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Summary 

 
Malaria has persistently remained a serious health and socio-economic problem in developing 

nations particularly in Sub-Saharan Africa (SSA). There are approximately 500 million cases of 

malaria each year and close to one million deaths occurring mainly among children under five 

years. Developing countries spend a reasonable proportion of their gross domestic product (GDP) 

on malaria which in the end hinders their levels of development.  

World Health Organizations (WHO) and partners through the Roll Back Malaria initiative (RBM) 

have targeted vector control, health promotion and case management (using rapid diagnostic 

tests and treatment with Artemisinin combination therapy) in order reduce malaria morbidity and 

mortality cases.  Since 2002, funds for promoting malaria control activities have increased 

exponentially in SSA.  Major donors include presidential malaria initiative (PMI) and Global 

fund to fight AIDS, tuberculosis and malaria (GFATM). Countries which have scaled up the 

recommended malaria control   strategies such as insecticides-treat net (ITN) and treatment of 

confirmed cases have reported a decline in both morbidity and mortality especially among 

children.  However, these statistics are based on health facilities data and yet in most developing 

countries many deaths occur at home and are never recorded due to inefficient vital registration 

systems.  Monitoring the progress of such interventions requires reliable sources of data on both 

the transmission and infection outcome.    

In malaria endemic areas, people acquire natural immunity during the early years of   their life 

after getting exposed to repeated infections.  This is observed from the reductions in the number 

of severe malaria-related morbidity and mortality cases especially in children >5 years. Due to 

the current undertakings that are aimed at reducing malaria exposure, there are concerns about 
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shifting the disease burden to older children but the required to data to monitor this are not 

readily available in SSA.  Low income countries have resorted to health and demographic 

surveillance systems (HDSS) to monitor routinely population changes and health outcomes 

within a defined geographical area. 

In 2000, the INDEPTH, a network of HDSS integrated the Malaria Transmission Intensity and 

Mortality Burden Across Africa (MTIMBA) project into selected sites’ routine activities in order 

to assess the transmission-malaria mortality relationship taking into account the current 

interventions.  Mortality data and other demographic characteristics were extracted from 

routinely collected HDSS databases.  The entomological data were collected every fortnight 

from randomly sampled compounds over the 3 years MTIMBA period.   

The MTIMBA project generated large geostatistical data that are correlated in space and time. 

Furthermore, the project captured longitudinal mosquito data that were characterized by many 

zeros especially during the dry periods. The zeros are due empty traps from a compound or when 

all the captured mosquitoes are not infectious. Appropriate data analysis therefore should apply  

models that account for spatial-temporal correlation and the excess zeros in order to avoid over 

or underestimation of parameters. Zero-inflated geostatistical models account for spatial-

temporal correlation by introducing location-specific and time interval random effects which 

creates more parameters to estimate. Bayesian models implemented via Markov chain Monte 

Carlo simulation (MCMC) addresses fit of highly parameterized models.  

This work applied zero-inflated Bayesian models to estimate malaria attributable mortality 

across all age-groups using large, correlated and sparse data collected from Navrongo and 

Manhiça HDSS between 2001 and 2004.  The contributions of this thesis were (i) the   

description of the HDSS data characteristics and relevant methods for analysis; (ii) the spatially 
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explicit estimates of malaria transmission intensity at monthly intervals; and (iii) the relationship 

between all-cause mortality and malaria transmission intensity across all age categories.   

Chapter 2 described the characteristics of the MTIMBA data. These are large geostatistical, 

temporal, seasonal and zero-inflated data.   The mortality and mosquito data were misaligned 

because they were captured at different compounds and time periods.  Zero-inflated Bayesian 

spatio-temporal models are the state-of-art in handling such data. The rigorous statistical process 

was demonstrated by modelling sporozoite rate (SR) data from Manhiça HDSS. The analysis of 

the MTIMBA data was used as an avenue for building SSA capacity through course work, 

seminars and mentorship. Site-specific analyses are still on-going.   However, the project 

generated data that is relevant for assessing within and between site malaria transmission 

heterogeneity.  

The Navrongo malaria exposure surfaces described in chapter 3 were obtained from zero-inflated 

geostatistical models fitting separately the binomial SR data and negative binomial count data by 

mosquito species. All the models included space and time correlation in addition to the Climate, 

environmental and seasonality covariates. The entomological inoculation rate (EIR) estimates 

were derived as a product of predicted man biting rate and SR. Observed EIR in this district 

was >100 infective bites/person/year. Distance to water to bodies, day temperatures and 

vegetation were the main predictors of mosquito densities for the two species. The EIR maps 

clearly indicated that the temporal heterogeneity was stronger than the spatial variation in this 

area. The same situation was also observed from the analyses of the two MTIMBA sites of Rufiji 

(Tanzania) and Kisumu (Kenya). 

Monthly malaria exposure surfaces (chapter 3) were linked to the nearest compounds where 

mortality was observed as described in chapter 4.  Time to death data were split at monthly 
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intervals in order to generate Bernoulli and binomial data that were modelled via logistic 

regression formulations. Spatio-temporal models were fitted to obtain age-specific mortality risk 

estimates. The model considered 2 covariates; natural logarithm transformed EIR estimates with 

their measurement errors and age. ITN variable was only included in neonates, post-neonates and 

child models. The analysis  showed a positive log-linear relationship between all-cause mortality 

and malaria exposure in all the age groups but the association was only important among 

children (1-4 years) and  people >= 60 years. ITN use showed a protective effect among all the 

under five children, confirming what was observed in Rufiji and Kisumu HDSS. 

The methods used in estimating malaria exposure surfaces and mortality risks in chapters 3 and 4 

were extended to Manhiça HDSS (Mozambique) data to describe the mortality-malaria 

transmission relationship for this area (chapter 5).  The spatio-temporal age-specific models 

considered EIR estimates with their measurement errors (to account for the predictive 

uncertainty) and age as model covariates.   

The distance to the nearest water bodies was the only important common predictor of An. 

funestus and An. gambiae mosquito densities.  Malaria transmission intensity declined 

consistently in this area.   The Model-based results indicated a positive log-linear relationship 

between all-cause mortality and malaria exposure across all age groups namely; the neonates (0-

28 days), post-neonates (1-11months), children (1-4years),  young people (5-14 years), adults 

(15- 59years) and old age (>=60 years).  

This work contributes to further understand of malaria-mortality relationships. A positive 

association between mortality and malaria exposure among the under fives is consistent with 

what was reported from the MTIMBA sites of Rufiji and Kisumu. Completion of the remaining 

site-specific analyses followed by a meta-analysis will make a great contribution to malaria 
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epidemiology. Further work however, should consider cohort analysis in order to ascertain 

whether malaria control interventions have caused a shift in the age of acquired immunity.   
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Zusammenfassung 

Malaria ist nach wie vor ein ernstzunehmendes gesundheitliches und sozioökonomisches 

Problem in Entwicklungsländern, insbesondere in Subsahara-Afrika (SSA). Jedes Jahr werden 

ca. 500 Millionen Malariafälle und rund eine Million Todesfälle, hauptsächlich Kinder unter fünf 

Jahre, gezählt. Ein Großteil des Bruttoinlandsprodukts in Entwicklungsländern fließt in die 

Bekämpfung von Malaria und kann somit nicht in andere Bereiche zur Entwicklung investiert 

werden. 

Die Weltgesundheitsorganisation (WHO) und die Roll Back Malaria Partnerschaft (RBM) haben 

sich Vektorkontrolle, Gesundheitsförderung und Fallmanagement (unter Verwendung von 

schnellen Diagnosetests mit Artemisinin-basierter Kombinationstherapie) zum Ziel gesetzt, um 

Malariamorbidität als auch -mortaliät zu reduzieren. Seit 2002 sind die Geldmittel für 

Malariakontrolle in SSA exponentiell gestiegen. Zu den Hauptinvestoren zählen die President's 

Malaria Initiative (PMI) und Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM). 

Länder, welche die empfohlenen Strategien zur Malariakontrolle, wie zum Beispiel Insektizid-

behandelte Moskitonetze und Behandlung von bestätigten Fällen, erhöht haben, meldeten einen 

Rückgang sowohl in Morbidität als auch in Mortalität insbesondere unter Kindern. Jedoch 

basieren diese Statistiken auf Daten von Gesundheitseinrichtungen, wobei in den meisten 

Entwicklungsländern viele Todesfälle zuhause eintreten und somit aufgrund von ineffizienten 

Meldewesen nicht registriert werden. Monitorings der Fortschritts solcher Interventionen 

erfordert zuverlässige Datenquellen bzgl. der Übertragung als auch die Entwicklung der 

Infektion.  
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In Malaria-endemischen Gebieten wird die natürliche Immunität nach wiederholten Infektionen 

in den frühen Lebensjahren erworben. Dies wurde aus der zurückgehenden Zahl der 

malariabedingten Morbidität und Mortalität, insbesondere bei Kindern unter fünf Jahren, 

geschlossen. Aufgrund der momentan Initiativen zur Bekämpfung von Malaria herrscht 

Besorgnis darüber, dass das Risiko der Krankheit auf ältere Kinder überlagert werden könnte. 

Jedoch gibt es dafür aufgrund mangelnder Daten in SSA bisher keine Belege. 

Einkommensschwache Länder haben auf Gesundheits- und demographische 

Überwachungssysteme zurückgegriffen (HDSS) um regelmäßig Veränderungen der Bevölkerung 

und die gesundheitliche Situation in ausgewählten geographischen Gebieten zu kontrollieren. 

In 2000 hat INDEPTH, ein HDSS Netzwerk, das Malaria Transmission Intensity and Mortality 

Burden Across Africa (MTIMBA) Projekt ins Leben gerufen, um die Beziehung zwischen 

Malariaübertragung und Mortalität unter Berücksichtigung der momentanen Interventionen zu 

beurteilen. Mortalitätsdaten und weitere demographische Kennzahlen wurden von der 

regelmäßig angepassten HDSS Datenbank extrahiert. Entomologische Daten wurden drei Jahre 

lang in zweiwöchigen Abständen von zufällig ausgewählten Gebieten gesammelt. 

Dank des MTIMBA Projekts wurden große geostatistische Daten generiert, welche in Raum und 

Zeit korreliert sind. Des Weiteren umfasste das Projekt longitudinale Daten bzgl. Moskitos, 

welche durch zahlreiche Nullwerte, insbesondere während der Trockenperioden, charakterisiert 

sind. Die Nullwerte entstehen durch Vorliegen von leeren Moskitofallen in einem Gebiet oder 

wenn keine der gefangenen Moskitos eine Infektion aufweisen. Eine angemessene Datenanalyse 

sollte daher Modelle anwenden, welche raum-zeitliche Korrelation und den Überschuss an 

Nullwerten berücksichtigen, um Über- oder Unterschätzung der Parameter zu vermeiden. Zero-
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inflated geostatistische Modelle berücksichtigen raum-zeitliche Korrelation, indem 

gebietsspezifische und Zeitintervall abhängige random effects eingeführt werden, wodurch die 

Anzahl der zu schätzenden Parameter steigt. Bayessche Modelle, implementiert durch Markov 

chain Monte Carlo (MCMC), ermöglichen die Anpassung von hoch-parametrisierten Modellen. 

In dieser Arbeit werden zero-inflated Bayessche Modelle angewendet, um die durch Malaria 

bedingte Mortalität in allen Altersgruppen mittels großer, korrelierter und sparse (dünnbesetzt) 

Datensätzen, welche vom Navrongo und Manhica HDSS zwischen 2001 und 2004 gesammelt 

wurde, zu schätzen. Die Beiträge dieser Arbeit waren (i) die Beschreibung der HDSS 

Datenmerkmale und relevanten Analysemethoden; (ii) die räumlich-explizite Schätzungen der 

Intensität der Malariaübertragungen in monatlichen Intervallen; und (iii) das Verhältnis zwischen 

Gesamtmortalität und der Malariaübertragungsintensität in allen Altersgruppen. 

Kapitel 2 beschreibt die Merkmale der MTIMBA Daten. Jene sind große geostatistische, 

zeitliche, saisonale und zero-inflated Daten. Die Mortalitäts- und Moskito-Daten waren nicht 

angeglichen, da sie in unterschiedlichen Gebieten und Zeitperioden erfasst wurden. Zero-inflated 

Bayessche zeitlich-räumliche Modelle sind hinsichtlich der Analyse solcher Daten der neueste 

Stand der Technik. Der exakte statistische Prozess wurde durch Modellierung der 

Sporozoitenrate (SR) Daten des Manhica HDSS aufgezeigt. Die Analyse der MTIMBA Daten 

wurde genutzt als ein Weg um SSA Kapazitäten durch Kursarbeiten, Seminare und Mentorschaft 

aufzubauen. Die durch das Projekt generierten Daten sind relevant zur Beurteilung der 

Heterogenität der Malariaübertragung innerhalb und zwischen Gebieten. 

Die Navrongo Malaria Expositionsabbildungen, welche in Kapitel 3 beschrieben wurden, 

basieren auf zero-inflated geostatistischen Modellen. Diese wurden separat auf die binomialen 
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SR Daten und die negativ binomialen Zählungsdaten der Moskitoarten angewandt. Zusätzlich zu 

Kovariaten bzgl. Klima, Umgebung und Saisonalität beinhalteten alle Modelle räumliche sowie 

zeitliche Korrelation. Die Schätzungen der entomologischen Impfungsrate (EIR) wurde als 

Produkt der geschätzten Bissrate und der SR hergeleitet. Die beobachtete EIR in diesem Distrikt 

war >100 infektiöse Bisse/Person/Jahr. Distanz zu Gewässer, Tagestemperatur und Vegetation 

waren die Hauptprädiktoren der Moskitodichte der zwei Spezies. Die EIR Karten zeigen 

eindeutig auf, dass die zeitliche Heterogenität stärker war als die räumliche Variation in diesem 

Gebiet. Gleiche Ergebnisse ergab die Analyse der zwei MTIMBA Gebiete Rufiji (Tansania) und 

Kisumu (Kenia). 

Monatliche Abbildungen der Malariaexposition (Kapitel 3) wurden verknüpft mit den 

nächstgelegenen Gebieten, in denen Mortalität beobachtet wurde (siehe Kapitel 4). Daten bzgl. 

des Todeszeitpunkts wurden in monatliche Intervalle eingeteilt um Bernoulli und binomiale 

Daten zu generieren, welche mittels logistischen Regression modelliert wurden. Räumlich-

zeitliche Modelle wurden angepasst um das altersspezifische Mortalitätsrisiko zu schätzen. Das 

Model umfasste zwei Kovariaten – log-transformierte EIR Schätzungen mit ihren 

Messabweichungen und Alter. Die ITN Variable war nur enthalten in den Modellen für 

Neugeborene, Postneonatale (1-11 Monate) und Kinder. Die Analyse zeigte eine positive log-

lineare Beziehung zwischen Gesamtmortalität und Malariaexposition in allen Altersgruppen 

>=60 Jahre. Der Gebrauch von ITN zeigte einen schützenden Effekt bei allen Kindern unter fünf 

Jahre. Dies bestätigt die Ergebnisse aus der Analyse der Rufiji und Kisumu HDSS.  

Die Methode, welche in Kapitel 3 und 4 zur Schätzung der Abbildungen der Malariaexposition 

und des Mortalitätsrisikos angewandt wurden, wurden erweitert um die Manhica HDSS 
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(Mosambik) Daten zu analysieren und die Relation zwischen Mortalität-Malaria Übertragung in 

dieser Region zu beschreiben (Kapitel 5). Die räumlich-zeitlichen altersspezifischen Modelle 

umfassten die EIR Schätzungen mit ihren Messabweichungen (um Unsicherheit der Vorhersage 

zu berücksichtigen) und Alter als Kovariaten. 

Die Distanz zum nächsten Gewässer war der einzige wichtige gemeinsame Prädiktor für An. 

funestut und An. gambiae Moskitodichte. Die Intensität der Malariaübertragung ist in diesem 

Gebiet beständig zurückgegangen. Die model-basierten Ergebnisse zeigen eine positive log-

lineare Relation zwischen Gesamtmortalität und Malariaexposition in allen Altersgruppen auf 

(Neugeborene (0-28 Tage), Postneonatale (1-11 Monate), Kinder (1-4 Jahre), junge Menschen 

(5-14 Jahre), Erwachsene (15-59 Jahre) und alte Menschen (>=60 Jahre). 

Diese Arbeit trägt zu weiterem Wissen über die Malaria-Mortalität Beziehung bei. Eine positive 

Assoziation zwischen Mortalität und Malariaexposition bei Kindern unter fünf Jahre stimmt mit 

den Ergebnissen der MTIMBA Gebieten Rufiji und Kisumu überein. Vervollständigung der 

Analysen in den verbleibenden Gebieten und eine anschließende Meta-Analyse werden einen 

großen Beitrag zur Malaria-Epidemiologie darstellen. Zukünftige Arbeit sollte eine 

Kohortenstudie berücksichtigen, um festzustellen, ob Malariakontrollinterventionen eine 

Verlagerung des Alters bzgl. der erworbenen Immunität verursacht haben. 
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Chapter 1: Introduction 

1.1 Background 

 

Plasmodium falciparum malaria infection is one of the major causes of morbidity and mortality. 

In 2010, approximately 2.5 billion people globally lived in the regions that were exposed to P. 

falciparum (Gething et al., 2011). There were an estimated 216 million episodes of malaria 

world wide in 2011 and 81% of them occurred in Africa. Ninety one percent of the cases were 

due to  P. falciparum (Cibulskis et al., 2011; Hay et al., 2010; WHO, 2011).  More than half a 

million estimated deaths in 2011 were attributed to malaria. Most of the deaths occurred in Sub-

Saharan Africa (81%) especially among children under five years of age. Figure 1.1 shows the 

global distribution of malaria risk. Malaria is present in 106 countries mainly in the tropics and 

subtropical regions.  

  Although there is a reported global decline in both morbidity and mortality, the figures still 

show a huge burden on the sub-Saharan Africa (SSA)  (Murray et al., 2012; WHO, 2011).  

Reductions in malaria cases and deaths have been attributed to scaling up of  the World Health 

Organization (WHO) recommended interventions namely; insect treated nets, indoor residual 

spraying (IRS), intermittent preventive treatment (IPT) during pregnancy, parasitological 

confirmations using either microscopy or rapid diagnostic tests (RDT) and  treating  all 

confirmed malaria cases with artemisinin combination therapy (ACT) (WHO, 2011).  All these 

initiatives aim at reducing malaria infection in humans. However, reducing malaria exposure in 

endemic countries is likely to shift the age of acquired immunity leading to cases of severe 

disease in older children (Snow and Marsh 1995).  
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Figure 1. 1: Global distribution of malaria risk 

 

Source :( http://www.who.int/gho/map_gallery/en/:  Accessed 17/5/2012) 

 

1.2 Malaria transmission 

 

There are four main plasmodia species that cause malaria in humans namely; Plasmodium 

falciparum, P. malariae, P.ovale and P. vivax. The parasite develops in two phases; the asexual 

within the human host and sexual taking place within the mosquito (Beier, 1998).   P. falciparum 

is the most common species in the tropics including SSA where the disease has overburdened the 

region.  P. malariae occurs alongside with P. falciparum in the tropics and sub-tropical countries.  

P.ovale is primary found in SSA, while P. vivax is distributed within tropical and temperate 

regions though rare in Africa (Rogerson and Carter, 2008). In recent years, human cases of 

http://www.who.int/gho/map_gallery/en/
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malaria have occurred with Plasmodium Knowlesi a monkey parasite mainly in south-eastern 

Asia (Collins, 2012). 

The malaria parasite has a complex cycle that involves a definitive host (mosquito) and human. 

Transmission of the parasite is from human to human through bites from a female anopheles 

mosquito as indicated in figure 1.2.  Infection of human host starts when a mosquito injects 

malaria parasites (sporozoites) into the blood. The sporozoites then travel to the liver cells where 

they multiply asexually. Liver schizonts become mature and rupture, releasing merozoites into 

the blood stream. The merozoites then invade erythrocytes after their release and evolve into ring 

forms called trophozoites, which in turn form schizonts where new merozoites develop and are 

released into the blood circulation after. The simultaneous waves of merozoites escaping and 

infecting more red blood cells result into symptomatic malaria disease.  Part of the merozoites 

develops into male and female gametocytes after going into a couple of schizogonic cycles.  

When a mosquito bites an infected human, it ingests the gametocytes, which further mature into 

male or female gametes and sexual replication takes place producing zygotes. These zygotes 

develop into mature oocyst which bursts to release sporozoites that invade the salivary grand of 

the mosquito, thus completing the cycle (stages 1-6 in figure 1.2). The life cycles of all human 

plasmodia species are similar but only vary in the length of time taken to complete a particular 

phase. 
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Figure 1. 2: Malaria transmission cycle 

 

 (Source:  http://www.niaid.nih.gov/topics/malaria/pages/lifecycle.aspx : 10/5/2012) 

 

Malaria vectors consist of various anopheles species with unique behaviours associated with 

ecological factors (Lindsay et al., 1998). Approximately 400 anopheles mosquitoes have been 

identified of which 30-50 species have the potential to transmit malaria to humans (Harbach, 

2004).  In SSA, malaria transmission is mainly driven by anopheles mosquitoes belonging to An. 

gambiae and An. funestus groups (Coetzee and Fontenille, 2004; Coetzee et al., 2000; Gillies and 

Mielion, 1968).  The two species are mostly attracted to humans instead of other abundant 

http://www.niaid.nih.gov/topics/malaria/pages/lifecycle.aspx
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animals (anthropophilic).  An. funestus breed in clear permanent fresh waters such as rivers and 

surround swamps while An. gambiae larvae have been found in temporal and shallow waters.  

The two salt-water sub-species of An. gambiae complex namely; An. merus and An. melas are 

found along the East and West African coasts respectively. Although the two species rest mainly 

indoor (endophilic), their feeding times differ (Gillies and Mielion, 1968).   

 1.2.1 Factors associated with malaria transmission 

 

Climatic factors such as temperature, rainfall and humidity influence the mosquito abundance 

and disease transmission.  Temperature is directly related to elevation of an area.  Temperature 

decreases as altitude increases and consequently mosquito population, vector species and  

transmission intensity also change with elevation (Drakeley et al., 2005; Kristan et al., 2008; 

Shililu et al., 1998).  Low temperatures are associated with prolonged larval development leading 

to increased mortality rates and hence low mosquito density (Minakawa et al., 2002). 

Temperatures above 22
o
C have been considered to favour stable malaria transmission, however 

those above 32
o
C cause high mosquito population turn-over, weak

  
individuals and subsequently  

high mortality (Craig et al., 1999).   

There is also a positive correlation between malaria disease and precipitation (Briët et al., 2008). 

Malaria transmission pattern follows rainfall distribution. Mosquito population increases in the 

middle of the rain season and reach a peak in the early part of the dry season. In equatorial region 

where two rainfall peaks are experienced and permanent swamps exist, fluctuation in the number 

of mosquitoes are much less than the Savannah area with single rainfall season (Gillies and 

Mielion, 1968).  However, in areas with no holding swamps, heavy rains wash away mosquito 

larvae   sites which reduce mosquito population and transmission.   Conversely, end of the rain 
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season creates water ponds which act as favourable mosquito breeding sites even in the dry 

seasons. Malaria transmission therefore seems to be driven by climatic and ecological factors. 

1.2.2 Measures of malaria transmission 

 

Malaria indices are crucial in determining the burden on the population and also for measuring 

the progress towards control efforts. Clinical examination is one of the first methods used to 

quantify malaria endemicity (spleen rate) in a population (Baker et al., 1868).  It involves 

determining the proportion of sampled population with enlarged palpable spleen at a particular 

time.  Spleen rates (SPR) have been used to categorize  areas according endemicity levels  using 

children aged 2 to 9 years as  hypoendemic (SPR: 0-10%),  mesoendemic (SPR 11-50%) , 

hyperendemic (SPR : 50 – 75%) and holoendemic (SPR: >75%) (Kevin Baird et al., 2002). 

Parasite prevalence is also another malaria index that is used to monitor endemicity in a 

population.  It refers to the total number of people (new and old cases) with a positive blood 

smear test of the total number screened at a particular time point. Using passive surveillance 

approach, the burden of malaria can also be measured by considering all reported malaria cases 

over the total number of people seeking treatment in that particular health facility. However, 

such a method is challenged by poor record keeping in SSA and also low utilization of health 

facilities.  Periodic malaria indicator surveys carried out in Africa can also act as good sources of 

such information.  

Another parasitological measure of malaria risk is the clinical incidence, which refers to the 

number of new cases within a given time period. Annual parasite incidence is one of form of 

incidence countries usually use to compare malaria risk between communities, districts or 

countries (Hay et al., 2008; Kevin Baird et al., 2002). Although rapid diagnostic tests are 

currently  used  in malaria diagnosis even at community level  (Mukanga et al., 2012; Murray et 
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al., 2008), systems for gathering all confirmed case data are absent in most countries in sub-

Saharan Africa. 

Serological tools (Drakeley et al., 2005) have been proposed to be used especially in  countries 

that are tending to elimination where transmission intensity has gone down or where 

transmission is very low. Indices generated under this approach can be classified under either 

prevalence or incidence.  

The entomological inoculation rate (EIR) , which is referred to as the number of infective 

mosquito bites received per person per unit of time  is  the recommended direct method  for 

measuring  transmission intensity in endemic areas (Beier et al., 1999; The malERA  Group, 

2011). It is derived as a product of the proportion of mosquitoes with sporozoites in their salivary 

glands (sporozoite rate) and human bite landing.  The latter is measured by the number of 

mosquitoes trying to feed on an individual. Although the gold standard method for estimating 

EIR is human landing catches (HLC), this approach is considered unethical, time-consuming, 

labour intensive and expensive. Mosquitoes are instead captured using pyrethrum spray catches, 

exit trap catches and CDC light traps methods (Shaukat et al., 2010). 

1.2 Malaria control interventions 

 

The development and use of residual insecticides like dichlorodiphenyltrichloroethane (DDT) 

became prominent at the end of the Second World War in the fight against malaria. Malaria 

control strategies applied DDT to reduce the mosquito population while infected people were 

treated with quinine which was one of the available anti-malaria drugs (Stapleton, 2009).  In the 

second half of the 20
th

 century, indoor residual spaying (IRS) with DDT led to a substantial 

decline in malaria in Sri Lanka, the former Soviet Union and India.    The successful malaria 

eradication pilot project was not extended to  many other area  due to high program costs, 
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emergence of resistance to DDT and community resistance to repeated house spaying (Arrow et 

al., 2004; Greenwood and Mutabingwa, 2002).  In 1969, the malaria eradication strategy was 

formally abandoned at the 22
nd

 World Health Assembly and a call for new malaria control 

strategies was made (Muturi et al., 2008). 

Strategies such as primary health care (PHC) which involved community health workers in 

health service delivery were also adopted for malaria control in SSA (Christopher et al., 2011).  

A trial involving ITN and chemoprophylaxis that was carried out in a village-based PHC scheme 

in rural Gambia attributed reductions in mortality in children to treated nets (Alonso et al., 1991). 

The results prompted more funding from WHO for four trials in Gambia (D’Alessandro et al., 

1995), Kenya (Nevill et al., 1996), Ghana (Binka et al., 1996) and Burkina Fuso (Habluetzel et 

al., 1997). The four clustered randomized trials reported protective efficacy of ITN among 

children. Due to observed benefits, more trials were further extended to other areas (Arrow et al., 

2004). 

In 1998, WHO established Roll Back Malaria initiative (RBM) with aim of reducing malaria 

mortality in endemic areas using ITN as one of the tools. The African heads of state summit on 

malaria held in Abuja, Nigeria in 2000 endorsed the initiative (Greenwood and Mutabingwa, 

2002; Yamey, 2000). Development partners have availed funds to RBM to fight malaria burden 

in SSA using effective preventive and treatment methods (WHO, 2011). However, continuous 

monitoring of RBM indicators has been challenged by lack of reliable data caused by weak 

health systems (Greenwood and Mutabingwa, 2002).  
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1.4 Malaria related mortality 

 

Persistent high mortality estimates have been reported in the malaria endemic area of the SSA  

with high  concentration  among children under five years (Lopez et al., 2006; Rowe et al., 2006; 

Snow et al., 1999). Although recent indicators show a decline  in mortality rates in the region 

that have been associated with millennium goals interventions (Murray et al., 2012; Rajaratnam 

et al., 2010; WHO, 2011), the true picture might be different because most deaths in developing 

countries take place outside health facilities and are never recorded. Countries have applied 

strategies namely; use of  insect treated nets and prompt treatment of malaria which have been 

associated with a reduction to mortality especially among the children (Binka et al., 1996; 

D’Alessandro et al., 1995; Lengeler, 2004; Phillips-Howard et al., 2003). SSA experience 

variation in malaria exposure, age pattern for acquired immunity and access to health services 

that have been associated with mortality (Hay et al., 2000; Kelly-Hope and McKenzie, 2009). It 

has been noted that interventions targeting reductions in malaria exposure to people in endemic 

areas are likely to increase the age for acquiring functional immunity. Severe malaria cases in 

high transmission areas  reduce with increasing  age as a result of   early acquired P. falciparum 

immunity (Snow and Marsh, 1995; Snow et al., 1997). Proper implementation of malaria control 

activities requires also a clear understanding of how mortality relates to transmission intensity.  

Previous efforts to assess the malaria attributed mortality have been hampered by lack of reliable 

data which is caused by inefficient health systems in SSA. Snow et al,(Snow and Marsh, 1995)  

carried out a  meta-analysis using previous studies from Africa and found no relationship 

between mortality and malaria transmission. Subsequent meta-analyses indicated a positive  

relation between mortality and transmission intensity among the infants  but not in children (12-

59 months) (Lengeler et al., 1997; Ross and Smith, 2006;  Smith et al., 2001).   
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1.5 The MTIMBA project 

 

The United Nations millennium goals targeting malaria focus on scaling up of sustainable 

preventive and therapeutic interventions in countries that are overburdened by the disease. 

Measuring impact of such interventions requires reliable sources of data that are not available in 

most of these countries (Mathers et al., 2005).  Many countries are now relying on health and 

demographic surveillance systems (HDSS) that were set up to routinely collect  demographic and 

health related outcomes data  within a defined geographical area to measure the effect of various 

interventions (Ngom et al., 2001; Tollman and Zwi, 2000).  

The INDEPTH, a network of HDSS in developing countries established the Malaria 

Transmission Intensity and Mortality Burden Across Africa (MTIMBA) project in early 2000 to 

generate data that will provide evidence about malaria control efforts in SSA.  The project aimed 

at assessing the levels of malaria transmission intensity; establishing the relationship between all-

cause plus malaria mortality   and malaria transmissions intensity taking into account the effect 

of disease control interventions. The project was linked into the routine activities of HDSS and 

field work was carried out for a period of three years.  There are currently 19 countries with 

HDSS in the INDEPTH network and 12 are found in Africa with 26 sites as shown in Figure 1.3.   
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Figure 1. 3:  Countries with Health and demographic systems in Africa 

 

 

Six HDSS within five countries namely; Burkina Faso, Ghana, Kenya, Mozambique and 

Tanzania provided comprehensive data for the project for 3 years (2001 to 2004). Mortality data 

were obtained from the sites’ databases of continuously monitored of demographic events.  

Entomological data across sites were collected using CDC light traps in order to obtain unbiased 

and comparable EIR estimates. 

The MTIMBA-HDSS data were collected at large number of fixed compounds that are close to 

each other over the project period. Such geostatistical data are correlated in space because 

compounds close to each other share similar exposures.  
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The entomological data are correlated in time because they were collected fortnight over a three 

year period.  Malaria transmission on the other hand is influence by climatic and environmental 

factors.  Malaria transmission intensity tends to follow a climatic pattern of the area. There were 

many compounds in the dry season with zero mosquito catches.  Similarly, the number of 

compounds with zero catches reduced in the wet seasons relative to the dry season.  The 

influence of ecological and climatic factors leads to sparse entomological data.  

The mortality and entomological data were not directly obtained from the same compound. 

Mortality was monitored in the entire HDSS while entomological data were collected from 

randomly selected compounds.  Such data are known to be misaligned in space and time. To 

align the data, we need to develop predictive models that will estimate malaria transmission 

intensity at unsampled locations. 

1.6 Modelling malaria spatial temporal heterogeneity  

Advances in Geographical Information Systems (GIS) have enabled accurate geocoding of 

locations where data are collected.  This has led to formulation of spatio-temporal databases in 

many fields including malaria hence promoting spatial data analysis. Proximity in space and time 

introduces spatial and temporal correlations (Cressie, 1993). Standard statistical models assume 

independence of observations. Ignoring spatio-temporal correlation may result into under or 

over-estimation of the significance of model covariates.  

In malaria epidemiology, space and time heterogeneity can be modelled by Bayesian 

geostatistical models in order to obtain posterior distributions of EIR indices for small areas and 

time periods. These models relate entomological data to environmental factors after taking into 

account spatial and temporal correlation (Cressie, 1993). Recently geostatistical models have 

been used to assess malaria risk mostly from parasitological surveys (Kazembe et al. 2006; Noor 
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et al. 2009; Gosoniu et al. 2010; Riedel et al. 2010; Gething et al. 2011; Gosoniu  et al. 2011; 

Giardina et al. 2012). 

The MTIMBA project collected entomological data to estimate EIR, a recommended measure of 

transmission intensity in endemic areas.  Rigorous analyses of these data therefore should take 

into account data characteristics namely; the distribution, collections over large number of geo-

referenced compounds, spatio-temporal correlation, seasonality and misalignment in order to 

reduce bias in parameter estimation.  

The geostatistical models for entomological data are either binomial (sporozoite rates) or 

Poisson/negative binomial (density) with additional parameters at each household location.  The 

large number of households monitored in HDSS increases the number of parameters to estimate. 

The spatial dependence in each model is accounted for by introducing location-specific random 

effects which are assumed to be latent observations derived from multivariate spatial process 

with a zero mean. The covariance of the spatial process assumes a correlation function of 

distance between any pair of locations.  The time correlation can also be modelled by introducing 

temporal random effects at defined time points (weekly, bi-weekly or monthly).  This creates 

highly parameterized geostatistical models which makes maximum likelihood inference unstable.  

Bayesian models implemented via Markov chain Monte Carlo simulation (MCMC) addresses fit 

of highly parameterized models (Gelfand and Smith, 1990).  However, with large number of 

locations (N>1000), geostatistical computation involves matrix calculations such as inverses and 

determinants that become very slow and probably infeasible. This computational challenge is 

informally referred to as “the big N problem” (Banerjee et al., 2003).  Different approaches to 

tackle the large N problem have been proposed but have not fully removed the computational 

difficulty.  These include use of low rank splines (Lin et al., 2000) and kernel convolutions 
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(Paciorek and Schervish, 2006) where a spatial process is approximated using a lower dimension 

subspace. Rue et al.(Rue and Tjelmeland, 2002) proposed approximating the spatial process by a 

Markov random field, a method that is suitable for locations on a regular grid. However the 

above methods have not been applied to health data where locations are clustered. In addition, 

these approaches are not straight forward to implement.  

Banerjee et al. (Banerjee et al., 2008) and Finley et al.(Finley et al., 2009) proposed a much 

easier approach of a predictive process approximation which estimates the spatial process from a 

subset of locations (knots) with a reduced dimension (N
*
< N). This approach improves the 

computational speed since the matrix to be inverted reduces according to the sample size of the 

knots (N
*
 by N

*
).  However, selection of knots with all the characteristics of the original space is 

a challenge. The team proposed selection of knots where the spatially averaged prediction 

variance (SAPV) is minimized (Finley et al., 2009). In addition to SAPV, Gosoniu et al. (in press) 

compared other sampling methods in selecting knots namely; balanced sampling (Deville and 

Tillé, 2004) and minimax space filling (Johnson et al., 1990) in order to estimate the 

computational costs. Findings indicate that models performed different when the selected 

number of knows is small (<200).  Large “N” is still an on-going research topic in statistics and 

therefore the relevant softwares are not readily available.  Currently available softwares such as 

BayesX (Brezger et al., 2005)  and spBayes (Finley et al., 2007) are still under development.  

Lack of standard software to analyse large geostatistical data generated by the MTIMBA project 

delayed the entire process of answering the project’s research question. In addition, longitudinal 

entomological data are characterized with large number of locations with zero (zero-inflated). 
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1.7 Thesis Objectives  

The aim of this work was to estimate malaria attributable mortality across all age-groups using 

large correlated data collected from health and demographic surveillance sites in west and 

southern Africa. 

1.7.1 Specific objectives 

 

 To describe the MTIMBA project data and identify relevant statistical issues. 

 To estimate malaria transmission intensity in Navrongo and Manhiça HDSS. 

  To relate all-cause mortality to malaria exposure using data collected from Navrongo 

and Manhiça HDSS.  

1.8 Structure of the thesis 

 

This thesis is organized as follows. Chapter 2 describes the MTIMBA project data characteristics 

and associated statistical issues. Chapter 3 presents an application of zero-inflated Bayesian 

geostatistical models to estimate monthly malaria exposure surfaces for the Navrongo HDSS, 

Ghana. In chapter 4 all-cause mortality was related to EIR estimates generated in the previous 

chapter. Chapter five presents the effect of malaria transmission intensity on mortality in 

Manhiça HDSS, Mozambique. A concluding discussion including the overall conclusion and 

study limitations are given in chapter 6. 
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Abstract 

 

The relationship between mortality and malaria transmission intensity remains unclear but 

mortality data are routinely collected in Health and Demographic Surveillance Sites (HDSS) 

many of which are in malaria-endemic areas.  To study the relationship of mortality with malaria 

transmission, the Malaria Transmission Intensity and Mortality Burden Across Africa (MTIMBA) 

project collected entomological data over a 3 year period, from a very large number of locations 

within 8 HDSS. Given the small number of sites, between-HDSS analysis is not very informative. 

The within-site variation contains considerable information about the mortality-malaria 

relationship but analyses of this need to account simultaneously for the large number of locations 

sampled, the spatio-temporal correlation, seasonality, and the sparsity of the data, with large 

proportions of zero values.  The mortality and entomological data are also misaligned because 

they were collected at different locations and time points. This means that the optimal analytical 

approaches require non-standard methods.  In this paper, we described data features and 

statistical issues of the MTIMBA data, propose data-driven Bayesian methods for their analysis 

and provide the current status of the project.  The methods are illustrated by the modelling 

sporozoite rate data from the Manhiça DSS.  

Key words: INDEPTH; Spatio-temporal analysis; Bayesian inference; zero-inflated models; 

MTIMBA; Malaria transmission 
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2.1 Introduction 

 

Evaluating the effectiveness of  health interventions  require appropriate data on morbidity, 

mortality and their specific causes in order to derive trends over time. However, recording vital 

events such as birth, death and migration in most African countries is still inadequate (Mathers et 

al., 2005).   This is partly due to the fact that most births and deaths occur in homes and are never 

reported in national statistics.  Countries rely on information generated from censuses and 

surveys which are not continuously carried out. Lack of vital registrations on population and 

health led to the establishment of health and demographic surveillance sites (HDSS) to collect 

routinely all related demographic and health outcomes within a defined geographical area(Ngom 

et al., 2001; Tollman and Zwi, 2000).  Countries are currently using HDSS data for planning, 

policy formulation and monitoring disease outcome including malaria (Adazu et al., 2005; Byass 

et al., 2002; Deressa et al., 2007; O’Meara et al., 2008; Snow et al., 2004).  In 1998, the 

International network of field sites with continuous demographic evaluation of populations and 

their health (INDEPTH)  was set-up with an aim of improving population-based health 

information in developing countries (Ngom et al., 2001). Currently, there are 42 sites in the 

network within 19 countries where 69% are located in Sub-Saharan Africa (SSA).  

Malaria is a common infectious disease transmitted by anopheles mosquitoes in the SSA 

countries where the majority of network sites are situated (Bryce et al., 2005; Morris et al., 2003; 

Rowe et al., 2006) .  Transmission intensity especially in Sub-Saharan African is heterogeneous. 

It ranges between zero and more than 1000 infective bites per person per year (Beier et al., 1999). 

However, while severe malaria has a high case fatality rate, and substantial reductions  in 

mortality have  been observed in field trials insecticide-treated nets (Akachi and Atun, 2011; 

Eisele et al., 2010; Lengeler, 2004), the quantitative relationship between malaria transmission 
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intensity and mortality remains unclear(Gemperli et al., 2004; O’Meara et al., 2008; Ross and 

Smith, 2006; Smith et al., 2001; Snow and Marsh, 2002, 1995).   A study that reviewed mortality 

and entomological inoculation rate (EIR) data from Africa documented a positive relationship 

between infant mortality and EIR (Smith et al., 2001).  The positive association was not observed 

for children aged 12 to 59 months. Geostatistical analysis using the Mapping Malaria Risk in 

Africa (MARA) and the Demographic and Health Surveys (DHS) databases found no 

relationship between malaria risk and infant mortality (Gemperli et al., 2004).  

In directing further interventions targeting Millennium Development Goals (MDG) on Malaria, 

the INDEPTH network established the Malaria Transmission Intensity and Mortality Burden 

Across Africa (MTIMBA) initiative. The field work was implemented in 8 HDSS between 2001 

and 2004 with the aim of examining the relationship between mortality and malaria transmission 

intensity taking into account interventions implemented by participating sites. 

A standard protocol was developed for estimating the Entomological Inoculation Rate using 

CDC light traps to estimate indoor densities of host-seeking Anopheles, and ELISA assays to 

assess sporozoite-positivity in the vectors. The protocol also involved calibration of the CDC 

light traps against human landing collections in order to estimate the exposure of a sample of the 

human population, representative in space and time.  These data could be linked to the data on 

both all-cause mortality, and cause-specific mortality derived from verbal autopsies. 

Despite the large amount of data collected, the variation between sites in mortality rates did not 

show any clear relationship with estimates of malaria transmission intensity at the site level.  

Thus the key analyses consider mainly the variation within sites.  
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In this paper we describe the MTIMBA project, data challenges, appropriate methods for their 

analysis and current status. The methods are illustrated with the modelling of sporozoite rate data 

from the Manhiça DSS.  

2.2 MTIMBA project  

 

2.2.1 Project sites            

                                                                                                    

  Ten demographic surveillance sites in sub-Saharan Africa participated in the project but only 8 

finally provided comprehensive mortality data, comprising Manhiça  in southern Africa (Aranda 

et al., 2005); Rufiji, Ifakara and Kisumu in East Africa(de Savigny et al., 2004; Somi et al., 

2007); Nouna, Naikhar,  Oubritenga, Kourweogo and Navorongo in West Africa (Appawu et al., 

2004a; Diallo et al., 2004; Etard et al., 2004; Hammer et al., 2006.; Konaté et al., 2011). Figure 

1.3 shows countries (numbered 2, 4, 6, 8 11 and 12) where MTIMBA sites are located and their 

details of have also been described in the INDEPTH monograph (2000) and elsewhere (Ngom et 

al., 2001) .     

2.2.2 Data collection 

 Entomological data                                                                                     

Mosquito collection was performed all the year around using light trap catches in rooms of 

randomly selected members of the HDSS population.  The intention was that each month a 

minimum of 10 all-night light trap collections were conducted within each HDSS site.  For 

logistical reasons, it was not possible to obtain a simple random sample of the host-seeking 

mosquitoes by locating the collections independently of each other.  Instead, each site used a 

slightly different sampling strategy depending on available resources and local settlement 
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patterns, aiming to obtain an unbiased estimate of the numbers of biting mosquitoes. Sampling 

methods for Oubritenga, Kourweogo and Ifakara HDSS were different from   the rest. 

Traps were hung at about 1.5m above the floor next to the bed of the index person.  Other people 

in the same room without bed nets were also provided with untreated nets for that specific night. 

Light traps were operated from sundown to sunrise from each of the randomly selected 

compounds. For calibration purposes, at least 30 human landing catches (HLC) were set over the 

transmission period in order to obtain a correction factor (Lines et al., 1991).  HLC involved 2 

individuals seated collecting mosquitoes landing on their exposed legs using a torchlight and 

test-tube or aspirator. Each pair of mosquito collectors worked for six hours per night. HLC 

fieldworkers were given malaria prophylaxis based on the country’s treatment guidelines. All 

mosquitoes were transported from the field to the laboratory in a cool box or in a tube containing 

desiccant for further processing.   Heads and thoraces of light trapped anopheles were tested for 

Plasmodium falciparum circumsporozoite protein (CSP) using enzyme linked immuno-sorbent 

assay (ELISA).   

The mosquito density, and sporozoite data were used to compute Entomological Inoculation 

Rates, for specific locations and time periods, as the product of the estimated proportion of host-

seeking mosquitoes that are sporozoite positive (sporozoite rate) and the estimated number of 

mosquitoes biting a mosquito collector in unit time  (man biting rate) (Beier et al., 1999).   

 Mortality data                                                                                                   

 Mortality data were extracted from routinely collected HDSS databases.  Cause- specific 

mortality data were obtained from a modified verbal autopsy (VA) tool derived from both, the 

World Health Organization (WHO) and the standard, site-specific VA questionnaires.  

Questionnaires were translated into local languages in order to suite the local socio-cultural 
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environment. VA interviews were conducted within the first three month of death.  Interviews 

administered by trained researchers were analyzed by two independent physicians in order to 

determine the probable cause of death.  Whenever consensus was not reached by the two, a third 

assessment was conducted on the same questionnaire.  Cause-specific death was coded according 

to either International Classification of Diseases (ICD-10) or locally- derived systems.  

 

Informed consent                                                                                                     

  At the initiation of the study, HDSS sites explained to their communities the project objectives 

and the approaches to use.  Verbal consent was sought from household heads, index persons and 

other members in the room where traps were to be set.  At each survey round, written consent 

was sought from fieldworkers who performed human landing catches.  Details about study, 

anticipated hazards were given before recruitment. In addition, sites supplied HLC individuals 

malaria prophylaxis based on countries treatment guidelines [MTIMBA protocol, unpublished].   

2.3 Data characteristics  

 

These large amounts of data are spatially correlated because neighbouring locations share 

common exposures such as interventions, land use, climate and environmental factors. The 

longitudinal nature of such data also introduces a temporal correlation alongside the mortality 

data obtained from the HDSS sites during the project period.  Seasonal changes in the weather, 

influence mosquito behaviours and malaria transmission(Abellana et al., 2008; Mabaso et al., 

2007; Oesterholt et al., 2006; Okello et al., 2006). Seasonality and temporal trends are therefore 

present in the MTIMBA data.  The entomological data collected over time usually contain 

mosquito collections with either no mosquitoes or zero infected mosquitoes. Over 50% of the 
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collections  in all sites had  no mosquitoes (Amek,. et al., 2012; Kasasa , et al.,2013; Rumisha, et 

al., 2012). The large amounts of zeros cause data to be over-dispersed.    

Statistical analysis 

Appropriate data analysis should take into account spatial-temporal correlation in order to avoid 

over or underestimation of statistical significance for the covariates (Cressie, 1993).  Bayesian 

geo-temporal statistical models are the state-of-art methods for analyzing the DSS mortality and 

MTIMBA entomological data. However, assessing the relationship between mortality and 

transmission has been delayed by the computational difficulties involved in the model fit. 

Modelling of these data takes into account spatial correlation by incorporating random effects at 

the observed locations. These are treated as latent variables arising from a spatial process 

quantified by a multivariate normal distribution (Gaussian spatial process)(Diggle et al., 1998) . 

Spatial correlation is taken into account in the covariance matrix of the process by assuming a 

correlation function of distance between any pair of locations. Model fit is complicated due to 

large numbers of parameters. Bayesian models implemented via Markov chain Monte Carlo 

simulation (MCMC) addresses fit of highly parameterized models however; geostatistical 

computation involves matrix calculation such as inverses and determinants. For large number of 

locations, these calculations are infeasible (“large N problems”). Banerjee et al(Banerjee et al., 

2008b) and Finley et al.(Finley et al., 2009)  proposed estimation of the spatial process from a 

sample of locations.  Gosoniu GD et al. (Gosoniu  D. et al., 2011) assessed different sampling 

schemes using DSS mortality data and concluded that balanced sampling (Deville and Tillé, 

2004) and space filling algorithms (Johnson et al., 1990) provide a good sample tools in 

obtaining the sub-set of locations (knots). For the analysis of the MTIMBA data, Rumisha et al 
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(Rumisha, et al., 2013) proposed an approach of selecting the size and sub-sample by comparing 

the variogram of the full data with that of the sub-samples. 

2.3.1 Seasonal and temporal data 

                                                                          .  

 Seasonality is often captured either as a binary covariate dry/wet or as a trigonometric function 

described as follows;                                  

1 2

2 2
( ) cos sin , 1, 2, ....,

t t
f t b b t n

T T

 
  

   
   
   

      where  ( )f t is the seasonality 

function,  T,  the season length and b1 plus b2 are the components  for amplitude and phase 

(Stolwijk et al., 1999). The function ( )f t  is typically included in the regression model to 

account for seasonality in the data.                                                                                                    

Temporal random effects ( )t can modelled via an autoregressive [AR (k)] stationery process of 

order k (Hay and Pettitt, 2001). The above trigonometric models have been applied for the 

analysis of Rufiji MTIMBA data (Rumisha et al., 2012) . 

2.3.2 Sparse data 

 

Standard regression approaches that ignore the excess zeros in data usually fail to provide 

adequate fit to the data (Ridout et al., 2001), so zero-inflated regression models were used to 

accounting for the excess zeros. Entomological data are characterized by large number of 

locations with either no mosquitoes or proportion with sporozoites in their glands. Zero-inflated 

models are formulated as two-component mixture models; one corresponding to the structural 

zeros due to unmeasured covariates and another one to the distribution that generated the data.  

Formally, the model is written as follows;  (1 ) ( ), 0

(1 ) ( ), 0
( )

it it it it

it it it
it it
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f y y
P Y y
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( )
it

f y  is the standard distribution and it , is the probability (mixing proportion) of observing a 

structural zero. The mixing proportion is considered either as a constant or as a function of 

covariates depending on data fit (Lambert, 1992) . Such models have been applied mostly to 

count epidemiological data(Clements et al., 2006; Nobre et al., 2005; Soares Magalhães et al., 

2011; Vounatsou et al., 2009), but sparse literature is available for binomial data(Hall, 

2000).Bayesian zero-inflated binomial models have been developed by Amek et al (Amek, et al., 

2011) for analysing the Kisumu MTIMBA data and applied by Kasasa  et al (Kasasa , et al.,2013) 

and Rumisha et al(Rumisha, 2013)  for the analysis of Navrongo and Rufiji data, respectively.  

2.3.3 Misaligned data 

 

Entomology and mortality data were collected within MTIMBA-DSS sites at different locations 

and over a time period making them time and spatially misaligned.  Such data can be aligned by 

developing geostatistical models to predict the exposure at the outcome locations taking into 

account the prediction error as a measurement error in the covariate (Gemperli, 2003). For the 

MTIMBA-HDSS data, negative binomial (mosquito density) and binomial (SR) models by 

mosquito species were fitted separately. Bayesian kriging (Diggle et al., 1998) was applied to 

predict density and SR at the unsampled locations.  EIR estimates were generated using model-

based products of density and sporozoite rate at high resolution. Mortality from georeferenced 

compounds were then linked to the nearby EIR based on the minimum distance (Amek, 2013; 

Rumisha , 2013;Kasasa et al., In preparation). 
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2.3.4 Complementary data 

 

Mortality may not only be influenced by malaria but also by ongoing interventions to both, the 

disease and the vector. Households’ socio-economic status (SES) can be related to mortality as it 

determines choice and access to health care especially in rural communities (Rutebemberwa et 

al., 2009).  Not all MTMBA sites have complete data for interventions and SES. Some have no 

data at all and others collected it before or after observing mortality in certain households. 

Mosquito breeding sites (i.e. swamps, ponds, seasonal rivers) and climatic factors affect malaria 

transmission in an area.  Although these data are routinely collected by some sites, they were not 

included in the standard MTIMBA protocol. In addition not all compounds in the HDSS were 

georeferenced.  Available weather and environmental data at very high spatial resolutions are too 

expensive. Remote sensing data at 250m to 1km spatial resolutions from Moderate Resolution 

Imaging Spectroradiometer (MODIS), African Data dissemination Service (ADDS) and 

HealthMapper can be used as potential proxies.   These data are available at high temporal 

resolution (weekly or by weekly intervals). Lag time analysis or spatial variable selection 

procedures can be used to determine the period prior to data collection which climatic proxies 

can be based.  

2.4 Statistical models 

2.4.1 Modelling Sporozoite Rate data 

 

Sporozoite rate are binomial data modelled via logistic regression.  The number of positive 

mosquitoes 
( )S

itY  out of all tested ( )itN  follows a binomial distribution; that is 

 ( )

,
~

S

it it it
Y Bin N p  with parameter itp , the sporozoite rate at location i  and time t .  These are 
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modelled together with covariates itX , seasonality and random errors on the logit scale as, 

( ) ( ) ( ) ( )
log ( )

T S S S S

it it i t i
it p X e      , where  ( )

1 2
, ,.......,

TS

k
      is a vector of 

regression coefficients. The spatial random effects are assumed to originate from a Gaussian 

spatial process with zero mean and correlation matrix
( )S

R , 
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
      and 

2( )S


 is the spatial variance.  A number of 

functions can be used to measure correlation between any particular pair of locations(Gelfand, 

2007), the exponential one is frequently used, that is  ( ) ( ) ( )
exp

S S S

ij ij
R d   where 

( )S

ijd is the Euclidean distance between locations i and j, and 
( )S is the correlation decay 

parameter. Non spatial random effects 
( )S

ie with zero mean and variance
2( )S

e  are added to 

the model to account for unexplained variability in the data.     

2.4.2 Modelling mosquito density data 

 

Mosquito densities are typically over-dispersed count data, best modelled by negative binomial 

distributions. Let  
( )D

itY  be the number of mosquitoes trapped at location i and time t. We can 

assume that  ( ) ~ ,D

it itY NB r , with  it  and r corresponding to the mean and dispersion 

parameters respectively (Vounatsou et al., 2009a). The relationship between mean density of 

each species ( )it , the covariates it
X  and the random effects is modelled as; 

( ) ( ) ( ) ( )
log( )

T D D D D

it it i t i
X e        where, it

X is the vector of covariates at location i for 

time t and  ( )

1 2
, ,.......,

TD

k
    , the vector of regression coefficients.  All the random effects 

are defined and modelled in similar way as described in the sporozoite rate model above. 
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2.4.3 Modelling EIR 

 

EIR data are treated as log-normally distributed (Gemperli et al., 2006; Himeidan et al., 2011) 

which leads to difficulties in modelling small area variation, because the data are often sparse, 

and often mosquito collections in the dry season capture no mosquitoes.   However, EIR arises as 

a product of sporozoite rate and human biting rate derived from mosquito density.  Sporozoite 

rate are binomial data while mosquito density count data follow either Poisson or negative 

binomial distribution. Proper statistical data analysis requires taking into account a distribution 

that generated that data. Applying independent logistic and negative binomial regression models 

to sporozoite rate and density data by mosquito species respectively would therefore lead to 

accurate EIR estimates.  Zero-inflated analogues of the binomial (ZIB) and the negative binomial   

(ZINB) could be used to account for the effect of the large number of location traps with no 

infected mosquitoes.  The two estimates, sporozoite rate and mosquito density  are then 

multiplied together including a conversion factor for adjusting for light trap catches to man biting 

rate(Lines et al., 1991).  At unsampled locations where entomological data are not available, 

Bayesian Kriging can be used to predict both sporozoite rate and density rate data (Diggle et al., 

1998).                                 

2.4.4 Modelling mortality and malaria transmission 

 

The relationship between mortality and malaria is age-dependant since the disease morbidity is 

linked to immunity which develops with age.  Therefore assessing such a relationship should 

also be studied at different age groups due to variations in mortality determinants (Becher et al., 

2008a).  Common age specific mortality categories include, neonatal (0-28 days), postnatal (1-

11months), child (1-4 years), young people (5-14 years), adults (15-59 years) and old age (atleast 

60 years). Survival models are appropriate in analyzing mortality data and they assume 
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continuous follow-up time (Cox, 1972). In the presence of time-dependant covariates, survival 

models are based estimated by logistic regression where discrete follow-up time is 

assumed(Allison, 1982; Singer and Willet, 1993). The occurrence of each event is recorded 

sequentially as dummy variable at each observed time point. Since malaria transmission intensity 

is time dependant, modelling MTIMBA mortality data using logistic regression models is 

appropriate.  Mortality data is linked to predict EIR using a minimum distance approach. The 

analysis should consider EIR as a current exposure or as a cumulative exposure. Prior to 

mortality model fit, exploratory analysis using Kaplan-Meier survival curves, Log-rank and 

Wilcoxon tests need to be considered.  

2.4.5 Model validation 

 

Model validation is dependent on the type of models that have been used in estimating exposure 

effect. For MTIMBA data models fitted included, non-spatial, spatial, temporal and spatio-

temporal(Amek et al., 2011; Amek., 2013; Kasasa, et al.,2013; Rumisha  2013) .   Different 

methods that have been used in determining model’s predictive ability including; Kullback-

Leibler divergences, mean absolute error, chi-square, and credible interval plots (Schur et al., 

2011). Model fit was carried out on a randomly selected sample (85%) of the data (training 

sample) and the remaining set was used for validation (test sample) .The best model was used in 

predict outcomes for the entire study area.  
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2.5 Example:  spatio-temporal modelling of sporozoite rate data  

For the MTIMBA data, zero-inflated and standard Bayesian logistic regression, Poisson/negative 

binomial models were fitted and tested by site. In this paper, we applied zero-inflated logistic 

regression models to analyze sporozoite rate data from Manhiça DSS,  

Entomological data were obtained from 2918 georeferenced compounds in Manhiça DSS where 

light traps were set between October 2001 and September 2004. Fourty eight percent of the 

locations had mosquitoes for testing. A total of 1393 traps where An. funestus were identified, 

89.4% had no infected mosquitoes. An. gambiea traps with no infected mosquitoes accounted for 

94.2%. The DSS is located in the district of Manhiça (Maputo Province) in southern 

Mozambique. A full description of geographical and other characteristics of the area has been 

documented elsewhere ( Aranda et al., 2005) . 

2.5.1 Environmental data 

Remote sensing data were downloaded from various sources at defined resolutions (Table 2.1). 

The climatic and environmental covariates were extracted at the locations where entomological 

data were available. For each location, temperature, rainfall and vegetation data were 

summarized by month for each year of the project. 
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Table 2. 1:  Environment and climatic data source 

 

Predictor Spatial 

Resolution 

Temporal 

Resolution 

Source 

Day land surface temperature (Day LST) 1 km² 8 days MODIS 

Night land surface temperature (  Night  

LST) 

1 km² 8 days MODIS 

Normalized difference vegetation index 

(NDVI) 

250 m² 16 days MODIS 

Enhanced Vegetation Index (EVI) 250 m² 16 days MODIS 

Rainfall estimate (RFE) 8 km² Dekadal ADDS 

Elevation/Altitude 1 km² - USGS 

Nearest distance to water bodies (rivers 

and  wetlands) 

- - Local  and Health 

Mapper 

 

2.5.2 Model fit and implementation 

 

All the data at each location were collapsed by month. Non-spatial analysis was conducted in 

STATA to assess the effect of elapsing time (lags) using Akaike’s information criterion (AIC).  

For temperature three proxies were considered; land surface temperature day, night and average 

temperature.  AIC was used to identify a suitable combination of climatic and environmental 

predictors for both sporozoite rate and density by vector species.  

Bayesian geostatistical ZIB regression model was then fitted to sporozoite rate data. Location 

specific random effects were included in order to account for spatial heterogeneity.  The 

covariance between any pair of locations was assumed to be an exponential function of distance 

between each pair of locations. A first-order autoregressive term was further added to the model 

in order to account for the temporal effect. Non spatio-temporal variation (nugget parameter) in 

the data was accounted for by an additional set of random effects which were considered as 

mutually independent and normally distributed with zero mean. Those random effects and a set 
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of covariates were modelled on a logit scale. Details of mathematical description for the model 

used are given in appendix 1 

2.5.3 Results  

 

A total of 18923 mosquitoes from 1445 compounds that were tested for Plasmodium falciparum, 

16078 (85%) were An. funestus and rest (15%) were An. gambiae.  The overall sporozoite rate 

accounted for 1.3% of the total mosquitoes trapped in 3 years.   Plasmodium falciparum 

infections were detected in 1.4% of An. funestus   and 1.1% in An. gambiae. There were more 

infected mosquitoes in the wet season (1.6%) than in the dry period (1.1%).   Annual sporozoite 

rates from year one to three were 1.5%, 1.8% and 0.3% respectively.  Figures 2.1 and 2.2 show 

monthly sporozoite rates by mosquito species.  There were more infectious An. funestus   

between October and April, the wet and warm season. There was almost no infected An. 

gambiae, trapped in the warm months of November and December [Figure 2.2].  

 

 

Figure 2. 1: Monthly rainfall, observed and fitted An. funestus sporozoite rates 
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Figure 2. 2: Monthly rainfall, observed and fitted An. gambiea sporozoite rates 

 

 

Analysis suggested that, the best combination of environment factors for An. funestus   were; 

night LST of the survey month, day LST and NDVI of the previous month plus rainfall for two 

months before. An. gambiae sporozoite rate environmental predictors were current day LST; 

NDVI and rainfall of previous month plus average of the current and previous month night LST. 

Figures 2.3 shows validation results with the proportion of test locations with sporozoite rate that 

were predicted by three different models.  Within a 95% credible interval the non-spatial, spatial 

and spatio-temporal models included correctly 23%, 45% and 51% test locations respectively. 

Apart from the 90% credible interval, the spatio-temporal model has been consistently predicting 

correctly more locations than both the spatial and non-spatial models.  Based on the validation 

results, the spatio-temporal model was finally used to predict sporozoite rate by specie at un-

sampled locations. 
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Figure 2. 3:  Credible intervals of the posterior predictive distribution 

 

 

Zero-inflated spatio- temporal model without an independent error term had the best fit for the 

two species [Figures 2.2 and 2.3] and posterior estimates taking into consideration the effect of 

climate and environmental factors are included in the Table 2.2.  
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Table 2. 2: Multivariate spatio-temporal analysis of sporozoite rate by mosquito species 
   

Characteristics An. funestus An. gambiae 

Co-efficients Co-efficients 

Median
a 

95% CI Median
a 

95% CI 

Intercept -3.50 (-7.88, 1.45) -2.10 (-7.68, 4.15) 

Altitude  0.003 (-0.01, 0.02) 0.01 (-0.02, 0.04) 

Distance to water bodies -1. 23  (-0.46, 0.17) -0.04 (-0.69, 0.46) 

NDVI -0.18 (-3.37, 2.86) 0.21 (-4.46, 5.06) 

Rainfall 0.01 (-0.01, 0.04) -0.004 (-0.04, 0.03) 

Season(Wet) 0.12 (-1.00, 1.47) 1.91 (-0.35, 4.59) 

Day temperature -0.07 (-0.26, 0.11) 0.23 (-0.005, 0.66) 

Night temperature 0.03 (-0.24, 0.27) -0.50 (-1.07, -0.01) 

Variances     

     Spatial 2( )  0.03 (0.16, 0.69) 0.43 (0.16, 1.34) 

    Temporal 2( )  0.47 (0.18, 1.52) 0.49 (0.17, 2.25) 

Range  (in km) 1.57 (0.33, 7.84) 0.67 (0.34, 5.60) 
a 
:Median of the posterior distribution using ZIB model

  

 

 Multivariate analysis shows that   altitude, rainfall, season, night temperature were positively 

associated with An. funestus sporozoite rate. A negative association with the same specie was 

observed between closest distances to water bodies, vegetation (NDVI) and day temperature. All 

the covariates were not significantly associated with An. funestus sporozoite rate. The estimated 

temporal variance parameter ( 2

 =0.5, 95% CI: 0.18, 1.52) is larger than spatial variance 

( 2

 =0.03, 95% CI: 0.16, 0.69). The minimum distance at which the correlation becomes 

negligible is 1.6Km (95% CI: 0.3km, 7.8km).  

An. gambiae, sporozoite rates were positive associated with altitude, vegetation index (NDVI), 

wet season and day temperature. Similarly, distance to water bodies, rainfall and night temperate 

were negatively associated with An. gambiae sporozoite rate.  Apart from night temperate, all 

other predictors were not significantly related to sporozoite rate. From An. gambiae data, the 

estimated temporal variance parameter ( 2

 =0.49, 95% CI: 0.17, 2.25) is slightly larger than 
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spatial variance ( 2

 =0.43, 95% CI: 0.16, 1.34). The minimum distance at which the correlation 

becomes negligible is 0.7Km (95% CI: 0.3km, 5.6km), indicating a weak correlation in 

sporozoite data. 

Combined predicted sporozoite rates for the two species covering the entire DSS by month are 

shown in Figure 2.4 The figure shows a higher prediction of sporozoite rate between October and 

February, the wet and warm period. The predicted errors with specific locations sampled in a 

month are shown in Figure 2.5.  The period May to October shows higher prediction errors 

because this is a season when even observed sporozoite rates are close to zero (Figures 2.1 and 

2.2). 
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Figure 2. 4:  Predicted sporozoite rates from geostatistics models 
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Figure 2. 5: Monthly prediction errors 

 

2.5.4 Discussion 

In this paper, we give an overview of the MTIMBA project and analyzed space time correlated 

sporozoite rate data from Manhiça DSS. To our knowledge, INDEPTH is the first to assemble 

the largest entomological database in Africa. Although generating entomological data is costly, 
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EIR is the recommended measure of transmission intensity in malaria endemic countries.  The 

network initiated the project in early 2000 in order to further analyze the relationship between 

malaria transmission intensity and mortality (Gemperli et al., 2004; Smith et al., 2001). The 

project sites completed data collection process in 2004. Merging all these data into a single 

database was done in 2005.  While analyzing MTIMBA data, the EIR was estimated from zero 

inflated Bayesian geostatistical models fitted separately for both  sporozoite rate and mosquito 

density data.  This database can also be used to assess malaria epidemiology especially disease 

heterogeneity within and between sites.   

Analysis plans for the MTIMBA data included a capacity building component targeting people 

from malaria endemic area. Five students from four DSS (Ifakara, Iganga , Kisumu and Nouna) 

(Adazu et al., 2005; Hammer et al., 2006.; Rutebemberwa et al., 2009; Somi et al., 2007) and one 

national research organization were admitted for doctoral studies at Swiss Tropical and Public 

Health Institute (Swiss TPH), Switzerland.  Through   course work, seminars and mentoring 

from experts at the Swiss TPH and MTIMBA sites, these students have been able to acquire 

knowledge in malaria epidemiology especially in the areas of Bayesian geostatistical modelling 

and disease mapping.    It is expected that the statistical and writing skill acquired will then be 

transferred back to SSA sites.  Application of spatio-temporal analysis techniques will be useful 

in timely identification of disease hot spots for optimal allocation of scarce resources.  Training 

is likely to promote further research within the INDEPTH network and also between north and 

south. 

Like any other longitudinal study, MTIMBA project faced challenges ranging from logistical 

support, manpower to technical expertise especially in the area of statistics. Due to climatic 

changes, sites were enabling to access some of the pre-selected compounds leading to increased 
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number of zero mosquito catches in density data.  Although the project developed a protocol, 

sites had to use resources and means available to them in order to generate the expected data. For 

instance, Navrongo HDSS use two laboratories to test mosquitoes for Plasmodium falaciparium 

circumsporozoite protein. These laboratories seemed to have used different cut-off points leading 

to large variation in sporozoite rates between the first and proceeding years (Kasasa Simon, et al., 

2013).   Although site specific VA questionnaires were recommended in the protocol, cause 

specific mortality data for all sites were incomplete.  In addition all compounds in the 

participating sites were not geo-referenced.  This reduced the number of locations to include in 

the spatial analysis for both entomological and mortality models. 

 Tools for collecting complementary data on interventions, social economic status were not 

standardized. Some sites provided data for mosquito nets ownership while others on use. Some 

sites did not collect these data at all.  

Although MTIMBA projected registered certain gaps in the data, outputs generated from  within 

and between site analyses will form benchmarks in monitoring and evaluation of  malaria control 

intervention. 

Results from our spatio-temporal models predicted the highest number of locations between 10% 

and 95% confidence interval for the sporozoite data (Figure 2.1). From multivariate analysis, 

distance to water bodies was the only single factor that was negatively associated to the two 

mosquito species. These distances were computed from locally generated maps of flood areas 

and swamps which are the bleeding sites for mosquitoes.  Such places are close to compounds 

which give   mosquitoes easy access to a blood meal.  The shortest distance at which the spatial 

correlation was below 5% was low (between 3 to 8 km) for the two species. This shows a faster 

decay of the correlation with distance for sporozoite rate data. The weak correlation in data 
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seems to suggest that sporozoite rate depends largely on local conditions rather than 

environmental factors over the large area. The weak correlation in sporozoite rate data was also 

observed in northern Ghana (Kasasa  et al., 2013). 

Wet seasons in Manhiça had a positive relationship with sporozoite rate. This is also evident 

from figures 2.1 and 2.2. November to April are the warm and wet months for the area (Aranda 

et al., 2005). This period creates a favourable environment for mosquito breeding and survival.   

Analyses of the Rufiji and Kisumu MTIMBA-DSS data have  been  completed.  Work on the 

data from the remaining sites (Manhiça, Navrongo, Ifakara and Nouna) is still on-going.   

Although Rufiji experiences higher transmission intensity than Kisumu, results indicate the 

presence of temporal and season variation in both sites. A strong association between all-cause 

mortality and malaria transmission was observed among children (1-4 years) and school age 

children in Kisumu and Rufiji respectively(Amek, 2013; Rumisha, 2013). A negative association 

between mortality and transmission was observed among old people in the two sites.  

Completing site-specific analysis will help in generating a firm conclusion that will direct 

malaria control interventions.  
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 2.6 Appendix 1 

 Spatio-temporal modelling of sporozoite rate  

 Let itN  be the number of mosquitoes tested by vector species and itY be the number of positive 

mosquitoes at location , 1,....,is i n  and time t . We assumed that   itY  follows a binomial 

distribution; that is  ,~it it itY Bin N p  with parameter itp , the sporozoite rate. To account for 

spatial, temporal and random variation in the data, we introduced location, monthly and 

independent random effects  i  , t and ie respectively. These were modelled together with 

covariates itX via the logistic regression log ( )
T

it it i t iit P X e      , where 

 1 2
, ,.......,

T

k
      is a vector of regression coefficients. The spatial random effects are 

assumed to originate from a Gaussian spatial process with zero mean and variance-covariance 

matrix , where  1 2
, ,......., ~ (0, )

T

i n
N     .  The covariance between any particular pair 

of locations was assumed to be a function of distance between the locations, that is 

 
2

exp
ij ij

d


    where ijd is the  Euclidean distance between locations is  

and js , 
2

 is the spatial variance and  is the correlation decay parameter with the range 

defined as 3  (Ecker and Gelfand, 1997). Temporal random effects were modelled by first 

order autoregressive process [AR (1)] with variance 
2

  which allows correlation between 

consecutive time periods(J L Hay and Pettitt, 2001).  Non spatio-temporal random effects ie  

were assumed to follow a normal distribution with zero mean, 2~ (0, )i ee N  . 

 Model fit 

Following Bayesian model specification, various priors for model distribution parameters were 

adopted. Prior distributions included; normal with zero mean and large variance for regression 

coefficients 2[ ~ (0,10 )]N , inverse gamma for spatial and independent error 
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variances
2 2 2

[( , ); ~ (2.01,1.01)]
e

IG


   , uniform for decay parameter 

[ ~ ( , )]U a b  and beta for the mixing proportion [ ~ (1,1)]Be .   

Markov Chain Monte Carol (MCMC) simulation algorithm was used in estimating the model 

parameters. We used a single chain sampler of 180000 iterations with an initial burn-in of 10000.   

OpenBUGS software was used for parameter estimation. A FORTRAN program written by the 

authors was used for Bayesian Kriging in order to predict sporozoite rate by species at 

unsampled locations (Diggle et al., 1998) .  Convergence was assessed after running long chains 

and keep on monitoring trace and density plots. 

Model validation 

Three types of models, namely non-spatial, spatial and spatio-temporal were fitted. Using 

balanced sampling, 85% of the data was selected as a training set for model fit; while the rest 

(15%) were used for validation in order determine the models predictive performance.  Observed 

sporozoite rate at test locations and predictions were compared for accuracy using 95% Bayesian 

credible interval approach (Schur et al., 2011). A model with highest percentage of locations 

within the credible interval was assumed to have the best predictive ability.  
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Abstract 

Background: The relationship between entomological measures of malaria transmission 

intensity and mortality remains uncertain. This is partly because transmission is heterogeneous 

even within small geographical areas. Studying this relationship requires high resolution, 

spatially structured, longitudinal entomological data. Geostatistical models that have been used 

to analyse the spatio-temporal heterogeneity have not considered the uncertainty in both 

sporozoite rate (SR) and mosquito density data. This study analysed data from Kassena-Nankana 

districts in northern Ghana to obtain small area estimates of malaria transmission rates allowing 

for this uncertainty 

Methods: Independent Bayesian geostatistical models for sporozoite rate and mosquito density 

were fitted to produce explicit EIR estimates for small areas and short time periods, controlling 

for environmental factors. 

Results: Mosquitoes were trapped from 2,803 unique locations for three years using mainly 

CDC light traps. Anopheles gambiae constituted 52%, the rest were Anopheles funestus. Mean 

biting rates for An. funestus and An. gambiae were 32 and 33 respectively. Most bites occurred in 

September, the wettest month. The sporozoite rates were higher in the dry periods of the last two 

years compared with the wet period. The annual EIR varied from 1,132 to 157 infective bites. 

Monthly EIR varied between zero and 388 infective bites. Spatial correlation for SR was lower 

than that of mosquito densities. 

 

Conclusion: This study confirms the presence of spatio-temporal heterogeneity in malaria 

transmission within a small geographical area. Spatial variance was stronger than temporal 

especially in the SR. The estimated EIR will be used in mortality analysis for the area. 

 

Keywords: Entomological inoculation rate, Spatio-temporal, Zero-inflated, Malaria, Malaria 

Transmission Intensity and Mortality Burden Across Africa (MTIMBA) project 
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3.1 Introduction 

Malaria continues to be endemic in most sub-Saharan countries, particularly in Ghana where this 

study was carried out(Carneiro et al., 2010; Clerk et al., 2009; Oduro et al., 2007; “WHO | World 

Malaria Report 2009,”) Malaria in Ghana is transmitted by two main vectors: Anopheles 

gambiae and Anopheles funestus, whose peak activities occur at the end of the wet season. 

Changes in climate, land use and environmental factors profoundly influence the vector, and 

hence the parasite and transmission patterns. Malaria transmission intensity is measured using 

clinical (spleen rate), parasitological (parasite infection rate), entomological (entomological 

inoculation rate [EIR]) or serological markers(“A research agenda for malaria eradication,” 

2011;  Drakeley et al., 2005). The most direct measurement of transmission intensity is EIR, the 

number of infective bites per person per unit time. It is calculated as a product of the proportion 

of mosquitoes with sporozoite in their salivary glands (sporozoite rate) and numbers of vectors 

biting an average human in unit time (the human biting rate)(Beier et al., 1999). 

Malaria transmission in sub-Saharan Africa is heterogeneous, varying between climatic seasons, 

ecological zones and even among areas in close proximity(Carter et al., 2000; Charlwood et al., 

1995; de Souza et al., 2010; Drakeley et al., 2003; Kelly-Hope and McKenzie, 2009; Mabaso et 

al., 2007; Okello et al., 2006; Shililu et al., 2003). In Ghana, malaria transmission has shown a 

clear variation over time, season and space(Abonuusum et al., 2010; Appawu et al., 2004; Dery 

et al., 2010). The relationship between malaria transmission and mortality is still 

unclear(Gemperli et al., 2004; Smith et al., 2001). To clarify the relationship between malaria 

transmission and mortality, the Malaria Transmission Intensity and Mortality Burden Across 

Africa (MTIMBA) project was established in 10 INDEPTH network sites between 2001 and 

2004(Abdullah et al., 2007; Amek et al., 2012). Entomological data were collected every two 
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weeks over a large number of compounds within each site for a period of three years. Each site 

used a slightly different sampling strategy for mosquitoes depending on available resources and 

local settlement patterns, aiming to obtain an unbiased estimate of the numbers of biting 

mosquitoes. These data are spatially correlated because neighbouring compounds share common 

exposures such as interventions, land use, climate and environmental factors. The longitudinal 

nature of the data also introduces a temporal correlation. 

Rumisha and Amek(Amek, 2013; Rumisha, 2013) developed geostatistical temporal models to 

obtain EIR exposure surfaces for the Rufiji and Kisumu MTIMBA-health and demographic 

surveillance (HDSS) sites, respectively. Subsequent analyses linking mortality to EIR exposure 

indicated a positive linear relationship between mortality and malaria transmission intensity 

among the under-fives and a negative association for individuals aged 60 years and above. 

Although malaria is common in sites, their endemicity, spatio-temporal patterns and mosquito 

composition are completely different. Malaria transmission in Rufuji is driven by both An. 

funestus and An. gambiae, while the later is dominant in Kisumu throughout the year. Kisumu 

experiences two transmission peaks in a year and Rufiji has only one. This is partly due to 

ecological differences between the two sites. In relation to breeding sites, An. funestus prefer 

clear, permanent fresh waters while An. gambiae larvae are found mostly in temporal and 

shallow water bodies. Estimating site-specific heterogeneity in malaria transmission will help 

clarify how variation in transmission influences the malaria-related mortality. 

This study reports spatially and temporally explicit estimates of EIR at high resolution, obtained 

by analysing the MTIMBA data collected from Kassena-Nankana district in northern Ghana 

where the Navrongo health and demographic surveillance system (NHDSS) is located. The EIR 
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was estimated from Bayesian geostatistical models, fitted separately for sporozoite rate (SR) 

(assumed to be binomially distributed) and mosquito density data (negative binomially 

distributed). Model-based predictions at unobserved locations generated spatially explicit and 

season-specific estimates of EIR for the entire area. These estimates will subsequently be used in 

addressing the MTIMBA project’s main objective of estimating the relationship of mortality with 

malaria transmission. 

3.2 Methods 

3.2.1 Description of the Study area 

The NHDSS is located in the administrative district of Kassena-Nankana (between latitude 10
0
 

30
’
 and 11

0
 00

’
 North and longitude 1

0
 00

’
 and 1

0
 30

’
 West), in northern Ghana, bordering 

Burkina Faso. Its altitude stretches up to 400 m above sea level. The district covers an area of 

1,675 sq km and lies within the Guinea savannah belt. Approximately 140,000 people reside in 

the district and the majority is subsistence farmers. There are two distinct seasons; the wet, 

between April and October and a dry period that covers remaining months of the year. The 

region receives approximately 850 mm of precipitation per year with monthly temperatures 

ranging between 18 °C and 45 °C. The HDSS routinely collects demographic data using “a 

compound” as a unit of observation. Malaria is endemic in the area and Plasmodium falciparum 

is transmitted by both An. gambiae and An. funestus. Anopheles gambiae s.s. has previously been 

reported as a dominant sibling species of the An. gambiae complex. The An. gambiae M form is 

predominant in the northern parts of Ghana where NHDSS is located(Charlwood et al., 1995; de 

Souza et al., 2010). The canals from Tono dam and irrigated lands serve as breeding sites for An. 

gambiae throughout the year, while the rice fields support An. funestus breeding especially 
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during the periods when the vegetation is flooded. The small dams that are used in the dry 

seasons favour mosquito growth in these areas. Malaria transmission in the district occurs 

throughout the year. Between 2001 and 2002, the recorded mean EIR for the district was as high 

as 418 infective bites per person per year (ib/p/y)(Appawu et al., 2004). Further characteristics of 

the district and the HDSS have been described elsewhere(Appawu et al., 2004; Oduro et al., 

2007).  

3.2.2 Data types and sources  

i) Entomological data 

Mosquitoes were collected from randomly selected compounds using both light traps and human 

landing methods following the MTIMBA protocol. Compounds were randomly selected at the 

beginning of the study using the HDSS database and were allocated to trapping weeks. Sampled 

compounds were between 100–500 meters apart and were balanced in terms of numbers for the 

two major zones namely: irrigated and non-irrigated areas. Only one trap was set per compound 

per night. Light trap catches were performed overnight (from 18:00 GMT to 06:00 GMT). No 

study team member visited the compound at night until it was time to remove traps the next 

morning. Such visits were perceived by community members as intrusion. Traps were hung 

about 1.5 m above the floor next to the bed of an “indexed” person. Heads and thoraces of light-

trapped Anopheles were tested for P. falciparum circumsporozoite protein using enzyme linked 

immunosorbent assay (ELISA) (Wirtz et al., 1987). 

The entomological inoculation rate was therefore computed as a product of human biting rate 

and the proportion of infectious mosquitoes (sporozoite rate). Human biting rate was estimated 

as a geometric mean of Anopheles mosquitoes caught per light trap set(Lines et al., 1991). 
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Mosquitoes were trapped in 56% of the 2,803 uniquely georeferenced compounds within the site. 

Infectious mosquitoes were only found in 28% of these locations. 

 

 ii) Environmental data  

Environmental and climatic predictors were obtained from various remote sensing sources. Day 

and night land surface temperature (LST) at 1 x 1 km and both normalized difference vegetation 

index (NDVI) plus enhanced vegetation index (EVI) at 250 x 250 m were downloaded from 

Moderate Resolution Imaging Spectro-radiometer (MODIS). LST and vegetation data were 

extracted at eight-day and 16-day temporal resolutions respectively. Rainfall estimates (RFE) at 

8 x 8 km were obtained at 10-day intervals from the African Data Dissemination Service 

(ADDS). Altitude at 1 x 1 km was obtained from US Geological Survey (USGS) data centre. 

Distance to water bodies (based on local rivers and wetlands) was downloaded from 

HealthMapper version 4.2 databases. The shortest Euclidean distance from water bodies to 

compounds was calculated using ArcGIS version 9.1 software. The climatic and environmental 

variables were processed at the locations where entomological data were available. For each 

location, temperature, rainfall and vegetation data were summarized by month for each year of 

the project. 

3.2.3 Data analysis  

Non-spatial logistic and negative binomial regression models were used to analyse sporozoite 

and density data respectively. Zero-inflated models were fitted to account for the large number of 

locations with either no mosquitoes (44%) or no infectious mosquitoes (72%). The Akaike’s 

information criterion (AIC) in STATA was used to assess the length of the elapsing time (lags) 
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between climatic suitability and malaria transmission. In particular, five summary estimates were 

computed for each of the environment factors based on mosquito collection month in a year: i) 

current month of collection, ii) previous month, iii) previous two months, iv) average of the 

current and previous month, and v) average of the current and previous two months. Three 

temperature proxies were considered: land surface day, night and average temperature. 

Seasonality was taken into account by either a binary variable (wet/dry) or trigonometric 

functions with: (i) one cycle indicating a single transmission season, or (ii) two cycles 

corresponding to two transmission seasons per year. AIC was used to identify a suitable 

combination of climatic and environmental predictors for both SR and density by vector species. 

Bayesian geostatistical formulations of the above models were fitted to take into account spatio-

temporal correlation. In each model, compound-specific random effects were included. They 

were assumed to be latent observations from a multivariate Gaussian spatial process with a zero 

mean. The covariance of the process included the spatial variance and an exponential correlation 

function of distance between any pair of compound locations. First-order autoregressive terms 

were included to model temporal correlation. Any remaining non-spatial variation (nugget 

parameter) was considered by an additional set of location random effects, assumed to be 

mutually independent and normally distributed with zero mean. All the corresponding random 

and the covariates effects were modelled either on a logit or log scale depending on the model; 

logistic regression for sporozoite and negative binomial regression for the mosquito density data, 

respectively. Bayesian kriging was applied to predict SR and mosquito density over a grid of 

31,308 pixels with 250 x 250 m spatial resolution. The analysis was carried out for each 

mosquito species (i.e. An. funestus and An. gambiae) separately. Mosquito densities were 

converted to man-biting rates after adjusting for a factor. The indices were multiplied at each 
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location to generate spatially explicit surfaces of EIR for each species. Maps for the total EIR 

were generated using ArcGIS software. Details of mathematical description for all models used 

are given in appendix 2. 

3.2.4 Model Validation  

Models were fitted on 85% of the locations (training sample) and they were validated on the 

remaining 15% of locations (test sample). In particular, the model’s predictive ability was 

assessed by estimating the proportion of test locations correctly predicted within Bayesian 

credible intervals of probability coverage varying from 1 to 100% (Gosoniu et al., 2006). The 

model with the highest number of correctly predicted locations consistently over the intervals 

was considered as the one with the best predictive performance. 

3.3 Results 

3.3.1 Description of density data 

The mean biting rates per person and night for An. funestus were 34 in the first year, 32 in the 

second and 19 in the third. Similarly, An. gambiae mean bites were 33 in the first year, followed 

by 26 and 15 bites in the second and final year respectively. For the entire research period, mean 

biting rates per month varied with seasonal changes. For both species, most bites were observed 

during the wet season (July to November). Highest bites occurred in the month of September for 

all the three years. During the dry period of January to April, fewer monthly bites were recorded. 

Mosquitoes in the area became more abundant after the first three months of the rainy season 

[Figure3.1].  
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Figure 3. 1: Monthly rainfall and observed mosquito density  

 

3.3.2 Description of sporozoite rate data 

 

A total of 109,647 malaria mosquitoes from 1,565 compounds were tested for sporozoites; 

56,887 (52%) were An. funestus and the rest were An. gambiae. The overall SR was 2.5%. 

Plasmodium falciparum infections were detected in 2.4% of An. funestus and 2.7% in An. 

gambiae. The proportion of infectious An. funestus was almost equal to that of An. gambiae in 

both the first (4.8% and 4.7%) and third (1.2% and 1.4%) years. The lowest SR of 0.8% was 

observed in the second year from An. funestus mosquito species. The data showed an overall SR 

of 1.8% and 2.7% in dry and wet season respectively. However, during the second year the dry 

period SR was more than double that of wet season (1.6% compared with 0.7%). The proportion 

of infectious An. gambiae (2.1%) was higher than that of An. funestus (1.5%) in the dry season. 
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The fraction of infected An. gambiae mosquitoes was higher in dry season than wet for the 

second (2.0%) and third (1.5%) year. The monthly SR for both species follows a similar pattern 

for all the three years [Figure 3.2].  

 

Figure 3. 2: Monthly rainfall and observed sporozoite rate by mosquito species 

 

3.3.3 Description of EIR data 

The crude annual EIR estimates, based on entomological data from first to third year were 1132, 

193 and 157 ib/p/y respectively [Table3.1].   

Table 3. 1: Observed entomological inoculation rate 

 
 EIR per person per year 

Year An. funestus An. gambiae Combined species 

1 575 557 1132 

2 90 103 193 

3 79 78 157 
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The crude annual EIR estimates, based on entomological data from first to third year were 1132, 

193 and 157 ib/p/y respectively (Table 1). The highest EIR was observed in the month of 

September of each year and varied from 388 in the first year to 37 and 51 infective bites per 

month in the second and third year respectively. For all the three years, lowest monthly infective 

bites were observed either in February or March  [Figure 3.3].  

 

Figure 3. 3: Observed and predicted EIR 

 

3.3.4 Model-based results: Mosquito density data  

Lag time analysis showed that mosquito density for both species was related to current NDVI, 

total rainfall, average day and average night temperatures over the two months prior to the 

survey. Parameter estimates from geostatistical, zero-inflated, negative binomial models are 

summarized in Table 2. For An. funestus, distance to water bodies, NDVI, season, day 
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temperature and second year of data collection were related to density. An increase in vegetation 

cover was highly associated with an increase in biting rates. Compounds that are close to water 

bodies were associated with higher number of mosquito bites. Wet seasons and increase in day 

land surface temperatures were negatively associated with mosquito density. Spatial variation 

(σϕ
(D)2

 =0.9, (95% CI: 0.5, 1.6)) was almost similar to the temporal one (σε
(D)2

 =0.82, (95% CI: 

0.5, 1.5)). 

Table 3. 2:  Multivariate spatio-temporal analysis for mosquito density by species 

 

Parameters An. funestus An. gambiae 

Co-efficients Co-efficients 

Median 95% CI Median 95% CI 

Intercept 2.73 (2.16, 3.31) 1.86 (1.05, 3.67) 

Altitude  -0.01 (-0.02, 0.00) -0.01 (-0.02, 0.00) 

Distance to water bodies -0.12 (-0.22, -0.02) -0.18 (-0.27, -0.07) 

NDVI 2.27 (1.44, 2.83) 1.51 (1.17, 2.39) 

Rainfall 0.002 (-0.003, 0.01) 0.0002 (-0.01, 0.01) 

Season(Wet) -0.23 (-0.61, -0.003) -0.26 (-1.13, 0.33) 

Day temperature -0.04 (-0.09, -0.004) -0.08 (-0.13, -0.04) 

Night temperature 0.08 (-0.02, 0.17) 0.13 (0.04, 0.22) 

Year of the survey     

      2 -0.98 (-1.33, -0.67) -0.13 (-1.32, 0.8) 

      3 -0.74 (-2.51, 1.01) -0.02 (-1.81, 1.48) 

Variances     

     Spatial 2( )( )D

  0.94 (0.57, 1.56) 0.87 (0.52, 1.46) 

     Temporal 2( )( )D

  0.82 (0.46, 1.45) 0.88 (0.53, 1.52) 

      Nugget 2( )( )D

e  1.02 (0.75, 1.30) 0.87 (0.61, 1.19) 

Range (in km) 38.8 (22.4, 51.0) 38.8 (22.4, 51.0) 

Dispersion  parameter (r) 0.98 (0.74, 1.17) 0.59 (0.51, 0.70) 

For An. gambiae, distance to water bodies, NDVI, day temperature and night temperature were 

associated with mosquito density. Higher day temperatures and longer distances from breeding 

sources were associated with decline in mosquito density. An increase in vegetation led to an 

increase in mosquito abundance. Spatial, temporal and non-spatial variances were almost equal. 
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Over-dispersion was present only for An. gambiae (r = 0.6, (95% CI: 0.5, 0.7)). The minimum 

distance at which the spatial correlation was below 5% was 39 km (95% CI: 22.4 km, 51 km) for 

both species. 

3.3.5 Model-based results: Sporozoite rate data  

Lag analysis shows that An. funestus SR was related to total rainfall of the survey month, average 

NDVI, average night temperature for the two months preceding the survey, and average day 

temperature of current and previous month. Similarly, An. gambiae SR was driven by the 

average NDVI of the survey month; total rainfall, and average (of day and night) LST of the 

current and previous month. Results of SR rate models with spatial and temporal random effects 

were presented because they provided the best performance with a predictive ability of 40% of 

the test locations within a 95% Bayesian credible interval. Parameter estimates of the 

geostatistical logistic regression models are shown in Table 3.3.  
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Table 3. 3: Multivariate spatio-temporal analysis for sporozoite rate 

 

Parameters An. funestus An. gambiae 

Co-efficients Co-efficients 

Median 95% CI Median 95% CI 

Intercept -0.83 (-2.74, 0.65) -1.75 (-4.73, 0.04) 

Altitude  0.01 (0.002, 0.02) 0.01 ( 0.00, 0.02) 

Distance to water bodies -0.22 (-0.33, -0.11) -0.06 (-0.15, 0.06) 

NDVI -0.6 (-1.30, 0.03) -0.89 (-1.97, 0.14) 

Rainfall -0.001 (-0.01, 0.004) -0.01 (-0.01, 0.00) 

Season(Wet) -0.1 (-0.25, 0.06) 0.36 (-0.18, 1.06) 

Day temperature -0.01 (-0.05, 0.04) - - 

Night temperature -0.12 (-0.21, -0.03) - - 

Average temperature - - -0.07 (-0.14, 0.04) 

Year of the survey     

      2 -0.78 (-1.73, 0.21) -0.97 (-2.26, 0.17) 

      3 -0.62 (-1.8, 0.44) -0.48 (-1.49, 0.28) 

Variances     

      Spatial  ( 2( )S

 ) 0.6 (0.40, 0.96) 0.77 (0.56, 1.09) 

      Temporal 2( )( )S

  0.3 (0.15, 0.63) 0.38 (0.18, 0.88) 

Range (in km) 4.1 (2.0,  9.2) 2.0 (1.0,  4.1) 

Mixing proportion ( )  0.54 (0.53, 0.56) 0.54 (0.53, 0.55) 

                               

Altitude, distance to the nearest water bodies and night temperature were associated with An. 

funestus SR. Higher night temperatures were associated with low SR in that area. Similarly, 

places closer to water bodies observed a higher proportion of infectious mosquitoes than others. 

A positive association between An. funestus SR and altitude was estimated. Spatial variability 

(   =0.6, (95% CI: 0.4, 1.0)) was higher than temporal one (σε
(S)2

 =0.3, (95% CI: 0.2, 0.6)). 

The minimum distance at which the spatial correlation is below 5% was 4.1 km (95% CI: 2.0 

km, 9.2 km). On the other hand, altitude was the only factor associated with SR for An. gambiae. 

Spatial variation from An. gambiae sporozoite model (σϕ
(S)2

 =0.8, (95% CI: 0.6, 1.1)) was twice 
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as high as the temporal one (σε
(S)2

 =0.4, (95% CI: 0.2, 0.9)). The minimum distance at which the 

spatial correlation is below 5% was 2.0 km (95% CI: 1 km, 4 km). This shows a slower decay of 

the correlation with distance for the An. funestus SR compared with An. gambiae. 

3.3.6 Model-based results: EIR estimates  

 

Figure 3 shows the temporal patterns in the EIR values that were captured by the spatio-temporal 

models. Smooth monthly EIR maps (Figure 4) clearly show a seasonal pattern, ranging from 

almost no infective bites in the dry season to the highest number of infective bites toward the end 

of wet season. It is evident from the maps that areas close to water bodies experienced high EIR. 
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Figure 3. 4:  Predicted EIR by month for the first year 
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3.4 Discussion  

This is the first study assessing malaria transmission heterogeneity in the Navrongo HDSS using 

a comprehensive entomological dataset and rigorous geostatistical and temporal models, which 

take into account data characteristics. These data indicate the presence of seasonal, spatial and 

year-to-year variation within a small geographical area (1,675 km
2
) in northern Ghana. The 

findings confirm previous studies reporting heterogeneity in malaria transmission in small areas. 

In particular, spatio-temporal variation has been observed in coastal Kenya(Mbogo et al., 2003), 

in Kilombero valley in Tanzania (Drakeley et al., 2003), in some selected Ugandan 

villages(Okello et al., 2006) and in a low transmission zone in Sudan(Hamad et al., 2002). 

Transmission in the Kassena-Nankana district is high (EIR > 100 ib/p/y) especially during the 

wet season. An entomological survey conducted in the same district between June 2001 and May 

2002 recorded EIR of 630 ib/p/y in the irrigated zone within the southern part of the district 

(Appawu et al., 2004) which is lower than the one observed in the first year of the MTIMBA 

project. The drop of EIR after the first year may be explained by variations in laboratory testing. 

The ELISA tests for the first year were carried out in a different laboratory from those in the 

remaining two years, making it possible that inter-laboratory differences contribute to inter-

annual variation. The year effect included in the model is, therefore, aliased with any laboratory 

differences. Consequently, there will be more confidence in EIR comparisons between locations 

than those that depend on inter-annual differences. 

This study confirmed the presence of An. funestus and An. gambiae malaria vector species in the 

region(Abonuusum et al., 2010; Appawu et al., 2004; Dery et al., 2010), with both acting as 

major vectors. NDVI, distance to water bodies and temperature were associated with mosquito 
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density for both species. Compounds located close to water bodies were more likely to have high 

mosquito densities. The Kassena-Nankana district in northern Ghana has many irrigation dams 

that were constructed to increase food production in the area. There are also many small dugout 

reservoirs in the area which supply water to various communities especially in the dry season 

(Binka et al., 1998; Owusu-Agyei et al., 2002). These water bodies can be favourable breeding 

grounds and responsible for mosquito abundance in neighbouring compounds. The data showed 

that a reduction in day temperature favoured higher number of mosquito bites in the area. The 

NHDSS where data were collected experiences high temperatures in some months (18 °C to 45 

°C). Temperatures close to 40 °C reduce mosquito survival, hence their density(Craig et al., 

1999) . Although rainfall had a positive relationship with mosquito density, the association was 

not statistically important. However, rainfall is known to have a direct relationship with other 

factors, such as vegetation, that were found to positively influence mosquito abundance. A 

positive correlation between precipitation and mosquito density for both An. funestus and An. 

gambiae has already been observed in other places. 

A seasonal pattern in mosquito density was observed for both species. High mosquito densities 

were observed in the rainy season for all the three years and low densities during the dry season. 

However, SR was higher in the dry than the rainy season during the second and third year. In 

addition, An. gambiae SR in the dry period were higher than that of An. funestus for the entire 

survey period. There was no evidence of variations in SR between species in the rainy season. 

More infected mosquitoes during dry seasons have already been observed in other areas 

(Charlwood et al., 1995). This implies that most surviving adult mosquitoes in dry seasons are 

likely to be infectious. 
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The shortest distance at which the spatial correlation was below 5% was lower for SR than 

mosquito densities, suggesting that SR depends largely on local conditions rather than 

environmental factors. On the other hand, mosquito densities had strong spatial correlation and 

therefore they are more likely to be driven by environmental factors, especially vegetation which 

was the major predictor in the Navrongo area. Climate and environmental factors influence 

malaria transmission and its effects. In this district, malaria illnesses and mortality are observed 

thought the year with peaks in the wet season (Binka et al., 1994; Koram et al., 2000). Blood 

transfusion, especially in young children, due to anaemia is more common in the rainy season 

(Owusu-Agyei et al., 2002) . 

The EIR maps clearly depict spatial heterogeneity despite the relative small size of the HDSS. 

The high EIR estimate in the southern part, which is mainly covered by irrigation dams, has been 

reported previously (Appawu et al., 2004). Even during the dry season, transmission in the area 

remained high. In addition, the geographical pattern of EIR was similar across the three years of 

the project. The spatial and temporal variances of the mosquito density data accounted for about 

33% each out of the total variation. However, SR data explained 67% and 33% of the total 

variation, suggesting that spatial heterogeneity was twice as high as the temporal one. Although 

space-time heterogeneity could explain total variation of the SR data, there was a remaining 34% 

unexplained variation for the densities. In principle, focussed malaria control conducted in the 

knowledge of these patterns of variation might be more effective than generalized intervention 

programmes, but no intervention programme is likely to be able to adapt to variations on this 

scale. 
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Bayesian geostatistical models are the state-of-art methodology to analyse space and time 

heterogeneity in malaria transmission and have been used to assess malaria risk using prevalence 

data(Ashton et al., 2011; Gemperli et al., 2006; Giardina et al., 2012; Hay et al., 2009; Riedel et 

al., 2010). However, entomological data have large number of zeros, which cannot be estimated 

by standard geostatistical models. In particular, the Navrongo data had 44% and 72% of 

locations with zeros for density and SR, respectively. Entomological data were sparse in the 

other two MTIMBA sites (i e, Rufiji and Kisumu). This problem was addressed by developing 

geostatistical zero-inflated formulations of binomial models (GZIB) for analysing SR( Amek et 

al., 2011). Zero-inflated analogues of negative binomial models (Amek et al., 2012; Rumisha, 

2013) were also applied to take into account excess zeros in the density data. These models were 

able to improve EIR predictions obtained from standard geostatistical analogues. 

The EIR estimates of this study will be used further to analyse the relationship between malaria 

transmission intensity and mortality as part of the ongoing work for the MTIMBA project. 
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3.5 Appendix 2 

Spatio-temporal modelling of sporozoite rate 

 Sporozoite rate are binomial data modelled via logistic regression.  We assumed that for a 

specific species, the number of positive mosquitoes 
( )S

itY  out of all tested ( )itN  follows a 

binomial distribution; that is  ( )

,~S

it it itY Bin N p  with parameter itp , the sporozoite rate at 

location i  and time .t  To account for spatial and temporal variation in the data, we introduced 

compound and monthly random effects  
( )S

i  and 
( )S

t respectively. These were modelled 

together with covariates itX  on a logit scale as 
( ) ( ) ( )log ( )

T S S S S

it it i t iit p X e      , 

where  ( )

1 2, ,.......,
TS

k      is a vector of regression coefficients. The spatial random 

effects 
(1)( )i are assumed to be latent observations  from a Gaussian spatial process with zero 

mean and variance-covariance matrix
( )S , where  ( ) ( )

1 2, ,......., ~ (0, )
TS S

i n N     .  The 

covariance between any particular pair of locations was considered to be a function of distance 

between the locations, that is  
2( ) ( ) ( ) ( )expS S S S

ij ijd    where 
( )S

ijd is the 

Euclidean distance between locations i and j, 
2( )S

 is the spatial variance and 
( )S is the 

correlation decay parameter with a range defined as ( )
3

S
 . Temporal random effects were 

modelled by a first order autoregressive process [AR (1)] with variance 
2( )S

  which allows 

correlation between consecutive time periods (J. L. Hay and Pettitt, 2001a).  Non spatial random 

effects 
( )S

ie with zero mean and variance
2( )S

e  were added to the model in order to account 

for unexplained variation in the data.    Seasonality variable dry/wet was included in the model 

also as a covariate.  

Spatio-temporal modelling of mosquito density  

Let the number of mosquitoes 
( )D

itY   caught at location i and time t follows a negative binomial 

distribution,  ( ) ~ ,D

it itY NB r , with  it  the mean and r , the over-dispersion  
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parameter(Venables and Ripley, 2003). To account for spatial and temporal variation in the data, 

we introduced location and monthly random effects  
( )D

i  and 
( )D

t respectively. Non spatial 

random effects 
( )D

ie with zero mean and variance
2( )D

e  were added to the model in order to 

account for unexplained variation in the data. The relationship between mean density of each 

species ( )it , the covariates itX  and the random effects is modelled as;  

 
( ) ( ) ( ) ( )log( )

T D D D D

it it i t iX e        where, itX is the vector of covariates at location i 

for time t and  ( )

1 2, ,.......,
TD

k    , the vector of regression coefficients. Like seasonality, 

spatial and temporal random effects are defined and modelled in similar way as described in the 

spatio-temporal model of sporozoite rate above.  

 

Zero inflated models 

Our entomological data had many locations with either no mosquitoes (56%) or uninfected 

mosquitoes (72%).  This calls for zero inflated models that add extra weight to the probability of 

observing zero (Lambert, 1992; Vounatsou et al., 2009).  Such models have two components; 

one arising from either binomial or negative binomial distribution and another for excess zero 

that cannot be estimated by the model.  In such models, it  is the mixing proportion and the 

corresponding  1 it is the probability of observing an outcome arising from either 

binomial or negative binomial distribution. The model therefore is written as follows; 

  (1 ) ( ), 0

(1 ) ( ), 0( ) it it it it

it it it

f y y

it it f y yP Y y
 



  

    
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 where ( )itf y is the binomial or negative binomial density function depending on the outcome 

data. 

Models were fitted assuming that either the mixing proportion is constant throughout space and 

time i.e ( )

0log ( ) m

itit    or that it is a function of environmental covariates (NDVI/EVI, LST, and 

rainfall); i.e ( )log ( )
T m

it itit X   , where 
T

itX  is the set of covariates and  ( )

0 1 2 3, , ,
Tm      is 

the  vector of regression coefficients for each mosquito species. Based on model validation, SR 

data were fitted with constant value, while density with a mixing proportion derived from a 

function of covariates.  

Model fit and implementation 

We applied Bayesian inference by combining likelihood function and prior distributions to form 

the posterior distribution that was used in estimating model parameters. Prior distributions 

specified for all model parameters were; normal with zero mean and large variance for regression 

coefficients (1) ( ) ( ) 2[( , , ); ~ (0,10 )]D S N    , inverse gamma for the 

variances
2 2 2 2[( , , ); ~ (2.01,1.01)]e IG     , gamma for the dispersion 

parameter[ ~ (0.01,0.01)]r G , uniform for decay parameter [ ~ ( , )]U a b and 

beta distribution for the mixing proportion[ ~ (1,1)]Be . 

 Markov Chain Monte Carol (MCMC) simulation algorithm was used in estimating the model 

parameters. We used a single chain sampler of 250000 iterations with an initial burn-in of 10000   

OpenBUGS version 3.1.1 software was used for parameter estimation. FORTRAN program 

written by the authors was used for Bayesian Kriging in order to predict both SR and density at 

locations where data were not collected (Diggle et al., 1998).   
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Space time prediction of EIR 

 

Model-based products for SR and density at high resolution were combined to generate EIR. 

These models were also used to predict EIR at unobserved locations over a grid of 31308 pixels 

at a 250m
2 

spatial resolution. 

 



 

 

 



 

 

 

Chapter 4: Relationship between all-cause mortality 
and entomological inoculation rate in Navrongo 
Demographic surveillance site, Ghana 

 

Authors: Simon Kasasa
1,2,3

, Thomas Smith
1,2

,  Victor Asoala
4
,  Laura Gosoniu

1,2
 , Francis Anto

5
, 

Martin Adjuik
6
, Cletus Tindana

4
, Seth Owusu-Agyei

7, 
Penelope Vounatsou

1,2 * 

 

1
Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box 4002 Basel, Switzerland,   

Tel: +41612848109; Fax: +41612848105    
2
University of Basel, Switzerland 

 3
School of Public Health, Makerere University college of Health Sciences, Uganda 

4
Navrongo Health Research Centre, Ghana 

5
School of Public Health, University of Ghana, Legon, Ghana 

6
INDEPTH Network Secretariat, Accra, Ghana 

7
Kintampo Health Research centre, Ghana Health Services, Ministry of Health 

 

 

 

 

 
*Corresponding Author 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This manuscript is prepared for submission to Trends in Parasitology Journal 

 

 



Chapter 4: Malaria mortality in Navrongo HDSS 

72 

 

Abstract 

Health and Demographic Surveillance Systems (HDSS) provide reliable mortality data for 

measuring progress towards Millennium Development Goals targeting malaria. The disease has 

overburdened many Africans making its control one of the highest priorities. Understanding this 

relationship will guide malaria control programmes about required efforts to reduce transmission 

to levels where the disease will no longer be of major public health importance.  The INDEPTH 

network integrated the Malaria Transmission Intensity and Mortality Burden Across Africa 

(MTIMBA) project into routine activities of selected HDSS in Africa. Entomological data were 

collected bi-weekly and mortality data were extracted from HDSS databases.  In this work, we 

assessed the mortality-malaria transmission relationship using data collected from Navrongo 

HDSS between 2001 and 2004. Spatio-temporal logistic regression models were fitted to obtain 

age-specific mortality risk estimates. The model considered 3 covariates; entomological 

inoculation rates (EIR) estimates with their measurement errors, age and insect treated nets (ITN) 

ownership (for children <5 years).  Model parameters were used to estimate excess mortality at 

different EIR levels.  A total of 5412 deaths were registered with an overall mortality rate (MR) 

of 14 per 1000 person-years of observation. The infants (0-11 months) experienced the largest 

risk of dying followed by elderly people.  The annual mortality rates declined consistently in all 

age groups.  The overall mortality for male (MR=16) was higher than that of female (MR=13).  

The increase in  natural logarithm transformed EIR were positively associated with all-cause 

mortality at all age categories namely; neonates (2%), post-neonates (12%), children (13%), 

school age children (1%), adults of 15 to 29 years (2%), adults aged 30 and 50 years (1%), and 

elderly (8%). Despite the largest hazard ratio among individuals between 1 and 4 years, the 

excess mortality in this age group was lower than that of infant, a situation similar to what was 

observed in Kisumu and Manhica HDSS.  There was a positive trend in the magnitude of hazard 

ratios with age among the under-fives and a decline between 15 and 59 years. Possession of nets 

offered a protective effect among all children <5 years.  
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4.1 Introduction 

More than half a million people die each year in Sub-Saharan Africa (SSA) due to malaria 

exposure (WHO Report, 2011). The disease is clustered among the under-five and pregnant 

women (Lusingu et al., 2004; Rowe et al., 2006; Steketee et al., 2001).  However, the 

relationship between mortality and transmission intensity is not clear. It has been assumed  that  

malaria control programs aimed at reducing transmission intensity  in endemic areas might delay 

the acquisition of immunity and hence shift the disease burden to an older population (Snow and 

Marsh, 1995). 

The entomological inoculation rate (EIR), defined as the number of infective mosquitoes bites 

per person per unit time interval is a direct measurement of human exposure to malaria infection 

in endemic areas (Beier et al., 1999).  Snow et al., (Snow and Marsh, 1995), conducted a meta-

analysis and observed no clear relationship between all-cause mortality and malaria transmission 

intensity. However, previous studies had observed reductions in severe morbidity and mortality 

after interrupting malaria transmission using insect-treated bed nets in different countries 

(Alonso et al., 1991; Binka et al., 1996; D’Alessandro et al., 1995; Nevill et al., 1996). Further 

analyses using updated data showed a positive linear association especially among the infants 

(Ross and Smith, 2006; Smith et al., 2001) but no clear trend was observed among children (1-4 

years) (Smith et al., 2001).  However most of findings were based on historical data collected at 

different time points and the focus was mainly on children under five years.  This is partly due to 

lack of reliable mortality data in malaria endemic countries caused by their  weak health systems 

and poor civic registrations processes (Mathers et al., 2005; Ruzicka and Lopez, 1990).     

The Malaria Transmission Intensity and Mortality Burden Across Africa (MTIMBA) project was 

implemented by the INDEPTH network in selected Health and Demographic Surveillance 
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Systems (HDSS) in SSA. The aim of the MTIMBA project is to assess the mortality-malaria 

transmission relationship. 

Data from the three  MTIMBA sites of  Rufiji  in Tanzania (Rumisha, 2013), Kisumu in Kenya 

(Amek, 2013) and Manhica in Mozambique (Kasasa, in preparation) reported a positive log-

linear relationship between all-cause mortality and transmission intensity among the under-fives. 

However there were differences in the magnitude and direction of mortality risk in other age 

groups. It is imperative that more MTIMBA data site-specific analyses are carried out before 

drawing conclusions for malaria control programs. 

We extended the MTIMBA work by analyzing the space-time relationship between mortality and 

malaria transmission intensity in different age groups using data collected from the Navrongo 

HDSS between November 2001 and October 2004. Mortality data were linked to EIR estimates 

generated from our previous work for the same area (Kasasa et al.,2013). Mortality risks were 

compared by gender, social economic status and ITN ownership. 

4.2 Methods and materials  

 4.2.1 Study site 

 

The Navrongo health and demographic surveillance system (NHDSS) evolved from the Ghana 

vitamin-A supplementation trial of Kassena-Nankana that started in 1989 (Ghana VAST Study 

Team, 1993). The Navrongo Health Research Centre (NHRC) established the HDSS in 1993 to 

continue monitoring health and demographic outcomes in Ghana’s rural Savahan zone. The 

NHDSS is located in the administrative district of Kassena-Nankana, in northern Ghana 

bordering Burkina Faso. The district covers a land surface area of 1,675 square kilometres. The 

1999 population was close to 140,000 people and the majority is for subsistence farmers.  The 

population comprises of two distinct ethnolinguistic groups; the Kassena and the Nankani. There 
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are two distinct seasons; the wet, between April and October and a dry period that covers 

remaining months of the year. Malaria is endemic and Plasmodium falciparum is transmitted by 

both An. gambiae and An. funestus. Kassena-Nankana district has one hospital and four health 

centres serving the entire area.   Additional characteristics of the district and the HDSS have 

been documented elsewhere (Appawu et al., 2004; Binka et al., 1999; Owusu-Agyei et al., 2007). 

4.2.2 Malaria transmission and mortality data 

 

Mosquitoes were collected from 2803 randomly selected geo-referenced compounds in the 

NHDSS over a period of three years. . Entomological data were collected every fortnight, while 

mortality data were extracted from HDSS databases for the three years MTIMBA period.   

Independent Bayesian geostatstical zero-inflated models for density (negative binomial) and 

sporozoite rate (logistic regression) were fitted separately taking into account climate and 

environmental factors. Bayesian Kriging was used to predict sporozoite rate and mosquito 

density at unsampled locations. EIR estimates were generated at monthly interval by multiplying 

sporozoite rates and man biting rates. The latter were derived from density data after adjusting 

for a collection bias between light traps and human landing catches methods (Lines et al., 1991).  

Monthly malaria exposure surfaces at high spatial resolution were estimated for the entire HDSS 

as described in our previous work (Kasasa et al., 2013). 

Population demographic characteristics were extracted from routinely collected data in the 

HDSS for the entire MTIMBA period.  Deaths, births and migrations are some of the key 

outcomes that are routinely monitored. Personal information such as gender and age were also 

extracted.  All the 13266 geo-referenced compound where mortality was monitored between 

November 2001 and October 2004 were linked to the nearest predicted EIR.  
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4.2.3 Socio-economic and intervention data 

 

The NHDSS collected household assets data once during the MTIMBA project period.  We used 

principal components analysis (PCA) to construct a socio-economic status (SES) index for each 

household (Vyas and Kumaranayake, 2006). The household assets used were motorbikes, 

bicycles, radio, sewing machines, and livestock (cattle, sheep, goat and guinea fowl).  The SES 

index was categorized into quintiles to rank households from poorest (first quintile) to least poor 

(fifth quintile).  The number of nets in every compound was also collected together with other 

assets. In this analysis, presence of atleast a net in a compound was used as a proxy measure of 

ITN use by all members and this represented the malaria intervention data from the HDSS.  

4.2.4 Statistical analysis 

 

The NHDSS population was stratified into different age groups namely; neonates (0-28 days), 

post-neonates (1-11 months), children (1-4 years), school-age (5-14 years), adults (15-59 years) 

and old age (60 years and above). Separate analyses were carried out for each age group. Crude 

mortality rates were expressed per 1000 person-years at risk (person-years). 

Survival models were approximated via  logistic regression, treating time to death as discrete 

(Allison, 1982; Singer and Willet, 1993) with dependence on time-dependant covariates.  

Malaria transmission intensity varies with time partly due to changes in climate and 

environmental factors. Time to death data were therefore split at monthly intervals in order to 

generate Bernoulli and binomial data that were modelled via logistic regression formulations. 

Bayesian geostatistical spatio-temporal models were fitted to allow for spatial and temporal 

correlations in the data. Spatial correlation was modelled via village-specific random effects 

which were assumed to be latent observations from a multivariate Gaussian spatial process with 

a zero mean. The covariance of the process assumed an exponential correlation function of 
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distance between any pair of villages. Temporal random effects were modelled by the first order 

autoregressive processes (Hay and Pettitt, 2001).  Any remaining non-spatial variation (nugget 

parameter) was considered by additional village random effects which are independent and 

normally distributed with zero mean.  Mortality was related to natural logarithm transformed EIR 

of the previous month. Predicted EIR was incorporated in the model as a covariate with 

measurement error to account for the prediction uncertainty (Gemperli, 2003).  

All the analyses were implemented in OpenBUGS statistical software (Lunn et al., 2009). 

Parameters were estimated using Markov Chain Monte Carol (MCMC) simulation algorithm 

(Gelfand and Smith, 1990).  Details of mathematical description for all models used are given in 

appendix 3 

4.2.5 Excess Mortality due to malaria exposure  

 

The malaria attributed mortality was computed by considering the difference between mortality 

rate when transmission intensity is more than zero and at zero EIR and was expressed per 1000 

person-years. The probabilities of dying were transformed into rates and the Taylor series 

approximation was used to generate mortality at zero EIR. Details of the models used in 

computing excess mortality have been described and documented in the analyses of Rufiji and 

Kisumu HDSS data (Amek, 2013; Rumisha, 2013).  Final survival model coefficients for each 

age group were used to compute the probability of death via a logistic regression model over a 

range of EIR between 0.1 and 300 infectious bites per person per month. 
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4.3 Results 

4.3.1 Description of mortality data 

A total of 163128 individuals from 33 villages were included in the analysis. There were more 

females (53%) in the NHDSS. Majority of the people (53%) were between 15 and 60 years, 

followed by children under 15 years (38%).  During the 3 years follow-up period, 5412 deaths 

occurred with 384748.4 person-years at risk were registered leading to an overall mortality rate 

of 14.1 (95% CI: 13.6, 14.4) per 1000 person-years. The highest number of deaths occurred 

among the elderly (36%), followed by those between 15 and 60 years (33%) and the least 

number was observed among the school going children (6%).   More than half (52%) of the 

compounds had atleast a mosquito net. 

Figure 4.1 clearly shows crude mortality rates by age groups over the 3 year period.  . The risk of 

dying was higher among the infants and declined from 87 to 72 per 1000 person-years between 

the first and third year of life.  In this population, crude mortality estimates among the elderly (at 

least 60 years) are comparable with those of children who had not attained their first birthdays.  
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Figure 4. 1: Age specific annual all-cause mortality rates 

 

Mortality rates for the old population were 68, 56 and 53 per 1000 person-years for the first to 

third year respectively. Mortality rates declined consistently in all the age groups by 17% in 

infants, 22% (children 1-4 years), 18% (school age), 24% (adults 15-29 years), 21% (adults 30-

59 years) and 21% in old people. As indicated in figure 4.1, the risk of dying was least among 

people aged between 5 and 30 years. Over the three years period, the highest risk of death was 

observed among children below one year (80.6/1000 person-years) and lowest from those who 

had reached their fourth birthday (5.1/1000 person-years). The overall under five mortality rates 

of 31, 28 and 25 per 1000 person-years were observed in the HDSS from years 1 to 3 

respectively. Mortality rates among the under fives declined with increase in age.  

Table 4.1 shows mortality patterns across age groups in relation to SES, net ownership and 

gender.  The crude mortality rates show that male (MR=15.6;[ 95 CI; 15.0, 16.2]) had a higher 
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risk of dying than female (MR=12.7;[ 95 CI; 12.2, 13.2]).  Apart from the elderly (60 years plus) 

population, the risk of death was lower for individuals who resided in households that owned at 

least one net.  Analyses by SES index indicated that mortality rates for the infants increased from 

the first to the second quintile followed by a consistent decline up to the fifth quintile (least poor). 

There was a decline in overall crude mortality rates from poor to least poor families of 14.5, 13.7 

and 13.2 per 1000 person-years respectively. The poorest to the least poor ratio of 1.23 indicates 

some variations in mortality risk among the different families. The ratios (poorest/least poor) 

among different age groups ranged between 0.65 and 1.31 as indicated in Table 4.1.  

Table 4. 1: All-cause mortality rates per 1000 person-years 

 
Variable 0-11months 1-4 yrs  (5 - 14 yrs) (15-59 yrs) 60yrs plus All 

SES  MR 

(95% CI) 

MR 

(95% CI) 

MR 

(95% CI) 

MR 

(95% CI) 

MR 

(95% CI) 

MR 

(95% CI) 

Poorest 90.0 

(71.8, 113) 

14.2 

(10.5, 18.7) 

2.2 

(1.4, 3.4) 

11.4 

(10.0, 13.0) 

62.8 

(55.1, 71.3) 

16.3 

(15.1, 17.7) 

Poorer 93.3 

(78.2, 111.3) 

13.7 

(10.8, 17.3) 

3.3 

(2.4, 4.4) 

9.0 

(8.0, 10.2) 

62.2 

(55.1, 70.1) 

14.3 

(13.3, 15.3) 

Poor 89.0 

(76.3, 103.2) 

10.4 

(11.5, 16.9) 

3.1 

(2.3, 4.0) 

8.7 

(7.8, 9.6) 

63.6 

(57.6, 70.1) 

14.5 

(13.7, 15.4) 

Less poor 

 

78.7 

(68.8, 89.7) 

15.3 

(13.1, 17.8) 

3.3 

(2.6, 4.0) 

8.7 

(7.9, 9.5) 

54.5 

(49.7, 60.0) 

13.7 

(13.0, 14.4) 

Least poor 68.5 

(59.5, 78.5) 

12.5 

(10.6, 14.7) 

3.4 

(2.8, 4.1) 

8.7 

(7.9, 9.4) 

55.8 

(51.0, 60.8) 

13.2 

(12.5, 13.9) 

Ratio (Q1/Q5) 1.31 1.14 0.65 1.31 1.13 1.23 

ITN       

No 92.7 

(84.0, 102.1) 

14.9 

(13.2, 16.8) 

3.2 

(2.7, 3.8) 

9.7 

(9.1, 10.4) 

56.8 

(53.0, 60.8) 

14.8 

(14.2, 15.4) 

Yes 71.2 

(64.4, 78.5) 

13.1 

(11.6, 14.7) 

3.2 

(2.7, 3.7) 

8.5 

(8.0, 9.1) 

60.3 

(56.7, 64.0) 

13.5 

(13.0, 14.0) 

Sex       

Female 80.3 

(72.6, 88.6) 

13.5 

(11.9, 15.3) 

2.4 

(2.0, 2.9) 

7.6 

(7.0, 8.0) 

52.3 

(49.1, 55.8) 

12.7 

(12.2, 13.2) 

Male 81.1  

(73.5, 89.2) 

14.3 

(12.7, 16.1) 

3.9 

(3.4, 4.5) 

10.8 

(10.1, 11.5) 

66.8 

(62.7, 71.1) 

15.6 

(15.0, 16.2) 
MR: mortality rate, Q1- poorest; Q5-least poor 
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4.3.2 Model-based results   

The parameter estimates of the spatio-temporal model in Table 4.2 indicate a positive natural 

logarithmic relationship between  malaria exposure and  all-cause mortality across all age groups,  

namely the neonates (hazard ratio; HR 1.02;[95% CI: 0.09, 1.15]), post-neonates (HR 1.12;[95% 

CI: 0.98, 1.26]), children (HR 1.13;[95% CI: 1.00, 1.27]), school age children (HR 1.01;[95% CI: 

0.94, 1.07]), adults of 15 to 29 years (HR 1.02;[95% CI: 0.97, 1.06]), adults aged 30 and 50 years 

(HR 1.01;[95% CI: 0.98, 1.05]), and elderly (HR 1.08;[95% CI: 1.02, 1.06]). The hazard ratios 

refer to the effect of an e-fold change in EIR. For instance, an e-fold increase in EIR was 

associated with increased mortality risk of 2%, 12% and 13% among neonates, post-neonates 

and children respectively.  

Table 4. 2: Spatio-temporal multivariate posterior estimates for all-cause mortality 

 
Parameters 0-28days 1-11months 1-4 yrs  (5 - 14 yrs) (15-29 yrs) (30-59 yrs) 60yrs plus 

 HR 

(95% CI) 

HR 

(95% CI) 

HR 

(95% CI) 

HR 

(95% CI) 

HR 

(95% CI) 

HR 

(95% CI) 

HR 

(95% CI) 

Constant 0.13 

(0.09, 0.22) 

0.01 

(0.003, 0.01) 

0.004 

(0.002, 0.01)  

- - - - 

Log EIR * 1.02 

(0.90, 1.15) 

1.12 

(0.98, 1.26) 

1.13 

(1.00, 1.27) 

1.01 

(0.94,1.07) 

1.02 

(0.97,1.06) 

1.01 

(0.98, 1.05) 

1.08 

(1.02,1.16) 

Age ** 

 

0.85 

(0.84, 0.86) 

0.91 

(0.89, 0.94) 

0.50 

(0.45, 0.54) 

0.52 

(0.41,0.64) 

1.22 

(0.98,1.51) 

1.69 

(1.52,1.88) 

1.06 

(1.05,1.06) 

Variances        

Spatial 

 2( )  

0.20 

(0.10, 0.44) 

0.19 

(0.09, 0.41) 

0.16 

(0.09, 0.34) 

0.18 

(0.09,0.36) 

0.17 

(0.09,0.34) 

0.13 

(0.07,0.27) 

0.13 

(0.07, 0.28) 

Temporal 

 2( )  

0.14 

(0.08, 0.26) 

0.14 

(0.08, 0.25) 

0.16 

(0.09, 0.29) 

0.17 

(0.09,0.31) 

0.15 

(0.08,0.27) 

0.10 

(0.06, 0.17) 

0.09 

(0.06, 0.16) 

Nugget 

 2( )e  

0.17 

(0.09, 0.35) 

0.15 

(0.09, 0.30) 

0.14 

(0.08, 0.27) 

0.17 

(0.09,0.32) 

0.16 

(0.09,0.33) 

0.12 

(0.07, 0.22) 

0.12 

(0.07, 0.22) 

Range  

(in km) 

5.77 

(0.78, 45,85) 

9.33 

(0.80, 47.1) 

5.54 

(0.79, 46.62) 

1.50 

(0.84, 21.3) 

1.73 

(0.84, 26.37) 

2.48 

(0.84, 49.05) 

3.32 

(0.85, 50.58) 

  yrs  -years ;  * Natural logarithim of EIR;  
**

 Units of  age were based on model category (days, months and yrs) 

 

 The relationship between mortality and malaria transmission intensity was statistically important 

among children (1-4 years) and old age people (60 years and above). Individuals in the former 

age group experienced the highest risk of dying 13% that was associated with increase in 
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transmission intensity.  Age was negatively associated with mortality for  all the age categories 

below 15 years.  

The under five sub-groups’ risk of dying due to malaria exposure increased with increase in age 

namely; 2% (neonates), 12% (post-neonates) and 13% (children). The minimum distance at 

which the spatial correlation is less than 5% ranged between 2km and 9km across all age 

categories suggesting a geographical dependency in mortality exposures. Spatial and temporal 

variations were statistically related to mortality in all age groups. 

Table 4.3 shows parameter estimates from Bayesian geostatistical model where ITN was 

included as a covariate. Only results for the under fives are shown.  The analysis shows a 

positive log-linear relationship between mortality and malaria transmission intensity among the 

three age groups namely; neonates (HR 1.02;[95% CI: 0.90, 1.15]), post-neonates (HR 

1.13;[95% CI: 1.00, 1.27]),  and  children between 1 and 4 years (HR 1.13;[95% CI: 0.99, 1.27]). 

The hazard ratios associated with EIR for post-neonates and children (1-4 years) were equal 

(13%).  Age was negatively associated with a reduction in mortality.  
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Table 4. 3:  Posterior estimates for all-cause under five mortality with ITN 

 

Parameters Neonates 

(0-28 day) 

Post-neonatal 

(1-11 months) 

Child 

(1-4 years) 

HR 

(95% CI) 

HR 

(95% CI) 

HR 

(95% CI) 

Constant 0.14 

(0.09, 0.24) 

0.006 

(0.004,0.010) 

0.004 

(0.003, 0.30) 

EIR (Log e scale) 1.02 

(0.90, 1.15) 

1.13 

(1.00, 1.27) 

1.13 

(0.99, 1.27) 

ITN 0.85 

(0.67, 1.09) 

0.79 

(0.66, 0.95) 

0.50 

(0.45, 0.54) 

Age  0.85 

(0.84, 0.86) 

0.91 

(0.89, 0.93) 

0.92 

(0.76, 1.10) 

Variances    

     Spatial 2( )  0.20 

(0.10, 0.43) 

0.18 

(0.09, 0.39) 

0.16 

(0.09, 0.33) 

     Temporal 2( )  0.14 

(0.08,0.26) 

0.14 

(0.08, 0.26) 

0.16 

(0.09, 0.30) 

      Nugget 2( )e  (0.17 

(0.09,0.35) 

0.15 

(0.08, 0.30) 

0.14 

(0.08, 0.27) 

Range, (in km) 5.04 

(0.86, 49.55) 

10.26 

(0.86, 50.96) 

3.90 

(0.85, 50.43) 

 

Figure 4.2 shows excess mortality (at different scales) that is attributed to malaria transmission 

intensity. Across all the age groups, there is a positive correlation between all-cause mortality 

and EIR. The highest burden was among the post-neonates followed by the neonates. This figure 

(4.2) indicates also that excess mortality curve becomes almost flat in all age groups as the 

number of infective bites go beyond 50 per person per month.   

Presence of a net (ITN) in a household was associated with a reduction in all-cause mortality in 

the NHDSS for the three age groups. There was a positive trend in the protective effect of nets 

on children’s age. The protective effects of nets on all-cause mortality were 15%, 21% and 50% 

for neonates, post-neonates and children between one and four years respectively. 
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Figure 4. 2: Age specific malaria attributable mortality by EIR 

 

4.4 Discussion 

This study examined the relationship between mortality and malaria exposure in the NHDSS.  

Our analysis reports a decline in  all-cause mortality rates across all the age groups during the 3 

years of the MTIMBA project.  The largest decline in mortality was observed among adults (15-

29 years) followed by children between one and four years.  A consistent decline in mortality 
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especially among the under fives has previously been reported in the district of Kassena-

Nankana (Adjuik et al., 2010) and for the entire country. According to the Ghana Demographic 

and Health survey 2008, the under five mortality declined between 2003 and 2008 from 111 to 

80 per 1000 live births respectively (GSS and GHS, 2009).  The persistent reduction in mortality 

in this remote area may be partly associated with the research activities carried out by the NHRC 

(Appawu et al., 2004; Owusu-Agyei et al., 2007). The NHRC has tested low-cost interventions 

namely; vitamin A supplementation (Ghana VAST Study Team, 1993), permethrin-impregnated  

bed nets (Binka et al., 1996) and posting health workers  in the communities that have been 

associated with reduced morbidity and mortality in the area (Binka et al., 2007; Nakamura et al., 

2011).  

As in other malaria endemic areas, mortality is highest among children under one year (Abdullah 

et al., 2007; Adjuik et al., 2006; Carneiro et al., 2010). (Figure 4.1) clearly show the highest rates 

among the infants (0-11 months) followed by the elderly population (60 years plus), a pattern 

similar to what has been observed from other sites with different transmission intensities (Adjuik 

et al., 2006; 2013; Rumisha, 2013). Although NHDSS experienced a decline in malaria 

transmission intensity during the MTIMBA project period, the third year EIR estimate was more 

than 100 infective bites per person (Kasasa et al., 2013) and the highest mortality burden 

remained in the same age group. Even in Western Kenya, where EIR was reduced to a single 

digit after promoting ITNs (Lindblade et al., 2004), malaria burden was still clustered in children 

under five years.  This is similar to other SSA countries where malaria interventions are ongoing 

(Carneiro et al., 2010).    

The Bayesian geostatistical spatio-temporal models showed a positive log-linear relationship 

between all-cause mortality and malaria exposure in all the age groups but the association was 
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only important among children (1-4 years) and old people (60 years plus). These findings 

confirm a positive relationship between mortality and transmission intensity among the infants 

that was derived from meta analyses (Ross and Smith, 2006; Smith et al., 2001). A positive log-

linear relationship among the under fives was also observed in the 3 MTIMBA sites of Rufiji, 

Kisumu and Manhica (Rumisha 2013; Amek, 2013; Kasasa in preparation). The malaria risk 

estimates (hazard ratios) for the 4 sites are comparable.   

The findings indicated an increasing trend in the magnitude of hazard ratios with age among the 

under-fives and a decline between 5 and 59 years, a pattern which is similar to what was 

observed in Manhica HDSS. The data from Rufiji showed a decline in magnitude of hazard 

ratios with age group among the children < 5 and individuals who were above 14 years. Analysis 

for the Kisumu data showed a consistent decline of hazard ratios among people aged 15 years 

and above.   

Bayesian analysis identified children between 1 and 4 years with the highest hazard ratio of 13% 

associated with an e-fold increase in malaria transmission intensity.  The same age category was 

reported in the Kisumu and Manhica analyses to have the highest mortality risk.  The Rufiji 

HDSS which has transmission intensity comparable to the NHDSS one identified a different age 

group of 5 to 14 years with the largest hazard ratio. Like the data analyses in the other three 

MTIMBA sites, the NHDSS data identified the highest excess mortality burden among the 

infants. This implies that people in these areas still acquire their natural immunity at an earlier 

age despite the ongoing malaria control interventions that are targeting reducing transmission 

intensity.  

Possession of a mosquito net in a household is associated with a reduction in all-cause mortality 

among the under fives in northern Ghana. The data show a protective effect of nets among all the 
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under five children similar to what was observed in Rufiji and Kisumu HDSS.  The data used in 

this analysis were based on the presence of a net in a compound but not use.  Although more than 

half of the compounds possessed atleast  a mosquito net,  this does not guarantee continuous use 

(Baume and Marin, 2007; GHS NMCP-Report, 2008; Githinji et al., 2010; Korenromp et al., 

2003). Even in places with very high coverage, only a small proportion of the nets were treated 

and most nets had holes (Maxwell et al., 2006). Low use has been observed among children 

between 4 and 15 an issue that is likely to shift malaria burden among old children in highly 

endemic areas. 

In conclusion this study reported a positive association between all-cause mortality and malaria 

transmission intensity in all age categories.  Such relationships especially among the adults 

should be interpreted carefully. People in endemic areas develop clinical immunity at an early 

age and severe malaria cases usually reduce with increasing age. Further site-specific analysis 

followed by meta-analysis will provide proper evidence about mortality-malaria transmission 

relationship across different age groups.  
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4.5 Appendix 3 

Age-specific spatio-temporal mortality model 

Survival models are appropriate in analyzing mortality data and they always assume continuous 

follow-up time (Cox, 1972). Such models assume time-invariant predictors, yet malaria 

transmission intensity is heterogeneous. In the presence of time-dependant covariates, survival 

models are based estimated via logistic regression where discrete follow-up time is assumed 

(Allison, 1982; Manda and Meyer, 2005; Singer and Willet, 1993). The occurrence of each event 

is recorded sequentially as dummy variable at each observed time point. Monthly time intervals 

were created which allowed the use of EIR at that particular period. 

The age-specific mortality data were therefore treated as Bernoulli outcome modelled separately 

via logistic regression.  We assumed that status (dead/alive) ijtY  of the child  i  status in village 

j  at time t  arises from Bernoulli distribution; that is  ~ijt itY Be p  with parameter itp , the 

probability of dying. To account for spatial, temporal and non-spatial variation in the data, we 

introduced village, monthly time and non-spatial random effects j ,  t  and je respectively. 

These were modelled together with covariates itX (EIR and Age) on the logit scale 

as log ( )
T

ijt it j t j
it p X e      , where  1 2

, ,.......,
T

k
      is a vector of regression 

coefficients. The spatial random effects are assumed to originate from a Gaussian spatial process 

with zero mean and variance-covariance matrix  , where  1 2, ,......., ~ (0, )
T

i n N     .  

The covariance between any particular pair of compounds was assumed to be a function of 

distance between the locations, that is  2 expij ijd    where ijd is the Euclidean 

distance between locations i and j, 
2

 is the spatial variance and  is the correlation decay 



Chapter 4: Malaria mortality in Navrongo HDSS 

89 

 

parameter with the range defined as 3  . The monthly time random effects were modelled by 

first order autoregressive process [AR (1)] with variance 
2

  which allows correlation between 

consecutive time periods (Hay and Pettitt, 2001).  Non-spatial random effects te with zero mean 

and variance
2

e  were included into the model to account for unexplained variation in the data.    

The EIR covariate was added to the model on a log scale via a normal distribution, that 

is ~ (log( ), ))EIR N EIR SD ; where log( )EIR  and SD are the corresponding posterior 

mean and variance obtained at each compound. 

We applied Bayesian inference by combining likelihood function and prior distributions to form 

the posterior distribution that was used in estimating model parameters. Prior distributions 

specified for all model parameters were; normal with zero mean and large variance for regression 

coefficients 3[( ); ~ (0,10 )]N  inverse gamma for the 

variances
2 2 2 2

[( , , ); ~ (2.01,1.01)]
e

IG
 

       variance
2

  and uniform for decay 

parameter [ ~ ( , )]U a b . That is 2~ (0,10 )N ,
2 ~ (2.01,1.01)IG  

and ~ ( , )U a b with hyper-parameters a and b the minimum plus the maximum values 

for  respectively.  Models were implemented in OpenBUGS version 3.1.1 software where 

parameters were estimated using Markov Chain Monte Carol (MCMC) simulation algorithm. We 

used a two chains sampler with an initial burn-in of 10000 iterations. 
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Abstract 

Reducing under-five mortality is one of the millennium development goals (MDG) Sub-Saharan 

Africa (SSA) is striving to achieve.  Malaria is a major cause of mortality especially in younger 

age groups, but the quantitative relationship between mortality and malaria transmission intensity 

is unclear because of poor quality data in most endemic countries. The Malaria Transmission 

Intensity and Mortality Burden Across Africa (MTIMBA) project collected malaria exposure 

data and linked this to the routine mortality surveillance of selected health and demographic 

surveillance sites (HDSS) to generate data to clear the mortality-malaria transmission 

relationship. In this sub-study we analyzed the entomological data from Manhiça HDSS to obtain 

malaria exposure surfaces which were linked to mortality data of all age groups. Bayesian 

geostatistical and temporal models were employed to predict entomological inoculation rate (EIR) 

at unsampled locations. Separate age-specific survival models were approximated via logistic 

regression incorporating the predicted EIR as a covariate with a measurement error.   Anopheles 

funestus (85%) mosquitoes dominated the collections. The annual EIR declined from 43 to 3 

infective bites with peaks in the wet months.  Annual mortality rates were higher among infants 

and old ages above 60 yrs.  The annual infant mortality rates (0-11 months) ranged between 90 

and 104 per 1000 person-years (person-years) during the three years of the study.  The annual 

child mortality rate declined from 23 to 19 per 1000 person-years. Model-based results indicated 

a positive log-linear relationship between all-cause mortality and malaria exposure across all age 

groups namely; neonates (hazard ratio, HR=1.11; [95% CI: 0.85, 1.4]), post-neonates (HR 

1.13;[95% CI: 0.91, 1.36]), child (HR 1.25;[95% CI: 1.07, 1.44]), young (HR 1.22;[95% CI: 0.95, 

1.55]), adults (HR 1.03;[95% CI: 0.93, 1.15]) and old people (HR 1.13;[95% CI: 0.99, 1.29]). 

Children (1-4 years) had the highest HR which was statistically important. A positive association 

between mortality and EIR among the under fives, is consistent with what was reported from the 

MTIMBA sites of Rufiji in Tanzania and Kisumu, Kenya. Adults’ results need to be interpreted 

carefully because people in Manhiça are expected to acquire immunity at an early age due to the 

continuous exposure to Plasmodium infections.  
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5.1 Introduction  

 

In Sub-Saharan Africa (SSA), malaria has been identified as one of the major causes of death 

especially among children under five years (Bardají et al., 2011; Black et al., 2010; Bryce et al., 

2005). Human beings become infected with malaria parasites after being bitten by an infective 

anopheles mosquito. The disease is endemic in SSA. Some countries implementing interventions 

that are targeted towards achieving the United Nations Millennium Development Goals have 

reduced malaria morbidity and mortality (Okiro et al., 2009; Rajaratnam et al., 2010). Such 

changes have been partly attributed to improvement in health systems factors especially the 

scaling-up of effective malaria treatment and the use insect-treated nets (ITN) (Lengeler et al., 

1998; Nyarango et al., 2006; Phillips-Howard et al., 2003; Steketee and Campbell, 2010). 

Although benefits from malaria programs are clear, the question on how mortality relates to 

transmission intensity has not been fully answered. This is partly due to lack of required data.  

Entomological data are expensive to collect and the mortality data are lacking due to inefficient 

vital registration systems found in many SSA countries. Early studies based on either meta-

analysis (Ross and Smith, 2006; Smith et al., 2001; Snow and Marsh, 1995) or linking  

Demographic and Health Surveys (DHS)  mortality and malaria risk from  Malaria Risk in 

Africa (MARA) databases(Gemperli et al, 2004) provided inconsistent results about the malaria 

transmission-relationship. A clear understanding of mortality-malaria transmission intensity 

relationship would assist in implementing targeted interventions that will improve child survival. 

It will also help to establish whether the current malaria interventions have not caused a shift in 

age for acquiring natural immunity. 

In early 2000, the INDEPTH network malaria working group integrated the Malaria 

Transmission Intensity and Mortality Burden Across Africa (MTIMBA) project in the routine 
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activities of selected health and demographic surveillance sites (HDSS) to generate reliable data. 

Entomological data were collected every two weeks over a large number of randomly selected 

households within each site. Mortality data were collected through  routine demographic 

surveillance where verbal autopsy (VA) tools were applied to determine the most probable cause 

of death (Adjuik et al., 2006; Joshi et al., 2009). 

Analyses of the Rufiji in Tanzania (Rumisha, 2013) and Kisumu in Kenya (Amek, 2013). 

MTIMBA data showed a positive log-linear relationship between all-cause mortality and malaria 

transmission intensity among the children under five years. The highest risk of dying from the 

disease after malaria exposure was found among children (1-4years) and school children (4-15 

years) for Kisumu and Rufiji sites respectively. Although these two sites have different malaria 

transmission intensities and mortality risks, both experience temporal and seasonal variations.  

Further analysis of site-specific MTIMBA data using similar methods will help to clarify the 

mortality-transmission relationship.  

This paper reports estimates of EIR from Bayesian geostatistical models, fitted separately for 

sporozoite rate (assumed to be binomially distributed) and mosquito density data (negative 

binomially distributed) and further established its relationship to age specific mortality using data 

collected from  Manhiça HDSS. 

5.2 Methods 

5.2.1 Setting  

 

Manhiça HDSS located in Manhiça district, Southern Mozambique was established in 1996 and 

currently covers 500 square kilometres. The area is divided into two ecological zones, the fertile 

lowlands and an escarpment where most people reside.  The lower floodplains favour mosquito 

breeding all the year. There are predominantly two climatic seasons, hot and wet between 
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October to April plus a cool and dry windy period for the rest of the year.  The region 

experiences perennial malaria transmission with a seasonal variation.  Anopheles funestus is the 

main mosquito species in this area.  The estimated EIR for 2002 was 15 infective bites per 

person per year (ib/p/y) (Aranda et al., 2005). The 2006, neonatal and infant mortality rates were 

26 and 75 per 1000 live birth respectively (Menéndez et al., 2010).  Data from VA interviews 

indicate that malaria accounts for almost a quarter of all paediatric deaths in this area (Sacarlal et 

al., 2009). The district is served by two referral hospitals (The Manhiça district hospital and 

Xinavane Rural hospital) and 10 other peripheral health facilities.   Further details of the district 

and the HDSS have been documented elsewhere (Saúte et al., 2003). 

5.2.2 Data types and sources 

i) Entomological data 

Mosquito collection was performed over a three year period (October 2001 and September 2004) 

following the MTIMBA protocol for monitoring transmission data. The Centre for Disease 

Control (CDC) light trap catches were set up in randomly selected households within identified 

clusters. Each trap was positioned indoor at about 1.5m above the floor next to the bed of an 

“indexed” person from sundown to sunrise. All mosquitoes were transported from the field to the 

laboratory for identification and testing.   Heads and thoraces of light trapped anopheles were 

checked for the presence of circumsporozoite antigen of Plasmodium falciparum using enzyme 

linked immunosorbent assay (ELISA).  EIR was generated as a product of sporozoite rate and 

man-biting rate. Due to the correlation between the number of mosquitoes captured using light 

trap catches and human biting catches, the later were estimated by including a conversion factor 

(Lines et al., 1991). These estimates were further divided by the number of light traps to obtain 

the man-biting rates.  
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ii) Climate and environmental data 

The climatic and environmental covariates used were day and night land surface temperature 

(LST), rainfall, enhanced vegetation index (EVI), normalized difference vegetation index 

(NDVI), altitude and distance to water bodies.  The latter was extracted from locally generated 

maps by the HDSS. The sources and the spatio-temporal resolutions of the data for the remaining 

variables have already been documented in our previous work (Kasasa Simon, et al., in 

preparation).  The climatic and environmental variables were processed at the locations where 

entomological data were available. For each location, temperature, rainfall and vegetation data 

were summarized by month and year during the duration of MTIMBA project.  

iii) Mortality data 

Mortality data are routinely collected by the HDSS using standard methods and were extracted 

from the HDSS database. Cause-specific mortality data were obtained using a modified verbal 

Autopsy (VA) tool derived from both, the World Health Organization (WHO) and the HDSS 

standard VA questionnaires.  Trained fieldworkers translated the questionnaires from Portuguese 

into local language (Xangana) in order to capture all the information surrounding the death. The 

VA process in the HDSS has been described elsewhere (Sacarlal et al., 2009).  Geo-reference 

compounds where mortality was monitored during the project period were linked to the nearest 

predicted EIR using ArcGIS software.  

5.2.3 Data analysis  

i) Sporozoite and mosquito density data 

Sporozoite rate data were modelled in our previous work via logistics regression (Kasasa et al. 

2012). Non-spatial negative binomial regression models were used to analyse mosquito density 

data. Zero inflated models were fitted to account for the large number of locations with no 
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mosquitoes (55%; An.funestus and 84%; An.gambiae). Exploratory analyses carried out in 

STATA software assessed the effect of elapsing time (lags) between climatic suitability and 

malaria transmission using Akaike’s information criterion (AIC)(Hoeting et al., 2006). A total of 

five summary estimates were computed for each of the environment factors based on mosquito 

collection month in a year (current month of collection; previous month; previous two months; 

average of the current and previous month; average of the current and previous two months). 

Temperatures were measured by LST day, night and average.  Seasonality was taken into 

accounted by either a binary variable (wet/dry) or trigonometric functions with (i) one cycle 

indicating a single transmission season or (ii) two cycles corresponding to two transmission 

seasons per year. A suitable combination of environmental and climatic predictors of mosquito 

density by vector species was identified using AIC.  

Bayesian geostatistical formulations of the above models were fitted to take into account spatio-

temporal correlation. In each model, compound-specific random effects were included. They 

were assumed to be latent observations from a multivariate Gaussian spatial process with zero 

mean. The covariance of the process assumed an exponential correlation function of distance 

between any pair of compound locations. First-order autoregressive terms were included to 

model temporal correlation. Any remaining non-spatial variation (nugget parameter) was 

considered by additional location random effects which are independent and normally distributed 

with zero mean. Random effects and the covariates were modelled on a log scale of the mean of 

the negative binomial distribution. Bayesian kriging was applied to predict mosquito density 

over a grid of 2100 pixels with 250m by 250m spatial resolution. The analysis was carried out 

for each mosquito species (i.e. An.funestus and An.gambiae) separately.  
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Parameters were estimated using Markov Chain Monte Carol (MCMC) simulation algorithm 

(Gelfand and Smith, 1990). Samples from the posterior predictive distributions of SR and 

mosquito density were multiplied at each location to generate spatially explicit surfaces of EIR 

for each species. A conversion factor of 1.605 was used to convert densities to man-biting rates 

(Lines et al., 1991).   Monthly maps for the total EIR were obtained using ArcGIS software. 

Mathematical description for all models and implementation details are similar to those 

described in our previous work (Kasasa et al., 2013) . 

ii) Mortality data 

These data were categorized according to age namely; neonates (0-28 days), post-neonates (1-11 

months), children (1-4 years), young people (5-14 years), adults (15-59 years) and old age (60 

years and above) partly due to the variations in mortality and its’ determinants among different 

age groups (Becher et al., 2008). Crude estimates and modelling were conducted according to the 

predefined age categories.  Mortality rates (MR) were computed by taking the total number of 

deaths divided by the total person time at risk. The annual rates were expressed per 1000 person-

years (person-years).   Non-spatial Cox regression models were initially fitted to all the age 

groups for exploratory analysis  Survival models were approximated via  logistic regression 

which assumes a discrete time to death(Manda and Meyer, 2005; Singer and Willet, 1993). 

Bayesian geostatistical models were fitted to the data in order to control for space and time 

correlation.  In each model, village-specific, monthly time and non-spatial (nugget) random 

effects were included to account for spatial, temporal and random (nonspatial) variations in 

mortality data. All the corresponding random effects were defined in similar way as described in 

the zero-inflated negative binomial Bayesian geostatistical model for mosquito density above.  

These random effects and covariates (age and EIR) were modelled on a logit scale for mortality 



Chapter 5: Malaria exposure and mortality in Manhica HDSS 

99 

 

data. Mortality was related to logarithmic transformed EIR of the previous month. Predicted EIR 

was incorporated in the model as a covariate with measurement error to account for the 

prediction uncertainty (Gemperli, 2003). Mathematical description for all models and 

implementation details are indicated in the appendix 4. 

ii) Excess mortality 

Model coefficients from the final survival model were used over a range of EIR between zero to 

300 infective bites per person per month to estimate excess mortality. The excess mortality rate 

was computed as the difference between mortality rate when the transmission intensity (EIR) is 

more than zero and at zero EIR. The risk of death was converted into rates and a Taylor series 

approximation was used to generate mortality at zero EIR. All the details of calculating excess 

mortality have been documented in the analyses of Kisumu and Rufiji HDSS data  (Amek, 2013; 

Rumisha, 2013)   

5.3  Results  

5.3.1 Description of density data 

 

From 2918 unique compounds, a total of 18923 mosquitoes were caught with An. funestus (85%) 

dominating the traps and the rest were An. gambiae (15%).  The mean biting rates per person per 

night from first to third year were 5, 3 and 2 respectively. During the survey period, the mean 

biting rates per month varied with seasonal changes. Most bites were observed during the wet 

and warm period. 

5.3.2 Description of EIR data 

The crude annual entomological inoculation rates from year one to three were 43, 28 and 3 

infective bites per person respectively for the combined vector species. The corresponding 

annual EIR estimates for An. funestus were, 37, 25 and 3 infective bites per person, while An. 
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gambiae contributed 6, 3 and zero infective bites respectively. For the two vector species, year 

one had the highest number of bites. The monthly distribution of EIR and the rainfall patterns in 

Figure 5.1 show a decline in EIR over time.  In year 3, most of the mosquitoes caught were not 

infectious as the monthly EIR ranged between zero and one infective bite per person.  
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Figure 5. 1: Monthly rainfall and infective mosqiote bites  

 

5.3.3 Description of mortality data 

A total of 45032 individuals from 7835 geo-referenced compounds were followed-up and 2027 

deaths with 99598.43 prys were registered during the survey period. There were more females 

(54%) in the HDSS. However, deaths were evenly distributed between gender (50.5% male). The 

crude mortality rates by age categories are summarized in table 5.1.  
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Table 5. 1: Crude child all-cause mortality rates by year (2001/02- 2003/04) 

 
 Annual mortality rate per 1000 person-years by age groups 

Year 0-11 months 1-4 years 5-14 years 15-59 years 60 yrs plus 

 Deaths 

(pyrs) 

MR Deaths 

(pyrs) 

MR Deaths 

(pyrs) 

MR Deaths 

(pyrs) 

MR Deaths 

(pyrs) 

MR 

1 108 

(1096.6) 

98.5 99 

(4303.9) 

23.0 37 

(8202.1) 

4.5 299 

(15991.3) 

18.7 141 

(2386.9) 

50.1 

2 128 

(1228.7) 

104.2 94 

(4233.5) 

22.2 21 

(8539.3) 

2.5 286 

(16273.9) 

17.6 155 

(2413.3) 

64.2 

3 113 

(1244.2) 

90.8 78 

(4158.3) 

18.8 29 

(8707.7) 

3.3 312 

(16438.4) 

19.0 127 

(2395.3) 

53.0 

Total 349  271  87  897  423  

        pyrs: person-years at risk;  MR: all-cause mortality rate 

 

The risk of dying was higher among children who had not attained their first birthday. IMR 

varied between 91 and 104 per 1000 person-years during the MTIMBA period. It increased 

between year one and two but later declined by 13% between second and third years.  The old 

people in this district also experienced a higher mortality rate of 50, 64 and 53 per 1000 person-

years for the first to last year respectively. This is second age group in the area with high 

mortality rates. For the three years, young people (5-14 years) experienced the lowest mortality 

risk from the first to third year of 5, 3 and 3 per 1000 person-years respectively. Annual child 

mortality rate decreased consistently from 23 to 19 per 1000 person-years.   

A total of 1732 (85.4%)  VA interviews were conducted to identify the likely  cause of death. 

Malaria was assigned to 198 deaths (11.4%). Other diseases were not defined in the database. No 

death under five years was assigned to malaria. Majority of malaria deaths (68.7%) were 

between 15 and 59 years old. 
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5.3.4 Model-based results: Mosquito density data 

 

Non-spatial models identified the following significant predictors of mosquito density of An. 

funestus namely; previous month EVI, day and night temperatures plus rainfall over the past two 

months prior the project.  Similarly An. gambiae mosquito density were driven by current EVI, 

night LST plus rainfall and day temperature for the past two months prior the survey.  Posterior 

estimates from geostatistical zero-inflated negative binomial models are summarized by 

mosquito species in table 5.2.  

Table 5. 2:  Multivariate space and time analysis for mosquito density by species 

 

Parameters An. funestus An. gambiae 

Co-efficients Co-efficients 

Median 95% CI Median 95% CI 

Intercept 1.80 (-0.01, 4.21) -1.08 (-4.73, 1.21) 

Altitude  0.003 (-0.004, 0.01) 0.005 (-0.01, 0.02) 

Distance to water bodies -1.06 (-1.55, -0.18) -1.26 (-1.83, -0.84) 

NDVI/EVI 1.30 (-0.01, 2.71) 1.75 (0.03, 4.47) 

Rainfall -0.001 (-0.01, 004) 0.01 (0.001, 0.02) 

Season(Wet) 0.04 (-0.55, 0.94) 0.88 (-0.28 , 1.85)  

Day temperature 0.03 (-0.03, 0.09) 0.11 (0.01, 0.20) 

Night temperature -0.04 (-0.15, 0.05) -0.20 (-0.38, -0.06) 

Survey period - - - - 

      2 -0.41 (-1.50, 1.43) -0.81 (-1.59, 1.39) 

      3  -0.75 (-1.89, 1.38) -1.44 (-3.23, 1.52) 

Variances     

     Spatial 2( )  2.16 (1.31, 4.08) 1.68 (0.98, 3.53) 

     Temporal 2( )  0.60 (0.34,  1.17) 1.09 (0.60, 2.09) 

Range  (in km) 8.05 (4.68, 15.44) 4.27 (2.11, 10.50) 

Dispersion  parameter (r) 0.47 (0.43, 0.51) 0.30 (0.26, 0.36) 

 

We only presented results from mosquito density models without a nugget because of they fitted 

the data best  (other results not shown).  For An. funestus data, distance to water bodies was the 

only significant covariate in the model. The model suggests that EVI, elevation, climatic season 
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and day temperatures were positively associated with density. A negative association was 

observed with shortest distance to water bodies, rainfall, night temperatures and survey time 

period. The decay parameter ( )  had a posterior median of 41.7 (95% Cl: 21.8, 71.8) which 

corresponds to a distance of 8.1 km (95% CI: 4.7km, 15.4km) at which the spatial correlation is 

less than 5%. The spatial variation ( 2

 =2.2, [95% CI: 1.3, 4.1]) was larger than temporal one 

( 2

 =0.6, [95% CI: 0.3, 1.2]).    

The analysis of the An. gambiae data showed that, EVI, altitude, rainfall, season and day LST 

covariates were positively related to density. Similarly, distance to water bodies and night 

temperature were negatively associated to mosquito density. The most important environment 

predictors of the mosquito density were distance to water bodies, EVI, rainfall plus day and night 

LST.  Spatial variance ( 2

 =1.7, [95% CI: 1.0, 3.5]) was larger than temporal one ( 2

 =1.1, 

[95% CI: 0.6, 2.1]). The minimum distance at which the spatial correlation was below 5% was 

4.3km (95% CI: 2.1km, 10.5km) for both species.  Over-dispersion was present for both An. 

funestus (r=0.5, [95% CI: 0.4, 0.5]) and An. gambiae (r=0.3, [95% CI; 0.3, 0.4]) mosquito 

density data.  

5.3.5 Model-based results: EIR estimates  

The maps of predicted monthly EIR for the first year are given in Figure 5.2. Maps clearly show 

a seasonal and spatial pattern, ranging from almost no infective bites in dry and cool months to 

the highest number of infective bites in the wet and warm months of October to April.  For the 

entire project period, the predicted EIR for the month of July was almost zero.  Areas in the 

northern and eastern part of the Manhiça receive slightly high number of infective bites 

compared to the rest of the HDSS. Our models were able to predict high transmission in areas 

close to the Incomati River.  
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Figure 5. 2:  Predicted monthly entomological inoculation rate for the first year   
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5.3.6 Model-based results: mortality data  

 

Table 5. 3: Spatio-temporal multivariate posterior estimates for all-cause mortality 

 
Parameters 0-28days 1-11months 1-4 yrs  (5 - 14 yrs) (15-59 yrs) 60yrs plus 

 HR 

(95% CI) 

HR 

(95% CI) 

HR 

(95% CI) 

HR 

(95% CI) 

HR 

(95% CI) 

HR 

(95% CI) 

Constant 0.17 

(0.09, 0.29) 

0.01 

(0.003, 0.01) 

0.01 

(0.003, 0.02) 

0.0003 

(0.0002, 0.001) 

0.0002 

(0.0001, 0.002) 

- 

Log EIR
*
  1.11 

(0.85, 1.39) 

1.13 

(0.91, 1.36) 

1.25 

(1.07, 1.44) 

1.22 

(0.95, 1.55) 

1.03 

(0.93, 1.15) 

1.13 

(0.99, 1.29) 

Age
**

  

 

0.82 

(0.80, 0.84) 

0.90 

(0.86, 0.94) 

0.95 

0.94, 0.96) 

0.92 

(0.86, 0.98) 

1.05 

(1.04, 1.06) 

1.07 

(1.06,  1.08) 

Variances       

Spatial 
 2( )  

0.25 

(0.12, 0.63) 

0.22 

(0.11, 0.51) 

0.26 

(0.12, 0.63) 

0.32 

(0.14, 0.83) 

0.17 

(0.09, 0.36) 

0.20 

(0.01, 0.46) 

Temporal 

 2( )  

0.22 

(0.12, 0.46) 

0.23 

(0.12, 0.45) 

0.19 

(0.11, 0.38) 

0.19 

(0.10, 0.40) 

0.11 

(0.07, 0.19) 

0.13 

(0.08,0.25) 

Nugget 

 2( )e  

0.23 

(0.11, 0.54) 

0.21 

(0.11, 0.21) 

0.23 

(0.11, 0.53) 

0.33 

(0.14, 0.84) 

0.15 

(0.08,0.29) 

0.19 

(0.10, 0.41) 

Range  

(in km) 

1.20 

(0.44, 10.67) 

1.03 

(0.44, 10.56) 

0.78 

(0.44, 7.8) 

1.41 

(0.45, 10.6) 

2.22 

(0.45, 11.54) 

1.12 

(0.44, 10.8) 

  yrs  -years ;  * Natural logarithim of EIR;  
**

 Units of  age were based on model category (days, months and yrs) 

 

Spatial-temporal modelling of the relationship between mortality included age and EIR 

covariates as shown in Table 5.3.  The data shows a positive log-linear relationship between all-

cause mortality  and malaria exposure across the six  age categories namely;  neonates (hazard 

ratio; HR=1.11; [95% CI: 0.85, 1.4]), post-neonates (HR 1.13;[95% CI: 0.91, 1.36]), child (HR 

1.25;[95% CI: 1.07, 1.44]), young (HR 1.22;[95% CI: 0.95, 1.55]), adults (HR 1.03;[95% CI: 

0.93, 1.15]) and old people (HR 1.13;[95% CI: 0.99, 1.29]). The hazard ratios clearly refer to the 

effect of an e-fold change in EIR.   

Figure 5.3 where excess mortality due to malaria exposure was estimated clearly show the same 

positive pattern across all age groups. This implies that as the number infectious bite per person 

per month increase, all-cause mortality also increases. The highest burden was among the post-

neonates, neonates and young age (5-14 years). However, in all age groups, excess mortality 

tends to almost constant when EIR reaches 100 infective bites per person per month. 
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The data shows that the highest risk of dying associated with increased malaria exposure was 

among children between 1 and 4 years (25%) and least for the adults (3%)..  The mortality effect 

due to increased EIR was similar for both the infants (1-11months) and old age people (60 years 

plus). The risk of dying from EIR exposure increased with age among the under fives.  Age was 

significantly related to mortality in all the six groups.  

The parameters 
2


 and    measure the spatial variance and rate of correlation decay.  Our data 

indicates that the minimum distance at which the spatial correlation is less than 5% for all the 

age categories is between 0.8-2 km suggesting a weak geographical dependency.  The variances 

of spatial heterogniety were 0.25( 95% CI: 0.12, 0.63), 0.22( 95% CI: 0.11, 0.51), 0.26( 95% CI: 

0.12, 0.63), 0.32( 95% CI: 0.14, 0.83) , 0.17( 95% CI: 0.09, 0.36) and 0.2 ( 95% CI: 0.01, 0.46)  

for neonates, infants, child young, adult and old people respectivley.Apart from one age category 

(1-4), the spatial variances were larger than the temporal for all  the six data categories.  
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Figure 5. 3: Patterns of age specific excess mortality by transmission levels 

 

5.4 Discussion 

The present study assessed spatio-temporal variation in mortality and its relationship with 

malaria transmission intensity in southern Mozambique.  An EIR exposure surface was estimated 

by fitting Bayesian geostatistical spatio-temporal models on sporozoite rate (logistic regression) 

and mosquito density (negative binomial regression) data. Although, the spatial pattern is similar 
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over time, transmission intensity is higher during the wet and warm months of October to April, 

implying that changes in climatic season do not modify the geographical distribution. Malaria 

transmission was higher in the north and north-eastern part of the HDSS.  The EIR spatial pattern 

is similar to the spatial distributions of malaria incidence and mortality already observed in 

children living in the same area (Abellana et al., 2008; Escaramís et al., 2011).   Spatial 

heterogeneity of malaria transmission intensity across Africa has been described (Hay et al., 

2000) and confirmed in the MTIMBA sites of Rufiji (Rumisha et al. 2013)  and Kisumu (Amek 

et al., 2012). 

Although transmission in this region is moderate (Aranda et al., 2005), there was an observed 

consistent decline in intensity over the three years. A similar temporal trend was also reported in 

northern Ghana (Kasasa Simon, et al., 2013) but not in the two East African MTIMBA sites of 

Rufiji and Kisumu ( Amek, 2013; Rumisha 2013). The decline could be attributed to control 

interventions especially the sporadic indoor residual spraying (IRS) that was introduced in 

Mozambique in the 1940s (Mabaso et al., 2004; Munguambe et al., 2011).  

Seasonality in the MTIMBA data was modelled using either trigonometric sine/cosine functions 

(Rufiji and Kisumu) or an indicator for a dry/wet month (Navrongo) (Kasasa Simon, et al., 2013) 

and was present in all the three sites. In Mozambique, seasonality has already been reported in 

malaria incidence(Abellana et al., 2008)  and maternal mortality (Romagosa et al., 2007) which 

is linked to the disease.  The entomological data from the four MTIMBA sites had large number 

locations with zeros especially in the dry months. Zero-inflated formulations of geostatistical 

model are needed to estimate more accurately the frequency of excess zeros. The density data 

shows spatial variance larger than the temporal one for both species. Over 60% of the total 
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variation in the data was explained by space and a spatial correlation was even still strong at 

large distance. 

According to the MTIMBA data, transmission in this district is mainly driven by An. funestus 

malaria vector as previously reported (Aranda et al., 2005; Kloke et al., 2011).  Mosquito 

abundance was mainly influenced by the nearest distance to water bodies such as the areas close 

to the Incomati River and the flood plains which act as breeding sites for mosquitoes throughout 

the year. 

The vegetation index was positively associated with mosquito abundance for the two species. 

Vegetation is known to be directly related to other climatic factors such as rainfall.  This is 

supported by the increase of EIR during the wet season. High mosquito densities and infective 

bites have been previously  observed in the same region during the warm months of November to 

May (Aranda et al., 2005; Mendis et al., 2000).   

During the MTIMBA project period, Manhiça HDSS recorded an increase in both infant and old 

age mortality between the first and second year which was followed by a drop in the final year. 

Child mortality (1-4 years) declined throughout the study period. The observed decline 

especially in infant mortality  in southern Mozambique where ITN ownership is low (Chase et al., 

2009) could be attributed to other malaria interventions that target pregnant women and their 

babies (Menéndez et al., 2010; Munguambe et al., 2011) and possibly improvement in health 

services. Like the infants, old people (60 years plus) in the HDSS experienced  higher mortality 

rates during the study period compared to others. The age mortality pattern  for Manhiça district 

where mortality declines after 4 years and rises up gradually from 15 years (Table 5.2)  is similar 

to the one reported for Rufiji (Rumisha, 2013) ,Kisumu (Amek, 2013) and other HDSS in the 
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region (Adjuik et al., 2006). The increase in adult mortality in SSA is partly attributed to HIV 

(Blacker, 2004) and the VA  confirmed this  in Nouna HDSS (Becher et al., 2008).   

Geostatistical and temporal survival models fitted on mortality data indicated that transmission 

intensity (log EIR) was positively associated with mortality in all the six age categories. The 

association especially among individuals >5 years, is not expected in higher transmission areas 

because of acquired immunity.  A positive relationship has been also reported in previous infant 

mortality studies(Ross and Smith, 2006; Smith et al., 2001).  Analysis from Rufiji HDSS 

reported a positive log-linear relationship with the under fifteen children only while Kisumu 

HDSS data showed the same effect but among the under fives. An inverse relationship was 

observed among the rest of the age groups in the two sites. 

Our data show the highest increase in hazard ratio due to increase in malaria exposure was 

among children between 1 and four years (25%) followed by young people (22%) and the least 

in adults (3%).  Amek et al, (Amek, 2013) identified the same age group with highest hazards of 

death. Although Kisumu HDSS observed larger effects of malaria exposure on mortality among 

children under five years than Manhiça, the transmission intensities in the two site sites are 

comparable (Amek et al., 2012). Data from another MTIMBA site of Rufiji reported that 

children 5-14 years had the highest hazard ratio due to increased malaria exposure.  

The analysis indicated an increasing trend in the magnitude of hazard ratios with age among the 

under-fives and a decline between 5 and 59 years. The Kisumu data did not show a clear pattern 

among children but rather a consistent decline of hazard rate in individuals of 15 years old and 

above. The results from Rufiji indicated a decreasing trend in the magnitude of hazard ratios 

among the under-fives and individuals aged atleast 15 years.   
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 Unlike the other two MTIMBA sites, in this analysis, we did not adjust for factors that have 

been associated with mortality namely, social economic status (Houweling et al., 2006), ITN 

ownership and use (Lengeler, 2004) because those data were not available. However our findings 

did not completely divert from those of Rufiji and Kisumu HDSS. We are currently analyzing 

MTIMBA data from Navrongo (Ghana) and Nouna (Burkina Faso) HDSS to get a better 

understanding of the mortality-transmission intensity relationship across different age groups.  
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5.5 Appendix 4 

Spatio-temporal modelling of mortality  

Survival models are appropriate in analyzing mortality data and they always assume continuous 

follow-up time (Cox, 1972). Such models assume time-invariant predictors, yet malaria 

transmission intensity is heterogeneous. In the presence of time-dependant covariates, survival 

models are based estimated via logistic regression where discrete follow-up time is assumed 

(Allison, 1982; Manda and Meyer, 2005; Singer and Willet, 1993). The occurrence of each event 

is recorded sequentially as dummy variable at each observed time point. Monthly time intervals 

were created which allowed the use of EIR at that particular period. 

The age-specific mortality data were therefore treated as Bernoulli outcome modelled separately 

via logistic regression.  We assumed that status (dead/alive) ijtY  of the child  i  status in village 

j  at time t  arises from Bernoulli distribution; that is  ~ijt itY Be p  with parameter itp , the 

probability of dying. To account for spatial, temporal and non-spatial variation in the data, we 

introduced village, monthly time and non-spatial random effects j ,  t  and je respectively. 

These were modelled together with covariates itX (EIR and Age) on the logit scale 

as log ( )
T

ijt it j t j
it p X e      , where  1 2

, ,.......,
T

k
      is a vector of regression 

coefficients. The spatial random effects are assumed to originate from a Gaussian spatial process 

with zero mean and variance-covariance matrix  , where  1 2, ,......., ~ (0, )
T

i n N     .  

The covariance between any particular pair of compounds was assumed to be a function of 

distance between the locations, that is  2 expij ijd    where ijd is the Euclidean 

distance between locations i and j, 
2

 is the spatial variance and  is the correlation decay 
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parameter with the range defined as 3  . The monthly time random effects were modelled by 

first order autoregressive process [AR (1)] with variance 
2

  which allows correlation between 

consecutive time periods (Hay and Pettitt, 2001b).  Non-spatial random effects te with zero 

mean and variance
2

e  were included into the model to account for unexplained variation in the 

data.    The EIR covariate was added to the model on a log scale via a normal distribution, that 

is ~ (log( ), ))EIR N EIR SD ; where log( )EIR  and SD are the corresponding posterior 

mean and variance obtained at each compound. 

 

Model fit and implementation 

 

 We applied Bayesian inference by combining likelihood function and prior distributions to form 

the posterior distribution that was used in estimating model parameters. Prior distributions 

specified for all model parameters were; normal with zero mean and large variance for regression 

coefficients 3[( ); ~ (0,10 )]N  , inverse gamma for the 

variances
2 2 2 2

[( , , ); ~ (2.01,1.01)]
e

IG
 

       variance
2

  and uniform for decay 

parameter [ ~ ( , )]U a b . That is 2~ (0,10 )N ,
2 ~ (2.01,1.01)IG  

and ~ ( , )U a b with hyper-parameters a and b the minimum plus the maximum values 

for  respectively.  Models were implemented in OpenBUGS version 3.1.1 software where 

parameters were estimated using Markov Chain Monte Carol (MCMC) simulation algorithm. We 

used a two chains sampler with an initial burn-in of 5000 iterations.  
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Chapter 6: General discussion and conclusions  

 

6.1 Discussion  

 

This work contributes to the existing literature of estimating mortality related burden of malaria 

across age groups using longitudinal geostatistical data contributed by two sites namely; the 

Navrongo HDSS in Ghana and Manhiça HDSS in Mozambique. Specific contributions were 

made to (i) the descriptions of the HDSS data characteristics and relevant methods for analysis; 

(ii) spatially explicit estimates of malaria transmission intensity at monthly intervals; and (iii) the 

relationship between all-cause mortality and malaria transmission intensity across all age 

categories.  High spatio-temporal resolution entomological inoculation rate (EIR) estimates were 

generated from sporozoite rate and mosquito density models that adjusted for climatic and 

environmental factors. During the assessment of all-cause mortality-malaria transmission 

intensity relationship, the data were aligned in space and time because entomological data were 

only captured in selected households while mortality was monitored in the entire HDSS over the 

MTIMBA project period. The estimated EIRs were included in age-specific mortality models 

with their respective measurement errors to adjust for prediction uncertainty.  

This thesis contributes further to data-driven rigorous statistical methods for analyzing large 

entomological and mortality data that were collected while not aligned in both time and space 

(sparse and non-Gaussian data). The statistical methodologies applied generated information that 

is useful in the general understanding of how malaria transmission intensity influences mortality 

in sub-Saharan Africa where the disease is endemic.  The work which was undertaken generated 

four manuscripts that constitute the main chapters (2 to 5) of the thesis.  The first manuscript 

(chapter 2) discussed the characteristics of the MTIMBA project data, statistical issues and 
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proposed appropriate statistical methods (prepared for submission in Malaria). The third chapter 

applied geostatistical models to generated smooth monthly maps of EIR for Navorongo HDSS 

(published in Malaria Journal). Chapter 4 utilized predicted EIR surfaces to assess the mortality-

malaria transmission relationship for the NHDSS (prepared for submission in Trends in 

Parasitology).  In the last manuscript (chapter 5), predicted EIR for Manhiça HDSS were related 

to mortality data to estimate their effects (prepared for submission in PLOS ONE). 

The methodology and detailed discussion of the findings are provided in each of the four 

chapters. This section reports a summary of the main findings, likely implications to malaria 

control interventions, limitation and conclusions.  

The MTIMBA data were collected in 5 different countries with heterogeneous malaria exposures 

(Beier et al., 1999; Hay et al., 2000; Kelly-Hope and McKenzie, 2009). This is one of the largest 

entomological databases currently available that can be used to measure directly malaria 

transmission intensity and the continued effect of interventions on the disease. Data from all 

participating sites were collected under a similar protocol, and thus both within and between sites 

comparisons are possible.   

In the 1990s, the South African Medical Research Council coordinated the Mapping Malaria 

Risk in Africa (MARA/ARMA, 1998) project which set up the first comprehensive malaria risk 

database across Africa (Le Sueur et al., 1997). The project however was based on published and 

unpublished data from parasite prevalence surveys. The MTIMBA project gathered large 

entomological data from West, East and Southern Africa (Figure 1.3) with high spatial and 

temporal resolutions, the characteristics that are relevant for assessing heterogeneity in disease 

transmission.  
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The project generated large geostatistical sparse data that were collected repeatedly over many 

locations as described in chapter 2. The longitudinal entomological data were influenced by 

seasonal climatic changes.  Many locations were found with many zeros especially in the dry 

periods.  The analysis developed zero-inflated Bayesian geostatistical models that improve the 

estimates of malaria exposure surfaces. Zero-inflated models have been applied mostly to count 

data (Amek et al., 2012; Soares Magalhães et al., 2011; Vounatsou et al., 2009) and least to 

binomial data (Amek et al., 2011).  Motivated by the MTIMBA data, we developed and further 

extended analyses of the MTIMBA work using NHDSS and Manhiça data. The methodology for 

estimating malaria exposure surfaces using Navrongo and Manhica data is presented in chapters 

3 and 5 respectively.  

Previous studies have used the mathematical model of the Garki project (Gemperli et al., 2006) 

to  convert age-specific prevalence at each location to a common scale of transmission intensity 

measure. The EIR was assumed to be constant over time period or season. The EIR estimates 

were log transformed to approximately achieve normality ( Gemperli et al., 2006a; Gemperli et 

al., 2006b). The assumption of normality is rarely fulfilled especially because of the large 

number of zeros arising during the dry season.  EIR arises from the product of binomial 

(sporozoite rate) and negative binomial (mosquito density) distributions.  As indicated in 

chapters 3 and 5, EIR is estimated from models fitting separately the binomial sporozoite rate 

data and negative binomial count data. Bayesian kriging was then used to predict malaria 

transmission intensity at unsampled locations.  

Improvements in geographic technologies such as Geographic Information Systems (GIS), 

Global Positioning Systems (GPS) and remote sensing have enabled an assimilation of climatic 

and environmental proxies at high space and time resolutions that can be used to predict health 
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outcomes. Malaria transmission intensity is driven by environmental and climatic factors (Kelly-

Hope et al., 2009). In this analysis, the environmental and climatic covariates were extracted 

from satellite images at very high spatial and temporal resolutions.  Bayesian geostatistical 

models were used to predict monthly malaria exposures surfaces at 250m by 250m spatial 

resolution for the two sites.  

Mapping in malaria epidemiology is a useful tool especially in identifying potential foci of 

transmission to set priorities in terms of resource allocation and for assessing progress towards 

control program.  

To our knowledge, there are no malaria risk maps specifically for the Navrongo HDSS. Even for 

the Manhica HDSS, the  existing malaria risk maps were based on parasitological data that were 

generated by children under 10 years between 1996 and 1999 (Abellana et al., 2008; Escaramís 

et al., 2011). 

Previous maps that were generated from the MARA\ARMA databases were based on a few  data 

points (Craig et al., 1999; Gemperli et al., 2006; Gosoniu et al., 2006; Kazembe et al., 2006; 

Kleinschmidt et al., 2001). The databases consist of historical malaria prevalence surveys that are 

sparse and are unlikely to represent the current disease conditions. Other global malaria risk 

mapping attempts were also based on parasitological data (Gething et al., 2011; Hay and Snow, 

2006). These data were collected at different seasons among different age groups making it 

difficult to adjust for such heterogeneity during the mapping process. A continental malaria 

endemicity levels map that was based on previous entomological surveys used data collected 

from only 15 countries (Hay et al., 2000).   Chapters 3 and 5 used large amount of entomological 

data to derive more accurate malaria risk maps for the two HDSS in West and Southern Africa 

respectively. Climate and environmental predictors were also extracted at high spatial and 
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temporal resolutions.  These maps can therefore be used to measure progress towards malaria 

elimination.  Although monthly maps show changes in transmission intensity based on the 

climatic season, the geographical distribution remains constant (Figures 3.4 and 5.2). The 

findings therefore clearly showed that temporal heterogeneity is more important than the spatial 

variation in the two sites. The same situation  was also observed from  the analyses of the Rufiji  

and Kisumu  MTIMBA-HDSS data (Amek et al., 2012; Rumisha, 2013) implying that the within 

site transmission is influenced mostly by ecological factors. Due to scarcity of resources, malaria 

control interventions such as insect treated-nets, indoor residual spraying and other vector 

control measures should target high transmission pockets especially towards the beginning of the 

rain season. . Although the spatial distribution of different diseases in the same area would have 

been helpful in identifying high risk clusters for integrated intervention approaches in order to 

improve health services delivery, the HDSS cover a smaller area. Implement malaria control 

interventions in an HDSS is not practically relevant.  However, there is a need to understand the 

geographical distributions of malaria transmission intensity in these two sites in relation to health 

service delivery. High transmission areas are important for monitoring malaria early warning 

signs since the disease is mostly affected by seasonal changes.  

The mortality-malaria transmission intensity relationship across all age groups was assessed in 

chapters 4 and 5 of the thesis. A positive log-linear relationship between mortality and EIR was 

observed in all age categories.  Previous studies based on either meta-analysis (Ross and Smith, 

2006; Smith et al., 2001; Snow and Marsh, 1995) or linking  DHS mortality and the MARA 

databases (Gemperli et al, 2004) focused on children under five years and provided inconsistent 

results about this relationship. The observed positive effect of EIR on all-cause mortality among 

children < 5 years is consistent with the findings from Rufuji  and Kisumu MTIMBA-HDSS  
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data  (Rumisha 2013;  Amek 2013).   Preliminary meta-analysis using estimates generated 

through rigorous analyses of data from 4 MTIMBA sites reported an overall positive effect of 

EIR on mortality which is even statistically important (Figure 6.1). In these studies, the primary 

outcome was the frequency of death and the effects were therefore expressed as risk ratios.  
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Figure 6. 1:  Meta analysis for effect of EIR on all-cause mortality among children 
 

Estimates from Bayesian meta-analysis formulation indicate that there is 99.9% posterior 

probability that mortality is associated with increased malaria transmission intensity among 
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children < 5. This implies measures aimed at reducing mosquito contacts in endemic areas will 

improve child survival in such areas. This suggests  that acquired immunity which develops with 

repeated infections in these countries  still occurs  at an early age.  Even with increased control 

interverntions in SSA, severe malaria cases and high malaria cause mortality are still common 

among young children (Abdullah et al., 2007; Carneiro et al., 2010; Roca-Feltrer et al., 2010).   

The established  positive relationship between all-cause mortality  and malaria exposure among 

children < 5 years might reflect the true situation in SSA.  Further research however is needed to 

monitor this relationship in school age children and adult population.   Meta analysis including 

all other age groups will be condicted when site-specific analyses are completed. 

Use of ITN is one of the interventions that has been assocated with reduced mortality malaria 

endemic areas among children (Lengeler, 2004; Phillips-Howard et al., 2003; Steketee and 

Campbell, 2010).  As indicate in chapter 4, ownership of nets was used as a proxy for use. After 

adjusting for spatio-temporal correlation, the data shows that children from compounds with nets 

received a protective effect. With the current scale-up of malaria control interventions, HDSS 

need to collect  this information where possible at personal level.  

6.2 Study limitations and challenges 

 

The INDEPTH network malaria working group commissioned the MTIMBA project in early 

2000 and the different sites completed data collection towards the end of 2004.  Although  site 

specific data were merged in 2005, analysis did not start till 2008. This was partly due to sites’  

lack of   expertise especially in the field of statistics to handle  the analysis. The first attempts to 

analyze MTIMBA data were intially done based on a sub-population of children under 15 years 

(Abdullah et al., 2007) and did not include statistical methods that take into consideration all the 

data characteristics.  The analysis of MTIMBA data was therefore used  as a platform to build 
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statastical, epidemiologal and writing capacity skills  among African young scientists. This  has 

been done through course works, seminars and mentorship. Currently, the analyses  of  the two 

MTIMBA sites data of  Rufiji in Tanzania (Rumisha, 2013) and  Kisumu in Kenya (Amek, 2013)  

were completed, and work for the remaining sites is still on-going.  Despite all the delays, this 

rigorous training process will help HDSS not only to improve data collection and management  

skills but also carry out proper  analysis for informed decision making. 

Cause of death data were obtained using a modified verbal Autopsy (VA) tool derived from both, 

the World Health Organization (WHO) and the standard, site-specific VA questionnaires. At the 

end of the MTIMBA data collection period (end of 2004), complete VA data for NHDSS were 

not available. Manhica HDSS provided VA results of 1732 (85%) out of the 2027 total observed 

deaths. Although malaria mortality in SSA is common among the under fives (Becher et al., 

2008c; Liu et al., 2012) , no deaths in this age category was assigned to the disease.  The VA 

method is known to overestimate malaria deaths partly due to diseases with similar symptoms 

such as pneumonia and acute respiratory infections (Hammer et al., 2006). There is a need 

therefore to test the VA tool in Manhica HDSS against hospital data or models (Oti and 

Kyobutungi, 2010) in order to ascertain it’s sensitivity and specificity.  

Geostatistical analyis requires coordinates of all the units of analysis. Like other MTIMBA sites, 

the NHDSS and Manhica HDSS lacked data coordinates for all the compounds/households. 

Coordinates were also necessary to allign all the other factors.  Lack of coordinates  forced us to 

drop large amount of data generated by  compounds that were not georeferenced. Similarly, 

while estimating  the spatial process for mortality-malaria transmission models, the spatial 

random effect was assigned at village level. However, village maps were not available to 

ascertain the distribution of compounds and thier central positions.  Instead, an average of the  
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georeferenced  compounds within each village was used to generated the centroids. Accurate and 

complete georeferenced data is important for modeling and for  determining the disease risk.  

The HDSS need to apply the current improvements in geographic technologies to map all their 

compounds and villages. 

In the process of developing malaria transmission models, climate and environmental predictors 

used were extracted from remote sensing data at different spatio-temporal resolutions. Each of 

the covariates at particular location was summarized into a single value ( either mean or total) 

over a specified period of time defined by either one, two or three months before the actual 

survey time. The mosquioto data on the other hand that were obtained every fortnight  at 

sampled locations were linked to the summaries of  environmental and climatic data before 

analysis. Using aggregated temporal covariates is likely to influence  the accuracy of model 

parameters. This assumes that climate and environment predictors of an area are constant 

throughout the specified time  interval which is not true.   

While modeling malaria transmission intensity, lag  time analyses were performed to ascertain a 

suitable combiation of predictors to both mosquito density and sporozoite rata data. Covariates 

were selected  using standard  negative binomial and logistic regression models. The best 

combiation of predictors  was selected basing on Akaike information creterion (AIC) in additon 

to a comparision between fitted and predicted values.  Covariates selected using standard 

regression models ignores spatial correlation that exists in the entomological data. Bayesian 

variable selection is is a relevant to the MTIMBA. This method identify  the best fit of covariates 

from a model with highest predictive ability (Dellaportas et al., 2002). Although Bayesian 

variable selection  method has previously been applied to malaria  risk mapping (Giardina et al., 

2012)  it is computationally expensive when applied to large data.  
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Mortality models used EIR covariate and individual age.  Age was measured either in days, 

months or years. Studying malaria epidemiology is broad and requires all the characteristics that 

influence it. These include transmission intensity which was measured by EIR, treatment 

regimen, people’s behaviours and malaria control interventions in place. The effect of such 

factors is important in designing  and evaluating  malaria control interventions bacause the 

disease is always driven by local conditions.    

6.3 Conclusion 

 

This analysis reported a positive association between all-cause mortality and malaria 

transmission intensity in all age categories.  Such relationships especially among the adults 

should be interpreted carefully. People in endemic areas develop clinical immunity at an early 

age and severe malaria cases usually reduce with increasing age. Further site-specific analyses 

followed by meta-analysis will useful in providing reliable evidence about mortality-malaria 

transmission relationship across different age groups in SSA. 

Heterogeneity in malaria transmission intensity mostly driven by temporal changes was observed 

in the two MTIMBA sites. Spatial variation was not so strong because of the small sizes of these 

HDSS. There is a need therefore for HDSS to target their interventions especially in the 

transmission peak seasons in order to avoid disease epidemics.   

Bayesian geostatistical models developed under the MTIMBA project  can be adopted and used 

for the analyses of other  HDSS data with similar characteristics namely; large data, longitudinal 

in nature, seasonal and zero-inflated. However such models are applicable to data collected at the 

same spatial and temporal ressolution. 
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