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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

Life is not measured
by the number of
breaths we take but
by the moments that
take our breath away.

–Hilary Cooper

1.1 background

Life is complex. The definition of life has been debated among many
scientists and philosophers. In 1944, Erwin Schrödinger1 in his famous
article, What is life?, stated that life is not a closed system. This is
simply because a world governed by the second law of thermody-
namics [154] has a tendency to achieve a state of maximum disorder.
However, life approaches and maintains a highly ordered system.

The ability of organisms to maintain order in a world governed
by the second law of thermodynamics has to do with context and
hierarchy. The phenomenon of heredity plays a fundamental role in
this process. Schrödinger anticipated that something like DNA exists
and because of that order is maintained from parent to progeny and
"genes" carry the hypothetical material of a "definite hereditary feature".
Material and energy are inherited from one generation to another.
That explains why we do not get something from nothing.

Organisms’ DNA codes for all the RNA and protein molecules re-
quired to construct its cells. The cell types in a multicellular organism
differentiate from other cell types based on the synthesis and accu-
mulation of different sets of RNA, protein, lipids and carbohydrate
biomolecules. Based on this mechanism, much phenotypical diversity
can be derived [1].

The production of an observable molecular product (e.g. RNA or
protein) by a gene is defined as gene expression [1]. In general, gene
expression that underlies the development of multicellular organisms
does not rely on changes in the DNA sequences of the corresponding
gene.

There are, however, a few cases where DNA rearrangements of the
genome take place during the development of an organism. Perhaps
the most impressive examples of programmed DNA rearrangement
take place in bone-marrow-derived (B) cells and thymus-derived (T )
cells that play a role the immune system of mammals [70].

1.1.1 Regulation of gene expression

Gene expression is regulated at multiple levels including:

1 The Nobel Prize in Physics 1933 was awarded jointly to Erwin Schrödinger & Paul
Adrien Maurice Dirac for the discovery of new productive forms of atomic theory
http://www.nobelprize.org/nobel_prizes/physics/laureates/1933/
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• Transcriptional control that regulates the timing and the level
of transcription for a given gene [1].

• RNA processing control that regulates splicing, 3’ end forma-
tion, RNA editing and processing of RNA [1, 129, 144].

• RNA transport control that selects which processed RNAs are
exported from the nucleus to cytosol [81].

• RNA localization control that determines where to keep the
transported transcripts.

• mRNA degradation control that destabilizes certain mRNA
molecules in the cytoplasm [189].

• Translational control that decides which mRNAs in the cyto-
plasm are translated by ribosomes.

• Protein folding whereby function of protein is established through
production of the correct structure.

• Protein activity control that activates, inactivates, localizes or
transports specific protein molecules after they have been made [1].

1.1.2 Post-transcriptional regulation of gene expression

In general, any mechanism that controls the gene expression at the
level of RNA is part of the so-called "post-transcriptional regulation" of
gene expression [1, 189]. Especially in eukaryotes, RNA found in the
nucleus is more complex than that found in the cytoplasm: more than
95% of the RNA bases synthesized by RNA polymerase II never reach
the cytoplasm. The main reason for this is the removal of introns,
which account for 80% of the total bases [80]. This process is called
RNA splicing.

Another example related to the post-transcriptional regulation of
gene expression, is the study [155] by Schwanekamp et al. in 2006 to
find out how extensively genes are regulated by post-transcriptional
regulation. They monitored the effect of dioxin2. AHR gets activated
by dioxin and include a set of genes encoding xenobiotic metabolizing
proteins in order to enhance the body’s main molecular defence against
environmental toxins. Schwanekamp et al. wanted to find out whether
toxicants such as dioxin significantly affect nuclear RNA levels and
that cytoplasmic RNA levels are dependent on nuclear RNA levels.
They compared nuclear and cytoplasmic RNA levels from untreated
and dioxin-treated mouse embryonic fibroblasts. The result showed
that nuclear RNA levels are strongly affected by dioxin due to effects

2 Pervasive teratogen and carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or
dioxin), One of the polycyclic aromatic hydrocarbon toxicants on Aryl-Hydrocarbon
Receptor (AHR)
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of proteins involved in nuclear RNA processing and transcription
mostly affected the nuclear RNAs. The correlation between nuclear
and cytoplasmic RNA levels is weak suggesting other regulatory
mechanisms which control cytoplasmic RNA levels. AHR regulates
key xenobiotic metabolizing genes at the transcriptional level, a larger
impact of the dioxin-activated AHR are at post-transcriptional levels.

1.1.3 Role of RNA-binding proteins in post-transcriptional regulation of
gene expression

RNA-binding proteins regulate the post-transcriptional events [67, 94,
52], such as RNA splicing [1, 129, 144] and editing [127] and also trans-
lation of RNA [8]. RNA binding proteins post-transcriptionally regu-
late a large amount of the transcriptome. This makes them interesting
to the scientific community. RNA interference (RNAi) and microRNAs
are both examples of post transcriptional regulation [10, 23, 67, 94, 134],
which regulate the degradation of RNA and change the chromatin
structure, see also 1.1.4.2.

Computational models describing the binding specificity of RBPs
are lacking. This is in contrast, for instance, with transcription factors.
Similarly, binding specificities of transcription factors have been cata-
logued in databases such as TRANSFAC3 [130], but such databases are
not common for RNA-binding proteins. Zheng et al.[200] designed
a knowledge-based resource to predict the specificity and relative
binding energy of RNA-binding proteins. However structural studies
[7] suggest that the specificity of RNA-binding proteins may come
from their multi-domain structure, each of the domains engaging only
a few nucleotides.

Precise knowledge of the spatio-temporal associations between RBPs
and mRNAs under various conditions is crucial to understand how
the level, translation rate and cellular localization of those mRNAs
are regulated during the life time of a cell. It is therefore clear that
we need to first determine which RNA binding proteins associate
with each mRNA and under which conditions. At the same time,
such information could assist in defining the binding specificity of the
protein of interest.

1.1.3.1 Target site identification of RNA-binding proteins

In order to study post transcriptional regulation several techniques are
used. One of the initial methods to experimentally determine the set
of targets for RNA binding proteins is the use of Differential Display
Assay reverse transcription PCR (DDRT-PCR) [119]. It is a PCR-based
method that allows extensive analysis of gene expression among
several cell populations [159]. It selectively amplifies large numbers

3 http://www.gene-regulation.com/pub/databases.html

http://www.gene-regulation.com/pub/databases.html
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of expressed sequences in an individual analysis, and then "displays"
the genes by gel electrophoresis. In 2000, Sturtevant [167] reviewed
the application of this method and addressed various limitations,
including the large number of false-positive results and the difficulty
in confirming differential expression.

Other methods are based on immunoprecipitation(IP)4 of associated
RNAs. RNA immunoprecipitation followed by microarray chip (RIP-
Chip) can be used to detect the association of individual proteins with
specific RNAs [86, 157]. Briefly, a subset of total cell mRNAs associated
to endogenous mRNA-protein (mRNP) complexes is directly isolated
and later identified using cDNA microarrays. First, the cells are
harvested e.g. by treatment of cells with formaldehyde to cross-
link in vivo Protein-RNA complexes. The next step is to conduct
nuclei isolation and nuclear pellets lysis followed up by shearing
of chromatin. The endogenous mRNA-protein (mRNP) complexes
(RNA binding protein (RBP) of interest together with the bound
RNA) is purified using immunoprecipitation and unbound material
is washed off. RNA that is bound to immunoprecipitated RBP is
then purified. Next, Reverse transcription (RT) of RNA to cDNA is
performed. Finally, if target is known qPCR is performed. When the
target is not known cDNA libraries are created and microarrays and
sequencing can be used for target identification analysis.

Ule et al.[176] introduced a protocol in which UV crosslinking is
used to isolate the binding sites of a particular RNA binding protein.
The RNA is fragmented using ribonucleases (RNases) to get the RNA,
which ideally contains the binding site extended by possible short
flanking nucleotides. Next, the protein and the associated RNA frag-
ments are isolated by immunoprecipitation, the protein is digested
and the remaining RNA fragments are sequenced, currently by us-
ing a high-throughput sequencing machine. A few variants, known
as HITS-CLIP [120, 25], PAR-CLIP [67], modified PAR-CLIP[95] and
iCLIP [96], have been proposed. This method is referred to as Crosslink-
ing and immunoprecipitation (CLIP) the characteristics of these methods
is discussed in details in this thesis.

1.1.4 Role of RNA interference and microRNAs in post-transcriptional
regulation of gene expression

In this sections the role of RNAi and microRNA regulation as exam-
ples of post transcriptional regulation of gene expression is elaborated
more in details. In 1998, Andrew Z. Fire and Craig C. Mello5 observed
effective silencing of genes based on sequence specificity when they

4 Immunoprecipitation (IP) is an antibody-based technique of precipitating a protein
antigen out of solution using an antibody that specifically binds to that particular
protein

5 The Nobel Prize in Physiology or Medicine 2006 was awarded jointly to Andrew Z.
Fire & Craig C. Mello for their discovery of RNA interference - gene silencing
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exposed Caenohabtidis elegans to double-stranded RNAs (dsRNAs) [41].
Similar results were observed in Drosophila embryos [88]. Those obser-
vations created an exciting new field in RNA biology. Fire & Mello
defined RNAi as an evolutionary-conserved gene-silencing mecha-
nism that uses short, double-stranded RNAs (dsRNAs) to identify
complementary target RNAs for sequence-specific degradation [41].

RNAi offers a powerful tool to specifically direct the degradation
of complementary RNAs, and thus has great therapeutic potential
in targeting diseases6 [140]. The presence of RNAs of about 22 nu-
cleotides in length[68, 69] that are complementary to the gene that is
being suppressed is essential for RNAi. Despite our knowledge of
the mechanism of RNAi, there is still a need for new techniques that
will allow for a detailed mechanistic characterization of RNA-induced
silencing complex (RISC) assembly and activity to further improve the
biocompatibility of modified siRNAs [69, 140].

In 1993, Lee et al. identified the first microRNA [109]. In this study,
Victor Ambros and his team positionally cloned the lin-4 gene in
worm and realized that no protein is encoded by this gene. Lin-4 is a
locus required for the correct timing of development in Caenorhabditis
elegans. The interesting finding was that lin-4 instead encompasses
two small noncoding RNAs (ncRNAs), one 22 nucleotides long, and
a longer form (lin-4L). These ncRNAs fold into a hairpin structure.
In 2000, Ruvkun and colleagues discovered that let-7, which also
regulates developmental timing in worms, also encompasses for a
noncoding RNA [149]. Because lin-4 and let-7 control developmental
timing, they were referred to as small temporal RNAs (stRNAs). Later
on, researchers were able to clone additionally some hundreds of
19-25 nucleotide stRNA-like RNAs from worms, flies, and human
cells that are similar to stRNAs and which derived from longer stem-
loop precursor RNAs[99, 108]. Thus, the longer lin-4L was called the
precursor molecule of the mature lin-4. Landgraf et al.largely studied
the expression patterns of the microRNAs between cell lineages and
tissues [104]. Results of this study showed that these precursors are
expressed in many different ways. Some are ubiquitously produced
in large quantities, whereas many others are temporally regulated or
expressed only in specific tissues [104]. Some microRNAs appear to
be transcribed in "coordination regulation operons"7 indicating that
they are closely distributed in the genome and cleaved from their

by double-stranded RNA. http://www.nobelprize.org/nobel_prizes/medicine/

laureates/2006/

6 For example, Alnylum Pharmaceuticals http://www.alnylam.com is developing RNAi
therapeutic for the treatment of hemophilia and rare bleeding disorders

7 In 2002, Keene and Tenenbaum [85] defined post-transcriptional operons as clusters
of genes physically ordered in the genome in a manner enabling them to be regulated
as groups. Operons represent a powerful mechanism to organize and express genetic
information as functionally related combinations of monocistronic mRNA.

http://www.nobelprize.org/nobel_prizes/medicine/laureates/2006/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/2006/
http://www.alnylam.com
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stem-loop precursors from within a long, common transcript which
referred to as microRNA clusters [100, 101, 174, 141].

Grishok et al. [62] found that worms that accumulate lin-4/let-7 lack
endoribonuclease coded by alg-2. These worms failed to form the
germ line early in their development [27] which leads to a defunct
RNAi mechanism. ALG is a homologue of the human Argonaute.
Both of them are member of RNA-Induced Silencing Complex (RISC)
family of proteins. They function not only in microRNA maturation
but are also required in animals, plants, and fungi for a variety of
RNA-silencing phenomena, including RNAi and co-suppression.

1.1.4.1 microRNA biogenesis

During the last decade, substantial efforts have been made toward
uncovering the biogenesis of microRNAs, their molecular mecha-
nisms and functional roles in a variety of cellular contexts. Lee
et al. [111] showed that microRNAs are commonly transcribed by
RNA polymerase II from intragenic and intergenic chromosomal DNA
regions into long primary transcripts of various lengths (usually 1-3
kb), named primary microRNAs (pri-microRNAs). The RNAse com-
plex composed of RNase III Drosha and DGCR8

8 endonucleolytically
process the pri-microRNA. They produce a 70-100 nucleotide long
hairpin-precursor structure [110, 105]. The processed pri-microRNA,
called as precursor microRNA (pre-microRNA) is then transported
to the cytoplasm by an exportin-5 dependent mechanism [10]. In
2004, Lee et al. [112] showed that once exported into the cytosol, the
double-stranded pre-microRNAs is further cleaved by Dicer into a
mature double-stranded microRNA of variable length (approximately
20-25 nucleotides). Cleavage results in an imperfect duplex that is
unwound, and the strand with the weakest base pairing at the 5’
end guide strand is preferentially loaded into an Argonaute protein
family. Therefore, the guide strand or mature microRNA is loaded
into a RISC, while the passenger strand, also known as microRNA*
is generally destroyed [78]. As of the writing of this report, 1527

human microRNA genes9 have been identified and listed in the official
microRNA database (miRBase) [60].

1.1.4.2 microRNA regulatory function

microRNAs regulate many fundamental biological processes [99]. In
2004, Poy et al. [145] showed that Myotrophin is a target of miR-
375, suggesting that insulin secretion and exocytosis is regulated by
miR-375. One year later, Krützfeldt et al. found another example of
microRNA regulatory function. They showed that miR-122 regulates

8 DGCR8 or DiGeorge syndrome critical region gene 8, acts as Drosha’s cofactor. It is the
double-stranded RNA-binding protein

9 The miRBase Sequence Database – Release 18, See http://www.mirbase.org/

http://www.mirbase.org/
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cholesterol biosynthesis genes. They first reduced the level of miR-
122 in mice by administrating antagomirs10, and then compared the
expression levels of the affected genes relative to their expression
levels in the control samples11.

It has been shown that the microRNAs regulate many other funda-
mental biological processes. For example, expression of the miR302/367

cluster leads to potent and rapid reprogramming of mouse and human
somatic cells to an induced pluripotent stem cell (iPSC12) state. In
fact, the reprogramming process event does not require exogenous
transcription factors [5]. Several recent studies discuss functional roles
of microRNAs in cancer. For example, miR-200 family (miR-200a,
miR-200b, miR-200c, miR-141 and miR-429) of microRNAs and to
miR-205 [58, 59, 143] are shown to inhibit the epithelial-mesenchymal
transition (EMT) programme and function as tumor suppressor. Other
links to cancer are oncogenes reported to be targeted by microR-
NAs [20, 74, 138]. Moreover, microRNAs have been shown to regulate
DNA methylation [161, 34], embryonic development [54] and immu-
nity [173, 139].

1.1.4.3 microRNA target site predictions

Biochemical and structural studies of the RISC complex bound to
target RNA in Bacteria13 postulate to some extent a complex protein
interaction between the microRNA and the Argonaute protein as well
as an interaction between microRNA and its mRNA target binding site
[186, 187]. microRNAs are bound by Argonaute (Ago/EIF2C) proteins
causing translational inhibition and mRNA destabilization or inhibi-
tion of translation of partially-complementary target mRNAs [10].

In plants, microRNAs generally find their mRNA targets by exten-
sive complementarity [10]. Predictions based on this assumption are
highly reliable [150]. However, it is very rare to see such extensive
complementarity with consequent cleavage of the targeted message
in animals [28, 197]. This makes it challenging to develop a compu-
tational algorithm that predicts most of the regulatory targets on a
genome-wide scale without producing too many false predictions [10].

10 An antagomir is a small chemically modified, cholesterol-conjugated single-stranded
oligonucleotide that is perfectly complementary to the specific microRNA. In order
to make the antagomirs more resistant to degradation machinery, they usually
have modifications, such as 2’-O-methyl (2’-OMe) and phosphothioates [98] groups.
Beal et al. showed that 2’-OMe group at the editing site substantially reduces the
deaminiation rate. It might have either mispairing at the cleavage site of Argonaute-2
(Ago2) or base modification to inhibit Ago2 cleavage and microRNA activity. It
appears that this inhibition is due to irreversible binding of the microRNA but even
that is still not completely known.

11 mock transfected
12 iPSC cells, exhibit the morphology and growth properties of embryonic stem(ES) cells

and express ES cell marker genes, See Takahashi and Yamanaka.
13 The study was performed in gram negative eubacterium Thermus thermophilus
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A breakthrough in terms of more accurate predictive models was
the use of preferential evolutionary conservation [115, 44]. Based
on evolutionary conservation, microRNA prection algorithms like
TargetScan14 [61] or ElMMO15 [46] have the ability to distinguish
microRNA target sites from the multitude of 3’ UTR segments that
otherwise would score equally well with regard to the quality of
microRNA pairing.

Important features for target site recognition include pairing to
the target mRNA with the 6-8 nucleotides from the 5’ end of the
microRNA (seed region). It was shown that seed pairing is not always
sufficient for repression. For example, Ameres et al. [3] studied target
complementarity to microRNAs in Drosophila. They found that the
targets match only to a microRNA seed region did not get tailed and
trimmed. In contrast, only when seed pairing is accompanied by
extensive central and 3’ pairing 16 between the microRNA and the
target then potent tailing and trimming was achieved[3].

The results from different target predictions for microRNAs are not
compatible with each other, meaning that different approaches lead
to very different sets of predicted targets. Based on computational
predictions, it is estimated that many of the protein-coding genes in
mammalian are regulated by microRNAs [40], and it is estimated that
10s to 100s of mRNAs are targeted by microRNA [116, 135].

1.2 introduction to the chapters

In section 1.1.3, it was aimed to briefly introduce post-transcriptional
regulation of gene expression. Identification of RBP and micro-Ribonucleo-
Protein complexes (miRNP) interactions with the target RNA is critical,
because it may lead to the discovery of specific combination of sites
(or modules) that may control distinct cellular processes and path-
ways [67]. CLIP demonstrates that a transcript will generally be bound
and regulated by multiple RBPs and miRNPs, the spatio-temporal
and/or combination of which will determine the final gene-specific
regulatory outcome.

This report is divided into three parts: Data Analysis, Mathematical
Modeling and Conclusion and future directions. In the Data Analysis part,
various methods and tools for characterizing the post-transcriptional
regulatory networks of RNA-binding proteins are discussed and ap-
plied. Chapter 2 introduces PAR-CLIP, a method for transcriptome-
wide identification of RNA binding proteins at nucleotide resolution.
PAR-CLIP was successfully applied on RNA binding proteins and
their binding specificity was characterized.

14 http://www.targetscan.org/

15 http://www.mirz.unibas.ch/ElMMo3/

16 With eight or fewer mismatches with the 3’ end of the microRNA

http://www.targetscan.org/
http://www.mirz.unibas.ch/ElMMo3/
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Partly due to their vast volume, the data that were so far generated
in CLIP experiments have not been put in a form that enables fast and
interactive exploration of binding sites. To address this need, Chapter
3 presents CLIPZ17, which is a database and analysis environment
for various kinds of deep sequencing (and in particular CLIP) data,
that aims to provide an open-access repository of information for
post-transcriptional regulatory elements.

Chapter 4 revisits various CLIP methods. A set of ideas in terms
of both experimental protocols and data analysis are presented to
improve the quality and reproducibility of such experiments. In
general, cytoplasmic RNAs are isolated in CLIP experiments. Like
many high-throughput experiments, CLIP has a certain amount of
isolated RNAs which do not represent regulatory binding sites. To
improve the quality of the obtained RNAs, a set of novel methods for
data analysis are also suggested. These methods are added as new
tools to the CLIPZ analysis platform.

Argonaute CLIP data could in principle be beneficial in improving
the microRNA target site predictions. However, several questions still
remain which cannot be addressed using CLIP methods. For example:

• Argonaute CLIP data by default does not reveal which microR-
NAs are more likely to interact to the mRNA binding site at the
time of cross-linking.

• As mentioned earlier, biochemical and structural studies of Ther-
mus thermophilus Argonaute protein [186, 187] suggest that the
protein-RNA interaction between microRNA and the Argonaute
protein forms a physical structure that only some positions in
the microRNA become accessible to the target binding site. Hav-
ing inferred the interacting microRNA, it is also interesting to
predict the most plausible secondary structure of the hybridized
microRNA-mRNA complex.

Mathematical Modeling part of the report contains Chapter 5. This
chapter presents a novel mathematical model called MIRZA18 to ad-
dress the above mentioned questions. An in-depth introduction to
MIRZA is presented and its performance in terms of identifying func-
tionally relevant targets of microRNAs is discussed.

Finally, Conclusion and future directions part of the report contains
Chapter 6 in which discusses the main findings of the projects and
gives an outlook of where future work could be taken up.

17 http://www.clipz.unibas.ch

18 Source code available at: http://www.mirz.unibas.ch/software.php

http://www.clipz.unibas.ch
http://www.mirz.unibas.ch/software.php
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T R A N S C R I P T O M E - W I D E I D E N T I F I C AT I O N O F
R N A - B I N D I N G P R O T E I N A N D M I C R O R N A
TA R G E T S I T E S B Y PA R - C L I P

The method
presented in this
chapter was
developed in
collaboration with
the Tuschl lab at
Rockefeller
University, New
York and were
originally published
in Cell [67]

abstract

RNA transcripts are subject to post-transcriptional gene regulation
involving hundreds of RNA-binding proteins (RBPs) and microRNA-
containing ribonucleoprotein complexes (miRNPs) expressed in a
cell-type dependent fashion. We developed a cell-based crosslinking
approach to determine at high resolution and transcriptome-wide the
binding sites of cellular RBPs and miRNPs. The crosslinked sites are
revealed by thymidine to cytidine transitions in the cDNAs prepared
from immunopurified RNPs of 4-thiouridine-treated cells. We de-
termined the binding sites and regulatory consequences for several
intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-
3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these
factors bind thousands of sites containing defined sequence motifs
and have distinct preferences for exonic versus intronic or coding ver-
sus untranslated transcript regions. The precise mapping of binding
sites across the transcriptome will be critical to the interpretation of
the rapidly emerging data on genetic variation between individuals
and how these variations contribute to complex genetic diseases.

2.1 introduction

Gene expression in eukaryotes is extensively controlled at the post-
transcriptional level by hundreds of miRNAs, which are bound by
Argonaute (Ago/EIF2C) proteins and mediate destabilization and/or
inhibition of translation of partially complementary target mRNAs [10].
But Ago is just one out of hundreds of RNA-binding proteins (RBPs)
and ribonucleoprotein complexes (RNPs) [132] that modulate the mat-
uration, stability, transport, editing and translation of RNA transcripts
in vertebrates [128, 136, 164]. Each of these RBPs contain one or
more domains able to specifically recognize target transcripts. To
understand how the interplay of these RNA-binding factors affects
the regulation of individual transcripts, high resolution maps of in
vivo protein-RNA interactions are necessary [84].

A combination of genetic, biochemical and computational approaches
is typically applied to identify RNA-RBP or RNA-RNP interactions.
Microarray profiling of RNAs associated with immunopurified RBPs
(RIP-Chip) [172] defines targets at a transcriptome level, but its applica-

15
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tion is limited to the characterization of kinetically stable interactions
and does not directly identify the RBP recognition element (RRE)
within the long target RNA. Nevertheless, RREs with higher informa-
tion content can be derived computationally from RIP-Chip data, e.g.
for HuR [29] or for Pumilio [53].

More direct RBP target site information is obtained by combining
in vivo UV crosslinking [57, 183] with immunoprecipitation [33, 131]
followed by the isolation of crosslinked RNA segments and cDNA
sequencing (CLIP) [176]. CLIP was used to identify targets of the splic-
ing regulators NOVA1 [121], FOX2 [198] and SFRS1 [152] as well as U3

snoRNA and pre-rRNA [56], pri-miRNA targets for HNRNPA1 [65],
EIF2C2/AGO2 protein binding sites [24] and ALG-1 target sites in
C. elegans [201]. CLIP is limited by the low efficiency of UV 254 nm
RNA-protein crosslinking, and the location of the crosslink is not read-
ily identifiable within the sequenced crosslinked fragments, raising
the question of how to separate UV-crosslinked target RNA segments
from background non-crosslinked RNA fragments also present in the
sample.

Here we describe an improved method for isolation of segments of
RNA bound by RBPs or RNPs, referred to as PAR-CLIP (Photoactivatable-
Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation). To
facilitate crosslinking, we incorporated 4-thiouridine (4SU) into tran-
scripts of cultured cells and identified precisely the RBP binding
sites by scoring for thymidine (T) to cytidine (C) transitions in the
sequenced cDNA. We uncovered tens of thousands of binding sites for
several important RBPs and RNPs and assessed the regulatory impact
of binding on their targets. These findings underscore the complexity
of post-transcriptional regulation of cellular systems.

2.2 results

2.2.1 Photoactivatable nucleosides facilitate RNA-RBP crosslinking in cul-
tured cells

Random or site-specific incorporation of photoactivatable nucleoside
analogs into RNA in vitro has been used to probe RBP- and RNP-RNA
interactions [93, 133]. Several of these photoactivatable nucleosides are
readily taken up by cells without apparent toxicity and have been used
for in vivo crosslinking [39]. We applied a subset of these nucleoside
analogs (Figure 1A) to cultured cells expressing the FLAG/HA-tagged
RBP IGF2BP1 followed by UV 365 nm irradiation. The crosslinked
RNA-protein complexes were isolated by immunoprecipitation, and
the covalently bound RNA was partially digested with RNase T1

and radiolabeled. Separation of the radiolabeled RNPs by SDS-PAGE
indicated that 4SU-containing RNA crosslinked most efficiently to
IGF2BP1. Compared to conventional UV 254 nm crosslinking, the
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Figure 1: PAR-CLIP methodology (A) Structure of photoactivatable nucleo-
sides (B) Phosphorimages of SDS-gels that resolved 5’-32P-labeled
RNA-FLAG/HA-IGF2BP1 immunoprecipitates (IPs) prepared from
lysates from cells that were cultured in media in the absence or
presence of 100 µM photoactivatable nucleoside and crosslinked
with UV 365 nm. For comparison, a sample prepared from cells
crosslinked with UV 254 nm, was included. Lower panels show
immunoblots probed with an anti-HA antibody. (C) Illustration of
PAR-CLIP. 4SU-labeled transcripts were crosslinked to RBPs and
partially RNase-digested RNA-protein complexes were immunopu-
rified and size-fractionated. RNA molecules were recovered and
converted into a cDNA library and deep sequenced.
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photoactivatable nucleosides improved RNA recovery 100- to 1000-
fold, using the same amount of radiation energy (Figure 1B). We
refer to our method as PAR-CLIP (Photoactivatable-Ribonucleoside-
Enhanced Crosslinking and Immunoprecipitation) (Figure 1C).

We evaluated the cytotoxic effects upon exposure of HEK293 cells
to 100 µM and 1 mM of 4SU or 6SG in tissue culture medium over a
period of 12 h by mRNA microarrays. The mRNA profiles of 4SU or
6SG treated cells were very similar to those of untreated cells (Table S1),
suggesting that the conditions for endogenous labelling of transcripts
were not toxic.

To guide the development of bioinformatic methods for identifica-
tion of binding sites, we first studied human Pumilio 2 (PUM2), a
member of the Puf-protein family (Figure 2A) known for its highly
sequence-specific RNA binding [185].

2.2.2 Identification of PUM2 mRNA targets and its RRE

PUM2 protein crosslinked well to 4SU-labeled cellular transcripts (Fig-
ure 2B). The crosslinked segments were converted into a cDNA library
and Solexa sequenced [66]. The sequence reads were aligned against
the human genome and EST databases. Reads mapping uniquely
to the genome with up to one mismatch, insertion or deletion were
used to build clusters of sequence reads (Figure 2C, Supplementary
Methods, and Table S2). We obtained 7,523 clusters originating from
about 3,000 unique transcripts, 93% of which were found within the
3’ untranslated region (UTR) (Figure 20) in agreement with previous
studies [190]. All sequence clusters with mapping and annotation
information are available online1.

PhyloGibbs analysis [160] of the top 100 most abundantly sequenced
clusters (Table S3), as expected, yielded the PUM2 RRE, UGUA-
NAUA [48] (Figure 2D). Unexpectedly, over 70% of all sequence reads
that gave rise to clusters showed a T to C mutation compared to the
genome (Figure 20). Ranking of sequence read clusters according
to the frequency of T to C mutation further enriched for the PUM2

RRE (Figure 20) indicating that the T to C mutation is diagnostic of
sequences interacting with the RBP. The T to C changes were not
randomly distributed: the T corresponding to U7 of the RRE mutated
at higher frequency compared to the Ts corresponding to U1 and
U3 (Figure 2E). Our analyses suggest that the reverse transcriptase
specifically misincorporated dG across from crosslinked 4SU residues
and that local amino acid environment also affected crosslinking ef-
ficiency. Uridines proximal to the RRE also exhibited an increased
T to C mutation frequency, indicating that crosslinks also form in
close proximity to an RRE and that our method even captured PUM2

binding sites that did not have a U7 in its RRE.

1 http://www.mirz.unibas.ch/restricted/clipdata/RESULTS/index.html

http://www.mirz.unibas.ch/restricted/clipdata/RESULTS/index.html
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Figure 2: RNA recognition by PUM2 protein (A) Domain structure of PUM2

protein. (B) Phosphorimage of SDS-gel of radiolabeled FLAG/HA-
PUM2-RNA complexes from non-irradiated or UV-irradiated 4SU-
labeled cells. The lower panel shows an anti-HA immunoblot. (C)
Alignments of PAR-CLIP cDNA sequence reads to corresponding
regions in the 3’UTR of ELF1 and HES1 Refseq transcripts. The
number of sequence reads (# reads) and mismatches (errors) are
indicated. Red bars indicate the PUM2 recognition motif and red-
letter nucleotides indicate T to C sequence changes. (D) Sequence
logo of the PUM2 recognition motif generated by PhyloGibbs anal-
ysis of the top 100 sequence read clusters. (E) T to C positional
mutation frequency for PAR-CLIP clusters anchored at the 8-nt
recognition motif from all motif-containing clusters (Table S3). The
dashed line represents the average T to C mutation frequency
within these clusters. See also Figure 20.
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2.2.3 Identification of QKI RNA targets and its RRE

To further validate our method, we applied it to the RBP Quaking
(QKI), which contains a single heterogeneous nuclear ribonucleopro-
tein K homology (KH) domain (Figures 3A,B). The RRE ACUAAY was
determined by SELEX [47], but in vivo targets are largely undefined.
Mice with reduced expression of QKI show dysmyelination and de-
velop rapid tremors or "quaking" 10 days after birth. Previous studies
suggested that QKI participates in pre-mRNA splicing, mRNA export,
mRNA stability and protein translation [22].

PhyloGibbs analysis of the 100 most abundantly sequenced clusters
(Table S3) yielded the RRE AYUAAY (Figures 3C,D), similar to a motif
identified by SELEX [47]. We found approx. 6,000 clusters mapping
to 2,500 transcripts. Close to 75% of these clusters were derived from
intronic sequences, supporting the hypothesis that QKI is a splicing
regulator (Chenard and Richard, 2008) and 70% of the remaining
exonic clusters fall into 3’UTRs (Figure 21).

Mutation analysis of the clustered sequence reads showed that the T
corresponding to U2 in AUUAAY was frequently altered to C whereas
the T corresponding to U3 in AUUAAY or ACUAAY remained unal-
tered (Figure 3E). Crosslinking of 4SU residues located in immediate
vicinity to the RRE was mostly responsible for exposing the motif with
C2, showing that crosslinking inside the recognition element is not
a precondition for its identification. Hence, the discovery of RREs is
unlikely to be prevented by sequence-dependent crosslinking biases
as long as deep enough sequencing captures these interaction sites at
and nearby the RRE.

2.2.4 T to C mutations occur at the crosslinking sites

To better characterize the T to C transition observed in crosslinked
RNA segments, we UV 365 nm crosslinked oligoribonucleotides con-
taining single 4SU substitutions to recombinant QKI (Figures 3F,G).
The crosslinking efficiency varied 50-fold and mirrored the results of
the mutational analysis (Figure 3G). The least effective crosslinking
was observed for placement of 4SU at position 3 of the QKI RRE
(4SU9), and the most effective crosslinking was found at position 2 of
the QKI RRE (4SU10); the crosslinking efficiency for two positions out-
side of the RRE (4SU2 and 4SU4) was intermediate. Neither of these
substitutions affected RNA-binding to recombinant QKI protein as
determined by gel-shift analysis, whereas mutations of the recognition
element weakened the binding between 2.5- and 9-fold (Table S1).

Next, we sequenced libraries prepared from non-crosslinked as well
as QKI-protein-crosslinked oligoribonucleotides containing 4SU at
indicated positions (Figure 3F). The fraction of sequence reads with
T to C changes obtained from non-irradiated 4SU-containing oligori-
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Figure 3: RNA recognition by QKI protein (A) Domain structure of QKI pro-
tein (B) Phosphorimage of SDS-gel resolving radiolabeled RNA
crosslinked to FLAG/HA-QKI IPs from non-irradiated or UV-
irradiated 4SU-labeled cells. The lower panel shows the anti-HA
immunoblot. (C) Alignments of PAR-CLIP cDNA sequence reads
to the corresponding regions in the 3’UTRs of the CTNNB1 and
HOXD13 transcripts. Red bars indicate the QKI recognition motif
and red-letter nucleotides indicate T to C sequence changes. (D) Se-
quence logo of the QKI recognition motif generated by PhyloGibbs
analysis of the top 100 sequence read clusters. (E) T to C positional
mutation frequency for PAR-CLIP clusters anchored at the AU-
UAAY (left panel) and ACUAAY (right panel) RRE (Table S3); Y
= U or C. The dashed line represents the average T to C mutation
frequency within these clusters. (F) Sequences of synthetic 4SU-
labeled oligoribonucleotides with QKI recognition motifs, derived
from a sequence read cluster aligning to the 3’UTR of HOXD13

shown in (C) 4SU-modified residues are underlined. (G) Phos-
phorimage of SDS-gel resolving recombinant QKI protein after
crosslinking to radiolabeled synthetic oligoribonucleotides shown
in (F). (H) Stabilization of QKI-bound transcripts upon siRNA
knockdown. Changes in mRNA levels upon QKI knockdown by
two distinct siRNAs were measured by microarray analysis. Shown
are the distributions of changes upon siRNA transfection for tran-
scripts that did (dashed lines) or did not (solid lines) contain QKI
PAR-CLIP clusters. See also Figure 21.



22 par-clip identifies rna-binding protein and microrna target sites

bonucleotides varied between 10 and 20%, and increased to 50 to
80% upon crosslinking (Table S1). The variation of the degree of T to
C changes in the crosslinked samples is most likely determined by
background of non-crosslinked oligoribonucleotides. Presumably, the
T to C transition frequency is increased upon crosslinking as a direct
consequence of a chemical structure change of the 4SU nucleobase
upon crosslinking to protein amino acid side chains, resulting in al-
tered stacking or hydrogen bond donor/acceptor properties directing
the preferential incorporation of dG rather than dA during reverse
transcription (Figure 20). At the doses of 4SU applied to cultured cells,
about 1 out of 40 uridines was substituted by 4SU as determined by
HPLC analysis of the nucleoside composition of total RNA. Assuming
a 20% T to C conversion rate for a non-crosslinked 4SU-labeled site,
we estimated that the average T to C conversion rate of 40-nt sequence
reads derived from background non-crosslinked sequences will be
near 5%. Clusters of sequence reads with average T to C conversion
above this threshold, irrespective of the number of sequence reads,
most certainly represent crosslinking sites. The ability to separate
signal from noise by focusing on clusters with a high frequency of
T to C mutations rather than clusters with the largest number of
reads, represents a major enhancement of our method over UV 254

nm crosslinking methods.
To assess whether the transcripts identified by PAR-CLIP are reg-

ulated by QKI, we analyzed the mRNA levels of mock-transfected
and QKI-specific siRNA-transfected cells with microarrays. Tran-
scripts crosslinked to QKI were significantly upregulated upon siRNA
transfection, indicating that QKI negatively regulates bound mRNAs
(Figure 3H), consistent with previous reports of QKI being a repres-
sor [22].

2.2.5 Identification of IGF2BP family RNA targets and its RRE

We then applied PAR-CLIP to the FLAG/HA-tagged insulin-like
growth factor 2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1-3) (Fig-
ures 4A,B), a family of highly conserved proteins that play a role in cell
polarity and cell proliferation [199]. These proteins are predominantly
expressed in the embryo and regulate mRNA stability, transport and
translation. They are re-expressed in various cancers [17, 30] and
IGF2BP2 has been associated with type-2 diabetes [153]. The IGF2BPs
are highly similar and contain six canonical RNA-binding domains,
two RNA recognition motifs (RRMs) and four KH domains (Figure 4A).
Therefore, target recognition for this protein family appears complex,
with only a small number of coding and non-coding RNA targets
being known so far. A precise definition of the RREs is missing [199].

The three IGF2BPs recognized a highly similar set of target tran-
scripts (Table S1), suggesting similar and redundant functions. Phy-
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Figure 4: RNA recognition by the IGF2BP protein family (A) Domain struc-
ture of IGF2BP1-3 proteins. (B) Phosphorimage of an SDS-gel
resolving radiolabeled RNA crosslinked to FLAG/HA-IGF2BP1-3
IPs. The lower panel shows anti-HA immunoblots. (C) Alignments
of IGF2BP1 PAR-CLIP cDNA sequence reads to the correspond-
ing regions of the 3’UTRs of EEF2 and MRPL9 transcripts. Red
bars indicate the 4-nt IGF2BP1 recognition motif and nucleotides
marked in red indicate T to C sequence changes. (D) Sequence
logo of the IGF2BP1-3 RRE generated by PhyloGibbs analysis of
the top 100 sequence read clusters. (E) T to C positional mutation
frequency for PAR-CLIP clusters anchored at the 4-nt recognition
motif from all motif-containing clusters (Table S3). The dashed
line represents the average T to C mutation frequency within these
clusters. (F) Phosphorimage of native PAGE resolving complexes
of recombinant IGF2BP2 protein with wild-type (left panel) and
mutated target oligoribonucleotide (right panel). Sequences and
dissociation constants (Kd) are indicated. (G) Destabilization of
IGF2BP-bound transcripts upon siRNA knockdown of IGF2BP1,
2, and 3. Distributions of transcript level changes for IGF2BP1-3
PAR-CLIP target transcripts versus non-targeted transcripts are
shown. See also Figures 22 and 23.
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loGibbs analysis of the clusters derived from mRNAs (Figure 4C and
Table S3) yielded the sequence CAUH (H=A, U, or C) as the only
consensus recognition element (Figure 4D), contained in more than
75% of the top 1000 clusters for IGF2BP1, 2 or 3 (Figure 22). In total,
we identified over 100,000 sequence clusters recognized by the IGF2BP
family that map to about 8,400 protein-coding transcripts. The annota-
tion of the clusters was predominantly exonic (ca. 90%) with a slight
preference for 3’UTR relative to coding sequence (CDS) (Figure 22).
The mutation frequency of all sequence tags containing the element
CAUH (H = A, C, or U) showed that the crosslinked residue was
positioned inside the motif, or in the immediate vicinity (Figure 4E).
The consensus motif CAUH was found in more than 75% of the top
1000 targeted transcripts, followed in more than 30% by a second
motif, predominantly within a distance of three to five nucleotides
(Figure 22). In vitro binding assays showed that nucleotide changes of
the CAUH motif decreased, but did not abolish the binding affinity
(Figure 4F and Table S1).

To test the influence of IGF2BPs on the stability of their interacting
mRNAs, as reported previously for some targets [199], we simultane-
ously depleted all three IGF2BP family members using siRNAs and
compared the cellular RNA from knockdown and mock-transfected
cells on microarrays. The levels of transcripts identified by PAR-CLIP
decreased in IGF2BP-depleted cells, indicating that IGF2BP proteins
stabilize their target mRNAs. Moreover, transcripts that yielded clus-
ters with the highest T to C mutation frequency were most destabilized
(Figure 4G), indicating that the ranking criterion that we derived based
on the analysis of PUM2 and QKI data generalizes to other RBPs.

For comparison to conventional and high-throughput sequencing
CLIP [121, 176], we also sequenced cDNA libraries prepared from UV
254 nm crosslinking. Of the 8,226 clusters identified by UV 254 nm
crosslinking of IGF2BP1, 4,795 were found in the PAR-CLIP dataset.
Although UV 254 nm crosslinking identified the identical segments
of a target RNA as PAR-CLIP, the position of the crosslink could not
be readily deduced, because no abundant diagnostic mutation was
observed (Figure 23).

2.2.6 Identification of miRNA targets by AGO and TNRC6 family PAR-
CLIP

To test our approach on RNP complexes, we selected the protein
components mediating miRNA-guided target RNA recognition. In
animal cells, miRNAs recognize their target mRNAs through base-
pairing interactions involving mostly 6-8 nucleotides at the 5’ end of
the miRNA (the so called “seed”) [10]. Target sites were thought to be
predominantly located in the 3’UTRs of mRNAs, and computational
miRNA target prediction methods frequently resort to identification
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Figure 5: AGO protein family and TNRC6 family PAR-CLIP (A) Phospho-
rimage of SDS-gels resolving radiolabeled RNA crosslinked to the
FLAG/HA-AGO1-4 and FLAG/HA-TNRC6A-C IPs. The lower
panel shows the immunoblot with an anti-HA antibody. (B) Align-
ment of AGO PAR-CLIP cDNA sequence reads to the correspond-
ing regions of the 3’UTRs of PAG1 and OGT. Red bars indicate
the 8-nt miR-103 seed complementary sequence and nucleotides
marked in red indicate T to C mutations. (C) miRNA profiles
from RNA isolated from untreated HEK293 cells, non-crosslinked
FLAG/HA-AGO1-4 IPs, and combined AGO1-4 PAR-CLIP libraries.
The color code represents relative frequencies determined by se-
quencing. miRNAs indicated in red were inhibited by antisense
oligonucleotides for the transcriptome-wide characterization of the
destabilization effect of miRNA binding. (D) T to C positional mu-
tation frequency for miRNA sequence reads is shown in black, and
the normalized frequency of occurrence of uridines within miRNAs
is shown in red. The dashed red line represents the normalized
mean U frequency in miRNAs. See also Figure 24.
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of evolutionarily conserved sites that are located in 3’UTRs and are
complementary to miRNA seed regions [10, 146]. We isolated mRNA
fragments bound by miRNPs from HEK293 cell lines stably expressing
FLAG/HA-tagged AGO or TNRC6 family proteins [106]. The AGO
IPs revealed two prominent RNA-crosslinked bands of 100 and 200

kDa, representing AGO, and likely TNRC6 and/or DICER1 protein.
The TNRC6 IPs showed one prominent RNA-crosslinked protein of
200 kDa (Figure 5A).

From clusters (Figure 5B) formed by at least 5 PAR-CLIP sequence
reads and containing more than 20% T to C transitions (Table S2), we
extracted 41 nt long regions centered over the predominant T to C tran-
sition or crosslinking site. The length of the crosslink-centered regions
(CCRs) was selected to include all possible registers of miRNA/target-
RNA pairing interactions relative to the crosslinking site.

PAR-CLIP of individual AGO proteins yielded on average about
4,000 clusters that overlapped, supporting our earlier observation
that AGO1-4 bound similar sets of transcripts [106]. We therefore
combined the sequence reads obtained from all AGO experiments,
which yielded 17,319 clusters of sequence reads at a cut-off of 5 reads
(Table S4). These clusters distributed across 4,647 transcripts with
defined GeneIDs, corresponding to 21% of the 22,466 unique HEK293

transcripts that we identified by digital gene expression (DGE).
PAR-CLIP of individual TNRC6 proteins yielded on average about

600 clusters that also overlapped substantially, again consistent with
our observation that TNRC6 family proteins bind similar transcripts [106].
We therefore combined all sequence reads from all TNRC6 experi-
ments, yielding 1,865 clusters and CCRs (Table S4). More than 50%
of these TNRC6 CCRs fell within 25 nt of an AGO CCR, and 26%
overlapped by at least 75%, indicating that AGO and TNRC6 members
bind to the same sites (Figure 24).

2.2.7 Comparison of miRNA profiles from AGO PAR-CLIP to non-crosslinked
miRNA profiles

To relate the potential miRNA-target-siteâcontaining CCRs to the en-
dogenously expressed miRNAs, we determined the miRNA profiles
from total RNA isolated from HEK293 cells, and miRNAs isolated
from non-crosslinked AGO1-4 IPs by Solexa sequencing [66], and
compared them to the profile from the miRNAs present in the com-
bined AGO1-4 PAR-CLIP library. miRNA profiles obtained from total
RNA and IP of the four AGO proteins in non-crosslinked cells corre-
lated well (Figure 5C and Table S5) supporting our observation that
AGO1-4 bind the same targets [106]. The most abundant among the
557 identified miRNAs and miRNAs* were miR-103 (7% of miRNA
sequence reads), miR-93 (6.5%), and miR-19b (5.5%). The 25 and
100 most abundant miRNAs accounted for 72% and 95% of the total
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of miRNA sequence reads, respectively. Comparison of the miRNA
profile derived from the combined AGO PAR-CLIP library with the
combined non-crosslinked libraries showed a good correlation (Spear-
man correlation coefficient of 0.56, Figure 5C and Figure 24A).

Importantly, in the AGO PAR-CLIP library, the majority of miRNA
sequence reads derived from prototypical miRNAs [104] displayed
T to C conversion near or above 50%. The T to C conversion was
predominantly concentrated within positions 8 to 13 (Figure 5D),
residing in the unpaired regions of the AGO protein ternary com-
plex [186]. Five of the 100 most abundant miRNAs in HEK293 cells
lack uridines at position 8-13, yet only 2 of those miRNAs, miR-374a
and b, showed no crosslinking, because uridines at residues 14 and
higher can still be crosslinked (Table S5). This frequency of crosslinks
was substantially lower in the miRNAs whose expression did not
correlate between AGO-IP and AGO PAR-CLIP samples compared to
the miRNAs whose expression correlated well (Figure 24).

2.2.8 mRNAs interacting with AGOs contain miRNA seed complementary
sequences

Independent of any pairing models for miRNAs and their targets, we
first determined the enrichment of all 16,384 possible 7-mers within
the 17,319 AGO CCRs, relative to random sequences with the same
dinucleotide composition. The most significantly enriched 7-mers, ex-
cept for a run of uridines, corresponded to the reverse complement of
the seed region (position 2-8) of the most abundant HEK293 miRNAs,
and they were most frequently positioned 1-2 nt downstream of the
predominant crosslinking site within the CCRs (Figure 6A). This places
the crosslinking site near the centre of the AGO-miRNA-target-RNA
ternary complex, where the target RNA is proximal to the Piwi/RNase
H domain of the AGO protein [186]. The polyuridine motif lies within
the region of target RNA that may be able to basepair with the 3’
half of miRNA loaded into AGO proteins [186, 187]. Therefore, these
stretches of uridine may contribute directly to miRNA-target RNA
hybridization or, as has been suggested previously, they may represent
an independent determinant of miRNA targeting specificity [61, 73].

To further examine the positional dependence of target RNA crosslink-
ing, we aligned the CCRs containing 7-mer seed complements to the
100 most abundant miRNAs and plotted the position-dependent fre-
quency of finding a crosslinked position (Figure 6B). This identified
two additional crosslinking regions, which correspond to the unpaired
5’ and 3’ ends of the target RNA exiting from the AGO ternary com-
plex, indicating that the window size of 41 nt centered on the predom-
inant crosslink position always included the miRNA-complementary
sites.
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Figure 6: AGO PAR-CLIP identifies miRNA seed-complementary sequences
in HEK293 cells. (A) Representation of the 10 most significantly
enriched 7-mer sequences within PAR-CLIP CCRs. T/C indicates
the predominant T to C transition within clusters of sequence reads.
(B) T to C positional mutation frequency for clusters of sequence
reads anchored at the 7-mer seed complementary sequence (pos.
2-8 of the miRNA) from all clusters containing seed-complementary
sequences to any of the top 100 expressed miRNAs in HEK293 cells.
The dashed line represents the average T to C mutation frequency
within the clusters. (C) Identification of 4-nt base-pairing regions
contributing to miRNA target recognition. CCRs with at least one
7-mer seed complementary region to one of the top 100 expressed
miRNAs were selected. The number of 4-nt contiguous matches
in the CCRs relative to the 5’ end of the matching miRNA was
counted. (D) Analysis of the positional distribution of CCRs. The
number of clusters annotated as derived from the 5’UTR, CDS
or 3’UTR of target transcripts is shown (green bars). Yellow bars
show the expected location distribution of the crosslinked regions if
the AGO proteins bound without regional preference to the target
transcript. See also Figure 25.
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We then computed the number of occurrences of miRNA-complementary
sequences of various lengths in the CCRs and calculated their enrich-
ment (Table S6). The most significant enrichment was generally ob-
tained with 8-mers that were complementary to miRNA seed regions
(pos. 1-8). Inspection of the region between 3 nt upstream and 9 nt
downstream of the predominant crosslinking site reveals that approxi-
mately 50% of the CCRs contain 6-mers corresponding to one of the
top 100 expressed miRNAs (Figure 24), with a 1.5-fold enrichment over
random 6-mers. Given that 6-mers still showed some degree of excess
conservation in comparative genomics studies [46, 116] (Table S6) and
that our analysis was focused on a narrow window directly down-
stream of the crosslinking site, our results suggest that the majority of
the CCRs represent bona fide miRNA binding sites. Furthermore, the
number of miRNA seed complements for all known miRNAs corre-
lated well with the expression levels of miRNAs found in HEK293 cells,
and less well with miRNA profiles of other tissue samples (Figure 25B).
The nucleotide composition of CCRs that contained at least one 7-mer
seed complementary to one of the top 100 expressed miRNA showed a
slightly elevated U-content (approx. 30% U) compared to those CCRs
not containing seed matches (Figure 25C), which was expected from
previous bioinformatic analyses of functional miRNA-binding sites.

2.2.9 Non-canonical and 3’end pairing of miRNAs to their mRNA targets
is limited

Structural and biochemical studies of the ternary complex of T. ther-
mophilus Ago, guide and target indicated that small bulges and
mismatches could be accommodated in the seed pairing region within
the target RNA strand [186]. We therefore searched for putative tar-
get RNA binding sites that did not conform to the model of perfect
miRNA seed pairing, but rather contained a discontinuous segment
of sequence complementarity to either target or miRNA with a min-
imum of 6 base pairs. We only considered pairing patterns if they
were significantly enriched in CCRs compared to dinucleotide ran-
domized sequences, and if the CCRs containing them did not at the
same time contain perfectly pairing seed-type sites. We identified
891 CCRs with mismatches and 256 with bulges in the seed region
(Table S7). Mismatches occurred most frequently across from position
5 of the miRNA as G-U or U-G wobbles, U-U mismatches and A-G
mismatches (A residing in the miRNA). Therefore, it appears that only
a small fraction of the miRNA target sites that we isolated (less than
6.6%), contained bulges or loops in the seed region.

To assess the role of auxiliary base pairing outside of the seed
region, we selected CCRs that contained a 7-mer seed match to one
of the 100 most abundant miRNAs. Supporting earlier computational
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results [61], we also detected a weak signal for contiguous 4-nt long
matches to positions 13-15 of the miRNA (Figure 6C).

2.2.10 miRNA binding sites in CDS and 3’UTR destabilize target mRNAs
to different degrees

The majority (84%) of AGO CCRs originated in exonic regions, with
only 14% from intronic, and 2% from undefined regions. Of the exonic
CCRs, 4% corresponded to 5’UTRs, 50% to CDS, and 46% to 3’UTRs
(Figure 6D).

Evidence of widespread binding of miRNAs to the CDS was re-
ported before [35, 116]. However, miRNAs are believed to predom-
inantly act on 3’UTRs [10], with relatively few reports providing
experimental evidence for miRNA-binding to individual 5’UTRs or
CDS [35, 42, 126, 142, 171]. To obtain evidence that AGO CCRs in-
deed contain functional miRNA-binding sites, we blocked 25 of the
most abundant miRNAs in HEK293 cells (Figure 5C) by transfection
of a cocktail of 2’-O-methyl-modified antisense oligoribonucleotides
and monitored the changes in mRNA stability by microarrays (Fig-
ure 7A). Consistent with previous studies of individual miRNAs [61],
the magnitude of the destabilization effects of transcripts containing
at least one CCR depended on the length of the seed-complementary
region and dropped from 9-mer to 8-mer to 7-mer to 6-mer matches
(Figure 7B). We did not find evidence for significant destabilization of
transcripts that only contained imperfectly paired seed regions.

Next, we examined whether the change in stability of CCR-containing
transcripts correlated with the number of binding sites. We found
that multiple sites were more destabilizing compared to single sites
(Figure 7C), and that multiple binding sites may also reside within a
single 41-nt CCR (Figure 25). Both of these findings are in agreement
with previous observations [61]. Then we analyzed the impact on
stability for transcripts with CCRs exclusively present either in the
CDS or the 3’UTR; there were not enough transcripts to assess the
impact of CCRs derived from the 5’UTR. CDS-localized sites only
marginally reduced mRNA stability (Figure 7D), independent of the
extent of seed pairing. To gain more insights into miRNA binding in
the CDS, we examined the codon adaptation index (CAI) [158] around
crosslinked seed matches, and found that the sequence environment
of crosslinked seed matches differed from that of non-crosslinked
seed matches in the CAI. The bias in codon usage extended for at
least 70 codons up- as well as downstream of the crosslinked seed
matches (Figure 7E), which also correlates well with the marked in-
crease in the A/U content around the binding sites that would lead
to a codon usage bias. It was recently reported that miRNA regu-
lation in the CDS was enhanced by inserting rare codons upstream
of the miRNA-binding site, presumably due to increased lifetime of
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Figure 7: Relationship between various features of miRNA/target RNA inter-
actions and mRNA stability (A) FLAG/HA-AGO2-tagged HEK293

cells were transfected with a cocktail of 25 2’-O-methyl modified
antisense oligoribonucleotides, inhibiting miRNAs marked in red
in Figure 5C, or mock transfected, followed by microarray analysis
of the change of mRNA expression levels. (B) Transcripts contain-
ing CCRs were categorized according to the presence of n-mer seed
complementary matches and the distributions of stability changes
upon miRNA inhibition are shown for these categories. (C) Tran-
scripts were categorized according to the number of CCRs they
contained. (D) Transcripts were categorized according to the po-
sitional distribution of CCRs. Only transcripts containing CCRs
exclusively in the indicated region are used. (E) Codon adaptation
index (CAI) for transcripts containing 7-mer seed complementary
regions (pos. 2-8) in the CDS for the miR-15, miR-19, miR-20, and
let-7 miRNA families. (F) LOESS regression of total transcript abun-
dance in HEK 293 cells (log2 of sequence counts determined by
digital gene expression (DGE)) against fold change of transcript
abundance (log2) determined by microarrays after transfection of
the miRNA antagonist cocktail versus mock transfection of AGO-
bound and unbound transcripts. See also Figure 26.



32 par-clip identifies rna-binding protein and microrna target sites

miRNA-target-RNA interactions as ribosomes are stalled [64]. These
observations suggest that transcripts with reduced translational ef-
ficiency form at least transient miRNP complexes amenable to UV
crosslinking.

The abundance of mRNAs expressed in HEK293 cells varied over 5

orders of magnitude as shown by DGE profiling. When we related the
expression level of CCR-containing transcripts with the magnitude of
transcript stabilization after miRNA inhibition, we found that miRNAs
preferentially act on transcripts with low and medium expression
levels (Figure 7F). Highly expressed mRNAs appear to avoid miRNA
regulation [165], at least for those miRNAs expressed in HEK293 cells.
However, we cannot fully rule out that the weaker response of highly
abundant targets may be due to lower affinity and reduced occupancy
of miRNA binding sites in highly abundant transcripts.

Earlier studies defining miRNA target regulation were carried out by
transfection of miRNAs into cellular systems originally devoid of these
miRNAs [9, 122, 156]. We transfected miRNA duplexes corresponding
to the deeply conserved miR-7 and miR-124 into FLAG/HA-AGO2

cells, performed PAR-CLIP (Figure 26), and also recorded the effect on
mRNA stability upon miR-7 and miR-124 transfection by microarray
analysis. Transcripts containing miR-7- or miR-124-specific CCRs
were destabilized, especially when CCRs were located in the 3’UTR
(Figure 26).

2.2.11 Context-dependence of miRNA binding

Not every seed-complementary sequence in the HEK293 transcriptome
yielded a CCR, thereby providing an opportunity to identify sequence
context features specifically contributing to miRNA target binding and
crosslinking. For seed-complementary sites that were crosslinked and
those that were not crosslinked, we computed the evolutionary selec-
tion pressure by the ElMMo method [46], the mRNA stability scores by
TargetScan context score [61], and sequence composition and structure
measures for the regions around the miRNA seed complementary sites.
The feature that distinguished most crosslinked from non-crosslinked
seed matches was a 25% lower free energy required to resolve local
secondary structure involving the miRNA-binding region (Figure 26),
associated with a 6% increase in the A/U content within 100 nt around
the seed-pairing site. These differences were similar for sites located in
the CDS and 3’UTRs. Compared to non-crosslinked sites, crosslinked
sites are under stronger evolutionary selection (ElMMo) and in se-
quence contexts facilitating miRNA-dependent mRNA degradation
(TargetScan context score).

The location of AGO CCRs within transcript regions was non-
random and 7-mer or 8-mer sites within the 3’UTR were preferentially
located near the stop codon or the polyA tail in transcripts with rela-
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tively long 3’UTRs (more than 3 kb) (Figure 26). The location of CCRs
in the CDS was biased towards the stop codon for the transfected
miR-7 and 124, but not for the endogenous miRNAs (Figure 26).

Finally, we wanted to examine how miRNA targets defined by
PAR-CLIP compared in regulation of target mRNA stability to those
predicted by ElMMo [46], TargetScan context score [61], TargetScan
Pct [44] and PicTar [103]. In each case, we selected the same number
of highest-scoring sites containing a 7-mer seed-complement to the
top 5 expressed miRNAs (let-7a, miR-103, miR-15a, miR-19a and miR-
20a). The analysis was limited to 3’UTR sites due to restriction by
the prediction methods. The effect on mRNA stability, as assessed by
miRNA antisense inhibition, was overall equivalent for transcripts har-
boring CCRs compared to transcripts predicted by ElMMo, TargetScan
context score, TargetScan Pct and PicTar (Figure 26).

2.3 discussion

Maturation, localization, decay and translational regulation of mRNAs
involve formation of complexes of RBPs and RNPs with their RNA
targets [128, 136]. Several hundred RBPs are encoded in the human
genome, many of them containing combinations of RNA-binding do-
mains which are drawn from a relatively small repertoire, resulting
in diverse structural arrangements and different specificities of target
RNA recognition [125]. Furthermore hundreds of miRNAs function
together with AGO and TNRC6 proteins to destabilize target mRNAs
and/or repress their translation [10]. Collectively, these factors and
their presumably combinatorial action constitute the code for post-
transcriptional gene regulation. Here we describe an approach to
directly identify transcriptome-wide mRNA-binding sites of regula-
tory RBPs and RNPs in live cells.

2.3.1 PAR-CLIP allows high-resolution mapping of RBP and miRNA target
sites

We showed that application of photoactivatable nucleoside analogs to
live cells facilitates RNA-protein crosslinking and transcriptome-wide
identification of RBP and RNP binding sites. We concentrated on 4SU
after it became apparent that the crosslinking sites in isolated RNAs
were revealed upon sequencing by a prominent transition from T to C
in the cDNA prepared from the isolated RNA segments. Compared to
regular UV 254 nm crosslinking in the absence of photoactivatable nu-
cleosides, our method has two distinct advantages. We obtain higher
yields of crosslinked RNAs using similar radiation intensities, and
more importantly, we can identify crosslinked regions by mutational
analysis. Studies using conventional UV 254 nm CLIP have not re-
ported the incidence of deletions and substitutions [24, 121, 176, 201],
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except for recent work by Granneman et al. [56] on the U3 snoRNA
that showed an increase of deletions at the RBP binding site. Our own
analysis indicates that mutations in sequence reads derived from UV
254 nm CLIP were at least one order of magnitude less frequent than
T to C transitions observed in PAR-CLIP (Figure 22).

From an experimental perspective, it is important to note that
crosslinked RNA segments, irrespective of the methods of isolation,
are always contaminated with non-crosslinked RNAs, as shown by
consistent identification of rRNAs, tRNAs, and miRNAs (Table S2).
Compared to crosslinked RNA fragments, these unmodified RNA
molecules are more readily reverse transcribed, which underscores the
need for separation of crosslinked signal from non-crosslinked noise.
We now provide a method that accomplishes this critical task.

2.3.2 Context dependence of 4SU crosslink sites

It is conceivable that binding sites located in peculiar sequence envi-
ronments, e.g. those completely devoid of U, may exist and cannot
be captured using 4SU-based crosslinking. However, such sites are
extremely rare. Only about 0.4% of 32-nt long sequence segments,
representative of the length of our Solexa sequence reads, are U-less,
corresponding to an occurrence of one such segment in every 8 kb of
a transcript.

Nonetheless, to provide a means to resolve such unlikely situations,
we explored the use of other photoactivatable nucleosides, such as
6SG to identify IGF2BP1 binding sites. We found a good correlation
between the sequence reads obtained from a given gene with 4SU and
6SG (Pearson correlation coefficient 0.65, Table S1). Moreover, the se-
quence read clusters, representing individual binding sites, overlapped
strongly: 59% out of the 47,050 6SG clusters were also identified with
4SU, despite of the fact that the environment of IGF2BP1 binding sites
was strongly depleted for guanosine. Interestingly, the sequence reads
obtained after 6SG crosslinking were enriched for G to A transitions,
pointing to a structural change in 6SG analogous to the situation in
PAR-CLIP with 4SU. Because 6SG appears to have lower crosslinking
efficiency compared to 4SU, we recommend to first use 4SU and then
resort to 6SG when the data indicates that the sites of interest are
located in sequence contexts devoid of uridines. It is important to
point out that neither of these photoactivatable nucleotides appears to
be toxic under our recommended conditions.

2.3.3 miRNA target identification

When applying PAR-CLIP to isolate miRNA-binding sites, we were
surprised to find nearly 50% of the binding sites located in the CDS.
However, miRNA inhibition experiments showed that miRNA binding
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at these sites only caused small, yet significant mRNA destabilization.
In spite of the difference in their efficiency of triggering mRNA degra-
dation, CDS and 3’UTR sites appear to have similar sequence and
structure features. The sequence bias around CDS sites is associated
with an increased incidence of rare codon usage, which could in prin-
ciple reduce translational rate, thereby providing an opportunity for
transient miRNP binding and regulation. Similar observations were
made previously using artificially designed reporter systems [64].

The use of the knowledge of the crosslinking site allowed us to
narrowly define the miRNA-binding regions for matching the site
with the most likely miRNA endogenously co-expressed with its
targets, and to assess non-canonical miRNA-binding modes. We were
able to explain the majority of PAR-CLIP binding sites by conventional
miRNA-mRNA seed-pairing interactions [61], yet found that about
6% of miRNA target sites might best be explained by accepting bulges
or mismatches in the seed pairing region, similar to the interaction
between let-7 and its target lin-41 [182] and those recently observed in
biochemical and structural studies of T. thermophilus Ago protein [186,
187].

2.3.4 The mRNA ribonucleoprotein (mRNP) code and its impact on gene
regulation

We were able to identify all of the crosslinkable RNA-binding sites
present in about 9,000 of the top-expressed mRNA in HEK293 cells
representing approximately 95% of the total mRNA molecules of a
cell. One of the surprising outcomes of our study was that each of the
examined RBPs or miRNPs bound and presumably controlled between
5 and 30% of the more than 20,000 transcripts detectable in HEK293

cells. These results demonstrate that a transcript will generally be
bound and regulated by multiple RBPs, the combination of which
will determine the final gene-specific regulatory outcome. Exhaustive
high-resolution mapping of RBP- and RNP-target-RNA interactions is
critical, because it may lead to the discovery of specific combination
of sites (or modules) that may control distinct cellular processes and
pathways. To gain further insights into the dynamics of mRNPs it will
be important to also map the sites of RNA-binding factors, such as
helicases, nucleases or polymerases, where the specificity determinants
are poorly understood. The precise identification of RNA interaction
sites will be extremely useful for interrogating the rapidly emerging
data on genetic variation between individuals and whether some of
these variations possibly contribute to complex genetic diseases by
affecting post-transcriptional gene regulation.
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2.4 methods

2.4.1 PAR-CLIP

Human embryonic kidney (HEK) 293 cells stably expressing FLAG/HA-
tagged IGF2BP1-3, QKI, PUM2, AGO1-4, and TNRC6A-C [106] were
grown overnight in medium supplemented with 100 µM 4SU. Living
cells were irradiated with 365 nm UV light. Cells were harvested
and lysed in NP40 lysis buffer. The cleared cell lysates were treated
with RNase T1. FLAG/HA-tagged proteins were immunoprecipitated
with anti-FLAG antibodies bound to Protein G Dynabeads. RNase
T1 was added to the immunoprecipitate. Beads were washed and
resuspended in dephosphorylation buffer. Calf intestinal alkaline
phosphatase was added to dephosphorylate the RNA. Beads were
washed and incubated with polynucleotide kinase and radioactive
ATP to label the crosslinked RNA. The protein-RNA complexes were
separated by SDS-PAGE and electroeluted. The electroeluate was
proteinase K digested. The RNA was recovered by acidic phenol/chlo-
roform extraction and ethanol precipitation. The recovered RNA was
turned into a cDNA library as described [66] and Solexa sequenced.
The extracted sequence reads were mapped to the human genome
(hg18), human mRNAs and miRNA precursor regions. For a more
detailed description of the methods, see the Supplementary Material.

2.4.2 Oligonucleotide transfection and mRNA array analysis

siRNA, miRNA and 2’-O-methyl oligonucleotide transfections of
HEK293 T-REx Flp-In cells were performed in 6-well format using
Lipofectamine RNAiMAX (Invitrogen) as described by the manufac-
turer. Total RNA of transfected cells was extracted using TRIZOL
following the instructions of the manufacturer. The RNA was further
purified using the RNeasy purification kit (Qiagen). 2 µg of purified
total RNA was used in the One-Cycle Eukaryotic Target Labeling
Assay (Affymetrix) according to manufacturer’s protocol. Biotinylated
cRNA targets were cleaned up, fragmented, and hybridized to Human
Genome U133 Plus 2.0 Array (Affymetrix). For details of the analysis,
see Bioinformatics section in the Supplementary Material.

2.4.3 Generation of Digital Gene Expression (DGEX) libraries

1 µg each of total RNA from HEK293 cells inducibly expressing tagged
IGF2BP1 before and after induction was converted into cDNA libraries
for expression profiling by sequencing using the DpnII DGE kit (Illu-
mina) according to instructions of the manufacturer. For details of the
analysis, see Bioinformatics section in the Supplementary Material.
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abstract

The stability, localization and translation rate of mRNAs are regu-
lated by a multitude of RNA-binding proteins (RBPs) that find their
targets directly or with the help of guide RNAs. Among the exper-
imental methods for mapping RBP binding sites, crosslinking and
immunoprecipitation (CLIP) coupled with deep sequencing provides
transcriptome-wide coverage as well as high resolution. However,
partly due to their vast volume, the data that were so far generated
in CLIP experiments have not been put in a form that enables fast
and interactive exploration of binding sites. To address this need,
we have developed the CLIPZ database and analysis environment.
Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth
factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2,
Quaking, and Polypyrimidine tract binding protein can be visualized
at the level of the genome and of individual transcripts. Individual
users can upload their own sequence data sets while being able to
limit the access to these data to specific users, and analyses of the
public and private data sets can be performed interactively. CLIPZ,
available at http://www.clipz.unibas.ch aims to provide an open-
access repository of information for post-transcriptional regulatory
elements.

3.1 introduction

Almost all cellular RNAs interact with RNA-binding proteins (RBPs)
to form ribonucleoprotein complexes (RNPs). The overall composition
and precise architecture of these RNPs undergo dynamic remodel-
ing in response to signals and cellular state. Initial annotation [79]
indicated that the human genome contains approximately 300 genes
that encode proteins with an RNA-recognition motif (RRM). This is
only one of the over 40 distinct protein domains known to contact
RNA. RBP-RNA interactions are highly context dependent and many
RBPs carry out different functions in different cellular compartments.
For instance, the T-cell intracellular antigen 1 (TIA-1) functions as a
splicing factor in the nucleus; it binds to an intronic splice enhancer in
the Fas pre-mRNA leading to the inclusion of the proximal exon [179].
In the cytoplasm, TIA-1 regulates the stability of mature mRNAs: its
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binding to AU-rich elements located in the 3’ untranslated regions
(3’UTRs) of mRNAs (such as that of transforming growth factor beta,
TGFβ) attracts the mRNA degradation machinery. The same AU-rich
element in the TGFβ 3’UTR when bound by the HuR RBP leads to
mRNA stabilization [179]. Thus, precise knowledge of spatio-temporal
associations between RBPs and mRNAs under various conditions is
key to understanding how the level, translation rate and cellular lo-
calization of those mRNAs are regulated during the life time of a
cell.

With some exceptions, such as the knowledge-based potential func-
tion designed by Zheng et al. [200] to predict the specificity and relative
binding energy of RNA-binding proteins, computational models de-
scribing the binding specificity of RBPs (by contrast, for instance, with
transcription factors) are lacking [7]. Recently however, experimental
methods for high-throughput and high-resolution identification of
RBP binding sites have been developed. They rely on crosslinking
and immunoprecipitation (CLIP) of RBPs of interest [176] followed by
deep sequencing [25, 67, 96]. In a particular variant of CLIP, termed
PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking
and Immunoprecipitation), the incorporation of photo-reactive nu-
cleotides in mRNAs prior to crosslinking induces a specific mutational
signature in the sequenced reads relative to the reference genome,
thereby enabling the separation of crosslinked binding sites from
other RNA fragments that are captured non-specifically during the
experiment [67]. Many questions concerning the function, specificity
and modulation of activity of RBPs can be addressed through analyses
of corresponding PAR-CLIP data sets. For example, the sites with the
highest number of crosslinking events (indicated by T-to-C mutations
in the sequenced reads) can be analyzed to uncover the sequence
specificity of the RBP and to identify cellular pathways that are tar-
geted by the RBP in a concerted manner. Moreover, with PAR-CLIP
data available for multiple RBPs, one can begin to identify regions of
crosstalks between multiple RBPs on individual mRNAs.

Here we describe a database of binding sites that we constructed
based on CLIP data for various proteins that are known to regu-
late mRNA splicing (Polypyrimidine tract binding protein), stability
and/or translation rate (Quaking, Pumilio2, Argonautes 1-4, TNRC6

A-C, Insulin-like growth factor II mRNA-binding proteins 1-3). The
data is presented through a web interface that supports not only visu-
alizations but also further analyses of RBP binding sites. The platform
also allows registered users to submit for functional annotation short
reads resulting from CLIP, small RNA sequencing and mRNA se-
quencing experiments. Once uploaded, these data can be explored
through various interactive analysis tools that we developed. Due to
its user- and dataset-management system, the platform can support
collaborative projects involving private and public data and multiple
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Figure 8: CLIPZ Data flow. Procedures are further described in the Methods
section.

users. This resource is of great value to researchers that study the
mechanisms regulating mRNA stability and translation.

3.2 materials and methods

3.2.1 Sequence annotation

The computational pipeline underlying the construction of the CLIPZ
database takes as input fasta-formatted files of sequences that were
obtained from CLIP samples through deep sequencing. These se-
quences are submitted to an initial annotation process that attempts to
identify the origin (within the genome and within known transcripts)
of individual sequence reads. The annotation procedure is described
in detail elsewhere [14]. Briefly, it consists of adaptor removal, map-
ping of sequenced reads to the genome and to known transcripts, and
functional annotation of each read based on its best mappings. A
sketch of the data flow is shown in Figure 8.

3.2.1.1 Adaptor removal.

During sample preparation, adaptors are ligated at both 5’ and 3’ ends
of CLIP sequence fragments. Because most of the CLIP data that is
currently available has been generated using the Solexa sequencing
technology [13], our procedure for adaptor removal is specific to this
technology (though other adaptor configurations can easily be taken
into account). The 5’ adaptor serves as a sequencing primer, and we
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expect that only the 3’ adaptor (or part of it) is sequenced. We use an
in-house ends-free local alignment algorithm [77] (parameters: 2 for
match, −3 for mismatch, −5 for gap opening, −2 for gap extension) to
align the 3’ adaptor to the reads. The part of the sequence read that
aligns to the 5’ end of the 3’ adaptor is removed, and if the remainder
of the read is longer than 15 nucleotides, it is retained for further
analysis. Distinct sequences are deposited in the database together
with their copy number in the sample under study.

3.2.1.2 Sequence mapping.

All distinct sequences are mapped to the genome assembly. Currently,
the database contains CLIP samples obtained from human cells, for
which we used the hg18 version of the human genome assembly from
the University of California at Santa Cruz 1, but analyses of mouse
data sets are also supported. Because not all transcripts that have been
sequenced and are present in sequence databases can be mapped to the
genome assembly and because various contaminants can be found in
CLIP samples, we also map the reads to a database of sequences with
known function (ribosomal, transfer, small cytoplasmic, small nuclear
and small nucleolar RNAs, PIWI proteins-associated RNAs, miRNAs,
messenger RNAs, miscellaneous non-coding RNAs obtained from
sequencing projects, bacterial and fungal ribosomal RNAs, genomes
of common bacteria, vector, adaptor, and size marker sequences). The
sources of these sequences are as follows.

• Protein-coding as well as non-coding sequences (mRNA, tRNA,
scRNA, snoRNA, rRNA, snRNA, piRNA, and miscRNA) were
extracted based on the molecule type and feature key fields of the
Genbank records (Genbank release of January 19, 2010).

• Bacterial and fungal sequences (ribosomal RNA and complete
genome sequences of bacterial and fungal species available in
the Nucleotide Database of Genbank) were included in order to
detect contaminations.

• Vector sequences 2 were included for the same purpose.

• miRNAs precursor sequences 3 were included to be able to ana-
lyze data specific to proteins involved in the miRNA-dependent
silencing pathway.

• Miscellaneous non-coding RNAs 4 were included to enable
detection of interactions involving poorly characterized non-
coding RNAs, that have not been categorized yet in Genbank
databases.

1 http://genome.cse.ucsc.edu

2 ftp://ftp.ncbi.nih.gov/pub/UniVec/UniVec

3 ftp://mirbase.org/pub/mirbase/CURRENT

4 http://www.noncode.org

http://genome.cse.ucsc.edu
ftp://ftp.ncbi.nih.gov/pub/UniVec/UniVec
ftp://mirbase.org/pub/mirbase/CURRENT
http://www.noncode.org
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• Human tRNAs 5

• Mouse tRNAs 6 were included because these resources provide
extensive annotations of tRNAs.

• Repeat Masker annotations of the genome provided by the
University of California at Santa Cruz 7 were used to detect
repeat elements.

To align sequence reads to target sequences, we use the Oligomap
algorithm [14] that exhaustively reports the mappings with 0 or 1

error (mismatch, insertion or deletion). The Oligomap software can
be downloaded from http://www.mirz.unibas.ch/software.php. In
principle, we take into account all the possible loci for a given sequence
read and we assume that the read originated from any of these loci
with equal probability. Based on the GMAP [193] mappings of mRNAs
to genome, we determine whether a genome-mapped read falls inside
an intronic or exonic region. Based on the coding region annotation of
transcripts in Genbank, we determine whether the exonic sequence
reads originate from the 5’UTR, CDS or 3’UTR region of individual
transcripts. Sequence reads that map to regions with alternative
splicing are assigned fractional numbers that denote the proportion of
transcripts in which the region appeared in a particular section of the
transcript.

3.2.1.3 Sequence annotation.

Whenever an extracted sequence read maps to one or more known
sequence(s) of the same functional category, that functional category is
readily transferred to the sequence read. There are however, sequence
reads that map equally well to known sequences of different functional
categories (e.g. tRNA, rRNA, mRNA and repeat). In these cases we
assign a functional annotation with the following priority scheme
rRNA > tRNA > snRNA > snoRNA > scRNA > miRNA > piRNA
> repeat > miscRNA > mRNA (reflecting roughly the abundance of
various types of sequences in the cell).

3.2.2 Generation of clusters of sequence reads

Initial analysis of PAR-CLIP data indicated that the sequence reads
obtained in individual experiments generally form well-delimited, rel-
atively short (20-40 nucleotides) clusters. When the binding specificity
of the protein was already known, the clusters obtained from PAR-
CLIP data typically contained the sequence motif known to represent
the binding site of the protein [67]. We therefore use a cluster as the

5 http://lowelab.ucsc.edu/GtRNAdb/Hsapi/Hg17-tRNAs.fa

6 http://lowelab.ucsc.edu/GtRNAdb/Mmusc/Mm6-tRNAs.fa

7 http://genome.cse.ucsc.edu

http://www.mirz.unibas.ch/software.php
http://lowelab.ucsc.edu/GtRNAdb/Hsapi/Hg17-tRNAs.fa
http://lowelab.ucsc.edu/GtRNAdb/Mmusc/Mm6-tRNAs.fa
http://genome.cse.ucsc.edu
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central unit for data analysis and visualization. Two sequences are
placed in the same cluster if they overlap by at least one nucleotide
in their genomic or transcript location). We note that in data sets
obtained with other CLIP protocols, the correspondence between clus-
ters that are generated this way and individual RBP binding sites
may not be as clear as it is in PAR-CLIP. As more data generated
with different variants of CLIP becomes available, the definition of
the visualization unit (ideally the RBP binding site) may need to be
revised accordingly. Furthermore, in PAR-CLIP experiments T-to-C
mutations are indicative of crosslinked positions and our analysis has
shown that clusters with the largest number of T-to-C mutations are
most enriched in functional binding sites for the studied RBP. The
number of T-to-C mutations as well as other statistics are therefore
computed for each cluster and made available in the interface. The
user can sort the clusters based on these computed features in order
to extract the targets that are most frequently bound by the RBP of
interest.

3.2.3 Data storage

We use a MySQL 5 database management system to store the results of
the functional annotation process and to support downstream analyses.
The database contains the following types of tables:

• User-Management-related: tables that store information about
the user (name, the group in which he/she is a member, the host
laboratory, etc.)

• Known-Sequence-related: tables that contain information about
transcripts of known function that we obtained from external
sources and used for short read annotation (the sequences them-
selves, genomic loci, NCBI Entrez Gene information when avail-
able, etc.).

• Sample-Data-related: tables that contain information about the
sequences from a submitted sample (e.g. extracted sequence
reads, genomic loci, mapping coordinates within transcripts of
known function, etc.).

• Sequence-Read-Cluster-related: tables that contain information
about clusters of overlapping sequences typically representing
individual binding sites. The cluster information is used in
various visualizations.

In order to maximize the efficiency of processing subsequent queries,
database tables are generated for each individual sample (for the
detailed description of the database schema see the "Help" pages
provided on the web site).
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Figure 9: Architecture of the software underlying the CLIPZ analysis envi-
ronment.

3.2.4 Analysis environment

The software supporting the web-based queries has the following
components (see Figure 9).

3.2.4.1 Web Server

The web server is responsible for the validation of the user inputs
and for rendering the results of various computations. It uses PHP
5 and a Model View Controller (MVC)-Framework that we developed.
It communicates with the application server using a freely available
PHP-Java bridge 8.

3.2.4.2 Application Server

The application server, implemented in Java 1.6, provides functions
that can be accessed by the web server, such as applying the functional
annotation pipeline to an uploaded sample. It is also responsible
for process control, logging the job outputs and reporting the errors
whenever jobs fail. Due to the large volume of typical CLIP data sets,
we employ a PC-Cluster for parallel processing. The job distribution to
the cluster and the handling of conflicts that may result from multiple
parallel-running jobs requesting the same data/resource at the same
time are also handled by the application server.

8 http://php-java-bridge.sourceforge.net/pjb/

http://php-java-bridge.sourceforge.net/pjb/
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3.2.4.3 Client

User-interactivity is provided by various JavaScript libraries such as:

• Dojo 9

• YUI 10

• JQuery 11

We established a Generic Genome Browser [166] server to generate
transcript- or genome-based views of the location of binding sites for
one or more proteins in the data set. Communication between the
JavaScript on the client side and the web server is being established
with a Remote Procedure Call (RPC) System that we developed based
on the JsonRPC 2.0 protocol. This is described at http://groups.

google.com/group/json-rpc/web/json-rpc-1-2-proposal.

3.3 examples of interactive analyses

3.3.1 Visualization of clusters of genome- or transcript-based clusters of
reads

For each sample in the database, the user can browse the clusters of
overlapping sequence reads which in the PAR-CLIP samples typically
correspond to individual RBP binding sites. The clusters can be sorted
by various criteria including the number of T-to-C mutations in all
reads of a cluster, which in the PAR-CLIP experiments is indicative
of the affinity of the protein for the RNA. To distinguish crosslink-
induced mutations from single nucleotide polymorphisms (SNPs) we
incorporated a track that shows the known SNPs, and for identifying
the miRNAs that guide the Argonaute to the target RNA, we incor-
porated a track of predicted miRNA binding sites [46] (see Figure
10).

3.3.2 Transcript and genome browsers

The association of an RBP with a specific site and the downstream
effects of this interaction frequently depend on other regulatory ele-
ments that are present in close vicinity and recruit other regulatory
factors. Through the transcript and genome browsers, one can vi-
sualize the position of binding sites within transcripts, as well as
the spatial relationship between binding sites determined in different
experiments, as shown in Figure 11.

9 http://www.dojotoolkit.org

10 http://developer.yahoo.com/yui

11 http://www.jquery.com

http://groups.google.com/group/json-rpc/web/json-rpc-1-2-proposal
http://groups.google.com/group/json-rpc/web/json-rpc-1-2-proposal
http://www.dojotoolkit.org
http://developer.yahoo.com/yui
http://www.jquery.com
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Figure 10: "Cluster View" of the AGO2/EIF2C PAR-CLIP reads mapping
to the nucleoporin 50kDa (NUP50) gene, also showing single-
nucleotide polymorphisms (SNPs) and predicted miRNA binding
sites (with their corresponding probabilities given by the ElMMo
model [46]) in the neighborhood of the RBP binding site.

3.3.2.1 Genome/Known Sequence Super Clustering

Many questions arising in the context of analyzing RBP binding sites
can be phrased in terms of the spatial relationship between binding
sites obtained in different experiments. For example, one would like to
know whether experimental results for one protein are reproducible,
in which case we expect that the sets of sites obtained in different
experiments are largely identical. Alternatively, one may like to find
out whether two proteins frequently compete for sites, in which case
we would expect that the sites are occupied by one of the proteins in
one condition and by the other protein in a different condition. The
super-clustering tool enables the user to uncover such relationships.
The visualizations that can be performed are very similar to those
described for clusters of a single RBP but they operate on super-
clusters that are built through single-linkage clustering of clusters
obtained in different experiments and are either overlapping or at a
specified maximum distance from each other. The user may define
complex operations between sites obtained in different experiments
using logical operators such as (OR, AND, NOT).
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Figure 11: "Transcript View" of the location of AGO2/EIF2C CLIP reads
along the transcript with Genbank accession NM_182649, which
is the human proliferating cell nuclear antigen (PCNA) transcript
variant 2. The coding region (CDS), 5’ and 3’ UTR regions are
represented as turquoise-colored boxes. The density of reads from
the selected samples (AGO2/EIF2C CLIP performed in miR-7-
transfected HEK293 cells and IGF2BP1 CLIP in HEK293 cells)
along the entire transcript is shown in blue. The user can select
transcript regions and visualize the detailed alignment of reads to
these regions.
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Figure 12: The Search tool can be used to retrieve transcripts by Genbank
accession number, gene name or symbol. Binding sites in the
transcript of interest are then shown through the "Transcript view".

3.3.2.2 Search tool

Another common question is whether any binding sites are known
for specific transcripts or genes that a user may be studying. To be
able to answer this question we implemented a search tool that allows
the user to retrieve from the database a gene name or symbol, select
an accession number associated with it and access the binding site
information associated with the transcript in our database (see Figure
12).
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3.3.2.3 miRNA-specific tools

Because the Argonaute/EIF2C proteins that are part of the RNA-
induced silencing complex have been a major focus of the CLIP studies
performed so far, we integrated in our server a set of tools that enable
the user to explore the identity, abundance and predicted targets of
the miRNAs present that were isolated in the CLIP samples. These
tools have been described extensively in [71].

3.3.2.4 Motif enrichment tool

Finally, one of the main reasons for performing CLIP studies is to
determine the sequence specificity of a protein of interest. How a
multi-domain RBP contacts RNAs is a challenging question that most
likely requires complex computational as well as experimental analy-
ses. However, to provide some preliminary insights we implemented
a tool that identifies sequence motifs (defined as n-mers) that are
over-represented in an input file (which could contain for instance the
most abundant 1000 clusters obtained in an experiment) compared
to randomized sequences with the same mono/di-nucleotide com-
position. We have previously used this tool to show that the motifs
that are most over-represented in the clusters from Argonaute/EIF2C
PAR-CLIP experiments correspond to the reverse complements of the
5’ end ("seed" region) of the most abundant miRNAs in the cell [67].

3.4 discussion

Deciphering the post-transcriptional regulatory code that is imple-
mented by regulatory RNAs and RBPs is a problem of great inter-
est [176, 87, 48, 25, 198, 67, 96]. The bottleneck in characterizing RBP
binding sites is no longer the availability of an experimental approach,
but rather the efficient analysis of the large volumes of data that result
from such experiments. Here we present a software system that we
developed to analyze data resulting from CLIP experiments. With
this system we constructed a database of RBP binding sites that were
determined through CLIP and deep sequencing. Our system pro-
vides several views of the data, from the level of sequence reads to
that of a whole genome browser. Transcript regions with the highest
abundance in the CLIP data or that exhibit the highest number of
crosslinking events can be easily extracted for further analyses. Both
the database and the analysis environment can be easily extended.
Registered users can expand the database by submitting their own
sequence data sets, the repertoire of organisms can be expanded to
include additional species for which a genome assembly is available,
and the genome assemblies and transcript databases that are used
in the analysis pipeline can be updated as necessary. In the future,
we will continue to develop the platform in order to accommodate
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developments in the sequencing technologies. We expect for instance
that the increase in sample size and sequence read length will require
the use of heuristic algorithms for mapping short reads to the genome.
Such algorithms are in fact already available [117, 118, 107, 192] and
will only require one to write adapter programs to interface these
programs with the database that stores the alignments. Thus, CLIPZ
can eliminate many bottlenecks in the computational analysis of CLIP
data and can form the basis for a repository of binding site data for
RNA-binding proteins.
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abstract

Crosslinking and immunoprecipitation (CLIP) is increasingly used
to map transcriptome-wide binding sites of RNA-binding proteins
(RBPs). To accurately infer RBP binding sites, we developed a method
for CLIP data analysis and applied it to compare 254 nm CLIP with
PAR-CLIP, which involves crosslinking of photoreactive nucleotides
with 365 nm UV light. We found only small differences in the accuracy
of these methods in identifying binding sites for HuR, a protein with
a low-complexity (U-rich) binding motif and for Argonaute 2, which
has a complex binding specificity. We further show that crosslink-
induced mutations lead to single-nucleotide resolution not only for
PAR-CLIP but also for CLIP. Our results confirm the expectation of the
original CLIP publications that RNA-binding proteins do not protect
sufficiently their sites under the denaturing conditions of the lysis
buffer used during the CLIP procedure, and we show that extensive
digestion with sequence-specific ribonucleases strongly biases the set
of recovered binding sites. We finally show that this bias can be
substantially reduced by milder nuclease digestion conditions.

4.1 introduction

RNA-binding proteins (RBPs) are involved in a wide range of pro-
cesses, from developmental transitions to stress response. Transcriptome-
wide identification of RBP binding sites with high-throughput tech-
niques have shown that one regulator typically has hundreds/thou-
sands of targets [19, 37, 106, 137] which tend to be functionally related
[85]. Because RBP binding site occupancy depends on the availability
of and the crosstalks between regulators [16, 82, 92, 83], substantial
efforts are required to characterize their context-dependent biological
function.

CLIP, the method of choice for RBP binding site identification,
involves crosslinking the protein of interest to target RNAs, immuno-
precipitation of the RNA-bound protein and sequencing of the RBP-
bound RNA fragments [176]. A few variants, known as HITS-CLIP
[120], PAR-CLIP [67] and iCLIP [96], have been proposed. To deter-
mine whether differences between protocols are reflected in the set
of identified target sites, we started from PAR-CLIP and modified

53
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individually those steps that are most likely to bias identification of
binding sites: crosslinking and ribonuclease digestion. We focused
on two proteins whose binding specificity is well understood and
whose binding motifs strongly differ in complexity. The first is HuR,
a member of the embryonic lethal abnormal vision (ELAV) family of
proteins [6] which binds low-complexity U-rich elements [147]. The
second is Argonaute 2 (Ago2 or EIF2C2), a member of the Argonaute
family which is guided by miRNAs to induce target gene silencing (re-
viewed by Ender and Meister [36]). Ago2 has a very complex binding
specificity, defined by the entire set of expressed miRNAs.

We performed duplicate experiments for each variant of the CLIP
protocol and each protein. We assessed the accuracy of a method
both by the reproducibility of results of replicate experiments and
through an independent measure. For HuR, we used as independent
measures the affinity of the isolated sites for HuR, estimated based on
the RNAcompete data [147], and the change in transcript expression
after HuR knockdown. For Ago2, the independent measure was the
proportion of sites that are complementary to abundantly expressed
miRNAs [106, 67]. In our presentation of the results we will refer
to the method that employs 4-thiouridine and crosslinking with 365

nm UV light as PAR-CLIP [67], and to the method that does not use
photoreactive nucleotides and crosslinks with 254 nm UV as CLIP.

4.2 results

4.2.1 Both CLIP and PAR-CLIP reproducibly identify high affinity binding
sites for HuR

We achieved similar crosslinking efficiencies with CLIP and PAR-CLIP
by varying the energy up to 1.3 fold (Suppl. Fig. 27). We then
identified HuR binding sites in mature mRNAs and computed the
enrichment of reads within each site relative to the mRNA expression
level as described in Methods. Intersection of the 1000 most enriched
sites identified in two replicate experiments yielded 915 sites that
were common between CLIP and 862 between PAR-CLIP replicates.
Among these, the enrichment in reads is highly reproducible (Suppl.
Fig. 28), showing a good correlation (Fig. 13a) with the estimated
affinity of the site (computed by averaging the affinity of all 7-mers
in the site, as described in the Methods). The correlation changed by
less than 0.06 (16%) when we counted only distinct reads as opposed
to all reads associated with a site, indicating that PCR amplification
artifacts during the CLIP procedure were small (Fig. 13a). Contrary
to what one may have expected based on PAR-CLIP crosslinking U
nucleotides, the U-rich HuR binding sites were not more strongly
enriched with PAR-CLIP than with CLIP (Fig. 13).
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4.2.2 Nuclease signature in the CLIP reads

A second important difference between the published CLIP protocols
is that the protein-bound RNAs are fragmented through partial diges-
tion with ribonuclease (RNase) T1/A mix [177, 23], RNase I [188], or
micrococcal nuclease (MNase) [201] in HITS-CLIP and through exten-
sive digestion with RNase T1 in PAR-CLIP [67]. We wondered whether
at nuclease concentrations that are employed in CLIP experiments,
the known sequence specificities of these nucleases are reflected in
the nucleotide composition of identified binding sites. We found that
with extensive T1 digestion, the correlation between the affinity of
individual 7-mers and their enrichment in CLIP binding sites relative
to 3’ untranslated regions in which the sites largely reside (Suppl.
Fig. 31), is very high for 7-mers devoid of G nucleotides but not for
G-containing 7-mers (Fig. 13b-e and Suppl. Fig. 29). The strong
preference of RNase T1 to cleave after G nucleotides [169], apparent
in the very strong G depletion inside the sequenced reads and the G
at the RNA cleavage site (Suppl. Fig. 32a-d), is likely responsible for
this effect.

We then substituted the RNase T1 by MNase, which has a 30-fold
preference for cleaving 5’ of A or T relative to G or C nucleotides
[31] (Suppl. Fig. 32e,f). Although we chose an MNase concentration
that yielded 20-50 nucleotide-long RNA fragments, a size range com-
parable with that obtained with extensive T1 digestion (not shown),
the correlation between 7-mer enrichment and affinity (Fig. 13d) was
significantly higher in the MNase- compared to the T1-treated samples.
The nucleotide composition of the fragments obtained with MNase
was also very different (Suppl. Fig. 32e,f), and 7-mers with no As were
more strongly enriched relative to 7-mers with comparable affinity but
containing at least one A. Replicate MNase-treated samples showed
high reproducibility, suggesting that with two different ribonucleases
we can obtain bona fide, yet quite distinct binding sites (Suppl. Fig. 28).

Finally, we titrated down the concentration of the T1 nuclease from
the value specified in the PAR-CLIP protocol to the point where the
length of the RNA fragments started to increase (from 30-50 to 50-70

nucleotides, data not shown). The sites recovered with PAR-CLIP with
this "mild T1" digestion were only slightly depleted in Gs (Fig. 13e
and Suppl. Fig. 29) and the correlation between 7-mer enrichment
and affinity (Fig. 13) was higher relative to samples prepared with
extensive T1 digestion.

4.2.3 Crosslink-diagnostic mutations enable high resolution identification
of RBP binding sites from both CLIP and PAR-CLIP experiments

Consistent with the report of Hafner et al. [67] that the position of
the crosslink is revealed with PAR-CLIP by a T-to-C mutation pre-
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sumably introduced as cDNA synthesis progresses over a crosslinked
4-thiouridine, T-to-C substitutions were 8-10 times more frequent than
any other mutation in our PAR-CLIP data (Suppl. Fig. 30). This is in
stark contrast with the mutational pattern of mRNA-seq reads that we
obtained from cells that were either treated with 4-thiouridine or not
(Suppl. Fig. 30). In agreement with reports that sequencing through
254 nm UV-crosslinked sites of RBP-RNA interaction induces muta-
tions at the crosslinked position [55], our CLIP data sets also exhibited
a mutational bias, distinct from that of PAR-CLIP; T substitutions (to
any of A, C, G nucleotides) and deletions were the most frequent
mutations in HuR CLIP reads, followed by insertions to either side of
T nucleotides (Suppl. Fig. 30). To determine whether these mutations
enable high resolution identification of binding sites similar to T-to-C
mutations in PAR-CLIP, we extracted 41-nt-long regions centered on
the position with the most abundant crosslink-diagnostic mutation
(T-to-C in PAR-CLIP, T mutation or deletion in CLIP) in each site and
determined the relative location of the ten 7-mers with the highest
affinity for HuR [147] in these regions (Fig. 15, Suppl. Fig. 33). We
found that the centers of the high affinity 7-mers, probably positioned
between the RNA recognition motifs 1 and 2 of HuR [184], are located
at very specific distances relative to the most frequently mutated posi-
tions. For example in CLIP, the crosslink occurs most frequently at the
first T after the non-T base of the TTTATTT, TTTCTTT and TTATTTT
7-mers. The location of the crosslink relative to the TTTTTTT 7-mer is
less precise, most likely due to the fact that the protein can be captured
at different positions on homogeneous T stretches. Interestingly, the
TTTTTTT 7-mer appears more frequently downstream of the position
with the most abundant mutations in CLIP compared to PAR-CLIP
(52.5% vs. 41.8%, averages between replicate experiments).

The enrichment of reads in a binding site relative to the expression
level of the mRNA in which the site resides is a natural measure of
the "quality" of the site (its affinity for the RBP). It has been argued
however [67], that the number of crosslink-diagnostic mutations in
a putative site is also indicative of the site’s "quality", bypassing the
need to estimate transcript expression levels to compute enrichment.
Consistently, we found that for both CLIP and PAR-CLIP the predicted
affinities were comparable between sites extracted based on their
enrichment in reads or based on the density of crosslink-diagnostic
mutations (defined above) (Fig. 14).

A summary of the HuR binding sites that are obtained with different
variants of the CLIP protocol is shown in Supplementary Table 1 and
the datasets can be further explored through the CLIPZ server that is
developed by Khorshid et al. [90].
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4.2.4 Functional validation of CLIPed targets of HuR

As a final test of accuracy of various CLIP methods in identifying
functional HuR binding sites, we monitored the change in expression
of CLIPed targets upon siRNA knockdown of HuR. Because ELAV
family members predominantly stabilize and promote translation of
target mRNAs [114, 38], we expected that HuR knockdown results in
reduced expression of HuR targets. We estimated transcript expression
levels with mRNA-seq and used as reference data from cells treated
with a mock siRNA directed against the green fluorescent protein
(GFP), and data from untreated cells. We found that HuR targets
are enriched 1.5-2 fold (Suppl. Fig. 34a) relative to all transcripts
within a given starting expression range that are destabilized by HuR
knockdown (see also Methods). Interestingly, only for sites whose
enrichment was inferred from samples treated with MNase or mild
T1 does the strength of destabilization increase with increasing site
enrichment, further suggesting that the set of binding sites recovered
under these conditions is less biased (Suppl. Fig. 34b).

4.2.5 High-resolution identification of miRNA target sites with CLIP and
PAR-CLIP

We further investigated whether the various CLIP methods are equally
efficient in identifying more complex RBP binding sites as those of
Argonaute proteins, which are guided to their targets by small RNAs.
Like HuR, Ago2 can be efficiently crosslinked with either 254 nm UV,
or with 365 nm UV after 4-thiouridine treatment (Suppl. Fig. 27).
Various CLIP variants also yield reproducible sets of Ago2 targets
(Suppl. Fig. 36a-c), reproducibility being highest among replicates
that were obtained using the same method and then among samples
that were prepared with the same nuclease treatment (proportion of
sites in common between two samples in the range of 36-65% and
28-54%, respectively among the top 1000 sites, see Suppl. Fig. 36d).
Because many studies showed that complementarity to the "seed"
region (positions 2-8 from the 5’ end) of miRNAs is most predictive
for changes in mRNA levels in response to changes in miRNA concen-
tration (see e.g. Lewis et al. [116]), we used the proportion of binding
sites that are complementary to the seed of the most abundantly ex-
pressed miRNAs (for details see Methods) as an independent measure
of the quality of the target set. We found that this proportion was
highest for the sites with the strongest enrichment in reads (Fig. 16),
and that ranking sites based on the density of crosslink-diagnostic
mutations yielded comparable results (Fig. 16). PAR-CLIP, especially
in conjunction with MNase treatment, yielded a higher proportion of
miRNA seed-complementary sites than CLIP.
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Following our results with HuR and previous work [162, 75] we
used T substitutions and deletions as crosslink-diagnostic mutations in
Ago2-CLIP. As shown in Fig. 17 (as well as Suppl. Figs. 38 and 39), we
found that 254 nm UV-induced mutations occur immediately upstream
of the miRNA seed-complementary region, similar to what has been
observed with PAR-CLIP [67]. This is not due to a specific nucleotide
composition bias in the immediate vicinity of the seed matches (Suppl.
Fig. 38h). As T mutations are less abundant in Ago2-CLIP compared to
HuR-CLIP (Suppl. Fig. 30) we investigated whether other nucleotides
are also targeted with CLIP, indicating the position of the crosslink. We
extracted the top 1000 most enriched Ago2 sites, located the position
within each site where most mutations of a particular type occurred,
and determined the locations of miRNA seed matches with respect
to this position. We found that deletions (of any of the 4 nucleotides)
and to a lesser extent mutations of nucleotides other than T also occur
predominantly immediately upstream of miRNA seed matches (Suppl.
Fig. 39). In contrast, insertions were located 7-10 nucleotides upstream
of the miRNA seed match (Suppl. Fig. 38g).

4.2.6 Nuclease signature in the Ago2 CLIP samples

Because measurements of affinities of miRNA-containing Ago2 for
binding sites are not available, we analyzed instead the nucleotide
composition of the top 1000 Ago2 target sites from different samples.
We found that the frequency of guanosines is lower in CLIP and PAR-
CLIP samples prepared with RNase T1, while MNase-treated samples
show a clear, though less marked depletion in A’s and T’s. These
results are consistent with the MNase preference for cleavage 5’ of
these nucleotides and the milder digestion conditions (Suppl. Fig. 40).

4.3 discussion

CLIP approaches combined with next generation sequencing have
been successfully employed to identify targets of RBPs. However,
because no study investigated the relationship between the affinity of
the RBP for individual binding sites and the number or enrichment of
reads obtained from these sites in CLIP experiments, little is known
about how different CLIP protocols compare in the identification of
RBP binding sites.

We found that for the two proteins that we studied, HuR and Ago2,
comparable RNA yields can be obtained with CLIP and PAR-CLIP by
varying the amount of energy applied for crosslinking by a factor of 1.3.
The relative RNA yields were however, protein-dependent: for HuR we
obtained a ∼5-fold higher amount of RNA when we crosslinked with
254 nm UV light, while for Ago2 4-thiouridine-mediated crosslinking
at 365 nm yielded ∼10-fold more RNA. Hafner et al. [67] made a
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different comparison, showing that at the same energy employed for
crosslinking, RNA recovery after crosslinking of IGF2BP1 is 100-1000

fold higher when 4-thiouridine is used. Employing the RNAcompete
dataset of estimated affinities of HuR for all possible 7-mers [147],
we found that for this U-rich element binding protein, 254 nm UV
crosslinking yields a higher correlation between the affinity of sites and
their enrichment in CLIP. On the other hand, for Ago2, a protein whose
targeting specificity is given by guiding miRNAs, PAR-CLIP yields
miRNA profiles that resemble closer the levels of mature miRNAs
in total RNA and mRNA binding sites with higher enrichment in
miRNA seed-complementary motifs compared to CLIP. Contrary to
the expectation that sites that are isolated with PAR-CLIP are enriched
in U nucleotides compared to sites that are isolated with CLIP, we
found that the U-rich binding sites of HuR are most efficiently isolated
with CLIP. We believe that this is due to multiple U’s in a binding
site being available for crosslinking at 254 nm, whereas PAR-CLIP
restricts the possibility of crosslinking to the photoreactive nucleotide
analog. At a photoactivatable nucleoside incorporation rate of 1 in
40 (estimated in Hafner et al. [67]) it is unlikely that a single HuR
binding site contains more than 1 nucleotide that can be crosslinked
with PAR-CLIP.

4.3.1 Identification of binding sites, read enrichment and diagnostic muta-
tions

One of the main motivations behind CLIP approaches to RBP binding
site identification is that they hold the promise of very high (site/nu-
cleotide) resolution. This is important for inferring the sequence-
specificity of a protein, or the determinants of specificity beyond
the sequence of the binding site. If the RBP protected its binding
sites from nuclease cleavage under the conditions of the experiment,
complete digestion of all accessible RNA regions followed by immuno-
precipitation would indeed lead to unbiased isolation of binding sites.
Practically, the protection conferred by RBPs is likely insufficient (or
even absent under strong denaturing conditions), leading to isolation
of RNA fragments that are too short to be assigned with any degree
of confidence to particular mRNAs when the nuclease digestion is
extensive.

Two approaches were previously taken to circumvent this prob-
lem. In Hafner et al. [67] RNA digestion, though extensive, was
performed with the T1 ribonuclease which cleaves very specifically 3’
of G nucleotides, still allowing isolation of large numbers of functional
binding sites for the proteins covered in that study. The drawback
of this approach is that the very high nuclease specificity combined
with the incomplete protection that the RBP provides to its sites leads
to depletion of binding sites that contain G nucleotides within or in
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their immediate vicinity. Therefore, obtaining accurate CLIP data
for proteins with G-rich binding sites or that are composed of multi-
ple domains with very different sequence specificity will be difficult.
The second approach, typically taken by HITS-CLIP [120] is to use
more controlled nuclease activity. The data from samples with mild
MNase and RNase T1 treatment that we presented here indicate that
combined with appropriate computational analysis, this approach en-
ables identification of high-affinity binding sites with high resolution
and minimal nuclease-specific bias. Careful titration of the nuclease
amount is in this case recommended because the interplay between
nuclease specificity and concentration, and the nucleotide composition
of the regions in which the binding sites for the protein of interest
reside will determine what binding sites can be isolated. One of the
issues to be dealt with in this approach is separation of binding site-
derived reads from non-specifically isolated fragments of abundant
RNAs (background). Chi et al. [23] estimated the background based
on microarray measurements of mRNA expression and simulation.
Here we use instead mRNA-seq data. Correcting for the abundance
of individual mRNA species in total RNA had very little effect on
the average affinity of the top-ranking sites from extensively digested
samples, but led to increased average affinity of binding sites from
samples prepared with milder digestion conditions. The improvement
was small in the case of HuR sites (Fig. 14), while for Ago2 there was
a 10% increase in the fraction of sites (among the top 1000) with a
seed match (Fig. 16) relative to the ranking based on coverage by CLIP
reads alone. Thus, although simple ranking by the coverage by reads
or density of crosslink-diagnostic mutations enables identification of
binding sites, we do recommend estimating the mRNA expression
level in the cell type of interest with a method such as mRNA-seq
and ranking the sites by enrichment in CLIP relative to mRNA-seq.
This correction should be especially important when the antibody
specificity is not very high.

Crosslink-diagnostic mutations are apparent with both CLIP and
PAR-CLIP. In 4-thiouridine-treated samples that were crosslinked with
365 nm UV these mutations were predominantly T-to-C substitutions
in the cDNAs, followed by T deletions and insertions to either side
of T nucleotides. 254 nm UV crosslinking induces mutations that are
2-4 fold less abundant and are more complex. The preferred location
of mutations was immediately upstream of the miRNA seed-binding
region for Ago2 and at the center of high affinity motifs, possibly
positioned between the first and second RNA-recognition domains of
the protein [184], for HuR. The specific location of mutations within
binding sites should be particularly useful for the inference of binding
sites of RBPs with a complex binding specificity that cannot accurately
be described by a weight matrix.
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Based on the studies available to date, two approaches thus appear
most promising for accurate, high resolution identification of binding
sites. One involves partial digestion with a relatively unspecific nucle-
ase, peak finding to locate the binding sites, ideally taking into account
relative abundance of mRNAs, and analysis of mutations to locate the
crosslinked residues. One drawback is that multiple proteins may be
crosslinked to long RNA fragments, which consequently will not mi-
grate at the expected size in the protein gel, and will likely be selected
against in the CLIP procedure. The second approach is to identify the
position of the RBP-RNA crosslink already during sample preparation,
as done in iCLIP [96], a modification of CLIP that attempts to take
advantage of the tendency of reverse transcriptase to prematurely
terminate at crosslinked nucleotides. Because this protocol cannot
be implemented by simply varying a step in PAR-CLIP, we did not
include iCLIP into our study.

Studies of various RBPs with CLIP have already revealed extensive and
complex networks that regulate mRNA processing, traffic, stability
and translation. Because CLIP approaches will likely become common
in the future, we used two proteins already shown to be involved in
crosstalks in post-transcriptional gene regulation to study the effect
of various choices that are made in CLIP protocols on the accuracy of
the data. Our findings will enable the design of improved protocols to
further uncover post-transcriptional regulatory networks.
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4.6 methods

4.6.1 CLIP and PAR-CLIP

HuR was immunoprecipitated with anti-HuR (N-16) antibody from
Santa Cruz Biotechnology; anti-Ago2 antibody (11A9) was a gift from
G. Meister [151]. Crosslinking, immunoprecipitation and library prepa-
ration were carried out according to the protocol established by Hafner
et al. [67] with the following modifications. For crosslinking at 254 nm,
cells were irradiated on ice using Stratalinker 2400 (Stratagene) twice
at 0.1 J/cm2 with 1 min break. In the MNase-treated samples for mild
initial cleavage step to break down large protein complexes we used 50

U/ml (instead of 1000 U/ml, as in the original protocol) of RNase T1

(Fermentas) and the second step of nuclease digestion was carried out
on the beads exactly as in PAR-CLIP protocol, but with MNase (New
England Biolabs, 0.2 gel U/µl final concentration) instead of RNase T1.
Since MNase activity is very sensitive to the buffer conditions, MNase
digestion was carried out in the buffer supplied with the enzyme and
incubated at 37

◦C for 5 min. For mild RNase T1 sample we used 5

U/ml for the initial cleavage in the lysate and 20 U/µl for the second
step on the beads. Library amplification step was performed with
minimal number of PCR cycles that still enabled us to see the DNA
product on the agarose gel in the pilot PCR. With the exception of
Ago2-CLIP B, for which we used 20 cycles, all samples were amplified
for 16-18 PCR cycles.

4.6.2 mRNA-Seq

Total RNA from HEK293 cells was isolated with TRI Reagent (Sigma).
Libraries were prepared using mRNA-Seq Prep Kit (Illumina).

4.6.3 miRNA profiling by qRT-PCR

As suggested by Hafner et al. [67], we used the CLIP data to iden-
tify the miRNAs that were most abundant in the crosslinked Ago2-
containing complexes. This is because UV light crosslinks Ago2 not
only to its targets but also to the guiding miRNAs. The relative
abundance of Ago2-bound miRNAs correlated strongest between
replicate samples, followed by samples that underwent the same nu-
clease treatment (Suppl. Fig. 37a). To further determine whether the
CLIP/PAR-CLIP-based miRNA profiles reflect the miRNA expression
levels in total RNA, we selected nine miRNAs that were relatively
abundant, but still covered a hundred fold range of expression (Suppl.
Fig. 37b) in different samples and we measured their expression in
total RNA by quantitative RT-PCR. Total RNA from HEK293 cells was
isolated with TRI Reagent (Sigma). Reverse transcription of mature
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miRNAs and quantification was performed with TaqMan miRNA
assays (Applied Biosystems) as described in Krol et al. [97] The follow-
ing miRNAs were assayed: let-7a, let-7f, miR-16, miR-19b, miR-27b,
miR-30c, miR-92a, miR-301 and miR-424. qPCR was done using a
Corbett Rotor Gene 3000 system. The threshold cycle (Ct) values were
determined using default threshold settings. We found that although
the abundance of these miRNAs was tightly correlated between repli-
cate CLIP samples, their expression levels in total RNA correlated
best (average correlation over the two replicate experiments of 0.65)
with the levels inferred from the PAR-CLIP samples (Suppl. Fig. 37).
To determine the proportion of Ago2 sites that were complementary
to the most abundantly expressed miRNAs we therefore used the
miRNA profiles determined based on PAR-CLIP MNase experiments.

4.6.4 siRNA transfections

HuR knockdown analysis was performed with siRNA against HuR
(sc-35619, Santa Cruz Biotechnology). In brief, HEK293 cells were
grown in 6-well plates and each well was transfected with 150 pmoles
of siRNAs with 10 µl of Nanofectin siRNA reagent (PAA Laboratories)
as per manufacturer’s instructions. The medium was changed after
5 hours of transfection and the cells were harvested for protein and
RNA analysis after 96 hours of siRNA treatment. The expression of
HuR estimated based on mRNA sequencing, decreased to about 30%
upon siRNA knockdown, consistent with the change we observed on
the Western blot (Suppl. Fig. 35).

4.6.5 Estimation of transcript expression

We used mRNA-annotated reads that mapped uniquely to genic re-
gions of the genome to estimate transcript expression based on mRNA-
seq data. For each gene, we selected from Genbank one representative
transcript per Entrez gene. This was the longest transcript associated
with the gene, preference being given to transcripts that could be
mapped to the genome (hg18 assembly version from the University
of California, Santa Cruz, 1), and among these to transcripts that are
part of the Refseq database of NCBI 2. For mapping sequenced reads
to transcripts and to the genome assembly, and for functional anno-
tation we used a procedure that we described before [14, 67, 90]. In
subsequent analyses we used mRNA-annotated reads that mapped
uniquely to the genome. We defined the transcript expression level as
the density of reads per nucleotide assuming a standard total number
of one million reads in the sample.

1 http://hgdownload.cse.ucsc.edu/downloads.html

2 http://www.ncbi.nlm.nih.gov/refseq/

http://hgdownload.cse.ucsc.edu/downloads.html
http://www.ncbi.nlm.nih.gov/refseq/
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4.6.6 From reads to binding sites

Various analysis methods have been previously proposed for CLIP
data [23, 67], taking advantage of the specific experimental design
and the peculiarities of the data sets. In this study we designed the
following method that we applied uniformly to all data sets in order to
identify RBP binding sites. We aimed to identify reliable CLIPed sites
in transcripts that are expressed at a sufficiently high level for which
we can accurately compute the enrichment relative to total mRNA
expression. Because the proteins that we studied bind regulatory
sites located primarily in 3’ UTRs and because our protocol isolates
cytoplasmic RNA, we computationally analyzed sequences of mature
mRNAs.

We determined the expression of individual transcripts in the to-
tal RNA by mRNA sequencing and we found that the density of
sequenced reads within transcripts is bimodal, with a low density
peak probably corresponding to transcripts of low abundance and
transcripts to which reads were spuriously mapped, and a high den-
sity peak of about 10 reads per kb of transcript per million reads in the
library (not shown). By fitting a two-component gaussian mixture to
the data (using the R package mclust [43]), we isolated the transcripts
with reliable expression as given by mRNA sequencing. We found
that the fitted distributions were very similar between replicate mRNA
sequencing data sets and that the gaussian mixture fitting yielded
between 12’517 and 13’493 expressed transcripts per mRNA-seq data
set, with 11’564 being common to all four mRNA-seq data sets.

Because the CLIP protocols involve size selection of RNA fragments
and we isolated fragments in the range of 20-70 nucleotides from the
gel (sequencing up to 36-38 nucleotides), we chose 40 nucleotides
as the length of the binding regions (peaks) that we set to uncover
from the CLIP data. Although the CLIP tags were of varying lengths,
the average coverage (number of reads that overlap a position) per
nucleotide in peaks showed a clear quantization pattern, particularly
so in the extensively digested T1 samples, with a clear separation
between peaks with many reads and peaks with 1-2 or fewer reads.
To remove these very low-coverage peaks in an automated way, we
again used a gaussian mixture model approach. Since in this case the
component with larger mean generally had a much larger variance
than the component with the smaller mean, we further removed
the small fraction of regions that were classified as belonging to the
component with higher mean yet whose coverage was smaller than
the mean of the component with lower mean. Finally, we selected
binding regions located in transcripts that we considered expressed
and we computed the ratio between their coverage and the average
coverage in a 40 nucleotide window of the corresponding transcript
as given by mRNA-seq.
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To evaluate the robustness of our results we performed similar
analyses on sites that we extracted based on other criteria such as
the enrichment of reads with respect to mRNA expression setting the
counts for each distinct tag to one (to mitigate potential amplification
biases), the density of crosslinking-diagnostic mutations either in a
binding region in a mature mRNA or in the genome, or the density
of reads in a binding region defined on the genome. In the latter
case we tested both sites extracted based only on uniquely-mapped
mRNA-annotated reads as well as sites extracted based on uniquely
and multiply mapped reads that were annotated as mRNA or repeat.
The results are robust with respect to these different approaches to
binding site identification.

The library preparation procedure for most of the currently available
next generation sequencing technologies requires that the cDNAs are
amplified by PCR. This step has the potential to hinder accurate
quantification of read abundance because some sequences are more
efficiently amplified during PCR than others. Various approaches
have been employed to minimize this bias. On the experimental
side, ligation of random barcodes to individual sequences in the
initial sequence pool was employed in previous CLIP studies [120, 96].
On the computational side, collapsing identical reads and counting
only distinct reads was previously tried in the attempt to minimize
amplification bias. Here we did not use random barcoding during
sample processing, but we limited the number of PCR amplification
cycles to 16-18. The correlation between the predicted affinities of
sites and their enrichment, calculated either by counting all reads or
only the distinct reads, was similar, suggesting that amplification bias
was not substantial in our experiments. Nonetheless, improving the
quantification accuracy at the experimental level through methods
like random barcoding should further improve the identification of
high-affinity binding sites.

4.6.7 HuR knockdown analysis

For both the HuR siRNA knockdown and the control (siRNA di-
rected against the green fluorescence protein (GFP)) RNA-seq sample,
transcript expression levels were computed as described above. To
eliminate potential biases due to differences in the shape of the dis-
tributions of expression levels, the two siRNA-treated samples were
quantile-normalized with the normalizeQuantile function of the limma
R package [163] 3. We then binned all expressed transcripts into five
bins of equal size based on their expression in the GFP siRNA-treated
sample and, for each bin separately, we computed the mean and vari-
ance of the log2 fold-change in transcript expression level in the HuR-
siRNA experiment and converted log2 fold-changes into Z-values. We

3 http://www.R-project.org

http://www.R-project.org
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identified the transcripts whose expression was down-regulated in the
HuR siRNA-treated sample relative to the GFP siRNA-treated sample
at varying negative Z-value cutoffs, and determined the enrichment
of HuR targets, defined as the transcripts to which at least one of
the top 5000 peaks mapped, relative to all transcripts within each
expression bin. We used a cut-off Z-value of -1 (resulting to a total
of 1946 down-regulated transcripts) in order to have a sufficiently
large number of down-regulated transcripts in each expression bin
to calculate stable enrichments. We obtained qualitatively similar
results with a more conservative cut-off of -2. In order to determine
whether the fold-change of transcripts was related to the enrichment
of their sites in CLIP reads, we we successively selected, from each
CLIP sample, the top 1000, 1001-2000, 2001-3000, ..., 4001-5000 binding
sites and determined the distribution of fold-changes of the transcripts
from which these subsets of binding sites originated. Additionally, we
determined the fold-changes of all expressed transcripts to which none
of the top 5000 sites mapped. We further established that choosing as
control mRNA-seq data from untreated samples as opposed to GFP
siRNA-treated samples led to similar conclusions (not shown).

4.6.8 Mutation Analysis

To analyze the mutational signature of the CLIP and mRNA-seq
libraries, we considered, for each library, all mRNA-annotated reads
that mapped uniquely to the genome. We determined the frequency
of each possible substitution (from any nucleotide X to any nucleotide
Y), the frequency of deletions in any of the four nucleotides as well as
the frequency of insertions. In the case of insertions, we distinguished
between the identity of the inserted nucleotide and the identities of the
nucleotide to the right and left of the insertion. Mutation frequencies
were defined as the number of occurrences of a particular mutation
divided by the total number of nucleotides in all mRNA-annotated
tags. As the mutation frequency depends on the number of errors that
are allowed for the mapping of the reads to the genome, the mutation
frequencies that we computed are likely underestimates of the true
mutation frequencies and should only be interpreted in relative terms.

4.6.9 Affinities of CLIPed regions

As an estimate of the affinity of HuR to each possible heptameric
sequence, we used the enrichment scores from previously published
RNAcompete experiments [147]. For each heptamer, we averaged the
enrichment scores of the two replicate experiments described in the
study. To determine the affinity of the 40nt-long binding regions, we
averaged the heptamer scores[147] over all subsequences of length
7. The heptamer enrichments in CLIPed regions relative to 3’ UTRs
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were calculated as the ratio of the heptamer frequencies in the top
1000 binding regions and their frequencies in 3’ UTRs, which were
determined by counting all 7-mers in the 3’ UTR of our set of represen-
tative transcripts (see above). To avoid spuriously high enrichments
due to low counts, we first rescaled the counts for each 7-mer in 3’
UTRs such that the total number of 7-mers in 3’ UTRs equalled the
total number of 7-mers in the CLIPed regions. We then added to the
counts in 3’ UTRs as well as in CLIPed regions a pseudocount of 10.
The enrichment of each 7-mer was then defined as the ratio of these
counts in CLIPed regions and in 3’ UTRs.

4.6.10 Extraction of crosslink-centered regions

We started from binding sites identified on the basis of their enrich-
ment, as described above, and tabulated the frequency of various
types of mutations within these binding sites. We then identified
the position of the most abundant mutation of a specific type and
extracted a symmetrical region around this position. We called these
crosslink-centered regions and used them to investigate whether vari-
ous types of sequence motifs occur at a specific position with respect
to the most abundant mutation in the site.

4.6.11 Identification of the ten highest expressed miRNA families

We obtained the number of sequence reads that mapped to each
mature miRNA with the annotation pipeline described in Khorshid
et al. [90] The counts were then aggregated by miRNA families, which
were defined by the subsequence at positions 2-8 of the mature miR-
NAs. The ten most expressed miRNA families for a given experiment
type (Ago2 CLIP, PAR-CLIP and CLIP-MNase) were determined by
averaging counts from the two replicates. Unless specified, the ten
most expressed miRNA families from the Ago CLIP-MNase samples
were used in the analysis of targets.

4.6.12 Fraction of sites with a match to one of the top most expressed
miRNA families

We ranked sites based on various measures: average coverage of
a nucleotide by reads obtained in a CLIP experiment, enrichment
in sequence reads relative to the mRNA expression, and density of
crosslinking-diagnostic mutations. When then took bins of 1000 sites,
that is the sites with ranks 1-1000, 1001-2000, 2001-3000, 3001-4000

and 4001-5000, and we determined the fraction of sites within each
bin that matched the seed of at least one member of the ten most
expressed miRNA families. A seed match was defined as a 7-mer
motif complementary to positions 2-8 of a miRNA. The standard errors
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were computed from the observed fraction q of sites with a match and

the sample size n=1000 using the relation
√
q(1−q)
n .

4.6.13 Location of HuR and miRNA-complementary motifs with respect to
the position of crosslink

We started with the 1000 sites with highest enrichment in reads and
extracted the 41 nucleotide-long sequences centered on the location of
the most frequent crosslink-diagnostic mutation. In the case of HuR,
we determined, separately for each of the ten 7-mers with highest
affinity separately, the frequency of matches relative to the location
of the crosslink. A match was anchored at the center of each 7-mer.
In the case of Ago2, we searched for occurrences of matches to the
seeds of the ten most expressed miRNA families. The intensities in
the Ago2 heatmaps correspond to the number of crosslink-centered
region that match the positions 2-8 of the miRNA families indicated
on the y-axis. In Suppl. Fig. 38, the sequence logo was constructed
based on the 10 nucleotides upstream of matches to the seed of one of
the ten most expressed miRNA families in the 1000 sites with highest
enrichment in reads. In case several seed matches could be found in
the same site, the contribution from the regions upstream of the seed
matches were divided by the number of found seed matches, so that
the contribution of each of the top 1000 sites to the sequence logo was
equal.

4.6.14 Correlation of enrichment in replicate samples

In each sample, we focused on the 1000 sites that were most enriched in
reads relative to the expression of the mRNAs in which they occurred.
We determined the fraction of sites that overlapped by at least 1

nucleotide across replicate experiments. For these sites, we plotted the
enrichment in replicate A vs the enrichment in replicate B.

4.6.15 Reproducibility of miRNA expression

For all 6 Ago CLIP libraries, we combined the reads mapping to
mature miRNAs by miRNA families, defined as sets of miRNAs with
identical 2-8 positions. Scatters shown in Suppl. Fig. 37 show the
reproducibility of the log10 read counts, where each dot corresponds
to a miRNA family expressed in both samples, and the red dots
represent miRNA families that were measured by qPCR. We also
report the correlation coefficient between the log10 read counts across
replicates for all miRNA families expressed in both samples.
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4.6.16 Nucleotide composition of Ago2 sites

For each of the 6 Ago CLIP libraries, we obtained the 1000 sites most
enriched in sequence reads and we determined the proportion of A,
C, G, and T nucleotides in these sites.

4.6.17 Sequence composition around the 5’ and the 3’ ends of reads obtained
in different samples

Position-wise nucleotide frequencies along the sequence reads were
determined based on all the sequence reads that mapped to the top
1000 sites (according to enrichment with respect to mRNA expression).
Sequence logos were drawn using the R package seqLogo [12] 4.

4.6.18 Observed and expected distribution of reads among 5’ UTR, CDS
and 3’ UTR regions of transcripts

Reads were annotated as described in Khorshid et al. [90] Based on
the mappings of reads to transcripts with annotated coding region
we assigned reads to 5’ UTR, CDS and 3’ UTR regions. When a read
had multiple mappings, the count of the read was distributed equally
between the alternative loci. The expected distribution was computed
assuming that the read could have come from any of the 5’ UTR, CDS
or 3’ UTR regions of the transcript(s) to which it mapped, with relative
probabilities given by the relative length of those transcript regions.

4 http://www.bioconductor.org/packages/release/bioc/html/seqLogo.html

http://www.bioconductor.org/packages/release/bioc/html/seqLogo.html
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Figure 13: Pearson correlation coefficients between the enrichment in reads
(relative to mRNA abundance) of HuR binding sites identified by
various CLIP and PAR-CLIP variants and their predicted affinity.
To investigate a potential amplification bias, we show the same
correlations for the top binding sites when only distinct reads
are counted (light grey bars). Correlation between the estimated
affinity of a 7-mer motif and its enrichment in CLIP (b), PAR-CLIP
(c), PAR-CLIP MNase (d) and PAR-CLIP mild T1 (e) binding sites
relative to 3’ UTRs.
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In this section, figures of this study are illustrated
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Figure 14: Distribution of predicted affinities of HuR binding sites that are
isolated based on different measures. These measures were (a)
enrichment relative to the abundance of the mRNA in the total
RNA, (b) coverage of the binding site by reads, and (c) density of
crosslink-diagnostic mutations in a given site. For each measure
and each sample, the sites were sorted and then divided into
non-overlapping bins of 1000 sites, which are shown from the
left-to-right for each individual experiment. Error bars indicate
standard error of the mean
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Figure 15: Location of the ten 7-mers with highest affinity for HuR relative
to the crosslink site. Anchoring each 7mer at its central position,
the frequency of 7-mer matches as a function of the distance to
the crosslink site was determined for CLIP (a), PAR-CLIP (b),
PAR-CLIP MNase (c) and PAR-CLIP mild T1 (d). The position of
the predominant mutation (T deletion or mutation to G/A/C in
CLIP and T-to-C in PAR-CLIP) is indicated by a dashed line.
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Figure 16: Proportion of Ago2 binding sites matching the seed regions of
abundantly expressed miRNAs. For the top 1000, 1001-2000, etc.
Ago2 binding sites identified based on enrichment (a), coverage
by reads (b) or density of crosslink-diagnostic mutations (c), we
determined the fraction of sites that are complementary to one
of the ten most abundant miRNA seed families according to the
miRNA profile of the MNase-treated PAR-CLIP samples. Error
bars represent standard errors on the fraction of binding sites with
seed match.
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Figure 17: Location of miRNA seed-complementary regions relative to the
crosslink-diagnostic mutation. Considering the ten most abun-
dant miRNA families, we determined the location of the miRNA
seed matches relative to the position of the crosslink-diagnostic
mutation (which is in the center of the 41-nucleotide-long region)
in the 1000 most enriched Ago2 sites in CLIP (a), PAR-CLIP (b)
and PAR-CLIP MNase (c).
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abstract

We introduce a biophysical model of miRNA-target interaction and
infer its parameters from Argonaute 2 crosslinking and immunopre-
cipitation data. Combining this model with miRNA transfection data,
we show that a substantial fraction of miRNA target sites are non-
canonical, and that predicted target site affinity correlates well with
the extent of target destabilization. Our model provides a rigorous
biophysical approach to miRNA target identification beyond ad hoc
miRNA-seed based methods.

5.1 main

miRNAs are a large class of regulators of gene expression, post-
transcriptionally modulating the stability of mRNA targets and their
rate of translation into proteins. Although in mammals, 7-8 nu-
cleotides of perfect complementarity between the miRNA 5’ end and
the target mRNA is frequently sufficient to elicit a response (typically
measured in terms of mRNA degradation [10]), many such ’miRNA
seed’-matching sites have no apparent effect. Thus, current target pre-
diction methods additionally make use of conservation and sequence
context information to reduce false positive predictions [44, 46]. ’Non-
canonical’ sites, that are not perfectly complementary to the miRNA
seed region yet are effective in down-regulating gene expression, have
also been described [109, 191, 182, 102]. However, they are considered
rare, and the currently most-accurate prediction methods [10, 2] do
not attempt to identify them.

Recently developed methods for Argonaute protein crosslinking and
immunoprecipitation (Ago-CLIP) [23, 201, 67, 95] enable experimental
identification of miRNA binding sites transcriptome-wide. While this
provides the opportunity to investigate in detail the principles and
consequences of miRNA-mRNA target interaction, Ago-CLIP on its
own does not identify which miRNA guided Ago to each binding site,
or the structure of the miRNA-target site hybrid. Here we introduce a
rigorous biophysical model of miRNA-target interaction and infer its
energy parameters from Ago-CLIP data. The model (which we called
MIRZA and is described in detail in the Methods) includes, besides
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parameters associated with base-pairs and loops, specific miRNA
position-dependent energy parameters that reflect the constraints
imposed by the Argonaute protein on miRNA-mRNA interaction.
Figure 18A illustrates how MIRZA calculates the energy of a possible
miRNA-mRNA target hybrid in terms of its 27 energy parameters.

We infer MIRZA’s parameters by maximizing the ratio R(D) of the
probability to obtain the data set D = (m1,m2, . . . ,mn) of CLIPed
mRNA fragments by immunoprecipitation with Ago as opposed to
randomly sampling from the mRNA pool (see Methods). This involves
calculating a ’target quality’ R(m|µ) that quantifies the total affinity of
each miRNA µ for each fragment m. Specifically, R(m|µ) corresponds
to the enrichment of fragment m among target sites bound by miRNA
µ, relative to m’s abundance in the mRNA pool. Calculating R(m|µ)

involves summing over all possible hybrid structures between m and
µ. The fraction of time fragment m is bound by a RISC loaded with
miRNA µ is proportional to the ’target frequency’ R(m|µ)πµ, which
additionally depends on the fractions πµ of RISC complexes loaded
with miRNA µ. These fractions, which we call miRNA priors, are
inferred for each given CLIP data set. The overall probability of
immunoprecipitating fragment m relative to its background frequency
is then given by R(m) =

∑
µ R(m|µ)πµ, and the likelihood of the entire

data set by the product R(D) =
∏
i R(mi) over all observed fragments

mi.
We first tested the procedure on synthetic data sets containing seed-

matching sites and 3’-compensatory sites similar to those previously
described in the literature [116, 18]. MIRZA successfully inferred
the energy parameters that were used in generating these synthetic
data sets and perfectly predicted which miRNA was associated with
each site (Suppl. Fig. 41). To infer the energy parameters of real
miRNA-target interactions from Ago2-CLIP data, we used all miRNAs
that were expressed in the HEK293 cells in which the experiments
were performed as well as 2988 mRNA regions that were reproducibly
crosslinked in at least 3 of 4 Ago2-CLIP data sets from Kishore et al.
[95] (see Methods). We extracted 51 nucleotide-long regions centered
on the position with the highest number of crosslink-diagnostic muta-
tions (CCRs) and performed 100 parameter optimization runs starting
from randomly chosen initial values for all parameters.

Different optimization runs yielded highly reproducible parameter
sets (Fig. 18B, Suppl. Fig. 42A). Consistent with the known importance
of the seed region, positions 2-7 have the largest positive contribution
to the energy (parameters E2...E7 in Fig. 18B), followed by positions
13− 16 (E13...E16) and 18− 19 (E18,E19). In contrast, hybridization of
position 9 (E9) is strongly disfavoured, as is opening a loop (Eo). Once
a loop is opened, symmetric loops (Esym) and bulges in the miRNA
(Eµ) are clearly favoured over bulges in the mRNA (Em).
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Figure 18: A biophysical model of miRNA-target interaction. A: Sketch
of miRNA-mRNA hybrid illustrating the way MIRZA assigns
a binding energy to the interaction. Nucleotides involved in
base-pairing are indicated in orange, symmetric loops in red,
bulges in the miRNA in blue and dangling ends in cyan. Arrows
point from the independent energy terms to the corresponding
structural elements (base pairs, loop openings and extensions,
see also Methods). B: Summary of energy parameters inferred
from 100 independent optimization runs on the Ago2-CLIP data.
Green boxes show inter-quartile ranges, 5 and 95 percentiles are
indicated by whiskers, black dots indicate median values of fitted
parameters across the runs. The sets of parameters that yielded
the highest and second-highest probability are shown as purple
and cyan dots, respectively. C: Summary of the predicted hybrid
structures; miRNA positions are labeled on the x-axis and colors
indicate the fraction of hybrids in which a given nucleotide is
involved in a base-pair (orange), symmetric loop (red), bulge
(blue) and dangling end (cyan).

With the fitted parameters we can predict which miRNA µ is most
likely to bind each fragment m, as well as the structure of the most
likely hybrid between m and µ. Figure 18C statistically summarizes
the structures of these predicted hybrids. Strikingly, even though no
specific knowledge about miRNA-target interactions went into the
inference of its parameters, our model captures several known struc-
tural features of miRNA-target interaction such as the predominant
binding of the nucleotides in the seed region, the less frequent bind-
ing of position 1, and the possibility of compensatory base-pairing
at the miRNA’s 3’ end. In contrast to general models of RNA-RNA
interaction applied to the same data (Suppl. Fig. 42B), MIRZA makes
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the specific prediction that nucleotides 14− 16 of the miRNA are base-
paired with the target roughly 50% of the time and that positions
18− 19 are bound even more than 60% of the time.

Surprisingly, for more than 26% of the most enriched, reproducibly
CLIPed sites, the most likely hybrid is non-canonical (Suppl. Fig. 42C).
This is especially noteworthy since the more accurate target prediction
methods focus solely on canonical sites, and functional non-canonical
sites are thought to be rare. However, recent experimental studies
hinted that non-canonical sites may be more prevalent, particularly
those in which an mRNA nucleotide is bulged out between positions 5

and 6 [26]. Applying MIRZA to the data of Chi et al. [26], we indeed
find that, depending on the sample, 9− 20% of the predicted miR-124

sites correspond to this particular non-canonical site (Suppl. Table 1).
MIRZA however predicts several other types of non-canonical sites,
e.g. contiguous pairing of only nucleotides 2− 6, in all CLIP data sets.
MIRZA further infers that the fraction of non-canonical sites is

higher for miRNAs with highest abundance in RISC, i.e those with
high prior πµ, and that the fraction of non-canonical sites can be
as high as 60% (Fig. 19A). The inferred abundance πµ correlates
significantly with the expression level of the miRNA (Suppl. Fig. 42D),
suggesting that the target spectrum of a miRNA depends crucially on
its expression level; low expressed miRNAs target mainly high-affinity
canonical sites, while highly expressed miRNAs target large numbers
of non-canonical sites which, on average, have lower affinity (Suppl.
Fig. 42C).

Gene expression analysis shows that the non-canonical sites in-
ferred from the CLIP data are functional, inducing a significant down-
regulation of host transcripts upon miRNA transfection (Fig. 19B
and E, see Methods). Although sites with higher predicted target
quality show stronger down-regulation, even transcripts containing
the weakest non-canonical sites show stronger down-regulation com-
pared to transcripts that simply carry seed matches (Fig. 19B). That
non-canonical sites show significantly more evolutionary conservation
than expected by chance (Suppl. Fig. 43) is further indication of their
functionality.

To compare the accuracy of the target sites identified by MIRZA in
Ago2-CLIP data with those of miRNA target prediction methods, we
analyzed 38 transfection experiments involving 26 different miRNAs
[123, 61, 156, 113, 50], comparing the miRNA-induced fold-changes of
transcripts predicted by these methods (see Methods and Suppl. Figs.
44, 45, 46 and 47). To assess the ability of a method to identify the
most strongly down-regulated targets we sorted its predicted targets
by their score, and calculated the median fold-change of the top n
targets as a function of n (Fig. 19C). To assess the total number of
functional targets predicted by a method we calculated how many
more targets were down-regulated compared to the number expected



5.1 main 79

!3.5 !3.0 !2.5 !2.0 !1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

miRNA Prior !Log base 10"

Fr
ac
tio
n
no
n!
ca
no
ni
ca
l

Seed match
in 3’ UTR

MIRZA-predicted
non-canonical targets

-0.6

-0.4

-0.2

0.0

0.2

lo
g 

   
ex

pr
es

si
on

 fo
ld

 c
ha

ng
e

10

- +
Bottom

33%
Middle
33%

Top
33%

B. 

A. C. 

E. F. 
200 400 600 800

!0.10

!0.08

!0.06

!0.04

!0.02

0.00

Number of top predictions

M
ed
ia
n
lo
g
fo
ld
!
ch
an
ge

All targets

RNAduplex
RNAhybrid

RNA22
Miranda

Pita
Tcs

ElMMo
PicTar

Pct
Starbase

Mirza

100 200 300 400 500

Functional targets

100 200 300 400
!0.06
!0.05
!0.04
!0.03
!0.02
!0.01
0.00
0.01

Number of top predictions

M
ed
ia
n
lo
g
fo
ld
!
ch
an
ge

Non!canonical targets

RNAduplex
RNAhybrid

RNA22
Miranda

Pita
Tcs

ElMMo
PicTar

Pct
Starbase

Mirza

50 100 150 200

Functional non!canonical targets

All data setsD. 

Figure 19: Assessment of the functionality of miRNA targets identified by
MIRZA. A: Scatter plot showing the correlation between the in-
ferred miRNA prior πµ (fraction of all silencing complexes loaded
with miRNA µ) and the fraction of non-canonical target sites for
miRNA µ. The prior is shown on a logarithmic scale. Pearson cor-
relation coefficient R = 0.58 (P-value = 2.1× 10−10).B: Changes in
the expression level of mRNAs containing MIRZA-predicted non-
canonical binding sites upon transfection of the corresponding
miRNAs (expression data from Linsley et al. [123]). Each col-
umn shows the distribution of expression changes upon miRNA
transfection of a set of transcripts, with the box indicating the inter-
quartile range, the black line the median, the red dot the mean,
and the whiskers the 5 and 95 percentiles. The first two columns
correspond to transcripts without and with seed matches for the
transfected miRNA, and the last three columns correspond to tran-
scripts containing a non-canonical, MIRZA-predicted site with a
target quality score among the lowest, middle and highest 33%.
C: Median log-fold change of targets predicted by the MIRZA
(black), TargetScan Pct (red) [44], PicTar (cyan) [63], ElMMo (dark
blue) [45], TargetScan context+ (brown) [49], Pita (yellow) [89],
Miranda (orange) [15], RNA22 (violet) [135], RNAhybrid (light
green), and RNAduplex (dark green) [124], averaged over 38
transfection experiments from 5 studies [123, 61, 156, 113, 50]. The
gray dots show fold-changes of targets obtained by intersecting
Ago-CLIP sites with computationally-predicted sites (Starbase
database, [196]). D: Estimated total number of functional targets
(see Methods) predicted by the different methods averaged over
all transfection experiments. Colors are as in panel C. E: Same
as panel C, but only considering non-canonical targets, whose 3’
UTRs did not contain a canonical match to the ’seed’ region of the
transfected miRNAs. F: Same as in panel D, but considering only
non-canonical targets. Results for individual data sets are shown
in Suppl. Fig. 44, and even more detailed results, on individual
miRNAs, are shown in Suppl. Figs. 45,46 and 47.
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by chance ((Fig. 19D). Although the relative performance of the
different methods varies across data sets, MIRZA’s predictions show
the strongest down-regulation (Fig. 19C) on average, and for the large
majority of individual data sets and miRNAs (Suppl. Figs. 44, 45,
46 and 47). Furthermore, MIRZA matches the best methods that use
evolutionary conservation (i.e. TargetScan Pct and ElMMo) or the
context of the sites (i.e. TargetScan context and Miranda), in the the
total number of functional targets that it predicts (Fig. 19D and Suppl.
Figs. 44, 45, 46 and 47).

Where MIRZA clearly stands out from other methods is in the
prediction of functional non-canonical targets (Fig. 19E, 19F, Suppl.
Figs. 44 and 46), whose number is three-fold higher for MIRZA
relative to any other method. Furthermore, MIRZA’s non-canonical
targets undergo a much stronger down-regulation, correlated with
their MIRZA score (Fig. 19E), and this performance is consistent
across all data sets and individual miRNAs (Suppl. Figs. 44 and 46).
The partial overlap between the sites identified for some miRNAs by
MIRZA and by algorithms based on conservation or context (Suppl.
Fig. 47) suggests that miRNA target prediction could be further
improved by combining MIRZA’s biophysical model with context and
conservation information.

In summary,MIRZA provides a biophysical model of miRNA-target
interaction that enables reliable identification not only of canonical but
also non-canonical binding sites. MIRZA is made available among the
tools provided on our CLIPZ server1.

5.2 online methods

5.2.1 Inference of the MIRZA model

We defined a parametrized biophysical model to assign binding free
energies to all possible miRNA/mRNA hybrid structures and quantify
the binding affinity of different mRNA fragments to the RNA-induced
silencing complex (RISC). Because a CLIP experiment does not pro-
vide accurate binding frequencies for all possible mRNA segments in
the transcriptome but rather gives a set of fragments that are enriched
relative to the expression of their mRNAs, we extract a set of highly en-
riched target sites, m1,m2, . . . ,mn of standardized length M from the
CLIP data, as described in the Methods. We will make the idealization
that the probability of obtaining a particular mRNA fragment m is
proportional to the product of the abundance of the mRNA fragment
and the fraction of time that the fragment is bound to a RISC. The
latter quantity will depend on the binding free energy between the
mRNA and RISC. Let P(m|B) denote the "background" abundance
of mRNA fragment m in the transcriptome. Let P(m|IP) denote the

1 http://www.clipz.unibas.ch

http://www.clipz.unibas.ch
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probability that when a single bound RISC is immunoprecipitated, this
complex will contain a certain mRNA fragment m. This probability
depends not only on the relative abundance of m, but also on the
relative abundances of the different miRNAs that can interact with
the mRNA fragment in RISC. Formally, the probability P(m|IP) can
be written as a sum over the probabilities P(m,µ|IP) that the immuno-
precipitated fragment is bound to a RISC containing mature miRNA
µ. If we denote by πµ the fraction of all RISCs that are bound to some
target site, that are guided by miRNA µ, then we have

P(m|IP) =
∑
µ

P(m,µ|IP) =
∑
µ

P(m|µ)πµ, (5.1)

where P(m|µ) is the probability that a bound RISC containing miRNA
µ is bound to fragment m.

The guide miRNA can form different hybrid structures with an
mRNA fragment. Denoting individual hybrid structures by σ and the
binding free energy of a RISC-embedded miRNA µ with mRNA frag-
ment m in configuration σ by E(σ,µ,m), from the standard Boltzmann
distribution of statistical physics we have that the fraction P(m|µ) of
all RISCs that are loaded with miRNA µ and are bound in configura-
tion σ to mRNA segment m is proportional to eE(σ,µ,m)P(m|B) (note
that we set the parameter β of the Boltzmann distribution to 1, for
notational simplicity, which can be thought of as setting the scale of
the energy parameters). Thus, a RISC complex loaded with miRNA µ

is bound to mRNA fragment m with probability

P(m|µ) =

∑
σ e
E(σ,µ,m)P(m|B)∑

m ′,σ ′ e
E(σ ′,µ,m ′)P(m ′|B)

, (5.2)

where the sum in the numerator is over all possible hybrid structures
σ, and the sum in the denominator is over all possible hybrid struc-
tures and all possible M-nucleotides long mRNA fragments m ′. The
probability of the entire data is

P(D) =

n∏
i=1

P(mi|IP), (5.3)

where the product is over all n mRNA fragments mi that are sampled.
The probability of observing a fragment mi when randomly selecting
fragments from the mRNA pool is just P(mi|B). Thus, the ratio of
probabilities for observing the data under our model as opposed to
random sampling is given by

R(D) =

n∏
i=1

P(mi|IP)
P(mi|B)

=

n∏
i=1

R(mi). (5.4)

The ratios R(mi) quantify to what extent the observation of mi is
explained by miRNA binding, i.e. they give the enrichment of fragment
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mi when immunoprecipitating with RISC relative to its abundance in
the mRNA pool.

Finally, we will make use of the following partition function notation

Z(µ) =
∑
m,σ

eE(σ,µ,m)P(m|B) (5.5)

and

Z(m,µ) =
∑
σ

eE(σ,µ,m). (5.6)

With this notation we have

R(m) =
P(m|IP)
P(m|B)

=
∑
µ

P(m|µ)

P(m|B)
=

∑
µ

R(m|µ)πµ =
∑
µ

Z(m,µ)
Z(µ)

πµ.

(5.7)

5.2.2 Target quality and target frequency

The quantity R(m|µ) represents the ratio of the probability that a
RISC guided by miRNA µ binds to segment m, and the background
probability of isolating segment m, P(m|B). In other words, R(m|µ) is
the enrichment of fragment m among all fragments bound to a RISC
loaded with miRNA µ relative to its background frequency P(m|B).
Because R(m|µ) quantifies the quality of segment m for miRNA µ

(i.e. relative to all other possible target segments) we will refer to it
as the target quality. Note, however, that for a given segment m, the
miRNA with the highest target quality R(m|µ) is not necessarily the
miRNA that most frequently associates with segment m because this
latter quantity depends also on the relative abundances πµ of RISCs
that are loaded with different miRNAs. As can be seen from equation
(5.7), the fraction of time that segment m is bound by miRNA µ and,
consequently, the miRNA that most frequently binds to segment m,
is the one that maximizes the product R(m|µ)πµ. We will refer to
R(m|µ)πµ as the target frequency of miRNA µ for segment m.

5.2.3 Parameterization of the binding energies

Ignoring the possibility that the miRNA or the mRNA fragment form
internal structures (base-pairing within themselves), our model as-
sumes that each possible hybrid structure σ consists of one or more
hybridized pairs of nucleotides that are separated by unpaired nu-
cleotides, forming either symmetrical or asymmetrical loops, depend-
ing on whether the number of unpaired nucleotides in the miRNA
and mRNA are the same or different. A hybrid σ can then be uniquely
represented using the following set of ‘moves’:
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1. an initial hybridized pair (i, j), i.e. position i in the miRNA
hybridized to position j in the mRNA fragment,

2. addition of another hybridized pair immediately following the
current pair,

3. opening a loop,

4. adding a symmetric pair of unhybridized nucleotides to the
loop,

5. adding an unpaired nucleotide in the mRNA fragment,

6. adding an unpaired nucleotide in the miRNA.

To ensure that each possible hybrid can only be realized in one way
using these moves, we make the convention that asymmetric additions
to loops can only be followed by more asymmetric additions of the
same type, or by a hybridized pair. Similarly, symmetric additions can
only be followed by additional symmetric additions, by an asymmetric
addition, or a hybridized pair. Hybrids have to end in a hybridized
pair, and the remaining nucleotides in mRNA fragment and miRNA
are considered "dangling ends".

For each possible hybrid that can be constructed as described above,
we assume that the binding energy can be decomposed into a structural
and a sequence component:

E(σ,m,µ) = Estruc(σ) + Eh(σ,m,µ). (5.8)

The structural contributions to the energy are determined from the
’moves’ and are an energy Eo for every loop that is opened, an energy
Esym for symmetrically extending a loop by 1 base in the miRNA and 1
base in the mRNA, an energy Eµ for asymmetrically extending a loop
by an unpaired base in the miRNA, an energy Em for asymmetrically
extending a loop by an unpaired base in the mRNA fragment, and
an energy Ei when position i in the miRNA is hybridized. The latter
reflects the constraints that the Argonaute protein imposes on the
embedded miRNA, e.g. through the accessibility of the corresponding
position of the miRNA when it is inside RISC. Without loss of general-
ity, dangling bases in mRNA and miRNA per definition are assigned
an energy Ed = 0. Thus, the structural part Estruc(σ) depends on the
number of loops, their sizes, their (a)symmetry, and on the positions in
the miRNA that are hybridized. This dependency on miRNA position
enters through the energies Ei of the hybridized positions.

The sequence-dependent part of the energy consists of a sum of
energy contributions for each hybridized pair, with Eαβ being the
energy contribution for hybridizing nucleotide α in the mRNA to
nucleotide β in the miRNA. If we denote by h the set of miRNA
positions that are hybridized in structure σ, we have

Eh(σ,m,µ) =
∑
i∈h

Emiµi , (5.9)
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withmi the nucleotide occurring at the position in the mRNA segment
hybridized to miRNA position i and µi the nucleotide at position i
of the miRNA. Although in the most general case we would need 16
parameters to describe these contributions, we have only considered
the usual base-pairing interactions A-U/U-A, C-G/G-C and G-U/U-
G, which we described by parameters EAU = EUA, ECG = EGC, and
EUG = EGU. We assign all other combinations a very negative energy,
i.e. −∞, such that they have zero probability of occurrence.

5.2.4 Redundancies

To infer the energy parameters the observed data D, it is important to
determine whether our parameterization contains redundancies, i.e. if
there are global transformations of the parameters that would leave
the overall likelihood ratio R(D) invariant. In the model described
above, a redundancy results from the fact that, for every hybridized
base pair (α,β) there is a sequence-dependent contribution Eαβ and
a structural contribution Ei from the hybridized position i in the
miRNA. Thus, if we replace

Eαβ → Eαβ + c, (5.10)

for all pairs (α,β), and at the same time replace

Ei → Ei − c, (5.11)

then all energies E(σ,m,µ) remain unchanged. To remove this redun-
dancy, we assign one of these parameters a "neutral" value. We chose
to set EGU = 0. The energies Ed of the dangling ends are set to zero
as well to avoid redundancies in the parameterization.

As detailed below, we will fit all the energy parameters of the model
by optimizing the likelihood of the observed CLIP data. The reader
may wonder why certain parameters, such as the energies associated
with base pairing, are not simply set to experimentally estimated val-
ues such as those that are used in RNA secondary structure prediction
algorithms. It is important to stress that the energy parameters that we
are inferring here are the effective contributions of various structural
components (e.g. base pairs, loops) in the context of the RISC complex.
That is, the interaction of the miRNA and mRNA target will be likely
be strongly influenced by the context provided by this protein com-
plex, and it is therefore not a priori clear what the contributions of
different base pairs and loops should be.
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5.2.5 Partition function

The partition function Z(µ) =
∑
σ,m e

E(σ,m,µ)P(m|B) can be derived
in terms of the above-defined parameters. Considering separately the
structure and sequence components of the energy (see equation 5.8)

E(σ,m,µ) = Estruc(σ) + Eh(σ,m,µ),

we can write

Z(µ) =
∑
σ

[
eEstruc(σ)

∑
m

P(m|B)eEh(σ,m,µ)

]
. (5.12)

In order to be able to recursively calculate this partition function
we approximate the distribution P(m|B) using a simple model that
takes only the overall nucleotide frequencies into account. That is, we
assume that P(m|B) =

∏M
j=1w(mj), where mj is the nucleotide that

occurs at position j in the mRNA fragment and w(α) is the frequency
of nucleotide α in the entire set of 3’UTRs. We use the base frequencies
within 3’ UTRs rather than entire mRNAs since miRNAs are known to
preferentially bind to 3’ UTRs. The sequence-dependent contributions
can then be separated into a product over the non-hybridized and the
hybridized positions yielding

Z(µ) =
∑
σ

eEstruc(σ)
∑
m

∏
i/∈h

w(mi)

(∏
i∈h

w(mi)e
Emiµi

) , (5.13)

where h is the set of positions in the mRNA that are hybridized, and
µi is the nucleotide in the miRNA at position i. Noting that the order
of the sum and the products can be exchanged and that, for all non-
hybridized positions, the sum over the nucleotide in the mRNA gives
a factor 1 at each position. We then have

Z(µ) =
∑
σ

[
eEstruc(σ)

∏
i∈h

(∑
α

w(α)eEαµi

)]
. (5.14)

The expression∑
α

w(α)eEαµi , (5.15)

is the average statistical weight associated with hybridized base µi in
the miRNA, averaged over the probabilities w(α) that a letter α occurs
in the mRNA. For ease of notation below, we denote this quantity by

eEµi =
∑
α

w(α)eEαµi . (5.16)

The partition function finally takes the form

Z(µ) =
∑
σ

eEstruc(σ)+
∑
i∈h Eµi . (5.17)
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5.2.6 Recursion formulas

There are two partition sums that we have to determine recursively:
Z(µ), whose form we just derived and Z(m,µ), that takes the form

Z(m,µ) =
∑
σ

eE(σ,µ,m) =
∑
σ

[
eEstruc(σ)

∏
i∈h

eEmiµi

]
, (5.18)

for each mRNA fragment m and each possible binding miRNA µ. We
can introduce a weight vector

w(mi|µi) =
w(mi)e

Emiµi∑
αw(α)e

Eαµi
, (5.19)

which assigns probabilities to different letters mi in the mRNA given
a miRNA letter µi. Together with the definition (5.16) of Eµi we can
then write

Z(m,µ) =
∑
σ

[
eEstruc(σ)

∏
i∈h

w(mi|µi)

w(mi)
eEµi

]
. (5.20)

This form nicely emphasizes that the dependence on the mRNA se-
quencem comes in through the ratios of probabilitiesw(mi|µi)/w(mi)
of observing mRNA fragment base mi given that it is hybridized to
miRNA base µi and the probability w(mi) under our background
model.

In section 5.2.3, we introduced a set of ’moves’ to generate all
possible hybrid structures σ. These moves can be used to recursively
calculate the partition sums Z(µ) and Z(m,µ). Let Fα(i, j) denote the
partition sum of all possible sub-structures of the first i bases in the
miRNA and first j bases in the mRNA fragment, that end with move α,
where α can be either α = h when adding a hybridized pair α = sym
when adding a pair of symmetrically looped out nucleotides (i.e. one
in the miRNA and one in the mRNA fragment), α = m when adding
an unpaired nucleotide in the mRNA fragment, and α = µ when
adding an unpaired nucleotide in the miRNA. The sums Fα(i, j) can
be determined using the following recursion relations.

Fh(i, j) = eEi+Eµi [1+ Fh(i− 1, j− 1)

+Fsym(i− 1, j− 1) + Fm(i− 1, j− 1) + Fµ(i− 1, j− 1)], (5.21)

where the first term, 1, corresponds to the case in which the pair (i, j)
is the first hybridized pair. The other terms correspond, respectively,
to extending from a previously hybridized pair, following a pair of
symmetrically looped out nucleotides, following a ‘bulged out’ nu-
cleotide in the mRNA fragment, and following a bulged out nucleotide
in the miRNA.

When ending with a symmetric extension we have

Fsym(i, j) = eEsym
[
eEoFh(i− 1, j− 1) + Fsym(i− 1, j− 1)

]
, (5.22)
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where the two terms correspond to opening a new loop or extending
from a previous pair of symmetrically looped out nucleotides. Note
that, by construction, symmetric extensions are not allowed after
asymmetric extensions. To end with an unpaired nucleotide in the
mRNA fragment we have

Fm(i, j) = eE
m
as
[
eEoFh(i, j− 1) + Fsym(i, j− 1) + Fm(i, j− 1)

]
. (5.23)

Finally, to end with an asymmetric extension of the miRNA we have

Fµ(i, j) = eE
µ
as
[
eEoFh(i− 1, j) + Fsym(i− 1, j) + Fµ(i− 1, j)

]
. (5.24)

The boundary conditions of these recursion relations are that Fx(i, j) =
0 whenever i < 0 or j < 0, for all values of x, and where i = 0 and
j = 0 correspond to the first positions in mRNA and miRNA.

The full partition sum is now given by

Z(µ) =

Lµ−1∑
i=0

Lm−1∑
j=0

Fh(i, j), (5.25)

which corresponds to summing over all structures that end with a
base-pair at (i, j), the remaining nucleotides in the miRNA and the
mRNA being dangling ends that do not contribute to the free energy
of interaction.

For the partition sum Z(m,µ) we have very similar recursion re-
lations. We let Hα(i, j) denote the partition sum over all possible
sub-structures of the first i bases in the miRNA and first j bases in the
mRNA fragment that end in state α. The recursion relations are in fact
exactly the same as those for the quantities Fα(i, j), except for when
α = h, i.e. when ending in an hybridized pair of nucleotides (i, j). For
this case we have the relation

Hh(i, j) =
w(mj|µi)

w(mj)
eEi+Eµi [1+Hh(i− 1, j− 1)

+Hsym(i− 1, j− 1) +Hm(i− 1, j− 1) +Hµ(i− 1, j− 1)]. (5.26)

The final partition function is again calculated as:

Z(m,µ) =
Lµ−1∑
i=0

Lm−1∑
j=0

Hh(i, j). (5.27)

5.2.7 Definition of best hybrids

To gain insight into the interactions that our model predicts we de-
termined, for each (miRNA, target site) pair (µ and m) the hybrid
structure σ that maximizes the energy E(σ,µ,m) which corresponds
to the most likely hybrid structure formed by miRNA µ with target
site m. We used for this purpose recursion relations analogous to
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those for calculating the partition sums above, with summation being
replaced by maximization. That is, let Bα(i, j) denote the energy of
the best hybrid structure for the subsequences up to nucleotides i and
j in miRNA and mRNA fragment, ending in state α. We then have the
recursion relations

Bh(i, j) =
w(mj|µi)

w(mj)
eEi+Eµi

max
[
1,Bh(i− 1, j− 1),Bsym(i− 1, j− 1),Bm(i− 1, j− 1),Bµ(i− 1, j− 1)

]
,(5.28)

Bsym(i, j) = eEsym max
[
eEoBh(i− 1, j− 1),Bsym(i− 1, j− 1)

]
, (5.29)

Bm(i, j) = eE
m
as max

[
eEoBh(i, j− 1),Bsym(i, j− 1),Bm(i, j− 1)

]
, (5.30)

and

Bµ(i, j) = eE
µ
as max

[
eEoBh(i− 1, j),Bsym(i− 1, j),Bµ(i− 1, j)

]
. (5.31)

The best hybrid is then constructed by tracing back the ’moves’ that
lead to the hybrid with the maximum energy.

5.2.8 Fitting the fraction of RISC complexes carrying specific miRNAs

Given a fixed set of energy parameters, we use the recursion re-
lations to determine the partition sums Z(µ) and Z(m,µ). The final
likelihood-ratio R(D) also depends on the fractions πµ of bound RISCs
that are loaded with miRNA µ. Given the Z(µ) and Z(m,µ), it is rel-
atively straightforward to determine the fractions πµ that maximize
the likelihood-ratio R(D).

The derivative of the log-likelihood ratio log[R(D)] with respect to
one of the fractions is given by

∂ log[R(D)]

∂πµ
=

∑
i

R(mi|µ)

R(mi)
. (5.32)

The maximum of R(D) under the constraint that∑
µ

πµ = 1, (5.33)

thus satisfies

πµ = C
∑
i

R(mi|µ)πµ
R(mi)

, (5.34)

where C is a normalizing constant. We use this expression to deter-
mine the optimal fractions πµ using ’expectation maximization’, see
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e.g. [32]. That is, given a current set of fractions πµ, we determine for
each µ

Q(µ) =
∑
i

R(mi|µ)πµ
R(mi)

. (5.35)

We then set a new set of fractions

πµ =
Q(µ)∑
µ ′ Q(µ ′)

(5.36)

and iterate until the convergence of πµ. Because log[R(D)] is a convex
function of the πµ, the expectation-maximization is guaranteed to find
the global optimum.

5.2.9 Implementation of the parameter optimization

We implemented our MIRZA algorithm in C++, in an object-oriented
framework. It takes as input fasta-formatted files of mRNA fragments
and miRNA sequences. To avoid biases introduced by the slight
differences in length of different miRNAs we trimmed all miRNA
sequences to 21 nucleotides. We optimized the parameters of our
biophysical model through simulated annealing for which we used
the GNU scientific library 2 and an object-oriented library for numeri-
cal programming in C++ (O2SCL 3). For efficiency, we further used
the Open Multi-Processing Architecture (OpenMP 4) which supports
multi-platform shared-memory parallel programming in C/C++ and
Fortran. The parameters that we optimized were:

• the base-pairing energies EAU and ECG,

• the loop energies Eo, Esym, Eµas, Em and

• the positional hybridization energies, Ei where i = 1, . . . , 21.

For both the synthetic and Ago2 CLIP data-sets we performed mul-
tiple simulated annealing runs starting from various initial conditions
and analyzed the reproducibility of the fitted parameters (see main
text and supplementary material).

5.2.10 Argonaute 2 CLIP experimental data sets

Of the recently reported data sets of Argonaute 2 binding sites, those
generated with PAR-CLIP
(Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation)
exhibit frequent diagnostic mutations (transition of uridine to cyti-
dine), typically in the center of the miRNA-target site hybrid [67, 95].

2 http://www.gnu.org/s/gsl/

3 http://o2scl.sourceforge.net/

4 http://openmp.org/wp/

http://www.gnu.org/s/gsl/
http://o2scl.sourceforge.net/
http://openmp.org/wp/
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Within each single-linkage cluster that contained sites from at least 3 of
4 Ago2 CLIP/PAR-CLIP samples from Kishore et al. [95] that were gen-
erated with various protocols (GEO database accessions GSM714642,
GSM714644, GSM714645, GSM714647) we identified the nucleotide
with the highest frequency of crosslink-diagnostic mutations, and ex-
tracted regions of 51 nucleotides centered on the position of crosslink
(crosslink-centered regions, CCRs). A set of 2988 ‘high-confidence’
CCRs that were both among the top 3000 in terms of coverage by
sequence reads and in terms of enrichment in the read coverage rela-
tive to the read coverage of the same region in HEK293 mRNA-Seq
samples were retained for further analyses (Supplementary Table 2

5).

5.2.11 miRNA transfection data for functional analysis of predicted sites

To investigate the functionality of canonical and non-canonical targets
predicted by various methods we used published microarray datasets
of changes in gene expression following the transfection of different
miRNAs. We selected data sets corresponding mostly to miRNAs
that are expressed in HEK293 cells from which CLIP data has been
obtained. We further retained data from ’successful’ transfection
experiments, meaning those in which the mRNAs carrying canonical
sites for the transfected miRNA in their 3’ UTR were significantly
down-regulated compared the remaining other mRNAs (Wilcoxon’s
rank-sum test on log2 fold changes, p-value cut-off of 0.001) and
discarded the other data sets. The 5 data sets that we thus used are
summarized below.

• Linsley et al. [123] transfected 11 miRNAs (miR-16, miR-15a,
miR-106b, miR-20a, miR-103, miR-17, miR-20a, and let-7c) in
HCT116 and DLD-1 cell lines, each in duplicate. The processed
differential expression data from the GEO database (accession
GSE6838, experiments GSM156557, GSM156558, GSM156580,
GSM156544, GSM156543, GSM156576, GSM156545, GSM156549,
GSM156546, GSM156550, GSM156553, GSM156555, GSM156532,
GSM156541, GSM156554 and GSM156556) together with the
probe to transcript mapping provided by the authors as a SOFT
formatted file were downloaded. Probes associated to Refseq
transcripts according to the annotation were kept for subsequent
analysis. Differential expression at the gene-level was obtained
by mapping RefSeq IDs to Entrez Gene IDs using the RefSeq
database downloaded on January 11th, 2007. For each gene,
fold-changes were averaged over the duplicate experiments.

• Grimson et al. [61] transfected 9 miRNAs (miR-122, miR-128,
miR-132, miR-133a, miR-142-3p, miR-148b, miR-181a, miR-7,
and miR-9) in HeLa cells, profiling mRNA expression 12h and

5 http://www.nature.com/nmeth/journal/v10/n3/extref/nmeth.2341-S2.xlsx

http://www.nature.com/nmeth/journal/v10/n3/extref/nmeth.2341-S2.xlsx
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24h post-transfection. We retrieved the processed differential
expression data from GEO (GSE8501) and then applied the same
analysis as for the data of [123], on the fold-change data from
the 24h time point.

• Leivonen et al. [113] transfected miR-18a, miR-193b, miR-302c
and miR-206 into MCF7 cells. We again retrieved the processed
data from the GEO database and computed average expres-
sion levels per Entrez Gene ID. We then computed the log2
fold change in expression levels upon miRNA transfection as
compared to scrambled pre-miR control.

• Selbach et al. (2008)[156] transfected 5 miRNAs in HeLa cells
(miR-155, miR-16, miR-1, miR-30a, and let-7b). The CEL files
of Selbach et al. (2008) were downloaded from http://psilac.

mdc-berlin.de/download/. Of these five miRNA transfections
in HeLa, we excluded the let-7b experiment because of the
reported negative feed-back of let-7b on the RNAi pathway due
to direct targeting of Dicer [175, 156, 72].

• Finally, we obtained the CEL files of the miR-26b and miR-98

overexpression in HeLa cells performed by Gennarino et al. [50]
from GEO (accession GSE12100).

We imported the CEL files into the R software 6 using the BioConduc-
tor affy package [51]. The probe intensities were corrected for optical
noise, adjusted for non-specific binding, and quantile normalized with
the gcRMA algorithm [195]. Probe sets with more than two probes
mapping ambiguously (more than one match) to the genome were
discarded, as were probe sets that mapped to multiple genes. We
then collected all remaining probe sets matching a given gene, and
averaged their log2 fold changes to obtain an expression change per
gene.

Altogether these 5 data sets cover changes in gene expression in 38
different transfection experiments involving 26 distinct miRNAs.

5.2.12 Comparison of miRNA target prediction methods

Some methods predict miRNA target sites, while others predict tran-
scripts that are targeted by individual miRNAs. To be able to compare
these heterogeneous predictions, we worked at the level of transcripts,
and for methods that predicted target sites we assumed that the tran-
script score is given by the highest score of any predicted site in that
transcript. The methods that we considered were:

• ElMMo [46] (http://www.mirz.unibas.ch/ElMMo3/), which esti-
mates the selection pressure on individual sites through compar-
ative genomics.

6 http://www.R-project.org

http:// psilac.mdc-berlin.de/download/
http:// psilac.mdc-berlin.de/download/
http://www.mirz.unibas.ch/ElMMo3/
http://www.R-project.org
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• PicTar [63] (http://dorina.mdc-berlin.de/rbp_browser/hg18.
html), another comparative genomics-based method whose pre-
dictions are widely used.

• TargetScan Pct [44] (http://www.targetscan.org), also a method
that uses evolutionary conservation. Based on previous evalua-
tions this method is considered one of the most accurate methods
for identifying functional target sites.

• TargetScan context+ [61, 49] (http://www.targetscan.org), which
predicts miRNA target sites based on the sequence context in
which they occur in their host transcripts.

• MIRANDA [15] (http://www.microrna.org/microrna/getDownloads.
do). The current version of this method, mirSVR, uses support
vector regression based on a list of features of both the miRNA
and its putative target. MIRANDA provides 4 separate files
of targets, depending on whether targets are filtered based on
mirSVR score and/or conservation. We used the ‘S’ sets of
targets that are filtered by score, irrespective of conservation.

• PITA, release of 31-Aug-08 [89], which computes an energy of
interaction between miRNA and target site taking into account
the structural accessibility of the target site; we extracted predic-
tions for the miRNAs of interest from the web site, http://genie.
weizmann.ac.il/pubs/mir07/mir07_dyn_data.html, queried with
default parameters.

• RNAduplex, which computes the minimum free energy of hy-
bridization between the two RNA strands [124]. We downloaded
RNAduplex as part of the Vienna RNA package from http:

//www.tbi.univie.ac.at/RNA/RNAduplex.html and applied it
to the entire set of representative 3’ UTRs of human genes.

• RNAhybrid [148], which uses an approach similar to RNAdu-
plex. We downloaded RNAhybrid from the server hosted by the
University of Bielefeld (http://bibiserv.techfak.uni-bielefeld.
de) and applied it to the entire set of representative 3’ UTRs of
human genes.

• RNA22 [135], a method based on statistical over-representation
of miRNA-complementary motifs. Current genome-wide predic-
tions of this method were obtained from the authors.

We further included lists of targets of miRNAs from the Star-
base database [196] (http://starbase.sysu.edu.cn/), which inter-
sects Ago2 CLIP sites with miRNA target predictions by TargetScan,
PicTar, Miranda, PITA, and RNA22. Starbase does not provide a
default sorting of predicted sites but allows users to manipulate strin-
gency parameters. We downloaded target lists using the default

http://dorina.mdc-berlin.de/rbp_browser/hg18.html
http://dorina.mdc-berlin.de/rbp_browser/hg18.html
http://www.targetscan.org
http://www.targetscan.org
http://www.microrna.org/microrna/getDownloads.do
http://www.microrna.org/microrna/getDownloads.do
http://genie.weizmann.ac.il/pubs/mir07/mir07_dyn_data.html
http://genie.weizmann.ac.il/pubs/mir07/mir07_dyn_data.html
http://www.tbi.univie.ac.at/RNA/RNAduplex.html
http://www.tbi.univie.ac.at/RNA/RNAduplex.html
http://bibiserv.techfak.uni-bielefeld.de
http://bibiserv.techfak.uni-bielefeld.de
http://starbase.sysu.edu.cn/
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settings of the database, and using the most inclusive settings which
maximizes the total number of predicted sites.

Since different methods may use different transcript collections as
a basis for their predictions, we decided to compare predictions at
the level of Entrez genes. For ElMMo, PicTar, TargetScan, MIRANDA,
PITA, and RNA22 we collected, for each Entrez gene, all transcripts
associated with the gene and defined the target score as the highest
score among all transcripts in the set.

For RNAhybrid and RNAduplex, we predicted miRNA-complementary
sites transcriptome wide. For this purpose, we selected a represen-
tative 3’ UTR for each Entrez Gene that had a Refseq transcript in
the January 18, 2011 release of the Refseq database. We chose as
representative 3’ UTR the 3’ UTR of the longest transcript among
those that were represented in Refseq, had an annotated 5’ UTR, 3’
UTR, and CDS, and were associated with the corresponding gene.
We scanned each 3’ UTR with windows of 50 nucleotides, shifting by
25 nucleotides at a time, and predicted the minimum free energy of
interaction between the miRNA and each window. We then defined
the ‘transcript score’ as the minimum free energy over all windows
from the 3’ UTR of a give transcript. For MIRZA, the target score of a
transcript from the representative set was defined as the sum of the
logarithms of the target qualities of all sites occurring in the transcript.

5.2.13 Median fold-changes

To test the accuracy of the target predictions of each method we
used the data sets of miRNA transfection experiments as described in
section 5.2.11. For each transfection experiment, and each method, we
sorted all predicted target genes by score and filtered out all genes for
which no fold-change data was available in the corresponding data-set.
We then determined, as a function of the number n of top predicted
targets, the median log fold-change lm(n) of these targets in response
to miRNA transfection. Lower median fold-changes thus indicate that
a method predicts targets that are more strongly down-regulated upon
transfection of the miRNA. For each of the 5 data-sets, we calculated
average median log fold-changes 〈lm(n)〉 by averaging the functions
lm(n) of each of the transfection experiments in individual data sets.
We also calculated an average over all 38 transfection experiments.

5.2.14 Number of functional targets

Besides calculating median log fold-changes we also determined, for
each miRNA and each method, the fraction f(n) of the top n predicted
targets that were down-regulated, as a function of the number n of
top predicted targets. We used the functions f(n) to estimate the total
number of functional targets as follows. For each data set, we first
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determined the total fraction ftot of down-regulated transcripts among
all transcripts for which fold-change data was measured. Typically,
ftot is close to 50%. Thus, if we were to make random predictions, we
expect a fraction ftot of the predicted targets to be down-regulated. If
f(n) is considerably larger than ftot, this indicates that there must be
true targets among the n predicted targets. Notice that, if a fraction
ρ(n) of the n predicted targets are ’true targets’, and using that fact
that true targets must be down-regulated per definition, then the total
fraction f(n) of down-regulated targets will be

f(n) = ρ(n) + ftot (1− ρ(n)) . (5.37)

From this we can estimate the total number of functional targets as

nfunc(n) = nρ(n) = n
f(n) − ftot

1− ftot
. (5.38)

For each method and each transfection experiment, we determine the
total number of functional targets by maximizing nfunc(n) over n, i.e.
we choose the number n of top predicted targets such that nfunc(n) is
maximal.

nfunc = max
n

[
n
f(n) − ftot

1− ftot

]
. (5.39)

For each method, we also determined the average number of functional
targets 〈nfunc〉 for each of the 5 data-sets, by averaging nfunc over the
transfection experiments in a data-set. We also calculate an overall
〈nfunc〉 averaging over all 38 transfection experiments. Finally, all
these calculations were also performed restricting the targets to those
transcripts that do not contain a canonical match to the seed sequence
of the miRNA, as described in the next section.

5.2.15 Non-canonical binding sites

To identify non-canonical target sites among the CLIPed sites, we used
the following stringent procedure. We first predicted with MIRZA the
miRNA µ with which each mRNA fragment m most likely interacted,
i.e. the miRNA for which the mRNA fragment had the highest target
frequency R(m|µ)πµ. Next, we determined the optimal hybrid σ for
this miRNA-mRNA target pair with the recursion relations described
above, and based on these hybrids we divided the set of mRNA
fragments into 2 subsets:

• canonical sites [10], which base-paired contiguously with nu-
cleotides 2− 8 of the miRNA OR had an exact match to positions
2− 7 of the miRNA followed by an adenine (which would be
positioned opposite position 1 of the miRNA).

• non-canonical sites, for which the above condition was not satis-
fied.



5.2 online methods 95

We then identified transcripts that contained a single, non-canonical
CLIPed site for the transfected miRNA and retained those transcripts
that did not additionally contain a canonical seed match (as defined
above) anywhere in the 3’UTR. We used in this search the 3’ UTRs of
representative transcripts from Kishore et al. [95]. This procedure gave
us a very conservative set of transcripts on which the miRNA was
very likely to act on a non-canonical site. We sorted the non-canonical
sites based on their target quality R(m|µ) with respect to the transfected
miRNA µ and then divided the set into 3 subsets of equal size, cor-
responding to the top 33%, the middle 33% and the bottom 33% in
terms of the target quality. To resolve issues of differences between
genome and transcriptome annotations, we investigated the change
in expression at the level of genes. That is, we mapped transcripts
to corresponding genes in the Entrez database of NCBI. Finally, we
compared the expression level changes between genes containing sites
within each subset and genes whose representative transcripts did
not contain a seed match in the 3’UTR or did contain a seed match
(irrespective of whether it was CLIPed) in the 3’UTR. For each gene,
we computed the average log-fold change across replicate transfection
experiments.

For the comparison of prediction accuracy of the different target pre-
diction methods we defined non-canonical targets as follows. For each
miRNA, we scanned all 3’ UTRs of RefSeq transcripts associated with
each Entrez gene for a canonical match to the miRNA. All Entrez genes
for which such a seed match was detected are considered canonical
targets by default, i.e. irrespective of where in the 3’ UTR the various
methods predicted sites or which of the RefSeq transcripts contained
such a site. Thus, non-canonical target genes of a given miRNA are
those for which the 3’ UTRs of associated RefSeq transcripts do not
contain a canonical match to the seed sequence.

5.2.16 Representation of non-canonical binding modes among CLIP sites

To determine the prevalence of specific non-canonical binding ’modes’
in CLIP data sets, we extracted sites as follows. From each of the 4
Ago2 data sets from Kishore et al. [95], and from the three mouse
brain Ago2 HITS-CLIP data sets (libraries prepared from the 130 kDa
band) of Chi et al. [23] we extracted the 5000 sites with the highest
coverage by reads. We also extracted the 5000 most enriched sites,
relative to the expression of the corresponding mRNAs in an mRNA-
seq sample that we prepared from HeLa cells, from the two samples
from Chi et al. [23] that were obtained after miR-124 transfection
in HeLa cells. We applied the MIRZA model to each of these sets
of putative Ago2 binding sites to determine the miRNAs that most
likely guided the interaction with the site and the hybrid with the
highest score and we used this to determine the relative proportions
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of individual ’binding modes’ (e.g. that with a bulge at the ’pivot
position’ [26]) among these hybrids.
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abstract

In the following sections, the main findings of the thesis are discussed
and an outlook of where future work could be taken up, is given.
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6.1 summary of the results

PAR−CLIP, a powerful cell-based crosslinking approach to determine at
high resolution and transcriptome-wide the binding sites of cellular RBPs
and miRNPs

We showed that application of photoactivatable nucleoside analogs
to living cells facilitates RNA-protein crosslinking and transcriptome-
wide identification of RBP and RNP binding sites. As a proof of
concept, PAR-CLIP was successfully applied on RNA binding pro-
teins such as Pumilio-2, supporting evidence from previous studies.
Furthermore, the method was applied to various other RNA bind-
ing proteins (such as Argonaute family, IGF2BP, HuR) for which the
binding specificity was not fully characterized and we were able to
determine and validate their consensus sequence binding motif for
these RBPs.

Novel approaches to identify binding sites from CLIP data

CLIP experiments are always contaminated with non-crosslinked
RNAs (e.g. as shown by consistent identification of rRNAs, tRNAs,
and microRNAs). In fact, they have a certain amount of isolated RNAs
which do not represent regulatory binding sites. We showed that the
crosslinked nucleotides induce a specific mutational signature in the
sequenced binding sites relative to the reference genome. This muta-
tional signature 1 can be used to separate the crosslinked binding sites
from other RNA fragments that are captured during the experiment
thereby allowing accurate identification of RBP binding sites.

We provided a quantitative analysis to improve the quality and
reproducibility of the CLIP methods. For example, using extensive
digestion with sequence-specific ribonucleases (e.g. T1) could dramat-
ically affect the obtained binding sites. Furthermore, we proposed
using milder nuclease digestion conditions as a solution to the prob-
lem that could reduced this effect. We also suggested a set of novel
bioinformatics methods to improve quality of data analysis of the
obtained RNAs.

CLIPZ, a database and analysis environment for experimentally-determined
binding sites of RNA-binding proteins

It is not surprising any more to obtain very large amounts of data in a
short time as results of biological experiments and in fact this capa-
bility has changed the field of biology. Like many high-throughput

1 specifically mutations of the crosslinked uridines to cytidines in PAR− CLIP. For
HITS−CLIP protocol, uridine mutations (to any of A, C, G nucleotides) and deletions
were the most frequent mutations, followed by insertions to either side of uridine
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experiments, CLIP experiments yield a wealth of data about specific
RBPs, but the computational resources that are necessary for analyz-
ing deep sequencing data in order to infer the binding sites and the
binding specificity of the protein of interest, are not generally available
in experimental laboratories.

We have developed the CLIPZ2 analysis environment that supports
the automatic functional annotation of short reads resulting primarily
from crosslinking and immunoprecipitation experiments (CLIP). The
functional annotation could also be applied to short reads resulting
from other types of experiments such as mRNA-Seq, Digital Gene
Expression, small RNA cloning, etc. The CLIPZ platform enables
visualization and mining of individual data sets as well as analysis
involving multiple experimental data sets. Our platform can support
collaborative projects involving multiple users and groups of users as
well as public and private datasets.

MIRZA, A biophysical model for inferring microRNA-target site interactions
from Argonaute crosslinking and immunoprecipitation data

Researchers have been frustrated that they had no quantitative model
to study the interaction of microRNAs and their targets. At the cur-
rent stage of knowledge it does not seem surprising to find examples
of functional non-canonical microRNA sites involved in degradation
and/or translation inhibition of their targets. Nonetheless, many
microRNA target prediction methods do not pay much attention to
non-canonical sites. This is probably because these sites are particu-
larly difficult to be identified.

In this work, we took advantage of experimentally determined
microRNA targets to infer an empirical model (called MIRZA3) of
microRNA-target interaction from large experimental data sets. Briefly,
the likelihood of observing the microRNA sequence bound to mRNA
binding site with a specific hybridization structure is calculated.

We inferred its parameters within a bayesian probabilistic framework
from CLIP data. The inferred parameters largely confirm previous
knowledge of microRNA-target interaction and further provide the
means to identify functional target sites that are non-canonical and
would have been difficult to accurately predict by other methods.

We verified the inferred non-canonical binding of various microR-
NAs using experimental data based on transcriptome-wide measure-
ments of mRNA stability upon over-expression of several microRNAs.
We saw a milder effect for non-canonical sites 4 compared to typi-
cal canonical sites. On the other hands, because of their abundance,
we hypothesized that these sites could contribute to fine tuning the

2 http://www.clipz.unibas.ch

3 Source code available at: http://www.mirz.unibas.ch/software.php
4 predicted by MIRZA

http://www.clipz.unibas.ch
http://www.mirz.unibas.ch/software.php
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regulation of mRNA stability in specific conditions. Furthermore, in
applying MIRZA we discovered that the set of target mRNAs of a
given microRNA depends on the microRNAâs expression level and
the fraction of non-canonical targets increases with expression level.

6.2 future directions

The work presented here tackles the challenges of RNA binding pro-
teins of various aspects ranging from bioinformatics for in depth
analysis of deep sequencing data, to provide software platform to
facilitate the data analysis and finally to use the data in order to infer
empirical models for better understanding the regulatory network.

I think the CLIP based methods could still be improved both in
terms of experimental procedures and in terms of data analysis. There
are still a lot of RNA binding proteins to which one could apply
the method in order to identify the binding sites. To answer how
the spatio-temporal activity of RBPs post-transcriptionally affects the
regulation of gene expression, we still need to think more in terms of
both developing novel experimental techniques and also advance data
analysis and empirical modeling.

For CLIPZ, the aim is to permanently maintain and constantly
develop new tools to provide faster, easier-to-use and more robust
services. There is, for example, a lot of potential modifications to the
annotation pipeline to minimize the number of mis-annotated reads
or developing a novel mapping algorithm which is faster and require
less computational resources will improve annotation pipeline efficacy.
We plan to include other organisms (i.e. model organisms) in the
annotation pipeline in order to make it possible to perform analysis
on the high-throughput data obtained from different organisms.

On the aspect of software architecture of the CLIPZweb server, there
are still a lot of work to do in order to keep the server as dependable
as possible.

Other suggestions could be to provide fault tolerant analysis envi-
ronment which enables the system to continue its intended operation,
possibly at a reduced level, rather than failing completely, when
some part of the system fails. We could simplify the CLIPZ software
architecture and its dependencies to in order to facilitate end-user
customization for local software installations.
MIRZA provides a fundamental model of microRNA-target inter-

action which represents a unique tool for identification of targets of
individual microRNAs and could predict the binding strength of any
microRNA to any given mRNA target site. This makes it a valuable
tool for the analysis of Argonaute-CLIP data. MIRZA revisits the
question of target prediction based on a probabilistic framework, it is
straight forward to apply such method to other RNA-target interac-
tions such as snoRNAs.
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In the current development state, MIRZA predicts target sites only
by using the sequence information of the CLIPed sites. However
combining it with other features such as evolutionary conservation
improve its predictive power.

Parameter optimization process is implemented such that it make
use of parallel computing whenever is needed. However there is
still a room for improvement of this process or use other efficient
optimization techniques in order to speed up the process. The object
oriented architecture of MIRZA algorithm makes it easy to customize
the various processing modules (i.e. parameter optimization module)
or use it as a component in combination with other algorithms.
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a.1 supplementary experimental procedures

Oligonucleotides and siRNA duplexes

The following oligodeoxynucleotides were used for PCR and cDNA
cloning into pENTR4 (Invitrogen), restriction sites are underlined:

PUM2, ATGAATCATGATTTTCAAGCTCTTGCATTAG,
ATAAGAATGCGGCCGCTTACAGCATTCCATTTGGTGGTCCTCCAATAG;

QKI, ACGCGTCGACATGGTCGGGGAAATGGAAACG,
ATAAGAATGCGGCCGCTTAGCCTTTCGTTGGGAAAGCC;

IGF2BP1, ACGCGTCGACATGAACAAGCTTTACATCGGCAAC-
CTC,
ATAAGAATGCGGCCGCTCACTTCCTCCGTGCCTGGGCCTG;

IGF2BP2, ACGCGTCGACATGATGAACAAGCTTTACATCGGGAAC,
ATAAGAATGCGGCCGCTCACTTGCTGCGCTGTGAGGCGAC;

IGF2BP3, ACGCGTCGACATGAACAAACTGTATATCGGAAAC-
CTCAG,
ATAAGAATGCGGCCGCTTACTTCCGTCTTGACTGAGGTGGTC;

The following oligoribonucleotides were used for QKI protein in
vitro binding and crosslinking studies and were purchased from Dhar-
macon:

GUAUGCCAUUAACAAAUUCAUUAACAA

G(4SU)AUGCCAUUAACAAAUUCAUUAACAA

GUA(4SU)GCCAUUAACAAAUUCAUUAACAA

GUAUGCCA(4SU)AACAAAUUCAUUAACAA

GUAUGCCAU(4SU)AACAAAUUCAUUAACAA

4SU, 4-thiouridine.

The following siRNA duplexes (sense/antisense) were used for
knockdown experiments and synthesized on a modified ABI 392

RNA/DNA synthesizer using Dharmacon synthesis reagents.
QKI duplex 1, GAAGAGAGCAGUUGAAGAAUU,

UUCUUCAACUGCUCUCUUCUU;
QKI duplex 2, CCAAUUGGGAGCAUCUAAAUdT,

UUUAGAUGCUCCCAAUUGGUdT;
IGF2BP1, GGGAAGAAUCUAUGGCAAAUU,

UUUGCCAUAGAUUCUUCCCUU;
IGF2BP2, GGCAUCAGUUUGAGAACUAUU,

UAGUUCUCAAACUGAUGCCUU;
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IGF2BP3, AAAUCGAUGUCCACCGUAAUU,
UUACGGUGGACAUCGAUUUUU.

2’-O-methyl oligoribonucleotides and miRNA duplexes

The following sequences were chemically synthesized on an ABI394

RNA/DNA synthesizer using 5’silyl-2’orthoester chemistry1 (Dhar-
macon):

anti-let-7a: AACUAUACAACCUACUACCUCA-NH2;

anti-miR-10a: CACAAAUUCGGAUCUACAGGGUA-NH2;

anti-miR-15a: CGCCAAUAUUUACGUGCUGCUA;

anti-miR-15b: CACAAACCAUUAUGUGCUGCUA;

anti-miR-16: UGUAAACCAUGAUGUGCUGCUA;

anti-miR-17-5p: CUACCUGCACUGUAAGCACUUUG;

anti-miR-18a: CUAUCUGCACUAGAUGCACCUUA-NH2;

anti-miR-19a: UCAGUUUUGCAUAGAUUUGCACA;

anti-miR-19b: UCAGUUUUGCAUGGAUUUGCACA;

anti-miR-20a: CUACCUGCACUAUAAGCACUUUA;

anti-miR-20b: CUACCUGCACUAUGAGCACUUUG;

anti-miR-21: UCAACAUCAGUCUGAUAAGCUA;

anti-miR-25: UCAGACCGAGACAAGUGCAAUG;

anti-miR-27: AACUAUACAAUCUACUACCUCA;

anti-miR-30a: CUUCCAGUCGAGGAUGUUUACA-NH2;

anti-miR-30b/c: GAGUGUAGGAUGUUUACA-NH2;

anti-miR-92b: ACAGGCCGGGACAAGUGCAAUA;

anti-miR-93: CUACCUGCACGAACAGCACUUUG;

anti-miR-101: UUCAGUUAUCACAGUACUGUA;

anti-miR-103: UCAUAGCCCUGUACAAUGCUGCU;

anti-miR-106b: AUCUGCACUGUCAGCACUUUA-NH2;

anti-miR-186: AGCCCAAAAGGAGAAUUCUUUG;

anti-miR-301: GCUUUGACAAUACUAUUGCACUG;

anti-miR-378: CCUUCUGACUCCAAGUCCAGU;

miR-7/miR-7* duplex:

UGGAAGACUAGUGAUUUUGUUGU, CAACAAAUCACAGUCUGCCAUA;

miR-124/miR-124* duplex:

5â-UAAGGCACGCGGUGAAUGCCA, CGUGUUCACAGCGGACCUUGA

Plasmids

Plasmids pENTR4 IGF2BP1-3, QKI, AGO1-4, TNRC6A-C and PUM2

were generated by PCR amplification of the respective coding se-
quences (CDS) followed by restriction digest with SalI and NotI and
ligation into pENTR4 (Invitrogen). pENTR4 IGF2BP1,-2, and -3 were
recombined into pFRT/TO/FLAG/HA-DEST destination vector (In-

1 -NH2 indicates C6 aminolinker (Dharmacon).
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vitrogen) using GATEWAY LR recombinase (Invitrogen) according
to manufacturer’s protocol to allow for doxycycline-inducible expres-
sion of stably transfected FLAG/HA-tagged protein in Flp-In T-REx
HEK293 cells (Invitrogen) from the TO/CMV promoter. pENTR4 QKI
and pENTR4 PUM2 were recombined into pFRT/FLAG/HA-DEST
for constitutive expression in Flp-In T-REx HEK293 cells.

Plasmids for bacterial expression of N-terminally His6-tagged IGF2BP1,
2, and 3 in E. coli were generated by ligation of CDS into pET16

(Novagen). The plasmid for bacterial expression of N-terminally His6-
tagged QKI was generated by LR recombination of pENTR4 QKI with
pDEST17 (Invitrogen). The plasmids described in this study can be
obtained from Addgene (www.addgene.org).

Antibodies

Polyclonal rabbit antibodies against IGF2BP1, 2, and 3 were generated
by injection of synthetic peptides corresponding to amino acids 561-
573, 264-275, and 567-579, respectively. Rabbit anti-QKI (BL1040) was
purchased from Bethyl Laboratories.

Recombinant protein expression and purification

pET16 IGF2BP1,-2, and -3 and pDEST17-QKI plasmids, encoding an N-
terminal His6-tag, were transformed in E. coli STAR(DE3) (Invitrogen).
Cells were grown in LB medium supplemented with 50 µg/ml ampi-
cillin at 37

◦C to A600 = 0.6. The cells were cooled to 25
◦C, protein

synthesis was induced by addition of IPTG to a final concentration of 1

mM, cells were harvested 3 h later. The cell pellet was resuspended in
10 ml lysis buffer (50 mM Tris-HCl pH 8.0, 300 mM KCl, 5 mM MgCl2,
0.1% Triton X-100, and complete EDTA-free protease inhibitor (Roche))
per gram cell pellet. All the following steps were carried out at 4

◦C.
Cells were resuspended in lysis buffer and incubated with 1 mg/ml
lysozyme for 30 min and sonicated to reduce viscosity. Insoluble
material was removed by centrifugation at 12,000xg for 20 min. For
His-tag affinity selection, the supernatant was incubated with 250 µl
HIS-Select Cobalt Affinity Gel (Sigma) per 10 ml cell supernatant for
1 h. The gel was washed three times with 10 gel volumes of wash
buffer (50 mM Tris-HCl, pH 8.0, 300 mM Kcl, 5 mM MgCl2, 1 mM
DTT, 0.1 % Triton X-100, 25 mM imidazol, and complete EDTA-free
protease inhibitor (Roche)). His-tagged proteins were eluted in 3 gel
volumes of elution buffer (50 mM Tris-HCl pH 8.0, 300 mM KCl, 5

mM MgCl2, 1 mM DTT, 0.1% Triton X-100, 250 mM imidazol, and
complete EDTA-free protease inhibitor (Roche)). The eluted proteins
were applied to a Heparin column equilibrated in 20 mM Tris-HCl pH
7.8, 5 mM MgCl2, 100 mM KCl, 1 mM DTT, 0.1% Triton X-100, 10%
glycerol. Proteins were eluted with a KCl gradient (0.5 - 1.5 M) in 20

www.addgene.org
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mM Tris-HCl, pH 7.8, 5 mM MgCl2, 1 mM DTT, 0.1% Triton X-100,
10% glycerol. His6-IGF2BP1, -2, and -3 eluted at 550 to 650 mM KCl
and His6-QKI at 1.1 M KCl.

Electrophoretic mobility-shift analysis

Radiolabeled RNA (100 pM) was incubated with recombinant His6-
IGF2BP2 protein at indicated concentrations and 100 ng tRNA in
binding buffer (20 µl of 20 mM Tris-HCl, pH 7.8, 140 mM KCl, 2 mM
MgCl2 and 0.1% Triton X-100 at 30

◦C) for 1 h. After addition of 6 µl
loading dye (40% glycerol, bromophenol blue in binding buffer), the
reaction mixture was loaded onto a native 6% acrylamide gel contain-
ing 0.5x TBE, running at 200 V for 1 h at room temperature, using 0.5x
TBE as running buffer. Radiolabeled RNA (1 nM) was incubated with
recombinant His6-QKI protein at various concentrations and 100 ng
tRNA in 20 µl of binding buffer (20 mM HEPES-KOH, pH 7.4, 330 mM
KCl, 10 mM MgCl2, 0.1 mM EDTA and 0.01% IGEPAL CA630 (Sigma)).
After addition of 6 µl loading dye (40% glycerol, bromophenol blue in
binding buffer), the solution was loaded onto a native 10% acrylamide
gel containing 0.5x TBE, running at 200 V for 2 h at room temperature,
using 0.5x TBE as running buffer. The protein-bound RNA and the
free RNA were quantified using a phosphorimager.

Cell lines and culture conditions

HEK293 T-REx Flp-In cells (Invitrogen) were grown in D-MEM high
glucose with 10% (v/v) fetal bovine serum, 1% (v/v) 2 mM L-glutamine,
1% (v/v) 10,000 U/ml penicillin/10,000 µg/ml streptomycin, 100

µg/ml zeocin and 15 µg/ml blasticidin. Cell lines stably express-
ing FLAG/HA-tagged proteins were generated by co-transfection of
pFRT/TO/FLAG/HA or pFRT/FLAG/HA constructs with pOG44

(Invitrogen). Cells were selected by exchanging zeocin with 100 µg/ml
hygromycin. Expression of FLAG/HA-IGF2BP1, -2, -3 and TNRC6A,
B and C was induced by addition of 250 ng/ml doxycycline 15 to 20 h
before crosslinking.

miRNA profiling

miRNAs were extracted from FLAG/HA-AGO immunoprecipitates
as described in Meister et al. miRNAs from immunoprecipitates and
the lysate were cloned and Solexa-sequenced [66] using following
bar-coded 5’ adapters:

AGO1-IP: TCTAGTCGTATGCCGTCTTCTGCTTGT

AGO2-IP: TCTCCTCGTATGCCGTCTTCTGCTTGT

AGO2-IP: TCTGATCGTATGCCGTCTTCTGCTTGT



A.1 supplementary experimental procedures 111

AGO3-IP: TTAAGTCGTATGCCGTCTTCTGCTTGT

Lysate: TCACTTCGTATGCCGTCTTCTGCTTGT

Determination of incorporation levels of 4-thiouridine into total RNA

Flp-In HEK293 were grown in medium supplemented with 100 µM
4SU 16 h prior to harvest. As a control, cells grown without 4SU
addition were also harvested. 3 volumes of Trizol reagent (Sigma)
were added to the washed cell pellets and total RNA was extracted ac-
cording to manufactures instructions. Total RNA was further purified
using Qiagen RNAeasy according to the manufacturer’s protocol. To
prevent oxidization of 4SU during RNA isolation and analysis, 0.1 mM
dithiothreitol (DTT) was added to the wash buffers and subsequent
enzymatic steps. Total RNA was digested and dephosphorylated to
single nucleosides for HPLC analysis [4]. Briefly, in a 30 µl volume,
40 µg of purified total RNA were incubated for 16 h at 37

◦C with
0.4 U bacterial alkaline phosphatase (Worthington Biochemical) and
0.09 U snake venom phosphodiesterase (Worthington Biochemical).
As a reference standard, synthetic 4SU-labeled RNA, CGUACGCG-
GAAUACUUCGA(4SU)U was used and also subjected to complete
enzymatic digestion. The resulting mixtures of ribonucleosides were
separated by HPLC on a Supelco Discovery C18 (bonded phase silica
5 µM particle, 250 x 4.6 mm) reverse phase column (Bellefonte PA,
USA). HPLC buffers were 0.1 M TEAA in 3% acetonitrile (A) and 90%
acetonitrile in water (B). The gradient was isocratic 0% B for 15 min, 0

to 10 % B for 20 min, 10 to 100% B for 30 min, and a 5 min 100% B
wash applied between runs to clean the HPLC column.

UV 254 nm and UV 365 nm crosslinking

For UV crosslinking, cells were washed once with ice-cold PBS while
still attached to the plates. PBS was removed completely and cells
were irradiated on ice with 254 nm UV light (0.15 J/cm2), or 365 nm
UV light for cells treated for 14 h with 100 µM nucleoside analogs
(0.15 J/cm2) in a Stratalinker 2400 (Stratagene), equipped with light
bulbs for the appropriate wavelength. Cells were scraped off with a
rubber policeman in 1 ml PBS per plate and collected by centrifugation
at 500xg for 5 min.

Cell lysis and first partial RNase T1 digestion

The pellets of cells crosslinked with UV 365 nm were resuspended in
3 cell pellet volumes of NP40 lysis buffer (50 mM HEPES, pH 7.5, 150

mM KCl, 2 mM EDTA, 1 mM NaF, 0.5% (v/v) NP40, 0.5 mM DTT,
complete EDTA-free protease inhibitor cocktail (Roche)) and incubated
on ice for 10 min. The typical scale of such an experiment was 3 ml of
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cell pellet. The cell lysate was cleared by centrifugation at 13,000xg.
RNase T1 (Fermentas) was added to the cleared cell lysates to a final
concentration of 1 U/µl and the reaction mixture was incubated in a
water bath at 22

◦C for 15 min and subsequently cooled for 5 min on
ice before addition of antibody-conjugated magnetic beads.

Immunoprecipitation and recovery of crosslinked target RNA fragments

preparation of magnetic beads 10 µl of Dynabeads Protein
G magnetic particles (Invitrogen) per ml cell lysate were washed
twice with 1 ml of citrate-phosphate buffer (4.7 g/l citric acid, 9.2 g/l
Na2HPO4, pH 5.0) and resuspended in twice the volume of citrate-
phosphate buffer relative to the original volume of bead suspension.
0.25 µg of anti-FLAG M2 monoclonal antibody (Sigma) per ml sus-
pension was added and incubated at room temperature for 40 min.
Beads were then washed twice with 1 ml of citrate-phosphate buffer
to remove unbound antibody and resuspended again in twice the
volume of citrate-phosphate buffer relative to the original volume of
bead suspension.

immunoprecipitation (ip), second rnase t1 digestion, and

dephosphorylation 10 µl of freshly prepared antibody-conjugated
magnetic beads per ml of partial RNase T1 treated cell lysate were
added and incubated in 15 ml centrifugation tubes on a rotating wheel
for 1 h at 4

◦C. Magnetic beads were collected on a magnetic particle
collector (Invitrogen). Manipulations of the following steps were car-
ried out in 1.5 ml microfuge tubes. The supernatant was removed from
the bead-bound material. Beads were washed 3 times with 1 ml of IP
wash buffer (50 mM HEPES-KOH, pH 7.5, 300 mM KCl, 0.05% (v/v)
NP40, 0.5 mM DTT, complete EDTA-free protease inhibitor cocktail
(Roche)) and resuspended in one volume of IP wash buffer. RNase
T1 (Fermentas) was added to obtain a final concentration of 100 U/µl,
and the bead suspension was incubated in a water bath at 22

◦C for 15

min, and subsequently cooled for 5 min on ice. Beads were washed 3

times with 1 ml of high-salt wash buffer (50 mM HEPES-KOH, pH 7.5,
500 mM KCl, 0.05% (v/v) NP40, 0.5 mM DTT, complete EDTA-free
protease inhibitor cocktail (Roche)) and resuspended in one volume of
dephosphorylation buffer (50 mM Tris-HCl, pH 7.9, 100 mM NaCl, 10

mM MgCl2, 1 mM DTT). Calf intestinal alkaline phosphatase (NEB)
was added to obtain a final concentration of 0.5 U/µl, and the sus-
pension was incubated for 10 min at 37

◦C. Beads were washed twice
with 1 ml of phosphatase wash buffer (50 mM Tris-HCl, pH 7.5, 20

mM EGTA, 0.5% (v/v) NP40) and twice with 1 ml of polynucleotide
kinase (PNK) Buffer (50 mM Tris-HCl, pH 7.5, 50 mM NaCl, 10 mM
MgCl2, 5 mM DTT). Beads were resuspended in one original bead
volume of PNK buffer.
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radiolabeling of rna segments crosslinked to immuno-
precipitated proteins To the bead suspension described above,
γ-32P-ATP was added to a final concentration of 0.5 µCi/µl and T4

PNK (NEB) to 1 U/µl in one original bead volume. The suspension
was incubated for 30 min at 37

◦C. Thereafter, non-radioactive ATP was
added to obtain a final concentration of 100 µM and the incubation
was continued for another 5 min at 37

◦C. The magnetic beads were
then washed 5 times with 800 µl of PNK Buffer and resuspended in 70

µl of SDS-PAGE Loading Buffer (10% glycerol (v/v), 50 mM Tris-HCl,
pH 6.8, 2 mM EDTA, 2% SDS (w/v), 100 mM DTT, 0.1% bromophenol
blue).

sds-page and electroelution of crosslinked rna-protein

complexes from gel slices The radiolabeled bead suspension
was incubated for 5 min at 95

◦C and vortexed. The magnetic beads
were separated on a magnetic separator and 40 µl of supernatant were
loaded per well of an SDS-PAGE. The gel was analyzed by phospho-
rimaging. The radioactive RNA-protein complex migrating at the
expected molecular weight of the target protein was excised from the
gel and electroeluted in a D-Tube Dialyzer Midi (Novagen) in 800 µl
SDS running buffer according to the instructions of the manufacturer.

proteinase k digestion An equal volume of 2x Proteinase K
Buffer (100 mM Tris-HCl, pH 7.5, 150 mM NaCl, 12.5 mM EDTA, 2%
(w/v) SDS) with respect to the electroeluate was added, followed by
the addition of Proteinase K (Roche) to a final concentration of 1.2
mg/ml, and incubation for 30 min at 55

◦C. The RNA was recovered
by acidic phenol/chloroform extraction followed by a chloroform
extraction and an ethanol precipitation. The pellet was dissolved in
10.5 µl water.

cDNA library preparation and deep sequencing

The recovered RNA was carried through a cDNA library preparation
protocol originally described for cloning of small regulatory RNAs [66].
The first step, 3’ adapter ligation, was carried out as described on a 20

µl scale using 10.5 µl of the recovered RNA. UV 254 nm crosslinked
RNAs were processed using standard adapter sets, followed by PCR
to introduce primers compatible with 454 sequencing; UV 365 nm
crosslinked sample RNAs were processed using Solexa sequencing
adapter sets. Depending on the amount of RNA recovered, 5’-adapter-
3’-adapter products without inserts may be detected after amplification
of the cDNA as additional PCR bands. In such case, the longer PCR
product of expected size was excised from a 3% NuSieve low-melting
point agarose gel, eluted from the gel pieces with the Illustra GFX-PCR
purification kit (GE Healthcare) and Solexa sequenced.
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Oligonucleotide transfection and mRNA array analysis

siRNA, miRNA and 2’-O-methyl oligonucleotide transfections of
HEK293 T-REx Flp-In cells were performed in 6-well format using
Lipofectamine RNAiMAX (Invitrogen) as described by the manufac-
turer. Total RNA of transfected cells was extracted using TRIZOL
following the instructions of the manufacturer. The RNA was further
purified using the RNeasy purification kit (Qiagen). 2 µg of purified
total RNA was used in the One-Cycle Eukaryotic Target Labeling
Assay (Affymetrix) according to manufacturer’s protocol. Biotinylated
cRNA targets were cleaned up, fragmented, and hybridized to Human
Genome U133 Plus 2.0 Array (Affymetrix). For details of the analysis,
see Bioinformatics section.

Generation of Digital Gene Expression (DGEX) libraries

1 µg each of total RNA from HEK293 cells inducibly expressing tagged
IGF2BP1 before and after induction was converted into cDNA libraries
for expression profiling by sequencing using the DpnII DGE kit (Illu-
mina) according to instructions of the manufacturer. For details of the
analysis, see Bioinformatics section.

a.2 bioinformatics analyses

Adapter removal and sequence annotation

The basic method for removing adaptors and assigning a functional
annotation to the sequence reads was described in Berninger et al.
Briefly, we used an in-house ends-free local alignment algorithm (score
parameters: 2 for match, -3 for mismatch, -2 for gap opening, -3 for gap
extension) to align the Solexa adapter to the 3’ end of each sequence
read, allowing for the possibility that the adapter was not completely
sequenced2. We removed from the reads the fragments that aligned
to the adaptor as long as the number of matches exceeded that of
mismatches by at least 3. Sequences that were either too short (less
than 20 nt) or too repetitive (using a cut-off of 0.7 and 1.5 in the entropy
of the mono- and dinucleotide distributions, respectively, of individual
sequence reads [14]) were discarded because they would probably
map to multiple genomic locations. The remaining sequences were
mapped to the hg18 version of the human genome assembly that was
downloaded from the University of California at Santa Cruz 3 and to
a database of sequences whose function (rRNA, tRNA, sn/snoRNA,
miRNA, mRNA, etc.) is already known. These were obtained from

2 Software can be downloaded from http://www.mirz.unibas.ch/restricted/

clipdata/RESULTS/index.html

3 http://genome.cse.ucsc.edu

http://www.mirz.unibas.ch/restricted/clipdata/RESULTS/index.html
http://www.mirz.unibas.ch/restricted/clipdata/RESULTS/index.html
http://genome.cse.ucsc.edu
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the sources specified in Berninger et al. The Oligomap algorithm [14]
was used for this purpose, and all the perfect and 1-error (mismatch
or insertion or deletion (indel) mappings were obtained. Based on
the GMAP [194] genome mapping of human mRNA transcripts from
NCBI downloaded on November 4th, 2008, we determined whether
the sequence reads mapped to intronic or exonic regions of genes.
Based on the coding region annotation of transcripts in GenBank, we
determined whether the exonic sequence reads originated from the
5’UTR, CDS or 3’UTR.

Generation of clusters of mapped sequence reads

For subsequent analyses only sequence reads that were at least 20

nucleotides long and mapped uniquely to the genome with at most
one error were used. A single-linkage clustering of the sequence
reads was performed, with two reads being placed in the same clus-
ter if they overlapped by at least one nucleotide in their genomic
mappings. Each cluster was then annotated based on the functional
annotation of sequence reads that covered most of the cluster length.
We then considered all the mRNA-annotated clusters containing at
least 5 mRNA-annotated sequence reads, and we defined a scoring
scheme to identify the clusters that had the highest probability of be-
ing real crosslinking sites (see below: Identification of high confidence
clusters).

Analysis of the mutational spectra

From the clusters defined above, all sequence reads were used that
mapped uniquely and with one error (mismatch or indel) to the
genome to infer the mutational bias of the method. For each library,
we calculated the proportion of mutations involving each of the four
nucleotides as well as the proportion of each of the four nucleotides
in the crosslinked sequence reads (see Figure 20B,C).

Identification of high-confidence clusters

We used the crosslinked clusters of PUM2 and QKI, to define criteria
for selecting high-confidence binding sites. The criteria that we tested
reflected the mechanistic aspects of generating the sequence reads.
Our preliminary analysis revealed that T to C mutations are by far the
most frequently observed mutations in these data sets, and that they
are most frequent inside or in the immediate vicinity of the binding
motifs as opposed to the rest of the sequence (see Figures 2E, 3E,
and 4E). This suggested that the observed mutational bias is directly
linked to the crosslinking event and should thus be a good criterion
for separating true crosslinked sites from background sequence reads.
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The preliminary analysis also indicated a strong bias for having G
nucleotides at the last position of a sequence read and also at the
genomic position immediately upstream of a sequence read. This
bias reflects the sequence specificity of the RNase T1, and may again
help in the identification of sequence reads that map to multiple sites
or for discriminating random RNA turnover products unrelated to
RNase T1 treatment. Finally, we observed that many clusters with
abundantly sequenced reads contained more than one position with a
T to C mutation. The results of testing these criteria for their ability
to select clusters that contained the known binding motif for QKI
and PUM2 are shown in Figure 21. For QKI, binding motifs were
defined as occurrences of ACUAA or AUUAA, which we identified
from a very small number of clusters. The first of these motifs was also
identified previously through SELEX experiments [47]. For PUM2, in
order to account for additional motif variants besides the consensus
UGUANAUA, binding motifs were identified as matches to the weight
matrix (as inferred by MotEvo [181] that resulted from the motif search
(see below). We found that ranking of the clusters by the number of
T to C mutations in all reads in the clusters of sequence reads leads
to the strongest enrichment in clusters with a binding site (Figure 21).
The figures show the fraction of the crosslinked clusters that contain
at least one occurrence of the known binding motif as a function of the
number of clusters that passed a given cut-off in the selection criterion
(e.g. total number of sequence reads, total number of T to C mutations,
total number of sequence reads with a G at position -1 relative to their
genomic locus). The cut-off decreases from the left to the right of the
x-axis. It is clear that, particularly for PUM2, the number of T to C
mutations strongly correlates with the presence/absence of the motif
in the cluster. For comparison, we also show the same plots when
using as the ranking criterion not the total number of T to C mutations
in the cluster, but just the total number of sequence reads per cluster.
For QKI, this leads to a significantly lower enrichment of clusters
with recognition elements. We also investigated how the fraction of
clusters with the known binding motif depends on the number of
distinct crosslinking positions (i.e. positions with at least one T to C
mutation) inside the cluster (Figure 21). The fraction of clusters with a
binding site increases steadily from 0 to 5 crosslinking positions for
both proteins, with the strongest increase from 0 to 1 for PUM2 and
between 0 and 2 crosslinking positions for QKI. When requiring that
at least two positions with T to C mutations are present in the cluster,
the fraction of clusters with a binding site increases roughly by 20 %
for PUM2, and by more than 40 % for QKI. These considerations led
us to the following procedure for defining high confidence clusters
for any given RBP. We first selected all the clusters with at least two
crosslinking positions and, secondly, within this subset, we ranked all
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clusters by the total number of T to C mutations in all sequence reads
in the cluster.

Extraction of peaks and crosslink-centered regions (CCRs) from sequence read
clusters

From each ranked, mRNA-annotated cluster, a peak region, defined
as a 32-nt long region with the highest average sequence read density,
was extracted. Because the T to C mutation was diagnostic for the site
of crosslinking, we focused our motif analysis on regions anchored
at the position in a cluster with the most T to C mutations. We then
investigated the mutational profile around this position and we found
that this profile approaches the background profile after about 20 nt
to the left and right of the main site of T to C mutations. Thus, these
41-nt long regions centered on the main site of T to C mutations are
most likely to contain the binding sites and we focused our motif
search on these regions.

RNA recognition element search

For the motif search defining the core of a RNA recognition site we
selected, for each RBP, the top 100 high confidence clusters, defined as
described above. We selected the 41-nt region centered on the main T
to C mutation site and searched for over-represented sequence motifs
using PhyloGibbs [160]. We used a first-order Markov model as the
background model and searched each set of sequences for three motifs
of lengths varying between 4 and 8 nt, demanding an expected total
number of 50 motifs. For each parameter setting, we performed five
replicate runs. This generally resulted for each RBP in various shifted
versions of the same motif. Therefore we hierarchically clustered all
the weight matrices that we obtained from these runs, allowing for
partial overlap of at least 4 nucleotides between pairs of weight matri-
ces. In the clustering procedure, two weight matrices were fused if the
posterior probability of their stemming from the same as opposed to
two different probability distribution was larger than 0.2 (for a descrip-
tion of the Bayesian calculation, see Berninger et al.). Replicating this
procedure multiple times yielded very similar results (not shown). For
each protein, we selected the largest cluster of weight matrices, i.e. the
cluster that contained most of the weight matrices that we obtained
in replicate runs, and created the final weight matrix by summing
up the counts for each nucleotide of the weight matrices belonging
to this cluster. Since the clustering procedure also allows the fusion
of only partially overlapping weight matrices, the resulting weight
matrices are typically longer (roughly 10 nucleotides) than the motif
length that we imposed in individual runs, and can contain stretches
of low information content. We therefore selected for each RBP, the
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window with highest information content. For PUM2 and QKI, the
length of this window was 8 and 6 nt, respectively, in accordance with
the known or expected consensus motifs [47, 53], respectively. For the
IGF2BPs, we chose a window length of 4 nt, which is believed to be the
size of binding motifs of KH-domains [180]. To identify binding sites
in PUM2 clusters of aligned sequence reads using the inferred weight
matrix, we used the MotEvo algorithm [181], which is based on a
hidden Markov model that models the input sequences as contiguous
stretches of nucleotides drawn from a background or a weight ma-
trix model. We chose for the background a first order Markov model
(which makes every nucleotide dependent on the preceding nucleotide
in the sequence). The background model parameters (dinucleotide
frequencies) were estimated from the set of input sequences. MotEvo
was run in the prior-update mode, meaning that we attempted to
find the prior probabilities for sites and background that maximize
the likelihood of the sequence data. MotEvo generates as an output
a list of sites for the given input weight matrix as well as their cor-
responding posterior probabilities. Note that not all matches to the
weight matrix are reported, but only the subset of matches whose
corresponding sequence is more likely under the weight matrix model
than the background model. We chose a cut-off of 0.4 on the posterior
probability to define the set of binding sites.

Determination of the location of sequence read clusters within functional
mRNA regions

For each RBP, we investigated whether clusters of mapped sequence
reads preferentially originated in 5’UTR, CDS or 3’UTR (Figure 20A).
As a result of our annotation pipeline, we could assign probabilities
to each cluster to belong to either 5’UTR, CDS and 3’UTR based on
the annotation of individual sequence reads within the cluster (see
above). Taking together these probabilities for all clusters, we obtained
estimates of the numbers of clusters originating in each of these three
regions. We compare these numbers to those that we would expect if
clusters were sampled uniformly from anywhere along the transcripts.
This would for instance result in many more clusters from 3’ compared
to 5’UTR regions simply because 3’UTRs tend to be longer than the
5’UTRs. We determined all the transcripts to which a cluster mapped,
and based on the GenBank annotation of the CDS of these transcripts,
we calculated the fraction of the cluster nucleotides that fell in the
5’UTR (f5), CDS (fCDS), and 3’UTR (f3). In the cases in which the
cluster mapped to several transcripts belonging to the same gene, these
fractions were averaged over all transcripts. The expected proportion
of nucleotides sequenced from each region was calculated by summing
these fractions for all clusters. The variance was determined by noting
that the probability that a nucleotide was sampled from a particular
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region, e.g. 5’UTR, is Bernoulli distributed with parameter f5, which
has a variance of f5(1− f5). The total variance was then computed as
the sum of all the variances.

Distance distribution between consecutive CAU-motifs in the IGF2BP RNA
binding sites

Since each of the IGF2BPs has 4 KH domains and we found only
one clear motif, we hypothesized that all KH domains have the same
or a very similar binding specificity. In analogy to what has been
observed for the neuronal RBP involved in splicing, Nova [178], we
propose that the binding specificity of the IGF2BPs arises from the
concerted action of several KH-domains that each recognize the same
4 letter sequence (CAUH), which should be apparent by a preferred
spacing between subsequent occurrences of the motif as determined
by the distance of corresponding KH-domains in the structure of the
IGF2BPs. We calculated, for each IGF2BP separately, the distribution
of distances between subsequent occurrences of the CAU-motif in
clusters unambiguously derived from the 3’UTR of protein coding
genes. We restricted ourselves to these clusters since 3’UTR regions
are overrepresented in clusters of the IGF2BPs and each region, 5’UTR,
CDS and 3’UTR, has different sequence biases that need to be taken
into account when modeling background distributions. In order to
reduce boundary effects due to the finite length of the clusters, we
extended each cluster region 32 nt to the right and left4. We then
compared this distance distribution to the distance distribution of
consecutive occurrences of the CAU motif in randomly chosen 3’UTR
regions of the same length distribution as the clusters of mapped
sequence reads. To estimate the mean and standard deviation of
the relative frequency of each inter-motif distance in the background
dataset, we repeated the random selection of 3’UTR regions 1000

times.

Enrichment of identified binding motifs in all clusters

We defined the binding motifs for PUM2, QKI and IGF2BPs using a
subset of high-confidence clusters for each protein. To determine to
what extent these motifs were indeed representing the binding sites
of the proteins in the complete data sets, we collected, for each pro-
tein and for each cluster, all the respective crosslink-centered regions
(CCRs) and ranked them by the number of T to C mutations. We then
calculated for varying cut-offs on the number of T to C mutations the
fraction of clusters above the given cut-off that contain at least one
binding site (Figure 22, blue traces). The binding site was defined to

4 The genomic regions are shown on the website http://www.mirz.unibas.ch/

restricted/clipdata/RESULTS/index.html

http://www.mirz.unibas.ch/restricted/clipdata/RESULTS/index.html
http://www.mirz.unibas.ch/restricted/clipdata/RESULTS/index.html
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be UGUANAUA for PUM2, ACUAA or AUUAA for QKI and CAU or
two CAUs separated by no more than 10 nucleotides for the IGF2BPs.
To estimate the number of sites expected by chance, we generated
1000 sets of random sequences with the same nucleotide frequencies
as the CCRs (dinucleotide shuffling for PUM2 as well as QKI and
mononucleotide shuffling for the IGF2BPs, due to the small length of
the binding motif). For all proteins, the CCRs are clearly enriched in
the respective binding motifs. The enrichment is strongest for PUM2,
which has the longest recognition motif. For the IGF2BPs, the en-
richment for the CAU-spacer-CAU motif is much stronger than for
the CAU motif due to the clustering of the CAU motif (see previous
section). For PUM2, we additionally determined the enrichment only
for the first half of motif UGUA. This short motif is clearly enriched
and is contained in more than 72 percent of all CCRs, suggesting the
presence of other variants of the PUM2 motif besides the consensus
UGUANAUA.

Analysis of siRNA knockdown experiments

We imported the CEL files into the R software (http://www.R-project.
org) using the BioConductor affy package [51]. The transcript probe
set intensities were background-corrected, adjusted for non-specific
binding and quantile normalized with the GCRMA algorithm [195].
Probe sets with more than 6 of the 11 probes mapping ambiguously
to the genome were discarded, as were probe sets that mapped to
multiple genes. We then collected all probe sets matching a given
gene, and we selected for further analysis the RefSeq transcript with
median 3’UTR length corresponding to that gene. In total 16,063

transcripts were identified. The log-intensity of probe sets mapping to
the gene were then averaged to obtain the expression level per RefSeq
transcript. The changes of transcript abundances were computed as
the logarithm of the ratio of transcript expression in the cocktails of
siRNA treated samples and mock-transfected cells.

To study the effect of individual proteins on the mRNA stability of
their targets, we performed the following analysis. We first made the
links between clusters of mapped Solexa sequence reads and expres-
sion data based on the NCBI Gene ID. That is, both the transcripts
that were crosslinked and those whose expression was measured on
microarrays have associated Gene IDs in the Gene database of NCBI.
We mapped both the mapped sequence read clusters as well as the
transcripts on microarrays to their corresponding genes, and thus iden-
tified which genes that were represented on microarrays have been
crosslinked. From this set of genes we removed those that are likely
off-targets of the transfected siRNAs. As previous studies showed,
complementarity to the first 8 nucleotides of the miRNA is a good indi-
cator that the transcript will be downregulated by a miRNA or siRNA,

http://www.R-project.org
http://www.R-project.org
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so we defined as putative off-targets those genes whose representative
RefSeq transcripts carried such complementary sites in their 3’UTR.
We divided the list of genes sorted by the maximum score of any
cluster associated with a given gene. In order to improve the target
identification and the assessment of the target response, we used some
specific information that was available for individual data sets. For
instance, for the IGF2BPs we only considered clusters with at least 2

positions of T to C changes, because we previously observed that this
criterion improves the accuracy of target identification for the PUM2

and QKI. Thus, for the IGF2BPs we divided the bound transcripts into
the following bins, top 100 genes, 101th - 300th genes, 301th -500th
genes and 501th -1000th genes, 1001th-2000th, 2001th-3497th, and
calculated the log2fold change of transcript abundance. To determine
whether the siRNA knockdown has an effect on mRNA stability, we
compared these distributions with the distribution of log-fold changes
of genes that did not have any associated clusters from CLIP analysis.
For QKI, we performed the same analysis starting from clusters with
a single T to C mutation site, but that additionally contained the QKI
motif.

Generation and ranking of clusters of mapped sequence reads for AGO and
TNRC6 family PAR-CLIP

To generate sequence read clusters for the cDNA libraries from the
AGO and TNRC6 PAR-CLIP we used sequence reads of at least 20 nt
in length and with unique, perfect or 1-error mapping to the genome.
We clustered the reads with single-linkage criterion, meaning that
we placed two reads in the same cluster if they overlapped by at
least one nucleotide in their genomic mappings. We then selected
the clusters that contained at least 5 mRNA-annotated reads and at
least 2 positions at which T to C mutations occurred in the sequence
reads relative to the genomic sequence, and we ranked them by the
total number of T to C mutations which, as we described above, is
indicative of the number of crosslinks.

Definition of CCRs for sequence read clusters of AGO and TNRC6 PAR-CLIP

In each ranked, mRNA-annotated cluster we identified the position
with the largest number of T to C mutations, and we constructed
the mutation frequency profile around this position. We found that
this profile approaches the background after about 20 nucleotides
to the left and right of the position with the maximum number of
T to C changes, and we therefore extracted a genomic region of 41

nucleotides centered on this position for further analyses.
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Filtering to remove unspecific “background” clusters for AGO and TNRC6

Because it is still possible that a substantial number of the clusters
we obtained contain degradation products of abundantly expressed
mRNAs and because a number of proteins that associate with the
RISC complex have a molecular weight that is similar to that of AGO
proteins and may be responsible for some of the sequence reads/clus-
ters that we obtained in the experiment with FLAG-tagged AGO we
have collected PAR-CLIP data for a number of proteins and identified
the AGO-specific clusters as follows. We built similar clusters for all
the proteins that we investigated (PUM2, QKI, IGF2BP1-3, AGO1-4,
TNRC6A-C), we compared the clusters, and when two clusters bound
by two different proteins overlapped by more than 75% of their total
length we considered that the two proteins shared a cluster. Finally,
we discarded the following AGO clusters: clusters in which no posi-
tion had a T to C mutation rate greater than 0.2, the experimentally
determined T to C mutation rate at non-crosslinked sites; clusters
that were shared between AGO libraries and libraries of other RBPs,
with the number of sequence reads in the AGO libraries being less
than 1/10 of the number of sequence reads in the other library. After
applying these filters we obtained 17,319 AGO1-4 binding regions.
We applied the same procedure to the clusters that we obtained from
miR-124 and miR-7 transfection experiments.

Analysis of crosslinked position with respect to miRNA seed-complementary
sequence

We identified all the target regions (T to C anchored regions of 41

nucleotides) that have an 8-mer (A opposite miRNA position 1 and
perfect match at miRNA positions 2-8) seed match and we extended
symmetrically the seed-complementary region by 20 nt to the left and
right. We then computed the positional T to C mutation frequency in
these regions and normalized it over the length of the target region.

Identification of pairing regions of miRNAs within CCRs

To determine whether positions other than the seed region may be
involved in base-pairing interaction with targets, we first took the T
to C anchored target regions and identified those that had at least
a 6-mer (2-6 and A opposite miRNA position 1, 2-7 or 3-8) seed
complementarity to at least one of the top 100 most expressed miRNAs
in HEK293 cells. For each of these T to C anchored regions and
each miRNA that matched to it, we identified all the occurrences of
complementarities of at least 4 nucleotides between the miRNA and
the putative target region. Each of these was counted with a weight
1/n towards the positional profile of miRNA-target site matches, with
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n being the number of miRNAs that matched the putative target
region.

Analysis of transcript stabilization as a function of the type of miRNA
binding sites

We constructed the distribution of log-fold-changes of transcripts with
various types of PAR-CLIP clusters, and we compared them with
the distribution of log-fold-changes of transcripts that did not yield
PAR-CLIP clusters, although they were expressed, as determined by
the microarray measurements. The categories of transcripts were the
following:

1. Transcripts with various types of miRNA seed matches

• At most 6-mer match: 1-6 (with A opposite miRNA position
1), 2-7, 3-8, 4-9 match to at least one of the top 100 most
abundant miRNAs.

• At most 7-mer match: 1-7 (with A opposite miRNA posi-
tion 1), 2-8, 3-9 match to at least one of the top 100 most
abundant miRNAs.

• At most 8-mer match: 1-8 (with A opposite miRNA position
1), 2-9 match to at least one of the top 100 most abundant
miRNAs.

• At most 9-mer match: 1-9 (with A opposite miRNA position
1) match to at least one of the top 100 most abundant
miRNAs.

2. Transcripts with PAR-CLIP clusters originating exclusively in a
particular transcript region (5’UTR, CDS, 3’UTR).

3. Transcripts with 1, 2, 3, 4 or more non-overlapping PAR-CLIP
clusters.

Digital Gene Expression (DGE)

The sequence reads from the DGE (Illumina) experiments have been
analyzed in a manner similar to that described above in the section
"Adapter removal and sequence annotation". We only considered
genomic and transcript matches containing the GATC recognition
sequence of the DpnII restriction enzyme directly upstream of the
mapped sequence read. For our analyses we further used sequence
reads that had a perfect match in the genome. The probability that a
sequence read originates in a given locus was then computed as 1/n
of loci to which the sequence read can be mapped. The sequence reads
were also mapped to the mRNA sequences and then we computed an
expression level per gene. This was defined as the sum of the weighted
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copies of all sequence reads that can be mapped to transcripts that
originate in that gene. Finally, to assess the accuracy of the expression
level measurements, we correlated the logarithm of the expression
level measured Affymetrix GeneChip microarray with the logarithm
expression level measured using the DGE technology. The Spearman
correlation coefficient was 0.68. We found a considerable number of
transcripts that could be detected by sequencing (22,465) and that
were undetectable on the microarrays (on which we measured 16,063

transcripts). Correlation between biological replicates of HEK293 cells
was higher than 0.99.

Analysis of miRNA-induced destabilization of crosslinked and non-crosslinked
miR-124 and miR-7 targets

We intersected the transcripts with the background-noise-filtered PAR-
CLIP clusters obtained after miR-124 and miR-7 transfection (see
âFiltering to remove unspecific âbackgroundâ clusters for AGO and
TNRC6â section above) with those for which we had destabilization
and AGO-IP Affymetrix microarray measurements. We then con-
structed, for each miRNA, three non-overlapping sets of transcripts:
those with PAR-CLIP clusters exclusively in the 3’UTR, with PAR-CLIP
clusters exclusively in the CDS, and transcripts that did not yield any
PAR-CLIP clusters. For each set, we computed the average log2 fold
change upon miRNA transfection, and the average log2 fold enrich-
ment in the AGO-IP. We compared these values between transcripts
with and transcripts without PAR-CLIP clusters (Figure 26). The error
bars on the bar plot represent 95% confidence intervals on the mean
log2 fold changes. Finally, we performed Wilcoxon’s rank sum test
to assess the significance of the difference in the log2 fold changes
of pairs of transcript sets. We also looked at various combinations of
CLIP cluster locations (Figure 26) that occurred more than 25 times
in a given data set. Finally, we compared the destabilization and
AGO-binding of crosslinked and non-crosslinked single miR-124 and
miR-7 seed matches (Figure 26). A seed match was defined as a match
to nucleotides 1-7, 2-8 or 1-8 of the miRNA (both miRNAs start with U,
so a 1-7 or 1-8 seed match also means having an A opposite nucleotide
1 of the miRNA). A seed match was considered "crosslinked" if it
overlapped with a CLIP cluster from the corresponding transfection
library.

Estimation of miRNA expression based on SOLEXA sequencing

The miRNA profile was generated from Solexa sequencing runs con-
taining small RNAs from the following libraries: AGO1- IP and lysates
of AGO1-4 IP, which were combined and denoted lysate in Figure 5C.
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The miRNA annotation was preformed as described in Berninger
et al., Landgraf et al.

Plots of motif frequency versus enrichment

We performed a 7-mer word enrichment analysis based on the T to C
anchored target regions from the miRNA transfection experiments. We
enumerated all words of length 7 and we determined their frequency
in the real set as well as in a background set of shuffled sequences with
the same dinucleotide content. For each 7-mer, we then calculated
its enrichment as the ratio of the two frequencies. Additionally, we
calculated for each 7-mer the posterior probability that the frequency
of the 7-mer is different in foreground and background allowing
for sampling noise [14]. To determine whether the enriched motifs
may correspond to miRNAs, all significantly enriched motifs (with
a posterior > 0.99) were aligned with Needleman-Wunsch algorithm
(penalties: gapopening -4, gapextension -4) to the reverse complement
of the transfected and to the top 20 most expressed in HEK293 miR-
NAs. We only reported cases in which the enriched word mapped
with 0 or 1 errors to the first 9 positions of one of these miRNAs.

Identification of significantly enriched types of miRNA binding sites

In order to identify individual miRNA binding sites in the sequence
data we first defined a set of putative “binding models”. These were
either contiguous matches to at least 6 nucleotides of a miRNA, or
matches that had a single structural defect. This was defined as either
an internal loop or a bulge either in the miRNA or in the mRNA. For
each of the 553 miRNAs we enumerated all these binding models,
and we determined the enrichment of the T to C anchored regions
in each of these models, relative to the average over 10 dinucleotide
randomized sequence sets. Using a cutoff of 10−20 in the probability
that the real set had a lower frequency of occurrence compared to
the randomized sets, which we used as a measure of the significance
of the enrichment, we found all the T to C anchored regions that
contained at least one significantly enriched binding model from one
of the top 100 most expressed miRNAs within 10 nucleotides of the
T to C mutation site. To obtain a comprehensive list of target sites
we added to these the 7-mer nucleotide matches (within the same 10

nucleotides of the T to C mutation) to positions 1-7 or 2-8 of one of
the top 100 most expressed miRNAs, irrespective of whether the T to
C anchored regions were enriched in these 7-mers.
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Correlation of miRNA seed family expression with frequencies of occurrence
of seed-complementary motif

From all samples of smirnadb [104], all miRNAs that had at least
50 counts in total from all samples were used to build seed groups
(defined by the motif found at positions 2-8). We added an additional
sample, which was generated by pooling together the miRNA reads
from deep sequencing of HEK293 small RNA as well as AGO1-4 IPs
without crosslinking. For each sample, we computed the expression
of a seed group as the sum of the sequence reads of all miRNAs that
were part of the seed group. We correlated the seed expression with
the frequency of the seed-complementary motif in the T to C anchored
regions.

Co-occurrence of miRNA seed pairs within CCRs

To determine if the crosslinked regions are enriched in pairs of binding
sites for highly expressed miRNAs. Assuming that not all of these
sites may have been captured in our experiment, we used for this
purpose the 17,319 cluster regions that we extended by 32 nucleotides
on either side. We scanned these regions for non-overlapping 7-
mers corresponding to the positions 2-8 of the top 20 most expressed
miRNAs in HEK293 cells. We performed a similar procedure using
100 randomized variants of the extended clusters that preserved the
dinucleotide composition. As additional controls we performed, first,
the same procedure using 20 randomly selected miRNAs (Figure 25F)
and secondly counting of the number of seed match pair occurrence
in the extended clusters for 100 sets of 20 randomly selected miRNAs
(Figure 25H). A visualization of seed match pair occurrence is shown
in Figure 25G.

Properties of crosslinked and non-crosslinked miRNA seed matches

For the analyses whose results are presented in Figure 26, we needed
to intersect the CLIP transcript sets with the transcript set measured
by the Affymetrix microrray. In order to study the properties of
crosslinked and predicted but non-crosslinked seed complementary
matches we do not need to make this intersection, and we therefore
considered the entire set of miRNA seed matches that are present in
the representative RefSeq transcripts. We chose as the representative
RefSeq transcript for a given gene that transcript that had the median
3’UTR length from all RefSeq transcripts corresponding to a gene.
RefSeq transcripts that could not be detected in the DGE transcriptome
profiling were discarded. For the analysis of the miR-124 and miR-
7 transfection libraries, we scanned the 5’UTR, CDS and 3’UTRs
of representative expressed RefSeq transcripts for 7-mer or 8-mer
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seed matches to miR-124 or miR-7, and intersected these with the
background-noise-filtered miR-124 and miR-7 PAR-CLIP clusters to
identify the crosslinked and non-crosslinked seed matches. In parallel,
we scanned the 5’UTR, CDS and 3’UTRs of representative expressed
RefSeq transcripts for 7-mer and 8-mer seed matches to miR-15, miR-
20, miR-103, miR-19, let-7 representing the top expressed miRNA
families in HEK293 cells. These seed matches were then separated into
crosslinked and non-crosslinked based on the intersection with the
background-noise-filtered AGO1-4, PAR-CLIP clusters. Furthermore,
because we wanted to analyze properties of the environment of the
putative miRNA target sites, we only considered seed matches located
at least 100 nucleotides away from either of the boundaries of the
transcript. For each individual seed match, we computed the following
quantities:

selection pressure is the posterior probability that a seed com-
plementary region is under evolutionary selection pressure, as
computed by the ElMMo algorithm described in Gaidatzis et al.

predicted destabilization score is a score that characterizes
the extent to which the environment of a seed match is favorable
for its functionality in mRNA destabilization, as computed by
the TargetScanS method [61]. For the analysis, we downloaded
the TargetScan 5.1 from the www.TargetScan.org website.

local au content is the proportion of A + U nucleotides within
50 nucleotides upstream and 50 nucleotides downstream of the
miRNA binding site, defined as a 20 nt-long region, anchored at
the 3âend by the seed-matching region.

target site eopen is similarly defined in terms of the energy re-
quired to open the secondary structure of the target in a region of
20 nucleotides anchored at the 3’ end by the seed-complementary
region (opposite positions 1-8 of the miRNA). This was com-
puted using the program RNAup of the Vienna package [76]
with the following parameters: u=20 (length of the window
required to be single-stranded), w=50 (maximal length of the
interacting region). The rest of the parameters were left with
their default values. The negative value of this energy can be
viewed as a measure of accessibility.

We tested whether the four properties introduced above took signifi-
cantly different values when comparing crosslinked to non-crosslinked
seed matches using Wilcoxon’s rank sum test.

Codon adaptation index around crosslinked and non-crosslinked seed matches

We compared the Codon Adaptation Index (CAI) [158] around crosslinked
and non-crosslinked seed matches as follows. We estimated an optimal

www.TargetScan.org
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human codon usage by analyzing all the CDS from the 25% highest
expressed genes among all the genes expressed in at least one of the
two “whole brain” samples of the SymAtlas project [168]. This set of
genes was determined by reanalyzing the two Affymetrix CEL files
using the pipeline described above in the ’Analysis of miRNA knock-
down and overexpression experiments’ section. We then anchored all
sequences at the codon covering the 5’ end of seed match (1-7, 2-8, or
1-8 of miR-15, miR-20, miR-103, miR-19, let-7 miRNAs) and computed
the CAI for the 70 codons upstream and downstream of the anchor,
i.e. a total of 141 codons. The 7-mer or 8-mer seed match is entirely
covered by codons 0, 1 and 2, which highly constrains the codon usage
at these positions, making it uninformative. The figure therefore does
not show the CAI at these positions. For crosslinked seed matches, we
smoothed the profile using a moving average of 5.

Analysis of positional bias of crosslinked and non-crosslinked regions

We set to determine whether crosslinked seed matches (1-7, 2-8, or 1-8
of miR-15, miR-20, miR-103, miR-19, let-7 miRNAs) have a positional
bias relative to the STOP codon. Noting that at least in the 4 AGO
PAR-CLIP libraries, crosslinked seed matches tended to be located
in CDS of shorter lengths than their non-crosslinked counterparts,
we performed local polynomial regression [21], fitting the distance
between the seed matches and the STOP codon to the CDS length
(Figure 26M,N). The loess fit and 95% confidence interval on the
distance to the STOP codon given the CDS length were obtained using
R’s loess and predict loess functions with default parameters. The
miRNA transfection and AGO PAR-CLIP libraries were separately
analyzed, and loess fits were computed separately for crosslinked
and non-crosslinked seed matches (Figure 26K-N, shown in red and
black, respectively). Finally, we represented the expected distance to
the STOP codon as a function of the CDS length assuming that seed
matches are distributed uniformly over the CDS (dashed blue curve).
We used the same methodology to determine whether crosslinked
sites are located preferentially towards a 3’UTR boundary (stop-codon
or polyA-tail) instead of the stop-codon.

Comparison of the set of targets determined by the experimental assay (PAR-
CLIP) and computational methods (ElMMo, TargetScan 5.1)

We computed the number of seed matches to each of the top 5 ex-
pressed miRNA families in the top 1000 CCRs from the AGO-PAR-
CLIP. For each of these 5 miRNA families, we selected an equal
number of target sites predicted by the ElMMo method, located on the
mRNAs that could be detected in the DGE expression profiling (i.e.
with at least one tag count), and starting from targets predicted with
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highest confidence. In addition, only genes that are expressed above
the median on the arrays (i.e., the arrays in which the miRNAs are
inhibited or not present) were considered in the analysis. We repeated
the procedure using the TargetScan context scores, TargetScan PCT
and Pictar. The ElMMo and TargetScan miRNA prediction methods
only scan the mRNA 3’UTRs for target sites. Therefore, we determined
a fourth set of miRNA target sites through keeping only the CCRs
harboring a seed match to at least one of the top 5 miRNA families,
and located in the 3’UTR region of an mRNA. Finally, for each of
these 6 sets of miRNA targets and each of the top 5 miRNA families,
we determined the average log2 fold change in gene expression upon
transfecting the antisense 2’-O-methyl oligonucleotide cocktail as well
as the 95% confidence interval on the mean log2 fold change. We
performed the same analysis on the miR-7 and miR-124 transfection
data sets, this time analyzing only CCRs containing seed matches to
miR-7 or miR-124.

Stability of transcripts containing CCRs with 6-mer seed complementary
matches

For all mRNAs representative of genes detected through DGE profil-
ing, we computed the number of 3’UTR-located 6-mer and 7-mer (or
longer) seed matches to the top 5 expressed miRNA families. We then
plotted the mean log2 fold change in gene expression following the
transfection of the antisense 2’-O-methyl oligonucleotide cocktail as a
function of the number of 6-mer and 7-mer (or better) seed matches,
as well as the 95% confidence interval on the mean log2 fold change.
Finally, we performed the same analysis on the miR-7 and miR-124

transfection data sets, this time analyzing only seed matches to miR-7
and miR-124.

a.3 supplementary tables

Supplementary tables S1 to S7 are available in the online supplemen-
tary material of Hafner et al.

a.4 supplementary figures
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Figure 20: Analysis of PUM2-PAR-CLIP clusters. Related to Figure 2.
(A) Analysis of the transcript regional preferences and the mu-
tational pattern of crosslinked sequences of PUM2. The number
of exonic sequence read clusters annotated as derived from the
5’UTR, CDS or 3’UTR of a target transcript is shown (green bars).
Yellow bars show the expected location distribution of clusters
if PUM2 binds without regional preference to the set of target
transcripts. (B) Mutational pattern observed with 4SU-PAR-CLIP
for PUM2. The left panel indicates the mutation frequency of
each of the four nucleotides relative to the frequency of occur-
rence of these nucleotides in all sequence reads; the right panel
shows, for each of the four nucleotides, the frequency of muta-
tion towards each of the three others. In the right panels, white
indicates high mutation frequency towards a particular nucleotide.
4SU-PAR-CLIP yields about a 15-fold increased mutation prefer-
ence for T, nearly always to C. (C) Fraction of clusters containing
the PUM2-recognition motif, versus the total number of clusters
above a given cut-off on a particular property as indicated in
each figure legend (G upstream: number of sequence reads with
a G at position -1; T to C: number of sequence reads with a T
to C mutation; number of sequences: total number of sequence
sequence reads in the cluster, number_of_Us: number of uridines
in the sequence read cluster). For each cut-off on a given property,
the fraction of clusters with at least one binding site above the
given cut-off is shown. Cut-off increases from right to left. The
best signal is obtained by sorting according to the frequency of
crosslinking events. (D) The increase in T to C transitions after
4SU-protein crosslinking can be rationalized by structural changes
in donor/acceptor properties of 4SU after crosslinking to proximal
amino acid side chains and subsequent incorporation of dG rather
than dA in the reverse transcription; R representing a side chain.
(E) Fraction of clusters with the recognition element (as indicated)
for PUM2 versus the number of distinct crosslinking sites within a
cluster indicated by a T to C change. (F-H) Enrichment of binding
motifs for PUM2 for the consensus motif UGUANAUA
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Figure 21: Analysis of QKI-PAR-CLIP clusters. Related to Figure 22. (A)
Analysis of the transcript regional preferences and the mutational
pattern of crosslinked sequences of QKI. The number of exonic
sequence read clusters annotated as derived from the 5’UTR, CDS
or 3’UTR of a target transcript is shown (green bars). Yellow
bars show the expected location distribution of clusters if QKI
binds without regional preference to the set of target transcripts.
(B) Mutational pattern observed with 4SU-PAR-CLIP for QKI.
The left panel indicates the mutation frequency of each of the
four nucleotides relative to the frequency of occurrence of these
nucleotides in all sequence reads; the right panel shows, for each
of the four nucleotides, the frequency of mutation towards each of
the three others. In the right panels, white indicates high mutation
frequency towards a particular nucleotide. 4SU-PAR-CLIP yields
about a 6-fold increased mutation preference for T, nearly always
to C. (C) Fraction of clusters containing the PUM2-recognition
motif, versus the total number of clusters above a given cut-off
on a particular property as indicated in each figure legend (G
upstream: number of sequence reads with a G at position -1; T to
C: number of sequence reads with a T to C mutation; number of
sequences: total number of sequence sequence reads in the cluster,
number_of_Us: number of uridines in the sequence read cluster).
For each cut-off on a given property, the fraction of clusters with
at least one binding site above the given cut-off is shown. Cut-off
increases from right to left. The best signal is obtained by sorting
according to the frequency of crosslinking events. (D) Fraction
of clusters with the recognition element (as indicated) for QKI
versus the number of distinct crosslinking sites within a cluster
indicated by a T to C change. The fraction of sites containing at
least one recognition motif rises with the number of crosslinking
sites. (E) Enrichment of the A(C/U)UAA binding motif in CCRs
of QKI. Panel (F) shows the fraction of clusters with at least one,
two or three motifs. A significant fraction of clusters contains two
or more binding sites.
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Figure 22: Analysis of IGF2BP1-3-PAR-CLIP clusters. Related to Figure 4.
(A) Analysis of the transcript regional preferences and the muta-
tional pattern of crosslinked sequences of IGF2BP1-3. The number
of exonic sequence read clusters annotated as derived from the
5’UTR, CDS or 3’UTR of a target transcript is shown (green bars).
Yellow bars show the expected location distribution of clusters if
IGF2BP1-3 bind without regional preference to the set of target
transcripts. (B) Comparison of the mutational patterns observed
with traditional UV 254 nm CLIP of HEK293 cells stably express-
ing FLAG/HA-tagged IGF2BP1 and that observed with UV 365

nm CLIP of cells grown in 6SG or 4SU containing medium. For
each experimental condition two panels are shown: the left one
indicates the mutation frequency of each of the four nucleotides
relative to the frequency of occurrence of these nucleotides in all se-
quence reads; the right one shows, for each of the four nucleotides,
the frequency of mutation towards each of the three others. In the
right panels, white indicates high mutation frequency towards a
particular nucleotide. In general, transitions are more frequent
than other mutation types. Traditional 254 nm CLIP generates
mutations preferably on Gs (left panel). Mutations after UV254

CLIP were twice as frequent at G compared to any other position
(left panel) and predominantly identified as G to A transition
(shown by the matrix in the right panel). Treatment of cells with
6SG (middle two panels, top row) resulted in a marked preference
for mutations at G, about one order of magnitude compared to the
other nucleotides with a preferred substitution of the G with an
A. The preference for mutations at G is much more pronounced
relative to that observed in the 254 nm crosslinked cells. 4SU-CLIP
yields about a 30-fold increased mutation preference for T, nearly
always to C. (C) Same analysis as in (B) for IGF2BP2 and 3. The
mutational biases for these proteins are comparable. T is almost
exclusively targeted for mutation, and is preferentially sequenced
as C.
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Figure 22: (D) Distance between two neighboring CAU-motifs in crosslinked
IGF2BP1 PAR-CLIP clusters (blue line) and in randomized tran-
scripts (red line). CAU-motifs are enriched within 3-5 nt distance
of each other in the crosslinked regions compared to randomized
sequence sets. Only IGF2BP1 is shown because IGF2BP2 and 3

show the same results. (E-F) Enrichment of the CAU (E) or CAU-
N(0-10)-CAU (F) binding motif for IGF2BP1 over randomized
sequence sets of the same nucleotide composition. Equivalent
analyses for IGF2BP2 and IGF2BP3 yield similar results (data not
shown).
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Figure 23: Comparison of a 4SU-PAR-CLIP with a 6SG-PAR-CLIP cluster and
a HITS-CLIP cluster aligning to the same genomic region. Related
to Figure 4. Alignment of sequences from CLIP experiments
with IGF2BP1 against nucleotides 2784-2868 of the human EEF2

transcript (NM_001961). Nucleotides marked in red show the T
to C changes, all other mismatches are marked in orange. Due to
space limitations, not all reads that were sequenced are shown.
(A) Alignment of sequences obtained from UV crosslinking at
254 nm. Lower panel: Profile for G to A mutations (red) and for
any mutation (blue). (B) Alignment of sequences obtained after
incorporation of 4SU into the transcript and crosslinking at 365

nm. Lower panel: mutational profile for T to C mutations (red)
and for any mutation (blue). (C) Alignment of sequences obtained
after incorporation of 6SG into the transcript and crosslinking at
365 nm. Lower panel: as in (A).
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Figure 24: AGO-protein family PAR-CLIP. Related to Figure 5. (A) Prin-
cipal component analysis of the relative abundance of miRNAs
derived from the combination of the AGO-PAR-CLIP libraries on
one hand, and the non-crosslinked AGO-IPs on the other hand.
The first principal component is projected onto the plane of log10-
frequency in Ago-IP vs. log10-frequency in CLIP. The slope of the
principal component was 0.58. Although for many miRNAs the
expression levels measured by the two methods are quite compara-
ble, there is a subset of miRNAs whose expression in the AGO-IP
is systematically lower than the expression estimated based on the
AGO-PAR-CLIP data (shown in blue) (B) The miRNAs that corre-
late well between the AGO-IP and the AGO-PAR-CLIP data (panel
A: difference in log10 frequencies in Ago CLIP vs Ago IP smaller
than 0.6, shown in green) are miRNAs with high frequency of T to
C mutations in the AGO-PAR-CLIP, whereas miRNAs that were
sequenced at least once in the Ago CLIP but were not detected
in the Ago IP (blue) have a low frequency of T to C mutations.
(C)-(E) AGO and TNRC6 proteins bind to the same regions on
the target transcripts. (C) Alignments of AGO PAR-CLIP and
TNRC6 PAR-CLIP cDNA sequence reads to regions in the 3’UTRs
of OGT (NM_181672), the CDS of RFC3 (NM_002915) and the
CDS of AKR1A1 (NM_006066). Red bars indicate 8 nt seed com-
plementary sequences and nucleotides marked in red indicate T
to C mutations diagnostic of the crosslinking position. (D) The dis-
tance between TNRC6 target sites and the nearest binding sites of
QKI, PUM2, AGO have been computed. The histogram shows the
number of TNRC6 target sites within a given nucleotide distance
from the binding site of another RNA binding protein. Approxi-
mately 950 (i.e. ca. 50%) of the CCRs from the TNRC6 PAR-CLIP
experiment fall within 25 nt of a CCR from the AGO-PAR-CLIP.
(E) 6-mer enrichment in the full CCRs and the region ranging from
2 nt upstream to 10 nt downstream of the predominant crosslink-
ing site. The upper panel shows the fraction of CCRs having a
6-mer hit for the top 100 expressed miRNAs. The background set
consists of dinucleotide shuffled versions of either the full CCRs
or the region around the crosslinking site. The lower panel shows
the enrichment of 6-mers relative to the background set in the
region indicated in previous panel (full CCRs, and 13 nt around
the predominant crosslinking site).
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Figure 25: Seed complementary sequences from abundant HEK293 miR-
NAs are enriched in AGO-PAR-CLIP CCRs. Related to Figure 6.
CCRs from the AGO-PAR-CLIP are enriched for target sites for
the most abundant miRNAs in HEK293 cells. (A) Correlation
between occurrence of 8-mer (upper panel) and 7-mer (lower
panel) seed matches in the CCRs and the abundance of the cor-
responding miRNA seed families. (B) Spearman correlation be-
tween the number of 7-mer (2-8) seed matches in the CCRs from
AGO-PAR-CLIP and the experimentally determined counts of
corresponding miRNA seeds in various miRNA samples from
the smiRNAdb database (www.mirz.unibas.ch/smirnadb) and the
HEK293 RNA analyzed in this study. Triangles indicate different
HEK293 miRNA libraries. (C) Comparison of the U content of
CCRs with at least a 7-mer seed match to the top 100 most abun-
dant miRNAs versus CCRs with at most a 6-mer seed match to the
top 100 most abundant miRNAs. The mean of the distributions
was significantly different (ranksum test, p = 1.910−45). (D) The
number of crosslinking events correlates with the enrichment of
the CCRs in the putative binding sites for the most abundantly
expressed miRNAs. (E) Number of pairs of non-overlapping seed
(pos. 2-8) matches for the 20 most abundantly expressed miRNAs
in HEK 293 cells in the crosslinked regions (red triangle) and
in control regions (100 sets of dinucleotide shuffled crosslinked
regions). Only the experimental set shows enrichment of miRNA
pairs. (F) Number of co-occurring pairs of miRNA seed matches
in the AGO crosslinked regions and the shuffled control regions
for 20 randomly chosen miRNAs. (G) Number of co-occurring
pairs of miRNA seed matches in the AGO crosslinked regions for
100 sets of 20 randomly chosen miRNAs. (H) Heat map represen-
tation of miRNA seed match co-occurrence. Only miRNA seed
matches were counted that did not overlap and could therefore be
bound simultaneously by two AGO-proteins. The scale indicates
the absolute number of co-occurring pairs.

www.mirz.unibas.ch/smirnadb
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Figure 26: Properties of CCRs containing miRNA seed complementary sites.
Related to Figure 7. (A) Seed complementary sequences in the
3’UTR are more efficiently crosslinked than seed complementary
regions in the CDS. Fraction of crosslinked seed matches (1-7 or
2-8) for the miR-124 (dark bars) and miR-7 (light bars) transfection
experiments are shown; and in (B) the fraction of crosslinked seed
matches for miR-15, miR-16, miR-19, and let-7 in the ALL_AGO
dataset is shown. (C) Properties of AGO-PAR-CLIP sequence read
clusters obtained after miR-124 and miR-7 transfection. Transcripts
with PAR-CLIP sequence read clusters identified after miR-124

and miR-7 transfection (n indicates number of transcripts consid-
ered) are bound by AGO2 and destabilized. Transcript stability
(dark grey bars) was determined as in Figure 3 by comparison of
mRNA-abundance of mock-transfected and miR-124 and miR-7-
transfected HEK293 cells. miR-7 and miR-124 mediated AGO2

binding (light grey bars) was determined by comparing tran-
scripts enriched by AGO2-IPs of mock transfected and miR-124

and miR-7 transfected HEK293 cells [73]. Transcripts containing
PAR-CLIP sequence read clusters were categorized according to
the transcript region bound by AGO2 (CDS/3’UTR). (D) Same as
in (C). Transcripts were categorized in more detail according to the
number and region (CDS/3’UTR) of sequence read clusters iden-
tified. (E) Same as in (C). Transcripts containing a miR-124 and
miR-7 seed complementary sequence but without PAR-CLIP se-
quence read clusters (unbound) were compared to transcripts with
PAR-CLIP sequence read clusters with miR-124 and miR-7 seed
complementary sequences (bound). The unbound and bound tran-
scripts are categorized according to regions within the transcript
(5’UTR, CDS, and 3’UTR). (F) In addition to the AGO2 binding
and mRNA destabilization following miR-124 transfection shown
in (G) for PAR-CLIP identified transcripts, changes in protein level
following miR-124 transfection (as measured by SILAC in HeLa
cells by Baek et al.) are indicated. (G-H) Codon adaptation index
(CAI) for regions upstream and downstream of CCRs (relative to
5’ end of the seed match) found in the CDS for the (G) miR-7 and
(H) miR-124 transfection experiments. The red and the black lines
indicate the CAI for crosslinked and non-crosslinked transcripts,
respectively.
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Figure 26: (I) The sequence context defines a functional miRNA binding site
in the UTR as well as in the CDS. Four different criteria (selec-
tion pressure, destabilization score, local A/U content, target site
openness) were compared for crosslinked transcripts containing
7-mer seed matches for a miR-124 and miR-7 and (J) the miR-15,
miR-19, miR-20, and let-7 miRNA families in the AGO PAR-CLIP
experiments compared to non-crosslinked transcripts containing
the same 7-mer seed matches. (K) In 3’UTRs longer than 3,000 nt
the crosslinked sites distribute preferentially near to the bound-
aries of the UTR. Distance from the region boundaries (stop codon
and polyA signal, respectively) of CCRs with 7-mer seed comple-
ment regions falling in the 3’UTR to miR-124 and miR-7 in the
transfection experiments (red line) and (L) 7-mer seed matches to
the miR-15, miR-16, miR-19 and let-7 seed families from the AGO
PAR-CLIP (red line) compared to non-crosslinked seed-matches
(black lines). (M) Distance from the stop codon of CCRs falling
in the CDS containing 7-mer seed matches of miR-124 and miR-7
(red line) or (N) 7-mer seed matches of the miR-15, miR-16, miR-
19 and let-7 seed families (red line) compared to non-crosslinked
seed-matches (black lines). Only for the miR-124 and miR-7 trans-
fection experiments the crosslinked sites in the CDS distribute
significantly closer to the stop-codon. (O) Comparison of PAR-
CLIP with ElMMo, TargetScan context, TargetScan Pct, and PicTar
miRNA target predictions. We determined the number of seed
matches in the top 1000 CCRs for each of the indicated miRNAs.
For each miRNA we selected an equal indicated number of target
sites (on mRNAs found by DGE and having a signal intensity
above the median on the Affymetrix mRNA microarrays) that
map to the indicated number of genes, starting from those with
the best score, as given by the indicated prediction method. The
figure shows average log2 fold changes of mRNA targets identi-
fied by the different methods upon miRNA inhibition (of miRNAs
let-7a, miR-103, miR-15a, miR-19a, miR-20). (P) Average log2 fold
changes of mRNA targets identified by various methods upon
miR-7 and miR-124 transfection.
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b.1 supplementary figures

Suppl. Fig. 27: Crosslinking efficiency of CLIP and PAR-CLIP. Autoradio-
graph of the protein gel after IP.

Suppl. Fig. 28: Correlation between the enrichment in reads in individual
HuR sites among CLIP (a), PAR-CLIP (b) and PAR-CLIP
MNase (c) replicate experiments. Each point on the plot rep-
resents an individual binding site. The correlation coefficient
and the fraction of the 1000 most enriched sites that overlap
between replicate experiments are indicated.
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Suppl. Fig. 29: Contour plots of the distribution of enrichment, relative to
mRNA abundance, of sequence reads in HuR binding sites de-
termined with CLIP (a,c), PAR-CLIP (e,g), PAR-CLIP MNase
(i,k) and PAR-CLIP mild T1 (m) and the predicted affinity of
the sites for HuR determined based on RNAcompete data
[147]. Correlation coefficients outside the brackets for panels
(i,k,m) indicate were calculated only based on the points in the
higher cloud. Correlations between the estimated affinity of a
7-mer motif and its enrichment in CLIP (b,d), PAR-CLIP (f,h),
PAR-CLIP MNase (j,l) and PAR-CLIP mild T1 (n) binding
sites relative to 3’ UTRs.
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Suppl. Fig. 30: Mutation bias in mRNA-seq (a), CLIP, PAR-CLIP and PAR-
CLIP MNase reads obtained for HuR (b) and Ago2 (c) pro-
teins. We determined the frequency of various types of muta-
tions (substitution, deletion, insertion) in mRNA-annotated
reads that mapped with at most one error to the genome. The
first four columns in each plot correspond to substitutions
(the frequencies of substitutions towards each of the three
possible nucleotides are indicated by the different colors),
the fifth column to deletions relative to the genome sequence
(deletions of the four nucleotides are also indicated separately)
and the sixth column to insertions relative to the genome se-
quence (inserted nucleotides shown separately). The seventh
and eighth columns show the identity of nucleotides that
are located 5’ (IL) and 3’ (IR) of an inserted nucleotide. The
sample names are indicated on the panels.
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Suppl. Fig. 31: Observed (green) distribution of HuR reads between 5’ UTR,
CDS and 3’ UTR regions of transcripts, and the expected
distribution (yellow) based on the relative length of these
regions in the transcripts from which the reads originated.
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Suppl. Fig. 32: Position-wise nucleotide frequencies in reads obtained in
HuR CLIP (a, b), PAR-CLIP (c, d), PAR-CLIP MNase (e, f)
and PAR-CLIP mild T1 (g) samples. Reads were anchored
either at the 5’ (left-hand side plot of each set) or the 3’ (right-
hand side plot of each set) end. The location of the 5’ and
3’ ends corresponds to position 0. Positions upstream of the
anchor end are labeled with negative numbers and positions
downstream of the anchor end with positive numbers.
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Suppl. Fig. 33: Location of the ten 7-mers with highest affinity for HuR
within CLIP (a), PAR-CLIP (b), PAR-CLIP MNase (c) and
PAR-CLIP mild T1 crosslink-centered regions. The central
positions of the 7-mers are used to compute the heatmap. The
position of the predominant mutation (T deletion or mutation
to G/A/C in CLIP and T-to-C in PAR-CLIP) is indicated by a
dashed line.
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Suppl. Fig. 34: (a) Enrichment of CLIPed transcripts (i.e. transcripts that
contain at least one of the top 5000 CLIPed sites) among all
significantly downregulated transcripts upon HuR siRNA
transfection. Transcripts were divided into non-overlapping
bins from least to most expressed in the GFP siRNA samples.
The enrichment in CLIPed HuR targets among all the down-
regulated transcripts was then computed separately for each
individual bin. Errorbars denote standard error of the mean
(b) Mean expression change upon HuR knockdown of tran-
scripts carrying the top 1000, 1001-2000, ... , 4001-5000 sites
for HuR, as determined by various CLIP methods. Binding
sites were sorted based on their enrichment, divided into non-
overlapping bins of 1000 sites, and the change in expression
of the host transcripts upon HuR knockdown was computed.
The last bin for each sample shows the average fold-change
of all the expressed transcripts that did not contain any of the
top 5000 sites. Errorbars denote standard error of the mean
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Suppl. Fig. 35: Western blot showing HuR downregulation upon siRNA
transfection. After detection with the HuR antibody, the blot
was reprobed for hnRNP C. The asterisks (*) mark antibody
cross-reactivity.
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b.2 supplementary tables

Supplementary table S1 is available in the online supplementary mate-
rial of [95].
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Suppl. Fig. 36: Reproducibility of Ago2 binding site identification in CLIP (a),
PAR-CLIP (b) and PAR-CLIP MNase (c) experiments. From
each sample we selected the top 1000 binding sites according
to the enrichment in reads in the site relative to the mRNA
abundance. We computed the proportion of sites that are
identified in any given pair of samples (d), not only for the
replicates. For the replicates we also computed the correlation
between enrichment values in the two experiments.
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Suppl. Fig. 37: (a) Reproducibility of miRNA profiles constructed based on
various types of CLIP experiments. The x- and y-axes indicate
the log10 counts of a given miRNA in a pair of samples. (b)
Correlation between the miRNA expression level in total RNA
(expressed as multiplication cycles in RT-PCR (Ct values)
and the expression level in the CLIP samples (expressed as
log2(read counts)). The miRNAs that were measured in this
experiment are indicated by red dots on panel (a).
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Suppl. Fig. 38: Location of matches to the seed of the ten most abundant
miRNA families relative to the position of the most abundant
mutation of a particular type (which is located in the cen-
ter of the the 41-nucleotide long regions) in the 1000 most
enriched Ago2 sites. As crosslink-diagnostic mutation we
took T mutation or T deletion in the CLIP-samples (panels
a and b), and T-to-C mutation in PAR-CLIP samples (panels
c, d, e and f). Panel g shows a similar heatmap constructed
based on CLIP A sample and considering only insertions as
crosslink-diagnostic mutations. Panel h shows the relative
frequency of the four nucleotides immediately upstream of
the seed match among CLIP A sites.

Suppl. Fig. 39: Location of matches to the seed of the ten most abundant
miRNA families relative to the position of the most abundant
mutation of a particular type (which is located in the center of
the the 41-nucleotide long regions) in the 1000 most enriched
Ago2 CLIP A sites. The mutation type is specified in the title
of each plot.
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Suppl. Fig. 40: Base composition of Ago2 sites obtained with different pro-
tocols. The pattern is similar whether the sites are extracted
based on the enrichment in reads (a), coverage by reads (b)
or density of crosslink-diagnostic mutations (defined as in
Suppl. Fig37) (c).
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S U P P L E M E N TA RY M AT E R I A L T O C H A P T E R
M I R Z A : A B I O P H Y S I C A L M O D E L F O R I N F E R R I N G
M I C R O R N A - TA R G E T S I T E I N T E R A C T I O N S F R O M
A R G O N A U T E C R O S S L I N K I N G A N D
I M M U N O P R E C I P I TAT I O N D ATA

c.1 tests of the inference procedure with synthetic data

To test the ability of our algorithm to correctly infer MIRZA’s energy
parameters, we designed two synthetic data sets. First, we constructed
the reverse complement of positions 1 through 8 (the "seed" region) of
10 selected miRNAs. We called these sequences miRNA seed matches.
For each miRNA we then generated 300 target sequences by embed-
ding the miRNA seed match at a random position in a sequence of
length 40, in which all other nucleotides were chosen with uniform
probability from the 4 possible nucleotides. We thus generated a pool
of 3000 synthetic mRNA target fragments corresponding to the proto-
typical, miRNA seed-matching sites [116]. We inferred the parameters
of the MIRZA model from this input data set through simulated an-
nealing. To conservatively estimate the accuracy of the parameter
inference, we repeated the simulated annealing 25 times and recorded
the variation in the inferred parameters across the runs.

As shown in Suppl. Fig. 41A, the inferred biophysical parameters
correctly reflect that only positions 1− 8 contribute to the binding of
miRNA and target in this synthetic data set, the inferred energies of
A-U and C-G base pairings being essentially identical, as expected.
Binding at other positions and internal loops are strongly disfavored.
Furthermore, the fitted vector of target fractions ~πµ contained values
of approximately 0.1 for all miRNAs (results not shown), correctly
reflecting the fact that we engineered an equal number of target mRNA
fragments for each miRNA. The target qualities of the 3 ′000 correct
combinations of mRNA fragment m and miRNA µ were consistently
higher (Suppl. Fig. 41B, in green) than those of all 27 ′000 incorrect
combinations ofm and µ (Suppl. Fig.41B in red) demonstrating that on
this simple synthetic data set the algorithm had perfect performance.

In a second test, we asked our algorithm to infer a more complex in-
teraction model from a synthetic pool of mRNA fragments constructed
as follows:

1. The target mRNA fragments, 300 for each of 10 selected miRNAs,
were longer (50 nucleotides). Nucleotide frequencies were not
equal, but rather 0.3 for A and U and 0.2 for G and C nucleotides.
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Figure 41: Binding models inferred from synthetic data. A: Summary of
model parameter values inferred from the synthetic data set with
seed-type interactions only. Green boxes indicate inter-quartile
ranges and whiskers indicate the 5 and 95 percentiles across the 25
simulated annealing runs. Parameters of the models that yielded
the highest and second-highest probability of the data are shown
in red and blue, respectively, and median values of fitted param-
eters across the runs are show in black. B: Histogram of target
quality scores for all miRNA-mRNA fragment pairs. The model
that gave the highest probability of the data was used to compute
target quality scores R(m|µ) of each mRNA fragment m in the
synthetic seed-type data set with each of the 10 miRNAs µ used
in the test. Scores for the correct and incorrect miRNA-mRNA
associations are shown in green and red. C: Summary of the model
parameter values inferred from the synthetic data set with sites
that have 3’-compensatory-type interactions. Box-plots summarize
parameter values fitted across 10 independent optimization runs
as in panel A. D: Statistical summary of the most likely hybrid
structures for the synthetic data-set with 3’-compensatory-type
sites. Each column corresponds to a miRNA position and the
colors show the fractions of optimal hybrids that had different
structural features at the corresponding position. Green: dangling
end nucleotides. Orange: hybridized nucleotides. Red: nucleotides
involved in symmetrical loops. Blue: miRNA nucleotides that are
bulged out.
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2. Embedded at a random location in these mRNA fragments was
a miRNA-matching region composed of a contiguous match
to positions 2− 7 of the miRNA, followed by a loop of 5− 7
nucleotides in the mRNA, and another contiguous match to
positions 15 − 18 of the miRNA. The length of the loop was
chosen uniformly randomly in the range [5, 7].

This type of miRNA-binding sites is similar to the 3’-compensatory
sites previously described in the literature [18]. For this more complex
data set as well, our algorithm correctly identified positive contribu-
tions of base-pairings involving nucleotides 2− 7 and 15− 18 of the
miRNA, and negative contributions from all other positions (Suppl.
Fig. 41C). Besides disfavouring the opening of loops in general, the
algorithm inferred a higher penalty for bulges involving mRNA nu-
cleotides compared to bulges involving miRNA nucleotides, correctly
reflecting that the region in between the two engineered miRNA-
mRNA helices was generally shorter in the mRNA than in the miRNA
(5− 7 vs. 7 nucleotides).

By identifying, for each mRNA fragment m, the hybrid structure
with the highest target frequency, we determined the frequencies with
which different hybridization states (see Methods) were used at each
position of the miRNA (Suppl. Fig. 41D). The results indicate that the
model perfectly reconstructs the hybrid structures, i.e. positions 2− 7
and 15− 18 were always correctly inferred to be paired, while the
central region of the miRNA was inferred to be looped out. Because
in the mRNA we introduced loops of 5− 7 nucleotides while in the
miRNA there were always 7 looped out nucleotides, the algorithm
also inferred correctly that positions 8− 12 of the miRNA should be
part of symmetrical loops, while positions 13− 14 should either be
part of symmetrical loops (when the loop introduced in the mRNA
was 7 nucleotides long) or should be asymmetrically looped out (when
the loop introduced in the mRNA was 5 or 6 nucleotides in length).
The algorithm also inferred correctly the cognate miRNA for each
of the 3 ′000 target sites (data not shown). In summary, MIRZA also
obtained perfect performance for this more realistic synthetic data-set.

c.2 fits to ago2 clip data result in highly reproducibly

predicted target qualities

To fit energy parameters for real miRNA target sites, we performed
100 simulated annealing runs on the Ago2 CLIP data, starting from
different initial conditions. As shown in Fig. 18B of the main article,
these fits yielded very similar, yet not identical sets of parameters. To
further test the robustness of the inferred miRNA targets with different
parameters settings we calculated, for the 5 parameter sets with the
highest likelihoods, the target qualities R(m|µ) for all pairs of mRNA
fragment m and miRNA µ. We then computed correlation coefficients
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between the target qualities predicted by different parameter sets and
found that they were all very close to 1 (the minimum correlation
coefficient, that was obtained for the models with the highest and
lowest likelihoods among the 5, was still 0.96, Suppl. Fig. 42A). This
indicates that the parameters obtained in different runs yield highly
similar miRNA target predictions.

c.3 mirna-target site interactions inferred based on rna-
rna hybridization

We used RNAduplex [124] to predict, for each of the 2 ′988 target site
fragments of our Ago2 CLIP data set, the miRNA that would form
the most stable interaction with the fragment, and the structure of the
miRNA-mRNA hybrid for this miRNA. Based on these predictions, we
inferred the frequency with which different positions in the miRNA
and mRNA are hybridized. We found that the hybrids predicted
by RNAduplex are very different from those inferred by MIRZA,
particularly that miRNA nucleotides are involved in base-pairing with
very similar frequencies, irrespective of their position (Suppl. Fig.
42B).

c.4 inferred abundance of mirnas in risc correlates with

their expression

We correlated the fitted miRNA prior, reflecting the relative abun-
dance of a miRNA in RISC, with the proportion of reads assigned
to that miRNAs from all miRNA-annotated reads obtained in CLIP
experiments. We downloaded the miRNA expression profiles of the 6
Ago2-CLIP samples from Kishore et al. [95] from the CLIPZ web server
(http://www/clipz.unibas.ch) and computed the average proportion
of each miRNA across these 6 samples. The correlation between
miRNA expression and the inferred miRNA prior is shown in Suppl.
Fig. 42D.

c.5 non-canonical target sites are evolutionarily con-
served

As an additional test of functionality of predicted non-canonical sites,
we investigated whether these sites may be under evolutionary selec-
tion for interacting with the miRNAs. To obtain a set of non-canonical
sites we constructed the distribution of target frequencies R(m|µ)πµ
for all canonical sites identified in the Ago2 CLIP data, and obtained
its mean and standard deviation. We then selected all non-canonical
sites with a target frequency up to half a standard-deviation below
the mean target frequency of canonical sites. There were 77 such high
scoring non-canonical sites in the Ago2 CLIP data set.

http://www/clipz.unibas.ch
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Figure 42: Results of the parameter inference based on Ago2-CLIP data.
A: Pairwise correlations between the target qualities R(m|µ) ob-
tained for each mRNA fragment - miRNA pair (m,µ) across the
5 models from the Argonaute 2 CLIP data in independent sim-
ulated annealing runs. B: Structure of the hybrids predicted by
RNAduplex [124]. Each column corresponds to a position in the
miRNA and shows the fraction of the best hybrids (as predicted by
RNAduplex) in which the corresponding position of the miRNA
was hybridized. C: Probability densities of target quality scores
R(m|µ) for Ago2 CLIP sites that were predicted to form canonical
(black) and non-canonical (red) best hybrids with the miRNAs that
yielded the highest target quality score. D: Scatter plot of the
miRNA expression levels (proportion of reads associated with a
given miRNA in Ago2-CLIP data among all miRNA-annotated
reads in the CLIP data) against the inferred prior for the cor-
responding miRNAs. All 6 Ago2-CLIP data set from Kishore
et al. [95] were used to compute average miRNA expression level.
Expression profiles were extracted from the CLIPZ web server
(http://www.clipz.unibas.ch). The Spearman correlation coeffi-
cient was 0.36 (P-value = 2.3× 10−4).
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For each predicted non-canonical target site we extracted its genomic
location in the reference genome 1 and extracted orthologous regions
from other vertebrate genomes 2. With the MIRZA model, we then
determined the target quality R(m|µ) of each of the orthologous sites
and calculated the average target quality across all orthologous sites.

hsa-miR-16 

NM_003188 

3’...CGGUUAUAAAUGCACGACG-AU...5’!
     |oooo||||^^^^||||||v|!
5’...GCCTATATT----TGCTGCATT...3’!

Genome Sequence (NM_003188 from 2146 to 2196) 
MIRZA 

binding score 
hg19     TTGGCGTGTTCTGAATGCCAACTGCCTATATTTGCTGCATTTT TTTCATTGTTTA  TTTTCC      62.7595!
panTro2  TTGGCGTGTTCTGAATGCCAACTGCCTATATTTGCTGCATTTG TTTCATTGTTTA  TTTTCC      61.1442!
rheMac2  TTGGCGTGTTCTGAATGCCAACTGCCTATATTTGCTGCATTTG TTTCATTGTTTA  TTTTCC      61.1442!
mm9      TTGGCGTGTTCTGAATGCCAAATGCCTCTCTTTGCTGCATTTG TTATGTCAGTTA  CCTTTC      08.6327!
rn4      TTGGCGTGTTCTGAATGCCAAATGCC  TCTTTGCTGCATTCG TTATGTCAGTTA  TT          09.0112!
canFam2  TGGGCGTGTTCTGAATGCCAACTGCCTATATTTGCTGCATTTTGTTTCATCGTTTA  TTTTCT      60.8245!
bosTau4  TTGGCGTGTTCTGAATGCCAGCTGCCTATATTTGCTGCATTTG TTTCATCGTTTA  TTTTCC      59.9167!
monDom5  TTGATGTGTTCTGAATGCCTACTCCCTATATTTGCTGCATTTT TTACATCATTTA  TTTTCC      52.5468!
galGal3  TCGGTGTGATCTGTATT           TGTCTGCTACA  CT TAACATCATTTAATATTTCC      31.4158!

Average = 45.26 

A. CLIPed, non-canonical site 

Pseudo-miR 

NM_003046 

3’...UCCAGCGAGUGCGAGGGGGAC...5’!
     ||||oooooooooo|||||||!
5’...AGGTTTCATCTATGCCCCCTG...3’!

Genome Sequence (NM_003188 from 2146 to 2196) 
MIRZA 

binding score 
hg19     GTAAA GAG          GTTTCATCTATGCCCCCTGCAGTTGGGGAAATACTAGTAGCT      108.359!
panTro2  GTAAA GAG          GTTTCGTCTATGCCCCCTGCAGTTGGGGAAATACTAGTAGCT      117.488!
rheMac2  GTAAA GGG          GTTTCGTCTCTGGCCCCTGCAGTTGGGGAAATACTAGTAGCT       29.465!
mm9      AGAGA TGT          ATTCTGTATATGTCCTAGGTGGCTGGGGAAATAGTGGTGGTT        0.016!
rn4      AGAAATGTT          ATTCTGTATACATCCTATGTGGTTGGGGAAATGGTGGTGGTT        0.027!
canFam2  AGAAA AGT          GTTTTGTATGTGCCTGGTGCATTTGGGGAAACAACCATTGCT        0.003!
bosTau4  AGAAA AGT          ATCTTGAATGTGCCGGGTGTGGTTGGGGAAATAACTGTCGCT        0.001!
monDom5  AGCAG GAGTGTATGTACCTGTCCAGGTATGCTCTTCTTGTATGGTGCCAT         T        0.762!
galGal3  NNNNN NNN          NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN        0.000!

Average = 28.35 

B. Pseudo miRNA, non-canonical site 
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Figure 43: Evaluation of evolutionary conservation of non-canonical sites. A:
A high-scoring non-canonical site inferred from the Argonaute 2

CLIP data is shown at the top of the panel. The mRNA subse-
quence that hybridizes with the miRNA seed region is highlighted
in red. The alignment block of the genomic region in which this
site resides in nine vertebrate species is shown underneath the
hybrid and the MIRZA target quality score for the interaction
of miR-16 with each of the orthologous sites is shown on the
right side of the sequence. B: An example of a high-scoring non-
canonical site complementary to a pseudo-miRNA is shown at
the top of panel. The mRNA subsequence that hybridizes with
the seed region of the pseudo-miRNA is marked in red. Shown
are also the alignment of orthologous regions and the MIRZA
target quality scores for the interaction with these regions. C’:
Distribution of average target quality scores computed over or-
thologs of non-canonical binding sites predicted by MIRZA for
pseudo-miRNAs. Black: Distribution of average MIRZA target
quality computed over 10 ′000 re-sampled sets of orthologs of non-
canonical binding sites for pseudo-miRNAs. Each re-sampled
set had the same number of sites as the set of non-canonical
miR-7 CLIPed sites. Averages were taken first over orthologous
sequences and then over all sites in the a randomized set. Red:
Average MIRZA target quality score of the non-canonical miR-7
CLIPed sites and their orthologs.

To determine whether the conservation of the orthologous regions
suggests purifying selection for interacting with the miRNA, we com-
pared these target qualities with the target qualities that we obtained

1 Human (hg19 assembly version from the University of California at Santa Cruz)
2 Rat (rn4), Mouse (mm9), Chimpanzee (panTro2), Opossum (monDom5), Dog (can-

Fam2), Cow (bosTau4), Rhesus (rheMac2), Chicken (galGal3)
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for randomized data sets constructed as follows. We generated a set
of pseudo-miRNAs, consisting of random 21-mer sequences chosen to
preserve the base composition of real miRNAs at each position of the
miRNA. We then scanned all human 3’ UTR sequences with a sliding
a window of 51 nucleotides, and selected high-scoring non-canonical
sites for pseudo-miRNAs, with the same threshold on target quality
as used for the sites of real miRNAs. We then sampled the same
number of non-canonical sites of the pseudo-miRNAs as the number
of non-canonical CLIPed sites. We determined orthologs of these
sites in exactly the same way as was done for the original CLIPed
sites and computed the average target quality of these orthologous
sites with MIRZA. The procedure is sketched in Suppl. Fig. 43. We
randomly sampled 10 ′000 times a set of pseudo-targets of the same
size as the set of true non-canonical targets and calculated the average
target quality of the orthologs of these sites. Supplementary Fig. 43C
shows the distribution of average ortholog target qualities for the sets
of pseudo-targets (black curve). Only 48 of the 10 ′000 sets of high
scoring non-canonical pseudo-miRNA sites had an average score that
was at least as high as the average score of the non-canonical CLIPed
sites (shown as a vertical red line), giving us an estimated p-value
of 0.0048. In summary, the non-canonical target sites predicted by
MIRZA show significant evidence of being under purifying selection
for retaining their target quality.

c.6 comparison of target prediction accuracy

As detailed in the Methods, we used microarray measurements of
mRNA expression changes upon miRNA transfection from 5 data sets
[123, 61, 156, 113, 50], covering a total of 38 transfection experiment on
26 different miRNAs, to assess the performance of different target pre-
diction methods. Besides target predictions by MIRZA we obtained
lists of predicted targets for 10 other target prediction methods includ-
ing methods that use conservation (TargetScan Pct, ElMMo, PicTar),
methods that use the sequence context of the site (TargetScan context+,
MIRANDA), a motif frequency-based method (RNA22) and methods
that model the energy of interaction between the miRNA and the
target (PITA, RNAhybrid, RNAduplex). In addition, we downloaded
lists of predicted targets from the Starbase database [196] which inter-
sects Ago2 CLIP sites with miRNA target predictions by TargetScan,
PicTar, Miranda, PITA, and RNA22.

For each method and each transfection data set, we mapped the
predicted targets to Entrez genes and sorted the predicted targets by
the score assigned by the method (see Methods). We then calculated
the median log fold-change of the top n predicted targets as a function
of n for each method. For Starbase we calculated the median log
fold-change for two lists provided on the web site: the ’default’ list,
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and the most comprehensive list that is obtained with the most lenient
cut-offs. Figure 19C of the main text shows the median log fold-
change as a function of the number of top predictions for MIRZA, the
9 other methods (colored lines), and the Starbase predictions (gray
dots), averaged over all transfection experiments. As described in the
online Methods, by comparing the fraction of predicted targets that
are downregulated with the fraction expected by chance, we can also
estimate the total number of functional targets that is predicted by
each method for each transfection experiment. Figure 19D in the main
text shows these totals averaged over all transfection experiments.

One of the advantages of MIRZA’s biophysical model is that is
calculates an affinity between miRNA and target (i.e. target quality)
which takes into account the contribution of the seed region without
having to explicitly filter for or select sites that obey a particular defini-
tion of a ’seed match’. This allows MIRZA to identify both canonical
and non-canonical sites using as single biophysical scoring function.
We thus also compared the performance of the different methods in
identifying functional non-canonical target sites by calculating the
exact same performance measures, but now restricting ourselves to all
predicted target genes that do not have any canonical target sites (see
Online Methods). The performance on non-canonical targets, averaged
over all transfection experiments, is shown in Figures 19E and 19F in
the main text.

c.6.1 Performance on individual data sets

Here we show the performance of MIRZA and the other target predic-
tion methods, separately for each of the 5 data sets. Suppl. Fig. 44A
shows the average performance of the methods on the 16 transfection
experiments from [123]. Similarly, Suppl. Fig. 44B shows the average
performance of the methods on the 9 transfection experiments from
[61], Suppl. Fig. 44C the performance on the 4 transfection experi-
ments of [156], Suppl. Fig. 44D the performance on the 7 transfection
experiments of [113], and Suppl. Fig. 44E the performance on the 2
transfection experiments of [50].

The average results over all transfection experiments (Fig. 19C-
F of the main text) showed that MIRZA’s targets show the largest
down-regulation and that MIRZA, TargetScan Pct, Targetscan con-
text+, ElMMo, and MIRANDA predict the largest number of func-
tional targets. For the 5 individual data sets we generally see the same
behavior; with the exception of the data set of Grimson et al. [61], the
extent of down-regulation of MIRZA targets is at least as large as for
any other method.

With respect to the total number of predicted targets, although there
is some variation across the 5 data sets, the results the individual data
sets are also largely consistent with the global average. Namely, when
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Figure 44: Performance comparison on various individual transfection data
sets: A: Linsley et al. [123], B: Grimson et al. [61], C: Selbach
et al. [156], D: Leivonen et al. [113] and E: Gennarino et al. [50].
There are 4 panels for each data set. The upper left panel shows
the observed median log-fold changes of target genes, as predicted
by several miRNA target prediction methods, averaged over the
transfection experiments. For each method the predicted targets
were sorted by their target prediction score and the curves show
the median log fold-change of the top n targets on the vertical axis
as a function of n on the horizontal axis. Each color corresponds
to a target prediction method. Black: MIRZA, Red: TargetScan Pct,
Cyan: PicTar, Blue: ElMMo, Brown: TargetScan context+, Yellow:
PITA, Orange: MIRANDA, Violet: RNA22, Light green: RNAhybrid,
Green: RNAduplex. Median log fold changes for the lists of targets
provided by Starbase are shown as gray dots. The upper right
panel shows the estimated number of functional targets predicted
by each method as described in the Online Methods, averaged
over all transfections in the data set. The methods are indicated
next to the bars. The two bottom panels show similar quantities,
but now restricted to all predicted target genes that do not have
any canonical target site for the corresponding miRNA. Note that
the same colors are used to denote the different methods in all
panels.
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considering all targets MIRZA obtains at least as good a performance
as the best performing of the tested methods. Among previously
published methods TargetScan variants tend to have the highest per-
formance, followed by ElMMo, PicTar, and MIRANDA. PITA typically
performs worse, and the worst performance is observed for RNA22

and methods that simply predict the energy of interaction of small
RNAs with target sites, with the standard energy parameters for RNA
secondary structure prediction (RNAhybrid and RNAduplex). These
observations on the relative accuracy of different methods are consis-
tent with previous evaluations [2, 156]. It is also noteworthy that, by
intersecting CLIPed sites with sites predicted by the various target
prediction methods, Starbase provides lists of targets that are typically
functional, i.e. with good median down-regulation for most data sets.
However, because the approach of Starbase is to intersect CLIPed sites
with miRNA target predictions, the list of predicted targets in Starbase
are generally smaller, leading to overall significantly lower numbers
of functional targets.

The most dramatic difference in performance between MIRZA and
the other methods is observed when predicting non-canonical targets.
We find that, consistently across all 5 data sets, MIRZA’s predicted
non-canonical targets show much stronger down-regulation and much
larger numbers of functional targets than any of the other methods.
Furthermore, as is the case with canonical targets, there is a clear
correlation between the MIRZA score of non-canonical targets and
the degree to which they undergo down-regulation upon miRNA
transfection. As mentioned before, many miRNA target prediction
methods explicitly require a match to the miRNA, and thus these
methods do not even appear in the panels with median fold-changes
on non-canonical targets. Of the methods that do predict a substantial
number of non-canonical targets, RNA22, RNAhybrid and RNAduplex
invariably perform poorly, typically predicting only a small number of
functional non-canonical targets. MIRANDA appears able to identify
some functional non-canonical targets but it is strongly outperformed
by MIRZA on all data sets. In summary, our comparison shows that
MIRZA is the only method that can reliable identify a substantial
number of functional non-canonical targets.

c.6.2 Performance comparison on individual miRNAs

We also compared the performance on the 8 individual miRNAs from
the data-set of Linsley et al. [123], both for all predicted targets (Suppl.
Fig. 45) and non-canonical targets (Suppl. Fig. 46). Here we averaged
the results over the two transfection experiments (done in two different
cell lines) for each miRNA.

As shown in Suppl. Fig. 45, for most of the tested miRNAs,
MIRZA’s predicted targets show the largest median down-regulation
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of all methods. The only counter example is miR-200a, where MIRZA
is outperformed by other methods, presumably because this miRNA
has low expression in HEK293 cells and its targets are not CLIPed in
this cell type.

Figure 45: Top and third row of panels: Observed median log-fold changes
of target transcripts, as predicted by several miRNA target pre-
diction methods, under transfection of the corresponding miRNA
(experimental data from [123]). Each panel corresponds to one
miRNA transfection, with the transfected miRNA indicated at
the top of the panel. For each method the predicted targets were
sorted by their target prediction score and the curves show the
median log fold-change of the top n targets on the vertical axis as
a function of n on the horizontal axis. Each color corresponds to
a target prediction method. Black: MIRZA, Red: TargetScan Pct,
Cyan: PicTar, Blue: ElMMo, Brown: TargetScan context+, Yellow:
PITA, Orange: MIRANDA, Violet: RNA22, Light green: RNAhy-
brid, Green: RNAduplex. Median log fold changes for the lists
of targets provided by Starbase are shown as gray dots. Second
and bottom row of panels: For each miRNA we also estimated
the total number of functional targets predicted by each method
as described in the Online Methods. The panels show the total
number of functional targets predicted for each miRNA (one panel
per miRNA) and each method (colored bars). The methods are
indicated next to the bars. Note that the same colors are used to
denote the different methods in all panels.
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Figure 46: As in Suppl. Fig. 45 but now restricting to non-canonical targets.
To identify non-canonical targets we excluded from the analysis all
genes whose representative 3’ UTR (as defined in Online Methods)
did not contain a match to positions 1-7, 2-8 or 2-7 (in the latter
case having also an A opposite position 1 of the miRNA) of the
transfected miRNA.

c.7 overlap of functional targets identified by mirza and

other methods

Finally, for the 8 miRNAs transfected by Linsley et al. [123], we
computed the overlap between functional predictions made byMIRZA
and all of the other methods. For each miRNA, and each method
m, we determined the number of predictions nm, that maximizes
the estimated number of functional targets for that method. We then
separated the targets for both methods into: targets predicted by both,
targets predicted only by MIRZA, and targets predicted only by the
other method. For each of these 3 subsets of targets we then calculated
the fraction f that was downregulated and used this to estimate the
total number of functional targets among the set (as described in
the online Methods). As a result, we have the estimated number of
functional targets predicted by both methods, by MIRZA only, and by
the other method only. The results are shown in Suppl. Fig. 47. As
in the previous two figures, each panel corresponds to a transfected
miRNA, and each bar corresponds to one method. For each bar, the
blue section corresponds to the number of functional targets predicted
by bothMIRZA and the other method, the green section to the number
of functional targets predicted by MIRZA only, and the orange bar to
the number of functional targets predicted only by the other method.
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Figure 47: Overlap between MIRZA-predicted functional targets with func-
tional targets predicted by other methods. Each panel corre-
sponds to one transfected miRNA (experimental data from Linsley
et al. [123]) and each bar to a prediction method (indicated next to
the bar). Colors indicate targets predicted by both methods (blue),
targets predicted by MIRZA only (green) and targets predicted by
the other method only (orange).

The results show, first of all, that RNA22, RNAduplex, and RNAhy-
brid hardly ever provide independent functional targets, e.g. func-
tional targets are a combination of some predicted by both and some
by MIRZA only. Second, for miR-15a, miR-16, miR-17, and miR-20a
MIRZA by itself predicts almost all functional targets, i.e. all other
methods contribute only a small number of additional functional sites.
In contrast, for miR-200a the functional targets are largely covered
by methods such as TargetScan Pct, ElMMo, TargetScan context+,
and MIRANDA. For the other examples (let-7c, miR-103, miR-106b)
we find that the total set of functional targets is a variable mixture
of targets identified by both, targets identified by MIRZA only, and
targets identified only by the other method (e.g. TargetScan, ElMMo,
or Miranda), suggesting that these methods use complementary in-
formation to identify functional targets. Indeed, in order to makes its
predictions, MIRZA makes use of Ago2 CLIP data. Although these
data were typically obtained in different conditions then those in
which the transfection experiments were performed, the fact that a site
was detected by CLIP in at least one condition makes the functionality
of the site more likely in another condition as well. In contrast, other
methods use information, such as conservation, sequence-context, and
accessibility, that are not considered by MIRZA. These results thus
strongly suggest that a more comprehensive set of miRNA targets
could be obtained by combining MIRZA’s biophysical model with
conservation and context information. We leave such an approach for
future work.
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Sample Sites C NC Bulge miR-124 miR-124 miR-124 miR-124

@pivot C NC G-bulge any bulge

@pivot @pivot

Mouse Brain A Ago2 130 kDa 5000 2369 2631 98 79 61 5 8

Mouse Brain B Ago2 130 kDa 5000 2362 2638 100 74 70 7 10

Mouse Brain C Ago2 130 kDa 5000 2410 2590 113 105 77 8 11

HeLa miR-124 Tx A Ago2 130 kDa 5000 2005 2995 151 242 480 69 77

HeLa miR-124 Tx B Ago2 130 kDa 5000 1941 3059 127 231 379 45 52

AGO2-HITS-CLIP 5000 3318 1682 56 0 0 0 0

AGO2-PAR-CLIP A 5000 2956 2044 77 0 0 0 0

AGO2-PAR-CLIP B 5000 3445 1555 48 0 0 0 0

AGO2-PAR-CLIP MNase 5000 3574 1426 45 0 0 0 0

Table 1: Relative abundance of various binding modes in CLIP samples (3
Ago2 HITS-CLIP samples from mouse brain and two Ago2 HITS-
CLIP samples prepared from miR-124-transfected HeLa cells[26],
and the Ago2 CLIP samples used in our study).
C: canonical, NC: non-canonical, pivot is the 6

th position of the
miRNA. Bulges occur in the mRNA, between positions 5 and 6 of
the miRNA.
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