluated how different concentrations of PRGF would affect MSC

differentiation by measuring 45Ca2+ incorporation. MSC culture media supplemented

with 1% or 5% PRGF showed only a small increase (up to 2.6-fold) in 45Ca2+

incorporation compared to the control. At 10% PRGF, a significant up-regulation

(average of 288-fold) of 45Ca2+ incorporation was observed, which did not show any

further increase with 20% PRGF (Figure 9).

Figure 9:
Dose dependency assay
using 1%, 5%, 10% and 20%

(v/v) PRGF in MSC culture
medium (n=3):
Supplementation of MSC
culture medium with 1% and
5% PRGF did not result in a
significant up-regulation of
calcium incorporation.
However supplementation

with 10% PRGF resulted in
significant up-regulation of
calcium incorporation.
Addition of 20% PRGF did not
result in a further up-
regulation.
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Discussion

The aim of this study was to evaluate different protocols to isolate and

activate platelet-rich plasma. Furthermore, we wanted to assess the possible

influence of PRP on MSC differentiation in vitro. Regarding our first aim, our results

showed that blood aspirates are best stored at room temperature until PRP is

isolated. In fact, if PRP is conserved at 4°C for 24h, we observed a significant drop in

platelet numbers and following activation, also lower PDGF protein levels. A possible

explanation for this is that platelets have been shown to be activated upon exposure

to 4°C [33-36] and that therefore the released factors could be lost during the

subsequent PRP preparation. This also correlates with the common storage

temperature of platelet concentrates at blood banks (20-24°C). PRP can easily be

prepared by two consecutive centrifugation steps using 200g for 30min, followed by

2’000g for 5min, both at room temperature. It is very important to collect the entire

plasma layer after the first centrifugation step, especially the lower parts, otherwise a

large percentage of the platelets will be lost due to their close proximity to the

leukocyte layer. The second centrifugation step should be rather short, 5min in our

case, in order to facilitate the resuspention of the platelet pellet. Activation of the PRP

is necessary to release the stored factors. This can be achieved by different

methods, all of which resulted to be equivalent. The use of bovine thrombin for PRP

activation is a widely used but rather controversial method due to its animal origin.

On the other hand, the amount and the speed of PRP-gel formation can be very well

controlled by this method. Repeated freeze-thaw cycles in liquid N2 have the

advantage of not using any debatable chemicals for activation, the disadvantage is

that it is rather time consuming. Freezing the PRP at -20°C for >30min gives

comparable results and is an easier PRP activation method, as is sonication. Overall,

our activation method of choice was sonication, mainly due to the speed advantage.

However, we realize that in a hospital setup, other methods might be preferred.

Addition of CaCl2 to the above activation methods leads to gelling of the PRP

preparations in a controlled manner, normally within 30-60min. The use of CaCl2

during platelet activation can have both advantages and disadvantages, depending

on the application. In in vivo applications, the gelling effect is clearly useful. A PRP

gel, implanted alone or in combination with cells seeded (or not) on a suitable

scaffold, is not only a source of beneficial growth factors and cytokines, but it might

also provide a matrix support (fibrin mesh) that could facilitate cell adhesion and cell-

matrix interactions. However, for 2D in vitro studies, the gelling effect of PRP was a
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major problem. We observed gelling of the PRP-supplemented MSC culture medium

after less than 36h, even though the PRP preparation was activated without the

addition of CaCl2. We therefore had to supplement our culture media with platelet-

released growth factors in PBS, thus avoiding the presence of fibrinogen and the

subsequent gelling of the culture media. We validated this approach by showing that

PRP and PRGF have comparable levels of PDGF-AB and –BB after activation by

sonication and freezing at -20°C.

To estimate the effect that platelet released growth factors have on MSC

differentiation towards the osteoblastic phenotype, we measured typical osteoblastic

markers, including matrix mineralization, ALP activity and the expression of

characteristic osteoblastic genes. The expression of the typical osteoblastic marker

genes Col1, BSP, ON, OP and BMP-2 and MMP-13 was enhanced by PRGF

suggesting that MSC were induced to differentiate into osteoblasts. As expected, the

addition of the steroid dexamethasone also significantly increased calcium

incorporation, but surprisingly to a lesser extent than PRGF. While calcium

incorporation was greatly increased by the addition of PRGF after 21 days, PRGF

had no effect on ALP activity. Studies have shown that BMP-2 and Dex highly

increase matrix mineralization in human marrow-derived cells, but only Dex and not

BMP-2 increases also ALP activity [37, 38]. We therefore suggest that PRGF is able

to induce osteoblastic differentiation of MSC through a BMP-2 mediated pathway.

This is also supported by highly up-regulated BMP-2 gene expression levels

observed in PRGF-stimulated cultures.

In summary, we defined a quick, simple and yet efficient protocol for the

production of platelet-rich plasma using common lab equipment. All the tested

activation methods showed to be equally efficient, therefore the activation protocol

can be chosen depending on the needs and on the available equipment. More

importantly, we were able to show that PRP in vitro is able to induce MSC to

differentiate into an osteoblastic phenotype. This osteoinductive potential of PRP

might be useful to improve and accelerate bone healing, especially following

infection, tumor resection, open fractures or non-unions, all of which are still major

problems in today’s orthopaedic clinics.
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Chapter V

In vitro evaluation of an endothelialized tissue

engineered 3D-construct for bone repair

Meury TR, Alini M

Finally, in the last experimental part of the thesis we combined all the observations

and findings obtained and described in the previous chapters to develop a construct,

which might serve as a bone graft for future in vivo experiments. By combining

osteoblastic precursors, endothelial cells as well as PRP, we believe to have the

necessary elements needed to accelerate the formation of blood vessels within the

graft when implanted in an animal model of large bone defects, as well as the

appropriate stimuli to induce MSC to differentiate into bone forming cells.

This chapter, following repetition of certain experiments, will lead to a manuscript to

be submitted to Tissue Engineering.
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Introduction

Autologous bone grafting is the current golden standard for the repair of large

bone defects, despite its obvious drawbacks like limited availability of grafting

material and donor site morbidity [1-4]. Possible alternatives are allografts or

xenografts, but in addition to the problematic ethical aspects, these kinds of grafts

also have serious limitations, like the risk of infections and possible immune

reactions. Due to these problems with autografts, allografts and xenografts,

researchers in the area of bone repair have explored alternative solutions. Calcium

phosphate and hydroxyapatite based materials as well as polymer scaffolds have

shown some interesting osteoconductive properties [5-10]. Nevertheless, the lack of

osteoinductive potential very often prevents the perfect healing of the defect treated

only with alloplastic materials. Many studies have shown that the lack of

osteoinductive potential of these scaffolds can be partly overcome by seeding

osteoblastic precursor cells into the scaffold prior to implantation. This approach

resulted in a significant improvement of the healing process [6, 11-19]. However, not

all problems have been solved yet and a major one remaining is the insufficient

vascularization of the central part of such grafts when used in large bone defects

[11].

We have therefore focused our studies on the interactions of endothelial cells and

bone precursor cells. Our previous study showed that endothelial cells could

modulate mesenchymal stem cell differentiation, by keeping them in a pre-

osteoblastic state, while increasing their osteogenic potential (see chapter II). So the

use of a combination of endothelial cells and bone precursor cells in an alloplastic

bone construct could have a positive effect on the vascularization of the whole

construct.

Early events during natural bone repair include the formation of a blood clot at the

damaged site resulting in the attraction of many different cell types to the repair site.

This initial recruitment is mainly mediated by factors released from the activated

platelets present within the blood clot. In an earlier study (see chapter IV), we were

able to show that activated platelet-rich plasma (PRP) has the potential to strongly

promote osteoblastic differentiation of mesenchymal stem cells (MSC) in monolayer.

This osteoblastogenesis-promoting property of PRP combined with its ability to form

a gel upon activation as well as its richness in factors known to be involved in

angiogenesis strongly suggest, that PRP could represent the ideal autologous

biological stimuli necessary to improve angiogenesis and bone formation within a

construct seeded with the appropriate cells.
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We therefore studied the potential of a complex 3D construct composed of a

polyurethane scaffold seeded with MSC and EC embedded in a PRP gel in a

controlled in vitro environment.
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Endothelial cell markers

During this study, we evaluated several markers related to angiogenesis and

endothelial differentiation:

Von Willebrand factor (vWf, factor VIII-related antigen) is a cell surface glycoprotein

necessary for adhesion of platelets to the sub-endothelium upon vascular rupture

[20]. It also plays an important role in the interactions between endothelial cells and

the surrounding matrix [21]. vWf is often used as an endothelial differentiation marker

due to its very high specificity and to its increasing expression by endothelial cells

during maturation of the microvasculature [22].

VE-cadherin (CDH5, CD144) is also an endothelial surface marker involved in cell-

cell adhesion through intercellular junctions. It is specific for vascular endothelium

and is suggested to be a later marker of endothelial cell differentiation in vitro [23].

EGFL7 (EGF-like domain 7, VE-statin) is expressed at high levels by endothelial cells

during vascular remodeling and is down-regulated in mature vessels [24].

MMP-2 (72kDa-Gelatinase, Gelatinase A) and MMP-9 (92kDa-Gelatinase,

Gelatinase B) are extracellular endopeptidases that are highly involved in

angiogenesis. Together they are able to break down most extracellular matrix

components including the collagen types I, II, IV, X, as well as gelatin, elastin,

aggrecan, fibronectin, osteonectin and laminin [25-30] . They are suggested to play a

major role in tissue remodeling and repair as well as in tumors metastases. MMP-2

has also been shown to be able to activate MMP-9 and MMP-13 [31, 32].

VEGF receptors-1 (Flt-1), -2 (Flk-1, KDR) and -3 (Flt-4) are all closely related

receptor tyrosine kinases expressed in the vascular endothelium. VEGFR-2 seems to

mediate the major actions of VEGF, whereas VEGFR-1 is suggested to have a

negative role (either as a decoy receptor, or by suppressing signaling through

VEGFR-2). VEGFR-3 is the least understood VEGF receptor and may be important

during blood vessel development, but also seems to be critical for lymphatic vessel

formation.

Tie1 and Tie2 (TEK) are receptors for angiopoietins (receptor tyrosine kinases). They

are selectively expressed in the vascular endothelium [33, 34]. All known

angiopoietins bind primarily to Tie2 while the role of Tie1 is still unclear. Both are

highly expressed in EC during vessel formation and remodeling.

Platelet-derived growth factor receptor beta polypeptide (PDGFRB, CD140B) is a

receptor for PDGF, which has been reported to promote angiogenesis.
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Endothelin-1 (ET-1) is a potent vasoconstrictor known to be involved in the

interactions of endothelial cells and osteoblastic cells. ET-1 has been shown to

enhance proliferation and differentiation of osteoprogenitors cells [35].

Laminin: Laminin is an important component of the basal lamina. Laminin is linked to

the vimentin protein located in the cytoskeleton of endothelial cells, which appears to

play an important role in endothelial cell migration and in blood vessel

morphogenesis [36].

CD31 (PECAM-1) is an integral membrane protein that mediates cell-to-cell

adhesion. CD31 is expressed constitutively on the surface of adult and embryonic

endothelial cells and is weakly expressed on platelets. CD31 mediated endothelial

cell-cell interactions are involved in angiogenesis [37].
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Materials and Methods

Origins of human cells

Aspirates of bone marrow and blood were obtained from patients undergoing

hip surgery after informed consent (KEK Bern 126/03). Fifty milliliters of bone marrow

and 100mL of blood aspirates were collected into CPDA-containing Sarstedt

monovettes. Bone marrow aspirates were stored at 4°C and blood at room

temperature (RT). Samples were processed within 24h after harvesting.

Isolation and expansion of human MSC

After homogenization of the bone marrow aspirates by pushing them a few

times through a syringe, they were diluted 1:4 with IMDM (Gibco 42200-022)

containing 5% (v/v) FBS (Gibco 10270-106) and were centrifuged at 200g for 5min at

room temperature (RT). The fat-containing top layer was removed. Per 1mL of

undiluted sample, 2.6mL of Ficoll (Histopaque-1077, Sigma #1077-1) were pipetted

into a 50mL Falcon tube and the aspirate was added carefully on top of the Ficoll.

After centrifugation at 800g for 20min at RT with lowest possible brake-settings, the

mono-nucleated cells were collected at the interphase using a syringe. To 1mL of

collected interphase solution, 5mL of IMDM/5%FBS were added, the tube was gently

mixed and centrifuged at 400g for 15min at RT. The resulting pellet was resuspended

in the same amount of IMDM/5%FBS, centrifuged again and resuspended in

IMDM/5%FBS. Cell number was determined using Methylene Blue in a

hemocytometer. The cells were seeded at densities of 15-20x106 mono-nucleated

cells per 300cm2 T-flask in IMDM containing 10% FBS, nonessential amino acids

(Gibco 11140-035) and PenStrep (100U/mL, Gibco 15140-122). After 5 days, the

monolayers were washed with Tyrode’s balanced salt solution (TBSS) to remove

non-adherent cells, and fresh medium supplemented with 5ng/mL b-FGF (R&D 233-

FB) was added [38-40]. Medium was changed twice a week and cells were

subcultured 1:4 at sub-confluence. The adherent cells after one subculture were

termed Mesenchymal stem Cells (MSC). Only cells between passages 2-5 (approx.

12-22 populations doublings) were subsequently used [41].

Expansion of HUVEC

Primary human umbilical vein endothelial cells (HUVEC) were purchased

from Cascade Biologics (cat# C-003-5C). The cells were expanded in M200

(Cascade M200-500) supplemented with low serum growth supplement (S-003-10),
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which contains fetal bovine serum, hydrocortisone, human epidermal growth factor,

b-FGF and heparin. Cells were subcultured 1:4 at sub-confluence and passages 2-5

were subsequently used.

3D-constructs

Isosorbide polyurethane scaffolds (termed IsoK-40 and IsoK-43) were

prepared using a combined salt leaching – phase-inverse technique. Salt crystals

with particle sizes in the range of 200 – 600µm were used as a porogen. IsoK-40 and

-43 were identical, except that IsoK-43 additionally contained 25% of nano-size

hydroxyapatite with an average particle size of 20nm (Advanced Biomaterials, Inc.,

Berkeley, USA). The scaffolds had interconnected pores with average pore size of

500µm and pore to volume ratio of 90%. The presence of hydroxyapatite had no

effect on the porous structure of the sponges. The scaffolds were gas-sterilized prior

to be used.

PRP production

The blood aspirates were transferred from the CPDA-cuvettes into 15mL

Falcon tubes, and were centrifuged at 200g for 30min at RT. The resulting plasma

supernatants were pooled, transferred into a new 15mL Falcon tube, and centrifuged

at 2’000g for 5min at RT to get a platelet pellet. Platelet-rich plasma (PRP) was

produced by resuspending the resulting pellet in the remaining plasma supernatant

(1/10th of the initial blood volume). PRP was used stored at -20°C until used.

Cell seeding on scaffolds

After sterilization, the scaffolds were degassed in IMDM under vacuum over

night. The next day the liquid in the scaffolds was removed using vacuum and the

scaffolds were ready to be loaded with cells:

MSC or HUVEC were trypsinized, washed twice (centrifuging at 380g for 10min at

RT and resuspending in IMDM/FBS) and counted using Trypan Blue and a

hemocytometer. After counting, the cells were centrifuged and resuspended in PRP

(see “PRP production”) or fibrin sealant (Baxter Biosurgery, Vienna) at a

concentration of 5x106 cells/150µL. Fibrin sealant consisted of the fibrinogen

component (diluted to final concentration 3.3mg/mL using proprietary dilution buffers

provided by Baxter) and a thrombin component. Just before being loaded into the

scaffolds, the cell/fibrin suspension was activated by addition of 15µL of the thrombin
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component (final concentration 5U/mL). Cells in PRP were activated using 15µL of

bovine thrombin (final concentration 5U/mL, Sigma T-4648) dissolved in PBS or

100mM CaCl2 (10%). Quickly, the cell/fibrin or cell/PRP was pipetted into a sterile

Eppendorf tube cap (cut off from the Eppendorf tube and turned upside down) and

the scaffold was added on top of it. Since the inner part of the cap has a diameter

just slightly larger than the scaffold, it provides a loading chamber that seals all sides

of the scaffold but the top. So by carefully adding a bit of pressure to the top of the

scaffold using forceps, the cell suspension located below the scaffold was sucked

into the scaffold upon pressure release. Due to the thrombin component, the

suspension gelatinized in the scaffold within a few minutes. The scaffolds were

incubated in the Eppendorf tube caps for 30min at 37°C. The samples were then

moved to 6-well plates and were cultured in IMDM containing 10% FBS, nonessential

amino acids, PenStrep and 500KIU/mL Aprotinin from bovine lung (Fluka #10820) to

avoid fibrin gel degradation [42]. Sandwich constructs were kept together using

PTFE-rings (polytetrafluoroethylene = Teflon®).

Polyurethane scaffolds fixated by PTFE-rings
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RNA Isolation and Reverse Transcription

The scaffolds containing cells in fibrin or PRP were pulverized in liquid

nitrogen and total mRNA was extracted using 1mL of TRI-Reagent (MRC Inc. TR-

118) with 5µL/mL of Polyacryl-carrier (MRC Inc. PC-152) in Eppendorf tubes. 150mL

of 1-Bromo-3-Choro-Propane were added, the tubes were vortexed for 15sec and

then centrifuged at 12’000g for 15min at 4°C. The colorless layer on the top was

transferred into a new tube and 750µL of isopropanol were added, then the tube was

centrifuged at 12’000g for 10min at 4°C. Sample supernatants were removed and

pellets were washed in 1mL of 75% EtOH by vortexing and centrifuging at 10’000g

for 5min at 4°C. Pellets were air-dried and re-suspended in 30µL of DEPC-treated

water. After 15min at 60°C, tubes were immediately transferred to ice. The total RNA

amount and purity was assessed by measuring the absorbance at 260nm and

280nm. Reverse transcription was performed using 1µg of total RNA sample, which

was mixed with 2µL of 10x TaqMan RT Buffer (500mM KCl, 100mM Tris-HCl, pH

8.3), 4.4µL of 25mM magnesium chloride, 4µL of dNTP mixture (2.5mM of each

dNTP), 1µL of random hexamers (50µM), 0.4µL of RNase inhibitor (20U/mL) and

0.5µL of MultiScribe Reverse Transcriptase (50U/µL) (all from Applied Biosystems);

DEPC-treated water was added to bring the final reaction volume to 20µL. Reverse

transcription was performed using a Thermal Cycler 9600 by Applied Biosystems.

cDNA samples were diluted to 250µL with Tris-EDTA buffer before being used for

real-time RT PCR.

Real-time RT PCR

Oligonucleotide primers and TaqMan probes were either purchased from

Applied Biosystems (Assay-On-Demand) or were designed using the Primer Express

Oligo Design software (Ver. 1.5, Applied Biosystems). The nucleotide sequences

were obtained from the GenBank database and the probes were designed to overlap

an exon-exon junction in order to avoid amplification of genomic DNA. Primers and

probes for amplification of 18S ribosomal RNA, used as endogenous control, were

from Applied Biosystems. All other primers and labeled TaqMan probes were from

Microsynth (Balgach, CH). TaqMan probes were labeled with the reporter dye

molecule FAM (6-carboxyfluorescein) at the 5´end and with the quencher dye

TAMRA (6-carboxy-N, N, N´, N´-tetramethylrhodamine) at the 3´end. The PCR

reaction mixture using self-designed primers and probes contained TaqMan

Universal PCR master mix without AmpErase UNG (Applied Biosystems), 900nM

primers (forward and reverse), 250nM TaqMan probe, and 2 l of cDNA sample for a
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total reaction volume of 25 l. Assays-On-Demand oligonucleotides were mixed

according to the manufacturers protocol. PCR conditions were 95°C for 10min,

followed by 42 cycles of amplification at 95°C for 15sec and 60°C for 1min using the

GeneAmp 5700 Sequence Detection System (Applied Biosystems, Foster City, CA).

Relative quantification of mRNA targets was performed according to the comparative

CT method with 18S ribosomal RNA for MSC and p0 (large ribosomal protein) for

HUVEC as endogenous controls (Table I).

Table I. Primers and Probes for Real-Time RT-PCR

see chapter II, Table I:

BMP-2
Collagen type I

MMP-13

Osteocalcin
Osteonectin

Osteopontin

Runx2
Assays-On-Demand by Applied Biosystems:

ALP: Hs00758162_m1

Ang1: Hs00181613_m1

Dlx5: Hs00193291_m1
EGFL7: Hs00211952_m1

MMP-2: Hs00234422_m1

MMP-9: Hs00234579_m1
Osx: Hs00541729_m1

p0: Hs99999902_m1

PDGFRB: Hs00182163_m1

Tie1: Hs00178500_m1
Tie2: Hs00176096_m1

VE-cadherin: Hs00174344_m1

VEGFR1: Hs00176573_m1
VEGFR2: Hs00176676_m1

VEGFR3: Hs00176607_m1

vWf: Hs00169795_m1

Self designed probes were modified at the 5’ end with the FAM fluorescent dye (6-carboxyfluorescein)
and at the 3’ end with the TAMRA fluorescent quencher (6-carboxy-N,N,N’,N’-tetramethylrhodamine).
Assay-On-Demand probes had a non-fluorescent quencher at the 3’end.
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Preparation of cryosections

The grafts were fixed in pure Methanol for one week at 4°C, were transferred

to 5% Sucrose in PBS over night and were cyrosectioned at 6-10µm using Microm

embedding medium (Walldorf Switzerland, cat# 350100), a Cryostat-Microtome HM

560 OMV (Carl Zeiss AG, Zürich, CH) and SuperFrost Plus GOLD microscope slides

(Menzel-Gläser, Braunschweig, De). The slides were left to dry at -20°C for at least 2

days.

Toluidene Blue and van Kossa staining

The dried slides were stained with Toluidene Blue (1% Toluidene Blue in 1%

sodium tetraborate in ddH2O, filtered) for 15min at RT, and then rinsed 2x in dH2O.

Van Kossa stainings were performed by incubating the slides in 5% Silver nitrate for

60min under natural light, rinsing with dH2O, incubating in 5% sodium thiosulfate for

10min, rinsing with dH2O and counterstaining with Nuclear Fast Red followed by

rinsing with dH2O. Coverslips were mounted using aqueous mounting solution

(Hydromount HS-106 by National Diagnostics, Atlanta, GA, USA).

Immunohistochemistry

The dried sections were encircled using a hydrophobic DakoPen (Cat. No. S-

2002, Dako, Glostrup, DK) and were left to rehydrate in PBS-Tween (0.32g/L

NaH2PO4, 1.42g/L Na2HPO4, 9g/L NaCl, 0.1% Tween-20, pH 7.4) for 5min. Non-

specific binding was reduced by incubating the samples in horse serum (diluted 1:20

in PBS, by Vector Labs, USA) for 60min at RT. The primary antibody (polyclonal

mouse anti-human Laminin 2E8 by Developmental Studies Hybridoma Bank;

polyclonal rabbit anti-human vWf: Dako A 0082) was added in the appropriate

dilution (Laminin 1:5, vWf 1:400) and the samples were incubated for 3h at RT. PBS-

Tween was used as control. The samples were washed 3x with PBS-Tween. The

secondary antibody (Laminin: horse anti-mouse IgG antibody by Vectastain cat#

PK6102; vWf: donkey anti-rabbit IgG antibody by RDI cat# RDI-711065152) was

added at 1:200 dilution and the samples were incubated for 30min at RT, before

being washed 3x with PBS-Tween again. Fresh ABC-complex (Vectastain ABC-kit

Elite, cat# PK6102) was added and the samples were incubated for 30min at RT,

before being washed 3x with PBS-Tween. DAB (Vector Laboratories cat# SK-4100)

was added and the samples were incubated in the dark for 4min at RT. The samples

the counterstained in Mayer’s haematoxylin for 3min (Merck 15-938) and were then
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rinsed twice in water for 5min each. Coverslips were mounted using aqueous

mounting solution (Hydromount HS-106 by National Diagnostics, Atlanta, GA, USA).

Immunofluorescence

The dried sections were encircled using a hydrophobic DakoPen and were

left to rehydrate in PBS-Tween (0.32g/L NaH2PO4, 1.42g/L Na2HPO4, 9g/L NaCl,

0.1% Tween-20, pH 7.4) for 5min. Non-specific binding was reduced by incubating

the samples in horse serum (diluted 1:20 in PBS, by Vector Labs, USA) for 60min at

RT. The primary antibody (monoclonal mouse anti-human CD31 antibody by R&D

cat#BBA7; polyclonal rabbit anti-human Osf2 by BioVendor cat#RD181045050) was

added in the appropriate dilution (CD31 1:1000, Osf2 1:400) and the samples were

incubated for 3h at RT. PBS-Tween was used as control. The samples were then

washed 3x with PBS-Tween before being incubated with the fluorescent secondary

antibody (CD31: CY3 sheep anti-mouse IgG antibody at 1:50 dilution by Sigma

cat#C2181, Osf2: Alexa Fluor 488 goat anti-rabbit IgG antibody at 1:400 dilution by

Molecular Probes cat#A11008) for 30min at RT. The samples were washed and

coverslips were mounted using Prolong Gold Antifade reagent (Molecular Probes

cat#P36930) and the samples were stored in the dark until being analyzed.

Cell viability stain

The culture medium was removed from the wells and the scaffolds were

incubated in fresh IMDM containing 1µL/mL EthD1 (Fluka, cat# 46043), diluted from

a stock solution of 1mg/ml EthD1 in 20% DMSO (Fluka cat# 46043) for 10min at

37°C. After washing with IMDM, the scaffolds were incubated in fresh IMDM

containing 1µL/mL calcein AM (Fluka, cat# 11783), diluted from a stock solution of

1mg/ml calcein AM in 100% DMSO for 20min at 37°C. After washing, IMDM

containing 5% FBS was added to the wells and the scaffolds were analyzed by

fluorescence microscopy [43]. In this assay, living cells are distinguished from dead

cells by the presence of ubiquitous intracellular esterase activity, determined by the

enzymatic conversion of the non-fluorescent calcein AM to intensively fluorescent

calcein. Calcein is well retained within living cells, producing an intense uniform

green fluorescent light (ex/em ~495nm / ~515nm). Dead cells were stained using

Ethidium homodimer-1 (EthD1), which only enters the cell with damaged cell

membranes and undergoes a 40-fold enhancement of its fluorescence upon binding

to nucleic acids, thereby producing a bright red fluorescence in dead cells (ex/em

~495nm / 635 nm).
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Microscopical analysis

All histological sections were analyzed using a Zeiss Axioplan 2 Microscope,

a Zeiss Axiocam camera and Zeiss Axiovision software. Zeiss filtersets 10, 15 and 25

were used for fluorescence analysis.

Statistics

Results are shown as mean±SEM of triplicate samples of two independent

experiments (n=6). Statistical analyses were performed using the non-parametric

Mann-Whitney U-test, which compares the medians of two independent distributions.

P<0.05 was considered to be statistically significant.
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Results

Choice of scaffold

Two types of polyurethane scaffolds were compared in order to select the

better one for the 3D-experiments. IsoK-43 was of equal composition as IsoK-40 but

contained an additional ceramic component. After culturing human MSC or HUVEC

in the two different scaffolds for 7 days, cell viability was determined using

EthD1/calcein staining. Microscopic analysis showed, that both scaffolds supported

attachment of MSC and HUVEC. But while IsoK-40 was a clearly hospitable

environment for both cell types after 7 days, the IsoK-43 environment induced cell

death in a large fraction of the attached MSC and HUVEC. The IsoK-40 scaffold was

therefore chosen for the following 3D-experiments.

Green cells are living, red cells are dead:

IsoK-40 seeded with MSC (1.25x) IsoK-43 seeded with MSC (1.25x)

IsoK-40 seeded with MSC (2.5x) IsoK-43 seeded with MSC (2.5x)
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IsoK-40 seeded with HUVEC (1.25x) IsoK-43 seeded with HUVEC (1.25x)

IsoK-40 seeded with HUVEC (2.5x) IsoK-43 seeded with HUVEC (2.5x)
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PRP vs. Fibrin

A common method to seed cells into a scaffold and to retain them inside is

the use of a fibrin sealant. Fibrin is mixed with cells and forms a gel within the

scaffold upon thrombin addition, therefore keeping the cells from being washed out

into the culture medium before their proper attachment to the scaffold. An easy-to-

obtain alternative to fibrin sealant could be PRP, which would have the additional

advantage of containing autologous growth factors and cytokines. We therefore

evaluated the performance of PRP versus fibrin sealant as a carrier for MSC or

HUVEC seeded into IsoK-40 scaffolds by measuring the expression of typical

osteoblastic and endothelial genes using real-time RT-PCR.

MSC generally performed better in PRP than in fibrin, as shown by significantly

elevated gene expression of Col1, MMP-13, BMP-2, OP and OC. BSPII and Runx2

were expressed at similar levels in both PRP and Fibrin. Osterix expression by MSC

could not be detected after 21 days culture time in PRP or fibrin (Figure 1a).

Figure 1a:
Gene expression of MSC

seeded on IsoK-40 scaffolds
using PRP or fibrin sealant:
Typical osteoblastic marker
genes (MMP-13, BMP-2, OP,
OC) showed significantly
(P<0.05) elevated expression
levels when MSC were
cultured in PRP rather than in

fibrin sealant.

HUVEC also performed better in PRP than in fibrin gel, as shown by the significantly

increased expression of the endothelial markers vWf, VE-cadherin, VEGFR2, Tie1,

Tie2, MMP-2 and BMP-2 (Figure 1b). MMP-9 could not be detected after 21 days of

culture.
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Figure 1b:
Gene expression of HUVEC
seeded on IsoK-40 scaffolds
using PRP or fibrin sealant:

All measured endothelial
marker genes were
expressed at significantly
(P<0.05) higher levels when
HUVEC were cultured in PRP
than in fibrin gel.

In summary, we were able to show, that PRP significantly up-regulated the

expression of typical osteoblastic genes in MSC compared to fibrin gel. This would

correlate with our earlier findings, in which PRP was able to enhance osteoblastic

differentiation of MSC in monolayer (see chapter IV). Furthermore, PRP also

significantly enhanced the expression of endothelial cell specific markers in EC when

compared to EC in fibrin gel. It was therefore decided to use the polyurethane

scaffold type IsoK-40 together with PRP as a carrier of cells and biological stimuli.
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Experimental setup for different 3D grafts of MSC and HUVEC

Four 3D-constructs using two different kinds of co-cultures of MSC and

HUVEC seeded on polyurethane scaffolds in combination with PRP were evaluated

(see Scheme below). The indirect co-culture type was a sandwich construct with the

two scaffolds stacked on top of each other and held in place by a PTFE-ring (SW-

construct). The top scaffold was seeded with HUVEC in PRP, the bottom one with

MSC in PRP. The direct contact co-culture type was a mixture of both cells types in

PRP seeded together into one scaffold (Mix-construct). Scaffolds containing MSC or

HUVEC alone were used as controls. Total cell numbers were equivalent in all

constructs.

Scheme of experimental setup of the 3D co-cultures of MSC and HUVEC

Evaluation of gene expression of MSC and HUVEC in 3D constructs

In order to evaluate the different co-culture types, we compared the

expression of typical genes involved in osteoblastic and endothelial cell

differentiation, as well as in bone repair and angiogenesis.

For the scaffolds containing MSC, the following genes were evaluated: Type I

collagen (Col1), type III collagen (Col3), collagenase 3 (MMP-13), osteopontin (OP),

osteocalcin (OC), bone sialoprotein II (BSP), alkaline phosphatase (ALP), distal-less

homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), Osterix (Osx), bone

morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF).
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Col1 and Col3 expression increased over time (35 days) in all cultures except in

Sandwich-MSC, where Col1 and Col3 were down-regulated. However, in Mix-MSC

both were significantly up-regulated compared to MSC (Figures 2a and 2b).

FiFF gii urerr s 2a and 2b: Gene expx rerr ssioii n of tyt pyy es I and II collall gen by MSC at day 35

Similar results were observed for the transcription factors Dlx5 and Osx: Down-

regulation in Sandwich-MSC and significant up-regulation in Mix-MSC at day 35.

FiFF gii urerr s 3 and 4: Gene expx rerr ssioii n of Dlxll 5 and Osterirr xii by MSC at day 35: ThTT ererr waww s no Osx detectatt ble
at day 1, therefore Osx expressions is not normalized to day1.

At day 35, MMP-13 was similarly up-regulated in MSC and Mix-MSC compared to

day 1. MMP-13 levels in Sandwich-MSC however were down-regulated to almost

undetectable levels (Figure 5).

Figure 5:
Gene expression of MMP-13 by
MSC at day 35
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Runx2 expression did not change over time in MSC and Sandwich-MSC, but was

significantly up-regulated in Mix-MSC.

Figure 6:
Gene expression of Runx2 by
MSC at day 35

BMP-2 expression decreased over time in both MSC and Sandwich-MSC cultures,

but increased clearly in Mix-MSC.

Figure 7:
Gene expression of BMP-2 by

MSC at day 35

ALP gene expression increased in all cultures over time. However, while MSC and

Sandwich-MSC showed a 3-4x increase at day 35 compared to day 1, Mix-MSC

showed more than 14-fold increase.

Figure 8:
Gene expression of alkaline
phosphatase by MSC at day 35
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Total VEGF expression decreased in all cultures over time except in Sandwich-MSC,

where VEGF increased slightly compared to day 1.

iFF gi urerr 9:
Gene expression of total VEGF
by MSC at day 35

Osteopontin, osteocalcin and bone sialoprotein II all were significantly up-regulated in

MSC cultures at day 35 compared to day 1. While OP, OC and BSP levels in

Sandwich-MSC did not change significantly over time, they increased in Mix-MSC,

but surprisingly not as much as in MSC.

Figures 10-12: Gene expression of OP, OC and BSP by MSC at day 35

The expression of osteocrin and Ang1 were also determined, but were at almost

undetectable levels in all types of cultures at all times.
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For the constructs containing HUVEC, the expression levels of the following genes

were evaluated: Endothelin-1 (ET-1), VE-cadherin (CDH5), matrix metalloproteinase

2 (MMP-2), matrix metalloproteinase 9 (MMP-9), von Willebrand factor (vWf), EGF-

like domain 7 (Egfl7), platelet-derived growth factor receptor ß (PDGFRB), BMP-2,

VEGF receptor 1 (Flt1, VEGFR1), VEGF receptor 2 (Flk1, KDR, VEGFR2), VEGF

receptor 3 (Flt4, VEGFR3), Ang1, Tie1 and Tie2 (TEK).

The endothelial markers VE-cadherin and vWf showed both by far the highest

expression levels in Mix-HUVEC, followed by Sandwich-HUVEC and HUVEC. While

all VE-cadherin expression levels at day 35 were lower than at day 1, the expression

levels of vWf by Mix-HUVEC was 3x higher than at day 1.

Figure 13:
Gene expression of vWf by
HUVEC at day 35

Figure 14:
Gene expression of VE-cadherin
by HUVEC at day 35
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Egfl7, MMP-2 and MMP-9, all factors known to be involved in vascular tissue

development, remodeling and repair showed a similar picture. Egfl7 and MMP-2

showed rather low expression levels in HUVEC and Sandwich-HUVEC cultures, but

were highly up-regulated in Mix-HUVEC. MMP-9 was not detectable at day 1 in any

culture, but was highly expressed in Mix-HUVEC at day 35.

Figure 15:

Gene expression of EGF-like
domain 7 by HUVEC at day 35

Figure 16:
Gene expression of MMP-2
(Gelatinase A) by HUVEC at day
35

Figure 17:
Gene expression of MMP-9
(Gelatinase B) by HUVEC at
day 35: There was no MMP-9

detectable at day 1, therefore
MMP-9 expression is not
normalized to day 1.
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The expression of endothelial receptors VEGFR1, -2, -3, Tie1, -2, and PDGFRB were

clearly highest in the Mix-HUVEC and lowest in the HUVEC cultures. Interestingly,

the expression levels at day 35 compared to day 1 were only increased for VEGFR3

(> 4 times) and for PDGFRB (> 2500 times), while only a slight increase was

observed for VEGFR2. The expression levels of all other receptors decreased with

culture time.

FiFF gii urerr s 18 and 19: Gene expx rerr ssioii n of VEVV GFR1 (F(( lFF t1) and -2 (F(( lFF kll 1, KDR)R by HUVEVV C at day 35

FiFF gii urerr s 20 and 21: Gene expx rerr ssioii n of VEVV GFR3
(F(( lFF t4tt )4 and PDGFRB by HUVEVV C at day 35

Figures 22 and 23: Gene expression of Tie1 and Tie2 (TEK) by HUVEC at day 35
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BMP-2 and ET-1, both factors that are known to affect bone cells, were also most

prominently expressed in Mix-HUVEC, followed by Sandwich-HUVEC and HUVEC

cultures. ET-1 levels were generally lower at day 35 than at day 1, but BMP-2

significantly increased over time in Mix-HUVEC.

Figure 24:
Gene expression of bone

morphogenetic protein 2 by
HUVEC at day 35

Figure 25:
Gene expression of endothelin-1
by HUVEC at day 35

Ang1 expression significantly increased over culture time to comparable levels in

HUVEC and Mix-HUVEC but remained almost undetectable in Sandwich-MSC.

Figure 26:
Gene expression of Ang1 by
HUVEC at day 35
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Histological analysis of 3D-constructs

The gene expression pattern of constructs containing a mix of MSC and

HUVEC (Mix-constructs) clearly showed an up-regulation of genes involved in

angiogenesis and bone formation. To further explore this promising data, we

performed histological analyses of constructs.

Van Kossa staining of Mix-constructs at day 21 showed mineral deposition in small

distinct areas of the graft (Figure 27 right). There was no mineral deposition in MSC

(Figure 27 left) or in SW-constructs (not shown).

Figure 27: Van Kossa stain at day 21: Constructs containing MSC alone (left) showed no mineral
deposition while in the constructs containing a mix of MSC and HUVEC (right), there was mineral
deposition in distinct areas (arrows).

Figure 28: Van Kossa stain of Mix-constructs at day 21: The left picture shows elongated cells lining the
outside of the construct while in the inside, calcium is deposited into the matrix.

See Fig. 28 left

See Fig. 28 right
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Evaluation of cell morphology at day 21 using Toluidene Blue staining revealed

interesting changes in cell shape. We observed the development of elongated cells in

Mix-constructs (Figure 29). The fact that these elongated cells are always appearing

in groups suggests that these cells might be starting to form a network. Nothing

similar could be found in the other constructs (Figure 30).

Figure 29: Toluidene Blue stain of Mix-constructs at day 21 revealed assemblies of elongated cells
suggesting a possible start of network formation. Bar represents 50µm.

Figure 30: Toluidene Blue stain of constructs containing MSC (left) or HUVEC (right) at day 21 showed
no remarkable morphological characteristics. Bar represents 50µm.
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By using higher magnification in Mix-constructs, we observed cells forming an

intracellular lumen (Figure 31 left and center) and also intercellular lumen in between

two cells (Figure 31 right).

Figure 31: Toluidene Blue staining of Mix-constructs at day 21: Intracellular lumen formation (left,

center) and extracellular lumen formation between two cells (right). Bar represents 20µm.

At day 35, Toluidene Blue staining revealed the formation of tube-like structures in

Mix-constructs. Almost all cells were attached to these structures, with only very little

cells left in-between these tubules (Figure 32).

Figure 32: Toluidene Blue staining (bar represents 50µm) at day 35: Tube-like structures in Mix-
constructs (left). Grafts containing only MSC did not show such structures (middle). Grafts containing
only HUVEC showed similar, yet much less and only very short tubular-like structures (right).

We further explored these tubular structures by immunohistochemical analysis at day

35. Using an antibody against laminin, we were able to reveal possible tube-like

structures in the Mix-constructs, consisting of a wall and a more or less continuous

lumen (Figure 33). Those structures were exclusively found in Mix-constructs.

Intracellular Intracellular Intercellular
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Figure 33: Immunostaining using an antibody against laminin on Mix-constructs at day 35: tubular
structures containing extensive lumen (arrows). Bar represents 20uM.

Immunostaining of these tubular structures with an antibody to von Willebrand factor

revealed that they were highly multicellular (Figure 34a). Interestingly, not only

endothelial cells (smaller darker nuclei) were visible, but also cells featuring a larger

unstained nucleus were participating in these tubular structures. This suggests that

also MSC might contribute to these structures (Figure 34b).

Figure 34a: vWf immunostaining of Mix-construct at day 35: Large multicellular tube-like structures
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Figure 34b: vWf immunostaining of Mix-constructs at day 35: Large unstained nuclei (arrows) seem to
contribute to the tubular structures. They possibly represent MSC. Bar represents 20µm.

To confirm, that also MSC contribute to these tubular structures, we performed an

immunofluorescence analysis using an antibody against the osteoblastic transcription

factor Osf2 (gene product of Runx2). The presence of osteoblastic cells on the

tubular structures was confirmed (Figure 35), even though our antibody produced

considerable unspecific background-staining. Examples of specific bindings are

marked (arrows).

Figure 35: Osf2 immunostaining of Mix-construct at day 35: Large areas of the tube-like structures
show the presence of Osf2-positive cells, most probably differentiating MSC.
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Immunofluorescent staining using an antibody to the EC surface marker CD31

confirmed the formation of tube-like structures by EC (Figure 36).

Figure 36: Immunofluorenscence using an antibody to CD31 in Mix-constructs at day 35: Tubular
structures as found only in Mix-constructs. Bar represents 20µm.

Endothelial cells were also found covering various surfaces, especially in Mix-

constructs, further confirming their increased urge to fulfill their natural fate by

building natural barriers. Figure 37a shows the outside of a graft covered by CD31-

positive cells. Figure 37b shows CD31-positive cells forming circular structures within

the PRP gel.

Figures 37a and b: Immunofluorescence of Mix-constructs at day 35: Endothelial cells (CD31+)
covering the outside of a graft (left), and forming circular structures in PRP-gel (right).

In conclusion, we have shown significant up-regulation of osteoblastic

markers in Mix-constructs. Also, angiogenic and endothelial markers expressed by

HUVEC were significantly up-regulated in this construct type. This was in contrast to

the much lower gene expression levels in non direct-contact co-cultures (Sandwich)

and constructs seeded with MSC or HUVEC alone.

Furthermore, histological analysis revealed the formation of inter- and intracellular

lumen as well as the presence of tubular and circular structures in Mix-constructs

only.
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Discussion

The aim of this study was to define an optimal scaffold-cell construct in vitro

to serve as a potential alloplastic bone graft in vivo that could overcome the problem

of insufficient vascularization in large bone defects. In addition, since during bone

tissue repair in vivo fibrin clots are an important source of growth factors and

cytokines, we evaluated the use of platelet-rich plasma (PRP) as a supplier of

osteoinductive and angiogenic factors within the construct.

In previous studies (diplomawork), we have evaluated different scaffolds to be used

in bone and cartilage tissue engineering using osteoblasts, chondrocytes and bone

marrow aspirates. Based on these early results, we decided to use a biodegradable

polyurethane scaffold for our endothelialized construct [44, 45]. Many studies have

used calcium-phosphates (CaP) like ß-tricalcium-phosphate (ßTCP) or

hydroxyapatite (HA) because of their “natural” composition as well as their superior

mechanical strength. However, calcium phosphate based materials have also

significant drawbacks, like the lack of macro-pores, resulting in impaired vessel

ingrowth as well as their layered biodegradation (from the outside to the inside). In

addition, due to the stiff properties of CaP, there is considerable friction at the bone-

implant interface resulting in wear-debris, limited vessel ingrowth and implant

integration. Biodegradable polyurethanes on the other side are very macro-porous

and elastic, and can therefore be fitted very tightly into the site of injury, providing a

more flexible tissue-implant interface that facilitates vessel ingrowth and implant

integration. It has previously been shown that PU scaffolds can be seeded with

chondrocytes up to 42 days without any apparent toxicity [46, 47]. In addition, similar

polyurethane scaffolds were used in an iliac bone defect in a pilot experiment in

sheep [48]. Therefore, we considered polyurethane as a potential scaffold for bone

substitutes. Two different kinds of isosorbide polyurethane scaffolds were compared

in this study. Both scaffolds were identical except that one contained a ceramic nano-

phase. However, this ceramic component seemed to be harmful to our cells, we

therefore decided to continue with the polyurethane scaffold that did not contain the

mineral phase. The reason for this toxic effect is not clear. A possible explanation

could be that the ceramic phase in the PU scaffold somehow hinders the removal of

ethylene oxide after sterilization so that detoxification was not carried our long

enough. Further experiments will be necessary to resolve this issue.

When seeding cells within a 3D structure with pore sizes between 200 to 500

microns, it is almost impossible to retain the cells within the scaffold structure. In

addition, cell aggregates will occur, making cell distribution far from being
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homogeneous [46]. A common way to avoid these cell-seeding problems is the use

of fibrin gel [42]. Although fibrin is commonly used in surgery, its animal origin

(bovine) raises some concerns about its safety. Therefore, autologous PRP would be

a much better solution. As reported in chapter IV of this thesis, we were able to show

that PRP had a strong osteogenic effect on MSC in monolayer culture. PRP contains

a large amount of different growth factors and cytokines, including TGF-ß, PDGF,

FGF, IGF and EGF [49, 50].

We therefore have evaluated the effect of PRP versus fibrin gel as a carrier for MSC,

HUVEC or a combination of both. Our findings showed that when MSC were cultured

in PRP gels, a much higher expression of the typical osteoblastic genes was

observed compared to MSC cultured in fibrin. This was most prominently seen in the

expression of type I collagen, osteocalcin, osteopontin, MMP-13 and BMP-2. These

results are in agreement with our earlier observations on the effect of PRP on MSC in

monolayer (see chapter IV). However, the gene up-regulation observed in the 3D

environment was generally higher than that measured in monolayer. The by far most

up-regulated gene was MMP-13, an endopetidase known to be involved in matrix

turnover by its ability to cleave collagen triple helices, aggrecan core protein,

fibronectin and other components of the extracellular matrix. MMP-13 and other

MMPs (especially MMP-2 and -9) have been shown to be tightly connected to the

process of angiogenesis and blood vessels ingrowth [31, 32]. Interestingly, also the

expression of early and late bone matrix proteins such as Col1, OP and OC was up-

regulated by PRP. This suggests that PRP also enhances the differentiation of

precursor cells into mature osteoblasts.

We also measured the performance of PRP versus fibrin gel as a carrier for HUVEC

by comparing the gene expression levels. The same picture as with MSC was

observed: PRP greatly enhanced the expression of endothelial cell markers such as

vWf, VE-cadherin and the endothelial receptors VEGFR2, Tie1 and Tie2. BMP-2

expression by HUVEC in PRP was also significantly up-regulated. We also had an

up-regulation of MMP-2, which has been shown to be involved in angiogenesis.

MMP-2 is the most abundant MMP produced by endothelial cells. MMP-2 is

constitutively secreted as a zymogen and is believed to play a role during the initial

steps of angiogenesis [51, 52]. Interestingly, MMP-9 (or 92kDa gelatinase), another

MMP thought to be involved in angiogenesis was not detected after 21 days of

culture, but was present after 35 days. From these experiments it was obvious that

PRP was far superior to fibrin in inducing MSC differentiation into an osteogenic

phenotype, as well as in stimulating typical EC markers on HUVEC.
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We then focused on 3D co-culture experiments of MSC and HUVEC using PRP as a

carrier. Two types of co-cultures were established. The first one was an indirect-

contact co-culture, where HUVEC and MSC were seeded in two polyurethane

scaffolds using PRP, and these two scaffolds were placed on top of each other

(Sandwich). The second one was a direct contact co-culture, where MSC and

HUVEC were seeded within the same polyurethane scaffold using PRP (Mix).

Analysis of MSC gene transcription revealed, that Sandwich co-cultures resulted in a

down-regulation of many osteoblastic genes, including Col1, Col3, OP, OC, BSP,

Dlx5, Osx and MMP13. These results were in close agreement with our earlier

indirect contact co-culture results, in which EC were shown to inhibit MSC

differentiation (see chapter II). However, in Mix co-cultures (direct contact) a

significant increase in a variety of osteoblastic markers, including Col1, Col3, Runx2,

Dlx5, Osx, BMP-2, ALP and MMP13 was observed.

Type III collagen, which is generally much less abundant than type I collagen, is

typically not found in bone, but is highly expressed around blood vessels. Thus, the

up-regulation of Col3 in Mix co-cultures might suggest that the formation of blood

vessels might be induced. Up-regulation of the early transcription factors Runx2 and

Dlx5 as well as the most specific known osteoblastic transcription factor Osx in Mix-

cultures clearly indicates that MSC are differentiating towards the expression of an

osteoblastic phenotype. An interesting observation is that in Sandwich co-cultures,

Runx2 expression is not altered compared to MSC alone, but Osx (and also Dlx5) is

significantly down-regulated. This observation suggests again that a positive effect

on MSC differentiation is observed only when MSC and EC are in direct contact. The

bone matrix proteins OC, OP and BSP were also up-regulated in Mix co-culture at

day 35 compared to day 1.

Analysis of the expression of the different EC genes revealed that most of these

markers were significantly up-regulated by both co-culture types (Sandwich and Mix).

However, in Mix co-cultures, up-regulation of EC markers was much higher than in

Sandwich co-cultures. Interestingly, MMP-2 and -9 were highly up-regulated in Mix-

cultures. Egfl7, VEGFR2, Tie1 and -2 as well as VE-cadherin are all EC markers

appearing rather early in EC maturation events, while PDGFRB and vWf are later

markers of vascular maturation [23] [22, 53]. Therefore, it is normal that VEGFR2,

Tie1, Tie2 and VE-cadherin were expressed in all cultures containing EC. However,

PDGFRB and vWf, were only prominently expressed in Mix-cultures, suggesting

again that EC were able to undergo maturation only in direct contact co-cultures.

Another important EC marker, endothelin-1, was up-regulated in both co-cultures

(Mix higher that Sandwich) compared to EC alone. ET-1 has been shown to be a
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major player in the signaling between EC and osteoblasts during bone development,

remodeling and repair and is known to stimulate osteoblasts proliferation and

differentiation [54, 55]. Another interesting observation was that ET-1 has been

shown to down-regulate VEGF expression in long-term cultures of osteoblasts [55], a

finding that we have also observed in the present study. In Sandwich-cultures, VEGF

expression was high while ET-1 expression was low. In contrast, in Mix-cultures,

VEGF expression was low and ET-1 was high. So the inhibitory effect of ET-1 on

VEGF expression occurs only when MSC and EC are in direct contact, which might

suggest a tight coupling between the angiogenic and bone formation processes.

BMP-2, which has been shown to induce the expression of the osteogenic master

transcription factors Runx2, Dlx5 and Osx in MSC [56, 57] was significantly up-

regulated in Mix co-cultures. In addition, all those osteogenic master genes were, as

expected, also significantly up-regulated in Mix-cultures.

These findings at the gene expression level were then confirmed by histological

analyses. We were able to show, that only in Mix-cultures calcium deposition occurs.

Furthermore we observed multicellular tube-like structures in Mix-cultures formed by

HUVEC and possibly stabilized by differentiating MSC. We also detected cells

forming intra- and intercellular lumen. Unfortunately, we were not able to study the

formation of these structures over time, so we cannot conclude by which

mechanisms these structures were formed. However, it seems clear that our

constructs containing MSC and HUVEC in PRP promoted EC to form separating cell

layers, which eventually might result in functional blood vessels.

In conclusion, constructs consisting of a mixture of MSC and EC seeded on a

polyurethane scaffold within a PRP environment might be a very promising

alternative to autologous bone grafting.
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Chapter VI

Isolation of CD34+ cells from blood aspirates and

differentiation into endothelial cells

Meury TR, Alini M

Our aim was to define a 3D construct, which consisted of as many autologous

components as possible. This chapter summarizes our attempts to isolate CD34+

cells from blood samples and to differentiate them into mature endothelial cells.
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One of our aims was to develop a full construct made of autologous material.

We succeeded by using MSC and PRP in our constructs, which can be easily

obtained from the patient’s bone marrow and blood respectively.

The initial plan was therefore also to obtain endothelial cells from an autologous

source. Endothelial progenitor cells (EPC) and hematopoietic stem cells (HSC) share

some surface molecules like VEGFR2, Tie2 and CD34. This led to the assumption,

that these progenitors may have a common precursor cell present within the

peripheral blood system [1, 2]. This hypothesis that blood might contain EPC was

also supported by studies showing that the luminal side of artificial vascular grafts in

vivo becomes eventually covered by EC [3, 4]. Asahara was the first to actually show

that EPC can be isolated from peripheral blood and can be differentiated into

endothelial-like cells [5]. A cell surface marker generally used for EPC isolation is

CD34. It is not only expressed EPC but also on HSC and is lost during hematopoietic

differentiation [6, 7], but not during EC differentiation and maturation [8-10]. Based on

these studies, we decided to isolate CD34+ cells from human blood samples and

differentiate them into endothelial cells, in order to obtain also EC from an autologous

source.

From CD4-negative buffy-coat (kindly obtained from the local Asthma Research

Institute SIAF in Davos), using the MiniMAC Magnetic Microbead System (by Miltenyi

Biotec, Germany), we isolated CD34+(/CD4-) cells (MACS Direct CD34 Progenitor

Isolation Kit, cat# 467-02) using the following procedure:

Buffy-coat was centrifuged at 1’500g for 10min at RT and the resulting pellet was

resuspended in MiniMAC Buffer (2mM EDTA, 0.5% BSA in PBS, degassed) at a

concentration of 108 cells/100µL. 100µL of FcR Blocking Reagent was added. The

cells were then labeled by addition of 100µL of CD34 Microbeads per 108 total cells

followed by incubation for 30min at 8°C under gentle agitation. After carefully

washing with MiniMAC Buffer, the labeled cells were resuspended in 1mL of

MiniMAC Buffer and were added to a pre-wetted separation column positioned in a

magnetic stand. The separation column was washed 3x with MiniMAC Buffer, was

removed from the stand and the CD34+ cells were eluted from the column into a

fresh tube with MiniMAC Buffer. CD34+ cells were then centrifuged, resuspended in

medium and seeded into flasks.

Different coatings of the culture flasks (no coating, gelatin, fibronectin) were tested.

We also evaluated different initial seeding concentrations and most importantly,

compared different media and supplements, including F-12K and IMDM in

combination with serum, as well as several serum-free media like StemSpan (Stem

Cell Technologies, cat# 09650) and StemPro-34 (Gibco, cat# 10639-011). Finally, we
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settled on the serum-free StemPro-34 as EPC growth medium. In addition, various

types of rather expensive commercial supplements and different combinations of

cytokines and recombinant growth factors (including IL-1, IL-3, IL-6 and SCF, Flt-3,

TPO and GM-CSF) for the expansion of CD34+ cells were evaluated. In the end, we

were able to isolate CD34+ cells from buffy-coat and culture them in StemPro-34

medium, supplemented with IL-3, IL-6 and SCF (all at 50ng/mL). The concentrations

of IL-3, IL-6 and SCF were based on a personal communication with Dr. Nicolai

Ferrari [11].

The plan was then to check the phenotype of CD34+ cells after isolation by FACS

analysis, to expand them for one or two weeks and then to recheck their phenotype

by measuring the following surface markers: CD34, VEGFR2, CD133, CD45 and

CD14. Depending on the results, a reselection of CD34+ and further expansion

would have been evaluated. Then we would have differentiated the CD34+ cells into

EC by stimulating them with a combination of ECGF and VEGF, both at 50-

100µg/mL (again based on personal communication with Dr. Nicolai Ferrari) in

different culture mediums like RPMI, F12K or M199.

While planning all these experiments we realized, that this sub-project was growing

into a project itself. Especially the cell-characterization during differentiation of

CD34+ cells into endothelial cells would have taken too much time and would have

shifted our experimental aims too far away from the initial focus of this PhD thesis.

We therefore decided to continue our experiments using primary human

umbilical vein endothelial cells (HUVEC) purchased from Cascade Biologics. We are

of course aware that HUVEC are different from the microvascular EC found in the

bone vasculature. However, we chose HUVEC since they are well characterized and

easy to handle, compared to microvascular EC.
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One of the main problems arising when implanting a graft into a large bone

gap is its insufficient vascularization in the central region. This results in impaired

bone healing and often leads to necrosis in the graft. Vascularization and bone

formation have been shown to be very closely connected [1-6]. In order to better

understand the relationship between blood vessels and bone formation, we have

studied the interactions between mesenchymal stem cells (MSC) and endothelial

cells (EC). Since the blood vessel network undergoes dramatic remodeling during

wound healing, a process that is connected with different endothelial cell

maturational stages (reflected i.e. by different cell surface markers), we have also

investigated the effect of growth factor-stimulated EC on MSC differentiation into

bone forming cells. In addition, since during bone healing, one of the first events is

the formation of a blood clot at the site of injury, we have evaluated the potential of

platelet-rich plasma (PRP) as an osteoinductive substance by assessing its action on

MSC differentiation. Finally, our last step was to combine all components into one

autologous construct and to in vitro evaluate its potential to serve as a possible bone

graft that could overcome the in vivo problem of limited vascularization generally

occurring in large bone defects.

Aim 1:
Study the influence of EC on MSC differentiation into an osteoblastic phenotype

The first experiments of this PhD investigated the effect of EC on MSC

differentiation towards an osteoblastic phenotype in monolayer cultures. At that time,

in vitro communication between EC and osteoblastic cells had been reported in few

publications with rather divergent outcomes [7-9]. The only generally accepted fact

was that there must be some kind of communication between these two cells types,

since the appearance of vessels precedes bone formation [5, 6, 10]. We showed that

EC do not stimulate MSC differentiation into osteoblasts in non-direct contact co-

cultures. On the contrary, EC significantly inhibited osteoblastic differentiation of

MSC. We also demonstrated that this inhibitory effect by EC was increased following

stimulation of EC with VEGF. From a mechanistic point of view, this inhibitory effect

was due to the down-regulation of Osx. These findings observed in 2D cultures were

confirmed in our 3D experiments. However, when MSC and EC were cultured

together in direct contact co-cultures, MSC differentiation was induced, and Osx

expression was up-regulated. These observations suggest that EC have a dual

potential to influence osteoblastic differentiation that largely depends on the type of
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communication between these two cell types as well as the maturational stage of EC.

It seems that soluble factors released by EC inhibit, while direct contact with EC

induces osteoblastic differentiation of MSC. One may therefore speculate that,

depending on the developmental stage of the vascular system at a bone repair site,

EC may induce either recruitment of osteoblastic precursor cells, or differentiation of

these precursor cells into osteoblasts.

Aim 2:

Test the suitability of platelet-rich plasma (PRP) as a source of autologous biological

factors in bone tissue engineering

The second part of the PhD focused on factors that could influence bone

formation and angiogenesis in a potential bone graft. Although many studies at that

time had focused on recombinant growth factors to improve bone healing (i.e. BMP

or PDGF) [11-18], we were interested in a more autologous approach. Platelet-rich

plasma (PRP) was a very new “material” that had been used by few people as an

injectable substance or in combination with a scaffold, mainly in maxillofacial and

dental surgery [19-21]. We wanted to use PRP in combination with MSC and have

therefore explored the ability of PRP to induce osteoblastic differentiation in MSC.

Since no standard protocol for the production of PRP was available (everyone used a

different method), we first defined our own PRP preparation and activation method,

which resulted in the filing of a patent for PRP activation by sonication (pending). We

then tested the effect of PRP on MSC differentiation in monolayer as well as in 3D,

and showed that PRP had the ability to greatly enhance osteoblastic differentiation of

MSC. Furthermore, we showed that PRP also greatly enhanced the expression of

many typical endothelial markers on EC in 3D-cultures.

In summary, we were able to isolate and activate PRP in an easy and quick way. We

have also shown that PRP has the potential to induce osteogenic differentiation of

MSC. Furthermore, because of the ability of PRP to form a gel upon activation, PRP

has the capability to serve as an ideal carrier material for MSC and EC in a 3D

construct.

Aim 3:

Define and evaluate an autologous 3D-construct in vitro with the potential to improve

graft vascularization in vivo

The final part of this PhD work combined the results obtained in the other

parts. Our constructs were designed using isosorbide single-phase polyurethane
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scaffolds, seeded with combinations of cells in PRP. We showed that MSC and EC

suspended in PRP could be cultured for at least 35 days in shared culture medium,

without further addition of any growth factors or cytokines (they are probably present

in the PRP). We then showed that direct contact co-cultures of EC and MSC in a 3D

environment resulted in a significant up-regulation of osteoblastic markers in MSC,

and endothelial markers in EC. Furthermore, histological analyses revealed tube-like

structures and cells forming intra- and intercellular lumen in Mix-constructs.

Interestingly, it seemed that MSC and EC both contributed to those tubular

structures. We are aware, that this does not imply that vessels are about to form in

this in vitro setting, but it shows that direct contact of MSC and HUVEC in a 3D

environment containing PRP might have the potential to form a highly vascularized

graft in vivo.

Future Perspectives

Overall, we believe to have contributed to a better understanding of the

cellular interactions between MSC and EC. We have successfully used this

knowledge to develop an endothelialized construct, ready to be used in in vivo

experiments. Of course every answer raises another question.

• How would VEGF influence EC in direct contact co-cultures with MSC, or in

3D ?

• Which changes in the EC phenotype, induced by VEGF, are responsible for

the effects described in chapter II ?

• The effect of angiopoietins on HUVEC-modulated MSC differentiation should

be further explored, probably by using higher Ang1 concentrations and by

including Ang2 (in combination with VEGF) into the studies. It is known that

Ang2 action is largely dependent on the presence or absence of VEGF (see

chapter I).

• Some of our 3D experiments (chapter V) will need to be repeated to confirm

our results. The histological analyses should be expanded by using other

markers, such as NG2, a pericyte cell surface marker. One might speculate

that the MSC contributing to the tube-like structures differentiate into

pericytes, fibroblasts or smooth muscle cells. This speculation should be

explored.

• In order to be able to produce a completely autologous construct, we should

reactivate the studies about generating endothelial cells from blood samples

according to our protocols suggested in chapter VI.
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• Finally it will be interesting to see how our construct performs in vivo,

compared to empty scaffolds, or constructs missing the PRP (replace by fibrin

gel) or the endothelial cells.
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