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We compare the cost complexities of two approximation schemes for functions f ∈ Hp(Ω1 ×Ω2)

which live on the product domain Ω1 ×Ω2 of sufficiently smooth domains Ω1 ⊂ R
n1 and Ω2 ⊂ R

n2 ,
namely the singular value/Karhunen–Lòeve decomposition and the sparse grid representation. Here,
we assume that suitable finite element methods with associated fixed order r of accuracy are given
on the domains Ω1 and Ω2. Then, the sparse grid approximation essentially needs only O(ε−q), with
q = max{n1, n2}/r, unknowns to reach a prescribed accuracy ε, provided that the smoothness of f sat-
isfies p � r((n1 + n2)/max{n1, n2}), which is an almost optimal rate. The singular value decomposition
produces this rate only if f is analytical, since otherwise the decay of the singular values is not fast
enough. If p< r((n1 + n2)/max{n1, n2}), then the sparse grid approach gives essentially the rate O(ε−q)

with q = (n1 + n2)/p, while, for the singular value decomposition, we can only prove the rate O(ε−q)

with q = (2 min{r, p} min{n1, n2} + 2p max{n1, n2})/(2p − min{n1, n2})min{r, p}. We derive the result-
ing complexities, compare the two approaches and present numerical results which demonstrate that
these rates are also achieved in numerical practice.
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1. Introduction

The efficient approximate representation of multivariate functions is an important task in numerical
analysis and scientific computing. In this paper, we concentrate on functions which are defined on
the product Ω1 ×Ω2 of two domains. Already for this simple situation, there exists a large amount
of applications. For example, radiosity models and radiative transfer (Widmer et al., 2008) exhibit a
product structure. Here, Ω1 denotes the spatial three-dimensional domain of the geometric object under
consideration and Ω2 is the sphere S

2. Moreover, in the case of space-time discretizations of parabolic
problems, Ω1 is the time interval, whereas Ω2 is the spatial domain (Griebel & Oeltz, 2007; Stevenson
& Schwab, 2009).

Then, there are various phase-space problems where both Ω1 and Ω2 are three-dimensional cubes
or the full three-dimensional real space. Examples are the Boltzmann equation, kinetic equations or
the Langevin equation; see, e.g., Balescu (1997). Furthermore, non-Newtonian flow can be modelled
by a coupled system that consists of the Navier–Stokes equations for the flow in a three-dimensional
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geometry described by Ω1 and of the Fokker–Planck equation in a 3(k − 1)-dimensional configuration
space on Ω2. Here, k denotes the number of atoms in a chain-like molecule which constitutes the non-
Newtonian behaviour of the flow; for details see Barrett et al. (2009), Le Bris & Lelièvre (2009) and
Lozinski et al. (2010). Note that the domain of the configuration space is itself again a product of k − 1
spheres.

Another example is two-scale homogenization. After unfolding (Cioranescu et al., 2008), it gives
rise to the product of the macroscopic physical domain and the periodic microscopic domain of the cell
problem; see Matache (2002). For multiple scales, a general product appears here which still can be
written as the product of two domains, one containing, for example, the macroscopic scale and the other
consisting of the product of the domains of the different microscales (Hoang & Schwab, 2005).

Also, the two-point correlation functions of linear elliptic boundary value problems with stochas-
tic source terms, i.e., Au(ω)= f (ω) in Ω , are known to satisfy a deterministic partial differential
equation (PDE) on the product domainΩ ×Ω . Namely, the two-point correlation satisfies the equation
(A ⊗ A) Coru = Corf in Ω ×Ω; see Schwab & Todor (2003a). Higher-order moments then involve
larger tensor products (Schwab & Todor, 2003b). This approach extends to stochastic diffusion func-
tions and more general PDEs with stochastic coefficient functions as well as to stochastic domains
(Harbrecht et al., 2008a; Harbrecht, 2010).

Finally, we find the product of two domains in quantum mechanics, for example, for the Schrödinger
equation for helium; systems with more than two electrons then involve multiple product domains, of
course.

In general, some problems are directly given on the product of two domains, while for other prob-
lems the domains themselves are products of lower-dimensional domains. Then, the domain of an n-
dimensional problem with, for example, n being some power of two, can be split into the tensor product
of two domains of dimension n/2 which can be recursively further split until a terminal situation (a one-
dimensional domain or a truly higher-dimensional but nontensor-product domain) is reached. Related
representation methods have recently been considered in Hackbusch & Kühn (2009) or Oseledets &
Tyrtyshnikov (2009), Grasedyck (2010), Bebendorf (2011), Hackbusch (2012).

In this article, we consider the simple case of two domains Ω1 and Ω2 only. Here, our analysis
covers the situation of the first bisection step in the above-mentioned recursion. To this end, for i = 1, 2,
let Ωi denote a domain in R

ni (or alternatively also an ni-dimensional manifold in R
ni+1). We consider

the numerical approximation of bi-variate functions. In other words, we suppose that on the individual
subdomains we have chosen fixed sequences of nested trial spaces

V (i)
0 ⊂ V (i)

1 ⊂ V (i)
2 ⊂ · · · ⊂ L2(Ωi),

each of which consists of ansatz functions of the same, fixed approximation order r. On the basis of these
ansatz spaces, we intend to compare the efficient approximation of functions f (x, y) ∈ L2(Ω1 ×Ω2) by
either the truncated singular value decomposition

fM (x, y) :=
M∑
�=1

√
λ�ϕ�(x)ψ�(y),

or by the generalized sparse grid approach

f̂J (x, y) :=
∑

j1/σ+j2σ�J

∑
k1∈∇(1)

j1

∑
k2∈∇(2)

j2

β(j1,k1),(j2,k2)ξ
(1)
j1,k1
(x)ξ (2)j2,k2

(y),
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where σ > 0 is an appropriately chosen parameter. In the first representation, {ϕ�}M
�=1 and {ψ�}M

�=1 are
sets of orthonormal functions. They are unknown a priori, cannot in general be derived analytically and
need thus to be approximated in the ansatz spaces {V (i)

j }. In other words, the approximation involves,
in most applications, both a truncation after M terms and an approximate computation of the singular
values and the associated left- and right-singular vectors. In the second representation, {ξ (i)j,k }k∈∇(i)

j ,j∈N
are

in general multilevel or wavelet bases associated with the trial spaces, where the index j refers to the
level of resolution and the index k refers to the locality of the basis function (the precise definition will
be given in Section 4).

For our comparison we consider the smoothness of the function f to be measured in isotropic
Sobolev norms. The result of this paper is then as follows: given a function f ∈ Hp(Ω1 ×Ω2), we
have to use O(ε−q), with q = (2 min{r, p} min{n1, n2} + 2p max{n1, n2})/(2p − min{n1, n2})min{r, p},
degrees of freedom for the computation of the truncated and approximated singular value decompo-
sition to reach a specific prescribed accuracy ε. For the general sparse grid method with associated
parameter σ = √

n1/n2 (a precise definition is given in Section 4), it is known that this cost-complexity
rate is of the order O(ε−q) with q = max{(n1 + n2)/p, n1/r, n2/r} (Griebel & Harbrecht, 2013). We
compare the two approaches and present numerical results, which demonstrate that these rates are also
achieved in practice.

Note that we have only an upper bound for the truncated and approximated singular value decompo-
sition. Therefore, our comparison of the singular value decomposition and the sparse grid approach (see
Section 5) needs to be interpreted carefully. Indeed, the present paper is only a first attempt towards a
‘fair’ comparison of both approaches, which particularly takes into account that the eigenvectors of the
approximated singular value decomposition need to be computed and stored in any practical numerical
approach.

The remainder of this article is organized as follows. In Section 2, we give a short introduction to
multilevel approximation. In Section 3, we describe the singular value decomposition of a bivariate
function on Ω1 ×Ω2 and discuss its approximation properties in detail. Section 4 gives the basics of
the so-called general sparse grid approximation of a bivariate function on Ω1 ×Ω2 and presents its
error rates and cost complexities. In Section 5, we compare the two approximations. In Section 6, we
present numerical results which show that the theoretical complexity rates are also achieved in practice.
Section 7 concludes with some final remarks.

Throughout this paper, the notion ‘essential’ in connection with the complexity estimates means
‘up to logarithmic terms’. Moreover, to avoid the repeated use of generic but unspecified constants, we
denote by C � D that C is bounded by a multiple of D independently of parameters which C and D may
depend on. Obviously, C � D is defined as D � C, and C ∼ D as C � D and C � D.

2. Approximation on the subdomains

Let Ω ⊂ R
n be a sufficiently smooth, bounded domain. In general, one uses finite elements to approx-

imate functions on L2(Ω). In the present paper, we focus on the common h method, i.e., on finite
elements of fixed approximation order. Then, particularly for applying multiscale techniques, one has a
sequence of nested trial spaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(Ω) (2.1)

such that

L2(Ω)=
⋃
j∈N0

Vj,
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which is called multiscale analysis. Each space Vj is defined by a single-scale basisΦj = {φj,k}, i.e., Vj =
span{φj,k : k ∈Δj}, where Δj denotes a suitable index set with cardinality #(Δj)∼ 2nj.

We say that the trial spaces have (approximation) order r ∈ N if

r = sup

{
s ∈ R : inf

vj∈Vj

‖v − vj‖L2(Ω) � hs
j ‖v‖s ∀v ∈ Hs(Ω)

}
, (2.2)

where the quantity hj ∼ 2−j corresponds to the mesh width associated with the subspace Vj on Ω .
Note that the integer r> 0 refers in general to the maximal order of polynomials that are locally con-
tained in Vj.

Equation (2.2) implies that a given function v ∈ Hp(Ω), 0 � p � r can be approximated in Vj at a
rate hp

j , i.e.,
inf

vj∈Vj

‖v − vj‖L2(Ω) � hp
j ‖v‖Hp(Ω), 0 � p � r. (2.3)

Thus, when we approximate a function v ∈ Hp(Ω) with 0 � p � r by uniform mesh refinement, we
obtain the rate hp

j according to (2.3). Since the mesh size and the number of unknowns in Vj are related
by dim(Vj)∼ 2jn ∼ h−n

j , we deduce that
N ∼ ε−n/p (2.4)

unknowns have to be spent to achieve an approximation error ε. The best possible rate N−n/r is achieved
if p = r, i.e., if v ∈ Hr(Ω).

For our subsequent analysis, to efficiently approximate bi-variate functions in L2(Ω1 ×Ω2), we
shall fix the definitions, properties and cost complexities individually for each subdomain Ωi ∈ R

ni ,
i = 1, 2. That is, we fix two multiscale analyses

V (i)
0 ⊂ V (i)

1 ⊂ V (i)
2 ⊂ · · · ⊂ L2(Ωi), i = 1, 2, (2.5)

which are assumed to provide the same approximation order r. The construction of the truncated and
approximated singular value decomposition in Section 3 and the sparse grid in Section 4 are based on
these multiscale analyses. A comparison for the case of the same r, i.e., where the underlying finite
element spaces in (2.5) for both the truncated and approximated singular value decomposition and the
sparse grid, have the same order r, then takes place in Section 5. The question we address in this paper
is as follows. Given a function Hp(Ω1 ×Ω2), where p> 0 is arbitrary and where trial spaces with fixed
order r are used in both approaches, which algorithm provides a cheaper approximation?

3. Singular value decomposition

3.1 Definition and mapping properties

We intend to numerically represent functions f (x, y) ∈ L2(Ω1 ×Ω2) on tensor-product domains Ω1 ×
Ω2 in an efficient way. One way to solve this approximation problem is to use an ansatz by means of
tensor products, which separates the variables x and y. We first consider the approximation

f (x, y)≈ fM (x, y)=
M∑
�=0

α�ϕ�(x)ψ�(y), (3.1)

with certain coefficients α� ∈ R and normalized functions ϕ� ∈ L2(Ω1) and ψ� ∈ L2(Ω2). Such an
approximation is called a low-rank approximation.
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It is well known (see, e.g., Lòeve, 1978; Ghanem & Spanos, 1991 or Schwab & Todor, 2006) that,
with respect to the number M of terms, the best possible representation of a function f ∈ L2(Ω1 ×Ω2)

in the L2 sense is given by the Karhunen–Lòeve/singular value decomposition. Then, α� = √
λ� are the

eigenvalues of the below-defined integral operator (3.2) with kernel (3.3). The decay of the eigenvalues
is important for the fast convergence (in terms of M ) of the series (3.1). As we will see in Section 3.2,
the decay depends on the smoothness of the function f to be approximated. We analyse the truncation
error in Section 3.3 and discuss the smoothness of the eigenfunctions in Section 3.4. In Section 3.5,
we finally consider the numerical treatment of (3.1). Besides determining the coefficients {α�}�∈N, a
numerical scheme needs to approximate the functions {ϕ�}�∈N and {ψ�}�∈N in appropriate trial spaces
V (1)

j1 and V (2)
j2 , respectively, up to an accuracy corresponding to that of (3.1). Recall that the trial spaces

that we consider are elements of the multiscale analyses (2.5) that have the same approximation order r.
To derive the singular value decomposition, we shall consider the integral operator

S : L2(Ω1)→ L2(Ω2), (Su)(y) :=
∫
Ω1

f (x, y)u(x) dx.

Its adjoint is

S� : L2(Ω2)→ L2(Ω1), (S�u)(x) :=
∫
Ω2

f (x, y)u(y) dy.

Then, to obtain the low-rank representation (3.1), we need to compute the eigenvalues of the integral
operator

K = S�S : L2(Ω1)→ L2(Ω1), (Ku)(x) :=
∫
Ω1

k(x, x′)u(x′) dx′, (3.2)

whose kernel function is given by

k(x, x′)=
∫
Ω2

f (x, y)f (x′, y) dy ∈ L2(Ω1 ×Ω1). (3.3)

This is a Hilbert–Schmidt kernel. Thus, the associated integral operator K is compact. Moreover, since
K is self-adjoint, there exists a decomposition into eigenpairs (λ�,ϕ�) that fulfils

Kϕ� = λ�ϕ�, � ∈ N,

with non-negative eigenvalues λ1 � λ2 � · · · � λm → 0 and eigenfunctions {ϕ�}�∈N, which constitute an
orthonormal basis in L2(Ω1).

We now define, for all � ∈ N with λ� > 0, the function ψ� ∈ L2(Ω2) by

ψ�(y)= 1√
λ�
(Sϕ�)(y)= 1√

λ�

∫
Ω1

f (x, y)ϕ�(x) dx. (3.4)
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This constitutes a second sequence of orthonormal functions since

(ψk ,ψ�)L2(Ω2) =
1√
λkλ�

(Sϕk ,Sϕ�)L2(Ω2) =
1√
λkλ�

(Kϕk ,ϕ�)L2(Ω1)

= λk√
λkλ�

(ϕk ,ϕ�)L2(Ω1) = δk,�.

If λ� = 0 for some � ∈ N, we can extend this collection of functions properly to obtain an orthonormal
basis {ψ�}�∈N of L2(Ω2). Since

√
λ�ϕ�(x)= 1√

λ�
(S�Sϕ�)(x)= (S�ψ�)(x)=

∫
Ω2

f (x, z)ψ�(z) dz (3.5)

for all x ∈Ω1 and � ∈ N, we finally obtain the representation

f (x, y)=
∞∑
�=0

√
λ�ϕ�(x)ψ�(y). (3.6)

With (3.4) and (3.5), this equation is easily verified by testing with the orthonormal basis {ϕk ⊗ ψ�}k,�∈N

of L2(Ω1 ×Ω2).

Remark 3.1 The adjoint kernel k̃(·, ·) is obtained just by interchanging Ω1 and Ω2, i.e.,

k̃(y, y′)=
∫
Ω1

f (x, y)f (x, y′) dx ∈ L2(Ω2 ×Ω2).

Then, one has the integral operator

K̃ = SS� : L2(Ω2)→ L2(Ω2), (K̃u)(y) :=
∫
Ω2

k̃(y, y′)u(y′) dy′.

Again there exists a decomposition into eigenpairs,

K̃ϕ̃� = λ̃�ϕ̃�, � ∈ N,

with non-negative eigenvalues λ̃1 � λ̃2 � · · · � λ̃m → 0 and eigenfunctions ϕ̃� ∈ L2(Ω2). We also obtain
a second sequence of orthonormal functions ψ̃� ∈ L2(Ω1), analogous to (3.4). The functions {ϕ̃�}�∈N and
{ψ̃�}�∈N will be the same as before but now their roles are exchanged. Moreover, the eigenvalues λ� and
λ̃� of K and K̃, respectively, coincide.
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We will prove the following auxiliary result concerning the mapping properties of the integral oper-
ators S and S�. To this end, for s> 0, we mean by H−s(Ω) := (Hs(Ω))′ the dual of the Sobolev space
Hs(Ω) (which is usually denoted by H̃−s(Ω)). Moreover, for s1, s2 ∈ R, let

Hs1,s2
mix (Ω1 ×Ω2) := Hs1(Ω1)⊗ Hs2(Ω2)

denote the Sobolev space of dominating mixed derivatives.

Lemma 3.2 Assume that f ∈ Hp(Ω1 ×Ω2). Then, the operators

S : H−s(Ω1)→ Hp−s(Ω2), S� : H−s(Ω2)→ Hp−s(Ω1)

are continuous for all s ∈ [0, p].

Proof. From Hp(Ω1 ×Ω2)⊂ H0,p
mix(Ω1 ×Ω2) it follows that f ∈ H0,p

mix(Ω1 ×Ω2). Therefore, the oper-
ator S : L2(Ω1)→ Hp(Ω2) is continuous since

‖Su‖Hp(Ω2) = sup
‖v‖H−p(Ω2)

=1
(Su, v)L2(Ω2)

= sup
‖v‖H−p(Ω2)

=1
(f , u ⊗ v)L2(Ω1×Ω2)

� sup
‖v‖H−p(Ω2)

=1
‖f ‖H0,p

mix(Ω1×Ω2)
‖u ⊗ v‖H0,−p

mix (Ω1×Ω2)

∼ ‖f ‖H0,p
mix(Ω1×Ω2)

‖u‖L2(Ω1).

Note that we have used here that H0,−p
mix (Ω1 ×Ω2)= L2(Ω1)⊗ H−p(Ω2).

By complete analogy one shows that S� : L2(Ω2)→ Hp(Ω1) is continuous, which proves the desired
assertion for s = 0. By duality one also infers the assertion for s = p. The assertion for s ∈ (0, p) is finally
obtained by interpolation. �

3.2 Decay of the eigenvalues

With the above lemma, we are now able to determine the decay rate of the eigenvalues of the integral
operator K= S�S with kernel (3.3).

Theorem 3.3 Consider f ∈ Hp(Ω1 ×Ω2) with associated kernel k from (3.3) and associated integral
operator K from (3.2). Then, the eigenvalues {λ�}�∈N of K decay like

λ� � �−2p/min{n1,n2} as �→ ∞. (3.7)
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Proof. We shall investigate the dependence of the decay of the eigenvalues of the integral operator
K = S�S on the smoothness p of f . To this end, we introduce new1 finite element spaces UN ⊂ L2(Ω2),
which consist of N discontinuous, piecewise polynomial functions of total degree �p� on a quasi-
uniform triangulation of Ω2 with mesh width hN ∼ N−1/n2 . Then, the Bramble–Hilbert lemma implies
the following approximation result for the L2-orthogonal projection PN : L2(Ω2)→ UN :

‖(I − PN )w‖L2(Ω2) � cpN−p/n2‖w‖Hp(Ω2),

provided that w ∈ Hp(Ω2). Then, since S�PNS : L2(Ω1)→ L2(Ω1) is an operator of finite rank N , the
min–max principle of Courant–Fischer implies

λN+1 = min
V⊂L2(Ω1)

dim V⊥�N

max
u∈V‖u‖L2(Ω1)

=1

(Ku, u)L2(Ω1)

� max
u⊥img(S�PNS)

‖u‖L2(Ω1)
=1

(S�Su, u)L2(Ω1)

= max
u⊥img(S�PNS)

‖u‖L2(Ω1)
=1

(S�(I − PN )Su, u)L2(Ω1)

= max
u⊥img(S�PNS)

‖u‖L2(Ω1)
=1

((I − PN )Su, (I − PN )Su)L2(Ω2)

� sup
‖u‖L2(Ω1)

=1
‖(I − PN )Su‖2

L2(Ω2)

� N−2p/n2 sup
‖u‖L2(Ω1)

=1
‖Su‖2

Hp(Ω2)
.

Since S : L2(Ω1)→ Hp(Ω2) is continuous according to Lemma 3.2, we arrive at λN+1 � N−2p/n2 .
Applying the same arguments to the operator K̃, one gets the decay rate λN+1 � N−2p/n1 . Thus,
λN+1 � N−2p/min{n1,n2}. Finally substituting for N + 1 by � yields the desired result. �

Remark 3.4 The min–max principle of Courant–Fischer is also used in Schwab & Todor (2006) to
estimate the decay of the eigenvalues. There, however, only the regularity of the kernel function k ∈
Hp,p

mix(Ω1 ×Ω1) in the first variable enters the estimate, which gives the rate

λ� � �−p/min{n1,n2} as �→ ∞.

By using the representation K= S�S, we are able to exploit the kernel’s regularity in both variables
which doubles the decay rate.

3.3 Truncation error

Altogether, if f ∈ Hp(Ω1 ×Ω2), then Theorem 3.3 implies that the coefficients {√λ�} in the expansion
(3.6) of f decay like

√
λ� � �−p/min{n1,n2}. This leads to the following theorem.

1 The present proof relies on an approximation argument. The new finite element spaces {UN } are introduced to obtain the
optimal convergence rate with N degrees of freedom.
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Theorem 3.5 Let f ∈ Hp(Ω1 ×Ω2) and p>min{n1, n2}/2. Then it holds that

∥∥∥∥∥f −
M∑
�=0

√
λ�(ϕ� ⊗ ψ�)

∥∥∥∥∥
L2(Ω1×Ω2)

� M 1/2−(p/min{n1,n2}). (3.8)

Proof. Assume, without loss of generality, that n1 � n2. Then, owing to λ� ∼ �−2p/n1 from Theorem 3.3,
we obtain by the orthonormality of the function sets {φ�} and {ψ�} that

∥∥∥∥∥f −
M∑
�=0

√
λ�(ϕ� ⊗ ψ�)

∥∥∥∥∥
2

L2(Ω1×Ω2)

=
∥∥∥∥∥

∞∑
�=M+1

√
λ�(ϕ� ⊗ ψ�)

∥∥∥∥∥
2

L2(Ω1×Ω2)

=
∞∑

�=M+1

λ� �
∞∑

�=M+1

�−2p/n1 .

Since 2p/n1 > 1, we can estimate the sum by an integral as

∞∑
�=M+1

�−2p/n1 �
∫ ∞

M
x−2p/n1 dx = M 1−2p/n1

2p/n1 − 1
,

which leads to the desired result (3.8). �

Consequently, to ensure the error bound

∥∥∥∥∥f −
M∑
�=0

√
λ�(ϕ� ⊗ ψ�)

∥∥∥∥∥
L2(Ω1×Ω2)

� ε, (3.9)

we need to choose the expansion degree M as

M ∼ ε2 min{n1,n2}/(min{n1,n2}−2p). (3.10)

Remark 3.6 The following comments are in order.

1. Regularity in terms of mixed derivatives does not further improve the results. The property f ∈
Hp,p

mix(Ω1 ×Ω2) again yields the estimate λ� � �−2p/max{n1,n2} for the eigenvalues of K.

2. The use of the Sobolev regularity might give too low a decay rate (3.7). For example, for
the exponential kernel k(x, y)= exp(−|x − y|) on the unit square, we have k ∈ H3/2−δ((0, 1)×
(0, 1)) for all δ > 0, but we observe

√
λ� ∼ �−2 instead of

√
λ� ∼ �−3/2; see Fig. 1. Here,

we expect that the use of Besov regularity in the approximation argument in the proof of
Theorem 3.3 would give the correct decay since it allows for an adaptive refinement at the
diagonal x = y.



APPROXIMATION OF BI-VARIATE FUNCTIONS 37

100 200 300 400 500 600 700 800 900 1000
10

–7

10
–6

10
–5

10
–4

10
–3

10
–2

10
–1

Number of eigenvalue

M
od

ul
us

Eigenvalues of the exponential kernel

Eigenvalues

Asymptotics 0.2x
–2

100 200 300 400 500 600 700 800 900 1000
10

–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

Number of eigenvalue

M
od

ul
us

Eigenvalues of the Matérn kernel

Eigenvalues

Asymptotics 0.5x
–4

Fig. 1. The eigenvalues of the exponential kernel (left) and the Matérn kernel (right).

3. Our considerations, and thus estimate (3.8), do not apply if 0 � p � min{n1, n2}/2. However, it
still holds that

∑∞
�=0 λ� <∞ since K is a Hilbert–Schmidt operator.

3.4 Smoothness of the eigenfunctions

Depending on the smoothness of f , we are able to prove the following result on the regularity of the
functions in the collections {ϕ�} and {ψ�}. This result will be essential for any numerical computation
of the truncated singular value decomposition.

Lemma 3.7 Let f ∈ Hp(Ω1 ×Ω2). Then, the eigenfunctions {ϕ�} and {ψ�} are in Hp(Ω1) and Hp(Ω2),
respectively, and satisfy

‖ϕ�‖Hp(Ω1) �
1√
λ�

, ‖ψ�‖Hp(Ω2) �
1√
λ�

, � ∈ N. (3.11)

Proof. In view of (3.5) and Lemma 3.2, we deduce

‖ϕ�‖Hp(Ω1) =
1√
λ�

‖S�ψ�‖Hp(Ω1) �
1√
λ�

‖ψ�‖L2(Ω2) =
1√
λ�

for all � ∈ N. The second estimate is shown completely analogously. �

3.5 Numerical approximation

So far, we have used an exact description of the eigenfunctions. However, this does not hold in prac-
tice. Instead, the eigenvalues {λ�}M

�=1 and eigenfunctions {ϕ�}M
�=1 and {ψ�}M

�=1 need to be approximately
computed in the finite element spaces which were introduced in Section 2.

Recall that, on both subdomains, the finite element spaces V (i)
j ⊂ L2(Ωi) provide the same approx-

imation order r, which results in the same approximation property (2.3), but depending on the subdo-
mains’ spatial dimensions n1, n2, in different cost complexities (2.4).
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According to (2.3) and (3.11), when we use Nϕ ∼ 2jn1 degrees of freedom for an approximation of
ϕ� in V (1)

j and Nψ ∼ 2jn2 degrees of freedom for an approximation of ψ� in V (2)
j , we conclude

‖ϕ� − ϕ�,N‖L2(Ω1) � N−min{p,r}/n1
ϕ ‖ϕ�‖Hmin{p,r}(Ω) �

1√
λ�

N−min{p,r}/n1
ϕ ,

‖ψ� − ψ�,N‖L2(Ω2) � N−min{p,r}/n2
ψ ‖ψ�‖Hmin{p,r}(Ω) �

1√
λ�

N−min{p,r}/n2
ψ .

(3.12)

Here, ϕ�,N and ψ�,N denote the numerical approximations to ϕ� and ψ�, respectively.
According to (3.12), to ensure ‖ϕ� − ϕ�,N‖L2(Ω1) � ε/

√
λ�M (we will later see that this is the proper

accuracy), we have to use (cf. (3.10))

Nϕ ∼
(

ε√
M

)−n1/min{r,p}
∼ ε2pn1/(min{n1,n2}−2p)min{r,p}

unknowns for the representation of ϕ�,N and, to ensure ‖ψ� − ψ�,N‖L2(Ω2) � ε/
√
λ�M , we have to use

Nψ ∼
(

ε√
M

)−n2/min{r,p}
∼ ε2pn2/(min{n1,n2}−2p)min{r,p}

unknowns for the representation ofψ�,N . In what follows, we will always use N := max{Nϕ , Nψ } degrees
of freedom which does not deteriorate the cost complexity. In particular, N does not depend on �, i.e.,
all eigenfunctions {ϕN ,�} and {ψN ,�} are approximated in the same ansatz spaces.

Remark 3.8 If p> r, then we may even estimate

‖ϕ�‖Hr(Ω) �
(

1√
λ�

)r/p

, ‖ψ�‖Hr(Ω) �
(

1√
λ�

)r/p

by using interpolation arguments. Hence, (3.12) can be improved by

‖ϕ� − ϕ�,N‖L2(Ω1) � λ
−min{r,p}/2p
� N−min{p,r}/n1 ,

‖ψ� − ψ�,N‖L2(Ω2) � λ
−min{r,p}/2p
� N−min{p,r}/n2 .

As a consequence, if p> r, the number of unknowns for approximating the eigenfunctions can be
reduced when � increases. However, to exploit this fact for the computation of the truncated singu-
lar value decomposition, one needs specific information on the smoothness index p.

We assume that the approximate eigenfunctions are normalized and pairwise orthogonal, i.e., for
1 � �, �′ � M , we have

∫
Ω1

ϕ�,N (x)ϕ�′,N (x) dx = δ�,�′ ,
∫
Ω2

ψ�,N (y)ψ�′,N (y) dy = δ�,�′ .
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With regard to the approximation of the M largest eigenvalues in the space VN , defined via their
Rayleigh quotients

λ�,N =
∫
Ω1

∫
Ω1

k(x, x′)ϕ�,N (x)ϕ�,N (x′) dx dx′, �= 1, 2, . . . , M ,

we assume the following estimate:

0 � λ� − λ�,N � λ�‖ϕ� − ϕ�,N‖2
L2(Ω1)

, �= 1, 2, . . . , M . (3.13)

We emphasize that these assumptions, in particular (3.13), are all satisfied if one computes the
approximation {(λN ,�,ϕN ,�)}M

�=1 to the eigenpairs {(λ�,ϕ�)}M
�=1 with a Ritz–Galerkin method in the space

V (1)
j with dim V (1)

j ∼ N , i.e., with j ∼ log N . For the details we refer the reader to D’yakonov (1996).
On the basis of (3.8), (3.12) and (3.13), we can now estimate the error of the discretized truncated

singular value decomposition.

Theorem 3.9 Let f ∈ Hp(Ω1 ×Ω2) and choose

M ∼ ε2 min{n1,n2}/(min{n1,n2}−2p), N ∼ ε2p max{n1,n2}/(min{n1,n2}−2p)min{r,p}.

Then, the truncated and approximated singular value decomposition satisfies the error estimate

∥∥∥∥∥f −
M∑
�=0

√
λ�,N (ϕ�,N ⊗ ψ�,N )

∥∥∥∥∥
L2(Ω1×Ω2)

� ε,

uniformly in ε > 0.

Proof. It holds that

E :=
∥∥∥∥∥

∞∑
�=0

√
λ�(ϕ� ⊗ ψ�)−

M∑
�=0

√
λ�,N (ϕ�,N ⊗ ψ�,N )

∥∥∥∥∥
L2(Ω1×Ω2)

�
∥∥∥∥∥

∞∑
�=M+1

√
λ�(ϕ� ⊗ ψ�)

∥∥∥∥∥
L2(Ω1×Ω2)

+
∥∥∥∥∥

M∑
�=0

√
λ�(ϕ� ⊗ ψ�)− √

λ�,N (ϕ�,N ⊗ ψ�,N )

∥∥∥∥∥
L2(Ω1×Ω2)

.

According to (3.8) and (3.9) the truncation error, i.e., the first term, is bounded by cε. Moreover, we
split the second term into appropriate differences:

√
λ�(ϕ� ⊗ ψ�)− √

λ�,N (ϕ�,N ⊗ ψ�,N )= (
√
λ� − √

λ�,N )(ϕ� ⊗ ψ�)+ √
λ�,N (ϕ� ⊗ (ψ� − ψ�,N ))

+ √
λ�,N ((ϕ� − ϕ�,N )⊗ ψ�,N ).
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Thus, we arrive at

E � ε +
∥∥∥∥∥

M∑
�=0

(√
λ� − √

λ�,N
)
(ϕ� ⊗ ψ�)

∥∥∥∥∥
L2(Ω1×Ω2)

+
∥∥∥∥∥

M∑
�=0

√
λ�,N (ϕ� ⊗ (ψ� − ψ�,N ))

∥∥∥∥∥
L2(Ω1×Ω2)

+
∥∥∥∥∥

M∑
�=0

√
λ�,N ((ϕ� − ϕ�,N )⊗ ψ�,N )

∥∥∥∥∥
L2(Ω1×Ω2)

.

We now estimate the three terms on the right-hand side separately. In view of (3.13), we have
√
λ� �√

λ�,N and, with (3.12), we obtain

0 �
∣∣√λ� − √

λ�,N
∣∣2 � λ� − λ�,N � λ�‖ϕ� − ϕ�,N‖2

L2(Ω1)
� ε2

M

for all 0 � �� M . This yields

∥∥∥∥∥
M∑
�=0

(√
λ� − √

λ�,N
)
(ϕ� ⊗ ψ�)

∥∥∥∥∥
2

L2(Ω1×Ω2)

=
M∑
�=0

∣∣√λ� − √
λ�,N

∣∣2 �
M∑
�=0

ε2

M
� ε2. (3.14)

Next, with λ�,N � λ�, we have

∥∥∥∥∥
M∑
�=0

√
λ�,N (ϕ� ⊗ (ψ� − ψ�,N ))

∥∥∥∥∥
2

L2(Ω1×Ω2)

=
M∑
�=0

λ�,N‖ϕ� ⊗ (ψ� − ψ�,N )‖2
L2(Ω1×Ω2)

�
M∑
�=0

λ�‖ϕ�‖2
L2(Ω1)

‖ψ� − ψ�,N‖2
L2(Ω2)

�
M∑
�=0

ε2

M
� ε2, (3.15)

and likewise

∥∥∥∥∥
M∑
�=0

√
λ�,N ((ϕ� − ϕ�,N )⊗ ψ�,N )

∥∥∥∥∥
2

L2(Ω1×Ω2)

� ε2. (3.16)

Plugging (3.14–3.16) into the above estimate of E finally leads to the desired estimate, E � ε. �

Altogether, since we have to deal with M eigenfunctions with N coefficients each, we arrive at the
following theorem.
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Theorem 3.10 The number of degrees of freedom needed to approximate a function f ∈ Hp(Ω1 ×Ω2)

by the singular value decomposition approach (3.1) with (3.12) and (3.13) to a prescribed accuracy ε is

dofsvd(ε)= M · N ∼ ε−(2 min{r,p} min{n1,n2}+2p max{n1,n2})/(2p−min{n1,n2})min{r,p}. (3.17)

We emphasize that the estimate (3.17) does not include the work to be spent for computing the
singular values or the eigenfunctions. Here, a naive approach would result in a cost complexity of order
M · N2; the use of fast methods for nonlocal operators would result in an almost linear or even linear
complexity per eigenpair. Note that, in any case, at least linear complexity O(M · N) is required, which
is indeed achieved with modern algorithms; see, e.g., Schwab & Todor (2006), Dahmen et al. (2008)
and Dai et al. (2008). Therefore, our analysis is based on the best possible situation for the truncated
and approximated singular value decomposition and our later comparison will be fair in this respect.

4. Sparse grids

On the basis of the multiscale analyses (2.5) on each individual subdomain, one naturally obtains a
second method to approximate functions in tensor-product spaces: by choosing complementary spaces

W (i)
j = span{ξ (i)j,k : k ∈ ∇(i)

j :=Δ
(i)
j \Δ(i)

j−1}, i = 1, 2

such that

V (i)
j = W (i)

j ⊕ V (i)
j−1, V (i)

0 = W (i)
0 ,

we can define the so-called general sparse grid space (see Bungartz & Griebel, 2004 and Griebel &
Harbrecht, 2013),

V̂σ
J :=

⊕
j1σ+j2/σ�J

W (1)
j1 ⊗ W (2)

j2 , (4.1)

where σ > 0 is a given parameter. Thus, a function f̂J ∈ V̂σ
J is represented as

f̂J (x, y)=
∑

j1σ+j2/σ�J

∑
k1∈∇(1)

j1

∑
k2∈∇(2)

j2

β(j1,k1),(j2,k2)ξ
(1)
j1,k1
(x)ξ (2)j2,k2

(y). (4.2)

Sparse grids can be constructed via hierarchical bases, interpolets and wavelet-like bases (see, e.g.,
Zenger, 1991; DeVore et al., 1998; Strömberg, 1998; Griebel & Knapek, 2009; Griebel et al., 1990) or
even directly by finite elements in terms of frames (see, e.g., Griebel, 1994; Griebel & Oswald, 1994;
Harbrecht et al., 2008b). For a survey on sparse grids we refer the reader to Bungartz & Griebel (2004)
and the references therein.

The dimension of the general sparse grid space V̂σ
J is essentially equal to the dimension of the finest

univariate finite element spaces which enter its construction, i.e., it is essentially equal to the value of



42 M. GRIEBEL AND H. HARBRECHT

max{dim V (1)
J/σ , dim V (2)

Jσ }. Nevertheless, by considering smoothness in terms of mixed Sobolev spaces,
its approximation power is essentially the same as in the full tensor-product space. Precisely, we have
the following theorem.

Theorem 4.1 (Griebel & Harbrecht, 2013) The sparse grid space V̂σ
J possesses

dim V̂σ
J ∼

⎧⎨
⎩

2J max{n1/σ ,n2σ } if n1/σ �= n2σ ,

2Jn2σ J if n1/σ = n2σ

degrees of freedom. Moreover, for a given function f ∈ Hs1,s2
mix (Ω1 ×Ω2) with 0< s1, s2 � r, there holds

the approximation estimate

inf
f̂J ∈V̂σ

J

‖f − f̂J‖L2(Ω1×Ω2) �

⎧⎨
⎩

2−J min{s1/σ ,s2σ }‖f ‖H
s1,s2
mix (Ω1×Ω2)

if s1/σ �= s2σ ,

2−Js1/σ
√

J‖f ‖H
s1,s2
mix (Ω1×Ω2)

if s1/σ = s2σ .

In this theorem, the convergence rate is given for a function f ∈ Hs1,s2
mix (Ω1 ×Ω2). In the following,

however, we are interested in the convergence rate if the smoothness of f is measured in the isotropic
Sobolev space Hp(Ω1 ×Ω2). Since for all s1 + s2 = p it holds that Hs1,s2

mix (Ω1 ×Ω2)⊂ Hp(Ω1 ×Ω2),
we have to balance s1 and s2 carefully if we want to compute the convergence rate of an f ∈ Hp(Ω1 ×
Ω2) in the sparse grid space V̂σ

J . The analysis given in Griebel & Harbrecht (2013) shows that the best
space for approximating functions in isotropic Sobolev spaces is obtained for the choice σ = √

n1/n2.
With this choice, the cost complexity to approximate a function f ∈ Hp(Ω1 ×Ω2) is given as follows.

Theorem 4.2 (Griebel & Harbrecht, 2013) The number of degrees of freedom needed to approximate
a function f ∈ Hp(Ω1 ×Ω2) in the sparse grid space V̂σ

J with σ = √
n1/n2 to a prescribed accuracy ε is

essentially

dofsg(ε)= N ∼ ε− max{(n1+n2)/p,n1/r,n2/r}. (4.3)

Remark 4.3 The sparse grid space V̂σ
J has substantially fewer unknowns than the corresponding full

tensor-product space

Vσ
J :=

⊕
j1σ ,j2/σ�J

W (1)
j1 ⊗ W (2)

j2 .

In this space, a function f ∈ Hp(Ω1 ×Ω2) is approximated by the rate

inf
fJ ∈Vσ

J

‖f − fJ‖L2(Ω1×Ω2) � {2−J min{p,r}/σ + 2−J min{p,r}σ }‖f ‖Hmin{p,r}(Ω1×Ω2)

at the cost dim Vσ
J ∼ 2J(n1/σ+n2σ). The choice for σ = 1 yields thus the cost complexity N− min{p,r}/(n1+n2),

i.e., N � ε−(n1+n2)/min{p,r}, which is known to be Kolmogorov’s n-width for Sobolev balls in the space
Hmin{p,r}(Ω1 ×Ω2); see Kolmogorov (1936). Indeed, up to logarithmic terms, the sparse grid space V̂σ

J
with σ = √

n1/n2 also achieves this rate. Moreover, in the case (n1 + n2)/p<max{n1, n2}/r, it achieves
an even higher rate.
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5. Comparison of the two approximations

Now, for a given and fixed approximation order r and spatial dimensions n1 and n2, we will compare the
two different approximation schemes when approximating a function f ∈ Hp(Ω1 ×Ω2). We are inter-
ested to know for which values of p the sparse grid approach is asymptotically superior to the truncated
and approximated singular value decomposition. To this end, we shall distinguish three regimes of the
smoothness parameter p where one should have in mind the condition p � min{n1, n2}. The subsequent
discussion has to be carefully interpreted since we deal with upper bounds only; cf. Remark 3.6.

5.1 The case p � r((n1 + n2)/max{n1, n2})
In this case, according to Theorem 4.2, it holds that the sparse grid approach produces essentially the
highest possible approximation rate N−r/min{n1,n2}, whereas the truncated and approximated singular
value decomposition reaches this rate only if f is analytical. The latter follows from the fact that M ∼
| log(ε)|min{n1,n2} dominating singular values are needed; see Schwab & Todor (2006). Thus the sparse
grid approach is clearly superior.

5.2 The case r((n1 + n2)/max{n1, n2}) > p � r

According to Theorems 3.10 and 4.2, the truncated and approximated singular value decomposition has
the complexity

dofsvd(ε)∼ ε−(2r min{n1,n2}+2p max{n1,n2})/(2p−min{n1,n2})r

and the sparse grid approach has the complexity

dofsg(ε)∼ ε−(n1+n2)/p.

The sparse grid approximation is asymptotically superior to the truncated and approximated singular
value decomposition if dofsg(ε)� dofsvd(ε), which holds if

n1 + n2

p
� 2r min{n1, n2} + 2p max{n1, n2}

(2p − min{n1, n2})r .

One readily infers that this inequality is equivalent to

0 � p2 − rp + r
min{n1, n2}(n1 + n2)

2 max{n1, n2} =: g(p).

The polynomial g(p) might be bounded from below by

g(p)� rp − rp + r
min{n1, n2}(n1 + n2)

2 max{n1, n2} � 0

due to p � r. Thus, the sparse grid approach exhibits a higher rate of convergence.
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5.3 The case r> p � 0

Theorems 3.10 and 4.2 lead to the complexity

dofsvd(ε)∼ ε−2(n1+n2)/(2p−min{n1,n2})

for the truncated and approximated singular value decomposition and to the complexity

dofsg(ε)∼ ε−(n1+n2)/p

for the sparse grid approach. Now, it holds that dofsg(ε)� dofsvd(ε) if the inequality

n1 + n2

p
� 2(n1 + n2)

2p − min{n1, n2}

is fulfilled. As one can easily check, this inequality is indeed always satisfied. Thus, the sparse grid
approach again exhibits a higher rate of convergence.

Let us remark here that, in the situation p � r, an approximation in the full tensor-product space Vσ
J

with σ = √
n1/n2 is of the same complexity as the approximation by the sparse grid space V̂σ

J .
Altogether, we clearly see from these three cases that the general sparse grid approach is approxi-

mately at least as good as the truncated and approximated singular value decomposition and is better in
most situations (i.e., for an f that is less regular).

6. Numerical results

First, we present an analytical example where the sparse grid approach is superior to the truncated and
approximated singular value decomposition. Afterwards, we give the results of two numerical experi-
ments for the exponential kernel and Gaussian kernel which are important two-point correlation kernels
from stochastic applications. In these examples, we thus consider the special situation where f is a sym-
metric function (i.e., f (x, y)= f (y, x) and Ω :=Ω1 =Ω2 ⊂ R

n with n := n1 = n2). Then, the singular
value decomposition is simply the spectral decomposition.

6.1 An analytic example

Let f be defined as

f (x, y)=
∞∑

j=0

∑
k∈∇j

aj,kψj,k(x)ψj,k(y),

where {ψj,k} denotes an L2-normalized orthogonal wavelet basis on the domainΩ . Owing to the inverse
estimate we have

‖ψj,k‖Hp(Ω) ∼ 2jp for all p< γ , (6.1)
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where γ denotes the regularity of the wavelets. Consequently, the function f is in Hp(Ω ×Ω) with
0 � p< γ , provided that

∞∑
j=0

∑
k∈∇j

22jpa2
j,k <∞. (6.2)

The kernel (3.3) of the integral operator K is given by

k(x, x′)=
∞∑

j,j′=0

∑
k∈∇j

∑
k′∈∇j′

aj,kaj′,k′ψj,k(x)
(∫

Ω

ψj,k(y)ψj′,k′(y) dy
)
ψj′,k′(x′)

=
∞∑

j=0

∑
k∈∇j

a2
j,kψj,k(x)ψj,k(x′).

Hence, the associated eigenvalues and eigenfunctions of K are {a2
j,k} and {ψj,k}, respectively.

Estimate (6.2) implies

22jpa2
j,k < c2−jn, k ∈ ∇j, j ∈ N0,

since otherwise we would have

∞∑
j=0

∑
k∈∇j

22jpa2
j,k �

∞∑
j=0

2jn2−jn = ∞

due to #(∇j)∼ 2jn. Consequently, the eigenvalues {a2
j,k} of K decay essentially like

a2
j,k < c2−j(2p+n), k ∈ ∇j, j ∈ N0,

which is faster than

a2
j,k < c2−2jp, k ∈ ∇j, j ∈ N0

as predicted by Theorem 3.3. To this end, we exploited

2−jn(2p/n) � �−2p/n � 2−(j+1)n(2p/n).

As a consequence, the eigenfunctions oscillate less strongly than shown in Lemma 3.7. In fact, we
have (6.1) instead of ‖ψj,k‖Hp(Ω) � 1/

√
λj,k ∼ 2j(p+n/2) (cf. (3.11)). However, by choosing p → γ , we

see that the estimates in Section 3 related to the eigenvalues and eigenfunctions are sharp except for
the factor n/2 in the exponent.
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According to (6.2), we deduce

∞∑
j=J

∑
k∈∇j

a2
j,k � 2−2Jp

∞∑
j=J

∑
k∈∇j

22Jpa2
j,k � 2−2Jp

∞∑
j=0

∑
k∈∇j

22jpa2
j,k � 2−2Jp,

which implies that the approximated singular value decomposition based on the first 2Jn singular values
approximates f with the error εJ ∼ 2−Jp in the L2 norm.

We apply properly chosen ansatz functions of approximation power r to approximate the continuous
eigenfunctions {ψj,k} by their discrete counterparts {ψj,k,N }. Thus, in view of (2.3) and by using (6.1)
with p = min{γ , r}, we have

‖ψj,k − ψj,k,N‖L2(Ω) � N− min{γ ,r}/n
j 2j min{γ ,r}.

Note that we use here an ansatz which using the optimal number of unknowns to approximate the
eigenfunction {ψj,k}, i.e., we employ Nj degrees of freedom to approximate the function {ψj,k} instead
of a fixed number N which is identical for all eigenfunctions. This is different from Section 3 and even
favours the truncated and approximated singular value decomposition over the sparse grid approach;
cf. Remark 3.8.

To ensure the necessary accuracy εJ/
√

MJλj,k , we have to balance

‖ψj,k − ψj,k,N‖L2(Ω)

!∼ εJ√
MJλj,k

∼ 2−Jp

2Jn/22−j(p+n/2)
;

cf. Section 3. To this end, we essentially have to use

Nj ∼
(

2−(J−j)p

2(J−j)n/22j min{γ ,r}

)−n/min{γ ,r}
∼ 2(J−j)(p+n/2)n/min{γ ,r}2jn

unknowns. Therefore, to represent the first 2Jn eigenfunctions, we need at least (up to a constant)

J∑
j=0

Nj2
jn =

J∑
j=0

2(J−j)(p+n/2)n/min{γ ,r}22jn = 22Jn
J∑

j=0

2(J−j)(p+n/2−2 min{γ ,r})n/min{γ ,r} (6.3)

degrees of freedom. Altogether, for our special example, this shows that the truncated and approximated
singular value decomposition involves the cost complexity (6.3) to obtain the error accuracy εJ ∼ 2−Jp.

In contrast to that, the general sparse grid approach with σ = √
n1/n2 = 1 produces essentially the

same error rate εJ ∼ 2−Jp with 22Jn unknowns. If p + n/2> 2 min{γ , r}, the cost complexity (6.3) is
significantly larger than 22Jn. For example, choosing p → γ and r> γ , we obtain

n> 2γ ,

which describes a situation where the sparse grid approach is asymptotically superior to the correspond-
ing truncated and approximated singular value decomposition. Otherwise, the truncated and approxi-
mated singular value decomposition is superior to the corresponding sparse grid approach.
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Fig. 2. The L2 error of the sparse grid approximation of the Gaussian kernel converges essentially like N−2.

In the case of the truncated and approximated singular value decomposition, we have two contra-
dictory effects. On the one hand, the eigenfunctions can be arbitrarily smooth as, for example, in the
case of Fourier series. Then, the smoothness is limited by the decay rate of the singular values. On the
other hand, when the eigenfunctions are not smooth, also the eigenvalue decay can be arbitrarily fast.
A simple example is functions of finite rank but with eigenfunctions of low regularity as in the above
example. Both properties affect the cost complexity of the truncated and approximated singular value
decomposition differently. Compared with this, the convergence of the general sparse grid approach
rather depends on the smoothness of the function to be approximated.

6.2 Gaussian kernel

In the second example let Ω be the unit interval (0, 1) (i.e., n = 1). On level j, we subdivide (0, 1) into
2j intervals of length 2−j, which leads to 2j + 1 ansatz functions. The approximation spaces Vj under
consideration are then generated by continuous piecewise linear polynomials on an equidistant partition
of the interval (0, 1) (i.e., r = 2).

We discuss the approximation of the Gaussian kernel

f (x, y)= 1√
2πθ

exp

(
−|x − y|2

θ2

)
, θ > 0.

Since f is known to be analytical and thus arbitrarily smooth, in particular, f ∈ H2,2
mix((0, 1)× (0, 1)), the

general sparse grid approach with σ = √
n1/n2 = 1 converges with the optimal rate h2

j

√
j ∼ 4−j√j. This

is also observed by our numerical results; see Fig. 2. Of course, the smaller the value of θ , the larger
becomes the constant which appears in front of the complexity estimate.
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Fig. 3. The eigenvalues of the Gaussian kernel decay, i.e., a decay like exp(x−2) as x → ∞.

According to Schwab & Todor (2006), the singular values of an analytical kernel decay exponen-
tially (if n1 = n2 = 1). In fact, in the case of the Gaussian kernel the eigenvalues decay even double
exponentially (cf. Fig. 3) where the decay is faster the larger θ is. Since the eigenfunctions are also
analytical, it holds that

‖ϕ�‖H2(0,1) � λ−s
� for any s> 0.

Therefore, it suffices to compute the eigenfunctions with accuracy O(h2
j ) (see Schwab & Todor, 2006 for

the details) which leads to a quadratic rate of convergence with the cost O(N log1/2(N)). This rate is also
validated by Fig. 4. Here, we computed the L2 error of the truncated and approximated singular value
decomposition for all discretization levels j = 6, 7, . . . , 15 and truncation lengths M = 2, 4, . . . , 40. We
observe that an increase of the truncation length improves the approximation quality double exponen-
tially until a certain limit is reached which is induced by the approximation error of the discrete eigen-
functions. Conversely, the increase of the discretization level gives a convergence rate N−2 ∼ 4−j until
a certain limit is reached which is induced by the truncation error. We thus obtain the quadratic rate
N−2 ∼ 4−j by proportionally increasing

√
M and N = 2j + 1, which yields the above predicted cost

complexity.
Altogether, both approaches converge in our setting for the Gaussian kernel with essentially the same

rate. As seen in Fig. 5, the particular constants which are involved in the estimates of the cost complex-
ities seem to be comparable as well. We plotted the cost complexities of the sparse grid approach (blue
lines) and the truncated and approximated singular value decomposition (green lines) for different val-
ues of ε and θ . The resulting graphs are quite similar. Moreover, it is observed that the cost complexities
increase for both approaches by about the same factors if θ decreases. Note that the slightly different
slopes of the graphs result from the fact that the sparse grid approach produces the rate N−2

√
log N at

the cost N log N , whereas the truncated and approximated singular value decomposition produces the
rate N−2 at the cost N

√
log N .
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Fig. 4. Truncation length M and discretization level j versus accuracy in the case of the Gaussian kernel.
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Fig. 5. Comparison of the cost complexities of the sparse grid (SG) and the singular value decomposition (SVD) in the case of
the Gaussian kernel.

6.3 Exponential kernel

Again, let Ω = (0, 1) and consider piecewise linear ansatz functions. Our third example is concerned
with the approximation of the exponential kernel

f (x, y)= exp(−|x − y|).
Since f is only Lipschitz continuous at the diagonal x = y, it follows that f ∈ H3/2−δ((0, 1)× (0, 1)) for
any δ > 0. Therefore, according to Theorem 3.10, we can essentially guarantee the rate dofsvd(ε)∼ ε−2.
Nonetheless, as already mentioned in Remark 3.6, the singular values decay like

√
λ� ∼ �−2, which is
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Fig. 6. The first nine eigenfunctions of the exponential kernel.

faster than predicted. In addition, it turned out in our numerical tests that also the eigenfunctions {ϕ�} are
more regular than expected, i.e., they satisfy ‖ϕ�‖H2(0,1) ∼ 1/

√
λ� ∼ �2. The first nine eigenfunctions are

depicted in Fig. 6, which clearly shows the smoothness of the eigenfunctions. By repeating our analysis
with these settings (i.e., p = r = 2 and n1 = n2 = 1), one can show that

dofsvd(ε)∼ ε−4/3, (6.4)

which is much better than predicted. In particular, it is the same rate as produced by an approximation
on a uniform grid on (0, 1)× (0, 1). This fact is also seen in the left plot of Fig. 7 where we display
the L2 error of the truncated and approximated singular value decomposition for all discretization levels
j = 6, 7, . . . , 15 and truncation lengths M = 2k , k = 0, 1, . . . , j. The best cost complexity is offered by
choosing N ∼ M ∼ ε−2/3, which results in the rate (6.4).

On the other hand, in accordance with Theorem 4.2, the sparse grid approach with σ = √
n1/n2 = 1

realizes (essentially) the same rate: dofsg(ε)∼ ε−4/3. Indeed, this is validated by our computations (see
the left plot of Fig. 8).

In the left plot of Fig. 9, we compare the cost complexities of the sparse grid approach (blue line)
and the truncated and approximated singular value decomposition (red line). We observe that both
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Fig. 7. Truncation length M and discretization level j versus accuracy in the case of the exponential kernel (left) and the Matérn
kernel (right).
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Fig. 8. The sparse grid approximations of the exponential kernel (left) and the Matérn kernel (right) converge essentially like
N−3/4 and N−7/4, respectively.

approaches possess essentially the rate ε−4/3 (dashed black line). The cost complexity of the trun-
cated and approximated singular value decomposition is identical to the cost complexity of the full
tensor-product approximation. Hence, it is somewhat better than the cost complexity of the sparse grid
approach which involves an additional logarithmic factor.

Note here that only a conventional general sparse grid is involved and no locally adapted sparse grid
is used; see, e.g., Bungartz & Griebel (2004) and the references therein. For this approach, we expect
a doubling of the convergence rate, i.e., essentially the rate N−3/2. The analysis of such a nonlinear
approximation scheme is, however, beyond of the scope of this paper.
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Fig. 9. The cost complexities of the exponential kernel (left) and the Matérn kernel (right).

6.4 Matérn kernel

For our last example, we choose the Matérn kernel

f (x, y)= (1 + |x − y|) exp(−|x − y|)

and use the same numerical set-up as before. The function f is C2 smooth with second derivatives which
are Lipschitz continuous at the diagonal x = y. Hence, it follows that f ∈ H7/2−δ((0, 1)× (0, 1)) for any
δ > 0. As can be seen in the right plot of Fig. 1, the singular values decay now like

√
λ� ∼ �−4 which

is again, by a factor 1/2, better than predicted in Theorem 3.3. Moreover, from the right plot of Fig. 7,
by fixing the truncation length M , it can be inferred that the eigenfunctions are approximated at the rate
N−2. This is slightly better than to be expected from (3.12) but compare here to Remark 3.8. Altogether,
for the truncated and approximated singular value decomposition, we get the cost complexity ε−11/14 by
balancing N−2 ∼ M −7/2 ∼ ε. Compared with this, Theorem 3.10 only gives the rate ε−4/3.

In comparison, the sparse grid approach with N degrees of freedom converges essentially like N−7/4;
see the right plot of Fig. 8. This is in agreement with Theorem 4.2 which states the cost complexity
dofsg(ε)∼ ε−4/7. Consequently, for this example, the sparse grid approach is indeed superior to the
truncated and approximated singular value decomposition. This is also confirmed by the right plot of
Fig. 9. The cost complexity of the sparse grid approach (blue line) admits a better rate than the cost
complexity of the truncated and approximated singular value decomposition (red line).

7. Concluding remarks

In the present paper, we compared the cost complexities of the truncated and approximated singular
value decomposition and the general sparse grid approach. We have shown that the sparse grid provides
an efficient tool to approximate bi-variate functions. Its cost complexity is at least equal to the truncated
and approximated singular value decomposition. In many situations it is even superior.

In the case of the sparse grid approach we envision further improvements by the use of local adap-
tivity, which would further increase its performance.
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In the case of the truncated and approximated singular value decomposition the truncation length
is determined by the smoothness of the function under consideration and is thus fixed. Therefore,
improvements for the truncated and approximated singular value decomposition can only be achieved
by a more efficient representation of the eigenfunctions.
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