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Abbrevations 

BAT   brown adipose tissue 

BMI   body mass index: (kg body weight / height in meter2) 

C/EBP  CCAAT/enhancer-binding protein 

CJ   cristae junction 

CM   cristae membrane 

CoQ   coenzyme Q 

CuZnSOD  copper-zinc superoxide dismutase 

cyt c   cytochrome c 

Drp1   utropin 

ECAR   extracellular acidification rate 

ETC   electron transport chain 

FAD / FADH2 oxidized / reduced flavin adenine dinucleotide 

FCCP   carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone  

FFA   free fatty acid 

Fis1   mitochondrial fission protein 1 

GLUT4  glucose transporter type 4 

GSH-PX  glutathione peroxidase 

GSSG / GSH  oxidized / reduced glutathione 

HAT   histone acetyl transferase 

Hb   hemoglobin 

hBM-MSC  human bone marrow derived mesenchymal stem cell 

HDL   high-density lipoprotein 

HSA   human serum albumin 

IBM   inner boundary membrane 

IGF   insulin growth factor 

IL-6   interleukin-6 

IMM   inner mitochondrial membrane 

IMS   intermembrane space 

IRe   insulin resistance 

IRS   insulin receptor substrate 

ISP   iron-sulfur protein / Rieske protein 

LDL   low-density lipoprotein 

MCP-1  monocyte chemoattractant protein 1 
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Mff   mitochondrial fission factor 

Mfn1 / Mfn2  mitofusin 1 / mitofusin 2 

MM   mitochondrial matrix 

MMP   matrix metalloprotease 

MnSOD  manganese superoxide dismutase 

MOMP  mitochondrial outer membrane permeabilization 

MSC   mesenchymal stem cell 

mtDNA  mitochondrial DNA 

Myf   myogenic factor 

NAD+ / NADH oxidized / reduced nicotinamide adenine dinucleotide 

NFκB   Nuclear factor NF-kappa-B 

NR   nuclear receptor 

OMM   outer mitochondrial membrane 

Opa1   mitochondrial dynamin-like 120 kDa protein 

oxphos  oxidative phosphorylation 

PGC-1α  Peroxisome proliferator-activated receptor gamma   

  coactivator 1-alpha 

PI3K   phosphoinositide 3-kinase 

PPARγ  peroxisome proliferator-activated receptor gamma 

Qi / Qo   inner / outer side of the IMM 

ROS   reactive oxygen species 

SCAT   subcutaneous adipose tissue 

SIRT   NAD-dependent deacetylase sirtuin 

SOD   superoxide dismutase 

SRC   steroid receptor coactivator 

STAT3  signal transducer and activator of transcription 3 

T2DM   type 2 diabetes mellitus 

TG   triglyceride 

TLR4   toll-like receptor 4 

TNFα   tumor necrosis factor alpha 

TPP   triphenylphosphonium cation 

tRNA   transfer RNA 

UCP1   uncoupling protein 1 

VAT   visceral adipose tissue 
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WAT   white adipose tissue 
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1 Summary 

Overweight and obesity are major problems of public health in many countries 

worldwide. Overweight can cause severe diseases such as type II diabetes mellitus, 

hypertension, stroke, heart failure and several types of cancer. In addition, 

inflammatory cytokines and oxidative stress are increased in overweight people. 

Reactive oxygen species have been shown to cause insulin resistance (IRe) in vitro 

and IRe has been reported to correlate with a decrease in antioxidative capacity. 

To support research in this relevant field of our society, a good in vitro model for 

adipocytes and adipogenesis is necessary. However, most in vitro studies about 

adipocyte function are currently done with murine cell lines. These models have the 

disadvantages that they may not reflect the (patho-)physiologic situation in humans 

because of species differences. Another problem resides in major physiologic 

differences between immortalized and primary cells, particularly in view of their 

reaction to oxidative stress. As elevated oxidative stress is supposed to contribute to 

the development of type II diabetes mellitus (T2DM) in obese people, it might be 

advantageous to apply antioxidant treatments for these patients.  

In this thesis two studies are presented. In the first study, human bone marrow 

derived mesenchymal stem cells (hBM-MSCs) are described and investigated as a 

model for (primary) adipocytes and adipogenesis. In the second study hBM-MSC 

derived adipocytes were treated with the well-characterized antioxidants MitoQ, 

resveratrol and curcumin and the effects of these substances on different 

mitochondrial parameters were determined. 

In the first study, hBM-MSCs were grown to confluence and adipocyte differentiation 

was induced by differentiation medium. Cell number and protein content, fat 

accumulation, production of reactive oxygen species (ROS), cellular oxygen 

consumption, mitochondrial mass and morphology were assessed during a 

differentiation period of 22 days. The cell number did not change but the protein 

content increased markedly during adipogenesis, indicating that the cell mass 

increased over time. ROS production was measured with two different assays 

showing either oxidizing or reducing radicals. Both methods showed an increase in 

ROS, indicating that overall oxidative stress increased during adipocyte 

differentiation. Oxygen consumption of intact cells was measured with a Seahorse 
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flux analyzer. Basal respiration as well as leak respiration and uncoupled oxygen 

consumption increased during adipogenesis. This result suggests an increase in 

mitochondrial mass. Therefore, mitochondrial content in a defined cytoplasmic 

volume was quantified using confocal microscopy. A distinct elevation of 

mitochondrial mass during adipocyte differentiation was observed. Mitochondrial 

morphology also changed during the differentiation process. During adipocyte 

differentiation mitochondria built a tight network while electron microscopy revealed 

that their inner morphology and cristae structure did not change. 

In the second study, the effects of MitoQ, resveratrol and curcumin on ROS 

production, oxygen consumption, glycolysis and intracellular ATP content were 

assessed. All three substances were used at non-toxic concentrations. MitoQ 

lowered ROS production of oxidizing and reducing radicals, resveratrol and curcumin 

only decreased reducing and oxidizing radicals, respectively. The immediate effect of 

these antioxidants on oxygen consumption was measured in an Oxygraph; 

respiration after 24 h treatment was assessed with a Seahorse flux analyzer. Upon 

addition, all substances tested slightly decreased oxygen consumption. However, 

after 24 h only MitoQ inhibited the respiration. Intracellular ATP content did not 

change in response to any treatment. 

In coclusion, hBM-MSC derived adipocytes are an interesting model for human fat 

cells in vitro. They efficiently differentiated into fat cells and shared many, but not all 

characteristics with the murine cells lines commonly used in this research. In fact, 

these cultured hBM-MSCs are one of the closest models to the human adipose tissue 

for in vitro studies. 

MitoQ, resveratrol and curcumin acted as antioxidants in this cell type. In contrast to 

resveratrol and curcumin, MitoQ seemed to impair mitochondrial function but 

intracellular ATP levels did not change. Thus, all three antioxidants tested are 

interesting candidates for lowering oxidative stress and possibly preventing insulin 

resistance in obesity. 
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2 Introduction 

2.1 Adipose tissue, Obesity and Adipocytes 

2.1.1 Obesity 

Overweight and obesity, meaning excessive body fat, are a major threat to public 

health in many countries. Overweight is defined as a body mass index (BM I) > 25, 

obesity as BMI > 30 and morbid obesity as BMI > 35. The BMI is calculated as (body 

weight in kilogram) / (height in meters)2. Especially in the USA the prevalence of 

overweight has reached an alarming extent. In 2008 68% of adults were overweight, 

34% were obese and 14% were morbidly obese [1]. The prevalence for abdominal 

obesity in children adolescents aged 2-19 years increased from 10.5% in the period 

between 1988-1994 to 19% in the period from 2003-2004. Obesity is influenced by 

genetics, maternal and perinatal factors and sex. However, the main contributor to 

the development of obesity is an imbalance between food intake and energy 

expenditure. The global increase in the prevalence of obesity is mainly due to an 

unhealthy change in lifestyle. People shift to energy-dense food which is rich in fat 

and sugar and become more sedentary. Thus, at the same time energy intake 

increases and expenditure decreases. Social stigmatization and disability cause high 

psychological strain to the patients [2]. Guh et al. [3] published a meta-analysis 

investigating the prevalence of overweight and obese people to several diseases 

compared to the lean population. They reported an increase in the risk for 

endometrial cancer, colorectal cancer, pancreatic cancer, hypertension, stroke, 

asthma and heart failure. The most prominent risk was T2DM which was 6.7-fold 

increased in obese men and even 12.4-fold in obese women [3]. The metabolic 

syndrome is a metabolic derailment and another consequence of insulin resistance 

and / or visceral adipositas. 

According to the American Heart Association there are five criteria of metabolic 

syndrome: central adiposity (waist circumference in women >89 cm and in  

men >101 cm); reduced HDL (“good cholesterol”, in women <50 mg/l and in  

men <40 mg/l); high blood pressure (systolic >130 mm Hg or diastolic >85 mm Hg); 

elevated fasting plasma glucose (>100 mg/l or T2DM) and fasting blood triglycerides 

>150 mg/dl. The metabolic syndrome is diagnosed if at least three of these criteria 

are present [4].  
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Thus obesity is not only a cosmetic problem but also a disease causing severe co-

morbidities and huge costs to health care.  

 

2.1.2 White and brown adipose tissue 

There are two types of adipocytes originating from the two types of adipose tissue, 

namely brown and white adipose tissue (BAT and WAT). They are characterized by 

different morphology and function. 

The predominant site of triglyceride (TG) storage and lipolysis is WAT. White 

adipocytes usually contain a big lipid droplet which occupies about 90% of the 

cytoplasm and have a diameter between 20 µM and 200 µM. WAT contains its own 

population of resident macrophages, called adipose tissue macrophages (ATM). The 

degree of macrophage infiltration and the levels of inflammatory cytokines and 

chemokines positively correlate with obesity and IRe [2]. Brown adipose tissue is 

responsible for non-shivering thermogenesis whereby the energy of fatty acid 

oxidation is used to produce heat through mitochondrial uncoupling by the UCP1 

protein, which is characteristic for brown adipocytes [5]. 

Brown adipocytes have a high content of mitochondria and store lipid in many small 

droplets [5]. Small mammals have BAT during their whole life to protect them against 

cold [6]. It was assumed for a long time that in humans BAT is almost exclusively 

present in infants and very rare in adults [7]. Three recent human studies showed 

that also adults have BAT deposits [8-10]. In lean subjects cold induced glucose 

uptake was four fold higher than overweight people [9]. This result shows that BAT 

has the same function in small animals and humans. 

Brown and white adipocytes are both derived from mesenchymal stem cells (MSCs). 

MSCs can give rise to osteoblasts, white pre-adipocytes or Myf+ progenitor cells. The 

white pre-adipocytes differentiate into white adipocytes while the Myf+ cells can 

differentiate into brown adipocytes or skeletal muscle cells. In contrast to the 

progenitor of brown adipocytes, white pre-adipocytes express PPARγ and CD24 but 

no Myf. After chronic exposure to cold brown adipocytes which did not originate from 

Myf+ progenitor cells were detected in WAT. Such cells are also called “brite” or 

“beige” adipocytes [11]. 
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Adipose tissue serves as storage of fuel, plays an important role in thermoregulation 

as it can produce heat via non-shivering thermogenesis (production of heat instead of 

ATP by mitochondria due to uncoupling) and protects the inner organs. The most 

important function of adipocytes is their ability to store excessive energy as 

triglycerides. The adipocyte is the only cell type which is able to synthesize TGs from 

free fatty acids (FFAs) via de novo lipogenesis. FFAs are taken up through specific 

transport proteins and are esterified with glycerol to form TGs which are stored in 

intracellular lipid droplets. If FFAs as needed as fuels on the body, TGs can be 

broken down via lipolysis and FFAs are released into the circulation. Adipocytes 

respond to anabolic and catabolic hormones such as insulin, insulin growth factor 

(IGF), glucagon and catecholamines. Adipocytes also synthesize and secrete 

proteins called adipokines including pro-inflmmatory cytokines, growth factors, 

complement factors and non-protein products such as fatty acids, steroid hormones, 

prostaglandins and retinoids. Beside adipocytes, fat tissue also contains other cell 

types like pre-adipocytes (mesenychymal stem cells located in adipose tissue), 

endothelial cells, macrophages, lymphocytes and neurons [2]. 

 

2.1.3 Adipocyte differentiation 

In both types of adipocytes the key regulator of differentiation is peroxisome 

proliferator-activated receptor gamma (PPARγ). PPARγ is a ligand dependent 

Fig. 1. White and brown adipose tissue. 

Adipose tissue of a mouse mammary gland. A) White adipose tissue. B) Brown adipse tissue. 

Hovey, R. J Mammary Gland Biol Neoplasia, 15, 279 (2010). 



13 

transcription factor belonging to the nuclear receptors (NRs). It regulates expression 

of target genes upon binding to PPARγ binding elements (PPREs) after dimerization 

with retinoid X receptors (RXRs). 

PPARγ controls the expression of genes involved in the key functions of adipocytes 

such as lipid transport, lipid metabolism, fatty acid uptake, recycling of intracellular 

fatty acids, lipolysis, insulin signaling and adipokine production. Insulin sensitivity can 

be regulated by PPARγ via expression of adipokines. Adiponectin which increases 

insulin sensitivity is elevated by PPARγ, while resistin and TNFα which both 

decrease insulin sensitivity are down-regulated [11]. 

In general nuclear receptors regulate transcription together with co-regulators. These 

proteins may affect chromatin structure or build a bridge between NRs and the basal 

transcription machinery but do not bind to DNA themselves. The co-regulators p300 

and CBP are histone acetyl transferases (HATs) which can acetylate nucleosomal 

histones in target genes of PPARγ, thus altering chromatin structure and accessibility 

for the transcription machinery. Interactions between NRs and co-regulators can be 

regulated by ligands, for example the co-activator steroid receptor coactivator-1 

(SRC-1). SRC-1, SRC-2 and SRC-3 can all interact with PPARγ [11]. SRC-1 and 

SRC-2 both control energy balance in adipose tissue. SRC-1 increases energy 

expenditure via fatty acid oxidation in BAT while SRC-2 leads to an increase in TGs 

and a decrease in FFAs in WAT by activation of PPARγ [11]. SRC-1-/- mice have 

reduced energy expenditure and are therefore prone to obesity. SRC-2-/- mice show 

reduced weight gain, improved glucose tolerance and insulin sensitivity as they have 

hyperactive BAT with increased adaptive thermogenesis [12]. The effects of SRC-1 

and SRC-2 are mainly mediated by PGC-1α, another co-activator of PPARγ. SRC-3 

knockout mice exhibit reduced weight gain what may be due to a defect of 

adipocytes differentiation and fat accumulation [13]. 

As mentioned before, PGC-1α binds to PPARγ but it also interacts with other 

transcription factors involved in metabolism [11]. PGC-1α knockout mice show 

reduced expression of mitochondrial genes in BAT, muscle and brain resulting in 

impaired response to cold exposure and starvation [14, 15]. Puigserver et al. [16] 

have shown before that PGC-1α is a cold co-activator and regulates adaptive 

thermogenesis via expression of several mitochondrial genes like UCP1 (uncoupling 

protein 1) in brown adipose tissue [16]. PGC-1α is a target gene of PPARγ itself [17] 
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and enhances PPARγ mediated UCP1 expression [16]. Thus, PGC-1α is important 

for oxidative metabolism ad fat function [11]. 

Beside PPARγ the other key transcription family for adipocytes is the 

CCAAT/enhancer-binding proteins C/EBPα, -β and -δ. The rapid expression of 

C/EBPβ and -δ is the initial event after induction of the differentiation process in 

response to adipogenic signals. C/EBPδ induces the expression of PPARγ, thus, 

initiating adipogenesis. C/EBPβ stops cell proliferation and induces C/EBPα which in 

turn leads to expression of GLUT4, a glucose transporter needed for the metabolic 

action of insulin. Over-expression of C/EBPβ or -δ in pre-adipocytes enhances 

adipogenesis while embryonic fibroblasts from C/EBPβ-/- or C/EBPδ-/- mice show 

impaired adipogenesis compared to wildtype mice [18]. 

 

2.1.4 Adipose tissue and inflammation 

WAT exerts important endocrine and immune functions by secreting adipokines 

including inflammatory cytokines and proteins involved in regulating actions of insulin 

and food intake. Obesity is characterized by chronic systemic inflammation and 

disturbed reaction to insulin. The most important adipokines secreted by WAT are 

TNFα, IL-6, adiponectin and leptin. TNFα is the major mediator of inflammation and 

IRe in obesity. Free fatty acids, which are elevated in obesity, can bind to toll-like 

receptor 4 (TLR4) present in adipocytes and macrophages. TLR4 is part of innate 

immunity and triggers an inflammatory response. Adipose tissue of obese individuals 

contains more T cells and macrophages than that of lean people. The reason for 

increased macrophage infiltration may be due to increased necrotic cell death of 

adipocytes as clustering of macrophages was observed around necrotic cells [19]. 

The adipokines TNFα, IL-6, leptin and adiponectin are discussed below in more 

detail. 

As mentioned above, in adipose tissue TNFα is secreted mainly by macrophages 

[20] but also by adipocytes [21]. Adipocytes express the TNFα receptor [22]. TNFα 

induces IRe, lipolysis, leptin production and suppresses lipogenesis and pre-

adipocyte differentiation in vitro [23, 24] and decreases adiponectin expression and 

secretion [25]. In adipose tissue of genetically obese mice TNFα is over-expressed. 

In obese humans expression of TNFα is elevated and can be decreased by weight 
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loss [26]. Neutralization of TNFα in genetically obese rats leads to an increase in 

insulin sensitivity [21] and mice lacking TNFα are protected against obesity-induced 

IRe [27]. In contrast to WAT, TNFα induces apoptosis in BAT [28]. TNFα also 

elevates the secretion of leptin [29]. 

IL-6 is expressed by macrophages [19] and adipocytes which contribute to 

approximately 1/3 of circulating IL-6 in obese individuals [20]. An IL-6 overload leads 

to insulin resistance [30]. IL-6 increases leptin expression and decreases adiponectin 

expression and secretion in adipocytes [25]. 

Leptin is mainly produced by adipocytes [25]. Together with adiponectin it is the most 

abundantly expressed adipokine in fat tissue [31]. Leptin acts in the central nervous 

system and is an important negative regulator of appetite [32]. Adults with leptin 

deficiency show increased appetite and obesity what can be treated by 

supplementing leptin [33]. Leptin serum levels are proportional to overall adipose 

mass in mice and humans [34] and systemic hyper-leptinemia leads to a decrease in 

obesity [35]. Leptin stimulates the proliferation and differentiation of monocytes [25] 

and increases the production of TNFα and IL-6 by monocytes and macrophages [36]. 

Adiponectin has insulin sensitizing effects which seem to be mediated by an increase 

in fatty acid oxidation [37]. Serum levels of adiponectin are markedly decreased in 

people with visceral obesity and IRe even though it is mainly produced in adipocytes 

[38] and its synthesis can be induced by weight loss [39]. Adiponectin decreases the 

TNFα concentration in plasma [40]. In contrast to leptin, adiponectin inhibits T cell 

proliferation and activation [41] and decreases production of TNFα by 

macrophages[42]. 

Fig. 2.  Effects of adipokines on inflammatory cells and vice versa. 
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2.1.5 Subcutaneous and visceral adipose tissue 

Subcutaneous (SCAT) and visceral adipose tissue (VAT) show differences in 

adipocyte morphology, endocrine profile and their association in metabolic 

complications like IRe and metabolic syndrome [43].  

The adipose tissue around the organs in mesentery and omentum is called visceral 

or intra-abdominal fat. It accounts for about 10-20% of total adipose tissue in men 

and for 5-8% in women. Visceral fat increases with age. Subcutaneous fat tissue is 

located in the subcutaneous area and accounts for about 80% of total fat tissue [44]. 

Fat tissue contains bigger and smaller adipocytes. The younger, smaller adipocytes 

absorb FFAs and TGs, thus, acting as a buffer after meals. They are more insulin-

sensitive and take up FFAs and TGs more efficiently than big adipocytes and 

therefore prevent deposition of FFAs and TGs in other tissues. Large adipocytes are 

more insulin-resistant and hyperlipolytic as they are also resistant to the anti-lipolytic 

effect of insulin. Visceral adipose tissue contains more large adipocytes while SCAT 

contains small adipocytes [45, 46]. Visceral fat is more innervated and vascularized 

than SCAT. Most studies show higher infiltration of inflammatory cells including 

macrophages in VAT than SCAT, but there are also contradictory reports [43]. In 

contrast to SCAT, VAT is drained directly through the portal vein to the liver. 

Therefore, FFAs and fat tissue derived cytokines directly induce hepatic immune 

mechanisms [43]. 

Visceral and subcutaneous adipose tissues show differences in cytokine secretion. 

Adiponectin and pro-inflammatory cytokines show higher expression in VAT while 

leptin is mainly produced in SCAT [43]. Dolinková et al. [47] showed increased 

expression of pro-inflammatory and adipogenic genes and lower expression of 

lipogenic and insulin signaling genes in obese compared to lean women. There were 

significant differences in gene expression between VAT and SCAT but both fat 

depots contributed to the inflammatory state in obesity [47]. 

Amongst other groups, Fox et al. [48] reported in a large study that the prevalence for 

metabolic complications like hypertension, high HDL, impaired fasting plasma 

glucose, T2DM and metabolic syndrome in men and women are more strongly 

associated with VAT than SCAT [48]. Another big clinical study which included young 

men only reported the opposite. They showed that SAT correlated more strongly with 
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IRe than VAT [49]. However, in the general opinion VAT is regarded as more harmful 

than SCAT. 

 

2.1.6 Obesity, oxidative stress and mitochondrial dysfunction 

Obese people and patients suffering from T2DM have increased levels of glucose 

and free fatty acids in the plasma. In vitro increased concentrations of glucose or FFA 

lead to elevated ROS production in muscle, adipocytes, pancreatic β-cells and other 

cell types [50]. 

High amounts of substrates cause a reduced state of the electron carriers of the 

electron transport chain. This condition dramatically increases ROS production [50]. 

Fridlyand et al. proposed that insulin resistance could be a protective mechanism to 

prevent oxidative stress [51]. Over-expression of antioxidant enzymes in transgenic 

mice is protective against β-cell dysfunction and IRe. High FFA concentrations lead 

to lipid accumulation in myocytes what has been proposed to be critical for the 

development of IRe and T2DM [52]. Thus, oxidative stress plays an important role in 

the development of these consequences of obesity [50]. 

Lipid-induced IRe may arise because β-oxidation provides reducing equivalents to 

the ETC, thus, competing with glucose [53] or due to an increase in ROS production 

through the mechanism mentioned before. In pancreatic β-cells an increase in 

glucose concentration stimulates glycolysis, thus, providing high levels of reduced 

ETC equivalents. In consequence ADP concentrations decrease what leads to insulin 

secretion. Therefore, high glucose concentrations lead to increased ROS production 

in β-cells causing potentially causing cellular damage [50]. Patients suffering from 

diabetes often have mutations in mtDNA of β-cells that lead to defective insulin 

secretion, cell apoptosis and a decrease in β-cells mass [54]. 

Normally, the insulin receptor autophosphorylates after binding insulin. Receptor 

phosphrylation allows association of insulin receptor substrate (IRS) with 

phosphoinositide 3-kinase (PI3K) resulting in translocation of cytoplasmic vesicles 

containing GLUT4 to the cell membrane. There these vesicles allow glucose uptake 

[55]. Glycolysis is stimulated after receptor activation, thus, leading to increased ROS 

production because more substrate is available for the ETC. In vitro oxidative stress 
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can lead to activation of multiple signaling cascades including kinases which increase 

serine phosphorylation of the insulin receptor and IRS-1 and IRS-2. This reduces 

downstream signaling resulting in inactivation of PI3K and decreases glucose uptake, 

thus, preventing oxidative damage to the cell. However, there are no similar 

mechanisms in endothelial and mesangial cells and neurons. Therefore, 

mitochondrial overproduction of superoxide due to substrate over-load can lead to 

oxidative damage [50]. 

White adipocytes from genetically overweight and diabetic ob/ob mice show a 

decrease in mitochondrial content of about 50% compared to the wild-type [56]. In 

leptin receptor deficient db/db mice fed a high fat diet, about half of the genes 

involved in mitochondrial ATP production and energy uncoupling are decreased 

when compared to db/db mice fed a normal diet or to db/+ mice [57]. In morbidly 

obese patients expression of PGC-1α is reduced in adipose tissue [58]. A total 

deficiency of both transcription factors PGC-1α and PGC-1β completely prohibits 

mitochondrial biogenesis and respiration which are linked to adipocytes differentiation 

[59]. Song et al. [60] elucidated oxidative stress, antioxidant capacity and DNA 

damage in patients with newly diagnosed diabetes and impaired glucose regulation. 

They reported that patients with impaired glucose regulation have reduced 

superoxide dismutase (SOD) activity in erythrocytes and slight damage in DNA. 

Subjects with diabetes showed an increase in lipid oxidation products in plasma, 

lower plasma antioxidant capacity and erythrocyte SOD activity. Insulin resistance 

correlated with lipid peroxidation and was associated with lower SOD activity and 

overall antioxidative capacity [60].  
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2.2 Mitochondria 

Over the last 150 years, numerous reports in the scientific literature appeared 

describing mitochondria in various tissues. Morphologically, they were described as 

threads or mitos in Greek. Other reports characterized them as grains or chondros. 

Since the 1850s the term mitochondria has been used for these organelles. 

Mitochondria are responsible for many vital functions, mainly oxidative 

phosphorylation, Krebs cycle, β-oxidation of fatty acids as well as controlling of 

apoptosis in higher eukaryotes [61]. 

 

2.2.1 Mitochondrial morphology 

Two membranes surround mitochondria: the outer mitochondrial membrane (OMM) 

and the inner mitochondrial membrane (IMM) [61]. The IMM encloses the 

mitochondrial matrix (MM) which contains metabolic enzymes and multiple copies of 

the mitochondrial DNA (mtDNA). The mtDNA encodes 37 proteins and polypeptides 

[62] but most mitochondrial proteins are encoded in the nucleus and are imported 

from the cytosol. The mtDNA encodes for 22 tRNAs (transfer RNAs), the 12S and 

16S ribosomal RNAs, the subunits I, II and III of cytochrome c oxidase, cytochrome 

b, ATP-synthase subunits 6 [62] and 8 [63], subunits of NADH dehydrogenase ND1, 

ND2, ND3, ND4, ND4L, ND5 [64] and ND6 [65]. For humans, around 4500 proteins 

are assumed to be mitochondrial, amongst them 1589 are identified experimentally or 

by homology, the others are predicted [66]. The compartment between the OMM and 

the IMM is called the intermembrane space (IMS). In many cases, mitochondria form 

tubular structures which show interactions with the endoplasmatic reticulum (ER) and 

the cytoskeleton [67]. 

In the IMM two regions can be distinguished: the inner boundary membrane (IBM) 

which runs parallel to the OMM and the cristae membrane (CM) forming the cristae 

structures [61]. Palade [68] was the first who showed mitochondria as an organelle 

surrounded by a double membrane with convolutions formed by the IMM. Later, 

mitochondria were shown to exhibit tubular, lamellar and even triangle-shaped 

structures depending on the physiological stage and developmental stage [69]. 
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Fig. 3. Baffle model of a mitochondrium 
Lodish, H. et al. Molecular Cell Biology (3rd 

ed.), 1999 

 

Several models regarding the IMM structures have been proposed. Palade 

suggested a model in which cristae are regarded as invaginations of the IMM with 

wide openings [68, 70], later called the “baffle model”. Sjöstrand suggested the septa 

model, meaning sheets of the IMM span through the MM, thus, building different 

compartments [71]. The baffle model was the one which gained general acceptance 

and entered the textbooks. Using very thin serial sections of mitochondria, small 

tubular structures which connected cristea with the IBM were visualized by other 

groups. These structures were named pediculi cristea meaning cristae feet [61]. In 

the 1990s Mannella et al. [67, 72-74] applied electron tomography to determine the 

structure of isolated mitochondria. With this technique, a three dimensional 

reconstruction of rather thick sections allows a precise spatial view of the specimen. 

For this a series of electron micrographs is taken over a wide range of angels and a 

three dimensional view is reconstructed by computational analysis. Mannella could 

show in several studies that cristea are attached to the IBM by narrow openings 

which they called cristae junctions (CJs) [67, 72-74]. Cristae junctions appear as 

narrow tubular, ring- or slot-like structures with diameters between 12-40 nm [67, 75, 

76]. Williams [77] and Tedeschi [78] concluded that according to this new model 

proton flow is localized and kinetically controlled in contrast to the original description 

of delocalized proton flow by Mitchell [79]. 

IMM 

CM 

OMM 

Fig. 4. Electron microscopy picture 
of a mitochondrium. 
IMM: inner mitochondrial membrane 
OMM: outer mitochodrial membrane 
CM: cristae membrane 
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Computer simulations indicated that ADP depletion could occur within large cristae 

compartments due to limitation of diffusion by CJs, thus, ADP depletion would lower 

local ATP production [80]. Hackenbrock [81] was the first to show that the 

morphology of the IMM is highly dependent on the respiratory state. 

 

In state 3, when ADP is present in excess, isolated rat liver mitochondria were in the 

condensed state showing large swollen cristae. In state 4 when ADP becomes 

limiting, the intracristal volume became clearly smaller, what is characteristic for the 

orthodox state [81]. This morphological change may be initiated to optimize diffusion, 

thus, avoiding a decrease in local ATP production [82]. In summary, the bioenergetic 

state clearly influences mitochondrial ultrastructure [61]. 

 

Fig. 5. Tomography of isolated 
rat-liver mitochondrion. 

Frey, T. TIBS 25 (2000) 

Fig. 6. Mitochondrial morphology in dependence of the 
bioenergetic state. 

Manella, C. Biochimica et Biophysica Acta, 1763, 542 (2006) 
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2.2.2 Fission and fusion 

Recordings in living cells revealed that mitochondria are capable of varying their 

shape and size. These changes in the mitochondrial network are the result of 

constant fusion and fission [83]. Knocking out the proteins responsible for these two 

processes is lethal for the cell [84, 85]. Mitochondria are exposed to high oxidative 

stress causing damage to mtDNA, proteins and lipids. It is thought that mitochondria 

can repair and replenish these damages from the healthy pool by circulating through 

the mitochondrial network [86, 87]. This hypothesis is supported by the observation 

that oxidized proteins accumulate when fission is blocked [88]. Loss of proteins 

responsible for the fission / fusion process leads to a decrease or total loss of mtDNA 

[83]. 

In mammals, the major fusion proteins are mitofusin 1 and mitofusin 2 (Mfn1 and 

Mfn2) and the mitochondrial dynamin-like 120 kDa protein (Opa1). The major fission 

proteins are utropin (Drp1), mitochondrial fission factor (Mff) and mitochondrial fission 

protein 1 (Fis1). Mitofusins 1/2, Opa1 and Drp1 are large GTPases. The complexes 

responsible for the membrane fusion and fission are formed by homo- and 

heteromeric self-assembly [83].  

 

2.2.2.1 Mitochondrial fusion 

Mitofusins are located in the OMM and are primarily responsible for OMM fusion. 

They have two membrane-spanning domains and both termini are in the cytosol. 

Mitofusins form oligomers with each other both on the same (cis manner) and on a 

different (trans manner) mitochondrium to tether mitochondria together. In mammals, 

the ratio and the tethering capabilities of Mfn1 and Mfn2 differ among cell types. This 

may explain the variation of the mitochondrial network phenotypes among cell types 

[83]. 

The major protein for IMM fusion, Opa1, has multiple isoforms which are located in 

the IMM and the IMS. In in vitro fusion assays Mgm1, the yeast analogue of Opa1, 

acts both in cis and trans manners [83]. Defects in IMM fusion result in normal OMM 

structure enclosing multiple IMM-bound matrices [89]. Thus, OMM and IMM fusion 

seem to be distinct processes [83]. In yeast, Ugo1 is a protein suggested to 
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coordinate the fusion of both membranes, however, until now no mammalian ortholog 

has been identified even though there is predicted to be one [83]. 

 

2.2.2.2 Mitochondrial fission 

In mammals Drp1 is localized in the cytosol and is enriched at constriction sites of 

mitochondrial fission. Drp1 forms curved filaments in the GDP-bound state and spiral 

structures in the GTP-bound state [90]. In yeast the spirals of the GTP-bound Dnm1, 

the Drp 1 analog, form at the constriction sites of mitochondria and the formation of 

these spirals is also able to constrict liposomes [91]. Knock out of Drp1 or Dnm1 

results in elongated mitochondria [85, 92]. Fis1 is located in the OMM, has the  

C-terminus in the IMS and the N-terminus in the cytosol. At least in yeast it acts as 

the mitochondrial receptor for Dnm1 [93]. The OMM protein Mff has recently been 

shown to be required for fission in mammals. It is suggested to act as a scaffold for 

other proteins involved in the fission process [94]. 

 

2.2.3 Mitochondria and apoptosis 

Mitochondria are the major regulator in apoptosis and they undergo drastic 

morphological changes during this process [95]. They are involved both in caspase-

dependent and caspase-independent pathways. An important step in the apoptotic 

process is the permeabilization of the OMM and the subsequent release of pro-

apoptotic proteins, amongst others cytochrome c (cyt c). There seems to be complete 

release of cyt c, even though it is estimated that more than 85% of cyt c is stored in 

the intracristal space. An extensive remodeling of the IMM occurs after induction of 

apoptosis leading to increased accessibility of cyt c. Cytochorome c then triggers 

caspase activation in the major apoptotic pathway [61]. 

Mitochondrial outer membrane permeabilization (MOMP) for cyt c release and 

fragmentation of tubular mitochondria appear almost simultaneously. It was 

suggested that MOMP and Drp1 mediated fission are separate events during 

apoptosis and that Drp1 is only necessary for cyt c release but not for the release of 

other pro-apoptotic proteins [95]. Mitochondrial fragmentation seems to be 

dispensable as in Drp1 knockout cells cyt c release and apoptosis take place while 
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the tubular appearance of mitochondria remains [85]. As apoptosis is almost always 

accompanied by mitochondrial fragmentation, there should be a reason for this 

phenomenon. Brooks et al. showed that proteins involved in fission and fusion 

interact with the MOMP-directing Bcl-2 proteins [96]. Bcl-2 proteins are critical 

regulators of cell survival and regulate many processes including calcium 

metabolism, autophagy, insulin secretion and cell cycle control [95]. However, the 

morphological changes resulting from these interactions are not consistent with the 

fragmentation-MOMP time axis [95]. A new theory suggests that mitochondrial 

fragmentation is the result of the regulatory functions of Bcl-2 proteins rather than 

having a direct role in mitochondrial permeabilization and apoptosis [97]. 

 

2.2.4 Oxidative phosphorylation 

In animal cells most of the energy is generated in the mitochondria through the 

process of oxidative phosphorylation (oxphos). In 1961 Peter Mitchell [98] proposed 

the chemiosmotic theory, the mechanistic principle of oxphos. In his theory he 

explained for the first time the coupling between respiration and ATP synthesis in 

mitochondria. He showed that the ratio of ATP / ADP, representing phosphorylation 

efficiency of ADP and phosphate to ATP, is proportional to a proton gradient causing 

a difference in pH and an electrical potential. Nowadays, the electrical potential 

across the IMM is referred as mitochondrial membrane potential or delta psi (∆Ψ). 

Mitchell concluded that the electrochemical gradient is the driving force for 

phosphorylation and that a charge-impermeable membrane is required for coupling of 

the system. This implicates that coupling varies with the extent of leakiness [98]. 

Today the mechanism of oxphos is well known. During this process, electrons 

produced by oxidation of NADH (reduced nicotinamide adenine dinucleotide) are 

passed along four respiratory enzyme complexes located in the inner mitochondrial 

membrane. NADH is generated by the oxidation of nutrients, for example glucose. 

Passage of electrons along these complexes releases energy which is used to 

translocate protons from the mitochondrial matrix into the intermembrane space. The 

electrons are finally transferred to molecular oxygen to produce water consuming 

protons from the matrix side. The resulting electrochemical gradient across the IMM 
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stores the energy and is used by the ATP synthase to make ATP from ADP and 

phosphate [99]. 

 

Complex I or NADH:ubiquinone oxidoreductase is the largest of all respiratory 

complexes and has a L-shaped structure. In mammals it consists of 42 or 43 different 

subunits and its size is comparable to the one of ribosomes [100]. Complex I oxidizes 

NADH to NAD+ and transfers electrons to ubiquinone, also called coenzyme Q 

(CoQ). The energy liberated from this reaction is used to translocate one proton 

across the IMM [99]. 

Complex II also called succinate:ubiquinone reductase or succinate dehydrogenase 

is part of the Krebs cycle and transfers electrons from succinate to ubiquinone 

without pumping electrons across the IMM. Succinate dehydrogenase oxidizes 

succinate to fumarate and thereby reduces covalently bound FAD (flavin adenine 

dinucleotide) to FADH2. FDH2 transfers its electrons to ubiquinone [101].  

Complex III or cytochrome bc1 delivers electrons from ubiquinone to cytochrome c. It 

is the best understood of all respiratory enzymes. The mammalian form of complex III 

consists of eleven subunits but only three of them carry redox centers. These three 

subunits are cytochrome b containing two hemes, a membrane-anchored FeS protein 

(iron-sulfur protein ISP) called Rieske protein carrying a Fe2S2 center and a 

cytochrome c1 [102]. Ubiquinone is lipid soluble and can move within the membrane. 

The redox reactions of quinol imply protonation and deprotonation. These reactions 

Fig. 7. The electron transport chain 

Saraste, M. Science, 283, 1488 (1999) 



26 

are topologically organized in a way that oxidation of ubiquiol results in active 

transport of protons across the IMM. The reactions of quinols require two active sites, 

one for oxidation and release of protons from ubiquinol at the outer side of the 

membrane (Qo) and one for reduction of ubiquinone. Reduction of ubiquinone is 

coupled to the uptake of protons from the inner side of the membrane (Qi) [99]. 

Cristal structures confirmed the presence of two active sites. The Qo site is located 

between ISP and cytochrome b close to the outer site of the IMM. The Qi site is in the 

cytochrome b subunit in the matrix side of the membrane [103]. The Qo site is near 

the bL heme (low redox potential) and the Qi site is near the bH heme (high redox 

potential). The mechanism by which Complex III transfers protons across the 

membrane is called Q-cycle. A quinol can donate two electrons. The first electron is 

transferred to the Rieske center and from there to cytochrome c1, which reduces 

cytochrome c. The second electron is transferred along the hemes bL and bH to Qi. 

This transfer generates part of the proton motive force of this complex due to the 

difference in the redox potential of the two hemes. After oxidation of two quinols at 

the Qo site, two electrons are transferred to the Qi site and reduce another quinone. 

Thus, two protons are transferred across the IMM for every electron delivered to 

cytochrome c [99]. 

 

Complex IV or cytochrome c oxidase is the last complex in the electron transport 

chain (ETC) and catalyzes the final step, the transfer of electrons to molecular 

oxygen, thus, producing water. The bovine cytochrome c oxidase consists of 13 

subunits. Subunit I, II and III are coded in mtDNA and form the functional core of the 

Fig. 8. Complex III and the Q-cycle 

Saraste, M. Science, 283, 1488 (1999) 
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enzyme. Cyt c is a water soluble hemoprotein and donates electrons to complex IV at 

the cytoplasmic side of the IMM. The electrons are transferred to the active site of 

cytochrome c oxidase which contains a heme iron and a copper. There they are used 

to reduce oxygen to water. Four electrons and four protons from the MM are 

transferred to oxygen to produce two water molecules. The same channels which are 

used to take up protons to reduce oxygen are used to pump electrons across the 

IMM. One proton is translocated per electron which is transferred to complex IV [99]. 

Complex V or ATP-synthase (F1F0 ATPase) is functionally reversible. It can either 

synthesize ATP from ADP and phosphate using the proton gradient across the IMM 

or it can hydrolyze ATP to pump protons against the electrochemical gradient. The 

bovine complex V has a size of more than 500 kDa [104]. The enzyme consists of 

two main sectors, the F0 part in the IMM and the F1 part located in the matrix side of 

the membrane. The F0 sector contains the proton channel and the F1 the catalytic 

sector which synthesizes ATP. A stalk consisting of two parallel structures connects 

the parts [104]. The F0 sector consists of one a, two b and 9-12 c subunits. The b 

subunits build a stalk and connect F0 and F1 [105]. The three-dimensional structure of 

this complex enzyme is becoming increasingly clear. In 2009 John Walker  [106], one 

of the main contributors regarding complex V characterization, published the x-ray 

structure of the remaining unresolved parts of the stator. With this report, his group 

completed the three-dimensional structure of the membrane extrinsic part of bovine 

ATP-synthase [106]. 

The F1 sector contains five different subunits: α, β, γ, δ and ε in a stochiometry of 3 : 

3 : 1 : 1 :1. The β-subunit is the only catalytic one, although the α-subunit is 

homologous. Each of the three β-subunits has three catalytic sites. Boyer et al. [107] 

proposed a binding exchange mechanism in which each catalytic site of one β-

subunit passes through the three different states “empty”, “loose” and “tight”. These 

terms correspond to an empty state, one with bound ADP and phosphate and one 

with tightly bound ATP. At any moment, each of the three catalytic sites of one 

subunit would be in a different state. Binding of ADP and phosphate as well as 

release of ATP require energy, formation of ATP does not [107]. 

F0 and F1 both contain a rotor, consisting of the c subunits and the γ and ε subunits, 

respectively. The subunits a and b and the αβ-hexamer are referred as stators. F0 

and F1 rotate in opposite directions to generate a torque which is required for ATP 

synthesis. Yasuda et al. [108] fixed the stator of the isolated F1 part of the enzyme on 
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a glass surface and attached a microfilament at the γ subunit. With this assay they 

could detect rotary steps of 120° [108]. Isolated F1 is also called F1-ATPase as in the 

absence of F0 it hydrolizes ATP and rotates in the reverse direction [105].  

 

 

 

 

 

 

 

 

2.2.5 Mitochondria and oxidative stress 

2.2.5.1 Chemistry of free oxygen radicals 

Cells are challenged with several reactive oxygen species (ROS) which are 

generated within are generated intracellular and may have deleterious effects on 

proteins, lipids and carbohydrates. Thus, cells evolved multiple defense mechanisms 

to avoid oxidative damage. The free cellular ROS are composed by superoxide  

(O2
-•), hydroxyl radical (•OH) and hydrogen peroxide (H2O2). In contrast to the other 

molecules, hydrogen peroxide is not a radical as it does not contain an unpaired 

electron. 

Superoxide is a good reductant but poor oxidant radical. It can lead to the formation 

of other ROS as hydroxyl radical, hydrogen peroxide and perhydroxyl (HO2•) which is 

much stronger oxidative than superoxide itself. At a neutral or higher pH superoxide 

is catalyzed to hydrogen peroxide by superoxide dismutase. Superoxide is an 

unavoidable by-product of oxidative phosphorylation and is formed by reduction of 

molecular oxygen. 

Formation of superoxide   O2 + e- → O2
-• 

Fig. 9. ATP-synthase 

Schnitzer, M. Nature, 410, 878 (2001) 
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Hydrogen peroxide is considered the most potent oxidant in cells as its half-life time 

is extremely short. Hydroxyl radicals react with different molecules amongst other 

with lipids by removal or addition of unsaturated bonds. In cells hydroxyl is mainly 

derived from four reactions: the Fenton reaction, the Haber-Weiss reaction, via 

oxygen metabolism and with reduced metal ions, for example copper. The reaction 

occurring in oxygen metabolism may be the most important one in aerobic biological 

systems. 

 

Fenton reaction    Fe2+ + H2O2 → Fe3+ + •OH + OH- 

Haber-Weiss reaction   O2
-• + H2O2 → O2 + H2O + •OH 

Reaction with reduced metal ions  Cu+ + H2O2 → Cu2+ + •OH + OH- 

Oxygen metabolism    O2 + H2O → HO2• + OH- 

 

The major source of hydrogen peroxide is the reaction catalyzed by superoxide 

dismutase but it is also formed when two superoxide radicals (usually formed in 

oxygen metabolism) react together. Hydrogen peroxide cannot oxidize many organic 

molecules in an aqueous environment as it is not reactive enough. But it can 

generate hydroxyl radicals upon reaction with metals as shown above [109]. 

 

Reaction of superoxide dismutase O2
-• + 2H+ → H2O2 + O2 

Oxygen metabolism    O2
-• + O2

-• + 2H+ → H2O2 + O2 

 

2.2.5.2 Cellular sources of free radicals 

Superoxide generation is unavoidably generated by ETC and happens due to the 

reduction of oxygen to water at complex IV, thus the main source of ROS are 

mitochondria. High amounts of superoxide are produced when the electron carriers of 

the electron transport chain are in a reduced state, i.e. when the intracellular ADP 

levels are low (state 4 respiration) [110] or when the electron transport chain is 
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running at its maximal capacity. An increase in reduced carrier of the ETC occurs 

through increasing production of reducing equivalents or a decreased capacity of 

these carriers. ROS formation is increased after incubation with elevated 

concentrations of glucose or free fatty acids in adipocytes, pancreatic β cells, muscle 

and other cells [50]. Various catalytic cytosolic enzymes contribute to the generation 

of O2
-•, •OH and mainly H2O2 [111]. Xanthine oxidase is another source of 

superoxide. It can reduce cytochrome c and plays an important role in ischaemic 

injury. Under ischaemic conditions xanthine dehydrogenase acts as an oxidase and 

leads to the production of superoxide [109]. 

 

2.2.5.3 Defense systems against oxidative stress 

The cellular defense against oxidative damage consists of non-enzymatic 

compounds and antioxidant enzymes. Non-enzymatic antioxidants include vitamin C, 

vitamin E, vitamin A, glutathione, α-lipoic acid, CoQ and some minerals. Vitamin E is 

located in lipoproteins, cell membranes and extracellular fluids. It terminates lipid 

peroxidation processes as it can convert O2
-• and •OH into less reactive forms. 

Vitamin C is hydrophilic and directly scavenges ROS and lipoid hydroperoxides. It is 

found in high concentrations in the adrenal and pituitary glands, liver, brain, spleen 

and pancreas. Vitamin C can restore oxidized vitamin E to its antioxidant state. 

Vitamin A is located in cellular membranes. It is lipophilic and can scavenge free 

radicals. Vitamin A prevents lipid and DNA oxidation [112]. Coenzyme Q is the only 

soluble antioxidant which is synthesized endogenously and not taken up by food. It is 

part of the ETC but beside the inner mitochondrial membrane it is also found in 

extramitochondrial membranes. In its reduced form ubiquinol, it protects membranes 

and lipoproteins from protein oxidation and lipid peroxidation [113]. Reduced 

glutathione (GSH) is one of the most important cellular antioxidant. It is the tripeptide 

γ-glutamyl-cysteine-glycine and generally has an intracellular concentration of 

approximately 0.5 mM but it can reach up to 10 mM. GSH can react with many 

oxidizing compounds such as O2
-•, •OH and H2O2. It donates a hydrogen atom to free 

radicals, mainly hydroxyl and carbon radicals, thus, neutralizing the highly reactive 

•OH. After oxidation, two GSH molecules can form a sulfate bond, thus, resulting in 

GSSG. This oxidized form is restored under oxidation of NADPH to two reduced GSH 

[109]. 
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2GS• → GSSG  GSSG + NADPH → 2GSH + NADP 

 

The enzymatic antioxidant systems mainly consist of two superoxide dismutase 

isoforms, catalase and glutathione peroxidase (GSH-PX). SOD was first described by 

McCord and Fridovich [114] and is present in all oxygen respiring species. SOD 

catalyzes the reaction of two superoxide radicals to hydrogen peroxide and molecular 

oxygen. 

SOD reaction  O2
-• + O2

-• + 2H+ → H2O2 + O2 

The manganese (MnSOD) isoform is present in mitochondria while the copper-zinc 

(CuZnSOD) is located in the cytosol [109, 112]. The MnSOD appears as a tetramer 

while the CuZnSOD isoform is a dimer. Biosynthesis positively correlates with tissue 

oxygen. The highest levels of SOD are found in adrenal gland, liver, kidney and 

spleen [112]. 

Catalase and glutathione peroxidase catalyze the reaction of superoxide derived 

hydrogen peroxide to water. Catalase is ubiquitously expressed but the highest levels 

are found in the kidney, red blood cells, liver and especially in its peroxisomes. If 

hydrogen peroxide levels are low, catalase mainly catalyzes organic peroxide but at 

high concentration of hydrogen peroxide this radical is mainly catalyzed. 

Catalase reaction H2O2 → 2H2O + O2 

Glutathione peroxidase is located in the cytosol the mitochondrial matrix and reduces 

hydrogen peroxide and organic hydroperoxides to water [109]. McCay et al. were the 

first to describe a protective effect of in lipid peroxidation [115].  

 

2.2.5.4 Cellular damage by reactive oxygen species 

Oxidative damage to proteins can lead to denaturation and aggregation. These 

aggregates may be caused by •OH and consist of crosslinked proteins rather than 

non-specific aggregation of protein fragments. Oxidation causes conformational 

changes in protein structure, thus, promoting protein degradation. Free radicals can 

also change the structure of lipids and therefore disrupt the structure of the 
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membrane bilayers. Oxidized lipids are a major source of other cytotoxic products 

like aldehydes. Aldehydes have mutagenic effects and can cause protein crosslinks. 

Carbohydrates are also prone to oxidation. Glucose can scavenge •OH thus 

becoming autooxidized itself. Some carbohydrates can form ketoaldehydes in the 

presence of metal ions. Monosaccharides can autooxidize, thus, forming dicarbonyls 

and hydrogen peroxide. Free radicals act as mutagens as they can damage DNA. 

Hydroxyl radicals were reported to cause strand breaks and base alterations. 

Thymine and cytosine seem to be more susceptible to oxidative damage than 

adenine, guanine and the deoxyribose sugar moiety. Mitochondrial DNA was 

investigated with special intention as mitochondria are the major source of ROS and 

mitochondria possess less DNA repair processes than nuclei [109]. The mtDNA has 

a mutation rate that is about 10 to 20 times higher than the one of the nuclear DNA 

[116].  
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2.3 The antioxidants MitoQ, Resveratrol and Curcumin 

 

2.3.1 MitoQ 

MitoQ and MitoVit E were developed by Michael Murphy and colleagues with the 

intent to create antioxidants which selectively target mitochondria [117, 118]. As 

mitochondria are commonly considered as the major source of ROS, mitochondria 

targeted antioxidants would neutralize ROS at the site where they are formed and 

prevent cellular damage. MitoVit E consists of a vitamin E moiety coupled to a 

triphenylphosphonium cation (TPP). MitoQ10 is a CoQ analogue which is coupled to a 

TPP via a C10-alkyl chain [119, 120]. Due to their positive charge TPPs easily pass 

lipid bilayers. [117, 118].  

Herein after, MitoQ10 and its carrier, a TPP linked to a C10 chain, are referred to as 

MitoQ and decylTPP. 

 

 

2.3.1.1 MitoQ and the respiratory chain 

Triphenylphosphonium cations accumulate within cells due to the plasma membrane 

potential and further concentrate within mitochondria [121] several hundred folds 

[117, 118] . More than 90% of intracellular TPPs appear within mitochondria [121]. 

These properties make TPPs interesting compounds for targeting substances 

selectively to mitochondria. Like other TPPs, MitoQ is accumulated within 

mitochondria and accumulation can be abrogated by uncoupling mitochondria with 

FCCP (Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone), thus, abolishing the 

mitochondrial membrane potential. MitoQ is a mixture of the reduced form mitoquinol 

Fig. 10. Mitoquinone 
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which exerts antioxidant effects and the inactive oxidized form mitoquinone [120]. 

Kelso et al. [120] showed that MitoQ can be reduced by complex I and complex II of 

the respiratory chain in rat liver mitochondria. MitoQ could not restore respiration in 

ubiquinone depleted cells indicating that it cannot be oxidized by complex III. 

Experiments using radiolabeled MitoQ showed that it binds to the membrane part of 

cell fractions. Thus, it was suggested that it integrates into the inner mitochondrial 

membrane with the TPP part to the matrix side [120]. 

The same group further investigated the interactions of MitoQ with the respiratory 

chain. They showed that un-targeted exogenous CoQ could restore growth in CoQ-

deficient yeast dependent on the length of the isoprenoid chain. MitoQ and non-

targeted ubiquinones carrying an alkyl instead of an isoprenoid chain failed to save 

the phenotype. MitoQ could not restore respiration in mitochondria isolated from this 

yeast strain. In bovine heart mitochondria MitoQ was not oxidized by complex III. It 

was reduced by complex II but not by complex I in contrast to the publication cited 

above. Reduction by complex II was most efficient with MitoQ10 while the analogues 

with C3, C5 and C15 alkyl chains were reduced less efficiently [122].  

 

2.3.1.2 MitoQ in vitro 

MitoQ was used in many in vitro studies. It has been shown to decrease lipid 

peroxidation [120, 122-125], ROS production [126-130] and apoptosis [120, 125, 

127, 130-138]. Some of these studies are summarized in the following section. 

In isolated mitochondria, the membrane potential and respiration were not impaired 

up to a concentration of 10 µM. MitoQ dose-dependently inhibited lipid peroxidation 

induced by cis-parinaric acid in isolated mitochondria and highly decreased hydrogen 

peroxide induced apoptosis in Jurkat cells [120]. 

Jauslin et al. [134] examined whether MitoQ and MitoVit E could prevent cell death in 

fibroblasts from Friedreich Ataxia (FRDA) patients. Friedreich Ataxia is a 

neurodegenerative disorder leading to dysfunction of the musculoskeletal system, 

cardiomyopathy and other symptoms. The disorder is caused by a mutation in the 

gene coding for frataxin which is located in mitochondria. It is important for repairing 

iron-sulfur clusters and for biosynthesis of heme. Mitochondrial oxidative damage is 
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increased in this condition, thus, antioxidants may have a beneficial effect. 

Fibroblasts from FRDA patients were treated with L-buthionine-(S,R)-sulfoximine, an 

inhibitor of glutathione synthesis which leads to apoptosis of FRDA cells while 

healthy cells are not affected. MitoQ prevented apoptosis at an EC50 of 0.5 nM and 

was about 50 fold more efficient than decylubiquinone. MitoVit E prevented 50% of 

cell death at a concentration of 23.6 nM and was about 20-fold more potent than 

vitamin E. In contrast to MitoQ, the EC50 of MitoVit E did not increase when FCCP 

was added to the cells [134]. 

Saretzki et al. [128] examined the effect of MitoQ on population doubling and 

telomere shortening under hyperoxia. They pretreated MRC-5 fibroblasts with 10-20 

nM MitoQ for one week, afterwards the cells were challenged with partial oxygen 

pressure of 40% under maintenance of MitoQ treatment. After one week of hyperoxia 

they detected a decrease in ROS levels in MitoQ treated cells. Replicative lifespan 

significantly increased and telomere shortening decreased. These results suggest 

that MitoQ can slow the process of cell senescence [128]. 

In contrast to many other publications, Fink et al. [139] reported a pro-oxidant effect 

of MitoQ in mitochondria isolated from beef aortic epithelial (BAE) cells. Mitoquinone 

and mitoquinol highly increased H2O2 production when mitochondria were respiring 

on complex I substrates. They also showed an increase in oxygen consumption of 

isolated mitochondria respiring on glutamate and malate in state 4 and uncoupled 

state 4 in response to treatment with mitoquinone. However, the ADP:O ratio was not 

affected as state 3 respiration also raised, indicating an uncoupling effect. 

Mitoquinone changed fuel selectivity. It increased glucose oxidation and decreased 

oleate oxidation in BAE cells [139]. 

 

2.3.1.3 MitoQ in vivo 

MitoQ has also been tested in some animal models in vivo and few clinical trials were 

performed. 

The first in vivo study was done by Smith et al. in 2003 [119]. They performed 

experiments with radiolabelled methyltriphenylphosphonium cation (TPMP). TPMP 

was taken up by the liver, kidney and heart but not by the brain when injected 

intraperitoneally. When the substance was injected intravenously, uptake was much 
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more efficient and also happened in the brain. Accumulation of MitoVit E and MitoQ 

after feeding in drinking water during 4 and 10 days respectively was detected in 

heart, brain, liver, kidney and muscle. Thus, this study suggested that MitoVit E and 

MitoQ may be beneficial in conditions associated with increased oxidative stress. 

MitoQ has been tested in several rodent models for heart diseases. Feeding rats for 

14 days with MitoQ in their drinking water ameliorated cardiac function in an ex vivo 

model of ischaemia-reperfusion injury. MitoQ significantly lowered lactate 

dehydrogenase release and electron microscopy showed less pronounced damage 

to the heart muscle compared to tissue from untreated animals. Cytochrome c 

release and up-regulation of caspase 3 were inhibited. MitoQ protected mitochondrial 

function as respiration was less impaired in isolated mitochondria from treated 

animals [140].Graham et al. [141] fed spontaneously hypertensive rats during eight 

weeks with 500 µM MitoQ in their drinking water. After this period systolic blood 

pressure was significantly decreased and cardiac hypertrophy was reduced [141]. 

MitoQ was also tested in a rat model of sepsis. It protected heart mitochondria from 

endotoxin induced decrease in state 3 respiration and impairment of respiratory 

control ratio. MitoQ also abolished the increase in caspase 3 and caspase 9 activity. 

It normalized left ventricular pressure and systolic blood pressure. Thus, MitoQ could 

prevent sepsis induced cardiac dysfunction [142]. 

Hobbs et al. [143] examined whether mitoquinone has a neuroprotective effect in a 

rat model of stroke. During three days mitoquinone was infused continuously into the 

right striatum. Afterwards they ligated the right carotid artery during 2.5 h under 

anesthesia. Then the animals were exposed to 8% oxygen to mimic hypoxic 

conditions. In this model no protective effect of mitoquinone regarding the number of 

medium-spiny neurons was detected [143]. This study suggests that mitoquinone has 

no protective effect against hypoxia induced brain injury. However, mitoquinol and 

not mitoquinone is considered to act as an antioxidant but one would expect that 

mitoquinone gets reduced by the respiratory chain to the active form mitoquinol. 

In another study the consequences of a long-term administration of MitoQ to mice 

was elucidated. Rodriguez-Cuenca et al. [144] administered MitoQ to mice in their 

drinking water during 24 to 28 weeks. MitoQ accumulated in the heart, to a lower 

extent in the liver and in the brain. The amount in the brain was almost 50 times 

lower than the one in the heart. Oxygen consumption and physical activity were not 
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affected by MitoQ treatment while the respiratory quotient (RQ) decreased in the dark 

period when mice were fed with 500 µM MitoQ. Treated mice performed better on the 

rotarod test indicating improved coordination. Overall bodyweight was not changed 

but MitoQ treated mice had less fat mass per body weight, less triglyceride content in 

the liver and average adipocytes size was decreased. Glucose and insulin tolerance 

were not altered but triglyceride concentration in the blood was diminished [144]. This 

study indicates that MitoQ can safely be administered for a long time in mice. 

 

1.1.1.1 Clinical trials 

Two clinical studies were performed so far. In the PROTECT study the effect of 

MitoQ on progression of Parkinson’s disease was assessed in a double-blind 

13-center study in New Zealand and Australia. 128 newly diagnosed patients were 

treated with either 40 mg or 80 mg MitoQ or placebo for 12 months. There was no 

effect on disease progression by MitoQ [145]. One explanation is that at the time of 

diagnosis approximately 50% of dopaminergic neurons are already lost [146]. 

Another possibility is that MitoQ does not penetrate the blood brain barrier efficiently 

enough to exert a clinical effect. However this study showed that it can safely be 

administered to humans for a long time. 

The second clinical study was the CLEAR trial with 30 patients suffering from chronic 

hepatitis C. The effect of mitoquinone on serum amino-transferases and levels of 

viral RNA was assessed. Thirty patients were randomized for placebo or treatment 

with 40 mg or 80 mg mitoquinone per day. After 28 days, serum level of alanine-

transaminase was significantly lowered compared to baseline but viral load did not 

change. Thus, this study suggests that MitoQ can reduce liver pathology in hepatitis 

C [147]. Both trials were performed by Antipodean Pharmaceuticals Inc. This 

company recently announced that a phase 2b trial with MitoQ on liver disease will be 

completed this year and that a serum and a cream containing MitoQ are ready to be 

launched. These two cosmetic products should protect skin keratinocytes and 

fibroblasts from oxidative damage. 
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2.3.2 Resveratrol 

Resveratrol is a naturally occurring antioxidant mainly found in grapes but also in 

other plants. It is found in red wine, some berries and purple grape juice. The most 

abundant form in plants is trans-resveratrol-3-O-β-D-glucoside, usually called piceid. 

Lancon et al. showed that cellular uptake involves both diffusion and a carrier-

mediated process [148]. 

 

The effets of resveratrol on adipocyte differentiation, oxidative stress, obesity and 

diabetes, cardiac function and cancer was extensively investigated in vitro and in 

vivo. In addition, some clinical studies were performed. 

 

2.3.2.1 Resveratrol and adipocyte differentiation 

In human SGBS pre-adipocytes, resveratrol inhibits proliferation and differentiation to 

adipocytes in a SIRT-1 (NAD-dependent deacetylase sirtuin-1) dependent manner. 

Resveratrol increased glucose uptake, inhibited lipid accumulation and expression of 

lipogenic genes [149]. Resveratrol has been shown to dose-dependently reduce lipid 

accumulation and viability of 3T3-L1 cells during differentiation into adipocytes [150]. 

Resveratrol down-regulates the expression of several genes involved in adipogenesis 

including PPARγ and C/EBPα [150] and increases the expression of SIRT-3, UCP1 

and Mfn2. [151]. The activity of sirtuins, a family of histone deacetylases, is increased 

by resveratrol. When SIRT-1 is activated, it de-acetylates PGC-1α and represses 

PPARγ. PGC-1α induces the expression of genes involved in fatty acid oxidation and 

Fig. 11.      trans-Resveratrol                                                     Piceid 
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mitochondrial biogenesis while PPARγ is involved in adipocytes differentiation [152]. 

Expression of SIRT-3, a mitochondrial sirtuin, enhances UCP1 expression via  

PGC-1α [152]. Beside its function in mitiochonrial fusion, Mfn2 plays an important 

role in glucose oxidation [151]. 

Furthermore, resveratrol regulates fat cell number by inhibiting differentiation and by 

inducing apoptosis. Also in other cell lines cell cycle arrest, inhibition of proliferation 

and induction of apoptosis was shown under resveratrol treatment [153, 154]. 

 

2.3.2.2 Resveratrol and oxidative stress 

The mechanism of the antioxidant effect of resveratrol has been characterized in vitro 

and in vivo. 

Mainly in culture media resveratrol can undergo auto-oxidation, thus, producing the 

cytotoxic ROS superoxide and hydrogen peroxide. This reaction may influence in 

vitro results. However, there is also a report that degradation can happen without 

production of hydrogen peroxide [155]. About 80% of resveratrol is degraded after  

24 h at 37°C while the sulfate metabolites are stable [156]. 

Resveratrol has been shown to increase MnSOD levels in vitro and in vivo. Robb et 

al. [157] treated the human fibroblast-like cell line MRC-5 with resveratrol for two 

weeks. They showed an increase in the activity of catalase, GSH-PX and MnSOD 

[157]. 

Mokni et al. [158] injected rats with resveratrol for seven days and measured the 

activity of several antioxidant enzymes and protein peroxidation in the brain. They 

measured an increase in activity of SODs, catalase and peroxidases as well as a 

dose-dependent decrease in malondialdehyde levels, a marker of protein 

peroxidation [158]. In another study Robb et al. [159] administered resveratrol in a 

normal or high fat diet to mice during four weeks. In brain tissue they observed an 

increase in MnSOD protein levels and activity in mice on high fat diet in response to 

resveratrol. In the liver no changes were seen in MnSOD levels while in the heart 

MnSOD even decreased in mice on high fat diet after resveratrol treatment. 

Resveratrol had no effects on tissues of mice on normal diet in this study [159]. Thus, 
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the antioxidant effect of resveratrol seems to be at least in part due to the up-

regulation of antioxidant enzymes and is tissue specific. 

 

2.3.2.3 Resveratrol in obesity, diabetes and inflammation 

As obesity is known to be accompanied by increased oxidative stress, antioxidants 

are interesting compounds in this context. 

Szkudelska et al. treated freshly isolated rat adipocytes with different resveratrol 

concentrations; they reported that resveratrol reduced glucose conversion to lipids 

and increased lipolysis after stimulation with epinephrine [160]. 

Kozawa et al. [161] administered a corn-oil mixture and resveratrol or its metabolite 

piceid either orally or intraperitoneally to rats during three days. Then they injected 

14C-palmitate, sacrificed the animals and estimated lipogenesis from 14C-activity. 

They reported that resveratrol and piceid reduced triglyceride synthesis from 

14C-palmitate in the liver. Serum triglyceride and LDL-cholesterol was reduced by 

piceid after seven days of treatment with piceid [161]. 

An anti-hyperglycemic effect of resveratrol in obese rodents with experimentally-

induced diabetes has been reported in several studies. Baur et al. [162] fed mice with 

either standard (SD), high calorie diet (HC) or high calorie diet supplemented with 

resveratrol (HCR) and collected data during 24 months. The addition of resveratrol 

reversed the shortening of lifespan seen in mice on HC. Mice fed HC and HCR 

showed a significantly impaired performance on the rotarod test compared to mice on 

SD. Resveratrol treated mice improved during the whole experimental period and 

they reached equal performance as the SD fed animals at the end of the study. 

Insulin and glucose levels of HCR mice significantly decreased compared to HC 

animals. Resveratrol reversed liver and heart pathology as well as the decrease in 

mitochondrial number seen in HC fed mice [162]. Su et al. [163] treated 

streptozotocin-induced diabetic rats with resveratrol and measured the effects on 

glucose and insulin metabolism. Resveratrol lowered plasma insulin and glucose 

concentrations as well as plasma triglyceride content. Importantly, resveratrol 

prevented weight loss and decreased food and water consumption. Body weight loss 

and an increase in water and food intake are typical symptoms of untreated diabetes. 
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Resveratrol also dose-dependently increased glucose uptake of muscle, liver and 

adipocytes of diabetic rats as well as glycogen synthesis of isolated rat hepatocytes 

[163]. However, in some publications on streptozotocin-induced diabetic rats 

resveratrol failed to decrease blood glucose levels [164]. 

Other studies on rats with experimentally induced diabetes showed an increased 

expression of the insulin-dependent glucose transporter GLUT4 in resveratrol treated 

animals [165, 166]. Penumathsa et al. reported this effect to be insulin-independent 

[165] while Chi et al. suggested both an insulin-dependent and an insulin-

independent pathway [166]. 

 

2.3.2.4 Resveratrol in cardiac function and arthersclerosis 

In 1992, the observation that daily drinking wine in moderate amounts has beneficial 

health effects has been published as the “French Paradox”. Scientists believed that 

not the alcohol itself may cause this effect but one of the polyphenols present in red 

wine. The one which gained most attention was resveratrol and now it becomes more 

and more evident that resveratrol is indeed the major factor responsible for 

cardioprotection of red wine [167]. 

Beside other beneficial effects, resveratrol blocks peroxidation of LDL in the heart, 

increases HDL levels and reduces ROS load in the heart [167]. Liu et al. [168] treated 

rats with experimentally-induced hypertension and cardiac hyperthrophy with 

resveratrol for four weeks. After this treatment period they measured reduced blood 

pressure, lower heart weight and a decrease in the vasoconstrictors endothelin-1 and 

angiotensin II while the level of the vasodilatator NO was increased [168]. In another 

study, spontaneously hypertensive rats were treated with resveratrol for ten weeks. 

The untreated control group showed cardiac hypertrophy what could be prevented by 

resveratrol. However, in contrast to other reports, resveratrol did not lower blood 

pressure [169]. Resveratrol was also reported to inhibit platelet aggregation, thus, 

exerting a cardioprotective effect similar to aspirin [170]. 

Other studies suggested that resveratrol may facilitate regeneration of the 

myocardium after infarction. Rats were pre-treated with resveratrol for two weeks 

before inducing myocardial infarction by occlusion of the left anterior descending 
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coronary artery. Following infarction, fluorescence labeled adult cardiac stem cells 

were injected on the border zone of the myocardium. Twenty-eight days later the 

resveratrol treated animals showed improved cardiac function and increased survival, 

proliferation and differentiation of the injected cells. In addition, adult cardiac stem 

cells expressing GFP (green fluorescent protein) were treated with resveratrol for 60 

min. Myocardial infarction was induced in rats as described above and the pre-

treated cells were injected after occlusion. One, two and four months after infarction 

the rats injected with resveratrol treated cells showed better cardiac function and the 

survival and proliferation of the pre-treated stem cells was increased compared to the 

untreated control [171]. 

As resveratrol has anti-inflammatory effects it is also suggested to be beneficial in 

artherosclerosis. In vitro resveratrol showed anti-inflammatory properties. It inhibited 

secretion of the inflammatory mediators IL-6, IL-8 and granulocyte-macrophage 

colony stimulating factor (GM-CSF) in macrophages and the expression of COX-2, 

which catalyses the synthesis of prostaglandin E2 (PGE2), a major player in 

inflammatory reactions [167]. In the epithelial cell line CHO-K1 resveratrol decreased 

the oxidation and uptake of LDL which is the main cause of artherosclerosis [172]. 

 

2.3.2.5 Resveratrol and cancer 

The anti-cancer potential of resveratrol was published for the first time by Jang et al. 

in 1997 [173]. Since then, the anti-cancer effects of resveratrol have extensively been 

investigated. A major problem in chemotherapy is the development of chemo-

resistance by the tumor, thus, making chemotherapy ineffective. Therefore, 

sensitizing the tumor to anti-cancer drugs is an important strategy to overcome 

chemoresistance [174]. Chemoresistance can have several reasons like increased 

efflux or inactivation of the drug, alterations of the target molecule and changes in 

intracellular signaling pathways.  

Most reports show that the chemo-sensitizing effect of resveratrol is due to 

modulation of cell survival proteins. For example Fulda et al. [175, 176] and Zhao et 

al. [175, 176] showed that resveratrol decreased the expression of the caspase 

inhibitor survivin and increased apoptosis in a variety of cancer cell lines. In other 
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studies resveratrol modulated the tumor suppressor p53 [174]. For example 

resveratrol up-regulated p53 in chemoresistant B16 melanoma cells [177].  

In few studies, down-regulation of NFκB (Nuclear factor NF-kappa-B) and STAT3 

(Signal transducer and activator of transcription 3) pathways were reported. Amongst 

other functions, NFκB is involved in growth regulation, carcinogenesis, apoptosis and 

inflammation. NFκB has been shown to inhibit drug-induced apoptosis when it is 

constitutively active [174]. Aberrant STAT3 signaling is involved in uncontrolled cell 

growth, invasion, angiogenesis, metastasis and resistance to apoptosis [178]. In 

multiple melanoma cells resveratrol enhanced the apoptotic and anti-proliferative 

effect of two anti-cancer drugs. This enhancement was accompanied by inhibition of 

NFκB and STAT3 activation and also observed in melanoma patients [174].  

Zhao et al. [176] injected multidrug-resistant human non-small-cell lung cancer cells 

(NSCLC) into nude mice and treated them with a resveratrol containing diet. 

Resveratrol exerted an anti-tumor effect without showing any toxicity. It decreased 

proliferation and survivin expression and increased apoptosis. In addition, resveratrol 

decreased the IC50 of various anti-cancer agents [176]. However, there are also 

reports that resveratrol counteracts chemotherapeutic agents in some tumor cells 

[174]. 

 

2.3.2.6 Pharmacological properties of resveratrol 

Resveratrol has rather unfavorable pharmacological properties. It is efficiently 

absorbed but its bioavailabilty is low and it is rapidly cleared from the circulation 

[179]. It is metabolized into different derivates, mainly glucuronide and sulfate 

conjugates [155]. The major metabolite in humans is picetannol  

(3,5,3’,4’-tetrahydroxystilbene) which has an additional hydroxyl group [155]. Different 

strategies were used to increase its bioavailability without losing activity. Acetylation 

increases absorption and cellular uptake, binding to hexanoic acid enhances the 

affinity to human serum albumin and nanoparticles which should improve stability and 

bioavailability are in development [155].  

At high concentrations resveratrol binds to human serum albumin (HSA) and 

hemoglobin. The affinity to hemoglobin (Hb) is lower [180], but Hb has a higher 
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concentration in the serum than HSA. Thus, both proteins are supposed to play an 

important role in resveratrol distribution [155]. Fatty acids facilitate the binding of 

resveratrol to bovine serum albumin (BSA).  

 

2.3.2.7 Human ex vivo studies and clinical trials with resveratrol 

To date about 30 clinical trials and human ex vivo studies with resveratrol are 

published. Many of them investigated the pharmacokinetics of resveratrol or its 

effects on different parameters important in heart disease. In few studies the 

influence of resveratrol on insulin sensitivity and oxidative stress was examined. 

However, all trials were performed with a small number of probands and in many of 

them either red wine or plant extracts instead of pure resveratrol was used. 

In ex vivo experiments using vascular rings from different arteries and veins, 

resveratrol caused relaxation of the blood vessel. This was seen in blood vessels 

from healthy probands as wells as in the ones from patients with heart diseases. This 

effect was observed at concentrations which can be achieved by ingestion of 

resveratrol-rich food [181, 182]. Brasnyó et al. [183] treated T2DM patients with either 

resveratrol or placebo for four weeks in a double blind study with nine or ten 

probands in each group. Resveratrol improved insulin sensitivity, decreased oxidative 

stress but had no effect on parameters related to β-cell function [183]. 
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Fig. 12. Curcumin 

2.3.3 Curcumin 

Curcumin is an ingredient of turmeric, a spice prepared from the root of Curcuma 

longa. Turmeric is a condiment of curry powder and mainly used in the Asian kitchen. 

Curcuminoid isolated from plants consists of 3 major natural analogues: curcumin is 

the most abundant one at ca. 77%, demethoxycurcumin and bis-demethoxycurcumin 

account for 17% and 3%, respectively. Efficacy of the different analogues varies 

between cell types, function, models of disease and among species. Curcumin is 

commercially available as a pure substance of only one individual analogue which 

was synthesized chemically or as a mixture of all 3 natural curcuminoids isolated 

from plants [178].  

 

Curcumin shows anti-inflammatory, antioxidant, pro-apoptotic and anti-cancer effects 

in vitro and in vivo. 

 

2.3.3.1 The impacts of curcumin on proliferation, apoptosis and cancer 

Curcumin interacts with the transcription factors NFκB and STAT3 [178]. Shishodia et 

al. reported that curcumin induced cell cycle arrest, apoptosis and suppression of 

proliferation in four different human lymphoma cell lines by down-regulation of NFκB 

[184]. Curcumin suppresses cell proliferation induced by IL-6 production by inhibiting 

STAT3 signaling in human multiple melanoma cells [185] and also inhibits STAT3 

activation in different human lymphoma cell lines [186]. 

It was also reported that curcumin altered the expression of the tumor suppressor 

p53 which plays an important role in many cancer types [187]. Several reports 

showed that curcumin induced apoptosis by up-regulation of p53 [187]. For example, 

Choudhuri et al. reported that curcumin induced apoptosis in human epithelial breast 

cancer, prostate cancer and B cell lymphoma cell lines [188]. Han et al. [189] saw a 
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decrease in proliferation in two murine immature B cell lymphoma cell lines while this 

effect was much weaker in normal B cells. Surprisingly, they demonstrated a down-

regulation of expression of p53. Another report demonstrated reduced activity of p53 

in the RKO colon cancer cell line where curcumin impaired the correct folding of the 

p53 protein [190] and it also enhanced degradation of p53 in myeloid leukaemia cells 

[191]. 

In the context of cancer, the effects of curcumin on matrix metalloproteases (MMPs) 

were also investigated. MMPs are endopeptidases and are over-expressed in 

inflammation and cancer [178]. Over-expression of MMPs leads to fibrosis, tissue 

destruction and inflammation [192]. MMPs also play an important role in invasion, 

metastasis and angiogenesis of cancer as they cause matrix dissolution [193]. It has 

been shown that curcumin decreases MMP-9 expression via inhibiting NFκB 

expression in human astroglioma cells [194]. Curcumin down-regulates MMP-2 and 

MMP-9 and decreases invasion and migration in human fibrosarcoma cells. 

Curcumin was also reported to decrease MMP-9 production of human and rabbit 

peripheral blood mononuclear cells [178].  

 

2.3.3.2 Curcumin in obesity, diabetes and inflammation 

Curcumin was extensively described as a modulator of inflammation and metabolic 

disorders in obesity. It was suggested that curcumin has beneficial effects in obesity, 

diabetes, artherosclerosis and metabolic syndrome [22]. 

Lee and colleagues showed that curcumin down-regulates PPARγ in 3T3-L1 

adipocytes, thus, inhibiting differentiation [195]. However, in contrast to the 

publication above Kuroda et al. [196] reported that ethanol extracts of turmeric dose-

dependently stimulated differentiation of human pre-adipocytes into adipocytes and 

increased PPARγ activity. 

In KK-A(γ) mice, a modelT2DM, the turmeric extract lowered blood glucose [196]. In 

addition, curcumin enhanced the expression of adiponectin in obese ob/ob mice 

[197]. Ejaz et al. treated mice fed with a high fat diet with dietary curcumin for 12 

weeks: Curcumin supplementation reduced weight gain, adiposity and micro-vessel 

density in fat tissue but did not affect food consumption [198].  
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Another group used the same animal model and examined erythrocytes, heart, liver, 

kidney and pancreas for oxidative stress and activity of the antioxidant enzymes 

SOD, catalase and GSH-PX. They showed lower lipid peroxidation in all tissues 

examined in diabetic rats treated with curcumin compared to the untreated animals. 

In addition, they observed higher SOD activity in pancreas but not in the other tissues 

and GSH-PX was more active in erythrocytes and pancreas while catalase activity 

was higher in all five tissues [199].  

Curcumin also acts as an anti-inflammatory agent. It was shown to decrease 

expression of TNFα in various tissues [200]. Other groups reported that curcumin 

decreased various inflammatory cytokines expressed by adipocytes such as IL-1,  

IL-6 and several chemokines [201, 202]. Jain and colleagues [203] cultured U937 

macrophages in high or low glucose medium and treated the cells with curcumin. 

They observed a decrease in lipid peroxidation and secretion of IL-6, IL-8 TNFα and 

monocyte chemoattractant protein 1(MCP-1) in the cells cultured in high glucose in 

response to curcumin. Furthermore, they elucidated the effects of curcumin on 

inflammatory cytokines in rats with experimentally-induced diabetes. After seven 

weeks of oral administration of curcumin, diabetic rats showed significantly lower 

concentrations of IL-6, TNFα and MCP-1, lower blood glucose and higher plasma 

insulin as well as decreased oxidative stress compared to untreated animals [203]. It 

was also shown that curcumin reduced MMP-9 in human intestinal epithelial cells and 

dose-dependently inhibited MMP-3 production in primary human colonic 

myofibroblasts from subjects with inflammatory bowel disease [178].  

Thus, curcumin not only acts on adipose tissue but also directly on cells which 

mediate inflammation. 

 

2.3.3.3 Curcumin and cardiac dysfunction 

Morimoto et al. [204] could show that curcumin prevents cardiac hypertrophy in rats 

by inhibiting the histone acetyltransferase p300. It also prevented heart-failure 

induced increase in cardiac wall thickness and diameter in two rat models. 
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2.3.3.4 Clinical trials with curcumin 

About 60 clinical trials using curcumin are published so far. Amongst others curcumin 

was tested in the field of cancer, Alzheimer’s disease, heart diseases and blood lipid 

profile. All these studies included only a small number of patients. Some of these 

trials are shortly summarized below.  

Carroll et al. [205] investigated the effect of curcumin on colorectal neoplasia in 

smokers treated with 2 g or 4 g curcumin daily for 30 days. The group treated with 4 

g curcumin showed a reduction of 40% in the number of aberrant crypt foci, a 

preneoplastic lesion [205]. In another phase II trial patients with advanced pancreatic 

cancer were treated with 8 g curcumin daily until disease progression. Two out of 21 

patients showed a clinical response. In one patient the disease was stable for more 

than 18 months and the other responder had a brief tumor regression of 73% 

accompanied by significant increases in serum levels of IL-6, IL-8, IL-10 and IL-1 

receptor antagonists. Curcumin showed low steady-state levels indicating poor 

bioavailability and was detected as glucuronide and sulfate conjugates [206]. 

Usharani et al. [207] treated patients suffering from T2DM with 150 mg curcumin or 

placebo twice daily for eight weeks. They observed improved endothelial function and 

a decrease in serum levels of TNFα, IL-6 and malondialdehyde, a marker for 

oxidative stress [207]. Another group investigated the effects of curcumin on blood 

lipid profile in a randomized double-blind trial. They treated elderly people with either 

4 g or 1 g curcumin daily or with placebo during six months. No changes in total 

cholesterol, HDL cholesterol, LDL cholesterol or triaglycerols were detected. Almost 

no side effects appeared, thus, curcumin is well tolerated during a long-term 

treatment [208].  



49 

3 Aims of the thesis 

As argued above, good in vitro models are needed for research into the elucidation of 

the mechanisms of fat accumulation in overweight-associated diseases. So far, most 

in vitro studies have been performed in murine cell lines, although a primary human 

model would be much closer to the needs for preclinical research. Therefore, the first 

aim was to characterize hBM-MSCs as a model for adipocytes and adipogenesis. 

Several important parameters such as fat accumulation, ROS production, 

mitochondrial mass and morphology and cellular oxygen consumption should be 

analyzed during the whole differentiation process from the stem cell to the adipocyte. 

The study was also intended to show analogies and differences between primary 

human cells and the commonly used murine adipocytes-like cell lines.  

The second aim of this thesis was to investigate the effect of antioxidants to reduce 

oxidative stress in the hBM-MSC adipocyte cell model. As explained above, oxidative 

stress is increased in obesity and is supposed to lead to insulin resistance. Obese 

people often have mutations in mtDNA of β-cells which lead to defective insulin 

secretion and apoptosis. In addition, mitochondrial mass of white adipocytes is 

significantly decreased in genetically obese and diabetic ob/ob mice compared to 

wild-type animals. As mitochondria are the main source of intracellular ROS 

themselves, they are especially vulnerable to oxidative stress. Therefore, an 

antioxidant treatment may have beneficial effects on insulin sensitivity and 

mitochondrial function. The aim was to investigate the effects of three antioxidant 

compounds on hBM-MSC derived adipocytes, namely the synthetic mitochondrial-

targeted coenzymeQ analogue MitoQ and the natural compounds resveratrol and 

curcumin. The impact on different mitochondrial functions of these substances should 

be assessed. In particular their influence on ROS production, respiration and 

intracellular ATP content should be investigated. These experiments should give a 

clue whether MitoQ, resveratrol and curcumin may be interesting candidates for 

preventing mitochondrial dysfunction in obese patients. 
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Abstract 

Overweight represents a major threat to public health in many countries. We describe 

primary human bone marrow stem cells (hBM-MSCs) as a model for adipogenesis 

and adipocytes. During adipogenesis the following cellular and mitochondrial 

functions were assessed: fat accumulation, reactive oxygen species (ROS) 

production, cellular protein content, oxygen consumption and mitochondrial mass per 

cytoplamic volume. All these measures increased during differentiation except the 

cell number remained uneffected. During adipogenesis, the density and 

interconnectivity of the mitochondrial networks increased. mitochondria while cristae 

structure was not altered. Here, we present data about respiration and ROS 

production during the differentiation process of the hBM-MSC based adipogenesis 

model for the first time. 

 

Introduction 

Overweight and obesity represent a main threat to public health in many countries 

worldwide. In the United States 68% of men were overweight and 32.2% were obese 

in 2008. In the same period 64.1% of women were overweight and 35.5% were 

obese [1]. Obesity can lead to severe co-morbidities such as metabolic syndrome, 

hypertension, type II diabetes mellitus (T2DM), coronary heart disease and stroke. 

Obesity is accompanied by elevated plasma concentrations of free fatty acids (FFA), 

a chronic low level inflammation and an increase of reactive oxygen species (ROS) 

production, both at a systemic level [19]. High levels of FFA are likely to contribute to 

insulin resistance (IRe) [209]. Fatty acids can either be oxidized in mitochondria or 

stored as triglycerides. Lipid overload leads to an accumulation of fatty acid 

intermediates which can activate inflammatory pathways, thus, leading to an 

inhibition of insulin function [209]. In animal and human models of genetic and diet 

induced obesity, macrophages infiltrate adipose tissue and secrete inflammatory 

mediators which could promote obesity-induced insulin resistance [210, 211]. It has 

been shown that elevated concentrations of glucose or FFA induce the formation of 

ROS in muscle, pancreatic β-cells, adipocytes and also other cell types [212-215]. 

Reactive nitrogen species (RNS) and ROS are unavoidably generated by oxidative 

phosphorylation [216-219]. Augmented levels of substrates lead to higher 

mitochondrial respiration causing increased oxidative stress to the cell. Antioxidant 

mechanisms include ROS converting enzymes such as mitochondrial manganese 
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superoxide dismutase (MnSOD) which converts superoxide to hydrogen peroxide 

within mitochondria. Glutathione peroxidase (GSH-PX) and catalase further catalyze 

the reaction from hydrogen peroxide to water. In addition, the inner mitochondrial 

membrane contains non-enzymatic antioxidants like vitamin E [217-219]. Cell 

damage can occur when the endogenous ROS defense mechanisms are 

overwhelmed. Increased levels of ROS load have been reported in reperfusion injury 

after myocardial infarction, cancer, Alzheimer’s disease, amyotrophic lateral 

sclerosis, atherosclerosis, hypertension, diabetes and other disorders [220]. In 

mouse adipocytes ROS levels increased in response to high concentrations of 

glucose [215]. Primary rat adipocytes showed augmented generation of ROS when 

exposed to high glucose and insulin concentrations. This reaction could be prevented 

by pre-incubation with the antioxidant N-acetylcystein [221]. It has also been shown 

that exposure of 3T3-L1 adipocytes to hydrogen peroxide caused IRe [222]. Thus, 

IRe has been proposed to be a physiological mechanism to prevent oxidative stress 

[51]. 

The former view of adipocytes being only an inactive depot of triglycerides changed 

completely during the last years. Fat cells are now recognized as an important player 

in disease mechanisms. Due to the high prevalence of obesity in the western world 

these cells deserve even closer attention. Usually the murine 3T3-L1 fibroblast-like 

cell line is used as an adipocytes model for in vitro studies. The use of these murine 

cells has the disadvantage that the cells might behave distinct in comparison to 

human cells. Human adipocytes isolated directly from adipose tissue cannot be 

expanded and are difficult to handle as they are extremely fragile. In our hands 

human preadipocytes from adipose tissue did not differentiate efficiently and 

reproducible into adipocytes. Here we describe primary human bone marrow derived 

mesenchymal stem cells (hBM-MSC) as a model for human adipocytes and 

adipogenesis. These human cells can easily be grown and differentiated into fat cells 

and may be closer to the clinics than murine 3T3 cells, thus, providing a more 

relevant model for research. 
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Materials and Methods 

Chemicals 

All chemicals were purchased from Sigma-Aldrich (Buchs, Switzerland) if not 

mentioned otherwise. 

 

Cell culture 

Primary human bone marrow derived mesenchymal stem cells (hBM-MSC) were 

expanded until confluency was reached. Then the cells were differentiated for 22 

days by applying differentiation medium containing insulin, rosiglitazone, 3-Isobutyl-1-

methylxanthine (IBMX) and other substances. The exact media composition was 

performed as described in Hoch et al [223]. The cells were kindly provided by Prof. 

Ivan Martin (Department of Biomedicine, University of Basel, Switzerland). 

 

ROS measurements 

The cells (hBM-MSCs) were cultivated in 96-well cell culture plates and differentiated 

into adipocytes. 

2’, 7’-Dichlorodihydrofluorescein diacetate (DCFH-DA) assay 

The cells were washed with PBS and per well 100 µl of 50 µM DCFH-DA in DCF 

buffer (hepes 1 M, glucose 1 M, 10 % BSA in PBS) were added. After incubation for 

30 min at 37 °C and 5% CO2, the cells were washed twice with ice cold PBS and 

permeabilised with 0.2 % triton-X-100 on ice for 10 min. The plates were centrifuged 

at 3000xg for 5 min and 100 µl of the supernatants were transferred into a white 96-

well plate. Fluorescence was measured in a SpectraMAX Gemini XS (Molecular 

Devices; Ismaning, Germany) fluorometer at 490 nm (excitation) and 535 nm 

(emission). 

Nitroblue tetrazolium (NBT) assay 

The cells were washed with PBS and per well 100 µl of 0.1% NBT in PBS were 

added. After 2 h of incubation at 37 °C and 5% CO2 the cultures were washed with 

PBS. To dissolve the precipitated formazan, 100 µl DMSO containing 2 M KOH were 

added and the plate was placed on a shaker for 10 min. Afterwards, the plate was 

centrifuged at 3000xg for 5 min and 60 µl of the supernatants were transferred into a 
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new plate. Absorbance was measured at 650 nm in a SpectraMAX 190 (Molecular 

Devices; Ismaning, Germany) reader. 

 

Oil Red Orange (Red Oli O) staining 

The cells were grown to confluency and differentiated into adipocytes in 96-well 

plates. At the indicated time points, the cultures were fixed with 4% methanol free 

paraformaldehyde (Thermo Scientific) in PBS for 20 min, washed with 60%  

2-propanol and water. Per well 100 µl of a staining solution consisting of 4 parts Red 

Oil O stock solution (0.5 % Red Oil O in 60 % 2-propanol) and 6 parts MiliQ-water 

were added. After 30 min incubation the cultures were washed extensively with MiliQ-

water. The samples were analyzed in an IX 50 microscope (Olympus; New York, 

USA) using a 20x objective (Olympus; New York, USA) and quantification was done 

by Analysis software (Olympus; New York, USA). 

 

Determination of cell number 

Cells were cultured and differentiated in 6-well plates. At the indicated time points the 

cells were washed with PBS, detached with trypsin-EDTA and counted using a Z1 

Coulter Particle Counter (Beckman Coulter; Nyon, Switzerland). 

 

Oxygen consumption and extracellular acidification measured with a Seahorse 

flux analyzer 

To determine basal oxygen consumption and extracellular acidification of intact cells, 

a seahorse flux analyzer (Seahorse Bioscience; Copenhagen, Denmark) was used. 

The seahorse instument is a fluorophor-based open system and measures oxygen 

flux in special cell culture plates. The cells were grown and differentiated in 24-well 

V7 Seahorse microtiter cell culture plates. Four wells did not contain cells and were 

required for the calibration of the system. For the measurements the usual cell 

culture medium was replaced by unbuffered DMEM without bicarbonate. First, basal 

respiration was measured, afterwards oligomycin, Carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone (FCCP) and rotenone were added consecutively 

to a final concentration of 1 µM each. Oligomycin inhibits the ATP-synthase, thus, 

showing leak respiration. FCCP is an ionophore used to display the maximal capacity 

of the electron transport chain (ETC). Rotenone is a complex I inhibitor and was used 
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as a control. Oligomycin and FCCP were titrated in preliminary experiments to 

determine optimal concentrations. 

The extracellular acidification rate (ECAR) is an indicator for glycolysis and was 

measured simultaneously. The measurement o fECAR is also based on 

fluorescence. 

 

Determination of protein content 

Protein content of the cell cultures during differentiation was determined using the 

seahorse cell culture plates after performing the seahorse experiments. Per well, 

trichloroacetic acid at a final concentration of 10% was added. The cells were fixed 

for 1 h at 4 °C, washed with tap water and air dried. Afterwards, 150 µl of the staining 

solution containing sulforhodamine B 0.4% in acetic acid 1% were added to each well 

and the plates were incubated for 30 min. Then, the plates were rinsed 4 times with 

acetic acid 1 %, air dried and the stain was solubilized in 120 µl Tris-base (Fluka)  

10 mM pH 10.5. Afterwards, 100 µl were transferred from each well into a 96-well 

plate and absorbance was measured at 530 nm in a SpectraMAX 190 (Molecular 

Devices; Ismaning, Germany) reader. 

 

Confocal laser scanning microscopy 

To examine the mitochondrial structure during differentiation, confocal microscopy 

was performed. First, the cells were cultured and differentiated on conventional cover 

glasses placed in 24-well cell culture plates. Second, the cells were fixed with 4% 

methanol free paraformaldehyde in PBS for 20 min and permeabilized with 0.15% 

Triton-X-100 in PBS for 15 min. Afterwards, the specimens were blocked with 10% 

BSA in PBS for 30 min, incubated with a mouse-anti-human cytochrome c antibody 

(BD Pharmingen; San Diego, USA) diluted 1:1000 in 10% BSA at 4 °C overnight and 

then washed with PBS. The secondary goat-anti-mouse antibody labeled with 

AlexaFluor 488 (Invitrogen Ltd.; Paisley, United Kingdom) was applied at a dilution of 

1:500 in PBS containing 5% BSA. After incubation at room temperature for 1 h, the 

cells were washed with PBS and the nuclei were stained with DAPI 1 µg/ml for 5 min. 

The coverglasses were mounted onto glass slides with VectaShield (Vector 

Laboratories LTD.; Peterborough, United Kingdom). A Zeiss LSM710 confocal laser 

scanning microscope with 63x/1.4 oil objective and ZEN software (Carl Zeiss 
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Microimaging GmbH; Jena, Germany) were used for examination. Z-stacks with  

0.8 µm thickness at a 0.4 µm interval were performed. Two layers were used for 

generating a cuboid, one in the middle of the cell and the next but one (n+2). To 

quantify mitochondrial volume per cytoplasmic volume, 3 equal cuboids of 69.47 µm3 

each were analyzed per cell. All pictures were taken with the same detector 

adjustments. 

 

Transmission electron microscopy 

Cells were cultured in 60 cm2 petri dishes. At the indicated time points, the cells were 

washed with PBS and fixed with a PBS solution containing 3% paraformaldehyde 

and 0.5% glutaraldehyde for 1 h. Then, the cells were scraped, transferred into an 

eppendorf tube and centrifuged at 10’000 rpm using a table centrifuge (Eppendorf; 

Hamburg, Germany) for 4 min. After resuspension in PBS, the cells were centrifuged 

again at 6’000 rpm for 4 min. The following steps of sample preparation and picture 

acquisition were done in the microscopy centre at the Biocenter, University of Basel, 

Switzerland. Briefly, the samples were washed with PBS and osmiumtetroxid 1% was 

added for 1 h. After a washing step with water, the samples were dehydrated with 

ascending concentrations of ethanol. Finally, ethanol 100% was replaced by aceton, 

aceton:epon 1:1 and pure epon consecutively. The specimens were imbedded in 

epon at 60°C for 24-48 h, cut in 60-70 nm slices with an ULTRACUT microtome 

(Reichert-Jung) and analyzed with a FEI Morgagni268D (FEI; Eindhoven, 

Netherlands) transmission electron microscope. 

 

Statistical analyses 

Statistical analyses were performed using Prism 5 software (Graphpad Software Inc.; 

La Jolla, USA). ANOVA and Tuckey’s post test were applied and a p-value < 0.05 

was regarded as significant. Data are shown as mean plus SD. 
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Results 

To follow the differentiation process of stem cells into adipocytes, various parameters 

relevant for fat tissue were monitored during 22 days. Differentiation was induced 

after the cells reached confluence by exchanging growth medium with differentiation 

medium. 

Fat accumulation was visualized by bright field microscopy. Lipid droplets were 

stained with Red Oil Orange and quantified. First signs of fat accumulation were seen 

at day 6 after starting differentiation. Lipid content per cellular surface highly 

increased between day 6 and day 10 from 3% to 22%. The maximum was reached at 

day 18 when 34% of the growth area was covered by fat. At day 22, lipid content 

slightly decreased to 29% (Fig. 1A + B). 

  

Fig. 1. Cellular characteristics during differentiation. 
A) Red Oil O staining of adipocytes at day 14 of differentiation, counterstaining with Mayer’s 
Haemalaun; bar 50 µm. B) Quantification of growth area covered by fat. C) Cell number during 
differentiation. D) Protein content during differentiation. 
� p < 0.05 compared to day 0. 

 

A B 

C D 
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To investigate whether cells continue to proliferate or may supersede each other, the 

cells were counted during adipogenesis. No change in cell number appeared during 

the differentiation process (Fig. 1C). 

Protein content was investigated using sulforhodamine beta staining in the seahorse 

cell culture plates after measuring oxygen consumption (as described below). Protein 

content increased over time and reached a plateau at day 14 (Fig. 1D). 

 

 

 

 

Production of reactive oxygen species (ROS) was examined using two different 96-

well plate based assays. The DCFH-DA fluorescence assay showed a clear increase 

of ROS production at day 10, thereafter a plateau until day 18 was observed, 

followed by a strong augmentation at day 22. Production of ROS increased 390% 

during this time period (Fig. 2A). The NBT absorbance assay indicated the same 

tendency (Fig. 2B). However, the effect was less pronounced.  

 

To analyze oxygen consumption during differentiation a seahorse flux analyzer was 

used. Respiration was highly increased from day 10 on and reached the maximum at 

day 18, when it was 570% higher than at day 0. However, oxygen consumption not 

only augmented under basal conditions, but also after the addition of oligomycin, an 

ATP-synthase inhibitor. Respiration after FCCP addition highly increased during the 

adipogenesis showing that the maximal capacity of the electron transport chain also 

raised (Fig. 3A). Oxygen consumption rates normalized on the cellular protein 

content were approximately constant over time but increased relative to cell number. 

Fig. 2. Measurement of ROS production during differentiation. 
� p < 0.05 compared to day 0 
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The extracellular acidification rate, an indicator of glycolysis, increased over time 

under basal conditions and after addition of oligomycin (Fig. 3B).  

 

 

 

 

However, the absolute values were very low and hardly exceeded the detection limit. 

Uncoupling with FCCP resulted in an augmentation of ECAR compared to the two 

foregoing measurements as the cells were forced to change their metabolism to 

glycolysis. 

 

 

 

 

 

Fig. 3. Oxygen consumption rate and extracellular acidification rate. 
� p < 0.05 compared to basal at day 0. 
+ p < 0.05 compared to oligomycin at day 0. 
x p < 0.05 compared to FCCP at day 0. 

 

B A 

Fig. 4. Mitochondrial volume 
per cytoplasmic volume during 
differentiation. 

� p < 0.05 compared to day 0 
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Mitochondrial volume and morphology were investigated by confocal laser scanning 

microscopy. An anti-cytochrome c antibody was used to visualize mitochondria. 

Using computed three dimensional pictures mitochondria appeared as a network 

which became tighter during differentiation. Mitochondrial mass per volume increased 

from 6.5% to 28.5% during adipogenesis. The augmentation mainly happened 

between day 0 and day 10 (Fig. 4 + 5). 

 

 

 

Transmission electron microscopy was performed to visualize mitochondrial 

morphology during differentiation. Mitochondria could nicely be displayed and 

showed no change in cristae structure during differentiation (Fig. 6). 

 

 

 

B A 

Fig. 5. CLSM pictures of mitochondria. A) day 0. B) day 22. 

green: mitochondria; blue: nuclei. bar: 50 µM 

Fig. 6. Transmission electron microscopy showing mitochondria. 

A) day 0. B) day 22. bar: 500 nm. 

A 
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Discussion 

The increase in fat content over time showed, that hBM-MSC efficiently differentiate 

into adipocytes. As expected for differentiating cells, no proliferation was detectable 

during adipogenesis. It was reported previously that growth arrest is mandatory for 

the differentiation process in many cell types including adipocytes [224]. The protein 

content assessed in the Seahorse cell culture plates increased over time, indicating 

that cell volume raised, what was also observed under the microscope. 

 Production of ROS has been reported to increase during adipogenesis in vitro [225]. 

Lee et al. even reported that ROS facilitate fat accumulation in 3T3-L1 cells [226]. We 

could show a strong increase in ROS levels in differentiating hBM-MSCs. Both 

assays applied showed the same trend, thus, providing good evidence for an 

increase in ROS levels during differentiation. The reason why this effect was much 

weaker in the NBT assay compared to the DCFH-DA experiments may be that these 

dyes react with different radicals. DCFH-DA is de-esterified by intracellular esterases 

and becomes highly fluorescent upon oxidation while NBT forms blue insoluble 

formazan when it gets reduced. Therefore, the oxidative ROS H2O2 and HO2• can 

react with the de-esterified derivative DCFH whereas the NBT assay mainly shows 

production of the reducing radical O2
-•. 

To elucidate whether this augmentation of oxidative stress may be due to enhanced 

respiration, we focused on mitochondria, the major source of ROS production in cells. 

Respiration under basal conditions increased over time and the same progression 

was seen in oligomycin inhibited oxygen consumption. These findings indicate that 

the elevated basal respiration may be due to partial uncoupling. Ducluzeau et al. 

recently reported an increase in oxygen consumption during differentiation of 3T3-L1 

fibroblasts into adipocytes which they also ascribed to an augmentation of uncoupling 

[227]. Thus, our finding goes along this report. Furthermore, the striking 

augmentation of oxygen consumption after addition of FCCP suggests that elevated 

uncoupling may not be the exclusive reason for the increase in respiration. 

Extracellular acidification rate, a measurement for glycolysis, showed very low values 

indicating that glycolysis may only play a minor role in ATP production. 

To further investigate the reason for the observed increase in oxygen consumption, 

we estimated the mitochondrial mass per cytoplasmic volume using confocal 

microscopy. We detected a strong increase in mitochondrial mass per volume 
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suggesting mitochondrial biogenesis may contribute to increased respiration. This 

result is in agreement with Lu et. al. who reported an increase during differentiation of 

rat adipocytes in vitro [228]. As Sarsour et al. showed age associated loss of cristae 

in quiescent fibroblasts which could be prevented with overexpression of 

mitochondrial manganese superoxide dismutase [229], we questioned whether 

mitochondrial morphology may change during differentiation as ROS levels increase 

in adipocytes. To visualize mitochondria we performed electron microscopy during 

the differentiation process. In our cellular model we did not detect any alterations in 

mitochondria and cristae structure during the 22 days of differentiation. In a previous 

study in our lab the production of inflammatory cytokines in human adipose tissue 

and hBM-MSC derived adipocytes in response to lipopolysacharide was investigated. 

[230]. It has been published that TNFα, IL-6 and IL-8 [20] are produced in white 

adipose tissue (WAT). TNFα and IL-6 are increased in obesity and TNFα was 

reported to induce insulin resistance [20]. IL-10 is also produced in adipose tissue 

[231] but to a lower extent. In our former study mentioned above, an increase in IL-6 

and IL-8 secretion in both adipose tissue explants and hBM-MSC derived adipocytes 

was observed. In contrast to the tissue, hBM-MSC did not produce IL-10 and TNFα 

[230]. This correlates with the findings that adipose tissue derived TNFα and IL-10 is 

mainly produced by macrophages and not by adipocytes [232]. 

Here we describe fat accumulation, ROS production, oxygen consumption, 

mitochondrial mass and morphology during differentiation of hBM-MSC into 

adipocytes. The data presented are in agreement with previous reports from 3T3-L1 

cells. In summary, our results show that hBM-MSC derived adipocytes are a good 

model for adipocytes and adipogenesis. Compared to 3T3-L1 our model has the 

advantage to be closer to the clinics as these cells are of primary human origin.  
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Abstract 

Mitochondrial reactive oxygen species (ROS) have been demonstrated to play an 

important role as signaling and regulating molecules in human adipocytes. In order to 

evaluate the differential modulating roles of antioxidants, we treated human 

adipocytes differentiated from bone marrow derived human mesenchymal stem cells 

with MitoQ, resveratrol and curcumin. The effects on ROS, viability, mitochondrial 

respiration and intracellular ATP levels were examined. MitoQ lowered both oxidizing 

and reducing ROS. Resveratrol decreased reducing and curcumin oxidizing radicals 

only. All three substances slightly decreased state III respiration immediately after 

addition. After 24 h of treatment, MitoQ inhibited both basal and uncoupled oxygen 

consumption while curcumin and resveratrol had no effect. Intracellular ATP levels 

were not altered. This demonstrates that MitoQ, resveratrol and curcumin exert 

potent modulating effects on ROS signaling in human adipocyte with marginal effects 

on metabolic parameters. 

 

 

Introduction 

In prokaryotic and eukaryotic cells, reactive oxidant species (ROS) have been 

recognized as signaling molecules that affect downstream signaling of receptor-

mediated input signals (reviewed in [233-237]). Intracellular signaling triggered by 

various extracellular regulators, peptide hormones and growth factors such as insulin, 

PDGF, VEGF, TNF-α, IL-1β, integrin and others has been shown to be modulated by 

ROS [233][235]. The detailed mechanisms of ROS homeostasis and signaling are 

however only partly understood but it has become clear that ROS signaling affects 

many cellular processes in aging and inflammation [235, 237, 238]. ROS are also 

important signaling molecules in adipose tissues where they regulate adipocyte 

differentiation [239] and adipocyte function [240], relevant aspects also in disease, 

considering the close correlation between ROS and lipolysis in obesity. Lipolysis in 

isolated human adipocytes has indeed been shown to be regulated by ROS [241] 

whereas mouse 3T3-L1 adipocytes display resistance to insulin after exposure to 

hydrogen peroxide [221]. 
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Elevated concentrations of free fatty acids and glucose have been reported to induce 

the formation of ROS in many cell types including muscle, pancreatic β-cells and 

adipocytes [19, 212-215]. In many diseases such as cancer, inflammation, 

myocardial infarction, atherosclerosis, diabetes, or Alzheimer’s disease, the ROS 

load is increased, possibly as a result of rather than as the cause for the disease 

[242], explaining the modest or missing benefit of antioxidant treatments [243]. In 

adipocytes, however, modulation of ROS as signaling molecules by antioxidants may 

have a better chance to exert a positive effect on the physiological state of the cells.  

 

For studies of human adipocytes, frequently bone marrow-derived mesenchymal 

stem cells (hMB-MSC) differentiated into adipocytes are used as model [244] 

although more recently also stem cells originating from adipose tissue have been 

examined [245]. We have recently standardized the generation of differentiated hMB-

MSC and analyzed various parameters [246]. Using these cells we now describe the 

effect of antioxidants on the modulation of generation of ROS as well as on some 

metabolic effects such as oxygen consumption, intracellular ATP and viability. The 

antioxidants MitoQ, resveratrol and curcumin were used in this study; they all have 

the potential for future in vivo application and their biological characteristics are 

briefly outlined: 

 

MitoQ 

MitoQ was designed by Murphy and collaborators [120] as a mitochondria targeted 

antioxidant. It is a mixture of the oxidized mitoquinone and the reduced mitoquinol 

and consists of a positively charged triphenylphosphonium ion linked to coenzyme Q 

via a C10 linker. MitoQ uptake is driven by the mitochondrial membrane potential. 

Rotenone and malonate, a complex I and complex II inhibitor, respectively, were 

shown to inhibit reduction of MitoQ. Apoptosis induced by hydrogen peroxide in 

Jurkat cells is prevented by MitoQ [120]. Long-term administration of MitoQ to mice 

revealed a decrease in fat mass but no change in body weight [144]. MitoQ is 

protective against ischaemia-reperfusion injury in the heart of mice [140] and against 

sepsis-induced liver damage in the same species [247]. Furthermore, MitoQ 

increased blood pressure in spontaneously hypertensive rats [141]. It was also 

investigated in patients with Parkinson’s disease but had no effect on disease 

progression. The study showed that long-term administration of MitoQ to patients is 
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save [248]. A phase II study in patients suffering from chronic hepatitis C provided 

evidence that MitoQ may inhibit hepatitis-induced liver damage [147]. 

 

Resveratrol 

Resveratrol (3,5,4′-trihydroxystilbene), a diphenolic compound naturally occurring in 

grapes and other plants, exerts numerous effects both in vitro and in vivo [249]. 

Resveratrol scavenges superoxide, peroxynitrite, hydroxyl radicals as well as radicals 

induced by metals. It was shown to cross the blood-brain barrier and to reduce 

malone dialdehyde levels, an indicator for protein peroxidation, in rat brain. At the 

same time protein levels and enzymatic activities of superoxide dismutase, catalase 

and peroxidase were increased [249]. Resveratrol dose-dependently decreased 

glucose conversion to lipids in rat adipocytes [160]. Furthermore a dose-dependent 

decrease in CO2 release and an increase in lactate release were observed. Thus it 

was suggested that resveratrol impaired oxidative phosphorylation and elevated 

glycolysis [160]. When mice on standard diet, high fat diet and high fat supplemented 

with resveratrol were compared, an increase in lifespan and performance in the 

rotarod test of mice treated with resveratrol were noted [162]. Resveratrol improved 

glucose tolerance and decreased insulin levels. In addition a decrease in liver size 

and liver fat content and an improvement of liver and heart pathology were observed 

[162]. 

 

Curcumin 

Curcumin ([1E,6E]-1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-dien-3,5-dion) is a 

diphenolic compound found in turmeric, a yellow colored spice derived from curcuma 

longa and used in Asian cooking. Curcumin was reported to have antiinflammatory, 

antioxidant and hypolipidemic effects [250]. Antioxidant properties of curcumin were 

shown in several in vitro and in vivo studies. Curcumin inhibited stress-induced 

activation of the transcription factor activator protein-1 (AP-1) [251] as well as phorbol 

ester-induced expression of cyclooxygenase-2 [252]. Also, curcumin dose-

dependently decreased intracellular ROS in hepatic stellate cells from rats [253]. 

When added to hamsters fed with a high fat diet, curcumin decreased plasma leptin 

and insulin levels as well as free fatty acids and triglycerides, but increased hepatic 

β-oxidation [254]. In a small clinical study with 8 subjects with abnormally high levels 

of LDL, curcumin treatment decreased LDL and apolipoprotein B while HDL and Apo 
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A were increased [255]. In another study of the same group, 8 subjects with elevated 

fibrinogen in the plasma were treated with curcumin for 15 days. Curcumin caused a 

significant decrease in fibrinogen [256]. Curcumin also lowered blood sugar in 

diabetic patients [257]. These data suggest a beneficial effect of curcumin in 

artherosclerosis and diabetes. 

 

 

Materials and Methods 

Reagents 

All reagents were purchased from Sigma-Aldrich (Buchs, Switzerland); exceptions 

are mentioned in the text. MitoQ and TPP (decyl-triphenylphosphonium) were a gift 

from Dr. Michael Murphy (MRC Mitochondrial Biology Unit, Cambridge, UK). TTP is a 

triphosphonium ion coupled to a C10 alkyl chain which mimics the structure of MitoQ 

but lacks the coenzyme Q moiety; it was used as control to exclude that any 

observed effects may have been caused by the phosphonium ion rather than by the 

coenzyme Q moiety. 

 

Cell culture 

Primary human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were 

kindly provided by Prof. Ivan Martin (Department of Biomedicine, University of Basel, 

Switzerland). The cells were expanded in DMEM (Invitrogen, Life Technologies 

Corp., Zug, Switzerland), supplemented with 10% fetal calf serum (FCS; Invitrogen) 

and 5 ng/mL basal fibroblast growth factor (Invitrogen) until confluency was reached. 

The cells were then differentiated for 22 days by exchanging the growth medium by 

differentiation medium [223]: DMEM/Nutrient Mix F12 (Invitrogen) containing 3% 

FCS, 100 nM insulin (Actrapid; Novo Nordisk, Küsnacht, Switzerland), 1 µM 

dexamethasone, 0.1 mM L-ascorbic acid, 250 µM 3-isobutyl-1-methylxanthine, 5 µM 

transferrin (Calbiochem, La Jolla, USA), 0.2 nM 3,3,5-triiodo-L-thyronine and 1 µM 

rosiglitazone (GlaxoSmithKline, Worthing, UK). The medium was changed every 3 

days until at least 70% of the cells were differentiated into adipocytes. Before the 

experiments were conducted, the cells were incubated for 24–48 h in DMEM/F12 

supplemented with 3% FCS. 
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ROS measurements 

Differentiated hBM-MSCs, cultivated in 96-well plates, were treated with the three 

antioxidants at different concentrations for 24 h. ROS were determined using the 

following assays: 

 

2’,7’-Dichlorohydrofluorescin diacetate (DCFH-DA) assay  

The cells were washed with PBS and per well 100 µl of 50 µM 2’,7’-

dichlorohydrofluorescin diacetate (DCFH-DA) in DCF buffer (1 M Hepes, 1 M 

glucose, 10% BSA in PBS) were added and the cells incubated at 37°C and 5% CO2 

for 30 min. The cells were washed twice with ice-cold PBS and permeabilized with 

0.2% Triton-X-100 on ice for 10 min. The plates were centrifuged for 5 min at 3000xg 

and 100 µl of the supernatants were transferred to white 96-well plates. Fluorescence 

was measured in a SpectraMAX Gemini XS (Molecular Devices, Ismaning, Germany) 

microplate reader at 490 nm (excitation) and 535 nm (emission). 

 

Nitroblue tetrazolium (NTB) assay 

The cells were washed with PBS and per well 100 µl of 0.1% nitroblue tetrazolium 

(NBT) in PBS were added. After 2 h of incubation at 37°C and 5% CO2, the cultures 

were washed with PBS. To dissolve the precipitated formazan, 100 µl DMSO 

containing 2 M KOH were added to the cells and the plate was placed onto a shaker 

for 10 min. The debris was centrifuged at 3000xg for 5 min and 60 µl of the 

supernatants were transferred to a new plate. Absorbance was measured at 650 nm 

in a SpectraMAX 190 (Molecular Devices) microplate reader. 

 

Toxicity assays 

Flow cytometry 

The cells were cultured and differentiated in 25 cm2 cell culture flasks; they were 

harvested by trypsinization, centrifuged at 240xg and then resuspended in 0.5 ml 

PBS. In order to detect apoptotic cells, 2 µl of propidium iodide and 2 µl of anti-

annexin V antibody conjugated to Alexa 488 (Vybrant Apoptosis Assay Kit 2; 

Molecular Probes, Paisley, UK) were added. Measurement was carried out in a 
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FACSCalibur flow cytometry instrument (Becton Dickinson, Allschwil, Switzerland) 

and the data were analyzed with FlowJo 9.2 software (TreeStar Inc., Ashland, OR, 

USA). 

 

ToxiLight assay 

The ToxiLight assay (Lonza, Basel, Switzerland) is based on a luciferin-luciferase 

reaction and measures ATP produced by adenylate kinase which is released when 

the cells are leaky. The assay was performed according to the manufacturer’s 

instruction. Briefly, differentiated adipocytes were treated with antioxidants in 96-well 

plates for 24 h. Then, 20 µl of the culture supernatants were transferred to a white 

96-well plate and 100 µl of ToxiLight solution were added. Luminescence was 

measured in a HTS 7000 Plus Bioassay Reader (Perkin Elmer, Schwerzenbach, 

Switzerland).  

 

High resolution respirometry 

Immediate effects of antioxidants on oxygen consumption were measured with an 

Oxygraph O2-k instrument (Oroboros Instruments GmbH, Innsbruck, Austria). Cell 

cultures were grown and differentiated in 300 cm2 cell culture flasks. Adipocytes were 

detached with EDTA, centrifuged at 240xg and resuspended in Mir05 respiration 

medium (0.5 mM EGTA, 3 mM MgCl2, 60 mM K-lactobionate, 20 mM taurine, 10 mM 

KH2PO4, 110 mM sucrose, 1g/l BSA, pH 7.1; developed by Oroboros Instruments). 

Per chamber 106 cells were added in a final volume of 2 ml Mir05. After basal 

respiration reached steady state, the following substances were added consecutively 

(final concentration): 5 mM pyruvate together with 2 mM malate, 15 µg/ml digitonin, 2 

mM ADP, 10 mM glutamate, 10 mM succinate, 10 µM cytochrome c, 0.4 µM 

carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), 0.5 µM rotenone and 

2.5 µM antimycin A (40). After each addition, oxygen consumption was measured 

when steady state was reached. Rotenone and antimycin A were used as a control. 

 

Oxygen consumption 

Basal oxygen consumption of intact cells treated with the different antioxidants was 

measured using a Seahorse XF24 Extracellular Flux Analyzer (Seahorse Bioscience, 

Copenhagen, Denmark). The Seahorse is an open oxygen sensor system and 
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measures oxygen flux with a specific fluorophor. The cells were grown and 

differentiated in XF24 V7 cell culture microplates (Seahorse Bioscience). Per plate 

four wells were kept without cells as required for calibration of the instrument. First, 

basal respiration was measured, followed by the consecutive addition of oligomycin, 

FCCP and rotenone to a final concentration of 1 µM each. The ATP-synthase 

inhibitor oligomycin was used to test for the degree of uncoupling. With the ionophore 

FCCP the maximal capacity of the electron transport chain (ETC) was determined. 

Rotenone is a complex I inhibitor and was used as a control. Oligomycin and FCCP 

were titrated in preliminary experiments to determine optimal concentrations. The 

results of these experiments are indicated as oxygen consumption rate (OCR) which 

is specified as oxygen consumption over time in picomoles per minute. In parallel to 

OCR, the instrument also recorded simultaneously the extracellular acidification rate 

(ECAR). ECAR is an indicator for glycolysis since lactate, the end product of 

glycolysis, is secreted into the medium, thus resulting in acidification. ECAR is 

defined as –∆pH over time using the units milli-pH and minute. 

 

Intracellular ATP determination 

Differentiated adipocytes were pretreated with different antioxidants for 24 h and then 

washed with buffer A (25 mM Tris-HCl, 10 mM KH2PO4, 150 mM KCl, 5 mM MgCl, 

0.1% BSA, pH 7.8). For permeabilization the cells were covered with 200 µl 1x ATP-

releasing reagent in buffer A per well for 2 min. Then 20 µl of each supernatant were 

transferred to a white plate. Per well 80 µl mastermix consisting of 0.3 mM beetle 

luciferin potassium salt (Promega, Dübendorf, Switzerland) and 4110 units/ml 

luciferase from Photinus pyralis in buffer A were added and the measurement in a 

Microlumat Plus luminescence reader (Berthold Technologies, Regensdorf, 

Switzerland) was started immediately. 

 

Statistical analysis 

Prism 5.0 software (GraphPad Software Inc., La Jolla, CA, USA) was used to perform 

statistical analyses. All data were analyzed using ANOVA and Tuckey’s post test and 

are presented as mean ± SD. All experiments were performed at least three times. 
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Results 

Modulation of ROS signals 

The effective concentrations of MitoQ, resveratrol and curcumin for the modulation of 

ROS production were assessed by determining the ROS signals with the DCFH-DA 

and the NBT assay. 

 

 

 

Toxicity assays were carried out to exclude toxic effects that may possibly interfere 

with the antioxidant activity of these compounds. The cells were exposed to the 

antioxidants for 24 h in both types of assay.  

 

MitoQ decreased ROS concentration as measured with the DCFH-DA and the NBT 

assay. The NBT assay displayed a significant decrease in ROS only at a 

concentration of 0.5 µM MitoQ while the DCFH-DA assay revealed a significant effect 

also at a concentration of 0.3 µM (Fig. 1). Resveratrol decreased the oxidative stress 

signal at concentrations of 25 µM and 50 µM using the NBT assay while no effect 

was detected with the DCFH-DA assay. Interestingly, curcumin showed opposite 

Fig. 1. ROS production 

after 24 h of treatment. 

A, B: 

2’,7’-Dichlorohydrofluorescin 

diacetate assay. 

C, D: 

Nitroblue tetrazolium assay. 

Ctrl: controls (untreated). 

TPP: triphenylphosphonium; 

Res: resveratrol; 

Cur: curcumin. 

Mean of 3 determinations ± 

SD; 

� p ≤ 0.05 
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characteristics: it decreased ROS production at 10 µM and at 15 µM when measured 

in the DCFH-DA experiments only.  

 

 

 

 

 

 

 

 

The evaluation of cytotoxicity of the antioxidant compounds was carried out by flow 

cytometry using annexin V with PI staining and by the ToxiLight assay (Fig. 2). 

Whereas with the ToxiLight assay neither MitoQ nor curcumin had an effect on cell 

death at any treatment, resveratrol as compound interfered with this assay, i.e. the 

data had to be excluded. On the other hand, flow cytometry experiments 

demonstrated no toxicity for resveratrol and MitoQ (or TPP) at 50 µM and 0.5 µM, 

respectively (Fig. 2). Curcumin induced a slight increase of apoptosis of the cells (6% 

of the cells at 15 µM and 2% at 10 µM) but the effect was very small and most likely 

did not contribute significantly to the antioxidant effect observed with curcumin.  

 

Effects on respiration 

As mitochondria are the main source of intracellular ROS, a decrease in oxidative 

stress could also be the result of an inhibition of respiration and not solely be caused 

Fig. 2. Cytotoxicity assays after 24 h of treatment with antioxidants. Left: Toxilight cytotoxicity 
assay. Right: Early apoptotic cells, determined by FACS (staining for annexin V and propidium iodide). 
Cells positive for annexin V only and double positive ones are shown. 
Antioxidants: MitoQ (0.3 and 0.5 mM); TPP (0.3 and 0.5 mM); resveratrol (Res; 50 mM); curcumin 
(Cur; 10 and 15 mM); ctrl (H2O): control for MitoQ and TPP; DMSO: control for Res and Cur. Mean of 3 
determinations ± SD; � p ≤ 0.05 vs. DMSO.  
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by the antioxidant effect of the compound. To examine this possibility, the immediate 

effect of treatment with MitoQ, resveratrol and curcumin on oxygen consumption was 

measured with the Oxygraph instrument and the influence of a 24-h treatment with 

the Seahorse flux analyzer. None of the compounds influenced basal respiration 

immediately after application of antioxidants (Fig. 3). When the two complex I 

substrates pyruvate and malate were added and the cells permeabilized with 

digitonin, and when in addition coupled (state III) respiration was enabled by adding 

ADP, all antioxidant compounds caused a slight decrease in state III respiration (Fig. 

3). The addition of the complex II substrate succinate further stimulated oxygen 

consumption but could not compensate the difference between treated and control 

cells. The subsequent addition of cytochrome c did not change respiration, i.e. the 

mitochondria were intact. The addition of the ionophore FCCP 

(trifluorocarbonylcyanide phenylhydrazone) highly increased oxygen consumption but 

a slight impairment of the cells challenged with the antioxidants still remained (Fig. 3). 

 

 

 

 

 

 

To examine whether the state of respiration measured immediately after addition of 

antioxidants persisted also after a longer incubation time, cell cultures were treated 

with antioxidants for 24 h and analyzed in the Seahorse flux analyzer (which provides 

a clearly higher throughput than the Oxygraph). First, oxygen consumption under 

basal conditions was measured, followed by leak respiration as determined by adding 

the ATP-synthase inhibitor oligomycin, and finally uncoupled respiration was 

measured by adding FCCP. Treatment with MitoQ at concentrations of 0.3 µM and 

Fig. 3.  Oxygen consumption measured in the Oxygraph instrument upon immediate treatment 

with antioxidants. A: MitoQ and TPP (50 µM each); B: Resveratrol (50 µM). C: Curcumin (15 µM). 

Mean of 3 determinations ± SD. 
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0.5 µM significantly reduced basal oxygen consumption as well as uncoupled 

respiration while oligomycin-inhibited respiration was not affected (Fig. 4). The carrier 

TPP inhibited oxygen consumption under basal conditions at a concentration of  

0.5 µM (Fig. 4). Extracellular acidification did not provide a clearcut result as the 

ECAR values hardly exceeded the detection limit and were therefore difficult to 

interpret (Fig. 4). 

 

 

 

 

 

 

 

 

Fig. 4.  Oxygen consumption (A, B) and extracellular acidification (C, D) as measured in 

the Seahorse instrument after 24 h of treatment with antioxidants. A, C: MitoQ (0.3 and 

0.5 mM); TPP (0.3 and 0.5 mM). B, D: resveratrol (Res; 25 and 50 mM); curcumin (Cur; 10 

and 15 mM); ctrl: control. Mean of 3 determinations ± SD. 

A: � p ≤ 0.05 vs. basal of untreated controls; + p ≤ 0.05 vs. FCCP of controls. C: � p ≤ 0.05 

vs. FCCP of controls. 
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In order to assess whether respiration under MitoQ treatment had an influence on 

intracellular ATP content, the cells were permeabilized and ATP was measured by a 

luciferin-luciferase reaction. After treatment with either MitoQ, TPP, resveratrol or 

curcumin for 24 h, no differences in intracellular ATP content were detected (Fig. 5).  

 

 

 

 

 

 

 

Discussion 

Modulation of ROS signals 

In this study, we demonstrated modulatory effects of three well established 

antioxidants, MitoQ, resveratrol and curcumin, on ROS production in bone marrow-

derived human mesenchymal stem cells differentiated to functional adipocytes. In 

addition we examined effects of these antioxidants on cell viability, oxygen 

consumption and intracellular ATP levels. In order to differentiate between the 

different types of ROS signals, two assays were employed for their determination: the 

DCFH-DA assay showing oxidizing ROS (e.g. hydrogen peroxide and hydroxyl 

Fig. 5.  Intracellular ATP content relative to control after 24 h of treatment with antioxidants. 

Left: MitoQ (0.3 and 0.5 mM); TPP (triphenylphosphonium; 0.3 and 0.5 mM). Right: Res (resveratrol; 

25 and 50 mM); Cur (curcumin; 10 and 15 mM); ctrl: control. Mean of 3 determinations ± SD. 
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radicals) and the NBT assay with which reducing ROS (e.g. superoxide) can be 

determined. 

 

Compared to the control compound TTP, MitoQ significantly decreased ROS 

concentration in human adipocytes in both assays, i.e. MitoQ reacted with both 

oxidizing and reducing ROS at concentrations which did not display toxicity. This is in 

agreement with the report that mitoquinone is reduced by complex II of the 

respiratory chain to the active form mitoquinol which is recycled back by reaction with 

oxygen or nitrogen species [120, 124, 258, 259]. MitoQ has been shown to inhibit 

superoxide-induced uncoupling of mitochondria suggesting that MitoQ also reacts 

with reducing ROS [120].  

 

The finding that resveratrol dose-dependently decreased reducing ROS as measured 

with the NBT assay while there was no change in the level of oxidizing radicals as 

seen with the DCFH-DA assay confirms the reported specificity of resveratrol also for 

human adipocytes: resveratrol is known to scavenge the primarily reducing radicals 

superoxide, hydroxyl, peroxinitrite and metal-induced radicals [249] as well as to 

upregulate superoxide dismutase. The observation time of 24 h may have been too 

short for the detection of an effect on oxidizing radicals in human adipocytes, since in 

some other systems, resveratrol – in addition – was found to upregulate peroxidase 

and catalase which react with hydrogen peroxide [249].  

 

Opposite to resveratrol, curcumin reduced the ROS concentration of oxidative 

radicals as shown with DCFH-DA experiments but it did not display an effect in the 

NBT experiments, i.e. on reducing radicals. In contrast to our findings with human 

adipocytes, curcumin scavenged free superoxide and hydroxyl radicals in the human 

A549 alveolar epithelial cell line challenged with TNF-α to increase oxidative stress 

[260]. It is likely that this discrepancy of findings may be cell type-specific or due to 

the experimental induction of oxidative stress. 

 

Effects on respiration 

It was of interest to study whether the modulatory effects of the antioxidants on ROS 

production in human adipocytes were accompanied by changes of oxygen 

consumption. The two instruments used in this study, the Oxygraph and the 
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Seahorse, provide complementary information: the Seahorse only measures basal 

respiration of intact cells whereas with the Oxygraph the activity of individual 

complexes of the electron transport chain can be elucidated. In the Oxygraph basal 

(state I) respiration was measured first, followed by oxygen consumption under 

saturating concentrations of substrates for complex I, complex II (state II respiration) 

and ADP (state III respiration) after the cells had been permeabilized and substrates 

and ADP provided. In intact cells, ADP is usually limited and thus only basal (state I) 

respiration can be compared with the Seahorse experiments. 

 

MitoQ did not show any difference in basal (state I) respiration in human adipocytes. 

Only a slight decrease in coupled (state III) and uncoupled (state IV) respiration upon 

short-term challenge with the antioxidant was detected but this was small enough 

and not further examined. By contrast, after 24 h of treatment with MitoQ, a 

significant reduction of basal oxygen consumption was noted. As TPP at the same 

concentration also inhibited respiration, the observed decrease in basal respiration of 

human adipocytes might have been due to depolarization. In general, oxygen 

consumption did not differ between treated and untreated cells after addition of 

oligomycin. Thus MitoQ did not have any impact on the coupling state of 

mitochondria. It has been shown that mitoquinol cannot restore respiration in cells 

lacking coenzyme Q as it is not oxidized by complex III [258]. Thus the competition of 

MitoQ with coenzyme Q for electrons can decrease respiration. This competition 

might be the reason for the decrease in oxygen consumption seen in our experiments 

with the Seahorse instrument. Intracellular ATP levels were not altered by the 

different treatments although there was no increase in glycolysis in response to 

MitoQ or TPP. 

 

Resveratrol slightly inhibited state III respiration but not basal respiration when 

determined with the Oxygraph. When the cells were treated for 24 h and analyzed 

with the Seahorse, there was no change in basal and uncoupled respiration. On the 

other hand, exposition of primary rat renal tubules to resveratrol led to an increase in 

oxygen consumption [261]. High-fat fed mice treated with resveratrol induced an 

increase in mitochondrial copy number in muscle and brown adipose tissue, along 

with a differential expression of genes related to mitochondrial biogenesis [262]. By 
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contrast, in our experiments we did not observe any effect that suggests enhanced 

mitochondrial biogenesis. 

 

Curcumin, similar to resveratrol, did not affect basal respiration but slightly decreased 

state III and uncoupled respiration when measured with the Oxygraph. After 24 h of 

incubation of human adipocytes with curcumin, basal oxygen consumption was not 

altered. By contrast, curcumin and curcumin derivatives dose-dependently decreased 

respiration and mitochondrial potential in isolated rat liver mitochondria [263]. At the 

concentrations used in our study, we did not observe such effects; higher 

concentrations of curcumin may however impair mitochondrial function also in human 

adipocytes. 

 

With all three antioxidants, the ECAR values were very low, indicating that human 

adipocytes mainly generate ATP via oxidative phosphorylation and not via glycolysis. 

There was no change in intracellular ATP content after 24-h treatments with any of 

the antioxidants. By contrast, in a recent report using freshly isolated rat adipocytes, 

resveratrol was shown to lower the mitochondrial membrane potential and to 

decrease ATP content dose-dependently [264]. However, these experiments used 

shorter incubation times and higher concentrations of resveratrol. 

 

Possible implications on health 

The potential role of mitochondria-targeted antioxidants in disease prevention was 

already addressed in the Introduction; recent preclinical and clinical studies using 

resveratrol, MitoQ, curcumin and other antioxidants known to reduce oxidative stress 

in vitro and in vivo in different pathologies were shown to have clearly beneficial 

effects [265-269]. In the center stage is the control of ROS, i.e. of molecular species 

which are thought to function as second messengers activating numerous signaling 

molecules [270]. Although ROS are critical for healthy cell function [237], the control 

of excessive ROS is crucial for the treatment of cardiovascular disease [270] and 

cancer [271]. Although the molecular pattern of interactions of mitochondrial 

antioxidants is complex involving different signaling pathways, a possibly important 

aspect may be their involvement in modulating epigenetic processes [272, 273], e.g. 

by inhibiting histone deacetylase (resveratrol) or histone acetylase (curcumin). 

However, it will have to be demonstrated that histone modifications [274] can also be 
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evoked in human adipocytes using these antioxidants. At any case, resveratrol has 

been demonstrated to inhibit preadipocyte and adipogenic differentiation [149] and 

curcumin attenuates lipogenesis in liver and inflammatory processes in adipocytes, 

thus preventing high fat diet-induced insulin resistance and obesity [275]. The 

development of a water-soluble curcumin derivative may increase the availability of 

the compound in the circulation and hence improve the antidiabetic effect of curcumin 

[276]. The same will apply for resveratrol. On the other hand, MitoQ can be applied in 

pharmacologically safe doses that, e.g., protect pancreatic β-cells against oxidative 

stress [277] or prevent diabetic nephropathy [278] in experimental animals.  

 

Conclusion 

We have demonstrated that the three compounds MitoQ, resveratrol and curcumin 

display antioxidant activity in human adipocytes and that their modulating effect on 

ROS production is within a non-toxic concentration range. With the exception of 

MitoQ they did not impair oxygen consumption during the experimental period of 24 

h. All three compounds had only minimal effects on cellular respiration. These 

findings are relevant in view of the potential role of MitoQ, reserveratrol and curcumin 

as pharmacological drugs. Yet, further studies with isolated human adipocytes and 

with experimental animals are required before these antioxidants can be considered 

as drugs for the management of obesity. 
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6 General discussion 

As adiposity is a common health problem in many countries [1], a primary human in 

vitro model for adipogenesis and adipocytes is important for research. Obesity is 

known to be associated with increased oxidative stress which is believed to favour 

insulin resistance [60]. Thus, substances which can reduce oxidative stress on 

adipocytes are an interesting approach to protect overweight people from insulin 

resistance and type II diabetes. 

Here we described hBM-MSC as a model for adipocytes and adipogenesis in vitro 

and examined the effects of the antioxidants MitoQ, resveratrol and curcumin on 

several mitochondrial functions of these cells. We assessed the impact of these 

compounds on ROS production, oxygen consumption and intracellular ATP content 

at non-apoptotic concentrations. In the majority of the studies, the murine 3T3-L1 

fibroblast-like cell line is used. Quian et al. recently showed that 3T3 cells and hBM-

MSC behave differently regarding cell division after induction of differentiation [279]. 

It was also reported that there are differences in glucose metabolism, fatty acid 

synthesis from glucose and glucose metabolism in response to insulin between 

species [280]. Therefore, it would be desirable to have a human model for adipocytes 

and adipogenesis. First, we tried to isolate and cultivate pre-adipocytes from pieces 

of visceral fat tissue obtained from lean and obese patients undergoing surgery. 

However, these cell cultures were not predictable and reliable. The cultures from 

some donors died immediately after addition of the differentiation medium, while the 

cells derived from other donors differentiated into adipocytes. However, even in these 

cultures differentiation was not efficient and reproducible enough and only a rather 

small part of the cells showed fat accumulation. There was no gender-related pattern 

visible and no influence of diabetes was seen. Unfortunately, cell sorting was not 

possible, as only one specific cell marker for pre-adipocytes, pref 1, was known at 

that time and the only antibody available on the market did not recognize the protein 

during preliminary experiments performed to evaluate the antibody’s specificity. 

Cells derived from subcutaneous fat tissue differentiated more efficiently than cells 

from visceral adipose tissue. However, we could not but obtain pieces of fat tissue 

which were big enough to isolate a reasonable amount of cells. The reason was that 

cutting pieces of subcutaneous adipose tissue of a certain size will be visible and are 

also a risk to the patient. 
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Because of these problems we searched for a good alternative for fat tissue derived 

adipocytes. We decided to investigate of bone marrow derived mesenchymal stem 

cells. These cells differentiated efficiently and reproducibly into adipocytes and could 

be obtained in a quite high number from patients undergoing orthopedic surgery. 

 

As mentioned above, oxidative stress is increased in obesity and it may be beneficial 

to lower ROS to a normal level. Therefore, we investigated ROS production during 

adipocyte differentiation and in response to antioxidant treatment. We detected a 

strong increase in ROS production and fat accumulation after induction of 

differentiation into adipocytes by the differentiation medium (manuscript 1: Fig. 1A & 

B; Fig. 2). Saitoh et al. [225] recently reported the same observation in the murine 

OP9 cell line. They compared fat accumulation and ROS production of OP9 cells 

cultivated in growth medium and adipogenic medium. Cells cultivated in adipogenic 

medium showed excessive fat accumulation during the investigated time period. The 

cells cultivated in growth medium also accumulated triglycerides, but in a much lower 

extent. ROS production measured by the NBT assay was also much higher in cells 

cultivated in adipogenic medium [225]. 

Imhoff et al. [281] showed that the natural intracellular antioxidants glutathione and 

thioredoxin-2 become oxidized during differentiation of 3T3-L1 cells into adipocytes. 

Fat accumulation and the expression of early genetic markers of adipogenesis were 

dependent on the extracellular redox environment. Adipocyte differentiation was 

enhanced under oxidizing and lowered under reducing conditions [281]. In another 

study, bone marrow stromal cells (BMSCs) of SOD2-/- and wild-type mice were used 

to investigate the correlation between ROS and adipocytes differentiation. The SOD 

knockout cells showed fat accumulation even under basal conditions, without 

induction of adipogenesis by differentiation medium, while the wild-type cells did not. 

Furthermore, addition of an antioxidant compound lowered fat accumulation in both 

the knockout and the wild-type cells after adipogenic induction [282]. Thus, the 

increase in ROS production during adipocyte differentiation may not only be a 

consequence of this process but also a prerequisite. 

When we treated hBM-MSC derived adipocytes with MitoQ, resveratrol and 

curcumin, we identified a reduction in ROS production in response to all these three 

compounds. MitoQ decreased both oxidizing and reducing ROS while resveratrol and 
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curcumin were active only against reducing and oxidizing ROS, respectively 

(manuscript 2: Fig. 1). The antioxidant effect of these compounds may be the reason 

why resveratrol and curcumin have been reported to reduce adipocytes differentiation 

in vitro [156, 198]. 

We also examined whether cell number changes during differentiation of hBM-MSC 

into adipocytes. Therefore, the cells were counted during the whole differentiation 

process. No alterations in cell number were seen during differentiation (Fig. 1C). 

Thus, cells did neither proliferate nor undergo apoptosis during adipogenesis. There 

are some interesting reports regarding cessation of proliferation after induction of 

adipogenesis at the molecular level. 

The transcription factors C/EBPα and PPARγ, which are required for adipocyte 

differentiation, were shown to be involved in growth arrest which is mandatory for 

adipocyte differentiation [283]. Timchenko et al. showed that C/EBPα increases 

mRNA and protein levels of the anti-mitotic protein cyclin-dependent kinase inhibitor 

1 (p21/SDI-1) and that p21/SDI-1 anti-sense mRNA abolished C/EBPα-induced 

growth arrest [284]. Furthermore, Altiok et al. reported that activated PPARγ is 

sufficient to induce growth arrest in fibroblasts [285]. They proposed that PPARγ and 

C/EBPα both contribute to growth arrest. In studies on pre-adipocyte cell lines, it was 

shown that growth arrested cells undergo one or two rounds of cell division upon 

induction of adipogenesis. However, in primary human pre-adipocytes derived from 

adipose fat tissue, cell division after induction of adipogenic differentiation is not 

observed [283]. Recently, Qian et al. [279] directly compared the behavior of 3T3-L1 

cells and hBM-MSCs during differentiation. They incubated the cell cultures with 

bromodeoxyuridine (BrdU) after the addition of differentiation medium for several 

hours, removed the stain and differentiated the cells into adipocytes. By confocal 

microscopy they could show that in contrast to 3T3-L1 cells, hBM-MSC did not did 

divide after induction of adipogenesis [279]. This report is in agreement with our 

results. 

In addition to cell number, the protein content of the cultures was also assessed 

during the differentiation process. The protein content highly increased during 

adipogenesis which correlates with the increase of intracellular fat content 

(manuscript 1: Fig. 1D). Furthermore, we observed an increase in cell size under the 

microscope. Already in the 1970s it was reported that in humans cell size of 



84 

adipocytes increases with age [286]. This allows the conclusion that fat cells in vivo 

become bigger the older they get. Therefore, our in vitro model is in agreement with 

in vivo data of humans. Kubota et al. [287] produced a PPARγ+/- mouse and 

investigated the effects on adipose tissue. The adipocytes from the PPARγ+/- mice 

were smaller and the weight of adipose tissue was lower compared to wild-type 

animals [287]. Thus, activation of PPARγ during adipogenesis may be at least 

partially responsible for the increase in protein content and cell size during 

differentiation of hBM-MSC into adipocytes. 

To assess the metabolic activity of hBM-MSCs during the differentiation process, we 

examined oxygen consumption and extracellular acidification which is an indicator for 

glycolysis. Respiration was measured under basal conditions, afterwards the ATP-

synthase was blocked with oligomycin and mitochondria were uncoupled with FCCP. 

All of these values increased during differentiation. Extracellular acidification also 

raised (manuscript 1: Fig. 3). However the ECAR values were very low and hardly 

exceeded the detection limit. Therefore, we conclude that adipocytes use mainly 

oxidative phosphorylation and not glycolysis for ATP generation. 

Only few data regarding oxygen consumption during adipogenesis are available so 

far. Ducluzeau et al. [288] examined respiration in 3T3-L1 cells during adipogenesis 

with the Seahorse instrument. They reported an increase in oxygen consumption 

under basal conditions and after inhibition of ATP-synthase by oligomycin. They did 

not see any alterations in uncoupled respiration but the respiration control ratio 

(RCR) decreased at the end of the differentiation process. As they also measured a 

lower mitochondrial membrane potential in adipocytes, they concluded that the extent 

of uncoupling increases during adipocyte differentiation. In contrast to us, they 

normalized their measurements to the protein content [288]. When we normalized 

oxygen consumption to protein content, almost no alterations during differentiation 

were seen. However, as we showed that cell size increases during adipogenesis and 

that the cell number did not change, we did not consider this normalization useful as 

it may reflect oxygen consumption of fewer cells at the end of differentiation 

compared to the beginning. Wilson-Fritch et al. [289] used a Clark-type electrode to 

compare respiration of 3T3-L1 cells which were either undifferentiated or 

differentiated into adipocytes. Adipocytes showed higher oxygen consumption under 

basal conditions. When mitochondria were uncoupled with FCCP, this difference was 

even much higher [289]. Therefore, mitochondria in adipocytes may run far below 
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their maximal capacity. Another group compared oxygen consumption of 

undifferentiated versus differentiated 3T3-L1 cells and primary human adipose tissue 

derived pre-adipocytes. 3T3-L1 cells differentiated into adipocytes showed an 

increase in oxygen consumption compared to undifferentiated cells. In adipocytes 

differentiated from pre-adipocytes the result was dependent on the serum 

concentration in the adipogenic medium. When pre-adipocytes were differentiated in 

medium containing 10% serum, no difference in respiration compared to 

undifferentiated cells was seen. When these cells were differentiated in medium 

without serum, respiration of adipocytes was clearly higher than the one of pre-

adipocytes [290]. In our protocol, we used 3% serum in the differentiation medium. 

Thus, these reports are in agreement with our results. 

To evaluate the mechanism of these antioxidants and their influence on 

mitochondrial function, we measured oxygen consumption of adipocytes after 

treatment with MitoQ, resveratrol or curcumin. As described in the second manuscript 

we used two different techniques. Respiration upon immediate addition of the 

antioxidants was measured in an Oxygraph (manuscript 2: Fig. 3 and 4 A&B) and the 

effects of a 24 h treatment were analyzed in a seahorse instrument. MitoQ, 

resveratrol and curcumin all slightly decreased state 3 respiration in the Oxygraph 

experiments. However, after 24 h incubation with resveratrol or curcumin, there was 

no impact on basal, oligomycin inhibited respiration and uncoupled oxygen 

consumption. Thus, resveratrol and curcumin did not impair mitochondrial coupling. 

MitoQ inhibited basal and uncoupled respiration at both concentrations applied and 

decylTPP reduced basal oxygen consumption at 0.5 µM. Thus, the inhibition of 

respiration by MitoQ at a concentration of 0.5 µM may be the beginning of 

mitochondrial toxicity. In contrast to our findings, Kelso et al. [120] reported an 

increase in state 2 respiration but a dose-dependent decrease in state 3 and 

uncoupled respiration as well as in mitochondrial membrane potential in isolated rat 

liver mitochondria. As lactate dehydrogenase (LDH) release increased, the effects on 

respiration may be due to mitochondrial toxicity. However, these effects were 

observed at 25 µM and 50 µM while we used clearly lower concentrations [120]. 

None of the antioxidants used showed an effect on intracellular ATP content 

(manuscript 2: Fig. 5) and glycolysis was very low (manuscript 2: Fig. 4C&D) under 

all conditions. Therefore, the remaining respiration under MitoQ treatment seems to 
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be sufficient to generate a mitochondrial membrane potential which is high enough to 

produce the amount of ATP required for the cells. Resveratrol was reported to 

enhance mitochondrial biogenesis [261, 262] and oxygen consumption [261]. We did 

not observe such effects but an incubation time of 24 h may not be enough to exert 

these changes in adipocytes. The antioxidant effect of resveratrol and curcumin after 

24 h incubation is not due to an inhibition in respiration but for MitoQ this possibility 

cannot be excluded. In contrast to MitoQ, resveratrol and curcumin did not impair 

mitochondrial function. Respiration was strikingly decreased by MitoQ but this effect 

was not fatal. This is the first report about oxygen consumption in human adipocytes 

under MitoQ, resveratrol and curcumin treatment. 

As respiration increased during differentiation but cell number did not, we questioned 

whether this observation may result rather from an increase in mitochondrial mass or 

mainly from uncoupling. Therefore, we assessed mitochondrial volume per 

cytoplasmic volume by confocal microscopy using an anti-cytochrome c antibody to 

visualize mitochondria. We observed a clear increase in mitochondrial mass during 

adipogenesis (manuscript 1: Fig. 4). Under the microscope mitochondria appeared as 

long structures which became highly networked during differentiation and arranged 

tightly around the lipid droplets (manuscript 1: Fig. 5). 

Wilson-Fritch et al. [289] reported an increase in mitochondrial mass in 3T3-L1 

derived adipocytes compared to the undifferentiated cells. They saw a very similar 

morphology than we did with our primary cells. In addition Lu et al. reported that 

mitochondrial mass increases during differentiation of primary rat adipocytes [228]. 

Therefore, these publications support our results. 

To examine whether the morphological changes and the increase in ROS production 

alters cristae structure, transmission electron microscopy was performed during the 

differentiation process. We did not see any changes in the inner mitochondrial 

morphology or a loss of cristae structures (manuscript 1: Fig. 6). In contrast to our 

results, Sarsour et al. [229] reported loss of cristae in quiescent fibroblasts after a 

prolonged culture period. As cristea could be preserved by over-expressing MnSOD, 

their loss seems to be a result of ROS exposure. Thus, resistance of mitochondria to 

ROS induced damage may differ among cell types. 

In our differentiation protocol we added rosiglitazone, an insulin sensitizer that 

activates PPARγ, to the medium in order to achieve efficient adipocytes 
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differentiation. However, there are some reports that rosiglitazone influences 

mitochondrial mass and morphology. Wilson-Fritch et al. observed fragmentation of 

mitochondria in 3T3-L1 derived adipocytes in response to rosiglitazone [289]. The 

mitochondria of untreated adipocytes showed a similar morphology as the 

mitochondria of our cells, while their cells treated with rosiglitazone did not. Later, the 

same group examined the effects of rosiglitazone on fat tissue of genetically obese 

ob/ob mice. They observed an increase in total body weight but no alteration in the 

epididymal fat pad. Cell fluorescence intensity of the mitochondrial protein mHsp60 

was higher in adipocytes from rosiglitazone treated animals. They saw droplet-like 

structures within the mitochondrial staining which we interpret as lipid droplets. With 

Affimetrix assays they showed that 12% of all genes and 32% of mitochondrial genes 

were expressed differently in adipocytes of rosiglitazone treated animals. The 

expression of almost all of them was up-regulated. The adipocyte-specific 

transcription factor PGC-1α was up-regulated at the protein level. Furthermore, 

oxygen consumption of adipocytes from ob/ob mice was increased in response to 

rosiglitazone treatment. The longer the treatment lasted, the smaller the difference 

between treated and untreated cells was [56]. Elabd et al. [291] reported that pre-

adipocytes from human white adipose tissue not only express the WAT marker 

ucoupling protein 2 (UCP2) but also the brown adipocytes markers UCP1 and cell 

death activator (CIDEA). Oxygen consumption and mitochondrial uncoupling 

increased in dependence of treatment duration. They concluded that rosiglitazone 

causes trans-differentiation of white into brown adipocytes [291]. 

Although the addition of rosiglitazone to the differentiation medium may have 

influenced parts of our results, our observations are still in agreement with other 

studies where no rosiglitazone was used [225, 228, 279, 283, 289]. 

 

7 Conclusion 

In our studies, we characterized hBM-MSCs as an in vitro model for adipocytes. 

These cells differentiated efficiently into adipocytes after induction with adipogenic 

medium. They show fat accumulation, increase in ROS production as well as in 

mitochondrial mass and oxygen consumption during adipogenesis. These results are 
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in agreement with reports about 3T3 cells. However, in contrast to 3T3 cells, hBM-

MSCs do not undergo any cell division after induction of adipogenesis. Compared to 

well-established cell lines such as 3T3-L1 cells, hBM-MSCs have the advantage to 

be of primary human origin. Thus, human bone marrow derived mesenchymal stem 

cells are an interesting model for adipocytes in vitro. 

The effects of the antioxidants MitoQ, resveratrol and curcumin on adipocytes were 

also elucidated. All three compounds lowered intracellular ROS production. 

Resveratrol and curcumin slightly impaired state 3 respiration upon immediate 

addition but no effect on basal respiration was seen after 24 h. However, MitoQ 

decreased coupled respiration upon immediate treatment only little while a strong 

effect on basal and uncoupled respiration was seen after an incubation time of 24 h. 

The reason of this inhibition of oxygen consumption may be a competition between 

MitoQ and ubiquinone. None of the three antioxidants tested had any effect on 

intracellular ATP content. MitoQ did not impair ATP levels despite the finding that 

oxygen consumption was decreased and glycolysis was not altered. The reason of 

this observation needs further investigation. I conclude that MitoQ, resveratrol and 

curcumin are interesting candidates for treatment of elevated oxidative stress in 

tissues and organs of obese people, thus possibly lowering their risk to develop 

insulin resistance and diabetes. 
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