Exploring Online
Evolution

of Network Stacks

Inauguraldissertation
zur
Erlangung der Wiirde eines Doktors der Philosophie
vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultit der Universitit Basel
von

Pierre Imai
SHE 7

aus Lorrach, Deutschland

NIXl/

N\ /
QXX
/TN

)/ I\/ I

>C
nz
e
g

Basel, 2013

ii

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultét

auf Antrag von

Prof. Dr. Christian Tschudin

Prof. Dr. Thomas Plagemann

Basel, den 12. November 2013

Prof. Dr. Jorg Schibler (Dekan)

@creative
commons

Attribution-Noncommercial-No Derivative Works 2.5 Switzerland

You are free:

@

to Share — to copy, distribute and transmit the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

Noncommercial. You may not use this work for commercial purposes.

ONVNS

No Derivative Works. You may not alter, transform, or build upon this work.

¢ For any reuse or distribution, you must make clear to others the license terms of this work. The best way
to do this is with a link to this web page.

¢ Any of the above conditions can be waived if you get permission from the copyright holder.

* Nothing in this license impairs or restricts the author's moral rights.

Your fair dealing and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license) available in German:
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de

Disclaimer:

The Commons Deed is not a license. It is simply a handy reference for understanding the Legal Code (the
full license) — it is a human-readable expression of some of its key terms. Think of it as the user-friendly
interface to the Legal Code beneath. This Deed itself has no legal value, and its contents do not appear in
the actual license. Creative Commons is not a law firm and does not provide legal services. Distributing of,
displaying of, or linking to this Commons Deed does not create an attorney-client relationship.

Quelle: http://creativecommons.org/licenses/by-nc-nd/2.5/ch/deed.en Datum: 3.4.2009

Abstract

Network stacks today follow a one-size-fits-all philosophy. They
are mostly kept unmodified due to often prohibitive costs of engineer-
ing, deploying and administrating customisation of the networking
software, with the Internet stack architecture still largely being based
on designs and assumptions made for the ARPANET 40 years ago. We
venture that heterogeneous and rapidly changing networks of the fu-
ture require, in order to be successful, run-time self-adaptation mech-
anisms at different time scales and based on continuous performance
measurements.

For this purpose we present an autonomous stack composition
framework and configuration logic inspired by biological evolu-
tion: Stack configurations (compositions) compete against each
other on-line, new compositions evolve from the best previous
performers. Compositions are further selected and pooled together
according to the traffic and network conditions, forming a long-term
situation-aware knowledge base.

We demonstrate the feasibility of our runtime adaptive approach
by exposing our implementation to simulated as well as real world In-
ternet traffic. Beyond individual “zero knob protocols” we show that
our network management system not only tunes a network stack’s pa-
rameters but can also change its composition on the fly.

This lowers the barrier for introducing novel protocols, move to
other run-time systems or accommodate new traffic patterns. Ulti-
mately, this lets engineers of future computer networks focus on spe-
cialised rather than smallest common denominator solutions, as the
run-time choice and management is taken care of by our system.

Acknowledgements

I would like to thank all the people who helped and supported me in the process of
writing this thesis and during my research.

First of all, I wish to thank Christian Tschudin for the opportunity to freely re-
search a topic of my own choosing, a freedom that is very rare and which I am very
glad to have experienced here.

I would like to express my sincere gratitude to Thomas Plagemann for agreeing
to examine and judge this thesis.

Furthermore I would like to thank Thomas Meyer and Manolis Sifalakis for the
frequent discussions throughout my research and their critique of my sometimes in-
comprehensible utterances which later somehow evolved into this - now hopefully
readable - document.

I wish to also thank all the people who helped me by either proof-reading this
document — Massimo Monti, Ghazi Bouabene - or by collaborating with me for their
B.Sc. thesis work - Yannic Kilcher and Florian Lindérfer.

Most importantly, I would like to thank my wife, Shihori, for all the nights and
days she spent by my side while I was working on this document, and for all the tea
she supplied me with to keep me awake.

And finally, I wish to thank you, the reader, for actually reading (at least parts of)
this thesis.

II

(JONTENTS

Contents

1

Introduction & Motivation

1.1
1.2
1.3
1.4

A Brief History of the Internet
A Vision of the Future (Internet)
The Expectation
Contributions & Thesis Layout

State of the Art & Technologies

2.1
2.2

2:3

2.4

2.5

2.6

Autonomy Research Fields
Network Autonomy on the Conceptional Level
2.2.1 Attributes of Autonomy

2.2.2 Awarenessand Reason in the Network - The Knowl-

edgePlane
Implementing Autonomy - The Autonomic Control Loop . .
Collection of Information
24.1 Measuring Methods & Metrics
242 Cross-Layer Designs
Analysis of Information,
2.5.1 On-line Experimentation
252 Goal- & Utility-Measures
2,53 Classification & Detection
DECISIOH : wws s smwe smwms s smes smmas smwa s
2.6.1 Evolutionary Algorithms
2.6.2 Reinforcement Learning
2.6.3 Swarm Intelligence
2.6.4 Other Approaches Inspired by Nature

16
16

17
19
20
20
23
28
24
26
27
29
30
31
32
33

il

(ONTENTS

v

2.7

2.8

2.6.5 How to Choose and Configure an Optimization Al-

gorfthm. : s s s s wms s smas sams 5 5@ 85 3
Action.
2.7.1 Protocols&Stacks L Lo
2.7.2 Dynamic Resolution of Names & Functionality . . .
2.7.3 Run-time Code Deployment
Summary & Conclusion

Rationale and Architecture

3.1

3.2

3.3

3.4

3.5

3.6
3.7

3.8

Towards Autonomous Stack Evolution
3.1.1 Continuous Optimization
3.1.2 Situational Awareness
3.1.3 FHlexible Goals and Environments
3.1.4 Gradual and Local Adaptation
3.1.5 Situational Memory
3.1.6 Distributed Multi-node Optimization
Concepts & Features
Stack Composition System

3.3.1 Layered Evolution - Long-term Stack Evolution vs.

Mid-/Short-Term Adaptation
3.32 Framework Layout
Stack Layout & Specifications
34.1 StackModules oL 0oL
342 Stack Composition
Stack Mechanics
3.5.1 Stack Steering System
352 StackComposer
3.53 DPersistent Storage
Evolution Machinery
Handling Modular Stacks
3.7.1 Module Instance Life-cycle
3.72 Interchangeable Modules
3.7.3 Unified Communication Interface
3.74 Reliable Communication Channel
3.7.5 Sender-Initiator-Defined Composition
3.7.6 In-stackRedirectors
Chapter Summary

Evolution Logic

4.1

Long-Term Decisions - Evolution Engine
4.1.1 Configuration Space & Fitness Landscape

45
45
46
46
46
47
47
47
48
51

52
54
54
57
59
62
62
63
63
64
66
66
67
70
74
75
77
79

(JONTENTS

412 Calling Conventions 86
4.1.3 Algorithms for Controlled Evolution 87
4.14 Selecting the Evolution Logic 109
4.2 Mid-Term Decisions - Classification & Population Selection 112
4.2.1 Matrix-based Selection 113
422 k-Means Clustering Adapted for Population Selection 114
42.3 Choosing Classification Criteria 118
4.3 Short-Term Decisions & Protocol Multiplexing 119
4.3.1 In-stack Redirectors 119
432 DecisionModules 0 0L 121
44 Summary & Conclusion 121
Stabilising the Measurement Environment 123
5.1 Sensor Information. 124
51.1 PassiveSensors 124
512 ActiveSensors s : zems s s wes v £ms 5 v@ma o 124
5.1.3 Sensor Requirements 125
5.2 The Problemof Noise 125
5.3 Stabilising the Measurement Environment 131
5.3.1 Measurements & Data Processing 131
532 Experimentation. 132
5.3.3 Ensuring Comparability 137
534 Information Exchange 138
5.3.5 Fitness Calculation 140
54 Chapter Summary 144
Experimental Validation 145
6.1 Evaluation of the Long-Term Stack Evolution Approach . . . 146
6.1.1 Scenario 1A: Composition of the Internet Protocol
Stack - Simulation L. 147
6.1.2 Scenario 1B: Composition of the Internet Protocol
Stack - Physical Test-Bed 155
6.1.3 Scenario 2: Error Correction & Compression 157
6.1.4 Scenario 3: Bias Towards Specific Configurations . . 165
6.1.5 Summary and Conclusions regarding Long-Term
StackEvolution 172
6.2 Evaluation of the Situational Classification Approach 174
6.2.1 Detecting Changes in the Network Conditions . . . 174
6.3 General Conclusions Derived from the Experiments 183
6.3.1 Long-Term Stack Evolution 183
6.32 Mid-Term Adaptation 183

(ONTENTS

Discussion

7.1 'Thesis Summary

7.2 Contributions, Limitations & Future Work . . .
721 Architectire « + + « w w5 5 5w 55 ¢ % s
7.2.2 Cognitive & Learning Facilities
7.2.3 Situational Awareness & Knowledge Base
724 Information Gathering & Assessment .

7.3 Concluding Remarks

Protocol Design Requirements

6.33 Applicability

A.1 Monolithic and Flexible Protocol Design
A2 Configurability
A3 Reliability
A4 Altruism o
A5 Co-operation L
A.6 Restartable Protocols
A7 Modularity o
B Implementation and Experimentation Environment
B.1 Implementation
B.1.1 Stand-alone User-space Implementation
B.12 Simulation
B.1.3 Realistic Physical Environment
B.2 Implemented Protocol and Service Facilities . .
B.2.1 Internet Protocol Implementations . . .
B2.2 Other Protocols
Glossary
Bibliography

VI

185
185
187
187
189
192
193
193

195
196
197
197
198
198
199
200

201
201
201
203
204
204
205
207

211

219

Chapter 1

Introduction & Motivation

The Internet stack constitutes the mainstay of most of the current communi-
cation infrastructure, as the World Wide Web, mobile telephone networks,
as well as most networked appliances operate on top of it. But its inflexible
layered and statically composed structure is often considered one of the main
impediments for the deployment of more advanced technologies. *° Replace-
ment architectures may provide run-time, on-demand protocol and service
assembly out of small building blocks, and adapt specifically to the require-
ments of the user and network. Such approaches promise performance im-
provements and could cater to environments where deploying the Internet
stack is inadequate: Sensor networks, grid computing, ambient networks,
etc., become ever more prevalent, but have widely divergent needs and re-
quire specialised stacks.*® The necessary fine-tuning and optimisation to the
application scenario is however very labour intensive. The interactions and
influence between networking entities and traffic, the user demands, as well
as their actions, are hard to know in advance, and often change over time
- and sometimes rapidly and frequently so. Thus the optimal composition
of stack modules and their configuration is hard or even impossible to de-
rive off-line or through simulation. As the processing power and capabili-
ties of standard networking hardware grows, we propose that such entities
should find the optimal composition and configuration of the stack them-
selves. Whereas architectures and mechanisms for this purpose have been
researched very extensively, the actual logic that realises this facility has so
far been somewhat neglected. 'This thesis presents a first step towards a
methodology and framework for this purpose, within which the network
stack shall evolve over time by means of machine learning and on-line trial-
and-error experimentation.

INTRODUCTION & SMOTIVATION

In this chapter we motivate our work by means of a honest yet unflat-
tering description of why we perceive the Internet to be in need of a radical
change. We introduce the problem space and outline the vision that inspired
our work. We detail the expectations we intend to fulfil and specify our con-
tributions. Lastly, we describe the layout of the thesis.

1.1 A Brief History of the Internet - And why it is so
difficult to replace

The Internet stack has become predominant over the last thirty years, and
now penetrates many application areas which until a few years ago were
served by specialised networking protocols. Even telephony is now almost
completely handled by All-IP packet-switched networks, with 4th-generation
telephony networks being wholly based on IPv6.?

But contrary to what on first sight appears as a “success story”, the In-
ternet might soon lose one of its key features and become unable to host
new and unanticipated applications.®” The Internet’s design made perfect
sense for the client-server-oriented networks of the 1970s and 1980s,°* but
these networks have fairly little in common with the current or future Inter-
net infrastructure. * The demands on the networks, the application spectra,
and even the user base do not only diversify,>*'°*?7%%** they cannot even
be expected to remain static for a prolonged period of time.®® The appar-
ent need for a new architecture to replace the Internet is reflected by the
sheer number of projects®7:1%:3%56,67:147,246,257,258,384 that investigated alter-
native designs, 3*6%7%96:15%172,199,231,298,354 Yot even the rather conservatively
designed 1Pv6, which can be gradually and non-disruptively deployed on
the current infrastructure, is very slow on the uptake outside telephony net-
works.***

The hourglass"* principle of the Internet, which intends the bottom and
top of the stack to evolve and the centre to remain static, might very well have
led to the Internet’s success. **° Innovative technologies, such as Wi-Fi, LTE,
WiMAX, etc., flourish below the common substrate of IP which enables local
and gradual deployment. New services sprout on top of HTTP, **® because
the necessary investments are limited to the local infrastructure. But we sus-
pect that the same economical reasons prevented the Internet’s further evo-
lution. Changes to the Internet backbone itself became prohibitively expen-
sive, as the homogeneous waist would have to be replaced more-or-less as a
whole. The view that physical replacement of the ossified Internet stack is not

Y The waist of the hourglass is constituted by the rigid enforcement of the IP protocol(s),
but it has been argued that HTTP nowadays represents the new waist. >**

1.2. eA UIsion oF THE FuTurE (INTERNET)

viable might explain the current surge of efforts for virtualisation. ** After all,
technologies such as peer-to-peer and other overlay networks, VLAN, VPN,
OpenFlow,**® GENI,'*® PlanetLab,*** cloud computing, etc., help to avoid the
costs that physical deployment would induce. But often it is not so much the
cost of the hardware itself that prevents change. Instead the salaries of the
engineers and administrators that set-up, configure, and maintain the net-
work have the highest impact. ***

1.2 A Vision of the Future (Internet)

For the future we envision network machinery that freely and autonomously
configures and composes the network stack out of atomic and modular pro-
tocol building blocks.

While several replacement architectures intend the imitate the thin waist
of the Internet,**”*** we venture that a monolithic transport is not suffi-
cient for future. We further claim that we should not impose layering as it
promotes redundancy. **® Instead the architecture has to be flexible enough
to handle arbitrary new protocols, services, and combinations or configu-
rations thereof. This notion is supported by many other recent proposals,
which intend to replace the layered stack with silos,”® heaps,*® compart-
ments,** services,*”? recursive designs,*** or even multiple parallel archi-
tectures. >’

We reason that only an architecture or network stack specifically tai-
lored to the current requirements of the applications and users can offer the
best possible performance, in the same way as specialised protocols are of-
ten superior to generic ones.'®® Research into cross-layer adaptation seems
to further supports this claim.***®'3%'** Likewise, specialised stacks, tai-
lored for a specific application area, e.g. those developed for low-power sen-
sor networks®'® or the high-performance requirements of e-Science appli-
cations, '*® offer even bigger advantages over generic stacks, as they do not
have to compromise to the needs of different environments.

Instead of crafting specialised stacks by hand - which is a very labour
intensive task - we expect that the systems of the future will autonomously
adapt and optimise the stack for their own needs. More than ten years ago,
IBM stated that future software and systems need to be able to manage and
configure themselves, because the workload would otherwise become almost
unmanageable and unaffordable. '

We assume that the future Internet is in even more dire need of such
autonomous adaptation: The optimal behaviour of the network depends on
the traffic, applications, users, etc. And even the notion of optimality is not

3

INTRODUCTION & SMOTIVATION

static, as the expectations of the users also change over time.®® Simulating
the current Internet is a very difficult task, '*'***”® and the networks of the
future will be even larger, more flexible, and more heterogeneous. We thus
claim that the entities in the network need not only to sense, decide, and
adapt based on a policy or a simple control loop, but have to be context-
aware '*>?¢% and capable of explorative *****7 learning.>"*>****** We envi-
sion that the entities in the networks of the future will autonomously modify
their network stacks, measure how they perform within the physical network
environment by exposing them to the actual traffic therein, and learn how to
adapt based on the measured effects of these actions, in the same fashion as
autonomous robots already do.** Feedback for this purpose could in some
cases be derived by means of simple calculations from network measure-
ments. '*>%%* But we expect the dynamics of the networks and in particular
the intentions of the users to be impossible to predict at the time of design
or deployment. Just as ADSL was designed for consumers of downloadable
content, which do not need much upstream capacity, but was primarily used
for synchronous peer-to-peer traffic, the future of computer networks is un-
predictable. Thus the feedback should ideally be based on the perceived util-
ity for the users.?'"*'?

1.3 The Expectation

While we would certainly like to be able to realise our vision of autonomous
on-line network stack evolution, it is still far from reality, and much research
remains to be done. We therefore concentrated on the development of a sys-
tem capable of autonomously improving the network stack’s composition
and configuration based on an arbitrary utility measure. For this purpose
the system shall experiment by trial-and-error, i.e. create new stack config-
urations on its own, expose them to the actual network traffic, measure the
effect by means of sensory input gathered from the network, and then cog-
nitively decide how to further improve the configuration and composition
through machine learning methods. This adaptation process shall solely be
based on feedback in the form of a user-defined utility measure, the fitness
function, i.e. the system should not possess any intrinsic knowledge of the
protocol behaviour or of what constitutes a good solution, as both notions
may change at run-time. Due to the non-deterministic nature of this pro-
cess, we do not expect the system to arrive at the optimal solution. Instead we
intend to investigate with what probability and how fast the system can ar-
rive at a close-to-optimal solution for a limited, but specific set of test cases.
Autonomous adaptation is complicated by the unpredictable nature of the

4

1.4. (JONTRIBUTIONS & THESIS LAYOUT

network and traffic conditions on which the utility of a specific stack con-
figuration depends. The system thus has to be context-aware, i.e. able to
evaluate the current situation of the network, the traffic and itself, and based
on this evaluation to decide how to modify the stack. Furthermore it has to
be able to ensure that the results of experiments are comparable, i.e. that the
utility of stacks is evaluated under sufficiently similar conditions as not to
affect the perceived utility.

1.4 Contributions & Thesis Layout

Our aim is to design a system for autonomous on-line network stack evolu-
tion, i.e. a system which offers the advantages of a specialised network stack,
which is adapted to the present conditions of the network, suitable for the
current traffic therein, and which offers near-optimal utility as defined by its
users. For this purpose, we envision an autonomous stack composition sys-
tem, which can monitor the state of the network, the ongoing traffic, gather
user feedback, and create a stack that capable of adequately fulfilling the user
expectations. To realise this vision, we researched the feasibility of

1. an architecture to support autonomous stack composition,
2. logic which controls the stacK’s long-term evolution,

3. logic to realise situational awareness and short- to mid-term adapta-
tion,

4. and mechanisms for the reliable gathering and assessment of (mea-
surement) data.

Overall, our work should be seen as a proof-of-concept which shows that
our design makes autonomous evolution of network stacks and adaptation to
the environment feasible. We support this claim by selected experiments, and
consider a more thorough exploration of the problem space for future work.

Our first contribution is the realisation of (a subset of) Clark et al.’s
concept of a knowledge plane ®® for communication by means of the classic
feedback loop first proposed by Wiener.*”® This includes the architecture —
introduced in Chapter 3 - and implementation of a comprehensive frame-
work for autonomous stack composition and adaptation based on experi-
mentation and on-line measurements, which we use as the basis on which we

INTRODUCTION & SMOTIVATION

validate our research and as a test-bed for further exploration. Our frame-
work replaces the operating system network stack with a protocol “compos-
ite”® which is dynamically configured and composed out of those micro-
protocols®®” available at run-time. As a side-effect of implementing sev-
eral micro-protocols, which encompass e.g. the functionality of the Inter-
net stack, we derived requirements and guidelines for protocol design that
enables effective stack composition. Additionally, we provide a means for
placing short-term, e.g. per-flow or per-packet, adaptation facilities within
the stack, as described in Section 4.3.

Our second contribution concerns the cognitive functionality that en-
ables network stack evolution towards a goal state defined by an utility or
fitness measure ”>*”'*?, For this purpose we explored several common ma-
chine learning techniques*®*%7-**>*** and — based on experimentally-gained
knowledge - invented a new search algorithm specifically for the purpose of
generating optimised candidate stack configurations, the Composition Tree
Search. We describe these algorithms in detail in Section 4.1.

Our third contribution pertains to the situation-aware classification
and adaptation logic, which we detail in Section 4.2. We investigated prob-
lems concerning the accurate measurement and assessment of the network
and traffic conditions, and how to stack can be autonomously optimised
even when the network or traffic conditions are unstable. We designed and
implemented functionality that enables the framework to notice when the
situation in the network changes and to select a more adequate stack based
on an on-line classification process. The experimentation facilities also
utilise these techniques, enabling the system to evolve several independent
stack configurations suitable for different situations and to guarantee
experimentation under sufficiently similar and thus comparable conditions.
We thus realise a situational knowledge base for adaptation.

Our fourth contribution relates to the facilities for autonomous gather-
ing of measurement data and assessment of the information therein, which
we introduce in Chapter 5. We designed and implemented methodologies
that enable the framework to explore the utility of candidate network stacks
by means of trial-and-error experimentation. The framework decides when
to schedule experiments based on the perceived utility of the current stack
and the measured network and traffic conditions. These experiments are

2 We denomimate this entity as “stack” throughout this document, but other forms of com-
posites such as silos or heaps are also supported.

1.4. (JONTRIBUTIONS & THESIS LAYOUT

performed on-line, i.e. the stack is replaced by a new one created from a
candidate stack configuration and exposed to the actual network traffic. We
investigated if such experimentation at runtime is possible in the presence
of unrelated traffic and experiments performed by other nodes. We devised
and implemented measures to safeguard that the fitness assessment is not
impeded by measurement inaccuracies or operational difficulties.

In this chapter we introduced some of the problems the Internet faces,
as well as our vision for the networks of the future. We described how our
research contributes to this vision. In the next chapter we introduce research
and technologies related to our work. Afterwards we detail our design, be-
ginning with the architecture of the stack composition system, followed by
a discussion of the logic that guides the stack evolution process, then we dis-
cuss the problem of reliably gathering and assessing the information needed
for this process. We then introduce some of the experiments we performed
to validate and evaluate the system and conclude with a discussion of our
work, the achievements and an outlook on future work.

Chapter 2

State of the Art & Technologies

As already stated in the previous chapter, we are not the first to notice the
problems affecting the current Internet nor to research and propose new
ideas and technologies for its improvement or even replacement. And as
many before us, we assume that autonomy, in particular the ability of the
network to rationally decide and adapt to the needs of the users will play a
vital role in the future Internet.

In this chapter we therefore detail current and past research efforts and
the state of the art in communication networks and autonomy research in
general. We selected a representative subset of the research which we con-
sider most important for our work and describe in detail how it influenced
our work., We begin with a short introduction of the related research fields,
and then present our perspective of autonomy, focussing on the aspects of
networking we address in this thesis. Afterwards we detail research pertain-
ing to the individual aspects of autonomy in the network, and conclude with
a summary of the research discussed in this chapter.

2.1 Autonomy Research Fields

Research into autonomy in the context of computer networks was strongly
influenced by Clarks proposal for a knowledge plane for the Internet,®,
IBM’s manifesto which defines Autonomic Computing, '** and Fraunhofer’s
research agenda for Autonomic Communication,**® as we describe in more
detail below. While the differences in terminology sometimes suggest oth-
erwise, the fundamental concepts and definitions of autonomy used in the
various areas of computer science are almost identical. We introduce some

9

STATE OF THE e ART & TECHNOLOGIES

— GOAL

SELF MANAGEMENT

— SELF CONFIGURING

SELF HEALING
— OBJECTIVES —
[SELF OPTIMISING

‘——— SELF PROTECTING

AUTONOMIC __|
COMPUTING

SELF AWARE

ENVIRONMENT AWARE
[—— ATTRIBUTES —

SELF ADJUSTING

MAKE (SYSTEMS ENGINEERING)
L APPROACHES i
ACHIEVE (ADAPTIVE LEARNING)

Figure 2.1: The Autonomic Computing Tree from Towards an Autonomic Com-
puting Environment**".

of the related fields of research here and state why we consider them rel-
evant for our own work. The distinction between these areas is often not
very clear, as the solution domains overlap, and the only fundamental dis-
tinction is the definition of the problem scope. For example, some research
in the field of Autonomic Communications could just as well be attributed
to Autonomic Computing, or vice-versa, e.g. Saffre’s method for autonomic
service distribution,**® or Hadjiantonis et al.'*® policy-based approach of
context-awareness for the self-organization of ad-hoc networks. Likewise
Demestichas ef al.’s”” M@ANGEL platform, a distributed framework for man-
aging future mobile communication networks in which the individual ele-
ments of which the network is composed are called cognitive elements, can
be attributed to Cognitive Networks as Fortuna ef al. '*' do, but the authors
themselves consider it part of Autonomic Computing.

AvutoNoMic COMPUTING

In 2001 IBM released a manifesto stating the need for autonomic computing
due to the looming software complexity crisis, and backed up this claim
by quantifying the costs of the installation and maintenance of current
applications. Whereas the original document is no longer available on the
Internet, a follow-up publication by Ganek'** elaborates further on this
claim, stating that e.g. the administrative costs can account for up to 75%
of the cost of database ownership, and that “Today’s systems must evolve

10

2.1. eAuToNOMY ‘RESEARCH FIELDS

Input ports Output ports
Control
PE PE
KE KE
programmed autonomic
behavior hehavior
M & A Cardinals
T {46 (it)
S
Mo B s M&A
oS | Al 3
Ll gl S
Element 2
Environment
Internal Extenal

Figure 2.2: An element of the autonomic computing environment, from Auto-
nomic computing: An overview **°.

to become much more self-managing, that is: self-configuring, self-healing,
self-optimising, and self-protecting”. Figure 2.1 illustrates general properties
that define autonomic computing. IBM’s initiative formalised the problem
and gave a new impetus to research in this field, but autonomic facilities
were deployed in computer systems already some time before. For example,
Kephart'®® developed an artificial immune system that autonomously
located unknown virus variants and informed neighbouring nodes about
the infection, and similar approaches have been used for intrusion de-
tection.'** Generally speaking, autonomic computing requires software
and system architectures to be self-adaptive in all areas pertaining to
its functionality, such as configurability, fault tolerance, maintainability,
performance, security, etc. As Parashar ef al.** elaborate, “[...]in the case
of emerging systems and applications, the specific requirements, objectives
and choice of specific solutions (algorithms, behaviors, interactions, etc.)
depend on runtime state, context, and content, and are not known a priori.
The goal of autonomic computing is to use appropriate solutions based on
current state/context/content and on specified policies” An autonomic system
consists of self-contained autonomous elements, which interact with and
react to their environment as shown in Figure 2.2. Its operation is controlled
by a manager which consists of two control loops. 'The local loop reacts
to changes in the local environment based on embedded knowledge. The
global loop in turn is aware of the global environmental state, and may
contain machine learning functionality to tackle unknown states of the
environment or may depend on human interaction.

11

QYTATE OF THE e ART & TECHNOLOGIES

Several projects investigated the possibilities of autonomic computing.
For example, AutoMate® focused on context-aware grid applications,
trying to make them self-configuring, self-composing, self-optimising and
self-adapting. It provides facilities for autonomic composition, adaptation,
and optimisation by means of a decentralised deductive engine called
RUDDER, which uses user-defined rules to supervise specialised agents
distributed throughout the system and employs learning techniques for dy-
namic self configuration and rule adaptation. The Kinesthetics eXtreme'”®
project tried to retrofit existing systems with autonomic properties. For
this purpose it deployed sensors called gauges throughout the legacy
system which aggregate and analyse the system state, based on which an
autonomic control layer triggers actions such as reconfiguration tasks. The
OceanStore®** project provides global-scale persistent storage and utilises
introspection to manage replica management and to recognise clusters of
closely-related files, routing, recognition of unreliable peer, etc., and adapts
autonomously to optimise its performance.

AvutoNoMICc COMMUNICATIONS

The concepts of Autonomic Communications developed around 2003 based
on an research agenda proposed by Smirnov.**® According to Dobson
et al ,® it “seek[s] to improve the ability of network and services to cope
with unpredicted change, including changes in topology, load, task, the
physical and logical characteristics of the networks that can be accessed”.
The direction of research was strongly influenced by Tschudin’s vision of
large autonomous networks able to assemble themselves from zero state, *®
and Crowcroft’s idea of opportunistic networks which asynchronously
communicate using any available technology.'*” Analogous to Autonomic
Computing introduced above, Autonomic Communications utilises self-
management, self-configuration, and self-regulation to reduce the necessity
of management efforts and, in particular, of manual intervention into
network operations. As the heterogeneity and complexity of networks
grows, furthered by the trend towards mobility, ubiquity, and pervasiveness
of communications, the management overhead is feared to become almost
unmanageable. Autonomy within the network shall help to thwart this
threat by making the network able to adapt itself to the user requirements
as specified e.g. through policy definitions, ontologies, etc.

Whereas the similarities between Autonomic Communications and Au-
tonomic Computing are rather obvious a distinction is nevertheless justi-
fied. Autonomic Computing focuses mostly on application software and re-
source management aspects, but Autonomic Communications’ vision goes

12

2.1. eAuroNomy ReSEARCH FIELDS

further. As Dobson® notes it encompasses a “‘deep foundational rethink-
ing of communication” and a network whose components “work in a totally
unsupervised manner, able to self-configure, self-monitor, self-adapt, and self-
heal - the so-called self-« properties”. 'This vision is guided by Clark et al’s
proposal for a knowledge plane® in the Internet, which bridges the gap be-
tween the lower levels in the system, i.e. the network stack, etc., and the user-
and application-level context-awareness. Furthermore, the network itself
can provide context and semantic information. Due to the strong impact
of ClarK’s proposal and its close relation to our own research we discuss it in
detail in Section 2.2.2 and also present related research projects there.

CoGNITIVE RADIO

The problems encountered by current radio technology have lead to research
into how cognitive abilities could help improve e.g. the spectrum selection
process. The concept of Cognitive Radio **”*** utilises a control loop which
is very similar to the approach discussed above, called the cognitive cycle: As
core functionality, the radio device constantly monitors the available spec-
trum bands and detects holes therein. It then analyses the characteristics
of these holes, determines data rate, transmission mode, and the bandwidth
of the transmission, and finally decides on the appropriate spectrum band
according to user requirements and the spectrum characteristics. The de-
vice is expected to cognitively choose the most appropriate operating fre-
quency, modulation, transmission power, and communication technology.
Mitola’s vision *** for future cognitive radio networks includes even far more
advanced features, such as planning capabilities, video and voice analysis,
location- and self-awareness, and the creation of sentient spaces.

Most of the current network-related research into Cognitive Radio, how-
ever, focuses on cross-layer and distributed optimisation tasks, as it is widely
assumed that co-ordinated behaviour across layers or across nodes can lead
to significant performance increases. For example, Zheng et al.*’* analyse
how decoupled designs for routing and spectrum selection and collaborative
architectures behave and come to the conclusion that cross-layer designs of-
fer superior performance and in related research Zhao ef al. *** presented a
distributed approach offering a performance increase of around 30% and a
delay reduction of around 50%.

The most prominent application area for cognitive radio, as described
by Devroye et al.,”® is the use of licensed frequency bands by secondary,
i.e. unlicensed, users in such a way that the operation by the primary user,
e.g. a TV broadcast service, is not impeded, yet their own performance is
maximised. Interest in this research is of strong commercial interest, as fre-

L3

STATE OF THE e ART & TECHNOLOGIES

Terminal

Packet based core network

TRC

[4 OSM
v TRM |1 AR
: 1

Terminal NRM
l{ecm.ll'!guralion RRC Network Reconfiguration
Decision and Decision and Control

Control <+ RAN

Selection

O E—— :

election |<

Information

Spectrum Assignment -

Policy Efficiency =
Evaluation

Extraction, | i Evaluation
Collection, and | ! ;
{ Storage ! Lo I i Policy Derivation -
A 1 1
1
i

|:| - functions related to decision making and reconfiguration
P p - external interfaces of NRM and TRM functions related to context awareness
4——p - external interfaces of NRM and TRM functions related to decision making and recontiguration

4— - internal interfaces of NRM and TRM functions related to context awareness, given as implementation example, and
not defined in this standard

< - -» _inemal inlerfaces of NRM and TRM functions related (o decision making, given as implementation example, and not
delined in this standard

< - - p - internal interfaces of NRM and TRM functions related to exchange of context information, given as implementation
example, and not defined in this standard

PP » - internal interfaces of NRM and TRM functions related to sending radio resource selection policies, given as
implementation example, and not defined in this standard

Figure 2.3: The components of IEEE 1900-compatible radio equipment specify

support for autonomous cognitive capabilities. *°°

quency bands are scarce and the sharing of licensed bands seems promis-
ing: Jeon et al.'”® show that the presence of a secondary network does not
significantly reduce the performance of the primary network, if appropriate
routing methods are used. Similarly, Akyildiz et al.® proof that secondary
networks can achieve the same optimal throughput as primary networks,
and Thomas et al.**' convincingly describe that the ability to fully cogni-
tively control all nodes’ radio operations significantly improves performance
compared to partial control. Of particular interest in this respect is the up-
coming IEEE standard 1900, **'°%*¢” which defines e.g. the requirements
for policy-based reasoning capabilities and explicitly includes support for
context-aware autonomous self-reconfiguration, as shown in Figure 2.3.

14

2.1. eAuroNomy ReSEARCH FIELDS

COGNITIVE NETWORKS

Some researchers propose the name Cognitive Networks for a field which is
very similar to Autonomic Communications,**® but the same term is how-
ever often used to refer to the Cognitive Radio Networks.” One definition
of a Cognitive Network, which is closely related to Clark’s concept of the
knowledge plane, is given by Thomas et al.**®: “A cognitive network has a
cognitive process that can perceive current network conditions, and then plan,
decide and act on those conditions. The network can learn from these adap-
tations and use them to make future decisions, all while taking into account
end-to-end goals” Research in this field tries to extend the scope of reason-
ing from the protocol to the whole network, it encompasses a wide range of
topics such as cross-layer design and distributed scheduling, etc., of which
Fortuna et al. '*' provide an overview.

AcTIVE NETWORKS

According to Tennenhouse and Wetherall’s definition,**® “Active networks

allow their users to inject customised programs into the nodes of the network”,
i.e. they contain switches which “perform customised computations on the
messages flowing through them”,**” and thus extend the possibilities for
processing beyond the simple operations of classical networking, which
were limited to the protocol headers. Active Networks are based on the
principle that networks should be programmable like computers and exten-
sible at run-time. Of particular interest for us is the capability of run-time
extensibility, e.g. through mobile code deployment. In the mid-1990s, two
approaches for active code deployment were envisioned, programmable
switches which offer mechanisms for placing and executing programs on
them and capsules which contain code in addition to the normal user
payload of classical packet networks. We briefly discuss code deployment
in Section 2.7.3. Programmable switch architectures include Click*®” and
Router Plugins,” which we introduce in more detail in Section 2.7.1.

AUTONOMY IN SOFTWARE ENGINEERING

Autonomy also plays an important role in current software engineering re-
search. One of the goals of the Unity®® project, for example, is to explore
a technique called goal-driven self-assembly, in which the autonomic com-
ponents of the system are assigned goals which they try to fulfil according
to role-descriptions in a shared policy storage, and for which purpose they
use other components according to their service descriptions. While the

15

QSATATE OF THE e ART & TECHNOLOGIES

history of dynamic re-composition of software reaches back to the begin-
nings of computing, when self-modifying code was a necessity due to lack of
memory capacity and for runtime code optimisation, the interest in adap-
tive computer systems was rekindled by the emergency of ubiquitous and
autonomous computing. McKinley et al.’s**¢ article serves as an excellent
introduction to these topics from a Software Engineering point-of-view.

For our purposes, the following research has particular relevance. Del-
larocas et al.”® propose an architecture for the field of Software Engineering,
which has some significance for our research. Their self-evolving software sys-
tfems autonomously adapt to changes in external conditions by dynamically
reconfiguring the internal system and swapping software modules. They
further introduce an evolution engine which monitors the execution of a
running application and decides when and how to evolve it. Alagar et al.*°
present a framework for the construction of self-evolving real-time reactive
systems. Their design consists of a Reuse Repository, which stores infor-
mation on different versions of evolvable system components and their re-
lations, an Evolution Engine, which calculates the reliability of the modules
and the system constructed from them based on a Markov model, an Evo-
lution Monitor which observes the environment and reacts to changes by
adapting the system architecture based on the output of the Evolution En-
gine. Their design is based on formal models of the environment, software
unit, and the desired properties of the system. Self-evolution of program
code or protocols has also been been studied in other fields, as we discuss in
Section 2.6.4.

2.2 Network Autonomy on the Conceptional Level

We decided to discuss the related work based on the concepts and termi-
nology most commonly used in the context of Autonomous Communica-
tions,** as its vision most closely resemble our own.

2.2.1 Attributes of Autonomy

Autonomy is often defined by means of the following aspects, which are
collectively referred to as “Self-+”*' Kephart and Chess describe'®* self-
configuration as the autonomic configuration of systems and components
based on high-level policies, and define self-optimisation as the continual
exploration and learning of ways for improving the system operations:
“[...]autonomic systems will monitor, experiment with, and tune their
own parameters and will learn to make appropriate choices about keeping

16

2.2. ENETWORK e AUTONOMY ON THE (JONCEPTIONAL LEVEL

Junctions or outsourcing them.” Self-verification and self-checking safeguard
against operational errors, self-healing is the ability to recognise and correct
faults, and self-protection helps to prevent the occurrence of problems before
they happen.

2.2.2 Awareness and Reason in the Network - The Knowledge
Plane

The concept of autonomous networks, i.e. networks that - to some extent
— are situation-aware and able to reason, is often associated with Clark et
al.’s famous proposal for a knowledge plane for the Internet,*® which there-
fore warrants a more elaborate discussion. Clark envisions an autonomous
“meta-entity”, the knowledge plane, which is located within the network and
capable of cognitive reasoning, and as a pre-requisite context-aware. They
consider the following attributes vital its realisation. The first attribute is edge
involvement, i.e. the sharing of information beyond the traditional bound-
aries of the network, and thus involves e.g. user-preference- or goal-related
knowledge. As second attribute they propose a global perspective, in other
words local knowledge, for example information gathered only within the
local subnet, is insufficient to guarantee the effective operation of the knowl-
edge plane, which should instead extend its perspective to include knowl-
edge and observations gathered in other parts of the network. Thirdly they
assume the knowledge plane’s structure be composable of modular elements,
e.g. sub-planes, so that two independent networks should be able to collab-
orate and exchange knowledge and services, yet has to be able to cope with
the heterogeneity of these components, which might for various reasons be
reluctant or incapable to share all available knowledge. They further demand
an unified approach, as to prevent the partitioning of knowledge which lead,
for example, to the problems that motivated research into cross-layer archi-
tectures. Lastly, and maybe most importantly, they demand cognitive capa-
bilities, as the knowledge plane needs to be able to operate in an environment
about which it possesses incomplete and sometimes even incorrect informa-
tion, and yet has be able to reason about how to most efficiently fulfil its -
again possibly underspecified - goals. Apart from the control loop we intro-
duce below, they consider the ability to learn vital for the knowledge plane’s
ability to achieve these objectives, and even suggest several possibilities to
how this capability might be achieved, e.g. “by trial and error”.

The cognitive capabilities demanded by Clark et al.’s knowledge plane
arguably pose the greatest challenge to its realisation. Luckily, research per-
taining to other fields of (computer) science, in particular artificial intelli-
gence concern themselves with similar topics and for an already consider-

17

QYTATE OF THE e ART & TECHNOLOGIES

ably longer timespan, and thus naturally strongly influence the design deci-
sions and learning techniques proposed for the knowledge plane. Clark et
al.themselves suggest the field of Multi-Agent Systems,?***** but state that
this research would “typically lack the dynamicity required for the knowl-
edge plane”. But research into cybernetics, self-organisation, autonomous
robotics, etc., as well as the adaptation of phenomena and behaviour found
in nature, has led to insights which can help realise the necessary capabilities,
as we discuss below.

Adoption of the Knowledge Plane in the Literature 'The purpose of
this knowledge plane can be manifold, with Clark et al.suggesting fault
mitigation, autonomic configuration, overlay network support and in-
trusion detection. Razzaque et al.**® proposed a cross-layer approach,
in which the knowledge plane provides both a node-local view which
encompasses information gathered from the individual layers, as well as a
global view of information from the network. Kappler et al.**® employ a
knowledge plane to coordinate self-organisation in mobile phone networks.
Pujolle et al.*** proposed a goal-based networking architecture for wireless
networks, which employs situation-aware agents to decide on the protocol
configuration. Similar approaches have been applied to sensor networks,***
[P-based networking equipment,'** 4G mobile phone networks,'* and
ad-hoc networks. **>***22* Pyjolle’s approach led to a multi-plane system**
consisting of: a data plane which forwards the packets; a control plane which
monitors operational aspects such as throughput, mobility, reliability, or
security; a management plane administers the other planes; and knowledge
and configuration planes which together form the piloting system. This
system uses distributed agents, located on the devices in the network, which
autonomously decide when to perform a handover to another access point.
For this purpose they incorporate situational knowledge they actively
extract from their network neighbourhood and passively receive from other
nodes. As part of the Iris framework,**" Nolan and Sutton present*** a
cognitive wrapper for radio re-configuration, which can “adopt any feasible
game-theoretic, genetic algorithmic, artificial neural networks, Bayesian or
Fuzzy system logic” approach. Knowledge is represented ontological via
the OWL language. 'Their framework design incorporates functionality
to re-configure the network stack.®*® While the theoretical direction of
this research thus conveys interest in research areas similar to our own,
all further publications indicate®>*** a focus on lower layers, and contains
virtually no reference to stack composition, configuration or learning tasks.
CogNet**® provides an overlay network with cognitive features, which

18

2.3. IMPLEMENTING eAuroNomY — TiEe eAuronomic (JonTrOL LoOP

extends**® the Host Identification Protocol® such as to provide improved
mobility support.

2.3 Implementing Autonomy - The Autonomic Control
Loop

The facilities required by an entity to achieve autonomy are defined nearly
identical in all areas of research, i.e. are based on the original definition of
the feedback loop from Norbert Wiener’s seminal Cybernetics,?”® which is al-
ternatively called an autonomic control loop®* or an cognitive cycle,*** and
which is illustrated in Figure 2.4. Similar control loops seem to control sev-
eral aspects of e.g. human behaviour, ®**°>?*7 but their stability properties
are difficult to proof. Dobson et al.** elaborate on this problem and inves-
tigate the possibility of control-theoretically modelling and analysing such

systems.

Ne’rwork instrumentation

Environmental sensors
User context
Application r’eqmr‘emen'rs

CoIIect
Inference
Uncermm reasoning
Managed elemen?s
Bounds and

sf:;;d - A t envelopes
e'es C Analyse o
Inform users Economlc models
or administrators Rules and policies
Game theory
Deade
Risk analysns

DeC|S|on theory
Hypo'rhes«s generation

Figure 2.4: Autonomic Control Loop, from A Survey of Autonomic Communi-
cations. **

We group our discussion of related work according to the four aspects
embodied in this loop, i.e. the gathering of information in Section 2.4, the
analysis of this data in Section 2.5, the decision process based on this analysis
in Section 2.6, and the possibilities for executing the resulting decision in
Section 2.7.

19

QYTATE OF THE e ART & TECHNOLOGIES

2.4 Collection of Information

The first phase of the autonomic control loop encompasses the collection
of information. If one were to compare an autonomic system to a living
being, these facilities could be described as its eyes or sensors. As pointed
out e.g. by Varghese,**® the flow of information on the packet-switched In-
ternet is difficult to observe, since the Internet itself was not designed®' to
provide such information in an easily accessible way, and does not maintain
state data akin to the per-call data kept on circuit-switched networks. Never-
theless methods like active and passive measurements, information sharing,
and experimentation can help us gather a significant amount of information
about the network conditions based on external logic.

24.1 Measuring Methods & Metrics

Technologies for reporting local measurements are widely supported by
common networking hardware, e.g. via SNMP, NetFlow'** (RFC 3954°7),
or IPFIX (RFC 5101°%°), and measurements can be performed either
directly on the routing hardware or on dedicated measurement devices.”
The resource requirements imposed by measuring are one of its major
difficulties. Whereas packet-forwarding functionality can be provided with
relatively little state information, such as ARP- or routing tables, detailed
traffic measurements require far more memory and processing. One way of
reducing the impact of measurements is to summarise the data at the place
of measurements, and e.g. only report statistics on a per-flow basis, either
via aggregation (packet counting, etc.) or sampling, i.e. extracting only a
subset of all packets.

Packet counting is one of the most commonly applied statistical aggrega-
tion measures in router hardware and used e.g. for accounting purposes, but
managing a large amount of counters for various traffic types is resource in-
tensive. For example, Ramabhadran®** and Zhao et al.*** propose efficient
methods for counter management, which only keep short counters in fast
memory and dump them to slower storage at a lower frequency. Another
aggregation method has been proposed by Krishnamurthy et al.>** for de-
tecting changes in traffic data based on compact sketches, **% i.e. projections
along pseudo-random vectors of reduced dimensionality.

Sampling can be performed uniformly, e.g. every n-th packet, pseudo-
randomly,*”* by assigning them to strata according to an attribute,*® prob-
abilistically based on their content, e.g. by using a Horvitz-Thompson esti-
mator, '** or e.g. via one of the sampling functions proposed by Duffield et
al..”* A method based on Max-Min Fair ** allocation of the sampling budget

20

2.4. (JOLLECTION OF INFORMATION

has recently been proposed®® which aims to minimise the average relative
estimation error.

Detailed and accurate analysis often requires specialised approaches. For
example, to identify the types of flows that cause the highest bandwidth us-
age over a time of hours or days, Estan ef al.'®® utilise multi-stage filters.
Each filter stage consists of a fixed number of buckets, into which flow data
is stored based on the result of a hashing function, which is unique w.r.t. the
stage. Only those flows which cause bucket overflows in all stages are stored.

Distributed measurements of high-volume traffic are particularly diffi-
cult, because data packets cannot easily be uniquely identified. One method
for solving this problem is again the use of hashing functionality. For exam-
ple, Duffield et al.®* measure the spatial flow of traffic across a network by
only reporting a manageable subset of packets, which they select based on
the value reported by hashing function. As the same hash function is used
on all routers and switches within the domain, a packet that is selected on
one link is also selected on all other links as it traverses the network.

Measurements outside the local administrative zone are even more dif-
ficult, as access to NetFlow data, etc., is limited for privacy and business rea-
sons. Often the dynamics of intra-protocol traffic are used to derive or facil-
itate measurements. Even though protocols such as TCP were not designed
with measuring in mind, in-band measurements are still possible. TBIT>*®
as well as Jaiswal et al.’s'”® method, can infer many of the configuration pa-
rameters of TCP in a non-disruptive manner. Sting®'' can query unmod-
ified TCP servers and derive packet loss measures along the forward and
reverse path. Similarly, the pathload '”* tool estimates the path bandwidth
based on the assumption that the one-way delays of periodic packets increase
when the send rate exceeds the available bandwidth. ImTCP*'**¢" s able to
estimate the bandwidth by means of packet rescheduling, and thus avoids
network overhead. Bellardo et al.®" provide three methods for measuring
packet re-ordering, also by means of TCP. Externally generated connections
can also be (ab-)used for measurement purposes. The Sidecar*'* tool, for ex-
ample, hijacks TCP connections, inserts packets that resemble retransmitted
data, and thus avoids problems caused by intrusion detection systems which
often misclassify measurement traffic as intrusions. And TCP is only one ex-
ample of the protocols that can be utilised for measuring purposes.**” Spring
et al.summarise®*” some of the methods for measuring and envision an op-
portunity for ‘collaborative reverse-engineering of the Internet”, i.e. map the
Internet’s client population, workload, etc.

Measurement accuracy is another problem, as e.g. probing and the
computations and traffic related to measurements can introduce a bias into
the measurements, which is especially pronounced in multi-user systems,
21

STATE OF THE e ART & TECHNOLOGIES
as e.g. Sommers ef al.**® report. They propose countermeasures in the
form of a low-level, high-priority measurement subsystem. In systems
where such problems can be eliminated, much finer-grained measurements
are possible, as e.g. Lee et al.*"> method based on LDA'® allows for
end-to-end delay measurement accuracy in the microsecond range even
when packet-reordering can occur.

The placement of sensors or monitoring points in the network, as well
as the facilities for processing the measurement data, are also very impor-
tant, especially w.r.t. to scalability and adaptability aspects. Liotta et al.**°
present a decentralised solution based on mobile agents (see Section 2.7.3),
which offers a near-optimal performance w.r.t. to traffic load and high adapt-
ability. As similar approach is followed by Gavalas,'?” while the FLAME'”
platform utilises kernel-level code deployment for monitoring in active net-
works. Sifalakis et al.>'® developed a resource-efficient platform that gen-
erates detection automata'®® at run-time based on a formal specification,
preserves the temporal order and causality of events, and is specifically de-
signed for autonomous and evolvable network environments. In Ganglia, ***
applications register for specific monitoring functionalities. The affected
nodes then monitor their local state and send measurement data via mul-
ticast whenever an update occurs. Han et al.’s'*" approach uses policies to
define monitoring tasks based on the application and network state. These
policies encode actions executed at run-time based on the defined precondi-
tions, but the policy specification itself is static. DYSWIS?**® encodes mon-
itoring rules within the nodes, which can trigger queries to their peers in
a distributed fashion, for example, whenever its own observations indicate
that further investigation is warranted. NetQuest **® uses network inference
based on Bayesian experimental design®'® to select a subset of monitoring
rules and parameters such that the information gain is maximised. IBM’s
Clockwork?®” is a method for constructing autonomous predictive systems
based on feed-forward control loops which use statistical modelling, track-
ing, and forecasting based on an autoregressive time series.

Due to the special problems induced by on-line stack evolution - fluc-
tuations in measurement accuracy and possible communication loss due to
experimentation with faulty stacks - we had to develop our own measure-
ment and communication facilities to counter these problems. We introduce
these facilities, which integrate and can collaborate with some of the afore-
mentioned approaches for data acquisition, in Section 5.1 and discuss our
communication facilities in Section 5.3.4.

22

2.5. eANALYSIS OF INFORMATION

2.4.2 Cross-Layer Designs

Sometimes the needed information is already present within the network
or the node, but not accessible or readily available. Routers, for example,
know when they drop packets do to congestion. If this information is for-
warded to the end host via ECN, the TCP instance there can adapt its send
rate appropriately, instead of aggravating the problem by retransmitting the
supposedly lost packet. Already back in 1990, Clark and Tennenhouse in-
troduced the notion of Application-Level Framing, by which the application
decides how the transferred data is to be divided into units for the lower lay-
ers to handle. Williamson and Wu’s CATNIP*”” encodes context-knowledge
such as the size of HT ML-documents in the protocol headers, either in the
form of a single “priority bit” or through packet sequence numbers, based
on which the use and configuration of protocol variants such as Rate-Based
Pacing or Early Congestion Avoidance for TCP, or Random Early Detection
for IP is controlled. Other cross-layer approaches,*** which share informa-
tion between layers, have been proposed e.g. to improve self-organization in
wireless networks.?*® Srivastava et al. >*° provide an interesting overview of
the opportunities and challenges of such designs.

We provide a shared database for cross-layer information sharing and
other applications in our design, as discussed in Section 3.5.3. We further
extend this approach to protocols on the same conceptional** layer, so that
e.g. transport protocols such as TCP or UDP can share the necessary state
information to enable replacing them without disruption to ongoing com-
munications as discussed by example in Section 3.7.2.

2.5 Analysis of Information

The raw measurement data on its own is of no use until it is processed and
the inherent (state) information extracted or converted into a form that can
be used for decision making. In a living organism this data processing stage
encompasses e.g. those neurons that convert the raw sensory data into an
image and associate it with a known object. Based on the situational aware-
ness gained by this stage, the system may decide on how to act, a process we
discuss in Section 2.6. With respect to analysis, we concentrate on those areas
which are important for our research, i.e. how to perform experiment, how
to derive a measure of utility or fitness, and how to detect or even predict
changes in network conditions.

Y Qur system design is actually layer-free.

N8}
w

STATE OF THE e ART & TECHNOLOGIES

Application

" service profile or

' weighted goal function
v
Service checker Experi-
—=| menter
logic

Resource allocator ‘

Monitors:

delay detecto
BW estimator
Protocol functions: G

TCP and variants, reorderer,
de/interleaver, path pin down
FEC, de/compressor, etc

|

l to network device drivers

Figure 2.5: The architecture of the framework for serial experiments.>®°

2.5.1 On-line Experimentation

One of the fundamental aspects of our design is the concept of trialling pos-
sible stack configurations on-line to explore how well they perform under
actual conditions. Trial-and-error exploration is one of the most basic and
most common methods applied for autonomic problem solving in nature. ***
In artificial intelligence research this method was consequently applied from
the very beginning, for example in a model of human thought processes
when playing chess.*'® We therefore limit our discussion here to some ex-
amples close to our own research.

Zhang**® analyse the performance of Distributed Breakout®® and Dis-
tributed Stochastic Algorithms*®” (DSA) for the distributed scan scheduling
problem in sensor networks which need to limit their communication over-
head and lack global knowledge. They come to the conclusion that DSA
offers superior performance under controlled conditions. This algorithm
is very simple as it basically consists of random selection of a new value if
conflicts exist, communication of this value to the remote nodes, and the
collection of remote reports, i.e. trial-and-error experimentation.

24

2.5. eANALYSIS OF INFORMATION

Within the context of cognitive radio or battlefield communications, the
ADROIT **° project developed a cognitive component**” which employs a
neural network to decide on the most appropriate strategy choice based on
the environmental conditions. During a trial run, all of these strategies are
tested on-line and used to train the neural net. As this system in total em-
ploys only four different and pre-configured strategies and uses 12 input sig-
nals, the neural net is able to learn the appropriate choice in around 360 tri-
als.

Ramos-Munoz et al.**® explore how protocols perform by simply de-
ploying them in series or in parallel and measuring their performance. They
reason — just as we do - that future networks will become increasingly im-
possible to model accurately, that gathering sufficient information about the
network state becomes ever more difficult, and that simulations will differ
from reality, e.g. because “not all implementations will adhere to the sup-
posed model”. 'Their framework, which is shown in Figure 2.5, consists of
a pool protocol functions, monitor helpers, a service checker, experimen-
tation logic, and a resource allocator. The protocol function pool contains
specifications of protocol configurations or complete stack configurations,
which are grouped according to their service specification. The monitor
helpers gather performance measurements from the network and the sys-
tem. The service checker decides whether the tested service complies with
the application request, based on an user-provided fitness function and the
measurements from the monitor helpers. The experimenter logic performs
the experiments, i.e. selects when which service or service configuration is
deployed in the network stack. The resource allocator executes resource poli-
cies such as splitting data streams between two services. The experimenter
logic performs experiments whenever the network conditions change or pe-
riodically, and selects a known-good protocol and two candidate protocols
for testing. It then runs them either in parallel, partially diverting the traffic
to one of the protocols, or serially, one protocol after the other.

Bicket’s approach *® for locating the most appropriate bit-rate for wireless
communications also applies trial-and-error experimentation, but does not
test all possible settings. Instead it limits the experimentation to those bit-
rates that promise to offer a higher throughput under lossless conditions and
preliminarily aborts trials once multiple consecutive packets are lost. Exper-
imentation is performed infrequently, and the bit-rate that promises to offer
the best throughput is utilised, and thus the impact of experimentation on
operations is limited.

We discuss the methodology we employ for experimentation in Sec-
tion 5.3, and the means for ensuring comparability between experiments in
Section 5.3.3.

QYTATE OF THE e ART & TECHNOLOGIES

2.5.2 Goal- & Utility-Measures

For autonomic communication systems to be able to adapt their behaviour
towards a defined goal state, they naturally have to be aware of what con-
stitutes a desirable performance, which implies the need for an either ex-
plicitly or implicitly defined performance measure. This measure can be e.g.
encoded as a machine-level policy description, semantically based on an on-
tology, expressed mathematically as a fitness function, or expressed in any
other way, as long as it enables the system to infer whether the current con-
figuration resembles a goal state or not, or even better its proximity to the
goal state.

The problem of how to arrive from a high-level goal description at a pre-
cise low-level expression that can be evaluated by the system has been re-
searched e.g. in the context of the semantic web. Strassner et al. **” contest
that the concept of the knowledge plane was insufficient to express business
goals and to integrate heterogeneous technologies. They propose an infer-
ence plan which is based on ontologies and information models to extend
the knowledge plane. They explore this concept in the FOCALE project,
for which they propose the ontological DEN-ng**® context and policy model,
and which they designed explicitly to support autonomic communications
and the corresponding learning facilities. Lewis et al.*'” apply ontologies
to Content-Based Networks, which are based on the Resource Description
Framework (RDF).?*® Zhou et al.>** apply DAML+OIL*** for QoS provision-
ing, as do Dobson et al..** Similar approaches have also been proposed for

Cognitive Radio networks. *®

Kephart'*® advocates the use of scalar utility measures — derived from

the current state of the system or its environment - for self management:
“Utility functions are attractive for autonomic computing because they provide
a principled basis for automated agents to make rational decisions.” Bennani
et al.** and Walsh ef al.®”® use sigmoid-shaped utility functions based on
e.g. response time or throughput to regulate the resource allocation process
in data centres or on high-level concepts such as business terms or service-
level attributes. Similarly, Kelly'*® reduces multiple decision criteria criteria
to a single integer value, and Sutherland uses virtual currencies® for allo-
cating resources on a PDP-11. Petrova et al.*>” use utility-based goal defi-
nitions for learning the utility of spectrum selection and routing issues in
cognitive wireless networks. Their utility function definition is based on the
expected Value of Perfect Information, *** to evaluate the potential gain of an
action in relation to the cost of performing e.g. an experimental change of
configuration. Jon Crowcroft et al.proposed a pricing scheme”* which com-
bines the resource usage of TCP connections with user-assigned weights.

26

2.5. eANALYSIS OF INFORMATION

By tweaking the TCP parameters, they achieve fair, selective QoS without
over-provisioning, connection acceptance control, reservations or multiple
queues on the routers. Of particular interest to us is the research of Lee
et al.?'*'2 who try to translate high-level user preferences into a machine-
evaluable utility or fitness measure by means of a model of the user’s context.
For this purpose they apply a multi-layer neural network to predict a value of
the service based on user input for previously encountered situations. They
provide an user interface containing a simple “better” button which indi-
cates whether a setting is considered superior to another and thus acts as
reward for training the ANN. Our system evolves by means of a fitness func-
tion which rewards stack configurations according to their perceived value
to the user, where Lee ef al.’s method could be easily integrated.

Volker et al. **® introduce a meta-architecture, which run on top of in-
stances of underlying network architectures (Netlets), such as SILO, RNA, or
ANA (which we discuss in Section 2.7), and selects between them based on
its presumed utility. For this purpose they utilise multi-attribute utility anal-
ysis '®¢ to aggregate each NetLet’s tested utility into a ranking based on the
user’s preferences.

The relatively recent ChoiceNet *® also proposes the provision of multiple
protocols, stacks, etc.in parallel, between the users choose based on their
overall experience: “Depending on the user’ satisfaction [...], they continue
to use the chosen service or switch to another (i.e., vote with their wallet)”. The
utility thus is directly based on economy, the cost of providing the service vs.
the expected and actual monetary gain.

Our own system utilises a dynamically-specified fitness function
to determine the utility of stack configurations, which we introduce in
Section 5.3.5.

2.5.3 Classification & Detection

As the performance of network stacks depend on the situation of the
network and the ongoing traffic, we require a reliable method for deciding
whether the conditions during different experimentation are sufficiently
similar and the results therefore comparable. Due to fluctuations and
measurement inaccuracies, as well as the unknown correlation between
changes and their effect on stack performance, a simple calculation of a delta
of measurement values is insufficient for deciding whether the network
state has changed or not. We present several methods for data analysis that
we consider promising for the purpose of predicting whether two situations
are identical (anomaly detection), and to group data according to their
similarity (classification).

QYTATE OF THE e ART & TECHNOLOGIES

ARTIFICIAL NEURAL NETWORKS

An Artificial Neural Network (ANNs) is a machine-learning technique
which is often applied for filtering, classification, or clustering purposes.
ANNs mimic the operation of neurons in the brain, and are trained through
application to a set of correctly classified examples (supervised learning).
Nodes are often arranged in layers, e.g. one input, one output, and one
hidden layer in between, were all nodes on the input layer propagate
information to the hidden layer, which in turn propagates the information
to the output layer. The number of nodes on the input layer corresponds to
the number of input signals, e.g. to the number of measurements, on which
the classification process is to be performed, the nodes on the output layer
represent the result of the classification process. Propagation of information
is realised through connections (vertices) with attached weights, and the
value assigned to a node corresponds to the weighted sum of its inputs.
These weights are the factors that are actually learned by the network by
means of a cost function that defines the distance to the intended solution.
Feed-forward Neural Networks forward data only to the next layer, i.e. they
represent acyclic networks, whereas Recurrent Neural Networks contain
cycles. The performance of ANNs depends strongly on its design, i.e. the
wiring, cost function, and number of nodes. If too few hidden nodes are
present, the output error is high. If too many hidden nodes are present, the
risk of over-fitting, i.e. learning a function that represents the training set
very well, but increases the error on unknown input data, increases. >**

Neural Networks have frequently been applied for anomaly detection
tasks. Gonzalez et al.'*® present a method for this purpose which is in-
spired by the immune system and useful when only positive samples are
available for training. Estevez et al.**" apply several statistical tests, e.g. the
Kolmogorov-Smirnov test, to measure normality of HT TP header features
and detect anomalies. ANNs have been successfully applied for anomaly
detection, for example by Kozma et al.>°® who use a three-layer neural net-
work to detect weak anomalies in sensor measurements of nuclear power
plants. Several approaches for adaptive state filtering are presented by Par-
los ef al.,?”® who use Recurrent Neural Nets to approximate the non-linear
dynamics of the filter. The resulting method is thus applicable to real-world
problems, but still requires an initial model, even though this model may be
somewhat inaccurate. Haigh et al.'*® use an ANN to learn a model of the
fitness landscape in a MANET configuration setting. Due to the huge size
of the search space, they utilise existing analytical models and only learn the
error within these.

Neural networks are also used to learn e.g. the optimal configuration of

28

2.6. “DECISION

radio parameters, as we described in Section 2.5.1. Gelenbe and his group
utilise so-called smart packets for many different networking purposes, ***
*! for example for adaptive routing and QoS provision. ***'** These pack-
ets utilise Random Neural Networks '** deployed on the routers throughout
the network. Each network is composed of as many neurons as there are
outgoing links, and the corresponding weights are reinforced based on their
contribution to the success or failure of achieving the QoS target.

CLUSTERING

Clustering algorithms perform unsupervised classification by grouping data
samples such that the overall dissimilarity between group members are min-
imised. Clustering has many important applications in data mining, for ex-
ample for traffic analysis. k-means is an example of a kernel-based algorithm
that is in common use and which we introduce in Section 4.2.2, and which
e.g. Lakhina et al.>*® apply for classifying anomalies in traffic data. k-means
requires the number of clusters to be specified in advance, but methods such
as X-means®”” can work around this limitation. Hierarchical clustering is
another class of clustering methods, and operates by building a hierarchi-
cal structure of the data according to its proximity matrix. These methods
need no a-priori knowledge of the number of clusters, which often is ad-
vantageous. Dornbush ef al.,®® for example utilise Hierarchical Agglomera-
tive Clustering for clustering vehicles according to their position in VANETs.
The performance of clustering algorithm depends very much on the type of
problem it is applied to, as Xu et al.**® show in their comprehensive survey
of the field.

2.6 Decision

The decision on how to act based on situational awareness is an operation
which is usually associated with cognitive brain functionality and as such ar-
guably the most difficult task of our system: It has to devise candidate stacks,
which promise to offer better utility than the known solutions, based only on
the measured utility of these. We focus in our discussion on on-line learning
techniques, which do not require a world model and employ exploration of
the configuration space. The reason for this restriction lies in the nature of
the problem we intend to solve. The sheer size of the search space and the
relative lack of design-time knowledge about this space and utility distribu-
tion therein biased our focus towards probabilistic and bio-inspired meth-
ods. Expert systems and other model-based reasoning methods*®® infer a

29

QYTATE OF THE e ART & TECHNOLOGIES

conclusion based on a world model. To build such a model, sufficient knowl-
edge of the application environment and problem space - e.g. the deployed
protocols - is needed, which does not fit our requirements for autonomy.
Supervised learning **® requires labelling by an expert, which is contrary to
our aim of reducing the administrative overhead. We further expect our sys-
tem to be deployed in unknown situations for which no appropriate training
data is available. Unsupervised methods such as clustering are very useful
for data classification as they can find hidden structures embedded in the
data, and are therefore discussed in Section 2.5.3. But since these methods
do not explore the search space for new candidate solutions to trial, and also
do not utilise a reward or utility measure to evaluate these candidates, we
cannot easily integrate them into our stack evolution approach.

2.6.1 Evolutionary Algorithms

Evolutionary Algorithms are meta-heuristic optimisation techniques
operating in accordance to the principle of biological evolution: ‘given
a population of individuals, the environmental pressure causes natural
selection (survival of the fittest), which causes a rise in the fitness of the
population over time”.*® Genetic Algorithms operate on populations of
(often binary) strings, the chromosomes, each of which encodes a config-
uration in the search space. Genetic Programming encodes solutions as
computer programs, whereas Evolutionary Programming encodes only the
parametrisation of these programs, and keeps the program itself constant.
We describe our own implementation of an Evolutionary Algorithm in
Section 4.1.3.

Eiben® proposes the use of Evolutionary Algorithms for autonomic
computing and presents an exemplary application for autonomous load
balancing of a web service provided by several servers in the network.
Montana et al.**® apply Genetic Algorithms for re-configuring network
topologies, e.g. wireless point-to-point links between mobile nodes, de-
pending on traffic patterns, resource availability and other dynamically
changing requirements. They encode a list of variable length which consists
of 3-tuples representing the source node, destination node and number of
channels that connect these two nodes. Three genetic operators are used to
create children: crossover, where the 3-tuples of both parents are randomly
combined into one list excluding those tuples which violate constraints,
local mutation, where the number of channels is increased or decreased by
one, and global mutation, where between half and all-but-one of the tuples
from one parent are attributed to the child and the remainder filled up with
random tuples. Populations are kept duplicate-free, and roulette-wheel

30

2.6. ‘DEcIsIoN
selection is used for parent selection. Yamamoto et al.**” utilise Genetic
Programming to autonomously synthesise protocol functionality from
fundamental building blocks. Their research shows some of the difficulties
of truly autonomous code generation, as their programs often cheat, for
example by reporting incorrect transmission statistics, to achieve a higher
fitness than appropriate.

Evolutionary Algorithms can also be realised as agents distributed across
anetwork. For example, Laredo et al.>*” evaluate distributed Evolvable Algo-
rithms placed in a simulated peer-to-peer network by measuring their per-
formance, i.e. solution quality and algorithm speed, through application to
artificial fitness landscapes. Similarly, Genetic Algorithms have been used
for QoS-based routing e.g. by Barolli et al. ** or Xiang et al.,*** and for short-
est path routing by Ahn et al. ¢

2.6.2 Reinforcement Learning

Reinforcement Learning is a class of trial-and-error learning methods which
focusses on maximising the overall sum of a scalar reward signal: *** Based on
sensory input from the environment, an agent chooses an action to perform.
The rewards communicated by the reinforcement signal are not immediate,
but depend on the value of the state the agent is currently in, thus actions can
trigger delayed benefits some time in the future. Reinforcement Learning
significantly differs from the supervised learning used to train e.g. ANNS, as
the agent has to find an effective trade-off between exploration of unknown
states and exploitation of states which are known to offer a positive reward.
Many methods in this category model a finite Markov Decision Process***
(MDP) in which the probability of reaching a specific state depends only on
the previous state and the performed action. Thus the expected reward is the
sum of the rewards for all the states multiplied with the probability of reach-
ing that state. One of the most common methods is Q-learning, *’* but many
other effective algorithms exist, some of which are surveyed by Kaelbling et
al.'”® and by Busoniu et al. ** for application in multi agent systemns.
Reinforcement Learning techniques have been applied, for example to
routing by Dowling et al., whose SAMPLE*® algorithm for MANETS collab-
oratively learns the most effective route based on positive and negative feed-
back. Their MDP-based learning method overcomes the need for complete
observability by favouring recent observations using a finite history window
and reducing the effect of older values by means of a decay model similar
to the one used in Ant Colony Optimization. ***” Similarly, Sridhar et al. **®
apply Reinforcement Learning for power-usage-optimisation in sensor net-
works, based on a reward function that weighs power drain against correct

31

QYTATE OF THE e ART & TECHNOLOGIES

sensing of temperature changes, and thus achieve an extension of the sensor’s
operational life.

2.6.3 Swarm Intelligence

Swarm Intelligence refers to the collective behaviour of decentralised multi-
agent systems. These agents co-ordinate their behaviour through local inter-
action with each other and their environment, using algorithms which often
were inspired by or modelled after swarm-building animals.

Swarm Intelligence is often employed for distributed optimisation tasks
in networking. In particular, the behaviour of ants, i.e. their probabilistic
exploration, the marking of effective routes towards food sources with pher-
omones, and the selection of routes biased towards thus marked paths, was
utilised for routing,®*® peer-to-peer networks,** distributed computing,***
and the semantic web.?** All mentioned approaches utilise variants of the
Ant Colony Optimization ®*®*” algorithm. Sesum-Cavice et al.*'* exploit a
somewhat different method to organise a Peer-to-Peer network for efficient
information retrieval. The behaviour of other swarm-building animals such
as fireflies was also effectively appropriated for networking processes, e.g. for
clock synchronisation in ad-hoc?®® and sensor **® networks.

While many of these algorithms operate in a distributed fashion, the
study of the behaviour of honey bees has let to the development of power-
ful optimisation algorithm, *** which compares favourably with techniques
like Genetic Algorithms or Evolution Strategies. *** The algorithm employs
three types of artificial bees - employed, onlooker, and scout bees. There
is one employed bee for every known food source, i.e. known location in
the search space. The employed bees communicate the location of the food
to onlooker bees, which choose one of these, and go to explore another
randomly-selected location in the vicinity of the chosen food source. Scouts
randomly search for new food sources. Old known food sources are over
time replaced with new ones found by the scouts depending on the amount
of food, i.e. fitness value, present there.

Cuckoo Search®”**® is a relatively new and rather effective '** optimi-

sation technique modelled after the brood parasitic behaviour of cuckoos.
Every cuckoo lays one egg into a nest, i.e. location in the search space, which
it chooses randomly using Levy flights.>*® If that new location’s fitness is
higher than the old one, it is replaced, otherwise the old location is kept. Ad-
ditionally a fraction of the worst performing nests is replaced by randomly
chosen new locations.

32

2.6. “DECISION

2.6.4 Other Approaches Inspired by Nature

Whereas interest in autonomously interacting communication systems be-
came widespread in the last decade, the principal idea of mimicking natu-
ral phenomena which exhibit self-x properties itself dates back to the early
days of cybernetics, as e.g. Ashby'® himself already explored the possibil-
ity of self-organising systems. We limit our discussion here to some more
recent examples of nature-inspired approaches, but many other approaches
for networking exist, as surveyed by Dressler ef al.,”* and Babaoglu et al.*
even provide a set of design patterns for distributed computing based on bi-

ological approaches.

Modelled after interaction features on the cell-level, Leibnitz et al.*'*

utilise the concept of attractors'®* for multi-path routing. Here the prob-
ability of selecting a specific path for an outgoing packet is relative to the
concentration of nutrient molecules on the path, i.e. the packet delivery ratio
along a path. The combination of attraction and inhibition in turn was used
e.g. for the configuration of sensor networks,**® where nodes stop sensing
when adequate sensor coverage in the vicinity is guaranteed, i.e. the inhibitor
concentration is high enough. The interaction of cells that leads to the bris-
tle differentiation of Drosophila flies was modelled by Tateson ef al. **¢ and
used to generate a channel allocation plan for mobile phone networks. Gan-
guly ef al.'®® present a search algorithm for peer-to-peer networks which
utilises a concept of proliferation based on reaction-diffusion in a similar
way to the humoral immune system. Artificial Immune Systems *®* them-
selves have also been used for networking purposes, such as the detection of
misbehaviour in ad-hoc networks. *'°

The interaction of forces and particles has also been successfully applied
for the dissemination of information. Artificial chemistry has been used for
networking protocol design,?****® and Stoy et al.>*>%*¢ propose an amor-
phous self-reconfiguration algorithm, based on Abelson et al.’s* research,
which consists of a coordinate propagation mechanism, a gradient gener-
ation mechanism, and a mechanism to relocate modules, through which a
randomly configured robot can recompose itself to resemble a target shape.
The gradient generation mechanism operates by locally disseminating an ar-
tificial chemical to attract other nodes to its neighbourhood. Likewise com-
putational force fields have been used to coordinate the motion of mobile
agents.?* In this model, agents can generate artificial force fields which are
propagated through the embedded infrastructure. These agents thus con-
vey contextual information across the environment, which can be used by
other agents by simple following the field gradient, e.g. for locating a tar-
get or avoiding crowds. Their TOTA-approach**® represents contextual in-

33

QYTATE OF THE e ART & TECHNOLOGIES

formation by means of distributed tuple structures in the network, which it
reshapes dynamically in accordance with the dynamics of the network.

2.6.5 How to Choose and Configure an Optimization Algorithm

In their seminal 1997 paper,®*' Wolpert and Macready analysed how so-
called black box optimisation algorithms, such as Evolutionary Algorithms
or Simulated Annealing, perform for different problem classes by looking at
a-priori constraints as well as through calculation for specific problem sets,
and came to the conclusion that any advantage one (class of) algorithm might
have for a specific set of problems was counteracted by a inferior perfor-
mance for other problem sets, i.e. worse performance than random search on
average. In particular, they show that “for both static and time-dependent op-
timisation problems, the average performance of any pair of algorithms across
all possible problems is identical”, and that this performance depends on how
well the probability distribution of the possible solutions the algorithm visits
fits the underlying distribution of the problem. Consequently, if the prob-
ability distribution for a particular problem class is unknown, one cannot
easily predict which algorithm might perform best.

The performance, i.e. the quality of the found solution and speed
of the algorithm, of a specific class of algorithms for a specific problem
furthermore depends on the parameters used to configure it. For example,
Eiben, Smit, et al. *%19%201:320:32L,322,378 ynalyse this problem in detail, and
present techniques for on-line and off-line parameter optimisation. Eiben et
al.*®* also show that the on-line adaptation of normally ignored parameters,
such as population size or selection operators, can further improve the
performance. Particularly interesting in this respect are meta-optimisation
techniques, such as Eiben et al.’s*°® approach of applying Machine Learning
methods to learn the optimal parametrisation of Evolutionary Algorithms.
Mori et al.**° also utilise a two-layered meta-heuristic for adaptation. They
apply a Genetic Algorithm to evolve individual populations - islands®”® -
between they select by means of an environment-identifying ANN. Thus
the individuals on each island evolve independently and specialise towards
the environment on their island.

2.7 Action

Once a decision has been taken, the plan has to be put into action. Just as a
living being might move its legs to reach a destination, the autonomous sys-
tem has to possess actuators through which it can influence its surroundings

34

2.7. eAcTIoN

or itself. In this section we therefore introduce technologies, designs, and
architectures that can enable the system to act, i.e. to re-configure itself or
influence other entities in the network to do so.

2.7.1 Protocols & Stacks

Throughout Chapter 3 we discuss our own design for flexible micro-proto-
col-based stack composition and configuration, which is heavily influenced
by and based on the foundations laid by the research we present below. In
Section 3.4 we introduce how the network stack in our system is composed
and configured at run-time out of micro-protocol modules and how the
composition process is defined and constrained by means of a specification
ontology and in Section 3.7 we introduce the interaction between these mod-
ular stack components and the control flow between them.

ProTocorL CONFIGURATION & TUNING

Stack functionality can not only be controlled through the stacks compo-
sition, but also via the configuration of the protocols encompassed therein.
Current implementations of TCP, for example, export many configuration
knobs that are accessible through e.g. the sysctl interface in FreeBSD. The
administrator can thus select whether to enable Appropriate Byte Counting
(RFC 3465'%) congestion control, etc. Several protocols have been explicitly
designed with re-configurability in mind. The Fully Programmable Trans-
port Protocol, *¢ for example, selects the employed rate, congestion, and er-
ror control methods based on the configured QoS requirements. Robles et
al.*®* describe a location protocol for wireless sensor networks, which an
application can adapt at run-time to match its requirements. Gu et al.'*?
allow applications to provide their own congestion control algorithms in
user-space. Jaganathan et al.'”® provide a customizable transport protocol
for application in FPGAs.

The combined tuning of multiple protocols across layers can be partic-
ularly rewarding, and has for example been used for parameter control in
MANETs"**!*® or Cognitive Radio applications as introduced in Section 2.1.
Several examples of architectures for this purpose are also presented in Sec-
tion 2.2.2.

Protocol re-configuration does not necessarily require support by the
existing protocol implementations. Feldmeier et al.'°® suggest the use of
protocol boosters, i.e. protocol modification modules, which transparently
adapt the corresponding protocol’s operation such that better performance
is achieved. For example, TCP performance on asymmetric channels, where

35

QYTATE OF THE e ART & TECHNOLOGIES

the return channel is far slower than the forward channel, can be boosted
by adding a module on the receiver side which ensures that only the most
recent acknowledgement is kept in the transmission queue.

A complete network stack can even be constructed by repeated applica-
tion of a single, flexibly configurable protocol. Touch et al. **® developed the
Recursive Network Architecture RNA, which applies a single, tunable proto-
col template on different layers of the protocol stack. They note that many
new protocols include redundant functionality, such as state establishment
or virtualization, which are already provided by other layers. Their results are
threefold: Firstly, services are relative to the layer they are provided on, e.g.
link layer security is only sufficient for the link layer, network layer security
only for the network layer. In other words, end-to-end services cannot be
provided by hop-to-hop services. Secondly, many of the redundant services
offered by the multiple layers could be avoided. For example the redundant
error detection currently provided on many layers, e.g. checksumming by
IP, TCP, and on the link layer. Thirdly, cross-layer coordination eases op-
eration, as many features are dependent on characteristics or provisions of
other layers.

FroMm MonNoLITHIC PROTOCOLS TO STACK BUILDING BLOCKS

The aforementioned problem of redundant functionality can be solved by de-
composing the protocols into re-usable modular components. The modular-
isation of protocol functionality is particularly interesting since most com-
mon protocols such as TCP can be decomposed into minimal functional
blocks. *#'%>!?¢ The resulting atomic modules are re-usable by other proto-
cols and can be recombined as needed. Stack designs based on such micro-
protocols have been proposed for more than twenty years, e.g. in O’Malley
et al.’s**” Dynamic Network Architecture.

Such decomposition is possible because protocol functionality generally
follows the same communication paradigms. Karsten, '** for example, stud-
ied the de-construction of communication protocols into fundamental ax-
ioms. These axioms can be used to model and formally analyse protocol
behaviour and - via meta-compilation - to generate C++ protocol imple-
mentations. Chiang®* developed a mathematically-thorough analysis of the
network stack as a whole, and describes how protocols can be systematically
designed as distributed solutions to a global optimisation problems.

36

2.7. edcTion

Figure 2.6: A composable network stack of the z-kernel. **°

Dynamic COMPOSITION

Modular architectures which provide the necessary facilities for dynamic
composition at run-time have a relatively long history: Dennis Ritchie***
introduced the flexible, coroutine-based stream I/O subsystem for character
devices into Unix already back in 1984, which allows the output of one device
to be connected to the input of another via pipes. One of the key concepts of
this system are stackable layers, which Guy ef al. '*® copied for their Ficus file
system and explain as: ‘A stackable layer is a module with symmetric inter-
Jaces: the syntactic interface used to export services provided by a particular
module is the same interface used by that module to access services provided
by other modules in the stack. A stack of modules with the same interface can
be constructed dynamically according to the particular set of services desired
Jor a specific calling sequence”

Two of the most important early contributions to the research on
dynamic network stack composition were made back in 1991. Hutchinson
et al.'** proposed the z-kernel, a operating system kernel which allows
runtime construction and composition of networking protocols, and
provides abstractions for common protocol functionality. This scheme
utilises a hierarchical naming scheme similar to Unix paths to specify
the route to take through the stack when decoding an incoming packet,
as shown in Figure 2.6. Protocols only need to support very few basic
operations, open to attach to a lower-layer protocol, push to forward
an outgoing packet to a lower layer, pop to retrieve incoming packets,
and demux to de-multiplex incoming packets between multiple attached
higher-layer protocols. As the z-kernel makes no assumption of the order

37

QYTATE OF THE e ART & TECHNOLOGIES

or composition of the stack, run-time addition of protocols is possible.
These protocols do however need to specify the protocol they wish to bind
to at compile time. Tschudins**® Flexible Protocol Stacks removed this
requirement, thus enabling the free re-structuring of the protocol stack at
run-time by means of COMSCRIPT,**® a composition language modelled
after PostScript. Plagemann et al.’s Da CaPo,**"*** composes and configures
protocols through a specification language. Apart from the properties of
the protocols, application-specific communication requirements and their
weights are encoded in this specification, and the stack configuration that
best fulfils the combined weighted requirements is determined based on
predetermined influence estimates that are part of the property description.
Zitterbart et al. *** propose a functional-composition system which includes
validity scope checking and composition based on automatically generated
dependency graphs.

BEYOND (LAYERED) STACKS

The run-time-configurable Horus*** group communication system broke
the hierarchical stack model in 1996 by stacking micro-protocol modules
into different communication groups. These modules each have separate
responsibilities, i.e. provide a distinct subset of the protocol functionality,
and communicate via an uniform interface. Since the layering paradigm
which rules®' the Internets design is often, and in most cases for good
reasons, compromised, Braden et al. *® proposed to remove layers altogether
and replace them with a non-hierarchical role-based architecture. Roles
are similar to micro-protocol functionality and encompass e.g. such tasks
as fragment, encrypt, or compress. Another relatively recent approach is
Dutta et al.’s SILO,*® which also represents a layer-free architecture. As the
name suggests, their architecture is based on silos of services, which are
assembled on demand according to the requirements of the application and
environment. Their architecture also uses micro-protocols, but the inter-
action between these is regulated by well-defined precedence constraints,
i.e. compression can only be placed before encryption, not after. Silos are
composed by means of a fairly simple ontology-based non-polynomial
algorithm.>*® Service-oriented architectures are explored by Wolf,*”®
SOA4AIL®® etc.

CoMPOSITION FRAMEWORKS & NETWORK ARCHITECTURES

Several of these designs have evolved over time into complete frameworks
for protocol composition, some of which Gazis et al’s'*® survey describes

38

2.7. eAcTIoN

in detail. Touch expanded the concept of recursive blocks he proposed for
RNA towards a full network architecture called DRUID. *** In DRUID, recursive
blocks encapsulate the protocol functionality, translation tables provide the
name resolution functionality, i.e. they resolve the destination to which in-
formation is to be forwarded similarly to the protocol graphs of the x-kernel
or Click,"*” and a persistent state state storage. The Configurable Transport
Protocol*! is constructed using Cactus, and has been applied e.g. for grid-
computing purposes. *** El Baz et al. *°* also use Cactus to dynamically gen-
erate an application-specific protocol for peer-to-peer applications at run-
time. Horus in turn led to Ensemble '*® and later to the Appia**® framework.
Mena et al.**® provide an exhaustive comparison of Appia and Cactus and
propose several design improvements.

The Pandora®”? project stacks software components which communi-
cate through message exchanges, and can re-configure itself according to
the configuration specified via a reflexive interface. One application is the
C/SPAN**® project, in which a flexible web cache called C/NN tunes Pandora
according to the measured disk space, request rate, etc., while Pandora in
turn configures C/NN according to the observed traffic patterns. Condie et
al.’s P2 also assembles specialised transport protocols using reusable data-
flow building blocks. Perhaps most importantly, they present convincing
use cases for composable protocols within the context of the current Inter-
net: They argue that the requirements of peer-to-peer applications for rout-
ing and buffer management on the application-level, aggregation of conges-
tion state, etc., are far more heterogeneous than those of other applications
and require adaptation to the network as a whole, which renders monolithic
protocol designs insufficient.

Technologies such as CORBA®! also offer features very similar to those
provided by the protocol stack composition frameworks described above.
For example Crane ef al.”® and Vandermeulen®** discuss composable and
configurable protocols which operate within a CORBA environment on top of
TCP or UDP. The Stratos'** project considers composition for virtual mid-
dleboxes in a cloud environment.

Many Future Internet research projects include architectural provisions
for composition of services, protocols, stacks, etc. The ANA'® project, for
example, compartmentalises network entities that utilise the same services
or functional blocks and connects them via the so-called IDPs, which we in-
troduce in Section 2.7.2. IDPs can be transparently rebound at the discre-
tion of a compositional framework and functional blocks communicate with
each other exclusively via IDPs, thus run-time rebinding of the communica-
tion paths between functional blocks is feasible. *® For this purpose ANA in-
cludes a functional composition framework®'” which abstracts the lookup

39

QYTATE OF THE e ART & TECHNOLOGIES

and routing process. The 4WARD project® provides a meta-architecture, in
which ANA, SILO, etc., can operate in at the same time.*®” ChoiceNet®® en-
visions an architecture where multiple alternative stacks, protocols, etc., are
offered in parallel, and between which the users decide based on economical
considerations. **°

CONDITIONAL CONFIGURATION & BRANCHING

Depending on the application, user demands, or network conditions, differ-
ent stack configurations might offer the best possible performance, thus the
selection of a different sub-stack based on a per-flow or per-packet decision
may be advisable. The BSD packet filter*** is remarkable because it allows
packets to be captured based on a run-time-defined, and just-in-time com-
piled, definition of criteria, e.g. value ranges in the packet header. Similar
packet-based functionality has been integrated into software firewalls, e.g.
ALTQ? for queuing and dummynet*** for network simulation.

The Router Plugins”* architecture provides per-flow stack composition,
as it allows plug-ins to be dynamically loaded into the router operating sys-
tem’s kernel, configured, and assigned to specific flows. The Click**” router
also offers per-packet or per-flow branching, and run-time re-configura-
tion, but modules can only be added at compile-time. The OpenFlow?**
project enables the dynamic specification of rules for controlling the for-
warding of packets and flows within the router hardware. Thus two possibil-
ities for flow-based or packet-based sub-stack composition are made possi-
ble: Firstly, the handling of forwarding actions can be delegated to a remote
router, separate from the node responsible for the composition. Secondly, a
router can be instructed to forward packets to different nodes or ports, on
which independent (sub-)stacks are provided.

2.7.2 Dynamic Resolution of Names & Functionality

The stack components in our system depend on a underlay-independent
means to resolve the location of services and stack functionality. In our sys-
tem, modules and users should not know whether a service or network entity
is reachable via a particular TCP port at a specific [P address, and instead use
an generic way of identification. Static associations with particular protocols
might break whenever the stack is reconfigured, as the service in question
could all of the sudden be reachable via UDP directly over Ethernet instead.

The legacy approaches for naming and addressing on the Internet are in-
adequate for such dynamically-layered or layer-free architectures in which
new protocol services can be added at run-time. In the Internet, service iden-

40

2.7. eAcTIoN

tifiers are mostly statically assigned, e.g. IANA defines that service type 6 in
the IPv4 header identifies TCP. Even theoretically flexible services like DNS
or ARP are protocol-dependent as they expect to understand the address for-
mats that are used for mapping. Several more-or-less incompatible visions
and proposals for more flexible future naming schemes have been proposed
in the last decade.

Balakrishnan et al. *” argue that the current Internet’s scheme of only pro-
viding one layer of name resolution, namely DNS, is insufficient, that names
should bind protocols only to aspects of the underlying structure that are ac-
tually relevant for their operation, that persistent names should not impose
arbitrary restrictions on the named object, that names should be delegable to
other entities, and that the resolution process should include the possibility
of specifying sequences, e.g. for source routing. They propose four layers be-
tween which resolution is performed, from user-level identifiers over service
and entity identifiers to [P address resolution.

Stoica et al.*** propose the Internet Indirection Infrastructure i3 to gen-
eralise the Internet’s abstraction of point-to-point communication. In i3
packets are no longer addressed to a specific end host, but instead to an iden-
tifier stored in the overlay networks location service, e.g. a DHT service like
Chord.** Each identifier is mapped to one node in this network, which is
responsible for forwarding the data to the corresponding [P address(es). i3
thus supports unicast, multicast, and anycast packet delivery, as well as node
mobility.

Contraryto i3, Crowcroft et al.’s”* Plutarch aims to promote network het-
erogeneity through a catenet® similar to the one that constituted the orig-
inal Internet. For this purpose they introduce the concept of a context, in
which a mapping between names and addresses is defined. For example,
nodes in a sensor network can thus map an address within their own con-
text, which refers to a gateway that forwards the data to a host on the Internet.
Plutarch defines a strawmen API for registration and lookup purposes. A
similar architecture has been deployed '** on the PlanetLab*” infrastructure
to connect networks based on otherwise incompatible technologies such as
DTN'® with the Internet.

Alternative addressing schemes have also been used to improve packet
processing. Chandranmenon et al. *® propose the use of a source hash, i.e. a
flow identifier, to speed up the handling of packets. They argue that process-
ing power is more expensive than networking bandwidth, and that fields for
connection identifiers, network or data link addresses, etc., should be added
to protocol headers for this purpose. Tschudin et al.** introduced Network

® Concatenation of disparate networks

41

QYTATE OF THE e ART & TECHNOLOGIES

Pointers, which encode packet processing functions that are used to resolve
local selector labels instead of IP addresses in I?. This design philosophy
was further explored by the ANA project,'® which utilises the so-called in-
formation dispatch points (IDPs) to connect functional blocks, e.g. services
or protocol implementations, with each other. Access between functional
blocks is abstracted by means of IDPs, which may be transparently rewired at
run-time for re-composition purposes (see Section 2.7.1). Compatible func-
tional blocks, however, are grouped in compartments and may alternatively
use arbitrary addressing and naming schemes between themselves. Name
resolution uses a publish / resolve model similar to Plutarch. Names consist
of context and service fields, and the compartment in which the name is to
be resolved is selected by means of regular expression search applied to the
context field. *®

We discuss the specific abstractions for naming and address resolution
we use in our system, as well as the reasoning that guided this design, in
Section 3.7.3. 'The system itself is however flexible enough to host other
schemes, e.g. those introduced above, without modification, as discussed in
Section 3.7.2.

2.7.3 Run-time Code Deployment

Local protocol deployment at run-time is a well-established functionality,
as most current operating systems support dynamically loadable kernel-
modules. *** Thekkath et al.>** and Maeda et al.**® introduce methods for
deploying new protocols in user-space, as does the TUN/TAP *°* driver which
is available for most common operating systems. Other approaches such as
Plexus''® even allows applications to specify their own protocols written in a
type-safe specification language which are installed directly in the operating
system kernel.

But the manual effort needed to deploy new and improved protocols and
services when they become available is still rather large. As autonomous
networks are supposed to reduce the necessity of operator intervention, sev-
eral research projects explored how to alleviate this and other problems by
autonomously deploying code in the network.****'**”* One interesting ap-
plication of active network functionality is STP,*”* which enhances TCP by
means of mobile code. STP distributes protocol extensions, written in a type-
safe version of C, out-of-band to the network nodes. These untrusted exten-
sions do not require user applications to be modified, are run in a sandbox
and at low enough priority to supposedly guarantee reliable communication
and TCP-friendliness even in the presence of adversaries. In wireless sen-
sor networks, active code has been deployed by Levis et al.*'® and others.

42

2.8. SUMMARY & (JONCLUSION

Our system does not directly implement such technologies, but can load the
thus deployed protocol code into the system at run-time, as we discuss in
Section 3.7.

2.8 Summary & Conclusion

In this chapter we introduced the research and technologies most closely re-
lated to our own work, and which served as the basis for our own exploration
of autonomous stack evolution. We claim that some important aspects of the
field have not yet received the attention they deserve, and that several parts of
what is needed for a truly autonomous stack composition and configuration
system are still missing. For example, past research on stack composition
aimed at interoperability in multi-protocol environments, path adaptation
to user demand for flow services, cross-layering, and easy adoption of new
protocols. But research into the heuristics or logic that would enable truly
autonomous adaptation to the - often arbitrary and thus unpredictable -
demands of the users, and how they can be applied in a realistic setting, is
still very limited. We hope that our own work, which we introduce in the
following chapters, can serve as a further step towards filling some of these

gaps.

Chapter 3

Rationale and Architecture

In this chapter we introduce the concepts and the reasoning behind our re-
search into autonomous stack evolution, and describe the demands and re-
quirements which we plan to fulfil. Afterwards we introduce the system ar-
chitecture which we derived from this reasoning, detail the requirements
which incorporate our demands for the system, and explain how our archi-
tecture reflects those requirements.

3.1 Towards Autonomous Stack Evolution

In Chapter 1 we introduced the motivation that stimulated our research,
based on which we now detail the reasoning that guided the design of
our stack composition system. We envision a self-adapting system that
encompasses the network stack and realises autonomous stack evolution as
follows. Instead of pre-defining one generic stack for all possible applica-
tion environments and network conditions, use a stack that is optimised
for the current situation. Instead of fixing the stack configuration at
design- or deployment-time, adapt it autonomously towards the current
needs. Instead of incurring prohibitive costs for analysis of the network
and traffic conditions, followed by the design and implementation of a
customised stack, let the system itself decide, not based on assumptions,
but through actual trial-and-error experimentation. Instead of disrup-
tive replacement of the complete network infrastructure, let it gradually,
but persistently and continuously adapt towards a close-to-optimal
configuration. Instead of defining the optimum, let the users of the
system or the deployed applications define what is considered good.

45

‘RATIONALE AND ¢ ARCHITECTURE

The properties and system requirements we deem necessary for such a
system are presented in this section.

3.1.1 Continuous Optimization

The first condition that we require our system to fulfil is a continuous, ongo-
ing optimisation process. If the state of the network changes, our system has
to recognise this change and react appropriately. If the current performance
of the system is inappropriate, it should try to improve its modus operandi.
Since we assume that the environment and the requirements of the users are
non-static and unpredictable, constant re-evaluation of the performance and
adaptation as needed appear to be essential and inevitable.

3.1.2 Situational Awareness

Because we assume unpredictable changes in demands and network condi-
tions, the system has to be capable of independently evaluating the condi-
tions of its operation environment. This implies the autonomous gathering
of information about the state of the system, ongoing traffic, network con-
ditions, and user demands, as well as an analysis of the obtained data. The
system has to be able to reliably and autonomously perform these tasks, as
otherwise the induced operational overhead would nullify the systen’s ben-
efits.

3.1.3 Flexible Goals and Environments

We intend the users of the system to be able to define the criteria for opti-
misation at run-time, even if they do not understand the intrinsics of how
these goals can be achieved. Applications shall therefore be able to indicate
how satisfied they are with the capabilities of the stack, as they are in a better
position to retrieve this information from the users. The system has to be
able to assess the performance of the stack based on these reports. We thus
demand support for an arbitrarily wide variety of independent and under-
specified optimisation goals, application scenarios and network configura-
tions, the characteristics of which can be unknown at design and deployment
time. Since the composition and configuration of the ideal stack under such
conditions can be assumed to be equally unknown, we require the system
to be able to create and experiment with new stacks and thus learn how to
optimise the stack at runtime.

46

3.1. TowARDS c AUTONOMOUS STACK EVOLUTION

3.1.4 Gradual and Local Adaptation

As we discussed before, drastic changes, e.g. clean-slate approaches, are far
harder to implement in practice than gradual changes. We therefore ven-
ture that an autonomous stack composition system should be able to intro-
duce changes on alocal basis, i.e. that the network stack of only a few nodes
in the network should be optimised at a time. This naturally implies that
backward compatibility has to be guaranteed, and that nodes which utilise
different stack configurations nevertheless have to be able to communicate
with each other. While only one stack is to be deployed on anode at the same
time, it may contain conditional branches which lead to different sub-stacks.
Since different nodes can be utilised in different ways and be exposed to and
participate in different traffic scenarios, their stacks should further be op-
timised individually, which implies that interoperability between different
configurations should not only be possible, but assumed as common and im-
plemented such that it does not impede the stack operations. Our demands
further imply that the stack can be expected to operate reliably. For this
purpose we require the use of a known-good or baseline stack configuration
for most of the time and that the negative effects caused by experimentation
with new stack configurations is limited.

3.1.5 Situational Memory

While the environment in which the system is used cannot be assumed to
stay stable, sufficiently similar conditions might recur multiple times. An ad-
ditional requirement therefore is the ability to classify the current situation,
i.e. the current state of the network, the traffic conditions, etc., to memo-
rise which stack configuration exhibited the best performance under each
of these classes of situations, and to use the appropriate class for operations
and stack evolution. Through this requirement we increase the convergence
speed and guarantee that the stack composition system can adapt to multi-
ple environments, i.e. different optima, at the same time: As a separate set
of stack configurations and utility measurements is stored per situation, the
best configuration can be immediately selected whenever similar conditions
are re-encountered.

3.1.6 Distributed Multi-node Optimization

Asalready mentioned, nodes shall be able to individually optimise their con-
figuration. At the same time, however, it shall optionally be possible to max-
imise the overall network performance, if so desired, without requiring a

47

‘RATIONALE AND ¢ ARCHITECTURE

centralised decision making entity. It shall therefore be possible to express
global optimisation goals locally, with local optimisation leading towards a
shared optimal state. Independently controlled optimisation efforts in turn
require measures to prevent oscillations and strong fluctuations of perfor-
mance in the network as a whole, such that e.g. experimentation on one node
does not harm similar efforts or normal operations on another node.

3.2 Concepts & Features

Based on the goals defined above, we now elaborate on the concepts that
guided our design.

We intend for our system to be able to optimise its operations based on
the demands and expectations of the users and applications and depending
on the current network and traffic conditions, neither of which are known
in advance. For this purpose we employ on-line trial-and-error experimen-
tation: Our stack composition system continuously explores new network
stack configurations," trials them on-line by exposing them to the ongoing
network traffic, and then evaluates their utility based on user- and applica-
tion-defined criteria for rating the system’s performance.

We modelled the adaptation process after nature and try to evolve new
stack configurations based on the performances of previously tested stacks:
New stacks for the experiments are devised algorithmically by the evolution
logic based on the results of previous experiments. Similarly to the survival
of the fittest in nature, this logic favours stacks that exhibit better perfor-
mance and is more likely to use them as basis for new stack configurations.

Our performance measure is the utility or fitness of the stack. The system
collects data pertaining to the trialled stack’s performance from the running
applications — and hence indirectly from the users of the system - which is
condensed into a scalar fitness value. This aggregation is performed accord-
ing to an administrator-defined fitness function. Conceptionally, this fitness
value expresses how closely the current system performance resembles the
expectations of the running applications and of the users of the system, and
thus determines how likely a stack is to “survive”

The system autonomously assesses whether exploitation of the current
stack or exploration of new stack configurations is most beneficial: Just as
hungry predators will roam further for their prey, the intensity of experi-
mentation depends on the overall achieved fitness: A high fitness value -

Y In lack of a better term we use “stack configuration” to refer to both the composition and
configuration of the stack.

48

3.2. (JONCEPTS & JEATURES

a full belly - results in little experimentation being performed. The weigh-
ing between exploration and exploitation is further influenced through dy-
namic re-parametrisation of the evolution logic: When the fitness of the best
known stack is high, the parameter set is changed such that extreme modi-
fications of the stack configuration become less likely.

Evolutionary approaches are infamous for often failing to reliably reach
the optimum, but we do not expect that a truly optimal stack configuration
can realistically be found through on-line experimentation in a short time
frame, as neither the traffic or network environment conditions, nor the user
or application requirements can be expected to be known at design time, and
the search space is likely too large to exhaustively® explore. In fact, we do not
even expect any of these to remain constant, as even the dimensionality and
shape of the search space changes whenever a new protocol module is added
to or removed from the system. Thus the goal of the optimisation process
is to evolve a stack configuration which exhibits better performance than a
generic stack. An example of such a generic stack is the Internet stack, which
performs well under multiple traffic and networks conditions, but which is
not explicitly optimised for the current network and traffic conditions. Nat-
urally, we intend for the systernys fitness to reasonably quickly approach the
optimum, but not to actually reach it. We also do not assume that the result-
ing stack could be adequate for a wide spectrum of network conditions, but
rather to be specialised for the situation under which it evolved.

Our network stacks consist of modular components or micro-protocols,
that can be freely composed and configured within the limitations defined by
aspecification ontology we designed for this purpose. Network functionality
- for example, protocols and services - is thus interchangeable at runtime.
The stack configuration depends solely on the runtime-provided ontological
specification. As the fitness specification is also runtime-defined, the opti-
misation process is inherently autonomous and does not require intrinsic
(design-time) knowledge of the stack’s components, functionality, the net-
work layout, traffic conditions, or even the optimisation goal. The optimisa-
tion process is thus fully on-line-configurable and adaptable to the current
needs of the users.

We wish to guarantee that experimentation is non-disruptive and - ide-
ally — almost unnoticeable for the users and applications running on the sys-
tem, i.e. induced changes in the operation behaviour need be small enough
to be perceivable as fluctuations in the network conditions, etc. Therefore we
employ an experimentation strategy that tries to schedule experiments such

2 As most properties that define the search space and fitness distribution are specified at
run-time, analytical approaches to reduce the search space are not easily applicable.

49

‘RATIONALE AND ¢ ARCHITECTURE

that possibly negative effects on the overall network performance are mini-
mal. As mentioned before, our system adapts its own optimisation strategy
depending on the perceived stack performance. If the users and applications
are satisfied, i.e. if the performance is high enough, the effort spent on exper-
imentation and adaptation is kept to a minimum, whereas low performance
obviously warrants spending more time on exploration, and even risking
temporarily lower performance.

Our concept for handling differences in the network environment was
also inspired by nature. For example, finch populations evolved into a differ-
ent species once they were isolated on the Galapagos islands, as they had to
adapt to the environmental conditions and food sources there. We therefore
venture that if the “living” - or network - conditions differ, the adaptation
goal and therefore the optimal genome of the species - the stack configura-
tion — will likely also be different. Our stack composition system therefore
keeps multiple pools - called populations — which are conceptionally identi-
cal to the aforementioned isolated islands. Our system actively and passively
measures and analyses the conditions in the network, and classifies the cur-
rent situation. The baseline stack employed during the exploitation phase, as
well as the candidate stack configurations used for exploration, are chosen
from the population which was evolved under conditions that most closely
resemble the current ones. Since we use on-line experimentation to rate each
stacK’s performance, we also need to ensure that the conditions during the
trials are comparable. While we use the same fitness function for all situa-
tions, the fitness landscape® can differ differ, because the utility of the stack
is usually influenced by the network and traffic conditions. The classifica-
tion and population selection process also helps to solve this problem, as it
be used to guarantee that only stacks trialled under sufficiently similar con-
ditions are compared with each other.

The classification and population selection process provides our system
with a situational memory which is a vital means for recognising recurring
network conditions and work loads: Consider a mobile device which is rou-
tinely employed in a wired, nearly loss-free and high-throughput environ-
ment, as well as in wireless networks that provide a lossy, low-throughput
and high-delay service. The optimal stack configuration in the former case
might utilise unmodified TCP, which is known to perform rather poorly in
multi-hop wireless networks. >*® If the system can reliably and autonomously
identify and discern between those conditions, that is notice the correspond-
ing performance difference of the trialled stacks and assign them to different
populations, we reason that each of these populations will over time evolve

% The distribution of fitness across the configuration space.

50

3.3. STACK (JOMPOSITION SYSTEM

a different set of stack configurations, which are optimised for the corre-
sponding situation in the network. When the aforementioned mobile de-
vice moves from the wired to the wireless network, the system can instantly
switch to the most appropriate stack configuration, instead of slowly and
gradually evolving towards a new goal state over and over again.

The stack modification process is designed such as not to impede the
normal stack operations, i.e. when a new stack is created and the previous
one is replaced, the ongoing communication sessions are not interrupted.
This implies that state information must be persistently kept, understood
and shared by all stack modules that provide the same service across stack re-
composition. Consequently, the system must also be able to recognise faulty
stack compositions and execution errors at run-time and to abort these with
minimal delay and without loss of information.

Since we wish to support heterogeneous networks, in which the partic-
ipating nodes can independently define their stacks, we need to ensure the
capability to communicate across differently composed stacks. We define
that the initiator of a communication flow, e.g. the client that connects to
a server using TCP, defines the types and the order of the protocols that
are used for communication.® Our stacks therefore always include all stack
functionality, i.e. all possible protocols are made available for incoming con-
nections. We explicitly allow for changes of the composition along the path
~ for example, encapsulation or tunnelling - as long as this happens trans-
parently, i.e. the initiator does not become aware of it.

Lastly, as networks do not consist of one singular node, the optimisation
process could not be considered useful if it was limited to optimising the
performance of one node, but while doing so negatively impede the perfor-
mance of the network as whole. We therefore designed the framework such
that it can take the communicate and collaborate with other nodes within
the network, and exchange measurement data and fitness information with
them. This information can then be use into the fitness calculation, e.g. to
achieve collaborative optimisation towards a common goal.

3.3 Stack Composition System

In this section we introduce the architecture of the stack composition sys-
tem and describe its components. Our design is based on the autonomic
control loop introduced in Figure 2.4. It encompasses the functionality of
the network stack, the mechanics for modifying this stack, as well as the

& Nodes along the path are free to modify this order, in a similar manner as possible today
for tunnelling or VPN, as long as the communication endpoints are unaftected by these changes.

51

‘RATIONALE AND ¢ ARCHITECTURE

Low Conceptional Level ngh

Situational

Evolution Engine Classifier

ulations

e ~~Population

Population Selection

Quick Slow Medium
Speed of Reaction

Figure 3.1: A conceptional overview of the layers of adaptation within our
stack composition system. The evolution engine gradually evolves the stack
blueprints towards the optimum. The population selection mechanism oper-
ates on a pool of of stack blueprints, but with the help of the situational classifier
can react to changes much faster than the evolution process. For even quicker
and finer-granular decisions, the evolution engine can include in-stack redirec-
tors in the stack, which operate on e.g. per-flow or per-packet basis.

mechanisms for autonomously performing experiments and measurements,
gathering and analysing information about the stack and overall system per-
formance, and the logic for deciding how to adapt the stack. We begin with
an overview of the framework architecture, followed by a detailed descrip-
tion of the components.

3.3.1 Layered Evolution - Long-term Stack Evolution vs.
Mid-/Short-Term Adaptation

Based on the aforementioned considerations, we devised a design which in-
cludes three layers of adaptation and optimisation mechanisms, each util-
ising a different approach and complementing each other, as shown in Fig-
ure 3.1.

52

3.3. STACK (JOMPOSITION SYSTEM

\pplication
Module
—
Stack Evolution 5

g Composer Engine (=] g
: £ =
- 3 3
= - =
z e =

% Y
o Persistent Fitness % g
Bl i g
§ Storage Function £ g
= - '_‘=
: : 8
E 3 ;
3 5 ‘ Situational = ‘é
ENSOrS 1 &
- Classifier @

—

Sidechannel
Interface

Figure 3.2: The components of the stack composition system. Stack operations
encompasses the stack steering system, composer, persistent storage space, and
the sensors. The evolution machinery consists of the situational classifier, evo-
lution engine, fitness function, and multiple populations of stack blueprints.

The evolution engine constitutes the core of the adaptation functionality.
It operates on a population of stack blueprints. A stackblueprint encodes the
stack configuration, i.e. the connections between module instances and thus
their interaction, as well as the configuration of these instances and thus their
operational characteristics. The populations also store information pertain-
ing to the experiments performed for each of the stack blueprints. The pop-
ulation evolves through repeated cycles of on-line experimentation and con-
sequent application of an evolution logic, which in each successive cycle cre-
ates a new generation of stack blueprints based on the experimentally gained
data and the fitness estimate derived thereof. Due to our requirement that
the available micro-protocols, the definition of fitness, and the conditions
in the network are unknown at design-time, we employ evolutionary algo-
rithms and other machine-learning techniques that do not require design-
time knowledge about the configuration space or the application environ-
ment. Consequently, the adaptation process is comparatively slow, similarly
to evolution in nature.

Since changes in the environment can occur at a higher speed than the
evolution engine can adapt at, we provide another layer of adaptation: The
situational classifier analyses the state of the network environment, as well

a3

‘RATIONALE AND ¢ ARCHITECTURE

as the ongoing traffic, and the population selector keeps a set of populations,
between which it selects depending on this classification, which is based ei-
ther on administrator-defined heuristics or unsupervised learning. Both the
stacks used for normal operations and the candidate stacks used for exper-
imentation are chosen from the population that most closely resembles the
current situation in the network.

The third and fastest layer consists of in-stack redirector modules that are
placed within the stack by the evolution engine. Redirectors are connected
to two or more separate sub-stacks and decide on a per-call, per-flow, or per-
packet basis to which of these sub-stacks the processing should be forwarded.
Redirectors thus offer the finest granularity of adaptation in our system.

3.3.2 Framework Layout

The structure of our framework, which we call the stack composition sys-
tem, is shown in Figure 3.2, were the components that encompass the stack
mechanics are highlighted in blue, and those of the evolution machinery in
green. Figure 3.3 illustrates the interaction between these components.

The core networking operations are provided by the stack which con-
sists of service module - a.k.a. micro-protocol - instances and a persistent
storage space for keeping module state data consistent even across stack re-
compositions. The stack steering system manages and operates the stack,
schedules experiments, and gathers performance measurements. The stack
is constructed and modified by the stack composer, according to a stack
blueprint selected by the stack steering system.

The evolution machinery encompasses and controls the three adaptation
layers introduced above. The evolution engine produces a new generation
of stack blueprints based on the parent generation’s fitness as assessed by
the fitness function. The situational classifier classifies the current situation
based on sensory information about the state of the network and the traf-
fic characteristics. The population selector maintains multiple populations
and selects one of these based on the situational classifier’s verdict and redi-
rects all access by the evolution engine and the stack steering system to this
population.

3.4 Stack Layout & Specifications
We require that the functionality of the network stack is made available as
a set of modules, each of which encompasses a limited piece of core func-

tionality and defines its capabilities and requirements for interaction with

54

S

CIFICATION.

3.4. STACK LAYOUT & S PE

application-level
communication

payload @,

satisfaction

requests new

Stack Steering System

instantiation
builds

new stack

E-E

module-
specific
state data

Stack
Composer

modude-

specific

; 7 Persistent

Storage

state data

' Sensors

sensor

satisfaction

measurements
physical-layer
data packet /@
Sidechannel
Interface

5 7 measurements

blueprint

blueprints

Evolution

Engine

chooseblueprint
for experimentation

Current
population,
based on
classifjcation|

-

previous

Situational
Classifier sblect

blueprints
and fitness

population
based on
situational

itness of

current stack

Fitness

Function

lassificatic

Population Selection

—

Stack Blueprints including their measured fitness

blueprint

Stack Evolution Machinery

physical-
layer
data packei

sensor

The interaction of the components of the stack composition system.

Figure 3.3

‘RATIONALE AND ¢ ARCHITECTURE

other modules through a fixed ontology. To guarantee maximum flexibility
of composition, these modules are supposed to be co-operative, i.e. similar
functionality should - whenever possible - be provided through identical
interfaces which are generic to the functionality class. For further require-
ments for the protocol design, please refer to Appendix A. In this section we
describe how modules can define and offer their functionality to other mod-
ules, specify their requirements for operation and interaction, and detail the
means through which these modules can communicate, exchange data, con-
trol the program flow, and store state information.

Whereas our design shares many similarities and was inspired by other
frameworks for stack or service composition such as Click,*®” RNA,*** ANA, **
etc., itis probably most closely related to SILO*® and Da CaPo***: Like SILO, we
also utilise micro-protocols, enforce constraints on them, and define config-
uration options that can be adapted, as discussed in Section 3.4.1. In particu-
lar, our design allows loops to occur within the call graph and only employs
run-time checks to guarantee that the call graph is finite, as discussed in Sec-
tion 5.3.2. And whereas SILO utilises the eponymous application-dependent
silos which are dynamically generated per task, our systems constructs only
one shared stack for all tasks, which can embed an intrinsic selection logic to
branch between sub-stacks. Our in-stack redirectors and decision modules,
which we introduce in Section 3.7.6, thus allow for recursive branching and
decision making based on e.g. application-, flow-, or packet-type, within the
stack. The embedding of the logic itself is subject to the stack evolution pro-
cess. Similar to Da CaPo, our micro-protocol modules define their properties
and constraints through a specification language. In our case, however, this
property specification does not include the protocol behaviour, only its re-
quirements for composition and possibilities for configuration. Instead we
determine the effects that protocol composition and configuration has on
the utility experimentally, based on the actual conditions in the network at
the time of deployment.

We designed a communication interface that provides the functional-
ity needed to support most networking protocols and which we describe in
Section 3.7.3. 'This interface is conceptionally similar to the z-kernel’s in-
terface, *** but also includes name resolution facilities that are related to to
the approach of Plutarch’s.”® But module interaction is not limited to this
interface, as our fundamental design for (micro-)module interaction differs
significantly from most other stack composition architectures and is closer
related to the approaches employed in software engineering, e.g. by Alagar
et al.,*® as it resembles the functional interfaces exposed by objects in pro-
gramming languages like C++. Execution does not linearly traverse a stack
of modules downwards, but akin to function calls returns to the call origin,

56

3.4. STACK LAYOUT & S PECIFICATIONS

enabling the use of common programming constructs like loops, branches,
etc.

3.4.1 Stack Modules

The network stack is built out of modules which separate the protocol and
service functionality into small and potentially re-usable blocks. The mod-
ularisation of protocols into atomic stack building blocks, which are also
known as micro-protocols®®” as introduced in Section 2.7.1, adds flexibil-
ity to the stack composition process: It enables not only the re-ordering, but
also the re-use of functionality at different places within the stack - provided
that conceptionally compatible functionality is exposed through a common
functional interface.
For the purpose of stack composition, modules are defined by

o the service they provide and a corresponding service identifier,

o the way they can connect to and communicate with other modules,
o the control parameters they expose, and

o the sensor measurements they provide.

The service identifies the type of functionality offered by the module,
and compatible services are supposed to use the same service identifier. This
unique identifier further defines the calling interface used for communica-
tion between module instances. We further elaborate on this design and the
reasoning that guided it in Section 3.7.2.

Modules can expose control parameters that influence operational char-
acteristics of their service, for example, the type of and number of bits used
for error correcting codes in a module that provides forward error correc-
tion. The module specification dictates the range of values these parameters
can be assigned by the evolution engine and subsequently encoded in the
corresponding stack blueprint.

Modules can utilise the functionality provided by other modules through
the definition of connectors, which can be imagined as smart, strongly-typed
pointers. For example, a communication protocol can define a connector
with the service identifier of the above-mentioned error correction facilities,
and be assured that the calling interface conforms to the interface specifi-
cation. However, which error correction algorithm, i.e. which module, is
going to handle these calls, is not known to the caller, as the association is
set up and maintained independently by the stack composer in accordance
to the stack blueprint created by the evolution engine.

57

‘RATIONALE AND ¢ ARCHITECTURE

Modules can also provide sensor data to other modules. Sensors allow
read access to internal state or measurement data, for example the current
network load or communication error rate, and are introduced in Section 5.1.
Apart from the inherent benefits offered by cross-layer information shar-
ing, this data can also be used by the in-stack redirectors (see Section 4.3.1),
the fitness function (see Section 5.3.5) and the situational classifier (see Sec-
tion 4.2).

Module features are defined by means of a formal specification language.
A module specification has to accompany every module and is parsed at
run-time whenever a new module is loaded into the stack composition sys-
tem. This specification is fully defined the context-free grammar presented
in EBNF form below, and constrains and guides the operation of the evolu-
tion engine and the composer.

module = *{*, serviee~id; { *;7; reqguired-feature-id-T1st }, ™™
{requested-feature- id-1ist}; *;* { control=Tist }
e, o mommerten= 11em 1, Y [semser-kE J. P52,

trial-time, 7}~ ;
reguired=Ffeatire -1d-Ti7st. = Featlpe-1d-1ist 2
reguested-featlre-id-11st = featlre~-id-17st =

featlire-Td-T18t = feature-id, { =, =, fedtlre-1d } &

control-1ist = control, { ”,”, control } ;

connector-1ist = connector, { ”,”, connector } :

feature-id = identifier ;

control = identifier, ”=", intrange, ”.”, weight

conneetor = Jdentifier, *:®; servige~id, { "™ feature=id=11ist }; ¥
weight, 7:”

sensor = identifier, ”=", intrange;

trial-time = digits
identifier = alpha, { alnum } ;

Tnbrange = %[, dnteger, .Y, integer, 717 2
weight = 0.7, digits | 71.0” ;
ThLeger = T =F [=" 1, @ikgits g

alnum = alpha | digit ;
digits = digit, { digit } ;

@igTe = 70 | I | v | TR | e | e | e | e | 8T | 9T g

alpha = ”"A” | ”B” | »C” | ”D” | "E” | "F” | »&” | "H” | *I” | 7J”
LW N] 0n | R | e | R | S | T
A T A e R I G R G IV A

The service is denoted by a globally-unique and standardised service
identifier, which explicitly defines the calling interface. Additional service
features may be specified, which further detail the provided functionality,
but do not change the interface. Control specifications consist of the integer
range that defines the domain of possible control values, and a boolean
stating whether the range is nominal or continuous. Sensor specifications

58

3.4. STACK LAYOUT & S PECIFICATIONS

also consist of an integer range of possible values the sensor may report,
and a sensor identifier which is used by other entities to access the provided
information. Connectors in turn consist of a target service identifiers
combined with an arbitrary number of required and/or preferred features.
The trial-time specifies the minimum time needed for experimentation with
this module, as detailed in Section 5.3.2.

The specification language enables the system to specify the properties
of the provided protocol or service, as well as its requirements for services
offered by other modules. This approach shares some similarities with e.g.
the L?*! language used in Da CaPo,*** in that it constrains the possible com-
positions of the stack. In our case the criterion for optimality is however
not encoded within this specification, but based on experimentally gained
fitness estimates. The constraints defined by means of this specification do
not explicitly impose an order of precedence as e.g. is the case for SILO,**®
but implicitly by enforcing a compatible service interface for all connectors.

3.4.2 Stack Composition

The stack composer provides the mechanics for stack composition, i.e. it
handles module instantiation and destruction, initialises the module con-
trol parameters, sets up the connections between the modules, and provides
access to the persistent storage space. The composer constructs the network
stack based on an abstract composition blueprint provided by the evolution
engine.

STACK BLUEPRINT

This composition blueprint specifies the entire stack composition, includ-
ing how many instances of each module are present in the stack, how they
are configured, and the connection between these instances. Every available
stack module class is instantiated within the stack blueprint at least once, to
ensure that incoming data can be reliably de-multiplexed and forwarded to
a module instance that is able to handle it, as discussed in Section 3.7.5. The
blueprint further specifies how to connect these modules to the persistent
modules provided by the stack steering system which provide the link be-
tween the stack and the outside. Every blueprint generated by the evolution
engine is guaranteed to be valid, in as much as it is statically checked to con-
form to the specifications and fulfil the assumptions made in this section.
These stacks may nevertheless be inoperable, as e.g. the halting problem is
generally undecidable for Turing machines. *** And since not every cycle in

a9

‘RATIONALE AND ¢ ARCHITECTURE

[creaz 0 100ps
1 Hamming L 1ms

< Turbo i 2 10ms
Reed-Solomon 3 3100ms
7 LpPC s
0 Golay & 5 |7 10s

Figure 3.4: An example of how control values map to protocol settings. The
value 2 of the left control selects Turbo Codes for error correction, whereas the
value 3 of the control on the right corresponds to a time-out of 100 ms.

the stack graph necessary leads to an infinite loop,® we decided not to assert
that the stacks are loop-free. The stack composition system consequently
also provides mechanisms run-time validation, which are described in Sec-
tion 5.3.2.

CONTROLS

As stated before, control parameters specify the internal configuration of
modules. Which configuration details are exposed, and how they affect the
operation of the module is left to the module developer. As a guideline, all
settings for which manipulation by the stack composition system might have
a beneficial effect on performance should be exposed as controls. For exam-
ple, a module implementing Reed-Solomon codes might provide a control
to set the number of symbols to use, as the correct setting depends on the
network conditions, i.e. the likelihood of transmission errors. The internal
mapping of the control range to actual module parameters is again left to the
implementer. For example, the range [0, 2] could actually refer to time-out
delays of 1, 10, or 100 ms, respectively.

Controls can be designated as either nominal or quantitative, as shown in
Figure 3.4, which influences the operation of the evolution logic. For nomi-
nal controls, there is no inherent relationship between neighbouring values,
as e.g. whether a control that selects the forward error correction method
maps Hamming, Reed-Solomon, BCH, Golay or turbo codes to 0, 1,2, 3,4
or any other permutation thereof is unimportant. Thus the evolution logic
can modify such controls at random. For quantitative controls however,
neighbouring values are more closely related than distant ones, for exam-

& Limited re-evocation of the same protocol is possible in the current Internet stack as well,
e.g. for tunnelling of IP or Ethernet packets over a VPN service that runs on top of UDP.

60

3.4. STACK LAYOUT & S PECIFICATIONS

LT

Figure 3.5: An example of how connectors wire module instances together. The
single connector of the module on the top can connect to one of two instances.
The solid line indicates the instance it points to, whereas the dotted line indi-
cates a candidate instance. The service identifier of the module on the right,
indicated by the coloured squares, is incompatible (blue instead of red), thus
no connection is possible. Connectors may also not point back to the instance
they are located in.

ple, changing the number of Reed-Solomon symbols to use from 7 to 8 hasa
lower impact than a change from 7 to 13. The distinction between nominal
and quantitative controls thus allows the evolution engine to operate more
efficiently, by for example non-deterministically deriving the value of a con-
trol using a Gauss distribution centred at the previous value, as we discuss
in Section 4.1.3.

Controls have associated weights which specifies their importance for
the module’s operations, i.e. state how much a modification of the value is
expected to alter module operations and thus performance. The weight is
needed by some of our evolution logics, as they require a distance metric for
stack configurations.

CONNECTORS

As further discussed in Section 3.7.2, modules can access the functional in-
terfaces of other modules through connectors, i.e. dynamically-typed point-
ers. Just like the type concept in programming languages guarantees that
the result of an expression cannot be assigned to a variable of incompatible
type, connectors can only point to module instances that provide the service
which the connector requires, as illustrated by Figure 3.5. The module in-
stance the connectors point to is encoded in the stack blueprint. The actual
connection is set up and maintained by the composer. The stack blueprint is
guaranteed to honour all requirements encoded in the module specification,
thus connectors are only bound to module instances that offer the requested

61

‘RATIONALE AND ¢ ARCHITECTURE

service type and provide all required features. Connectors may not be left
unconnected either, thus null pointers do not occur. Consequently, miss-
ing services or required features are treated as a fatal errors which prevent
the instantiation of a stack. Apart from the required features, the connec-
tor specification may include requested features, which should be fulfilled
whenever possible, but which the evolution engine may decide to ignore at
will. Connectors also have an associated weight which specifies their impor-
tance to the module performance, as already discussed for controls above.

CoMPOSITIONAL CONTROL OF PROCESSING

The composition system is able to influence the processing flow in two com-
plementary ways, by either setting the value of a control parameter, or by
selecting a different module instance for a connector to point to. Addition-
ally, it is free to instantiate the same module multiple times, and configure
and connect each of these instances independently. The system is further
able to place in-stack redirectors at arbitrary positions, as discussed in Sec-
tion 4.3.1.

Module implementers can freely choose how to expose configuration op-
tions to the system, e.g. whether to provide different modules for Hamming
codes and for Reed-Solomon, or instead combine the functionality of both
algorithms in one module and define a control to select between them. From
the compositional point-of-view both approaches are identical.

3.5 Stack Mechanics

In this section we describe three of the four components that provide the
stack mechanics, i.e. the stack steering system, the composer, and the per-
sistent storage. The last component, the sensors, are discussed in Section 5.1.

3.5.1 Stack Steering System

The stack steering system links the stack composition system with the out-
side. Conceptionally, the stack steering system replaces the operating sys-
tem’s network stack, and dynamically links its internal modular stack to the
applications at the top and the network interfaces at the bottom. It directs the
communication flow between the network stack and the outside, by chan-
nelling incoming packets to the module instances that constitute the stack
and forwarding outgoing data to the applications and onto the network. It
schedules stack operations, and signals network and timer events to the ap-
propriate modules, and gathers and monitors measurement data from inside

62

3.5. STACK EMECHANICS

and outside the system. The stack steering system also monitors the opera-
tions and call flow within the stack and thus detects and handles execution
error, e.g. exceptions or segmentation faults, and composition errors such as
infinite loops. The stack steering system further controls when the current
stack is replaced with a new one, either because of changes in the network
and traffic conditions as we discuss in Section 4.2, or to experimentally eval-
uate the candidate stack blueprints that the evolution engine provided as
we describe in Section 5.3.2. 'The interaction with the outside and system-
specific implementation details are presented in Appendix B, while Chapter 5
describes the process of gathering sensor data and assessing the information
contained therein, as well as the interaction with other entities in the net-
work.

3.5.2 Stack Composer

The composer provides the stack composition mechanics, i.e. it handles
module instantiation and destruction, initialises the module control pa-
rameters, sets up the connections between the modules, and provides access
to the protocol state storage. The composer constructs the network stack
from the abstract stack blueprint, which we discuss in Section 3.4.2, and is
mostly responsible for management tasks, such as resource allocation and
reuse thereof. It implements an instance “garbage collector”, which decides
whether to re-configure existing module instances, keep them around in a
dormant state for later re-use, or to destroy them and reclaim the allocated
resources. It signals module instances about impending changes, i.e. before
they are started, stopped, or destroyed, so that they can, for example, deal
with on-going connections with remote nodes as appropriate.

3.5.3 Persistent Storage

Similarly to DRUID, *** the module instances in our stack composition system
can keep persistent state. The persistent storage facility provides instances
with the means to store arbitrary information and to share data amongst
each other. The data stored in this facility can be either unique to a mod-
ule instance, shared among instances of the same module, among instances
that provide the same functional interface, or globally accessible to all in-
stances running within the same node. Data access is based on keys and
protected by a simple access control methodology. All data apart from the
instant-specific type is persistent, i.e. it does not change when the stack is re-
configured. This feature enables the stack composition system to, for exam-
ple, exchange communication protocol implementations at run-time with-

63

‘RATIONALE AND ¢ ARCHITECTURE

out losing connection information, if the protocol implementation keeps the
corresponding information in the persistent storage space. Our implemen-
tations of of TCP, DCCP, and UDP, for example, utilise the same shared data
structure to maintain state information about ongoing communications, and
thus an existing TCP connection can be taken over by UDP when the stack
is recomposed and the pending data in the send queue forwarded - but of
course without guaranteed sequentiality and unreliably - as discussed in Sec-
tion 3.7.2.

3.6 Evolution Machinery

The evolution machinery constitutes the “brain” of the composition frame-
work. Its components and their interaction are depicted in Figure 3.6. It
contains the functionality for inventing and selecting between the stack com-
positions, by providing the stack blueprints which define the stack configu-
ration, i.e. the configuration of the module instances that build the stack and
the interactions between them. It further houses the situational awareness
and related adaptation facilities.

The evolution machinery consists of the evolution engine, which gen-
erates stack blueprints based on the experimentally measured fitness of the
previous generation of stack configurations, the situational classifier, which
assesses the current situation within the network and decides which class it
resembles most closely, the population selector which selects a population
of blueprints based on this classification, the fitness function, which deter-
mines how well the tested stack is suited for the current situation and which
is described in Section 5.3.5, and lastly the in-stack redirector modules, that
are encoded within the stack blueprint and which conditionally adapt stack
operations based on fine-granular decisions. Whereas the algorithms gov-
erning the evolution are explained in Chapter 4, the integration of and in-
teraction between the machinery’s components are detailed in here.

EvoruTioN ENGINE

The evolution engine generates stack blueprints, i.e. plans describing how
an instance of the stack is to be composed and configured, which we discuss
in Section 3.4.2. The evolution engine contains the functionality for invent-
ing new and selecting between stack compositions, and provides the stack
steering system with a set of stack blueprints. For this purpose it applies an
evolution logic, i.e. an optimisation method which generates a new gener-
ation of candidate stack blueprints using machine learning techniques, as
explained in Section 4.1.

64

3.6. voLUTION EMACHINERY

Request stack
blueprints
Request next
generation Read access to
blueprints
Evolution PUp?attfz ~Populations—
Engine M (s B NSy
B
(9 M R=
: 3
Performance o &
a entof | @ p=
, Fitness current stack (;::) (=]
Sensor Data Function —1 S b
= j=1
= s ol g
2 -] 2
84 G = g =
(=9 =] “.-1' 'MU
il Bt =]
o & I
—_— Situational Ry o e
ensor Data 2
Classifier Classification /
of operating Stack blueprints
environment
Stack
blueprints

Figure 3.6: Overview of the components of the evolution machinery and their
interaction. 'The in-stack redirectors modules are shown as dark brown boxes
inside the stack blueprints stored within the populations.

The selection of evolution logic used for generating the stack blueprints,
as well as their configuration, can be either statically configured or dynami-
cally adapted at runtime. In the latter case the fitness of the best composition
found so far guides the decision, as described in detail in Section 4.1.4.

Whereas not required, background knowledge about the behaviour and
dynamics of the functionality provided by the stack modules can be used
to speed up the adaptation process by limiting the number of possible stack
configurations that can be explored. For example, while the in-stack redirec-
tors we introduce in Section 4.3.1 are very versatile, their use also increases
the size of the configuration search space. The system configuration there-
fore allows to place constraints on the minimum and maximum amount of
instances for each module class individually, as well as on their configura-
tion.

65

‘RATIONALE AND ¢ ARCHITECTURE

POPULATION SELECTOR & SITUATIONAL CLASSIFIER

The situational classifier categorises the current situation of the system based
on sensor measurement data gathered from the running system, i.e. it re-
ports the same class identifier for all measurements it considers sufficiently
similar. The population selector maintains a set of populations and uses the
classifier’s output to select between them. It controls all access by both the
evolution engine and the stack steering system to the populations and thus
guarantees that they both operate on the population that the situational clas-
sifier assessed as most appropriate. Thus the deployed network stack is al-
ways chosen from the population that evolved under the most similar con-
ditions, both when exploring new candidate stack configurations, and when
exploiting the best stack found so far. The logic which controls the classifier
can be either an administrator-defined heuristic or a unsupervised learning
method, as described in detail in Section 4.2. The classification method and
the criteria based on which it operates can be configured at run-time. For the
future we investigate the possibility of letting the system determine adequate
criteria on its own.

3.7 Handling Modular Stacks

As stated in Section 3.4.1, the network stack is composed of multiple, collab-
orative module instances, which can be replaced without interrupting com-
munications. In this section we describe how our system guarantees smooth
network operations across such changes.

3.7.1 Module Instance Life-cycle

The code for all available modules is kept in memory throughout the entire
operational period of the stack composition system, as one instance of every
module is required in every stack instance. Similar to object instances in
languages like C++, a module instance consists of a private memory area
in which the specific local configuration data is kept, i.e. the settings of all
controls and connectors, as well as local variables internal to the module.
The composer manages a pool of instances. Whenever a new stack con-
figuration is realised, the composer either selects an instance from this pool
or creates a new one as required. In addition to the normal object construc-
tors and destructors, modules provide init/exit functions which are invoked
whenever an instance is added or removed from a stack, and which enable
the modules to adapt their internal set-up depending on the control settings.
At this point in time, the invocation of connectors and thus communication

66

3.7. HANDLING EMODULAR STACKS

are not possible. Modules also provide start/stop functions, which are exe-
cuted immediately after the stack has been set-up and before it is disabled.
At the time when these functions are called communication and calls to con-
nectors are possible, thus messages can be exchanged between modules and
remote entities, and timers initialised.

Modules can be added to and removed from the system by external pro-
grams at run-time. In our current design these messages are transmitted
system-locally by means of Unix-domain sockets, and thus protected by the
operating system-imposed access restrictions. We intentionally externalised
the code-deployment process from our system design for practical reasons,
i.e. to be able to leverage the operating system’s services. We assume that an
external application, which runs on top of the network stack is responsible
for mobile code deployment, e.g. using one of the technologies introduced
in Section 2.7.3, and informs the system whenever a new module is available.
Our API for this purpose is very simple and consists of only two functions.
load adds a new module to the system, and takes two parameters that de-
fine the location of the dynamic library that contains the module code and
the text file that contains the module specification, respectively. The unload
function in turn removes a module from the module pool and again takes
the path to the dynamic library as parameter. Since every available module is
instantiated at least once within every stack, the addition or removal of mod-
ules invalidates the experimentally gathered fitness estimates. We therefore
re-start the adaptation process, but do not begin from scratch. Whenever
a new modules is added, the stack configurations are modified to include
an instance of the module, but the controls and connectors are not modi-
fied. This new instance is therefore initially unconnected, and subject to the
adaptation regime imposed by the evolution logic, as we intend to bias to-
wards gradual introduction of new features. If a module is removed from
the pool, this technique is not applicable, thus we discard all stack config-
urations in which connectors point to the affected instance(s) and replace
them with randomly initialised ones. The experimentation process is then
restarted.

3.7.2 Interchangeable Modules

Knowledge about the type of service that a module provides is a vital pre-
requisite for efficient runtime service or stack composition. Our system
utilises a simple ontology to exclude connections between obviously incom-
patible modules: Similar services are supposed to utilise the same inter-
face, which is identified by a unique service identifier, similar to the type-
of-service fields of Ethernet or IPv4, or the known ports of TCP and UDP.

67

‘RATIONALE AND ¢ ARCHITECTURE

Even though, for example, different web servers offer a wide variety of fea-
tures and services, the calling conventions are standardised by means of the
HTTP. Similarly modules which provide a compatible service in our design
expose the same service identifier, which guarantees provision of and con-
formance to a service-specific functional interface. Whereas one generic in-
terface for inter-connecting modules can be used for communication pur-
poses,***** we decided to follow the example of object-oriented program-
ming languages, and modelled our communication paradigm after the in-
terface classes in C++. Instead of limiting the interaction between modules
to a single interface — which may or may not be sufficient for future needs -
we thus leave the definition of the interface to the service providers.

For explanation purposes, consider a module which provides forward er-
ror correction, a vital service in noisy communication environments. Here
the interface could consist of two functions, encode and decode, which both
take a variably-sized byte buffer as input and return another one on success
or null on error. Calling modules cannot directly select which implementa-
tion, i.e. module instance, to use, only which functional interface to access.
Which module instance to use is decided by the evolution logic instead.

The previous example also illustrates another feature of our design:
Modules are not chained together as in many other architecture that offer
composition facilities,*®*®” instead the control flow returns to the caller:
As opposed to the sink/source-model, our modules do not take input data
from one module, process it and produce output data that is forwarded
in sequence to the next module. Our design thus follows the paradigm of
object-oriented imperative programming languages: Modules can invoke
functional interfaces at any point in their code control flow by means of
connectors. For example, assume a communication protocol module which
requires error detection functionality. Instead of implementing code that
calculates a checksum and appends it to the message, the developer defines
a connector con_ecc with the associated service type identifier forward
error correction. The module code may now call this connector in the same
manner it would normally access an object in C++, i.e. use

encoded_payload = con_ecc->encode(payload);

to invoke the error correction module for encoding the original message
payload. As control is returned to the calling module once the encoding is
complete, the communication protocol may then perform further process-
ing as needed, e.g. update the header fields to reflect the length of the en-
coded payload and put the packet onto the outgoing communication stream,
or call the connector of a module that offers compression before adding er-

68

3.7. HANDLING EMODULAR STACKS

ror correction codes. Thus implementers can separate protocol function-
ality into atomic components in the same way they do when separating it
into multiple libraries or classes. For simplicity reasons the program flow of
our current implementation is synchronous and single-threaded, but utilises
queues and provides signalling and timer support. The design itself supports
asynchronous operations and multiple threads, which we consider imple-
menting in the future.

The service type that is part of a connector’s specification guarantees that
only module instances that provide the matching interface can be assigned to
aconnector. The calling module can thus be certain that the instance pointed
to by the connector implements the required functionality according to the
interface specification, and also that it offers all required features. Interface
design is left to the implementers and can be as specific or generic as re-
quired, and we do not impose any calling conventions, protocol header for-
mats, naming schemes, etc. The Unified Communication Interface interface
which we describe below, for example, is sufficiently generic to handle such
heterogeneous protocols as TCP, IPv4, or Ethernet, but other schemes could
be realised within our system just as easily. All these protocols provide suf-
ficiently similar functionality, they forward information between endpoints,
identified by source and destination addresses. Requirements for a specific
subset of the functionality, e.g. protocols operating in the Internet trans-
port layer (TCP,UDP, etc.), can be specified through the definition of the
required features in the connector specification. Similarly generic interfaces
haven shown to be versatile enough for most communication tasks”>*¢+%?
and increase the possibilities for stack composition, as for example shown in
Figure 3.9 below.

As introduced in Section 3.5.3, modules can share arbitrary persistent
data structures amongst each other. These structures are identified by a key
similar to way in which IPC shared memory access is handled. Since the
data is kept around even if the creating instances are deleted (unless explic-
itly freed), and keys can be chosen freely by the implementation, this con-
cept allows different instances of the same module, different modules that
provide the same interface, and even seemingly unrelated modules to share
information amongst themselves, even if they are not active - or not even
instantiated - at the same time.

PRACTICAL SUBSTITUTION EXAMPLE

One example of shared protocol state — which we implemented and use -
is connection state sharing between TCP and UDP. Whereas UDP itself is
not connection-based, keeping this information in a shared structure en-

69

‘RATIONALE AND ¢ ARCHITECTURE

ables the system to switch from TCP to UDP and back without breaking the
connection. Naturally, a switch between TCP and UDP should only be per-
formed for traffic which does not require reliable or sequential transmission
(see Section 3.7.3 below), as UDP does not fulfil these requirements. Using
TCP to transmit data in an unreliable and unordered way can be beneficial
in some situations, e.g. to maintain TCP-friendliness. When switching from
TCP to UDP, incoming data is assumed to directly follow the highest previ-
ously received TCP segment. UDP updates a shared counter recording the
number of payload bytes received. When the system switches back to TCP,
this counter is used in place of acknowledgements to validate the reception
of data after the highest segment transmitted during the previous TCP oper-
ation. A similar process is in place to handle TCP timers which are restarted
as appropriate, and connection terminations which happen when no UDP
packets are received within a specific interval, etc.

3.7.3 Unified Communication Interface

Networking protocols are often implemented in a way the hinders composi-
tion or even makes it impossible, for example, because they depend on spe-
cific underlays. In here we therefore present our approach for stack compo-
nents that are suitable for composition, yet compatible to existing standards,
and the way these components interact with each other.

MOTIVATION & OVERVIEW

Similarly to many other approaches'®**?”>*** that utilise dynamically com-
posed protocols and services, our system provides a unified interface for
communication protocols which abstracts access to protocol functionality.
The group of protocols which we - inlack of a better descriptor - denominate
as “communication” protocols, encompasses protocols as diverse as TCP,
[Pv4, Ethernet, etc., i.e. all protocols that take a data payload and forward to
a specified destination, no matter whether this destination is identified by a
port, DNS name, IPv4 or Ethernet address. The need for such a generic in-
terface for our system is obvious: To enable the stack composition system to
freely exchange or re-order communication protocols, the higher and lower
layer protocols have to be able to interact with each other. The common In-
ternet protocol implementations, however, require intrinsic knowledge of
e.g. the address format to forward packets to the lower layers. For example,
assume that an application wishes to communicate using TCP, which in turn
is connected to IPv4. Current designs require the application and the net-
work stack to implement logic that inherently knows that TCP operates on

70

3.7. HANDLING EMODULAR STACKS

16-bit port numbers, and that [Pv4 uses 32-bit addresses. Thus the applica-
tion usually needs to pass the address in an underlay-dependent format - for
example, using the correct sockaddr struct in POSIX - from which the proto-
col implementations then extract the protocol dependent part, i.e. port and
IP address. This naturally poses problems when new protocols are added to
the stack, for which reason getnameinfo and similar underlay-independent
functionality was added as an afterthought to the POSIX specification when
IPv6 was introduced. Thus applications can at least be implemented with-
out requiring knowledge about the IP layer’s address format or the size of the
port field, but still have to provide both separately as host and service fields,
and thus are limited to exactly two underlying protocols. The problem for
the stack implementer however remains, as they have to know beforehand
what protocols are available, what their addresses look like, how they are con-
nected, etc., a luxury not available to our stack composition system, which
allows protocols to be added at run-time.

We intend for the system to be oblivious of the protocols’ intrinsic de-
sign and addressing formats, as we do not presume to know whether future
protocols use ports, service names, host addresses, or something else which
has not been invented yet. Neither do we assume to know how these pro-
tocols are most effectively combined. And obviously, we also do not want
designers to infuse knowledge into their protocols about what lies below
them, as this thwarts all efforts towards dynamic stack or service compo-
sition. Thus we designed the Unified Communication Interface, which ab-
stracts the intrinsic format of addresses into a common and easily extensible
format. Protocols and applications that use this interface cannot and do not
need to know anything about the stacK’s actual composition, which ensures
that arbitrary communication protocols can quickly be integrated into the
stack composition system. Address resolution is also encompassed within
and abstracted by this concept. As a plentitude of naming and addressing
schemes has been proposed (see Section 2.7.2), we did not intend to offer yet
another new scheme, but instead limited our efforts to simply “abstracting
away” the incompatibilities between the current protocols, and provide an
interface that is flexible enough to support almost any possible addressing
and resolution scheme. And while we utilised the scheme we describe be-
low for our protocol implementations, all other schemes that are compatible
with the constraints imposed by our module specification language defined
in Section 3.4.1 - i.e. all schemes we are aware of - can be integrated into our
system just as easily.

The functionality provided by common networking protocols such as
IPv4 on their own is however not sufficient to support this interface, as it
inherently requires address resolution support. We therefore decided to pro-

71

‘RATIONALE AND ¢ ARCHITECTURE

vide meta-protocols which - similar to the compartments of ANA'® - com-
bine address-resolution, forwarding, routing, etc., into one single virtual en-
tity. Thus a “meta-ARP” module might not only glue together the necessary
micro-protocol modules needed to implement ARP functionality, but also
leverages an underlying protocol, e.g. Ethernet™, for packet forwarding.

UNI1rIED COMMUNICATION INTERFACE

The interface through which communication modules interact consists of
only four functions:

register notifies the module of a new entity on top, which intends to utilise
the communication facilities.

unregister does the opposite, i.e. is invoked when the entity becomes un-
available.

send forwards a data payload to another registered entity. The address of
the destination entity is resolved internally by this method, if needed.

incoming is invoked whenever a packet arrives which is destined for this
module instance. This callback function is required by the demulti-
plexing logic described in Section 3.7.5.

connect opens a channel for stream-oriented communication.
disconnect closes the same.

lookup resolves an address. The same functionality is also included in send
above.

ADDRESS RESOLUTION

Registration makes the entity available for incoming communication and
can involve the publication of an address under which it is reachable within
the realm of the protocol or meta-protocol. Our interface supports two dis-
tinct methodologies. We use caller to refer to the entity which invokes a con-
nector, and callee for the instance the connector points to which provides the
service the caller requested.

Callee-defined addresses are provided by the called entity. AnIPv4mod-
ule could, for example, allocate and return a new zero-configuration [P ad-
dress such as 169.254.12.123 (see RFC 3927°"). An Ethernet module in turn

"™ Or any other protocol the evolution engine decides on.

712

3.7. HANDLING EMODULAR STACKS

et | | et

e T Sends higher-level | o0
| BT . iprotocol payload
caller-defined T2 53 [SR RSS GBS A7238,0.1 172 1.0.2 ek 30 0 68 51
identifier
ARP | ARP
172.16.0.1 00:11:22:33:44:55 172.16.0.2 66:77:88:99:AA:BB
A Broadeasts ARP |
Receives callee- announcement
defined address S 605771885995 ANBD. U [FAFFLATSITAFFAFES Polad 172,16.0.2. 60:77:88:99 0180
on registration
&
Ethernet Ethernet
©0:11:22:33:44:55 66:77:88:99:AA:BB

Figure 3.7: 'lhis example illustrates the interaction between modules using
both caller- and callee-defined addresses. Here the IPv4 module registers
with the meta-ARP module using caller-defined addressing, while the meta-
ARP module uses callee-defined addressing to interface with the underlying
Ethernet-module. 'The packet encoding illustrates a subset of the data that is
actually put on the wire.

could return the concatenation of the EtherType field and the interface’s MAC
address.

Caller-defined addresses are provided by the calling entity and are han-
dled by the name-resolution facilities of the module. For example, consider
the case were [Pv4 registers with the meta- ARP module which leverages Eth-
ernet for communication. When the IPv4 module registers an IP address,
the meta- ARP module stores this address in an internal table, and responds
to incoming WHOHAS messages for this [P address with its own Ethernet
address. Likewise, a meta-mDNS module, which sits on top of [Pv4, reg-
isters the higher level name host1 as host1.local which it maps to a zero-
configuration [Pv4 address provided by the underlying [Pv4 module.

When registering by means of this interface, the caller must specify a
globally unique protocol identifier for compatibility purposes. This identifier
is used e.g. by Ethernet to correctly map [Pv4 to an EtherType of 0800h and by
IPv4 to map TCP to 6 in the protocol field. Unknown protocols are mapped
to dynamically allocated values in the experimental ranges.

The interaction between caller- and callee-defined addressing schemes is
shown in Figure 3.7. Here ameta- ARP module links the underlying Ethernet
protocol to the IPv4 above. As we require compatibility with existing proto-
col implementations, meta-ARP registers twice with the underlying Ether-
net module, once using the protocol identifier for ARP and once using the
identifier of the caller, i.e. IPv4.

‘RATIONALE AND ¢ ARCHITECTURE

The type of the address - single-cast, multi-cast, broadcast - is indicated
by a flag or bit-mask supplied to the function. Protocols are free to only
support a subset of these types, as indicated by the features defined in the
module specification.

TRAFFICc CLASS

Another feature of our interface is the type-of-service field traffic class, which
consists of four bits encoding boolean values.

reliable This boolean specifies whether the payload is supposed to be re-
liably transmitted, i.e. using a protocol like TCP, which re-transmits
lost or corrupted packets.

sequential This flag states whether sequential data transmission is required,
i.e. whether packet re-ordering is acceptable or not.

priority These two bits denotes the priority class of this traffic, depending
on how time-critical the delivery of the payload is.

This field is used for QoS provision, and determines e.g. the content of the
differentiated service field header field in the IPv4 header (see REC 2474%°"),
or the underlay used by a protocol multiplexer. Real-time VoIP traffic would
thus only set the priority level 3, but no other flags, as for this traffic type
packet loss and re-ordering are preferable over higher delay. Bulk FTP trans-
fers instead require reliable and sequential transmission, but are not time-
critical, thus priority level 0.

IMPLEMENTATION

The communication protocol interface forwards payload data using a zero-
copy memory buffer (for the bottom-up direction, i.e. incoming packets),
and via an efficient double-ended vector structure (top-down, i.e. for outgo-
ing packets).

For examples of our protocol modules which use this interface, as well
as a discussion of the implementation details and necessary deviations from
or extensions to the pertaining standards, please refer to the Appendix B.2.1.

3.7.4 Reliable Communication Channel

Since we intend to support collaboration between stack composition system
instances running on remote nodes, we provide a reliable communication
channel which is independent of the stack used for experimentation. Sensor

74

3.7. HANDLING EMODULAR STACKS

Figure 3.8: The module execution flow depends on the sender’s stack compo-
sition. Incoming data is forwarded based on the identifier encoded in the data
stream and mirrors the sender’ execution flow in reverse.

data required for the evaluation of the current stacks fitness should, for ex-
ample, not depend on an experimental - and potentially unreliable - stack,
as this might distort or even invalidate the result, e.g. by delaying or inhibit-
ing the effective transmission of necessary information from and to remote
nodes®. Alongside the trialled stack, a known-good and resilient stack com-
position is therefore active in our system, which can be either a generic (e.g.
the Internet) stack or a stack configuration that has proven to operate reliably
in the majority of application environments experienced so far. This stack
is used to transmit stack composition system control and status informa-
tion, such as sensor data, status reports, etc., between nodes. Whereas true
reliability cannot be guaranteed this way, as for example a malfunctioning
protocol could effectively separate the node from the network by flooding
a network link, we aim to achieve a higher level of resilience through this
provision of an independent side channel.

3.7.5 Sender-Initiator-Defined Composition

In our design the stack of the transmission’s initiator defines the control flow
between the module instances and thus the data processing order and packet
composition for the entire flow. This naturally implies that the packet’s re-
cipient has to be able to traverse the same path through the stack in reverse

& Adequate module design can help to reduce the likelihood of such an event, as we discuss
in Section A

75

‘RATIONALE AND ¢ ARCHITECTURE

order to decode the packet. As the stack composition system on every net-
work node is independently experimenting with and evolving its stack, the
communication partners are likely to utilise different stack compositions.
These compositions are obviously not static and change e.g. whenever a new
stack is used for experimentation. The module instances in the stack are also
further able to chose between different paths through the stack based on ar-
bitrary criteria. In-stack redirectors, which we introduce in Section 3.7.6, for
example, can be used to select a different sub-stack per flow.

This concept is illustrated by Figure 3.8. All three flows depicted there
follow a different path through the stack, based on the stack composition of
the node that initiated the flow. The green flow was initiated by the node A,
and therefore follows the path defined by A’ stack configuration. Likewise,
the blue flow was initiated by node B, and the red one by node C. 'This figure
also illustrates one problem that can occur when not all protocol modules
were available on all nodes: Here nodes B and C cannot directly communi-
cate, because they are missing a common protocol module. Such problems
can be prevented by providing a common code base to all nodes - as in our
current implementation - or by using mobile code distribution, as intro-
duced in Section 2.7.3.

The forward and return paths through IP networks do not have to be
identical and can change during on-going communications. We extend the
same concept to the network stack. Even for connection-based protocols,
the return path through the stack for the same flow is not necessarily identi-
cal to the forward path. For example, a node might initiate a connection to
a remote node using TCP, but the recipient can decide to reply by means of
UDP, provided that the initiator supports this feature: Whenever the initia-
tor’s address within the recipient module’s context is resolvable to multiple
distinct addresses, the module is free to decide which of these addresses to
send its replies to.

We decided to encode the information about which modules were
traversed in the sender’s stack within the communication data themselves.
Based on this information the receiver can iteratively demultiplex the data
and forward it - akin to source routing - to the appropriate modules, i.e.
derive the sender’s execution flow path and traverse the matching module
instances of its own stack in reverse order. The Internet stack solves the
problem of demultiplexing incoming data through intrinsic (hard-coded)
knowledge about where to forward the payload based on e.g. the protocol
number encoded in the IP header. 'The stack composition system employs
a similar method: Every module instance is assigned an unique identifier,
from which the module class and the service type can be derived. On data
reception, a demultiplexing module asks its stack composition system to

76

3.7. HANDLING EMODULAR STACKS

select the best-matching service in its own stack and to forward the payload
to this module instance. If a module instance identifier within the stack
provides an exact match for this identifier, it is chosen. Otherwise, if an
instance of the same module class is found, it is selected. If neither is the
case, another module offering the same service interface is selected. If
the selected module is unable to parse the data or no appropriate module
instance can be found, an error is returned to the demultiplexing module,
which in turn may then either just drop the data or return an error message
to the sender, e.g. by means of an ICMP protocol unreachable message. This
approach does not prevent tunnelling or encapsulation of protocol data,
as the actual encoding of the data is protocol-specific. Compatibility with
existing protocols is also easy to maintain as, for example, our implementa-
tion of [Pv4 encodes the needed information in the protocol field of the IP
header.

Since we require that every module available to the stack composition
system is instantiated at least once in every stack composition, the initiator
of a communication can be sure that the message is decodable by the recip-
ient, provided that an implementation of a compatible module is available
there. 'This ensures that the initiator’s stack composition can be modified
independently of its communication partners.

The recipient is free to decide on its own whether to use the same path
through the stack when responding to incoming communications, based on
its own stack configuration and module-internal decisions. Likewise, this
path is not required to remain static for the duration of the communication.
In our system a traffic-type based decision process can, for example, easily be
placed into the stack, which channels FT'P bulk data transfers through TCP,
as according to the standard, but utilises UDP for the transmission of control

information, even though the FI'P-module invokes the same connector for
both.

3.7.6 In-stack Redirectors

In-stack redirectors provide the means for the evolution engine to encode
decision and branching heuristics into the stack and thus control its op-
erations on a far more fine-grained scale then otherwise possible (see Sec-
tion 4.3). The stack composition system provides two types of redirectors,
as shown in Figure 3.9, threshold-based binary selectors and generic binary
selectors with an associated decision function.

Threshold-based binary selectors are a generic module class which can
be specialised for any arbitrary interface as required. They provide two child
connectors which are bound to the same interface type the selector provides.

77

‘RATIONALE AND ¢ ARCHITECTURE

2
L] L]
[TCcP] l:l
o1 =
E=m [Y
it
oo (=T C
|_Ethernet | __Dvd |
|_Ethernet |

Figure 3.9: The two types of redirectors currently available to the stack compo-
sition system are depicted here. The top-most module instance is a threshold-
based redirector, which forwards all calls to one of the two connected sub-stacks
depending on whether the most recent sensor measurement is above or below a
threshold. The module highlighted in yellow represents a generic selector, which
depends on another module (given in blue) for the actual decision process.

All calls to the interface are directly forwarded to one of these connectors,
depending on whether the data measured by the selected sensor is above or
below a defined threshold. Which sensor to use, as well as the threshold, can
be either statically configured at run-time or autonomously evolved by the
evolution logic. A partial configuration is also possible, e.g. by specifying an
interface type or by defining a range of possible sensors or thresholds for the
evolution logic to experiment with. Required features for both connectors
can again be independently specified.

Generic selectors externalise the decision function, but are otherwise
identical to the aforementioned threshold-based selectors: The decision on
which of the child connectors to use for calls to its interface is taken by de-
cision module. For this purpose it provides another connector, which can
bind to an arbitrary decision module instance that offers a predefined set of
features. Every time its service interface is invoked, the selector invokes this
connector, and based on the return value in the range [0, N — 1] forwards
the call to one of its IV child connectors.

Decision modules encode arbitrary decision processes that can be placed
anywhere in the stack, and thus provide a simple, but powerful means for
making the decision independent of the redirector’s own location within
the stack. Thus multiple redirectors can e.g. use the same decision mod-

78

3.8. (JHAPTER SUMMARY

ule, which inspects the packet or the flow state and decide based on these
how to handle the packet. For example, a decision module might return 1 if
the destination of a packet is known to support a specific protocol, and 0 if
it is known not to support the protocol, and probabilistically choose either
0 or 1 otherwise, and thus non-deterministically explore the capabilities of
remote nodes.

3.8 Chapter Summary

In this chapter we introduced the reasoning that guided our research into au-
tonomous stack evolution and described the requirements that our system
has to fulfil. We then detailed our system architecture, introduced the com-
ponents of the system and discussed the functionality encompassed therein
while focussing on their operational characteristics.

79

Chapter 4

Stack Evolution Logic

The stack evolution logic operates on three interdependent layers, which
employ different methodologies for adaptation and differ in their temporal
granularity, as illustrated by Figure 4.1.

Long-term adaptation is managed by the evolution engine, which gener-
ates stack blueprints and decides which modules are instantiated how often,
how they they are connected to each other, and how they are configured.
The machine-learning techniques described in Section 4.1 direct the evolu-
tion of the stacks towards a higher utility, i.e. progressively adapt the stack
configurations encoded in the stack blueprints towards the current situation
of the environment, based on fitness estimates derived through trial-and-
error experimentation. The evolution engine thus provides the core of the
adaptation functionality, as it ventures to find the best possible composition
of module instances and their configuration for the particular environment
characteristics. It also introduces novelty into the configurations, for exam-
ple by means of randomisation, mutation, or crossover.

Since we intend for the stack composition system to adapt to recurring
environmental changes which happen at a faster rate than the speed the long-
term evolution methodology can manage on its own, we provide another
adaptation mechanism, which is able to react more quickly to such changes:
The mid-term adaptation logic, described in Section 4.2, detects changes in
the network and traffic conditions and switches to the population, i.e. pool of
stack blueprints, which evolved under the most similar situation. This step
further helps to ensure comparability of the trial-and-error experiments on
which the evolution engine depends, as situational changes can influence the
perceived fitness and invalidate the experimentally gained expertise.

81

EvoruTrion LoGIC

Stack Blueprint

¢ Population ™
v

uuuuuuuu

[&]
8808

i
[
DDDDD =
2| TH508
e
[coyoochd |
Redirector Module\
Service]
5 s
2
o TREDH E
5 =3
4 2,
[
oooomOO
Conmectors ™ v

Figure 4.1: The different scopes on which the evolution machinery operates.
Short-term evolution is encompassed by redirector modules as part of the stack
blueprints. These blueprints encode the stack configurations that the evolution
logic creates. Blueprints are stored in populations, between which the mid-term
situational classifier selects.

The short-term adaptation logic, described in Section 4.3, consists of in-
stack redirector and decision modules that are encoded into the stack con-
figuration by the evolution engine. These modules encode traffic flow-based
decisions and thus serve to capture and control the runtime dynamics of
network operations: By being located within the stack, they take branching
decisions for every invocation of the service they provide, forward all re-
quests unmodified to one of multiple connected modules, and thus choose
a different sub-stack based on e.g. the flow id, traffic class, or any other arbi-
trary criterion. The system thus becomes able to react instantly not only to
changes in the environmental characteristics, but also to variances within a
flow, without incurring the overhead needed for stack modification.

We provide several algorithms for mid- and long-term adaptation, the
selection between and parametrisation of which naturally alters the char-

82

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

acteristics of the adaptation process. We discuss the implications and the
possibility for dynamic on-line adaptation of their parametrisation in Sec-
tions 4.1.4 and 4.2.3.

4.1 Long-Term Decisions - Evolution Engine

Asintroduced in Section 3.6, the evolution engine incorporates the logic that
guides the stack evolution process. Each stack blueprints encodes one stack
configuration, i.e. the configuration of module instances, as well as the con-
nections and the interaction between them. The evolution logic derives a
new set of stack blueprints based on the assessed fitness of the previous gen-
eration of stack configurations. In this section we first introduce the general
concepts pertaining to the evolution logic, give an overview of the general
operation and characteristics of the algorithms, then thoroughly introduce
the algorithms in detail, and finally describe how to select between and dy-
namically configure them at run-time.

4.1.1 Configuration Space & Fitness Landscape

As shown in Figure 4.2, every stack blueprint P can be represented by an V-
dimensional vector. The control parameters and connectors of every module
instance each constitute one dimension in this vector, and are encoded as a
subset of Z. The search or configuration space Dp on which the algorithms
operate is the domain of all possible (valid and invalid) stack blueprints when
expressed in the form of the aforementioned vector"'.

Whereas some of the algorithms discussed below are able to add in-
stances to or remove them from the blueprint, we limit the minimum num-
ber of instances to one (to enforce support for sender-initiator-defined com-
position as discussed in Section 3.7.5), and the maximum to a runtime-con-
figurable number of N, instances for module A (to prevent degeneration
of the stack). For discussion purposes we can without limitation of gener-
ality® assume that every blueprint contains exactly IV, instances of every
module m. We thus define the configuration space as

T, 'DNWu fDNm\M\ C ZTvmaiel x ZMmy AR
P = ma X oo X m‘/\/{‘ -) X) X+ X y

“* Some algorithms, e.g. the Evolutionary Algorithm, internally use a different but equivalent

representation.

® As unconnected and thus superfluous module instances are removed during the stack
instantiation process, we do not have to discern between the actual number of instances in the
blueprint and can assume the maximum.

EvoruTrion LoGIC

where 7y, cti, Tom, con are the number of controls and connectors defined for
instance my;, respectively.

This configuration space can quickly become huge. For example, assum-
ing the simple case that two modules A and B are represented in a blueprint,
with ng = 1,np = 2, and where A defines one control A; € [10,20] =
{i| Vi€ Z:10 <4 < 20}, and one connector that can bind to the service
offered by B, and B defines two controls By = [0, 2], By = [10, 100]. The
resulting configurations space is defined by

Dp =Da x D%
= (range of Ay) x (# choices for As connector)x
range of By for 1*t instance of B) x

range of By for 1*t instance of B) x

(

(

(range of By for 27¢ instance of B) x

(range of B, for 274 instance of B)

=[10,20] x [0,1] x [0,2] x [10,100] x [0, 2] x [10,100],

and encompasses |Dp| = 11-2-3-91-3-91 = 1639638 distinct stack configu-
rations. Deterministic exploration would thus only be possible if the number
of deployed modules and their options for configuration is severely limited,
and we therefore concentrate on non-deterministic algorithms which can
operate on large search spaces.

We assume that all stacks are tested under comparable conditions, i.e.
that the situation, the set of conditions that define the network environment,
ongoing traffic, etc., remains static. Thus we can define the optimum which
we aim to attain as

arg max F[P],
P

in other words, under this assumption the fitness depends solely on the con-
figuration of the stack and we ideally would like to find one stack blueprint
P € Dp for which the fitness is maximal, or at least in close proximity of
the maximum. The fitness landscape is the evaluation of F[P] for all possible
blueprints P, i.e. the entire domain Dp.

The performance of the evolution logics fundamentally depends on the
complexity of the configuration space and the topology of the associated
fitness landscape. In the following section we motivate why multiple algo-
rithms are necessary, and in Section 4.1.4 we discuss the performance of the
individual algorithms in relation to the shape of the fitness landscape.

84

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

g :
Ml AC
o A
3 | y

Figure 4.2: The relation between stack blueprints and the configuration space.
In this example every possible control and connector in the blueprint is repre-
sented by one of the 26 dimensions of the configuration space. Here the system
was configured to include at most two instances of classes A and D, and one
of classes B and D, each. Superfluous instances (marked by a dashed line) are
removed when the stack is created and therefore do not consume any resources.
Since we require that at least one instance of every module is present in every
stack, the only instance of B is not removed from the blueprint, even though no
connector refers to it. The number of possible values per dimension (grey ticks
in the figure) corresponds to the number of instances that match the connector’s
service or the range of the control, respectively.

No ALGgoriTHM TO RULE THEM ALL

The decision which evolution logic to use for the composition system and
how to configure it has strong implications for the performance of the evo-
lution process, as the evolution quality® and speed © of different algorithms
varies widely depending on the shape of the configuration space and the fit-
ness landscape. In fact, no one algorithm can be superior for all possible

% Here evolution quality denotes the fitness achieved by the best stack derived from any
blueprint in the particular generation.

I Likewise, evolution speed denotes the time needed to reach a specific fitness threshold.
Time is measured in generations, and the fitness of the best stack found so far is used for com-
parison with the threshold value.

85

EvoruTrion LoGIC

application areas of the stack composition system.

As we already introduced in Section 2.6.5, Wolpert and Macready show
that no algorithm can perform better than random search for all possible
problems. **" Their theorems have clear implications for our research, as the
“black-box” optimisation algorithms they discuss in their paper constitute
the set of algorithms from which we can choose our evolution logics. And
this problem is aggravated by the fact that we necessarily - and also inten-
tionally - limit the amount of background knowledge about the problem
specification that is available to the system: Since we want the freedom to add
new and remove ineffective or obsolete (micro-protocol) modules at run-
time, the shape of the configuration space is unknown at design time, in fact
we do not even know its dimensionality. Furthermore, we cannot make any
assumptions about the other component of the algorithms domain either, as
the fitness landscape depends on the run-time-defined fitness function and
the knowledge of the situation in which the system is also limited and tainted
by measurement noise. The very reason for using trial-and-error-based ex-
perimentation in our design is our claim that we cannot know in advance,
what fitness a specific stack will achieve at run-time, even if the fitness func-
tion were known in advance.*”® We therefore claim that no one specific
evolution logic can be sufficient for all possible applications of the stack
composition system. Our framework therefore supports and includes mul-
tiple algorithms, which we introduce below.

4.1.2 Calling Conventions

All algorithms presented in this section share the same functional signa-
ture and are therefore easily interchangeable. After every complete trial of
a generation of stack configurations, i.e. once the fitness of each stack cor-
responding to the previously generated blueprints has been experimentally
determined, the function EVOLVE is invoked with the following parameters:

o Blueprints { Py, ..., Py | Vi € [1, M]}, the blueprints trialled during
the previous generation,

o FitnessF: {P1,..., Pa|Vi € [1, M]} — [0, 1], where F[F;] denotes
the fitness measured for the stack corresponding to blueprint F;.

These functions all return the next generation of blueprints, {P/ : Vi €
[1, M’]}, which in turn will put to experimental trial. If no initial generation
is presented, it will be generated as described below for each algorithm, i.e.
in most cases at random.

86

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

The encoding of the blueprints passed to and returned by these functions
is identical for all algorithms. The internal representation used for deriving
the next generation of blueprints, however, depends on the algorithm and
is described there. The necessary steps for converting between the different
representation formats is omitted, as the conversion is straightforward and
a discussion would not provide any valuable insights.

4.1.3 Algorithms for Controlled Evolution

Since we are exploring fairly novel ground®, we selected several textbook
algorithms from the fields of machine learning and even the - at first seem-
ingly unrelated - robot path planning, which showed promise for our pur-
pose. We were able to apply some of these algorithms, i.e. the rule-based
exploration, brute-force, and random probing, rather easily to the problem
at hand, as we only had to devise an adequate representation of the config-
uration space. In the case of the Evolutionary Algorithm, however, we had
to perform extensive modifications to derive a suitable representation and
tweak the internal operation of the algorithm. One common path planning
method called Rapidly-exploring Random Tree proved particularly difficult
to apply, as the textbook method requires a distance metric for the configu-
ration space, a notion of direction within it, a method for traversing a certain
distance within the space, and knowledge of the goal position. We thus had
to invent an appropriate metric over the stack configuration space, a way to
find another configuration which is a certain distance away from a given one,
yet more-or-less within an also given direction from it, and finally modify the
algorithm such as to favour reaching “higher ground”, i.e. configurations of
higher fitness, instead of reaching a given goal position. Based on initial ex-
perimental results for these algorithms, we designed a new algorithm, which
combines the advantages of both the Evolutionary Algorithm and Rapidly-
Exploring Trees, and which we named the Composition Tree Search. In the
remainder of this section we discuss most®? of the implemented algorithms
exhaustively, followed by a brief summary of the algorithms and their adap-
tation behaviour, as well as guideline of how to select between them in Sec-
tion4.14.

EVOLUTIONARY ALGORITHM

Evolutionary Algorithms are a class of search heuristics that are inspired
by and try to mimic the process of Darwinian evolution. Evolutionary Al-

& We found surprisingly little research literature directly pertaining to algorithms for au-
tonomous stack evolution.

87

EvoruTrion LoGIC

_Controls

a

Connector

Figure 4.3: Within the genome, chromosomes encode module instances. These
chromosomes can be imagined as arrays of integer ranges each of which repre-
sents either a control (represented by a partially filled black box in the figure)
or a connector (coloured boxes) that is bound to a matching service (coloured
rhombus) provided by either another chromosome or the stack steering system.

gorithms have a long history and have been applied, for example, to au-
tonomous computing,®® service composition, *** or routing,. #*****

Generally, evolutionary algorithms employ a population of candidate so-
lutions, which is usually randomly initialised. Onto these a fitness function
is applied which evaluates the solutions’ utility, e.g. the proximity to the goal
state or its performance. Based on the output of this function, the parent
solutions for the next generation of the population are selected, with fitter
solutions being more likely to be chosen. From these parent solutions, the
next generation of the population is generated, usually by applying crossover
and/or mutation.

Our decision to experiment with evolutionary algorithms for finding the
best stack configuration is based on their track record as efficient methods
for exploration of complex problem spaces without requiring much back-
ground knowledge: A singular fitness value suffices as signal which leads to-
wards finding the optimum, and thus arbitrary input, e.g. user satisfaction,
can be utilised. Furthermore, the approach is generic enough to be applied to
many different optimisation tasks, as little knowledge of the problem struc-
ture is required, and the adaptation process basically consists of more or less
random modification and recombination of arbitrary data.

Probably the most common variant of these algorithms are Genetic Al-
gorithms, which encode the problem solution as a (often binary) string, onto
which mutation and recombination are applied. Evolution Strategies in turn

88

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

use vectors of floating point numbers to encode the solution, and employ se-
lection and mutation through addition of a normal-distributed value. The
algorithm we utilise in for stack composition is based on the concept of Ge-
netic Algorithms, but adapted to the needs of the stack composition system:
The textbook Genetic Algorithms **” we used for initial experimentation did
not offer sufficient adaptation speed and produced many invalid configura-
tions, which was detrimental to the overall adaptation speed and quality. The
algorithm described in the following section is the result of our continuous
evaluation, re-design, and fine-tuning, and fairly different from the original
algorithm: The general concept, i.e. the use of operators like selection, muta-
tion and crossover, conforms to common usage, but we specifically designed
the representation of the stack configuration and intensively modified the
operational characteristics of these operators.

Blueprint Representation 'The stack compositions are encoded as a
genome (Figure 4.3) that consists of one chromosome per module instance.
Genomes are encoded as a continuous vector of integers, in which the
chromosomes are concatenated. Chromosomes contain the module class
identifier, all control values defined for this class, as well as all of the
class’ connectors. Control values are limited to the range defined in the
class specification. Likewise, connectors are bound by the number of
chromosomes in the genome that match the requirements of this connector.
In other words, a value of zero represents the first chromosome within the
vector whose associated class offers the requested service identifier and the
required features, as defined in the connector’s specification.

Initialization The population onto which the algorithm is applied con-
sists of a runtime-configurable number of genomes, i.e. stack composition
blueprints. The genomes are initialised to contain one chromosome for ev-
ery module class available. The controls and connectors are randomly ini-
tialised to values within the respective valid range.

Exploration Process Subsequent generations of genomes are derived from
the previous generations in a way similar to the elitist™ roulette-wheel selec-
tion process employed in Genetic Algorithms: The genomes of the preceding
generation are ordered according to their measured fitness. Then a config-
urable number of the genomes is directly taken over into the next generation,

" Elitism has been shown to improve search performance, especially in the case of multi-
objective Evolutionary Algorithms *>**

89

EvoruTrion LoGIC

starting with the fittest genome. For all remaining genomes of the new gen-
eration, two parent genomes from the preceding generation are randomly
chosen. 'The likelihood of being selected is proportional to the measured
utility, meaning that genomes which achieved a higher fitness value are more
likely to be selected as parents. This process is described by the pseudo code
presented in Algorithm 4.1, where M. < M denotes the size of the elite.

Algorithm 4.1: Evolutionary Algorithm, Exploration Process
function EvoLvE_ga(Blueprints { Py, ..., Py}, Fitness F)
sort({Py, ..., Py} ,F) > ensure F[P;] > F[P;11]
fori < 1 — M. do > copy elite configurations
F)i/ «~— P
end for
14— M.+ 1
while i < M do
io «— rws({ Py, ..., Pu}) > select parents using
i1 rws({P;|1 <i < M,j#ido} > roulette-wheel selection
Py, P}, < meiosis(P;,, P;,) > produce two children
P/ «+ mutate(P)) > perform mutation
P/, < mutate(P/,)
14—+ 2
end while
return {P{,..., Py}
end function

The algorithm utilises the roulette-wheel selection algorithm shown in
function rws in Algorithm 4.2, for determining the parent genomes from
which two child configurations will be produced.

We originally modelled the process of deriving a child genome from the
two parents after the sexual reproduction (meiosis) employed by eukary-
otes, but the resulting algorithm performed poorly during our initial experi-
ments. We managed to improve the performance by adapting the algorithm
as shown in function ME10s1s in Algorithm 4.3.

At first we distribute the chromosomes of the parents between the two
children. This step is performed by function DISTRIBUTE_CHROMOSOMES,
Algorithm 4.4 and maintains the proportions of each service type within the
parent: If the first parent contains Ny . module instances that provide ser-
vice ¢, and the second parent contains Ny ., then the first child will get Ny .
of these modules, which are randomly chosen from both parents, and the

90

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

second child will receive the remainder.

Algorithm 4.2: Roulette- Wheel Selection

function rRws(Blueprints { P, . .., Py}, Fitness F)
Preconditions: F[P;] > F[P1],Vi€ Z,1<i< M
fs < X FIP]

r < random([0, f5))
foe0
141

while /. + F[P;] < r do
fe fe+F[P], i+ i+1
end while
return ¢
end function

The effects of this step are comparable to a high-probability crossover
in Genetic Algorithms: The intention is to exchange and re-combine mod-
ule instances among two well-performing parents: If different settings for
a module offer high performance, their recombination might be beneficial.
Likewise, if the settings are sufficiently similar, the effect will be negligible.

Algorithm 4.3: Evolutionary Algorithm, Meiosis

function Me10s18(Blueprints Py, P;)
Py, P| + distribute_chromosomes(Py, P;)
for all m € moduleclasses do

populate(£, m) > randomly add or
populate(P], m) > remove chromosomes
end for
crossover (P, Py) > perform crossover on chromosomes
fix_connectors(P}) > make sure connectors point to
fix_connectors(Py) > chromosomes within the same genome

return P, P/
end function

Without the constraint to maintain the proportions of the instance dis-
tribution, the adaptation towards solutions that employ multiple in-stack
redirectors (see Section 4.3.1) would need far longer, as the expected value

91

EvoruTrion LoGIC

of redirectors per child would be half the sum of the redirector count of the
parents.

Algorithm 4.4: Evolutionary Algorithm, distribution of chromosomes amongst|
the offspring, ensuring that the number of chromosomes per module class stays
the same as for the parents

function DISTRIBUTE_CHROMOSOMES(Blueprints Py, P;)
P« 10
P+ D
for all m € {class(y)|y € PoU P, } do > class(y) denotes the
Lo < {v|y € Py Aclass(y) =m} > module class represented
[y« {v|y € P Aclass(y) = m} > by chromosome
'+~ FO U Fl
i« 0
fori+ 1 — |I'g] do
~ < random(I")
[T\ {3}
o< Tou{v}
end for
P} + PjUTy
P+ P/UT
end for
return P, P/
end function

In the next step two-point crossover (see function CROSSOVER, Algo-
rithm 4.5) between randomly selected chromosomes that represent the same
module class is performed. The start and end position of the crossover step
within the chromosome is randomly chosen, then the contents of the con-
trol and connector values encoded in between are exchanged. Thus partial
recombination of chromosome settings is encouraged.

After crossover is performed connectors may point to chromosomes that
are now part of the other child’s genome. We therefore need to modify the
affected connectors so that they point to a valid chromosomes within the
same genome, i.e. those which provide the same service type. For this pur-
pose we calculate the distance between the connector’s original destination
chromosome within the parent genome and all chromosomes of the same
type in the child, then redirect the connector to a chromosome in the child
for which the distance is minimal. We define the distance as the sum of the

92

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

deltas between the control and connector values, which is iteratively calcu-
lated by function FIX_CONNECTORS, Algorithm 4.6.

Algorithm 4.5: Evolutionary Algorithm, crossover

function crossovER(Blueprints Py, P1)
P+ PyUP;
U«
forally € P\ U do
L {¥'Iv' € P,y" # v, dass(y') = class(v)}
~" « random(I")
P« P\{v}
if random([0, 1)) < p then
rg + random([1, |controls(+)|])
r1 + random([rg + 1, |controls(v)|])
swap(% P Tl 7”1)
end if
end for
end function

Algorithm 4.6: Evolutionary Algorithm, connector fix-up

function F1x_coNNECTORS(Blueprint P)
forally € Pdo
for all ¢ € connectors(y) do
~' + target(c)

if ¥ ¢ P then
target(c) « argmin A(~, ;)
=P
end if
end for
end for

end function

Afterwards additional chromosomes are randomly added or removed,
depending on the number of unreferenced chromosomes of the same mod-
ule class already present within the genome. Unreferenced chromosomes are
those which are not targeted by any connector. This step was again taken for

93

EvoruTrion LoGIC

the benefit of in-stack redirectors, the corresponding pseudo code is given in
function POPULATE, Algorithm 4.7: If the probability of inclusion of a redi-
rector in the blueprint were to be fixed to P,, the probability of a blueprint
encoding V-ary decision trees of depth M in the worst case obviously be-

. M
comes a marginal PN .

Algorithm 4.7: Evolutionary Algorithm, random addition or removal of chro-
mosomes

function popPULATE(Blueprint P, Chromosome m)
U« {v]y € P Aclass(vy) = mA
#+’, 3c € connectors(y’), target(c) = v}
r < random([0, 1))
if |[U| =0A7r <0.8then
add_chromosome(P, m)
elseif |U| =1 Ar <0.1 then
add_chromosome(P, m)
else if |U| = 2 then
if » < 0.05 then
P « P U {random_chromosome(m)}
else if » < 0.2 then
P« P\ {random(U)}
end if
else if U] > 3 then
ifr < ‘OUOE then
P + P U {random_chromosome(m)}
else if < 0.2|U] then
P« P\ {random(U)}
end if
end if
end function

Finally the control and connector values are mutated with a configurable
probability as follows (see function MUTATE, Algorithm 4.8). Nominal con-
trols are set to a new random value, the only constraints for which are to re-
main within the control’s range and to differ from the previous value. Con-
tinuous controls are mutated according to a Gaussian-distributed random
variable X ~ A/(y,0?), with y set to the previous control value, and the
runtime-configurable o scaled in relation to the length of the range of valid
values for the control, to ensure that values in the vicinity of the previous

94

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

value are more likely to be selected. We further ensure that the result lies
within definition range of the control and does not match the previous value.

Algorithm 4.8: Evolutionary Algorithm, mutation

function MUTATE(Blueprint P, Chromosome m)
forally € Pdo
for all ¢ € controls(v) do
r < random(]0, 1))

if » < Py then
if type(c) = continuous_control then
¢ + rndgauss(c, o2) > normal-distributed RNG
else
¢ + random(D,) > uniformly distributed RNG
end if
end if
end for
end for

forally € Pdo
for all ¢ € connectors(y) do
r « random(]0, 1))
if » < Py then
¢ + random(D,)
end if
end for
end for
end function

The Evolutionary Algorithm thus tries to model the operation of evolu-
tion and selection of the fitness, which in nature proved its effectiveness for
undirected adaptation if the time-frame is long enough. During our exper-
iments, the general potential of this method became apparent, even though
other methods surpassed it in terms of quality and speed of the adaptation
process. While this algorithm tends to perform poorly when applied to bi-
nary decision tasks, and if incorrectly configured can optimise towards lo-
cal optima, our research shows that it can fairly quickly find a better solu-
tion than the current one, and operate sufficiently well without having to be
adapted to a specific problem space, and therefore fits well into our design
requirements, as detailed in Section 3.2. The adaptation behaviour of this
algorithm during our experiments was often inferior even to that of the ran-

95

EvoruTtrion LoGIC

dom probing algorithm, e.g. for the scenario described in Section 6.1.3, but
these results do not imply a general inferiority.

RAaPIDLY-EXPLORING RANDOM TREE

9

Rapidly-Exploring Random Trees®*® provide an approach for high-
dimensional path planning tasks that is especially efficient when the search
space involves (differential) state constraints or inaccessible regions. We
decided to explore the use of path planning algorithms for the task at hand,
because we assumed that in many cases gradual adaptation of a known good
initial stack configuration can quickly lead to a better stack configuration
than the current. The Rapidly-Exploring Random Tree in particular is
known to quickly find a path towards a goal configuration even if the search
space is huge. The algorithm operates by incrementally updating a tree such
as to quickly reduce the distance to a randomly selected point in the search
space. It thus implements a Monte-Carlo biasing search into the largest
Voronoi regions, as shown in Figure 4.4, i.e. the largest unexplored areas in
the search space are the most likely to be visited.

Figure 4.4: Rapidly-Exploring Random Trees rapidly fill the available search
space, as the likelihood of exploring the largest Voronoi regions in the graph is
high.

The original method can not directly be applied to the problem at hand,
as it requires a non-convex search space to traverse. Deriving a distance def-
inition based on the components of our stack configurations, i.e. instances,
controls and connectors, is obviously non-trivial. We had to design a con-
figuration space representation, the corresponding metrics and thus devised
a means for calculation of the distance between stack configurations which
attributes a weight to changes that is proportional to their impact on opera-
tions: For example, replacing one module instance with one of another class
is weighed higher (and thus more distant) than a slight modification of a
control value within the same instance.

96

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

Figure 4.5: 'The process of finding a new position P to explore and add to
the Rapidly-Exploring Random Tree. P is chosen at random from the not yet
visited positions in the search space. P is the closest point to P, that is already
part of the tree. The new position to explore P is then found by moving at most
& from P into the direction of P. The grid denotes valid positions in the search
space. As ¢ is variable, the members of the tree are not equidistant.

Blueprint Representation Every blueprint is interpreted as a vector into
an N-dimensional configuration space as introduced in Section 4.1.1. 'The
Rapidly-Exploring Random Tree implementation is working on a fixed di-
mensionality defined by the maximum number of instances per module,
i.e. module instances cannot be added or removed. The configurations are
therefore likely to contain an encoding for superfluous instances, i.e. those
instances that are not accessible through a connector and are also not the
sole instance of a class. Such instances are silently omitted when the corre-
sponding stack is instantiated.

Initialization The Rapidly-Exploring Random Tree starts with a popula-
tion consisting of only one stack configuration that is randomly initialised
and which acts as the root of the tree.

Exploration Process Starting from the root, the tree is built by iterating
over all previously visited configurations (in the order in which they were

97

EvoruTrion LoGIC

added to the tree) and adding a new leaf node which is connected to the
nearest current member of the tree. During every iteration of the search
process in the original Rapidly-Exploring Random Tree algorithm, a new
position P within the configuration space is chosen at random. The node
P of the tree that lies nearest to P is selected. A new leaf is then added at
position P, which lies at a distance of less or equal to a pre-configured &
when moving from P towards P, i.e.
_) PP
|P— P

when moving in Euclidean space. The correlation between P,P,and Pis
shown in Figure 4.5

We adapted this algorithm for the stack composition problem as follows:
A new randomly initialised vector P = {(p1, ..., px) is generated, and P
is assigned the nearest vector P within the M best-performing blueprints
of the previous generation(s). P is then modified such as to lie § closer
to P. Thus the search process is described by the pseudo code for func-
tion EVOLVE_RRT in Algorithm 4.9.

P := P+ min (57

Algorithm 4.9: Rapidly-Exploring Tree, Exploration Process

function EvorLvE_RRT(Blueprints { P, ..., Py}, Fitness F)
fori < 1 — M do
P « randomize() > select random pos. in configuration space
P < argmin A(P;, P) v find vertex in tree that lies nearest to P
Py
P/ « advance(P, P,8) > modify P such as to lie § closer to P
end for
return { Py, ..., Py}
end function

For distance calculation we use the metric A over all weighted control
and connector values:

AP, P') =" Aw(pe.ph)
|]9k _pk|

Ag(pr,py) = Dk |
W otherwise

wy, if kis a continuous control

98

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

where wy, denotes the weight and Dy, thﬁ domain of definition for control or
connector k. The advancement from P towards P is performed according
to the pseudo code for function ADVANCE given in Algorithm 4.10.

Algorithm 4.10: Rapidly-Exploring Tree, local random search

function ADVANCE(Blueprints P, P= {p1,...,pnN), Distance d)
P = <p17...7pN>%P
K« {1,....N}

while § >0A K # (0 do b advance at least & from P towards P
k + random(K)
K+ K\ {k}
if p, # py, then
if type(k) = continuous_control then

d < sig(pr — pr)

¢ « random ([0, min (|px — px|, 9)])

P pr + dd’

_ Opwk
R)]

else
pg < random (D, \ {pi})
6+ 06— Wi
end if
end if
end while
return P
end function

In our initial tests this non-deterministic search method proved to per-
form rather well, being on par with the Evolutionary Algorithm described
in the previous section. While preparing the experiments we describe in
this document, however, the this method miserably failed to lead to im-
provements in the stack performance. Since the Composition Tree Search
incorporates some of the ideas of the Rapidly-Exploring Random Tree, we
decided to nevertheless include the algorithm’s description in here, but did
not pursue the experimental evaluation any further for the time being.

CoMPOSITION TREE SEARCH

Inspired by the aforementioned Rapidly-Exploring Random Trees, we de-
vised a search algorithm which additionally integrates some of the character-

99

EvoruTrion LoGIC

istics of the Evolutionary Algorithm. The original Rapidly-Exploring Ran-
dom Tree algorithm assumes that the likelihood of the goal position is the
same anywhere in the search space. Since we found the fitness landscape of
most scenarios we explored to not be too chaotic, i.e. since fitness changes
between neighbouring configurations are gradual, we biased our approach
to towards exploring the vicinity of fitter configurations. We then gradually
adapted this concept based on the experience obtained through trial-and-
error experimentation. The version presented below is the final result of our
adaptation.

100

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

Algorithm 4.11: Composition Tree Search, Exploration Process

function EVOLVE_CTREE(Blueprints { P, . .., Py}, Fitness F)
Preconditions: F[P;] > F[P1],Vi€eZ,1<i< M
fori+— 1 — |M.]| do > copy elite configurations
F)i/ —
end for
if i < M, then > handle fractional M.

Tmaz € M@ - Z"r’
r < random ([0, 702))
if 1 < 7,02 then
Pl P, d+i+1
end if
end if
while i < | M, + M| do > search in the vicinity of existing nodes
P/ « local_search({Py,..., Py}), i+ i+1
end while
if i < M, + M, then > handle fractional M
T"max %Me‘f“Ms —4
r < random ([0, 7pmaz))
if 7 < 7,4, then
P! « local_search({Py,...,Py}), i+ i+1
end if
end if
while i < M do > initialise random configurations
P/ « randomize(), i<+ i+1
end while
fori< 1 — M do > adjust fitness values to
F[P;] <= 0.5(1 —wy) +wy - F[P;] v reflect reduced confidence
end for
return { Py, ..., Py}
end function

Blueprint Representation Identically to the Rapidly-Exploring Random
Tree, every blueprint is again interpreted as a vector into the /V-dimension-
al configuration space as defined in Section 4.1.1, containing the maximum
number of instances allowed per module.

101

EvoruTrion LoGIC

Initialization M starting positions F; within the search space are ran-
domly chosen, to reduce the likelihood of ending in up in a particularly de-
ficient starting position and thus improve the speed of adaptation. The tree
is initialised as the minimum spanning tree T = mst (Py, ..., Pys).

Exploration Process 'The exploration process creates the configurations
using a mixture of three independent techniques. Firstly, similarly to the
Evolutionary Algorithm described above, a certain number of configura-
tions, the elite, can be taken over from the previous generation. Secondly,
configurations can be generated at random. And, lastly, they can be gener-
ated through limited modification of an existing configuration, in a process
which can be likened to a randomised local search. The number of config-
urations generated by each of these methods is defined through indepen-
dently configurable parameters. The encoding of the parameters is such that
an amount of non-determinacy can be introduced, if so intended. M is the
number of configurations to produce in total. M, denotes the elite size in
its integral part, as well as the probability of increasing the elite size by one,
which is encoded in the fractional part. A, defines the number of search
operations for new positions to perform, in combination with the probabil-
ity of producing one more configuration in this way. For example, setting
M=4,M.=1, My =2.7 defines an elite size of exactly 1, and with proba-
bility 0.7 will produce two configurations using the search process and one
randomly. With probability 0.3, however, it will produce three configura-
tions through searching and none randomly. The pseudo code for func-
tion EVOLVE_CTREE in Algorithm 4.11 details this process.

Searching for new positions is performed as follows (also see Figure 4.6).
One of the existing nodes of the tree, P, is chosen through roulette-wheel
selection based on the fitness determined for the associated stack composi-
tions (see pseudo code in Algorithm 4.2).

The new position P=(p1, ..., pn) is then iteratively generated through
modification of P. The distance & to advance from P, is determined by the
associated fitness value. A lower fitness results in a higher ¢ according to the
formula § ~ N (1 — F[P],1/4(1 — F[P])), where AV is the normal distribu-
tion, and F[P] is the fitness measured at P.

The modification is performed by one of the two methods described be-
low, between which the algorithm randomly chooses according to the pre-
configured probability P,,,,4. The first method is identical to the one de-
scribed for the Rapidly-Exploring Random Tree, i.e. it selects a random con-
figuration P and move towards it from P, as defined in Algorithm 4.10. The
second method operates by repeatedly selecting a not yet adjusted connector

102

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

T ~.
71 s .,
i : N
rd H .
/’ : \\
// \‘
/ d A
/ E\
,,,,,,,,,, \ T Pv
.[_] -15 i
‘-.\
\ i
\ 3
A /‘l
N B
, 4
bR w4
_.-.-‘ ,//

Figure 4.6: Local random search process performed by the Composition Tree
Search algorithm. 'The position P is chosen randomly, with probability rela-
tive to its fitness F(P). A new point P is created at distance 0 from P, and
connected to the closest point already in the tree, which in this example is P’

or control value, i.e. dimension k. Continuous controls are set to a random
value py, for which 0 < |pg, — pr| < 6 holds. For nominal controls and con-
nectors, the new value is randomly selected from Dy, \ {py}. Thus the ex-
ploration of the every configuration within a radius of § around P is equally
likely. The weighted amount of change is then subtracted from delta. This
process is then repeated until & < 0 or all dimensions have been adjusted.
The pseudo code for function LOCAL_SEARCH in Algorithm 4.12, where Dy,
denotes the domain of definition for dimension k, explains this process.
The Composition Tree Search is to best of our knowledge the first al-
gorithm specifically developed for the problem of autonomous stack evolu-
tion by means of on-line experimentation. During our experiments, some of
which are described in Section 6, it exhibited the best precision of adaptation
of all the algorithms we explored, but further improvements by choosing a
parametrisation of the algorithm that is optimised to the problem space are
probably possible. While dynamic on-line parameter adaptation is possible
and appears promising, our results so far are inconclusive and we do not

103

EvoruTrion LoGIC

know when and how to perform this process most effectively. Further re-
search in this area therefore seems advisable.

Algorithm 4.12: Composition Tree Search, local random search

function LocAL_SEARcH(Blueprints { Py, ..., Py }) > search in the
i 1ws({P1,..., Pu}) > vicinity of existing nodes

& + rdgauss (1 — F[P], 1(1 —F[P])) > normal-distributed RNG
if random([0,1)) < Ppoq then
P« randomize() > move fowards a random position
P « advance(P, P, §)
else
P+ P
K« {l,....N}
while§ > 0A K # (0 do > advance at least § from P
k « random(K) > uniformly distributed RNG
K« K\ {k}
if type(k) = continuous_control then

py < random ({max (min(Dk)7]§k — (5%) ,

Wi

min (maX(Dka + 5%‘)})

Ok < |pk — Pl
60— 5"“\%—1;\
else
pg <+ random (D \ {Pr})
6+ 90— W
end if
end while
end if
return P

end function

StocHAsTIC HILL-CLIMBING

To enable the users of the system to leverage the benefits of knowledge they
have about the application scenario, the composition system provides rule-
based exploration methods, which are only adequate for specific situations,
but tend to provide superior evolution speed there. One such algorithm is

104

4.1. LoNG-TErM DECISIONS — EVOLUTION ENGINE

I
I i

Figure 4.7: Stochastic hill-climbing probes probes the vicinity of the currently
known best configuration P, until it finds a better one, in this example denoted
by P.

the common stochastic hill-climbing, which we describe in here. Since it is
only usable for a limited set of scenarios where the fitness landscape is free
of local maxima or ridges, we do not provide experiments for this partic-
ular algorithm. Since this method does however quickly arrive at a good
solution whenever the aforementioned characteristics are met, we still con-
sidered discussing it worthwhile.

Blueprint Representation The blueprint is represented by the high-di-
mensional integer vector defined in Section 4.1.1. This definition naturally
implies that only a fixed number of instances for every class can be con-
tained in the blueprint, which is an intentional limit to the possible number
of exploration steps: The hill-climbing algorithm is intended as a means to
quickly find the optimal solution in a restricted set of problem classes, for
more complex problems one of the other algorithms would probably be bet-
ter suited.

105

EvoruTrion LoGIC

Algorithm 4.13: Exploration Process of Stochastic Hill-Climbing, one of the
Rule-based Exploration algorithms

function Evorve_HrrL_crLiMB(Blueprint { P}, Fitness F)
Persistent: Peest, the best blueprint found so far
Persistent: Punown» the set of all previously trialled blueprints
if F[P] > F[Ppest] then
Pbest — P
end if
while true do
r « random([0, 1))
if 7 > Proise then

P’ Phest PVEESR e
else > choose another configuration instead

P’ + random(Pyrown) > of the best with low probability
end if
d + random ({0, 1}V \ {0}¥) pd=(dy,...,dyn)
fork < 1— N do

if dj, # 0 then

if type(k) = continuous_control then
p}, < random ([max (min(Dy,), p; — 9),
min (max(D,), pj +)
else
b}, « random(Dy \ {p}}
end if
end if
end for
if P’ ¢ Pown then
Pknown & Pknown) {P/}
return { P’}
end if
end while
end function

Initialization A runtime-configurable number of blueprint vectors is ran-
domly initialised from within the aforementioned blueprint domain. Each
of these vectors represents one point within the search space. Standard hill-
climbing operates on only one such vector, however, depending on the opti-
misation problem, starting to search from several random locations can lead

106

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

to better results.

Exploration Process 'The search itself is performed by randomly choos-
ing one of these vectors, with probability equal to the fitness the stack that
corresponds to this vector achieved during the trial phase. One dimension
of the vector is then randomly modified according to a Gaussian distribu-
tion centred at the current value for this dimension. The pseudo code for
the stochastic hill-climbing method is presented in function EVOLVE_HILL_-
cLIMB in Algorithm 4.13.The adaptation speed of this algorithm can some-
times be improved by adapting the step width*®* according to the currently
achieved fitness, i.e. to move further away from the current position if the
fitness is low than otherwise, or simple over time. Another approach is sim-
ulated annealing, which selects an inferior candidate position instead of su-
perior one according to a transition probability that is based on the fitness
delta and the inverse of time.'** We discuss this possible for some of the
other algorithms in Section 4.1.4.

BRUTE-FORCE

For testing and debugging purposes, as well as for mapping the fitness
landscape and determining finding the optimal stack configuration, we
implemented a brute-force evolution logic, which deterministically iterates
through all possible stack configurations, and which can obviously only be
used when the configuration space is small.

Blueprint Representation 'The blueprint representation is again identical
to the one introduced in Section 4.1.1.

Initialization The initial configuration represents the minimal vector, i.e.
all controls are set to the lowest possible value and all connectors point to
the first matching module instance.

Exploration Process 'The search process consists of iterating through all
possible values for all dimensions in turn and can most easily be described
by the pseudo code for function EVOLVE_BF, given in Algorithm 4.14.

107

EvoruTrion LoGIC

Algorithm 4.14: Brute-Force Search, Exploration Process

function Evorve_Br(Blueprint { P})
done « false
fork < 1— Ndo
if done then
Pl < Pk
else
if pr + 1 = max Dy, then
p} < min Dy,
if K = N then
Terminate > final configuration generated
end if
else
Py prt1
done « true
end if
end if
end for
return {P' = (p),....p\)}
end function

RaNDOM PrROBING

This method constitutes another rather simple approach to searching
for a well-performing stack configuration. It can be considered a non-
deterministic variant of the previously described brute-force search, as it
randomly explores a yet untested configuration.

Blueprint Representation 'The configuration space is again defined by an
N-dimensional vector introduced in Section 4.1.1.

Initialization Random probing starts with one randomly generated con-
figuration.

Exploration Process 'The search process consists solely of randomly gen-
erating a configuration that has not yet been tried and re-use of the best con-
figuration found so far, as shown in function EVOLVE_RND in Algorithm 4.15.

108

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

Algorithm 4.15: Random Probing, Exploration Process

function EvorLve_RND(Blueprint { P}, Fitness F)
Persistent: Peest, the best blueprint found so far
Persistent: Punown» the set of all previously trialled blueprints
if F[P] > F[Ppest] then
Pbest — P
end if
if [Dp| = | Paown| then > all configurations tried
return { Poegt }
end if
P’ < randomize(Dp \ Pown)
Pknown o Pknown U {P/}
return { P’}
end function

We originally intended this algorithm to serve as the baseline for our ex-
periments, to which the results of the other, less simplistic algorithms are
compared. In our experiments, the random probing algorithm did how-
ever prove to be surprisingly effective, in some cases even exhibiting better
performance then the Evolutionary Algorithm, as described in detail in Sec-
tion 6.

4.1.4 Selecting the Evolution Logic

As discussed in Section 4.1.1, no one algorithm can deliver performance su-
perior to random search for all possible application areas of the stack com-
position system. In this section we nevertheless try to formulate a few ten-
tative guidelines on how the shape of the configuration space and the fit-
ness landscape influences the behaviour of the algorithms, and how to select
the evolution logic to use if at least some characteristics of the optimisation
problem are known at design time. Afterwards, we will elaborate on the pos-
sibility of autonomous selection and (re-)parametrisation of this algorithm
at run-time.

SUMMARY OF EXPERIENCES AND GUIDELINE FOR OFF-LINE SELECTION

Due to the huge amount of possible applications, possible fitness functions,
protocols and other modules available for configuration and composition,

109

EvoruTrion LoGIC

compared to the necessarily limited number of experiments - some of which
are described in Chapter 6 — we were able to perform*, our insights into the
algorithms’ performance cannot be generalised. Nevertheless, we decided to
present a few informal and subjective guidelines for choosing the evolution
logic for a specific problem set, based on our experiments, as we found lit-
erature research to not be very fruitful: Most discussions present mutually
incompatible optimisations for specific application areas,"*>'’” or are too
general for our purpose.*** And as e.g. Biben points out, the quest to find
generally-applicable, yet (close-to-)optimal parameter settings a-priori is a
lost cause altogether. **?

During the experiments, our own Composition Tree Search algorithm
in general exhibited the best performance. Iflittle background knowledge of
the problem space is available, we therefore recommend this algorithm. Evo-
lutionary Algorithms can be applied to complex and not well-understood
optimisation tasks,*®''%**” but performed rather poorly during our experi-
ments, most likely due to the low population size we were forced to use, as
discussed in Section 6.3. If the fitness landscape is smooth, random probing
can be rather effective. And if the configuration space is small but rough,
an exhaustive search is advised. The Rapidly-Exploring Random Tree per-
formed so poorly in our experiments, i.e. got frequently caught in local max-
ima, that we had to exclude the results from our discussion. We still include
the description of this algorithm in here, as we leveraged some of its design
aspects for our own Composition Tree Search.

As expected and apparent in our experiments, the parametrisation of
the evolution logic has a huge impact on its performance. While we tried to
choose the most effective parametrisation for the algorithms in our exper-
iments, our decision here was also based on limited trial-and-error experi-
mentation, thus the optimality of our settings is far from guaranteed.

We were only able to experimentally confirm that the common general
considerations, e.g. those made by Biack*****¢ for Evolutionary Algorithm,
also apply to the algorithms we tested: Apart from the truly random probing
algorithm, all other methods provide one or multiple settings which affect
the maximum step width and the probability of exploring a randomly cho-
sen state. In particular settings related the step width are very dependent
on the shape and size of the configuration space, as high step widths enable
the algorithms to traverse large spaces quickly, but impact their precision,
i.e. the best solution is less likely to be found. The optimal setting for the
probability of exploring a randomly chosen configuration in turn depends

& Bspecially the rather low number of micro-protocol modules we were able to implement
so far limited the application spectrum.

110

4.1. LoNG-TErM “DECISIONS — EVOLUTION ENGINE

on the “smoothness” of the fitness landscape. If e.g. local maxima are com-
mon, a higher probability of random exploration is advised, but the error
threshold ***?** imposes an upper limit for this value. Likewise, low muta-
tion rates in Genetic Algorithms cause the population to stagnate, whereas
too high settings causes the algorithm to degenerate into random search.

DyYNAMICALLY AT RUN-TIME

Our implementation enables the evolution logic to be dynamically re-
parametrised at run-time according to a simple heuristic based on the
fitness of the best stack found so far, which is a common strategy for adapt-
ing e.g. the mutation rate of Genetic Algorithms.****** As mentioned above,
a high random component or large step size can improve the evolution
speed, but reduce the evolution quality, i.e. cause the algorithm to “leap”
around the vicinity of the optimum without ever reaching it. Lowering
e.g. the mutation rate for once the achieved fitness is high enough might
thus improve the performance of the algorithms. We utilise a very simple
algorithm-dependent method for adapting the algorithms’ parametrisation
based on the fitness recorded for the best stack found so far, which is
conceptionally identical for all algorithms. We therefore only present the
adaptation formula for the Evolutionary Algorithm and the Composition
Tree Search in here. While the results from our experiments with on-line
adaptation of the Composition Tree Search’s parametrisation are promising
(see discussion in Section 6.1.4), we cannot give definite results of when
and how to adapt the configuration just yet, and plan to perform further
research in this direction in the future.

For the Composition Tree Search, we utilise the following formula to
derive the algorithm’s search size M, based on the fitness of the best stack.
Let [PY, P2] denote an user-defined range for My, with fpes; = maxF[P;],

K

and f¥, f4 a user-configured fitness range. Then

M — M, — Pt if fesy > 4

. JM =M. —P] if fpese < 7

f —fY
M—M,— (P* - PSV)beL otherwise,

A _ VY

defines the derivation of M, from the fitness. The local search distance ¢
already depends on the fitness of the previous generation, as described in
Section 4.1.3.

111

EvoruTrion LoGIC

fitness Y 4

Figure 4.8: The configuration of the Evolutionary Algorithm changes depend-
ing on the achieved fitness of the best stack configuration found so far: For
higher fitness values, the need to make radical changes gets reduced, i.e. Py
and o are set to lower values.

For the Evolutionary Algorithm, we implemented the following formu-
lae which set user-configurable ranges for the mutation probability and the
variance of the normal-distributed random variable used for continuous

control values (see also Figure 4.8), [PY;, Pd;| [0V, 0*].

Pl iF fiest 2= £4

Py = P i P
P+ (P — P&)% otherwise

o7 = max (min (D), 0 ") if fpogs > f4
7 {a‘ = min (max (Dy) ,o*) otherwise

For both algorithms we thus maximise the random element of the algorithms
and make them more greedy when the fitness is low. For the Evolutionary
Algorithm, this means increasing the mutation rate, for the Composition
Tree Search, it involves increasing the probability of random experimenta-
tion and increasing the size of the area in which the local search is performed.

4.2 Mid-Term Decisions - Classification & Population
Selection

Our methodology for mid-term adaptation is again inspired by nature:
Physically isolated populations of animals, e.g. those located on different
islands, independently adapt to the local environment and over time evolve

112

4.2. Mip-TerM “DECISIONS — (JLASSIFICATION & POPULATION (SELECTION

into different species adapted specifically to the island they live on. As
we intend our system to adapt to different conditions encountered in the
network, we modelled our design after this phenomenon, in a way which is
very similar to Mori et al.’s environment identifying genetic algorithm ***:
In our system different situations, i.e. the on-going traffic and the network
conditions, are distributed onto different islands. Our population selection
mechanism maintains one distinct sets of stack blueprints for each island,
which we call the population of that island. The situational classifier identi-
fies the current situation based on sensor measurements, and then decides
which population to use. It ensures that similar situations are grouped into
the same population, i.e. the state of the network and the traffic conditions
under which the stack blueprints evolved are sufficiently similar. The
best stack blueprint present in the selected population is used for normal
operational traffic, and the candidate stack blueprints for experimentation
are also selected from this population. Our implementation includes two
classifiers, the matrix-based and the k-means method described below.

4.2.1 Matrix-based Selection

The matrix-based selection method arranges the populations into and m-
dimensional matrix, and applies a simple decision heuristic on each axis of
this matrix. The definition language we use for run-time configuration of
the heuristic is very simple, and fully defined by the following EBNFE:

funetions = functicons § 5™, Tupemion k 3

function = axis, range, ”=", body :

axis = digits ;

range = ”[”, digits, 7,7, digits, ”1”

body = arg ;

arg = ”(”, arg, 7)” | digits | sensor | arg, op, arg |
qirg ; 20, Argy Y, arg

R e B B B S B e B B IR

digits = digit, { digit } ;

sensor = alpha, { alpha | digit | "~ } ;

digit = 70~ | »17 | 72> | 37 | 747 | 757 | 767 | 777 | 787 | 3

alpha = "A” | ”B” | »C” | D7 | "E” | "F” | *&” | "H” | 717 | 73”7 |
S L B I e Il I R S e B
PUTL VT W X Y | L

axis refers to the axis of the matrix to which the function is applied. range
specifies the definition range of the function’s codomain. bodyis the function
body composed of arithmetic operators (+, —, -, =), comparison operators
(<, >, <, >, =, #) which map to {0, 1}, and if-then-else branches (cond ?
true-op : false-op). sensor refers to a sensor identifier.

EvoruTrion LoGIC

As an example, a mobile device might benefit from choosing a different
population based on whether the device is using a wired or wireless con-
nection or based on whether the measured signal-to-noise ratio (SNR) is
above a specific threshold. As a simple two-dimensional example consider
the following case where sensor pwrstate reports 1 if the device is running on
battery power, and 0 otherwise, and sensor snr reports the measured SNR.
We now define one formula for each axis in the matrix:

0[0,1] = pwrstate;
L1021 = sésnpr << 30) 2 0 : (smr < 50% ¢ 1 2 22

Thus, for example, population (1, 0) is chosen whenever the device is on
battery power and the SNR below 30, as illustrated by the following table.

pwrstate = 0 pwrstate = 1
snr < 30 (0,0) (1,0)
30 < snr < 50 (0,1) (1,1)
50 < snr {0,2) (1,2)

4.2.2 Kk-Means Clustering Adapted for Population Selection

k-means**° is a common partitioning algorithm which distributes the ele-
ments of a dataset S into k clusters C; based on centroids, i.e. the centre
point of the cluster which is defined by the mean of the objects in the clus-
ter, as represented by the pseudo code for function PARTITION_KMEANS in
Algorithm 4.16.

The algorithm aims to maximise the partitioning quality, i.e. to ensure
that the elements of a cluster are similar to each other but dissimilar to ele-
ments of other clusters, by making the clusters as separate and as compact
as possible. The within-cluster variation that is used to measure the quality
is defined as the sum of the squared error between all elements of the cluster
and the cluster’s centroid ¢; for distance metric A, i.e.

k
E= Z Z A(s,)%

i=1scC;

This problem is known to be NP-hard even for two clusters, but efficient
greedy algorithms exist that limit the calculation effort in practice, especially
considering that in our case the number of data points in the set is equal to
the number of distinct situations encountered up to a specified cut-off value
evaluated and therefore comparatively low.

114

4.2. SMip-TeryM “DECISIONS — (JLASSIFICATION & ‘POPULATION (SELECTION

F(P5s)
<F(Py,8),F(P2,8),F(P3,8)>

o
0
o

/ e

Figure 4.9: 'The position vector used for clustering is constructed from the fit-
ness of the baseline stacks Py, . .., P,, as measured for the situation s.

Algorithm 4.16: k-Means Clustering

function PARTITION_KMEANS(Dataset S, Cluster Count k)
S« S
fori< 1 — kdo > randomly choose initial cluster centres c;
¢; < random(S”)
S 8\ {a}
end for
Op ¢ 0
while §, > 0do > repeatedly update clusters until nothing changes
S« 5
forall s € S' do > assign each object to the most similar cluster
i« argmin A(s, ¢;)

end for
fori < 1 — kdo > update cluster centroids
¢; < mean(C;)
end for
5 — 2, 1G:NC)
end while
return {(Cy, ¢}, ..., {Ck,)}
end function

Our contribution here is the adaptation of the algorithm for the purpose

LL5

EvoruTrion LoGIC

Figure 4.10: A simplified illustration of our autonomous clustering method.
The fitness measured for each of the baseline stack configurations serves as one
dimension of a five-dimensional Euclidean space used for the cluster distance
calculation.

of population selection, and consists of the definition of the vector space
and metric on which the algorithm operates. We wish to group situations
into different clusters based on the effect they have on the stack operations,
i.e. changes to the traffic and network conditions which do not impact stack
operations shall be grouped in the same cluster, whereas changes that re-
quire a modification of the stack configuration to operate efficiently shall be
distributed into distinct clusters. We thus define the position of an object
by the vector over the fitness values measured in the same situation for a
set of distinct baseline stacks. The metric we use for distance calculation
is the Euclidean metric. The definition of the vector space is illustrated by
Figure 4.9, and Figure 4.10 shows a simplified version of the clustering algo-
rithms, in which only two dimensions of the vector are actually represented,
and the fitness is not normalised as explained in Section 5.3.2. While other
classification criteria are possible, our definition has the important advan-
tage that the effects of network conditions, etc., are already inherently in-
cluded within the fitness value, and weighed according to their importance.

116

4.2. Mip-TerM “DECISIONS — (JLASSIFICATION & POPULATION (SELECTION

Figure 4.11: The iterative centre update procedure of k-means. The initial,
randomly chosen, centres of clusters Cy (red), and C2 (blue) are represented
by ¢, and c3, respectively. ¢! denotes their position after the j-th update.

Thus no model or intrinsic knowledge of the impact of measurements on the
fitness is needed.

Let § € S denote the situation, i.e. the set of all current sensor measure-
ments, P; one of the n baseline stack configurations. We now define F(P;, $)
as the fitness of stack configuration P; in this situation. The position vector
s of situation $ used for for clustering is now defined as

s = (F(PL, $),...,F(Pp,)

For a discussion of the problem of how to select the baseline stacks, and
how to deal with situations for which the baseline stacks’ fitness is unknown,
please refer to Section 4.2.3.

Figure 4.11 illustrates the iterative adaptation process of the cluster cen-
tres and the association of the data points with the clusters. The performance
of the algorithm depends on the random choice of the initial cluster centres.
To reduce the probability of bad random choices, the algorithm can be per-
formed multiple times and the most appropriate result selected, e.g. based
on the Bayesian Information Criterion. **%*%”

One limitation of k-means as currently implemented in our system is that
the cluster count & has to be known in advance as it is configured at run-time.

117

EvoruTrion LoGIC

We could work around this problem by providing an approximate range of
possible k-values, applying the algorithm for each of these values and then
choosing the best result, again by measuring the compactness and separation
of the clusters. Faster alternatives, such as the X-means®”” algorithm, also
exist. We plan to investigate other algorithms as well as automatic selection
of k in the future.

4.2.3 Choosing Classification Criteria

The correct choice of classification criteria is critical for the effectiveness of
our population selection method. If they are badly chosen, there is no mea-
surable benefit, i.e. the best stacks evolved in two distinct populations will
be identical. Such redundant populations reduce the adaptation speed, as
the candidate stack configurations therein still have to be trialled on-line.
The correct choice of criteria and the number of populations increases the
overall system utility, as only then an optimal stack configuration that spe-
cialised for the situation can evolve. This effect is especially pronounced in
the experiment described in Section 6.2.1.

Our current implementation requires an administrator to define these
criteria by hand. But since our stack composition system should ideally op-
erate fully autonomously, i.e. adapt the stack to the current situation with as
little background knowledge as possible, this dependency on administrator
is obviously unsatisfactory. We therefore began to investigate the possibility
of truly autonomous selection of the classification criteria by the stack com-
position system itself. The k-means-based method we introduced above, can
hopefully serve as a first step into this direction, as it classifies the situation
solely based on the fitness of one or several baseline stacks, and thus needs
neither a model of the world nor other background knowledge of the depen-
dencies between sensor measurements and the resulting fitness. Two prob-
lems do however remain.

Firstly, we do not possess insight into how to select the baseline stacks.
Currently we use a set of randomly generated stacks, as well as the unmodi-
fied IP stack, as baseline stacks, but further research is definitely needed. For
example, imagine a scenario in which the only condition changing in the net-
work is the bit-error-rate, and the fitness depends on the reception rate and
the throughput. Here the IP stack’s fitness can be considered a very represen-
tative measure to distinguish between different situations, as higher errors
result in either a lower reception quality (in case of UDP traffic) or lower
throughput (as TCP will retransmit lost packets). A stack which employs,
for example, Hamming codes (see Section B.2.2) to compensate for trans-
mission errors would however be assigned the same fitness value for every

118

4.3. SHORT-TERM “DECISIONS & PrOTOCOL MULTIPLEXING

situation in which the error rate is lower than the maximum it can compen-
sate for, and its fitness should therefore not be used for classification in this
case.

Secondly, we require a method for reliably handling situations for which
the base stacks’ fitness is unknown, as it is unlikely that we can procure sam-
ples of the performance of a set of baseline stacks for all possible sensor read-
ings. Here we propose to let the system learn the weights for a metric over
the sensor space, and select the closest known fitness value according to this
metric. For example, if baseline stack P has only been tested under situa-
tions S’ then we plan to use the following formula to derive the fitness for
unknown situation s, where the weights w; are learned e.g. by an ANN or a
naive Bayes classifier:

F (P7 argmin Ag(s, s/)> = F | P,argmin Zwi|3i — &2
s'es’ s'es’ :

/1—1 /
w; = |57 2 ez Pl
where s; is the value of the 4-th sensor in sample s" and P(s}|C;) is the
probability of sensor value s} appearing in cluster C;. In other words, the
more likely a specific sensor value is to cause classification into a specific
cluster, the higher its weight.

4.3 Short-Term Decisions & Protocol Multiplexing

The methods for exchanging stack functionality described so far are insuffi-
cient if immediate action is required: If no error occurs, stacks are replaced
only once their allotted time has elapsed, as described in Section 5.3.2. But
in some situations choosing a different stack configuration based on, for ex-
ample, the traffic type can be beneficial. For this purpose we provide the
stack composition system with a means to encode run-time decisions into
the stack.

4.3.1 In-stack Redirectors

Through the introduction of in-stack redirector module instances (see Sec-
tion 3.7.6), the stack composition system can influence the control flow path
within the stack. By introducing a redirector instance and assigning it as the
destination of a connector in place of another module instance, the evolu-
tion logic and insert an instance analogue of a CPU branch instruction into

L19

EvoruTrion LoGIC

the stack, which forwards all calls to that connector to one of its connectors
based on an arbitrary decision function. Since redirectors can be stacked,
arbitrarily complex decision processes can be evolved by adding multiple,
independently configured, redirector instances (see Figure 4.12).

Figure 4.12: Redirectors allow for the inclusion of complete or partial sub-
stacks into another stack and can branch between them based on arbitrary
decision criteria.

If the maximum number of required control paths is known in advance,
astatic addition of an appropriate number of redirector and decision module
instances is sufficient. But to fully utilise the possibilities offered by redirec-
tors, an appropriate evolution logic which is capable of instance addition and
removal of instances, has to be employed.

Redirectors can be specialised to provide any arbitrary service interface
and provides IV connectors bound to the same interface type, where IV is
the cardinality of the codomain of the decision function. The decision func-
tion can either be part by the implementation of the redirector module or
provided by a separate decision module as described below.

Generic redirector modules are provided by the stack composition sys-
tem for which, in the simplest case, the decision is based on whether the
current value reported by a sensor is above or below a threshold. The sen-
sor to use and the threshold value are defined through controls, so that the
evolution logic can experiment with and decide on the correct setting to use.

120

4.4. SUMMARY & (JONCLUSION

Apart from these generic redirectors, specialised modules are provided
which operate in a similar fashion to stack modules, but put additional re-
quirements on the redirectors they provide. One such module we imple-
mented decides for each packet whether to choose a reliable or transport
protocol like TCP or rather utilise DCCP or UDP based on an arbitrary cri-
terion such as destination, flow type, or the time of day.

4.3.2 Decision Modules

Decision modules provide a means to encode branching decisions for in-
stack redirectors in a re-usable way and independent of their position within
the stack. These modules themselves do not have access to the service in-
terface or the associated data (e.g. data packets), but can read sensors and
(and modify) the state information present in the persistent storage space
described in Section 3.4.1. Thus decision modules are capable of offering
two distinct application areas. Firstly, they can provide heuristics on which
the branching is based, independent of the program flow. Thus the same de-
cision can be applied at any position within the stack without requiring any
changes to the implementation. Secondly, they are able to take the decision
repeatedly and at different places in the stack, based on e.g. the current flow
as reported by another module - for example be means of a sensor - that
is located at a position in the stack where it has access to e.g. the necessary
packet headers. Thus, for example, a decision module instance could return
1 whenever the link that a flow utilises reports a high error rate and 0 other-
wise. Two distinct redirector module instances at different locations in the
stack might then base their actions on the same decision and e.g. enable for-
ward error correction or a reliable transport protocol. Decision modules are
not limited to redirectors, but can be utilised by all stack module.

4.4 Summary & Conclusion

In this chapter we introduced our logic for autonomous adaptation, which
consists of three interdependent layers: the long-term evolution logic, the
mid-term situational classifier and population selector and the short-term
in-stack redirector and decision modules.

We presented the evolution logics algorithms we designed and imple-
mented in the stack composition system and explained why one single algo-
rithm would be insufficient. We further described how these algorithms can
be autonomously adapted at run-time. In the future we consider to explore
this field further and to apply a meta-heurisitic, e.g. a learning algorithm to

121

EvoruTrion LoGIC

autonomously select and adapt the evolution logic depending on the situa-
tion, in a similar manner as Fernandez-Prieto described for Genetic Algo-
rithms, '** as well as several other approaches, 3%10%192:201,320,321,322,378

With respect to the mid-term adaptation layer, we discussed the two
methods for autonomous population selection we implemented. While we
cannot yet provide exhaustive and conclusive results as for how effective the
different classification approaches are in a realistic environment, our exper-
iments show the need for this or a similar approach: If the environment or
traffic conditions change quicker than the adaptation process, sufficiently
accurate evaluation and comparison of the fitness and thus the entire evo-
lution process otherwise becomes impossible, as described in Section 6.2.1.
Our current system still depends on administrator-configuration for the se-
lection of classification criteria. In the future we plan to research how to
further increase the autonomy of the system, i.e. how the stack composition
system can learn these criteria on its own. For this purpose we presented an
approach we intend to explore in the future.

Finally, we introduced our mechanism for short-term adaptation by
means of micro-protocols placed into the stack by the evolution logic.
While our previous experiments'”® with a similar approach look promising,
they are based on a far more rudimentary system design, and not directly
applicable to the current stack composition system. We therefore omitted
a discussion of these results here, an intend to re-evaluate the approach
within the current stack composition system further in the future.

122

Chapter 5

Stabilising the Measurement
Environment

The stack composition system’s ability for evolution depends on a reasonably
accurate estimate of the stack configurations’ fitness, i.e. the performance of
the corresponding stacks. Most of the algorithms employed by the evolution
engine use the fitness estimate to determine the direction of evolution, i.e.
the likelihood of a stack to serve as basis for further exploration is propor-
tional to its fitness. And since the stack composition system is supposed to
determine the fitness experimentally, it has to extract the necessary infor-
mation from the environment in a precise and reliable way.

The normal operations of the system likewise depend on situational
awareness, as the system decides which stack to use based on its assessment
of the situation as described in Section 4.2. Tt also needs to be aware of
operational problems, execution errors, abysmal stack performance, etc.,
because it has to abort its experiments with the stacks that cause these
problems right away.

In this chapter we focus on the problem of reliable gathering the neces-
sary data, assessing the information contained therein, and deriving a fitness
measure from this information. We begin by discussing the means by which
the stack composition system can acquire the needed sensory data, then dis-
cuss the influence the varying conditions of the network can have on the
information gathering process, and describe how the actions of the system
itself can aggravate these problems. We then discuss how our system extracts
the information contained within the noisy sensor data, how it can mediate
some of the mentioned problems, and further elaborate on how different

123

STABILISING THE EMEASUREMENT ENVIRONMENT

aspects of our system are designed to counteract the mentioned problems.

5.1 Sensor Information

In our design sensors act as an abstraction for various types of state or envi-
ronmental information. Sensors either serve as low-overhead state indica-
tors (passive sensors) or collect sample data on request e.g. by collaborating
nodes within the network (active sensors). Sensors are identified by system-
local unique identifiers and used for various purposes by the fitness function,
the stack steering system, and by stack modules. While the format of the sen-
sor output may be proprietary, most sensors used in our implementation are
integer-valued, and include a timestamp which indicates when the informa-
tion was sampled and a confidence measure which indicates how reliable the
reported value is expected to be, e.g. the mean squared error. As the access
model of active and passive sensors differs, we discuss them separately.

5.1.1 Passive Sensors

Passive sensors are those sensors provided by the stack steering system and
stack modules which provide access to readily available information. The
stack steering system uses sensors to make available information gathered
e.g. from the operating system or the network interface drivers. Similarly,
stack modules use such sensors to expose state information - both locally-
available and gathered from remote hosts - to other entities. Examples in-
clude the current bandwidth utilisation, cache hit ratio, or anything else that
is considered useful for other modules, debugging, or fitness calculation. Lo-
cal sensors follow a push-model, i.e. their value is updated whenever the ex-
porting entity deems necessary. Thus querying local sensors does not in-
duce any additional overhead apart from the access to a node-internal data
structure and is basically instantaneous. The uses of these sensors are man-
ifold, e.g. for cross-layer optimisation or fitness calculation: Many of our
experiments introduced in Chapter 6, for example, include a measure of the
communication overhead, which is derived by sampling passive sensors that
report the total amount of outgoing data in bytes at the application and phys-
ical layer at the beginning and end of each sub-trial.

5.1.2 Active Sensors

Active sensors provide information the gathering of which requires actions
to be performed that can have a detrimental effect on the system or network
performance, for example because they are calculation-intensive or cause a

124

5.2. THE PROBLEM OF ENQISE

non-negligible amount of network traffic. These sensors are enabled on de-
mand based on subscription and operate asynchronously: To access an active
sensor, the requesting entity must subscribe to the sensor, which is identi-
fied by a globally-unique identifier of the entity, e.g. a remote node which
hosts the sensor, and a sensor identifier local to that entity. Subscription
includes a specification of the data that is be reported, e.g. the sampling fre-
quency, based on which the affected entity can decide on whether to grant
the requestand how to configure its measurement equipment. The operation
thereafter depends on the requested service and can involve e.g. reports pe-
riodically sent directly to the subscriber or in response to specific access re-
quests. Active sensors are used to abstract functionality exported by existing
technologies such as SNMP or remote measurement facilities, for example
those discussed in Section 2.4.

Passive sensors of collaborating remote nodes which use the stack com-
position system can also be accessed by means of active sensors. This func-
tionality uses the sidechannel interface introduced in Section 3.7.4, and ei-
ther queries the sensors on demand, or accesses a locally cached version, if
the information stored there is recent, e.g. because a broadcast update was
received.

5.1.3 Sensor Requirements

Since sensors are part of the system they gather information about, the ob-
server effect cannot be completely avoided, as even minor operations induce
overhead, and might change the outcome of an experiment. *** We therefore
aim to minimise such effects by passively gathering the needed information
whenever possible, for example, by performing inline measurements, i.e. we
extract the measurement data from already available information such as the
normal operational traffic or modify operations in such a way that perfor-
mance is not affected. The ImTCP?'® algorithm, for example, re-schedules
the transmission of normal TCP packets such that the available bandwidth
can be estimated from the measured RTT and thus makes active measure-
ments and their associated overhead unnecessary. Additionally we utilise
periodic status messages and their acknowledgements, which are transmit-
ted between collaborating stack composition system hosts, to measure RTT
when TCP is not in use.

5.2 'The Problem of Noise

Raw sampled sensor data on its own is often unfit for direct interpretation
and requires further processing to extract the required information. One of

125

STABILISING THE EMEASUREMENT ENVIRONMENT

the reasons for this is the chaotic nature of the environment in which these
sensors operate. As most networks route data that was either directly gener-
ated by a chaotic system, e.g. its users, or at least influenced by unpredictable
physical effects, the networks’ behaviour is far too complex to simulate prop-
erly. >”¢ Sensor data retrieved from the network thus often resembles a noisy,
fluctuating, and multi-dimensional signal, as shown in Figure 5.1. Further-
more, it is often even not easy to decide what and how to measure, e.g. the
measurement process itself might not sufficiently capture or even distort the
signal. In this section we introduce some of the causes of problems and relate
how they affect the reliability of the system.

THE NETWORK As A CHAOTIC SYSTEM

As introduced above, the environment the stack composition system is ex-
posed to cannot be assumed to remain sufficiently static. Just as an user
might decide to access a certain network resource at any arbitrary time, a
route may change or a link fail in the same unpredictable fashion. Yet the
situations under which we test the candidate stacks need to be comparable.
While our system cannot prevent these effects, it still has to be able to detect
changes in the network and traffic conditions, decide whether they affect its
operations, and take appropriate countermeasures to ensure that the results
gained from experimentation are comparable. Without further precautions,
the system might otherwise misinterpret changes, which in actuality are due
to external influence, as being caused by the currently tested stack configu-
ration.

Unpredictable Applications Both communication-related applications
and network services running on the system naturally influence the network
conditions and the performance of the system. An automatic software
update, for example, might be scheduled to happen at a fixed time every few
hours or whenever the system is perceived to be idle. Of course, we do not
expect these applications to conform to the needs of the stack composition
system regarding e.g. the reproducibility of experiments, in fact we actually
intend them to be ignorant about them, as we discuss below. Instead
our system has to cater to their needs, as the performance of the running
application to a large part define the utility of the system and therefore the
fitness of the stack.

Unpredictable Users Even though the stack composition system is sup-
posed to operate autonomously, the influence of the “human factor” onto its
performance should also not be underestimated: The goal of the adaptation

126

§.2. THE PROBLEM OF ENQISE

25kB/s

0 ' i ' 700s

Figure 5.1: This graph exemplifies the problem of and one countermeasure
against noisy input signals. The green data points indicate the transfer rate
measured per second at the recipient of a 12*8/s bulk data transfer over a dis-
tance of 70 km on a busy VDSL link. 'The red, blue and black data points show
the effect of averaging using a sliding window of 10s, 100s, and 1000s, re-
spectively. In this case rather primitive signal processing methods sufficed to
transform the unusable input signal into an effective measure of the transfer
speed. Depending on the measured quantity and the application requirements,
however, the necessary normalization steps may be rather involved, especially,
when the speed of change detection is vital.

and therefore the evolutionary process itself is after all specified by the hu-
man users or administrators and has to be somehow conveyed to the system.
Sadly, the users’ understanding of the conditions that define the intended
goal state is often vague, fuzzy, and sometimes even based on incorrect as-
sumptions: Itis, for example, often unclear how to evaluate how satisfied the
users are with a provided service, and worse, how an autonomous system
could possibly measure it. Most approaches therefore focus on expressing
utility by means of easily measurable quantities *»”*'***7® or use policy def-
initions, **"'*®**” which for many applications is definitely sufficient. Over-
all, a more explicit and direct approach for assessing the user preferences
might provide more reliable results, but research in this direction has yet to

127

STABILISING THE EMEASUREMENT ENVIRONMENT
provide practical solution. > **'?

An additional problem is presented by the unpredictability of the users’
actions, and of the resulting effects on the measurements. In general, their
behaviour becomes more predictable for larger “populations” and over
longer periods of time: A single user might surf the web for an hour, but
then suddenly initiate a large file transfer. 'This imposes a limit on the
possible adaptation speed of the system, as it implies that more experiments
need to be performed and a longer duration allocated for each experiment
to smoothen spikes caused by sudden changes in behaviour.

THE INFLUENCE OF EXPERIMENTATION

Experimentation itself also influences the conditions in the network, as dif-
ferent stack configurations produce e.g. different traffic patterns and thus can
influence both future experiments and experiments performed at the same
time on remote nodes. For example, even if an application were to send data
at a constant rate, a defective stack configuration can cause the send queue
of a socket or protocol to fill up and thus impose additional load on follow-
ing experiments. The system therefore has to safeguard against such effects,
either pro-actively by repairing the “damage” or passively by delaying follow-
up experiments such that the likely impact is minimal. Measurement data
can still exhibit effects caused by previous experiments, even after the action
is long finished. Data aggregation or normalization approaches that utilise
a sliding window approach can make matters worse and further extend this
influence, as do transmission delays induced by the network. And as com-
munication is not instantaneous, the network itself also causes delays in the
reporting of measurement data.

In a distributed set-up, where every node can schedule its experiments
independently, effects caused by other experimenting nodes can influence
the fitness evaluation, and this influence is not limited to the trial time, as
visualised in Figure 5.2. Experimentation can furthermore affect the actions
of the users and application, which might, for example, adapt the codec used
in a VoIP call to the available bandwidth or postpone watching a streaming
video when the throughput is bad. And active measurements can further
aggravate this problem.

ProBING IN THE DARK

Worse than noisy data, however, is no data at all. The observability of the
network environment is limited to the data provided by sensors it has ac-
cess to, and the information that e.g. remote nodes are willing to share is

128

§.2. THE PROBLEM OF ENQISE

T _—um——

time -

Figure 5.2: Experiments can influence the operations of other nodes. In this
4-node example, the experimentation phase of a node is marked in red, the
overall strength of fluctuations other nodes experience due to this experimen-
tation is marked by grey graphs. 'Lhe strength of these effects often varies be-
tween nodes, e.g. experiments of node N1 do not influence N4. Effects are usu-
ally especially pronounced when the experimentation phases of multiple nodes
overlap, but can extend far beyond the actual experimentation interval.

often constrained by policy and business interests, and also because packet-
switched networks were not designed with measurements in mind.*** The
problem of lacking data is especially pronounced in our case, as remotely-
gathered information still needs to be conveyed across the network, and an
ineffective or buggy stack can seriously impede this process.

Possibly even worse than missing data is incorrect measurement data,
as our system on its own cannot verify that the measurements are reliable.
For example, when the fitness assessment is based on sensor information
gathered from the stack modules themselves, these modules can - inten-
tionally or due to programming errors - falsify the reported data and thus
steer the evolution into an unwanted direction. An impressive example of
this problem was reported for autonomously synthesised protocols, which
simply generated perfect transmission statistics, but did not even try to fulfil
their purpose.**”

When reports from remote entities attribute to the fitness calculation, the
inherent need to trust the measurements becomes particularly pronounced,
as the local system is normally easier to control than the entire network. Ina
worst-case scenario, a knowledgeable and resourceful attacker can effectively
undermine the adaptation process. Consider for example the rather simplis-
tic case of an attacker with access to a web server, which the target of the

129

STABILISING THE EMEASUREMENT ENVIRONMENT

attack uses to measure e.g. the delay and throughput. The attacker performs
a DoS attack whenever the attacked node tests a good stack configuration,
and does nothing when the stack configuration is known to perform badly.
It gains the necessary knowledge about the attacked node’s stack remotely,
for example, by inferring the configuration parameters of TCP.'7%**® If this
attack is implemented correctly, the stack composition system will arrive at
the conclusion that the bad stack configurations are more effective than the
actually good ones, and the stack eventually evolve towards the global pes-
simum instead of the optimum. The factors that make this attack possible
solely depend on the run-time system configuration, and which the stack
composition system cannot influence.

INDEPENDENT OPTIMIZATION TOWARDS A COMMON GOAL

A further interesting problem, which we consider out-of-scope for our cur-
rent work but cannot leave unmentioned, is how to ensure that multiple
nodes within the network, which autonomously try to optimise the stack,
eventually arrive at a stable common global optimum. For example, consider
the problem of evenly distributing the work load amongst multiple nodes in
adecentralised manner, with the aim of minimising the processing delay and
resource utilisation. Possible implementations include service deployment
via mobile code or agents, as introduced in Section 2.7.3. Whereas the infor-
mation needed as input to the local fitness functions can easily exchanged
between the nodes, one major problem remains: The fitness functions needs
to be formulated such that the Nash Equilibrium falls onto the global opti-
munn, since our concept models a non-cooperative game between the collab-
orating nodes. And while this is sometimes possible, the adaptation speed
will be polynomial in the number of nodes, and in the worst case rise expo-
nentially, as has been shown for the convergence to a desirable equilibrium
(see e.g. chapter 5 of the ANA'® deliverable D3.8,*® which provides a de-
tailed introduction to the problem in the context of a-threshold congestion
games).

Reformulated for our use case, the problem can be simplified as follows:
If the local utility of a stack is not influenced by the remote stack configura-
tions, then the optimisation behaviour will be unaffected, i.e. every node can
operate as if it was the only one optimising its stack. If the relative order of
stacks w.r.t. their fitness is not influenced by the stack configurations used by
remote nodes, then the normal actions we deploy to counteract situational
changes are sufficient. If however a locally deployed stack performs better
than another one if a specific remote stack is deployed, and the opposite is
true for a different remote stack configuration, then the optimisation process

130

§.3. STABILISING THE <MEASUREMENT ENVIRONMENT

will take exponentially longer, or become impossible altogether.

5.3 Stabilising the Measurement Environment

In this section we describe the measures we implemented in the stack com-
position system that enable it to extract the information it needs from the raw
sampled measurements and describe how the help to tackle the aforemen-
tioned problems. Our approach for performance assessment was inspired by
Ramos-Munoz et al.,**® i.e. the stack composition system also performs trial-
and-error experimentation on network stacks, and utilises a fitness function
based on measurement data from the network. We further realised and con-
siderably extended some of their proposals for future work, as they for exam-
ple only operated on individual protocols and suggested the use of an Evolu-
tionary Algorithm as adaptation logic. Similarly to Bicket,*® and as opposed
to e.g. ADROIT, **” we implement a heuristic that limits experimentation to
asubset of the possible stacks i.e. in our system only those stack that the evo-
lution logic considers likely to exhibit higher utility are actually evaluated.
Additionally we abort stack trials whenever the conditions change consid-
erably, experimental results are non-representative, or a problem is noticed
during execution. Our methodology for measuring and experimentation is
mainly based on standard normalisation techniques, such as averaging over
multiple samples, elimination of outliers or anomalies, and fault-detection.

5.3.1 Measurements & Data Processing

During its operation the stack steering system constantly gathers measure-
ment data from sensors within and outside the system, processes it, and acts
on the resulting information. All sensor measurements and messages are
timestamped, which enables the stack composition system to derive a se-
quential order of events and in specific cases to correlate causality. The sys-
tem clocks of all nodes are synchronised by means of NTP and thus achieve
an accuracy in the 10 ms range,**' which for our purposes is more than suf-
ficient. To compensate for network-induced delays, we process the sampled
data and calculate the fitness only once a “calm-down” period is complete,
which we discuss in Section 5.3.2. All reports are transferred over the reliable
transport channel, i.e. lost report packets are retransmitted, and reports are
cryptographically signed to reduce the risk of (in-)voluntary data corrup-
tion. We further took care to - whenever possible - utilise robust statistical
estimators, i.e. we trim outliers from the sampled data and average over a
sufficiently large number of samples to reduce the effect of sudden spikes,

131

STABILISING THE EMEASUREMENT ENVIRONMENT

like those illustrated in Figure 5.1. Sensor measurements are weighed ac-
cording to their confidence value, which is part of our sensors, and which
further helps to increase the accuracy of the aggregated information.

5.3.2 Experimentation

All stack configurations are evaluated by means of experiments that the stack
steering system schedules based on its assessment of the current situation. It
ensures that the conditions of trials are comparable by means of the following
measures, which we discuss in more detail below.

o Every stack is tested multiple times in independent sub-trials.
o 'The order of these experiments is randomised.
o After each experiment a “calm-down” phase is enforced.

o Experiments are performed infrequently and after random inter-
vals. 'The length of these intervals is proportional to the system
performance.

o Unsuitable stacks are prematurely terminated.

o Results of experiments are only compared with those achieved under
sufficiently similar situations.

TRIALS AND SUB-TRIALS

Due to the noisy nature of the experimentation environment, one single
sample, i.e. one experiment with a particular stack configuration, is often not
sufficient to reliably assess the result. The stack composition system there-
fore performs multiple independent experiments, which we call sub-trials,
and averages the results as discussed below. A trial is the sum of all sub-trials
performed for a particular stack configuration.

NUMBER OF SUB-TRIALS TO PERFORM

The decision of how many sub-trials to perform for every stack configuration
thatis being trialled influences the precision and speed of the adaptation pro-
cess: Additional experimentation naturally takes time and thus slows down

132,

§.3. STABILISING THE <MEASUREMENT ENVIRONMENT

the evolution. It is however vital to perform a sufficiently large number"
of independent experiments, i.e. sub-trials, as like with every stochastic pro-
cess, the accuracy of the measurements increases - up to a certain point -
with the number of samples obtained. Assuming that the conditions during
the experiments are randomly distributed, we average over the achieved fit-
ness values per stack configuration, and thus hope to achieve a utility mea-
sure which is representative for the situation under which the experiment
was performed. As the accuracy of the fitness estimate itself also varies -
depending on the network and traffic conditions - our averaging process in-
cludes a measure of confidence per sub-trial, based on the sensor confidence
measure described above. Let ¢; denote the confidence of fitness measure-
ment f;, then the average fitness is calculated as

Z ¢if;
o 2
S
?

F

The number of sub-trials to perform has to be configured by the admin-
istrator. A dynamic determination of the number of samples needed, e.g. by
means of the variance, would require knowledge about the statistical distri-
bution of the sample values. The stack composition system does not possess
such knowledge, as the fitness function is defined at run-time. The minimum
number of sub-trials performed is limited to twice the population size. We
randomise the order in which stack configurations are trialled, so that the
effects stacks can have on consequent experiments are minimised.

EXPERIMENTATION LENGTH PER SUB-TRIAL

For a correct assessment of the fitness, it is vital to allocate enough time to
the individual experiments. Each experiment needs to be long enough for
the protocol behaviour and traffic conditions to stabilise. But allocating too
much time for each sub-trial is also counter-productive, since it effectively
increases the time during which potentially ineffective stacks are deployed
and thus reduces the overall system utility.

The length of a sub-trial itself is variable and depends on the deployed
micro-protocol modules, as many protocols need a specific time to stabilise.
The minimum time A,,, needed for module m is therefore included in the

“* For our experiments on a rather busy VDSL link, we empirically found 5 to 10 sub-trials

were sufficient to normalise the measurements. These results, however, depend largely on the
experimentation environment, and cannot be generalised without performing an exhaustive
evaluation of all possible network environments, which we deem out of scope.

STABILISING THE EMEASUREMENT ENVIRONMENT

module specification introduced in Section 3.4.1. The fitness function spec-
ification also includes a minimum time A for this purpose. The minimum
length of a sub-trial is consequently defined as the maximum over A¢ and
the A,,, of all modules included in the stack. If during this period any un-
foreseen problems occur (see Section 5.3.2 below), the execution is aborted
prematurely. Otherwise, after the minimum trial time has elapsed, the fit-
ness function is polled. If the returned confidence estimate c is above a pre-
defined threshold ¢y, the testis complete. Otherwise, additional time in steps
of Ay microseconds can be allotted up to a pre-defined maximum of A,
depending on the fitness in relation to ¢. The pseudo code in Algorithm 5.1
illustrates the process.

Algorithm 5.1: Determining the length of a sub-trial

to < current_time()
start_stack(S)
Ap + max (A, min ({A,, |Ym € ST U {A¢}))
wait(Ap)
if stack error then
return Fp < 0
end if
while current_time() — ¢y < Ayyan do
Fo, ¢ < evaluate_stack_performance(sS)
if ¢ > ¢4 then > if confidence is high enough, accept
return Fg
elseif c > ¢y AFg < fo then > if confidence is reasonably high and
> the fitness appears to be bad, abort
return Fp < 0
end if > otherwise continue to test the stack, up to a maximum
wait(Aq)
end while

DELAY BETWEEN EXPERIMENTS

After an experiment is complete, the stack composition system switches to a
baseline stack, i.e. a known-good stack®, and uses this stack for a pre-defined
time period. Through this measure we hope to compensate for the possible

> This can be either a generic networks stack or the best stack found so far through experi-
mentation.

134

§.3. STABILISING THE <MEASUREMENT ENVIRONMENT

Frest Bo B

Figure 5.3: 'The probability of a scheduling an experiment depends on the fit-
ness of the best stack found so far.

destabilising effects that the candidate stack can have on the conditions in
the network. After this period the system monitors several indicators, such
as the amount of data present in the application send queue, to determine
whether the situation has returned to a stable state. Aslong as this is not the
case, no further experiments are performed.

Once the situation has normalised, the next sub-trial is scheduled after
arandom delay that is several times larger than the actual experimentation
phase. We thus try to ensure that experiments are infrequent and that over-
laps between the experimentation phases of different nodes become unlikely.

The delay is calculated by means of a Gaussian variable, the mean of
which depends on the fitness of the best stack found so far within the current
population, and thus the current situation as discussed in Section 4.2. The
system thus biases towards exploration when the fitness under the current
conditions is low and towards exploitation when it is high, as we assume that
ahigher fitness reduces the need to find a better stack. For this purpose we let
the administrator define two floating-point ranges, [, 1] and [Bg, 1] ao
defines the minimum delay between two experiments, and c¢; the respective
maximum. The 8; in turn define the fitness values for which the minimum
or maximum delay is chosen, respectively. If the fitness lies between the 3;,
we linearly# interpolate between g and oy, as illustrated by Figure 5.3. The
mean of the Gaussian variable is determined by the following formula, in
which Fp.s; is the fitness of the best stack in the selected population, and p

% This choice was arbitrary. For example, using a sigmoid function would also have been
possible. Determining the most effective function for this purpose is left for future work, as we
currently cannot reliable estimate the influence of this function on the overall system perfor-
mance.

135

STABILISING THE EMEASUREMENT ENVIRONMENT

the mean of the Gaussian variable defined as

o if Fpest < Bos
. L if Foest > B1s
F _
ap+ (o — ao)b”tiﬁO otherwise
B1— Bo

We further define the variance relative to the mean as o2 = %.

PREMATURE TRIAL TERMINATION

If stacks perform badly, their execution is aborted before the allotted trial
time has expired. Causes for such premature termination are a particularly
low in-trial fitness estimate as described above, as well as the reasons in-
troduced below. Whenever a trial is terminated, the stack configuration is
assigned the minimum possible fitness value.

Termination of Abysmal Stacks Stack execution is terminated by the
stack steering system as soon as it detects that the tasks assigned to the
stack are not being performed. If e.g. an application tries to send data
through the stack, but no outgoing packets arrive at the physical layer
within a reasonable time, this condition is assumed. If the candidate stack
is unable to communicate with a node that is reachable by other means -
for example, via the sidechannel interface introduced in Section 3.7.4 - the
stack is immediately aborted. To reduce the effect of false positives, even
aborted stacks are tried at least trice.

Termination due to Complaints Even if the node itself seems to be able to
operate reliably, an immediate termination of execution is sometimes war-
ranted. If a faulty protocol were to flood the network with messages, execute
a DoS attack, or otherwise impede the correct operations of the network, the
affected nodes can send a complaint via the reliable sidechannel described in
Section 3.7.4). Depending on the trust-relationship with the node that sent
the complaint (see Section 5.3.4), the stack configuration is either immedi-
ately purged, or retried at a later time as described above. The reasoning here
is that if, for example, the only router on a subnet sends such a complaint, the
possible effect of being separated from the network by this router outweighs
the effect of possible false positives.

136

§.3. STABILISING THE <MEASUREMENT ENVIRONMENT

Termination of Invalid Stacks Invalid stack configurations that are not
detected at composition time will be terminated in all of the following situ-
ations.

Loop Detection 'The stack steering system keeps track of calls to all
connectors in the stack: Connectors are “locked” when they are invoked, and
“unlocked” once the call returns. If the lock count of any connector exceeds
the defined maximum (three in the current implementation), an infinite loop
is assumed, and the stack therefore terminated immediately.

Error Handling When code execution errors, such as C++ exceptions
or segmentation faults, are detected, the stack is also immediately aborted.
Regrettably, but obviously, not all such errors are detectable or recoverable,
as for example memory corruption bugs can leave the entire system in an un-
stable state. Solutions and safeguards for this problem are again considered
out of scope for this thesis.

5.3.3 Ensuring Comparability

We use the classification methodology introduced in Section 4.2 to guaran-
tee that the situations in which the experiments are performed is sufficiently
similar. The stack composition system performs the classification process
periodically, and at a higher frequency than the actual sub-trial length.
Whenever the classification changes, i.e. a different population is tested, the
current trial is aborted, the results discarded, and the baseline stack used to
guarantee that the system returns to a stable state.

Our reason for using only this technique is simple: The goal is after all to
let the evolution logic adapt to the entire spectrum of situations covered by
the classification process, i.e. to handle all possible conditions therein. Ide-
ally the difference in fitness achieved by the same stack configuration for dif-
ferent situations within the same cluster should be marginal. Otherwise, the
number of performed sub-trials must be sufficiently high to maximise the
probability of all stack configurations being tested in a representative subset
of situations in accordance to the underlying statistical distribution. Since
the fitness function and classification parameters are configured at run-time,
this responsibility fundamentally lies with the administrator. Whether our
approach for autonomous classification based on the fitness difference of
known-good stacks (see Section 4.2.2) is helpful for this purpose requires
further evaluation in the future.

137

STABILISING THE EMEASUREMENT ENVIRONMENT

5.3.4 Information Exchange

To increase its situational awareness, the stack composition system depends
on information from collaborating entities within and outside the local node.
In this section we introduce the provided facilities through which the system
can interact with remote nodes and the applications running on top of it.

TRUST RELATIONSHIP

The stack composition system builds a trust-relationship with remote enti-
ties to guard against attacks. For this purpose the stack composition system
uses trust levels expressed as floating-point values in the range [0, 1]. The
administrator can configure a minimum trust threshold, and assign public
keys and trust levels to remote nodes and applications, and specify the max-
imum number of hops for propagating trust, as well as a discount factor.

The system learns the trust levels and public keys of initially unknown
nodes from those nodes it already knows by means of polling. If several
trusted nodes assign different trust level, the level reported by the most-
trusted already known node is used. For equally trusted nodes, the mini-
mum reported value is used. The assigned trust level is the product of the
trust level for the directly known node, the reported trust level of the un-
known node, and the discount factor. Since nodes communicate over the
sidechannel, and all data transmitted over this interface is cryptographically
signed, we assume that reports cannot be falsified by third-parties.

THE CONCEPT OF ENTITY SATISFACTION

Similarly to the scalar fitness measure we use to assess the utility of a partic-
ular stack configuration, we employ a scalar measure to express how content
other entities, e.g. nodes in the network, applications or users, are with the
current situation and the actions of the stack composition system. Conse-
quently, we call this measure the entity satisfaction.

We define satisfaction as a floating-point value in the range [—1, 1],
where 1 indicates perfect operation conditions, i.e. content with the cur-
rent state, —1 total discontent, and 0 indifference. Trusted entities can
report two types of satisfaction to the stack composition system through
a special communication interface: The global satisfaction expresses the
content with the overall situation, and the specific satisfaction refers to the
(dis-)satisfaction with the behaviour of a particular node in the network.

Similarly to the trust values defined above, every known entity is at-
tributed a configurable weight which defines the significance of the entity
to the local system. The system primarily uses these reports to determine

138

§.3. STABILISING THE <MEASUREMENT ENVIRONMENT

whether to prematurely terminate an experiment, but these reports can also
be included into the fitness function, e.g. when the aim is to reach a shared
global optimum for multiple nodes (see Section 5.2).

PERFORMANCE NOTIFICATION INTERFACE

The stack composition system provides a common interface through which
applications and remote nodes can report their satisfaction with its actions
and the global situation in general. They report distinct satisfaction values
for both cases either via the sidechannel interface in case of remote nodes,
or using IPC in case of applications. Just as for sensors, satisfaction values
also include a measure of confidence, which denotes the presumed accuracy
of the report.

Notification by means of Broadcast Messages 'The general satisfaction is
broadcast to all trusted nodes in the network neighbourhood. Node-specific
satisfaction values are only broadcast if the specific effect of a node exceeds a
defined threshold: If the influence difference between a node and the average
is low, the general satisfaction is sufficient and the traffic overhead is kept
minimal. If one node’s actions have a particularly strong effect - for example,
if it is (maybe unwittingly) performing a DoS attack on another node - this
information is immediately conveyed to all other nodes.

Notification to Specific Nodes Specific nodes are informed about their
satisfaction only if separate per-node measurements are available and the
corresponding node-specific satisfaction is sufficiently different from the
general satisfaction. Such reports are transported via single-cast and used
to terminate experiments with faulty stacks - provided that the reporting
node’s trust level is high enough.

Notification from Applications At start-up local applications register
with the system and set the initial satisfaction value, and the associated
confidence estimate. Every application is additionally assigned a weight by
the administrator. The application satisfaction is defined as the weighted
sum of the individual applications’ reports and used for the same purposes
as remote nodes’ reports - to terminate faulty or inefficient stacks and for
fitness calculation.

139

STABILISING THE EMEASUREMENT ENVIRONMENT

5.3.5 Fitness Calculation

For the stack composition system, the most important measure that can be
extracted from the sensor data is the fitness, as it encodes the presumed util-
ity of the stack. Consequently it directs the long-term evolution as described
in Section 4.1 and even serves as a measure of the distance between situations
in the autonomic classification process detailed in Section 4.2.

The task of extracting the fitness from the sensor measurements is at-
tributed to the fitness function, which is probably the most common ap-
proach for this purpose, and which is defined at run-time by the adminis-
trator, and expressed by means of the following EBNFE:

functions = trialtime, function, { function }

function = funcname, ”(”7, paramname, { 7,7, paramname }, 7)7 , 7=",
SXPE, T

expr = ”(”, expr, ”)” | float | inputname | paramname | expr, op, expr |
funcname, ~(”, params, ”)” | expr, "7, expr, ":”, expr ;

R e el B A S B Ll I B S I R

params = expr, { ”,” expr };

paramname = alpha, { alpha | digit | "_* }

funcname = alpha, { alpha | digit |

inputname = alpha, { alpha | digit | ”_” }

trialtime = ”[”, digits, 717

Flogt = digit: 4 2lglt 1 %% | digls

digits = digit, {dwgwt} £

diigiie = #0= | =l | = | & || RaE | KGR [EgE g

alpha = "A” | ”B” | C (IS [R et R R g
KL M] 0T | TR |t | R TS | T
TUTL VT W X] YT | L

trialtime is the minimum time in microseconds to allocate for one sub-
trial. funcname denotes either an explicitly defined function, fitness, or one
of the following pre-defined functions:

power(z,y) = zY
exp(z) =€
log(z,y) = log, =

& See Section 2.5.2 for several use cases explored by others.

140

§.3. STABILISING THE <MEASUREMENT ENVIRONMENT

2 x 42
erf(a) = ﬁ/o e " dt
apply_bias(z, f) = bs(w) = (1 —) + pz
I ifz <l
saturate(z,l,h) =< h ifz > h

z otherwise

The name fitness denotes the function that is called to calculate the fitness.
inputname refers to one of the inputs discussed below.

INPUT SELECTION

The fitness function can base its calculations on the following input data.

Sensor Measurements Both active and passive sensors, as introduced
in Section 5.1 are available as input. 'The fitness assessments fed into the
evolution logic are derived based on data gathered during each experiment
through the application of pre-defined functions, for example, to derive the
mean or maximum over all gathered samples, or to access the first or last
sample.

Application & User Satisfaction Apart from the physically measurable
quantities introduced above, our concept also explicitly allows for a more
dynamic and flexible approach: When the administrator does not possess
sufficient knowledge to express the utility by means of such quantities, they
can delegate this task to those entities that do, i.e. the applications and / or
users. Here app_sat(app) denotes the satisfaction reported by a specific ap-
plication, and app_sat() is the weighed sum over the reported fitness of all
registered applications, i.e. F 4 is calculated using F 4 = 2 Sww , where S; is
the satisfaction of application ¢, and w; the associated weighing factor, which
is defined by the administrator of the stack composition system.

The purpose of this approach is to leverage application-level knowledge,
which cannot easily be accessed by the stack composition system. After all,
the application itself is in a far better position to assess its communication
requirements than an external entity ever could. As an example, an FTP
client could define its satisfaction as S; = T if a file was transmitted cor-
rectly, and S; = —1 otherwise, while a VoIP phone might prefer to report
So=TD 'J ', whereT, D, J are normalised measures of the throughput,

141

STABILISING THE EMEASUREMENT ENVIRONMENT

delay, and jitter, respectively. While the experiments we describe in Chap-
ter 6 do not use this facility, it has already been extensively utilised to mea-
sure the satisfaction for bulk transfer, video streaming and VoIP applications
and derived the fitness estimate from them. '**

Collaborative Adaptation For collaborative adaptation towards a com-
mon goal shared among multiple nodes, as introduced in Section 5.2, the fit-
ness function can incorporate remote_sat(), which denotes the weighted sum
over all satisfaction values reported by remote nodes, and remote_sat(node),
which is the unweighed satisfaction reported by a specific remote node. If
specific reports for this node are present, these are used, otherwise the gen-
eral satisfaction as extracted from received broadcast reports is used.

INPUT AGGREGATION

Whereas the inputs can be processed and combined in any way repre-
sentable by the EBNF given above, e.g. by means of the Cobb-Douglas
production function,® we so far mostly utilised the following two ap-
proaches for weighing and balancing the effect of the different quantities.
The first method is the common weighed sum, i.e. F = ~. w;q;, where w;
is the associated weight of quantity ¢;, and which is closely related to the
Von Neumann-Morgenstern utility theorem.?*® The second, multiplicative
method, which we use for the experiments described in Chapter 6, is defined
asF = [[, bo,(9:) = [; (1 — w;) + w;q;). We prefer this definition as it is
easier this way to guarantee a minimal fitness value if only one condition is
notmet,ie. 30 : ¢ =0 <— F=0.

CONFIDENCE

All sensor and satisfaction values that serve as input to the fitness calcula-
tion have an associated confidence estimate, which defines how reliable the
input is supposed to be. For information reported by remote nodes that are
not trusted the confidence is further reduced, i.e. all satisfaction and sensor
measurements attributed to such a node are also distrusted. The confidence
of the fitness assessment is calculated by replacing the input quantities, e.g.
sensor data or satisfaction values, in the formula that represents the fitness
function by the respective quantity’s confidence.

EXAMPLE

After the theoretical discussion above, we now present an example of how
the fitness can be calculated from easily measurable sensor data. For this ex-

142

§.3. STABILISING THE <MEASUREMENT ENVIRONMENT

ample we assume that the goal is to maximise the achieved throughput, while
also limiting the protocol overhead and guaranteeing reliable transmission.
Some easily measurable quantities can be used for fitness calculation
without much preprocessing, e.g. the reception quality can be directly cal-
culated as the ratio of acknowledged versus sent application-layer bytes:

R Aa
Sa
Since the information about the network environment is rather limited,
we often need to use relative measures instead of absolute ones whenever
possible. For example, the end-to-end bandwidth is not easy to determine
passively, so we use the following function to achieve a measure in the range
of [0, 1] from the raw throughput 7" in bytes:

T — 1 — 9—logro(1+107°T)

As we likewise do not know how much overhead will be considered op-
timal for future protocols, we use the sigmoid Gaussian error function to
derive a scale-independent measure from the number of bytes sent on the
application 54 and physical layer Sp:

The aggregated fitness can then be defined directly based on the weights
one wishes to attribute to a quantity, e.g.

F=R - bos(T) - bosO
would value correct reception higher than high throughput, and this again
higher than low overhead. The confidence estimate ¢¢ consequently would

also be defined as

G =cCp - b0,5(CT) - bo.scy

CA
CR — 2
CSA
—4
g=1— 9—logio(1+10 *er)

Cs
cp = erf <—A> .
CSP

143

STABILISING THE EMEASUREMENT ENVIRONMENT

5.4 Chapter Summary

In this chapter we introduced the problems related to the autonomous gath-
ering of measurement data within a network setting, and its “distillation”
into a easily processable form for fitness assessment and situational classi-
fication. We presented our design for performing experiments, acquiring
measurement data, and extracting the information contained therein. We
further described the countermeasures present in our framework for safe-
guarding against the uncertainties of the network. We also discussed the
process of aggregating information into a scalar fitness value, and how the
system can become aware of the needs and expectations of its applications
and users.

144

Chapter 6

Experimental Validation

In this chapter we present some of the experiments we performed during
our research. We focus on the feasibility of an stand-alone system for au-
tonomous stack evolution within an actual network setting, i.e. are interested
to find out whether a generic design such as ours is actually able to perform
this task. We did not design our architecture with a specific application sce-
nario in mind. It can in theory be applied to optimise the network stack
to almost arbitrary conditions, definitions of utility, and operate on micro-
protocols and service modules that are unknown at design or deployment
time. But naturally the problem space here is huge and the uncertainties nu-
merous"', thus we were unable to explore the entire problem space exhaus-
tively in our experiments, and instead decided to see whether our system as
a whole is capable of adapting the network stack to the environmental and
traffic conditions and thus increase the fitness of the system as a whole, even
if only for a few specific test cases.

We implemented our entire framework both as a replacement for the
network stack in the ns-3" simulator and as a stand-alone user-space appli-
cation deployed in a physical test-bed, as described in Appendix B.1. One
major problem related to this approach is the need for actual protocol im-
plementations that can be composed and configured by our framework - a
feat that most existing stacks were not designed for - and thus we had to
(re-)implement all protocols we used for the experiments again on our own,
which reduced the variety of scenarios we were able to test. However, we
decomposed into configurable micro-protocol modules and implemented a

Y For example, we do not know enough about the protocols that might be deployed on the

system to make assumptions about their influence on our system’s performance.

145

EXPERIMENTAL ‘UALIDATION

sufficient subset of the Internet stack, e.g. TCP, IP, and several additional
protocols, as detailed in Appendix B.2, and used these for our experiments.

We begin by exploring how the evolution engine - which constitutes the
long-term adaptation layer - fares when exposed to different adaptation sce-
narios. In Section 6.1 we look at the adaptation dynamics of some of the al-
gorithms we implemented in the evolution engine, to see how well the long-
term evolution logic is able adapt the stack composition and configuration
to improve the utility as measured by the fitness function. For this purpose
we expose the system to different traffic scenarios and environments, both
within a physical test-bed and in simulation. Here we utilise the physical
test-bed only to validate that the results found through simulations reflect
reality, as the overhead of actual physical experimentation precludes its use
for a more thorough assessment. We aim to keep the networking and traffic
conditions as realistic as possible, but focus on a single node running the
stack composition system to eliminate possible side-effects caused by the in-
teraction of multiple concurrently evolving systems, a problem we discuss in
Section 5.2.

We then explore the capabilities of the mid-term adaptation layer, i.e.
the performance of the situational classification and population selection ap-
proach, in Section 6.2. Here we investigate the usefulness of the matrix-based
selection method introduced in Section 4.2.1 by measuring its effect on the
overall adaptation quality and speed in comparison to a system which tries
to evolve one generic stack adequate for all possible situations.

Through these experiments we hope to provide first insights into the pos-
sibilities of autonomous stack evolution and to show its feasibility for some
problem scenarios. While we do not exhaustively evaluate all possible as-
pects for adaptation, we do hope to lay the basis for future exploration.

6.1 Evaluation of the Long-Term Stack Evolution
Approach

The long-term evolution approach encompassed in the evolution engine
provides the mainstay of our concept’s adaptation abilities, on which both
the short- and medium-term functionalities depend. We therefore put the
emphasis of our experiments on the validation of this approach, and begin
by presenting a proof-of-concept for the system’s ability to find a valid stack
composition, followed by several scenarios to proof that it is additionally
capable of finding a close-to-optimal configuration of the network stack’s
modules, both within a limited amount of time, followed by scenario
designed to emphasize the differences in the adaptation characteristics of

146

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION eAPPROACH

the individual evolution logics. Lastly we investigate whether the perfor-
mance characteristics of the different algorithms depend on the application
scenario, and how the selection and parametrisation of the evolution logic
influences the adaptation behaviour and speed.

6.1.1 Scenario 1A: Composition of the Internet Protocol Stack -
Simulation

In this first experiment we provide a proof-of-concept of the evolution en-
gine’s ability to construct a valid stack composition out of a set of protocol
modules. In particular, we intend to show that, given a limited but reason-
able amount of time, the combination of on-line experimentation and cre-
ation of a follow-up generation through the evolution logic leads to a close-
to-optimal stack configuration.

To prove that the stack composition system’s ability to evolve the stack
is independent of how the initial stack is configured, we let the system start
from a set of randomised configurations, so that the initial stacks are with
high likelihood either completely invalid, i.e. inoperable, or valid, but sub-
optimal. We provide a fitness function which encodes our notion of optimal-
ity, set up a test-bed and expose the system to live application traffic. After
each generation has been evaluated, we use the calculated fitness to assess
the performance achieved by the stack that the system considers best at that
point in time.

Our criterion for success is whether this stack performs close to opti-
mally, according to the following definition. Since we cannot determine the
true optimum without exploring all possible stack configurations, which is
precluded by the size of the search space, we here define optimality as the
fitness exhibited by the overall best stack found during the entire experimen-
tation with this scenario. The initial generation of stacks is always randomly
generated, and we performed more than 500 independent simulation exper-
iment runs altogether, as described below. While such statistical sampling is
not sufficient to determine the overall maximum, we consider the proximity
to this value a considerable better measure of a non-deterministic evolution
logic’s capabilities for stack adaptation than simply measuring the improve-
ment of fitness over time.

ADAPTATION SCENARIO

As scenario for our proof-of-concept we decided on the following question:
Can the system compose the Internet stack? Or more precisely, given as
input a set of networking protocols, i.e. variants of [Pv4, TCP, etc., which

147

EXPERIMENTAL ‘UALIDATION

1 Ethernet SCS-tunneled WLAN 8C8 }10519 Bon
WLAN TCP router Soekris NET6501
TRV e =
Basel, Switzerland SAMbls B0211g G
. 2% packet loss
Client D

Server hosting - s
8CSnode C] 3 iy

) da vDsL
g, nternet 0 Ll router Client A
. VDSL
\ﬁw e Freiburg, Germany

2 MB of data @ 300 kB/s CBR
once every 30s

LGbjs Ethenet RS

Figure 6.1: The physical layout of our experimentation network is spread
across two sites connected via the Internet. The simulation models the network
conditions we empirically measured in this test-bed.

are able to be arbitrarily stacked and which the stack composition system
can combine in any way it decides, is the system able to come up with a
composition that works over the Internet, and as a further goal, one that
offers close-to-optimal fitness?

Network Topology We performed our experiment in a simulated environ-
ment, which we modelled after the actual network conditions that we em-
pirically measured in the test-bed depicted in Figure 6.1. For this purpose
we reproduced the pictured topology and the measured throughput, delay,
jitter, and packet loss between A and B, B and C, C and D in ns-3. For exam-
ple, we measured a packet loss rate of around 2% on the link between B and
C, and configured the same rate on the link we simulated. Please also refer to
Section 6.1.2, where we evaluate more-or-less the same scenario within the
actual physical test-bed.

Fitness Function Based on status reports sent by node B, C measured the
achieved throughput, packet loss, delay, and jitter at the application layer,
and calculated the transmission overhead between application-layer data
and the actually transmitted data on the physical layer. The fitness measure
we utilise for this scenario is derived from these measures. Please refer to
Section 5.3.5 for an introduction of the notation, the utilised functions, and
reasoning that guided our fitness calculation.

The most important - and therefore most heavily weighed - component
of the fitness function is the reception measure R which is inversely pro-
portional to the packet loss, since we want to enforce correct transmission.

148

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION eAPPROACH

We calculate this value from S 4, the number of bytes sent at the application
layer of the stack composition system running on node B, and A 4 the num-
ber of bytes acknowledged by node C at the same position in its stack. S4 is
directly measured at node B, whereas A 4 is based on status reports sent by
node B to C.

Less important than correct transmission are the achieved throughput 7'
and the transmission overhead O, which we way at one quarter of the recep-
tion and calculate from the number of application-level bytes acknowledged
by B per second T4 and the number of bytes sent at the application S 4 versus
physical layer S p, respectively.

T — 1 — 9—logio(1+107'T4)

0= erf(i—ﬁ) .

The least important measure in the fitness function, which we therefore
weigh at 15% of the reception, are the measures for delay D and jitter .J,
which are calculated from the average of the measured raw delay D and jit-
ter J values and the scaling values Dy, Jy which we determined empirically
before the experiment.

From these measures and using the weighing function b introduced in
Based on the considerations introduced in Section 5.3.5, we define the fitness
F as

F=R- boos(T) bo.os(O) - bo1s(D) - bo1s(J).

Configuration of the Evolution Logic We used two different algorithms
for long-term evolution for this scenario. the Composition Tree Search and
the Evolutionary Algorithm. We parametrised both algorithms to empiri-
cally determined values which we found to work best with respect to evolu-
tion quality and evolution speed. For the Composition Tree Search we uses
a population size of 3, elite size of 1, search size of 1.7, modification proba-
bility 0.5, step ¢ 10, connector weight 5, and instance weight 100.

149

EXPERIMENTAL ‘UALIDATION

We configured the Evolutionary Algorithm with population size 3, mu-
tation rate 0.9, mutation o 2.0, and crossover rate 0.1. This parametrisation
is rather different from those encountered in the literature, for reasons we
further discuss below.

Experiment Normalization We performed 100 runs of the experiment in
the simulator for each of the evolution logics, that is we repeated the same
experiment 100 times for random seeds of [0, 100). Every run lasted for
50 generations, and we performed only 2 sub-trials® as we expected the
simulation to contain little noise.

Furthermore, we set the duration of the sub-trials to 30s, i.e. identical to
the traffic patterns period. One complete trial therefore takes 1 min to com-
plete, and the two* new stack configurations that are trialled per generation
can consequently be tested in 2 min.

Stack Modules For this experiment we provided the stack composition
system running on node B with modules that implement the functionality
of TCP, UDP, DCCP, IPv4. We modified the protocol specifications so that
that arbitrary compositions of these modules are possible, e.g. TCP can be
positioned on top of UDP, as illustrated in Figure 6.2. We further provided
two dummy transport modules (X,Y), which add an undecodable dummy
header to all data that passes through them. At the top of the stack we po-
sitioned the GCP, which is described in Section B.2.2, and which serves as a
protocol multiplexer, i.e. binds to all of the aforementioned protocols and
selects one of these for communication. The GCP provides one control,
through which the evolution logic defines to which of the 6 possible targets
all outgoing application packets are forwarded, i.e. which of its connectors
to use. These target instances in turn process the incoming data packet and
forward it to the next lower layer by means of a connector that can bind to
one of 6 module instances. The evolution engine on node B can thus encode
6° = 46656 different paths through the module graph, out of which only a
fraction of % . % = 0.1 is actually usable for communication, as also shown
in Figure 6.2: We configured the stack composition system on node C such
that it silently drops all incoming packets that do not conform to the nor-
mal Internet protocol stack and thus simulate a legacy client that does not
support stack composition .

® See Section 5.3.2 for an explanation of the stack composition system’s experimentation
methodology and a distinction between trials and sub-trials.

% The best found stack is kept over as elite.

& We still had to place an instance of the stack composition system at node C for practical
reasons, as our measurements and thus fitness calculation depend on that node’s status reports

150

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION eAPPROACH

App

I GCP |
|sel=[TCP,UDP,DCCP,IPv4, X, V]|

TCP
recovery_alg="
iw_size="
tstype="
cmprtype="

ecctype=

DCCP
shortsegnums="
histdisc="
i |cscov="

| lecid="

" Efhemel’

Figure 6.2: 'The possible compositions of the stack modules, where red arrows
indicate the valid paths through the stack. Black arrows denote those paths
which result in communication failure when taken, either because the packets
are dropped by the test modules, or the encoded packets are not decodable by
the standard Internet stack implementations. Solid lines indicate fixed connec-
tions, dotted lines identify all possible connections for one connector. 'The text
boxes denote the controls that can be configured by the evolution logic

Most of the unusable stacks are not detectable by the stack composition
system without actual experimentation. If the stack configuration encodes
aloop, e.g. TCP is positioned on top of UDP, which in turn is connected to
TCP again, the stack composition system detects this problem once the first
outgoing packet is send, aborts the stack, and assigns it a minimal fitness
value, as explained in Section 5.3.2. But for most other non-standard-con-
forming and therefore unusable stacks, such as TCP over DCCP over [Pv4,
the processing of outgoing data does not produce any errors#, and the stack
composition system on node B thus cannot notice any problems without ac-
tually performing on-line experimentation. The receiving node C silently

& All of these modules use the Unified Communication Interface, which enables arbitrary
communication modules to communicate with each other, as described in Section 3.7.3.

151

EXPERIMENTAL ‘UALIDATION

drops packets encoded by these stack configurations, and the actually mea-
sured fitness for such stacks is zero.

Our implementations of TCP and DCCP both define several controls,
which determine the protocol operation (see Section B.2.1). Due to these
controls the size of the actual search space on which the evolution logic op-
erates 7776 - 128 = 995328, but the ratio between usable and unusable stack
configuration does not change.

Traffic Characteristics We deployed a test application on client A, which
at intervals of 30s sends 2 MB of bulk data at a constant rate of 300 kB/s via
TCP to the stack composition system deployed on node B. The stack compo-
sition system running on node B transmits this data to node C using its cur-
rent stack configuration as decided by its evolution logic. The corresponding
stack is directly attached to a raw network socket, i.e. bypasses the operating
system’s [P stack. The stack composition system on node C again uses TCP
to forward the received data to Node D.

Since we wish to focus on the abilities of the evolution engine to adapt
the stack, we synchronised the operations of node A and B, i.e. we guarantee
that node A performs exactly one send operation and during every sub-trial
performed by node B™.

REsuLTs

The adaptation behaviour encountered in this experiment is depicted in Fig-
ure 6.3 for the Composition Tree Search and Figure 6.4 for the Evolutionary
Algorithm. For sub-figure (a) we grouped the runs per generation accord-
ing to the fitness the best stack found achieved in that run, and calculated
the average over each of these 10 sets. The average fitness of 10% group that
achieved the highest fitness is denoted by the solid green line, followed by the
average fitness of the next-best group, and so on to the worst-performing
10% shown by the red line. Sub-figure (b) was generated by calculating
the average of 10% of runs that exhibited the highest fitness (again given in
green), then the average of the best 20%, and so on, up to the average over all
except the worst 5% of runs (denoted by the red line). The dotted green and
red lines in both sub-figures show the fitness of the overall best and worst
stack found during the experiment. Sub-figure (c) shows the fitness distri-
bution of the tested stacks during the initial randomly created generation

™ This step allowed us to reduce the overall time needed to perform the simulations, as
without the stack composition system would discard the results and re-schedule all sub-trial
during which not enough data was transferred.

152

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION e APPROACH

0. (a) 0. (b)
77 . P g - =
0T e Pk o R
il FEY, |) I |)
[i !
: /)
0.5+t : 0.5+ +
Wil ' 3. |
2o. 2o.
10 Y
o3l 0. — best 10%
H / — best 10% — best 20%
| — 2nd best 10% — best 80%
02 — 2nd worst 10% 02 — best 90%
” / — worst 10% { — best 95
0.1 1 ---- overall best 0.1 1 ---- overall best
, (/ i ---- overall worst i ---- overall worst
0% 16 20 30 a0 50 o 16 2030 a0 50
generations, generations,
© 45 (d)
I first generation » I fitness > 0.3
I 50-th generation | fitness > 0.7 |
£ g2
5 5
8 i 85
[T
i l.k‘ 19
|
o B s S
H 01 02 03 05 06 07 08 % 0

0.4 10 0
fitness generations until fitness threshold reached

Figure 6.3: Adaptation behaviour of the Composition Tree Search for the In-
ternet Stack composition scenario.

(blue), and during the last generation (green). Sub-figure (d) shows the his-
togram of the time needed to reach a fitness threshold of 0.3 and 0.7 in blue
and green, respectively. The time is given in generations, where one genera-
tion correlates to approx. 2 min of real time.

As illustrated in sub-figure (d), both algorithms managed to generate an
usable stack in less than 10 generations, i.e. about 20 min, during 95% of all
runs. Evenin the worst case encountered during our 100 runs, both methods
achieved a positive fitness after at most 27 generations, which corresponds to
around 50 min. Since (as described above) only 10% of all possible compo-
sitions can achieve a positive fitness, the probability = for reaching a positive
fitness in 95% of all trials is 0.9* = 0.05 <= zlog0.9 = log0.05 =
x A2 28.43, both algorithms perform at least as good as random probing,
with high probability even better. Both algorithms thus perform better than
the average specialised search algorithm (see Section 2.6.5). The fitness of
the candidate stack configurations developed by these two algorithms also
improved over time, which was not the case for random probing. As shown
in sub-figure (c), the stacks tested in the final generation achieved a signifi-
cantly higher fitness than the initial generation. Since the initial generation

153

EXPERIMENTAL ‘UALIDATION

0 (a) 0. (b)
7 a i R W17 e .
0 7 / o = 0. 7 / /
il 1| N/
05 : 0.5
gl [g
£04 ! $oa
S oalld I] / ™ — best10%
! I — best 10% — best 20%
[— 2nd best 10% — best 80%
02r — 2nd worst 10% 02 — best 90%
| H — worst 10% — best 95!
o : ---- overali best 0.1 --- overall best
/ I / / ! ---- overall worst -- overall worst
8 10 20 30 a0 50 @ 10 20 30 a0 50
generations, generations,
© 45 (d)
I first generation » I fitness > 0.3
I 50-th generation | fitness > 0.7 |
B
5
8 L
A IJ‘
Y 1.8
0T 0z 03 05 06 07 08 % oo L o 0
generations until fitness threshold reached

0.4
fitness

Figure 6.4: Adaptation behaviour of the Genetic Algorithm for the Internet
Stack composition scenario.

is randomly generated, its histogram also gives a good indication of the fit-
ness distribution of the entire search space.

SUMMARY

In this scenario we made the stack composition system to produce a fea-
sible network stack out of several, almost arbitrarily connectible modules.
We demonstrated that the stack composition system is able to find a near-
optimal stack configuration within a limited amount of time, and an usable
stack within an even shorter period, at a high confidence level. The time
needed for adaptation is however far from instantaneous and only adequate
for scenarios which do not change quickly and where sufficient time for ex-
perimentation and adaptation is available. The need for an additional layer of
adaptation, for example the mid-term population selection (see Section 4.2)
or the short-term in-stack redirectors (see Section 4.3.1), thus became ap-
parent.

Additionally the importance of normalization for our fitness calculation
became apparent. The two sub-trials we performed were insufficient to ef-

154

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION eAPPROACH

fectively normalize the fitness measurements, resulting in a noticeable fluc-
tuation caused by e.g. variations in the error rate. And even though we per-
formed five sub-trials in the real-world test bed, the influence of noise was
even higher. Consequently the system was unable to find the true optimum,
as the impact some settings, such as whether or not to use TCP timestamps,
had on the fitness was lower than the variation caused by environmental
effects. We therefore conjecture that the measurement accuracy, which di-
rectly affects the precision of the fitness calculation, also limits the evolution
quality. The higher the error in the fitness assessment, the lower the ability
of the system to reliably differentiate between similar - but not identical -
utility.

The optimal parametrisation we found for the Evolutionary Algorithm
through trial-and-error experimentation is rather different from the values
described in textbooks or reported as optimal for specific applications. '***7”
We assume that the reason for this is threefold. First of all, our implementa-
tion differs from the textbook implementations - please see the description
the our algorithm in Section 4.1.3 - and thus the optimal parametrisation
also differs. Secondly, the cost of experimentation in our case is rather high,
thus the detrimental effect caused by a large population size, i.e. the long
time needed per generation to experiment with every stack configuration
for that generation, seems to outweigh the reduced evolution quality. Lastly,
the search space for this scenario is rather small. For more complex scenar-
ios, i.e. a higher variety of modules, the optimal parametrisation will likely
differ.

6.1.2 Scenario 1B: Composition of the Internet Protocol Stack -
Physical Test-Bed

In this scenario we empirically validate that the simulation results found for
scenario 1A resemble reality, i.e. that the results reported there accurately
replicate the adaptation behaviour when the system is deployed in the phys-
ical test-bed. As the set-up closely resembles the previous one, we only dis-
cuss the differences to scenario 1A and the results in here. Due to the high
work load for setting up, executing and monitoring the experiment, we only
performed 10 experiment runs for every evolution logic we tested. We fur-
ther configured the stack composition system to average the fitness over 10
sub-trials to compensate for higher measurement inaccuracies .

£ Whereas we did try to reproduce the actual physical environment as closely as possible
in the simulator, the actual packet loss rate, etc.in reality were rather unpredictable, and did
not even conform to those we encountered a few days earlier when we prepared the simulation
experiments.

135

EXPERIMENTAL ‘UALIDATION

1.
0.8
06" e e e e
0 [
NI
S04 g
|
0.2 g
0.6 20 40 60 80 100

generations

Figure 6.5: The fitness achieved by the ten runs performed in the real physical
test bed.

The fitness for the best stacks found by the Composition Tree Search
during these experiments is depicted in Figure 6.5. While the number of
trials is too low to make any definitive statements the higher level of noise
in these experiments is noticeable, even though we averaged over ten sub-
trials instead of two as in the simulation. The fitness values themselves are
noticeably different from the ones measured during the simulation, due to
the difference in traffic and network conditions. In particular the achieved
throughput, delay and jitter on the real-world test bed not only differed from
the simulation results, but also fluctuated significantly.

During the limited number of experiment experiment runs we per-
formed, the system was able to adapt the network stack to the specified
requirements in the same way as during the simulation. There was no
indication that the results from the simulation are not applicable to reality,
but further experimentation is needed to achieve certainty.

We further measured the impact that a deployment of the stack com-
position system has on system performance. Since our current implemen-
tation is single-threaded, non-operational tasks, such as the application of
the evolution logic or the re-composition of the stack induce overhead. Our
measurements on actual router-class hardware do however indicate, that this

156

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION eAPPROACH

impact is negligible, as these actions are infrequent, and stack operations are
prioritised. The longest delay we measured in our experiments — apart from
disk activity due to logging, which is disabled in a deployed system - was
caused by the Evolutionary Algorithm and in the range of tens of millisec-
onds. As the evolution engine is independent of the actual stack operations,
the necessary processing could further be handled in a separate thread on
multi-core processors.

6.1.3 Scenario 2: Error Correction & Compression

After establishing the capability of our system to compose network stacks
out of protocol modules and driven by a utility function in the previous sce-
nario, we now turn our attention to the problem of finding a module’s op-
timal parameter configuration and placement within the stack. Specifically
we present a scenario in which the stack composition system has to decide
on the optimal configuration of a module which provides error correction
and compression, and where to place it inside an otherwise fixed stack com-
position. In this scenario the utility of the stack depends on environmental
conditions which are unknown at design time. We again let the system start
from a randomly initialized state, and measure if and how fast the stack per-
formance approaches the optimum.

EXPERIMENTATION ENVIRONMENT

In this scenario we again utilise a wireless set up, as radio communication is
often plagued by packet corruption and loss, the severity of which depends
on the current signal-to-noise ratio, interference level, and traffic conditions.
Since these influences vary widely even within the same network, the deci-
sion of what countermeasures to take is best taken at runtime, and could
thus provide an almost ideal test case for our stack composition system.
Here forward error correction plays a vital role as it is the most widely
deployed countermeasure against problems caused by noise in wireless com-
munication channels. The introduction of error-correcting codes can reduce
some types of data corruption and resulting loss, but incurs additional over-
head by adding redundancy, i.e. overhead, to the transmitted data. The re-
sulting trade-off between achieving a higher probability of successful trans-
mission and a reduced bandwidth caused by adding more error correction
symbols causes the optimal configuration to depend on the current network
conditions and application requirements. As these conditions are unstable,
optimal performance requires continuous adaptation of the employed error
correction method based on e.g. the measured reception quality. Conse-

137

EXPERIMENTAL ‘UALIDATION

quently network cards compliant to modern WLAN standards such as IEEE
802.11n'*® employ heuristics to chose from one of multiple error-correcting
codes variants based on the measured network conditions.

For this scenario we performed experiments only in the simulation en-
vironment, introduced in Section B.1.2, as this was the only way to get us
full access to the link layer and provided us with functionality to introduce
errors at a configurable rate: The wireless interface cards available to us did
not allow us to modify the employed error-correcting codess, thus we were
unable to realise this scenario on the physical test-bed.

Network Topology & Traffic Characteristics For this scenario we again
used the simulation environment described for the Scenario 1A and depicted
in Figure 6.1. Node A was again configured to send 2 MB of bulk data at a
constant bit rate of 300 kB/s to node D, and repeat this process at an interval
of 30s. The transmitted data consisted of concatenated, but uncompressed
HTML pages. The maximum packet size was limited by the MTU of the sim-
ulated VDSL link, i.e. 1350 bytes. The rate error module of ns-3 enabled us
to introduce random uniformly-distributed byte errors into the packet data.
NS-3 onits own only reports that a packetis corrupted, thus we extended it by
randomly corrupting bits in the packet once it had traversed the IPv4 mod-
ule, in accordance to the error probability. For this scenario we set the byte
error rate (BER) to a relatively high value of 0.001, so that communication
is only feasible if an effective error correction method is employed.

Fitness Function Apart from the sensor measures introduced for Scenario
1A, we use the computational overhead C caused by adding error correction
and compression, i.e. the time needed to perform these operations in rela-
tion to the time needed for the normal stack operations. We further re-define
the overhead measure as Ocq g—g, and emphasize the effect of overhead com-
pared to the error-function-based measure we used for the previous scenar-
ios. The constant ¢, was derived empirically to guarantee that the possible
values of O fall in the [0, 1] range and depends e.g. on the application pay-
load. We further defined the fitness function as

F=R-C-O byas(D) - boo(T).

This function, on which the results discussed below are based, puts a
strong emphasis on correct transmission while incurring little transmission
overhead. To test that the system is also able find the correct settings for
other weights, we repeated the experiments below for function

F=C 0 byas(D) boa(T) bo1R,

158

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION eAPPROACH

In this case the adaptation dynamics were mostly identical, thus we omit-
ted a thorough discussion below and only describe how the optimal stack
configuration differs.

Configuration of the Evolution Logic We performed our experiments us-
ing the Evolutionary Algorithm and two differently-configured versions of
the Composition Tree Search algorithm. For Evolutionary Algorithm we
used a population size of 3, elite size of 1, mutation probability of 0.9, mu-
tation o of 2.0, and a crossover probability of 0.1. We configured the 1%
variant of the Composition Tree Search with a population size of 3, elite size
of 1, a search size of 1.7, the modification probability of 0.5, step ¢ of 10,
connector weight 5 and instance weight 100. The 274 variant used a connec-
tor weight of 2, but was otherwise identically configured. Additionally we
applied the random probing algorithm as baseline for comparing the adap-
tation behaviour.

Experiment Normalization We configured the system to perform 10 sub-
trials for every stack tested, and performed at 50 simulation runs per evo-
lution logic in ns-3. We set the duration of a sub-trial to 30s, i.e. identical
to the data transmission interval, so that one complete trial takes a total of
5 min to complete. To test the two new stack blueprints created per genera-
tion the system therefore needed approx. 10 min. We stopped the runs once
100 generations had been tested.

Stack Modules The network stack for this experiment was composed of
protocol modules for [Pv4, Ethernet, TCP, UDP, and DCCP, for which we
enforced layering according to the IETF standards by means of the module
specification language described in Section 3.4.1. We further introduced the
Codec module described in Section B.2.2, which the stack composition sys-
tem was able to place either on top of the transport protocols, below them, or
next to them on the transport layer, thus bypassing the transport protocols.
We again employed the GCP module to select the underlay for all outgoing
communications, which encoded ten different paths through the stack.

The Codec module provides compression and error correction, which
the stack composition system was able to configure through the exposed
control values. It offers four controls, two to select the employed error-cor-
recting codes and compression method, and two for parametrising them.
As explained in Section B.2.2 and Section B.2.2, the module provides three
compression methods, uncompressed, RLE, and DEFLATE, and three er-
ror correction methods, CRC32, Hamming codes, and Reed-Solomon codes.

139

EXPERIMENTAL ‘UALIDATION

(b)
] —
" 0 W= ==
7 =
e f//// ==
05 0.8g S =
It
04 204
4 g |
& &
= %3 — best 10%
— best 10% — best 20%
0. — 2nd best 10% 0. — best 80%
— 2nd worst 10% — best 90%
: — worst 10% P — best 95
o ---- overall best 0= ---- overall best
-+ overall worst i ---- overall worst
L2 20 40 60 80 00 o 20 40 60 80 00
generations, generations.
© 7 (d)
[first generation mmm fitness > 0.5
m 100-th generation | fitness > 0.6
£ h E
5 H
8 8
2
i . L1l
ol 02 05 08 0.7 % 0

.3 0.4 20 40 0
fitness generations until fitness threshold reached

Figure 6.6: Adaptation behaviour of the 1+ configuration of the Composition
Tree Search for the error correction and compression scenario.

Since the controls are independently modifiable, the parametrisation con-
trols can embody different meanings such as the compression level or be
totally meaningless, e.g. in the case when CRC32 is selected as error detec-
tion method. For Reed-Solomon, the parameter represents the number of
redundant bits per 64-bit block, out of {2i |1 < ¢ < 14}. For deflate com-
pression, the parameter encodes the compression level in the range [1, 9]

Overall the configuration space encompasses a total of 2 x 3 x 9 x 3 x
14 = 90720 different parametrisations, all of which are actually usable for
communications. But since the error rate in the network is rather high, the
data payload is well compressible, and the fitness function favour little loss
and low overhead (as described above), only very few of the configurations
can attain a high fitness value.

Based on the described scenario we expect that the stack composition
system will configure the system to use Reed-Solomon codes, configured to
guarantee near-perfect transmission with a low number of redundant sym-
bols, and use the deflate algorithm for compression, configured to one of the
highest compression levels.

160

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION e APPROACH

(a) (b)
P e — e e e e B
o. o = ===
- T TR
0.5/ pans —_—
e J/___,_J,
0.4t sk
N
g [
b 11 — best 10%
{ i — best 10% — best 20%
0.2+ : — 2nd best 10% 0. 4 — best 80%
/J_: — 2nd worst 10% — best 90%
A — worst 10% bt — best 95
o ---- overall best L i ---- overall best
i -+ overall worst | ---- overall worst
OG- 20 40 60 80 00 0G5 20 40 60 80 00
generations, generations.
(c) (d)
[first generation mmm fitness > 0.5
m 100-th generation 7 | fitness > 0.6 |
o
5
8
. ity el | Lil |
0.1 02 03 0.4 05 06 0.7 20 a0 0 0
fitness generations until fitness threshold reached

Figure 6.7: Adaptation behaviour of the 2% configuration of the Composition
Tree Search for the error correction and compression scenario.

REsuLTs

For this scenario we again present separate graphs for all four evolution logic
variants we tested in Figures 6.6, 6.7, 6.8 and 6.9. These graphs detail the
adaptation behaviour in the same way as described for the preceding sce-
nario on 152. As opposed to the previous scenario, however, this behaviour
varied strongly between the tested algorithms. Both variants of the Compo-
sition Tree Search achieved a fitness greater than 0.5 within at most 25 gen-
erations, as shown in sub-figure (d) of Figures 6.6 and 6.7. 'The Evolutionary
Algorithm, however, failed to reach this threshold after 100 generations in
7 out of the 50 runs we performed, as shown in Figure 6.8. For the higher
fitness threshold of 0.6, the differences were even more pronounced. The 1
variant of the Composition Tree Search missed the target in 5, the 274 vari-
ant in 7, and the Evolutionary Algorithm in 34 out of 50 runs. This is even
worse than for the random probing method, which only failed in 21 runs.
These differences in behaviour are likely due to the differences between the
algorithms - and different parametrisations therefore - in treating continu-
ous controls, i.e. whether they are likely to make larger or smaller changes to

161

EXPERIMENTAL ‘UALIDATION

; e s A P = = ————
o J pr g A . ‘ == —
o) e
7 T B
0.l 7 e - /. =
Elll
f i — best 10%
Il h — best 10% — best 20%
0.2;} + — 2nd best 10% 0. ; — best 80%
SR — 2nd worst 10% P | — best 90%
04 — worst 10% S — best 95
-2 ---- overali best 0.1+ ---- overall best
3 -+ overall worst ! ---- overall worst
oG 20 40 60 80 Too o 20 40 60 80 Too
generations, generations.
© 15 (d)
[first generation mmm fitness > 0.5
mmm 100-th generation 3 | fitness > 0.6
€ g2
5 5
g g 8
8 5B
] ¥ P
R Tp— SN bhk obeo swsl =
0.1 02 03 0.4 05 06 0.7 % 20 0 0 0 0
fitness generations until fitness threshold reached

Figure 6.8: Adaptation behaviour of the Genetic Algorithm for the error cor-
rection and compression scenario.

such control values, etc.

Sub-figures (c) illustrate the importance of error correction in this sce-
nario. A majority of the 150 randomly-created stacks in the initial genera-
tion exhibited an extremely poor fitness of less than 0.1. A random inspec-
tion of the stack configurations in this range and their sensor records showed
that they employed either insufficient or no error correction at all, or placed
the Codec module too high in the stack, which caused the checksum test
in the underlying modules to fail and the packet to be dropped. A low, but
non-zero fitness requires that at least some packets passed correctly, indicat-
ing an insufficient forward error correction method setting, or in very rare
cases, several uncorrupted packets. Since the GCP module employs its own
checksum algorithrms, failure to detect corruption was highly unlikely=.

Sub-figures (a) clearly visualize the effects a one-bit change in the stack
configuration can cause. When a nominal control changed, e.g. a better er-

% We did only explicitly check whether the received data matches the transmitted data dur-
ing one run, during which we detected no such corruption. This does however not prove the to-
tal lack of undetected but corrupted packets during all trials, since the received data was silently
dropped for performance reasons

162

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION e APPROACH

(a) (b)
ol - == = =
050/ R gy B . /7 e e B oy T
o4 '
@ g
£, s/jj I
. — best 10%
— best 10% — best 20%
0.2 — 2nd best 10% 0. — best 80%
128 — 2nd worst 10% o — best 90%
HIfA — worst 10% P — best 95%
-4y ---- overall best L ---- overall best
i ---- overall worst H ---- overall worst
0% 20 40 60 80 00 0%* 20 40 60 80 00
generations, generations.
© 25 (d)
[first generation mmm fitness > 0.5
W 100-th generation m fitness > 0.6
6 1
£ i
5 5
g g
2 s EE
. y T BT P [: ey sy
0.1 02 03 0.4 05 06 0.7 % 4 0 0 0
fitness generations until fitness threshold reached

Figure 6.9: Adaptation behaviour of of the random probing algorithm for the
error correction and compression scenario.

ror correction method was chosen, or a different call path through the stack
selected by the GCP module, the fitness changed sufficiently to introduce a
step-like effect in the graphs. Since we performed only 50 runs per evolution
logic variant, each line in this graph represents the average over 5 runs, thus
these artefacts are not hidden by normalization. Sub-figures (a) also show
that the 1** variant of the Composition Tree Search on average exhibits preci-
sion of adaptation than the 27 variant, i.e. it approaches the optimum more
closely in the long run. The 274 variant however shows a quicker improve-
ment earlier in the experiment, and e.g. passed the fitness threshold of 0.3 in
at most 15 generations, while the 1% variant took generations to achieve the
same feat. Surprisingly random probing was the second-fastest of all meth-
ods we tested in the initial phase of adaptation, as it needed only slightly
longer than the 274 variant of the Composition Tree Search generations to
reach this threshold in 90% of all runs. After this point, all Composition Tree
Search variants surpassed the random probing method. The Evolutionary
Algorithm disappointingly failed to beat the random search in any category.
This might be due to an inefficient configuration of the algorithm, but our
(limited) fine-tuning efforts failed to arrive at better-performing variant.

163

EXPERIMENTAL ‘UALIDATION

At the end of the experiment, we analysed, which stack configurations
were most prevalent amongst the best stacks found during all runs. For the
random probing algorithm, we noticed that out of 50 stacks, the best 15 all
directly used the codec module, bypassing all transport protocols. Only 4
out of the top 25, i.e. 50%, of stacks used UDP. The top 40 out of 50 stacks
employed Reed-Solomon error correcting codes, the next best 7 stacks only
used CRC32, and the worst-performing two again Reed-Solomon. In all of
these cases, the module was positioned directly on top of IPv4. The top 30%
of all stacks used either two or four redundant symbols, as adequate for the
rather low error rate. 'The top four stacks used two symbols, the next three
stacks used four symbols per 64-bit block.

While all stacks in the top 50% utilised the deflate algorithm for com-
pression, the compression level was unexpectedly distributed: 4 of 10, i.e.
the top 20% of stacks used the highest level 9, the 37d-best used level 7, the
5t and 7™-best stacks used level 8, the 6t™- and 10%-best used 5, and the
9th-best used 4. The configurations of the 224- and 3r4-best stack, while oth-
erwise totally identical, differed only in the compression level, where level 9
resulted in a fitness of 0.652831, and level 7 in fitness 0.652011, i.e. a rather
low fitness difference. Incidentally, the 4®-best stack was identically config-
ured as the 3t4-best, but only achieved a fitness of 0.638713. Measurement
noise thus had a higher influence than the compression level.

The same trends are also reflected in the results for the Composition Tree
Search variants, but are even more apparent. Here the compression level was
even more evenly distributed between levels 5 and 9. The best performing
21 out of 50 stacks for the 1¢t variant of the Composition Tree Search used
two Reed-Solomon symbols for every block. For the 27 variant, the top 12
stacks also used two symbols, followed by 9 stacks using four symbols. Like-
wise, all of the top 50% of the found stacks bypassed the transport protocols
and send data directly via the codec module positioned on top of IPv4. The
Evolutionary Algorithm included a higher variance of stack configuration,
which corresponds to the lower overall fitness of achieved by these stacks.

All stacks that actually used error correction placed the module directly
over [Pv4, in accordance with our expectations. Since we introduced bit er-
rors in the simulator after the IPv4 frame was decoded, and since the higher-
layer protocols all drop corrupted packets due to the resulting checksum
mismatch, any other position would have been inefficient, i.e. would add
overhead but offer no benefit.

164

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION eAPPROACH

SUMMARY

By means of this scenario we showed that the stack composition system is
able to configure the modules in the stack such as to maximise the utility
as measured by the fitness function. The system was able to produce stack
configurations which apply close-to-optimally configured error correction
and compression functionality and place it at the correct position within
the stack. Our results highlight the importance of not only choosing an ap-
propriate algorithm, but also configuring it properly for optimal results. In
particular the different handling of continuous controls, i.e. the probabil-
ity distribution of the new value in relation to the previous value of such a
control, affects the performance of the algorithms. A propensity for large
changes, i.e. a high delta between the old and new value, improves the initial
adaptation speed, but reduces the precision or fine-tuning of the value once
a close-to-optimal solution is found. An adaptation of the evolution logic’s
parametrisations based on the achieved fitness as we propose in Section 4.1.4
therefore seems to warrant further research. Overall, even the less effective
methods were still able to significantly improve the fitness over the duration
of the experiment. We further notice the effect of measurement noise on the
evolution quality. The system was unable to find the optimal compression
level, as the fitness difference was lower than the measurement noise. Over-
all, higher compression levels were more likely to be chosen than lower ones,
but the variance was rather high.

6.1.4 Scenario 3: Bias Towards Specific Configurations

After analysing the previous two scenarios we became interested in explor-
ing the adaptation behaviour under conditions were the difference in fitness
between different configurations are more pronounced. Since the number
of actual protocol modules available to use is rather limited, we decided to
use a slightly synthetic scenario for this purpose, in which we artificially
“enhanced” the performance difference between e.g. DCCP and UDP, and
thus provide aricher play-field for our algorithms, which we could otherwise
only achieve through disproportionate implementation and set-up efforts.

EXPERIMENTATION ENVIRONMENT

This scenario is a variant of the previous one and as such we performed it in
the same environment. As we only describe the differences to Scenario 2 in
here, please refer to 6.1.3 further details.

165

EXPERIMENTAL ‘UALIDATION

10— U ()
—f/
=,
/
0.8
/) prien
0.6/
7
£
To4 i — best10%
— best 10% g — best 20%
— 2nd best 10% B — best 80%
— 2nd worst 10% o okt — best 90%
— worst 10% e — best 95
---- overall best ---- overall best
-+ overall worst ---- overall worst
o 10 20 —30 a0 50 o 10 20 —30 a0 50
generations, generations,
5 © a (d)
I first generation I fitness > 0.8
W 50-th generation 3.5 | fitness > 0.9
3.0
3 2.5
H £20
8 8"
2 1.
1.0
10
' | “
i | .
8o 0.2 04 0.6 0.8) o 1o 0 0 o]
fitness generations until fitness threshold reached

Figure 6.10: Adaptation behaviour of the 1 configuration of the Composition
Tree Search for the biased scenario.

Fitness Function The major difference to the previous scenario is the def-
inition of the fitness function. We intended to increase the difference in
fitness for the individual transport protocols, as during the previous exper-
iments in particular the decision between DCCP and UDP was ambiguous.
The fitness difference between otherwise identical stacks that used either
DCCP or UDP was marginal. For this experiment we intentionally intro-
duced a bias between the protocols? . The fitness function was defined as
follows:
F=R-B- b0.5(0)7

which again uses the measures for reception quality R and overhead O based
the error function as introduced for Scenario 1A. We further defined a pro-
tocol bias B as shown in the following table.

Protocol UDP DCCP TCP IPv4 otherwise
B 1 0.9 0.8 0.2 0

' In reality such a bias might actually occur e.g. due to policy constraints

166

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION e APPROACH

fitness

4 r
e >
1
o
@
1

fitness

0.4 0.4 : — best 10%
— best 10% 7 — best 20%
7/ p—t — 2nd best 10% s i — best 80%
o . — 2nd worst 10% o i — best 90%
o — worst 10% T — best 95
---- overall best ---- overall best
-+ overall worst ---- overall worst
o 10 20 —30 a0 50 o 10 20 —30 a0 50
generations, generations,
(c) (d)

I fitness > 0.8
m fitness > 0.9

I first generation
m 50-th generation

count

10 ||
| I gle wod §ule J

8o 0.2 04 0.6 0.8 0
fitness

0 20 o o
generations until fitness threshold reached

Figure 6.11: Adaptation behaviour of the 24 configuration of the Composition
Tree Search for the biased scenario.

Configuration of the Evolution Logic After noticing the importance
of the correct parametrisation of the evolution logic for the adaptation
behaviour in Scenario 2, be decided the investigate this matter further by
looking at several different parametrisations of the same algorithm. We
further employ a dynamically adapting variant of the Composition Tree
Search, which changes its parametrisation based on the fitness of the best
stack found so far. We hope that a method which covers a larger area of the
configuration space at the start and then focuses on fine-tuning the found
solution later in the process can improve the overall evolution quality and
evolution speed. In addition to the methods and configurations introduced
in the previous scenario, we therefore provide the following parametri-
sations of the Composition Tree Search algorithm, which exhibited the
best adaptation behaviour in the previous experiments and thus warrants
more detailed exploration. For Evolutionary Algorithm we again used a
population size of 3, elite size of 1, mutation probability of 0.9, mutation
o of 2.0, and a crossover probability of 0.1. We configured the 1°* variant
of the Composition Tree Search with a population size of 3, elite size of
1, a search size of 1.7, the modification probability of 0.5, step ¢ of 10,

167

EXPERIMENTAL ‘UALIDATION

iy _/_/— 2 :
/ /"’f e BN /¥ 2N A S R S s
0. = :
) REENAY ! /
i J
— best 10%
— best 10% — best 20%
— 2nd best 10% — best 80%
— 2nd worst 10% o ;! — best 90%
— worst 10% R — best 95
---- overall best ---- overall best
-+ overall worst ---- overall worst
o 10 20 —30 a0 50 o 10 20 —30 a0 50
generations, generations,
(c) a (d)
I first generation I fitness > 0.8
W 50-th generation 3.5 | fitness > 0.9

count

10
Jh_._mjll.-n 5 RS 1 [|

8o 0.2 04 0.6 0.8 0
fitness

10 20 0
generations until fitness threshold reached

Figure 6.12: Adaptation behaviour of the 3™ configuration of the Composition
Tree Search for the biased scenario.

connector weight 5 and instance weight 100, as before. The 274 variant
used a connector weight of 2, but was otherwise identically configured, also
identically to the previous settings. We introduced a 374 variant, for which
the search size was defined as 1.2, but which was otherwise identically
configured as the 274 variant. Additionally we employed an adaptive variant,
which switched between two different configurations depending on the
fitness of the best stack found so far. If this fitness value was below 0.65, it
used the configuration of the 274 variant, and otherwise the configuration
of the 1°t variant. Finally we also experimented with a random search
algorithm, which generated two new stack configurations totally at random
every generation and kept the overall best one around. 'This algorithm
serves as a performance-baseline for comparison.

Experiment Normalization Since we noticed in the previous scenario that
the algorithms were unable to the find the best compression level due to a
high noise content in the measurements, we increased the number of sub-
trials to 5 sub-trials for every stack tested, and performed at 25 simulation
runs per evolution logic in ns-3. We set the duration of a sub-trial to 30, i.e.

168

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION e APPROACH

o @ TS

ol — best 10%
Y — best 10% — best 20%
— 2nd best 10% — best 80%
o — 2nd worst 10% o b — best 90%
i — worst 10% T — best 95
---- overall best ---- overall best
-+ overall worst ---- overall worst
o 10 20 —30 a0 50 o 10 20 —30 a0 50
generations, generations,
(c) a (d)
mmm first generation I fitness > 0.8
m 50-th generation 3.5 | fitness > 0.9

count

10 i
0.5
s cise Huls i Ls

8o 0.2 04 0.6 0.8 0 %
fitness

1) o o
generations until fitness threshold reached

Figure 6.13: Adaptation behaviour of the adaptive variant of the Composition
Tree Search for the biased scenario.

identical to the data transmission interval, so that one complete trial takes a
total of 5min to complete. To test the two new stack blueprints created per
generation the system therefore needed approx. 5 min. We stopped the runs
once 50 generations had been tested.

REsuLTs

We again present separate graphs for all configurations of the tested evolu-
tion logics. Figures 6.10, 6.11 and 6.12 illustrate the behaviour of the three
variants of the Composition Tree Search we explored. Figure 6.13 details the
behaviour of the adaptive variant of the same algorithm, and Figure 6.14 of
the Evolutionary Algorithm. The results for the random probing algorithm
are shown in Figure 6.15.

Sub-figures (a) again clearly illustrate the impact the selection of differ-
ent algorithm for evolution or a different configuration of this algorithm can
have. Even our relative slight changes to only one parameter resulted in suffi-
ciently different adaptation behaviour to be clearly noticeable in the graphs.
The 274 parametrisation of the Composition Tree Search, whose behaviour

169

EXPERIMENTAL ‘UALIDATION

(a) 1 _b) -
0.8/ 4/
Y i o
0.6/ :
20 !
£ ;
%04 H
— best 10% i
— 2nd best 10% i g
— 2nd worst 10% o sl o p
— worst 10% N v
---- overall best ---- overall best
-+ overall worst ---- overall worst
o 10 20 —30 a0 50 o 10 20 —30 a0 50
generations, generations,
© 7 (d)
I first generation I fitness > 0.8
mmm 50-th generation | fitness > 0.9
B E
5 H
8 8
2
1 ¥
LJMJM- TR W j ﬂ[m‘ MF ”
8o 0.2 o4 0.6 08) % 1o 0]
fitness generations until fitness threshold reached

Figure 6.14: Adaptation behaviour of the Evolutionary Algorithm for the bi-
ased scenario.

is shown in Figure 6.11, was on average quicker to reach a fitness level of up
to 0.7, whereas the 1t variant performed slightly better in the long run. The
worst runs of the 37 variant remained at a fitness level of around 0.9 for a
relatively long time, but managed to reach the optimal configuration in one
step, which is likely due to the higher probability of randomization.

More importantly, the combination of the 1t and 274 variant, i.e. the
adaptive variant shown in Figure 6.13, was able to show a slight improve-
ment in the overall adaptation performance compared to the 274 variant on
its own. It however also also failed to achieve the fitness threshold of 0.8 in
one case, just as the 1 variant, as shown in sub-figures (d). The adaptive
re-configuration of the algorithm failed to fully achieve our expectations, as
the result did not combined the advantages of both parametrisations - high
adaptation speed at the beginning of the process versus good fine-tuning
behaviour: It exhibited a positive impact on the adaptation behaviour, i.e.
the behaviour above and below the threshold strongly resembled the cho-
sen variant and thus further investigation of this approach is warranted. The
overall probability of reaching the threshold of 0.8 did however not improve,
as the adaptive variant also failed to reach this threshold in one case after 50

170

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION e APPROACH

2

fitness

Y

04 best 10%

0. —
— best 10% — best 20%
{| — 2nd best 10% — best 80%
o - ‘% | — 2nd worst 10% | | 0 A o — best 90%
g ¥ — worst 10% s ¥ — best 95
--- overall best ---- overall best
-+ overall worst ---- overall worst
o 10 0 50 o 10 a0 50

20 30 20 30
generations generations

(d)

[fitness > 0.8
| fitness > 0.9

(c)

I first generation
m 50-th generation

count

LX
3.5
3.
2.
2.
p

1.0
10
0.5
' gl s Bodal B4 o L

8o 0.2 04 0.6 0.8 0

0 2| 0 0
fitness generations until fitness threshold reached

Figure 6.15: Adaptation behaviour of the random probing algorithm for the
biased scenario.

generations, while the 27 variant consistently surpassed it in at most 25 gen-
erations. Whereas this effect might might be attributable to the low number
of performed trials, i.e. an outlier case, our current results in this aspect are
inconclusive.

In 95% of all runs, the Composition Tree Search managed to find the
optimal configuration in less than 40 generations, for all variants except the
24 which needed 43. The Evolutionary Algorithm achieved this feat in only
around 60% of all runs.

Overall, only the 37 variant managed to reliably surpass the fitness
threshold of 0.9, which it only failed to reach in one of the 25 runs within
the 50 generations. 'The other variants failed to pass the threshold in the
three (274 and adaptive variant) or four (1% variant) cases, the Evolutionary
Algorithm in 7 out of the 25 runs.

When comparing the results of the specialized methods with the ran-
domized search, the variants of the Composition Tree Search show a signif-
icant advantage both in adaptation precision and speed. It is a sad fact, that
the Evolutionary Algorithm performed worse than the randomized search
for this particular problem. It should be noted that that since the random

171

EXPERIMENTAL ‘UALIDATION

probing algorithm also includes an elite of size one, the histogram in sub-
figure (c) is also biased towards the higher-performance stack configura-
tions. Contrary to the other algorithms this bias is less clear.

SUMMARY

In this scenario we evaluated whether the stack composition system is able
to arrive at the true optimum in a limited amount of time. When the Com-
position Tree Search algorithm was used, the probability of success was suf-
ficiently high, i.e. only one out of 25 runs failed to reach the optimum within
the allotted time of 50 generations, approx. 250 min. This rather long period
of more than two hours seems unrealistic for many applications where the
environmental and traffic conditions are unstable. This problem may hope-
fully be alleviated by the introduction of short- and mid-term adaptation
methods if similar conditions.

Additionally we showed that dynamic run-time re-configuration of the
evolution logic’s parametrisation can positively influence the adaptation be-
haviour, as we expected. After all, modifying the trade-off between explo-
ration and exploitation during operation is a well-established technique em-
ployed by many search algorithms, e.g. simulated annealing. The effect was
however less pronounced than we would have had hoped.

6.1.5 Summary and Conclusions regarding Long-Term Stack
Evolution

After evaluating the adaptation behaviour of the evolution engine and the
algorithms we developed for it in more-or-less realistic scenarios, both in
simulation and to some extend on a physical test bed, we can conclude that
our approach is feasible for at least some® application areas, when our pre-
conditions are met, i.e. the network and traffic conditions that influence the
performance stay stable enough for a sufficiently long period of time.
Taken together, our experiences with the different scenarios show that
adaptation does occur, i.e. that the system is capable of improving the stack
configuration over time and autonomously progress towards the optimum.
Probably due to the non-deterministic nature of the algorithms we imple-
mented, the true optimum was not reliable reached, but a close approxima-
tion of the optimum was attained with a high likelihood within the time we
allotted for each scenario. For the tested scenarios the Composition Tree

& For generalization the number and variety of the different scenarios we explored is far too
low.

172

6.1. EVALUATION OF THE LONG-TERM STACK EVOLUTION eAPPROACH

Search algorithm appeared to be best suited, but these results are not gen-
eralisable to other scenarios. From The characteristics and in particular the
variation of the behaviour of the algorithms we tested we gather that both
the precision and speed of evolution is largely determined by the scenario to
which the system is applied, i.e. depends on the specifics of the configuration
space and the fitness landscape.

The provision of multiple algorithms to choose from and the ability to
configure them appropriately is therefore sensible: The parameters offered
by algorithms such as the Composition Tree Search bias the search either
towards random exploration or local search in vicinity of known good solu-
tions, define the size of the local search area, etc. Depending on the proper-
ties of the configuration space and the fitness landscape, different parameter
sets were advantageous, but the exact criteria of how to choose these criteria
are still unknown. In particular, experiences in other areas for this purpose
are not easily applied to our problem, as exemplified by the low population
size we are forced to use for the Evolutionary Algorithm shows (see discus-
sion for Scenario 1A). It is also unclear under what conditions which algo-
rithm behaves best. Our rudimentary experience with dynamic reconfigu-
ration of the Composition Tree Search suggests that the dynamic run-time
re-parametrisation of the evolution logic might be advantageous. Further
research regarding potentially more appropriate algorithms, how to config-
ure them, and how to dynamically adapt them at run-time seems worthwhile
and necessary.

When translated to real time, the evolution speed varied widely and de-
pended on the scenario. Here the difficulty of reliably measuring a stack’s
fitness is just as important as the composition and difficulty of the search
space. 'The length of one sub-trial needs to be long enough to encompass
and reliably capture the situational and performance characteristics needed
for fitness derivation. And since fluctuations in the measurements cannot
be completely avoided, often multiple sub-trials need to be performed, the
number and duration of which entirely depends on the scenario.

Nevertheless, in our experiments the optimum was often reached within
minutes, but to guarantee a close approximation of the optimum with a prob-
ability of 0.9 or 0.95, between 40 min were needed for Scenario 1A and 100
generations times 10 min per trial for Scenario 2, i.e. approx. 16 h to reach a
close to optimal fitness with 90% probability. These results clearly show that
our approach is not appropriate whenever quick adaptation is needed, but
this was obvious from the beginning. As we intend this approach to be ap-
plied when sufficient time for testing and experimenting is available, when
the situation is sufficiently stable, and in combination with other mecha-
nisms for short- and medium-term evolution, we do not consider this agrave

173

EXPERIMENTAL ‘UALIDATION

limitation. The need for such additional short- and mid-term adaptation
layers is apparent for scenarios were the conditions cannot be expected to
remain stable. We assume that our own approach for mid-term adaptation
- which we discuss in the following section - allows for the long-term adap-
tation process to be interrupted when the situation of the network changes
sufficiently, and to be restarted again later once sufficiently similar condi-
tions recur, which should help to further increase the range of applicable
scenarios for our long-term evolution approach.

6.2 Evaluation of the Situational Classification Approach

After focusing the performance of the long-term evolution logic in the pre-
vious experiments, we now turn to the mid-term adaptation logic, the sit-
uational classifier. We explore the effects of switching between four popu-
lations based on a fixed and exact decision criterion using the matrix-based
population selection method we introduced in Section 4.2.1. We thus hope
to show the necessity of providing a situational classification functionality
for on-line stack evolution.

6.2.1 Detecting Changes in the Network Conditions

We intend to verify that the population selector functionality we imple-
mented has a positive impact on the adaptation process, i.e. whether our
approach of utilising multiple independent populations and the selection
between them based on the environmental or traffic characteristics benefits
the system overall. For this purpose we devised a scenario in which the
situational classifier is statically configured to utilise only fixed and reliably
measurable decision criteria®.

For this purpose we constructed an - inarguably somewhat synthetic -
scenario of multi-factor cost optimisation, which is based on the following
considerations: Mobile devices, such as laptops or smart phones, are often
repeatedly employed in different locations, either connected to mains power
or running on battery, and attached to different networks. Here we consider
two different types of costs. Firstly, the monetary cost of communication
over the wireless link is often based on the transmitted data volume. Sec-
ondly, extensive processing can quickly drain the limited battery power on

® While we implemented several automatic classification approaches such as k-means, we
consider the actual details of on-line network classification out of scope for our current work
and therefore (apart from the introduction in Section 4.2.2) assume that a reliable classification
scheme is in place.

174

6.2. EVALUATION OF THE SITUATIONAL (JLASSIFICATION e APPROACH

such devices. Thus our optimisation goal changes depending on the type of
the power supply and the egress interface the device is using. If it is powered
by battery, we try to reduce computational overhead. If it is communicating
via WLAN, we try to reduce the amount of data transferred. If both condi-
tions are true we let the system balance both goals. Additionally the system
has to be able to fill its normal operational demands, i.e. data transmission.
Thus we further instruct the system to minimize transmission loss.

One possibility for reducing the amount of transmitted data is to utilise
data compression or to choose low-overhead protocols. The second cost fac-
tor, i.e. power consumption, is however negatively influenced by the use of
data compression algorithms as they are often computationally expensive.
The optimal point of operations is not obvious and depends on the weight
of the two cost factors in the fitness function. But these weights obviously
depend on whether the system is battery-powered and whether it is using
the wireless interface.

Based on the aforementioned considerations, we assumed that the op-
timal stack configuration uses no compression at all when connected via
Ethernet and on battery power, and the most effective compression method
when connected via WLAN and the main power supply. The probable re-
sults for the other two cases were less obvious, due to the trade-off between
the (power) costs and (monetary) benefits of compression.

We consequently selected the type of the egress interface and of the
power supply as decision criteria for the classification process. Both criteria
are easily detectable, as the necessary data is provided by most operating
systems and offer the benefit of precision. After all, we do not intend to
explore whether a particular classification methodology is effective, but
whether our mid-term adaptation logic is effective when using a sufficiently
precise classification method. We configured the classifier such that it
selects between four populations based on the link state of the wired
network (interface up / down) and the state of the connection to the main
power supply (connected / disconnected).

STACK MODULES

Again we provided the implementations of IPv4, Ethernet, and UDP, the
configurable modules for TCP, DCCP, and the Codec module, in the same
manner as introduced in Section 6.1.3. With respect to power consumption,
the most effective algorithm, DEFLATE, incurs the highest calculation over-
head and thus cost, which further increases the higher its compression factor
is set. No compression at all is naturally the cheapest operation, followed by
RLE, a method that was very popular on 8-bit microcomputers in the early

175

EXPERIMENTAL ‘UALIDATION

——= Fthernet SCS-tunneled

WK o Freiburg, Germany

350 kB of data
@ 300 kB/s CBR Client A

Basel, Switzerland once every 5s

Client D

1 Gbfs
Ethernet|

SCS node C ~ & S L”’, SAMbsSOLLE
fAtHt i

Server hosting

Ethétoct Internet 100 540+ S ; =i
¢ 7 VDSL VDSL 100 Mb/s Ethernet SCS node Bon
T router Soekris NET6501

with WiFi-card

Figure 6.16: The simulation environment is again modelled after the physical
layout of out test-bed.

1980s because of its low computation costs. On the transport layer UDP is
the cheapest option, as it consists of a very basic multiplexing functionality
and the calculation of the Internet checksum.

NETWORK ToPOLOGY & TRAFFIC CHARACTERISTICS

For this experiment we scheduled Client A, shown in Figure 6.16, to once ev-
ery 5 s download a 350 kB file consisting of concatenated HT ML pages from
the web server hosted on Client D. As in the previous experiments, the fo-
cus of our experiments is the stack composition system located on SCS node
B, which is connected via both WLAN and Ethernet to a VDSL router. We
scheduled one of its network links to the router to be disabled and the other
to become enabled every 60s. Additionally, we simulated a switch between
mains and battery power, also at the same period, but delayed by 30s.

FiTNEss FUNcTION

As described above, we designed the fitness function such that it optimises
the sum of the communication and power costs:

F=R bos(M) bos(E)-boas(D),

where the reception quality measure R denotes the ratio of application-level
data that arrives at the recipient to the total data sent, and the delay mea-
sure D the ratio of delay to round-trip-time, as defined for scenario 1A. The
transmission cost measure M calculates the monetary cost of transmission
based on the amount of data sent on the physical layer and the interface type.
The energy cost measure F is calculated based on the CPU usage C and the

176

6.2. EVALUATION OF THE SITUATIONAL (JLASSIFICATION e APPROACH

power supply type.
M — 1 — 9 logo (1+%103> . 1 if using the wireless network
0.001 otherwise
Fe1_ 2,lagw<1+c%> . 1 if battery-powered
0.001 otherwise,

where Cy = 3000, Sy = 10* are scaling factors derived through experimen-
tation.

EXPERIMENTATION

To explore whether our mid-term adaptation logic is effective, we performed
two different experiments. In the 1t experiment, we used four populations
between which the matrix-based classifier selects based the interface and
power supply types, in the 274 experiment the population selector logic was
disabled. We executed 200 simulation runs both for the four-population and
the one-population case. We synchronised the length (30s) and start of the
sub-trials with the interface and power supply switches. Since we scheduled
one transfer every 5s, we assumed that one sub-trial, i.e. 6 individual trans-
fers, would offer sufficient normalization for our purposes.

As evolution logic we used the 1¢t configuration of the Composition Tree
Search as introduced in the previous scenario. We then measured how the
one generic stack configuration evolved in the one-population case fared in
comparison to the specialised stacks evolved within the individual popula-
tions used for the four-population case.

Since we wish to verify our expectation that the population selector pos-
itively influences the overall adaptation process, we compare the individual
best stack configuration per population that evolved for the four-population
case with the one best stack configuration of the one-population case. Before
performing these experiments, we assumed that in the first case the system
would develop four distinct specialised stacks, each suited for the particular
conditions under which it evolved, whereas the second case would result in
one generic stack that performs reasonable well under for all tested situa-
tions. While this assumption turned out to be wrong, we still consider the
experiment itself successful, as detailed below.

REsuLTs

As verification for our assumptions regarding the benefit of the mid-term
adaptation logic we explored whether a noticeable difference between the

177

EXPERIMENTAL ‘UALIDATION

best stacks developed in each population in the four-population case existed,
and whether these stacks exhibited better performance than the generic stack
found in the one-population case.

PubSub PubSub PubSub PubSub
Codec Codec Codec Codec
Compression=Deflate Compression=Deflate Compression=Deflate Compression=None
ECC=CRC32 ECC=CRC32 ECC=RS(64,62) ECC=CRC32
I
WLAN & Mains WLAN & Battery Ethernet & Mains Ethernet & Battery

Figure 6.17: The best stack configurations found for each situation in the four
population case.

The Best Stack Configurations We first verified that the stacks that
evolved in the individual populations, i.e. situations, for the four-popu-
lation experiment exhibited a different distribution w.r.t. to the utilised
transport protocol, compression method, and error correction facility. The
best stack found for all four populations after 25 generations are shown in
Figure 6.17. When looking at the best-performing 20% (i.e. 50 experiment
runs) for each of the four situations, the distribution was as follows.

When using the WLAN, DEFLATE compression was always used, as we
had expected, using a compression level between 5 and 9. The same was
also true for communication over the Ethernet when on mains power. Only
on when running on battery and connected via Ethernet, compression was
disabled in 38 cases, and DEFLATE used in the remaining 12. Here the com-
pression level was distributed between 1 and 3%.

When communicating via Ethernet and running on battery, the system
directly used the Codec module without any transport protocolin 27 experi-
ment runs, and UDP in 23. For WLAN and battery power, the transport pro-
tocols were bypassed in 30 experiment runs, and UDP used in the remaining
20 cases. When on mains power, all 50 stacks used the Codec module di-
rectly, independent of whether the WLAN or Ethernet was used. We assume

% These modes do not use lazy match evaluation and are therefore faster than levels 4 and
above.

178

6.2. EVALUATION OF THE SITUATIONAL (JLASSIFICATION e APPROACH

that the relatively low overhead added by UDP had too little impact on the
overall fitness compared to the selected compression method when running
on battery power, especially considering that the processor time needed for
packet handling fluctuated considerably, as apparent in Figure 6.18.

Error correction was always disabled when running on battery power,
since it added measurable computational and some data overhead. When on
mains power and using the WLAN, RS(64,62) was used in 8, R5(64,60) in 2,
and CRC32 instead of error correction in the remaining 40 cases. Only when
running on mains power and communicating via Ethernet error correction
became prevalent. Here RS(64,62) was used in 30, RS(64,60) in 6, and CRC32
in 14 experiment runs.

We then checked that the bests stacks found per population exhibited
equal or better performance for the particular set of conditions the were
developed under than those found for the other populations. This was al-
ways the case. For example, the best stack configuration for the Ethernet
and battery case, which used no compression, performed worse than the
best stack found for WLAN plus mains power situation (fitness 0.0551 vs.
0.5545). When using the best stack evolved for the Ethernet and mains case,
which uses RS(64,62) error correction, under these conditions, it achieved a
fitness of 0.5544, which is only slightly lower than not using error correc-
tion, and thus also explains why Reed-Solomon was utilised by 10 of the 50
best-performing stacks under these conditions.

Considering these results, we had assumed that a generic stack developed
for the one-population case, i.e. without classification would use the Deflate
compression and CRC32, omitting the transport layer. Our analysis of the
results however showed that this was not the case. Instead the fitness of the
best stack in the population exhibited no improvement over time at all, as
described below.

179

EXPERIMENTAL ‘UALIDATION

generations

0 5 10 15 20 25
0.992
I S Amamm e (2
0.990 =
/) -
+
0.988 / %
=
5
0.986
0.865
tm
5
5
» 0.860 T =
o 4
c =
= =
0.855
0.554 -
T
b=
/ Z
0.552 +
=
B
5
0.550
0.482 y
//N_/\/___/_____.\ g
Z
0.480 | %
0.478 .
0 5 10 15 20 25

generations
Figure 6.18: Since the decision criteria for clustering in the current case are op-

timal, the fitness for the individual populations also improves as if the scenario
would not change.

180

6.2. EVALUATION OF THE SITUATIONAL (JLASSIFICATION e APPROACH

Classifier with four populations ~ No classification, one population
20 12 i

10-
8

Ethernet + Battery
o w &5 &
N RO

0
0.845 0.855 0.865 0.845 0.855 0.865

w
=}
=
=}

WLAN + Battery
o w5 L on
o N £l [} o2

. 11
0.470 0.475 0.480 0.470 0.475 0.480
100 20
g g0
= 15
= 60
+ 10
Z 40
5 5
g 20
0 0
0.540 0545 0550 0.555 0.540 0545 0.550 0.555
80 25

70
60
50
40
30
20
10

20

15

10

Ethernet + Mains
(=]
(=] [6,]

0.960 0.970 0.980 0.990 0.960 0.970 0.980 0.990
fitness fitness

Figure 6.19: The improvement of the overall stack fitness becomes especially
apparent when comparing the histogram of the randomized stacks at the start
of the experiments (blue) to the result at the end (green). When using multiple
populations (left) and correct classification, the average stack fitness after 25
generations noticeably improves. With only one population (right) and thus
without classification, no progress is apparent.

181

EXPERIMENTAL ‘UALIDATION

Performance of the Evolution Logic In Figure 6.18 we show how the fit-
ness for the individual populations improved over time for the four-popu-
lation case. As the population selector was able to correctly discern between
the different situations the evolution quality and speed resembles the re-
sults we got when performing four individual experiments for each of these
situations. As we had assumed, the overall adaptation speed was propor-
tional to the number of populations, which again highlights the importance
of choosing the right number of classification criteria: If » redundant cri-
teria are defined the overall adaptation speed gets n-times longer, thus a
low number of populations is preferable. Choosing too few criteria, how-
ever, is unexpectedly detrimental to the adaptation speed: As shown in Fig-
ure 6.19, the omission of the classification process during the one-popula-
tion case resulted in a dramatic failure of the stack composition system to
improve the performance at all. This is probably due to the fact that a closer-
to-optimal stack configuration produces worse performance measures than
an inferior configuration, if it happens to be trialled more commonly during
worse conditions. A higher number of sub-trials might reduce the random
effects caused by scheduling experiments under different conditions, but the
necessary number of sub-trials would be rather high, considering that they
e.g. a close-to-optimal stack when on battery power and communicating via
WLAN has a fitness below 0.5, but when on mains power and connected
via Ethernet exhibits a fitness above 0.9: For every sub-trial out of e.g. 10
is performed under such worse conditions the average fitness gets reduced
by 0.05. Thus it is probably more efficient to over-provision the number of
classification criteria than to under-provision and rely on performing more
sub-trials.

Conclusion With this scenario we showed that the use of multiple popu-
lations, which are individually evolved for a particular set of environmental
and traffic conditions can not only be beneficial for the overall system perfor-
mance, but - in some situations - even vital, as it helps to stabilise and nor-
malise the experimentation environment. In this scenario the autonomous
long-term adaptation encompassed in the evolution engine was only pos-
sible because of the precise classification of the situation and selection of a
different population whenever the situation changed. Without this logic, no
improvement was noticeable. The difference in stack configurations was not
as pronounced as we had hoped when we designed the scenario, apparently
because the calculation cost for the compression algorithms was too low to
sufficiently impact the fitness value, especially compared to the cost of trans-
mission. But nevertheless, the performance difference between a generic and

182

6.3. GENERAL (JONCLUSIONS “DERIVED FROM THE EXPERIMENTS

the specialised stacks became apparent. The different distribution of stack
configurations for each of the situations, the difference in relative fitness be-
tween these, as well as the different position of the optimum as indicated by
the direction of evolution, also strongly indicate that situational classifica-
tion is useful and maybe even necessary for autonomous stack evolution.

6.3 General Conclusions Derived from the Experiments

In this chapter we presented some of our experiments, which when taken
together act as a proof of concept for the long-term evolution approach, the
mid-term population selection logic, and for the stack composition system
applicability for some autonomous stack optimisation tasks. While several
aspects of the design remain untested — mostly due to the sheer size of the
problem space — we offered first insights into its abilities.

6.3.1 Long-Term Stack Evolution

By applying the evolution engine to different adaptation problems, we
showed that it is capable of improving the network stack on its own towards
a goal defined by means of a fitness function, provided that the experimen-
tation environment stays stable enough. In particular our Composition
Tree Search algorithm, which we developed especially for this task, is a
promising candidate algorithm for this purpose, as it showed the best
overall performance in our experiments.

These experiments also indicate that autonomous reconfiguration based
on run-time decision is worth further exploration: We showed that the per-
formance of the algorithms we designed and applied for this purpose de-
pends on the particular problem, including the run-time conditions, and
that our approach of providing multiple algorithms, which can be selected
and configured at run-time is therefore sensible. Our experiments also con-
firm that the adaptation speed of the long-term adaptation facilities on their
own is too slow for most practical applications. We therefore see the need
for additional mid- and short-term adaptation methods confirmed.

6.3.2 Mid-Term Adaptation

We further showed that a mid-term adaptation logic, which saves the
progress of and switches between different stored sets of long-term evolu-
tion state, can not only increase the speed of adaptation to already known
conditions, but also make experimental trial-and-error adaptation itself

183

EXPERIMENTAL ‘UALIDATION

easier: It separates experiments into different groups depending on the con-
ditions, and thus inherently reduces the variety of conditions encountered
during experiments that are compared with each other. The scenario we
presented for this purpose shows very clearly that only because we provided
multiple populations in which different stacks were evolved for each of
the different environmental conditions and application requirements, the
system was able to adapt a set of sensible stack configurations and offer
close-to-optimal performance in the given scenario. Without this facility
in place, the stack composition system completely and thoroughly failed
to adapt. In the future we plan to investigate this problem further, and
especially wish to investigate whether truly autonomous classification based
on criteria learned at run-time is feasible.

6.3.3 Applicability

Lastly we showed that our design can be integrated with current operat-
ing system and act as a replacement for the network stack deployed there.
Whereas our implementation in currently located in user-space, the expe-
rience we gained confirms that current router-class hardware provides the
necessary processing power for hosting our stack composition system, and
that our design does not cause a significant impact on stack performance:
Only when actual re-configuration and evolution is performed, was an in-
creased delay noticeable, and even then it was infrequent and in the low
millisecond range. For practical application, however, further work is still
needed.

184

Chapter 7

Discussion

With this chapter we conclude the description of our research related to au-
tonomous on-line network stack evolution. We begin by summarising the
content of the previous chapters and continue with a brief recapitulation of
our efforts, in which we describe how much of our vision we have achieved
as well as the limitations of our work. We also provide an outlook towards
the future, in which we focus on those areas of research we consider the most
fruitful and worthwhile.

7.1 Thesis Summary

After a brief introduction of the problem space and our work in the first
chapter, we detailed the motivation for our research in chapter two. Here we
presented our view of the problems and limitations of the current Internet
and proposed replacement architectures and stated the need for a situation-
aware adaptation logic based on autonomous exploration and performance
measurements. We then formulated the requirements and our vision for a
stack composition system that encompasses this logic and continued by stat-
ing our contributions towards achieving this goal.

In the third chapter we introduced related research in the fields most
closely connected with our work, as well as some of the technologies required
for or affected by the stack composition system. Here we focused on the
features pertaining to the achievement of autonomy, i.e. the collection and
analysis of information needed to realise situational awareness, the learning
and decision process which based on this information decides how to adapt
the system, and lastly the actions that the system may take to influence itself

185

Dr1ScusSION

and its environment.

The fourth chapter describes our design rationale and the system archi-
tecture we devised and implemented for the stack composition system. We
detailed the requirements the system has to fulfil and based on these devel-
oped the architecture for the compositional framework, which constructs
the stack out of micro-protocol modules, controls and steers the system’s op-
erations as well as the evolution process, and detailed the components and
technologies encompassed in the stack composition system.

In chapter five we detailed the evolution engine, i.e. the component that
learns and decides how to adapt the stack to the network and traffic environ-
ment. We detailed the mechanisms and algorithms employed for steering
the short-term, mid-term, and long-term adaptation process. We described
the long-term evolution process which is realised by means of machine-
learning algorithms, e.g. an Evolutionary Algorithm or the Composition
Tree Search we developed, discussed the mid-term adaptation which is gov-
erned by the classification and population selection mechanism which se-
lects a different pool of candidate stack configurations whenever the condi-
tions change significantly, and introduced the short-term adaptation process
realised through special micro-protocols that are emplaced within the stack
by the long-term adaptation logic, but which operate on a far finer time scale.

The sixth chapter contains our discussion of the difficulties pertaining
the accurate gathering and assessment of information and measurements
from within a live system in the presence of noise, while the system itself
influences and is influenced by the conditions in the network. We presented
and discussed our strategies and countermeasures which enable the system
to effectively and accurately gather and assess this information. We further
described the methods we employ for calculating the stacks’ utility and for
scheduling the experiments, as these directly relate to the aforementioned
problems.

Chapter seven details a selection of the experiments we performed to
validate the system’s functionality and to evaluate its effectiveness, i.e. the
quality of the stacks evolved measured by means of their utility in relation
to the time elapsed. Here we focused especially on the long-term evolution
process, as it has the highest impact on the systent’s overall utility, followed
by a brief evaluation of the benefit offered by the mid-term adaptation layer.

This eighth and final chapter concludes our thesis and contains a sum-
mary of our work, the description and discussion of our contributions and
achievements, as well as the limitation of the work, followed by an outlook
for future work needed to achieve our vision.

186

2 70NTRIBUTIONS IMITATIONS & FUTURE TWORK
/7 A i d

7.2 Contributions, Limitations & Future Work

In Section 1.4 we introduced our contributions to the field of autonomous
networking in general and autonomous network stack evolution in particu-
lar. We now look back at our statements and analyse whether and how well
we managed to realise them. For this purpose we give a brief overview of our
work pertaining to each of the contributions, followed by a comparison to
related work, and a discussion of the benefits and limitations of our solution.

7.2.1 Architecture

Our first contribution relates to the design and implementation of a frame-
work which enables autonomous stack evolution. We presented the compre-
hensive design of this framework in Chapter 3, implemented this architec-
ture as detailed in Section B, and assessed its abilities in Chapter 6.

We see our research as one step into the direction of realising the knowl-
edge plane®® for the purpose of autonomic network stack composition and
configuration based on trial-and-error experimentation. We do however de-
viate from this concept in one important point: Our system does not sup-
port collaboration between different network nodes, the adaptation process
itself is intrinsically limited to the local node itself. But while we do not pro-
vide a supervisory entity to control the evolution process, we do implicitly
encourage cooperative evolution by means of remote satisfaction measures
and their inclusion in the local fitness calculation.

As we were able to utilise our framework as a replacement for the op-
erating system stack, route the network traffic through it, and perform our
experiments as intended, we consider our design and implementation efforts
successful. Our work is however pending a more thorough analysis and im-
plementation of further protocols and services, thus no final statement can
made as of yet. We can however say that the programmatic module interac-
tion greatly simplified our implementation efforts since it allowed us to use
common programming paradigms. Our constraint ontology further helped
us to prevent the generation of invalid stack compositions.

So far we most thoroughly used and tested our stack composition sys-
tem for the configuration and composition of (micro-)protocols on the inter-
net and transport layers of the protocol stack of stand-alone communication
endpoints. We consider the system well-suited for this purpose, under the
conditions we discuss further below. We do also assume that the approach
is similarly useful for several related problems. For example, the configu-
ration of application-level options, e.g. the feature selection for VoIP can
easily be integrated into the system, provided that sufficient user feedback

187

Dr1ScusSION

is available to determine the impact of the selected option on the perceived
utility. Similarly to the usage of optional TCP features that can be negotiated
between communication endpoints, the per-call configuration of VoIP con-
nections can be determined by the calling node on its - with the possibility
of falling back to the settings required by the callee, if it should not support
the feature(s) in question. 'This methodology resembles our approach for
initiator-defined composition introduced in Section 3.7.5: Since the optimal
configuration per node is therefore independent of other nodes’ configura-
tions, the optimisation process should be straight-forward.

The configuration and selection of distributed, e.g. routing, protocols
may also be feasible with our approach under controlled conditions, as we
intend to evaluate in the future: If all nodes in the network are guaranteed to
provide a common base of supported operations, e.g. requests for link state
information, and can handle each other’s status update messages, the indi-
vidual optimisation of the routing protocols’ settings on a per-node basis
should be feasible. After all, the routing tables themselves are usually man-
aged by each node on its own. Guaranteeing comparable experimentation
environments under such conditions is however probably far more challeng-
ing, as already mentioned in Section 5.2.

While we designed our system with the demands of future networks in
mind, our approach might already be useful for some applications on the
current Internet when no support from communication partners is needed.
For example, we consider deploying our system on a home network router
to optimise the packet queuing priorities and bandwidth limits per packet
class for the purpose of optimise throughput and delay. Here the system
would implement changes to the firewall queuing rules, measure the results
of these changes over the period of one day, and adapt the configuration
appropriately afterwards — a process we so far performed by hand every time
we moved to a new Internet provider or apartment.

For several other application areas, however, the autonomic evolution
of the correct configuration or composition is probably unrealistic. The
security of cryptographic protocols, for example, cannot be determined
through trial-and-error experimentation. Considering the large amount
of thoroughly reviewed encryption solutions that contained bugs or were
based on misconceptions that rendered the actual security moot, and that
these flaws were noticed only after a sometimes very long time, "**'** we
conclude that our autonomous approach is unsuited for this particular
application area.

In general, we expect that a shared common code base and flexible fea-
ture negotiation are vital for achieving good performance in a distributed
environment. A heterogeneous (network stack) environment can proba-

188

2 70NTRIBUTIONS IMITATIONS & FUTURE TWORK
/7 A i d

bly only function close to optimally, if the entities therein are sufficiently
tolerant, i.e. can cater to the needs of their communication partners: The
independent selection of the protocols and features on a per-node or even
per-flow basis depends on support for the same functionality by the com-
munication partners. Even though backwards-compatibility and support for
fall-back options in case of missing features is likely unavoidable, the flexibil-
ity of the adaptation process is severely constrained if a majority of a node’s
communication partners do not support the features needed to improve its
utility. Just like a multi-lingual society requires good language education,
our approach depends on a sufficiently large capability of the nodes to re-
alise optimal communication between them.

Our approach does not preclude incremental deployment of function-
ality or even communication between incompatible subnets. Incompati-
ble addressing schemes, for example, can prevent communications between
nodes, but the fall-back to a common baseline scheme can guarantee an op-
erational network while a newer and better scheme is deployed incremen-
tally on the infrastructure. Once the more advanced scheme’s penetration of
the network is sufficient, the autonomously adapting nodes can then decide
to switch - provided the utility is actually higher. Likewise, translation ser-
vices, e.g. the Interstitial Functions of Plutarch,”* can help solve the problems
of communication among heterogeneously-configured nodes or networks,
and thus eliminate the need to distribute and provide a large code base on
every node.

7.2.2 Cognitive & Learning Facilities

Our second contribution concerns the algorithmic side of the long-term
adaptation process, which enables the evolution engine to direct the adapta-
tion of the network stack towards a goal state defined by means of an utility
function. While our results indicate that our approach can autonomously
adapt the network such as to optimise the perceived utility, we also noticed
that the performance of the search algorithms strongly depends on the par-
ticular problem space, as well as the run-time conditions, and that for opti-
mal performance the best-perfoming evolution logic thus has to be selected
at run-time.

We designed multiple algorithms for this purpose as detailed in Sec-
tion 4.1, which resemble and were modelled after common constraint opti-
misation and search algorithms. We explored how these algorithms perform
in several application scenarios, i.e. we measured the fitness of the best stack
evolved per generation and compared the adaptation speed and quality for
different algorithms and parametrisations of these.

189

Dr1ScusSION

The scenarios we explored use the current base of widely deployed net-
working protocols, for the reasons we described in Chapter 6. We do how-
ever assume that future application areas of autonomous stack evolution will
be more complex and higher dimensional: Current protocols are devised
to exhibit sufficient performance for many application areas under various
conditions by default. They usually provide few possibilities for fine-tuning,
because finding the best possible parameter configuration by hand is hard
and requires expert knowledge. *** If autonomous adaptation should become
wide-spread, this is likely to change. Since no expensive hand-optimisation
is needed, we expect future protocols to provide far more possibilities for
parametrisation, and also more specialised protocols to appear and to actu-
ally be deployed. To compensate for the lack of configurability in the existing
protocol base, we decided to include our own extensions for existing proto-
cols, e.g. by means of proprietary TCP options, in the test scenarios and also
to develop our own highly-configurable protocols, e.g. for compression or
error correction. The resulting scenarios thus offer higher complexity than
the current Internet protocols on their own would allow for, but still retain
sufficient realism.

The selections of algorithm designs was exceptionally difficult, as the
problems we intend to apply them to are very diverse. Whereas many algo-
rithms for related application areas are discussed in the literature, the con-
clusions drawn there are either not applicable to our problem or too general
in nature. Consequently, we did not possess sufficient knowledge to decide
which kind of search algorithm was most most appropriate for our purposes,
and therefore selected some of the common model-free approaches for con-
straint optimisation. Since the fitness landscape is defined by the - at design
time unknown - fitness function, we chose evolutionary algorithms, which
are known to work comparatively well for complex landscapes, as mixing
techniques such as crossover and mutation helps to move the search away
from problem areas like e.g. local maxima. Similar approaches have been
successfully applied for e.g. QoS-based **® or shortest path routing. © Our ex-
periments described in Section 6 however show that our Evolutionary Algo-
rithm implementation is - at least for the necessarily somewhat simple sce-
narios we presented - inferior to random probing. Whereas we were aware
that no possible algorithm can always outperform even the simplistic ran-
dom search,®®! the general properties of Evolutionary Algorithms initially
made them seem very promising and led to our choice. The ineffectiveness
of the algorithm for our optimisation problems is aggravated by the rather
small population size on which we let the algorithm operate, and which fur-
ther highlights the need for specifically-designed algorithms: Our need to
keep the number of candidate stacks and thus experiments low is signifi-

190

2 70NTRIBUTIONS IMITATIONS & FUTURE TWORK
/7 A i d

cantly different from the conditions for which these algorithms were devel-
oped. Yet we still expect this algorithm to exhibit better performance for
more complex and higher-dimensional optimisation problems, e.g. the op-
timisation problem likely posed by future network stacks as discussed above.

The Composition Tree Search algorithm, which we specifically devel-
oped for the problem at hand showed superior performance, as it outper-
formed all other algorithms we had investigated, and especially the Rapidly-
Exploring Random Tree which inspired its design. The Rapidly-Exploring
Random Tree in fact consistently failed to improve the stack composition
and thus was excluded from our experiment description. The importance
of correct parametrisation also became apparent in our experiments, and
seems to depend on the problem set - but a definitive conclusion would
again be premature. Dynamic re-parametrisation also showed promising
results, but it is still unclear when and how to re-configure the algorithm at
run-time. Other algorithms, such as the relatively recent Cuckoo Search,***
also deserve consideration, and are considered for future work.

Since the probability distribution for the problem class we investigate is
unknown at design time, i.e. the evolution of stack configurations, depends
to a large extend on factors such as utility definition, available modules and
their utility when applied to actual traffic, any preliminary exclusion of pos-
sible algorithms from our design would have been counter-productive: We
do not even know the dimensionality of the search space a priori, as it de-
pends on available modules at run-time. Likewise, the distribution of the
optimal or close-to-optimal configurations across this space is unknown,
and we cannot know in advance what the future network protocols or user
demands will be like. We came to the conclusion that multiple algorithms
have to be provided by our stack composition system, and that the correct
choice and parametrisation of this algorithm can only be determined at de-
ployment or at run-time. Our design therefore explicitly allows for on-line
selection and configuration of the employed algorithm.

Currently our design allows for the specification of the fitness function
at run-time, based on sensor measurements provided by the system and
the modules that constitute the stack. Lee’s research into user-guided util-
ity measures ' *'* seems very promising for future work, as the addition of
such a facility might enable our system to “transcend” the sometimes dif-
ficult problem of defining an utility function which explicitly encodes the
users’ intentions.

191

Dr1ScusSION

7.2.3 Situational Awareness & Knowledge Base

Our third contribution concerns the mid-term adaptation logic, i.e. the pop-
ulation selection mechanism described in Section 4.2, as well as the algo-
rithms used to realise this functionality. Here we showed that the function-
ality offered by this layer is required and that our approach increases the
potential application areas to which our long-term evolution approach can
be applied. We further witnessed that appropriate configuration by hand is
currently needed for this method to be effective.

We implemented a matrix-based method for classification based on user-
defined criteria, as well as a k-means based clustering algorithm. We were
able to experimentally show the need for such functionality, and the ability
of our framework to host the necessary algorithms. For the scenario we ex-
plored in Section 6.2.1, autonomic adaptation does only occur when the net-
work situation is correctly classified and distinct populations are selected for
different conditions. The matrix-based method introduced in Section 4.2.1
was sufficient for this task, which seems to indicate that this approach is sen-
sible when reliable classification criteria can be derived by the administra-
tor. With concern to autonomic selection of criteria, however, further and
more thorough research is definitely needed. We sketched a method for dy-
namic determination of the classification criteria and their weighing in Sec-
tion 4.2.3. So far we only performed initial experiments for a very low num-
ber (< 6) of possible inputs, which we consider inconclusive®' due to the
difficulty of realising a realistic scenario either within the simulator or our
test-bed. We plan to further investigate the possibilities of automatic classi-
fication in the future, and consider exploring other algorithms e.g. ANNs as
well, which have been successfully employed for similar purposes. **¢

The method we proposed is however still only a sketch and not fully au-
tonomous as of yet. So far we need to specify the necessary baseline stacks by
hand, since we do not know how to reliably let the system find usable com-
positions at run-time. Our approach further requires an interpolatable fit-
ness landscape, i.e. the fitness of a baseline stack under an untested situation
needs to be approximately derivable from surrounding situations. We also
do not know what metrics are adequate for measuring proximity between
situations. Furthermore, before the system is able to start its autonomous
classification process, it has to apply and test the baseline stacks for a suffi-
cient subset of the possible conditions.

Our mid-term adaptation logic in its current state is thus not fully au-
tonomous, as it requires operator knowledge to be effectively configured.
But as we showed experimentally, it enables adaptation in situations were

' These experiments are therefore not included in this document.

192

7.3. (JONCLUDING ‘REMARKS

the long-term evolution logic on its own would be insufficient. We consider
the necessary efforts for proper configuration at run-time a small price to
pay for the possibility of extending the problem scope to which our long-
term evolution logic can be applied.

7.2.4 Information Gathering & Assessment

Our fourth and final contribution encompasses the facilities for autonomous
information gathering and assessment, which we detailed in Chapter 5.
These measures were sufficient to normalise the measurements and derive
comparable fitness measures during our experiments described in Chap-
ter 6. More exhaustive experimental evaluation of our approach is however
necessary. Furthermore, our architecture includes facilities for collaborative
fitness calculation based on sensor reports and a generic satisfaction, and
thus the possibility for remote entities to pro-actively influence each other’s
experimentation and stack evolution. We utilised these reports throughout
our experiments e.g. to derive the remote reception quality for UDP data
transfers. We plan to perform further experiments to assess the possibilities
of explicitly influencing a remote node’s experiment scheduling and its
adaptation, as well as collaborative adaptation towards a common goal.

7.3 Concluding Remarks

For our research we developed a framework for network stack evolution
which can be used for experimentation and exploration with different stack
compositions and to test new protocols. Our research so far only covers
some of the necessary aspects of a complete replacement architecture for
future networks. During our - far from exhaustive - experimentation, we
witnessed the ability of the system to reliably arrive at usable stack config-
urations which performed better than a generic, i.e. non-optimised stack.
The algorithms we developed for autonomous evolution, information gath-
ering and classification still offer much room for improvement, but were al-
ready usable as our experiments with a limited set of optimisation problems,
and may serve as a basis for further research and optimisation. In particu-
lar when the environmental and traffic conditions remain stable for a suffi-
ciently long period of time and fast adaptation is not needed, the evolution
engine on its own can already be used to adapt the network stack, even when
no background knowledge about the situation in which it is applied is give,
as only a suitable definition of fitness and a specification of the available stack
modules is needed. If the traffic or environment changes, but an adequate

193

Dr1ScusSION

measure for these changes is known, the mid-term classification and popu-
lation selection approach may be used to let the system adapt to multiple dif-
ferent sets of conditions at once, and switch almost instantly between these
sets.

While we consider the results so far promising and as warranting further
research, many open questions remain. Here we consider further research
of the situational classification and collaborative multi-node evolution, as
well as the development of a larger code base of micro-protocols for exper-
imentation, most urgent. Especially the latter problem, i.e. the lack of suit-
able micro-protocols hindered our experimentation efforts as we had to im-
plement all protocols ourselves, which severely slowed down our progress.
Apart from the need for sufficient development time, no fundamental prob-
lems became apparent during our research, which is why we are confident
that further evaluation of our approach is worthwhile and hope that our re-
search may lay a foundation for a future autonomous stack composition that
is usable in practise. But until such a system becomes reality, a lot of work
still remains.

194

AppendixA

Protocol Design Requirements

Most current network protocols have been designed with little or no consid-
eration of the effects their operations can have on other protocols and how
they might interact with future protocols, which led to numerous problems
and consequent calls to design for change.** For the stack composition sys-
tem the possible detrimental effects a protocol can have on the operation and
performance of other protocols or the stack as a whole are likely grave. Many
protocols have only been designed to work within the rather static TCP/IP
protocol environment. Stack configurations obviously do not remain static
in our system, and can arbitrarily change at any point in time, and thus in-
duce unpredictable effects in the network. And since our concept specifies
that the initiator of a communication flow defines the stack configuration
for that flow (see Section 3.7.5), multiple protocols and stack configurations
can even be active and in use at the same time, and switched between.

Furthermore, to enable effective stack composition we require support
for features that current protocols were not designed for. For example, most
protocols available in the Internet stack were intrinsically designed with per-
manent reachability in mind, so that e.g. TCP connections are known to time
out easily under intermittent connectivity."* Since we intend protocols to be
exchangeable in the middle of communications without interrupting ongo-
ing connections (see Section 3.2), a standard-conforming TCP is not suffi-
cient and had to be extended to be able to handle being switched out and
back in at arbitrary times.

Luckily, some of the negative effects a protocol can have on the network
can be mended through cooperation between nodes and the use of adequate

Y A problem which is addressed by DTN and opportunistic networking.

195

PrOTOCOL “DESIGN ‘REQUIREMENTS

fitness definitions (see Section 5.2): For example, TCP-friendliness might
be achieved by penalising unfriendly behaviour in the fitness assessment.
However such an approach is not universal and adds unnecessary complex-
ity to the configuration instead of reducing it as we intend. We therefore
propose requirements for protocol design in this section which are intended
to curb possible hindrances for stack composition. Even though we do not
require conformance to most of the requirements or recommendations we
introduce below, adhering to them increases the possibilities the stack com-
position system has for composition and configuration and thus might - at
least in theory - lead to higher utility.

Even though many of the requirements or suggestions given in this sec-
tion are likely to cause additional development overhead, we expect adher-
ence to be beneficial even when the protocol is employed outside of a stack
composition environment: At least some of the problems that burden cur-
rent networks could have been ameliorated or even prevented, if the protocol
design had conformed to the guidelines, a notion we try to clarify by means
of the examples given below.

A.1 Monolithic and Flexible Protocol Design

We require protocol implementations to be monolithic with respect to de-
pendencies on other protocols, in particular they have to be oblivious of as
much of the characteristics of other protocols as possible, since intrinsic de-
pendencies impede the run-time re-configuration of the stack.**® The stan-
dards that define TCP and UDP, for example, do not conform to this re-
quirement, as they both enforce the inclusion of the underlay’s IPv4 or IPvé
addresses in the checksum calculation. Such a dependency on a specific
underlay naturally precludes running these protocols on top of at-design-
time-unknown protocols, as explicit support for these has to be added to
the implementation. And even worse, IP-level routers need to understand
both protocols as well to be able to re-calculate their checksums as the re-
place addresses when crossing network boundaries. Our implementations
of TCP and UDP therefore intentionally deviate for the standard and omit
to include the underlay addresses whenever the underlay is not IP.

Protocol design shall thus avoid unnecessary dependencies on other pro-
tocols, and all necessary dependencies should be specified and implemented
in such a way that other modules which offer comparable functionality can
easily replaced for the ones intended at design time (see Section A.7 below).

196

eA.2. (JONFIGURABILITY

A.2 Configurability

Protocol designers often take decisions which are based on assumptions
about the operation environment or traffic conditions. For example, the
default time-out or the size of sequence numbers for TCP are based on
assumptions made in the 1970s, and naturally do not reflect the drastically
different nature of the networks we are experiencing today: Connections
were defined to time out after five minutes (see RFC 7932*%), window
sizes were limited to 16-bit and sequence numbers can overflow within 17
seconds on Gigabit Ethernet (see RFC 1323'7").

Such decisions should therefore ideally be taken at run-time, for exam-
ple by the stack composition system whose reason of existence is to find the
best configuration. While demanding total configurability is probably un-
realistic - e.g. supporting multiple sequence number sizes would preclude
some code optimisations - other settings, such as the default time-outs, can
be changed without requiring modification of the implementation. In fact,
TCP explicitly supports this feature from the beginning, and the setting can
be changed through run-time knobs in most current operating systems. And
just like the window size limit was later extended through the introduction
of a scale factor (again see RFC 1323 '"") to reflect the increased bandwidth
of modern networks, a protocol can be designed to be extendible from the
beginning. When this is not done, such as in the case of the rigid and in-
extensible definition of 16-bit sequence numbers in TCP, using the protocol
in different settings becomes difficult, in the aforementioned case PAWS, a
workaround to protect against the effects of rapid counter overflows (also
see RFC 1323'7") became necessary.

A.3 Reliability

The next requirement is not specific to stack composition, and has to be con-
sidered essential for software architecture in general: Robust and reliable
engineering. While protocol design almost always involves simulations, de-
velopment of a reference implementation, and consequently debugging, the
variety of the traffic and network conditions the protocol is exposed to in
this phase is naturally limited. Our stack composition system, however, is
comparable to a fuzzing tool: It non-deterministically, but indiscriminately,
explores all possible stack configurations and thus often exposes hidden de-
pendencies and insufficiently specified expectations by the designer or im-
plementer.

We therefore require robust, resilient and reliable protocol design: Allin-

197

PrOTOCOL “DESIGN ‘REQUIREMENTS

trinsic dependencies and requirements a protocol might have on other pro-
tocols need to specified. We provide a specification ontology specifically
designed for this task, such that the stack composition system does not ac-
cidentally connect a protocol to another one which does not offer required
functionality (see Section 3.4.2). The specification for the protocol, however,
has to be precise and comprehensive. In particular, hidden dependencies on
other protocols, their behaviour, or the stack composition in general have to
be avoided.

Even secure and resiliently developed protocols can, however, still
contain programming errors or other bugs. No matter how careful the
implementation and design process was checked, this is sadly unavoidable.
The stack composition system therefore contains measures to detect and
abort stack configurations that cause execution errors, as described in
Section 5.3.2. However, this process is not, and cannot be, absolutely
reliable, especially memory or data corruptions can cause unrecoverable
harm. Therefore, thorough testing and debugging of protocols is vital.

A4 Altruism

In a network environment which can be expected to be heterogeneous and
thus contain multiple variants of the same protocol and multiple protocols of
the same class, e.g. transport or routing, protocol design has to consider the
effects their actions can have on other protocols even more thoroughly than
would otherwise be necessary. As mentioned above, TCP-friendliness has
only become a topic warranting research once the low throughput of TCP
flows competing with UDP became apparent: The original protocol design
for UDP intentionally left rate-control measures to the higher layers. The
utter failure of this notion, which partially is due to application developers’
ignorance of the problem or also lack of interest, consequently led to the de-
velopment of TCP Friendly Rate Control (see RFC 5348''*). Naturally, not
all negative influence is foreseeable or avoidable, but an analysis of possible
effects on other network entities can help.

A.5 Co-operation

The stack composition system is modifying the stack at runtime while com-
munications are ongoing. This process is - intentionally - inherently oblivi-
ous of protocol- and network-specific concepts like connections, flows, or
network state in general. This implies that e.g. two connection-oriented
transport protocols can be replaced with each other while connections are es-

198

ed.6. ResTaRTABLE PROTOCOLS

tablished, unless constraints against this replacement are explicitly specified
for the protocol modules. If both protocols are now implemented in such a
way that they can utilise the same shared data structures - in which the con-
nection-specific, but not protocol-specific, information is stored - then con-
nections can be kept alive across stack modifications. Obviously, designing
and implementing protocols in this way can be burdensome, but the possible
benefits should be apparent. Protocol designers and implementers are there-
fore encouraged to store information in a generic way such that other proto-
cols providing the same service can understand and utilise the information
when possible. Another - yet easier to implement - example is a mechanism
for RTT estimation. While the method of information gathering and formu-
lae applied might differ, if the resulting assessment or the measurement data
is stored in a shared structure, a newly instantiated method will not have
to start from scratch, but can benefit from the knowledge obtained through
the previous method. Naturally, this concept can complicate experimenta-
tion, as interactions between different protocol implementations can make
effects that influence their performance more likely to occur. Not only can
programming errors, such as faulty entries in a shared storage space, cause
execution faults, but even correct operations can cause a burden for a follow-
ing experiment, by e.g. filling up a shared send queue, but such problems can
occur anyway and are taken care of by our experimentation methodology.

A.6 Restartable Protocols

Most common network protocols operate under the assumption that they
are more or less permanently available. Except for some implementations
of protocols which are explicitly designed for intermittent communications,
implementers and designers naturally assume that the protocol itself is kept
in memory and running. In the context of the stack composition system
which modifies the stack at runtime this notion is obviously no longer valid.
Protocols should therefore be implemented such that they can cleanly shut
down and restart operations, e.g. through micro-reboots,***” whenever sig-
nalled to do so by the stack composition system. A persistent storage space
is provided by the system, in which arbitrary data can be kept even after
a module instance has been shut down. Networking protocols, however,
often®'® include state information pertaining to e.g. ongoing connections,
which is shared across the network and might necessity signalling to the re-
mote communication partner to shut down the connection within a pre-
defined amount of time. Likewise, protocols should be implemented such
that they allow re-configuration during operations.

199

PrOTOCOL “DESIGN ‘REQUIREMENTS

A.7 Modularity

Transport protocols, to stay with the previous example, often include an er-
ror detection mechanism, e.g. the aforementioned checksums, which actasa
safeguard against data corruption. These mechanisms, however, are utterly
redundant if the underlying protocols guarantee reliable and incorruptible
transmissions. In error-prone environments, however, they are likely to be
insuflicient. Such functionality should therefore either be omitted or exter-
nalised as an independent and generic service, for which the stack composi-
tion systermn can select the appropriate implementation. ***

By separating common functionality such as error correction and detec-
tion mechanisms from the core implementation of the protocols, one can not
only reduce redundancy, but also increase the possibilities for stack compo-
sition system to optimise stack operations, as monolithic designs might be
easier to implement and test, but lack versatility.

For efficient stack composition, we therefore require the network stack to
be highly modularised, i.e. protocols are to be split into more-or-less atomic
modules whenever possible and sensible. Otherwise, if splitting function-
ality into independent modules is not advisable, decisions for selecting be-
tween different sub-functionalities within the module shall be made avail-
able to the composition system.

For example, protocol designers might separate the error detection and
correction mechanism from transport protocol modules and instead provide
hooks for the composition system to enable arbitrary methods at a place in
the stack of its choice. The composition system can now prevent the addition
of multiple, possibly redundant instantiations of CRC as currently in place in
IP and TCP/UDP. Instead it might e.g. provide Reed-Solomon codes directly
on top of the physical layer for lossy wireless links, and none at all for highly-
reliable wired Ethernet links.

Appendix B

Implementation and
Experimentation Environment

In this appendix we present additional details for both the user-space and
the simulator-based implementation of the stack composition system, and
introduce the micro-protocols and service modules we provide.

B.1 Implementation

As introduced in Section 3.5.1, the stack steering system is conceptionally
located next to the operating system’s stack, which it controls and modifies
as it deems appropriate. While we realised this concept exactly as described
before within the ns-3 simulator, for practical reasons we decided to deviate
slightly from this concept for our standalone implementation. The necessary
modification to the operating system kernel would not only have drastically
increased the implementation and debugging overhead, but also restricted
the possible deployment to the specific kernel version we would develop the
system for."* We therefore decided to implement our standalone system in
user-space instead, as detailed below.

B.1.1 Stand-alone User-space Implementation

As shown in Figure B.1, the user-space implementation interacts with the op-
erating system and applications through several complimentary interfaces.

Y Especially the Linux kernel is infamous for introducing incompatible changes to suppos-
edly stable APIs and data structures even between minor versions.

201

IMPLEMENTATION AND EXPERIMENTATION ENVIRONMENT

Satisfact« Reports Appliﬁm Traffic
Stack Composition System * S5 Librry j/i' Application
11
I \ ‘ T
(]] TCP/UDP j Application
)| 1T ! m—
= TUN/TAP Application
[| 4
_ Unix Socket Application
%é ﬁg_g é" E% 1;‘:‘},,55? Code Deployment §
= 5 > S = Sockets (%"
b
Sysctl Interface | [TUN/TAP] |BSD Sockets §
| 1
Sy
s
5
g

Figure B.1: The interaction between the user-space stack composition system
daemon and the operating system and local applications. We use BSD sockets
and the TUN/TAP interface for communications, and extract network statis-
tics, poll, and configure the operating system by means of the sysctls.

To applications the composition system’s data transfer interface is accessible
either via a virtual network interface,*** through BSD sockets,*** or via a
statically-linkable library that we provide. The aforementioned library pro-
vides additional features not offered by the standard communication facili-
ties, e.g. the possibility to send satisfaction reports to the stack composition
system as described in Section 5.3.4, or to specify detailed QoS requirements
for the traffic on a per-flow basis. Access to the facilities for code deploy-
ment, which we described in Section 3.7, is provided through Unix sockets,
and thus subject to the operating system-imposed access controls.

The stack steering system links the stack to virtual physical interfaces
and application modules, which abstract the access to the operating system-
specific communication facilities and thus enables us to implement stack
modules in a more-or-less system-independent way. These modules and the
stack steering system interact with each other by means of connectors that
are assigned the physical or application service identifier, respectively.

The stack steering system forwards all incoming application data to a

202

B.1. IMPLEMENTATION

module instance that offers the application service. The source and destina-
tion identifiers are derived from the incoming application data. If, for exam-
ple, an UDP packet is received on the TUN/TAP-Interface, the source and
destination identifiers consists of the corresponding IPv4 address, the [Pv4
protocol field, and the UDP port. For incoming packets on the system’s UDP
or TCP ports, a run-time-configured destination is assigned which depends
on the respective port. For outgoing packets, the appropriate data packet is
re-assembled using the aforementioned identifiers.

The physical service provided by the stack steering system interacts with
the operating system’s network interfaces in a similar fashion. For outgo-
ing packets over raw sockets, it encodes the caller’s protocol identifier in
the appropriate fields of the underlying protocol’s header, e.g. the EtherType
field for IEEE 802.3. Incoming packets are forwarded upwards into the stack
according to the value encoded in the protocol field, in accordance with
the principle that the sender defines the composition, as introduced in Sec-
tion 3.7.5. When sending over an UDP socket provided by the host’s op-
erating system, a short header is prepended to each outgoing packet which
consists of the source and destination addresses, the caller’s protocol identi-
fier and the length of the packet.

While the code-base itself is written with compatibility in mind and
should compile on all POSIX-compliant systems, some system-dependent
aspects were unavoidable. In particular the access to network-related
measurement data depends on proprietary operating system interfaces, in
some cases even necessitates access to the network interface drivers, and
thus requires adaptation to the host system. We so far implemented and
tested the necessary functionality for Mac OS X, FreeBSD, and Linux.

B.1.2 Simulation

For our simulations we utilise ns-3, a discrete-event driven open-source net-
work simulator which is widely used for network research. It offers the
possibility to specify both the experimentation scenarios — network topol-
ogy, scheduled traffic, etc. - and the network stack architecture in C++ or
Python. This enabled us to easily utilise the same code base for the simu-
lation and standalone user-space implementation described above. Thanks
to its easily extensible, modular, and object-oriented design, we were able
to easily separate the operating system- and simulator-dependent aspects of
the design from the common machinery, and only needed to implement a
limited amount of “glue-code” to provide the interface to ns-3. For setting
up the simulation, we implemented a helper application that, based on com-
mand line parameters, initialises and configures the stack composition sys-

203

IMPLEMENTATION AND EXPERIMENTATION ENVIRONMENT

tem, generates the network topology, and schedules application traffic. This
application thus enabled us to easily script runs of experiments for various
settings at once, and at higher speeds than in reality, enabling us to explore
network configurations, traffic scenarios in far greater amount than possible
in reality.

B.1.3 Realistic Physical Environment

As we mentioned before, one of our main arguments for the need for au-
tonomous network stack adaptation is the inherent unpredictability of real
networks. We therefore deployed our stand-alone implementation of the
stack composition system on a physical test-bed, which enabled us to test
the performance of the system over the real, unfiltered Internet and for re-
alistic traffic loads. We spread our test bed across two sites. One part of
the test-bed is hosted by the Computer Science department of the Univer-
sity of Basel, Switzerland, the other part is located roughly 70 km away in a
residential area of Freiburg, Germany. In Basel we set up one server-class
machine which is connected via 100M bis Ethernet to the university’s back-
bone link and locally hosts an instance of the stack composition system. In
Freiburg we installed two Soekris NET6501 *** embedded network devices,
one connected via Ethernet, and another one which provides both WLAN
and Ethernet, which both also host one instance of the stack composition
system. These machines are connected to the Internet via a very busy home-
user class VDSL link. In addition to the experimental traffic, this link car-
ries normal user traffic, and offers a total bandwidth of 50M bis down- and
10M bifs up-stream. Behind each of the aforementioned machines we placed
one laptop for the purpose of generating user traffic that is transmitted across
the Internet via the stack composition system. This test-bed enables us to
model various realistic scenarios as we can utilise home user-, embedded-,
and server-class hardware, wired and wireless communications, reliable and
fast Ethernet, as well as a somewhat more error-prone wireless connection.
Furthermore, we can simulate various complementary network conditions
by means of dummynet.

B.2 Implemented Protocol and Service Facilities

Since we intend to probe the stack composition system’s ability to operate
successfully in a realistic setting, we need to provide a network stack that
is composable and configurable: Without actual implementations of proto-

cols to experiment with and to measure the performance of, we cannot make

204

B.2. IMPLEMENTED PROTOCOL AND SERVICE FACILITIES

sufficient assumptions about the stack’s utility and thus the stack composi-
tion system’s behaviour. And as we intend to test some aspects of the sys-
tem through communication across the Internet, we need to stay sufficiently
compliant to the IETF’s standards. In this section we introduce some of the
protocols and modules we implemented for this purpose and utilised for our
experiments.

B.2.1 Internet Protocol Implementations

We implemented the following communication protocols using the Unified
Communication Interface introduced in Section 3.7.3. Since our system al-
lows this protocols to be linked together in ways not envisioned by their de-
signers, we had to make some modifications and extend the protocol func-
tionality. Our extended versions of TCP, UDP, DCCP, IPv4, and Ether-
net comply with the respective standards whenever the underlay they are
connected to is one of those originally intended, i.e. when the transport-
layer protocols are stacked on top of IPv4, or when [Pv4 is connected to the
Ethernet module. For different compositions, however, their behaviour is
changed such as to still be able to operate: For example, UDP includes the
appropriate IP header fields in its checksum calculation only when it is sit-
uated on top of IPv4, but accommodates different underlays (about whose
operation it has no intrinsic knowledge) by simply omitting the underlay’s
header fields. Thus UDP can, for example, operate directly on top of Ether-
net, in which case it would get assigned a proprietary value in the EtherType
field, whereas [Pv4 is identified by 0800h as according to the IEEE specifica-
tion.

Transmission Control Protocol (TCP) Apart from the basic functionality
outlined in RFC 793%*°, we implemented several modifications and exten-
sions, most of which are also supported by several or all of the major current
operating system stack implementations:

+ RFC 1323'"": Window Scale Option, Round-Trip Time Measurement
(RTTM), and Protect Against Wrapped Sequence Numbers (PAWS);

o RFC 5681": Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery algorithms;

» RFC 3782''%: NewReno Fast Recovery algorithm;
» RFC 2988%7%: Computation of the retransmission timer;

o RFC 2018%%%: Selective Acknowledgement options (SACK);

205

IMPLEMENTATION AND EXPERIMENTATION ENVIRONMENT

deflate RLE Transport 4-tuple
v,) - iali
A Underlay connecg’on Sequentiality
CanpFession Multiplexing \..,,‘“
ports<=

&7
Hamming i \ sequence sequence

Reed-Solomon] numbers number
available ACK » orderin
send space SACK g
e retransmission ™. reéeption Ay
i - notification continuous
P B window range received
K scaling _

New Reno*™ ; /7 . Reliability

¥ ¥ a i

fast retransmit Flow
& recover Control

Figure B.2: The modularization of TCP: The facilities defined RFC 793 are
given in bold. Solid arrows denote dependencies, dotted ones implementations
of a facility. Required facilities are red, optional (sub-)facilities and dependen-
cies blue. Compression and error correction are our proprietary additions to
the protocol.

o RFC 1146°%: Alternate Checksum options;
o RFC 3390"% Increasing the Initial Window size;

» RFC 3465'* Congestion Control with Appropriate Byte Counting
(ABC).

As stated in RFC 793%*°, TCP offers the following facilities: Basic Data
Transfer, Reliability, Flow Control, Multiplexing, Connections, Precedence
and Security. By modularising the design of TCP i.e. splitting it into sepa-
rate, but inter-dependent components, that can be enabled, disabled or re-
placed as needed, we gain the ability to tailor a transport protocol specific to
the needs of the application. Disabling all facilities except for Data Transfer
and Multiplexing, for example, would transform TCP into UDP?. The de-
composition of functionalities and their interdependences is shown in Fig-
ure B.2. Only Multiplexing and Data Transfer, as well as the sub-modules
these depend on, are fixed components in use within all compositions of our

? Functionality-wise, not w.r.t. to the actual packet encoding.

206

B.2. IMPLEMENTED PROTOCOL AND SERVICE FACILITIES

Modular TCP. All other facilities are optional and enabled through module
control parameters. The actual functionality provided by the module, e.g.
whether to use New Reno, is thus decided on by the evolution engine. Apart
from the standard capabilities of TCP, we implemented extensions for error-
correcting codes and compression, which we make available through propri-
etary TCP options.

User Datagram Protocol (UDP) Our implementation of UDP is fully
compliant with RFC 7682%¢, and as such does not offer any stack compo-
sition system-configurable features, since the protocol specification does
neither offer any features for configuration nor the possibility for extensions
(as, for example, TCP does). Any standard-conforming implementation
of UDP therefore is limited to providing just port-multiplexing and
error-detection.

Datagram Congestion Control Protocol (DCCP) DCCP isa connection-
oriented transport protocol that has been designed with the aim to address
some of the presumed shortcomings of TCP and UDP. In particular, applica-
tions that do not require sequential or reliable transport, but need congestion
control to guarantee TCP-friendliness (see e.g. RFC 5348''*) are potential
users of this protocol: Whereas it transmits data in the sequence it is re-
ceived from the higher layers, the protocol itself does not guarantee sequen-
tiality of or loss-free transmission, but does provide congestion control. Our
implementation is fully compliant with RFC 4340'%°, and implements the
CCID2 and CCID3 congestion control methods as specified in RFC 4341''¢,
REC 43427, and RFC 5348''*, Tt offers controls to select the checksum
coverage, congestion control method, and whether to use short sequence
numbers.

Internet Protocol, Version 4 (IPv4) We provide a standard-conforming
implementation of version 4 of the Internet Protocol, as defined in
RFC 7912%%. We decided not to extend IP by means of proprietary options,
since we planned to perform experiments over the Internet where -
according to a study performed in 2005"*° - packets containing IP options
are likely to be silently dropped.

B.2.2 Other Protocols

In addition to the communication protocols describe above, we developed
the following protocols and modules for our system.

207

IMPLEMENTATION AND EXPERIMENTATION ENVIRONMENT

Payload Encoder Protocol (Codec) Inaddition to our proprietary exten-
sions to TCP for the same purpose, we implemented a stand-alone protocol
which offers error-correction and compression functionality. Since com-
pression algorithms require access to the full and ordered encoded data, the
missing guarantee for reliable and sequential data transmission here limits
the compression functionality to individual packets, which can result in a
lower compression ratio compared to the stream-based compression func-
tionality of our TCP extensions. But in turn this protocol module can be
placed at any arbitrary position in the stack, e.g. directly on top of Ether-
net or [Pv4, and thus provide compression and error correction facilities to
arbitrary transport protocols, not just TCP.

Generic Communication Protocol (GCP) For practically deployable
autonomous stack re-configuration, a transport abstraction is necessary
which frees uses applications from the need to understand the intrinsic
of the utilised stack. Application processes on the current Internet still
require a rather deep understanding of the mechanics and structure of
the Internet for communication: A web browser, for example, needs to
resolve domain names into [P addresses, and understand that protocol
identifiers such as http:// require a TCP connection to default port 80
on the remote host. To alleviate this problem, we provide applications
with an underlay-independent way of accessing resources on the Internet,
in a similar manner as URIs in theory should allow. GCP is a simple
distributed registration, resolution, and forwarding protocol, in which
applications access resources by means of an identifier, which the protocol
resolves into a locator by means of a DHT that is shared by all instances
of the stack composition system. This locator includes the protocols and
addresses needed to access the resource across the network, for example,
as TCP(80),IPv4(192.0.2.1);UDP(1111),ETH(FF:EE:DD:CC:BB:AA), which denotes a
resource reachable via TCP port 80 on [Pv4 address 192.0.2.1, as well as via
UDP directly over Ethernet on the local network.

Compression Our compression modules offer the following algorithms
for (de-)compressing data, which they expose through a common interface:

RLE compresses data by encoding continuous sections of identical bytes as
two bytes, the length and the repeated byte’s value. Incompressible
blocks of bytes are usually denoted by the negative length of the block
followed by the data. This method is commonly employed in graphic
file formats such as TGA, ILBM, and PCX.

B.2. IMPLEMENTED PROTOCOL AND SERVICE FACILITIES

DEFLATE operates by combining Huffman coding with LZ77 compression
and is standardised in RFC 19517, DEFLATE is one of the most com-
monly employed data compression algorithms and used e.g. in PNG,
GZ, and ZIP files.

Error Correction We provide modules for the following error correction
mechanisms, which are exposed through a common interface:

Cyclic Redundancy Check is an error-detection method that utilises the
remainder of a polynomial division of the input data to detect changes.
While relatively short and very fast to calculate, these methods can
only detect errors, but not correct them. We provide several variants
of 8 to 64-bit, e.g. those specified in RFC 1146 *%°.

Hamming Codes are linear error-correcting codes that utilise parity bits to
detect and correct errors in the encoding of a symbol. We provide
the common (8, 4)-variant, which protects 8-bits of data with 4 parity
bits, and thus is able to detect up to two, and correct one erroneous bit

Reed-Solomon Codes are cyclic error-correcting codes that can detect and
correct up to L%J faulty symbols (here: bits) through the addition of
k additional symbols. Our implementation allows the selection of the
number of symbols and the block size either by means of a control or
directly through the APIL.

Distributed Registry At many places within its architecture the Internet is
statically configured. The protocol numbers used by many transport proto-
cols for (de-)multiplexing data packets, for example, are assigned by IANA.
While protocols DNS or ARP provide a facility to translate higher-layer iden-
tifiers - e.g. domain names or IP addresses - into their lower-layer counter-
parts — (e.g. IP or Ethernet addresses - and vice-versa, these facilities are
insufficient for our purposes: Since we wish to grant nodes the flexibility to
independently evolve their stack configurations as well as to add new proto-
cols, we need to provide functionality to register mappings between protocol
identifiers and numbers, or between higher-layer identifiers and lower-layer
addresses and protocol identifiers. For this purpose we provide a distributed
registry mechanism, in which such mappings are registered and the looked
up by nodes running the stack composition system. Our implementations of
DNS and ARP, as well as our proprietary GCP, use the distributed registry,
as do all parts of the system that need to (de-)multiplex between protocols.

209

GLOSSARY

Glossary

ns-3 Network Simulator, version 3, www.
nsnam.org. 143, 146, 156, 157, 167,
199, 201

3GPP Standardization Body for mobile com-
munications, originally named ”3rd
Generation Partnership Project’, but
now working on 4th generation net-
works. 214

administrator The physical entity respon-
sibly for deploying and maintaining
stack composition system. 131, 136—
139

ADSL Asymmetric Digital Subscriber Line,

ITU G.992. 4

Al-IP In entirety based on the Internet Pro-

tocol, in particular IPv6. 2

ANN Artifical Neural Network. 20, 21, 23,
24,128,116, 189

API Application Programming Interface.
36, 66, 67, 199, 207, 217

application environment encompasses not
only the running application and their
needs, but also the conditions, state
and setup of the network, as well as all
other on-going traffic. 70, 215

ARP Address Resolution Protocol,
REC 826 %%, 13, 36, 72-74, 207

BER Byte error rate, the probability of cor-
ruption, individually applied to every
byte in a data packet.. 156

brute-force An algorithm or technique
which operates by exhaustively enu-
merating all possible candidate solu-
tion and checking whether they meet
the goal condition(s).. 104, 105

C++ An object-oriented, statically typed,
free-form, multi-paradigm, pro-
gramming language, see http://
www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.
htm?csnumber=50372.. 29, 67, 201

callee The module instance which is invoked
by a connector, similar to an object
a method of which is executed in
an object-oriented programming lan-
guage. 73

caller The module instance which invokes
a connector, similar to a calling a
method of an object in an object-
oriented programming language. 73

composer The stack composer provides the
stack composition mechanics, i.e. it
constructs and initialises the stack as
outlined by a stack blueprint. This
component of the stack composition
system is introduced in Section 3.5.2..
53,57, 61-63, 66

211

GLOSSART

Composition Tree A search and optimi-
sation method which we designed
specifically for the purpose of au-
tonomous stack evolution process
encompassed by the evolution en-
gine and which is introduced in Sec-
tion 4.1.. 6, 97, 100, 107-109, 147,
148, 150, 151, 154, 157-159, 161, 162,
164-171, 175, 182, 186, 188

compression Data compression operates by
reducing the amount of statistical re-
dundancy. In the context of the
stack composition system, compres-
sion refers to lossless data compres-
sion.. 205

condition The condition or state of the net-
work and the ongoing traffic, a syn-
onym for situation.. 45, 46

configuration space The search space onto
which the evolution logic is applied,
i.e. the domain of all possible stack
conﬁgurations.. 83, 84, 104, 106, 107,
171,212

connector A strongly-typed reference to a
module instance. Connectors can be
likened to smart pointers to objects in
e.g. C++. 59, 66, 67, 116, 148, 200

control Configuration parameters which in-
fluence the operation of a module, as
described in Section 3.4.2. Continu-
ous controls refer to parameter ranges
in which the distance between values
corresponds to larger changes in be-
haviour, whereas no such relation ex-
ists for nominal controls.. 67, 92, 148,
149, 160, 205

CPU Central Processing Unit. 175

DCCP Datagram Congestion Control Pro-
tocol, RFC 4340"%°, 63, 118, 148, 150,
157, 163, 164, 174, 203, 205

decision module A module class whose pur-
pose is to control and direct the ex-
ecution and packet processing flow
through the stack in conjunction with
in-stack redirectors introduced in Sec-
tion 4.3.1.. 56, 117, 118

DEFLATE A data compression algorithm,
REC 19517%.. 158, 174, 176, 177, 207

DHT Distributed Hash Table,
Chord?**.. 36, 206

DNS Domain Name System, RFC 1035%%.
36,71,207

see e.g.

DoS Denial-of-Service, the attempt to make
anetwork service or resource unavail-
able for its intended purpose.. 128,
134, 137

DTN Delay-Tolerant Networking, also
Disruption-Tolerant ~ Networking,
RFC 4838%,5050. 193

dummynet A FreeBSD system for emulat-
ing the effects of bandwidth limita-
tions, propagation delays, bounded-
size queues, and packet losses, http:
//info.iet.unipi.it/~Tuigi/
dummynet /. 202

EBNF Extended Backus-Naur Form, a

meta-syntax notation for expressing

context-free grammars.. 57, 110, 138,

140

ECN Explicit Congestion Notification,
RFC 3168*™; sadly not widely avail-
able in the current Internet. 16

environment The state and configuration of
the network and traffic, including all
aspects which are out of the control of
the current node, but influence its op-
eration.. 45, 124

error-correcting codes See forward error
correction.. 155, 156, 158, 205,212

Ethernet Ethernet, IEEE 802. 67, 69, 71-74,
157,173, 174, 176-178, 202, 203, 206,
214

evolution engine The part of the stack com-
position system which implements
the evolution logic.. 44, 52-54, 57,
59-62, 64, 65, 72, 79-81, 121, 144,
145, 148, 150, 155, 170, 178, 182, 187,
191

evolution logic The algorithms that mani-
fest long-term evolution, and which
we introduce in Section 4.1.. 48, 49,
52, 60, 65, 67, 68,77, 80-84, 104, 106—
108, 116-119, 129, 135, 139, 145, 148-
150, 153, 155, 157, 159, 161, 163, 165,
167, 170-172, 175, 210, 211

evolution quality In the context of stack
evolution we define quality as the fit-
ness achieved by the best stack derived
from any stack blueprint in a particu-
lar generation.. 83, 108, 148, 153, 163,
165,178

evolution speed In the context of stack evo-
lution we define speed as the time
measured in generations — needed un-
til the fitness of the best stack exceeds
a specific threshold with sufficiently
high probability.. 83, 102, 108, 148,
165,171

Evolutionary Algorithm Evolutionary Al-
gorithm, a class of machine learning
method which includes e.g. Genetic
Algorithm, and which we introduce
in Section 2.6.1.. 22, 81, 87, 93, 97,99,
106-109, 129, 148, 150, 153, 155, 157,
159, 160, 162, 166, 168-171, 186, 188,
212

experiment run We use the word experi-
ment run to indicate a specific and
distinct experiment. For example,
two executions of the simulator with
different random seeds constitute two
distinct runs, while using the same
seed would indicate to instances of
the same run. Performing two ex-
periments on the real-world set up al-
ways represent two distinct runs, as
the conditions are assumed to always
be distinct.. 145, 153, 154, 176, 177
fitness A scalar measure of utility which de-
fines the proximity of a candidate so-
lution to the objective or goal state.. 6,
48,52,58,70,79, 81, 83,121, 132, 136,
138, 143, 187, 191, 212

fitness function An objective or utility func-
tion which calculates the fitness of a
candidate solution.. 4, 20, 49, 53, 54,
57,64,84, 106,122, 128, 131, 132, 135,
137-140, 144, 163, 212

fitness landscape The distribution of the fit-
ness with regard to the configuration
space. The fitness landscape is the
codomain of fitness function F(x)
evaluated for all possible stack config-
urations.. 82-84, 102, 106, 171, 190

GLOSSARY

forward error correction see error-correct-
ing codes. 57, 60, 118, 155, 160

FPGA Field-Programmable Gate Array. 32

FreeBSD www.freebsd.org. 31, 201, 211,
217

FTP File Transfer Protocol, RFC 9592°°, 2,
74,76, 139

fuzzing A testing methodology which pro-
vides invalid, unexpected, or random
data as input to the entity that is to be
tested.. 195

GCP Generic Communication Protocol, a
protocol which abstracts application-
level access to the stack functionality,
which we introduce in Section B.2.2..
148, 157, 160, 161, 206, 207

generation Generation denotes a set of stack
blueprints of stack configurations de-
rived by an Evolutionary Algorithm.
These algorithms generate a new set of
stack blueprints based on information
about the fitness and layout of the pre-
vious generations similar to biologi-
cal procreation. Thus the terms par-
ent, offspring or children are also of-
ten used to refer to the previous or
successive generation.. 52, 54, 64, 65,
81, 83, 84, 129, 145, 176, 211

Genetic Algorithm Genetic Algorithm, a
machine learning method introduced
in Section 2.6.1.. 87, 108, 119, 152,
160, 211

hill-climbing A local search technique ap-
plicable to optimisation problems *°%..
102

HTML Hyper-Text Markup Language,
http://www.w3.org/standards/
webdesign/htmlcss.. 156, 174

HTTP Hypertext Transfer Protocol, defined
in REC 261612, 3,21, 67

I/O input/output. 29

TIANA Internet Assigned Numbers Author-
ity, iana.org.. 36, 207

ICMP Internet Control Message Protocol,
RFC 792%%. 76

GLOSSART

IEEE Institute of Electrical and Electronics
Engineers, www.ieee.org. 43, 156,
203,214

IETF Internet Engineering Task Force, www.
ietf.org. 157, 203

in-stack redirector Modules placed into the
stack which implement branching be-
tween independent sub-stacks at the
packet- or flow-level, as introduced in
Section 4.3.. 52, 53, 56, 57, 62, 64, 65,
75, 80, 116, 118, 153

instance An initialized module, which is cre-
ated and set up by the stack composer
in accordance to a stack blueprint.
116, 216

interface The point of interaction between
unrelated objects, in object-oriented
programming languages the specifica-
tion of methods and values for co-
operation.. 117

IP address routable node address, 32-bit for
1Pv4, 128-bit for IPv6. 2, 73

IPC Inter-Process Communication. 69, 137

IPng IPng, RFC 17267 3

IPv4 Internet Protocol version 4,
RFC 7912%, 2, 36, 67, 69, 71-74, 76,
146, 148, 150, 156, 157, 162, 174, 194,
203, 206, 213

IPv6 Internet Protocol version 6,
RFC 24607°. 2, 71, 194, 209, 213

k-means A method of cluster analysis'*..
21,110, 111, 114, 115, 172, 189

Linux Another Unix-like operating system
kernel, often deployed together with
the GNU application base.. 199, 201,
217

LTE 3GPP Long-Term Evolution, the 4-th
generation of mobile telephony net-
works. 2, 3

Mac OS X developer.apple.com. 201,217
mDNS Multicast DNS, see REC 67622 .. 73

MDP Markov Decision Process, see e.g. Sut-
ton®*%.. 24,25

meta-protocol Our abstraction of commu-
nication protocols, which incorpo-
rates the address resolution as well as
packet forwarding, etc.. 72

minimum spanning tree A spanning tree
with weight less than or equal to the
weight of every other spanning tree.
A spanning tree is connected, undi-
rected, and weighted graph that con-
nects all vertices together **.. 99

module A subset of protocol or service func-
tionality within the stack composi-
tion system, which is implemented
a monolothic entity, a.ka. micro-
protocol or service in SILO®®. 'The
stack is composed of modules, which
we introduce in Section 3.4.1.. 73, 76,
116, 122

MTU Maximum Transfer Unit, is the size
of the largest payload that a protocol

layer, e.g. Ethernet, is able to forward..
156

NAT Network Address
RFC 30223%.2

NTP Network Time Protocol, RFC 5905 22,
129

Translation,

operating system The software layer which
abstracts and manages access to the
system hardware and provides ser-
vices to the programs running on top
of it.. 6, 32, 33, 35, 62, 66, 122, 150,
173, 182, 187, 195, 199-201, 203, 214

opportunistic networking A network archi-
tecture, such as HAGGLE***, which
aims to enable communication when
network connectivity is intermittent..
193

packet-switched network A networkign
paradigm which groups all exchanged
data into chunks or blocks, which
are called packets. The opposite of
circuit-switched networking, which
allocates dedicated commmunication
channels for each connection.. 2

PAWS TCP Extension PAWS, “Protect

Against Wrapped Sequence Num-
bers”, REC 13237, 195

peer-to-peer A distributed application ar-
chitecture that partitions tasks or
work loads between peers, often based
on abstract overlay networks.. 3, 4,23,
25,26, 30, 31

population The group of all stack configu-
ration stack blueprints and associated
sensor measurements evolved under
a specific situation, see introductio of
the mid-term adaptation logic in Sec-
tion 4.2.. 50, 52-54, 64, 65, 79, 80, 86,
110, 175, 176, 178

population selector The components of
the stack composition system which
manages access to the populations
based on the output of the situational
classifier.. 53, 54, 64, 65, 118, 172,
175,178

POSIX Portable Operating System In-
terface, see e.g. IEEE Std 1003.1-
2008, or https://collaboration.
opengroup.org/external/pasc.
org/plato/. 71, 201

Python A versatile scripting language, in
widespread use e.g. for rapid proto-
typing, www.python.org. 201

QoS Quality of Service. 19,20, 23,24, 31,74,
188, 200

random probing The random probing algo-
rithm operates by repeatedly generat-
ing random stack configurations and
is introduced in Section 4.1.3. 85,
93, 105-107, 151, 152, 157, 160-162,
168-170

Rapidly-Exploring Random Tree A search
method and data structure for search-
ing high-dimensional non-convex
spaces*®.. 94-97, 99, 100, 107, 188

RLE Run-Length Encoding, a simple data
compression scheme. 158, 174, 206

roulette-wheel selection A fitness-
proportionate selection method
which selects candidate solutions with
a probability proportionate to their
associated fitness.. 87, 99

GLOSSARY

RTT Round-Trip-Time, the delay between
the time when a message is sent and
the time when the acknowledgement
for this message is received.. 123, 197

satisfaction The measure of complacency of
a node’s stack composition system.
Higher satisfaction results in less ex-
ploration of new stack configurations,
i.e. less experimentation, which in
turn implies a more stable modus
operandi.. 136, 137, 139, 140, 187,
190, 200

segmentation fault An error signal gener-
ated when the CPU tries to access an
inaccessible memory location.. 135

sensor Our facilities for abstracting access to
measurement and state data, as intro-
duced in Section 5.1.. 57, 62,118,122,
137, 138, 140

service A discrete set of software or proto-
col functionality, see also module.. 68,
117, 198

sidechannel A reliable means of commu-
nications which uses a known-good
stack configuration instead of the tri-
alled stack configuration to guarantee
a high probability of delivery. This
know-good stack can be either a com-
mon stack variant (e.g. the TCP/IP-
Stack) or a stack which proved reli-
able when tested in multiple applica-
tion environment.. 123, 134, 136, 137

situation The conditionas and state of the
network, traffic, and applications, i.e.
everything that can have an influence
on the performance of the system.. 45,
47, 49, 50, 53, 54, 64, 65, 79, 82, 84,
110, 119, 121, 130, 133, 135-138, 175,
176, 178, 190, 191, 210

situational classifier The component of the
stack composition system which is re-
sponsible for grouping situations into
different classes based on the similar-
ity between them according to pre-
selected criteria and which is intro-
duced in Section 4.2.. 52-54, 57, 64,
65, 80,110, 118, 172

SNMP Simple Network Management Proto-
col, RFC 3411'%°-3418. 13, 34, 123

215

GLOSSART

stack The protocol stack is a directed graph
composed of (micro-)protocol mod-
ules, which specifies the possible
paths and interactions of protocols
and communication services. Please
refer to Section 3.7.5 for a discussion
of how our design regulates the con-
trol flow between these modules.. 45,
54,121, 134, 176, 216

stack blueprint A “plan” which defines how
many instances of each module class
are present in a stack, how they are
connected with each other, and how
they are configured.. 52, 54, 57, 61—
65,79-83, 110, 129, 157, 167,211, 212

stack composition system Our framework
for stack evolution.. 7, 45, 47, 48, 50,
52-55, 57, 59, 62, 63, 66, 70, 71, 75—
79, 84, 106, 115-119, 121, 123, 124,
127-133, 135-139, 144-150, 152, 154,
155, 157, 158, 163, 170, 174, 178, 182,
183, 185, 186, 189, 193-203, 205-207,
209-211, 217

stack configuration The composition of a
stack out of individual service mod-
ules, as well as the configuration of
these module instances.. 4-7, 16, 18,
20, 30, 32, 45, 47-52, 60, 64-67, 70,
75, 79-82, 84, 86, 87, 94, 95, 104,
109, 113-115, 121, 124, 126, 128-131,
133-136, 145, 148-150, 152, 153, 157,
160-163, 166, 170, 171, 175-179, 182,
186, 188, 190, 195, 210, 212,215

stack steering system The part of the stack
composition system which links the
stack to outside and which controls
the stack operations as well as the
adaptation process, as described in
Section 3.5.1.. 53, 54, 59, 62, 65, 86,
122, 129, 130, 134, 135, 199-201

sub-trial A sub-trial is an independently
scheduled experimentation phase,
during which one specific stack con-
figuration is tested. See also trial..
122, 130-133, 135, 138, 148, 150, 153,
154, 157, 167, 171, 175, 178

TCP Transmission Control Protocol,
REC 7932%%, 3, 14-16, 19, 22, 28, 31,

32, 34, 36, 50, 51, 63, 67, 69-71, 73,
74, 115, 118, 123, 128, 146, 148-150,
153, 157, 174, 193-196, 203, 205, 206

TCP Friendly Rate Control TCP Friendly
Rate Control, RFC 5348 %, 196

TCP-friendliness Congestion control mech-
anisms designed to operate together
with concurrent TCP traffic, such that
the achieved throughput is relatively
fairly distributed between the flows,
see TCP Friendly Rate Control.. 34,
69, 194, 196

trial A trial is the sum of all sub-trials per-
formed for a particular stack configu-
ration. Due to the noisy nature of ex-
perimentation, one single sample, i.e.
experiment, is not enough, thus the
stack composition system performs
multiple sub-trials and averages the
results, as described in Section 5.3.2..
130, 148

trust The trust relationship between nodes
on which the stack composition sys-
tem is deployed is described in Sec-
tion 5.3.4.. 134, 136

UDP User Datagram Protocol, RFC 768 **°..
3,16,31,63,67,69, 115,118, 148, 149,
157, 162-164, 174, 177, 190, 194, 196,
203,205

Unified Communication Interface The API
utilised by all communication meta-
protocols provided by the stack com-
position system.. 69, 71, 150, 203

Unix Originally a multi-user and multi-
tasking operating system developed at
Bell Labs, but now commonly used to
refers to all Unix-like or UN*X operat-
ing systems, such as FreeBSD, Mac OS
X, Linux, etc.. 29, 30

URI Uniform Resource
RFC 3968*.. 206

Identifier,

VDSL Very-high-bit-rate digital subscriber
line.. 125, 131, 156, 174, 202

VLAN Virtual Local Area Network. 3
VoIP Voice-over-IP. 2, 74, 126, 139, 140
VPN Virtual Private Network. 3

GLOSSARY

Wi-Fi Wireless networking technology, crowave Access. 3
IEEE 802.11. 3 WLAN Wireless Local Area Network. 156,
WIiMAX Worldwide Interoperability for Mi- 173, 174, 176-178, 202

217

BIBLIOGRAPHY

Bibliography

The NS-3 network simulator.
WWW.NSNam. org.

hitpall

3GPP IP Multimedia Subsystem. http:
//www.3gpp.org/Technologies/
Keywords-Acronyms/article/ims/.

The FP7 4WARD Project. http://www.
4ward-project.eu.

Abelson, H., Allen, D., Coore, D., Han-
son, C.,, Homsy, G., Knight, Jr., TE,
Nagpal, R., Rauch, E., Sussman, G.J.,
Weiss, R. Amorphous computing. Com-
mun. ACM, 43 (5):pp. 74-82, 2000.

Agarwal, M., Bhat, V., Liu, H.,
Matossian, V., Putty, V., Schmidt,
C., Zhang, G., Zhen, L., Parashar, M.,
Khargharia, B., Hariri, S. AutoMate:
enabling autonomic applications on
the grid. In Autonomic Computing
Workshop. 2003. Proceedings of the, pp.
48-57 (June).

Ahn, CW., Ramakrishna, R.S. A ge-
netic algorithm for shortest path routing
problem and the sizing of populations.
Evolutionary Computation, IEEE Trans-
actions on, 6 (6):pp. 566-579, 2002.

AKARL
nict.go.jp.

http://akari-project.

8

10

11

12

Akyildiz, LE, Lee, WY., Vuran, M.C.,
Mohanty, S. NeXt generation/dynamic
spectrum access/cognitive radio wireless
networks: A survey. Computer Net-
works, 50 (13):pp. 2127 - 2159, 2006.

Al-Shraideh, F. Host Identity Protocol.
In Networking, International Confer-
ence on Systems and International Con-
ference on Mobile Communications and
Learning Technologies, 2006. ICN/I-
CONS/MCL 2006. International Con-
ference on, pp. 203-203 (2006).

Alagar, V.S., Alagar, V.S., Achuthan, R.,
Haydar, M., Muthiayen, D., Ormand-
jieva, O., Zheng, M. A rigorous approach
for constructing self-evolving real-time
reactive systems. Information & Soft-
ware Technology, 45 (11):pp. 743-761,
2003.

Ali-Yahiya, T., Bullot, T., Beylot, A.L.,
Pujolle, G. A Cross-Layer Based Au-
tonomic Architecture for Mobility and
QoS Supports in 4G Networks. In Con-
sumer Communications and Network-
ing Conference, 2008. CCNC 2008. 5th
IEEE, pp. 79-83 (2008).

Allman, M. TCP Congestion Con-
trol with Appropriate Byte Counting
(ABC). RFC 3465 (Experimental),

219

BIBLIOGRAPHY

13

14

15

16

17

18

19

20

21

22

220

2003. URL http://www.ietf.org/
rfc/rfc3465.txt.

Allman, M., Floyd, S., Partridge,
C. Increasing TCP’s Initial Win-
dow. RFC 3390 (Proposed
Standard), 2002. URL http:
[fwww.ietfoorg/rfc/rfc3390. txt.

Allman, M., Paxson, V., Blanton, E. TCP
Congestion Control. RFC 5681 (Draft
Standard), 2009. URL http://www.
ietf.org/rfc/rfcb681.txt.

Ammar, M. Why we still don’t know
how to simulate networks. In Simu-
lation Symposium, 2005. Proceedings.
38th Annual, p. 3, (IEEE2005).

Network Architecture
http://www.ana-project.

Autonomic
Project.
org.

Anagnostakis, K.G., Ioannidis, S.,
Miltchev, S., Greenwald, M., Smith,
J.M., Ioannidis, J. Efficient packet mon-
itoring for network management. In
Network Operations and Management
Symposium, 2002. NOMS 2002. 2002
IEEE/IFIP, pp. 423-436, (IEEE2002).

Anderson, T., Peterson, L., Shenker, S.,
Turner, J. Overcoming the Internet im-
passe through virtualization. Computer,
38 (4):pp. 34-41, 2005.

Ashby, WR. Principles of the self-
organizing system. Principles of Self-
organization, pp. 255-278, 1962.

Atzori, L., Iera, A., Morabito, G. The in-
ternet of things: A survey. Computer
Networks, 54 (15):pp. 2787-2805, 2010.

Babaoglu, O. The Self-star Vision. Self-
star Properties in Complex Information
Systems, pp. 397-397, 2005.

Babaoglu, O., Canright, G., Deutsch,
A., Caro, G.A.D., Ducatelle, F, Gam-
bardella, L.M., Ganguly, N., Jelasity, M.,
Montemanni, R., Montresor, A., Urnes,
T. Design patterns from biology for dis-
tributed computing. ACM Trans. Auton.
Adapt. Syst., 1 (1):pp. 26-66, 2006.

23

24

25

26

27

28

29

30

31

Babaoglu, O., Meling, H., Montresor, A.
Anthill: a framework for the develop-
ment of agent-based peer-to-peer sys-
tems. In Distributed Computing Sys-
tems, 2002. Proceedings. 22nd Interna-
tional Conference on, pp. 15-22 (2002).

Back, T The interaction of muta-
tion rate, selection, and self-adaptation
within a genetic algorithm. Parallel
problem solving from nature, 2:pp. 85—
94, 1992.

—. Optimal Mutation Rates in Genetic
Search. In Proceedings of the 5th In-
ternational Conference on Genetic Al-
gorithms, pp. 2-8, (Morgan Kaufmann
Publishers Inc.1993).

Evolutionary algorithms in the-
ory and practice: evolution strategies,
evolutionary programming, genetic al-
gorithms, (Oxford University Press on
Demand1996).

Balakrishnan, H., Lakshminarayanan,
K., Ratnasamy, S., Shenker, S., Stoica, I.,
Walfish, M. A Layered Naming Archi-
tecture for the Internet. In Proc. ACM
SIGCOMM, (Portland, OR2004).

Balamuralidhar, P, Prasad, R. A Context
Driven Architecture for Cognitive Radio
Nodes. Wireless Personal Communica-
tions, 45:pp. 423-434, 2008.

Barolli, L., Koyama, A., Shiratori, N.
A QoS routing method for ad-hoc net-
works based on genetic algorithm. In
Database and Expert Systems Applica-
tions, 2003. Proceedings. 14th Inter-
national Workshop on, pp. 175-179
(2003).

Bartz-Beielstein, T., Lasarczyk, C.W.,
Preuf3, M. Sequential parameter opti-
mization. In Evolutionary Computa-
tion, 2005. The 2005 IEEE Congress on,
vol. 1, pp. 773-780, (IEEE2005).

Bellardo, J., Savage, S. Measuring packet
reordering. In Proceedings of the 2nd
ACM SIGCOMM Workshop on Inter-
net measurment, IMW *02, pp. 97-105,
(ACM, New York, NY, USA2002).

32

33

34

35

36
37

38

39

40

41

42

Bennani, M., Menasce, D. Resource
Allocation for Autonomic Data Cen-
ters using Analytic Performance Models.
In Autonomic Computing, 2005. ICAC
2005. Proceedings. Second International
Conference on, pp. 229-240 (2005).

Bertsekas, D.P.,, Gallager, R.G., Humblet,
P. Data networks, vol. 2, (Prentice-Hall
International1992).

Bhatti, N.T., Schlichting, R.D. A system
for constructing configurable high-level
protocols. SIGCOMM Comput. Com-
mun. Rev,, 25 (4):pp. 138-150, 1995.

Bicket, J.C. Bit-rate selection in wireless
networks, 2005.

BIONETS. http://www.bionets.eu.

Blumenthal, M.S., Clark, D.D. Re-
thinking the design of the Internet: the
end-to-end arguments vs. the brave new
world. ACM Trans. Internet Technol.,
1 (1):pp. 70-109, 2001.

Bouabene, G., Jelger, C., Tschudin, C.,
Schmid, S., Keller, A., May, M. The auto-
nomic network architecture (ANA). Se-
lected Areas in Communications, IEEE
Journal on, 28 (1):pp. 4-14, 2010.

Braden, R. Requirements for Internet
Hosts - Communication Layers. RFC
1122 (Standard), 1989. URL http://
www.ietf.org/rfc/rfcll22.txt. Up-
dated by RFCs 1349, 4379, 5884, 6093,
6298, 6633.

Braden, R., Faber, T., Handley, M. From
protocol stack to protocol heap: role-
based architecture. SIGCOMM Com-
put. Commun. Rev,, 33 (1):pp. 17-22,
2003.

Bridges, P, Wong, G., Hiltunen, M.,
Schlichting, R., Barrick, M. A Config-
urable and Extensible Transport Proto-
col. Networking, IEEE/ACM Transac-
tions on, 15 (6):pp. 1254-1265, 2007.

Brooks, R.A. Intelligence without
reason. In COMPUTERS AND
THOUGHT, IJCAL-91, pp. 569-595,
(Morgan Kaufmann1991).

43

44

45

46

47

48

49

50

51

BIBLIOGRAPHY

Bullot, T., Gaiti, D., Pujolle, G., Zimmer-
mann, H. A piloting plane for control-
ling wireless devices. Telecommunica-
tion Systems, 39:pp. 195-203, 2008.

Busoniu, L., Babuska, R., De Schutter,
B. A comprehensive survey of multia-
gent reinforcement learning. Systems,
Man, and Cybernetics, Part C: Appli-
cations and Reviews, IEEE Transactions
on, 38 (2):pp. 156-172, 2008.

Camarillo, G. The Internet Assigned
Number Authority (IANA) Header Field
Parameter Registry for the Session Ini-
tiation Protocol (SIP). RFC 3968 (Best
Current Practice), 2004. URL http://
www.ietf.org/rfc/rfc3968.txt.

Candea, G., Brown, A., Fox, A., Patter-
son, D. Recovery-oriented computing:
building multitier dependability. Com-
puter, 37 (11):pp. 60-67, 2004.

Candea, G., Kiciman, E., Kawamoto, S.,
Fox, A. Autonomous recovery in com-
ponentized Internet applications. Clus-
ter Computing, 9:pp. 175-190, 2006.

Cantin, E, Goebel, V., Gueye, B., Kaa-
far, D., Leduc, G., Siekkinen, M., Xiao,
J., Young, M. ANA Deliverable D3.8 —
Self-Optimization Mechanisms. Deliv-
erable, ANA Project, 2008.

Cerf, V., Burleigh, S., Hooke, A., Torg-
erson, L., Durst, R., Scott, K., Fall, K.,
Weiss, H. Delay-Tolerant Network-
ing Architecture. RFC 4838 (Informa-
tional), 2007. URL http: //www.ietf.
org/rfc/rfc4838. txt.

Chandranmenon, G.P., Varghese, G.
Trading packet headers for packet pro-
cessing. IEEE/ACM Trans. Netw.,,
4(2):pp. 141-152, 1996.

Cheshire, S., Aboba, B., Guttman, E. Dy-
namic Configuration of IPv4 Link-Local
Addresses. RFC 3927 (Proposed Stan-
dard), 2005. URL http://www.ietf.
org/rfc/rfc3927.txt.

221

BIBLIOGRAPHY

52 Chess, D.M., Segal, A., Whalley, I,
White, SR. Unity: Experiences with
a Prototype Autonomic Computing Sys-
tem. Autonomic Computing, Inter-
national Conference on, 0:pp. 140-147,
2004.

53 Chiang, M., Low, S., Calderbank, A.,
Doyle, J. Layering as Optimization De-
composition: A Mathematical Theory of
Network Architectures. Proceedings of
the IEEE, 95 (1):pp. 255-312, 2007.

54 Chien, C., Srivastava, M., Jain, R., Let-
tieri, P, Aggarwal, V., Sternowski, R.
Adaptive radio for multimedia wireless
links. Selected Areas in Communica-
tions, IEEE Journal on, 17 (5):pp. 793—
813, 1993.

55 Cho, K, et al. Managing traffic with
ALTQ. In Proceedings of USENIX,
1999 Annual Technical Conference:
FREENIX Track, Monterey CA, pp.
121-128 (1999).

56 ChoiceNet. https://code.renci.org/
gf/project/choicenet/.

57 Chun, B., Culler, D., Roscoe, T., Bavier,
A., Peterson, L., Wawrzoniak, M., Bow-
man, M. Planetlab: an overlay testbed
for broad-coverage services. ACM SIG-
COMM Computer Communication Re-
view, 33 (3):pp. 3-12, 2003.

58 Clafty, K.C., Polyzos, G.C., Braun, H.W.
Application of sampling methodolo-
gies to network traffic characterization.
SIGCOMM Comput. Commun. Rev,
23 (4):pp. 194-203, 1993.

59 Claise, B. Cisco Systems NetFlow Ser-
vices Export Version 9. RFC 3954 (In-
formational), 2004. URL http://www.
ietf.org/rfc/rfc3954.txt.

60 —. Specification of the IP Flow In-
formation Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Infor-
mation. RFC 5101 (Proposed Stan-
dard), 2008. URL http://www.ietf.
org/rfc/rfcbl01.txt.

222

61

62

63

64

65

66

67

68

69

70

Clark, D. The design philosophy of
the DARPA Internet protocols. In
ACM SIGCOMM Computer Communi-
cation Review, vol. 18 (4), pp. 106-114,
(ACM1988).

Clark, D., Braden, R., Sollins, K., Wro-
clawski, J., Katabi, D. New Arch: future
generation internet architecture. Tech.
rep., DTIC Document, 2004.

Clark, D.D., Partridge, C., Ramming,
J.C., Wroclawski, J.T. A knowledge
plane for the internet. In SIGCOMM
’03: Proceedings of the 2003 confer-
ence on Applications, technologies, ar-
chitectures, and protocols for computer
communications, pp. 3-10, (ACM, New
York, NY, USA2003).

Clark, D.D., Sollins, K., Wroclawski, J.,
Faber, T. Addressing reality: an architec-
tural response to real-world demands on
the evolving Internet. SIGCOMM Com-
put. Commun. Rev., 33 (4):pp. 247-257,
2003.

Clark, D.D., Tennenhouse, D.L. Archi-
tectural considerations for a new gener-
ation of protocols. In ACM SIGCOMM
Computer Communication Review, vol.
20 (4), pp. 200-208, (ACM1990).

Clark, D.D., Wroclawski, J., Sollins, K.R.,
Braden, R. Tussle in cyberspace: Defin-
ing tomorrow’s Internet. In In Proc.
ACM SIGCOMM, pp. 347356 (2002).

Clean Slate. http://cleanslate.
stanford.edu.

Collins, J., Luca, C. The effects of vi-
sual input on open-loop and closed-loop
postural control mechanisms. Experi-
mental Brain Research, 103:pp. 151-163,
1995.

Condie, T., Hellerstein, J.M., Maniatis,
P, Roscoe, SR.T. Finally, a use for com-
ponentized transport protocols. In Hot-
Nets IV, vol. 13 (2005).

Crane, S., Dulay, N. A configurable pro-
tocol architecture for CORBA environ-
ments. In Autonomous Decentralized

71

72

73

74

78

76

i

Systems, 1997. Proceedings. ISADS 97.,
Third International Symposium on, pp.
187-194 (1997).

Cranor, C., Johnson, T., Spataschek, O.,
Shkapenyuk, V. Gigascope: A stream
database for network applications. In
Proceedings of the 2003 ACM SIGMOD
international conference on Manage-
ment of data, pp. 647-651, (ACM2003).

Crowcroft, J., Hand, S., Mortier, R.,
Roscoe, T., Warfield, A. Plutarch: an
argument for network pluralism. ACM
SIGCOMM Computer Communication
Review, 33 (4):pp. 258-266, 2003.

Crowcroft, J., Oechslin, P. Differenti-
ated end-to-end Internet services usinga
weighted proportional fair sharing TCP.
ACM SIGCOMM Computer Communi-
cation Review, 28 (3):pp. 53-69, 1998.

Decasper, D., Dittia, Z., Parulkar, G.,
Plattner, B. Router plugins: a software
architecture for next generation routers.
In Proceedings of the ACM SIGCOMM
’98 conference on Applications, tech-
nologies, architectures, and protocols for
computer communication, SIGCOMM
’98, pp. 229-240, (ACM, New York, NY,
USA1998).

Deering, S., Hinden, R. Internet
Protocol, Version 6 (IPv6) Specifica-
tion. RFC 2460 (Draft Standard),
1998. URL http://www.ietf.org/
rfe/rfc2460.txt. Updated by RFCs
5095, 5722, 5871, 6437, 6564.

Dellarocas, C., Klein, M., Shrobe, H.
An architecture for constructing self-
evolving software systems. In ISAW
’98: Proceedings of the third interna-
tional workshop on Software architec-
ture, pp. 29-32, (ACM, New York, NY,
USA1998).

Demestichas, P, Stavroulaki, V.,
Boscovic, D., Lee, A., Strassner, J.
m@ANGEL: autonomic manage-

ment platform for seamless cognitive
connectivity to the mobile internet.
Communications Magazine, IEEE,
44 (6):pp. 118-127, 2006.

78

79

80

81

82

83

84

85

86

BIBLIOGRAPHY

Deutsch, P.
pressed Data

DEFLATE Com-
Format Specifica-
tion version 1.3. REC 1951 (In-
formational), 1996. URL nhttp:
[/www . detf.oorg/rfe/rfcldhl. txt.

Devroye, N., Vu, M., Tarokh, V. Cog-
nitive radio networks. Signal Processing
Magazine, IEEE, 25 (6):pp. 12-23, 2008.

Di Caro, G., Dorigo, M. AntNet: Dis-
tributed Stigmergetic Control for Com-
munications Networks. Journal of Ar-
tificial Intelligence Research, 9:pp. 317—
365, 1998.

Dijkstra, EEW. A note on two problems
in connexion with graphs. Numerische
mathematik, 1 (1):pp. 269-271, 1959.

Dobson, G., Sanchez-Macian, A. To-
wards Unified QoS/SLA Ontologies. In
Services Computing Workshops, 2006.
SCW °06. IEEE, pp. 169-174 (2006).

Dobson, S., Bailey, E., Knox, S., Shan-
non, R., Quigley, A. A first approach to
the closed-form specification and analy-
sis of an autonomic control system. In
ICECCS ’07: Proceedings of the 12th
IEEE International Conference on En-
gineering Complex Computer Systems,
pp- 229-237, (IEEE Computer Society,
Washington, DC, USA2007).

Dobson, S., Denazis, S., Fernandez, A.,
Gaiti, D., Gelenbe, E., Massacci, F,
Nixon, P, Saffre, F, Schmidt, N., Zam-
bonelli, . A survey of autonomic com-
munications. ACM Trans. Auton. Adapt.
Syst., 1 (2):pp. 223-259, 2006.

Domingue, J., Fensel, D., Gonzdlez-
Cabero, R. SOA4All enabling the SOA
revolution on a world wide scale. In
Semantic Computing, 2008 IEEE Inter-
national Conference on, pp. 530-537,
(IEEE2008).

Dorigo, M., Di Caro, G. Ant colony
optimization: a new meta-heuristic. In
Evolutionary Computation, 1999. CEC
99. Proceedings of the 1999 Congress on,
vol. 2, pp. —1477 Vol. 2 (1999).

BIBLIOGRAPHY

87

88

89

90

91

92

93

94

95

224

Dorigo, M., Maniezzo, V., Colorni, A.
Ant system: optimization by a colony of
cooperating agents. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 26 (1):pp. 29-41, 1996.

Dornbush, S., Joshi, A. StreetSmart Traf-
fic: Discovering and Disseminating Au-
tomobile Congestion Using VANETs. In
Vehicular Technology Conference, 2007.
VTC2007-Spring. IEEE 65th, pp. 11-15
(2007).

Douglas, PH. The Cobb-Douglas pro-
duction function once again: its history,
its testing, and some new empirical val-
ues. The Journal of Political Economy,
Pp. 903-915, 1976.

Dowling, J., Curran, E., Cunningham,
R., Cahill, V. Using feedback in collab-
orative reinforcement learning to adap-
tively optimize MANET routing. Sys-
tems, Man and Cybernetics, Part A: Sys-
tems and Humans, IEEE Transactions
on, 35 (3):pp. 360-372, May.

Doyle, L., Sutton, P., Nolan, K., Lotze,
J., Ozgul, B., Rondeau, T., Fahmy, S.,
Lahlou, H., DaSilva, L. Experiences from
the Iris Testbed in Dynamic Spectrum
Access and Cognitive Radio Experimen-
tation. In New Frontiers in Dynamic
Spectrum, 2010 IEEE Symposium on,
pp. 1-8 (2010).

Dressler, F., Akan, O.B. A survey on bio-
inspired networking. Computer Net-
works, 54 (6):pp. 881 — 900, 2010.

Duffield, N. Fair sampling across net-
work flow measurements. SIGMETRICS
Perform. Eval. Rev,, 40 (1):pp. 367-378,
2012.

Duffield, N., Grossglauser, M. Trajec-
tory sampling for direct traffic observa-
tion. Networking, IEEE/ACM Transac-
tions on, 9 (3):pp. 280-292, 2001.

Duffield, N, Lund, C., Thorup, M. Learn
more, sample less: control of volume
and variance in network measurement.
Information Theory, IEEE Transactions
on, 51 (5):pp. 1756-1775, 2005.

96

97

98

99

100

101

102

Dutta, R., Rouskas, G., Baldine, I., Bragg,
A., Stevenson, D. The SILO Architec-
ture for Services Integration, controL,
and Optimization for the Future Inter-
net. In Communications, 2007. ICC ’07.
IEEE International Conference on, pp.
1899-1904 (2007).

E., SI. A futures market in computer
time. Communications of the ACM,
6 (11):pp. 449—451, 1968.

Eckhardt, D., Steenkiste, P. Improv-
ing wireless LAN performance via adap-
tive local error control. In Network
Protocols, 1998. Proceedings. Sixth In-
ternational Conference on, pp. 327-338
(1998).

Eiben, A. Evolutionary Computing and
Autonomic Computing: Shared Prob-
lems, Shared Solutions? In O. Babaoglu,
M. Jelasity, A. Montresor, C. Fetzer,
S. Leonardi, A. Moorsel, M. Steen (eds.),
Self-star Properties in Complex Infor-
mation Systems, vol. 3460 of Lecture
Notes in Computer Science, pp. 36-48,
(Springer Berlin Heidelberg2005).

Eiben, A., Horvath, M., Kowalczyk, W.,
Schut, M. Reinforcement Learning for
Online Control of Evolutionary Algo-
rithms. In S. Brueckner, S. Hassas,
M. Jelasity, D. Yamins (eds.), Engineer-
ing Self-Organising Systems, vol. 4335
of Lecture Notes in Computer Science,
pp. 151-160, (Springer Berlin Heidel-
berg2007).

Eiben, A., Schut, M., Wilde, A. Is
Self-adaptation of Selection Pressure and
Population Size Possible? - A Case
Study. In T. Runarsson, H.G. Beyer,
E. Burke, J. Merelo-Guervés, L. Whit-
ley, X. Yao (eds.), Parallel Problem Solv-
ing from Nature - PPSN IX, vol. 4193
of Lecture Notes in Computer Science,
pp. 900-909, (Springer Berlin Heidel-
berg2006).

Eiben, AE., Hinterding, R.,
Michalewicz, Z. Parameter control
in evolutionary algorithms. Evolution-
ary Computation, IEEE Transactions
on, 3 (2):pp. 124-141, 1999.

103

104

105

106

107

108

109

110

111

El Baz, D., Nguyen, T.T. A Self-
adaptive Communication Protocol with
Application to High Performance Peer to
Peer Distributed Computing. In Paral-
lel, Distributed and Network-Based Pro-
cessing (PDP), 2010 18th Euromicro In-
ternational Conference on, pp. 327-333
(2010).

Estan, C., Keys, K., Moore, D., Vargh-
ese, G. Building a better NetFlow.
SIGCOMM Comput. Commun. Rev,
34 (4):pp. 245-256, 2004.

Estan, C., Varghese, G. New direc-
tions in traffic measurement and ac-
counting. SIGCOMM Comput. Com-
mun. Rev,, 32 (4):pp. 323-336, 2002.

Exposito, E., Sénac, P, Garduno, D.,
Diaz, M., Uruefia, M. Deploying
new QoS aware transport services. In
Protocols and Systems for Interactive
Distributed Multimedia, pp. 141-153,
(Springer2002).

Fabiunke, M. Parallel distributed con-
straint satisfaction. Proceedings of the
International Conference of Parallel and
Distributed Processing Techniques and
Applications (PDPTA-99), pp. 1585-
1591, 1999.

Fall, K. A delay-tolerant network archi-
tecture for challenged internets. In Pro-
ceedings of the 2003 conference on Ap-
plications, technologies, architectures,
and protocols for computer communica-
tions, pp. 27-34, (ACM2003).

Feldmeier, D., McAuley, A., Smith, J.,
Bakin, D., Marcus, W., Raleigh, T. Pro-
tocol boosters. Selected Areas in Com-
munications, IEEE Journal on, 16 (3):pp.
437-444, 1998.

Feng, X., Pechen, A, Jha, A., Wu, R., Ra-
bitz, H. Global optimality of fitness land-
scapes in evolution. Chemical Science,
3 (3):pp- 900-906, 2012.

Fernandez-Prieto, J., Canada-Bago, J.,
Gadeo-Martos, M., Velasco, J.R. Opti-
misation of control parameters for ge-

112

113

114

115

116

117

118

BIBLIOGRAPHY

netic algorithms to test computer net-
works under realistic traffic loads. Ap-
plied Soft Computing, 11 (4):pp. 3744 —
3752, 2011.

Fielding, R., Gettys, J, Mogul, J.,
Frystyk, H., Masinter, L., Leach, P,
Berners-Lee, T. Hypertext Transfer Pro-
tocol - HTTP/1.1. RFC 2616 (Draft
Standard), 1999. URL http://www.
fetf.org/rfc/rfc26l6.txt. Updated
by RFCs 2817, 5785, 6266, 6585.

Fiuczynski, M.E., Bershad, BN. An
extensible protocol architecture for
application-specific networking. In Pro-
ceedings of the 1996 Winter USENIX
Conference, pp. 55-64 (1996).

Floyd, S., Handley, M., Padhye, J.,
Widmer, J. TCP Friendly Rate
Control (TFRC): Protocol Spec-
ification. RFC 5348 (Proposed
Standard), 2008. URL http:
[/www . ietf.oorg/rfc/rfcb348. txt.

Floyd, S., Henderson, T., Gurtov, A. The
NewReno Modification to TCP’s Fast
Recovery Algorithm. RFC 3782 (Pro-
posed Standard), 2004. URL http://
www . ietf.org/rfc/rfc3782.txt. Ob-
soleted by RFC 6582.

Floyd, S., Kohler, E. Profile for Datagram
Congestion Control Protocol (DCCP)
Congestion Control ID 2: TCP-like
Congestion Control. RFC 4341 (Pro-
posed Standard), 2006. URL http://
www.ietf.org/rfc/rfc4341.txt.

Floyd, S., Kohler, E., Padhye, J. Pro-
file for Datagram Congestion Con-
trol Protocol (DCCP) Congestion
Control ID 3: TCP-Friendly Rate
Control (TFRC). RFC 4342 (Pro-
posed Standard), 2006. URL http:
[/www.ietf.org/rfc/rfcd342. txt.
Updated by RFCs 5348, 6323.

Floyd, S., Paxson, V. Difficulties in sim-
ulating the Internet. IEEE/ACM Trans-
actions on Networking (TON), 9 (4):pp.
392-403, 2001.

225

BIBLIOGRAPHY

119

120

121

122

123

124

125

126

127

226

Fogarty, T.C. Varying the probability of
mutation in the genetic algorithm. In
Proceedings of the third international
conference on Genetic algorithms, pp.
104-109, (Morgan Kaufmann Publish-
ers Inc.1989).

Fonseca, R., Porter, G.M., Katz, RH.,
Shenker, S., Stoica, I. IP options are not
an option. Tech. rep., University of Cal-
ifornia at Berkeley, 2005.

Fortuna, C., Mohorcic, M. Trends in
the development of communication net-
works: Cognitive networks. Computer
Networks, 53 (9):pp. 1354 — 1376, 2009.

Gaiti, D., Pujolle, G., Salaun, M.
Zimmermann, H. Autonomous Net-
work Equipments. In I Stavrakakis,
M. Smirnov (eds.), Autonomic Com-
munication, vol. 3854 of Lecture Notes
in Computer Science, pp. 177-185,
(Springer Berlin Heidelberg2006).

Gandomi, A.H., Yang, X.S., Alavi, A.H.
Cuckoo search algorithm: a metaheuris-
tic approach to solve structural opti-
mization problems. Engineering with
Computers, 29 (1):pp. 17-35, 2013.

Ganek, A., Corbi, T.A. The dawning of
the autonomic computing era. IBM Sys-
tems Journal, 42 (1):pp. 5-18, 2003.

Ganguly, N. Design and Analysis of a
Bio-inspired Search Algorithm for Peer
to Peer Networks. In O. Babaoglu,
M. Jelasity, A. Montresor, C. Fetzer,
S. Leonardi, A. Moorsel, M. Steen (eds.),
Self-star Properties in Complex Infor-
mation Systems, vol. 3460 of Lecture
Notes in Computer Science, pp. 358-
372, (Springer Berlin Heidelberg2005).

Garcia-Sdnchez, P, Gonzélez, 7T,
Castillo, P, Arenas, M., Merelo-
Guervés, J. Service oriented evolution-
ary algorithms. Soft Computing, pp.
1-17,2013.

Gavalas, D., Greenwood, D., Ghanbari,
M., O’'Mahony, M. Advanced network

128

129

130

131

132

133

134

135
136

monitoring applications based on mo-
bile/intelligent agent technology. Com-
puter Communications, 23 (8):pp. 720—
730, 2000.

Gazis, V., Patouni, E., Alonistioti, N.,
Merakos, L. A survey of dynamically
adaptable protocol stacks. Communica-
tions Surveys Tutorials, IEEE, 12 (1):pp.
3-23,2010.

Gelenbe, E. Learning in the recurrent
random neural network. Neural Com-
putation, 5 (1):pp. 154-164, 1993.

Cognitive Routing in Packet Net-
works. In N. Pal, N. Kasabov, R. Mudi,
P. Srimanta, S. Parui (eds.), Neural
Information Processing, vol. 3316 of
Lecture Notes in Computer Science,
pp. 625-632, (Springer Berlin Heidel-
berg2004). URL http://dx.doi.org/
10.1007/978-3-540-30499-9_96.

Gelenbe, E., Gellman, M., Lent, R., Liu,
P, Su, P. Autonomous smart routing
for network QoS. In Autonomic Com-
puting, 2004. Proceedings. International
Conference on, pp. 232-239 (2004).

Gelenbe, E., Lent, R., Montuori, A., Xu,
Z. Cognitive packet networks: QoS and
performance. In Modeling, Analysis and
Simulation of Computer and Telecom-
munications Systems, 2002. MASCOTS
2002. Proceedings. 10th IEEE Interna-
tional Symposium on, pp. 3-9 (2002).

Gelenbe, E., Lent, R., Nunez, A. Self-
aware networks and QoS. Proceedings
of the IEEE, 92 (9):pp. 1478-1489, 2004.

Gember, A., Grandl, R., Anand, A., Ben-
son, T., Akella, A. Stratos: Virtual mid-
dleboxes as first-class entities. Tech. rep.,
Technical Report TR1771, University of
Wisconsin-Madison, 2012.

GENI. http://www.geni.net.

Gharavi, H., Ban, K. Cross-layer feed-
back control for video communications
via mobile ad-hoc networks. In Vehicu-
lar Technology Conference, 2003. VTC
2003-Fall. 2003 IEEE 58th, vol. 5, pp.
2941-2945 Vol.5 (2003).

137

138

139

140

141

142

143

144

145

Goldberg, D.E. Genetic Algorithms
in Search, Optimization, and Machine
Learning, (Addison-Wesley1989).

Gonzalez, E, Dasgupta, D., Kozma, R.
Combining negative selection and clas-
sification techniques for anomaly detec-
tion. In Evolutionary Computation,
2002. CEC ’02. Proceedings of the 2002
Congress on, vol. 1, pp. 705-710 (2002).

Granelli, F, Pawelczak, P, Prasad, R,
Subbalakshmi, K.P., Chandramouli, R.,
Hoffmeyer, J., Berger, H. Standardiza-
tion and research in cognitive and dy-
namic spectrum access networks: IEEE
SCCA41 efforts and other activities. Com-
munications Magazine, IEEE, 48 (1):pp.
71=79, 2010.

Grefenstette, J.J. Optimization of control
parameters for genetic algorithms. Sys-
tems, Man and Cybernetics, IEEE Trans-
actions on, 16 (1):pp. 122-128, 1986.

Gu, X., Klie, T., Wolf, L. A Proactive
Policy-Based Management Approach
Towards Autonomic Communications.
In Consumer Communications and
Networking Conference, 2007. CCNC
2007. 4th IEEE, pp. 587-592 (2007).

Gu, Y., Grossman, R. Supporting Con-
figurable Congestion Control in Data
Transport Services. In Supercomputing,
2005. Proceedings of the ACM/IEEE SC
2005 Conference, pp. 31-31 (2005).

Gutmann, P. Random Number Gen-
eration. http://www.cypherpunks.to/
~peter/06_random. pdf, 2001.

—. Lessons learned in implementing
and deploying crypto software. In Proc.
USENIX Security Symp, pp. 315-325
(2002).

Guy, R.G., Heidemann, J.S., Mak, W,
Page Jr, TW., Popek, GJ., Rothmeier,
D., et al. Implementation of the Ficus
replicated file system. In USENIX Con-
ference Proceedings, vol. 74, pp. 63-71,
(Citeseer1990).

146

147

148

149

150

151

152

153

154

BIBLIOGRAPHY

Hadjiantonis, A., Malatras, A., Pavlou,
G. A context-aware, policy-based frame-
work for the management of MANETs.
In Policies for Distributed Systems and
Networks, 2006. Policy 2006. Seventh
IEEE International Workshop on, pp. 10
pp.—34 (2006).

HAGGLE.
haggleproject.org.

http://www.

Haigh, K., Varadarajan, S., Tang, C.Y.
Automatic Learning-based MANET
Cross-Layer Parameter Configuration.
In Distributed Computing Systems
Workshops, 2006. ICDCS Workshops
2006. 26th IEEE International Confer-
ence on, pp. 84-84 (2006).

Han, D., Anand, A., Dogar, E, Li, B.,
Lim, H., Machado, M., Mukundan, A.,
Wu, W, Akella, A., Andersen, D.G.,
et al. XIA: Efficient support for evolv-
able internetworking. Proc. 9th USENIX
NSDI, 2012.

Han, J., Kamber, M., Pei, J. Data Min-
ing: Concepts and Techniques, (Morgan
Kaufmann2006).

Han, Q., Gutierrez-Nolasco, S., Venkata-
subramanian, N. Reflective middleware
for integrating network monitoring with
adaptive object messaging. Network,
IEEE, 18 (1):pp. 56-65, 2004,

Handley, M., Kohler, E., Ghosh, A.,
Hodson, O., Radoslavov, P. Design-
ing extensible IP router software. In
Proceedings of the 2nd conference on
Symposium on Networked Systems De-
sign & Implementation - Volume 2,
NSDI'05, pp. 189-202, (USENIX Asso-
ciation, Berkeley, CA, USA2005).

Harai, H., Fujikawa, K., Kafle, VP,
Miyazawa, T., Murata, M., Ohnishi, M.,
Ohta, M., Umezawa, T. Design Guide-
lines for New Generation Network Ar-
chitecture. IEICE TRANSACTIONS
on Communications, E93-B (3):pp. 462—
465, 2010.

Harmer, P, Williams, P, Gunsch, G.,
Lamont, G. An artificial immune system

227

BIBLIOGRAPHY

155

156

157

158

159

160

161

162

163

228

architecture for computer security ap-
plications. Evolutionary Computation,
IEEE Transactions on, 6 (3):pp. 252-280,
2002.

Harrington, D., Presuhn, R., Wijnen, B.
An Architecture for Describing Simple
Network Management Protocol (SNMP)
Management Frameworks. RFC 3411
(Standard), 2002. URL http://www.
fetf.org/rfc/rfe3411.txt. Updated
by RFCs 5343, 5590.

Hayden, M.G. The Ensemble System.
Ph.D. thesis, Cornell University, 1998.

Haykin, S. Cognitive radio: brain-
empowered wireless communications.
Selected Areas in Communications,
IEEE Journal on, 23 (2):pp. 201-220,
2005.

He, E., Vicat-Blanc, P, Welzl, M. A
Survey of Transport Protocols other than
Standard TCP. In Global Grid Forum
(2005).

Hicks, M., Kakkar, P, Moore, J.T,
Gunter, C.A., Nettles, S. PLAN: A Packet
Language for Active Networks. SIG-
PLAN Not,, 34 (1):pp. 86-93, 1998.

Hopcroft, J.E., Motwani, R., Ullman,
].D. Introduction to automata the-
ory, languages, and computation, vol. 2,
(Addison-wesley Reading, MA1979).

Horrocks, I. DAML+ OIL: a reason-able
web ontology language. Advances in
Database Technology—EDBT 2002, pp.
103-116, 2002.

Horvitz, D.G., Thompson, D.J. A gen-
eralization of sampling without replace-
ment from a finite universe. Journal
of the American Statistical Association,
47 (260):pp. 663-685, 1952.

Hunt, J.E., Cooke, D.E. Learning us-
ing an artificial immune system. J.
Netw. Comput. Appl,, 19 (2):pp. 189-
212, 1996. URL http://dx.doi.org/
10.1006/jnca.1996.0014.

164

165

166

167

168

169

170

171

Hutchinson, N.C., Peterson, L.L. The
X-Kernel: An Architecture for Imple-
menting Network Protocols. IEEE Trans.
Softw. Eng., 17 (1):pp. 64-76, 1991.

IEEE. Draft STANDARD for Informa-
tion Technology-Telecommunications
and information exchange between
systems-Local and metropolitan area
networks — Specific requirements —
Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer
(PHY) specifications: Amendment :
Enhancements for Higher Through-
put. IEEE Draft Std P802.11n/D2.00,
February 2007, 2007.

IEEE Standard for Architec-
tural Building Blocks Enabling Network-
Device Distributed Decision Making
for Optimized Radio Resource Usage
in Heterogeneous Wireless Access Net-
works. IEEE Std 1900.4-2009, pp. C1-
119, 2009.

—. IEEE Standard for Policy Language
Requirements and System Architectures
for Dynamic Spectrum Access Systems.
IEEE Std 1900.5-2011, pp. 1-51, 2012.

Imai, P, Lamparter, B., Liebsch, M.
Policy-Based Device and Mobility Man-
agement. In MOBILWARE, pp. 101-114
(2009).

Imai, P, Lopez, Y., Legendre, E, May,
M. The SAC Gateway: Federating
the Future Internet of Wireless Clouds.
In ACM MobiCom-MobiHoc’10 Poster
Session (2010).

Imai, P, Tschudin, C. Practical On-
line Network Stack Evolution. In Self-
Adaptive and Self-Organizing Systems
Workshop (SASOW), 2010 Fourth IEEE
International Conference on, pp. 34-41
(2010).

Jacobson, V., Braden, R., Borman,
D. TCP Extensions for High Perfor-
mance. RFC 1323 (Proposed Stan-
dard), 1992. URL http://www.ietf.
org/rfc/rfcl323.txt.

172

173

174

175

176

177

178

179

Jacobson, V., Smetters, D.K., Thornton,
].D., Plass, M.E, Briggs, N.H., Bray-
nard, R.L. Networking named content.
In Proceedings of the 5th international
conference on Emerging networking ex-
periments and technologies, CONEXT
’09, pp. 1-12, (ACM, New York, NY,
USA2009).

Jaganathan, R., Underwood, K., Sass,
R. A Configurable Network Protocol
for Cluster Based Communications us-
ing Modular Hardware Primitives on an
Intelligent NIC. In Supercomputing,
2003 ACM/IEEE Conference, pp. 22-22
(2003).

Jain, M., Dovrolis, C. Pathload: A Mea-
surement Tool for End-to-End Available
Bandwidth. In In Proceedings of Passive
and Active Measurements (PAM) Work-
shop, pp. 14-25 (2002).

Jaiswal, S., Iannaccone, G., Diot, C.,
Kurose, J., Towsley, D. Inferring TCP
connection characteristics through pas-
sive measurements. In INFOCOM
2004. Twenty-third AnnualJoint Confer-
ence of the IEEE Computer and Com-
munications Societies, vol. 3, pp. 1582-
1592 vol.3 (2004).

Jeon, S.W., Devroye, N., Vu, M., Chung,
S.Y., Tarokh, V. Cognitive Networks
Achieve Throughput Scaling of a Homo-
geneous Network. Information Theory,
IEEE Transactions on, 57 (8):pp. 5103—
5115,2011.

de Jong, K.A. An analysis of the be-
havior of a class of genetic adaptive sys-
tems. Ph.D. thesis, University of Michi-
gan, 1975.

Kaelbling, L.P, Littman, M.L., Moore,
AW. Reinforcement learning: A sur-
vey. Journal of Artificial Intelligence Re-
search, 4:pp. 237-285, 1996.

Kaiser, G., Gross, P, Kc, G., Parekh,
J., Valetto, G. An approach to auton-
omizing legacy systems. In in Work-
shop on Self-Healing, Adaptive and Self-
MANaged Systems (2002).

180

181

182

183

184

185

186

187

188

BIBLIOGRAPHY

Kappler, C., Mendes, P., Prehofer, C.,
Poyhénen, P., Zhou, D. A Framework
for Self-organized Network Composi-
tion. In M. Smirnov (ed.), Autonomic
Communication, vol. 3457 of Lecture
Notes in Computer Science, pp. 139—
151, (Springer Berlin Heidelberg2005).

Karaboga, D., Akay, B. A comparative
study of artificial bee colony algorithm.
Applied Mathematics and Computation,
214 (1):pp. 108-132, 2009.

Karaboga, D., Basturk, B. A power-
ful and efficient algorithm for numeri-
cal function optimization: artificial bee
colony (ABC) algorithm. Journal of
global optimization, 39 (3):pp. 459-471,
2007.

Karsten, M., Keshav, S., Prasad, S., Beg,
M. An Axiomatic Basis for Communica-
tion. ACM SIGCOMM Computer Com-
munication Review, 37 (4):pp. 217-228,
2007.

Kashiwagi, A., Urabe, 1., Kaneko, K.,
Yomo, T. Adaptive Response of a Gene
Network to Environmental Changes
by Fitness-Induces Attractor Selection.
PLoS One, 1 (1):p. e49, 2006.

Kass, R.E., Wasserman, L. A Reference
Bayesian Test for Nested Hypotheses and
its Relationship to the Schwarz Crite-
rion. Journal of the American Statistical
Association, 90 (431):pp. 928-934, 1995.

Keeney, R.L., Raiffa, H. Decisions
with multiple objectives: preferences
and value trade-offs, (Cambridge Uni-
versity Press1993).

Keller, A., Hossmann, T., May, M.,
Bouabene, G., Jelger, C., Tschudin, C.
A system architecture for evolving pro-
tocol stacks. In Computer Communi-
cations and Networks, 2008. ICCCN’08.
Proceedings of 17th International Con-
ference on, pp. 1-7, (IEEE2008).

Kelly, T., et al. Utility-directed al-
location. In First Workshop on Al-
gorithms and Architectures for Self-
Managing Systems, vol. 20 (3) (2003).

229

BIBLIOGRAPHY

189 Kephart, J., Das, R. Achieving Self-
Management via Utility Functions. In-
ternet Computing, IEEE, 11 (1):pp. 40—
48, 2007.

190 Kephart,J.O. A Biologically Inspired Im-
mune System for Computers. In In Arti-
ficial Life IV: Proceedings of the Fourth
International Workshop on the Synthe-
sis and Simulation of Living Systems, pp.
130-139, (MIT Press1994).

191 Kephart, J.O., Chess, D.M. The Vision
of Autonomic Computing. Computer,
36 (1):pp. 41-50, 2003.

192 Kilcher, Y. Autonomous Transport Pro-
tocol Optimization using DCCP, 2012.

193 Kim, KW, Lorenz, P, Lee, M. A
new tuning maximum congestion win-
dow for improving TCP performance in
MANET. In Systems Communications,
2005. Proceedings, pp. 73-78 (2005).

194 Kirkpatrick, S., Jr., D.G., Vecchi, M.P.
Optimization by simulated annealing.
Science, 220 (4598):pp. 671-680, 1983.

195 Kohler, E., Handley, M., Floyd, S.
Datagram Congestion Control Protocol
(DCCP). RFC 4340 (Proposed Stan-
dard), 2006. URL http://www.ietf.
org/rfc/rfc4340.txt. Updated by
RFCs 5595, 5596, 6335.

196 Kohler, E., Kaashoek, M.F, Mont-
gomery, D.R. A readable TCP in the
Prolac protocol language. SIGCOMM
Comput. Commun. Rev,, 29 (4):pp.
3-13,1999.

197 Kohler, E., Morris, R., Chen, B., Jannotti,
]., Kaashoek, M.E. 'The Click Modular
Router. ACM Transactions on Com-
puter Systems, 18 (3):pp. 263-297, 2000.

198 Kompella, R.R., Levchenko, K., Sno-
eren, A.C., Varghese, G. Every mi-
crosecond counts: tracking fine-grain la-
tencies with a lossy difference aggrega-
tor. SIGCOMM Comput. Commun.
Rev,, 39 (4):pp. 255-266, 2009.

230

199

200

201

202

203

204

205

206

207

Koponen, T., Chawla, M., Chun, B.G.,
Ermolinskiy, A., Kim, K.H., Shenker, S.,
Stoica, I. A Data-Oriented (and Beyond)
Network Architecture. SIGCOMM
Comput. Commun. Rev,, 37 (4):pp. 181-
192, 2007.

Kozma, R., Kitamura, M., Sakuma, M.,
Yokoyama, Y. Anomaly detection by
neural network models and statistical
time series analysis. In Neural Networks,
1994. IEEE World Congress on Compu-
tational Intelligence., 1994 IEEE Inter-
national Conference on, vol. 5, pp. 3207—
3210 vol.5 (1994).

Kramer, O. Evolutionary self-
adaptation: a survey of operators
and strategy parameters. Evolutionary
Intelligence, 3:pp. 51-65, 2010.

Krasnyansky, M. Universal TUN/TAP
Driver — Virtual Point-to-Point(TUN)
and Ethernet(TAP) devices. URL http:
//vtun.sourceforge.net/tun/.

Krishnamurthy, B., Sen, S., Zhang, Y.,
Chen, Y. Sketch-based change detec-
tion: methods, evaluation, and applica-
tions. In Proceedings of the 3rd ACM
SIGCOMM conference on Internet mea-
surement, pp. 234-247, (ACM2003).

Kubiatowicz, J., Bindel, D., Chen, Y.,
Czerwinski, S., Eaton, P, Geels, D,
Gummadi, R., Rhea, S., Weatherspoon,
H., Weimer, W.,, Wells, C., Zhao, B.
OceanStore: an architecture for global-
scale persistent storage. SIGPLAN Not.,
35 (11):pp. 190-201, 2000.

Kuo, A. An optimal control model
for analyzing human postural balance.
Biomedical Engineering, IEEE Transac-
tions on, 42 (1):pp. 87-101, 1995.

Lakhina, A., Crovella, M., Diot, C. Min-
ing anomalies using traffic feature dis-
tributions. SIGCOMM Comput. Com-
mun. Rev,, 35 (4):pp. 217-228, 2005.

Laredo, J., Castillo, P., Mora, A., Merelo,
J. Evolvable agents, a fine grained
approach for distributed evolutionary

208

209

210

212

213

214

215

computing: walking towards the peer-
to-peer computing frontiers. Soft Com-
puting, 12:pp. 1145-1156, 2008.

Lassila, O., Swick, R.R., et al. Re-
source description framework (RDF)
model and syntax specification, 1998.

Lavalle, S.M. Rapidly-Exploring Ran-
dom Trees: A New Tool for Path Plan-
ning. self-published, 1998.

LE THANH, M., HASEGAWA, G., MU-
RATA, M. ImTCP: TCP with an in-
line network measurement mechanism.
IEIC Technical Report (Institute of Elec-
tronics, Information and Communica-
tion Engineers), 104 (73):pp. 37-42,
2004.

Lee, G., Bauer, S. Faratin, P, Wro-
clawski, J. Learning User Preferences for
Wireless Services Provisioning. In Pro-
ceedings of the Third International Joint
Conference on Autonomous Agents and
Multiagent Systems - Volume 1, AAMAS
’04, pp. 480-487, (IEEE Computer Soci-
ety, Washington, DC, USA2004).

Lee, G., Faratin, P, Bauer, S., Wro-
clawski, J. A user-guided cognitive agent
for network service selection in perva-
sive computing environments. In Perva-
sive Computing and Communications,
2004. PerCom 2004. Proceedings of the
Second IEEE Annual Conference on, pp.
219-228 (2004).

Lee, M., Goldberg, S., Kompella, R.R.,
Varghese, G. Fine-grained latency and
loss measurements in the presence of re-
ordering. In Proceedings of the ACM
SIGMETRICS joint international con-
ference on Measurement and modeling
of computer systems, SIGMETRICS ’11,
pp. 329-340, (ACM, New York, NY,
USA2011).

Leibnitz, K. Symbiotic Multi-Path Rout-
ing with Attractor Selection. Commu-
nications of the ACM, 49 (3):pp. 62-67,
2006.

Levis, P, Culler, D. Maté: A tiny virtual
machine for sensor networks. In ACM

216

217

218

219

220

221

222

223

224

BIBLIOGRAPHY

Sigplan Notices, vol. 37 (10), pp. 85-95,
(ACM2002).

Levis, P, Madden, S., Polastre, J.,
Szewczyk, R., Whitehouse, K., Woo, A.,
Gay, D., Hill, J., Welsh, M., Brewer, E.,
et al. TinyOS: An operating system for
sensor networks. Ambient intelligence,
35, 2005.

Lewis, D., Keeney,], O’Sullivan, D.,
Guo, S. Towards a Managed Extensi-
ble Control Plane for Knowledge-Based
Networking. In R. State, S. Meer,
D. O’Sullivan, T. Pfeifer (eds.), Large
Scale Management of Distributed Sys-
tems, vol. 4269 of Lecture Notes in Com-
puter Science, pp. 98-111, (Springer
Berlin Heidelberg2006).

Lindley, D.V, Lindley, D. Bayesian
statistics: A review, vol. 2, (SIAM1972).

Lindérfer, . Online Protocol Selection
through Machine Learning Algorithms,
2010.

Liotta, A., Pavlou, G., Knight, G. Ex-
ploiting agent mobility for large-scale
network monitoring. Network, IEEE,
16 (3):pp. 7-15, 2002.

uan M. Estévez-Tapiador, annd Jests E.
Ditz-Verdejo, PG.T. Measuring nor-
mality in HTTP traffic for anomaly-
based intrusion detection. Computer
Networks, 45 (2):pp. 175-193, 2004.

Macedo, D., Dos Santos, A., Nogueira,
J., Pujolle, G. A distributed information
repository for autonomic context-aware
MANETs. Network and Service Man-
agement, IEEE Transactions on, 6 (1):pp.
45-55, 2009.

Macedo, D., Dos Santos, A., Pujolle, G.,
Nogueira, J. MANKOP: A Knowledge
Plane for wireless ad hoc networks. In
Network Operations and Management
Symposium, 2008. NOMS 2008. IEEE,
Pp. 706-709 (2008).

Macedo, D.E,, Santos, A.L., Nogueira,
J.M.S., Pujolle, G. A Knowledge Plane
for Autonomic Context-Aware Wireless
Mobile Ad Hoc Networks. In G. Pavlou,

231

BIBLIOGRAPHY

225

226

227

228

229

230

231

232

233

232

T. Ahmed, T. Dagiuklas (eds.), Man-
agement of Converged Multimedia Net-
works and Services, vol. 5274 of Lecture
Notes in Computer Science, pp. 1-13,
(Springer Berlin Heidelberg2008).

Maeda, C., Bershad, B.N. Proto-
col service decomposition for high-
performance networking. SIGOPS
Oper. Syst. Rev,, 27 (5):pp. 244-255,
1993.

Magedanz, T., Rothermel, K., Krause,
S. Intelligent agents: an emerging tech-
nology for next generation telecommu-
nications? In INFOCOM ’96. Fif-
teenth Annual Joint Conference of the
IEEE Computer Societies. Networking
the Next Generation. Proceedings IEEE,
vol. 2, pp. 464-472 vol.2 (1996).

Mahajan, R., Spring, N., Wetherall, D.,
Anderson, T. User-level internet path
diagnosis. SIGOPS Oper. Syst. Rev,
37 (5):pp. 106-119, 2003.

Mamei, M., Zambonelli, F Program-
ming pervasive and mobile comput-
ing applications: The TOTA approach.
ACM Trans. Softw. Eng. Methodol,
18 (4):pp. 15:1-15:56, 2009.

Mamei, M., Zambonelli, F., Leonardi, L.
Cofields: a physically inspired approach
to motion coordination. Pervasive Com-
puting, IEEE, 3 (2):pp. 52-61, 2004.

Mandelbrot, B.B. The fractal geometry
of nature, (Times Books1983).

Martin, D., Volker, L., Zitterbart, M.
A flexible framework for Future Inter-
net design, assessment, and operation.
Computer Networks, 55 (4):pp. 910 —
918, 2011.

Massie, M.L., Chun, B.N., Culler, D.E.
The Ganglia Distributed Monitoring
System: Design, implementation,
and experience. Parallel Computing,
30 (7):pp. 817-840, 2004.

Mathis, M., Mahdavi, J., Floyd, S., Ro-
manow, A. TCP Selective Acknowledg-
ment Options. RFC 2018 (Proposed

234

235

236

237

238

239

240

241

Standard), 1996. URL http://www.
ietf.org/rfc/rfc2018.txt.

McCanne, S., Jacobson, V. The BSD
packet filter: A new architecture for
user-level packet capture. In Proceed-
ings of the USENIX Winter 1993 Con-
ference Proceedings on USENIX Winter
1993 Conference Proceedings, pp. 2-2,
(USENIX Association1993).

McKeown, N., Anderson, T., Balakrish-
nan, H., Parulkar, G., Peterson, L., Rex-
ford, J., Shenker, S., Turner, J. Open-
Flow: enabling innovation in campus
networks. SIGCOMM Comput. Com-
mun. Rev,, 38 (2):pp. 69-74, 2008.

McKinley, PK., Sadjadi, S.M., Kasten,
E.P, Cheng, BH. Composing adaptive
software. Computer, 37 (7):pp. 56-64,
2004.

McQuarrie, A.D., Tsai, C.L. Regression
and time series model selection, vol. 43,
(World Scientific Singapore1998).

Mena, S., Cuvellier, X., Gregoire, C.,
Schiper, A. Appia vs. Cactus: compar-
ing protocol composition frameworks.
In Reliable Distributed Systems, 2003.
Proceedings. 22nd International Sympo-
sium on, pp. 189-198 (2003).

Meyer, T., Yamamoto, L., Tschudin,
C. An Artificial Chemistry for Net-
working. Biolnspired Computing
and Communication, 5151 (Biowire
2007):pp. 45-57, 2008. URL
http://www.springerlink.com/
index/d03671k161t46v70. pdf.

Miao, KX., Schulzrinne, H., Singh,
VK., Deng, Q. Distributed Self Fault-
Diagnosis for SIP Multimedia Applica-
tions. In Real-Time Mobile Multimedia
Services, pp. 187-190, (Springer2007).

Mills, D. Measured performance
of the Network Time Protocol in
the Internet system, 1989. URL
http://www.dspace.cam.ac.uk/
handle/1810/13951.

242

243

244

245

246

247

248

249

250

251

Mills, D., Martin, J., Burbank, J., Kasch,
W. Network Time Protocol Version
4: Protocol and Algorithms Specifica-
tion. RFC 5905 (Proposed Standard),
2010. URL http://www.ietf.org/
rfc/rfch905. txt.

Miranda, H., Pinto, A., Rodrigues,
L. Appia, a flexible protocol kernel
supporting multiple coordinated chan-
nels. In Distributed Computing Systems,
2001. 21st International Conference on.,
pp. 707-710 (2001).

Mitola, J. Cognitive Radio Architec-
ture Evolution. Proceedings of the IEEE,
97 (4):pp. 626-641, 2009.

Mitola, J., Maguire, G.Q., J. Cognitive
radio: making software radios more per-
sonal. Personal Communications, IEEE,
6 (4):pp. 13-18, 1999.

MobilityFirst. http://mobilityfirst.
winlab.rutgers.edu.

Mockapetris, P. Domain names - imple-
mentation and specification. RFC 1035
(Standard), 1987. URL http://www.
fetf.org/rfc/rfc1035.txt. Updated
by RFCs 1101, 1183, 1348, 1876, 1982,
1995, 1996, 2065, 2136, 2181, 2137,
2308, 2535, 2845, 3425, 3658, 4033,
4034, 4035, 4343, 5936, 5966, 6604.

Mohri, M., Rostamizadeh, A., Talwalkar,
A. Foundations of Machine Learning,
(The MIT Press2012).

Montana, D., Hussain, T. Adaptive re-
configuration of data networks using ge-
netic algorithms. Applied Soft Comput-
ing, 4 (4):pp. 433 — 444, 2004.

Mori, N. Adaptation to a Dynami-
cal Environment by Means of the Envi-
ronment Identifying Genetic Algorithm.
In Industrial Electronics Society, 2000.
IECON 2000. 26th Annual Confjerence
of the IEEE, vol. 4, pp. 2953-2958 vol.4
(2000).

Mowbray, T.J., Zahavi, R. The essen-
tial CORBA: systems integration using
distributed objects, (John Wiley & Sons,
Inc.1995).

252

253

254

255

256

257

258

259

260

BIBLIOGRAPHY

Miihleisen, H., Augustin, A., Walther,
T., Harasic, M., Teymourian, K., Tolks-
dorf, R. A self-organized semantic
storage service. In Proceedings of the
12th International Conference on Infor-
mation Integration and Web-based Ap-
plications & Services, IiWAS 10,
pp. 357-364, (ACM, New York, NY,
USA2010).

Muhugusa, M., Di Marzo, G., Tschudin,
C., Solana, E., Harms, J. Implemen-
tation and interpretation of protocols
in the COMSCRIPT environment. In
Communications, 1995. ICC ’95 Seattle,
’Gateway to Globalization, 1995 IEEE
International Conference on, vol. 1, pp.
379-384 vol.1 (1995).

Murata, N. Yoshizawa, S., Amari,
SI. Network information criterion-
determining the number of hidden units
for an artificial neural network model.
Neural Networks, IEEE Transactions
on, 5 (6):pp. 865-872, 1994.

Muthukrishnan, S. Data streams: Algo-
rithms and applications, (Now Publish-
ers Inc2005).

Nahm, K., Helmy, A., Jay Kuo, C.C.
TCP over multihop 802.11 networks: Is-
sues and performance enhancement. In
Proceedings of the 6th ACM interna-
tional symposium on Mobile ad hoc net-
working and computing, pp. 277-287,
(ACM2005).

Named Data Networking Project. http:
J/www . named-data.net.

NEBULA. http://nebula.cis.upenn.
edu.

Neglia, G., Reina, G. Evaluating
Activator-Inhibitor ~Mechanisms for
Sensor Coordination. In Bio-Inspired
Models of Network, Information and
Computing Systems, 2007. Bionetics
2007. 2nd, pp. 129-133 (2007).

von Neumann, J., Morgenstern, O. The
theory of games and economic behavior,
(Princeton university press1947).

BIBLIOGRAPHY

261 Nichols, K., Blake, S., Baker, F, Black,
D. Definition of the Differentiated Ser-
vices Field (DS Field) in the IPv4 and
IPv6 Headers. RFC 2474 (Proposed
Standard), 1998. URL http://www.
fetf.org/rfe/rfc2474. txt. Updated
by RFCs 3168, 3260.

262 Nolan, K., Sutton, P, Doyle, L. An
Encapsulation for Reasoning, Learning,
Knowledge Representation, and Recon-
figuration Cognitive Radio Elements. In
Cognitive Radio Oriented Wireless Net-
works and Communications, 2006. 1st
International Conference on, pp. 1-5
(2006).

263 Nolle, L., Goodyear, A., Hopgood, A.A.,
Picton, P.D., Braithwaite, N.S. On step
width adaptation in simulated anneal-
ing for continuous parameter optimi-
sation. In Computational Intelligence.
Theory and Applications, pp. 589-598,
(Springer2001).

264 Nowak, M.A. Evolutionary Dynamics:
Exploring the Equations of Life, (Belk-
nap Press2006).

265 Ochoa, G. Error thresholds in genetic
algorithms. Evolutionary computation,
14 (2):pp. 157-182, 2006.

266 Ogel, E, Patarin, S., Piumarta, 1., Folliot,
B. C/SPAN: a self-adapting web proxy
cache. In Autonomic Computing Work-
shop. 2003. Proceedings of the, pp. 178—
185, (IEEE2003).

267 O’Malley, S.W., Peterson, LL. A dy-

namic network architecture. ACM
Trans. Comput. Syst, 10 (2):pp. 110-
143, 1992.

268 Pahdye, J., Floyd, S. On inferring TCP
behavior. SIGCOMM Comput. Com-
mun. Rev,, 31 (4):pp. 287-298, 2001.

269 Parashar, M., Hariri, S. Autonomic
computing: An overview. Unconven-
tional Programming Paradigms, pp. 97—
97, 2005.

270 Parlos, A., Menon, S., Atiya, A. An al-
gorithmic approach to adaptive state fil-
tering using recurrent neural networks.

234

271

272

273

274

275

276

277

278

Neural Networks, IEEE Transactions on,
12 (6):pp. 1411-1432, 2001.

Partridge, C., Kastenholz, F. Techni-
cal Criteria for Choosing IP The Next
Generation (IPng). RFC 1726 (Informa-
tional), 1994. URL http: //www.ietf.
org/rfc/rfcl726. txt.

Patarin, S., Patarin, S., Makpangou, M.,
Makpangou, M., Pat, S. Pandora: A
Flexible Network Monitoring Platform.
In In Proceedings of the USENIX 2000
Annual Technical Conference, pp. 200—
0 (2000).

Patel, P., Whitaker, A., Wetherall, D.,
Lepreau, J., Stack, T. Upgrading trans-
port protocols using untrusted mobile
code. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operat-
ing systems principles, pp. 1-14, (ACM,
New York, NY, USA2003).

Paxson, V. End-to-end routing behav-
ior in the Internet. SIGCOMM Comput.
Commun. Rev., 26 (4):pp. 25-38, 1996.

Paxson, V., Allman, M. Computing
TCP’s Retransmission Timer. REC 2988
(Proposed Standard), 2000. URL http:
[/www . ietf.oorg/rfc/rfc2988. txt.
Obsoleted by RFC 6298.

Paxson, V., Floyd, S. Why we don’t know
how to simulate the Internet. In Pro-
ceedings of the 29th conference on Win-
ter simulation, pp. 1037-1044, (IEEE
Computer Society1997).

Pelleg, D., Moore, A.W. X-means:
Extending K-means with Efficient
Estimation of the Number of Clusters.
In Proceedings of the Seventeenth
International Conference on Machine
Learning, ICML 00, pp. 727-734,
(Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA2000). URL
http://dl.acm.org/citation.cfm?
1d=645529.657808.

Perkins, C.E. Mobile IP. Communica-
tions Magazine, IEEE, 35 (5):pp. 84-99,
1997.

279

280

281

282

283

284

285

286

287

Petrova, M., Mahonen, P, Riihijarvi, J.
Evolution of Radio Resource Manage-
ment: A Case for Cognitive Resource
Manager with VPI. In Communications,
2007. ICC ’07. IEEE International Con-
ference on, pp. 6471-6475 (2007).

Pitchaimani, M., Ewy, B., Evans,]. Eval-
uating Techniques for Network Layer In-
dependence in Cognitive Networks. In
Communications, 2007. ICC ’07. IEEE
International Conference on, pp. 6527—
6531 (2007).

Plagemann, T., Plattner, B., Vogt, M.,
Walter, T. A model for dynamic con-
figuration of light-weight protocols. In
Distributed Computing Systems, 1992.,
Proceedings of the Third Workshop on
Future Trends of, pp. 100-106 (1992).

Plagemann, T., Vogt, M., Plattner, B.,
Walter, T. Modules as building blocks
for protocol configuration. In Network
Protocols, 1993. Proceedings., 1993 In-
ternational Conference on, pp. 106-113
(1993).

PlanetLab. http://www.planet-lab.
org.
Plummer, D. Ethernet Address Res-

olution Protocol: Or Converting Net-
work Protocol Addresses to 48.bit Eth-
ernet Address for Transmission on Eth-
ernet Hardware. RFC 826 (Standard),

1982. URL http://www.ietf.org/
rfc/rfe826.txt. Updated by RFCs
5227, 5494.

Popa, L., Ghodsi, A., Stoica, I. HTTP
as the Narrow Waist of the Future Inter-
net. In Proceedings of the Ninth ACM
SIGCOMM Workshop on Hot Topics in
Networks, p. 6, (ACM2010).

Postel, J. User Datagram Protocol. RFC
768 (Standard), 1980. URL http://
www.ietf.org/rfc/rfc768.txt.

—. Internet Control Message Protocol.
REC 792 (Standard), 1981. URL http:
[fwww.ietf.org/rfc/rfc792.txt.
Updated by RFCs 950, 4884, 6633.

288

289

290

291

292

293

294

295

296

297

BIBLIOGRAPHY

s Internet Protocol. REC 791
(Standard), 1981. URL http://www.
fetf.org/rfc/rfe791.txt. Updated
by RFCs 1349, 2474.

—. Transmission Control Protocol. RFC
793 (Standard), 1981. URL http://
www.ietf.org/rfc/rfc793.txt. Up-
dated by RFCs 1122, 3168, 6093, 6528.

Postel, J., Reynolds, J. File Trans-
fer Protocol. RFC 959 (Standard),
1985. URL http://www.ietf.org/
rfc/rfc9s9.txt. Updated by RFCs
2228, 2640, 2773, 3659, 5797.

Pujolle, G., Chaouchi, H. An
autonomic-oriented architecture for
wireless sensor networks. Annales Des
Télécommunications, 60:pp. 819-830,
2005.

Puyjolle, G., Chaouchi, H., Gaiti, D. Be-
yond TCP/IP: A context-aware architec-
ture. Network Control and Engineering
for QoS, Security and Mobility, III, pp.
337-346, 2005.

Ramabhadran, S., Varghese, G. Efficient
implementation of a statistics counter
architecture. SIGMETRICS Perform.
Eval. Rev,, 31 (1):pp. 261-271, 2003.

Ramakrishnan, K., Floyd, S., Black, D.
The Addition of Explicit Congestion No-
tification (ECN) to IP. RFC 3168 (Pro-
posed Standard), 2001. URL http://
www.ietf.org/rfc/rfc3168.txt. Up-
dated by RFCs 4301, 6040.

Ramming, C. Cognitive Networks.
DARPA Tech, 2004.

Ramos-Munoz, J.J.,, Yamamoto, L.,
Tschudin, C. Serial Experiments On-
line. In ACM SIGCOMM Computer
Communication Review, vol. 38 (2), pp.
31-42, (ACM2008).

Rasmussen, J. Skills, rules, and knowl-
edge; signals, signs, and symbols, and
other distinctions in human perfor-
mance models. Systems, Man and Cy-
bernetics, IEEE Transactions on, SMC-
13 (3):pp. 257-266, 1983.

235

BIBLIOGRAPHY

298

299

300

301

302

303

304

305

236

Raychaudhuri, D., Mandayam, N.B.,
Evans, J.B., Ewy, BJ., Seshan, S,
Steenkiste, P. CogNet: an architectural
foundation for experimental cognitive
radio networks within the future inter-
net. In Proceedings of first ACM/IEEE
international workshop on Mobility
in the evolving internet architecture,
MobiArch 06, pp. 11-16, (ACM, New
York, NY, USA2006).

Razzaque, M., Dobson, S., Nixon, P. En-
hancement of Self-organisation in Wire-
less Networking through a Cross-Layer
Approach. InJ. Zheng, S. Mao, S. Mid-
kiff, H. Zhu (eds.), Ad Hoc Networks,
vol. 28 of Lecture Notes of the Institute
for Computer Sciences, Social Informat-
ics and Telecommunications Engineer-
ing, pp. 144-159, (Springer Berlin Hei-
delberg2010).

Razzaque, M., Nixon, P, Dobson, S.
Demonstrating the feasibility of an
Autonomic Communication- Targeted
Cross-Layer Architecture. In Advanced
Computing and Communications,
2006. ADCOM 2006. International
Conference on, pp. 67-72 (2006).

Razzaque, M.A., Dobson, S.A., Nixon,
P. A Cross-Layer Architecture for Auto-
nomic Communications. In Autonomic
Networking, pp. 25-35 (2006).

van Renesse, R., Birman, K.P,, Maffeis, S.
Horus: a flexible group communication
system. Commun. ACM, 39 (4):pp. 76—
83, 1996.

Ritchie, D.M. A Stream Input-Output
System. AT&T Bell Laboratories Tech-
nical Journal, 63:pp. 311-324, 1984.

Rizzo, L. Dummynet: A Simple Ap-
proach to the Evaluation of Network
Protocols. ACM Computer Communi-
cation Review, 27:pp. 31-41, 1997.

Robles, J., Tromer, S., Hidalgo, J., Lehn-
ert, R. A high configurable protocol
for indoor localization systems. In In-
door Positioning and Indoor Navigation
(IPIN), 2011 International Conference
on, pp. 1-7 (2011).

306

307

308

309

310

311

312

313

Rudolph, G. Evolutionary search for
minimal elements in partially ordered fi-
nite sets. In Evolutionary Programming
VII, pp. 345-353, (Springer1998).

Russell, LW., Morgan, S.P,, Chron, E.
Clockwork: A new movement in auto-
nomic systems. IBM Systems Journal,
42 (1):pp. 77-84, 2003.

Russell, SJ., Norvig, P., Canny, J.E, Ma-
lik, .M., Edwards, D.D. Artificial In-
telligence: A Modern Approach, vol. 74,
(Prentice hall Englewood Clifts1995).

Saffre, F, Blok, H. ”SelfService”: a the-
oretical protocol for autonomic distri-
bution of services in P2P communities.
In Engineering of Computer-Based Sys-
tems, 2005. ECBS ’05. 12th IEEE Inter-
national Conference and Workshops on
the, pp. 528-534 (2005).

Sarafijanovic, S., Le Boudec, Y. An arti-
ficial immune system approach with sec-
ondary response for misbehavior detec-
tion in mobile ad hoc networks. Neu-
ral Networks, IEEE Transactions on,
16 (5):pp. 1076-1087, 2005.

Savage, S. Sting: a TCP-based network
measurement tool. In Proceedings of
the 1999 USENIX Symposium on Inter-
net Technologies and Systems, pp. 71-79
(1999).

Schwartz, B., Jackson, A., Strayer, W,
Zhou, W., Rockwell, R., Partridge,
C. Smart Packets for active networks.
In Open Architectures and Network
Programming Proceedings, 1999. OPE-
NARCH ’99. 1999 IEEE Second Confer-
ence on, pp. 90-97 (1999).

Sesum-Cavic, V., Kuhn, E. A Swarm
Intelligence Appliance to the Construc-
tion of an Intelligent Peer-to-Peer Over-
lay Network. In Complex, Intelligent
and Software Intensive Systems (CISIS),
2010 International Conference on, pp.
1028-1035 (2010).

314

315

316

317

318

319

320

Sherwood, R., Spring, N. A platform
for unobtrusive measurements on Plan-
etLab. In Proceedings of the 3rd con-
ference on USENIX Workshop on Real,
Large Distributed Systems - Volume 3,
WORLDS06, pp. 2-2, (USENIX Associ-
ation, Berkeley, CA, USA2006).

Shieh, A., Myers, A.C., Sirer, E.G.
Trickles: a stateless network stack
for improved scalability, resilience,
and flexibility. In Proceedings of
the 2nd conference on Symposium
on Networked Systems Design &
Implementation-Volume 2, pp. 175-
188, (USENIX Association2005).

Sifalakis, M., Fry, M., Hutchison, D.
Event detection and correlation for net-
work environments. Selected Areas
in Communications, IEEE Journal on,
28 (1):pp. 6069, 2010.

Sifalakis, M., Louca, A., Mauthe, A,
Peluso, L., Zseby, T. A Functional Com-
position Framework for Autonomic Net-
work Architectures. In Network Op-
erations and Management Symposium
Workshops, 2008. NOMS Workshops
2008. IEEE, pp. 328-334 (2008).

Simon, H.A., Simon, PA. 'Trial and
Error Search in Solving Difficult Prob-
lems: Evidence from the Game of Chess.
Behavioral Science, 7 (4):pp. 425-429,
1962.

Smirnov, M. Autonomic
Communication—Research ~ Agenda
for a new Communication Paradigm.
Company whitepaper. Fraunhofer
Institute for Open Communication
Systems, Berlin, Germany, 2004.

Smit, S., Eiben, A. Parameter Tuning

of Evolutionary Algorithms: Gen-
eralist vs. Specialist. In C. Chio,
S. Cagnoni, C. Cotta, M. Ebner,

A. Ekart, A. Esparcia-Alcazar, CK. Goh,
J. Merelo, E. Neri, M. Preuf}, J. Togelius,
G. Yannakakis (eds.), Applications
of Evolutionary Computation, vol.
6024 of Lecture Notes in Computer

321

322

323

324

325

326

327

328

BIBLIOGRAPHY

Science, pp. 542-551, (Springer Berlin
Heidelberg2010).

Using Entropy for Parameter
Analysis of Evolutionary Algorithms.
In T. Bartz-Beielstein, M. Chiarandini,
L. Paquete, M. Preuss (eds.), Exper-
imental Methods for the Analysis of
Optimization Algorithms, pp. 287-310,
(Springer Berlin Heidelberg2010).

Smit, SK., Eiben, A.E. Comparing pa-
rameter tuning methods for evolution-
ary algorithms. In Evolutionary Com-
putation, 2009. CEC’09. IEEE Congress
on, pp. 399-406, (IEEE2009).

Smith, J., Fogarty, T.C. Self adaptation
of mutation rates in a steady state ge-
netic algorithm. In Evolutionary Com-
putation, 1996., Proceedings of IEEE In-
ternational Conference on, pp. 318-323,
(IEEE1996).

Soekris Engineering, Inc. URL
http://soekris.com/products/

net6501.html.

Sommers, J., Barford, P. An active
measurement system for shared envi-
ronments. In Proceedings of the 7th
ACM SIGCOMM conference on Inter-
net measurement, IMC 07, pp. 303-314,
(ACM, New York, NY, USA2007).

Song, H.H., Qiu, L., Zhang, Y. NetQuest:
a flexible framework for large-scale net-
work measurement. SIGMETRICS Per-
form. Eval. Rev, 34 (1):pp. 121-132,
2006.

Spring, N., Wetherall, D., Anderson,
T. Reverse engineering the Internet.
SIGCOMM Comput. Commun. Rev,
34 (1):pp. 3-8, 2004.

Sridhar, P, Nanayakkara, T., Madni, A.,
Jamshidi, M. Dynamic power man-
agement of an embedded sensor net-
work based on actor-critic reinforce-
ment based learning. In Information
and Automation for Sustainability, 2007.
ICIAFS 2007. Third International Con-
ference on, pp. 76-81 (2007).

237

BIBLIOGRAPHY

329 Srisuresh, P, Egevang, K. Traditional
IP Network Address Translator (Tra-
ditional NAT). RFC 3022 (Informa-
tional), 2001. URL http://www.ietf.
org/rfc/rfc3022.txt.

330 Srivastava, V., Motani, M. Cross-
layer design: a survey and the road
ahead. Communications Magazine,
IEEE, 43 (12):pp. 112-119, 2005.

331 Sterritt, R., Bustard, D. Towards
an autonomic computing environment.
In Database and Expert Systems Ap-
plications, 2003. Proceedings. 14th In-
ternational Workshop on, pp. 694-698
(2003).

332 Stoica, I, Adkins, D., Zhuang, S,
Shenker, S., Surana, S. Internet indirec-
tion infrastructure. SIGCOMM Com-
put. Commun. Rev,, 32 (4):pp. 73-86,
2002.

333 Stoica, I, Morris, R., Karger, D,
Kaashoek, M.E, Balakrishnan, H.
Chord: A scalable peer-to-peer lookup
service for internet applications. SIG-
COMM Comput. Commun. Rev,
31 (4):pp. 149-160, 2001.

334 Stone, P, Veloso, M. Multiagent sys-
tems: A survey from a machine learn-
ing perspective. Autonomous Robots,
8 (3):pp. 345-383, 2000.

335 Stoy, K., Nagpal, R. Self-repair through
scale independent self-reconfiguration.
In Intelligent Robots and Systems,
2004. (IROS 2004). Proceedings. 2004
IEEE/RS] International Conference on,
vol. 2, pp. 2062-2067 vol.2 (2004).

336 —. Self-reconfiguration using di-
rected growth. Distributed Autonomous
Robotic Systems 6, pp. 3-12, 2007.

337 Strassner, J., OFoghlu, M., Donnelly, W,
Agoulmine, N. Beyond the Knowledge
Plane: An Inference Plane to Support
the Next Generation Internet. In Global
Information Infrastructure Symposium,
2007. GIIS 2007. First International, pp.
112-119 (2007).

238

338

339

340

341

342

343

344

345

Strassner, J., Samudrala, S., Cox, G., Liu,
Y., Jiang, M., Zhang, J., Meer, Sv.d,
Foghld, M.O., Donnelly, W. The Design
of a New Context-Aware Policy Model
for Autonomic Networking. In Auto-
nomic Computing, 2008. ICAC *08. In-
ternational Conference on, pp. 119-128
(2008).

Su, J., Scott, J., Hui, P., Crowcroft, J.,
De Lara, E., Diot, C., Goel, A., Lim,
M.H., Upton, E. Haggle: Seamless net-
working for mobile applications. In Ubi-
Comp 2007: Ubiquitous Computing, pp.
391-408, (Springer2007).

Sutton, P, Doyle, L., Nolan, K. A
Reconfigurable Platform for Cognitive
Networks. In Cognitive Radio Ori-
ented Wireless Networks and Commu-
nications, 2006. 1st International Con-
ference on, pp. 1-5 (2006).

Sutton, P, Lotze, J., Lahlou, H., Fahmy,
S., Nolan, K., Ozgul, B., Rondeau, T,
Noguera, J., Doyle, L. Iris: an archi-
tecture for cognitive radio networking
testbeds. Communications Magazine,
IEEE, 48 (9):pp. 114-122, 2010.

Sutton, P, Lotze, J., Lahlou, H., Ozgul,
B., Fahmy, S, Nolan, K., Noguera,
], Doyle, L. Multi-platform demon-
strations using the Iris architecture for
cognitive radio network testbeds. In
Cognitive Radio Oriented Wireless Net-
works & Communications (CROWN-
COM), 2010 Proceedings of the Fifth
International Conference on, pp. 1-5,
(IEEE2010).

Sutton, R.S., Barto, A.G. Reinforcement
learning: An introduction, vol. 1, (Cam-
bridge Univ Press1998).

Szaniawski, K. The value of perfect in-
formation. Synthese, 17 (1):pp. 408-424,
1967.

Tadayoni, R., Henten, A. Transition
from IPv4 to IPv6. In 23rd European
Regional ITS Conference, Vienna 2012,
(International Telecommunications So-
ciety (ITS)2012).

346

347

348

349

350

351

352

353

354

b5

Tateson, R. Self-organising pattern for-
mation: fruit flies and cell phones. In
Parallel problem solving from nature—
PPSN 'V, pp. 732-741, (Springer1998).

Tennenhouse, D.L., Smith, J.M., Sin-
coskie, W.D., Wetherall, D.J., Minden,
G.J. A Survey of active network Re-
search. IEEE Communications Maga-
zine, 35 (1):pp. 80-86, 1997.

Tennenhouse, D.L., Wetherall, D.J. To-
wards an active network architecture.
SIGCOMM Comput. Commun. Rev,
37 (5):pp. 81-94, 2007.

Thekkath, C.A., Nguyen, T.D., Moy, E.,
Lazowska, E.D. Implementing network
protocols at user level. IEEE/ACM
Transactions on Networking (TON),
1 (5):pp. 554-565, 1993.

Thomas, R., DaSilva, L., MacKenzie, A.
Cognitive networks. In New Frontiers
in Dynamic Spectrum Access Networks,
2005. DySPAN 2005. 2005 First IEEE In-
ternational Symposium on, pp. 352-360
(2005).

Thomas, R., DaSilva, L., Marathe, M.,
Wood, K. Critical Design Decisions for
Cognitive Networks. In Communica-
tions, 2007. ICC ’07. IEEE International
Conference on, pp. 3993-3998 (2007).

Tierney, B. TCP tuning guide for
distributed applications on wide area
networks. USENIX & SAGE Login,
26 (1):pp. 33-39, 2001.

Tolksdorf, R., Menezes, R. Using swarm
intelligence in linda systems. Engineer-
ing Societies in the Agents World IV, pp.
519-519, 2004.

Touch, J., Baldine, I., Dutta, R., Finn,
G.G,, Ford, B, Jordan, S., Massey, D.,
Matta, A., Papadopoulos, C., Reiher, P,
Rouskas, G. A Dynamic Recursive Uni-
fied Internet Design (DRUID). Com-
puter Networks, 55 (4):pp. 919 — 935,
2011.

Touch, J.D., Wang, Y.S,, Pingali, V. A
Recursive Network Architecture. Tech.
Rep. 626, USC/ISI, 2006.

356

357

358

359

360

361

362

BIBLIOGRAPHY

Troxel, G., Blossom, E. Boswell, S.,
Caro, A., Castineyra, I, Colvin, A,
Dreier, T., Evans,].B., Goffee, N., Haigh,
K., Hussain, T., Kawadia, V., Lapsley, D.,
Livadas, C., Medina, A., Mikkelson, J.,
Minden, G.J., Morris, R., Partridge, C.,
Raghunathan, V., Ramanathan, R., San-
tivanez, C., Schmid, T., Sumorok, D.,
Srivastava, M., Vincent, R.S., Wiggins,
D., Wyglinski, A.M., Zahedi, S. Adap-
tive Dynamic Radio Open-source In-
telligent Team (ADROIT): Cognitively-
controlled Collaboration among SDR
Nodes. In Networking Technologies for
Software Defined Radio Networks, 2006.
SDR’06.1st IEEE Workshop on, pp. 8-17
(2006).

Troxel, G., Caro, A., Castineyra, 1., Gof-
fee, N., Haigh, K., Hussain, T., Kawa-
dia, V., Rubel, P, Wiggins, D. Cogni-
tive Adaptation for Teams in ADROIT.
In Global Telecommunications Confer-
ence, 2007. GLOBECOM °07. IEEE, pp.
4868-4872 (2007).

Tschudin, C. Flexible protocol stacks.
In SIGCOMM °91: Proceedings of the
conference on Communications archi-
tecture & protocols, pp. 197-205, (ACM,
New York, NY, USA1991).

Tschudin, C., Gold, R. Network point-
ers. SIGCOMM Comput. Commun.
Rev,, 33 (1):pp. 23-28, 2003.

Tschudin, C.F. Fraglets - a Metabolis-
tic Execution Model for Communica-
tion Protocols. In 2nd Annual Sym-
posium on Autonomous Intelligent Net-
works and Systems (AINS), Menlo Park
(2003).

Tsugawa, T., Hasegawa, G., Murata, M.
Implementation and evaluation of an
inline network measurement algorithm
and its application to TCP-based service.
In End-to-End Monitoring Techniques
and Services, 2006 4th IEEE/IFIP Work-
shop on, pp. 34 — 41 (2006).

Turing, AM. On computable num-
bers, with an application to the Entschei-
dungsproblem. Proceedings of the Lon-

239

BIBLIOGRAPHY

363

364

365

366

367

368

369

370

240

don mathematical society, 42 (2):pp.
230-265, 1936.

Tyrrell, A., Auer, G., Bettstetter, C. Fire-
flies as role models for synchronization
in ad hoc networks. In Proceedings
of the 1st international conference on
Bio inspired models of network, infor-
mation and computing systems, BIO-
NETICS 06, (ACM, New York, NY,
USA2006).

Vandermeulen, F, Steegmans, F., Ver-
meulen, B., Vermeulen, S. Dynamically
configurable protocol stacks. In Mul-
timedia and Expo, 2000. ICME 2000.
2000 IEEE International Conference on,
vol. 3, pp. 1391-1394 vol.3 (2000).

Varghese, G. Network Algorithmics,
(Chapman & Hall/CRC2010).

Vellala, M., Wang, A., Rouskas, G.N.,
Dutta, R., Baldine, I., Stevenson, D.
A composition algorithm for the SILO
cross-layer optimization service archi-
tecture. In Proceedings of the First Inter-
national Conference on Advanced Net-
work and Telecommunications Systems
(ANTS) (2007).

Volker, L., Martin, D., El Khayaut, I.,
Werle, C., Zitterbart, M. A Node Ar-
chitecture for 1000 Future Networks.
In Communications Workshops, 2009.
ICC Workshops 2009. IEEE Interna-
tional Conference on, pp. 1-5 (2009).

Volker, L., Martin, D., Werle, C., Zitter-
bart, M., El Khayaut, I. Selecting Con-
current Network Architectures at Run-
time. In Communications, 2009. ICC
’09. IEEE International Conference on,
pp. 1-5 (2009).

Wakamiya, N, Murata, M.
Synchronization-based data gather-
ing scheme for sensor networks. IEICE
Transactions on Communications,
88 (3):pp. 873-881, 2005.

Walsh, WE., Tesauro, G., Kephart,].O.,
Das, R. Utility functions in autonomic
systems. In Autonomic Computing,

371

372

373

374

375

376

377

378

379

2004. Proceedings. International Con-
ference on, pp. 70-77, (IEEE2004).

Walton, S., Hassan, O., Morgan, K,
Brown, M. Modified cuckoo search:
A new gradient free optimisation al-
gorithm. Chaos, Solitons & Fractals,
44 (9):pp. 710 - 718, 2011.

Wang, Q., Zheng, H. Route and spec-
trum selection in dynamic spectrum
networks. In Consumer Communica-
tions and Networking Conference, 2006.
CCNC 2006. 3rd IEEE, vol. 1, pp. 625-
629 (2006).

Watkins, C.J., Dayan, P. Q-learning.
Machine learning, 8 (3-4):pp. 279-292,
1992.

Wetherall, D., Guttag, J.V,, Tennen-
house, D. ANTS: a toolkit for build-
ing and dynamically deploying network
protocols. In Open Architectures and
Network Programming, 1998 IEEE, pp.
117-129 (1998).

Whitley, D., Rana, S., Heckendorn, R.
The Island Model Genetic Algorithm:
On separability, population size and
convergence. CIT. Journal of computing
and information technology, 7 (1):pp.
33-47, 1999.

Wiener, N. Cybernetics, (Technology
Press1949).

Williamson, C., Wu, Q. A case for
context-aware TCP/IP. SIGMETRICS
Perform. Eval. Rev,, 29 (4):pp. 11-23,
2002.

Winter, G., Galvan, B., Alonso, S., Gon-
zalez, B., Jimenez, J., Greiner, D. A
Flexible Evolutionary Agent: coopera-
tion and competition among real-coded
evolutionary operators. Soft Computing,
9:pp. 299-323, 2005.

Wolf, T. Service-Centric End-to-End
Abstractions in Next-Generation Net-
works. In Computer Communications
and Networks, 2006. ICCCN 2006. Pro-
ceedings.15th International Conference
on, pp. 79-86 (2006).

380

381

382

383

384

385

386

387

388

Wolf, T, Grifficen, J., Calvert, K.L.,
Dutta, R., Rouskas, G.N., Baldine, I.,
Nagurney, A. Choice as a principle in
network architecture. SIGCOMM Com-
put. Commun. Rev,, 42 (4):pp. 105-106,
2012.

Wolpert, D.H., Macready, W.G. No free
lunch theorems for optimization. Evo-
lutionary Computation, IEEE Transac-
tions on, 1 (1):pp. 67-82, 1997.

Wood, D., Bruner, J.S., Ross, G. The Role
of Tutoring in Problem Solving. Jour-
nal of Child Psychology and Psychiatry,
17 (2):pp. 89-100, 1976.

Wu, R., Chien, A., Hiltunen, M.,
Schlichting, R., Sen, S. A high perfor-
mance configurable transport protocol
for grid computing. In Cluster Com-
puting and the Grid, 2005. CCGrid
2005. IEEE International Symposium
on, vol. 2, pp. 1117-1125 Vol. 2 (2005).

Xpressive Internet Architecture. http:
[/www.cs.cmu. edu/~xia/.

Xiang, E, Junzhou, L., Jieyi, W., Guan-
qun, G. QoS routing based on genetic
algorithm. Computer Communications,
22 (15-16):pp. 1392 — 1399, 1999.

Xu, R, Wunsch, D., I. Survey of clus-
tering algorithms. Neural Networks,
IEEE Transactions on, 16 (3):pp. 645—
678, 2005.

Yamamoto, L., Tschudin, C. Ex-
periments on the Automatic Evolution
of Protocols Using Genetic Program-
ming. In L Stavrakakis, M. Smirnov
(eds.), Autonomic Communication, vol.
3854 of Lecture Notes in Computer Sci-
ence, pp. 13-28, (Springer Berlin Heidel-
berg2006).

Yang, X.S., Deb, S. Cuckoo search
via Lévy flights. In Nature & Biologi-
cally Inspired Computing, 2009. NaBIC
2009. World Congress on, pp. 210-214,
(IEEE2009).

389

390

391

392

393

394

395

396

BIBLIOGRAPHY

Yokoo, M., Hirayama, K. Distributed
breakout algorithm for solving dis-
tributed constraint satisfaction prob-
lems. In Proceedings of the Second
International Conference on Multi-
Agent Systems, pp. 401-408 (1996).

Zhang, W,, Xing, Z. Distributed break-
out vs. distributed stochastic: A compar-
ative evaluation on scan scheduling. In
AAMAS-02 Third International Work-
shop on Distributed Constraint Reason-
ing, pp. 192-201 (2002).

Zhao, J., Zheng, H., Yang, GH. Dis-
tributed coordination in dynamic spec-
trum allocation networks. In New Fron-
tiers in Dynamic Spectrum Access Net-
works, 2005. DySPAN 2005. 2005 First
IEEE International Symposium on, pp.
259-268 (2005).

Zhao, Q., Xu, J., Liu, Z. Design of anovel
statistics counter architecture with opti-
mal space and time efficiency. SIGMET-
RICS Perform. Eval. Rev., 34 (1):pp.
323-334, 2006.

Zhou, C., Chia, L.T,, Lee, B.S. Semantics
in service discovery and QoS measure-
ment. IT Professional, 7 (2):pp. 29-34,
2005.

Zitterbart, M., Stiller, B., Tantawy, A.
A model for flexible high-performance
communication subsystems. Selected
Areasin Communications, IEEE Journal
on, 11 (4):pp. 507-518, 1993.

Zitzler, E., Deb, K., Thiele, L. Compar-
ison of Multiobjective Evolutionary Al-
gorithms: Empirical Results. Evolution-
ary Computation, 8:pp. 173-195, 2000.

Zweig, J., Partridge, C. TCP alternate
checksum options. RFC 1146 (His-
toric), 1990. URL http://www.ietf.
org/rfc/rfcll46.txt. Obsoleted by
RFC 6247.

241

