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ABSTRACT 

Rippling muscle disease is caused by mutations in the gene encoding 

caveolin-3, the muscle-specific isoform of the scaffolding protein caveolin, a protein 

involved in the formation of caveolae. In healthy muscle, caveolin-3 is responsible 

for the formation of caveolae, which are highly organized sarcolemmal clusters 

influencing early muscle differentiation, signalling and Ca2+ homeostasis. 

In the present study we examined Ca2+ homeostasis and excitation-

contraction coupling in cultured myotubes derived from two patients with Rippling 

muscle disease with severe reduction in caveolin-3 expression; one patient harboured 

the heterozygous c.84C>A mutation while the other patient harboured a homozygous 

splice site mutation (c.102+ 2T>C) affecting the splice donor site of intron 1 of the 

CAV3 gene. Our results show that cells from control and rippling muscle disease 

patients had similar resting [Ca2+]i and 4-chloro-m-cresol-induced Ca2+ release but 

reduced KCl-induced Ca2+ influx. Detailed analysis of the voltage-dependence of 

Ca2+ transients revealed a significant shift of Ca2+ release activation to higher 

depolarization levels in CAV3 mutated cells. High resolution TIRF 

immunofluorescence analysis supports the hypothesis that loss of caveolin-3 leads to 

microscopic disarrays in the co-localization of the voltage-sensing dihydropyridine 

receptor and the ryanodine receptor, thereby reducing the efficiency of excitation–

contraction coupling. 

 

Key words: caveolin-3, rippling muscle disease, excitation–contraction coupling, 

excitation coupled Ca2+ entry, Ca2+ homeostasis, TIRF microscopy 
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INTRODUCTION 

Rippling muscle disease (RMD; MIM# 606072) is a rare autosomal dominant 

disorder caused by mutations in CAV3 (access # 601253) the gene encoding 

caveolin-3 (CAV3), a caveolin isoform exclusively expressed in skeletal, cardiac and 

smooth muscles (Betz et al., 2001; Woodman et al., 2004). Caveolins are small 22 

kDa transmembrane proteins which homo-oligomerize on the plasma membrane 

giving rise to caveolae, or invaginated structures of 50-100 nm in diameter (for 

recent reviews see Cohen et al., 2004; Hnasko and Lisanti, 2003; Hansen and 

Nichols, 2010). In skeletal muscle numerous proteins including ß-dystroglycan, 

nitric oxide synthase, phosphofructokinase, tubulin, cadherin-M converge within 

sarcolemmal caveolae (Galbiati et al., 2001a; Sotgia et al., 2003; Song et al., 1996; 

Garcia-Cardena et al., 1997; Volonte et al., 2003) while in mature muscle fibres, 

caveolins are also distributed in the subsarcolemmal space on the neck of the T-

tubules, where ion channels, pumps, kinases and signaling molecules collect 

(Kristensen et al., 2008; Murphy et al., 2009; Lamb, 2005; Scriven et al., 2005). 

Besides functioning as a converging molecule, CAV3 is involved in myoblast 

differentiation, survival and cell fusion and its transcription level increases early in 

development during muscle tissue differentiation (Galbiati et al., 2001a; Volonte et 

al., 2003). Experiments on zebrafish have demonstrated that injection of embryos 

with CAV3 antisense morpholinos results in embryos with uncoordinated 

movements probably due to disorganized fused myoblasts, chaotic filament bundles 

of the contractile proteins, dispersed mitochondria and poorly developed T-tubules 

(Nixon et al., 2005).  
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Though their exact physiological role is not clear, the above data indicate that 

caveolin-3 plays an important role in muscle function and mutations in CAV3 have 

indeed been linked to several hereditary myopathies among which are Limb Girdle 

Muscular Dystrophy (LGMD; MIM #607801), Rippling Muscle Disease (RMD; 

MIM #606072), Distal myopathy (DM; MIM# 601253) and HyperCKemia 

(Woodman et al., 2004; Gazzerro et al., 2010 Betz et al., 2001). In some cases, 

mutations in CAV3 have also been associated with cardiomyopathy (Catteruccia et 

al., 2009; Hayashi et al., 2004;Vatta et al., 2006; Calaghan and White, 2006). CAV3 

maps on human chromosome 3p25 and is made up of 2 exons; so far 24 missense 

mutations, 1 bp insertion, 3 bp deletions, a splice site substitution and a genomic 

macro deletion have been reported in patients with caveolinopathies (Abourmousa et 

al., 2008; Woodman et al., 2004). Most mutations are inherited in a dominant way 

and lead to a severe decrease in the expression of all CAV3, since mutated and wild 

type proteins multimerize within the Golgi, where they form a complex which is 

tagged for proteolysis and degraded in the proteosome leading to very low levels of 

expression of caveolin-3 on the sarcolemma (Galbiati et al., 1999; Cohen et al., 

2004;). CAV3 is made up of 151 amino acids, of which the first 55 residues 

constitute the NH2 terminus, residues 56-73 make up the scaffolding domain 

important in homo-oligomerization, residues 76-108 form the transmembrane 

domain which gives rise to a hair loop structure, allowing the COOH- and NH2-

teminus to face the same side of the membrane (Galbiati et al., 2001a; Cohen et al., 

2003). Mutations found in patients are more frequent in the NH2 domain, followed 

by the scaffolding and membrane domains (Abourmousa et al., 2008; Woodman et 
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al., 2004). Interestingly, clinical evidences have demonstrated that the same CAV3 

mutation in different populations and even within the same family, can result in a 

different clinical phenotype, indicating the influence of additional factor(s) in the 

phenotypic outcome of the mutation. 

Recently, Fischer et al. identified a mutation in CAV3 in a large German 

family. This family harboured the c.84C>A heterozygous substitution leading to the 

p.D28E mutation (Fischer et al., 2003). Another German family was subsequently 

identified harbouring an autosomal recessive splice site mutation c.102+ 2T>C in 

intron 1 (Müller et al., 2006); both mutations lead to drastically reduced levels of 

expression of CAV3 in skeletal muscle. The patient harbouring the p.D28E mutation 

had clear signs of rippling muscle disease characterized by percussion-induced rapid 

muscle contraction and muscle mounding, painful muscle cramping, elevated 

creatine kinase levels and hypertrophic calves (Fischer et al., 2003) whereas the 

patient harbouring the splice site mutation had muscle weakness, elevated creatine 

kinase levels, percussion induced muscle mounding and mild myopathic 

degeneration with fibre size variation and increase of connective tissue (Müller et al., 

2003). 

While the precise pathomechanism is still elusive, a number of reports have 

indicated that CAV3 may have a role in Ca2+ homeostasis (Calaghan and White, 

2006; Kamishima et al., 2007; Weiss et al., 2008) and it has been shown that 

expression of mutated caveolin in muscle cells alters the function of the 

dihydropyridine receptor (Couchoux et al., 2007). More recently, it was 

demonstrated that CAV3 interacts directly with the ryanodine receptor (RyR1) 
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sarcoplasmic reticulum Ca2+ release channel (Vassilopoulos et al., 2010). In the 

present report we studied excitation–contraction coupling in human skeletal muscle 

myotubes obtained from the two patients harbouring the above described CAV3 

mutations. Our results show that the myotubes from control or RMD patients have 

similar resting [Ca2+] and ryanodine receptor activated Ca2+ release. Interestingly 

however, cells bearing the mutated CAV3 showed a shift in depolarization–induced 

Ca2+ release and a decreased depolarization-induced Ca2+ influx suggesting that lack 

of caveolin leads to a less efficient excitation–contraction coupling. 
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MATERIALS AND METHODS 

Primary skeletal muscle cultures- were established from fragments of muscle 

biopsies obtained from patients undergoing diagnostic testing, as previously 

described (Ducreux et al., 2004). Cells were cultured on 0.17 mm thick glass 

coverslips in growth medium and induced to differentiate into myotubes by culturing 

them in DMEM plus 4.5 mg/ml glucose, 0.5% BSA, 10 ng/ml EGF, 0.15 mg/ml 

creatine, 5 ng/ml insulin, 200 mM glutamine, 600 ng/ml penicillin G and 

streptomycin, and 7 mM HEPES, pH 7.4 for 7-10 days. 

 Cytoplasmic calcium measurements: coverslip grown myotubes were loaded with 

the fluorescent ratiometric Ca2+ indicator fura-2-AM (final concentration 5 µM) in 

differentiation medium for 30 min at 37°C, after which the coverslips were mounted 

onto a 37°C thermostatically controlled chamber which was continuously perfused 

with Krebs-Ringer medium. On-line measurements were recorded using a 

fluorescent Axiovert S100 TV inverted microscope (Carl Zeiss GmbH, Jena, 

Germany) equipped with a 20x water-immersion FLUAR objective (0.17 NA), 

filters (BP 340/380, FT 425, BP 500/530) and attached to a Hamamatsu multiformat 

CCD camera. Images were acquired at 1 second intervals and the exposure time was 

fixed at 100 msec for both (340 and 380 nm excitation) wavelengths. Changes in 

fluorescence were analyzed using an Openlab imaging system and the average pixel 

value for each cell was measured at excitation wavelengths of 340 and 380 nm as 

previously described (Ducreux et al., 2004). Individual cells were stimulated by 

means of a 12- or 8-way 100 mm diameter quartz micromanifold computer 
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controlled microperfuser (ALA Scientific instruments, Westbury N.Y. U.S.A.), as 

previously described (Ducreux et al., 2004).  

Ca2+ influx by TIRF microscopy: depolarization-induced Ca2+ influx was monitored 

by TIRF microscopy in myotubes loaded with fluo-4-AM. Briefly, glass coverslip 

grown and differentiated human myotubes were mounted on a thermostated 

perfusion chamber, bathed continuously in Krebs-Ringer buffer. Excitation-coupled 

Ca2+ entry (ECCE) (Cherednichenko et al., 2004; Bannister et al., 2008) was 

measured after application of 60 mM KCl to myotubes pre-treated with 100 µM 

ryanodine to block RyR1-mediated Ca2+ release. On-line fluorescence images were 

acquired using an inverted Nikon TE2000 TIRF microscope equipped with an oil 

immersion CFI Plan Apochromat 60x TIRF objective (1.49 N.A.) and an electron 

multiplier Hamamatsu CCD camera C9100-13 which allows fast data acquisition as 

previously described (Treves et al., 2010). Our TIRF microscope is equipped with a 

surface reflective interference contrast (SRIC) cube in order to identify the focal 

plane corresponding to the coverglass/cell membrane contact prior to TIRF 

acquisition. The focus was maintained at the coverglass/cell membrane contact by 

using the perfect focus system (PFS) that exploits an infrared laser beam and a 

quadrant diode for the online control of the microscope’s focusing motor. Fluo-4 

loaded cells were excited with a solid-state laser beam at 488 nm and the emitted 

fluorescence was collected through a 520 narrow band filter. Data were analysed 

using Metamorph imaging software (Molecular Devices). 

Electrophysiological measurements and confocal Ca2+ imaging: human myoblasts 

were grown on laminin-coated glass coverslips and differentiated into myotubes. 
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Cells were voltage-clamped in the whole-cell patch clamp configuration with low 

resistance borosilicate glass micropipettes (1-3 MΩ) using an Axopatch 200B 

amplifier (Axon Instruments) controlled by a custom-written data-acquisition 

software developed by LabView (National Instruments). The pipette solution 

contained (in mM) 100 CsAsp, 20 tetraethylammonium(TEA)-Cl, 10 HEPES, 5 

MgCl2, 5 Na2ATP, 0.05 EGTA, 0.1 K5-Fluo-3 at pH 7.2 (adjusted with CsOH). 

External solution contained (in mM) 130 CsCH3SO3, 2 MgCl2, 2 CaCl2, 10 Glucose, 

20 HEPES at pH 7.4 (adjusted with CsOH). The voltage protocol consisted of 

stepwise depolarizations (50 ms) from a holding potential of –80 mV to increasing 

potentials from –60 mV to +10 mV. Activation of the voltage-dependent 

dihydropyridine receptor (skeletal DHPR CaV1.1) triggered Ca2+ release from the SR 

via electro-mechanical coupling between DHPR and RyR1. Changes in [Ca2+]i were 

simultaneously recorded with membrane currents using the fluorescent Ca2+ 

indicator K5-Fluo-3 (Biotium) and a laser-scanning confocal microscope 

(MicroRadiance, BioRad) with a 60x water immersion objective lens. Fluo-3 was 

excited at 488 nm with an argon ion laser, and emitted light was collected above 500 

nm. Linescan images were recorded at a rate of 500 lines/s. Confocal images were 

analyzed in ImageSXM (free software based on NIH Image (Barrett, 2002)) and 

further processed together with the voltage clamp data using IgorPro (Wavemetrics). 

Changes in [Ca2+]i are expressed as changes in fluorescence (ΔF/F0). All 

measurements have been performed at room temperature. 

Western blotting: total muscle homogenate and SR fraction obtained from skeletal 

muscle leftover fragments which had been stored in liquid N2, were isolated. 
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Proteins were separated by SDS PAGE, blotted onto nitrocellulose and probed with 

antibodies against caveolin-3 (GeneTex Inc., catalog N° GTX109650), RyR1 

(Thermo Scientific, catalogue N° MA3-925), α1.1 subunit of the DHPR  (Santa Cruz 

sc- 8160), SERCA2 (Santa Cruz sc-8095), calsequestrin (Delbono et al., 2007) and 

glycogen phosphorylase (Santa Cruz sc-4634) followed by peroxidase conjugated 

secondary antibodies. Bands were visualized by chemiluminescence, using the Super 

Signal West Dura kit from Thermo Scientific. For comparison, the intensities of the 

immunoreactive bands were quantified by densitometry using Bio-Rad GelDoc 

2000; intensities were corrected for glycogen phosphorylase (total muscle 

homogenate) and calsequestrin (total SR). 

Immunofluorescence analysis: glass coverslip grown and differentiated myotubes 

were fixed in an ice-cold solution of acetone:methanol (1:1) for 20 min, rinsed 2 

times with phosphate buffer saline (PBS) and blocked with 10% blocking buffer 

(Roche Applied Science) for 60 min at room temperature. Coverslips were incubated 

with goat anti- α1.1 subunit of the DHPR  (final concentration 10µg/ml) and mouse 

anti–RyR (final concentration 10µg/ml) in PBS; after 60 min coverslips were rinsed 

3 times 5 min each with PBS and incubated with donkey- anti-goat FITC (Santa 

Cruz) for 60 minutes, extensively washed with PBS and incubated with Alexa 

Fluor405 conjugated goat-anti mouse IgG (Invitrogen). After 60 minutes coverslips 

were washed and mounted in glycerol mounting medium. Fluorescence was 

visualized through a 100x oil immersion CFI Plan Apochromat TIRF objective (1.49 

NA), by exciting at 488 (Sapphire laser) to visualize FITC, and at 405 nm using a 

laser from Coherent laboratories (Coherent labs Inc). AlexaFluor 405 fluorescence 
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was visualized using a BrightLine CH 427 filter (AHF Analysentechnir AG, 

Tubingen, Germany). Co-localization analysis of α.11DHPR and RyR was 

performed using the co-localization application included in the Metamorph 5.7.4 

software package as previously described (Treves et al., 2010); only myotubes with 

>2 nuclei were analysed. 

Statistical analysis: Statistical analysis was performed using the Student’s t test for 

paired samples; means were considered statistically significant when the P value was 

<0.05. The Origin computer program (Microcal Software, Inc., Northampton, MA, 

USA) was used for statistical analysis. 
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RESULTS  

 The aim of the present report is to assess whether mutations in CAV3 lead to 

dysregulation of Ca2+ homeostasis in human muscle cells. In order to assess this we 

first monitored whether the absence/reduced levels of CAV3 affects the expression 

levels of the main components of the excitation-contraction (E-C) coupling 

machinery, namely the dihydropyridine receptor (DHPR) and the ryanodine receptor 

(RyR) calcium channels, calsequestrin and the SERCA Ca2+ pump (Treves et al., 

2009). Figure 1 A shows Western blot analysis of total muscle homogenate (CAV3, 

RyR1, DHPR,) and of the total sarcoplasmic reticulum (SR) fraction (SERCA2, 

calsequestrin) obtained from muscle biopsy fragments of the patients harbouring 

CAV3 mutations and controls. As shown previously (Fischer et al., 2003; Müller et 

al., 2006), the amount of CAV3 present in the muscle homogenate of both patients is 

greatly reduced. Interestingly, no significant differences were found in the amounts 

of RyR1, DHPR α1.1, SERCA2 and calsequestrin expressed in the muscle biopsy 

from these patient compared to that expressed in control biopsies. Thus, the absence 

of caveolin-3 does not grossly alter the expression level of the protein components 

involved in Ca2+ homeostasis.  

 We next studied the Ca2+ homeostasis of the myotubes from the two patients 

with RMD. Though myotubes were obtained from the two patients with different 

mutations, as shown in figure 1A and reported for other CAV3 mutations 

(Aboumousa et al., 2008; Woodman et al., 2004), both the c.84C>A and 

c.102+2T>C substitutions resulted in a drastic reduction of CAV3 expression. 

Because of this and since western blot analysis revealed similar levels of expression 
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of the main protein components involved in E-C coupling (figure 1), we pooled the 

results obtained on Ca2+ homeostasis on the myotubes from the two patients. Figure 

2 shows that the mean resting fluorescent ratio and the peak Ca2+ release obtained by 

stimulating the cells with maximal amounts of either KCl (mimicking electrical 

depolarization) or 4-chloro-m-cresol (which directly activates the RyR1)(Zorzato et 

al., 1993) were not significantly different between control myotubes and myotubes 

from the two patients with RMD when the experiments were performed in Krebs 

Ringer +100 µM La3+, a general Ca2+ channel blocker used to prevent any 

contaminating Ca2+ influx. Panel C shows representative traces of Ca2+ release 

experiments performed in the presence of contaminating Ca2+ plus 100 µM La3+. 

These results indicate that the lack of CAV3 does not grossly affect RyR1 mediated 

Ca2+ release from the intracellular stores.  

  A more detailed investigation of the electro-mechanical coupling in control 

and RMD myotubes however, revealed significant differences in the voltage-

dependent Ca2+ release properties of cells from RMD patients. Using an 

electrophysiological approach combined with confocal Ca2+ imaging we studied 

Ca2+ release induced by membrane depolarization. Figure 3 panel A shows original 

paired sample traces for current (lower trace) and Ca2+ transient (upper trace) in 

control human myotubes at increasing levels of membrane depolarization (for 

representative current traces see Supp. Figure S1). As expected, increasing 

depolarization results in an increase in Ca2+ release, which saturates as the 

depolarizing voltage pulse reaches –10 mV. Panel B shows the line profiles and 

corresponding linescan images of the Ca2+ response to a depolarizing step from –80 
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to–20 mV in control (upper black trace) and RMD myotubes (lower red trace), 

respectively.  At the same trigger potential, RMD myotubes present lower voltage-

induced Ca2+ release amplitudes from the SR when compared with control cells. The 

voltage-dependence of Ca2+ release is summarized in panel C; normalized peak Ca2+ 

release amplitudes are plotted as a function of the test potential. The membrane 

potentials at half maximal Ca2+ release (V1/2) are indicated revealing a significant 

shift (P< 0.05) in V1/2 from -29.4±1.8 mV in control myotubes to –24.7±3.2 in RMD 

myotubes. This right-shift in V1/2 is further accompanied by a shift in the maximal 

Ca2+ transient amplitude from –10 mV in control to 0 mV in RMD myotubes. These 

results indicate that depletion of CAV3 reduces the coupling efficiency between the 

DHPR and the RyR.  

 Recently it was shown that in skeletal muscle myotubes, plasma membrane 

depolarization is accompanied by Ca2+ influx, which is mediated by the DHPR and 

has been defined as excitation coupled Ca2+ entry (ECCE) (Cherednichenko et al., 

2004; Bannister et al., 2009). Though the functional significance of this Ca2+ influx 

is currently unknown, it depends on the presence of both the RyR1 and DHPR. Since 

(i) depolarization-induced Ca2+ release is affected by the loss CAV3 (figure 3 and 

Couchoux et al., 2007), (ii) studies by Vassilopoulos et al. (2010) demonstrated a 

direct interaction between CAV3 and the RyR1 and (iii) ECCE depends on the 

presence of the DHPR and of the RyR, we studied ECCE in the myotubes from the 

two RMD patients. Figure 4 summarizes the pooled results obtained by TIRF 

microscopy on Ca2+ influx activated by 60 mM KCl. As indicated in the Methods 

section, myotubes were pre-treated with 100 µM ryanodine in order to block Ca2+ 
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release from the SR via RyR1 (Meissner, 1986). The bottom trace in figure 4B (.-.-.-

) and the inset in figure 4 C show that in the absence of extracellular Ca2+  (and in the 

presence of 100 µM La3+ ) the addition of 60 mM KCl does not lead to a change in 

fluo-4 fluorescence, confirming that the increase in Fluo-4 is not due to calcium 

release from the SR. When the experiments were conducted in the presence of 2 mM 

Ca2+, on the other hand, the addition of KCl was accompanied by a transient increase 

in Fluo-4 fluorescence confirming that this fluorescence increase represents Ca2+ 

influx from the extracellular medium. We then compared the extent of the KCl-

activated Ca2+ influx in myotubes from the two RMD patients to that observed in 

myotubes from  controls. The traces in figure 4 B and bar graph plots in figure 4C 

show that myotubes from the RMD patients have a significantly smaller (two-fold) 

Ca2+ influx peak compared to that obtained in control myotubes.  

 Since the lack of CAV3 is not accompanied by gross alterations in the 

expression levels of the RyR and DHPRs, the above results indicate that the lack of 

this protein may affect the topographical distribution of these two Ca2+ channels on 

their respective membranes. In order to verify this, we performed 

immunofluorescence analysis of the distribution of the DHPR and RyR in TIRF 

mode. Figure 5 shows a representative photomicrograph of a myotube from a control 

individual observed with a SRIC filter to show that the selected focal plane is at the 

glass coverslip/ membrane interface (left). This focal plane was fixed through the 

perfect focus system and imunofluorescence analysis was subsequently performed. 

The central left and right panels of figure 5 show the punctuated fluorescent 

distribution of the DHPRα1.1 and RyR on or within 100 nm of the plasma 
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membrane and the panel on the right shows the merged images revealing areas of co-

localization (arrows). Table 1 shows the results of detailed co-localization analysis 

(n=10 cells): the lack of CAV3 caused a 30% reduction in the area of overlap 

between the RyR and the DHPR; this was due to a relative increase in the 

distribution of RyRs in areas not containing DHPRs   
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DISCUSSION 

In the present study we investigated whether severe reduction of CAV3 as 

seen in two patients with RMD affects E-C coupling, the physiological process 

whereby an electrical signal, the depolarization of the muscle fibre, is converted into 

a chemical signal, i.e. release of Ca2+ from the sarcoplasmic reticulum, leading to 

muscle contraction and force development (Fleischer and Inui, 1989; Rios and 

Pizarro, 1991). This process depends on the fine micro architecture underlying the 

calcium release unit whereby the voltage sensing DHPR present on T-tubules faces 

ordered arrays of RyR1 on the SR junctional membrane (Franzini-Armstrong and 

Jorgensen, 1994). Mutations in genes encoding several proteins involved in E-C 

coupling and Ca2+ homeostasis have been shown to be linked to neuromuscular 

disorders such as Central core disease, Multimini core disease, Centronuclear 

myopathy, King Denborough syndrome and Malignant Hyperthermia (Treves et al., 

2005; Wilmhurst et al., 2010; Zhou et al., 2007). We obtained myotubes from one 

patient with a homozygous splice site mutation leading to very low levels of 

caveolin-3 wild type transcript (Müller et al., 2006). The other patient harbored the 

heterozygous p.D28E substitution and also expressed very low levels of caveolin-3; 

though substitution of an aspartic acid residue for a glutamic acid residue may seem 

of minor consequence since the two amino acids are negatively charged, 

mutagenesis studies on other proteins have indicated that such substitutions can lead 

to protein instability by causing structural perturbations (Mizrahi et al., 1994). Thus, 

though the patients harbored different substitutions and had different clinical 

symptoms, both exhibited a severe reduction in the amount of CAV3 expressed. 
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Thus by pooling the functional data obtained on myotubes from the two patients, we 

studied the effect of CAV3 depletion, irrespective of the compensatory mechanisms 

activated by the patient. The results on cytoplasmic Ca2+ homeostasis reveal that the 

absence of CAV3 does not cause significant alterations of E-C coupling in myotubes 

and are in agreement with those obtained by Weiss et al. (2008) who showed that 

loss of caveolin does not affect either the resting [Ca2+] or depolarization-induced 

peak Ca2+ release in mouse skeletal muscle cells. A deeper investigation into the 

electro-mechanical coupling of caveolin-3 depleted cells however, revealed a 5 mV 

shift in the V1/2 activating potential, resulting in reduced Ca2+ release at low 

depolarizing potentials. Though different from what was reported in mouse skeletal 

muscle (Weiss et al., 2008), these results support the findings of Calaghan et al. 

(2006) on rat ventricular myocytes treated with methyl-ß-cyclodextrin to disrupt 

caveolae. In the latter cell type removal of CAV3 resulted in a reduced SR fractional 

Ca2+ release indicating a loss in E-C coupling efficiency. Thus, as recently suggested 

by Dart, lipid microdomains may be involved in the fine regulation of ion channels 

and alterations in the properties and composition of the lipids or alterations in the 

distribution of caveolins may affect channel gating kinetics, trafficking and surface 

expression of proteins (Dart, 2010). 

We were interested in investigating whether the reduced E-C coupling 

efficiency in CAV3 mutated cells might have downstream effects. In fact, in a recent 

study Murata et al. (2007) showed that caveolin-1 is essential for Ca2+ entry in 

endothelial cells; upon stimulation with acetylcholine endothelial cells from 

caveolin-1 KO mice have a “normal” peak Ca2+ transient but a 50% reduction in 
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agonist invoked Ca2+ entry. In skeletal muscle cells, E-C coupling is thought to be 

essentially independent of extracellular Ca2+. However, a number of recent studies 

have revealed that activation of the DHPR Ca2+ channel is accompanied by influx of 

Ca2+ (Cherednichenko et al., 2004; Bannister et al., 2008), especially during long 

depolarization. This phenomenon requires the physical presence of the DHPR and 

RyR1 and is enhanced in cells bearing RyR1 mutations linked to Malignant 

Hyperthermia (Cherednichenko et al., 2008; Yang et al., 2007). We found that 

muscle cells from RMD patients had a 50% reduction in KCl induced Ca2+ influx. 

Western blot analysis revealed no significant differences in the level of expression of 

DHPR or RyR1, thus the reduced ECCE is apparently not due to lack of the proteins 

responsible for the Ca2+ influx. One possibility that would explain how the lack of 

CAV3 decreases ECCE is that lack of CAV3 affects the distribution of the DHPR 

and RyR1 on their respective membranes. A hypothesis supported by the co-

localization experiments performed in TIRF mode as well as by recent results by 

Vassillopoulos et al. (2010) who showed that RyR1 and caveolin-3 co-

immunoprecipitate and that caveolin-3 interacts directly with a transmembrane 

domain of the RyR1. Thus the lack of CAV3 seems to derange the micro-

architecture of the main protein components of the E-C coupling machinery leading 

(i) to a less efficient coupling, particularly evident at low depolarizing stimuli and 

(ii) to a decrease in ECCE. We are aware that the TIRF experiments were performed 

on myotubes and theoretically the co-localization results could reflect a different 

degree of differentiation of cells from control and RMD patients. In order to 

minimalize this possibility, we only analyzed those myotubes containing >2 nuclei. 
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In support of our finding, it was demonstrated that skeletal muscles from CAV3 KO 

mice show abnormalities in the organization of the T-tubules with dilated and 

longitudinally oriented T-tubules (Galbiati et al., 2001).  

Though the results of the present investigation do not explain how the 

rippling phenomena are induced by passive stretching and percussion, the finding of 

reduced E-C coupling efficiency and reduced Ca2+ influx may explain, at least in 

part, the phenotypic characteristics of patients with reduced CAV3 levels. 

Interestingly, Lamb (2005) suggested that the induction of rippling movements may 

be caused by stretch induced silent action potentials occurring within the T-tubules 

of skeletal muscle fibers. Though possible, it is experimentally very difficult to 

prove whether action potentials can escape from T-tubules since cultured myotubes 

do not differentiate sufficiently in vitro. 

 In conclusion, we show that loss of caveolin-3 leads to a decrease in the E-C 

coupling efficiency in human myotubes and this feature may be one of the 

underlying causes of the rippling phenotype seen in patients harboring CAV3 

mutations. 
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FIGURE LEGENDS 

Figure 1: Western blot analysis of skeletal muscle proteins in muscle biopsies 

from the two RMD patients harboring CAV3 mutations. Proteins (30 µg) in the 

total muscle homogenate (CAV3, α1.1 DHPR, RyR1 and glycogen phosphorylase) 

or total SR fraction (20 µg) (SERCA2 and calsequestrin) were blotted onto 

nitrocellulose and probed with the indicated antibodies as specified in the Methods 

section. The relative expression levels of the immunopositive bands in the biopsy 

from the RMD patient harboring the c.84C>A mutation (left) and the homozygous 

splice site mutation c.102+ 2T>C (right) were compared to that of control biopsies 

which were considered 100%; intensity values were estimated by densitometric 

analysis of the indicated number of blots and normalized with respect to the band 

intensity of glycogen phosphorylase (total homogenate) or calsequestrin (SR). Bars 

represent mean±S.E.M of n experiments; * P< 0.0001. 

Figure 2: Characterization of “global” Ca2+ homeostasis in myotubes with 

CAV3 deficiency. Calcium imaging was performed in fura-2 loaded myotubes as 

described in the Methods section. A. Mean (±S.E.M. of n= 58 and 92 for control and 

RMD, respectively) resting [Ca2+] (expressed as fluorescence intensity ratio 340/380 

nm) was not different in control and RMD myotubes. B. Mean (±S.E.M.) peak Ca2+ 

increase induced by the addition of 100 mM KCl (inducing depolarization) and 600 

µM 4-chloro-m-cresol (4-cmc, RyR1 agonist) in the presence of Krebs-Ringer 

medium (KR) containing 100 µM La3+. Open boxes, control myotubes; grey boxes, 

myotubes from Cav-3 deficient myotubes  (n= 7- 15 measurements) C. Traces 

showing fura-2 change in fluorescence (ratio 340/380 nm) of individual myotubes 
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from a control and a CAV3 mutation-bearing patient in response to 100 mM KCl and 

600 µM 4-cmc. 

Figure 3: Voltage-dependence of Ca2+ transients in control and RMD myotubes. 

Cells were patch-clamped and held at a holding potential (VH) of –80 mV. A. Paired 

sample traces of current (lower trace) and Ca2+ release recordings (upper trace) at 

different test potentials (from –40 to 0 mV) in a fluo-3 loaded control myotube. 50-

ms depolarizations to increasing membrane potentials activated Ca2+ release from 

the SR. B. Comparison of Ca2+ release during a depolarizing step to –20 mV in 

control (black) and Cav-3 deficient RMD (red) myotubes. Linescan images and line 

profiles show the reduced Ca2+ transient amplitude in caveolin-3 deficient RMD 

myotubes at same trigger voltage when compared with control. C. Summary of the 

voltage-dependence of Ca2+ release in control (WT, n=10) and caveolin-3 deficient 

RMD myotubes (n=8). Ca2+ transient amplitudes have been normalized to the 

maximal release amplitude in each cell. Membrane potentials at half-maximal 

activation (V1/2) indicate a right-shift of the voltage-dependence in RMD myotubes 

(P<0.05). 

Figure 4: TIRF measurements of Ca2+ influx induced by 60 mM KCl in human 

myotubes. A.  Myotubes from a control patient were visualized by brightfield (top 

left panel), with a surface reflection interference contrast (SRIC) filter to visualize 

and fix the focal plane of the coverglass/cell membrane interphase (top central 

panel). Next panels show pseudocolored ratiometric images (peak fluorescence after 

addition of KCl/ resting fluorescence) of fluo-4 fluorescence changes at the indicated 

time-points after application of KCl. Fluorescence was monitored through a 60x 
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TIRF objective and analysed using Metamorph as detailed in the Methods section. 

Bar indicates 30 µm. B. Representative traces from ECCE showing changes in fluo-4 

fluorescence in a myotube from a control individual (_____) and a patient 

harbouring a CAV3 mutation (…….) stimulated with 60 mM KCl in the presence of 

2 mM Ca2+ or myotubes from a control in the absence of added Ca2+ and in the 

presence of 100 µM La3+ (.-.-.-.-.). TIRF measurements were performed as indicated 

in the Methods section in myotubes pretreated with 100 µM ryanodine. C. Bar graph 

depicting mean (±S.E.M.) peak increase of fluo-4 fluorescence induced by 60 mM 

KCl in control and caveolin-3 deficient myotubes in the presence of 2 mM Ca2+. 

Insert shows the mean (±S.E.M.) peak fluo-4 fluorescence increase of control 

myotubes in the presence of 100 µM La3+ (grey bar) or 2 mM Ca2+ (empty bar).  

Figure 5: Co-immunolocalization of the α1.1 subunit DHPR and RyR1 by TIRF 

immunofluorescence in human myotubes from a control individual. Myotubes 

were visualized using an inverted Nikon TE2000 TIRF microscope equipped with a 

CFI Plan Apochromat 100x TIRF objective (1.49 NA). Left panel shows 

photomicrograph of cells through a SRIC filter; central left panel shows the same 

cells excited with a Sapphire laser at 488 nm (α1.1 subunit of the DHPR; green 

fluorescence); central right panel shows photomicrograph of the same cells excited 

at 405 and visualized through a BrightLine CH 427 filter (RyR; dark blue 

fluorescence). Right panel, merged images using the “colour-combine” option 

included in the Metamorph software package. Arrows indicate overlapping pixels 

(light blue). Bar indicates 10 µm. 
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