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Abstract

We present a method to compute the conditional distribution of a statistical shape model given partial
data. The result is a “posterior shape model”, which is again a statistical shape model of the same form as
the original model. This allows its direct use in the variety of algorithms that include prior knowledge about
the variability of a class of shapes with a statistical shape model. Posterior shape models then provide a
statistically sound yet easy method to integrate partial data into these algorithms. Usually, shape models
represent a complete organ, for instance in our experiments the femur bone, modeled by a multivariate
normal distribution. But because in many application certain parts of the shape are known a priori, it
is of great interest to model the posterior distribution of the whole shape given the known parts. These
could be isolated landmark points or larger portions of the shape, like the healthy part of a pathological or
damaged organ. However, because for most shape models the dimensionality of the data is much higher than
the number of examples, the normal distribution is singular, and the conditional distribution not readily
available. In this paper, we present two main contributions: First, we show how the posterior model can be
efficiently computed as a statistical shape model in standard form and used in any shape model algorithm.
We complement this paper with a freely available implementation of our algorithms. Second, we show
that most common approaches put forth in the literature to overcome this are equivalent to probabilistic
principal component analysis (PPCA), and Gaussian Process regression. To illustrate the use of posterior
shape models, we apply them on two problems from medical image analysis: model-based image segmentation
incorporating prior knowledge from landmarks, and the prediction of anatomically correct knee shapes for
trochlear dysplasia patients, which constitutes a novel medical application. Our experiments confirm that
the use of conditional shape models for image segmentation improves the overall segmentation accuracy and
robustness.

Keywords: statistical shape model, conditional shape model, posterior shape model, image segmentation,
trochlear dysplasia

1. Introduction cific anatomical structure normal or pathological?

Statistical shape models thus allow us to develop

Statistical shape models have become an indis-
pensable tool in medical image analysis. In essence,
statistical shape models can be seen as a proba-
bility distribution (usually a normal distribution),
which assigns the anatomically normal shapes of
an anatomical structure a high probability, while
pathological and other shapes that do not corre-
spond to the modeled anatomical structure are as-
signed a low probability. Their power and versatil-
ity can be explained by the fact that they provide a
quantitative answer to two fundamental questions
in medicine: (1) How does a normal instance of a
given anatomical structure look like? (2) Is a spe-
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algorithms whose solution space is restricted to
anatomically normal shapes. Such a strong prior on
the solution makes the algorithm more robust, leads
to easier optimization problems, and even allows us
to infer a solution when only partial data is given.
Consequently, applications such as implant design,
surgery planning, or even medical image segmenta-
tion, for which it is clear that the result has to be
a normal shape, have been shown to greatly ben-
efit from the use of shape models (Heimann and
Meinzer, 2009). In this paper we show how we can
build a statistical shape model that even better re-
stricts the solution space for the case when a part
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of the solution shape is already known. The new
model answers the question: Given a part of an
anatomical structure, how does a mormal instance
of the full shape look like? Knowledge of a part of
the structure is often immediately available in prac-
tice. In surgery planning for example, a part of a
shape may be missing due to a trauma or tumor,
but the remaining part of the shape is known to be
intact. It is thus a priori known that the solution
needs to correspond to the shape of the part that is
still intact. Another typical scenario is that a num-
ber of landmark points are available, which need to
be matched by an algorithm.

In the following we sketch the main idea behind
our method: A PCA-based statistical shape models
is a generative model of the form:

s=s(a) =p+ Qo (1)

where p € RP is a vector that represents the mean
shape and Q = (qi1,...,49,) € RP*™ is a matrix
of principal components q;, derived from train-
ing examples. By assuming that the coefficients
a € R™ in (1) follow a standard normal distri-
bution p(a) ~ N(0,I,), a probability distribu-
tion p(s) ~ N(u,QQT) is induced on the shape
space. For a known, given part of a shape s, € RY,
we wish to compute a new (normal) distribution
plalsg) ~ N(n,A). Using this distribution as a
model for the coefficients @ in (1) yields a new
shape model, which represents shapes whose fixed
part corresponds to s,. The new model, whose
mathematical form is identical to that of the origi-
nal model, can thus be used to strengthen the prior
assumptions for any method that uses shape mod-
els.

In most shape models, the number of examples n
is less than the dimensionality of the shape space p.
This makes the covariance matrix QQ” and there-
fore the normal distribution A (u, QQT) singular
and the conditional distribution is more difficult to
compute than it seems at first glance. We follow the
most common approach from prior work, which is
to regularize the covariance matrix, or the part of it
corresponding to the given data, by adding a small
multiple of the identity matrix o2I. This can be
interpreted as modeling the noise or deviation from
the model in the partial data. We show the con-
nection of this approach to probabilistic principal
component analysis (PPCA) and Gaussian process
regression.

We demonstrate two prototypical application of
this model in medical applications. The first appli-

cation targets an atlas-based segmentation of the
femur bone from CT images using statistical model
fitting. Here, a sparse set of landmark points is used
to constrain the shape space, and thus simplify the
actual fitting task. The second application targets
operation planning for trochlear dysplasia patients.
Trochlear dysplasia is a deformity of the knee that
is treated surgically by remodeling the joint surface.
Our application demonstrates how the shape model
can be used to infer the normal shape of the patho-
logical region from the intact part. This constitutes
a novel application of (posterior) shape models for
surgery planning.

In summary, we have the following main contri-
butions: (1) We show how to efficiently compute
the conditional distribution p(a|sy) and the result-
ing posterior shape model, which is again a sta-
tistical shape model of the form (1). (2) We show
the connection of this method to Probabilistic PCA
(Tipping and Bishop, 1999) and Gaussian Process
regression Rasmussen and Williams (2006). (3) We
provide novel applications of our method to two
problems in medical image analysis. (4) We pro-
vide a C++ implementation, as an integrated part
of the freely available statismo library (Liithi et al.,
2012). L.

1.1. Related Work

Since their invention, statistical shape models
have been used to infer the full shape from partial
or “sparse” data. Often, only the maximum a pos-
terior solution (MAP), i.e. the single most probable
shape given the partial data is sought. Of the many
papers computing the MAP, we only mention Blanz
and Vetter (2002), as it is closest to this work. It
uses a regularization term of the form oI to com-
pute a conditional distribution, but only computes
the MAP and not the full posterior.

We are interested in computing this posterior
model. In previous work (Albrecht et al., 2008),
we derived a statistical model matching the given
data using a heuristic method. In Liithi et al.
(2009), a similar model was more rigorously derived
as the conditional probability of a PPCA formula-
tion (Tipping and Bishop, 1999) of the statistical
model given the partial data. The derivation of the
conditional models we present here is similar, but
it simplifies the formulation by separating the mod-
eling of the partial data and the concept of PPCA
models.

Lavailable at: http://www.statismo.org



Other research groups have also investigated par-
tially determined shape models. In Liu et al.
(2004), canonical correlation analysis (CCA) is used
to predict an unknown or diseased part of a shape
from the healthy part. In Blanc et al. (2009) the
given data is not a part of the shape, but given in
the form of “surrogate variables” such as weight,
sex, or age of a patient. In Blanc et al. (2012),
this model is extended to also include partial shape
data. In Blanc and Szekely (2012), the confidence
of the reconstruction is evaluated, with a focus on
including also the uncertainty involved in estimat-
ing correspondence between the given data and the
model. These last two papers mention conditional
shape models in the form we consider here in pass-
ing, but do not discuss the technical details or com-
pute the actual shape model of the posterior distri-
bution.

De Bruijne et al. (2007) compute a conditional
shape model of a human vertebra given its neigh-
boring vertebrae. They compute the conditional
distribution with a regularization term of the form
0?1 and use the posterior shape model to classify
fractures of the vertebrae. This posterior model
seems very similar to our approach, but no details
of its computation, especially for datasets larger
than 2D vertebra shapes are given. In Baka et al.
(2010) and Tomoshige et al. (2012) the simple reg-
ularization term o2I is replaced with a more gen-
eral matrix reflecting the uncertainty for each given
value individually. No explicit form of the posterior
shape model is given in these papers. Their idea of
replacing the regularization term can be employed
in our approach, if individual uncertainty estimates
for the given values are available. For our experi-
ments, however, we use the standard regularization
term.

Metz et al. (2010) use a combined model of shape
and motion to infer cardiac motion from given
shapes. They do not use a regularization term but
compute the conditional distribution “after apply-
ing PCA”, which amounts to simply projecting the
given data onto the span of the example data and
ignoring how far it actually is from this span. No
posterior model is computed. Petersen et al. (2011)
aim at computing the conditional distribution of a
combined model of shape and rigid alignment, given
partial data like landmark points. By including the
rigid alignment, their conditional model becomes a
non-linear manifold. This is then again linearized
using a Laplace approximation (see Bishop (2006)
for instance), in order to draw samples from the dis-

tribution. While this method has the advantage of
incorporating the alignment into the model, no an-
alytic expression of the model and no explicit pos-
terior shape models are given.

To sum up, while all of these papers introduce
some form “conditional model”, the detailed deriva-
tion, explicit and efficient computation of the pos-
terior shape model in the form of a standard shape
model, are novel.

The viewpoint of interpreting a shape model as a
Gaussian processes has been put forward by Joshi
et al. (1997). A very comprehensive overview of
their group’s approach to shape modeling can be
found in Grenander and Miller (1998). The use
of Gaussian Process Regression for incorporating
additional prior information, or the computation
of conditional shape modes has to the best of our
knowledge not been discussed, neither the connec-
tion to PPCA.

Regarding the applications we present in this pa-
per, the surgical treatment of trochlear dysplasia is
presented in Verdonk et al. (2005). In Pfirrmann
et al. (2000) a statistical study of trochlear dyspla-
sia is performed based on manual measurements of
a few selected geometric criteria. The use of statis-
tical shape model in this area is novel.

Statistical shape models have been used in the
context of image segmentation since their inven-
tion, see Heimann and Meinzer (2009) for a recent
and extensive review. In the terminology of the
review, we use a volume-to-volume atlas matching
scheme with a strict shape constraint to achieve
segmentation. In this sense it is similar to the
approach introduced by Davatzikos et al. (2002).
While Cootes and Taylor (2001) included landmark
positions, they simply added a penalty term and did
not use a conditional model.

2. Background

In this section we introduce the basic concept un-
derlying PCA-based statistical models. We then
discuss posterior models and show the connections
to Probabilistic PCA and Gaussian Process regres-
sion. While our method can be applied to any
PCA-based statistical model, for ease of exposition
and visualization, we will focus our discussion on
PCA-based shape models, which includes the pop-
ular Active Shape Model (Cootes and Taylor, 1992)
and Morphable Model (Blanz and Vetter, 1999) as
special cases.



2.1. PCA Models

Statistical shape models represent a class of
shapes based on a set of representative example
shapes. Let us assume that n € IN example shapes
are given. In order to treat these shapes as vec-
tors, they need to be brought into correspondence.
While this is an important step in the construction
of shape models, we assume that the reader is fa-
miliar with this concept. A short overview of how
we interpret it can be found in Appendix A. Once
the shapes are in correspondence, each shape can
be represented as a vector s; € RP, 1 =1,...,n. It
is assumed that the class of shapes is a linear space
in RP and shapes can be formed by linear combina-
tions of the example shapes. This allows the direct
calculation of the sample mean pu = % > s and
covariance matrix 3 = % S (si—p)(si — )T of
the shape vectors. Statistically, the class of shapes
is then typically modeled by the multivariate nor-
mal distribution A (u, X). A principal component
analysis (PCA), which amounts to an eigenvalue de-
composition of the covariance matrix ¥ = UD?UT
permits a compact representation of all the shapes
in the model as:

s=s(a)=p+UDa=p+Qa. (2)

This representation is convenient because the ma-
trix U, which contains the eigenvectors or “prin-
cipal components” of X is orthonormal. Each
eigenvector represents an independent characteris-
tic shape variation of the shape class and the corre-
sponding eigenvalues in D? quantify their variance.
Because the eigenvalues and their corresponding
eigenvectors are typically ordered from largest to
smallest, the first few principal components repre-
sent the “main modes of variation” of the shape
class.

In principle we have U,D,Q € RP*P, where p
is the dimensionality of the shape vectors s;. Typ-
ically, p is the number of points used in the dis-
cretization times the space dimension. For most
shape models used in practice, p is much larger than
the number of example shapes n. Therefore, the
rank of 3 is never larger than n. Thus, its last p—n
eigenvalues are zero, and the matrices can, without
loss of information, be truncated to U,Q € RP*™
and D € R™*".

If p and X are estimated as the sample mean
and covariance, the rank of the covariance matrix
diminishes by one, so we have at most n — 1 non-
zero eigenvalues, and some authors even choose to

omit the smallest ones, which represent the least
variance of the model.

The shape models described here are often called
“PCA models”. However, the use of PCA is not es-
sential. In principle, Equation (2) simply describes
a generative linear model and other combinations
of the vector p and the matrix Q that model the
variability of the class of shapes are possible.

If the coefficient vectors a are distributed accord-
ing to N(0,1,), the shapes s(a) = p + Qa are
distributed according to

N(p,QQ") = N(p, 2). (3)

2.2. The Singular Distribution

At first glance, it seems as if the model (3) de-
fines a valid probability distribution on the space
of all possible shape deformations RP. Upon closer
inspection however, it becomes apparent that all
the probability mass is concentrated on the n-
dimensional space spanned by the columns of Q,
which is the span of the example shapes of the
model. In other words, because X does not have full
rank if n < p, the distribution N (p, X) is singular.
In many applications of statistical shape models, it
suffices to work entirely in the span of the examples.
For other applications however, like the conditional
distributions computed in this paper, this will not
be sufficient.

A small hypothetical experiment can illustrate
why the singular distribution N (g, X) is not suf-
ficient to model shapes outside of the span of the
examples. Suppose we leave out one of the n ex-
ample shapes and build the shape model from the
remaining n — 1 examples. Because the left out ex-
ample is from the same class as the other shapes, it
will, as a vector in RP, be very close to the remain-
ing shapes, but it will in general not lie exactly in
their span. Therefore, the probability density func-
tion of V' (p,X) assigns a value of 0 to this shape,
although we know that it is in fact a member of the
object class that the model should represent, and
would intuitively expect a high value.

In their paper on covariance estimation, Schéfer
and Strimmer (2005) offer a good theoretical ex-
planation for this problem. The sample covariance
QQT7 is an estimator for the true covariance of the
object class we wish to model. Unfortunately, if the
number of examples n is smaller than the dimen-
sion of the space p, it is a very poor estimator of the
true covariance: It is singular and assigns a prob-



ability density of 0 to most samples from the true
distribution, like the left out example from above.

Many authors treat this problem by considering
not the shape vector but its projection onto the
span of the other examples, e.g. Metz et al. (2010).
This projection would then have a high value in
the probability density of AM(u,X). However, its
distance from the span is ignored. In some scenarios
this may be appropriate, in others it can lead to
gross misinterpretations.

Therefore, the aim is clear: We need to employ
a statistical model that assigns a high probability
to shapes that are in or near the span of the exam-
ples and a low, but not zero, probability to shapes
further away. We begin by considering the problem
for partial data.

3. Posterior PCA Models

Our aim is to compute conditional distributions
given partial information about the shapes. This
partial information can for instance be a (healthy)
part of a bone, which shall be used to predict other
missing or damaged parts. Or the partial informa-
tion can consist of a few isolated landmark points
that have been supplied by a user to aid in fitting
the model to difficult data. For now, we assume
that this partial information is given in the form of
q < p known entries in the shape vector s, typically
we have ¢ > n. We will denote the given entries
as sq € R?. Similarly we can define the sub-vector
K, € R? and sub-matrix Q, € R?7*" by selecting
those entries and rows from the model’s full p and
Q that correspond to the given entries.

As outlined above, unless the given data is di-
rectly derived from the example data for the model,
it will in general not lie exactly in the span of the
model, i.e. there is no a such that s, = p, + Q
and the singular distribution N(p,X) or rather
N(ug, QgQg) cannot be used to interpret the par-
tial shape directly. Therefore, we propose to ex-
plicitly model the distance of the data set s, from
the model space with a “noise” or “slack” variable
e ~ N(0,0%1,) with a small variance of o2. Le. we
represent the given data as:

Sg = My + Qua +e. (4)
These shapes are therefore distributed according to:

N (g, QyQg + 0°Ly). ()

This approach of adding e can be considered stan-
dard. In terms of Schéfer and Strimmer (2005)
it is an improved covariance estimation by adding
the shrinkage term o21,. In other areas of math-
ematics the same approach is known as ridge re-
gression, Tykhonov regularization etc. It has been
used in connection with statistical shape models al-
most since their inception. In connection with con-
ditional distributions it is used by the papers men-
tioned in the Related Work Section 1.1. A strategy
for choosing the variance parameter o2 will be given
in Section 3.3. The approach can be generalized by
allowing other distributions for ¢ that model the
noise or deviation more specifically, e.g. individu-
ally for each point (Tomoshige et al., 2012; Baka
et al., 2010). For ease of exposition, we use the
standard uniform shrinkage term here, but all for-
mulas can be directly generalized by replacing the
identity matrix.

Equation (5) describes a non-singular (1) distri-
bution on the space RY of all partial data vectors s,
which allows us to compute with standard methods
the conditional distribution p(csy) of the model
parameters o, given the partial information s,. Be-
cause the shape parameters represent full shapes
s(a) this also defines the conditional distribution
p(s|sg) of the full shapes given the partial data.

Because the distribution of the parameters v and
the conditional distribution of the observed partial
data given the parameters are both normal,

p(a) =N(0,1,) (6)

psglee) = Ny + Qqex, 0°1y), (7)

the conditional distribution p(a|sy) is again a mul-
tivariate normal distribution which can be calcu-
lated using Bayes’ rule. The calculations leading to
the explicit form of the mean and covariance ma-
trix of this distribution are rather lengthy (For a

full derivation see e.g. Bishop (2006), Chapter 2.3)
Here, we present the final expression:

plalsg) =N (M™1Qg (g — py).0°M ™) (8)
=:N(n,A) (9)
where M = QgQg +0°%1,,. (10)

For the full shapes s(a) defined in Equation (2), we
therefore have the posterior distribution:

p(slsg) =N (k+Qn,QAQT)
= N Zc). (1)



Written out, we have the posterior mean:

pe=p+Q(Q)Q, +0°L,) Q] (sg — p,) (12)

and covariance:
Y= UQQ(QgQg + U2In)_1QT~ (13)

3.1. Correspondence and Alignment

Mathematically, this seems very straight-forward
but a few clarifications are in order. In order to se-
lect the appropriate sub-vector and matrix p , Qq,
the given points need to be in correspondence with
the shapes. This means that we need to know which
entries in s, belong to which entries in s in order to
select the correct entries and rows from w, Q. For
more details on correspondence, see Appendix A.

Furthermore, we assume that the given points
are correctly aligned to the shape model, because
in Equation (8) we model only shape variations
and not variations in rigid alignment. These pre-
requisites are not always given in general, corre-
spondence and alignment of the given points to the
shape model may need to be computed beforehand.
The most obvious approach is to do this, is to fit
the model to the given data, i.e. to find the opti-
mal rigid alignment and model parameters so that
the fitted model shape (almost) coincides with the
given data. This raises another problem: As Baka
et al. (2010) point out, the alignment of the given
data should be consistent with that of the origi-
nal model. Therefore, as they propose, we realign
the original model based only on the parts of the
shape that correspond to the given data s,. This
alignment may be sub-optimal with respect to the
full shapes, but is consistent with the given data.
A more mathematical discussion of this problem is
given in Section 4.3.

3.2. Principal Components of the Posterior Model

The distribution of the conditional shape model
Equation (11) defines a multivariate normal distri-
bution of shapes, represented by vectors in RP. In
this sense, it is simply a statistical shape model.
We have explicit representations of the mean and
covariance of this distribution, g, and 3. In many
applications, the mean is all we are interested in,
because it represents the most likely shape given
the partial data. Often though, we would like to
visualize and represent the shape model in terms
of its most prominent modes of variation, i.e. its
principal components. For this we can perform an

additional eigenvalue decomposition of the covari-
ance matrix

>, =o’QM Q7. (14)

In principal, the eigenvalue decomposition could be
computed directly, but this is a (pxp) matrix, which
may be very large (for instance 102 entries for a
typical shape model), and the decomposition may
not be tractable. With the specific expression for
Q = UD from Equation (2) however, we can re-
formulate and perform a PCA of the much smaller
inner matrix ¥; € R"*":

2. =UsDM!'D UT (15)
N—_———

::Ei:UiD?UiT
to arrive at the final PCA:
. = (UU;) D (U;U)” (16)

more efficiently. The new matrix of principal com-
ponents are then given as Q. = (UU;)D; and the
shapes of the conditional model can be represented

as sq(a) = p. + Q.a.

3.8. The choice of the parameter o>

As outlined in the previous sections, the param-
eters o models the deviation of the given data Sg
from the model. This deviation may be due to noise
in the data, but even for noise-free data it is neces-
sary to avoid a singular distribution. In some cases,
we can have a clear notion of what this parameter
should be, e.g. the expected precision of user-placed
landmarks in millimeters. In other cases it is hard
to derive exact values for the parameters. For these,
we derive a maximum likelihood estimation from
the data.

Suppose we have an example data set s, that we
know to be part of a normal member of the ob-
ject class modeled by the original statistical model.
Then we can fit the model to this data to find
the best approximation of this data set within the
model span §;. Then, according to Equation (7)
the likelihood of o2 is:

L(o) = - expl(s, — 8,)) 0" Ly(s, ~ 8, (17)

Maximizing with respect to o2 gives the maximum
likelihood solution:

1 .
0% = pii 84113, (18)



the mean squared residual between s, and its best
approximation in the model. This makes sense be-
cause, knowing that s, is a member of the modeled
object class, the residual represents the deviation
we will most likely have to expect for other mem-
bers. Obviously, using more examples gives a bet-
ter estimation. For m examples we get, assuming
independence:

1
2 § & 2
g = — ; i . 19
q : 1||Sg7f sng2 ( )

4. Alternative Views: PPCA and
Gaussian Process Regression

In this section, we give two alternate views of the
same problem. First we show the connection of our
approach to probabilistic PCA (PPCA), which es-
sentially extends the idea of modeling the deviation
from the model span to the complete data sets s.
Then, we show the connection to Gaussian process
regression, which allows us to treat the problem of
inferring the missing parts of a shape as a standard
regression problem.

4.1. PPCA

In Equation (4) the given information s, was
modeled by a linear shape model plus a noise or
slack variable ¢ ~ N(0,0%I,). It is possible to
model not only the partial shape but all complete
shapes s in a similar manner, using a noise variable
w ~ N(0, pL,):

s=p+Qa+w. (20)

This leads to a generalization of PCA introduced as
Probabilistic PCA (PPCA) by Tipping and Bishop
(1999) or Sensible PCA by Roweis (1998). This is a
direct generalization of Equation (2), as by choosing
a variance of p? = 0, we arrive at the standard PCA
formulation.

PPCA can be motivated by assuming that every
data set s may be afflicted by noise modeled by
w ~ N(0,p?L,), which seems to be a reasonable
assumption in medical imaging. The distribution
of the model parameters is still assumed to be a ~
N(0, p?1,,), and therefore the shape conditioned on
the parameters is distributed as follows:

p(sla) = N(p + Qa, pI,). (21)

For p? # 0 PPCA therefore defines a non-singular
distribution

p(s) = N(p, QQ" +’1,). (22)

on the space of all shapes RP, which can be ad-
vantageous in many situations. On the other hand,
this forces us to choose the variance parameter p?.
This parameter may or may not be the same as the
parameter o2 in Equation (4). Both parameters
model the amount of noise, or deviation from the
model space. p? for the training data s, and o2 for
given partial data s,. A maximum likelihood es-
timation for both parameters can be computed as
described in Section 3.3, where, for the parameter
p? a leave-one-out experiment with the model’s in-
put data can be performed, yielding the maximum
likelihood estimator:

1 n

2 § a.112
p = — S; — Sil|la- 23
n ; 1” ||2 ( )

In particular, for noise-free example data we can
choose p? = 0 and 02 > 0, which brings us back to
the formulation introduced in the previous section.
In the PPCA model, as before before, Q can be
any (p X n)-matrix describing the variability of the
shapes. But typically it is the matrix of princi-
pal components computed by PCA. As somewhat
of a technicality however, by computing a maxi-
mum likelihood estimator for Q from Equation 22,
we arrive not at the standard form Q = UD from
Equation (2) but at the slightly modified version

Qui, = U (D? - L)%, (24)

see Tipping and Bishop (1999); Roweis (1998) for
details. While the PPCA model defines a non-
singular distribution on the whole space RP, it is
just as compact as a standard PCA model, be-
cause we still only need to store the (small) matri-
ces U and D and the additional value p?. Regard-
ing the computation of the principal components of
the posterior model described in the previous sec-
tion, the inner matrix from Equation (15) takes the
slightly more complicated form:

— /L)t (25)

3 = 02(D? — p’L,)* M~} (D?

4.2. The Gaussian Process View

For many application, it is convenient to view
statistical shape models as a Gaussian Process that
defines probabilistic model over the displacements



from a mean shape. This interpretation of statisti-
cal shape models goes back at least to Grenander
and Miller (1998). Unfortunately it has not been
widely adopted in the community, despite the fact
that it provides a conceptually clean view on shape
models and allows for the application of the many
powerful techniques and results from statistics and
machine learning (see e.g. Rasmussen and Williams
(2006)).

In order to formulate the Gaussian Process view,
we need to change the notation slightly. So far we
have assumed that a shape is represented as a vec-
tor s € RP. For the Gaussian Process view, we
interpret these vectors as a representation of dis-
crete functions, defined on a finite domain ) =
(z1,...,2N). More specifically, as we have assumed
correspondence between all the example vectors, we
can define the function

SiZQ—)Rd

such that s;(z;) € R? refers to the j-th point of
the i-th example shape. The mean vector g can be
interpreted as a the mean function

p:Q— RY

a 26
plo) = 3 D si(o) -

and the covariance matrix becomes the covariance
function

YO x Q- R
N
Y(z,a') = Z(si(w) — (@) (si(2') — p(x))".
- (27)

As for the normal distribution, the mean and co-
variance functions uniquely define the Gaussian
Process GP(u, ¥) (Rasmussen and Williams, 2006).
From the covariance function (27) we see that a
shape model actually defines a model over displace-
ments u; (x) := s;(x) —p(x). Identifying the domain
Q with the model mean p, this yields the interpre-
tation of shape models as a zero-mean Gaussian
Process model, GP(0,%) over displacement fields,
defined on the mean shape p.

4.2.1. Gaussian Process Regression
Using the interpretation of statistical models as a
Gaussian Process, the prediction of a missing part

of the shape becomes a standard regression prob-
lem. Let s : Q@ — R? be a shape from our model
and assume that the shape is given at a subset of
the points £, C Q only. Additionally, we assume
that we do not observe the shape directly but only a
noisy versions, t(z;) = s(z;) +¢, with e = (0, 02).
Our given data is then t, = {(z;,t(z;))|z; € Q4},
and our goal is to infer the complete function s
from t,;. Under the assumption that s is a Gaus-
sian process and that the noise ¢ is uncorrelated
Gaussian noise, this problem is known as Gaussian
Process regression. Gaussian process regression is
a standard inference technique that has become
largely popular in machine learning (Rasmussen
and Williams, 2006). It does not only allow us to
compute the best prediction of s, but we obtain
a full posterior distribution (s|ty). This distribu-
tion is again a Gaussian Process GP(u., X.) with
its mean and covariance function given by:

pre(;) = (28)
(i) + By (@) (Bgg +07T) "ty — py)

)
(@i, z5) — Eg(xi)T(Egy + 021)_129(%')'

Here we define the following block matrices:

y(xi) = (S(wi, 7)))a;e0, € R (29)
Egg = (Z(xi,xj))xi’xjegg S R%*4 (30)
By = (1(25))s,e0,) € R (31)

While the formulas look rather different to the
one obtained for the PCA solution (11), the solution
is equivalent. The (somewhat lengthy) proof of this
equivalence is given in Appendix B. We have thus
shown that all three views on the problem, PCA
with regularization, PPCA and Gaussian process
regression are equivalent. In particular, this means
that all similar problems in the literature regard-
ing partial shapes can be interpreted as regression
problems.

4.8. Alignment of the data

In Section 4.2 (Equation (27)) we noted a statis-
tical model can be interpreted as a zero mean Gaus-
sian process GP(0,X) that models the displace-
ments u(z) := s(x) — p(z) from the mean shape
1 to a shape s. The distribution of these displace-
ments is estimated from training data. Obviously
this model will only yield good predictions for new
shapes if the displacements that are observed for



new shapes follow the same distribution as observed
in the training data. This can only be the case if the
alignment of the data is consistent between training
and test data. Thus, given a shape s, that is de-
fined at only a subset €4, our method will only yield
meaningful results if all training shapes have been
aligned with respect to the same points. To ensure
this, we follow the strategy proposed by Baka et al.
(2010), and simply realign all the training shapes
and compute a new model for each set of observed
points Q.

5. Model-based Segmentation of Femur
Bones from CT Images

In this and the next section, we show the applica-
tion of the conditional models to two typical prob-
lems that arise in surgery planning: The segmenta-
tion of a bone from a CT image, and the prediction
of anatomically correct reconstructions of damaged
or malformed parts of a bone.

5.1. Atlas based Segmentation using a Statistical
Deformation Model

Although bone segmentation from CT images
seems like a straight-forward problem and has been
addressed by many researchers over the years, it
remains difficult to this day. Figure 1 shows two
typical issues that arise in most bone segmentation
problems; illustrated on the femur boneq. At the
top of the bone, it is difficult to separate the femur
from the hip bone and at the bottom, the bone is
so thin that the image intensity in this area is in-
distinguishable from that of soft tissue. While the
image comes from a simple threshold segmentation,
the same problems plague even the most sophisti-
cated segmentation approaches. In low resolution
images, these issues are aggravated by the partial
volume effect.

A popular approach to achieve a segmentation
even in these difficult regions is to include prior
knowledge about the bones in form of a statisti-
cal model (Heimann and Meinzer, 2009). By con-
straining the segmentation result to the span of the
model, it is ensured that the segmented object is a
valid femur bone, thus preventing the inclusion of
adjacent bones or the omission of thin parts. The
segmentation approach we use is based on this idea.
Instead of a statistical shape model however, we
use a statistical deformation model (Rueckert et al.,
2003). This model is built from deformation fields

Figure 1: A surface reconstruction of a segmenta-
tion obtained by thresholding a CT image. The
pelvis cannot be separated from the femur (right)
and the surface shows holes at the condyles (left).

Figure 2: The 6 landmarks defined on the femur.

obtained by registration of manually segmented im-
ages of femur bones. We refer to Appendix A.1l
for details of this procedure. Using a deformation
model instead of a shape model allows us to for-
mulate the model fitting in terms of an image reg-
istration problem. This approach is commonly re-
ferred to as “atlas matching”. The output is a de-
formation field, which can then be used to transfer
a high quality manual segmentation of the reference
to the input image. Again, we refer the reader to
Appendix A.2 for mathematical details.

5.2. Ezxperimental Setup

The experimental setup for this section is as fol-
lows. For building the statistical model we use the
Statismo framework (Liithi et al., 2012). The model
fitting is performed using the Elastix registration
framework (Klein et al., 2010), which was extended
to allow for transformations defined by a statisti-
cal model. In all the experiments, we use the mu-
tual information metric to quantify image similar-
ity. The registration is performed using a 3 level
multi-resolution scheme. As an optimizer we use
stochastic gradient descent. The landmark uncer-
tainty (i.e. o in Equation (3)) is set to 2 mm. This
reflects our perceived accuracy in placing the land-
marks.

5.3. Femur Segmentation with a Posterior Defor-
mation Model

The performance of atlas based segmentation
crucially depends on the accuracy of the registra-



tion between the atlas and the image to be seg-
mented. Using a statistical deformation model that
is built for a specific anatomical structure helps to
restrict the registration results to deformations that
are anatomically meaningful. However, in practice
there are often cases where even this prior does not
provide enough information to accurately identify
the structure in the image. Such an example is
shown in Figure 3. The red contour shows a re-
sult of fitting a deformation model for the segmen-
tation of a femur from a CT image. Overall, the
shape is well matched. However, we see that the
femoral head is not accurately segmented. The pro-
posed red outline is smaller than the bone’s actual
outline. This happens because the intensity dif-
ferences in this area are very small. To overcome
this problem we can further strengthen our prior as-
sumptions and incorporate known correspondences
into the deformation model, by means of a posterior
model.

In order to build the posterior model, we define
6 landmark points Lr = {pf*,...,pf} on the ref-
erence image that was used to build the deforma-
tion model (Figure 2). The corresponding land-
mark points L7 = {p¥,... pl} are then marked on
the target image. Using these landmarks, we can
build a posterior deformation model p(u|Lt, Lg) ~
N (tie, 3¢ ), employing the method described in Sec-
tion 3. As the posterior model is again a defor-
mation model, it can be used for model fitting in-
stead of the unconstrained model, without requir-
ing changes in the procedure. Besides providing
a stronger prior, using the posterior model has two
further advantages: (1) The mean pu. provides a su-
perior initialization to the problem, which already
matches the landmark points. (2) As the model
effectively excludes solutions that do not match
the landmarks, the search space is greatly reduced,
leading to a simpler optimization problem.

Figure 3 shows the fitting result when the poste-
rior model is used (green contour). We observe that
the fit is greatly improved at the femoral head, as
the segmentation outline is forced to adhere to the
bone’s true outline.

5.4. Quantitative Results

To compare the performance of the posterior
model with normal deformation models in this seg-
mentation task, we performed a quantitative evalu-
ation on CT images of two sets of femur bones. (1)
A set of 27 surgically extracted femur bones (see
Figure 4 for a typical example). (2) A set of 13
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Figure 3: Fitting a deformation model to a CT im-
age of the femur. The red contour shows the fitting
result using an unconstrained model, which fails
to label the contour of the femoral head correctly.
The green contour shows the result for a posterior
model, where a landmark was used to enforce the
position of the femoral head.

Figure 4: Example of a CT image of an isolated
femur bone that was used for the quantitative tests.

femurs with surrounding tissue, as in Figure 3. For
both sets, manual ground truth segmentations are
available for comparison, and as partial information
for the posterior model, we manually labeled the 6
landmark points seen in Figure 2.

The original deformation model is built from 114
manually segmented femur bones. To ensure that
this model is representative for the deformations
observed for the test images, we rigidly aligned all
the femurs using the same 6 landmarks that were
defined on the test images (cf. Section 4.3). We ap-
plied the deformation model fitting with the orig-
inal model, the posterior model, and the original
model initialized with the posterior mean, which
amounts to a landmark-initialization of the origi-
nal model. For each method we computed the dice
coefficient between the result and the ground-truth
segmentation. Figure 5 shows the fitting result for
both test sets. It can be seen that fitting with a
posterior model (left plot) not only yields a better
average accuracy, but also to less variability in the
results, i.e. the method becomes more robust. We
observe that only initializing the fitting with the
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Figure 5: Comparison of the segmentation perfor-
mance (dice-coefficient) achieved by model fitting.
(a) shows the result for a set of 27 CT images of
isolated femur bones and (b) shows the results for
13 clinical CT images.

landmark, but not constraining the model (middle
plot) does not give a clear advantage compared to
a normal unconstrained fitting (right plot). It ap-
pears as if the effect of the landmark-initialization
is undone by the fitting procedure. To further in-
vestigate this behavior, we evaluated the initial-
ization and landmark error for our larger test set
(Figure 6). Figure 6a shows that the landmark-
initialization does indeed give a much better start-
ing solution, and Figure 6b shows that the land-
mark error after fitting of the landmark-initialized
method is actually almost as good as that of the
posterior model. So why is the overall performance
measured in Figure 5 hardly better than the uncon-
strained and uninitialized model, while the poste-
rior model performs much better? This can be ex-
plained by the fact that the posterior model greatly
constrains the model space, which positively influ-
ences the optimization procedure. Indeed, this con-
clusion is supported by Figure 7, which shows the
convergence of the optimization algorithm averaged
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Figure 6: Comparison of the initialization and land-
mark error of the different methods. (a) shows the
dice coefficient that is achieved by using the mean
deformation of the respective models, before any
optimization is performed. (b) shows the error eval-
uated on the landmark points only. (Note that in
(a) higher values are better, while in (b) lower val-
ues indicate better results).

over all test cases, out of which the posterior model
converges the most quickly.

5.5. Discussion

The results we presented in this section clearly
show that posterior models can improve the results
for model based segmentation tasks. The obvious
application is to constrain the model with land-
marks in cases where a fully automatic method fails
to find the correct segmentation. Specifying a land-
mark point and constraining the model to remain
fixed on this point provides easy to use and effec-
tive means to incorporate user interaction into an
algorithm. However, we also showed that using the
posterior model improves the results even for rela-
tively simple segmentation tasks, such as the fitting
of dry femur bones. As the posterior model is a nor-
mal PCA model, it can readily be used to improve
any algorithm that uses a statistical model.
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the first resolution level. The curves show the aver-
age metric value for the mutual information metric,
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6. Predicting Anatomically Correct Shapes
for Trochlear Dysplasia Patients

In this experiment, we apply the conditional
shape models to predict anatomically correct bone
shapes for trochlear dysplasia patients. The term
trochlear dysplasia describes a flattening of the
trochlear groove. The trochlear groove, which is
marked in Figure 8, guides the patella during mo-
tion of the knee joint. If the groove is too shal-
low, a correct guiding of the patella is not guaran-
teed, leading to pain or even a dislocation of the
patella. Trochlear dysplasia can be treated surgi-
cally by deepening the trochlea groove or augment-
ing its edges (Verdonk et al., 2005). Knowing the
ideal shape of the trochlea would be of great advan-
tage for the planning of such an intervention.

Specifically, we would like to use our model to
help us answering the following questions:

1. Does the patient really exhibit an abnormal
trochlea shape?

2. How should the trochlea be remodeled? How
much should the groove be deepened and/or
the edges augmented?

3. How reliable is the prediction?

For this, we use a statistical shape model of
the distal femur and construct, individually for
each patient, a conditional shape model given the
healthy part, i.e. excluding the trochlea. The poste-
rior shape model represents all anatomically correct
trochlea shapes for the patient.

The children’s hospital Basel provided us with a
set of 29 MRI scans of trochlear dysplasia patients.
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The trochlea is

Patella and femur.
marked in red. If the trochlear groove, which guides
the movement of the patella, is not deep enough, a
dislocation of the patella is possible.

Figure 8:

All the datasets are clinical scans recorded during
the daily routines of the hospital.

6.1. Experimental Setup

The posterior shape models introduced in Sec-
tion 2 rely on a previous shape model of the full
shape. For this experiment, we use a statistical
shape model of the distal part of the human fe-
mur built from 145 healthy example data sets. The
model is built as a PPCA model with the parameter
p estimated by a leave-out-experiment resulting in a
value of p = 0.26. As explained in Section 3.1, the
given data for the conditional shape model needs
to be in correspondence with the original model.
Therefore, we first produce a surface representation
of the patient’s femur by segmenting it from the
MRI data set. This is brought into correspondence
with the statistical shape model using an Iterative
Closest Point (ICP) fitting (Feldmar and Ayache,
1996), which estimates the position and shape pa-
rameters a of the model that best fit the segmented
surface of the patient’s femur. Due to large varia-
tions in the quality and image modality of the MRI
scans, the segmentation is performed manually us-
ing the 3D Slicer software (Pieper et al., 2004) and
not with the segmentation presented in the previous
section.

As a next step, we wish to separate the afflicted
trochlea region from the healthy part of the pa-
tient’s bone, which will take the role of the given
data sy. Thanks to the correspondence between the
model and the patient’s data set, the marking of
the trochlea can be transferred automatically from
a mask defined on the model. In Figure 9 the two
regions are visualized for an example case. The red



Figure 9: Estimation of an anatomically correct
femur shape. The green contour shows the given
points sy, the red contour the most probable recon-
struction p, of the trochlea. It is clearly visible that
the patient’s original trochlea is too flat to hold the
patella in place, whereas the proposed reconstruc-
tion has a pronounced groove to guide the patella.

trochlea region is then discarded and shall be pre-
dicted using the conditional shape model.

The ICP fitting used to establish correspondence
with the model was performed using the complete
data set including the malformed trochlea. In or-
der to rule out any influence this may have on our
prediction, we perform a second ICP fitting using
only the healthy part s,. At this point we can fi-
nally apply the methods outlined in Section 2. The
deviation parameter o was estimated using the dis-
tance from the fitted models to the segmented sur-
faces, yielding a parameter of o = 1. The result is a
conditional shape model p(s|s,) as defined in Equa-
tion (11). It models full anatomically correct femur
shapes s that fit the given healthy part s,. The
mean shape of this model represents the most prob-
able shape of an anatomically correct trochlea for
the patient given s,. Additionally, the conditional
shape model models the space of all other shapes
which fit the given healthy points. Although none
of the shapes is more probable than the mean, they
can deliver an insight into the remaining flexibility
of the model and show the planning physician what
other trochlea shapes could be possible.
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Figure 10: A second example with given data s, in
green probable reconstruction pu. in red. The green
part of the contour is the given part s,. Again, the
difference between the patient’s flat trochlea and
the proposed anatomically correct reconstruction is
clearly visible.

6.2. Results

Here, we show visualizations of the proposed
anatomically correct femur shapes for trochlea dys-
plasia patients. First, we show the most probable
reconstruction. This is the mean g, of the posterior
shape model. In Figure 9d the proposed shape is
illustrated as a 3D shape placed into the patient’s
MRI scan. The remaining images in Figure 9 show
the intersection of the proposed shape with MRI
slices. The green portion of these outlines repre-
sents the given healthy points s,. We observe that
these fit the individual anatomy of the patient’s fe-
mur well. The red part represents the trochlea re-
gion that is proposed by our posterior model. It
exhibits a much deeper trochlear groove than that
of the patient, confirming that this patient suffers
from trochlea dysplasia. The proposed shape could
be used as an operation plan for a surgeon. It is vis-
ible to what extent the trochlea groove needs to be
deepened and that an augmentation of its edgeds
should also be considered. Most likely, this remod-
eled shape would greatly improve the guiding of
patella movement and prevent future dislocations.
Figure 10 shows the result of another case with sim-



Figure 11: When the method is applied to healthy
bones, the proposed reconstructed shapes are very
close to the patient’s true trochlea, indicating that
neither patient (a) nor (b) suffers from trochlea dys-
plasia.

ilar results.

In both cases, the proposed anatomically correct
trochlea differs from the patient’s trochlea, confirm-
ing the already known diagnosis that he or she
suffers from trochlea dysplasia. In contrast, we
performed the same experiments on CT scans of
two healthy bones in Figure 11. Here, the pro-
posed reconstruction agrees well with the patient’s
trochlea, confirming that he or she is not suffering
from trochlea dysplasia.

In these images, we have only displayed the most
probable reconstruction, the mean of the posterior
shape model. However, in order to answer some of
the questions posed earlier, we need to consider the
full posterior shape model. First, it could be pos-
sible that the most probable reconstruction differs
from the patient’s trochlea, but that his trochlea
shape is still in the range of normal shapes, mod-
eled by the posterior model. In Figure 12, we dis-
play the first principal component of the posterior
shape model for the patient from Figure 9. First,
we visualize the anatomically normal range of £3
standard deviations associated with this principal
component in Figure 12a. It shows that while there
is still some flexibility regarding the depth of the
trochlea groove. The patient’s trochlea is far from
the normal range. In order to give a better visual in-
dication of the remaining flexibility, we exaggerated
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(b) +9 standard deviations

Figure 12: The remaining flexibility of the condi-
tional shape model p(s|s,) displayed by adding the
first principal component to the mean shape with
coefficients between (a) £9 and (b) +3 standard
deviations.

the same visualization to £9 standard deviations in
Figure 12b. We see that the first principal compo-
nent of the posterior model represents the depth of
the trochlea groove. It should be noted however,
that +9 includes highly improbable and/or patho-
logical shapes.

Obviously it is not enough to consider only the
first principal component. In Figure 13 we display
the range of £3 standard deviations for the first five
principal components, for 5 patients. Patient 1 is
the same patient as in Figure 9, and Patient 2 the
same as in Figure 10. These examples lead us to
the following conclusions:

1. All of these patients do suffer from trochlea
dysplasia.
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Figure 13: The first five principal components of the posterior shape model for five different patients. While
there is some remaining flexibility in the model, it is quite small, showing that no significantly different
reconstructions other than the most probable reconstruction need to be considered.

2. In all of these cases a deepening of the trochlea
groove seems to be indicated. In most cases
an small augmentation of the trochlea’s edges
should be considered.

The remaining flexibility is quite small, i.e. the
range of possible reconstructions is most likely
lower than the precision attainable in the op-
eration. This means that the surgeon does not
need to take any alternatives to the most prob-
able reconstruction into account.

All the results we have presented so far provide
a surgeon with a visual representation of the sit-
uation. Obviously it would be desirable in the
future to transfer this directly into the operating
room, for instance with an augmented reality sys-
tem or even implementing the reconstruction auto-
matically with a robot.
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For now, to gain a more quantitative view of the
reconstruction, it is possible to measure the exact
distance between the patient’s trochlea and the pro-
posed reconstruction in each MRI slice. In Fig-
ure 14a, we have plotted this distance on the pro-
posed shape. The largest distance is seen in the
trochlea groove and on its edges. Such a color code
can guide the surgeon with respect to the depth
and extent of the proposed trochlear groove. Fig-
ure 14b shows a histogram of the distance values.
The green bars represent the distance at the given
points s,, showing that at these points the shapes
essentially coincide. In red, we see the histogram
of the trochlear region, which shows, again, that
at many of these points, the proposed shape differs
from the original one, proposing a deepening of the
trochlear goove and a possible augmentation of its
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Figure 14: Quantitative evaluation of the distance
between original and proposed femur shape. (a)
shows the distance color-coded on the proposed
shape. In (b) the green bars show the histogram
of the distance values for the given points, the red
bars the histogram of the estimated points.

edges.

7. Conclusion

We have introduced a statistically sound method
to include known partial data to methods involv-
ing statistical shape models by conditioning the
statistical model on the given data. Because this
posterior shape model is itself again a statistical
shape model, it can be used without alterations
in all algorithms relying on statistical shape mod-
els. As we have shown that the posterior model
can be efficiently computed by a small n x n sin-
gular value decomposition, its use comes at almost
no additional computational cost. We therefore be-
lieve that our method should replace existing ad hoc
methods used to combine shape models and given
data.

To show the usefulness of our approach, we have
applied the posterior shape model to two prob-
lems from medical image analysis that naturally de-
pend on the use of statistical shape models as prior
knowledge. Since their invention, statistical shape
models have been used for image segmentation. But
the possibility to include user interaction to correct
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mistakes of fully automatic methods has so far re-
ceived little attention. With our posterior models,
user-supplied landmarks can be included into any
algorithm that uses a statistical shape model. For
our experiment, we have used a straight-forward
strict shape constraint. While this does not war-
rant a perfect segmentation, only a good approxi-
mation within the model, we were able to show that
the results benefit from the inclusion of landmarks.
We see one of the great strengths of the posterior
model in the fact that they are not limited to this
specific segmentation model, but can be included
like any other shape model in other, possibly more
involved, algorithms. The second experiment we
presented is also a standard application of statisti-
cal shape models: to predict one part of the shape
from another. In our case we predict the malformed
trochlea region of patients suffering from trochlear
dysplasia from the remaining intact part of the dis-
tal femur. With the posterior shape model we can
compute not only the most probable reconstruction,
but a full shape model of possible reconstructions
that can help a surgeon make an informed decision
on how to perform a reconstructive surgery.

Outlook. An obvious way to extend our model is
to adopt a more specific noise model, in case any-
thing further is known about the accuracy or noise
affliction of the given data. This could be a more
complicated normal distribution or a different dis-
tribution alltogether.

Like all shape models, our model depends heavily
on the correct estimation of correspondence, both
for the building of the original statistical model
and for the correspondence of the given data. But
once the correspondence is correctly estimated, we
have a closed-form expression for a posterior shape
model that can be applied in any algorithm that
uses a statistical shape model.
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Appendix A. Alignment, Registration,
and Correspondence

In statistical shape models, shapes are assumed
to be vectors, i.e. it is possible to form linear combi-
nations of shapes. However, in practice, shapes are
often given as triangulated surfaces, with a differ-
ent number and ordering of triangles for each shape
and it is not clear how linear combinations of these
surfaces can be formed. The common approach for
this problem is to register the shapes. In short, reg-
istration can be described as finding vector fields ¢;
such that a set of shapes I'y,...,I',, can be repre-
sented as a deformation of a common reference I':

Fi={z+¢i(x)|zel}, i=1,... (A1)

S 1.

If I' is a triangulated surface with m vertices, each
shape can then be represented by the shape vector
s; € RP with p = 3m as:

T
J— x Yy z x Yy z
S = (Vi,lv Vi Vil Vims Vims Vi,m) , (A2)
where the vector v;; = (vi;,v{;,v};) represents

the z,y, z coordinates of the j-th vertex of I';. It is
this representation that allows treating shapes like
vectors and form linear combinations in the statisti-
cal shape model. The same principle can be applied
to other discretization methods or representations
of shapes. Finding the vector fields ¢; is a central
problem in medical imaging and computer vision
and is referred to as the registration or correspon-
dence problem. The vertices v; ; should represent
corresponding points in each surface I';. Many algo-
rithms for surface registration have been described
in the literature (see e.g. Audette et al. (2000) for
an overview).

Typically, statistical shape models only model
variations in shape and not variations in position.
The most straight-forward way to achieve this is to
align the shapes before registration. Then, the vec-
tor fields ¢; reflect only the changes in shape, as the
position and orientation of the surfaces is normal-
ized. In practice, this means that for each shape I';
a rigid motion aligning it with the reference has to
be computed. This is referred to as “rigid registra-
tion”. Similarly, if an existing model is to be fitted
to a novel data set, the two have to be aligned first,
so that the shape model only needs to account for
changes in shape.
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Appendiz A.1. Building the Statistical Deforma-
tion Model

To build a deformation model, we use a database
of manually segmented anatomically normal femur
shapes. We choose an arbitrary shape as the refer-
ence, which we denote by ' C R. On this refer-
ence, we define a number of landmark points Lr =
{pR,...,p} C I'r (Figure 2). The same land-
marks are defined on all the other example surfaces
from the database, and we perform a rigid align-
ment Horn (1987) to exclude rotational and trans-
lational components from our model. We denote
the aligned surfaces by I'y,...,[,,. As a next step
we establish correspondence between the aligned
surfaces by performing image registration on level
set representation of the surfaces, as proposed by
Paragios et al. (2002). More specifically, we reg-
ister the signed distance images of the shape with
the diffeomorphic Demons algorithm (Vercauteren
et al., 2007). The result is a set of deformation
fields w1, ..., upn, u; : & — R3. We build the sta-
tistical deformation model by applying Principal
Component Analysis on these deformation fields
(Rueckert et al., 2003). Then, each instance of
the statistical deformation model is a deformation
field u[e] : © — R? that can be represented as
a linear combination of principal components g;
with the coeflicients given by the parameter vector
a=(ag,...,a,):

x> p(x) + Z @; gi(z), (A.3)

where we used the function notation introduced in
Section 4.2.1.

Appendiz A.2. Image Segmentation with a Statis-
tical Deformation Model

Let C1 be a new CT-Image of a patient, for which
we want to perform the segmentation. By using
a simple threshold segmentation, we can obtain a
rough segmentation of the femur bone, which we
denote as BT.

We annotate Br with the same landmarks as
were used in the registration and perform the rigid
alignment to the reference image. We compute a
distance image Iy : @ — R from the segmenta-
tion By. For the reference, we have a high-quality
manual segmentation Bg, from which we compute
the distance image Igz. To find the deformation
that best relates the reference with the target, we



use again a registration approach of these distance
images. We seek the deformation u[e], which min-
imizes the error between the reference Ir and the
target I and which is at the same time a likely
instance of the model (i.e. ||c|? is small):

(Ir(2) = Ir(z + ula](x)))*dz + Al et]|?
{z|Ir(=)<0}

— min
acR”

(A4)

The parameter A € R determines how strongly un-
likely deformations are penalized.

The final segmentation By of the image Cr is
obtained by transferring the high quality reference
segmentation Br onto the CT image. More pre-
cisely, we define the map ¢(z) = z + ula)(z),z € Q
and obtain the segmentation B as

Br(z) = Br(¢~ ' (2)).

While the inverse ¢~!(x) is typically not available
explicitly, we can always compute an approximate
inverse using Chen et al. (2008).

Appendix B. Equivalence between PCA
and Gaussian Process Formu-
lation

Proposition 1. The Gaussian process GP (tp, Xp)
from Equation (28) describes the same multivariate
normal distribution as the conditional distribution
p(s|sq) from Equation (11).

Proof. The Gaussian process interprets shape de-
formations as vector-valued functions defined on a
finite domain Q = (z1,...,2x). But because these
points are the points of our discrete surface model,
each function f : Q — R can be identified with a
p = Nd-dimensional vector of the values the vector
components take at all the points. In this sense, the
mean function p(z;) from Equation (28) is the same
as the mean vector g € R? from Equation (11). Ac-
cordingly, the matrix ¥4, corresponds to the matrix
QgQg, and X, (z;) to Q,QT. Thus, the mean j,. of
the Gaussian process GP (¢, X¢) can be rewritten
as:

p+QQL(QQL +0°1) 7 (sy — 1)

On the other hand, we can write out the mean p,
of the conditional distribution p(s|sy) as:

r+Q (QgQg + O'QIn)71QgT (g — 1g)

(B.1)

(B.2)
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While they are similar, these expressions are not the
same, as the inner terms seem like rearranged ver-
sions of each other. However the following Lemma 1
proves that they are indeed equivalent.

Similarly, the covariance function X, of the Gaus-
sian process can be rewritten as a matrix:

QQ" - QQ,(Q,Q, +0°1,)7'Q,Q"  (B.3)

while the covariance matrix X, of the conditional
distribution is written out as:

’Q(Q;Q, +0°1,)'Q".  (B4)

By factoring out the matrices Q and Q' and re-
arranging the last expression we see that the two
expressions are equal if and only if:

(In + O'_ZQ;QQ)_l =
I, - QI(Q,Q} +0’L,) 'Q,. (B.5)

This identity can be proved by setting A =1,,U =
;F,B = 0_21q7V = Qg in the Binomial Inverse
Theorem (Lemma 2). O

Lemma 1. The following identity holds for any
matriz A € RI*"™:

AT(AAT +5°1,)"' = (ATA+0°1,) 'AT. (B.6)

Proof. First, we consider the case of ¢ > n. Let
A = UWVT be a singular value decomposition of
A € R?*™. For this proof, we assume that this is
a not an “economy SVD” but a full singular value
decomposition with matrix sizes U € R9*9, W €
R?*™ and V € R™ ™. Bearing in mind that the
matrices U and V are orthonormal, we have:

AT(AAT + 5217 (B.7)
=vwiu(uww’u? + Uus?, U !
= VWIuTuww? +21,)" U’ (B.8)

= VWI(WWT +521,)7 U7,



where in (B.8) we have used that U diagonalizes
the inverse matrix in the bracket. The matrix YVT
has a block structure W7 = [W 0], where W €
R™*™ is the diagonal matrix of singular values of A
and 0 € R"*(4=") fills up W1 € R™*? with zeroes.
We can therefore continue:
(W2 4+ 621,)7! 0
0 o~
=V [W(W?2+0%1,)"t o] U”
=V [(W?+0%,)" '] [W o]U"
= V(W'W +0°I,)'W'U"
=V(W'W +¢°1,) 'vIvwiu?
= (VW'WV" + VoI, V) "'vwiU"
= (ATA+oD) AT

=V [W 0] U’

ZIq—n

This concludes the proof for ¢ > n. The case g < n
can be proved by transposing both sides of (B.6).
O

Lemma 2 (Binomial Inverse Theorem). Let A €
R™™ U € R"9,B € R™™9,V € R¥”*". IfB is
invertible, we have:

(A+UBV) ' =
A —ATTUB '+ VATIU) VAL (BY)

Proof. This is the Binomial Inverse Theorem for
the case that B is invertible. For a proof, see e.g.
Strang (2003). O
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