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III Abstract 
 

Renal cell cancer (RCC) is the most common malignancy affecting the adult kidney. The most 

prevalent RCC subtypes is clear cell RCC (cRCC), which accounts for 75% of all malignant 

lesions. RCC is characterized by an unpredictable clinical course and a poor prognosis. Very little 

is known about molecular alterations involved in initiation and progression of RCC. 

Identification of molecular markers might facilitate diagnosis and outcome predictions and help 

to develop innovative and novel treatment options. For this reason, it was the aim of this thesis to 

identify RCC associated genes. In a first part, potentially renal tumor relevant genes were 

uncovered using a combination of cDNA and tissue microarray technology. In a second part, one 

gene was selected to further evaluate its impact on RCC biology using Northern blot analysis, 

quantitative RT-PCR, and functional studies in cRCC cell lines. 

 

To uncover renal cancer associated genes, gene expression profiles of four cRCC cell lines and 

normal renal tissue were compared using BD AtlasTM Human Cancer 1.2 cDNA microarrays. 

Twenty-five genes were found significantly differentially expressed. To evaluate the relevance of 

those genes for RCC, mRNA expression levels were further studied by RNA in situ hybridization 

on a tissue microarray generated from 61 snap frozen primary RCC and 12 normal renal tissues. 

Five genes (VIM, CD74, CHES1, LITAF, and BTG2) appeared to be highly interesting renal 

carcinogenesis relevant genes. Of those genes, three (CHES1, LITAF, and BTG2) have never 

been associated with renal cancer before. 

 

BTG2, a negative cell cycle regulator, which was expressed in normal renal tissue but 

downregulated in cRCC cell lines and primary cRCCs, was chosen for further experiments. 

Northern blot analysis confirmed the results obtained by cDNA and tissue microarray analysis. 

Quantitative RT-PCR analysis in 42 primary cRCCs and 17 normal renal tissues revealed up to 

44-fold reduced BTG2 mRNA expression in the tumor tissues. Decrease of BTG2 mRNA 

expression was not associated with advanced disease indicating that reduction of BTG2 mRNA 

expression is rather an early event in renal carcinogenesis. In cRCC cell lines, BTG2 mRNA 

expression was weakly inducible by the phorbolester TPA in one of four cultures. In contrast, 

increasing cell densities lead to slightly elevated BTG2 mRNA expression in three of four cRCC 



Abstract 

 9

cell lines. Importantly, in both experiments BTG2 mRNA levels did not reach values observed in 

normal renal tissue by far. The results obtained in the second part of this thesis strongly suggest 

that downregulation of BTG2 is an important step in renal cancer development. Further 

experiments (allelic deletion, mutation and methylation analysis and also re-expression of BTG2 

in cRCC cell lines) are necessary to show whether BTG2 is a new renal tumor suppressor gene. 

 

In summary, application of high throughput cDNA microarray analysis in combination with 

tissue microarray technology allowed the identification of five genes, which might play a role in 

renal tumor biology. Further studies on BTG2, the most interesting candidate gene, indicate that 

downregulation of BTG2 mRNA expression is an early and important step in renal 

carcinogenesis. More experiments will show whether BTG2 is a new renal tumor suppressor 

gene. 
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1 Introduction 
 

1.1 Epidemiology of renal cell cancer 

 

Renal cell cancer (RCC) is the umbrella term for a family of very heterogenous tumors, which 

were primarily classified based on cytomorphological characteristics and their site of origin (1). 

All RCC subtypes have in common that they are derived from epithelial cells of the renal tubulus 

system (nephron). The most prevalent RCC subtypes are clear cell RCC (cRCC), papillary RCC 

(pRCC), and chromophobe RCC (chRCC) which account for 75%, 10%, and 5% of all malignant 

lesions of the kidney, respectively. Duct-Bellini carcinomas, a very rare and aggressive subtype, 

account for 1% of all renal tumors. Three to five percent of all renal carcinomas remain 

unclassified since they do not fit into any of the mentioned categories. Not only malignant lesions 

but also benign tumors derive from the nephron. Oncocytoma, the most common benign lesion, 

arises from the distal tubulus epithel and accounts for 5% of all renal lesions (2). 

 

Referring to the data provided by Globocan 2000 (www-dep.iarc.fr/globocan/globocan.html), 

RCC accounts for about 2% of all human cancers. It is the most common malignancy affecting 

the adult kidney. For the year 2000, the estimated world-wide incidence was about 189.000 and 

the world-wide mortality was about 91.000. About two-thirds of these cases are diagnosed in 

more developed countries. In Switzerland, the estimated incidence for the year 2000 was about 

880 and the mortality was about 440. Men are more frequently affected by cRCC and pRCC than 

women. In contrast, chRCC is more frequently found in women than in men (3).  

 

There has been a strong increase in the incidence rate of RCC within the past decades. Frequent 

usage of modern abdominal imaging modalities lead to incidental detection particularly of small, 

asymtomatic renal tumors and explain the increasing incidence of RCC. In 1970 merely 10% of 

the renal tumors were diagnosed incidentally whereas in 1998 already 61% were found by 

accident in a routinous check-up (4-6). 
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1.2 Etiology of RCC 

 

According to Dhôte et al. (7), who reviewed more than 100 publications released between 1987 

and 1998, accepted risk factors for renal cancer are heavy smoking and severe obesity. 

Interestingly, both risk factors are sex-linked since smoking leads to a higher incidence of RCC 

in men whereas severe obesity is significantly associated with renal cancer in women. Several 

types of exposure are also thought to be associated with RCC. For instance, workers in the iron, 

steel, glas, and petrol industry are at higher risk of developing RCC. Also, intake of phenacetin 

(analgesic) and thiazidic (antihypertensive drug) has been shown to be associated with renal 

cancer. 

 

1.3 Prognosis of RCC 

 

Among the most common RCC subtypes, cRCCs have the worst prognosis, directly followed by 

pRCCs (5-year-survival-rates 50% and 58%, respectively). In contrast, chRCCs show a 

significantly better outcome. Seventy-eight % of patients affected by chRCC are still alive 5 

years after diagnosis (3). 

 

The prognosis for patients suffered from RCC largely depends on the development of metastases. 

Due to the lack of early symptoms, the percentage of advanced already metastatic tumors at first 

presentation is rather high. Additionally, 40 to 50% of non-metastatic tumors at first presentation 

will metastasize during the course of disease. In 80 to 85% of these cases, metastases occure 

within three years after presentation (8, 9). Frequent sites for dissemination are lung, bone, liver, 

and brain but additional, uncommon sites are typical for renal cancer (8, 10). 

 

Late recurrance after long-term, disease free survival is another peculiarity of renal cancer. 

McNichols et al. (11) found a recurrence rate of 11% in a group of 506 10-year-survivors. 

Therefore, a patient with proven RCC can never be considered cured. 
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1.4 Therapeutical approaches for RCC 

 

Therapy of choice for localized tumors is nephrectomy, which implies the excision of the tumor 

containing kidney and, in case of total nephrectomy, the adrenal gland and auxiliary lymphnodes 

(12). After nephrectomy, the 5-year survival rate of localized, organ-confined RCC is between 

88% and 100% (13).  

 

Once the tumor becomes metastatic, therapy remains a challenge for the oncologist. RCC has 

been shown to be nearly insensitive towards conventional chemo-, hormonal, and radiation 

therapy (14-17). The resistance towards chemotherapeutical agents might be explained by (i) 

presence of the transmembrane drug-transporting p170 glycoprotein (MDR1), which causes 

efflux of the therapeutical drugs from the tumor cells, in a large subset of RCC (18, 19) and (ii) 

the low growth fraction and long doubling time of RCC resulting in a reduced susceptibility of 

renal carcinoma cells to the effects of chemotherapeutic agents (19, 20). 

 

In contrast to conventional therapies, immunotherapy seems to have at least some effect on 

disease progression. The principal cytokines used for RCC therapy are interferon-α and 

interleukin-2 (19). Recently, the overall response rate for interferon-α was 11 to 16% (21, 22). 

Although, duration of response is less than 2 years, some long term survivors have been 

described (21). The objective respones rates for interleukin-2 were between 15% and 20% (23-

25). Among patients with complete or partial response, 60% and 18% were alive 5 years after 

diagnosis, respectively (24).  

 

1.5 Prognostic parameters in RCC 

 

Prognostic factors are used to predict the course of a disease, to choose among different treatment 

options, and to determine patient eligibility for entry into a study. Prognostic parameters have to 

meet many criteria like significant association with clinical course of disease, reproducibility in 

large clinical trials, and independent predictive potential in multivariate statistical analysis before 

they become applicable for clinical purposes. The College of American Pathologists (CAP) 

working classification (26) allows the graduation of prognostic markers into different groups 

based on the respective state of research (Table 1). 
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Table 1: CAP working classification. 
 
Category Definition 
I Well supported by the literature; 

generally used in patient 
managment 

II Extensively studied biologically 
and/or clinically 

 A: Tested in clinical trials 
 B: Biologic and correlative 

studies performed; few clinical 
outcome studies 

III Currently do not meet criteria 
for Category I or Category II 

 

According to the CAP working classification there are only a few Category I prognostic 

parameters for RCC. Those include patient related criteria like symptomatic presentation 

(hematuria, pain, palpable tumor mass) and more than 10% body weight loss and also 

conventional macro- and microscopical parameters like for instance occurance and localization of 

metastasis, tumor stage and grade of nuclear differentiation (27). 

 

To date, the most significant factor in prognosis of RCC continues to be tumor stage, which 

reflects the anatomical spread of the disease at presentation (28). Two staging systems, one 

developed by Robson et al. (29) and the TNM system provided and regularly revised by the 

Union Nationale Contre le Cancer and the American Joint Committee on Cancer (AJCC) (30) 

are frequently used in pathological institutions worldwide. The TNM system, which is applied at 

our institute, divides renal tumors into four different groups (I-IV) depending on tumor size and 

extension (pT category) and occurance of lymphnode (pN category) and/or distant metastasis 

(pM category). Following the TNM guidlines (Table 2), 5-year and 10-year survival rates are 

94% and 91.6% in stage I tumors, 89.7% and 78% in stage II, 63.4% and 46.4% in stage III, and 

28% and 16.3% in stage IV lesions (31). However, assessment of the metastatic status is often 

impossible. For those cases tumor extension (T category) alone is also a reliable marker for 

outcome predictions due to its significant association with the survival time (3). 

 

Second in importance, but also significantly associated with patient survival, is the grade of 

nuclear differentiation or tumor grade (3, 28). Already in 1971 Skinner et al. has directed 

attention to the correlation of nuclear features, like size, content, and shape, with patient survival 
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(4). Today, the 4-tired grading system developed by Fuhrman (32) and the 3-tired system 

provided by Thoenes (1) are the most frequently used systems for the grading of renal tumors. At 

our institute the Thoenes grading system is used, which separates RCC in highly differentiated 

(grade 1), moderately differentiated (grade 2), and poorly differentiated (grade 3) tumors. Grade 

1 lesions have a significantly better prognosis than grade 2 and grade 3 tumors (3). 

 

The prognostic potential of tumor stage and grade is universally accepted in the literature and 

both parameters are generally applied in clinical practice. However, these conventional 

histopathological markers obviously have limitations since unfavourable clinical courses of renal 

tumors that were originally thought to have a good prognosis are common (13, 33-35). 

 

Table 2: TNM staging system. 
 
pT-, pN-,  
and pM-
category 

Definition 1

pTX Primary tumor cannot be assessed 
pT0 No evidence of primary tumor 
pT1 Tumor < 7 cm, limited to the kidney 
pT2 Tumor > 7 cm limited to the kidney 
pT3 Tumor extends into major veins, adrenal 

gland or perinephric tissues but not beyond 
Gerota facia 

pT4 Tumor invades beyond Gerota facia 
pNX Regional lymph nodes cannot be assessed 
pN0 No regional lymph node metastasis 
pN1 Metastasis in a single regional lymph node 
pN2 Metastasis in more than one regional lymph 

node 
pMX Distant metastasis cannot be assessed 
pM0 No distant metastasis 
pM1 Distant metastasis 
Tumor stage pT; pN; pM combination 
I pT1; pN0; pM0 
II pT2; pN0; pM0 
III pT1; pN1; pM0 
 pT2; pN1; pM0 
 pT3; pN0 or pN1; pM0 
IV pT4; pN0 or pN1; pM0 
 any pT; pN2; pM0 
 any pT; any pN; pM1 
1 Gerota facia: tough, fibrous membrane surrounding the perinephric fat. 
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In addition to the limited number of histopathological markers, identification of molecular 

markers may help to individually predict disease outcome in RCC. The Ki-67 antigene is widely 

used as a proliferation marker in histopathology. The nuclear protein is not detectable during G0 

and early G1 phase but accumulates during G1 to M phase (36). Ki-67 is suggested to play a role 

in chromosome condensation, sister chromatid separation, and in the control of higher order 

chromatin structure (36-38). Its applicability as an independent prognostic parameter has already 

been shown for prostate and breast cancer (36). Plenty of studies have been done concerning the 

usability of Ki-67 as a prognostic parameter for RCC. Some groups could show that increased 

expression of Ki-67 is also a powerfull, independent prognostic marker associated with adverse 

disease outcome (39-41). In contrast, other groups demonstrated that Ki-67 does not provide 

additional information beyond what tumor stage and grade are already telling the 

pathologists/clinicians (20, 42). Thus, the prognostic value of Ki-67 immunostaining remains 

uncertain. 

 

Matrix metalloproteinases (MMP) and their inhibitors (tissue inhibitors of matrix 

metalloproteinases; TIMP) are thought to play an important role in tumor progression. Beside 

their well-known function in extracellular matrix organization newer studies have shown that 

MMPs and TIMPs also might have influence on cell proliferation, apoptosis, angiogenesis and 

immune response (43). Altered expression levels of individual MMPs and TIMPs have already 

been associated with disease progression in a variety of human tumors (44). Recently, increased 

TIMP1 expression was shown to be an independent (assessed in a multivariate analysis including 

tumor stage, grade and expression of other MMPs/TIMPs) predictor of shortened survival in 

cRCC (45). This finding is corroborated by other groups, which have linked increased TIMP1 

expression to shortened survival in colorectal, breast, and non-small cell lung cancer (46-48). By 

analyzing a subset of 153 archival, paraffin embedded primary cRCCs with patient follow-up 

data, we found that strong MMP3 immunopositivity is significantly associated with adverse 

outcome in advanced (pT3/pT4) tumors and that expression of TIMP3 protein is linked to 

occurance of lymphnode metastasis in this RCC subtype (own unpublished observations). 

Thus, altered expression levels of MMPs and TIMPs might be of importance for renal tumor 

biology and further studies in this field would be worthwhile. 
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The list of molecular markers tested for their value as prognostic parameters in RCC is endless. 

Although there are some promising candidates, tumor grade and stage are still the parameters of 

choice. 

 

1.6 Clear cell renal cell carcinoma (cRCC) 

 
As already mentioned in the previous sections, cRCC is the most common RCC subtype by far. 

Consequently, most previous studies have been done on cRCC and also the tissue material and 

cell lines used for the experiments in this thesis are stemming from cRCC. On this account, the 

histo- and molecularpathology of cRCC will be addressed in the following sections. 

 

1.6.1 Histopathology of cRCC 

 

As illustrated in figure 1, cRCCs arise from epithelial cells of the proximal tubulus (1). Prominent 

characteristics of cRCC are large plantcell-like cells with a clear cytoplasma due to the high 

contents of cholesterol, lipid, and glycogen which are eluted during routine processing of the 

tumor tissue (Figure 1). Clear cell RCCs generally show a solid growth pattern (28). Sarcomatoid 

differentiation and occurance of necrosis have been associated with adverse outcome (3). 

 

1.6.2 Cytogenetic and molecular alterations in cRCC 

 

First insights into the pathogenesis of RCC have been aquired using conventional cytogenetic 

analysis. Already in the late eighties and early nineties it could be demonstrated that loss of 3p 

sequences is fundamental to cRCC development occuring in up to 95% of the analyzed cases (49-

53).  

 

Introduction of Comparative Genomic Hybridization (CGH) analysis in 1992 facilitates the 

detection of DNA copy-number losses and gains in a given tissue sample (54, 55). To generate a 

CGH profile of a tumor, equal amounts of tumor and normal DNA are labelled with two different 

fluorochromes prior cohybridization to human metaphase chromosomes. The fluorescence 

intensity ratio of the two fluorochromes along the length of the chromosome is measured to 

calculate the DNA copy number changes within the tumor specimen. Many groups have studied  
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Figure 1: Point of origin and histopathology of cRCC. 

(A) cRCC arise from the functional unit (nephron) of the kidney. Point of origin are epithelial cells of the 

proximal tubule (circle). cd = collecting duct; ct = collecting tubule; dt = distal tubule; gl = glomerulus; lh = 

loop of Henle; pt = proximal tubule. (B) H&E stained section of normal renal tissue with a schematic display 

of a cross section through the proximal tubule. ec = epithelial cell; pt = proximal tubule. (C) H&E stained 

section of cRCC showing the typical plantcell-like character of cRCC cells. (D) Cross section through kidney 

containing a cRCC. rc = renal cortex; rm = renal medulla; rp = renal pelvis; tu = tumor. 

 

cRCC using this technology and found that this RCC subtype is characterized by frequent losses 

of chromosomes 3p, 4q, 6q, 8p, 9p, 13q, 14q, and Xq and gains of 5q, 7, and 17 (56-58). Figure 2 

shows an example of a CGH profile of cRCC. Using CGH data, Jiang et al. (57) have constructed 
17 
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evolutionary trees for cRCC thereby gaining insight into the order of occurance of genetic 

alterations. Beside 3p, whose loss already was considered to be an early event in renal tumor 

biology (50, 59), they also found loss of 4q to be important in the initiation of cRCC. 

Additionally, due to their analysis, they suggested two distinct subclasses of cRCC from which 

one is characterized by successive loss of 13q, 9p, and 18q and the other one by successive loss 

of 6q, and gain of 17q and 17p. 

 

Certain cytogenetic alterations have already been implicated with progression of cRCC. For 

instance, loss of 9p, 13q, and 14q have been associated with shortened survival in advanced 

(Stage III and IV disease) cRCCs (56, 57, 60, 61). 

 

 

1 2 3 4 5 6 7 111098 12

13 14 15 16 17 18 19 20 21 22 Y X

 

 

 

 

 

 

 

 

 

 

 

 Figure 2: CGH profile of cRCC generated from 41 primary cRCCs (Moch et al. 1996). 
 
Bars on the right site of the chromosome: DNA sequence losses; bars on the left site of the chromosome: 
DNA sequence gains. 

 

 

Two important points can be summarized from the findings described above: 

 

(1) DNA sequence losses are much more frequent than DNA sequence gains suggesting that 

renal pathogenesis is mainly driven by loss of function of genes (potential tumor suppressor 

genes) located in these regions. 

18 
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(2) No amplified DNA sequences (harboring potential oncogenes) have been identified in 

primary cRCC. 

 

1.6.3 Molecular carcinogenesis of cRCC 

 

Obviously, loss of 3p sequences is the most common event in cRCC (50, 62, 63) indicating that 

genes localized in this chromosomal region are of particular importance for renal tumor biology. 

Interestingly, loss of 3p is also frequent in other solid human cancers, i. e. lung, breast, ovarian, 

and head and neck tumors (64-69). At least three separate regions of 3p, 3p25-26, 3p21-22, and 

3p12-14, are critical in the development of cRCC (62, 70-75). 

  

One of the first genes associated with sporadic cRCC was the Von Hippel-Lindau (VHL) gene, 

which is located at 3p25 and mutated in VHL syndrome (dominantly inherited familial cancer 

syndrome) families (76). Introduction of the VHL cDNA into renal cancer cell lines has 

functionally confirmed that this gene has tumor suppressive properties (77). Somatic mutations in 

all 3 exons and hypermethylation of the VHL promoter have been described in 34-85% (78-80) 

and 15-19% (80, 81) of the analyzed cRCCs indicating the importance of VHL in renal tumor 

biology. The VHL protein plays a role in the regulation of the cellular response towards hypoxia. 

Hypoxia activates the transcription factor HIF-α, which regulates expression of genes involved in 

angiogenesis, cell adhesion, extracellular matrix regulation, proliferation, and apoptosis 

(reviewed in (82-85). Under normal oxygen conditions, binding of VHL to HIF-α causes the 

ubiquitylation and degradation of HIF-α (86, 87). It has been shown that VHL inactivating 

mutations lead to stabilization of HIF-α in cRCC (86-88). According to this, HIF-α protein is 

abundant in primary cRCC in contrast to normal renal tissue (and other RCC subtypes) where 

HIF-α levels were very low or even undetectable (89, 90). Turner et al. could show that strong 

HIF-α expression is associated with increased vascular endothelial growth factor (VEGF) 

expression and microvessel density in cRCC (90). These findings indicate that impaired VHL 

function could promote cRCC development by constitutive activation of HIF-α, which leads to 

increased vascularization, paving the way for boundless tumorgrowth and metastasis. 
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Beside VHL, other genes located at 3p may be of importance for renal tumor biology. Dammann 

et al. (91) have identified a human RAS effector homologue (RASSF1), on 3p21.3, through its 

interaction with the human DNA repair protein XPA in a yeast 2-hybrid screen. Three splice 

variants of the RASSF1 gene (RASSF1A-C), of which RASSF1A seems to play a key role in 

tumorigenesis, are existing. Epigenetic silencing of the RASSF1A promotor has been described in 

24-91% of the analyzed primary cRCCs and in 100% of evaluated cRCC cell lines (92, 93). In 

contrast to VHL, which is strictly associated with cRCC, RASSF1A promoter methylation has also 

been obseved in pRCC (93). RASSF1A promoter methylation is also common in other human 

cancers, including breast, lung, prostate, ovarian, and skin tumors (94-98). Re-expression of 

RASSF1A resulted in growth suppression and reduced colony formation in a cRCC cell line 

corroborating the tumor suppressive function of this gene in renal pathogenesis (92). However, 

the mechanism by which RASSF1A contributes to renal tumorigenesis is yet unclear. The 

presence of a RAS association domain and a strong homolgy to Nore1 (a mouse RAS effector 

protein which in vivo interacts with Ras in a GTP-dependent manner following receptor 

activation (99)) suggest that RASSF1A functions in a Ras signalling pathway, possibly as a 

negative regulator of cell growth (91). 

 

By introducing a chromosomal fragment, encompassing 3p14-p12, into a highly malignant cRCC 

cell line Sanchez et al. (100) obtained dramatically reduced tumor growth in athymic nude mice 

suggesting another renal cancer relevant tumor suppressor gene on the short arm of chromosome 

3. In 1998, the region containing the tumor suppressor gene(s) was confined to 3p12 and 

designated nonpapillary renal carcinoma-1 (NRC-1) locus (101). Introduction of NRC-1 locus 

into different renal cancer cell lines showed that the tumor suppressive properties of 3p12 are 

independent of histological phenotype and VHL mutation status (102). The tumor suppressor 

gene(s) located at 3p12 remain to be identified. 

 

1.7 cDNA and tissue microarray technologies for the identification of cRCC relevant 

genes 

 

Because cancer is a multistep process it is unlikely that alterations of genes located at 3p are 

sufficient to induce and promote renal carcinogenesis. By CGH analysis it has been shown that 

virtually all chromosomes are affected in cRCCs (56-58) strongly suggesting that many more 
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genes are playing a role in renal tumor biology. Further studies are necessary to identify renal 

tumor relevant genes and evolve the molecular pathways leading to renal cancer initiation and 

progression. Those genes could than be used as diagnostic and prognostic parameters or as new 

targets for innovative and effective therapies. 

 

Recently, cDNA array technology was developed which allows expression analysis of thousands 

of genes in parallel thus accelerating and facilitating target gene identification. This technology 

offers the possibility to generate gene-expression profiles of each tissue of interest in a very short 

time enabling to uncover the molecularbiological processes leading not only to cancer but also to 

other diseases (103, 104). In cancer research, cDNA arrays have been employed to elucidate the 

molecular pathogenesis of tumor diseases (105-107), to promote the molecular subclassification 

of pathohistologically similar tumor entities (108, 109), to identify new diagnostic and prognostic 

markers and therapeutical targets (110-112), and to evaluate the response of tumor cells to 

different chemotherapeutical drugs (113, 114). 

 

Interpreting the multiparametric data, validating results, and prioritizing the candidate markers 

are the major challenges for microarray-based cancer profiling efforts. To assess the clinical 

significance of prognostic or diagnostic marker genes, large numbers of tissue samples have to be 

analyzed. This is rather cumbersome and time-consuming if large conventional histological 

sections are used. Recently, tissue microarrays (TMA) have been designed to analyze 

simultanously new cancer related genes in hundreds of tumors on the DNA, RNA, and protein 

level (115, 116). Consequently, a combination of cDNA microarray and TMA technology is 

particularly suitable for rapid identification and subsequent validation of potential novel cancer 

markers and prognostic parameters (117-120). 

 

1.8 Aim of the thesis 

 

Despite many efforts, the genetical background of renal carcinogenesis largely remains unclear. 

As a result of this, there is a lack of diagnostic and prognostic markers allowing reliable 

prediction of the clinical course of a renal tumor. Furthermore, there are virtually no therapeutical 

options for advanced renal cancer. Consequently, this tumor entity is still a challenge for 

pathologists and oncologists and the identification of genes with impact on renal tumor biology is 
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of great importance. Recently developed microarray technologies, like cDNA and tissue 

microarrays, allow rapid identification and validation of potentially tumor relevant genes.  

 

The aims of this thesis were to 

 

• uncover yet unknown cRCC associated genes (first part of this thesis) 

• further characterize a selected candidate gene (second part of this thesis) 

 

First part: High-throughput technologies for identification of differentially expressed genes. 

 

• Identification of potentially renal tumor relevant genes by comparing gene expression profiles 

of cRCC cell lines and normal renal tissue with each other using cDNA microarrays. 

• Verification of significantly differentially expressed genes by oligo-based RNA in situ 

hybridization (RISH) on tissue microarrays constructed from 61 fresh frozen primary RCCs 

and 12 normal renal tissues. 

 

Second part: Further studies on the highly differentially expressed gene BTG2 to assess its role 

in cRCC biology. 

 

• Confirmation of results from precedent cDNA and tissue microarray experiments using 

Northern blot analysis and quantitative RT-PCR on the LightCycler instrument (Roche). 

 

• Gain insight in the regulation of BTG2 gene transcription in renal cancer by analyzing BTG2 

mRNA expression levels in cRCC cell lines under certain conditions (TPA treatment, 

increasing cell density) with the help of quantitative RT-PCR. 
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2 Material and Methods 
 

2.1 Cell culture 

 

Human cRCC cell lines (Caki-1, Caki-2, 786-O, and 769-P) and the human cervix carcinoma cell 

line HeLa were obtained from American Type Culture Collection (ATCC). Caki-2, 786-O, and 

769-P cells derive from different primary cRCCs whereas Caki-1 was established from a skin 

metastasis of a cRCC. All cell lines were cultured in Optimem medium (Gibco) which was 

supplemented with 10% foetal calf serum (Amimed) and Penicillin/Streptomycin (100 IU/ml and 

100 µg/ml, respectively; Amimed). Medium renewal was done three times per week.  

 

Cells were detached using Trypsin-EDTA (0.05% Trypsin/0.02% EDTA; Amimed) following 

standard protocols (121). In order to store cells, cultures were detached and resuspended in 2-5 

ml culture medium. Cells were pelleted by centrifugation at 1000 rpm for 10 min at 4°C. Pellets 

were resuspended in culture medium containing 10% DMSO (Sigma) to a concentration of 1 x 

106 cells per ml and stored at –75°C. 

 

For cell counting, cells were stained with one volume trypan blue (Appendix) to visualize 

apoptotic cells and counted using a hemocytometer (Neubauer chamber), according to standard 

protocols (121). 

 

2.2 RNA extraction 

 

Extraction of total RNA from cell lines 
 

To extract RNA for cDNA array experiments, cells were quickly thawed at 37°C and pelleted at 

1000 rpm for 10 min at 4°C prior addition of TRIzol® reagent (Invitrogen). For Northern blot and 

quantitative RT-PCR experiments cells were detached by directly adding TRIzol® reagent 

(Invitrogen) to the culture vessel.  
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Total RNA was extracted according to the instructions given in the TRIzol® reagent manual 

(http://www.invitrogen.com/content/sfs/manuals/15596026.pdf). To eliminate contaminating 

DNA, RNA was treated using the DNAse I system of Qiagen. 

 

Extraction of total RNA from human lymphocytes 
 

Lymphocytes were isolated from human whole blood of healthy donors using Histopaque-1077 

(Sigma). In brief, whole blood (20-30 ml) was carefully pipetted onto one volume of Histopaque-

1077 and centrifuged at 1600 rpm for 10 min at room temperature to separate the lymphocytes 

from the erythrocytes. After centrifugation the lymphocyte-containing interphase was transferred 

into a 50 ml Falcon tube. Lymphocytes were washed with 20-30 ml PBS (Gibco). Cells were 

pelleted by centrifugation at 1600 rpm for 10 min at room-temperature. The pellet was 

resuspended in 2 ml TRIzol® reagent (Invitrogen) and total RNA was extracted as described 

above. 

 

Extraction of total RNA from snap-frozen tissues 
 

H&E stained histological sections (122) were prepared from each tissue prior RNA extraction. 

Representative tissue areas, identified on the H&E stained histological sections, were used for 

RNA extraction. One ml TRIzol® reagent (Invitrogen) was added to 15-20 frozen sections (each 

20-30 µm) of each sample and total RNA was extracted as described above. 

 

Extraction of polyA+ mRNA 

 

PolyA+ mRNA was extracted from total RNA using the polyA+ mRNA extraction kit of Qiagen 

according to the instructions of the manufacturer.  

 

Evaluation of RNA quantity and quality 
 

Total RNA concentrations were determined using a spectrophotometer (Genequant). To assess 

quality of total RNA, 0.5–1 µg was separated under denaturating conditions using 

agarose/formaldehyd gels as described in section 2.6. 
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2.3 cDNA array experiments 

 

Generation of cDNA array probes 
 
For each experiment, 5 µg of total RNA from cRCC cell lines Caki-1, Caki-2, 786-O, and 769-P 

and normal renal tissue (Invitrogen) were reverse transcribed and thereby labeled with (α-
32P)dATP (Amersham Pharmacia) using the AtlasTM Pure Total RNA Labeling System (BD 

Clontech). Unincorporated nucleotides were removed using the QIAquick Nucleotide Removal 

Kit according to the instructions of the manufacturer (Qiagen). 

 

cDNA array hybridization 

 

AtlasTM Human Cancer 1.2 cDNA Arrays (BD Clontech) were used for cDNA array analysis. 

These arrays contain cDNA spots of 1176 genes known to have impact on initiation and 

progression of human cancers.  

Prehybridization, hybridization, and washing of the cDNA microarrays was done according to the 

recommendations of the manufacturer. After hybridization, arrays were exposed to high 

resolution Phosporimager screens (Packard) for 24 h and scanned using the Cyclone 

Phosphorimager (Packard). 

 

Evaluation of cDNA array data 
 

AtlasImage software 1.01a (BD Clontech) was used for digital image analysis. Background 

corrected signal density (sDens) values were calculated for each arrayed spot and were 

normalized according to the AtlasImage sum method. Only those spots showing sDens values ≥ 

4500 were clearly distinguishable from background noise. Therefore, spots with sDens values < 

4500 were excluded from analysis.  

 

sDens ratios were calculated between each cRCC cell line showing gene expression (sDens ≥ 

4500) and normal renal tissue. We also included genes in our analysis, which were not expressed 

in normal renal tissue (sDens < 4500) but which were strongly expressed (sDens ≥ 13500; 3x 

threshold value) in at least two cell lines (and vice versa). In those cases sDens ratios were 

calculated as described above. 
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Genes showing expression alterations > 0.5-fold and < 2-fold were considered to be equally 

expressed. Expression alterations ≤ 0.5-fold and ≥ 2-fold in at least two cell lines were defined as 

decreased or increased, respectively, in cRCC cell lines compared to normal renal tissue.  

Only genes with expression alterations ≤ 0.25-fold and ≥ 4-fold in at least two cell lines were 

further studied by RISH on renal TMAs.  

 

2.4 RNA in situ hybridization on frozen renal tissue microarrays 

 

TMA construction 
 

Sixty-one renal cancer samples and 12 normal renal tissues were used for TMA construction. All 

tissue samples derived from the tumorbank of the Institute of Pathology in Basel. Renal tumor 

subtypes were defined according to Thoenes et al. (1). Histological grade and the pT category of 

the tumors were determined according to Thoenes and recommendations of the UICC, 

respectively (1, 29). Table 3 shows an overview of the renal tissues arrayed on the frozen TMA. 

 

Table 3: Composition of renal TMA. 
 

  pT category grade   
tissue1  n 1 2 3 ni2 1 2 3 ni2

cRCC 51 32 4 15 - 12 30 7 2 
pRCC 4 1 - 3 - 2 2 - - 
chRCC 4 1 3 - - 1 2 - 1 
oncocytoma 2 1 - - 1 - - 1 1 
normal kidney 12 - - - - - - - - 
1 cRCC = clear cell RCC; pRCC = papillary RCC; chRCC = chromophobe RCC 
2 ni = no information available 
 

Conventional H&E stained histological sections were prepared from each tissue (122). All 

sections were reviewed by a pathologist to select representative tissue areas which were than used 

for TMA construction. Tissue microarray construction was largely done according to Schoenberg 

et al. (116). At our laboratory, frozen TMA manufacturing was optimized by using a drill (0.6 

mm diameter) instead of a hollow needle to bore wholes into the recipient block. Figure 3 briefly 

illustrates the construction of a TMA. Conventional H&E stainings (122) were made from the 

TMA sections to ensure integrity of every single tissue spot. Generated TMA blocks as well as 

TMA sections were stored at –75°C. 
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2 1

Figure 3: Construction of frozen TMA. 
 
(A) Front view of the tissue arrayer. 1 = receptacle for the recipient (array) block; 2 = donor block bridge; 3 =
turret for switching needle/drill between donor and recipient block. (B) Piece of frozen tissue placed on 
Tissue-Tek (arrow) to facilitate sectioning and handling. H&E stained sections were prepared to assign
representative tissue areas. (C-H) Individual TMA production steps: (C) recipient block is fixed in the
receptacle and permanently cooled with dry-ice; (D) drilling of the recipient whole; (E) retrieving the tissue
sample using a hollow needle; (F) tissue core biopsy is cooled with dry-ice; (G-H) tissue is transferred into 
the pre-made whole of the recipient block. 

 

Design of antisense oligonucleotide probes 

 

For each gene to be analyzed by RISH 2-4 oligonucleotides were designed using the Vector NTI 

software package (InforMax Inc., Frederick, MD, USA). All oligonucleotides consisted of 35 to 

55 nucleotides, had a guanosine-cytosine content of 50 to 60%, and had no palindromic 

sequences. Specificity of the probes was confirmed using the BLAST® program 

(http//www.ncbi.nlm.nih.gov). Oligonucleotide sequences showing more than 25 successive 

nucleotides that were homologous to any other gene than the target gene were discarded.  

27 
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Labelling of oligonucleotide probes 
 

Oligonucleotides were labeled separately with (α-33P)dATP (Amersham Pharmacia) using 

terminal deoxynucleotidyl transferase (TdT; Promega). Twenty ng oligonucleotide were 

combined with 1 µl nuclease free water, 1 µl 5 X TdT buffer (500 mM cacodylate buffer, pH 6.8; 

5 mM CoCl2; 0.5 mM DTT), 20 µCi (α-33P)dATP, and 1 µl TdT (15-30 units). The reaction was 

performed at 37°C for 2 h. After labelling, oligonucleotides concerning to one gene were pooled. 

Unincorporated nucleotides were removed using the QIAquick nucleotide removal (Qiagen). The 

activity of the radiolabeled probes was determined by pipetting 1 µl of the purified probe into 10 

ml of Ultima Gold MV solution (Packard). The mixture was transferred into a liquid scintillation 

counter. Probes suitable for RISH had an activity of at least 1 x 108 counts per minute (cpm) per 

ml. 

 

RISH 
 

Radiolabeled probes (activity ≥ 108 cpm/ml) were combined with 6 µl DTT (5 M) and RISH 

hybridization mix (Appendix) to a total volume of 200 µl. The mixture was vortexed and 

incubated at 42°C for 1 h prior addition of 10 µg heat-denatured Human Cot-1 DNA. After 

adding the hybridization mixtures, the TMA sections were covered with a spacer-coverslip and 

incubated in a moist chamber at 42°C for 36 h. After hybridization, slides were washed in 1 X 

SSC (prepared from 20 X SSC stock solution, see Appendix) at 55°C for 15 min (4 times), in 1 X 

SSC at room temperature for 1 h, and in distilled water at room temperature for 30 s. Afterwards, 

slides were dehydrated in 60% and 90% ethanol (30 s each) and air-dried. The dried slides were 

exposed to high resolution Phosphorimager screens (Packard) for 48 h prior scanning using a 

Cyclone Phosphorimager (Packard). 

 

Image analysis 
 

ArrayVision software (Imaging Research Inc., St. Catharines, Ontario, Canada) was employed to 

measure signal density (sDens) values of the array spots. To address possible heterogeneity of a 

given tissue spot, signal densities were measured over the whole area of each spot. The mean 

value from these sDens values (mean sDens) was than calculated for every single tissue spot. 

RCC and normal renal tissue spots were considered positive for gene expression if the mean 
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sDens was at least twice as high as the mean background sDens of the TMA section. The other 

spots were considered negative for gene expression. 

 

Specificity of RISH was evaluated by direct autoradiograpy of the TMA slide using HypercoatTM 

LM-1 emulsion (Amersham Pharmacia) according to the instructions of the manufacturer. After 

development of the emulsion, slides were counterstained with Harris‘ hematoxylin (122) and 

were analyzed under a conventional light microscope to identify those spots, which were 

completely or partly lost during the sectioning, hybridization, and washing process. Only spots 

containing more than 60% tumor or normal tissue, respectively, cells were included in further 

statistical analysis.  

 

Statistical evaluation of RISH results 
 

Only primary cRCCs and normal renal tissues were included in statistical analysis since the 

numbers of the other RCC subtypes on the TMA were to low. All statistical analysis were done 

using StatView 5.0.1 software package (SAS institue Inc.) RISH results were evaluated for each 

analyzed gene in two ways: 

 

(1) Expression frequency. Contingency table (Chi Square) analysis was performend to search 

for differences in the percentage of tissue spots positive for gene expression (mean sDens ≥ 2-

fold background sDens) between normal renal tissue and cRCC and also within the subset of 

cRCC. 

 

(2) Expression level. Anova analysis was applied to compare gene expression levels (mean 

sDens values) of spots with positive gene expression between normal renal tissue and cRCC 

and also within the subset of cRCC. 

 

2.5 Cloning of BTG2 and G3PDH sequences 

 

BTG2 and G3PDH sequences were cloned for two purposes: 

 
• Generation of single stranded DNA probes for Northern analysis (section 2.6). 
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• Generation of in vitro transcribed RNA to establish standard curves for quantitative RT-PCR 

(section 2.7.2). 

 

The pGEM®-T Easy Vector system (Promega), which is especially suited to clone PCR products 

and which contains SP6 and T7 RNA polymerase promoter sequences, was used. 

 
Generation of inserts by PCR 

 

BTG2 and G3PDH PCR products of about 1 kb were generated from reverse transcribed human 

lymphocyte RNA using 2.5 µl of AmpliTaq® Gold 10 X PCR buffer (1.5 mM Tris-HCl, pH 8.0; 

and 500 mM KCl), 0.2 mM dATP, dCTP, dGTP, and dTTP (Invitrogen), sequence-specific 

primer pairs for BTG2 (forward: 5'-AGG GTA ACG CTG TCT TGT GG-3' and reverse: 5'-CAG 

GAG AGG CCT TTT CAC TC-3') and G3PDH (forward: 5'-ACA GTC AGC CGC ATC TTC 

TT-3' and reverse: 5'-AGG GGA GAT TCA GTG TGG TG-3') at a final concentration of 0.5 µM 

each, and 0.25 units of AmpliTaq® Gold polymerase (Applied Biosystems) in a total volume of 

25 µl. Amplification was done for 10 min at 95°C, 35 cycles with 30 s at 95°C, 30 s at 58°C, and 

1 min at 72°C. Subsequent incubation of the PCR reaction at 72°C for 10 min ensured sufficient 

generation of 3‘-Adenosin overhangs. PCR products were cleaned-up using the Quiaquick PCR 

purification kit (Quiagen). PCR products bound to the Quiaquick columns were eluted in 30 µl 

elution buffer, which was supplied in the kit.  

 
Cloning and selection 

 

Two µl of the purified PCR product were combined with 5 µl Rapid Ligation Buffer, 50 ng 

pGEM®-T Easy Vector DNA, 3 units T4 Ligase, and deionized water to a final volume of 10 µl. 

The reaction was incubated overnight at 4°C. Two µl of each ligation reaction were carefully 

mixed with 50 µl of JM109 High Efficiency Competent Cells (supplied with the pGEM®-T Easy 

Vector kit). The mixture was placed on ice for 20 min prior heat-shock at 42°C for exactly 50 s. 

Transformed cells were immediatly returned to ice for another 2 min. 

 

Transformed cultures were mixed with 950 µl LB medium (Appendix) and incubated for 90 min 

at 37°C with shaking. One hundred µl of each culture were plated on LB/Agar plates 

supplemented with X-Gal and IPTG (Appendix). Plates were incubated at 37°C overnight. 
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Confirmation of cloned inserts 

 

White colonies (containing the insert) were picked and transferred into microtiterplates 

containing 150 µl LB (Appendix) medium per well. Plates were incubated at 37°C for 2-3 h. PCR 

was done to confirm cloned inserts. In brief, 2-5 µl from each well of the microtiterplate was 

amplified using 2.5 µl of AmpliTaq® Gold 10 X PCR buffer (1.5 mM Tris-HCl, pH 8.0; 500 mM 

KCl), 0.2 mM dATP, dCTP, dGTP, and dTTP (Invitrogen), primers specific for SP6 (forward: 5'-

GCC AAG CTA TTT AGG TGA CAC T-3') and T7 (reverse: 5'-ACG GCC AGT GAA TTG 

TAA TAC G-3') at a final concentration of 0.5 µM each, and 1.25 units of AmpliTaq® Gold  

polymerase (Roche) in a total volume of 25 µl for 10 min at 95°C and 35 cycles with 30 s at 

95°C, 30 s at 60°C, and 1 min at 72°C. Five µl of each PCR product were analyzed by gel 

electrophoresis. 

 

Gel electrophoresis 
 

DNA was separated on conventional 1.2% agarose (Invitrogen) gels using 1 X TAE (prepared 

from 50 X TAE stock solution, see Appendix) as a running buffer (123). DNA molecular weight 

marker III (Roche) and a 100 bp-ladder (Invitrogen) were used as size standards. 

 

Extraction of Plasmid DNA (Miniprep) 

 

Twenty µl of each clone containing the appropiate insert were transferred into 5 ml LB medium 

(Appendix) and incubated at 37°C for 12-16 h. Plasmid-DNA was extracted using the QIAprep 

spin plasmid kit (Qiagen). Amount of plasmid DNA was assessed using a spectrophotometer 

(Genequant). 

 

Sequencing 
 

Direction of the cloned insert was determined by sequencing using the ABI 310 Prism sequencer 

(Applied Biosystems). PCR products were generated from 50 ng of each plasmid DNA according 

to the protocol described above (Confirmation of cloned insert). PCR products were purified 

using the Quiaquick PCR purification kit (Qiagen). PCR products bound to Quiaquick column 
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were eluted in 50 µl elution buffer supplied with the kit. Two µl of this eluate were combined 

with 8 µl BigDye Terminator v 2.0 (BigDye Terminator Cycle Sequencing v 2.0 kit; Applied 

Biosystems), SP6 sequencing primer (5'-ATT TAG GTG ACA CTA TAG AA-3') at a final 

concentration of 0.5 µM, and PCR grade water to a total volume of 20 µl. The reaction was 

incubated for 25 cycles with 96°C for 20 s, 50°C for 10 s, and 60°C for 4 min. Reaction products 

were pelleted by addition of 2.5 volumes of 100% ethanol and 1/10 volume of 3 M sodiumacetate 

(pH5.2) and incubation at –20°C overnight prior centrifugation at 14000 rpm for 30 min at 4°C. 

The pellet was washed in 75% ethanol and dried prior addition of 14 µl Template Suppression 

Reagent (Applied Biosystems). Before sequence analysis, the product was denatured at 95°C for 

10 min and chilled on ice. 

 

2.6 Northern blot analysis 

 

Gel electrophoresis of RNA 
 

RNA was separated under denaturing conditions using agarose/formaldehyde gels and 1 X 

MOPS (prepared from 10 X MOPS stock solution, see Appendix) as a running buffer (123). RNA 

MilleniumTM Size Marker (Ambion) and the RNA Marker from Promega were used as size 

standards. 

 
Blotting 

 

Gels were rinsed in RNAse free water to remove formaldehyde prior blotting to HybondTM-N+ 

membranes (Amersham) using the capillary transfer method and 20 X SSC (Appendix) as a 

transfer buffer (123). To immobilize RNA, the membranes were incubated at 80°C for 1.5-2 h. 

RNA was visualized by incubating the membrane in methylene-blue staining solution (Appendix) 

for 30-60 s. The membrane was rinsed in RNAse free water to remove excess staining solution 

and airdried. 
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Northern analysis using (α-32P)dATP labelled single-stranded DNA probes 

 

To verify the results obtained for BTG2 by cDNA microarray experiments (α-32P)dATP labelled 

single-stranded DNA probes were hybridized to poly A+ mRNA of cRCC cell lines, normal renal 

tissue, and human lymphocytes (positive control).  

 

To generate sequence-specific probes for BTG2 and G3PDH (reference), 50 ng plasmid DNA 

(preperation described in section 2.5) containing the cloned insert of BTG2 or G3PDH, 

respectively, were amplified as described in section 2.5 (Confirmation of cloned inserts). PCR 

products were purified using the Qiaquick PCR purification kit (Qiagen).  

 

For labeling, 25ng BTG2 and G3PDH PCR product were combined with 25 ng BTG2 reverse 

primer (5'-CAG GAG AGG CCT TTT CAC TC-3') or 25 ng G3PDH reverse primer (5'-AGG 

GGA GAT TCA GTG TGG TG-3'), respectively, denatured at 100°C for 10 min, and chilled on 

ice. Labelling reaction was performed in a total volume of 25 µl containing 2.5 µl 10 X Klenow 

Fragment buffer (500 mM Tris-HCl, pH7.2; 100 mM MgSO4; 1 mM DTT), 0.5 M dCTP, dGTP, 

and dTTP (Invitrogen), 50 µCi (α-32P)dATP (Amersham Pharmacia), and 5 units Klenow 

Fragment (Promega) for 1 h at 25°C. Reaction was stopped by adding 1 µl 0.5 M EDTA (pH8.0). 

QIAquick nucleotide removal kit was applied to remove unincorporated nucleotides (Qiagen). 

 

Single-stranded DNA probes were hybridized to polyA+ mRNA, which was extracted from 30 µg 

total RNA of each cRCC cell line (Caki-1, Caki-2, 786-O, and 769-P), normal renal tissue 

(Invitrogen), and human lymphocytes, respectively. Prehybridization and hybridization of the 

membrane was done at 42°C in formamide prehybridization/hybridization (FPH) solution 

(Appendix). To block unspecific binding of the probe, prehybridization was done with heat-

denatured salmon sperm DNA (100 µg/ml FPH solution; Sigma) for 1 h prior addition of heat 

denatured BTG2 and G3PDH probes. Hybridization was done overnight. Washing was done 

twice at 42°C in wash solution I (Appendix) for 15 min, twice at 42°C in wash solution II 

(Appendix) for 10 min, and also twice at 68°C in wash solution III (Appendix) for 5 min. The 

membrane was exposed to a high resolution Phosphorimager screen (Packard) for 6-12 h prior 

scanning using the Cyclone Phosphorimager (Packard). 
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Northern hybridization using (α-32P)dATP labelled oligonucleotide probes 

 

To verify the specificity of the BTG2 oligonucleotides used in the RISH experiment, (α-
32P)dATP labelled oligonucleotides were hybridized to total RNA from human lymphocytes. In 

brief, BTG2 oligonucleotide probes were generated and purified as described in section 2.4 

(Labelling of oligonucleotide probes) with the exception that (α-32P)dATP was used for labelling 

instead of (α-33P)dATP. 

 

BTG2 oligonucleotide probes were hybridized to 10 µg total RNA from human lymphocytes. 

Prehybridization and hybridization of the membrane was done as described in section 2.4 (RISH 

on TMA) with the exception that hybridization was done overnight only and the washing step in 1 

X SCC at room temperature was reduced to 15 min. For signal detection, the membrane was 

exposed to a high resolution Phosphorimager screen (Packard) for 12 h prior scanning using the 

Cyclone Phosphorimager (Packard). 

 

2.7 Quantification of BTG2 mRNA copy numbers using the LightCycler 

 

2.7.1 General aspects of quantitative PCR using the LightCycler system 

 

Each PCR starts with a background phase followed by an exponential (or log) phase and ends in a 

plateau phase. By using the fluorochrome SYBR green, which binds to double stranded DNA, the 

increase of PCR product during an amplification reaction can be detected by the LightCycler 

system (figure 4). 

 

During amplification, the number PCR products present at a certain PCR cycle is described by 

the equation: 

Nn = N0 x En 

Where Nn is number of products at PCR cycle n; N0 is initial number of product (template); E is amplification 

efficiency; n is number of PCR cycle 

 

Accurate DNA quantification is only possible in the log-phase of a PCR in which E is constant. 

In theory, the maximal amplification efficiency in log-phase is 2 so that every PCR product is 
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replicated once per cycle. In practice amplification efficiencies in this phase are generally less 

than 2 due to many factors that could inhibit PCR reactions (suboptimal primers, PCR inhibitors 

in sample material etc.).  

2 0 2 1 2 2 2 3

log-phase of PCR reaction

plateau-phase of PCR reaction

background-phase of PCR reaction

F
 

igure 4: DNA amplification profile. 

Increasing SYBR green emission is detected by the LightCycler system. 

 

To determine amplification efficiencies for individual PCRs, serial template dilutions have to be 

amplified on the LightCycler instrument. Standard curves and their slopes are determined using 

the software provided by the LightCycler system. Amplification efficiencies are described by the 

equation: 

 

E = 10 –1/-slope

Where E is amplification efficiency; slope is slope of standard curve. 
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The easiest way to determine absolute mRNA copy numbers of a gene of interest is to use an 

external standard, which is prepared from serial dilutions of in vitro transcribed RNA with known 

concentrations. Standard curves can be generated by reverse transcription of this dilution series in 

a separate reaction followed by amplification of the obtained first strand cDNA products on the 

LightCycler system (two-step RT-PCR). Based on these standard curves, concentrations of a 

target sample can be determined. However, quantification of mRNA copy numbers using this 

method do not necessarily reflect the actual and physiological expression level of a gene since 
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faulty processing and storage of sample material as well as irregularities in extraction and 

improper storage of RNA might affect the abundance of a transcript. For these reasons, it makes 

sense to determine mRNA expression level of a gene of interest relative to a 

housekeeping/reference gene to adjust for alterations in mRNA copy numbers induced by 

experimental treatment. If this approach is used, separate standard curves have to be generated to 

determine the mRNA concentrations of the gene of interest and the reference gene in a given 

sample. 

 

Guidelines for preparation of standard curves are (according to Roche): 

 

• Standard sequences should differ only slightly by lenght and/or sequence from the target 

sequences so that amplification with the same pair of primers is possible. 

• Size of the PCR products amplified from the gene of interest and the reference gene should be 

as similar as possible 

• Amplification efficiency of gene of interest and reference gene should differ by no more than 

± 0.05. 

• At least 5 points for creation of a standard curve should be used, which should cover the 

expected concentration range of the gene of interest and the reference gene 

 

2.7.2 Generation of standard curves from BTG2 and G3PDH in vitro transcripts 

 

Generation of plus strand RNA (in vitro transcription) 
 

From both plasmids generated in section 2.5 plus strand run-off in vitro transcripts were 

synthesized. Therefore, the circular plasmid DNA had to be linearized using Pst I and Sph I 

restriction enzymes. As illustrated in figure 5, Pst I recognizes the site CTGCA↓G and cuts 

between the SP6 promoter and the insert whereas Sph I recognizes the site GCATG↓C and cuts 

between the T7 promoter and the insert.  

 

Linearization of each plasmid DNA was done according to the instructions of the manufacturer of 

the restriction enzymes (Promega). Reactions were incubated at the appropriate temperatures for  
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Figure 5: Restrictionsites of the pGEM®-T Easy Vector.  
Restrictionsites for Pst I and Sph I are indicated by arrows. 

 

4 h. To ensure completeness of the digestion, linearized DNA was analyzed by conventional gel 

electrophoresis as described in section 2.5. 

 

In vitro transcription was done using the Riboprobe® in vitro Transcription System from 

Promega. Two µg linearized plasmid DNA were mixed with 20 µl Transcription Optimized 5 X 

Buffer, 10 µl DTT (100 mM), 29 µl nuclease free water, 2.5 µl RNAsin (40 units/µl), and 2.5 µl 

Klenow Fragment (5 units/µl; Promega) and incubated for 20 min at 22°C. This step converts the 

sticky ends, produced by Pst I and Sph I, into blunt ends thus avoiding initiation of transcription 

from the terminus of the template. After this step, 20 µl rNTP-Mix (2.5 mM of rATP, rCTP, 

rGTP, and rUTP), and 2.6 µl SP6 or T7 polymerase (10-20 units/µl) were added and the mixture 

was incubated at 30°C for 2 h. After in vitro transcription, plasmid DNA was degraded by 

addition of 2 µl RQ1 RNAse-free DNAse (1 unit/µl). RNA was purified using the RNeasy kit 

from Qiagen. Quality of in vitro transcripts was assessed using agarose/formaldehyde gels as 

described in section 2.6. Amount of in vitro transcripts was determined using a 

spectrophotometer (Genequant). 

 

Generation of serial dilutions with known concentrations 
 

The molecular weights (MG) of BTG2 and G3PDH in vitro transcripts were calculated as 

recommended by Ambion (http://www.ambion.com):  
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MG (g/mol) = (An x 328.2) + (Un x 305.2) + (Cn x 304.2) + (Gn x 344.2) + 159 
Whereas n is the number of nucleotide within the RNA sequence. 

 

The copy number (n) was determined by: 

 

concentration of in vitro transcript (g/l) * 6.02 x 1023 mol-1

MG of in vitro transcript (g/mol)
n = 

 
Whereas n is in vitro transcript copy number, 6.02 x 1023 mol-1 is the constant of Avogadro, and MG is the molecular 

weight. 

 

Serial dilutions of BTG2 and G3PDH in vitro generated transcripts were mixed with ribosomal 

RNA from mice (Roche) to a final concentration of 0.5 µg/µl of ribosomal RNA.  

 
Two-step RT-PCR 

 

Reverse transcription. Two µl of each in vitro generated transcript (containing 1 µg of 

ribosomal RNA and the corresponding copy numbers of the in vitro transcripts) were combined 

with nuclease free water to a total volume of 9.5 µl. After incubation at 65°C for 10 min, RNA 

was chilled on ice. Fifty ng random hexamers (Invitrogen), 1 mM of dATP, dCTP, dGTP, and 

dTTP (Invitrogen), 5 mM MgCl2, 1.5 mM Tris-HCl (pH 8.0), and 500 mM KCl, 100 units of M-

MLV reverse transcriptase (Invitrogen), and 20 units of RNAsin (Roche) were added to a total 

volume of 19.5 µl. The reaction was incubated at 25°C for 10 min and 37°C for 60 min. After 

heat inactivation of the enzymes the remaining RNA in the reaction mixture was degraded for 20 

min at 37°C with 0.5 µl (1 unit) of RNAse H (Invitrogen). A 1:2.5 dilution was prepared from 

each first strand cDNA synthesis product. 
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Quantitative PCR. Five µl of each first strand cDNA synthesis product generated above were 

combined with 2 µl of LightCycler-FastStart DNA Master SYBR Green I (Roche), primer-pairs 

for BTG2 (forward: 5'-CTC ACC TGC AAG AAC CAA GTG-3'; reverse: 5'-AGT TCC CCA 

GGT TGA GGT ATG T-3') or G3PDH (forward:5'-GAA ATC CCA TCA CCA TCT TCC-3'; 

reverse: 5'-CAG AGA TGA TGA CCC TTT TGG-3') at a final concentration of 1 µM each, and 

MgCl2 at a final concentration of 2 mM for BTG2 and 3 mM for G3PDH. Amplification was 
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performed in a total volume of 20 µl for 10 min at 95°C and 40 cycles with 15 s at 95°C, 10 s at 

58°C, and 7 s at 72°C.  

 

Amplification efficiencies (E) were calculated as described in section 2.7.1. Melting curve 

analysis (LightCycler software package) was applied to ensure the specificity of the PCR 

reaction.  

 

2.8 BTG2 mRNA expression in primary cRCC and normal renal tissue 

 

Tissue collective 
 

Forty-two primary cRCCs and 12 normal renal tissues taken from the tumorbank of the Institute 

of Pathology in Basel were analyzed by quantitative RT-PCR. Histological grade and pT 

category were determined according to Thoenes and recommendations of the UICC, respectively 

(1, 30). Eight cRCCs were grade 1, 28 grade 2, and 6 grade 3. There were 20 pT1, 7 pT2, and 15 

pT3 cRCC. 

 
Quantification of BTG2 expression 

 

To determine BTG2/G3PDH mRNA copy numbers, RT-PCR was done from 1 µg total RNA of 

each sample exactly following the protocol described in section 2.7.2 (Two-step RT-PCR). 

 
Statistical analysis 

 

All statistical analysis were done using StatView 5.0.1 software package (SAS institue Inc.). 

In a first step, Anova analysis was applied to search for differences in BTG2 and G3PDH mRNA 

copy numbers in cRCC and normal renal tissue.  

In a second step, BTG2 mRNA copy numbers were normalized to G3PDH mRNA copy numbers 

in each sample to correct for differences in the quality and quantity of RNA. Anova analysis was 

applied to search for differences in normalized BTG2 mRNA expression. The association of 

BTG2 mRNA expression with tumor grade and pT category was determined using Anova 

analysis. 
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2.9 Inducibility of BTG2 mRNA expression in cRCC cell lines 

 

Induction of BTG2 mRNA expression by 12-O-tetradecanoylphorbolester-13-acetate (TPA) 

 

cRCC cell lines Caki-1, Caki-2, 786-O, 769-P and the positive control cell line Hela were plated 

at 5 x 105 cells/25 cm2 culture vessel. Medium renewal was done 24 h after plating. RNA was 

extracted after 48 h from each cell line to determine the BTG2 mRNA expression levels prior 

TPA treatment. The remaining cells were treated with various concentrations of TPA (25 ng, 50 

ng, 75 ng, or 100 ng per ml culture medium, respectively) or DMSO alone (0.1% final 

concentration) and incubated for 70 min prior RNA extraction. To determine BTG2/G3PDH 

mRNA copy numbers, RT-PCR was done from 1 µg total RNA of each sample exactly following 

the protocol described in section 2.7.2 (Two-step RT-PCR). 

 

BTG2 mRNA expression and cell density 
 

Caki-1, Caki-2, 786-O, 769-P and Hela were plated at 1 x105, 2 x 105, and 5 x 105 cells/well in 6-

well-plates. Medium renewal was done 24 h after plating. RNA was extracted after 48 h. At this 

time, cultures had - according to initial cell numbers - low, medium or high cell densities. To 

determine BTG2/G3PDH mRNA copy numbers, RT-PCR was done from 1 µg total RNA of each 

sample exactly following the protocol described in section 2.7.2 (Two-step RT-PCR). 
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3 Results 
 

3.1 cDNA array analysis 

 

To identify renal tumor relevant genes, gene expression profiles of four cRCC cell lines (Caki-1, 

Caki-2, 786-O, and 769-P) and one normal renal tissue were compared with each other. For this 

purpose, AtlasTM Human Cancer 1.2 cDNA microarrays, containing 1176 cDNA spots, were 

used. Microarray spots with sDens values ≥ 4500 were regarded as positive for gene expression. 

According to this threshold, expression of 748 genes was not detectable in any of the analyzed 

samples (sDens value < 4500). sDens ratios were calculated for (i) genes which were expressed 

(sDens ≥ 4500) in normal renal tissue and cRCC cell line(s) and (ii) also for genes, which were 

not expressed (sDens < 4500) in normal renal tissue but strongly expressed (sDens ≥ 13500) in 

cRCC cell line(s) and vice versa. Genes with sDens ratios ≤ 0.5 and ≥ 2 in at least two cell lines 

were regarded as differentially expressed in cRCC cells compared to normal renal tissue. 

According to these definition, 36 genes were stronger expressed in at least two cRCC cell lines 

compared to normal renal tissue. Of those cases, expression of 18 genes was not detectable in 

normal renal tissue but was very strong in at least two cRCC cell lines (sDens value ≥ 13500). In 

contrast, 35 genes showed reduced expression levels in at least two cRCC cell lines. Fifteen of 

these genes were strongly expressed in normal renal tissue (sDens value ≥ 13500) but were 

undetectable in at least two cRCC cell lines.  

 

n = 748
n = 36

n = 62

n = 35

n = 295
not expressed 

increased expression 

equally expressed

reduced expression 

others

 

 

 

 

 

 
Figure 6: Overview of cDNA microarray hybridization results. 
 
The expression patterns of 1176 cancer related genes have been analyzed in 4 cRCC cell lines and one
normal renal tissue. not expressed = sDens < 4500 in all cRCC cell lines and normal renal tissue; increased
expression = sDens ratio ≥ 2 in at least two cRCC cell lines compared to normal renal tissue; equally
expressed = sDens ratio > 0.5 and < 2 in all cRCC cell lines and normal renal tissue; reduced expression =
sDens ratio ≤ 0.5 in at least two cRCC cell lines compared to normal renal tissue; others = genes showing
expression patterns different from those described above. 
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Sixty-two genes were equally expressed in normal renal tissue and in all cRCC cell lines because 

they had sDens ratios > 0.5 and < 2.The remaining 295 genes did not fit into any of the above 

mentioned categories. Figure 6 gives an overview of the results from the cDNA microarray 

experiments. Only genes, showing at least 4-fold expression level differences in at least two cell 

lines (Table 4) were regarded as significantly differentially expressed. Those genes were selected 

as candidate genes for further studies by RISH. As an example, cDNA microarray results 

obtained from normal renal tissue and the cell line 769-P as an representative for all other 

analyzed cRCC cell lines are shown in figure 7. 

 
Table 4: Candidate genes for further RISH experiments identified by cDNA array analysis. 
 

 
 

Position on 
cDNA 

microarray1
Gene name Abbreviation 

in text2
Chromosomal 

locus 

Gene bank 
accession 
number  

1 Centromeric protein F CENPF 1q32-q41 NM_016343 

2 CDC28 protein kinase regulatory 
subunit 1B CKS1B 8q21 NM_001826 

3 Chondroitin sulfate proteoglycan 2 CSPG2 5q12-q14 NM_004385 
4 Fibronectin 1 FN1 2q34 NM_002026 
5 FOS-like antigene 1 FOSL1 11q13 NM_005438 
6 High mobility group AT-hook 1 HMGA1 6p21 NM_002131 
7 Integrin alpha 3 ITGA3 17 NM_002204 
8 Integrin beta 8 ITGB8 7p15.3 NM_002214 
9 Tubulin alpha ubiquitous K-alpha-1 12q13.11 NM_006082 

10 Plasminogen activator inhibitor type 1 PAI1 7q21.3-q22 NM_000602 

11 Transforming growth factor beta 
induced TGFB1 19q13.1 NM_000358 
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12 Vimentin VIM 10p13 NM_003380 
13 Basigin BSG 19p13.3 NM_001728 
14 B-cell translocation gene 2 BTG2 1q32 NM_006763 
15 CD74 antigen CD74 5q32 NM_004355 
16 CD9 antigen CD9 12p13 NM_001769 
17 Checkpoint supppressor 1 CHES1 14q24.3-q31 NM_005197 
18 Cathepsin D CTSD 11p15.5 NM_001909 
19 Early growth response 1 EGR1 5q31.1 NM_001964 

20 FC fragment of IgG, receptor 
transporter, alpha FCGRT 19q13.3 NM_004107 

21 growth arrest-specific 6 GAS6 13q34 NM_000820 
22 Integrin alpha 6 ITGA6 2q31.1 NM_000210 
23 LPS-induced TNF alpha factor LITAF 16p13.3-p12 NM_004862 
24 nuclear hormone receptor NR0B2 1p36.1 NM_021969 
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25 Tissue inhibitor of 
matrixmetalloproteinases 3 TIMP3 22q22.1-q13.2 NM_000362 

1 See figure 7. 
2 Abbreviation for gene name used in the text. 
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igure 7: cDNA microarray hybridization of normal renal tissue and cRCC cell line 769-P. 

 

 

3.2 RNA in situ hybridization 

 

Twenty-five significantly differentially expressed genes (Table 4) identified by preceding cDNA 

microarray experiments were further studied by oligo-based RISH on primary RCCs to assess 

their impact on renal tumor biology. 
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The renal TMA 

 

To study the expression patterns of the selected candidate genes by RISH, TMAs were generated 

from 61 snap-frozen primary RCCs and 12 normal renal tissues (Figure 8).  

1 cm 

Figure 8: The frozen renal TMA. 
 
(A) The frozen renal TMA composed of 73 different renal tissue core biopsies. (B) Localization and number 
of different RCC subtypes arranged in the renal TMA. There are 51 cRCCs, 4 pRCCs, 4 chRCCs, 2
oncocytomas and 12 normal renal tissues. 

 

Certain experiments were done to control the quality of the TMA and the integrity of the tissue 

specimens: 

 

• H&E-stained TMA sections were surveyed under the microscope to re-evaluate the quality 

and integrity of each tissue spot after generation of the TMA (Figure 9A).  

 

• To analyze the RNA integrity in the tissue spots, β-Actin oligonucleotide probes were 

hybridized to a TMA section directly after preparation of the TMA (Figure 9B).  
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• Since the sectioning of the TMA and the hybridization process might lead to loss of tissue 

material, each TMA sections was counterstained with Harris‘ hematoxylin after hybridization 

of the oligonucleotide probes to exclude tissue spots containing less than 60% representative 

cells from further analysis (Figure 9C).  

 

• To evaluate the specificity of the radioactive signal, slides were dipped into HypercoatTM 

LM-1 emulsion, which allows direct autoradiography of the TMA section (Figure 9D). 
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Figure 9: Control experiments to evaluate the quality of the tissues represented on the TMA and to assess
he specificity of the hybridization signal . t

 
H&E stained section of the TMA. (B) TMA hybridized with β-Actin probes. (C) TMA 
section counterstained with Harris‘ hematoxylin. (D) Magnification of TMA tissue spots after
autoradiography using HypercoatTM LM-1 solution. Black granules upon the cells are indicating the
localization of the radioactive signals. Based on those control experiments, certain tissue spots were excluded
from further analysis. For example, even though the morphology and amount of the tissue spots in row g was
good (A and C) those samples had to be excluded from further analysis because the RNA quality was poor
(B). 
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Based on these control experiments, the maximal number of evaluable tissue spots was 48 of 

originally 73 tissue specimens (Table 5). In brief, up to 36 (of originally 51) cRCCs, 3 (of 4) 

pRCCs, 3 (of 4) chRCCs, 1 (of 2) oncocytomas, and 5 (of 12) normal renal tissues were still 

analyzable. 

 

 

Overview of RISH results 

 

Only those tissue spots showing mean sDens values ≥ 2-fold mean background sDens values 

were considered positive for gene expression. Based on this threshold value, 19 of the 25 selected 

candidate genes were analyzable by RISH because they showed expression in at least three tissue 

spots (Table 5). Six genes (CKS1B, CSPG2, FOSL1, HMGA1, TGFB1, and NR0B2) did not show 

measurable sDens values in any of the evaluable tissue spots. Those genes were, even after 

repetition of the hybridization experiments, not analyzable by RISH. 

 

Table 5: Gene expression frequencies in the subset of analyzable candidate genes. 
 

Gene 
Positive 

tissue spots  
(n) 1

Evaluable 
tissue spots 

(n) 2

Gene  expression 
frequency 

(%) 3
BSG 24 43 56 
BTG2 8 46 17 
CD74 42 43 98 
CD9 12 39 31 
CENPF 6 41 15 
CHES1 12 47 26 
CTSD 42 47 89 
EGR1 26 46 57 
FCGRT 7 48 15 
FN1 18 47 38 
GAS6 24 48 50 
ITGA3 3 47 6 
ITGA6 9 47 19 
ITGB8 35 48 73 
K-alpha-1 19 41 46 
LITAF 20 46 43 
PAI1 10 44 23 
TIMP3 34 48 71 
VIM 47 48 98 
1 Number of evaluable RCC and normal renal tissue spots with gene expression (mean sDens value ≥ mean 2-fold 
background value). 
2 Total number of evaluable RCC and normal renal tissue spots. 
3 Gene expression frequency: number of tissue spots positive for gene expression / total number of evaluable tissue 
spots. 



Results 

As shown in table 5, the number of tissues displaying visible signals varied strongly within the 

set of analyzable genes. For example, VIM and CD74 were expressed in almost 100% of the 

evaluable tissue spots whereas ITGA3 expression was merely detectable in 6% of the analyzable 

cases (Table 5).  

 

Figure 10 shows Phosphorimager displays of renal TMA sections after hybridization with 

oligonucleotide probes targeting different genes. 

 

F
 

igure 10: Phosphorimager displays of renal TMA sections after RISH. 

Each hybridization results in individual expression patterns indicating the specificity of the used probes. 

 

Gene expression frequencies in RCC subtypes and normal renal tissue 
 

Since expression of some genes might be linked to certain RCC subtypes, gene expression 

frequencies of the 19 analyzable genes were compared between different RCC subtypes and 

normal renal tissue (Table 6). FN1, ITGA3, PAI1, and BTG2 were expressed in cRCCs, the most 

common RCC subtype, but not in any of the other subtypes. However, the opposite case, not 

expressed in cRCC but expressed in any of the other RCC subtypes, has not been observed. 
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Table 6: Gene expression frequencies in RCC subtypes and normal renal tissue evaluated by 
RISH. 
 
 Expression frequency 1

Gene cRCC pRCC chRCC onco- 
cytoma 2

normal 
kidney 

BSG 15/32 1/2 3/3 1/1 4/5 
BTG2 4/35 0/2 0/3 0/1 4/5 
CD74 33/33 1/2 3/3 na 5/5 
CD9 6/29 0/2 3/3 na 3/5 
CENPF 4/33 0/1 0/2 na 2/5 
CHES1 5/35 0/3 3/3 1/1 3/5 
CTSD 32/36 1/2 3/3 1/1 5/5 
EGR1 19/35 0/3 2/3 1/1 4/4 
FCGRT 6/36 1/3 0/3 0/1 0/5 
FN1 16/36 0/2 0/3 0/1 2/5 
GAS6 14/36 1/3 3/3 1/1 5/5 
ITGA3 3/35 0/3 0/3 0/1 0/5 
ITGA6 5/35 0/3 3/3 1/1 0/5 
ITGB8 29/36 1/3 0/3 1/1 5/5 
K-alpha-1 15/33 0/1 2/2 na 2/5 
LITAF 10/35 1/2 3/3 1/1 5/5 
PAI1 9/35 0/2 0/1 0/1 1/5 
TIMP3 25/36 0/3 3/3 1/1 5/5 
VIM 36/36 2/3 3/3 1/1 5/5 
1 Expression frequency: number of tissue spots positive for gene expression / total number of evaluable tissue spots. 
2 na: non of the tissue spots was analyzable. 

Gene expression frequencies in cRCC and normal renal tissue 
 

Statistical analysis was only done with the results obtained for cRCC and normal renal tissue. In a 

first step, gene expression frequencies (number of tissue spots positive for gene expression / total 

number of evaluable tissue spots) were compared between cRCC and normal renal tissue. As 

indicated in table 7, ITGA3, FCGRT, and ITGA6 were detectable in cRCC tissue spots but not in 

normal renal tissue. In contrast, BTG2, CHES1, GAS6, and LITAF were significantly (p < 0.05) 

more frequently expressed in normal renal tissue than in cRCC. CD9 and EGR1 were also clearly 

more frequently expressed in normal renal tissue than in cRCC but this association did not reach 

significance (p < 0.1 but > 0.05). 

 

In a second step, gene expression frequencies in cRCC were correlated with pT category and 

tumor grade in the subset of cRCC. Significant associations were found for BTG2, CD9, and 

TIMP3.  
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Expression of BTG2 and CD9 was associated with tumor extension (pT category). BTG2 was 

merely expressed in organ-confined pT1/pT2 (4/24, 17%) cRCCs but not in advanced pT3 

tumors (0/11, 0%). Expression of CD9 was also only found in pT1/pT2 (6/20, 30%) lesions but 

not in any of the analyzable (0/9, 0%) pT3 tumors.  

In contrast, expression of TIMP3 was associated with tumor grade. TIMP3 mRNA expression 

was less frequently found in grade 3 (1/5; 20%) than in grade 2 (17/23; 74%) and grade 1 cRCCs 

(7/8; 88%; p = 0.03). 

 

Table 7: Gene expression frequencies in cRCC and normal renal tissue evaluated by RISH. 

  Expression frequency 1

cDNA 
microarray 2 Gene 

normal renal 
tissue 
(n) 3

% cRCC 
(n) 3 % p-value 4

CENPF 2/5 40 4/33 12 n.s. 
FN1 2/5 40 16/36 44 n.s. 

ITGA3 0/5 0 3/35 9 - 
ITGB8 5/5 100 29/36 81 n.s. 

K-alpha-1 2/5 40 15/33 45 n.s. 
PAI1 1/5 20 9/35 26 n.s. 

in
cr

ea
se

d 
ex

pr
es

si
on

 
in

 c
R

C
C

 c
el

l l
in

es
 

VIM 5/5 100 36/36 100 n.s. 
BSG 4/5 80 15/32 47 n.s. 

BTG2 4/5 80 4/35 11 0.0003 
CD74 5/5 100 33/33 100 n.s. 
CD9 3/5 60 6/29 21 0.07 

CHES1 3/5 60 5/35 14 0.02 
CTSD 5/5 100 32/36 89 n.s. 
EGR1 4/4 100 19/35 54 0.08 

FCGRT 0/5 0 6/36 17 - 
GAS6 5/5 100 14/36 39 0.01 
ITGA6 0/5 0 5/35 14 - 
LITAF 5/5 100 10/35 29 0.002 
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TIMP3 5/5 100 25/36 69 n.s. 
1 Expression frequency: number of tissue spots positive for gene expression / total number of evaluable tissue spots. 
2 Gene expression pattern in preceding cDNA microarray experiments. 
3  Number of tissue spots with gene expression / total number of evaluable tissue spots. 
4  p-value was calculated using Chi-square analysis; n.s.: not significant. 
 

 
Gene expression levels in cRCC and normal renal tissue 

 

In order to quantitate mRNA expression levels in the tissues on the TMA, the raw sDens values 

(as measured by the Phosphor imager instrument) were utilized. Quantification is of particular 
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interest for those genes showing expression in both, tumor and normal tissues since the level of 

mRNA expression could be more important than the bare precence of the transcript. Here again, 

statistical analysis was done for the subset of cRCCs and normal renal tissues only.  

Significant associations were found for VIM and CD74. VIM was stronger expressed in cRCC 

than in normal renal tissue (p = 0.04). CD74 was stronger expressed in advanced pT3 tumors than 

in organ-confined pT1/pT2 tumors (p = 0.03). 

 

3.3 Molecular studies on BTG2 to evaluate its importance for cRCC biology 

 

In the second part of this thesis one gene was selected from preceding cDNA and tissue 

microarray experiments to further study its impact on cRCC biology. 

 

BTG2 was chosen for further studies because: 

 

• cDNA microarray analysis revealed significantly reduced BTG2 mRNA expression levels in 

all analyzed cRCC cell lines compared to normal renal tissue (Figure 11A). 

 

• RISH analysis showed that BTG2 was significantly less frequently expressed in primary 

cRCCs than in normal renal tissue (Figure 11B) thus corroborating the findings of the cDNA 

microarray hybridizations. 

 

• Melamed et al. (124) found strong BTG2 protein expression in normal epithelial cells of renal 

proximal tubuli from which cRCC arise (1) strongly suggesting that loss of BTG2 expression 

might be of great importance for renal tumor biology. 



Results 

Figure 11: BTG2 mRNA expression on cDNA and tissue microarrays. 
 
(A) BTG2 mRNA expression in cRCC cell lines and in normal renal tissue as assessed by  cDNA
microarray analysis. Magnifications of the BTG2 and G3PDH (reference gene) cDNA spots after
hybridization are shown in the lower pannel. BTG2 was strongly expressed in normal renal tissue but
nearly undetectable in all analyzed cRCC cell lines. (B) BTG2 mRNA expression in primary cRCC and in
normal renal tissue evaluated by RISH. BTG2 mRNA expression is detectable in 4 of 35 analyzable
cRCCs (indicated by circles) and in 4 of 5 normal renal tissues (indicated by a rectangle). Reference genes
G3PDH and β-Actin were used as positive controls (A, B). 
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3.3.1 Northern blot analysis 

 

Confirmation of cDNA microarray results 

 

To confirm the results obtained for BTG2 with the cDNA microarray experiments, single-

stranded 32P labeled DNA probes for BTG2 and G3PDH were hybridized to polyA+ mRNA of all 

four cRCC cell lines, normal renal tissue, and lymphocytes (positive control). BTG2 transcripts  

were detected at the expected size of 2.7 kb (representative BTG2 mRNA sequence under gene 

bank accession number NM_006763 at the NCBI homepage) in normal renal tissue and the 

positive control but not in any of the analyzed cRCC cell lines (Figure 12). In contrast, G3PDH 

mRNA was found in all analyzed samples at the expected size of 1.3 kb (representative G3PDH 

mRNA sequence under gene bank accession number NM_002046 at the NCBI homepage). 

(1.3 kb) 

(2.7 kb) 

Figure 12: Northern blot analysis of BTG2 to confirm cDNA microarray results. 
 
BTG2 mRNA expression was detectable as a single band at 2.7 kb in human lymphocytes (+) and normal renal tissue
(NRT) but not in cRCC cell lines (1 = Caki-1, 2 = Caki-2, 3 = 786-O, and 4 = 769-P) after 4 h exposition. G3PDH
was used as positive control. 

 

Evaluating specificity of BTG2 oligonucleotide probes 
 

To ensure the specificity of the BTG2 oligonucleotide probe used on the renal TMA, 32P labeled 

oligonucleotide probes for BTG2 (the same that were used in the RISH experiments) were 

hybridized to total RNA from human lymphocytes. A single band at 2.7 kb (representative BTG2 

mRNA sequence under gene bank accession number NM_006763 at the NCBI homepage) 

confirmed the specificity of the oligonucleotides for the BTG2 mRNA sequence (Figure 13). 
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BTG2 mRNA 

(2.7 kb)  

 

 

 Figure 13: Northern blot analysis of BTG2 to confirm specificity of oligonucleotide probes used in 
the RISH experiment. 
 
A strong and specific signal for BTG2 was obtained after an exposition time of 12 h. 

 

 

 

3.3.2 BTG2 mRNA expression in primary cRCC and normal renal tissue evaluated by 

quantitative RT-PCR 

 

BTG2 mRNA amounts were determined in a subset of primary cRCC and normal renal tissues by 

quantitative RT-PCR using the LightCycler technology.  

 
Calibration of RT-PCR 

 

To calibrate RT-PCRs, standard curves for BTG2 and G3PDH (reference) were established. For 

this purpose, serial dilutions of in vitro generated BTG2 and G3PDH mRNA were prepared. 

BTG2 and G3PDH PCR products were cloned into pGEM®-T easy vectors (Figure 14A). To 

generate run-off in vitro transcripts, plasmid DNA was digested with appropiate (SphI or PstI) 

restriction enzymes (Figure 14A). Run-off in vitro transcripts (sense strand) of BTG2 and 

G3PDH were generated from the linearized plasmid DNA (Figure 14B).  

Figure 14: Generation of in vitro transcribed BTG2 and G3PDH mRNA using the pGEM Teasy vector. 
(A) Gel electrophoresis of pGEM®-T easy plasmid DNA containing BTG2 (1) and G3PDH (2) PCR
products before (1 and 2) and after linearization with SphI (3 and 4) and PstI (5 and 6). M = DNA size
marker. (B) In vitro generated run-off transcripts of BTG2 (1) and G3PDH (2). M = RNA size marker. 
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Serial dilutions of both in vitro generated transcripts were reverse transcribed. First strand cDNA 

synthesis products were amplified on the LightCycler (Figure 15). Standard curve slopes were –

3.718 for BTG2 and –3.763 for G3PDH resulting in PCR efficiencies (E) of 1.86 and 1.84, 

respectively (Figure 15A).  

Melting curve analysis confirmed specificity of PCR reactions. Melting of BTG2 and G3PDH 

PCR products resulted in single melting-peaks for BTG2 and G3PDH (Figure 15B).  

 

E = 1.84 

G3PDH 

BTG2 

E = 1.86 

G3PDH 

BTG2  
 
 

 

 

Figure 15: Calibration of quantitative RT-PCR. 
 
(A) Standard curves for BTG2 and G3PDH; nc = negative control. (B) Melting curve analysis of BTG2 and 
G3PDH indicating the specifity of both PCR reactions. Unspecific primer-dimers occured in negative 
controls (nc) and in the lowest concentration of G3PDH template (indicated by arrowhead) only. 
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Quantification of BTG2 in primary cRCCs and normal renal tissues 
 

BTG2 mRNA expression levels were analyzed in 42 fresh-frozen primary cRCC and 17 normal 

renal tissues. BTG2 mRNA expression was significantly stronger in normal renal tissue than in 

cRCC. Mean BTG2 mRNA copy numbers were 1.5 x 106  per µg total RNA (range:1.9 x 105 – 3.7 

x 106)  in cRCC and 9 x 106 per µg total RNA (range: 2.1 x 106 – 3.9 x 107) in normal renal tissue 

(p < 0.0001; Figure 16A). Mean G3PDH mRNA copy numbers were 42.6 x 106 per µg total RNA 

(range:9.5 x 106 – 9.8 x 107)  in cRCC and 32.5 x 106 per µg total RNA (range: 8.3 x 106 – 4.9 x 

107) in normal renal tissue (p = 0.084; Figure 16A). BTG2/G3PDH mRNA copy number ratios 

were calculated to normalize for differences in RNA quality and quantity. Mean BTG2/G3PDH 

ratios were 0.043 (range: 0.0065 – 0.18) in cRCC and 0.288 (range: 0.073 – 0.84) in normal renal 

tissue (p<0.0001; Figure 16B). 
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igure 16: Quantitative mRNA expression analysis of BTG2 and G3PDH. 

(A) Mean BTG2 and G3PDH mRNA copy numbers in primary cRCCs and normal renal tissues. mRNA copy
numbers are given in Mio copies per µg total RNA. (B) Mean BTG2/G3PDH mRNA copy number ratios in
primary cRCCs and normal renal tissues. 

 

BTG2 mRNA expression was also correlated with tumor extension (pT category) and tumor 

grade in the subset of cRCCs. There was no association between BTG2 expression and pT 

category or tumor grade (Figure 17A and B). 
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igure 17: BTG2 mRNA expression in association with pT category and tumor grade in cRCC. 

(A) BTG2 mRNA expression and pT category. (B) BTG2 mRNA expression and tumor grade. BTG2 mRNA 
expression is given as BTG2/G3PDH mRNA copy number ratio. 

 

 

3.3.3 Modulation of BTG2 mRNA expression in cRCC cell lines 

 

TPA treatment of cRCC cell lines 
 

The phorbolester TPA has been shown by other groups (125, 126) to be a potent inducer of BTG2 

expression in HeLa cells and murine cell lines of different origin. Because BTG2 mRNA 

expression is significantly reduced in cRCC cell lines and primary cRCC the question arises 

whether BTG2 mRNA expression could be induced by TPA in cRCC cell lines. 

 

Caki-1, Caki-2, 786-O, 769-P, and HeLa (positive control) cells were treated with various 

concentrations of TPA. BTG2 and G3PDH mRNA copy numbers were determined by 

quantitative RT-PCR on the LightCycler. BTG2 mRNA expression in untreated cRCC cell lines 

were comparable to those obtained for primary cRCC (Table 8). Expression of G3PDH mRNA 

was not significantly affected by TPA in any cell line (Figure 18). Therefore, BTG2 to G3PDH 

mRNA copy number ratios were calculated to normalize for differences in RNA quality and 

amount (Table 8). According to these ratios, HeLa cells showed an up to 15-fold increase of 

BTG2 mRNA expression after addition of TPA (Figure 19). In contrast, BTG2 mRNA expression 

alterations upon TPA treatment were very weak or even not detectable in cRCC cell lines. 

Strongest response to TPA treatment was obtained for Caki-1 cells, which showed up to 2.4-fold 

increased BTG2 mRNA expression levels. There was no association between TPA concentration 

and BTG2 mRNA expression alteration in any cell line (Figure 19). 
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Table 8: BTG2 and G3PDH mRNA copy numbers in TPA treated cell lines. 
 
Cell line Treatment 1 BTG2 2 G3PDH 2 Ratio 3

HeLa T0 0.52 128 0.0041 
 25 ng TPA 6.58 106 0.0621 
 50 ng TPA 6.92 110 0.0629 
 75 ng TPA 7.26 121 0.0600 
 100 ng TPA 6.76 109 0.0620 
 0.01% DMSO 1.14 121 0.0094 
Caki-1 T0 0.63 117 0.0054 
 25 ng TPA 1.53 127 0.0120 
 50 ng TPA 1.49 115 0.0130 
 75 ng TPA 1.43 104 0.0138 
 100 ng TPA 1.23 106 0.0116 
 0.01% DMSO 0.33 103 0.0032 
Caki-2 T0 0.78 229 0.0034 
 25 ng TPA 0.85 174 0.0049 
 50 ng TPA 0.89 171 0.0052 
 75 ng TPA 1.12 216 0.0052 
 100 ng TPA 0.98 173 0.0057 
 0.01% DMSO 0.65 156 0.0042 
786-O T0 0.15 81.3 0.0019 
 25 ng TPA 0.29 118 0.0024 
 50 ng TPA 0.27 76.3 0.0036 
 75 ng TPA 0.23 99.6 0.0023 
 100 ng TPA 0.26 119 0.0022 
 0.01% DMSO 0.15 108 0.0014 
769-P T0 0.60 143 0.0042 
 25 ng TPA 0.50 119 0.0042 
 50 ng TPA 0.55 126 0.0043 
 75 ng TPA 0.86 182 0.0047 
 100 ng TPA 0.70 147 0.0048 
 0.01% DMSO 0.52 122 0.0042 
1 T0 = basal mRNA copy numbers (prior addition of TPA/DMSO). 
2 BTG2 and G3PDH mRNA copy numbers are given in Mio copies/µg total RNA. 
3 BTG2/G3PDH mRNA copy number ratio. 
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Figure 18: G3PDH mRNA expression alterations upon TPA treatment. 
 
Expression alterations are given in ± x-fold relative to basal G3PDH mRNA expression (prior addition of 
TPA/DMSO) in the respective cell line. no change: G3PDH mRNA expression in TPA/DMSO treated 
culture equals basal G3PDH mRNA expression. 
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igure 19: BTG2 mRNA expression change upon TPA treatment. 

BTG2 mRNA copy numbers were normalized to G3PDH mRNA copy numbers. Expression alterations are 
given in ± x-fold relative to basal BTG2/G3PDH mRNA copy number ratios (prior addition of TPA/DMSO) 
in the respective cell line. no change: BTG2 mRNA expression in TPA/DMSO treated culture equals basal 
BTG2 mRNA expression. 
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BTG2 mRNA expression and cell density 

 

BTG2 mRNA expression was found by other groups (127, 128) to be absent in exponentielly 

growing cell cultures but abundant in quiescent cells. For this reason, BTG2 mRNA expression 

was analyzed in association with cell density in cRCC cell lines. Caki-1, Caki-2, 786-O, and 769-

P cells were seeded at different densities and BTG2 and G3PDH mRNA copy numbers were 

assessed by quantitative RT-PCR 48 h after plating (table 9). Since G3PDH mRNA expression 

was not significantly linked to cell density (figure 20), BTG2 to G3PDH mRNA copy number 

ratios were calculated to normalize for differences in RNA quality and amount (table 9). BTG2 

mRNA expression was associated with increasing cell density in Caki-2, 786-O, and 769-P but 

not in Caki-1 cells (figure 21).  

 

 

Table 9: BTG2 and G3PDH copy numbers in association with cell density. 
 
Cell line Cell density 1 BTG2 2 G3PDH 2 Ratio 3

Caki-1 low 0.94 ± 0.01 189 ± 24 0.0050 ± 0.0001 
 medium 1 ± 0.03 205 ± 1 0.0049 ± 0.0002 
 high 0.97 ± 0.19 284 ± 60 0.0034 ± 0.0001 
Caki-2 low 0.45 ± 0.09 191 ± 30 0.0023 ± 0.0001 
 medium 0.65 ± 0.06 229 ± 29 0.0029 ± 0.0001 
 high 0.9 ± 0.11 209 ± 14 0.0043 ± 0.0002 
786-O low 0.16 ± 0.01 119 ± 13 0.0014 ± 0.0001 
 medium 0.23 ± 0.006 111 ± 1 0.0021 ± 0.0001 
 high 0.61 ± 0.02 102 ± 2 0.0060 ± 0.0003 
769-P low 0.33 ± 0.05 145 ± 35 0.0023 ± 0.0002 
 medium 0.45 ± 0.13 159 ± 27 0.0028 ± 0.0003 
 high 0.59  0.07 154 ± 3 0.0038 ± 0.0004 
1 low = initial cell number 1 x 105/well; medium = initial cell number 2 x 105/well; high = initial cell number 5 x 
105/well. 
2 BTG2 and G3PDH mRNA copy numbers are given in Mio copies/µg total RNA. 
3 BTG2/G3PDH mRNA copy number ratio.
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igure 20: G3PDH mRNA expression and cell density. 

G3PDH mRNA expression alterations are given in ± x-fold relative to cultures with lowest cell densities 
(initial cell number: 1 x 105 cells/well). no change: G3PDH mRNA expression in cultures with medium/high 
cell densities equals G3PDH mRNA expression in cultures with lowest densities. 
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igure 21: BTG2 mRNA expression and cell density. 

BTG2 mRNA copy numbers were normalized to G3PDH mRNA copy numbers. Expression alterations are 
given in ± x-fold relative to normalized BTG2 mRNA expression levels in cultures with lowest cell densities 
(initial cell number: 1 x 105 cells/well). no change: BTG2 mRNA expression in cultures with medium/high 
cell densities equals BTG2 mRNA expression in cultures with lowest densities. 
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4 Discussion 
 

4.1 Combination of cDNA and tissue microarray technologies for the identification of 

cRCC relevant genes 

 

General and specific aspects of cDNA and tissue microarrays 
 

DNA microarray technology has become one of the most popular platforms for performing global 

gene expression analysis in cancer. Commercially available cDNA microarrays mainly differ in 

the structure of the target sequences (e. g. cDNA or oligonucleotides), the support on which DNA 

targets are immobilized (nylon membrane, plastic, glass), and the mode of detection (radioactive 

or fluorescent). Although, the range of cDNA microarrays is diverse the advantages and 

disadvantages are very similar. Most advantageously features of cDNA microarrays are that they 

allow fast and quantitative expression profiling of thousands of genes in one experiment and that 

the identity of the arrayed genes is known a priori, in contrast to other expression screening 

methods (i. e. differential display RT-PCR), rendering time-consuming identification methods 

unnecessary. Disadvantages are (i) a possibly high number of false-positive signals due to 

unspecific hybridization reactions, (ii) requirement of large amounts of high quality RNA and 

(iii) high costs. Due to the vast number of arrayed gene sequences, cDNA microarrays produce 

large amounts of data which have to be handeled using bioinformatic tools. One of the major 

challenges of DNA microarray technology is to distinguish between „real“ and „false“ signals. 

This problem is addressed by applying stringent criteria for identifying gene expression 

alterations and confirming cDNA microarray results by independent approaches, e. g. Northern 

blot and quantitative RT-PCR (129, 130). 

 

In this study, AtlasTM Human Cancer 1.2 arrays (BD Clontech) were used. Compared to other 

microarrays, these arrays are rather small since they contain „only“ 1176 different cDNA 

sequences. However, AtlasTM cDNA microarrays have considerable advantages:  

 

• The selection of the arrayed sequences by the manufacturer was done with the focus on genes 

suggested to be involved in tumorigenic pathways. Thus, AtlasTM cDNA microarrays enable 

to concentrate on human cancer relevant genes. 
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• The use of 32P labeled cDNAs offers the most sensitive method for measuring gene 

expression (129). 

 

• The size of target gene cDNA fragments varies between 200-600 bp resulting in a high 

hybridization efficiency. 

 

• cDNA probes are generated with sequence specific primers leading to a high signal 

specificity. 

 

• In contrast to glass microarrays, Atlas cDNA microarrays are reusable (up to three times) and 

less expensive. 

 

Using AtlasTM Human Cancer 1.2 microarrays, a total number of 71 differentially expressed 

genes (at least 2-fold expression changes in at least two cRCC cell lines compared to normal 

renal tissue) were determined. The number of identified genes is comparable with those 

published by other groups using the same arrays for studying expression alterations in squamous 

cell carcinoma of head and neck, papillary thyroid carcinoma, and gastric cancer (131-133). 

Importantly, the set of isolated genes are differing in all studies indicating that uncovered 

expression alterations are tumor specific and thus are argueing for the reliability of AtlasTM 

cDNA microarrays. 

 

One of the bottle necks in cancer research is determining the clinical relevance of candidate genes 

uncovered by cDNA microarray analysis. Our recently developed TMA technology, which 

allows simultanous analysis of genes of interest in a large sample collective, has been designed to 

facilitate such studies (115). It has already been demonstrated by different groups that TMAs are 

optimally suited to evaluate the clinical significance of genes identified by cDNA microarray 

experiments (117-120).  

 

However, TMAs generated from archival, paraffin embedded tissue material have limitations. 

Processing of tissues in a routine histopathological laboratory often takes many hours causing 

partial or complete degradation of particularly RNA. Furthermore, formalin, which is routinously 
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used for tissue fixation, chemically modifies proteins and nucleic acids (134, 135) impeding the 

binding of antibodies and hybridization probes to their target molecules. As consequence, gene 

expression analysis using formalin-fixed, paraffin-embedded tissue is often very difficult or even 

impossible.  

 

Unfixed, fresh-frozen tissues would generally be superior for molecular analysis since quality and 

quantity of target molecules remain rather unaffected. Using a technology where tissues and 

recipient blocks are permanently kept below –20°C during TMA construction we were able to 

generate TMAs from snap frozen tissue specimens. A similar method was published at the same 

time when we were establishing this procedure at our institute two years ago (116).  

 

The use of frozen TMAs enabled us to perform mRNA gene expression analysis in numerous 

tissue specimens. Twenty-five genes, which were significantly differentially expressed (at least 4-

fold expression alteration in at least two cRCC cell lines compared to normal renal tissue) on the 

cDNA microarrays, were further studied by RISH on TMAs generated from frozen primary 

RCCs and normal renal tissues. It is of note, in comparison to paraffin TMAs, manufacturing and 

sectioning of frozen TMA is much more problematic since the tissue has to be kept frozen during 

the whole process to avoid RNA degradation. Furthermore, a special adhesive-coated tape 

system, which improves the sectioning of the TMA and helps to keep the tissue spots on the 

TMA section, was not applied for our “first generation” frozen TMAs. This lead to a rather high 

percentage (in average 38%) of tissue spots, which were lost during the sectioning and 

hybridization process. Despite these unwanted side effects 19 of 25 genes were successfully 

analyzed by RISH. Only six genes (CKS1B, CSPG2, FOSL1, HMGA1, TGFB1, and NR0B2) did 

not show any expression neither in the primary tumors nor in the normal renal tissues. Possible 

explanations for the observed discrepancies are:  

 

• Human cancer cell lines are frequently used as model for neoplastic disease. The high amount 

of high-quality RNA, yielded from cell lines, makes them superior to tissue material for 

expression analysis using cDNA microarrays. However, it has been shown that gene 

expression patterns of cell lines may differ more or less from those obtained for primary 

tumors since some genes become activated or deactivated through the culturing process, 
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growth factors in the medium, and adaption to culture enviroment (136-138). Thus, some 

gene alterations uncovered in this study might be cell culture artefacts. 

 

• Since the absolute number of mRNA target sequences in a 0.6 mm diameter tissue spot on the 

TMA is below the number of specific cDNA sequences present in a cDNA microarray spot 

some genes showing weak expression on the cDNA microarray remain undetected by RISH. 

 

Using a combination of cDNA and frozen tissue microarray analysis, five genes (VIM, CD74, 

CHES1, LITAF, and BTG2) have been identified which might be cRCC associated. The possible 

roles of VIM, CD74, CHES1, and LITAF in cRCC biology will be discussed in the following 

sections. BTG2, which appeared to be the most interesting candidate gene, was chosen for further 

studies. These results will be discussed in sectiom 4.2. 

 

VIM 
 

VIM (Vimentin), which is coding for an intermediate filament protein of the cytoskeleton, was 

clearly stronger expressed in cRCC cell lines and primary cRCC compared to normal renal tissue. 

Overexpression of VIM in cRCC cell lines and tissues was recently described by two other groups 

who also used cDNA microarrays for identification of renal tumor relevant genes (117, 139). 

Using paraffin TMA technology it was furthermore demonstrated that VIM protein expression is 

significantly associated with poor patient prognosis independent of tumor grade and stage (117). 

These data clearly show that potential prognostic tumor markers may be identified with cDNA 

microarrays. 

 
CHES1 

 

Reduced CHES1 mRNA expression was seen in cRCC cell lines and primary cRCCs. CHES1 is a 

member of the family of forkhead/winged transcription factors. Although, the biological function 

of CHES1 is yet unclear, certain lines of evidence indicate that this gene might be involved in 

DNA damage induced cell cycle arrest (140). Thus, reduced expression levels of CHES1 might 

result in genomic instability, which is one of the hallmarks of human cancer (141, 142). Recently, 

a homozygous missense mutation in CHES1 in a colon cancer cell line (143) and reduced 
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expression of CHES1 mRNA in gastric cancer (133) have been described indicating an important 

role of this gene in some human cancers. 

 

LITAF 
 

Similar to CHES1, LITAF showed reduced expression levels in cRCC cell lines and primary 

cRCCs. LITAF is involved in the activation of the human TNF-alpha gene (144) which encodes a 

multifunctional cytokine capable of inducing apoptosis by binding to TNF receptors (145, 146). 

Impaired mRNA expression of LITAF might contribute to renal tumorigenesis by delaying cell 

death. 

 

CD74 
 

Interestingly, CD74 mRNA expression was absent in cRCC cell lines but was detectable in 

primary cRCCs with expression levels similar to normal renal tissue. CD74 plays an important 

role in processing/maturation of MHC class II molecules. Through association with the latter, 

CD74 prevents untimely peptide loading of the premature MHC class II molecule and ensures 

correct trafficking to the intracellular peptide loading compartement. In contrast to MHC class I, 

which is expressed on almost all cell types, MHC class II was originally thought to be 

predominantly expressed on cells that present antigenes to CD4+ T cells like macrophages, 

monocytes, dendritic cells, and B lymphocytes (reviewed in (147)) suggesting that CD74 is also 

exclusively expressed in these cells.  

However, recent reports demonstrated that both, MHC class II and CD74, are also expressed in 

various primary human cancers, e. g. colorectal, head and neck, stomach, and renal tumors (148-

153). By IHC, Young et al. (139) recently found strong CD74 expression in primary cRCC cells 

and tumor associated stromal and endothelial cells in 65% of the analyzed primary cRCCs. 

As shown by RISH analysis on primary cRCCs, high CD74 expression levels were significantly 

associated with high pT category. This observation suggests a potential role of CD74 for tumor 

progression. Due to the biological function of CD74 one might speculate that increased 

expression of CD74 may help tumor cells to escape from the immune system by blocking peptide 

loading of MHC class II, thus preventing tumor antigen presentation on the cell surface. Results 

from other studies are supporting the theory that CD74 might have “oncogenic” properties in 

cRCC biology: (i) CD74 is localized on chromosome 5q, which is frequently gained in cRCC 
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(56, 154, 155); (ii) strong and frequent CD74 protein expression in primary cRCC was recently 

described (139, 149), and (iii) increased CD74 protein expression is also associated with tumor 

progression in colon and gastric cancers (153, 156). Therefore, CD74 is a potential candidate 

gene for cRCC biology and further studies would be worthwhile. 

 

4.2 BTG2 – a new candidate gene for renal tumor biology? 

 

cDNA and tissue microarray experiments demonstrated strong BTG2 mRNA expression in 

normal renal tissue but reduced or absent expression in cRCC cell lines and primary tumors. 

Recently, Melamed et al. (124) showed that BTG2 protein is strongly expressed in epithelial cells 

of the proximal tubulus of the kidney from which cRCC arise (1). These findings strongly 

suggest that BTG2 is important for renal tumorigenesis. 

 

Biological function of BTG2 
 
BTG2 (also known as TIS21 or PC3) was first described in 1991 and belongs to a gene family 

consisting of six members (BTG1, BTG2, PC3B, ANA, TOB, and TOB2), all of which having 

antiproliferative properties (reviewed in (157)). BTG2 was cloned from nerve growth factor 

(NGF) treated PC12 cells suggesting that this gene might be of importance for neuronal 

differentiation (126). Further studies revealed that the impact of BTG2 on neurogenesis is through 

cell cycle control since forced expression of BTG2 in PC12 resulted in G1/S arrest (158) and 

BTG2 is expressed in neuroblasts undergoing the last proliferation before differentiating into 

postmitotic neurons (159, 160). The cell cycle regulatory function of BTG2 is not restricted to 

neuronal cells. Forced expression of BTG2 resulted in cell cycle arrest at G1/S in NIH3T3 and 

293 cells (158, 161, 162). Furthermore, BTG2 is capable of inducing cell cycle arrest at the G1/S 

and also the G2/M checkpoint upon DNA damage in a p53 dependent manner (127, 163, 164).  

Besides p53 and NGF also fibroblast- and epidermal growth factor (FGF and EGF), the 

phorbolester TPA, Interleukin-6, and cAMP are able to induce BTG2 expression (125, 126, 158). 

It is therefore concluded that a number of different signal transduction pathways turn on or 

enhance transcription of this gene. 

 

In accordance, by sequencing the BTG2 gene putative binding sites for several transcription 

factors including AP-1, GATA-1, NFkappaB, CREB, and p53 were identified (Figure 22; (164)). 
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Figure 22: Genomic sequence of BTG2 (Duriez et al. 2002) 

 

The molecular mechanisms how BTG2 exerts its cell cycle regulatory function are not well 

understood. BTG2 has been shown to interact with transcription factors like Hoxb9 (165), hCAF1 

and CALIF (166) and modulate their activity indicating that BTG2 functions as a transcriptional 

regulator. It was also demonstrated that BTG2 binds to protein-arginine N-methyltransferase 1 

(PRMT1) resulting in enhanced activity of PRMT1 (167, 168). Many of the target proteins of 

PRMT1 are involved in RNA processing, metabolism and transport (e.g. SPT5 (169), poly(A) 

binding protein II (170), ILF3 (171), hnRNP A2 (172), and Sam68 (173)) and also in chromatin 

organization (174) suggesting that BTG2 also plays a role in „pre-transcriptional“ and post-

transcriptional regulation steps. 

Thus, by interacting with various partners, BTG2 appears to have influence on almost all steps of 

transcription strongly suggesting that BTG2 excerts its cell cycle regulatory function by 

controlling transcription of the respective genes (Figure 23). 
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Figure 23: Probable mode of action of the negative cell cycle regulator BTG2. 

 

Recent findings are supporting the theory that BTG2 is involved in cell cycle arrest through its 

involvement in transcriptional regulation : 

 

• Guardavaccaro et al. demonstrated that cell cycle arrest at G1/S induced by forced BTG2 

expression relies on inhibition of cyclin D1 transcription and consequently accumulation of 

hypophosphorylated Rb protein (162). 

 

• Growth inhibition of wild-type p53 containing MCF-7 cells after genotoxic treatment was 

accompanied by increased methylation of histone IIA and enhanced BTG2 mRNA expression. 

In contrast, MCF-7 cells stably transfected with a dominant negative form of p53 that 

abrogates sequence-specific DNA binding of p53 did not show increasing BTG2 mRNA 

expression levels and enhanced methylation of histone IIA upon adriamycin treatment. These 

cells were unable to arrest cell cycle (163). 

 

• The negative cell cycle regulatory function of BTG2 is an important tumor suppressive 

property, which has been described for well known tumor suppressor genes, e. g. p53 (175), 
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pRB (176) or p16 (177). In addition, BTG2 participates in at least two cellular pathways (p53 

and pRb), which are of great importance for tumorigenesis (178, 179). 

 

BTG2 - a tumor suppressor candidate for cRCC? 
 

In an attempt to study the possible tumor suppressive role of BTG2 in renal tumorigenesis, the 

clinical impact of BTG2 expression alterations in primary cRCC was analyzed in a first step. In a 

second step, the expression regulation and cell cycle regulatory function of BTG2 were examined 

in cRCC cell lines. 

 

Because commercially available antibodies for BTG2 are not existing to date, correlation of 

BTG2 protein expression with pathological and clinical parameters in cRCC using our large 

paraffin renal TMA (contains more than 500 archival RCC tissues) was unfortunatly not possible. 

For this reason, BTG2 expression was studied on the mRNA level in 42 primary cRCCs and 17 

normal renal tissues using quantitative RT-PCR. Using this approach, the results obtained from 

cDNA microarray, RISH, and Northern blot experiments were confirmed. Normal renal tissues 

showed significantly stronger BTG2 mRNA expression levels than primary cRCCs. Although 

BTG2 expression was detectable in all tumor samples, primary cRCCs showed - compared to the 

mean, normalized BTG2 mRNA copy number of normal renal tissue - 6.7-fold (1.6-fold to 44-

fold) reduced BTG2 mRNA expression. Reduced BTG2 mRNA expression levels were not 

associated with high tumor grade or pT category suggesting that impaired BTG2 expression is 

rather an early event in renal tumorigenesis. 

 

To address the possible tumor suppressive function of BTG2 in renal cancer, the regulation of 

BTG2 mRNA expression was studied in cRCC cell lines. It has been shown that BTG2 is an 

immediate early response gene, whose transcription can be induced by the phorbolester TPA in 

human HeLa cells and also in a variety of rodent cell lines of different origin (125, 126). 

According to this, serveral AP-1 binding sites (which are also known as TPA response elements; 

TREs), are located in the promotor region of BTG2 ((164); Figure 22). These findings prompted 

us to investigate the inducibility of BTG2 expression by TPA in the cRCC cell lines Caki-1, 

Caki-2, 786-O, and 769-P. Among all tested cRCC cell lines, merely Caki-1 cells showed a 

response to TPA. However, compared to HeLa, the increase of BTG2 mRNA expression was 
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very weak (15-fold versus 2.3-fold). There are different explanations for the inability of cRCC 

cell lines to induce BTG2 expression upon TPA treatment: 

 

• Phorbolesters like TPA mainly excert their effects in cells by activating members of the 

protein kinase C (PKC) family (180, 181) but also by activating certain other receptors 

lacking kinase activity (reviewed in (182, 183)). Given the large number of PKC isotypes, 

which frequently show tissue specific expression patterns (184-188) and which have plenty of 

cellular substrates involved in many different biological processes (189), the reaction of cells 

upon phorbolester treatment may largely depend on the expression pattern of PKCs in this 

cell type. According to this, phorbolesters have been reported to enhance proliferation but 

also induce growth arrest, differentiation, and apoptosis in a variety of human cancer cell 

lines (190-193). Therefore, it is possible that discrepancies in the ability to induce BTG2 

expression upon TPA treatment in cervix carcinoma and cRCC cells are due to different 

TPA-target expression patterns in the respective cell lines. 

 

• The effect of TPA on BTG2 transcription activation is indirect and requires a signaling 

cascade acting as an intermediary. Alterations in this signaling cascade might occure in cRCC 

but not in cervix carcinoma cells resulting in impaired activation of BTG2 gene transcription 

in cRCC cell lines upon TPA treatment. 

 

• The BTG2 gene might directly be affected by inactivating mutations, hypermethylation of 

CpG islands located in the promoter (164), or deletion leading to constricted gene activity in 

cRCC cell lines. 

 

Whether the inability to induce BTG2 mRNA expression upon TPA treatment in cRCC cell line 

but not in cervix carcinoma cells is caused by natural physiological differences in both cell types 

or by pathological alterations in the analyzed cRCC cell lines remains to be clarified. 

 

Based on recent observations of other groups who showed that BTG2 expression is low in 

exponentially growing cell lines, whereas quiescent cells showed high BTG2 expression levels 

(127, 128) BTG2 mRNA expression was quantitatively analyzed in cRCC cultures with different 

cell densities. BTG2 mRNA expression was linked to increasing cell densities in Caki-2, 786-O, 
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and 769-P. The strongest association was found in 786-O cells, which showed slightly more than 

4-fold increased BTG2 mRNA expression in cultures with highest cell densities. Compared to 

this, the increase of BTG2 mRNA expression was rather weak in Caki-2 and 769-P (both less 

than 2-fold).  

 

It is of note that, although some of the cRCC cell lines are able to induce BTG2 upon certain 

stimuli, neither TPA nor high cell densities were able to raise BTG2 expression to the level 

observed in normal renal tissues. Downregulation of BTG2 mRNA expression might therefore be 

an important mechanism driving renal cancer development.  

 

The question arises, whether BTG2 is a new tumor suppressor gene candidate or whether reduced 

expression of BTG2 is merely a downstream-effect of impaired function of a signalling cascade. 

The inability of cRCC cell lines to enhance BTG2 mRNA expression upon cellular cues (TPA 

and cell density) to the levels obtained in normal renal tissue are a strong argument for a tumor 

suppressive function of BTG2 in cRCC.  

 

Already in 1971 Knudson postulated (194) - based on his studies on hereditary retinoblastoma - 

that two independent events, loss of one allele and mutation of the remaining allele, were needed 

to inactivate a given tumor suppressive gene resulting in malignant transformation. To date, this 

„two-hit“ hypothesis is generally accepted and indeed many tumor suppressor genes are 

inactivated by deletion of one allel and mutation or (more recently acknowledged) epigenetic 

silencing of the other allel (reviewed in (195-197)).  

 

A common deleted region was described in breast cancer spanning 1q23-32 (198), the latter 

including the BTG2 locus (127). Duriez et al. (164) has analyzed primary breast tumors and 

breast cancer cell lines for LOH at 1q32 and mutations in the two exons of the BTG2 gene to 

study whether the “two-hit” hypothesis for inactivation of a tumor suppressor gene holds true for 

BTG2 as well. They found LOH at 1q32 in 4 of 18 primary breast tumors. However, they were 

not able to identify any mutation in the BTG2 sequence argueing against the “classical” modus of 

a tumor suppressor gene inactivation.  
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In this context, it is noteworthy that for some tumor suppressor genes impaired function of 

merely one allele may also be enough to drive tumorigenesis (reviewed in (195)). This new class 

of so-called haploinsufficient tumor suppressor genes has been inferred from mouse models of 

human cancer. Recently it has been demonstrated that mice hemizygous (+/-) for tumor 

suppressor genes like p27Kip1 (199), p18(INK4c) (200), transforming growth factor-beta 1 (201), 

and also p53 (202), show a higher spontanous tumor rate than their homozygous (+/+) littermates 

and rapidly develop tumors when challenged with carcinogens. In all cases the remaining wild-

type allele remained unaffected.  

 

In accordance, FUS1, a candidate tumor suppressor gene, which was identified from a 630 kb 

deletion region in lung cancer (203), is infrequently mutated or methylated in lung cancer cell 

lines and primary lung tumors (204). Kondo et al. (204) recently demonstrated that forced 

expression of FUS1 leads to G1 arrest and growth inhibition in lung cancer cells suggesting that 

FUS1 is also a candidate for a haploinsufficient tumor suppressor gene. 

 

Another example for a potential haploinsufficient tumor suppressor gene is the transcription 

factor KLF5 at 13q21. Forced expression of KLF5 in breast and prostate carcinoma cell lines 

significantly inhibited growth of these cells. Although KLF5 is frequently deleted at one allele in 

breast and prostate carcinoma cell lines inactivating mutations or hypermethylation of the 

remaining allel are uncommon (205, 206).  

 

Current reports suggest that haploinsufficiency of tumor suppressor genes is caused by deletion 

of one allel whereas the other allel remains unaffected. As shown by CGH analysis, loss of 1q is 

a rare event in cRCC (see figure 2 (56)) speaking against the theory of a haploinsufficient tumor 

suppressor gene. However, one should take in account that CGH is a rather insensitive method 

detecting only those DNA sequence losses spanning more than 10 Mb (207). Using LOH analysis 

it would be possible to uncover very small deleted chromosomal segments at 1q. 

But even if BTG2 is not deleted at one allele in renal cancer, the loss of tumor suppressive 

properties of this gene due to haploinsufficiency is still an attractive model for cRCC. One might 

speculate that expression of some potential haploinsufficient tumor suppressor genes might be 

decreased not due to deletion but due to mutation or hypermethylation of one allele. Those genes 
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would remain undetected by CGH and LOH analysis but would attract attention in cDNA 

microarray experiments.  

 

Analyzing the mutation, methylation and LOH status of the BTG2 gene in renal cancer would 

clarify whether this gene is directly affected by inactivating events at one or even both alleles and 

could thus be regarded as a new potential tumor suppressor gene for renal carcinogenesis. 

 

Outlook 

 

In this thesis a combination of cDNA and tissue microarray technology was used to identify 

potential RCC relevant genes. The negative cell cycle regulator and potential tumor suppressor 

BTG2 was one of the most interesting candidate genes and we decided to further study the impact 

of this antiproliferative gene on renal carcinogenesis. As already mentioned, the experiments 

done in this thesis only allow to speculate about the role of BTG2 in cRCC biology. The impaired 

ability of cRCC cell lines to significantly enhance expression of BTG2 in response to increasing 

cell density strongly indicates that impaired function of this gene is of importance for renal 

tumorigenesis and that BTG2 might be a tumor suppressor for cRCC. As discussed above, tumor 

suppressor genes are generally inactivated by loss of function of both alleles (by deletion and 

mutation/hypermethylation or by deletion of both alleles) or, if they are haploinsufficient, by 

deletion of merely one allele. Thus, to prove whether BTG2 is a tumor suppressor for cRCC or 

not, the following experiments would be helpfull: 

 

• Methylation analysis of the BTG2 promotor in RCC cell lines and primary RCCs would show 

whether impaired BTG2 mRNA expression is a result of epigenetic silencing of the BTG2 

gene. 

 

• Sequence analysis of the BTG2 gene in RCC cell lines and primary RCC might show whether 

the function of this antiproliferative gene is impaired in renal tumors. 

 

• LOH analysis would show whether reduced BTG2 mRNA expression is based on deletion of 

one or even both alleles. 
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• Forced expression of BTG2 using appropiate vectors transfected into cRCC cell lines 

followed by monitoring the proliferation rate in transfected and non-transfected cells will 

show whether BTG2 is necessary for negative cell cycle regulation in cRCC cells as well. 

 

The large number of fresh frozen and formalin fixed renal tumors, which are stored in the 

tumorbanks of our institute can be used for the above mentioned experiments (Methylation- and 

mutation assays, LOH analysis) and will enable us to uncover potential associations between the 

obtained results and tumor related and clinical follow-up data. 

 

Generation of antibodies against BTG2 would allow us to study BTG2 protein expression levels 

and the distribution of BTG2 protein within malignant and normal renal tissue by IHC and 

Western blot analysis. Here again the large number of renal tissues stored in our tumorbanks and 

also the availability of a large renal TMA containing more than 500 different RCC and normal 

renal tissues will significantly facilitate the correlation of protein expression data with tumor and 

patient related information. 

 

Most tumor suppressor genes are not linked to a certain tumor type. Our group has constructed 

„multi-tumor“ TMAs containing thousands of different tissue core biopsies of almost all human 

cancers and corresponding normal tissues. RISH and IHC analysis on those TMAs might uncover 

other tumor types for which BTG2 might be of importance. 

 

4.3 Conclusion 

 

In this thesis, combined cDNA and tissue microarray analysis was performed to screen for genes 

differentially expressed in cRCC and normal renal tissue. Although, the cDNA microarrays were 

rather small (1176 genes) and the TMAs generated from frozen tissue specimens belonged to our 

first-generation TMA set, five genes (VIM, CD74, CHES1, LITAF, and BTG2) were uncovered, 

which might be of importance for cRCC biology. 

 

The identification of VIM and CD74, which have already been associated with renal cancer in 

previous reports, are corroborating the reliability of the cDNA and tissue microarray analysis in 
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this study. In contrast, CHES1, LITAF, and BTG2 have never been linked to renal cancer before 

and are thus new potential renal tumor relevant genes.  

Further experiments on the negative cell cycle regulator BTG2 strongly indicate that this gene 

might have tumor suppressor properties in cRCC biology because (i) cRCC cell lines and primary 

cRCCs showed significantly reduced BTG2 expression levels compared to normal renal tissue as 

assessed by quantitative RT-PCR; (ii) cRCC cell lines were unable to raise BTG2 mRNA 

expression to the levels obseved in normal renal tissue upon certain cues (TPA and increasing 

cell density). Allelic deletion, mutation and methylation analysis of the BTG2 gene and also re-

expression of BTG2 in cRCC cell lines will show whether BTG2 is a new renal tumor suppressor 

gene. 
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5 Appendix 
 
10 X MOPS: 
0.2 M 3-N-morpholino-propanesulfonic acid (MOPS) 
0.5 M sodium acetate 
0.01 M Ethylenediamine tetraacetic acid (EDTA) 
adjust pH to 7.0 with NaOH and autoclave 
 
20 X SSC: 
3 M NaCl 
0.3 M Na3citrate.2H2O 
adjust pH to 7.0 with NaOH/HCl and autoclave 
 
50 X TAE (per liter): 
242 g Tris base 
57.1 ml glacial acetic acid 
37.2 g Na2EDTA.2H2O 
 
LB/Agar plates supplemented with X-Gal and IPTG (per liter): 
15 g Agar 
10 g Bacto®-tryptone 
5 g Bacto®-yeast extract 
5 g NaCl 
adjust pH to 7.0 with NaOH and autoclave 
allow the medium to cool to 50°C before adding  
100 µg/ml Ampicillin 
80 µg/ml X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) 
0.5 mM IPTG (Isopropylthio-β-D-galactoside) 
pour 30-35 ml into 85 mm petri dishes 
 
LB-medium (per liter): 
10 g Bacto®-tryptone 
5 g Bacto®-yeast extract 
5 g NaCl 
adjust pH to 7.0 with NaOH and autoclave 
allow the medium to cool to 50°C before adding  
100 µg/ml Ampicillin 
 
Methylene-blue staining solution: 
0.03% methylene-blue 
0.3 M sodium acetate, pH5.2 
 
Northern blot wash solution I-III: 
prepared from 20 X SSC and 10% SDS stock solutions 
I: 2 X SSC/0.1 % SDS 
II: 0.2 X SSC/0.1 % SDS  



Appendix 

 77

III: 0.1 X SSC/0.1 % SDS  
 
Formamide prehybridization/hybridization (FPH) solution: 
25 ml 20 X SSC 
5 ml 100 X Denhardt solution (100 X Denhardt is: 10 g Ficoll 400, 10 g polyvinylpyrrolidone,  
10 g bovine serum albumin (BSA), H2O to 500 ml) 
50 ml Formamide 
10 ml Sodium dodecyl sulphate (SDS) 10% 
H2O to 100 ml 
 
RISH hybridization mix: 
50 ml Formamide 
20 ml 20 X SSC 
1 ml 100 X Denhardt solution (100 X Denhardt is: 10 g Ficoll 400, 10 g polyvinylpyrrolidone,  
10 g bovine serum albumin (BSA), H2O to 500 ml) 
10 ml 0.2 M NaPO4, pH 7.0 
10 g Dextran sulphate 
5 ml 20% N-Lauroylsarcosine Sodium salt (Sarcosyl) 
H2O to 100 ml 
 
Trypan blue: 
150 mM NaCl 
0.5% trypan blue 
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