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B1-Integrin Signaling Mediates Premyelinating
Oligodendrocyte Survival But Is Not Required for CNS
Myelination and Remyelination
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Previous reports, including transplantation experiments using dominant-negative inhibition of 31-integrin signaling in oligodendrocyte
progenitor cells, suggested that 31-integrin signaling is required for myelination. Here, we test this hypothesis using conditional ablation
of the B1-integrin gene in oligodendroglial cells during the development of the CNS. This approach allowed us to study oligodendroglial
Bl-integrin signaling in the physiological environment of the CNS, circumventing the potential drawbacks of a dominant-negative
approach. We found that B1-integrin signaling has a much more limited role than previously expected. Although it was involved in
stage-specific oligodendrocyte cell survival, 31-integrin signaling was not required for axon ensheathment and myelination per se. We
also found that, in the spinal cord, remyelination occurred normally in the absence of B1-integrin. We conclude that, although 1-
integrin may still contribute to other aspects of oligodendrocyte biology, it is not essential for myelination and remyelination in the CNS.
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Introduction

In the CNS, after controlled migration, proliferation, and pro-
grammed cell death, oligodendrocyte progenitors differentiate
and produce myelin, a lipid-rich membrane, that forms multi-
lamellar, spirally wrapped sheets around axons (Pfeiffer et al.,
1993). Precise control of these processes derives, at least in part,
from instructive cues originating within the extracellular envi-
ronment of which proteins of the extracellular matrix (ECM) are
essential components (Hynes, 1992).

Integrins are the major group of cell-surface receptors for
ECM constituents (Ruppert et al., 1995; Montgomery et al.,
1996). They play important instructive roles during the develop-
ment of the CNS (Georges-Labouesse et al., 1998; Graus-Porta et
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al., 2001; Blaess et al., 2004) and are therefore attractive candidate
molecules for the regulation of oligodendrocyte myelination.

In support of such a role, oligodendrocytes cultured on
laminin-2, an ECM molecule expressed in the developing mam-
malian CNS (Hagg et al., 1997; Tian et al., 1997; Powell et al.,
1998), produce enhanced myelin membranes (Buttery and
ffrench-Constant, 1999), whereas mice and humans lacking the
laminin &2 chain (present in laminin-2) show dysmyelination
(Jones et al., 2001; Chun et al., 2003). Antibody-blocking exper-
iments and expression of a B1-integrin dominant-negative chi-
meric integrin, B1-DN (Relvas et al., 2001), showed that the oli-
godendrocyte integrin mediating this process is probably a631-
integrin, the putative laminin integrin receptor expressed by
oligodendrocytes. This integrin also regulates oligodendrocyte
survival both in vitro (Frost et al., 1999) and in vivo, as demon-
strated by the increased levels of oligodendrocyte apoptosis
present at embryonic day 18.5 (E18.5) in the brainstem of «a6-
integrin null mice (Colognato et al., 2002). Unfortunately, CNS
myelination in these mice could not be analyzed because of a
blistering skin defect causing perinatal death (Georges-Labouesse
et al., 1996). However, transplantation experiments support a
role for B1-integrin in the regulation of CNS myelination. When
B1-DN-expressing oligodendrocytes were transplanted into a fo-
cal area of demyelination within adult rat spinal cord, they failed
to remyelinate neighboring axons (Relvas et al., 2001).

A requirement for Bl-integrin/laminin interactions during
Schwann cell differentiation and myelination has been revealed
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by conditional ablation of Bl-integrin (Feltri et al., 2002). In
oligodendrocytes, however, the processes regulating differentia-
tion and myelination are likely to be intrinsically different. Unlike
Schwann cells, oligodendrocytes are not surrounded by a basal
lamina to supply them with a permanent source of laminins.
During oligodendrocyte differentiation, laminin molecules be-
come available to a6B1-integrin in axons tracts just before my-
elination (Colognato et al., 2002), i.e., after axon contact has been
made. In addition, oligodendrocytes only express 681 and do
not express a6f4, the predominant laminin integrin receptor
expressed by promyelinating Schwann cells (Previtali et al.,
2001). Here, therefore, we have tested the role of B1-integrin in
oligodendrocytes in the developing CNS and also in a remyelina-
tion model of the spinal cord using transgenic mice with condi-
tionally ablated Bl-integrin in cells of the oligodendrocyte lin-
eage. Our results suggest that, although B1-integrin signaling still
contributes to oligodendrocyte survival, it is not necessary for
CNS myelination or remyelination per se.

Materials and Methods

Generation of conditional knock-out mice. The generation of conditional
B1-integrin mutant mice has been described previously (Brakebusch et al.,
2000; Potocnik et al., 2000). Mice heterozygous for the 81 null allele
(B1 */7), in a 129Sv/B6 mixed background were crossed with CNP-Cre =
mice [in which cAMP response element (Cre) recombinase expression was
under the control of 2,3'-cyclic nucleotide 3’-phosphodiesterase (CNP)
regulatory sequences] (Genoud etal., 2002; Lappe-Siefke et al., 2003; Saher et
al., 2005) to obtain CNP-Cre ¥/~ B1 */~ mice. These were then crossed with
mice homozygous for B1-floxed alleles (81'°¥1%), also in a 129Sv/B6 mixed
background, to obtain CNP-Cre = B1 10X/~ mice (hereafter called mutant
mice) and either B1'°" or CNP-Cre ™/~ B1°" (hereafter called control
and heterozygous control mice, respectively). Conditional heterozygous
control mice were only used in experiments in which the excision of the
Bl-integrin gene was monitored by detection of B-galactosidase (3-gal) ex-
pression. All other experiments were conducted using CNP-Cre-negative
(B1'°™) control mice. Genotypes were determined by performing PCR on
genomic DNA.

Electron microscopy. To prepare mouse tissues for electron microscopy,
mice were anesthetized with a lethal dose of Pentobarbital (Nembutal; Ab-
bott Labs, Irving, TX) and intracardially perfused with 0.1 M phosphate
buffer, pH 7.4, followed by a fixative containing 3% glutaraldehyde and 4%
paraformaldehyde in the same phosphate buffer. Fixed tissues were removed
and postfixed overnight at 4°C. For resin embedding, tissues were postfixed
in 2% osmium tetroxide overnight, dehydrated through a graded acetone
series, and embedded in Spurrs resin (Electron Microscopy Sciences, Fort
Washington, PA). One micrometer semithin cross sections were cut and
stained with toluidine blue for analysis at the light microscope. For electron
microscopic analysis, resin blocks containing the tissue samples were cut at
60 nm using an Ultracut E ultramicrotome (Leica, Nussloch, Germany) and
collected on a 200 mesh grid (Agar Scientific, Stansted, UK). These sections
were stained in 3% uranyl acetate and 1% lead citrate before observationin a
Hitachi (Tokyo, Japan) H-600 TEM at 75 kV. The growth ratios (g-ratios) of
at least 100 myelinated and remyelinated axons were measured with MCID
software (Imaging Research, St. Catharines, Ontario, Canada). For remyeli-
nation experiments, mice were treated as above and a 4 mm segment of
spinal cord comprising the lesion site was removed for analysis. For Bluogal
electron microscopy, whole-mount optic nerves were stained for Bluogal
(see below) before being processed for electron microscopy. Ultrathin sec-
tions of these optic nerves were not contrasted with uranyl acetate and lead
citrate.

Lysolecithin-induced focal demyelination. Two- to 3-month-old mutant
and littermate control mice were subjected to the demyelination procedure.
Mice were anesthetized by isoflurane (Forene; Abbott Labs) inhalation nar-
cosis. Operations were performed under aseptic conditions. To prevent de-
hydration, a single intraperitoneal injection of 1 ml of Ringer’s lactate solu-
tion (B. Braun Medical, Melsungen, Germany) containing the antibiotic
combination preparation Borgal (sulfadoxin, trimethoprim, lidocaine; 10 ul
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of Borgal 7.5%; Intervet, Boxmeer, The Netherlands) was administered pre-
operatively. For the perioperative and postoperative analgesia, buprenorphi-
num (Temgesic; 0.1 mg/kg bodyweight; Essex Chemie, Lucerne, Switzer-
land) was injected subcutaneously initially at the start of operation and
thereafter every 12 h for the following 3 d. Dorsal laminectomies were per-
formed on the midthoraciclevel of the spinal cord. A glass capillary, pulled to
a fine tip, attached to a Hamilton syringe and mounted on a stereotactic
micromanipulator, was used to inject a 1% solution of lysolecithin (L-a-
lysophosphatidylcholine; Sigma, St. Louis, MO) in sterile PBS, pH 7.4. The
micropipette was inserted into the dorsal funiculus, 2 ul of lysolecithin so-
lution was injected, and the needle was slowly withdrawn. The site of injec-
tion was marked for future identification with a fine suture in the paraverte-
bral musculature, the wound was sutured in two layers, and the animals were
allowed to recover. The day of lysolecithin injection was designated as day 0.
All animal experiments were approved by the veterinary office of the Canton
of Zirich.

Immunofluorescence, terminal deoxynucleotidyl transferase-mediated
biotinylated UTP nick end labeling staining, 5-bromo-4-chloro-3-indolyl-
B-p-galactopyranoside, and Bluogal histochemistry. Tissue-Tek (OCT;
Sakura, Tokyo, Japan) embedded frozen tissues were cut with a cryotome
into 12-um-thick sections, thaw mounted onto Superfrost slides (Met-
tler Scientific, Highstown, NJ), and air dried. After blocking with goat
serum (10%)/PBS, tissue sections were incubated with primary antibod-
ies diluted in PBS overnight at 4°C. The following primary antibodies
were used: mouse antiserum-CC1 (1:200; Calbiochem, La Jolla, CA), rat
monoclonal MBP (1:75; Serotec, Oxford, UK), and rat monoclonal-B1-
integrin (1:30; BD Biosciences PharMingen, San Diego, CA). On the
following day, tissue sections were washed in PBS and incubated with the
appropriate secondary antibodies, including cyanine 3 (Cy3)-conjugated
anti-rat (1:300; Jackson ImmunoResearch, West Grove, PA) and Alexa
488-conjugated anti-rabbit (1:250; Invitrogen, Carlsbad, CA) for 1 h at
room temperature. The sections were mounted in Citifluor (Citifluor,
London, UK) containing 4',6'-diamidino-2-phenylindole (DAPI) to
stain the nuclei. Terminal deoxynucleotidyl transferase-mediated biotin-
ylated UTP nick end labeling (TUNEL) assay was performed using indi-
rect immunofluorescence to visualize nicked DNA according to the in-
structions of the manufacturer (Apoptag Red; Serologicals, Norcross,
GA). For 5-bromo-4-chloro-3-indolyl-B-p-galactopyranoside (X-gal)
and Bluogal histochemistry, tissue sections were fixed in 2% formalde-
hyde and 0.2% glutaraldehyde in PBS for 7 min and stained in X-gal
staining solution (5 mm K;[Fe(CN),], 5 mm K, [Fe(CN)], 2 mm MgCL,
and 1 mg/ml X-gal [Calbiochem]) or Bluogal (Sigma) in PBS. After
staining, tissue sections were postfixed in 2% formaldehyde/PBS at 4°C.
For Bluogal/CC1 double staining, tissue sections were stained with Bluo-
gal before CCl1 detection using Vectastain ABC kit and the peroxidase
substrate NovaRed (Vector Laboratories, Burlingame, CA). Pictures
were acquired using a Zeiss (Oberkochen, Germany) fluorescence micro-
scope equipped with a Zeiss Axiocam CCD camera. Images were pro-
cessed using Photoshop 7.0 software (Adobe Systems, San Jose, CA).

Primary cell cultures and cytochemistry. Oligodendroglial cells were
obtained from the spinal cord of E19.5 mutant or control mice by enzy-
matic digestion (Genoud et al., 2002). Briefly, spinal cords were incu-
bated for 20 min at 37°C in 200 ul of DMEM (Invitrogen) containing 2
mg/ml collagenase type IV (Worthington, Freehold, NJ), 1.2 mg/ml hy-
aluronidase type IV-S (Sigma), and 0.3 mg/ml trypsin inhibitor (Sigma).
After trituration, dissociated cells were plated onto poly-p-lysine (Sigma)
coated tissue Lab-Tek chamber slides (Nalge Nunc International, Naper-
ville, IL), maintained in DMEM (Invitrogen) supplemented with 10%
fetal calf serum (Sigma) at 37°C in 5% CO,, and fixed with 4% parafor-
maldehyde 6-12 h later. After two washes with PBS, cells were blocked
with goat serum (10%)/PBS for 1 h at room temperature. The cells were
then incubated with the rabbit NG2-antiserum (1:200; Chemicon, Te-
mecula, CA) and the rat monoclonal B1-integrin (1:30; BD Biosciences
PharMingen) primary antibodies, overnight at 4°C. Cy3-conjugated
anti-rat antibodies (1:300; Jackson ImmunoResearch) and Alexa 488-
conjugated anti-rabbit antibodies (1:250; Invitrogen) were used as sec-
ondary antibodies. The slides were mounted in Citifluor before being
visualized in a fluorescent microscope equipped with a Zeiss Axiocam
CCD camera connected to a Macintosh computer (Apple Computers,
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Figure1. Cre-mediated recombination of the 31-integrin gene leads to loss of B1-integrin in OPCs. Schematic representation
of the CNPase-Cre knock-in allele (4) and the floxed 31-integrin allele (B). In the conditional B31-integrin allele, two loxP sites
(black triangles) flank exons 2—7. During (NPase-Cre-mediated recombination, this genomic region is excised, generating a null
allele. The presence of a promoterless /acZ gene trailing the conditional allele and containing a splice acceptor derived from the
intron upstream of exon 2 ensures that, after recombination, the oligodendroglial cells will express 3-gal under the control of the
B1-integrin promoter. Western blot analysis demonstrate that 31-integrin levels in mutant P14 optic nerves (€) and in freshly
purified OPCs obtained from mutant PO mice mixed glial cultures (D) are strongly reduced compared with those of controls. E,
Double immunostaining for 31-integrin and the oligodendrocyte precursor marker NG2 show loss of 31-integrin immunoreac-
tivity on E19.5-derived spinal cord NG2-positive mutant cells (arrowheads) but not in their control counterparts (arrows). NG-2
negative cells are 31-integrin positive (white arrowheads). In <<10% of NG2-positive cells, some remaining 31-integrin immu-
noreactivity was observed (arrows in Ec—Ec”). Scale bars, 50 pum.
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Cupertino, CA). Purified oligodendrocyte pre-
cursor cell (OPC) cultures were obtained from
mixed glial cultures of PO mutant and control
mice as described in by McCarthy and de Vellis
(1980).

Western blot analysis. To quantify expression
of Bl-integrin, optic nerve tissue was homoge-
nized in lysis buffer (10 mm Tris-HCI, 5 mm
EDTA, 150 mm NaCl buffer, and 1% Triton
X-100) containing protease and phosphatase
inhibitors (Sigma).

Proteins within the lysates were separated by
SDS-PAGE and electroblotted onto nitrocellu-
lose membranes (Hybond-C; Amersham Bio-
sciences, Arlington Heights, IL) using standard
protocols. Densitometry and quantification of
the relative levels of protein expression were
performed on scanned images of Western blots
using Quantity One software (Bio-Rad, Her-
cules, CA).

Statistical analysis. The data show the
mean * SD. Statistical significance was deter-
mined using Student’s  test. In addition, for the
g-ratio/linear regression analysis, Welch’s two-
sample ¢ testand Wilcoxon’s rank sum test were
applied. Significance was set at p < 0.05. 1 rep-
resents the number of animals used for each
control and mutant groups, respectively. n was
always 3 unless otherwise indicated.

Results

Recombination and excision of a condi-
tional Bl-integrin allele (Fassler and
Meyer, 1995; Brakebusch et al., 2000; Po-
tocnik et al., 2000) was targeted to the cells
of the oligodendrocyte lineage using a
“knock-in” mouse in which Cre expres-
sion was under the control of CNPase reg-
ulatory sequences (Lappe-Siefke et al.,
2003) (Fig. 1 A,B). CNPase is expressed in
premyelinating oligodendrocytes (Pfeiffer
et al., 1993), and in vivo fate mapping us-
ing the ROSA26 lacZ reporter strain (So-
riano, 1999) confirmed that Cre con-
trolled by the CNPase regulatory
sequences is active in oligodendroglial
cells and in some spinal motoneurons
from E13 (Genoud et al., 2002) (our un-
published data). The recombination and
ablation of the conditional B1-integrin
gene also activates the transcription of a
lacZ reporter gene under the control of the
endogenous Bl-integrin promoter (Fig.
1B). This feature allowed us to directly fol-
low the fate of cells that had lost the con-
ditional B1-integrin allele by detecting the
activity of the -gal enzyme by X-gal or
Bluogal staining.

Targeted deletion of the 31-integrin
gene results in protein depletion in
oligodendroglial cells

Recombination of the conditional B1-
integrin allele under the control of
CNPase regulatory sequences led to the
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loss of PBl-integrin protein in mutant
OPCs. First, we showed by Western blot
analysis that the levels of B1-integrin pro-
tein in optic nerves obtained from mutant
mice at postnatal day 14 (P14) were signif-
icantly lower than those in corresponding
control optic nerves (Fig. 1C). Second, we
demonstrated that the loss of B1-integrin
expression occurred specifically on mu-
tant oligodendroglial cells. To do that, we
plated cells from freshly dissociated mu-
tant and control E19.5 spinal cords and,
6-12 h later, assessed the expression of
Bl-integrin in oligodendrocyte progeni-
tor cells by double immunofluorescence
using antibodies for B1-integrin and for
the OPC marker NG2. Our data con-
firmed that B1-integrin immunoreactivity
had been lost in >90% of mutant NG2-
positive cells (182 of 200 counted cells)
but not in their control counterparts (Fig.
1E). In contrast, NG2-negative cells de-
rived from the mutant spinal cord were
Bl-integrin positive (Fig. 1Ed-Ed"),
showing that the CNP-Cre transgene tar-
geted specifically cells of the oligodendro-
glial lineage. Third, we also confirmed by
Western blot analysis that the levels of B1-
integrin protein in lysates of freshly puri-
fied mutant OPCs, established from PO
mutant mice (McCarthy and de Vellis,
1980), were considerable lower than those
in lysates of control OPCs (Fig. 1D). In
these cultures, the percentage of recom-
bined, X-gal-positive OPCs was ~65%
(759 of 1144 counted cells), whereas the
percentage of recombined astrocytes was
<1%.

Normal myelination in the optic nerve,
corpus callosum, and spinal cord in the
absence of B1-integrin

Previous studies on ECM function in my-
elination revealed important regional dif-
ferences in the requirement for these mol-
ecules (Chun et al., 2003). Therefore, we
analyzed myelination in the optic nerve,
corpus callosum, and spinal cord. These
anatomical regions contain large numbers
of fibers running in parallel to each other,
greatly facilitating the analysis of the rela-
tionships between axon diameter and my-
elin sheath thickness. We compared the
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Figure2.  Normal myelination in the optic nerve and corpus callosum in the absence of 31-integrin. 4, D, Representative EM
pictures of myelinated fibers in cross sections of the optic nerve and corpus callosum of 2-month-old control and mutant mice. The
myelin sheaths within mutant optic nerve (A) and corpus callosum (D) show no signs of dysmyelination. The linear regression of
the fiber measurements performed for each animal is shown for the optic nerve (B) and for the corpus callosum (E), dashed lines
representing mutants. Neither in the optic nerve nor in the corpus callosum were the linear regressions from controls (co) and
mutants (mu) significantly different (optic nerve, p = 0.37; corpus callosum, p = 0.88). €, Bluogal electron microscopy of mutant
optic nerves showing precipitates in the soma of an oligodendrocyte (arrowhead in Ca) and in the myelin sheath inner loop of
mature fibers (asterisks in (b—(d). (d, Higher-magnification image of inset in Cc showing Bluogal precipitates in the inner loop
(arrowheads) of the myelin sheath (arrows). The total number of axons, myelinated axons, and small myelinated axons (axon
diameter <<0.5 wm) were counted in 10 randomly selected nonoverlapping fields from midsagittal sections through the corpus
callosum just above the fornix. The total number of axons, myelinated axons, and small myelinated axons per unit area are
presented as percentages of control. No significant differences were found in all three categories. Scale bars: 4, Ca—Cc, D, 1 um;
Cd, 0.5 wm.

relationships between axon diameter and myelin sheath thick-
ness (g-ratio) in 2-month-old mutant and control optic nerves
and corpora callosa (Fig. 2) and 3-month-old mutant and control
spinal cords (Fig. 3). For the optic nerve (p = 0.37), corpus
callosum ( p = 0.88), and the spinal cord ( p = 0.61), no signifi-
cant differences were found. The average g-ratios for the control
and mutant optic nerve were 0.81 = 0.014 and 0.80 * 0.017,
respectively (Fig. 2 B), for the control and mutant corpus callo-
sum were 0.75 = 0.005 and 0.74 * 0.02, respectively (Fig. 2E),
and for the spinal cord were 0.79 * 0.005 and 0.77 = 0.01, re-

spectively (Fig. 3B). In addition, we also found no evidence of
dysmyelination in mutant optic nerves, corpora callosa (Fig.
2A,D), and spinal cords (Fig. 3A). To further corroborate that
the axon size threshold for myelination was the same in mutants
and that there were not more unmyelinated axons, we calculated
the amount of myelinated small-diameter axons (axon diameter,
<0.5 um) and the total amount of myelinated axons in relation
to all axons in midsagittal sections of the corpus callosum just
above the fornix (Fig. 2 F). In mutants, the amount of myelinated
small-diameter axons (103 * 5% of control; p = 0.39), the total
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3E). A total of 89% of CCl-positive cells
were also Bluogal positive (1311 of 1479
counted cells). Besides a subset of mo-
toneurons in the ventral horns, no
Bluogal-positive/CC1-negative cells were
observed, further substantiating the oligo-
dendrocyte specificity of the CNP-Cre
mouse line. We also measured and com-

control .

Figure3.

D, 200 pm; E, 20 m; F, 50 pm.

number of myelinated axons (96 = 4.5% of control; p = 0.63), as
well as the total number of axons (105 = 2.2% of control; p =
0.51) were not significantly different.

Despite the loss of B1-integrin, mutant oligodendrocytes were
able to myelinate axons. This was shown in the optic nerve by
Bluogal electron microscopy. The presence of Bluogal precipi-
tates in oligodendrocyte somata (Fig. 2Ca), processes, outer
loops, and inner loop of the myelin sheath of mature fibers (Fig.
2Cb—Cd) indicated that mutant oligodendrocytes were able to
myelinate axons and that their recombination occurred before
myelination.

The loss of B1-integrin did not affect the onset or the extent of
myelination in the developing spinal cord. At P5, myelination in
the mutant spinal cord was not impaired (Fig. 3C). MBP-positive
areas, measured as a percentage of the total area of the spinal
cord, in cross sections of P5 control (29 *= 1.68%) and mutant
(28 = 1.04%) spinal cords were not significantly different (p =
0.56) (Fig. 3D). In addition, no signs of dysmyelination were
observed in mutant spinal cords. To demonstrate that the major-
ity of oligodendrocytes are recombined, Bluogal/CCl-double
staining was performed on 3-week-old mutant spinal cord (Fig.

3

axon diameter in um

Normal myelination in the developing spinal cord in the absence of 31-integrin. A, C, Representative EM pictures of
myelinated fibers in cross sections of the spinal cord of 3-month-old and 5-d-old control and mutant mice. The linear regression of
the fiber measurements performed for each animal is shown for the spinal cord of 3-month-old mice. B, Dashed lines represent
mutants. Nosignificant differences were found (p = 0.61). D, MBPimmunohistochemistry performed on cross sections of thoracic
spinal cord of 5-d-old control and mutant mice. No significant differences were found in MBP-positive areas in control and mutant
spinal cords (p = 0.56). E, In 3-week-old mutant spinal cord, the proportion of recombined [i.e., Bluogal (Bgal)-positive]
oligodendrocytes was compared with the number of all CC1-positive oligodendrocytes. Bluogal/CC1 double-positive oligodendro-
cytes (black arrows) and a CC1 single-positive oligodendrocyte (white arrow) are shown. Of all counted CC1-positive cells, 89%
were also Bluogal positive. F, The frequency of recombined, i.e., Bluogal positive, oligodendrocytes in 3-week-old control and
mutant spinal cords were analyzed, and the numbers were not significantly different ( p = 0.94). Scale bars: A, T um; C, 5 um;

pared the number of oligodendrocytes per
area expressing [3-galactosidase in both
control (312 * 80/mm?) and mutant
(308 *+ 24/mm?) spinal cords at 3 weeks of
age (Fig. 3F). No significant difference
(p = 0.93) was observed, further demon-
strating that, despite the lack of B1-
integrin, mutant oligodendrocytes were
capable of properly myelinating the spinal
cord.

4 5 1 7

B1-integrin expression is not required
for spinal cord remyelination

Having demonstrated that B1-integrin is
~ notnecessary for CNS myelination, we in-
¢ *  vestigated whether it is required for remy-
B elination. For this, we induced focal de-
- myelination by injecting the membrane
& + " solubilizer lysolecithin into the dorsal fu-
niculus of 3-month-old mutant and con-
trol spinal cords (Fig. 4A). In our previous
work (Arnett et al., 2004), we have shown
that, in the lysolecithin lesion paradigm,
remyelination is completed 5 weeks after
injury. Therefore, we chose to assess the
extent of remyelination in control and
mutant lesioned spinal cords 5 weeks after
lesion.

Although the remyelinated axons had
thinner myelin sheaths than those present
on normal axons, as is well described after
remyelination in the CNS, analysis of the
relationships between axon diameter and
myelin sheath thickness in the remyeli-
nated mutant and control spinal cords did not show significant
differences (four controls, five mutants; p = 0.38) (Fig. 4B,C),
with the average g-ratios for the mutant spinal cord being 0.86 =
0.008 and the control spinal cord being 0.87 = 0.02. To investi-
gate whether the lack of Bl-integrin affected the recruitment,
migration, and/or the capacity of oligodendrocyte progenitors to
engage axons in the lesion, we calculated the ratio between remy-
elinated and non-remyelinated axons within the lesion. No sig-
nificant differences (p = 0.54) were found in the number of
remyelinated (98 = 1.4%) or demyelinated (2 * 1.4%) axons in
relation to control remyelinated (97 = 1.6%) and demyelinated
(3 = 1.6%) axons present in mutant spinal cord lesions (Fig. 4 D).

To exclude a major contribution of nonrecombined cells to
the remyelination of the mutant lesion, we identified the recom-
bined cells within the lesions by X-gal staining. At 8 d after injec-
tion, the X-gal staining within the lesion was faint and diffuse
(Fig. 4E), probably a consequence of the degradation of the
myelin-producing cells. In contrast, at 4 weeks after lesion, the
X-gal staining was prominent in both control and mutant lesions
(Fig. 4E). The transcriptional activity of the lacZ gene is con-
trolled by the endogenous B1-integrin promoter after recombi-
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nation of the conditional B1-integrin al-
lele. Thus, increased X-gal staining most
likely reflected an accumulation of recom-
bined oligodendroglial cells within the le-
sion. This accumulation was similar in
control and mutant lesions, excluding a
significant contribution of nonrecom-
bined cells during remyelination of the
mutant lesions. These results suggest that,
although the B1-integrin promoter is ac-
tive in oligodendrocytes during remyeli-
nation, the lack of Bl-integrin does not
influence the outcome of the remyelina-
tion process.

Increased apoptosis of premyelinating
oligodendrocytes in the cerebellum of
B1-integrin mutant mice

During development, a large excess of oli-
godendrocytes is produced in relation to
the available axonal targets. These oligo-
dendrocytes compete for neuron-derived
survival signals, and their surplus is later
eliminated by apoptosis, within a relative
short time window, soon after the initial
differentiation into oligodendrocytes
(Raff et al., 1998). Previously, we reported
that a6B1-integrin signaling participates
in the regulation of this process in the
brainstem by studying the a6-integrin
knock-out mice (Colognato et al., 2002).
To confirm the role of B1-integrin in sur-
vival and to investigate whether this was
also the case in other regions of the CNS,
we analyzed the cerebellum at P5 of B1-
integrin mutant and control mice.

In the cerebellum, myelination pro-
ceeds from the central regions to the more
peripheral regions of the presumptive
white matter. At P5, oligodendrocytes in
the peripheral regions are still actively en-
gaging axons and are particularly suscep-
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tible to apoptosis (Fig. 5De,Df). Conse-
quently, the peripheral regions of both
mutant and control cerebella tend to contain higher numbers of
apoptotic TUNEL-positive cells and smaller numbers of myeli-
nating oligodendrocytes (identified as CC1-positive cells) than
those found in the corresponding central regions (Fig. 5C). To
investigate the effect of a loss of B1-integrin signaling in oligo-
dendrocyte cell survival in the cerebellum, we measured both the
number of apoptotic TUNEL-positive cells and CC1-positive oli-
godendrocytes per area in central fiber tract regions of control
and mutant cerebella. We found significantly more TUNEL-
positive cells in peripheral fiber tract regions of the mutant cere-
bellum (340 + 105/mm?) than in the control (185 * 61/mm?)
(n = 4; p = 0.038). In contrast, the number of CC1-positive
oligodendrocytes was significantly smaller (n = 4; p = 0.0017) in
the same peripheral fiber tract regions of mutant (88 = 27/mm?)
compared with control (167 * 18/mm?) cerebella. We conclude
that, as in the brainstem (Colognato et al., 2002), B1-integrin
signaling is involved in the control of oligodendrocyte survival in
the cerebellum. No significant difference in the number of CC1-
positive and TUNEL-positive oligodendrocytes was observed be-

Scale bars: B, 1 um; E, 100 m. Results are expressed as the mean == SD.

tween the central fiber tract regions of mutant and control cere-
bella (Fig. 5B,C). This was expected given the later stage of
development in these regions, as evidenced by reduced levels of
oligodendrocyte apoptosis and greater numbers of oligodendro-
cytes; these oligodendrocytes may be beyond the time window
during which target-dependent mechanisms regulate survival.
Although the lack of B1-integrin led to an increase of oligo-
dendrocyte cell death in the mutant cerebellum, myelination it-
self was not impaired. We analyzed and compared the relation-
ships between axon diameter and myelin sheath thickness (g-
ratio) in peripheral lobar fiber tracts of 2-month-old mutant and
control cerebella (Fig. 6A). The average g-ratios for the control
and mutant cerebella were 0.75 * 0.01 and 0.76 * 0.02, respec-
tively, and no significant difference was observed (Fig. 6 B). The
mutant cerebella also did not present any signs of dysmyelina-
tion. To confirm that the lack of a myelination phenotype was not
attributable to a compensation caused by an overall increase in
the number of nonrecombined (and therefore B1-expressing)
oligodendrocytes, we measured and compared the number of
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tant mice. A, Overview of a sagittally sectioned P5 cerebellum (DAPI stained). Indicated are the
analyzed central and peripheral regions. B, In the fiber tracts of the central area of the cerebel-
lum, the number of TUNEL-positive cells in control (co) (121 = 86/mm?) and mutant (mu)
(83 = 19/mm?) miceis not significantly different (p = 0.345; n = 4). (, The sameis true (n =
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(C1-positive cells. In contrast, in the fiber tracts of the peripheral lobar areas of the cerebellum,
the number of both TUNEL- and CC1-positive cells is significantly different (B, €). In these areas,
the number of TUNEL-positive cells is significantly higher ( p = 0.038; n = 4) in the mutant
(340 = 105/mm?) than in control (185 = 61/mm?) cerebella and, in the case of CC1-positive
cells, significantly lower ( p = 0.0017;n = 4)in the mutant (88 = 27/mm ) thaniin the control
(167 = 18/mm?) mice. D, Immunostainings for MBP (Da, Db), CC1 (D¢, Dd), and TUNEL (De,
Df)inthe peripheral areas of control and mutant cerebella. In Da, the dashed lines delineate the
different cell layers and the fiber tracts in a P5 cerebellar lobe. egl, External granular cell layer;
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surface. Arrowheads in De and Df point to TUNEL-positive cells within the fiber tracts. Scale
bars, 10 wm. Results are expressed as the mean = SD.
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recombined  oligodendrocytes  per  area  expressing
B-galactosidase in the central and peripheral regions of both con-
trol and mutant cerebella (central, 94 = 13/0.2 and 88 = 27/0.2
mm ?, respectively; peripheral, 98 + 21/0.2 and 96 + 34/0.2 mm?,
respectively) (Fig. 6C,D). No significant difference (central re-
gion, p = 0.74; peripheral region, p = 0.94) was observed, con-
firming that the B1-integrin null oligodendrocytes were myelina-
tion competent.

Discussion

The formation of myelin sheaths in the CNS requires a number of
distinct steps after the generation of oligodendrocyte precursor
cells from the neural stem cells of the CNS. Of these, previous
studies led to the hypothesis that B1-integrin signaling could play
an important role in precursor migration, in the target-
dependent survival of newly formed oligodendrocytes, and in
regulating the morphological changes associated with myelina-
tion itself. In the present work, we tested this hypothesis using
tissue-specific gene ablation in transgenic mice to analyze the
functional role of B1-integrin in the latter two steps: myelination
and survival. Our findings do not support a requirement for 31-
integrin signaling in CNS myelination during either normal de-
velopment or remyelination, but they confirm a role for this in-
tegrin in oligodendrocyte cell survival.

Based on our previous in vitro findings (Buttery and ffrench-
Constant, 1999; Relvas et al., 2001) and especially in our cell
transplantation experiments (Relvas et al., 2001), in which 1-
integrin signaling function was blocked by expression of a 81-
integrin dominant-negative mutant, we suggested a possible role
for Bl-integrin signaling in CNS myelination. In the present
work, we tested this hypothesis by targeting the ablation of this
gene specifically to oligodendroglial cells during CNS myelina-
tion. In addition to providing a highly stringent test system, this
approach circumvented the problems posed by the use of both
the null Bl-integrin mouse, which dies during embryogenesis
(Fassler and Meyer, 1995), and the a6-integrin null mouse, which
dies at birth (Georges-Labouesse et al., 1996). Our results show
that, in the absence of B1-integrin, oligodendrocytes are still able
to myelinate axons. In the developing mutant spinal cord, myeli-
nation was not impaired or delayed, and, in mutant adult mice,
no detectable qualitative or quantitative differences of the myelin
sheath in the optic nerve, corpus callosum, spinal cord, or cere-
bellum were observed.

In the light of previous studies (Jones et al., 2001; Chun et al.,
2003), in which alteration of the laminin composition leads to
defects of CNS myelination, our results were unanticipated. By
ablating B1-integrin in oligodendrocytes, we suppressed the sur-
face expression of a631-integrin, the only described laminin re-
ceptor present in oligodendrocytes, but also removed any other
potential B1-integrin laminin receptors, such as a1p1, a3p1, or
a7B1. These additional B1-integrins, so far, have not been de-
tected in oligodendrocytes using conventional biochemical and
molecular detection methods. Therefore, the most likely expla-
nation is that other laminin receptors must be involved in oligo-
dendrocyte differentiation and myelination. Oligodendrocytes
express dystroglycans (H. Colognato, unpublished observa-
tions), but a function for these molecules in oligodendrocyte
differentiation has still to be supported by experimental evidence.

The different conclusions reached between this study and our
previous one (Relvas et al., 2001), using a dominant-negative
approach, may be explained by the chosen method to suppress
Bl-integrin signaling. In other cell types (Calderwood et al.,
2004), these dominant-negative approaches produced broader
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effects than those that are found when
more physiological and stringent systems,
such as conditional genetic loss-of-
function, were used (Graus-Porta et al.,
2001). One possible explanation is that the
expression of Pl-integrin dominant-
negative constructs in oligodendroglial
cells elicited a transdominant inhibitory
effect impairing not only the function of
Bl-integrins but also the function of other
oligodendrocyte integrin receptors. Apart
from 61, these cells also express several C
developmentally regulated ov-integrins:
avBl, avB3, avPB5, and avB8 (Milner and
ffrench-Constant, 1994; Shaw et al., 1996).

control

central
Specific functions for some of these have  region
been defined during oligodendrocyte dif-
ferentiation in vitro. They include a role .
for avB1 in the control of OPC migration ~ peripheral
(Milner et al., 1996), a role for avB3, in region
close synergism with the platelet-derived Figure 6.

growth factor (PDGF) receptor, in the reg-
ulation of OPC proliferation (Blaschuk et
al., 2000; Baron et al., 2002), and a role for
avf5 in the onset of oligodendrocyte pre-
cursor differentiation (Blaschuk et al.,
2000). Because the dominant-negative
construct was expressed using a promoter
active in the precursor cells and differen-
tiated oligodendrocytes, transdominant inhibition of any of these
integrins could contribute to the phenotype observed and explain
the different results of the two strategies.

Remyelination is a spontaneously occurring regenerative pro-
cess showing some similarities to developmental myelination in
that both involve oligodendrocyte progenitor proliferation, mi-
gration, engagement of axons, differentiation, and production of
myelin membranes (Franklin and Hinks, 1999). However, the
extracellular environment in which remyelination takes place is
different from that of myelination. Experimentally induced and
disease-related demyelinating lesions elicit profound and dy-
namic changes in the level, composition, and temporal expres-
sion of growth factors, chemokines, and proteins of the extracel-
lular matrix within the lesions (Sobel, 1998; Franklin et al., 2001;
Sobel, 2001). These changes are proposed to impact oligodendro-
cyte biology and may influence the outcome of the remyelination
process, such as in certain types of multiple sclerosis in which
demyelinated lesions fail to remyelinate and eventually predom-
inate (Franklin, 2002). To investigate whether oligodendrocytes
require 1-integrin signaling for the remyelination of the CNS,
we performed lysolecithin-induced focal demyelinating lesions
in the dorsal funiculus of the spinal cord of mutant and control
mice. Five weeks after injury, no significant differences in the
extent of remyelination were found between mutant and control
spinal cords. There was no increase in the number of demyeli-
nated axons and no alterations in the thickness of the myelin
sheath, suggesting that oligodendrocytes do not require S1-
integrin to remyelinate demyelinated axons. Furthermore, at 4
weeks after lesion, X-gal stainings identified similar numbers of
recombined, B-galactosidase-positive cells within the lesions of
control and mutant mice, indicating that mutant oligodendro-
glial cells were also recruited to participate in the remyelination
process. Although the lysolecithin lesion paradigm does not di-
rectly assess oligodendrocyte progenitor migration, these results

the mean = SD.
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imply that the migration of mutant OPCs was not significantly
impaired. Because OPC migration on vitronectin and fibronectin
substrates is inhibited by B1-integrin function-blocking antibod-
ies (Milner et al., 1996) and, in demyelinating lesions the levels of
vitronectin and fibronectin are vastly increased (Sobel, 2001)
(our unpublished data), this outcome was unexpected and war-
rants additional investigation.

Once contacting laminin on the axonal surface through their
a6B1-integrin receptor, oligodendrocytes are believed to activate
survival signaling in response to low concentrations of growth
factors, such as neuregulin or PDGF. Activation of oligodendro-
cyte survival requires activation of MAPK (mitogen-activated
protein kinase) signaling, which leads to phosphorylation and
inactivation of the proapoptotic molecule BAD (Bcl-2-associated
death protein) (Colognato et al., 2002). Accordingly, mice lack-
ing the a6-integrin subunit and, as a consequence, cell-surface
expression of a6B1-integrin showed increased oligodendrocyte
apoptosis in the embryonic brainstem, demonstrating the need
for this integrin in axon-dependent oligodendrocyte cell survival
during development. In the present work, we confirm this role
for integrins by showing that the B1-integrin signaling require-
ment for oligodendrocyte survival extends to other CNS regions,
such as the cerebellum. In relation to their control counterparts,
P5 mutant cerebella showed both increased apoptotic cell death
and a significantly reduced number of myelinating oligodendro-
cytes (identified as CC1-positive cells in the cerebellum) in pe-
ripheral regions in which myelination had just started. No such
effect was detected in the central regions of the cerebellum, in
which active myelination was already advanced.

These observations corroborate our hypothesis (Colognato et
al., 2002) that integrin signaling, in the context of oligodendro-
cyte cell survival, is required at a stage when cells contact axons
and are starting to myelinate. At later stages, the integrin is no
longer required for survival and oligodendrocyte numbers have
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also returned to normal; this may reflect the inherent compensa-
tory ability of a developmental system in which oligodendrocytes
are generated in considerable excess (Raff et al., 1998). By target-
ing the deletion of B1-integrin and, as a result, the loss of a61-
integrin cell-surface expression to the oligodendrocyte lineage,
we were also able to demonstrate that the effect of integrin loss on
oligodendrocyte survival was cell autonomous. This is conceptu-
ally important because, in the a6-integrin null mice, oligoden-
drocyte cell death could have also been induced by alterations in
cell behavior of other cell types, such as astrocytes, known to
promote oligodendrocyte survival (Corley et al., 2001).

In summary, our data show that, although the absence of
Bl-integrin in oligodendrocytes leads to stage-specific increased
oligodendrocyte cell death, CNS myelination and remyelination
are not delayed or impaired. In contrast to our previous pub-
lished observations, this study does not support a role for 81-
integrin signaling in myelination and remyelination.
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