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We present a novel method for nonrigid registration of 3D surfaces and images. The method can be used to register surfaces by
means of their distance images, or to register medical images directly. It is formulated as aminimization problem of a sum of several
terms representing the desired properties of a registration result: smoothness, volume preservation, matching of the surface, its
curvature, and possible other feature images, as well as consistency with previous registration results of similar objects, represented
by a statistical deformation model. While most of these concepts are already known, we present a coherent continuous formulation
of these constraints, including the statistical deformation model. This continuous formulation renders the registration method
independent of its discretization. The finite element discretization we present is, while independent of the registration functional,
the second main contribution of this paper. The local discontinuous Galerkin method has not previously been used in image
registration, and it provides an efficient and general framework to discretize each of the terms of our functional. Computational
efficiency and modest memory consumption are achieved thanks to parallelization and locally adaptive mesh refinement. This
allows for the first time the use of otherwise prohibitively large 3D statistical deformation models.

1. Introduction

Nonrigid registration remains one of the largest challenges in
medical image analysis and computer vision. The correspon-
dence it seeks to establish between related objects is essential
for a large number of applications from shape statistics to
model-based segmentation and computational anatomy [1,
2].

In medical applications, the objects that need to be
brought into correspondence are usually organs which were
capturedwith amedical imaging device, such as CT andMRI.
In this paper, we use bones, skulls, and hands as examples.
We propose a method to bring them into correspondence by
registering a number of feature images. The unique features
and contributions of our method are as follows:

(1) the representation of surfaces by a distance and a
curvature image,

(2) the inclusion of a volume preservation term into the
registration,

(3) the introduction of prior knowledge in form of a
statistical deformation model,

(4) a continuous formulation of the registration method,
including the deformation model, making the regis-
tration independent of its discretization,

(5) an efficient finite element discretization based on the
local discontinuous Galerkin method.

For us, as in many other applications, the ultimate goal is
the construction of statistical shapemodels.Therefore, we are
mostly interested in the shape of the organ’s surface, which
we represent by the two most prominent feature images in
our method: a distance and a curvature image of the surface.
Together, they provide a good description of the shape of
an object. Other possible feature images, which are then
simultaneously registered, encode additional information
about the organs like the CT or MRI data. Registering all
feature images together represents our assumption that a
good registration result should bring all of these feature
images into correspondence.
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In addition, we need to incorporate prior knowledge
about the registration result in order to be able to address
the inherently ill-posed problem of image registration. The
result is given in the form of a vector field, and in the most
basic form of our registration method, we simply enforce the
smoothness of this vector field by controlling the norm of
its first derivative. However, it turns out that this regularizer,
which is also found in the Demons or Diffusion registration
algorithms [3, 4], allows large and unnatural looking volume
change. By penalizing volume change, we impose our prior
knowledge that the registration result should not compress or
expand the objects excessively. This is achieved by penalizing
the linearized volume change caused by the vector field.

While this generic knowledge about registration and the
resulting regularization applies to most registration tasks, we
can go even further and include specific prior knowledge
about the objects under consideration.This is done by penal-
izing deformations that deviate from the space of known
deformations for the specific type of object. This space is
modeled by a statistical deformation model derived from
previous registration results of the same object class, that is,
the same organ.

One of the main contributions of this paper is the for-
mulation, discretization, andminimization of the registration
problem as a continuous functional, integrating all the differ-
ent terms described above into a single analytic formula for
the deformation field. This formulation allows for the simple
enhancement of the scheme through further terms and for
a straightforward discretization. In this paper, we present a
memory-efficient and flexible schemes using adaptive finite
elements; this approach is presented in a general setting.
The results shown in this paper are obtained using the local
discontinuous Galerkinmethod.This approach leads to a very
simple formulation even of complex regularization terms
and is well suited for the use with distributed grids and
nonconforming adaptation. The implementation is based on
DUNE-FEM [5], which uses the generic grid interface from
the Dune library [6, 7]. We use the ALUGrid [8] which
supports nonconforming local adaptivity and the possibility
of domain decomposition and dynamic load balancing for
parallel computations. These advances in efficiency and
memory consumption enable us to perform registrations that
where previously not possible. In particular the use of large
3D statistical deformation models, which would typically
require in excess of 700MB for each mode of variation with
a uniform discretization, becomes possible for the first time.
Pre- and postprocessing are performed using ITK and VTK
[9, 10].

1.1. Prior Work. Nonrigid registration is an extremely well
researched problem. For an overview of registrationmethods
we refer to the recent survey papers by Zitová and Flusser [11]
(image registration), Audette et al. [12] (surface registration),
and in particular the book by Modersitzki [4] for a thorough
discussion of variational methods for image registration.The
most basic form of our method, that is, leaving out all the
optional terms, is closely related to Thirion’s Demons algo-
rithm [3] and Modersitzki’s diffusion registration algorithm
[4].

The idea of surface registration using a distance or level-
set representation of surfaces has been introduced byParagios
et al. [13], and the inclusion of additional feature images,
especially for parametrized surfaces, is used for instance in
[14]. The use of curvature images has been presented in our
previous paper [15].

Volume preserving image registration was introduced by
Rohlfing et al. in [16] and Haber and Modersitzki in [17].
Rohlfing et al. include a term penalizing volume change in
a B-spline-based registration framework, while Haber and
Modersitzki enforce strict nonlinear volume preservation
in a variational formulation. In our approach, we wish to
allow a limited amount of volume change and therefore
use a soft constraint, that is, an additive penalty term. For
efficiency, we penalize only the linear part of the volume
change, and we show that this is equivalent to the linear
elastic regularization term first introduced by Broit [18] and
Christensen et al. in [19], even though our motivation for
using this regularizer does not stem from modelling the
organs as elastic bodies.

The concept of statistical deformation models and their
inclusion into registration algorithms has been researched
by several groups [20–23]. However, these methods either
constrain the registration result strictly to the span of the
model or use an interlaced algorithm performing the sta-
tistical regularization in a separate step, whereas we present
an integrated formulation, which builds on our previous
publication [24]. Furthermore, all of the previous methods
are formulated within the discretization framework pre-
ferred by the respective group, whereas our method pro-
vides a continuous formulation of the deformation prior
and, independently, a finite element discretization of this
prior.

The use of finite elements for image registration goes back
at least as far as [25], and we published a first finite element
registration algorithm in [15]. The final model derived in
this paper results in an elliptic problem with a nonlinear
forcing term. The finite element discretization for general
elliptic problems has now been employed for decades and
can be considered standard. A summary of the standard
approach of conforming, continuous finite elements can be
found in [26]. Since we are using nonconform locally adapted
grids with distributed memory parallelization, we employ
a discontinuous finite element approach. An overview of
this class of schemes can be found in [27]. The method
we use is based on the local discontinuous Galerkin scheme
introduced in [28]. To compute the second order derivatives
in the elliptic regularization operator, the model is rewritten
as a system of first-order equations, and these terms are
discretized element-wise using intercell fluxes to enforce
consistency with the analytical model. This results in a small
discretization stencil, which leads to a simple implementation
on nonconform distributed grid structures. The flexibility of
this approach leads to a very simple formulation in spite
of the rather complex elastic regularization terms. Also,
the freedom in the choice of the basis functions allows us
to use an orthonormal basis resulting in a diagonal mass
matrix which simplifies the statistical regularization term
considerably.



Computational and Mathematical Methods in Medicine 3

2. Registration Method

In the following, we describe our registration method. At its
core, it is an image registration method and as such can be
used directly on images. But as our focus lies in registering the
shape or surface of organs, we describe how the method can
be used to register two surfaces Γ

0
, Γ
1
⊂ R𝑑. The surfaces can

be segmented from medical images or acquired otherwise.
We assume that they are already rigidly preregistered, for
instance by Procrustes alignment [29], so that our algorithm
only needs to recover the nonrigid component of the regis-
tration. Moreover, the preregistration enables us to choose a
common rectangular image domain Ω ⊂ R𝑑 which contains
both surfaces, so that we can represent each surface Γ by its
signed distance function 𝐼 : Ω → R:

𝐼 (𝑥) :=

{{

{{

{

dist (𝑥, Γ) 𝑥 ∈ outside (Γ)
0 𝑥 ∈ Γ

− dist (𝑥, Γ) 𝑥 ∈ inside (Γ) ,
(1)

where dist(𝑥, Γ) is the Euclidean distance from 𝑥 to Γ and the
inside and outside of Γ have to be assigned in a meaningful
way. For open surfaces, for which inside and outside cannot
be defined, an unsigned distance function can be used.

The aim of a registration algorithm is to find a deforma-
tion field 𝑢 : Ω → R𝑑 such that the target surface’s distance
function 𝐼

1
warped with this deformation field, that is, 𝐼

1
(𝑥 +

𝑢(𝑥)), is as close as possible to the distance function of the
reference surface given by 𝐼

0
. The registration result of the

distance functions implies a registration of the surfaces.
We formulate the registration problem as a minimization

problem. It is shown in [4] that virtually all registration
methods can be interpreted in this way.The deformation field
𝑢 is sought as the minimum of a functional which is the sum
of two terms: distance and regularization terms. Thus, the
registration problem consists of finding the minimum of the
functional

J [𝑢] = D [𝑢] +R [𝑢] , (2)

with distance termD and regularization termR. The former
measures the distance between the reference and the registra-
tion target. At its minimum, the warp of the target is as close
as possible to the reference image.The regularization term on
the other hand measures the smoothness or regularity of the
registration result 𝑢. The smaller it is, the more regular the
solution will be. By minimizing both terms simultaneously,
we try to bring the reference and target as close together
as possible while keeping the deformation field reasonably
smooth. We believe that there is no single generic distance
or regularization term that guarantees a good registration in
every scenario. The notion of correspondence is application
specific, and the more knowledge about the registration task
at hand we can include into the method, the higher the
chances will be to obtain a result thatmeets our requirements.
For example, the most basic regularization term we pro-
pose simply penalizes the squared 𝐿2-norm of the gradient.
By including additional regularization terms, we can also
penalize volume change or the deviation from a statistical

model of the object to be registered, thus improving the
registration result. The same holds for the distance measure,
where the simplest approach measures the 𝐿2 difference
between the two surfaces. Again considerably better results
can be achieved by including additional terms, for example,
the curvature of the surfaces.

2.1. Distance Term. The basis for the distance term D is the
𝐿
2 difference between the warp of the signed distance images
𝐼
1
and the reference 𝐼

0
of the two surfaces to be registered:

󵄩󵄩󵄩󵄩𝐼1 (𝑥 + 𝑢 (𝑥)) − 𝐼0 (𝑥)
󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)

:= ∫
Ω

(𝐼
1
(𝑥 + 𝑢 (𝑥)) − 𝐼

0
(𝑥))

2
𝑑𝑥.

(3)

The distance images of two similar surfaces have a similar
range of values, especially close to the surfaces, which makes
the 𝐿2 distance measure an appropriate choice for their
comparison. In order to prevent undesirable effects at the
boundary, where the distance function of each surface may
be cut off at a different value, we bound the distance images
at a certain distance 𝑏 from the surface:

𝐼
𝑏
(𝑥) := {

𝐼 (𝑥) if 𝐼 (𝑥) ≤ 𝑏
𝑏 if 𝐼 (𝑥) > 𝑏,

(4)

and register these bounded distance images instead of the
original 𝐼(𝑥). The bound 𝑏 ∈ R should be chosen so that the
𝑏 level set of each surface we want to register is completely
contained inside Ω.

2.2. Robust Distance Measures. For noisy or otherwise dif-
ficult feature images it can be advantageous to use a robust
distance measure, which dampens the influence of the overly
large differences between the images; see [30] for a review of
different robust cost functions. We propose using a robust
distance measure based on the Geman-McClure estimator
[30, 31], which has been successfully used for medical image
registration in [32]. It can be easily realized by weighting the
distance measure (3) with a term 𝑄

𝐼
(𝑥):

D
𝐼 [𝑢] :=

1

2
∫
Ω

1

𝑄
𝐼
(𝑥)

(𝐼
1
(𝑥 + 𝑢 (𝑥)) − 𝐼

0
(𝑥))

2
𝑑𝑥. (5)

For the Geman-McClure distance measure, we have 𝑄
𝐼
(𝑥) =

𝐶
2
+ (𝐼

1
(𝑥 + 𝑢(𝑥)) − 𝐼

0
(𝑥))

2, with a regularization parameter
𝐶 ∈ R which controls the robustness of the measure. A
similar term is used inThirion’s Demons algorithm [3], where
the norm of the gradient of the image replaces 𝐶: 𝑄

𝐼
(𝑥) =

|∇𝐼
1
(𝑥 + 𝑢(𝑥))|

2
+(𝐼

1
(𝑥+𝑢(𝑥))−𝐼

0
(𝑥))

2. In our experiments,
both weights yielded similar results, which is not surprising
as for distance functions |∇𝐼| = 1 almost everywhere. We
have found that for distance images that represent surfaces
free from artifacts or excessive noise, it is not necessary to
use a robust distance measure. But it proved to be of good use
for the additional feature images introduced in the following
sections, such as the curvature images.
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2.2.1. Curvature Guided Registration. When registering sur-
faces by means of their distance images, the problem arises
that by definition, and the value of the distance function
is zero on the whole surface and therefore contains no
information on the surface. Therefore, the distance function
D is minimized whenever a point on one surface is registered
onto a point on the other surface even if it does not
correspond functionally or semantically to the given point. In
fact, whenwe try tominimize the registration functional with
a gradient descent scheme, the corresponding point is only
sought in the direction of the gradient of the distance image,
that is, perpendicular to the surface. This effect is somewhat
alleviated by the regularization term, but this is often not
enough to obtain a sensible registration. See the example in
Section 4.3 for instance.

For bone registration, we wish to establish correspon-
dence between points that have a similar anatomical function.
So similar bumps, crests, ridges, and so forth should be
matched. Such features are well described by the curvature of
the surface. In fact, for a large class of objects, corresponding
points on two surfaces have similar curvature. Figure 1 illus-
trates this for the mean curvature of human skulls.Therefore,
we use the mean curvature as an additional feature to be
matched.

With the surfaces represented by their distance images,
the curvature is easily calculated by 𝐻(𝑥) = div(∇𝐼/‖∇𝐼‖).
For each 𝑥 ∈ Ω, 𝐻(𝑥) is the mean curvature of the level
surface passing through 𝑥. So if 𝑥 is on the zero level set of
𝐼, 𝐻(𝑥) is the mean curvature of the surface at that point.
Since for distance images ‖∇𝐼‖ = 1 almost everywhere, the
curvature image𝐻 is even more easily computed as𝐻 = Δ𝐼.

The curvature images are included in the registration
process with a distance term analogous to that in (5) as
follows:

D
𝐻 [𝑢] :=

1

2
∫
Ω

1

𝑄
𝐻 (𝑥)

(𝐻
1
(𝑥 + 𝑢 (𝑥)) − 𝐻

0
(𝑥))

2
𝑑𝑥. (6)

The overall distance measure is then given as 𝛼D
𝐼
[𝑢] +

𝛽D
𝐻
[𝑢] with 𝛼, 𝛽 ∈ R+ controlling the influence of the

distance and curvature images.

2.2.2. Additional Feature Images. In an obvious fashion, any
number of additional feature images can be added. If we
denote the 𝑘th pair of feature images by 𝑋𝑘

0
, 𝑋

𝑘

1
, the full

distance term for our registration method is given as

D [𝑢] :=
𝑛

∑

𝑘=1

𝛼
𝑘
D

𝑋
𝑘 [𝑢]

=

𝑛

∑

𝑘=1

𝛼
𝑘

2
∫
Ω

1

𝑄
𝑋
𝑘

(𝑋
𝑘

1
(𝑥 + 𝑢 (𝑥)) − 𝑋

𝑘

0
(𝑥))

2

𝑑𝑥,

(7)

with weighting parameters 𝛼
𝑘
. In our experiments, we have

included the original CT scans from which the bone surfaces
were segmented as additional feature images where they were
available. 2D projections of two such CT scans can be seen in
Figure 2. Additional imagemodalities or manual annotations
could also be included provided that they are available for

(a) (b)

Figure 1: Two skulls colored according to their mean curvature. We
see that corresponding points have similar mean curvature.

(a)

(b)

Figure 2: 2D projections of CT scans of two femurs.

both surfaces to be registered. Obviously for each of the
surfaces, all its feature images need to be in correspondence,
which is usually already the case or can be achieved with
a rigid registration method. For multimodal image pairs,
more sophisticated multimodal distance measures can be
employed instead of the 𝐿2 distance measures used in (7) (cf.
[4, 33]).

2.3. Regularization Term. Registration is an ill-posed prob-
lem, and any algorithm trying to minimize a distance mea-
surewithout enforcing some kind of smoothness or regularity
on the solution is bound to fail. We begin by introducing a
very basic regularization term, which is later enhanced by
adding further terms.

One of the most basic ways to control the smoothness
of the deformation field 𝑢 is through its first derivative 𝐷𝑢,
which we will, for simplicity, denote by ∇𝑢. But the reader
should bear in mind that 𝑢 : Ω ⊂ R𝑑

→ R𝑑, and hence
∇𝑢 ∈ R𝑑×𝑑. We define the basic regularization term as

R
𝑔 [𝑢] :=

1

2
∫
Ω

‖∇𝑢‖
2
𝑑𝑥

=
1

2

𝑑

∑

𝑙=1

∫
Ω

󵄨󵄨󵄨󵄨∇𝑢𝑙
󵄨󵄨󵄨󵄨

2
𝑑𝑥.

(8)

The smallerR
𝑔
[𝑢] is, the smoother the deformation field 𝑢.
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2.3.1. Volume Preservation. While the regularization term
(8) forces the deformation field to be smooth, it still allows
some quite unnatural deformations. In particular, it allows for
excessive expansion or compression of the registered object
by the deformation field; see Section 4.4 for an example.
The compression or expansion of the warp 𝑥 + 𝑢(𝑥) can be
measured by the determinant of its first derivative det[𝐷(𝑥 +
𝑢(𝑥))]. A volume preserving deformation field must satisfy
det[𝐷(𝑥 + 𝑢(𝑥))] ≡ 1. Naturally, as we are mostly interested
in registering bones of different individuals, which in general
do not have the same volume, we do not wish to enforce
a strict incompressibility constraint as in fluid dynamics or
other registration approaches [17]. Instead, we add a soft
incompressibility constraint to our existing regularization
term based on the linearization of det[𝐷(𝑥 + 𝑢(𝑥))]. Thus,
volume change is limited but not completely prohibited.

Since det[𝐷(𝑥 + 𝑢(𝑥))] = 1 + div 𝑢 + (nonlinear terms),
if follows that the smaller the divergence of 𝑢, the closer the
linearization of the determinant is to 1 and therefore the field
to being volume preserving, provided the values of𝐷𝑢 are not
too large and therefore the linearization justified. Therefore
we add the square of the deformation field’s divergence to the
functional:

R [𝑢] := 𝜇R𝑔 [𝑢] + ]R𝑑 [𝑢]

= 𝜇
1

2
∫
Ω

‖∇𝑢‖
2
𝑑𝑥 + ]

1

2
∫
Ω

(div 𝑢)2𝑑𝑥.
(9)

In a later section, we will see that the Euler-Lagrange equa-
tions for the functional (9) correspond to those of the well-
known linear elastic registration methods (see Appendix A).
Although the volume preservation is only approximative, it
enhances the registration result visibly; see Section 4.4.

2.3.2. Statistical Deformation Prior. It is well known that the
regularization terms can be interpreted from two different
perspectives. On the one hand, they serve as numerical sta-
bilizers and make the numeric treatment of ill-posed prob-
lems feasible. On the other hand, the regularization term
incorporates prior knowledge about the solution into the
problem. In this respect, the regularization terms that we
have introduced so far were generic in the sense that they
only require the solution to be smooth or volume preserving.
They do not take properties of the object to be registered
into account. Even though registration is a prerequisite for
expressing prior knowledge about a specific class of objects,
it can itself benefit from such prior knowledge when the data
is noisy. Therefore, we propose including prior knowledge
about the specific class of objects by introducing an additional
regularization term. This term is based on a probability
distribution estimated from previous successful registration
results and penalizes unlikely deformations. This type of
regularization becomes very natural when we consider the
probabilistic interpretation of the regularization approach.
The regularization termR[𝑢] can be seen as defining a prior
probability distribution 𝑝[𝑢] over the function space, and
the distance term D[𝑢] defines the likelihood 𝑝[𝐷 | 𝑢]

of observing the data given deformation field 𝑢. See Wang

and Staib [21] for a detailed discussion of this probabilistic
interpretation for variational image registration.

Assume that we already have a set of 𝑛 deformation fields
{𝑢

1
, . . . , 𝑢

𝑛
}, mapping from a common reference image 𝐼

𝑅
to

a given set of target images {𝐼
1
, . . . , 𝐼

𝑛
}. We expect that a new

registration result is unlikely to be very different from the
ones already given, since it registers an object of the same
class. Indeed, we can regard the deformation fields 𝑢

1
, . . . , 𝑢

𝑛

as training data from which we can estimate a probability
distribution over the possible deformations. This is the main
idea behind Statistical Shape Models [34, 35] and the related
Statistical Deformation Models [22], to which our problem
belongs. In these approaches, the common assumption is that
the objects (i.e., the shapes and the deformation fields) follow
a normal distribution. Its parameters are estimated from the
training data.

We introduce a continuous formulation for deforma-
tion models here, which fits naturally into our continu-
ously defined registration framework and permits a straight-
forward finite element discretization.Themodel is character-
ized by the mean field 𝑢

𝑢 (𝑥) =
1

𝑛

𝑛

∑

𝑖=1

𝑢
𝑖
(𝑥) (10)

and the covariance operatorC : 𝐿2(Ω,R𝑑
) → 𝐿

2
(Ω,R𝑑

)

C =
1

𝑛

𝑛

∑

𝑖=1

(𝑢
𝑖
− 𝑢) ⊗ (𝑢

𝑖
− 𝑢) , (11)

which acts on a deformation field 𝑤 ∈ 𝐿2(Ω,R𝑑
) through

C [𝑤] (𝑥) =
1

𝑛

𝑛

∑

𝑖=1

(𝑢
𝑖
− 𝑢) (𝑥)

× ∫
Ω

(𝑢
𝑖
− 𝑢) (𝑦) ⋅ 𝑤 (𝑦) 𝑑𝑦.

(12)

This operator is the continuous analogon to the sample
covariance matrix. It is a linear integral operator with a
symmetric integral kernel given by

𝐶 (𝑥, 𝑦) =
1

𝑛

𝑛

∑

𝑖=1

(𝑢
𝑖
− 𝑢) (𝑥) (𝑢𝑖 − 𝑢)

𝑇
(𝑦) . (13)

C is a self-adjoint (i.e., symmetric) compact operator.
Thanks to the spectral theorem for compact normal operators
(see [36] for instance) it admits an eigenvalue decomposition
with positive eigenvalues 𝜎2

𝑖
and corresponding orthonormal

eigenfunctions 𝜌
𝑖
. AsC is estimated from 𝑛 examples 𝑢

𝑖
− 𝑢,

there are at most 𝑚 ≤ 𝑛 nonzero eigenvalues; 𝜎2
𝑖
and C can

be represented as

C [𝑤] (𝑥) =
𝑚

∑

𝑖=1

𝜎
2

𝑖
𝜌
𝑖
(𝑥) ∫

Ω

𝜌
𝑖
(𝑦) ⋅ 𝑤 (𝑦) 𝑑𝑦. (14)

Moreover, the spectral theorem guarantees the orthogonal
decomposition of 𝐿2(Ω,R𝑑

) into the span of the eigenfunc-
tions 𝜌

𝑖
and the operator’s null space N(C):

𝐿
2
(Ω, 𝑅

𝑑
) = span {𝜌

𝑖
| 𝑖 = 1, . . . , 𝑚} ⊥ N (C) . (15)
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The span of the eigenfunctions is the same as the span of the
𝑢
𝑖
− 𝑢. That means that it contains all linear combinations

of the training examples. On this 𝑚-dimensional space,
which is frequently called themodel space of the deformation
model, the covariance operator C is invertible. Thanks to
the eigenvalue decomposition, the inversion of C on the
model space is easily achieved by inverting the eigenvalues
and coincides with the formulation of the pseudoinverse C†

on the whole space 𝐿2(Ω) as follows:

C
†
[𝑤] (𝑥) =

𝑚

∑

𝑖=1

𝜎
−2

𝑖
𝜌
𝑖
(𝑥) ∫

Ω

𝜌
𝑖
(𝑦) ⋅ 𝑤 (𝑦) 𝑑𝑦. (16)

We can therefore formally define a normal distribution
N(𝑢,C) with mean 𝑢 and covarianceC on 𝐿2(Ω):

𝑝
1
(𝑢) =

1

𝑍
𝑒
−(1/2)⟨𝑢−𝑢,C†[𝑢−𝑢]⟩

𝐿
2
(Ω,R𝑑) , (17)

where𝑍 is a normalization parameter. Technically, while this
function exists and is the natural extension of the density
function of a statistical shape or deformation model to a
continuous function space, it is not a well-defined density
function. However, for any finite discretization 𝑢

ℎ
, the corre-

sponding density of the multivariate normalC[𝑢
ℎ
] exists and

is well defined. This distribution can be used as the basis for
a statistical regularization term. However, it only represents
prior knowledge about the model space. Its complement,
N(C), is completely ignored.A statistical regularization based
on this distribution would permit deformation fields 𝑢 ∈

𝐿
2
(Ω,R𝑑

) that are arbitrarily far away from the model space
and would regularize only their projection onto the model.
An extreme measure taken by other authors is therefore to
restrict the registration results strictly to the model space [20,
22]. We on the other hand wish to explicitly allow results that
lie outside (but still close to) the model space, as only these
results can be used as reasonable additions to the statistical
model.

We define an additional distribution on N(C), which
imposes our prior knowledge that the registration results
should not lie far from themodel. In the absence of additional
example data, we simply assume a normal distribution with
mean 𝑢 and uncorrelated uniform variance of𝜎2 ∈ R+, which
controls howmuch the results are allowed to deviate from the
model space:

𝑝
2
(𝑢) =

1

𝑍
𝑒
−(1/2)𝜎

−2
⟨𝑢−𝑢,𝑢−𝑢⟩

𝐿
2
(Ω,R𝑑) . (18)

While this term could in principle be restricted to N(C),
we define it on the whole space 𝐿2(Ω,R𝑑

). This corresponds
to shrinkage estimation, a technique used in statistics to
improve the estimation of the covariance [24, 37], which adds
the additional variance of 𝜎 also on the model space.

To define the distribution 𝑝(𝑢) characterizing our com-
plete statistical model, we assume the two normal distribu-
tions to be independent and define 𝑝(𝑢) as their product

𝑝 (𝑢) := 𝑝1 (𝑢) 𝑝2 (𝑢) =
1

𝑍
𝑒
−(1/2)⟨𝑢−𝑢,C†[𝑢−𝑢]⟩

×
1

𝑍
𝑒
−(1/2)𝜎

−2
⟨𝑢−𝑢,𝑢−𝑢⟩

.

(19)

It is then natural to introduce the functional

P [𝑢] =
1

2
𝛾∫

Ω

(𝑢 − 𝑢) (𝑥) ⋅C
†
[𝑢 − 𝑢] (𝑥) 𝑑𝑥

+
1

2
𝛾∫

Ω

𝜎
−2
(𝑢 − 𝑢) (𝑥) ⋅ (𝑢 − 𝑢) (𝑥) 𝑑𝑥

∝ − ln𝑝 [𝑢]

(20)

as an additional regularization term, which penalizes unlikely
deformation fields. The constant 𝛾 is used as a weighting
factor. We thus arrive at the following functional describing
our registration model:

J [𝑢] = D [𝑢] +R [𝑢] +P [𝑢] . (21)

3. Finite Element Discretization

In this section, we describe the discretization and mini-
mization of the functional (21) based on a finite element
method and an adaptive multiresolution pseudo-time step-
ping approach. We start with the description of the spatial
discretization focusing on the terms from the deformation
prior. This finite element discretization of the continuously
defined deformation prior is one of the most important
contributions of this paper, and thanks to use of a memory-
efficient adaptive finite element basis makes the use of large
3D statistical deformations possible for the first time.

3.1. Space Discretization. To find a minimizer of the func-
tional (21), we wish to solve the weak form of the correspond-
ing Euler-Lagrange equation: 𝐽󸀠[𝑢, 𝜑] = 0 for all suitable
test functions 𝜑. The details of how the derivative 𝐽󸀠[𝑢, 𝜑] =
D󸀠
[𝑢, 𝜑] +R󸀠

[𝑢, 𝜑] +P󸀠
[𝑢, 𝜑], which can be interpreted as

a bilinear form, is computed can be found in Appendix A.
The three terms, corresponding to the distance measure,
regularization term, and the deformation prior, respectively,
are given by

D
󸀠
[𝑢, 𝜑]

=

𝑛

∑

𝑘=1

∫
Ω

𝛼
𝑘

𝑄
𝑋
𝑘 (𝑥)

(𝑋
𝑘

1
(𝑥 + 𝑢 (𝑥))

− 𝑋
𝑘

0
(𝑥) ) ∇𝑋

𝑘

1
(𝑥 + 𝑢 (𝑥)) 𝜑 (𝑥) 𝑑𝑥,

(22)
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R
󸀠
[𝑢, 𝜑] = ∫

Ω

𝜇∇𝑢 : ∇𝜑 + ] div 𝑢 div 𝜑𝑑𝑥, (23)

P
󸀠
[𝑢, 𝜑] = ∫

Ω

𝛾 C
†
[𝑢 − 𝑢] (𝑥) ⋅ 𝜑 (𝑥) 𝑑𝑥

+ ∫
Ω

𝛾 𝜎
−2
(𝑢 − 𝑢) (𝑥) ⋅ 𝜑 (𝑥) 𝑑𝑥.

(24)

The sum in (22) is over all feature images 𝑋
𝑘
used for the

registration, for example, the distance maps 𝐼, the curvature
𝐻, and the CT scans.

We employ a finite element discretization to compute the
deformation field. Given a function space 𝑉

ℎ
⊂ 𝐿

2
(Ω,R3

)

of finite dimension 𝑁, we seek an approximate deformation
field, which we will also denote by 𝑢 ∈ 𝑉

ℎ
, satisfying

J󸀠
[𝑢, 𝜑] = 0 for all test function 𝜑 ∈ 𝑉

ℎ
.

After choosing basis functions 𝜑
1
, . . . , 𝜑

𝑁
of 𝑉

ℎ
, a func-

tion 𝑤 ∈ 𝑉
ℎ
can be represented as 𝑤(𝑥) = ∑

𝑁

𝑘=1
w
𝑘
𝜑
𝑘
(𝑥)

with a vector of degrees of freedom (DOF) denoted by w
ℎ
=

(w
𝑘
)
𝑁

𝑘=1
.

The derivation of a discrete version both for the regular-
ization term R󸀠 and the distance measure D󸀠 is straightfor-
ward and will be briefly sketched in Section 4.1 together with
details on the construction of the discrete function space 𝑉

ℎ

used in our tests. In the following, we will concentrate on the
termP󸀠 arising from the statistical deformation prior.

The term P󸀠 defined in (24) includes the eigenfunctions
of the covariance operator C, defined in (12). The eigen-
functions are needed for the efficient (pseudo-) inversion of
C according to (16). In order to formulate a discretization
and an implementation forP󸀠, we need to actually calculate
these eigenfunctions. According to the ideas of functional
PCA [38], the eigenfunctions can be calculated with help of
a finite dimensional eigenvalue decomposition if both the
argument𝑤 and the training examples 𝑢

𝑖
are given as a linear

combination of a set of basis functions.
So to derive a discrete formulation of C, we fix the

argument𝑤 and examples 𝑢
𝑖
to be from the discrete function

space 𝑉
ℎ
. They are then given as linear combinations of the

basis functions 𝜑
𝑘
, and we have the coefficient vectorsw

ℎ
and

k
ℎ,𝑖
:= u

ℎ,𝑖
− u

ℎ
. The covariance operator C from (12) then

takes the form

C [𝑤] (𝑥) =
1

𝑛

𝑛

∑

𝑖=1

∑

𝑘

v
𝑖𝑘
𝜑
𝑘 (𝑥) ∫

Ω

∑

𝑗

v
𝑖𝑗
𝜑
𝑗
⋅ ∑

𝐷

w
𝑙
𝜑
𝑙
𝑑𝑦

= ∑

𝑘

(
1

𝑛

𝑛

∑

𝑖=1

∑

𝑙,𝑗

v
𝑖𝑘
v
𝑖𝑗
∫
Ω

𝜑
𝑗
⋅ 𝜑

𝑙
𝑑𝑦 w

𝑙
)𝜑

𝑘 (𝑥)

= ∑

𝑘

(Aw
ℎ
)
𝑘
𝜑
𝑘
(𝑥) .

(25)

The matrix A = (𝑎
𝑘𝑙
) is given by

𝑎
𝑘𝑙
=
1

𝑛

𝑛

∑

𝑖=1

𝑁

∑

𝑗=1

v
𝑖𝑘
v
𝑖𝑗
𝑚
𝑗𝑙
, (26)

where we have used 𝑚
𝑗𝑙
to denote the entries of the mass

matrixM; that is,𝑚
𝑗𝑙
= ∫

Ω
𝜑
𝑗
(𝑦) ⋅ 𝜑

𝑙
(𝑦)𝑑𝑦.

Equations (12) and (26) show that C is restricted to 𝑉
ℎ

maps to 𝑉
ℎ
and is represented by the matrix A = 𝑎

𝑘𝑙
,

which, resubstituting the definition of v
𝑖𝑘
into (26), can be

represented as

A = 1
𝑛

𝑛

∑

𝑖=1

(u
ℎ𝑖
− u

ℎ
) (u

ℎ𝑖
− u

ℎ
)
𝑇M =: ΣM, (27)

where Σ is the sample covariance matrix of the DOF vectors
k
ℎ,𝑖
= u

ℎ𝑖
− u

ℎ
. The eigenvalue decomposition of this discrete

version ofC can be achieved by an eigenvalue decomposition
of thematrixA. Comparedwith traditional discrete statistical
models as [22, 34, 35], where only the covariance matrix Σ
is used, in our case, the mass matrix M slightly complicates
matters as it makes the matrixA nonsymmetric in general. In
functional PCA, this problem is solved by first calculating an
eigenvalue decomposition of the symmetric matrix:

M1/2AM−1/2
= M1/2
ΣM1/2

. (28)

This is a symmetric positive semidefinite (𝑁×𝑁)-matrix
with rank 𝑚 ≤ 𝑛 ≪ 𝑁. Remember that 𝑛 is the number
of training examples 𝑢

𝑖
which is usually much smaller than

𝑁, the number of degrees of freedom of the discrete function
space𝑉

ℎ
.The positive eigenvalues 𝜎2

1
, . . . , 𝜎

2

𝑚
and thematrix S

of their corresponding orthonormal right eigenvectors r
𝑖
can

be computed efficiently with a singular value decomposition
of an (𝑚 × 𝑚) matrix, without the need to compute a full
large (𝑁 × 𝑁) singular value decomposition. We thus have
the eigenvalue decomposition:

M1/2AM−1/2
= S diag (𝜎2

1
, . . . , 𝜎

2

𝑚
) ST (29)

and consequently the decomposition of A :

A = M−1/2S diag (𝜎2
1
, . . . , 𝜎

2

𝑚
) STM1/2 (30)

with eigenvalues 𝜎2
𝑖
and eigenvectorsM−1/2r

𝑖
. The associated

functions 𝜌
𝑖
= ∑

𝑘
(M−1/2r

𝑖
)
𝑘
𝜑
𝑘
are the eigenfunctions of

the discretized covariance operator from (25). C being a
symmetric operator, we expect its eigenfunctions to be
orthonormal with respect to the 𝐿2(Ω,R3

) scalar product:

∫
Ω

𝜌
𝑖
⋅ 𝜌

𝑗
= r𝑇

𝑖
M−1/2MM−1/2r

𝑗
= r𝑇

𝑖
r
𝑗
= 𝛿

𝑖𝑗
. (31)

With the eigenfunctions 𝜌
𝑖
, we can rewrite (24) with an

explicit formulation for the pseudoinverseC† as follows:

P
󸀠
[𝑢, 𝜑] =

𝑚

∑

𝑖=1

𝛾 𝜎
−2

𝑖
∫
Ω

(𝑢 − 𝑢) (𝑦) ⋅ 𝜌
𝑖
(𝑦) 𝑑𝑦

× ∫
Ω

𝜌
𝑖 (𝑥) ⋅ 𝜑 (𝑥) 𝑑𝑥

+ 𝛾𝜎
−2
∫
Ω

(𝑢 − 𝑢) (𝑥) ⋅ 𝜑 (𝑥) 𝑑𝑥,

(32)

which can easily be implemented once the eigenfunctions 𝜌
𝑖

have been calculated.
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This formulation takes the same form in the continuous,
and the discrete setting and could have been calculated
directly using the continuous eigenvalue decomposition
Equation (16). The discretization lies only in the restriction
ofP󸀠 to the discrete function space 𝑉

ℎ
and the calculation of

the eigenfunctions via a matrix SVD as described above.

3.2. Minimization Strategy. Registration is achieved by min-
imizing the functional (21). We introduce an artificial time
variable 𝑡 and try to minimize the functional by computing
its gradient flow, that is, we solve the time-dependent partial
differential equation:

𝜕
𝑡
𝑢 −J

󸀠
[𝑢] = 0 (33)

for a function 𝑢(𝑥, 𝑡), given an initial solution 𝑢0 = 𝑢(𝑥, 0).
Note that the term 𝜕

𝑡
𝑢 has to be interpreted in the weak sense,

that is, in the form ∫
Ω
𝜕
𝑡
𝑢𝜑. A time stepping scheme for (33)

can be viewed as a continuous version of gradient descent;
indeed, if we use an Euler scheme for the time discretization
of (33), we end up with a gradient descent iteration.

Choosing an explicit Euler scheme to solve (33) leads to a
severe time step restriction, coupling the time step 𝜏 with the
mesh width ℎ via 𝜏 = 𝑂(ℎ2) due to the regularization term
(8). On the other hand, due to the nonlinearity of the distance
term D[𝑢], a purely implicit iteration scheme would require
the solution of a large nonlinear system in each iteration.
Therefore, we propose to use semi-implicit time stepping
scheme. We split up the functionalJ[𝑢] into an explicit part
Jexpl[𝑢], containing all terms with nonlinear derivatives and
an implicit part Jimpl[𝑢] containing all terms with linear
derivatives.The iteration scheme, in its simplest form, is then
defined as

𝑢
𝑛+1
= 𝑢

𝑛
+ 𝜏J

󸀠

impl [𝑢
𝑛+1
] + 𝜏J

󸀠

expl [𝑢
𝑛
] . (34)

In our case, this means thatJexpl = D andJimpl =R+P. If
additional terms are introduced, they can be added to either
Jexpl or Jimpl, depending on their linearity. Each iteration
step thus requires the solution of a linear system of equations
for which we employ an iterative Krylov type solver (in this
case the BiCGStab method). To obtain higher order version
of this method, IMEX Runge-Kutta schemes are used [39].

For our experiments, we chose a locally adaptive mul-
tiresolution strategy; we first minimize the functional on a
coarse uniform grid; that is, starting with the initial guess
𝑢
0
≡ 0, we solve (33) up to some fixed time 𝑇

0
. Then the

grid is refined around the reference surface, and the coarse
solution is interpolated onto the refined grid.This is then used
as starting value for solving (33) on the refined grid up to
some fixed time𝑇

1
.This process is repeated until a sufficiently

fine resolution has been reached. The times 𝑇
𝑖
have been

experimentally determined. In each step, all elements closer
to the surface than a certain threshold Θ are refined; that is,
|𝐼
0
| < Θ. This threshold is decreased in each step, so that

the final solution is calculated on a grid that offers a very
fine resolution close to the reference surface and becomes
more and more coarse further out. An example is shown in
Figure 3.

Figure 3: Visualization of the registration of two femurs. The
deformation field that deforms one femur into the other is calculated
on an adaptive grid.

4. Results

4.1. Implementational Details. The scheme is implemented in
the Dune framework, a software library allowing the generic
implementation of grid based numerical schemes [6, 7]. The
finite element implementation is based on the DUNE-FEM
module [5]. Pre- and post-processing is done using ITK and
VTK [9, 10].

The spatial discretization of the deformation field 𝑢 is
based on a tessellationT

ℎ
= {𝑇

𝑖
}
𝑖∈I of the image domain Ω.

This tessellationmust be nonoverlapping and can be uniform
or adaptive and is typically made up of triangles or rectangles
in 2D or tetrahedra or hexahedra in 3D.We use the ALUGrid
library [8] which supports unstructured meshes in 2D and
3D with nonconforming local adaptivity and the possibility
of domain decomposition and dynamic load balancing for
parallel computations. Figure 3 shows a visualization of such
a nonconforming locally adaptive grid.

The spatial discretization employed is based on the local
discontinuous Galerkin (LDG) scheme. Given a tessellation
T

ℎ
, this scheme follows the same ideas as the standard

Galerkin method [26] but employs a discontinuous ansatz
space: 𝑉𝑞

ℎ
:= {V

ℎ
:V
𝑖
∈ [𝑃

𝑞
(𝑇

𝑖
)]
𝑑 for 𝑖 ∈ I}. Here V

𝑖
≡

V
ℎ|𝑇
𝑖

and 𝑃
𝑞
(𝑇

𝑖
) denote the space of polynomials on the

element 𝑇
𝑖
of order 𝑞. Note that there is no continuity

assumption between elements, so that there is very little
restriction on the tessellation. Due to the discontinuous
ansatz space, the discretization of the higher order derivatives
in the regularization term is slightly more involved than in
the standard Galerkin method. We briefly sketch the LDG
approachwhen applied to a partial differential equation of the
form −𝜇Δ𝑢− ]∇ div 𝑢 = 𝑅̃, where 𝑅̃ combines all lower order
terms. This equation corresponds to the strong form of the
Euler-Lagrange equation (see Appendix A (A.9)). Rewriting
the second-order terms as a first-order system for the vector
valued functions 𝑢, 𝑤

1
, . . . , 𝑤

𝑑
, we arrive at

𝑤
𝑘
− ∇𝑢

𝑘
= 0,

−∑

𝑖

𝜕
𝑖
(𝜇𝑤

𝑘𝑖
+ ]𝑤

𝑖𝑘
) = 𝑅̃

𝑘

(35)

with 𝑘 = 1, . . . , 𝑑. This approach leads to a compact discrete
form for the elastic regularization term R󸀠 involving only
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first-order derivatives on each element 𝑇 ∈ T
ℎ
and numeri-

cal fluxes over cell boundaries. Focusing on a single element
𝑇 of the tessellation, the corresponding weak form of (35)
takes the following form when we define the vector 𝑊

𝑘
:=

(𝜇𝑤
𝑘𝑖
+ ]𝑤

𝑖𝑘
)
𝑖
:

∫
𝑇

𝑤
𝑘
⋅ 𝜉 + ∫

𝑇

𝑢
𝑘
∇ ⋅ 𝜉 − ∫

𝜕𝑇

𝑢
𝑘
𝜉 ⋅ 𝑛 = 0

∫
𝑇

𝑊
𝑘
⋅ ∇𝜓 − ∫

𝜕𝑇

𝑊
𝑘
𝜓 = ∫

𝑇

𝑅̃
𝑘
𝜓.

(36)

The fluxes 𝑢
𝑘
and𝑊

𝑘
can for example be taken as averages of

the values on both sides of the boundary of𝑇 or using suitable
one-sided values. For more details on the LDG method see
[27, 28]. At the boundary we use homogeneous Dirichlet
conditions for the deformation field 𝑢. This is a reasonable
assumption if we use bounded distance images as defined
in (4). In this case, the images 𝐼

0
and 𝐼

1
are both equal to

the constant bound 𝑏 near the domain boundary, and the
functional only contains the regularization term R in this
region; that is, only the regularization operator remains for
which zero boundary conditions can be prescribed.

In our implementation, we use orthogonal basis functions
{𝜑

𝑙
}. These are easily constructed by choosing on each

element 𝑇 a polynomial basis (𝜙𝑇
𝛼
)
𝑟

𝛼=1
of [𝑃𝑞(𝑇)]𝑑 satisfying

∫
𝑇

𝜙
𝑇

𝛼
⋅ 𝜙

𝑇

𝛽
= |𝑇| 𝛿𝛼𝛽. (37)

A basis function 𝜑
𝑙
of 𝑉𝑞

ℎ
is then chosen to coincide with a

polynomial basis function 𝜙𝑇
𝛼
on one element 𝑇 and vanish

on all other elements. Thus the mass matrix𝑀 is a diagonal
matrix of the form

𝑀 = diag (󵄨󵄨󵄨󵄨𝑇1
󵄨󵄨󵄨󵄨 𝐼𝑟, . . . ,

󵄨󵄨󵄨󵄨𝑇𝑠
󵄨󵄨󵄨󵄨 𝐼𝑟) , (38)

where 𝐼
𝑟
is the identity matrix with 𝑟 = dim([𝑃𝑞(R𝑑

)]
𝑑
) and 𝑠

is the number of elements in the grid; that is, the total number
of DOFs is𝑁 = 𝑠𝑟. The diagonal form of𝑀makes its storage
and the calculation of the weighted sample covariance matrix
Σ defined in (27) very efficient.

Thus, the LDG method used here not only allows us to
efficiently use adaptivity and parallelization but also makes
the computation of the PCA simple and efficient with respect
to memory consumption and computational cost.

4.2. 3D Surface Registration. In this first experiment, we
can observe that thanks to the level set representation of
the surfaces, our method allows the accurate registration of
surfaces. See Figure 3 for an example of the femur bone and
Figure 4 for an example with the more complicated surface
of the human skull, where our method benefits from the
fact that the level set representation is independent of the
topology of the surface. The topology of the skull surface is
very complicated and, due to acquisition and segmentation
artifacts, not necessarily the same for two different segmented
skull surfaces.

In our experiments, only the reference was anatomically
labeled and hand segmented with high attention to detail.

Figure 4: Visualization of the correspondence and the transfer of
anatomical labeling between the reference (transparent outline) and
a child’s skull.

Figure 4 visualizes how this labelling and segmentation is
transferred to another skull anatomy via the registration
result. Figure 5 shows that this works over a very large
range of examples from infant skulls to large adult skulls.
Even though the concept of correspondence breaks down for
different numbers of teeth in the reference and the target, the
existing teeth are labelled correctly.

On a standard 3GHz dual-core desktop PC with two par-
allel registration processes, a skull registration with 480 000
degrees of freedom (i.e., 160 000 grid points) takes about
10 minutes, a femur registration with 80 000 degrees of
freedom (butmore iterations) about 6minutes.These are only
indicative times to give the reader a feeling for the run time
of our algorithm. Computation times can be further reduced
with more parallel processes and more aggressive parameter
tuning. Note that a great advantage of our method is that the
adaptive discretization requires a much inferior number of
degrees of freedom than a uniform discretization. A uniform
discretization with a similar resolution around the surface
requires about 18 million degrees of freedom, resulting in a
memory consumption of over 700MB per deformation field.

4.3. Curvature Term. Theabove experimentswere performed
with all of the terms introduced in Section 2 except the sta-
tistical prior. We will now report on a couple of experiments
that visualize the benefit of all the additional terms, starting
with the curvature term introduced in Section 2.2.1.

In Figure 6(a), a registration of a femur is performed
without the curvature term; that is, the surface is only
represented by the level set function and the original CT
scan. At a first glance, the surfaces are well registered, and
the deformation field allows us to deform the reference
bone so that it coincides with the target bone. However,
on closer inspection, the implied correspondence is faulty.
The deformation field matches the top of the trochanter
minor (an important anatomical feature of the femur) of
the reference to the side of the trochanter minor on the
target. Such faulty correspondence causes problems in all
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(a) (b) (c) (d)

(e) (f)

Figure 5: Transfer of the anatomical labelling of the reference (c) to a variety of skulls. Such a transfer requires very accurate registration
results. Even a mismatch in the number of teeth is handled properly.

(a) (b)

Figure 6: Registration of two femurs with and without curvature
term.Without the curvature term, the correspondence is faulty.The
corresponding features of the trochanter minor are not properly
matched. The curvature term ensures matching of corresponding
shape features.

subsequent applications such as building of statistical models
or transferring anatomical labels.

In Figure 6(b), when the curvature term is used, the
correspondence is much more sensible, and top is matched
to top and sides to sides. The mean curvature proves to be a
good description of anatomical features of bones. Its use in
the registration method ensures superior correspondence.

4.4. Volume Preservation. Figure 7(a) shows the reference
bone warped with a deformation field of a registration result.

To amplify the effect for visualization purposes, we have
warped the reference bone with the deformation field mul-
tiplied by 2. The coloring represents the size of the triangles
that make up the surface. We see that in some places the
original reference grid is quite unnaturally stretched resulting
in very large triangles. This is the effect of large volume
expansion in the deformation field.When this volume change
is penalized with the volume preservation term, the resulting
mesh is muchmore even, while still allowing an equally good
matching of the target surface.

In Figure 7(a), the weighting parameters 𝜇 and ] from
(8) have been chosen as 𝜇 = 2, ] = 0, that is, no volume
preservation term. In Figure 7(b), as 𝜇 = ] = 2, that is,
equal weight of the gradient and the divergence term. Simply
augmenting the weight of the gradient term, for example,
𝜇 = 4, ] = 0 also results in less volume change, but still
more than in Figure 7(b), while simultaneously decreasing
the matching accuracy.

4.5. Statistical Deformation Prior. In these final experiments,
we exhibit the use and benefit of the statistical prior. We
first performed registrations of 15 intact hands for the 2D
example and 50 intact femurs for the 3D example. From
these, statistical models are built according to the process
described in Section 3.1.They can be used as prior knowledge
for registering difficult or damaged data sets. In Figure 8,
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Figure 7: Registration of two femurs with and without volume preserving term. When the term is used, the distribution of area over the
triangles of the mesh is much more even because the limited volume change prohibits strong expansion or compression of the mesh.

this prior knowledge allows the registration of a hand with a
missing finger. Without this prior knowledge, the ring finger
of the reference is deformed unnaturally in an attempt to
match the hand with the missing finger. Note that the use
of a robust distance measure and the regularization terms
prevent a complete disappearance or distortion of the finger.
When the prior knowledge from the statistical deformation
model is used, the hand is well matched where intact. But the
model enforces a registration with an intact ring finger, as all
its training data sets include 5 intact fingers.

In Figure 9, a similar experiment in 3D is shown. The
prior knowledge from 50 previous registrations is used in the
registration of the reference bone to two damaged bones.The
first bone has an artificial hip joint prosthesis and the second
one amissing trochantermajor.The registrationmethodwith
statistical regularization registers the complete bones while
complementing the missing parts from its prior knowledge.
In this way, we can see how the original bone could have
looked like. In these experiments, we have used 40 modes of
variation (principle components). In a uniform discretization
with a similar resolution around the surface, this would
have required 28GB of memory. Of course, the inclusion
of the statistical prior introduces additional computational
complexity. This results in an increase of computation time
from about 5 minutes without to about 7 minutes with
statistical prior per femur registration.

These experiments were performedwith a robust distance
measure (cf. Section 2.1). In the places with missing data, the
regular𝐿2measure has a very large value andwould dominate
the registration process. Aswith all regularization techniques,
a balance between over- and under-regularization has to be
found. If too much weight is placed on the statistical prior,
the result is pulled too close to the model.

5. Discussion

We have presented a registration method which allows the
accurate and efficient registration of surfaces by registering
their distance images. While this can be achieved with any
image registration algorithm, we have shown that the most
obvious choices for the distance measure and regularizer
have several shortcomings, which can be relieved by adding
additional distance and regularization terms to the model.

(a)

(b)

Figure 8: The reference shape (blue line) is registered onto a hand
with a missing finger. The red line shows the warp of the reference
with the resulting deformation field, without (a) and with statistical
regularization (b).

We have seen that by representing the surfaces not by their
distance images alone but also by a combination of feature
images,most notably the curvature images, andwe can obtain
superior correspondence information. Concerning the regu-
larizer, we have shown that adding a volume preserving term
results in more even and naturally looking deformations and
warps. Finally, we have shown that including prior knowledge
in formof a statistical deformationmodel allows us to register
considerably damaged data sets. While the statistical prior
could be used in any registration task where prior registration
results are available, we have found that for intact data sets
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(a) (b) (c) (d)

Figure 9: Registration of a pair of damaged bones, with and
without statistical regularization. The first bone has an artificial hip
joint, and in the second, the trochanter major is missing. Without
statistical regularization, the damaged bones are matched exactly
((a), (b)). With statistical regularization, the method recognizes that
the damaged parts do not conform with the prior knowledge and
restore them automatically ((c), (d)).

the method works well enough without the prior. We use
the prior in cases where the data is too corrupted to be used
directly, but where we still wish to add as much as possible of
its information into our existing model.

Our registration method is formulated continuously and
is independent of the discretization method. We have pre-
sented a finite element discretization based on the local
discontinuous Galerkin method, which allows for local grid
adaption and a straightforward implementation of all the
terms of our functional. The local grid adaption and paral-
lelization limit the computational complexity and memory
consumption, enabling us to perform registrations that were
not possible with previous methods. In particular the inclu-
sion of large statistical deformation models was not possible
with previous methods based on uniform discretization such
as the Demons Algorithm. This will become more and more
important as the resolution of medical images increases in
the future. The flexibility of the continuous functional and
the LDG discretization allows the easy integration of other
concepts and terms that are being developed in the field of
image registration every day.On the other hand, the ideas and
terms introduced here can be used with other discretization
schemes or existing registration methods.

Appendix

A. Derivatives

In the following, we give details on how to derive the Euler-
Lagrange equations, which characterize the minimum 𝑢 of
the functional J given in (21). Using the standard methods
from the calculus of variations, we compute the Gateaux
derivatives for each of the terms thatmake up our registration

functional. This leads to the bilinear forms used in the finite
element discretization in Section 3. We conclude this section
with the derivation of the partial differential equations, that
is, the strong form, which characterize the deformation field.

A.1. Distance Measure. As the individual terms of the com-
bined distance measure (7) are all of the same form, it suffices
to calculate the first variation of the distance measure with
only one feature imageD

𝐼
[𝑢] defined in (5) as follows.
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(A.1)

The dependency of the weighting term 𝑄
𝐼
on 𝑢 is neglected

for reasons of efficiency. The other terms are derived analo-
gously. The derivative of the combined distance measure (7)
is therefore
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A.2. RegularizationTerm. Wewill continue by calculating the
first variation of the regularization termR
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[𝑢] defined in (8).
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The divergence regularization term introduced in (9) is
differentiated as follows:
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Therefore, the derivative of the full regularization func-
tionalR[𝑢] from (9) is
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Statistical Prior. Taking into account that the covariance
operatorC is linear and self-adjoint and therefore this is also
true for its pseudoinverse, it is easy to compute that the first
variation of the statistical prior from (12) is given by
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where ⟨⋅, ⋅⟩ = ⟨⋅, ⋅⟩
𝐿
2
(Ω,R3).

A.3. Strong Derivative. In order to derive the strong formula-
tion, for the functional, we first apply integration by parts on
the derivative of the regularization term (A.5). Assuming zero
Neumann or Dirichlet boundary conditions, the boundary
terms vanish and we get
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Now we can collect all the terms making up the weak
derivative as follows:
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from (A.2), (A.7), and (A.6) and apply the fundamental
lemma of the calculus of variations to each component 𝜑

𝑖
of 𝜑

which leads to the partial differential equation characterizing
𝑢:
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This is the well-known equation from linear elasticity with a
forcing term on the right hand side and the additional term
from the statistical deformation prior.
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