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Abstract

In this paper we unify, simplify, and extend previous work on the evolu-

tionary dynamics of symmetric N -player matrix games with two pure strate-

gies. In such games, gains from switching strategies depend, in general, on

how many other individuals in the group play a given strategy. As a con-

sequence, the gain function determining the gradient of selection can be a

polynomial of degree N − 1. In order to deal with the intricacy of the re-

sulting evolutionary dynamics, we make use of the theory of polynomials in

Bernstein form. This theory implies a tight link between the sign pattern

of the gains from switching on the one hand and the number and stability

of the rest points of the replicator dynamics on the other hand. While this

relationship is a general one, it is most informative if gains from switching

have at most two sign changes, as is the case for most multi-player matrix

games considered in the literature. We demonstrate that previous results for
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public goods games are easily recovered and extended using this observation.

Further examples illustrate how focusing on the sign pattern of the gains

from switching obviates the need for a more involved analysis.

Keywords:

evolutionary game theory, replicator dynamics, polynomials in Bernstein

form, public goods games

1. Introduction1

Game theory has been widely applied to evolutionary biology (May-2

nard Smith and Price, 1973; Maynard Smith, 1982; Eshel, 1996; Hofbauer3

and Sigmund, 1998; Rousset, 2004; Vincent and Brown, 2005; Dercole and4

Rinaldi, 2008; Broom and Rychtář, 2013). More specifically, the applica-5

tion of game-theoretic concepts has been instrumental in explaining the evo-6

lution of traits as diverse as the sex ratio (Hamilton, 1967; Frank, 1987),7

dispersal (Hamilton and May, 1977; Comins et al., 1980), reciprocity (Axel-8

rod and Hamilton, 1981), group foraging (Clark and Mangel, 1986), polic-9

ing (Frank, 1995), and anisogamy (Bulmer and Parker, 2002). Evolutionary10

models of these traits often assume “playing the field” type of interactions11

(Maynard Smith, 1982, p. 23), where the payoff to an individual depends on12

an average property of the population or the group with which it interacts.13

There are many situations, however, where the payoff to an individual14

depends critically on the strategy profile in the population (or its group) and15

where the actions of different individuals cannot be averaged; that is, mass16

action does not apply. Typical examples involve collective action problems in17

moderately sized groups, where the change in behavior by a single individual18
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can result in a large, discontinuous change in payoffs to others (e.g., Boyd19

and Richerson, 1988). Such collective action problems have been modeled as20

multi-player (or multi-person) matrix games (Broom et al., 1997; Kurokawa21

and Ihara, 2009; Gokhale and Traulsen, 2010). Except for the very special22

cases in which group size is taken to be equal to two (so that the well-23

developed theory of two-player matrix games can be applied, cf. Weibull,24

1995; Hofbauer and Sigmund, 1998; Cressman, 2003) or the payoff structure25

is linear (as in the standard model of the N -person prisoner’s dilemma), such26

games have proven difficult to analyze.27

The intrinsic complexity of multi-player matrix games is already evident

for the case of symmetric games with two pure strategies A and B on which

we focus in this paper. For these games, the average payoff difference in a

large and well-mixed population is given by the so-called gain function (Bach

et al., 2006)

g(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−kdk.

Here, n is the number of co-players of a focal player (so that N = n + 1 is28

the group size), x is the population fraction of A-strategists, and dk is the29

gain a focal player would obtain if switching from strategy B to strategy A30

when k other group-members play A. The evolutionary solution of the game31

(such as the set of evolutionarily stable strategies, ESSs, or the set of stable32

rest points of the replicator dynamics) involves not only finding the roots of33

the gain function g(x) (a polynomial of degree n) but also, as discussed in34

Broom et al. (1997), determining the behavior of g(x) in the vicinity of such35

roots. While this is straightforward for two-player games (for which g(x) is36

linear in x) and a full classification for three-player games (for which g(x) is37
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quadratic in x) is available (Bukowski and Miȩkisz, 2004), payoff structures38

in groups of size larger than five lead to polynomials of degree greater than39

four that cannot, in general, be solved analytically (Clark, 1984).40

In order to deal with such complexity, the vast majority of previous works41

on multi-player matrix games has considered particular functional forms for42

the specification of the payoffs and has resorted to lengthy algebra or numer-43

ical methods to study the models (Joshi, 1987; Boyd and Richerson, 1988;44

Dugatkin, 1990; Weesie and Franzen, 1998; Hauert et al., 2006; Zheng et al.,45

2007; Cuesta et al., 2008; Pacheco et al., 2009; Archetti, 2009; Souza et al.,46

2009; Archetti and Scheuring, 2011; van Segbroeck et al., 2012). In this47

way, some non-linear public goods games, including multi-player extensions48

of well-known two-person matrix games such as the stag hunt (Skyrms, 2004)49

and the snowdrift game (Sugden, 1986), have been characterized on a case-50

by-case basis.51

In contrast to these efforts, Motro (1991) and Bach et al. (2006) have52

taken a more systematic approach to the study of non-linear public goods53

games. Both of these papers consider situations in which each contributor to54

a public good pays a constant cost, whereas the benefit from the public good,55

which is obtained by all players, is a function of the number of contributors.56

Motro (1991) proves that in this case the replicator dynamics has at most57

one interior rest point if the benefit is concave or convex in the number of58

contributors. He also provides necessary and sufficient conditions for the59

existence of such a rest point and characterizes the stability property of all60

rest points. In a similar spirit, Bach et al. (2006) find sufficient conditions on61

the shape of the benefits such that there exists a critical cost level with the62
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property that for costs below such a level the replicator dynamics has two63

interior rest points, whereas for higher costs there is no interior rest point.64

Gokhale and Traulsen (2010) have discussed the relationship between the65

sign pattern of the gains from switching and the number of interior rest points66

of the replicator dynamics. Specifically, these authors observe that the repli-67

cator dynamics has a single interior rest point if the sequence (d0, d1, . . . , dn),68

which we refer to as the gain sequence, has exactly one sign change. Gokhale69

and Traulsen (2010) also note that the direction of selection (as given by70

the sign of the gain function g(x)) cannot have more sign changes than the71

gain sequence. This implies that the number of sign changes of the gain72

sequence provides an upper bound on the number of interior rest points of73

the replicator dynamics. The latter observation is also made in Hauert et al.74

(2006) and Cuesta et al. (2007). When g(x) has no multiple roots, any upper75

bound on the number of interior rest points translates directly into an upper76

bound on the number of stable rest points because, as noted in Broom et al.77

(1997, p. 939), in this case the rest points alternate between being stable78

and unstable.79

In this paper, we show how sign-change conditions like the ones discussed80

by Gokhale and Traulsen (2010) can be refined by using the fact that the gain81

function g(x) is a particular kind of polynomial, known as a polynomial in82

Bernstein form (or Bernstein polynomial), with coefficients given by the gain83

sequence (d0, d1, . . . , dn). Our analysis rests on the variation-diminishing84

property of Bernstein polynomials and a property that we refer to as the85

preservation of initial and final signs. These properties provide a tight link86

between the sign pattern of the gain sequence and the sign pattern of the gain87
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function.1 In particular, if the gain sequence has at most two sign changes,88

a full characterization of the possible dynamic regimes is easily obtained.89

For most of the collective action problems that have been modeled as90

multi-player matrix games it is straightforward to determine the sign pat-91

tern of the gain sequence. Moreover, because the gain sequences of these92

games have at most two sign changes, our characterization results provide all93

the information necessary to recover the results on the number and stability94

of rest points obtained in previous studies. We demonstrate these claims for95

two classes of public goods games, namely threshold games (e.g., Dugatkin,96

1990; Weesie and Franzen, 1998; Zheng et al., 2007; Souza et al., 2009) and97

constant cost games (e.g., Motro, 1991; Bach et al., 2006; Hauert et al., 2006;98

Pacheco et al., 2009; Archetti and Scheuring, 2011), and two additional ex-99

amples taken from Hauert et al. (2006) and van Segbroeck et al. (2012), thus100

supporting the claim that the approach developed here unifies, simplifies,101

and extends much of the previous work on multi-player matrix games.102

2. Model103

Interactions occur in groups of size N = n+1, in which a focal individual104

plays a game against n co-players or opponents. Each individual can choose105

between one of two different pure strategies, A and B. The game is symmetric106

so that, from the focal’s point of view, any two co-players are exchangeable.107

1The fact that the gain function g(x) is a Bernstein polynomial has previously been

noted by Cuesta et al. (2007). These authors also suggest that the variation diminish-

ing property of these polynomials may make the analysis of many multi-player games

straightforward, but do not pursue this idea.
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Let ak denote the payoff to an individual choosing A when k opponents

choose A (and hence n − k co-players choose B); likewise, let bk denote the

payoff to an individual choosing B when k opponents choose A. Also let

dk ≡ ak − bk

denote the gain the focal player makes from choosing A over B, taking the108

choices of other players (k playing A and n − k playing B) as given. The109

parameters dk, which describe the gains from switching, are collected in the110

gain sequence d = (d0, d1, . . . , dn). We assume d �= 0, thus excluding the111

uninteresting case in which payoffs are independent of the actions chosen.112

Evolution occurs in an infinitely large and well-mixed population with113

groups randomly formed by binomial sampling. Hence, if the frequency of114

A-strategists in the whole population is x, the average payoffs obtained by115

an A-strategist and a B-strategist are respectively given by116

πA(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−kak

and117

πB(x) =
n∑

k=0

(
n

k

)
xk(1− x)n−kbk.

We assume that the rules of transmission of the strategies (whether genet-118

ically encoded or individually or socially learned) are such that the frequency119

x of A-strategists in the population can be described by the replicator dy-120

namics (Taylor and Jonker, 1978; Hofbauer and Sigmund, 1998)121

dx

dt
= x(1− x)g(x), (1)

where g(x) = πA(x)−πB(x) is the gain function (Bach et al., 2006) given by122

g(x) = Bn(x;d) ≡
n∑

k=0

(
n

k

)
xk(1− x)n−kdk. (2)
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As we have already mentioned in the Introduction, the gain function is a poly-123

nomial in Bernstein form (also known as a Bernstein polynomial, cf. Farouki124

(2012)). This is made explicit by the notation we introduce in (2), where the125

Bernstein operator Bn maps the vector of Bernstein coefficients d ∈ R
n+1

126

into the polynomial
∑n

k=0

(
n
k

)
xk(1− x)n−kdk in the variable x ∈ [0, 1].127

The replicator dynamics (1) has two trivial rest points at x = 0 (where128

the whole population consists of B-strategists) and x = 1 (where the whole129

population consists of A-strategists). Interior rest points 0 < x∗ < 1 are given130

by the solutions of the equation g(x∗) = 0. Because g(x) is a polynomial of131

degree at most n (and we have assumed d �= 0) the replicator dynamics can132

have at most n interior rest points, corresponding to n simple roots of g(x)133

in the open interval (0, 1). In the two-strategy case we analyze here, rest134

points of the replicator dynamics can be either (locally asymptotic) stable or135

unstable. Stability of a rest point x∗ requires that (x−x∗)(g(x)− g(x∗)) < 0136

holds for all x �= x∗ in the vicinity of x∗. Since the stable rest points of137

the replicator dynamics correspond to ESSs for the multi-player game (Bach138

et al., 2006), our following results about stable rest points of the replicator139

dynamics carry over to ESSs without any changes.140

Remark 1. The gain function g(x) given in (2) can also be interpreted as

the selection gradient on a continuously varying mixed strategy x (denoting

here the probability that an individual plays action A), evolving according

to the traditional breeder’s equation or the canonical equation of adaptive

dynamics (Dieckmann and Law, 1996), so that the dynamics is of the form

dx

dt
= v(x)g(x),
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for some measure v(x) of genetic variance (Kirkpatrick and Rousset, 2005).141

Hence, all our subsequent results pertaining to polymorphic equilibria in142

pure strategies can also be interpreted in terms of monomorphic equilibria143

for mixed strategies.144

3. Sign patterns and (the stability of) rest points145

The fact that the gain function is a polynomial in Bernstein form implies146

a tight link between the sign pattern of the gain sequence on the one hand147

and the sign pattern and number of roots of the gain function on the other148

hand. This is due to two properties of Bernstein polynomials, namely the149

preservation of initial and final signs and the variation diminishing property150

(see Properties 1 and 2 below). Because roots of the gain function correspond151

to interior rest points of the replicator dynamics and the sign pattern of152

the gain function informs us about changes in the direction of selection at153

interior rest points (as well as the direction of selection at the trivial rest154

points), general results about the number and stability of rest points follow155

immediately (see Results 1 and 2). These results hold for any non-zero gain156

sequence, allow for interior rest points at which the direction of selection157

does not change, and provide more detailed information about the number158

of rest points and stable equilibria than the observations made by Cuesta159

et al. (2007) and Gokhale and Traulsen (2010). Results 3 to 5 summarize160

the implications of the general results for gain sequences with at most two161

sign changes, providing the basis for our subsequent analysis.162
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3.1. Preliminaries163

To proceed, we require some terminology and notation to describe sign164

patterns (see Brown et al., 1981) and other relevant shape properties of gain165

sequences and gain functions. The same notation and terminology applies to166

other sequences and functions we encounter in our analysis.167

Let I(d) denote the sign (either + or −) of the first non-zero entry in168

the sequence d. Likewise, let F (d) denote the sign of the last non-zero entry169

in d. We refer to I(d) and F (d) as the initial and final signs of the gain170

sequence d. We also denote by S(d) the number of sign changes between171

consecutive entries in d after zero entries have been eliminated. Obviously,172

0 ≤ S(d) ≤ n.173

As we have assumed d �= 0, there exists a neighborhood of x∗ = 0 such174

that the sign of g(x) is either + or − for all x �= 0 in this neighborhood. We175

define the initial sign I(g) of g(x) as the sign of g(x) in such neighborhood,176

and define the final sign F (g) in an analogous way. Note that I(g) coincides177

with the sign of g(0) if g(0) �= 0 holds. Similarly, if g(1) �= 0 holds, then178

F (g) coincides with the sign of g(1). The number of sign changes S(g) of179

the function g(x) in the interval (0, 1) is the number of times it crosses the180

x-axis in (0, 1).181

The notation Δd = (Δd0, . . . ,Δdn−1), where Δdk ≡ dk+1 − dk, denotes182

the (first) forward difference of the sequence d. The second forward difference183

of the sequence d is Δ2d = (Δ2d0, . . . ,Δ
2dn−2), where Δ

2dk ≡ Δdk+1−Δdk.184

These forward differences can be viewed as the counterparts to the first and185

second derivatives of a real function and are a useful tool for describing the186

shape of a sequence. In particular, the sequence d is increasing (resp. de-187
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creasing) if Δd ≥ 0 (Δd ≤ 0) holds, convex (resp. concave) if Δ2d ≥ 0188

(resp. Δ2d ≤ 0) holds, and unimodal (resp. anti-unimodal) if the sequence189

Δd has a single sign change from positive to negative (resp. from negative190

to positive). Corresponding definitions apply to the gain function g(x). For191

instance, a gain function is unimodal if its first derivative g′(x) has one sign192

change from positive to negative and is concave if its second derivative sat-193

isfies g′′(x) ≤ 0 for all 0 ≤ x ≤ 1.194

3.2. Stability of trivial rest points195

One important property of the Bernstein operator Bn is that it preserves196

end-points, i.e. g(0) = Bn(0;d) = d0 and g(1) = Bn(1;d) = dn (Farouki,197

2012). From this, it is immediate that the initial and final signs of g(x) and198

d coincide in the case when d0 �= 0 and dn �= 0. We show in Appendix A199

that the same conclusion obtains in general, so that we have the following200

property.201

Property 1 (Preservation of initial and final signs). The initial and fi-

nal signs of g(x) and d coincide. That is,

I(g) = I(d) and F (g) = F (d).

The initial sign of g(x) describes the direction of selection in a vicinity of202

the trivial rest point x = 0, so that the rest point x = 0 is stable if and only203

if the initial sign of g(x) is negative. Similarly, the rest point x = 1 is stable204

if and only if the final sign of g(x) is positive. Hence, Property 1 implies that205

the initial and final signs of the gain sequence are all the information required206

to determine the stability of the trivial rest points. This is explicitly stated in207
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the following result, which has previously been noted by Broom et al. (1997,208

Section 4.1).209

Result 1 (Stability of trivial rest points).210

1. The rest point x = 0 is stable if and only if I(d) = −.211

2. The rest point x = 1 is stable if and only if F (d) = +.212

The first part of Result 1 asserts that strategy A is disadvantageous when213

rare if and only if the first non-zero element in the gain sequence is negative.214

The second part is the assertion that strategy A is advantageous when com-215

mon if and only if the last non-zero element in the gain sequence is positive.216

3.3. Number of (stable) interior rest points217

Let R(g) ≥ 0 denote the number of roots of g(x) in the interval (0, 1),218

counting roots according to their multiplicity. The following is the variation219

diminishing property of Bernstein polynomials.220

Property 2 (Variation diminishing property).221

1. The number of roots of g(x) on (0, 1) is equal to the number of sign222

changes of d or less by an even amount. That is,223

R(g) = S(d)− 2i, where i ≥ 0 is an integer. (3)

2. The number of sign changes of g(x) is equal to the number of sign224

changes of d or less by an even amount. That is,225

S(g) = S(d)− 2j, where j ≥ i is an integer. (4)
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The first part of the variation-diminishing property (see e.g. Farouki226

(2012)) follows from Descartes’ rule of signs, which hence can be said to227

“carry over” to polynomials in Bernstein form. The second part follows from228

the first upon observing that x ∈ (0, 1) is the location of a sign change of229

g(x) if and only if x is a root of g(x) with odd multiplicity, so that S(g) is230

either equal to R(g) or less by an even amount.231

As the interior rest points of the replicator dynamics coincide with the232

roots of g(x), Property 2.1 applies as stated to the interior rest points of233

the replicator dynamics. In particular, as noted by Cuesta et al. (2007)234

and Gokhale and Traulsen (2010), the number of sign changes of the gain235

sequence d provides an upper bound on the number of interior rest points.236

If the number of sign changes of d is odd, (3) implies that R(g) is odd.237

Consequently, the replicator dynamics possesses at least one interior rest238

point in this case.239

Stability of an interior rest point is equivalent to the requirement that240

the sign of g(x) changes from + to − at the rest point. As sign changes must241

alternate and initial signs are preserved (Property 1), the second part of the242

variation diminishing property yields the following result.243

Result 2 (Number of stable interior rest points). Let � denote the num-244

ber of stable interior rest points of the replicator dynamics and let j ≥ 0 be245

the integer appearing in the statement of Property 2.2.246

1. If S(d) is even, then � = S(g)/2 = S(d)/2− j.247

2. If S(d) is odd and I(d) = −, then � = (S(g)−1)/2 = (S(d)−1)/2− j.248

3. If S(d) is odd and I(d) = +, then 1 ≤ � = (S(g) + 1)/2 = (S(d) +249

1)/2− j.250
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In the generic case in which g(x) has no multiple roots, the argument251

yielding Result 2 reduces to the one given by Broom et al. (1997, p. 939).252

3.4. Special cases253

It will be convenient to summarize the relationship between the sign pat-254

terns of the gain sequence and the rest points of the replicator dynamics255

for the cases in which the gain sequence has at most two sign changes. We256

also provide simple sufficient conditions ensuring that a gain sequence has at257

most one, resp. two sign changes.258

3.4.1. Gain sequences with one or no sign change259

When the gain sequence has no or one sign change, the variation diminish-260

ing property implies that the number of roots and the number of sign changes261

of the gain function both coincide with the number of sign changes of the262

gain sequence. In particular, Result 2 holds with j = 0. Combining these263

observations with Result 1 then shows that for games with gain sequences264

having at most one sign change, the sign pattern of the gain sequence con-265

tains all the information required to determine the number and stability of266

rest points. For later reference we state the ensuing case distinction in the267

following result.268

Result 3 (Gain sequences with no or one sign change).269

1. If the gain sequence has no sign changes, then the replicator dynamics270

has no interior rest points. Moreover271

(a) If I(d) = −, then x = 0 is stable and x = 1 is unstable.272

(b) If I(d) = +, then x = 0 is unstable and x = 1 is stable.273
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2. If the gain sequence has a single sign change, then the replicator dy-274

namics has a unique interior rest point x∗. Moreover:275

(a) If I(d) = −, then x = 0 and x = 1 are stable, and x∗ is unstable.276

(b) If I(d) = +, then x = 0 and x = 1 are unstable, and x∗ is stable.277

The four possible dynamical regimes appearing in Result 3 correspond278

to the cases that are familiar from the evolutionary analysis of symmetric279

two-player games with two pure strategies (see, e.g. Cressman, 2003, Section280

2.2). This is, of course, not a coincidence: such two-player games are nothing281

but the special case of our model with n = 1 and thus feature gain sequences282

with at most one sign change.283

A simple sufficient condition for the applicability of Result 3 is that the284

gain sequence is monotonic, that is, either increasing or decreasing. It is285

clear that an increasing gain sequence can have at most one sign change and286

that such a sign change occurs if and only if d0 < 0 < dn. In this case, the287

rest points of the replicator dynamics are characterized by Result 3.2.a. The288

other two possibilities for an increasing gain sequence, namely dn ≤ 0 and289

d0 ≥ 0, are covered by Result 3.1.a and Result 3.1.b, respectively. Similarly,290

for a decreasing gain sequence only three of the four scenarios described in291

Result 3 are possible, with a stable interior rest point occurring if and only292

if d0 > 0 > dn.293

3.4.2. Gain sequences with two sign changes294

If the gain sequence has two sign changes, its initial and final signs coin-295

cide. Suppose they are both negative. Then, by the preservation of initial296

and final signs (Property 1), the same is true for the initial and final signs of297
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g(x). In particular, as indicated by Result 1, the rest point x = 0 is stable298

and the rest point x = 1 is unstable. Further, the first part of the variation299

diminishing property implies that the replicator dynamics has either (i) two300

distinct interior rest points (which correspond to simple roots in which g(x)301

crosses zero), (ii) one interior rest point (corresponding to a double root in302

which g(x) touches, but does not cross zero), or (iii) no interior rest point.303

In the first of these cases g(x) has two sign changes and the larger of the two304

interior rest points is stable. In the other two cases g(x) has no sign change305

and, consequently, no stable interior rest point. Considering the maximal306

value of g(x) on [0, 1], which we denote by ḡ, provides a convenient way to307

describe which of these three cases arises. In particular, for ḡ < 0 there308

is no interior rest point, for ḡ = 0 there is exactly one interior rest point,309

and for ḡ > 0 there are two interior rest points. Analogous reasoning can310

be applied for the case in which the initial and final signs are both positive.311

These considerations are summarized in the following result.312

Result 4 (Gain sequences with two sign changes). Let ḡ = max0≤x≤1 g(x)313

and g = min0≤x≤1 g(x). Then:314

1. If S(d) = 2 and I(d) = − the rest point x = 0 is stable and the rest315

point x = 1 is unstable. Further:316

(a) if ḡ < 0, the replicator dynamics has no interior rest points.317

(b) if ḡ = 0, then the replicator dynamics has one interior rest point318

x̂ which is unstable.319

(c) if ḡ > 0, the replicator dynamics has one unstable rest point xL320

and one stable rest point xR, satisfying 0 < xL < xR < 1.321
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2. If S(d) = 2 and I(d) = + the rest point x = 0 is unstable and the rest322

point x = 1 is stable. Further:323

(a) If g > 0, the replicator dynamics has no interior rest points.324

(b) If g = 0, the replicator dynamics has one interior rest point x̂325

which is unstable.326

(c) If g < 0, the replicator dynamics has one stable rest point xL and327

one unstable rest point xR, satisfying 0 < xL < xR < 1.328

It is evident from the case distinctions appearing in Result 4 that for gain329

sequences with two sign changes, information beyond the one contained in330

the sign pattern of the gain sequence is required to determine the number331

of interior rest points. However, the additional information required takes a332

simple form (namely, the knowledge of the maximal, resp. minimal value of333

the gain function), which is amenable to further analysis.334

Remark 2. If a gain sequence has more than two sign changes, Results 1335

and 2 still provide useful information about the possible range of dynamical336

scenarios, but determining which of these scenarios arises becomes much337

harder than in the case of at most two sign changes. To illustrate this,338

consider the case S(d) = 3 and suppose I(d) = +. We then have F (d) = −,339

implying that both trivial rest points are unstable (Result 1). Furthermore,340

there are either one or two stable interior rest points (Result 2). In the second341

of these cases there must exist a single unstable interior rest point, in the first342

case there is either no unstable interior rest point or one unstable interior343

rest point which corresponds to a root of the gain function with multiplicity344

two (Property 2.1).345
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3.4.3. Unimodal gain sequences346

Unimodality or anti-unimodality is a simple sufficient condition ensuring347

that a gain sequence has at most two sign changes. Furthermore, a complete348

classification of the possible dynamic scenarios is easily obtained. Here we349

demonstrate these claims for the unimodal case; the argument (and result)350

for the anti-unimodal case is analogous.351

Our argument relies on the identity352

g′(x) = nBn−1(x; Δd), (5)

which is a classical result in approximation theory, known as the derivative353

property of polynomials in Bernstein form (see e.g. Lorentz, 1986; DeVore and354

Lorentz, 1993; Farouki, 2012). By (5) the derivative g′(x) is proportional to355

a Bernstein polynomial with coefficients Δd. We may thus apply Properties356

1 and 2 to the relationship between the sign pattern of Δd and the roots and357

sign pattern of g′(x). Recalling that for a unimodal gain sequence Δd has358

a single sign change from positive to negative, it follows that unimodality359

of the gain sequence implies unimodality of the gain function. Moreover,360

applying the first part of the variation diminishing property, there exists a361

unique 0 < x̂ < 1 satisfying the first order condition g′(x̂) = 0. Unimodality362

of g(x) implies that x̂ is the unique solution to the problem max0≤x≤1 g(x)363

appearing in the statement of Result 4. In particular, we have ḡ = g(x̂).364

It is clear that a unimodal gain function can have at most one sign change365

in its increasing part (which then must be from negative to positive) and at366

most one sign change in its decreasing part (which then must be from positive367

to negative). Moreover, a sign change in the increasing part occurs if and368

only if g(0) < 0 < g(x̂) and a sign change in the decreasing part occurs if and369
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only if g(1) < 0 < g(x̂). Combining these observations yields the following370

result, refining Results 3 and 4 for the unimodal case.371

Result 5 (Unimodal gain sequences). If the gain sequence is unimodal,372

there exists a unique 0 < x̂ < 1 solving the equation g′(x̂) = 0. Moreover:373

1. If g(x̂) < 0, then the replicator dynamics has no interior rest point.374

The rest point x = 0 is stable and the rest point x = 1 is unstable.375

2. If g(x̂) = 0, then x̂ is the unique interior rest point of the replicator376

dynamics. The rest point x = 0 is stable and the rest points x̂ and377

x = 1 are unstable.378

3. If g(x̂) > 0 holds, then one of the following four cases applies:379

(a) If min{d0, dn} ≥ 0, then the replicator dynamics has no interior380

rest point. The rest point x = 0 is unstable and the rest point381

x = 1 is stable.382

(b) If max{d0, dn} < 0, then the replicator dynamics has two interior383

rest points satisfying xL < x̂ < xR. The rest points x = 0 and xR384

are stable, whereas the rest points xL and x = 1 are unstable.385

(c) If d0 < 0 and dn ≥ 0, then the replicator dynamics has a unique386

interior rest point x∗ < x̂. The rest points x = 0 and x = 1 are387

stable, whereas the rest point x∗ is unstable.388

(d) If d0 ≥ 0 and dn < 0, then the replicator dynamics has a unique389

interior rest point x∗ > x̂. The rest point x∗ is stable, whereas the390

rest points x = 0 and x = 1 are unstable.391

Remark 3. Using the derivative property of polynomials in Bernstein form,392

it can be shown that all the properties of gain sequences mentioned at the393
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end of Section 3.1 are inherited by the gain function (e.g., if the gain sequence394

is increasing, so is the gain function). The argument for the preservation of395

anti-unimodality is analogous to the one we have given for the preservation of396

unimodality. The other results are well known properties of Bernstein poly-397

nomials, namely preservation of monotonicity, and preservation of convexity398

(see Lorentz, 1986; Farouki, 2012). Seemingly unaware of these properties,399

Motro (1991) proves preservation of monotonicity and Bach et al. (2006)400

prove preservation of concavity (which is equivalent to preservation of con-401

vexity).402

4. Public goods games403

In this section, we apply Results 3 to 5 to two classes of public goods404

games, subsuming many of the models encountered in the literature of the405

evolution of cooperation and collective action.406

4.1. Gain sequences for public goods games407

In a public goods game, playing A means to cooperate (i.e. to contribute to408

the creation or maintenance of a public good) and playing B means to defect409

(i.e. to free ride on the contributions of others). Contributing entails a cost410

ck ≥ 0 to the focal cooperator, where k is the number of other cooperators.411

Defectors bear no cost. All players obtain a benefit rj ≥ 0 from the public412

good, where j is the total number of cooperators in the group. Note that413

for a focal cooperator j = k + 1, while for a focal defector j = k. With414

these assumptions, the payoff sequences for a public goods game can thus be415

written as416

ak = rk+1 − ck, k = 0, 1, . . . , n

20



and417

bk = rk, k = 0, 1, . . . , n

so that the gain sequence is given by418

dk = Δrk − ck, k = 0, 1, . . . , n. (6)

As it is generally considered in the literature, we assume the benefit se-419

quence r = (r0, . . . , rn+1) is increasing and the cost sequence c = (c0, . . . , cn)420

is not equal to zero.421

If no further assumptions are imposed on the cost and benefit sequence, it422

is clear from (6) that any d can arise as the gain sequence of a public goods423

game. Consequently, to obtain insights into the evolutionary dynamics of424

public goods games going beyond the ones summarized in Results 1 and 2,425

additional assumptions on the benefit or the cost sequence are required. In426

this light, it is not surprising that public goods games usually studied in the427

biological literature fall into one of the two classes that we discuss in the428

following subsections.429

4.2. Threshold games430

If there exists an integer m with 1 ≤ m ≤ n + 1 and a constant r > 0431

such that the benefit sequence satisfies rj = 0 if j < m and rj = r if j ≥ m,432

we say that a public goods game is a threshold game. This class of games433

describes situations in which the public good is a “step good” in the sense434

of Hardin (1982, p. 55): at least m cooperators are required to provide a435

public good for all group members, but the number of cooperators beyond the436

threshold m does not increase the benefit received by the players. Examples437

of such threshold games abound in the theoretical literature of the social438
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sciences (Hardin, 1982; Taylor and Ward, 1982; Diekmann, 1985; Sugden,439

1986; Weesie and Franzen, 1998; Höffler, 1999; Herold, 2012) and evolutionary440

biology (Dugatkin, 1990; Bach et al., 2006; Zheng et al., 2007; Archetti, 2009;441

Souza et al., 2009), and are sometimes referred to as volunteer’s dilemmas or442

multi-player snowdrift games.443

For threshold games (6) reduces to444

dk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ck if k < m− 1

r − cm−1 if k = m− 1

−ck if k > m− 1

. (7)

It is obvious that the gain sequence d has no sign change when r ≤ cm−1 and445

that in this case defection is a dominant strategy. As illustrated in Fig. 1446

and discussed below, in the other cases the sign pattern of the gain sequence447

depends on the location of the threshold m.448

[Figure 1 about here.]449

4.2.1. Threshold m = 1450

Threshold games with m = 1 represent situations in which only one co-451

operator is required for the provision of the public good. Such games have452

been considered by Dugatkin (1990), Weesie and Franzen (1998), Zheng et al.453

(2007), and Souza et al. (2009) for the particular case of a cost sequence satis-454

fying ck = c/(k+ 1) for some constant c > 0, so that the cost to cooperators455

is inversely proportional to the total number of cooperators in the group.456

These authors have shown by algebraic manipulations or numerical simula-457

tions that for such games the replicator dynamics has at most one interior458
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stable rest point. Archetti (2009) shows the same result for a cost sequence459

satisfying ck = c for some constant c > 0.460

Considering the sign pattern of the gains from switching not only recovers461

this result in a simpler way, but also extends it to any strictly positive cost462

sequence c. If r > c0, the gain sequence given in (7) has exactly one sign463

change and I(d) = +, so that Result 3.2.b establishes the existence of a464

single interior stable rest point 0 < x∗ < 1 and the instability of the trivial465

rest points (see Fig. 1.a). If r ≤ c0, Result 3.1.a applies. Hence, there is no466

interior rest point and x = 0 is the unique stable rest point.467

4.2.2. Threshold m = n+ 1468

Recalling that N = n+ 1 is group size, threshold games with m = n + 1469

represent situations in which the cooperation of all group members is required470

to produce the public good. For the case m = n+1 = 2 and a cost sequence471

satisfying 0 < c0 = c1 < r, Souza et al. (2009) observe that such a threshold472

game corresponds to a two-player stag hunt game (Skyrms, 2004) in which473

both trivial rest points are stable and there is a unique, unstable interior474

rest point. It is easy to see that this result holds more generally. Indeed,475

provided that the cost sequence is strictly positive and satisfies r > cn, the476

gain sequence given in (7) is characterized by S(d) = 1 and I(d) = −. Then,477

by Result 3.2.a, it follows that the qualitative dynamics of the two-player stag478

hunt are recovered for every threshold game with m = n + 1 (see Fig. 1.b).479

The case r ≤ cn is covered by Result 3.1.a.480
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4.2.3. Threshold 1 < m < n+ 1481

Souza et al. (2009) studied a threshold game with 1 < m < n + 1 for a482

cost sequence of the form483

ck =

⎧⎨
⎩

c/m if k < m− 1

c/(k + 1) if k ≥ m− 1
(8)

for some constant c > 0. Their main theoretical result (Souza et al., 2009,484

Theorem 1) uses an ingenious but rather involved argument to demonstrate485

that in this example there exists c̄ > 0 and 0 < x̄ < 1 such that (i) if c < c̄,486

the replicator dynamics has two interior rest points xL < x̄ < xR where xL is487

unstable and xR is stable (see Fig. 1.c), (ii) if c = c̄, the replicator dynamics488

has a unique rest point x̄ (which is unstable), and (iii) if c > c̄, the replicator489

dynamics has no interior rest point (see Fig. 1.d).2490

In Appendix B we prove that the same result holds for any cost sequence491

of the form ck = c · γk, where the strictly positive, but otherwise arbitrary,492

sequence γ describes the shape of the cost sequence and, as in the example493

considered by Souza et al. (2009), c shifts the level of the cost sequence.494

Our result follows, in essence, from two observations. The first is that for495

every threshold game with 1 < m < n+1 and strictly positive cost sequence496

satisfying 0 < cm−1 < r the gain sequence has two sign changes and a negative497

initial sign, so that the rest points of the replicator dynamics are described498

by Result 4.1. The second observation is that the maximal value of the gain499

function ḡ is strictly decreasing in the cost parameter c.500

2Souza et al. (2009) express their results in terms of the cost-benefit ratio c/r. The

difference is of no importance as time can always be rescaled to ensure r = 1.
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Threshold games with 1 < m < n+ 1 have also been considered by Bach501

et al. (2006), Archetti (2009), and Archetti and Scheuring (2011). These502

authors assume a cost sequence satisfying ck = c for some constant c >503

0, implying that these games fall in the class of constant cost games with504

sigmoid benefit functions that we discuss in Section 4.3.3.505

4.2.4. Further threshold games506

In economics, Höffler (1999) and Herold (2012) have studied evolutionary507

dynamics of threshold games which differ from the biological threshold games508

considered above in that cooperators pay a cost only if the threshold for the509

successful provision of the public good is reached. In such cases the gain510

sequence has the form511

dk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if k < m− 1

r − cm−1 if k = m− 1

−ck if k > m− 1

(9)

and thus possesses at most one sign change (see Fig. 2). For r > cm−1 and512

1 ≤ m < n+1, this gain sequence satisfies I(d) = + and S(d) = 1. Applying513

Result 3.2.b then yields a simple direct proof of the main result obtained by514

Höffler (1999, Proposition 1) and Herold (2012, Proposition 1) for this class515

of games, namely that there exists a unique stable interior rest point.3516

[Figure 2 about here.]517

3Proposition 2 in Höffler (1999), which considers the case m = n+1, is implied by our

Result 3.1.b. Herold also considers the case in which cooperators only pay a cost if the

threshold is not reached. His main result for this case (Herold, 2012, Proposition 2) is

implied by our Result 3.2.a.
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4.3. Constant cost games518

If there exists a constant c > 0 such that ck = c holds for k = 0, . . . , n519

we say that a public goods game is a constant cost game. Such games have520

been studied, among others, by Motro (1991), Szathmáry (1993), Bach et al.521

(2006), Hauert et al. (2006), Pacheco et al. (2009), and Archetti and Scheur-522

ing (2011).523

In the case of a constant cost game, equation (6) reduces to524

dk = Δrk − c, k = 0, 1, . . . , n. (10)

It is then immediate that the gain sequence has no sign change (and hence525

no interior rest point) if c ≥ maxk=0,...,nΔrk or mink=0,...,n Δrk ≥ c holds. It526

follows from Result 3.1 that in the former case x = 0 and in the latter case527

x = 1 is the unique stable rest point. In all other cases, that is whenever the528

inequality529

min
k=0,...,n

Δrk < c < max
k=0,...,n

Δrk (11)

holds, the gain sequence has at least one sign change.530

In the following, we consider three different kinds of constant cost games,531

arising from three different assumptions on the shape of the benefit sequence:532

linear benefits (Section 4.3.1), convex or concave benefits (Section 4.3.2) and533

sigmoid benefits (Section 4.3.3). See Fig. 3 for a graphical illustration of534

these different constant cost games.535

[Figure 3 about here.]536

4.3.1. Linear benefits537

The familiar linear public goods game is a constant cost game in which538

the benefit sequence is given by rj = jr/(n + 1) (Sigmund, 2010). The539
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interpretation is that r > 0 is the amount of the public good produced by540

each cooperator and that this amount is split evenly among the N = n + 1541

members of the group. For such a game, we have Δrk = r/(n + 1), so that542

the gain sequence is dk = r/(n+1)− c, which is a constant independent of k.543

Hence d has no sign change. Making the standard assumption r < (n+ 1)c,544

we have I(d) = −, so that there are no interior rest points and x = 0 is545

the unique stable rest point (see Fig. 3.a). This conclusion is, of course,546

well-known.547

4.3.2. Convex or concave benefits548

Convexity of the benefit sequence (Δ2r ≥ 0) indicates that the incremen-549

tal benefit Δrk of a further contributor is increasing in the number of other550

contributors k that are already present in the group. Using (10) to obtain551

Δdk = Δ2rk, k = 0, 1, . . . , n− 1, (12)

it is apparent that the gain sequence d is increasing. As discussed in Sec-552

tion 3.4.1 it follows that (11) reduces to Δr0 < c < Δrn. Furthermore, if553

these inequalities hold, Result 3.2.a implies that there is a unique interior554

rest point which is unstable, whereas both trivial rest points are stable (see555

Fig. 3.b). Similarly, when the benefit sequence is concave (Δ2r ≤ 0), (11)556

reduces to Δrn < c < Δr0 and if these inequalities hold, Result 3.2.b implies557

there is a unique interior rest point which is stable, whereas both trivial rest558

points are unstable (see Fig. 3.c).559

The argument we have just given recovers the main results from Motro560

(1991). A simple illustration of a constant cost game with convex or constant561

benefits is provided by the model of synergy and discounting considered in562
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Hauert et al. (2006, Section 2.1). These authors consider a constant cost563

game with benefit function564

rj =
r

n + 1

(
1 + w + . . . wj−1

)
, (13)

where r > 0 and w > 0 are parameters. For this specification we have565

Δrk = rwk/(n + 1). For w > 1 this benefit sequence is convex, whereas for566

w < 1 it is concave. The case w = 1 is the linear public goods game. We567

observe that the classification obtained in Section 2.2 of Hauert et al. (2006),568

corresponds to the one obtained from a straightforward application of our569

Result 3.570

4.3.3. Sigmoid benefits571

A benefit sequence is sigmoid (or S-shaped) when Δ2r has exactly one sign572

change from + to −, i.e. the benefit sequence is first convex, then concave.573

Examples of sigmoid benefit sequences are the threshold benefit sequences574

with 1 < m < n+ 1 considered in Section 4.2.3, the “benefit function with a575

hump” proposed in Szathmáry (1993), and the threshold-linear and logistic576

benefit sequences studied respectively by Pacheco et al. (2009) and Archetti577

and Scheuring (2011).578

In this case it is immediate from (12) that the gain sequence of a constant579

cost game with sigmoid benefits is unimodal. Consequently, the characteri-580

zation of the different types of dynamics that can arise in such games involves581

nothing more than inserting the values dk = Δrk − c into our Result 5 (see582

Fig. 3.d for a particular example). The results of this exercise have been583

published by Archetti (2013).4584

4Archetti (2013) ignores most of the cases in which a weak inequality occurs in Result 5
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Sigmoid benefit sequences generalize the benefit sequences considered in585

Bach et al. (2006, Proposition 7), who not only assume that Δ2r has a single586

sign change from + to −, but, in addition, require Δ2r to be decreasing.587

Using these assumptions, Bach et al. (2006) establish the existence of a588

c∗ > max{Δr0,Δrn} such that for c < c∗ the replicator dynamics has two589

interior rest points (the larger of which is stable), whereas for c = c∗ there590

is a unique (unstable) interior rest point and for c > c∗ there is none. As591

the gain sequence (and hence the gain function and ḡ) for constant cost592

games is linearly decreasing in c, it is immediate from Result 5 that the same593

conclusion obtains for all sigmoid benefit sequences.594

5. Other multi-player games595

Up to this point our examples have considered public goods games. Here596

we consider two examples of other multi-player games, illustrating how fo-597

cusing on the shape of the gain sequence obviates the need for a more in-598

volved analysis. Of course, further examples could be analyzed along similar599

lines. For instance, it is straightforward to show that in the “shared reward600

dilemma” considered by Cuesta et al. (2008) the gain sequence has at most601

two sign changes, so that we can recover their case distinctions by applying602

our results.603

and neglects to impose the proper sign change condition required for unimodality, but these

shortcomings are easily fixed.
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5.1. Repeated N-person prisoner’s dilemma604

Joshi (1987), Boyd and Richerson (1988) and van Segbroeck et al. (2012)605

considered a repeated N -person prisoner’s dilemma with two possible strate-606

gies. Reciprocators (A-strategists) contribute to the public good in the first607

round and then contribute in each subsequent round if at least m individuals608

(including the focal individual) contributed in the previous move. Defectors609

(B-strategists) never contribute to the public good. Payoffs in each round610

depend on the number of contributors as in the linear public goods game611

considered in Section 4.3.1.612

The gain sequence for this model is easily derived by considering the first613

round and the subsequent rounds separately. In the first round, the gain if614

switching from B to A is r/(n+1)−c < 0. In each subsequent round, the gain615

from switching is zero if k < m− 1 (because all players defect), r/(n+1)− c616

if k > m − 1 (because the other reciprocators cooperate no matter whether617

the focal individual contributes or not), and mr/(n + 1) − c if k = m − 1618

(because in this case the contribution of the focal individual in the first round619

is pivotal in determining the subsequent behavior of reciprocators). Setting620

c̃ = c− r/(n+ 1) > 0,

and621

r̃ = (m− 1)r/(n+ 1),

the gain sequence can be written as622

dk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−c̃ if k < m− 1

T r̃ − (T + 1)c̃ if k = m− 1

−(T + 1)c̃ if k > m− 1

, (14)
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where T > 0 denotes the expected number of rounds after the first one.623

From (7) and (14) it is apparent that the model is equivalent to a threshold624

game with (i) the benefit T r̃ arising if and only if at least m reciprocators625

are present and (ii) costs given by ck = c̃ if k < m − 1 and ck = (T + 1)c̃626

otherwise. In particular, the results for the cases m = 1 and m = n + 1 are627

identical to the ones discussed in Sections 4.2.1 and 4.2.2. Moreover, when628

T r̃− (T + 1)c̃ is negative, it is immediate that the gain sequence is negative629

and Result 3.1.a applies.630

In the remaining case, satisfying 1 < m < n+ 1 and T r̃ − (T + 1)c̃ > 0,631

it follows from (14) that the only non-zero elements of Δd are Δdm−2 > 0632

and Δdm−1 < 0. Consequently, the gain sequence is unimodal and Result 5633

applies with max{d0, dn} < 0 to characterize the three different possible634

dynamical regimes. Which of these regimes arises depends on the value of635

ḡ = g(x̂) (see Fig. 4 for an example of the case ḡ > 0). As in all applications636

of Results 4 and 5, a key question is whether this value can be linked to the637

parameters of the model.638

[Figure 4 about here.]639

For the parameter T this question can be answered by using the linearity640

of the Bernstein operator Bn to write the gain function as641

g(x) = Th(x)− c̃, (15)

where h(x) = Bn(x, e) and the sequence e is given by642

ek =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if k < m− 1

r̃ − c̃ if k = m− 1

−c̃ if k > m− 1

.
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It follows from (15) that the critical value x̂ satisfying the first order condition643

g′(x̂) = 0 is independent of T . Further, because I(e) = +, it follows from the644

preservation of initial signs that h(x̂) > 0 holds. This in turn implies from645

(15) that g(x̂) is strictly increasing in T and that the equation T̂ = c̃/h(x̂)646

identifies the critical value of T at which g(x̂) = 0 holds. Hence, we obtain647

the same conclusions as van Segbroeck et al. (2012) by an application of648

Result 5. Namely, (i) for T < T̂ there is no interior rest point, (ii) for T = T̂649

the replicator dynamics has a single, unstable interior rest point, and (iii) for650

T > T̂ two interior rest points emerge.651

5.2. Constant cost game with different benefit sequences for cooperators and652

defectors653

[Figure 5 about here.]654

Hauert et al. (2006, Section 2.3.2) consider an interesting extension of

constant cost games by allowing for the possibility that cooperators and

defectors might obtain different benefits, say rAj and rBj , when there are

j cooperators in the group (see Fig. 5). The counterpart to (12) is then

Δdk = ΔrAk+1−ΔrBk . For the particular choice of benefit sequences in Hauert

et al. (2006), given by (13) for rAj and

rBj =
r

n+ 1

(
1 + v1 + . . . vj−1

)
,

this reduces to655

Δdk =
r

n+ 1

(
wk+1 − vk

)
, (16)

where r > 0, v > 0 and w > 0 are parameters and N = n + 1 is group size.656
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Hauert et al. (2006) state that “only v = w allows for an analytical solu-

tion [...] but in general there are [...] up to N − 1 equilibria [rest points] in

(0, 1).” Here we refine this statement and show that, as conjectured by Cuesta

et al. (2007), the maximum number of interior rest points is two indepen-

dently of group size. To do so, we observe that Δdk > 0 holds if and only

if

w >
( v

w

)k

.

Since the right side of this inequality is monotonic in k, equation (16) implies657

the following, exhaustive case distinction:658

1. if w ≥ 1 and wn ≥ vn−1 holds, then the gain sequence is increasing and659

there is at most one interior rest point (see Fig. 5.a).660

2. if w ≤ 1 and wn ≤ vn−1 holds, then the gain sequence is decreasing661

and there is at most one interior rest point (see Fig. 5.b).662

3. if w > 1 and wn < vn−1 holds, then the gain sequence is unimodal and663

there are at most two interior rest points (see Fig. 5.c).664

4. if w < 1 and wn > vn−1 holds, then the gain sequence is anti-unimodal665

and there are at most two interior rest points (see Fig. 5.d).666

6. Discussion667

Bernstein polynomials were first proposed more than a century ago by Bern-668

stein (1912) in order to provide a constructive proof of Weierstrass’s approxi-669

mation theorem (DeVore and Lorentz, 1993). More recently, because of their670

many shape-preserving properties, polynomials in Bernstein form have also671

proven extremely useful in the field of computer aided geometric design (Ya-672

maguchi and Yamaguchi, 1988; Farin and Hoschek, 2002; Prautzsch et al.,673
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2002). Here we have made the case for utilizing the shape-preserving prop-674

erties of Bernstein polynomials in the analysis of multi-player matrix games.675

In particular, we have used these properties to show how key insights into the676

evolutionary dynamics of multi-player matrix games can be obtained from677

studying the sign pattern of the gains from switching.678

The properties of Bernstein polynomials we have used in this paper are679

certainly not the only ones of relevance for the theoretical analysis of col-680

lective action problems. For instance, both the effects of changes in the681

group size (studied previously in Motro, 1991) and the group size distribu-682

tion (studied previously in Peña, 2012) on the evolutionary dynamics can be683

analyzed by making use of the theory of polynomials in Bernstein form. Our684

methods can also be extended to structured populations and used to analyze685

multi-player matrix games played between relatives.686

Acknowledgements687

We would like to thank Chaitanya S. Gokhale, Arne Traulsen and one688

anonymous reviewer for useful comments on previous versions of the manuscript.689

This work was supported by Swiss NSF grants PBLAP3-145860 (JP) and690

PP00P3-123344 (LL).691

Appendix A. Proof of Result 1692

We show the result I(g) = I(d); the argument that the final signs coincide693

is analogous. Using the derivative property of polynomials in Bernstein form694

(cf. equation (5)) recursively, for 0 ≤ m ≤ n the m-th derivative of the gain695
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function can be written as (Farouki, 2012)696

g(m)(x) = n(n− 1) . . . (n−m+ 1)Bn−m (x; Δmd) , (A.1)

where (with the obvious iterative definition) Δmd is the m-th forward differ-697

ence of the sequence d. Evaluating (A.1) at x = 0 we obtain698

g(m)(0) = n(n− 1) . . . (n−m+ 1)Δmd0. (A.2)

Now, let � be the lowest index k such that d� �= 0. Then Δmd0 = 0 holds699

for all m < � and Δ�d0 = d�. Equation (A.2) then implies that g(m)(0) = 0700

for all m < � and that the sign of g(�)(0) coincides with the sign of d� which,701

by definition, is the initial sign of d. A standard Taylor-series argument as702

given in Bach et al. (2006, Proof of Proposition 4) demonstrates that the703

initial sign of g coincides with the sign of d�, finishing the proof.704

Appendix B. Proof of the generalization of Theorem 1 from Souza705

et al. (2009)706

For any c ≥ 0 let707

g(x, c) =

n∑
k=0

(
n

k

)
xk(1− x)n−kdk(c), (B.1)

where708

dk(c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−cγk if k < m− 1

r − cγm−1 if k = m− 1

−cγk if k > m− 1

(B.2)

and γ = (γ0, . . . , γn) is a given, strictly positive sequence. Let ḡ(c) =709

max0≤x≤1 g(x, c) denote the corresponding maximal value of the gain func-710

tion.711
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For 0 < c < r/γm−1 the gain sequence given in (B.2) satisfies I(d(c)) = −712

and S(d(c)) = 2, so that the rest points of the replicator dynamics are713

described by Result 4.1.714

From (B.1) and (B.2) the function g(x, c) is continuous. From the max-715

imum theorem (Sundaram, 1996, Theorem 9.14) this ensures continuity of716

ḡ(c). Because all the Bernstein coefficients dk(c) are strictly decreasing in c,717

all the summands appearing in (B.1) are strictly decreasing in c, implying718

that g(x, c) is strictly decreasing in c. This monotonicity property obviously719

carries over to ḡ(c).720

Consider the Bernstein coefficients as given in (B.2). If c = 0, the only721

non-zero coefficient is dm−1(0) = r > 0. It is then immediate from (B.1) that722

g(x, 0) > 0 holds for all 0 < x < 1, ensuring ḡ(0) > 0. If c = r/γm−1, we have723

dk(c) ≤ 0 with strict inequality holding in all cases but k = m − 1. From724

(B.1) this implies g(x, r/γm−1) < 0 for all 0 ≤ x ≤ 1, ensuring ḡ(r/γm−1) < 0.725

Because ḡ(0) > 0 and ḡ(r/γm−1) < 0 hold and ḡ(c) is continuous the in-726

termediate value theorem implies that there exists 0 < c̄ < r/γm−1 satisfying727

ḡ(c̄) = 0. By monotonicity of ḡ(c) it follows that ḡ(c) < 0 holds for c > c̄728

and ḡ(c) > 0 holds for c < c̄. The generalized version of Theorem 1 in Souza729

et al. (2009) then follows from our Result 4.1 – except that it remains to730

establish the existence of 0 < x̄ < 1 such that the interior rest points satisfy731

xL < x̄ < xR for all 0 < c < c̄. Towards this end let x̄ be a solution to732

the problem max0≤x≤1 g(x, c̄). As g(0, c̄) < 0 and g(1, c̄) < 0 holds, we have733

0 < x̄ < 1. As g(x, c) is strictly decreasing in c, we have g(x̄, c) > 0 for all734

0 < c < c̄. In conjunction with g(0, c) < 0 and g(1, c) < 0 this implies that735

g(x, c) has at least one root in the interval (0, x̄) and at least one root in the736
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interval (x̄, 1).737
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le calcul des probabilités. Comm. Soc. Math. Kharkov 13 (2), 1–2.751

Boyd, R., Richerson, P. J., 1988. The evolution of reciprocity in sizable752

groups. Journal of Theoretical Biology 132 (3), 337–356.753

Broom, M., Cannings, C., Vickers, G., 1997. Multi-player matrix games.754

Bulletin of Mathematical Biology 59 (5), 931–952.755
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Cuesta, J. A., Jiménez, R., Lugo, H., Sánchez, A., 2007. Rewarding co-777

operation in social dilemmas. UC3M Working papers. Economics 07-27,778

Universidad Carlos III de Madrid. Departamento de Economı́a.779

38



Dercole, F., Rinaldi, S., 2008. Analysis of Evolutionary Processes: The Adap-780

tive Dynamics Approach and Its Applications: The Adaptive Dynamics781

Approach and Its Applications. Princeton University Press.782

DeVore, R. A., Lorentz, G. G., 1993. Constructive Approximation. Springer-783

Verlag, Berlin, Germany.784

Dieckmann, U., Law, R., 1996. The dynamical theory of coevolution: a785

derivation from stochastic ecological processes 34 (5-6), 579–612.786

Diekmann, A., 1985. Volunteer’s dilemma. The Journal of Conflict Resolution787

29 (4), 605–610.788

Dugatkin, L. A., 1990. N-person games and the evolution of co-operation: A789

model based on predator inspection in fish. Journal of Theoretical Biology790

142 (1), 123–135.791

Eshel, I., 1996. On the changing concept of evolutionary population stability792

as a reflection of a changing point of view in the quantitative theory of793

evolution. Journal of Mathematical Biology 34, 485–510.794

Farin, G., Hoschek, J., 2002. Handbook of computer aided geometric design.795

North Holland, Amsterdam, Netherlands.796

Farouki, R. T., 2012. The Bernstein polynomial basis: A centennial retro-797

spective. Computer Aided Geometric Design 29 (6), 379–419.798

Frank, S. A., 1987. Individual and population sex allocation patterns. Theo-799

retical Population Biology 31, 47–74.800

39



Frank, S. A., 1995. Mutual policing and repression of competition in the801

evolution of cooperative units. Nature 377, 520–522.802

Gokhale, C. S., Traulsen, A., 2010. Evolutionary games in the multiverse.803

Proceedings of the National Academy of Sciences 107 (12), 5500–5504.804

Hamilton, W. D., 1967. Extraordinary sex ratios. Science 156 (3774), 477–805

488.806

Hamilton, W. D., May, R. M., 1977. Dispersal in stable habitats. Nature807

269 (5629), 578–581.808

Hardin, R., 1982. Collective action. The John Hopkins Press for Resources809

for the Future, Baltimore, Maryland.810

Hauert, C., Michor, F., Nowak, M. A., Doebeli, M., 2006. Synergy and dis-811

counting of cooperation in social dilemmas. Journal of Theoretical Biology812

239 (2), 195–202.813

Herold, F., 2012. Carrot or stick? The evolution of reciprocal preferences in814

a haystack model. The American Economic Review 102 (2), 914–940.815

Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dy-816

namics. Cambridge University Press, Cambridge, UK.817
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Figure 1: Gain sequence d (squares, dotted line; top axis), and corresponding gain function
g(x) (solid line; bottom axis) and phase portrait (circles, arrows) for threshold games
given by (7) and (8) with N = 7, r = 2, c = 1, and (a) m = 1 (see section 4.2.1), (b)
m = N = n+1 (see section 4.2.2), or (c) m = 4 (see section 4.2.3). Panel d illustrates the
same game as in panel c, but with c = 3 instead of c = 1.
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Figure 2: Gain sequence d (squares, dotted line; top axis), and corresponding gain function
g(x) (solid line; bottom axis) and phase portrait (circles, arrows) for the threshold game
given by (9) with N = 10, r = 2, m = 4, and ck = 1/4 for all k ≥ 3.
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Figure 3: Examples of constant cost games with N = n+ 1 = 9 and c = 1/2 for different
benefit sequences. The first row shows the benefit sequence rj ; the second row shows the
gain sequence d (squares, dotted line; top axis), and corresponding gain function g(x)
(solid line; bottom axis) and phase portrait (circles, arrows). (a) Linear benefits (see
Section 4.3.1) with r = 5 and c = 1. (b) Convex benefits (see Section 4.3.2) as given
by (13) with r = 5 and w = 1.2. (c) Concave benefits (see Section 4.3.2) as given by (13)
with r = 20 and w = 0.8. (d) Sigmoid benefits (see Section 4.3.3) as studied by Archetti
and Scheuring (2011) with rj = r/[1 + exp(−s(j −m))], r = 20, m = 4, and s = 1.5.
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Figure 4: Gain sequence d (squares, dotted line; top axis), and corresponding gain function
g(x) (solid line; bottom axis) and phase portrait (circles, arrows) for the repeatedN -person
prisoner’s dilemma given by (14) with N = 10, r = 7, c = 2, T = 5, and m = 6.
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Figure 5: Gain sequence d (squares, dotted line; top axis), and corresponding gain function
g(x) (solid line; bottom axis) and phase portrait (circles, arrows) of the game considered
in Section 5.2 for N = 7 and different values of the parameters w, v, r and c. (a) w = 1.3,
v = 1.2, r = 1, c = 3. (b) w = 0.6, v = 0.57, r = 2, c = 1. (c) w = 1.3, v = 1.4, r = 2,
c = 3.4. (d) w = 0.75, v = 0.6, r = 1.55, c = 1.25.
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