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Abstract 

People are faced with hundreds of decisions every day, of which many involve choices 

between multi-attribute options. To study how people evaluate these options, different 

approaches have been suggested. One promising approach is to apply sequential sampling 

models (SSMs), which make predictions about the underlying cognitive processes involved in 

decision making. Multialternative Decision Field Theory (MDFT), a powerful SSM, assumes 

that people accumulate evidence for each option over time by continuously comparing the 

options’ attribute values. A decision is made once the evidence of one option first passes a 

predefined threshold. Although MDFT has been widely used to predict people’s choice 

behavior, an empirical model comparison is missing. This is mainly due to certain model 

restrictions. One such restriction is that the function to measure the distance between the 

options, is not fully specified. We addressed this challenge in the first manuscript and 

suggested a generalized distance function for multi-attribute choice options. In the second 

manuscript, we provided a testable version of MDFT and empirically compared the model to 

two of the most frequently used random utility models in the choice literature, the logit and 

probit models. We illustrated that when violations of consistency principles are likely to 

occur, MDFT described and predicted people’s choice most accurately. In the third 

manuscript, we showed in an empirical experiment that previous choices can influence 

people’s subsequent choice, even when independent sequential choices are stressed, 

suggesting another violation of consistency principles. Current SSMs, such as MDFT, cannot 

account for the observed compensating choice behavior, as shown in the manuscript. To 

overcome this limitation, we suggested a dependent sequential sampling model (DSSM), 

which assumes that the initial preferences for the choice options are updated after every 

choice. Using the preferential choice options of the experiment, we illustrated how DSSM can 

model the observed compensating choice behavior, as well as consistent choice behavior. 
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Introduction 

Planning holidays involves many preferential choices. Where should I go? For an 

adventurous hike in the Himalayas? Or explore the unique underwater world of the Red Sea? 

Which airline should I take? With Swiss to earn miles for my frequent-flyer program or 

should I just book the cheapest easyJet flight? I should also seize this opportunity and finally 

buy a new digital camera to ensure everlasting memories of my trip. But which camera 

model? Nowadays, most of us make these purchases using online booking (e.g., 

www.ebookers.com/) or price comparison platforms (e.g., shopper.cnet.com/). To facilitate 

our task to make the “best” choice between the possible options, they are typically presented 

in a clear tabular arrangement. How would Mr. Holmes, a very principled man, plan his next 

holiday? Because Mr. Holmes adheres to very strict rules when faced with a decision, his 

preference for one option (e.g., flying with Swiss) over another option (flying with easyJet) 

would never be affected by the introduction of a new option (flying with Ryanair). Mr. 

Holmes also does not change his preferences after repeated choices, unless his previous 

choice caused grounds for complaint (e.g., repeated delay of the airline) or learned about an 

even better offer. 

Those principles that Mr. Holmes is so proud of are part of a family of so-called 

consistency principles that are derived from logic or probability theory (Gigerenzer, 1996). 

Here, I focus on two principles: the independence from irrelevant alternatives (Luce, 1959) 

and independent sequential choices (e.g., Schwarz, 2011; for an overview of further 

consistency principles and a classification see Rieskamp, Busemeyer, & Mellers, 2006). 

According to the former, adding a new option to a choice set of two options should not 

change the ratio of the choice shares of the two options (Luce, 1959). The latter assumes that 

previous choices should not influence subsequent choices in the absence of learning or in 

situations without any feedback. Choice literature provides many examples of people 

violating these consistency principles (e.g., Ayton & Fischer, 2004; Clotfelter & Cook, 1993; 
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Huber, Payne, & Puto, 1982; Huber & Puto, 1983; Simonson & Tversky, 1992; Slovic & 

Tversky, 1974; Tversky 1972a, 1972b). Applied to the example above, those people would 

switch from Swiss to easyJet, after discovering a new offer from Ryanair providing the same 

(low) service as easyJet but at a higher price. On other occasions, they would feel licensed to 

switch from flying economy class to business class, after repeatedly flying economy class.  

The goal of this cumulative dissertation is to better understand why (i.e., to explain) 

and when (i.e., to predict) these violations occur and how sequential sampling models 

(discussed in detail below) can be used to account for people’s inconsistent preferences. I 

approach these questions by first reviewing selected papers in choice literature which report 

violations of the two consistency principles. Next, I will introduce the underlying idea of 

cognitive models and highlight their advantages compared to theories. In particular, I will 

discuss the application of sequential sampling models (SSMs) to model people’s preferences. 

Following that, I will address the need to account for the preferential relationship between 

choice options (i.e., whether one option dominates the other or not), which will be the focus 

of the first manuscript. In this first manuscript, we suggested a generalized distance function 

for preferential choice options. Subsequently, in the second manuscript we incorporated this 

distance function into a powerful SSM and empirically tested it against standard random 

utility models in consumer choice experiments. The choice sets were designed in a way to 

increase the likelihood of observing violations of consistency principles (explained in more 

detail below). Finally, in the third manuscript, we used a job selection experiment to illustrate 

that preferential choices are highly influenced by previous choices, even when independent 

choices are stressed. We suggested how to extend current SSMs to incorporate the influence 

of previous choice as a function of changing initial preferences for the choice options. 

Violations of Consistency Principles 

Just over 60 years ago, Mosteller and Nogee (1951) observed that people’s preferences 

are not necessarily consistent. When people were faced with monetary gambles with 
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increasing rewards, the probability of choosing a risky gamble over a fixed amount gradually 

increased, resembling an S-shaped function. This contradicts expected utility theory, which 

predicts a sudden jump in probability in an all-or-nothing manner (von Neumann & 

Morgenstern, 1947). Even when faced repeatedly with the same sets of gamble pairs, people 

change their choices from one set to the other set in up to 23% of the cases (Hey, 2001). 

People’s preferences are often not only inconsistent, but are also strongly influenced by 

previous choices. Schwarz (2011) analyzed the referee’s penalty decisions in over 12,902 

matches. Of particular interest were the 441 matches with exactly two penalties. If these 

penalty decisions were to be independent sequential decisions—which they should—it should 

not matter for the second penalty decision to which team the first penalty has been awarded. 

However, Schwarz (2011) found that teams awarded with the first penalty were less likely to 

be awarded with the second penalty and vice versa. Similar results have been found for foul 

calls in basketball (Anderson & Pierce, 2009). Such compensatory or balancing choices 

behavior has also been reported in the consumer and the moral context. Only people who had 

to imagine to have volunteered doing community service, were more likely to subsequently 

choose the more luxury options out of two consumer products (Khan & Dhar, 2006, Study 1). 

In a different Study, Monin & Miller (2001) found that people who could show to be free of 

prejudices (i.e., by disagreeing with sexist statements) were subsequently more likely to 

indicate that a male candidate was better qualified for a job opening than a female candidate. 

Besides these violations of independent sequential choices, another violation of 

consistency is frequently observed after introducing a new choice option to a set of two 

comparable choice options. For example, introducing a new job candidate only increased the 

choice share of the existing candidate which dominated the new candidate (Highhouse, 1996). 

Sheng, Parker, and Nakamoto (2005) reported a similar violation of the independence from 

irrelevant alternative principle for choices between consumer products described on two 

quality attributes (e.g., battery life and sound quality). The choice shares of two options 
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changed systematically in favor of the compromise option, after an extreme option (i.e., very 

high values one attribute and very low values on the other attribute) was introduced. A 

promising group of choice models that allows studying the nature of people’s inconsistent 

preferences, violating consistency principles, are so-called cognitive models. 

Cognitive Models 

Cognitive models describe and explain the cognitive process underlying decisions, and 

how these processes interact with each other (Busemeyer & Diederich, 2010). They differ 

from theories that describe decision processes only verbally, in that cognitive models use a 

formal mathematical language for these processes (Busemeyer & Diederich, 2010). The 

mathematical assumptions underlying cognitive models are typically based on principles of 

cognition, such as decay in memory or attention-switching processes (e.g., Roe, Busemeyer, 

& Johnson, 2001). SSMs are a powerful group of cognitive models which assume that people 

accumulate preferences for each available option over time (e.g., Busemeyer & Townsend, 

1993; Ratcliff, 1978; Townsend & Ashby, 1983; Vickers, 1970; Usher & McClelland, 2004). 

Depending on the stopping rule applied, either the option that is first to reach a predefined 

threshold (internal stopping rule) or the option with the highest accumulated preference after a 

fixed deliberation time (external stopping-rule) is chosen. The mathematical formalization of 

SSMs provides many advantages over theories: Unlike theories, the predictions of SSMs can 

be distinguished even when their qualitative predictions do not differ (i.e., both predict option 

A to be chosen). Further, SSMs produce logically valid predictions (Busemeyer & Diederich, 

2010). Because they “incorporate the time course of events” (Johnson, 2006, p. 635), they 

predict how the preferences for different choice options change as a function of time, and thus 

allow reaction time predictions. Finally, using formalized models can also help us to describe 

complex behavior that could not be easily described verbally (Lewandowsky & Farrell, 2011).  

SSMs have become increasingly popular in the past and have been successfully 

applied in many fields: In clinical research to identify different decision processes between 
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clinical and nonclinical individuals (White, Ratcliff, Vasey, & McKoon, 2010), in 

neuroscience to understand value-based decisions and their underlying cognitive and neural 

mechanism (Gluth, Rieskamp, & Büchel, 2012), in machine learning to improve the 

interaction between humans and machines (Gao & Lee, 2006; Lee, Son, & Jin, 2008), in 

categorization to predict the perceptual classification of objects (Nosofsky & Palmeri, 1997), 

in memory research to test the accuracy of memory retrieval (Ratcliff, 1978), in risky decision 

making to predict choices between monetary gambles (Busemeyer & Townsend, 1993), in 

sports to model individual differences in risk-taking behavior (Raab & Johnson, 2004), and to 

study decision making under time pressure (Diederich 2003; Dror, Busemeyer & Basola, 

1999). 

Multialternative Decision Field Theory 

One promising SSM is Multialternative Decision Field Theory (MDFT; Roe et al., 

2001). MDFT has been used to predict people’s inferential choices (Trueblood, 2012), 

perceptual choices (Trueblood, Brown, Heathcote, & Busemeyer, 2013), risky choices in 

sports decisions (Johnson, 2006), and preferential choices (Roe et al., 2001), just to name a 

few. Despite MDFT’s popularity, an empirical comparison to other choice models is missing. 

In previous model comparisons researchers have resorted to theoretical comparisons (e.g., 

Busemeyer, Barkan, Mehta, & Chaturvedi, 2007; Pettibone, 2012; Rieskamp et al., 2006), to 

fixed sets of parameters (e.g., Johnson, 2006) or applied time-intensive parameter simulations 

(e.g., Trueblood, Brown, & Heathcote, 2013; Tsetsos, Usher, & Chater, 2010). However, 

predicting people’s choices from a given set of parameters is not the same as actually 

estimating the model’s parameters from empirical data. Thus, it is an open question as to how 

well MDFT performs compared to other choice models with fewer parameters. This is 

because certain model restrictions need to be overcome (Otter et al., 2008). One of the 

restrictions is that a generalized distance function to describe preferential choice options in the 

multi-attribute space is missing and has yet to be specified. In the first manuscript we 
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addressed this issue and provided such a generalized distance function, whereas in the second 

manuscript we empirically tested MDFT against two prominent choice models, the logit and 

the probit models. Finally, in the third manuscript we showed how in principle independent 

consecutive choices influence the subsequent choice. Using a job selection task we 

experimentally illustrated how SSMs can be extended to incorporate the influence of previous 

choices on subsequent choices.  

 

Manuscript One: A Generalized Distance Function for Preferential Choices 

Berkowitsch, N. A. J., Scheibehenne, B., Rieskamp, J., & M. Matthäus. A Generalized 

Distance Function for Preferential Choices. Manuscript submitted for publication. 

 

When faced with a decision between multiple options, people with consistent 

preferences like Mr. Holmes evaluate these options independently. However, past work 

provides many examples of people who—unlike Mr. Holmes—evaluate choice options 

relative to each other (e.g., Huber et al., 1982; Rieskamp, et al., 2006; Simonson & Tversky, 

1992; Slovic & Tversky, 1974). Thus, to accurately predict people’s preferential choices 

between options, choice models need to account for interdependent evaluation. One approach 

suggests that people evaluate options according to their subjective similarity in the multi-

attribute space (Roe et al., 2001; Rooderkerk, Van Heerde, & Bijmolt, 2011). Similar to the 

concept of lateral inhibition (McClelland & Rumelhart, 1981), this approach assumes that 

more similar (i.e., closer) options compete more strongly with each other than dissimilar (i.e., 

more distant) options, where similarity is defined as a decreasing function of the distance 

between the options (Nosofsky, 1984; Shepard 1987). 

Previous distance functions, such as the Euclidian distance function, simply calculate 

the objective distance between the options in the multi-attribute space, ignoring the 

importance that people assign to the attributes. In fact, multiple studies in perceptual 
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categorization revealed that the objective distance between two objects can strongly differ 

from their psychological distance (e.g., Nosofsky & Johansen, 2000). Nosofsky (1986) 

suggested applying a weighted Minkowsky metric that shrinks or stretches the multi-attribute 

space proportional to the attention that an individual assigns to each dimension (Nosofsky, 

1986). Whereas this approach accounts for individual differences, both the Euclidian distance 

and the weighted Minkowsky metric ignore the preferential relationship between the options. 

That is, they cannot distinguish whether one option dominates the other option (dominant 

pairs), and hence is preferred, or whether an individual is indifferent between both options 

(indifferent pairs), because they are equally attractive. Huber et al. (1982) suggested 

distinguishing the distance between dominant and indifferent pairs and weighting distance in 

dominance direction more strongly than distance in indifference direction. Hotaling, 

Busemeyer, & Li (2010) formalized this idea, but their distance function is limited to choice 

options described on two attributes with equal attribute weights. However, many decisions 

involve choice options described on multiple attributes with unequal attribute weights. In 

sum, previous distance functions either ignore the preferential relationship between the 

options or cannot account for individual attribute weights. 

Towards a more general approach to measuring the distance between preferential 

choice options, we developed a distance function that simultaneously overcomes these 

limitations. It distinguishes the preferential relationship between the options (i.e., whether one 

option is dominant or not), is flexible enough to allow individual attribute weights, and can 

calculate the distance between preferential choice options described on multiple attributes. 

Similar to previous approaches, we distinguished between distance in dominance direction, 

captured by a dominance vector, and distance in indifference direction, captured by an 

indifference vector (Hotaling et al., 2012; Huber et al., 1982). We defined the indifference 

vector to describe the exchange ratio between two attributes; that is, the exchange ratio 

expresses how many units of one attribute an individual is willing to give up to increase the 
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other attribute by one unit. This allows accounting for individual differences assigned to the 

attribute weights and results in more or less steep indifference vectors. The dominance vector 

is defined to be orthogonal to the indifference vector (Tversky, Sattah, & Slovic, 1988; 

Wedell, 1991). Because for options with more than two attributes multiple exchange ratios 

exist, multiple indifference vectors are required to define the distance in indifference 

direction. In contrast, a single dominance vector is sufficient (i.e., an option either dominates 

another option or it does not). The number of indifference vectors necessary to describe all 

possible exchange ratios is one smaller than the number of attributes describing the choice 

options. Accordingly, the dominance vector needs to be orthogonal to all indifference vectors. 

As suggested by Huber et al. (1982), we included an individual weighting parameter that 

places higher weight on distance in dominance direction relative to distance in indifference 

direction. Following the mathematical derivation, we provided a hands-on example to 

compare our generalized distance function to previous distance measures. The example 

illustrated that when the above-described requirements for a generalized distance function are 

only partially fulfilled, incorrect conclusions about the psychological distance, and thus the 

perceived similarity between options, are drawn. 

Finally, we suggested how future work could test whether the assumptions we made to 

define the generalized distance function yield a more accurate description of people’s 

perceived similarity. We assumed linear exchange ratios when defining the indifference 

vectors, implying that a lower value of one attribute can always be compensated by an 

increase in the value of another attribute. Although this implementation is straightforward, 

this assumption might sometimes be violated. For example, we might require a minimum 

legroom space in the airplanes and are not willing to go below that, even when compensated 

with a lower price. On the other hand, increasing the legroom space by one unit might only be 

balanced by a ticket price increase outside of our budget constraint. Thus, future work could 
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test whether a linear indifference approach or a convex indifference approach provides a 

better account for the perceived similarity between preferential choice options.  

To conclude, the generalized distance function provides a feasible measure to describe 

the distance between preferential choice options in the multi-attribute space and accounts for 

individual differences. These properties allow us to incorporate this distance function into 

choice models (such as SSMs) that estimate the subjective importance people assign to the 

different attributes and to increase their predictive accuracies (e.g., Roe et al., 2001; 

Rooderkerk et al., 2011).  

 Remember, one of the reasons why MDFT has never been empirically tested against 

other choice models is that its distance function was not fully specified (see above). Now that 

we have overcome this hurdle, we can focus on the next challenge to make MDFT testable, 

namely to provide an analytical solution to directly calculate the choice probabilities, thereby 

avoiding time-intensive parameter simulations. We addressed this challenge in the second 

manuscript, which follows next. 

 

Manuscript Two: Testing Multialternative Decision Field Theory 

Berkowitsch, N. A. J., Scheibehenne, B., & Rieskamp, J. (in press). Rigorously testing 

Multialternative Decision Field Theory against standard random utility models. 

Journal of Experimental Psychology: General. 

 

SSMs, which aim for a better explanation of human decision making, have become 

increasingly popular. They describe the underlying processes of decision making, which are 

typically based on principles of cognition (e.g., Lewandoswky & Farrell, 2011; Busemeyer & 

Diederich, 2010). These models assume that people accumulate preferences for each available 

option before making a decision. The preference of the option first to pass a predefined 
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threshold or the option with the highest preference after a fixed deliberation time is assumed 

to be the chosen option.  

One promising and powerful SSM is MDFT (Roe et al., 2001). MDFT assumes that 

the accumulation process of the options’ preferences is a function of the importance weights 

that people assign to the attributes describing the options (e.g., price of the flights, legroom of 

the seats in centimeters), an attention-switching process between these attributes, a decay 

process, and an inhibition process, where closer (i.e., more similar) options are assumed to 

inhibit each other more strongly than distant (i.e., less similar) options (for details see Roe et 

al., 2001). The model captures these processes with several free parameters. However, a 

higher number of parameters inherently increases the flexibility of a model, and thereby its 

complexity.  

On the other hand, random utility models (RUMs), focusing solely on the decision 

outcome, have largely dominated the field of decision research. RUMs build on expected 

utility theory that assumes that the option with highest utility is chosen (von Neumann & 

Morgenstern, 1947). By including an error term to account for the randomness in people’s 

choices, RUMs allow probabilistic choice predictions (for an overview see McFadden, 2001; 

Train, 2001). Two of the most prominent and widely used RUMs are the logit and probit 

models (e.g., Daganzo, 1980; Hausman & Wiese, 1978; Luce, 1959; McFadden, 1973; 

Thurstone, 1927). They enjoy great popularity across many research domains, such as 

political decision making (e.g., Bowler, Karp, & Donovan, 2010), travel behavior (e.g., 

Adamowicz, Louviere, & Williams, 1994), food choices (e.g., Green & Srinivasan, 1990), or 

consumer choices (e.g., Loureiro & Umberger, 2007). Presumably, their popularity is largely 

a result of their ease of implementation and the ease of estimating the models’ parameters.  

In contrast, estimating the model parameters of MDFT is not straightforward and 

requires time-intensive parameter simulations (e.g., Trueblood et al., 2013). This is because 

an analytical solution to directly calculate the choice probabilities MDFT is missing. Another 
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challenge is to define an adequate distance function for options in the multi-attribute space 

with unequal attribute weights. Once these challenges are overcome, we can conduct an 

empirical model comparison between MDFT and RUMs, such as the logit and probit models. 

This comparison of a process-driven approach against an outcome-focused approach has often 

been called for in the choice literature (e.g., Chandukala, Kim, Otter, Rossi, & Allenby, 2007; 

Otter et al. 2008; Reutskaja, Nagel, Camerer, & Rangel, 2011) and provides a valuable insight 

into whether the higher model complexity of MDFT compared to the logit and probit models 

is justified by a higher model fit. 

In two studies we tested MDFT rigorously against the logit and probit models by 

different means of model comparison. To overcome the challenges described above, we first 

incorporated the generalized distance function (Berkowitsch, Scheibehenne, Rieskamp, & 

Matthäus, 2013) into MDFT and, second, assumed infinite decision time, which allows direct 

calculation of choice probabilities (see Appendix in Berkowitsch, Scheibehenne, & Rieskamp, 

2013 for details on the mathematical derivations). In each of the two experiments in Study 1, 

30 participants repeatedly chose their favorite digital camera out of digital camera triplets, 

described on multiple attributes. The first experiment served as a calibration experiment to 

compare the models on a descriptive level, whereas the second experiment served as a 

generalization experiment to compare the models on a predictive level (Busemeyer & Wang, 

2000). 

The model comparison in the calibration experiment revealed that MDFT described 

participants’ choices more accurately than the RUMs or a baseline model, assuming random 

choices. However, when the model complexity was taken into account using the Bayesian 

Information Criterion (Raftery, 1995), MDFT’s advantage over the RUMs largely 

disappeared and the logit model, followed by the probit model were classified as the most 

likely models to have generated most of the observed data. For the generalization experiment, 
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the probit model and MDFT were the most accurate models for predicting participants’ 

choices.  

In Study 2 we intended to create choice sets in which participants would violate the 

independence from irrelevant alternatives principle, according to which adding a new option 

to a choice set of two options, should not change the ratio of the choice shares of the two 

options (Luce, 1959). Because the logit and the probit models adhere to this principle, MDFT 

should outperform the logit and probit models. Three well-researched context effects known 

to violate the independence from irrelevant alternatives principle are the attraction, 

compromise, and similarity effect. The attraction effect predicts that adding an option 

dominated by one of two existing options increases the choice share of the dominating option 

(Huber et al., 1982; Huber & Puto, 1983). According to the compromise effect, adding an 

extreme option increases the relative choice share of the existing option now becoming the 

compromise option (Simonson & Tversky, 1992; Tversky & Simonson 1993). Finally, the 

similarity effect refers to choice situations where adding a similar option to two existing 

options hurts the choice share of the more similar option and thereby increases the relative 

choice share of the dissimilar option (Tversky, 1972a; 1972b). 

We calculated the individually added choice option using a matching task (Carmon & 

Simonson, 1988). Pairs of consumer options described on two attributes (e.g., “price” and 

“quality”) were repeatedly presented to participants, while the attribute value of one option 

was missing. We asked participants to fill in the missing value so that the two options became 

equally attractive. The matched option predicted to be chosen more frequently is referred to as 

the target, whereas the remaining matched option is referred to as the target’s competitor. For 

each matched choice pair we calculated one new choice option, resulting in either an 

attraction, a compromise, or a similarity choice triplet. Participants were presented with these 

individually created choice triplets in a randomized order a couple of days later and were 



Modeling Preferential Choices with Sequential Sampling Models     17 

repeatedly asked to choose their favorite product. The total numbers of attraction, 

compromise, and similarity choice triplets were evenly balanced within participants. 

We tested whether systematically adding the new choice options resulted in an 

increase of the choice share of the target relative to its competitor. Thereto, we calculated for 

each of the three context effects the 95% highest posterior density interval representing the 

most credible values of the relative choice share of the target using Bayesian statistics 

(Kruschke, 2011a, 2011b). The results indicated reliable attraction and compromise effects, 

and a weak similarity effect, suggesting frequent violations of the independence from 

irrelevant alternatives principle. Interestingly, people who were prone to either the attraction 

or the compromise effect were unlikely to show the similarity effect. On the other hand, 

people who were prone to the similarity effect were unlikely to show the attraction or 

compromise effect. The model comparison revealed that MDFT was the most accurate model 

in describing participants’ choices even when the model complexity was taken into account 

(Raftery, 1995). Supporting this result, participants’ choices were also best predicted by 

MDFT compared to the RUMs, using cross-validation (Browne, 2000; Stone, 1974). 

In the present manuscript we focused on testing MDFT, a promising SSM, against two 

of the most frequently applied RUMs in choice literature, the logit and probit models. So far, 

an empirical model comparison had been missing (e.g., Busemeyer et al., 2007; Pettibone, 

2012; Rieskamp et al., 2006; Trueblood, Brown, & Heathcote, 2013; Tsetsos, et al., 2010). 

Here, we incorporated the generalized distance function of Berkowitsch et al. (2013) into 

MDFT and suggested infinite deliberation time. This allowed us to provide an empirically 

testable version of MDFT, as successfully confirmed across the two studies. The first study 

illustrated that for the context on hand, MDFT did not describe people’s choices more 

accurately than the RUMs when complexity was taken into account. However, MDFT was 

comparable to the probit model and outperformed the logit model in predicting people’s 

choices. When people were likely to evaluate the choice options interdependently, as was the 
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case for Study 2, MDFT was best in describing and predicting the observed data. These 

findings imply that the application of SSMs, such as MDFT, is most advantageous when 

context effects are likely to occur. 

In the third manuscript, we addressed a current limitation of SSMs. Whereas SSMs 

such as MDFT can account for interdependent evaluation of the choice options, they assume 

independent consecutive choices, as long as the choice environment does not provide any 

explicit feedback (e.g., learning). Using a job selection task we showed that this assumption is 

systematically violated and suggested how SSMs can be extended to take influence from 

previous choice into account to predict people’s subsequent preferential choices. 

 

Manuscript Three: Modeling Sequence Effects Using a Sequential Sampling Model 

Berkowitsch, N. A. J., Scheibehenne, B., & Rieskamp, J. How Previous Choices Affect 

Present Choices: Explaining Choice Dependencies with a Sequential Sampling Model. 

Manuscript to be submitted for publication. 

 

Many of our daily decisions involve sequential choices. For example, when going to a 

restaurant we choose between appetizers, main courses, and—if our budget and conscience 

allow—between different desserts. Most likely, our ultimate selection of the courses does not 

reflect isolated, but dependent choices. Cognitive models that aim to explain the underlying 

cognitive process of decision making can account for sequence effects by integrating a 

(reinforcement) learning parameter (Kruschke, 1992; Gluck & Bower, 1988; Rieskamp & 

Otto, 2006; Simão & Todd, 2002; Stewart, Brown, & Chater, 2002; Stewart & Brown, 2004; 

Todd, 2007). However, a large body of literature, especially in moral research, reports many 

cases where previous choices systematically influence subsequent choices, even when the 

choice environment does not provide any explicit feedback (e.g., learning). For example, only 

people who were previously given the opportunity to a condemn sexist or racist statement 
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were subsequently more likely to prefer a male over female job candidate or a White over a 

Black job candidate (Effron, Miller, & Monin, 2012; Monin & Miller, 2001). This so-called 

compensating choice behavior and its counterpart, consistent choice behavior, violate the 

independent sequential choices principle and  have been observed across many studies in 

moral research (e.g., Conway & Peetz, 2012; Gneezy, Imas, Nelson, Brown, & Norton, 2012; 

Jordan, Mullen, & Murnighan, 2011; Sachdeva, Illiev, & Medin, 2009; Zhang, Cornwell, & 

Higgins, 2013). Apart from a few exceptions (e.g., Zhang, et al., 2013), these sequence effects 

were only reported across different experimental tasks (e.g., a rating task following a choice 

task, different consecutive choice tasks). Thus, the current manuscript had two goals: First, we 

wanted to test whether such sequence effects were likely to occur in a repeated choice task. 

Second, if so, how do we need to extend current SSMs to account for these sequence effects? 

Toward the first goal we invited participants to a job selection experiment, where they 

were repeatedly faced with the choice between pairs of job candidates. In the first eight of the 

ten pairs one candidate clearly dominated the other candidate (i.e., dominating pairs), whereas 

the job candidates in the remaining two pairs were equally qualified (i.e., non-dominating 

pairs). The job candidates were described on multiple attributes (e.g., leadership skills, social 

skills) and their gender was indicated by a profile picture. We varied the gender of the first 

eight dominating pairs across the four conditions, resulting either in a female-dominates-male 

condition, a male-dominates-female condition, a female-dominates-female condition, or a 

male-dominates-male condition. For the remaining two non-dominating pairs, the two job 

candidates always consisted of a female and a male candidate. The attribute values for all ten 

pairs across the four conditions were the same. Participants were randomly assigned to one of 

the four conditions and repeatedly had to choose their favorite job candidate for different 

companies, thus stressing independent choices. We randomized the order within the 

dominating pairs and within the non-dominating pairs. 
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The results indicated a strong influence of the previous choices between the 

dominating-pairs on the subsequent choice between the non-dominating pairs. Consistent with 

previous findings, we observed the highest choice share of the male candidate, when 

participants could show to be free from sexist prejudices (i.e., choosing the female candidate 

in the female-dominates-male condition). This suggested that sequence effects also play a 

major role in repeated choice tasks. 

To account for sequence effects violating the independent repeated choice principle, 

we proposed a dependent sequential sampling model (DSSM) that builds on current SSMs. 

DSSM assumes three cognitive processes: First, choices made with little confidence are more 

likely to result in compensating choice behaviors, whereas choices made with strong 

confidence are more likely to result in consistent choice behavior. Second, more recent 

choices compared to more remote choices have a stronger influence on the subsequent choice. 

Third, whether compensating or consistent choice behavior results from previous choices 

varies—besides the level of confidence—across individuals and thus must be accounted for 

on an individual level. 

DSSM assumes that sequentially choosing between similar choice pairs changes 

people’s experience with the available options. SSMs account for previous experience by 

estimating the options’ initial preferences. In contrast to SSMs, DSSM does not set the initial 

preferences to constant values over all choices, but assumes that previous choices update the 

subsequent initial preferences according to the three processes described above. In the 

manuscript we explained how these processes interact, as well as how we derived the 

equations to calculate the initial preferences for the subsequent decision. Using the attribute 

values of job candidates presented in the experiment, we compared the predictions of an SSM, 

such as MDFT, to DSSM for a given set of parameters. The model comparison successfully 

illustrated that DSSM can account for the observed compensating behavior, whereas MDFT 

cannot. 
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In this manuscript we provided important empirical insights into how previous choices 

can influence subsequent choices, even when the choice environment does not provide 

explicit feedback, such as learning. Current versions of SSMs cannot account for this 

empirical finding. Therefore, we suggested a DSSM that accounts for the influence of 

people’s previous choices on the subsequent decision, resulting in either compensating or 

consistent choice behavior. Theoretically, DSSM can also account for other well-known 

sequence effects, such as the gambler’s fallacy (Clotfelter & Cook, 1993) or the hot hand 

fallacy (e.g., Scheibehenne, Wilke, & Todd, 2011). As this advantage involves additional free 

parameters, future work should focus on an empirical comparison of DSSM to less complex 

choice models. 

General Discussion 

In this cumulative dissertation I aimed to promote the feasibility of SSMs to explain 

and predict human choice behavior. Toward this goal we illustrated how existing cognitive 

mechanisms describing the distance between choice options can be generalized, such that 

their application is not limited to specific choice environments. Further, we proposed a 

testable version of MDFT, a powerful SSM, and compared its accuracy to describe and 

predict people’s choice behavior to two frequently used RUMs. Finally, we suggested how 

SSMs can be extended to account for the influence of previous choices when the choice 

environment does not provide any explicit feedback (e.g., learning). 

 

Throughout the manuscripts we observed different violations of consistency 

principles: Introducing a new choice option to an existing set of choice options changed 

people’s relative choice share of the existing options. Further, we observed compensating 

choice behavior in a choice environment not providing any explicit feedback, suggesting a 

strong influence of previous choices on the subsequent choice. But is consistent choice 

behavior something worth pursuing? Should we nudge people to consistent choice behavior 
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(Thaler & Sunstein, 2008)? On this note Gigerenzer (1996) argued that inconsistent choice 

behavior is not to be put on a level with irrational choice behavior. Whereas inconsistent 

behavior of machines might be fatal (e.g., malfunctioning traffic lights, defective flight traffic 

control systems), this is not necessarily the case for humans. Rather, inconsistency allows us 

to break free from rigid choice patterns and to adapt to the (changing) choice environment. In 

this sense, I strongly vote to focus our research effort in further developing cognitive models, 

such as SSMs, to better describe, explain, and predict people’s choice behavior, instead of 

educating people how to make consistent choices.  

To further develop SSMs, future work should pursue two approaches. On the one 

hand, scholars should continue challenging previous and improving current (cognitive) choice 

models by means of model comparisons. For example, it would be interesting to estimate 

MDFT’s parameters using Bayesian techniques (e.g., Kruschke, Aguinis, & Joo, 2012). This 

allows researchers to study the estimated distribution of the parameters instead of point 

estimates, where more narrowly distributed parameters indicate higher certainty of the 

estimate (Kruschke, 2011a). Another approach to study the validity of SSMs is to investigate 

the psychological meaning of their parameters and of their cognitive measures. For example, 

to test the generalized distance function future work could present people with pairs of 

dominant- and non-dominant preferential choice options. But instead of choosing between the 

options, people should be asked to judge the perceived distance. This would provide empirical 

evidence as to whether people perceive distance in dominance direction as more distant 

relative to distance in indifference direction. Further, the decay parameter in MDFT reflects 

how quickly the preference state decays during deliberation. Researchers could correlate the 

decay parameter with people’s working memory capacity (Unsworth, Heitz, Schrock, & 

Engle, 2005). Finally, in DSSM positive values of the compensating-consistency parameter 

reflect compensating choice behavior, whereas values less than or equal to zero reflect 
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consistent choice behavior. Here, future work could test whether the sign and the magnitude 

of the parameter correlate with people’s need for consistency (Guadagno & Cialdini, 2010). 

 

To conclude, the novel contributions of this cumulative dissertation can be divided 

into three groups. First, we generalized previous (Manuscript 1) and suggested new cognitive 

mechanisms (Manuscript 3) that can be incorporated into choice models, such as SSMs. 

Second, we illustrated and discussed choice situations in which empirically observed 

violations of consistency principles are likely to occur (Manuscripts 2 and 3). Third, we 

provided new empirical model comparisons between an SSM and RUMs (Manuscript 2) and 

within SSMs (Manuscript 3). 
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Abstract 

Many cognitive theories of decision making predict that people do not evaluate options 

independently of each other. To what extent the preference for one option is influenced by 

other available options can depend on how similar the options are to each other, where 

similarity is assumed to be a decreasing function of the distance between options. We 

examine how the distance between preferential options with multiple attributes can be 

determined. Previous distance functions either ignore the importance weight people assign to 

the attributes, are limited to two attributes, or neglect the preferential relationship between the 

options. To measure the distance between preferential options it is necessary to take the 

subjective preferences of the decision maker into account. Accordingly, the multi-attribute 

space can be stretched or shrunk relative to the attention or importance that a person gives to 

different attributes. We propose a generalized distance function for preferential choices in the 

multi-attribute space that accounts for their preferential relationship and allows for individual 

differences according to subjective preferences. Using a hands-on example, we illustrate its 

application and compare the determined distances to previous distance measures. We 

conclude with a discussion of the suitability and limitations of the proposed distance function. 

 

Keywords: distance; similarity; preferential choice; multi-attribute; decision making 
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1. Introduction 

Past work has illustrated repeatedly that when people make choices, they do not 

evaluate options independently but rather evaluate options relative to each other (e.g., Huber, 

Payne, & Puto, 1982; Rieskamp, Busemeyer, & Mellers, 2006; Simonson & Tversky, 1992; 

Slovic & Tversky, 1974). One way to explain these interdependent evaluations is to assume 

distance-dependent competition of options in the multi-attribute space (Roe, Busemeyer, & 

Townsend, 2001; Rooderkerk, Van Heerde, & Bijmolt, 2011). Accordingly, options in the 

multi-attribute space compete with each other based on their perceived similarity, where 

similarity is defined as a decreasing function of their distance (Nosofsky, 1984; Shepard 

1987). The more similar two options are, the more strongly the evaluation of one option will 

affect the evaluation of the other option. In the present article we propose a generalized 

distance function that defines the relationships between preferential choice options in a multi-

attribute space and takes a person's subjective preferences into account.  

The psychological distance between options cannot be defined simply by the 

Euclidean distance in the multi-attribute space, because this ignores the preferential 

relationship between options and the importance the decision maker gives to different 

attributes. Figure 1A illustrates this difference for the hypothetical choice between notebook 

computers: The labeled dots A, B, and C represent three different notebooks described by 

their processor speed and their battery life. Although the Euclidean distances between 

Notebooks A and C and Notebooks A and B in the multi-attribute coordinate space are 

exactly the same, we argue that their psychological distances differ. Notebooks A and B are 

highly competitive, as they both lie on the indifference line, meaning that a change from 

Notebook A to Notebook B appears acceptable because the loss in battery life is compensated 

by Notebook B’s higher processor speed. In comparison, Notebook C appears completely 

inferior to Notebooks A and B and a change from Notebooks A or B to Notebook C is not 

acceptable for the decision maker, because this change would lead to a loss of battery life and 
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a loss of processor speed. In other words, Notebook C is dominated by Notebooks A and B. 

Consequently, Options A and B are perceived as more similar to each other than either is to 

option C, so that the psychological distance is smaller between A and B than between A and 

C (or B and C). One way to represent the psychological distance between the options is to 

define a distance along the dominance line and the indifference line, as suggested by 

Hotaling, Busemeyer, and Li (2010) and Huber et al. (1982). The two distances can be 

expressed by an indifference vector (dashed lines in Figure 1A and B) and a dominance vector 

(continuous lines in Figure 1A and B). In addition, the psychological distance between 

options also depends on the subjective importance given to the different attributes. A person 

giving equal importance to the two attributes might be indifferent about Notebooks A and B. 

However, a person giving higher importance to the attribute “battery life” as compared to the 

attribute “processor speed” will be indifferent only about a choice between Notebook A and 

Notebook B′ and not between Option A and Option B (see Figure 1A). 

INSERT FIGURE 1 HERE. 

This example illustrates that to be broadly applicable, a distance function needs to 

meet several requirements: It should capture the different preferential relationships between 

options (i.e., whether one option is dominant or not); it must be flexible enough to account for 

varying importance of different attributes; and it should be applicable for choice problems 

with more than two attributes. Past research on distance functions has addressed some of these 

requirements (Hotaling et al., 2010; Huber et al., 1982; Nosofosky, 1986; Rooderkerk et al., 

2011; Wedell, 1991) but an approach incorporating all requirements simultaneously is 

missing. Our goal in the present article is to provide  a generalized distance function for 

preferential choice options and to compare it to alternative approaches. An empirical test of 

the function in terms of a tradeoff between the functions' predictive accuracy compared to its 

complexity (e.g., Forster, 2000) is left to researchers incorporating a distance function into 

choice models. Without incorporating the function within a choice model it is difficult to 
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access its predictive accuracy. In Section 2, we review approaches that offer partial solutions 

to the listed requirements. Based on these approaches, we develop a generalized distance 

function fulfilling all requirements simultaneously. We then illustrate the application of the 

generalized distance function with a real-life example. We conclude with a discussion of the 

suitability and limitations of the proposed distance function. 

2. Psychological distance 

Researchers studying perceptual categorization have emphasized the difference 

between the objective distance between objects and their psychological distance. Nosofsky 

(1986), for instance, argued that individuals do not distribute their attention equally to each 

dimension describing (perceptual) objects. That is, their psychological space differs. He 

suggested a weighted Minkowski metric, which stretches and shrinks the different dimensions 

relative to the attention an individual devotes to each dimension (Carroll & Wish, 1974). 

More attention to an attribute stretches the dimension in the space, whereas less attention 

shrinks the dimension in the space. This approach is standard in categorization research 

(Nosofsky & Johansen, 2000; Nosofsky & Zaki, 2002; Zaki, Nosofsky, Stanton, & Cohen, 

2003). When applying this approach to preferential decision making it is necessary to take the 

preferential relationship between options into account; that is, one needs to distinguish 

distances in the indifference direction from distances in the dominance direction.  

Huber et al. (1982) already advocated treating distance in the dominance and 

indifference directions differently. They suggested that “dominated items…are represented in 

the limit as being an infinite distance below those items that dominate them” (p. 92), whereas 

“distances among non-dominating pairs…must be finite” (p. 92). In other words, they 

proposed placing a higher weight on the distance in the dominance direction relative to the 

distance in the indifference direction. Figures 1A and B illustrate this idea. The distance 

between Options A and B is the same in both graphs, whereas the distance between Options A 
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and C is larger in Figure 1B than in Figure 1A, because the psychological space is stretched in 

the dominance direction.  

In his dimensional weight model Wedell (1991) suggested rotating the indifference 

and dominance vectors to account for the preferential relationship when a dominating option 

is added to the choice set. The very same logic could be applied to account for varying levels 

of attribute importance. First, consider an individual who weights the two attributes processor 

speed and battery life for the notebook example equally. This can be expressed by choosing 

an indifference dimension and a dominance dimension along the diagonals of the Cartesian 

coordinate plane (see the solid indifference and dominance vectors iv and dv in Figure 2). 

Accordingly, an individual who weights processor speed higher (lower) than battery life 

would be depicted by a steeper (less steep) indifference vector iv′ (iv″); see Figure 2. 

INSERT FIGURE 2 HERE. 

In their preferential choice model, Rooderkerk and colleagues (2011) discussed an 

alternative approach to account for individual differences. They suggested the indifference 

vector is the same for all individuals, whereas the dominance vector (a.k.a. preference vector) 

is multiplied by an individual weight, yielding dominance vectors of different lengths. We 

think that the rotation approach (i.e., rotating indifference vector) from Wedell (1991) that we 

follow here has some advantages over Rooderkerk et al.’s (2011) suggestion of individual 

dominance vectors: The indifference vector directly expresses how many units an individual 

is willing to give up to increase the other attribute by one unit without introducing an 

additional parameter to weight the dominance vector. 

This overview of past research reveals that several approaches to distance functions 

have addressed some of the aforementioned requirements, representing necessary steps 

toward a generalized distance function for preferential choices, but none of them fulfill all 

requirements simultaneously (see Table 1). In the following we provide a generalized distance 
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function that does just that. We first describe it conceptually before providing the 

mathematical details.  

INSERT TABLE 1 HERE. 

3. A generalized distance function 

We continue with the notebook example with two attributes (i.e., processor speed, 

battery life) before generalizing it to multiple attributes. As a first step we need to assure that 

the attributes are comparable to each other, to avoid distortions due to different scales and 

ranges of attribute values. This is achieved by normalizing the attribute values to the same 

range, for example between 0 and 10, which additionally increases the visual interpretability 

of the indifference vector. Next, we have to specify the directions and lengths of the 

indifference and dominance vectors. Because the dominance vector is orthogonal to the 

indifference vector (Tversky, Sattah, & Slovic, 1988; Wedell, 1991), the direction of the 

dominance vector results from the indifference vector. The direction of the indifference vector 

can be determined by so-called “exchange ratios,” which indicate how many units of one 

attribute an individual is willing to give up to increase the other attribute by one unit. That is, 

the indifference vector contains information about the exchange ratios between the attributes. 

For options described by more than two attributes the number of possible exchange ratios 

increases. These multiple exchange ratios can be captured by multiple indifference vectors 

forming an indifference plane.  

For example, all possible exchange ratios of an option described by five attributes can 

be captured with four exchange ratios, resulting in four indifference vectors—one fewer than 

the number of attributes (for details see Section 4). Whereas the number of indifference 

vectors depends on the number of attributes, the number of distance types remains constant: 

Options are still described by distance in the indifference direction and distance in the 

dominance direction. An option either dominates another option or it does not, which means 

that we still have a single dominance vector even for several attributes. As a consequence, a 



DISTANCE FUNCTION FOR MULTI-ATTRIBUTE DECISION MAKING     39 
 
 

 

single parameter is sufficient to weight distance in the dominance direction more strongly 

than in the indifference direction. 

As is the case for two attributes (i.e., one indifference vector), the dominance vector 

has to be orthogonal to all indifference vectors in the multi-attribute case. Because of this 

property the dominance vector can be derived from the indifference vectors (see Section 4 for 

details). To obtain indifference vectors and a dominance vector of equal lengths, we simply 

normalize them to the Euclidean length of 1, by dividing each vector by its Euclidean length.  

As a next step we express the distance between two options by means of the distance 

in the indifference and dominance direction. The line connecting the two options is called the 

distance vector, represented in the standard attribute coordinate plane. Instead of using these 

attribute dimensions, we now express the distance vector in terms of the indifference vectors 

and the dominance vector. This is achieved by a change of basis. The transformed distance 

vector indicates how many units of the standardized indifference vectors and of the 

standardized dominance vector are necessary to “travel” from one to another option. 

Finally, we calculate the Euclidean length of the transformed distance vector and 

multiply distance in the dominance direction by a parameter higher than 1. If this parameter is 

set to 1 then the resulting distance equals the Euclidean distance of the unweighted distance 

vector.  

4. Mathematical formalization of the generalized distance function 

To specify the generalized distance function we first rescale the attribute values ሺݒ୭୪ୢሻ 

of the n attributes to equal ranges, from min୬ୣ୵ to max୬ୣ୵ according to 

୬ୣ୵ݒ ൌ min୬ୣ୵ ൅
ሺ௩౥ౢౚି୫୧୬౥ౢౚሻ∙ሺ୫ୟ୶౤౛౭ି୫୧୬౤౛౭ሻ

୫ୟ୶౥ౢౚି୫୧୬౥ౢౚ
. (1) 

Next, we define an importance weight vector ࢃ that contains the individual 

importance weights for the n attributes and scale the weights such that they sum to 1. The 

number of possible exchange ratios can then be calculated according to 
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݊୉୶ୡ୦ୖୟ୲ ൌ
௡ሺ௡ିଵሻ

ଶ
, (2) 

where n is the number of attributes. A strategy to reduce the needed ݊୉୶ୡ୦ୖୟ୲ without the loss 

of information is to compare each attribute against an arbitrary attribute, for example, against 

the first attribute. Therefore, each indifference vector ൛࢐࢜࢏ൟ௝ୀଵ
௡ିଵ

 is an n-dimensional vector and 

can be calculated as 

࢐࢜࢏ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
െۍ

௪ೕశభ

௪భ
0

⋮

0
௪భ
௪భ
0

⋮

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
െۍ

௪ೕశభ

௪భ
0

⋮

0

1

0

⋮

0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 ∀ j = 1, … , n – 1, (3) 

where 1 is at the (j + 1)th position.  

Notice that this leads to n – 1 indifference vectors. Independently of the number of 

attributes, each ࢐࢜࢏ has exactly two nonzero entries, the exchange ratios. This is because the 

other ݊୉୶ୡ୦ୖୟ୲ can be recovered from the entries of the n – 1 indifference vectors. The first 

entry in each ࢐࢜࢏ marks the exchange ratio between the (j + 1)th and the first attribute and the 

algebraic sign indicates that the vector is pointing toward the axes of the (j + 1)th attribute. In 

other words, ࢐࢜࢏ reveals how many units of the (j + 1)th attribute are gained for giving up on 

one unit of the first attribute. 

Because the n-dimensional dominance vector ࢜ࢊ should be orthogonal to all n – 1 

indifference vectors, we determine the case in which the dot product of each indifference 

vector to ࢜ࢊ is zero. In general, this vector fulfills  

࢐࢜࢏ ∙ ࢜ࢊ ൌ 0, ∀	݆ ൌ 1,… , ݊ െ 1,  (4) 

which leads to the generalized form 
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࢜ࢊ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
௪భ
௪భ
௪మ
௪భ
⋮
௪ೕ

௪భ
⋮
௪೙
௪భے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

. (5) 

Now we can build the n × n matrix ࡮∗, containing the n – 1 indifference vectors ࢜࢏૚ to 

 It is .࢜ࢊ ૚ and the dominance vectorି࢔࢜࢏

∗࡮ ൌ ,૚࢜࢏ൣ … , ,࢐࢜࢏ … , ,૚ି࢔࢜࢏  ൧. (6)࢜ࢊ

Observe that ࡮∗ is a basis of the attribute space. To standardize the lengths of the indifference 

vectors and the dominance vector to 1, each vector is divided by its Euclidean lengths ݈௜௩ and 

݈ௗ௩, where ቄ݈୧୴௝ቅ௝ୀଵ

௡ିଵ
 

࢐࢜࢏݈ ൌ ฮ࢐࢜࢏ฮଶ, ∀	݆ ൌ 1,… , ݊ െ 1 (7) 

and 

݈ௗ௩ ൌ  ଶ. (8)‖࢜ࢊ‖

Thus, we obtain the basis ࡮, which is 

࡮ ൌ ቈ
૚࢜࢏
௟೔ೡభ

, … ,
௜࢜࢐
௟೔ೡೕ

, … , ష૚࢔࢜࢏
௟೔ೡ೙షభ

, ࢜ࢊ
௟೏ೡ
቉. (9) 

 .contains the standardized indifference vectors and the standardized dominance vector ࡮

Next, we define the standard distance vector ࢊ࢔ࢇ࢚࢙࢚࢙࢏ࢊ as the trajectory path between two 

points, expressed in standard unit vectors. We want to transform this distance vector into the 

new distance vector ࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ that expresses the trajectory path created by the previously 

introduced indifference vectors and by the dominance vector. This is achieved by a change of 

basis. Therefore we multiply the inverse of the basis ࡮ by ࢊ࢔ࢇ࢚࢙࢚࢙࢏ࢊ: 

࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ ൌ ૚ି࡮ ∙  (10) .ࢊ࢔ࢇ࢚࢙࢚࢙࢏ࢊ
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The first n – 1 entries of ࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ express the distance in units of each ࢐࢜࢏, whereas 

the last entry of ࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ expresses the distance in units of ࢜ࢊ. Now we need to calculate the 

Euclidean length ࡰ૛ of ࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ and multiply the distance in the dominance direction by a 

parameter ࢝ࢊ ൐ 1. This assures that the distance in the dominance direction is weighted more 

strongly than the distance in the indifference directions. This is computed as follows: 

૛ࡰ ൌ ࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ
ᇱ ∙ ࡭ ∙  (11) ,࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ

where ࡭ is an n × n diagonal matrix and is constructed in the following way: 

࢐,࢐࡭ ൌ ൜
	1,								݂݅	݆ ൌ 1,…݊ െ 1

݆	݂݅								,ࢊ࢝ ൌ ݊																			ൠ. (12) 

This assures that only the difference in dominance direction—the last column of ࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ—

is weighted by ࢝ࢊ. By setting ࡭ to the identity matrix (i.e., ࢝1 = ࢊ), one obtains the standard 

Euclidean norm. 

Taken together, the steps required to derive the generalized distance function can be 

summarized as follows: 

1. Normalize all attribute values to the same range (for example between 0 and 10). 

2. Determine the weights ࢃ to calculate the matrix ࡮∗, containing the n – 1 

indifference vectors and the dominance vector. 

3. Normalize the indifference vectors and the dominance vector in ࡮∗ to the 

Euclidean length of 1 to obtain ࡮. 

4. Express the distance vector ࢊ࢔ࢇ࢚࢙࢚࢙࢏ࢊ in terms of the introduced basis ࡮ to get the 

transformed distance vector ࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ. 

5. To obtain ࡰଶ, determine the Euclidean length of ࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ and place a higher 

weight on distance in the dominance direction relative to the indifference direction. 

In Section 5, we provide an example in which we apply the generalized distance 

function to calculate the distances between three notebooks, each described by three 

attributes, and compare the obtained distances to previous distance functions. 
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5. Example 

 Let us consider the following example. Imagine you want to buy a new notebook 

computer to conduct your research. The notebook should be fast enough to run your 

simulations smoothly and the battery life should cover your daily commuting time by train. 

During your internet search you came across notebooks with processors up to 5 GHz and 

batteries that last for 6 h, and you excluded notebooks with display sizes larger than 30 in. 

Table 2 shows the three notebooks you ended up with. 

INSERT TABLE 2 HERE. 

Let us further assume that you care about having a high processor speed (PS) as much 

as a long battery life (BL), but you care less about having a large display size (DS). This 

might be represented by the following importance weights: wPS = 0.4, wBL = 0.4, and wDS = 

0.2. Therefore, you clearly prefer Notebooks A and B over Notebook C since they dominate 

Notebook C. The choice between Notebooks A and B seems to be harder. Going back and 

forth between the two notebooks you realize that both have some advantages and 

disadvantages. You deem the two notebooks equally attractive. That is, you are indifferent 

about Notebooks A and B. Because Notebook A dominates Notebook C and competes with 

Notebook B, the perceived distance between Notebooks A and C should be larger than 

between Notebooks A and B. However, if we determined the standard Euclidean distance in 

the rescaled attribute space, the two distances would be the same, as illustrated below.  

To apply the generalized distance function to the notebooks, we start by normalizing 

the ranges of all three attributes (n = 3) to equal ranges, for instance, between 0 and 10 

according to Equation 1. Now, the notebooks can be represented as points in the multi-

attribute space, where Notebook A = (5, 4, 3), Notebook B = (3, 5, 5), and Notebook C = (3, 

2, 2). Next, we determine the basis ࡮∗ containing the two indifference vectors and the 

dominance vector. The first indifference vector ࢜࢏૚ is given by 
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૚࢜࢏ ൌ ൦

െ௪ాై

௪ౌ౏

			1

			0

൪ ൌ ቎

െ1

			1

			0

቏, 

the second indifference vector ࢜࢏૛ is given by 

૛࢜࢏ ൌ ൦

െ௪ీ౏

௪ౌ౏

			0

			1

൪ ൌ ቎

െ0.5

			0

			1

቏, 

and the dominance vector ࢜ࢊ is given by 

࢜ࢊ ൌ

ۏ
ێ
ێ
ۍ
1
௪ాై

௪ౌ౏
௪ీ౏

௪ౌ౏ے
ۑ
ۑ
ې
ൌ ቎

1

1

0.5

቏. 

This leads to the basis ࡮∗: 

∗࡮ ൌ ൥
െ1 െ0.5 1
			1 			0 1
			0 			1 0.5

൩. 

Next, we normalize the indifference vectors and the dominance vector to the length of 

1 by dividing them by their Euclidean lengths, where 

భ࢜࢏݈ ൌ ඥሺെ1ሻଶ ൅ 1ଶ ൅ 0 ൌ √2, 

మ࢜࢏݈ ൌ ඥሺെ0.5ሻଶ ൅ 0 ൅ 1ଶ ൌ √1.25, 

and 

࢜ࢊ݈ ൌ √1ଶ ൅ 1ଶ ൅ 0.5ଶ ൌ √2.25. 

Then the standardized basis ࡮ is  

࡮ ൌ

ۏ
ێ
ێ
ێ
ۍ
ିଵ

√ଶ

ି଴.ହ

√ଵ.ଶହ

ଵ

√ଶ.ଶହ

			 ଵ
√ଶ

			0 ଵ

√ଶ.ଶହ

			0 		 ଵ

√ଵ.ଶହ

଴.ହ

√ଶ.ଶହے
ۑ
ۑ
ۑ
ې

. 

To express the distance vector ࢊ࢔ࢇ࢚࢙࢚࢙࢏ࢊ between the notebooks in terms of the 

indifference vector and the dominance vector, we next make a change of basis. The standard 

distance vectors between Notebooks A and C, and Notebooks A and B are  
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࡯࡭ࢊ࢔ࢇ࢚࢙࢚࢙࢏ࢊ ൌ ൥
2
2
1
൩  

and  

࡮࡭ࢊ࢔ࢇ࢚࢙࢚࢙࢏ࢊ ൌ ൥
			2
െ1
െ2

൩. 

To yield the transformed distance vector we apply Equation 10, so that 

࡯࡭࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ ൌ

ۏ
ێ
ێ
ێ
ۍ
ିଵ

√ଶ

ି଴.ହ

√ଵ.ଶହ

ଵ

√ଶ.ହ

			 ଵ
√ଶ

			0 ଵ

√ଶ.ହ

			0 		 ଵ

√ଵ.ଶହ

଴.ହ

√ଶ.ହے
ۑ
ۑ
ۑ
ې
ିଵ

∙ ൥
2
2
1
൩ ൌ ൥

0
0
3
൩  

and  

࡮࡭࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ ൌ

ۏ
ێ
ێ
ێ
ۍ
ିଵ

√ଶ

ି଴.ହ

√ଵ.ଶହ

ଵ

√ଶ.ହ

			 ଵ
√ଶ

			0 ଵ

√ଶ.ହ

			0 		 ଵ

√ଵ.ଶହ

଴.ହ

√ଶ.ହے
ۑ
ۑ
ۑ
ې
ିଵ

∙ ൥
			2
െ1
െ2

൩ ൌ ቎
െ√2
െ√5
			0

቏. 

The distance ࡯࡭࢙࢔ࢇ࢚࢚࢙࢘࢏ࢊ indicates that to reach Point A from Point C, we need to 

move three units along the dominance vector and none along the two indifference vectors. To 

reach Point A from Point B, we need to move by െ√2 and െ√5 units along the first and 

second indifference vectors, and no units in the dominance direction, which means that we are 

moving on the indifference plane. 

By setting ࢝10 = ࢊ, we assume that distance in the dominance direction is perceived 

10 times more strongly than in the indifference direction, resulting in  

࡭ ൌ	 ൥
1 0 0
0 1 0
0 0 10

൩.  

Finally, we can calculate the Euclidean distances	ࡰ૛
 between Options A and C and ࡯࡭

૛ࡰ
૛ࡰ between Options A and B by applying Equation 11. We obtain ࡮࡭

࡯࡭ ൌ 90 and 

૛ࡰ
࡮࡭ ൌ 7. If we had treated distances in the indifference and dominance directions equally 

(i.e., by setting ࡭ to identity), the distance between Options A and C would have decreased to 
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૛ࡰ
࡯࡭ ൌ 9, while ࡰ૛

 would have remained 7, giving the impression that Options B and C ࡮࡭

have similar distances to Option A. Note that if we also had ignored the weights given to the 

attributes and had determined the Euclidean distance in the rescaled attribute space, both 

Notebook C and Notebook B would have had the same distance to Notebook A of 

૛ࡰ
.࢒ࢉ࢛ࡱ	࡯࡭ ൌ 9 (ൌ 2ଶ ൅ 2ଶ ൅ 1ଶ) and ࡰ૛

.࢒ࢉ࢛ࡱ	࡮࡭ ൌ 9 (ൌ 2ଶ ൅ ሺെ1ሻଶ ൅ ሺെ2ሻଶ), incorrectly 

suggesting that Notebooks A and C are perceived as being as similar to each other as 

Notebooks A and B are to each other.  

6. Discussion 

People often evaluate options relative to each other (e.g., Huber et al. 1982; Rieskamp, 

et al., 2006; Simonson & Tversky, 1992; Slovic & Tversky, 1974). Therefore, many cognitive 

models of decision making take the similarity between options into account (e.g., Roe et al., 

2001; Rooderkerk, et al., 2011). The similarity between options is generally expressed as a 

decreasing function of their distance to each other (Shepard, 1987). Past research has followed 

different approaches to define the distance between options for preferential decision-making 

problems. These approaches have tackled different important aspects of preferential choice, 

such as the different preferential relationships between options, the varying importance of 

different attributes, and the applicability to choice problems with more than two attributes. 

However, none of the suggested approaches has addressed all of these requirements 

simultaneously (cf. Hotaling et al. 2010; Huber et al., 1982; Nosofosky, 1986; Rooderkerk et 

al., 2011; Wedell, 1991). Therefore, we developed a new generalized distance function for 

preferential choices that distinguishes the preferential relationship between options in the 

multi-attribute space, assigns different weights depending on the type of distance, and 

accounts for the individual degree of importance of different attributes. We compared the 

proposed function to other alternative approaches, but did not test them empirically against 

each other in terms of a tradeoff of its predictive accuracy compared to its complexity (e.g., 

Forster, 2000), as this was not the goal of the present paper. 
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There are several assumptions that we made to define the generalized distance 

function. First, we followed a specific approach to express the importance of different 

attributes. In particular, we assumed that people can express the importance of one attribute 

relative to another attribute by linear exchange ratios between the attributes. This implies that 

a disadvantage on one unit for one attribute can always be compensated for by a specific 

number of units of an advantage on the other attribute. However, this assumption might 

sometimes be violated. For instance, a decision maker might require a minimum battery life 

for her new notebook. In this case she would do better to apply nonlinear exchange ratios. 

Here, for instance, the closer a value of an attribute gets to a decision maker’s required 

minimum value (e.g., minimum hours of battery life), the more units of the other attributes are 

required to compensate a further decrease of the first attribute. In the extreme, the exchange 

ratio becomes indefinitely small or big, which can be captured by asymptotic indifference 

curves. This idea is supported by findings from Chernev (2004). He suggested that due to 

people’s extremeness aversion, they prefer options that are closer to the so-called “attribute-

balance line,” which he defined as the line connecting “all potential options with identical 

values on both attributes” (p. 251). This can be captured by a convex indifference curve. 

However, for simplicity we have applied linear exchange ratios to express the importance of 

different attributes. It remains to be tested whether nonlinear exchange ratios lead to a 

substantial advantage in describing the psychological distance for multi-attribute options in 

preferential decision making and ultimately to better prediction of preferential choices.  

Second, when we normalized the indifference vectors and the dominance vector to 

equal lengths of 1, and later when we calculated the length of the transformed distance 

vectors, we assumed the 2-norm distance (i.e., the Euclidean distance). Although 2-norm 

distance is widely applied for preferential choices (e.g., Hotaling et al., 2010; Rooderkerk et 

al. 2011), the 1-norm (i.e., the city block) distance has been frequently applied in 

categorization research for stimuli with highly separable dimensions (e.g., Nosofsky & Zaki, 
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2002). For example, one hypothesis following from this is that with an increasing number of 

attributes describing a preferential choice option, the dimensions become less separable and 

the 2-norm can outperform the 1-norm. This can also be tested—similarly to the Minkowski r 

metric—by introducing the norm as a free parameter r to see whether the 1-norm (i.e., r = 1) 

or the 2-norm (i.e., r = 2) leads to more accurate predictions of preferential choices. 

The approach we have taken to define a generalized distance function shares some 

aspects with the multidimensional scaling approach (MDS; Kruskal, 1964a, 1964b). MDS is 

often applied in marketing to optimally visualize the perceived similarity between options in 

the attribute space (for a review see Carroll & Arabie, 1980). MDS also allows the definition 

of a new attribute space to express the similarities between options. However, our approach 

takes the specific preferential relationship between options into account, is applied to the 

perception and decision of a single individual. 

Besides fulfilling its general purpose of measuring the perceived distance between 

preferential choice options, the generalized distance function is particularly useful for 

studying so-called context effects (Huber et al., 1982; Huber & Puto, 1983; Simonson & 

Tversky, 1992; Slovic & Tversky, 1974). Context effects refer to choice situations in which 

preferential choice options are evaluated relative to each other. According to the similarity 

effect—one context effect—similar choice options compete with each other more strongly 

than dissimilar options. Therefore adding an option that is similar to one but dissimilar to 

another option increases the preference for the dissimilar relative to the similar option 

(Tversky, 1972a, 1972b). To better understand the similarity effect it is therefore important to 

determine how similar or dissimilar two options are perceived to be. Whereas two options 

might be perceived as similar for one person, for another person one of the two options might 

dominate the other. This can be captured by the generalized distance function we proposed, 

because it accounts for individual differences and distinguishes the preferential relationship 

between options. Research on context effects has focused mainly on options described by two 
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attributes. One reason is that with an increasing number of attributes, it gets harder to tell 

dominated options apart from indifferent options. Because the generalized distance function 

allows for multi-attribute options, it can be applied to examine context effects in the multi-

attribute space. Furthermore, the generalized distance function can be applied to study 

individual differences, since it allows the indifference vectors to rotate through the multi-

attribute space. From their directions one can infer the individuals exchange ratios between 

the attributes. Because of this property the generalized distance function can be incorporated 

into choice models that try to estimate the subjective importance people give to different 

attributes. 

 

In sum, people often evaluate options relative to each other. Therefore, to explain how 

people make preferential choices it is important to define how similar options are to each 

other. For defining similarity we proposed a generalized distance function. This function 

simultaneously accounts for several requirements previous approaches have addressed in 

isolation. This allows researchers to study preferential choices and context effects in more 

depth and to investigate individual differences in the multi-attribute space. Ultimately, this 

should lead to advancement of decision theory by taking the similarity between choice options 

into account for providing better explanations and predictions of human preferential choices.
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Table 1 

Comparison of Distance Functions 

Approach  Preferential 

relationship 

between 

options 

Higher 

weight on 

distances in 

dominance 

relative to 

indifference 

direction 

Importance 

weighting of 

attributes 

Multiple 

attributes 

Huber et al. (1982)   – – 

Nosofosky (1986) – –   

Wedell (1991) – –  – 

Hotaling et al. (2010)   – – 

Rooderkerk et al. (2011)  –  – 

Generalized distance function     
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Table 2 

Attribute Values of Three Different Notebook Computers 

Attribute Notebook A Notebook B Notebook C 

Processor speed in gigahertz [1–5]  3.0  2.2  2.2 

Battery life in hours [2–6]  3.6  4.0  2.8 

Display size in inches [4–30]  11.8  17.0  9.2 

a The numbers in brackets indicate the possible value range.
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Figure Captions. 

Figure 1. The Euclidean distance (A) and the psychological distance (B) for the same set of 

notebook computers, labeled A to C. (A) The two options B and C have the same Euclidean 

distance but not the same psychological distance as Option A. The psychological distance of 

Option C to Option A and Option B is relatively large, because Option C is dominated by the 

other two options. A person giving higher importance to the attribute “battery life” as 

compared to the attribute “processor speed” will be indifferent only about a choice between 

Notebook A and Notebook B′ and not between Option A and Option B, resulting in a rotated 

indifference vector (see also Figure 2). (B) The psychological space is stretched in dominance 

direction, whereas distance in the indifference direction is the same as in (A). 

Figure 2. Individual preferences in a two-attribute space illustrated by an individual 

indifference vector and an orthogonal dominance vector. The solid indifference and 

dominance vectors indicate a person who weights the two attributes “processor speed” and 

“battery life” equally, whereas the dashed indifference and dominance vectors indicate a 

person giving a higher weight to either processor speed (iv′ and dv′) or battery life (iv″ and 

dv″).  



56     DISTANCE FUNCTION FOR MULTI-ATTRIBUTE DECISION MAKING      
 

  

A

BC

B'

‐
A
tt
ri
b
u
te
 2
: 
B
at
te
ry
 L
if
e
   
   
   
   
  +

‐ Attribute 1: Processor Speed +

=    

dominance vector indifference vector

A

C

A

B

‐
A
tt
ri
b
u
te
 2
: 
B
at
te
ry
 L
if
e
   
   
   
   
  +

‐ Attribute 1: Processor Speed +

dominance vector indifference vector

B



DISTANCE FUNCTION FOR MULTI-ATTRIBUTE DECISION MAKING     57 
 
 

 

 

‐
A
tt
ri
b
u
te
 2
: 
B
at
te
ry
 L
if
e

+

‐ Attribute 1: Processor Speed +



58     MAKING MDFT TESTABLE 
 

 

 

Rigorously Testing Multialternative Decision Field Theory Against Random Utility Models 

 

Nicolas A. J. Berkowitsch, Benjamin Scheibehenne, and Jörg Rieskamp 

University of Basel, Department of Psychology, Switzerland 

 

 

 

 

 

 

 

Author Note.  We would like to thank Jerome Busemeyer and Max Matthäus for valuable 

comments, Talitha Weiss for help with the programming, and Laura Wiles and Anita Todd for 

editing the manuscript. This research was supported by a research grant of the Swiss National 

Science Foundation (No. 100014_130149). Correspondence concerning this article should be 

addressed to Nicolas A. J. Berkowitsch, Department of Psychology, University of Basel, 

Missionsstrasse 62a, 4055 Basel, Switzerland. Tel: +41 61 267 0562. E-mail: 

nicolas.berkowitsch@unibas.ch 

 

  



  MAKING MDFT TESTABLE     59 
 

 

Abstract 

Cognitive models of decision making aim to explain the process underlying observed choices. 

Here, we test a sequential sampling model of decision making, Multialternative Decision 

Field Theory (MDFT; Roe, Busemeyer, & Townsend, 2001) on empirical grounds and 

compare it against two established random utility models of choice, the probit and the logit 

model. Using a within-subject experimental design, participants in two studies repeatedly 

choose among sets of options (consumer products) described on several attributes. The results 

of Study 1 show that all models predicted participants’ choices equally well. In Study 2, 

where the choice sets were explicitly designed to distinguish the models, MDFT had an 

advantage in predicting the observed choices. Study 2 further revealed the occurrence of 

multiple context effects within single participants, indicating an interdependent evaluation of 

choice options and correlations between different context effects. In sum, the results indicate 

that sequential sampling models can provide relevant insights into the cognitive process 

underlying preferential choices and thus can lead to better choice predictions.  

 

Keywords: preferences, process models, MDFT, random utility models, context effects, 

Bayesian statistics 
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Testing Multialternative Decision Field Theory Rigorously Against Random Utility 

Models 

Recently, cognitive models of decision making aiming for a better explanation of 

human behavior by describing the processes underlying observed choices have received 

increasing attention. In contrast to this, many existing models of decision making do not 

account for cognitive processes but rather focus on just predicting observable outcomes. 

Surprisingly, so far, most comparisons between these outcome-oriented, static models against 

cognitive process models have been made on theoretical grounds and rigorous tests of these 

models against each other have rarely been conducted on empirical grounds. One reason for 

this lack of empirical comparisons in the decision-making literature may be the difficulty of 

estimating the free parameters of many cognitive process models. Whether these models 

provide a feasible alternative thus remains somewhat unclear. Here, we propose a testable 

version of Multialternative Decision Field Theory (MDFT, Roe, Busemeyer, & Townsend, 

2001), a prominent cognitive process model of choice, and compare it on empirical grounds to 

two established and widely used random utility models (RUMs) of choice that make no 

cognitive process assumptions but merely aim to predict decision outcomes. The main goal of 

the present work is to provide a rigorous empirical test of MDFT against the standard RUMs 

and illustrate people’s interdependent evaluations of preferential choice options.  

When trying to predict the outcome of a decision, one common approach relies on the 

theoretical framework of expected utility (von Neumann & Morgenstern, 1947). Provided that 

people's preferential choices obey certain choice axioms, this framework allows constructing 

a utility function such that their choices represent expected utility maximization. Due to this 

axiomatic approach, expected utility theories make deterministic predictions and cannot 

account for the probabilistic character of human choice (e.g., Mosteller & Nogee, 1951; 

Rieskamp, 2008). To account for randomness in people’s choices, expected utility theory has 

been extended with an explicit error theory, leading to RUMs. Although RUMs do not aim for 
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a description of the underlying cognitive processes that lead to the observable decision 

outcomes, they allow predicting the probability with which options are chosen (e.g., 

McFadden, 2001; Train, 2003). Standard RUMs assume that options are evaluated 

independently, such that the utility of any single option does not depend on other available 

options in the choice set.  

Perhaps the two most prominent and widely used RUMs are the (multinomial) logit 

and probit models (e.g., Daganzo, 1980; Hausman & Wiese, 1978; Luce, 1959; McFadden, 

1973; Thurstone, 1927). Both models have a long success record and are frequently applied in 

economics, psychology, consumer research, and related fields, including the domains of travel 

behavior (e.g., Adamowicz, Louviere, & Williams, 1994; Hensher, 1994; Train, 1978; 

Wardman, 1988), environmental behavior (e.g., Hanley, Wright, & Adamowicz, 1998; 

Roberts, Boyer, & Lusk, 2008), political choice behavior (e.g., Bowler, Karp, & Donovan, 

2010; Karp, 2009; Nownes, 1992), consumer choices (e.g., Green & Srinivasan, 1978, 1990), 

or food choices (e.g., Gil & Sánchez, 1997; Loureiro & Umberger, 2005, 2007). For example, 

using probit models, Ryan and Farrar (2000) analyzed preferences in health care (e.g., 

treatment in a local clinic vs. treatment in a hospital) and Phillips, Maddala, and Johnson 

(2002) measured preferences for different HIV tests. Further, Loureiro and Umberger (2007) 

analyzed the importance U.S. consumers assign to the country-of-origin labeling and 

traceability of beef, and Koistinen et al. (2013) investigated the impact of fat content and 

carbon footprint information on the relative preferences of Finns for minced meat—both 

using logit models. Presumably, the widespread use of these models is largely due to their 

ease of implementation and estimation (Train, 2003). 

In contrast to these outcome-oriented models, many cognitive approaches to decision 

making aim for a description of the processes that underlie observable choices (e.g., 

Busemeyer & Diederich, 2002; Lewandowsky & Farrell, 2011). Within this category, 

sequential sampling models represent a particularly promising approach (e.g., Busemeyer & 
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Townsend, 1993; Scheibehenne, Rieskamp, & Gonzalez-Vallejo, 2009; Usher & McClelland, 

2004). These models have a long tradition in psychology, explaining for instance, memory 

and perception processes (e.g., Ratcliff, 1978; Townsend & Ashby, 1983; Vickers, 1970). 

Sequential sampling models of preferential choice often assume that people accumulate 

information or evidence about the available options over time and that a choice is made once 

the accumulated evidence passes a decision threshold. One sequential sampling model that 

has been suggested as a powerful theory for modeling preferential choices is MDFT (Roe et 

al., 2001). MDFT aims to explain how preferences are formed and how they evolve over time. 

The model assumes that at any point in time during the deliberation process a preference is 

formed for each available option until the accumulated evidence of one option reaches a 

predefined decision threshold. Each temporary preference state represents the integration of 

all previous states. The preferences are formed based on an attention-switching process that 

assumes attention between the attributes of the options (e.g., the price or the quality of 

consumer products) switches from one point in time to the next in an all-or-nothing manner. 

The integration of all previous preference states is subject to a decay function that accounts 

for imperfect preference recollection such that parts of the previous preference states are lost 

during the integration (Johnson & Busemeyer, 2010). MDFT further assumes that at each 

point in time options are evaluated relative to each other by comparing the attribute values. 

Finally, the theory assumes that options inhibit each other as an increasing function of their 

similarity, related to the concept of lateral inhibition (McClelland & Rumelhart, 1981). That 

is, closer (i.e., more similar) options inhibit each other more strongly than more distant 

options.  

Besides having the ability to advance the theoretical understanding of cognitive 

processes, MDFT also promises a higher predictive accuracy, because it takes situational 

aspects into account such as time pressure, cognitive load, or similarities between options that 

RUMs ignore (e.g., Diederich, 2010; Pettibone, 2012; Roe et al., 2001). Such a cognitive and 
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process-driven approach has often been called for in the choice literature (e.g., Chandukala, 

Kim, Otter, Rossi, & Allenby, 2007; Otter et al. 2008; Reutskaja, Nagel, Camerer, & Rangel, 

2011). Although promising, complex cognitive models with several free parameters such as 

MDFT are inherently more flexible in fitting any observed data compared to more 

parsimonious RUMs such as the logit and probit models. Therefore, the question arises 

whether sequential sampling models such as MDFT still yield an increase in predictive 

accuracy when model complexity is taken into account.  

Past research indicated that MDFT can explain a number of systematic violations of 

standard RUMs based on theoretical grounds (e.g., Busemeyer, Barkan, Mehta, & Chaturvedi, 

2007; Rieskamp, Busemeyer, & Mellers, 2006). However, rigorous comparisons of these 

models on empirical grounds are lacking. Thus, it is an open empirical question to what extent 

the increased model complexity of MDFT actually yields improved predictive accuracy as 

compared to the more parsimonious RUMs. An empirical test will also clarify whether the 

frequent application of RUMs in many domains is justified. Such a test requires that MDFT’s 

free parameters can be estimated from empirical data. Estimating a model using empirical 

data differs qualitatively from illustrating specific predictions from a set of given parameter 

values. Surprisingly, to our knowledge, despite MDFT’s prominence, empirical studies 

designed to estimate the model’s parameters in empirical studies are lacking. Presumably, this 

is because in its original form, the choice probabilities that MDFT predicts are not analytically 

specified but need to be derived from time-consuming process simulations. Similarly, Otter et 

al. (2008, p. 259) pointed out that due to “specification issues and computational challenges” 

the estimation process of MDFT on the basis of empirical data is difficult (see also Soltani, 

De Martino, & Camerer, 2012). 

In the following, we meet this challenge by providing a version of MDFT that can be 

applied to observed choice data. Based on this, we describe an empirical study in which we 

tested and compared MDFT against two of the presumably most prevalent RUMs in the 
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choice literature, the logit and the probit model. We tested the models in choice situations in 

which participants repeatedly chose consumer products out of a set of three options (Study 1). 

In Study 2 we tested and compared the models in choice situations that entailed so-called 

context effects (described in detail below), which presumably allow MDFT to perform in its 

highest gear. We provide a detailed description of MDFT and how to estimate its parameters 

based on empirical data. In the next section we provide a specification of the logit and probit 

models.  

The Logit and Probit Models 

The logit and probit models both assume that options are compared based on their 

respective subjective utilities and that the option with the highest utility is most likely chosen. 

The two models differ in their error theories, which lead to differences in the options’ utilities. 

For a single decision maker, the utility of an option i out of a set of J options is defined as 

iii εVU   (1) 

where Vi indicates the subjective value of that option and the error term εi represents a random 

variable with ɛ = [ɛ1, … ɛi,… ɛJ]. The logit model assumes that the error ε is extreme value 

distributed whereas the probit model assumes normally distributed errors (Train, 2003). For 

both models, the subjective value Vi is the product of a vector β that contains the weights (i.e., 

the importance) given to the m attributes of the option, and the value vector Xi with X = [X1, 

… Xi, … XJ] containing the attribute values of option i 

ii βXV  . (2) 

The probability p of choosing option i is defined as 

);(yprobabilit ijεVεVp jjiii     

 
ε jjii dεεfijεVεVI )();(  (3) 

where )(I  is an indicator function (see Train, 2003 for details). 
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For the logit model, but not the probit model, a closed form representation of this 

integral exists: 



 J

ij

V

V

i
j

i

p
e

e
.  (4) 

Thus, the logit model has m free parameters, one for each attribute weight. To make 

the probit model mathematically identifiable, different parameterizations exist (Train, 2003). 

Here, we chose to fix one of the weight parameters, which leaves the probit model with m – 1 

attribute weight parameters and one free parameter v that specifies the variance of the normal 

distributed error term ε. 

Multialternative Decision Field Theory 

In MDFT, the preference for each option at any point in time t is captured by a 

preference vector Pt referred to as a preference state containing the preferences of all J 

options. Pt integrates all previous preference states and adds the current evaluation or valence 

Vt of the options according to the following updating process: 

ttt VSPP  1 .  (5) 

The process described by Equation 5 continues until one option reaches a predefined 

decision threshold (a so-called internal stopping rule) or when the decision time is up 

(external stopping rule). Here, S is a feedback matrix that reflects to what extent the previous 

preference states for the given options are memorized (diagonal elements) and how the 

options influence each other depending on their distances in the attribute space (off-diagonal 

elements). It is defined as 

)exp(δ 2
12 DS    (6) 

where δ is an identity matrix, the decay parameter φ2 determines the diagonal elements of S, 

and the sensitivity parameter φ1 determines the similarity as a function of the distance D 

between the options in the attribute space (cf. Hotaling, Busemeyer, & Li, 2010). MDFT 
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assumes that people evaluate each option relative to each other option; that is, people compare 

an option’s attribute value with the corresponding value of the other option on that attribute. 

This process leads to interdependent evaluations of choice options. This process is reflected in 

the valence vector Vt that can be decomposed into three matrices and an error component 

εCMWV tt   (7) 

where C is a contrast matrix to compute the advantages or disadvantages of each option 

relative to the alternative options (see Busemeyer & Diederich, 2002 for the general formula 

of C). The value matrix M contains the attribute values of each option (comparable to the 

value matrix X in the logit and probit models), and the weight vector Wt represents the 

attention or importance weights for each attribute. Over time, each attribute informs the 

valence formation proportional to its importance (comparable to the weight vector β in the 

logit and probit models). If the updating process is omitted, the probit model becomes a 

special case of MDFT; that is, it is nested within MDFT (see Supplemental Materials for the 

mathematical details). For the full description of how to determine MDFT’s choice 

probabilities see also Appendix B of Roe et al. (2001). 

Estimating MDFT 

To estimate the free parameters of MDFT based on observed choice data one must 

solve Equation 5. Unless certain auxiliary assumptions are imposed, this requires laborious 

numerical integration techniques as analytic solutions are not readily available (see also 

Trueblood, Brown, & Heathcode, 2013; Tsetsos, Usher, & Chater, 2010). Furthermore, as the 

predictions of MDFT depend on the similarities between the options in the attribute space, a 

distance function must be specified (Hotaling et al., 2010; Tsetsos et al., 2010). To address 

these requirements, we made the simplifying assumption that decision makers only decide 

once the preference state for the different options stabilizes; that is, converges to a specific 

value. Therefore we set t → ∞.1 Although this approach sacrifices MDFT’s ability to make 

predictions about decision time, no decision threshold or maximum decision time needs to be 
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specified and an analytical solution to calculate the choice probabilities exists (see Appendix 

A for the mathematical derivations). 

As mentioned above, MDFT assumes that preferences partly depend on the similarity 

of the available options. To determine the effect of these similarities, a function is needed that 

quantifies these influences. Existing distance functions (e.g., Hotaling et al., 2010) assume 

equal weighting of the attributes or consider a maximum of only two attributes. To allow for 

more than two attributes and flexible attribute weights, we included a generalized distance 

function that describes the distance between any two options in the multidimensional space 

with indifference vector(s) and a dominance vector (Berkowitsch, Scheibehenne, Matthäus, & 

Rieskamp, 2013). The indifference vectors specify how much importance a person gives to 

the different attributes, and the dominance vector specifies the preferential relationship 

between the options; that is, whether an option dominates another option or not (Hotaling et 

al., 2010; Tversky, Sattah, & Slovic, 1988; Wedell, 1991). The underlying idea here is that the 

psychological distance decreases more slowly when moving from one option to another along 

the line of preferential indifference (i.e., the indifference direction), than along the line of 

preferential dominance (i.e., the dominance direction). To account for different weighting of 

the dominance and indifference directions, only the dominance vector is multiplied by a 

weight wd > 1, as suggested by Huber, Payne, and Puto (1982) and also by Hotaling et al. 

(2010; for more details on the generalized distance function, see Appendix B and Berkowitsch 

et al., 2013). 

Taken together, this specification of MDFT requires the estimation of m – 1 attention 

weight parameters for each product attribute, the variance parameter v of the normally 

distributed error component, the rate parameter φ1 at which similarity declines with distance 

between the options, and the decay parameter φ2 specifying how quickly the preference state 

decays during the updating process. In Study 1 the dominance parameter wd was not 

estimated because in this study dominated options were eliminated from the choice sets. In 
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contrast, in Study 2 in which dominated options were part of the choice sets, the parameter 

was estimated (see Appendix C for the constraints on the parameters). Implemented this way, 

for example, a choice between three options with five attributes requires the estimation of 

seven (eight with wd) parameters, as compared to five free parameters for both the logit and 

the probit model. 

Study 1: Comparing MDFT to RUMs 

Study 1 aims to test whether the model parameters of MDFT can be estimated from 

observed choice data when certain simplifying assumptions are met (see above). This 

requirement is necessary for comparing the predictive accuracy of MDFT to that of alternative 

choice models such as RUMs on empirical grounds, which was another goal of Study 1. 

Toward these goals, we conducted two consecutive experiments in which participants 

repeatedly chose their favorite digital camera out of a set of three available options. In the first 

calibration experiment, we compared how well the models could describe participants’ choice 

behavior. In the second generalization experiment, we used the results from the calibration 

experiment to create new choice sets for which MDFT and the RUMs made maximally 

different predictions. This generalization test allows for a rigorous comparison between the 

two models that takes model complexity into account without the need to re-estimate the 

models' parameters (Busemeyer & Wang, 2000). 

Method 

Participants. Thirty university students (66% female, mean age 24 years) participated 

in each of the two experiments. The average participant took about 13 and 15 min, 

respectively, to complete the experiments and received a show-up fee of 3 Swiss francs (3 

USD; calibration experiment) and 10 Swiss francs (11 USD; generalization experiment). 

 Procedure and design. To incentivize participants' choices, all participants were 

entered into a lottery where they had a chance to win one of the cameras they chose in the 

experiment (or a very similar one). Each camera was described by five attributes: megapixels 
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(4, 6, or 8), optical zoom (3×, 5×, or 10×), picture quality (good vs. very good), screen size (2 

vs. 3 inch) and availability of optical image stabilizer (yes vs. no). This led to a total of 72 

distinct cameras that were presented in 72 different randomized sets of three cameras each. To 

create the choice sets for both the calibration and the generalization experiment, we first 

created all possible 357,840 (i.e., 72×71×70) sets of three cameras. Next we deleted all sets 

with dominant options. From the remaining pool we randomly selected 72 choice triplets. 

Based on participants’ choices in the calibration experiment, we estimated the models’ 

parameters for each individual participant. Based on these parameters, we selected 72 new 

choice triplets for which the models made maximally different predictions. To select this 

generalization set, we generated predictions from each model for 1,000 randomly sampled 

choice triplets. Model predictions were generated using bootstrap methods in which we 

randomly sampled (with replacement) sets of parameters from the participants in the 

calibration experiment (see Busemeyer & Wang, 2000). Triplets for the generalization 

experiment were selected by finding those 72 triplets for which the average city block 

distance between the models’ predictions was highest both between MDFT and the logit 

model and between MDFT and the probit model. The city block distance sums the absolute 

difference of the predicted mean probability between the models for each option, thus 

providing a single distance value for each choice triplet (Attneave, 1950). 

Model comparison. As a first comparison step in the calibration experiment, we 

estimated the free parameters of all models using maximum likelihood methods. The search 

space for the parameter values was restricted within a reasonable range (see Appendix C for 

details of the range for each parameter). To take the models’ complexities into account we 

determined the Bayesian information criterion (BIC) for each model (Raftery, 1995). We used 

the difference in BIC values to determine the relative posterior probability that a model 

generated the data for each individual participant. These probabilities were scaled so that they 

added up to 1 across models (Raftery, 1995). Because MDFT has more free parameters, it 
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gets penalized more strongly than either the logit or the probit model. Additionally, we tested 

the models against a baseline model assuming a random choice between the three options 

with a probability of 1/3. Naturally, any reasonable model is expected to out-compete the 

baseline model in predicting the observed choices. In the next step, we applied a 

generalization test to compare the accuracies of the models’ predictions for the generalization 

experiment that were based on the estimated models’ parameters from the calibration 

experiment (Busemeyer & Wang, 2000). 

Results 

 Descriptive results. To investigate the agreement between participants’ choices 

within each of the two experiments, we calculated the relative frequency of the most popular 

option within each of the 72 choice triplets. On average, 66% and 58% of the participants 

chose the same digital camera in each triplet in the calibration and generalization experiment, 

respectively. 

 Model comparison calibration experiment. The mean log-likelihood μLL (with μLL = 

0 indicating perfect fit) across all participants was highest for MDFT (μLL = -48.65), followed 

by the logit model (μLL = -50.00) and the probit model (μLL = -50.57), whereas the μLL of the 

baseline model was -79.10, illustrating that all three models made more accurate predictions 

than the baseline model. Comparisons of the log-likelihoods on an individual level indicated 

that 22 (73%) participants were best described by MDFT. The remaining eight (27%) 

participants were best described by the logit model and nobody was best described by the 

probit model. 

Figure 1 shows the results of the model comparison based on the BIC. Here, relative 

model probabilities were classified as weak (.33–.60), positive (.60–.91), strong (.91–.99), and 

very strong (> .99; adapted from Raftery, 1995, for three models). The figure illustrates that 

when taking the models’ complexities into account, the advantage of MDFT over the RUMs 
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diminishes: Now, 52% (25) of participants were best described by the logit model, followed 

by 8% best described by the probit model and 2% by MDFT. 

As an additional illustrative measure of absolute model fit, we examined the 

percentage of choices in which the option with the highest predicted probability was chosen 

by the participants. The percentages of correctly predicted choices were comparable across 

models (MDFT: 74%, logit: 73%, probit: 72%) and considerably higher than the baseline 

model (33%). 

The correlations between the estimated attribute weights across models indicate that 

all three models yield comparable attribute weights, rlogit,probit = .82 (SD = .38), rMDFT,probit = 

.79 (SD = .38), rMDFT,logit = .94 (SD = .17).2 This result indicates that all three models were 

able to identify the importance the participants gave to the different attributes (see the 

Supplemental Materials for the estimated ranges of the parameters). For instance, on average, 

the attribute of picture quality (w3) was identified as having the largest importance for digital 

cameras by all three models (Tables S1-S3).  

 Model comparison generalization experiment. As an initial measure of out-of-

sample accuracy, we analyzed how well each of the models predicted choices in the 

generalization experiment. For all but five choices the three models agreed in their prediction 

of what option would most likely be chosen. Therefore, the mere percentage of how often the 

most frequently chosen option was predicted correctly was quite similar (MDFT: 82%, probit: 

81%, logit: 75%). Nevertheless and decisively, the probabilities by which the models 

predicted the choices differed substantially. To take these differences into account we 

compared the models based on the mean log-likelihood of their probabilistic predictions. 

Here, MDFT (μLL = -6.81) and the probit model (μLL = -6.50) were most accurate, whereas 

the baseline (μLL = -9.79) and the logit model were least accurate (μLL = -11.99). Analyses on 

the basis of single choices indicated that MDFT and the probit model predicted people’s 

choices most accurately in 31 (43%) and 32 (44%) of the 72 choice triplets, respectively. A 
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closer look at the predictions for each triplet revealed that, on average, the choice probabilities 

predicted by the logit model were most extreme—resulting in either very accurate or very 

inaccurate predictions. For the five triplets where the three models made qualitatively 

different predictions, MDFT predicted participants’ choices most accurately, as indicated by 

the mean LL for these five options (μLL_MDFT = -10.61, μLL_probit = -14.29, μLL_logit = -16.44, 

and μLL_baseline = -16.09). 

Discussion of Study 1 

In Study 1 we outlined how MDFT could be estimated on the basis of empirical data 

and we tested it against two competing models in two consecutive choice experiments. In the 

first calibration experiment, MDFT provided a better fit to the observed choice data for most 

participants. However, when taking model complexity into account, the advantage of MDFT 

over the more parsimonious RUMs largely disappeared, suggesting that the advantage of 

MDFT was mainly due to its higher flexibility in fitting the data. The crucial second 

generalization experiment revealed that MDFT outperformed the logit model and rivaled the 

probit model, surpassing the latter for cases in which MDFT made qualitatively different 

predictions. Thus, when predicting preferential choices, MDFT was not necessarily better but 

also not worse than the RUMs in the context at hand. 

As outlined in the introduction, one advantage of MDFT over RUMs is that it can take 

systematic influences of the context and similarities between the available options into 

account. Previous research has identified a number of situations in which option evaluations 

systematically depended on the context of other available options (Huber et al., 1982; Huber 

& Puto, 1983; Simonson & Tversky, 1992; Slovic & Tversky, 1974). These findings violate 

the assumption that options are evaluated independently, sometimes referred to as the 

independence of irrelevant alternatives (IIA) principle (cf. Rieskamp et al., 2006). According 

to this principle, the ratio of the choice shares of any two options stays constant when another 

option is added or removed from the set of options (Luce, 1959). Systematic violations of the 
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IIA principle can be elicited by selectively adding options to an existing set of options (e.g., 

Huber et al., 1982; Huber & Puto, 1983; Tversky 1972a, 1972b). In contrast to RUMs, MDFT 

provides a cognitive explanation of when and how systematic violations of the IIA principle 

occur and in theory it can predict these violations. Thus, in a choice situation where 

systematic context effects are likely to occur, MDFT should outperform RUMs. 

Because of the way we created the choice sets in Study 1, we did not expect any 

systematic violations of the IIA principle. Thus, even though the experiment may resemble 

common choice situations in real life and in the lab, presumably it did not allow MDFT to 

perform in its highest gear. Therefore, the following study tested MDFT against RUMs for 

situations in which violations of the IIA principle were expected to occur frequently. 

Study 2: Comparing MDFT to RUMs Using Context Effects 

Three well-known context effects that systematically violate the IIA principle are the 

so-called attraction, compromise, and similarity effects (described in more detail below). 

There is a substantial body of research on these effects (for a review see Heath & Chatterjee, 

1995), yet so far, almost all empirical studies have focused on each of the single effect in 

isolation or used a between-subjects experimental design to elicit the effects; however, there 

are no theoretical reasons for this separation,. If these context effects are due to 

interdependent evaluations of choice options, multiple context effects should also occur for 

the same person. Indeed, using an inference and a perceptual task, Trueblood and colleagues 

reported empirical findings showing that all three context effects can occur within the same 

experimental design (Trueblood, 2012; Trueblood, Brown, Heathcote, & Busemeyer, 2013) 

and within a single person (Trueblood, Brown, & Heathcote, 2013). Similarly, Tsetsos, 

Chater, and Usher (2012) elicited the attraction and the similarity effect within individuals 

using a risky choice task. Therefore, it seems plausible that comparable effects could also 

occur for preferential choices, which is the domain in which context effects presumably have 

received most attention in the past. To find out, the present study aims to test whether all three 
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context effects can occur simultaneously for the same person in a preferential choice task. In 

the following, we describe the three context effects in more detail: 

The attraction effect refers to a choice situation in which adding an option dominated 

by one of the existing options increases the choice share of the dominating option (Huber et 

al., 1982; Huber & Puto, 1983). This effect additionally represents a violation of the so-called 

regularity principle, according to which the absolute choice share of an option can only stay 

constant or decrease when a new option is added to a set of options. Another well-

documented context effect is the compromise effect, which can occur when a third option is 

added to an existing set such that one of the original options appears as a compromise, thereby 

increasing its relative choice share (Simonson & Tversky, 1992; Tversky & Simonson 1993). 

Finally, the similarity effect is based on the observation that adding a choice option that is 

similar to one but not to the other option has been shown to increase the relative choice share 

of the dissimilar option, presumably because the similar options “compete” more strongly 

with each other (Tversky, 1972a; 1972b). 

Model Comparison 

In theory, MDFT can simultaneously account for all three of these context effects by 

incorporating different cognitive mechanisms given a specific set of parameter values (Roe et 

al., 2001). However, it is unclear whether this specific set of parameters is also suitable to 

accurately predict people’s preferential choices. In the present study we sought to test how 

well MDFT can predict empirical choice data when people’s preferential choices are affected 

by different context effects. Like in Study 1, the main question in this situation was again 

whether MDFT provides a better explanation of the data as compared to RUMs that cannot 

account for systematic context effects. Thus, we predicted that the advantage of MDFT over 

RUMs would increase as decision makers became more prone to context effects. 

To test the advantage of MDFT over RUMs in cases where multiple context effects 

occur within a single individual, we created choice sets that increased the chances of 
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observing attraction, compromise, and similarity effects within the same person. As outlined 

in detail below, we did this by systematically varying the position of choice options in the 

attribute space. We compared the models against each other based on BIC and cross-

validation (Browne, 2000; Stone, 1974). 

Method 

Participants. Forty-eight students (67% female, mean age 24 years) at the University 

of Basel participated in Study 2 in exchange for 25 Swiss francs (CHF). The study took 57 

min on average. 

Procedure and design. Participants repeatedly chose a consumer product described 

on two attributes. The study consisted of two consecutive sessions. The first session aimed to 

find pairs of options to which individuals were indifferent. In the second session, we 

systematically added new choice options to that initial pair to elicit different context effects 

within each participant. 

To identify indifference pairs in the first session, participants repeatedly filled in 

missing attribute values (e.g., price) so that two products (e.g., a heavier and a lighter racing 

bike) became equally attractive (Carmon & Simonson, 1998). Prior to this matching task, we 

provided participants with a short explanation of the attributes and the possible value range 

for each of the six products (see Figure 2 for an example of this task and Table 1 for a list of 

the utilized products and their attributes). With this matching procedure we created 108 pairs 

of options (i.e., 18 per product pair) to which each single participant was expected to be 

indifferent. We refer to these pairs as the "matched" options.  

The second session took place a few days later and involved a choice task that was 

similar to Study 1. For each participant, the previously matched Options A and B were 

combined with one new option that was carefully placed within the attribute space (see Figure 

3).3 We balanced the positions of the new options, such that participants were faced with six 

attraction, compromise, and similarity triplets for each matched pair. We refer to the matched 
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option expected to be chosen more frequently on theoretical grounds as the target. The 

remaining matched option is referred to as the target’s competitor. We balanced the choice 

triplets for each participant such that for half of the choice triplets the target was Option A 

(Figure 3a) and for the other half it was Option B (Figure 3b). 

For attraction triplets (BDA and DBA in Figure 3a and b, respectively) the dominated 

option was placed at a distance of about 10% from the target, orthogonal to the indifference 

line AB . For the compromise triplets (BAC and CBA in Figure 3a and b, respectively) the 

extreme option was placed along the indifference line such that the target had the same 

distance to the competitor and to the extreme option. We chose a distance of about 10% of 

AB in the indifferent direction between the competitor and the new similar option to create 

similarity triplets (SBA and BAS in Figure 3a and b, respectively). Due to rounding, half of 

the intended similarity choice triplets became attraction choice triplets (i.e., the added option 

did not lie on the indifference line) and were therefore excluded from the analysis, which 

reduced the statistical power to analyze the similarity effect. However, the design was still 

balanced in the sense that for half of the triplets Option A was the target, and for the other half 

Option B was the target. 

Using this balanced design, we compared the relative choice shares of the three 

options and subsequently tested for each participant whether adding a new option to the 

previously matched options influenced the relative choice share of the target (RST), defined 

as 

scompetitortargets

targets

NN

N
RST


  (8) 

where “N targets” indicates how often a participant chose the target option and “N 

competitors” indicates how often the competitor was chosen. The measure was calculated 

separately for the attraction, compromise, and similarity triplets. Due to the way the choice 

sets were created, the target and the competitor will be chosen about equally often if no 
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context effect occurs (i.e., RST = .50). An RST value larger than .50 indicates an increase of 

the target choice share relative to that of the competitor, and hence a systematic context effect. 

The order of the products as well as the order of the choice triplets within products was 

randomized.  

Results 

Occurrence of context effects. Did adding the third option to the previously matched 

pairs change people's preferences? Figure 4 shows a histogram of the choice shares of the 

target, the competitor, and the added option, averaged across all participants and products, 

separately for the attraction, the compromise, and the similarity triplets. As can be seen from 

the figure, on a descriptive level the RST of all three types of triplets exceeded .50.  

Next, we tested whether the mean RST across all participants was larger than .50 for 

any of the three context situations. As a statistical measure, we calculated the 95% highest 

posterior density interval (HDI) representing the most credible RST values using Bayesian 

statistics (Kruschke, 2011a, 2011b). If the HDI95 excluded .50 one can infer a reliable context 

effect. We adapted a hierarchical Bayesian model following Kruschke (2011b) assuming 

uniform prior probability distributions across the parameter range.  

Results of that analysis indicated a strong and reliable effect for the attraction triplets 

with an HDI95 of .60–.66 (mean: .63). Essentially, 100% of the posterior probability density 

was above the critical threshold of .50. Likewise, for the compromise triplets a reliable effect 

was observed with an HDI95 of .52–.63 (mean: .58) with 99% of the density being above .50. 

For the similarity triplets the HDI95 of .48–.59 (mean: .54) included the critical value of .50, 

although 93% of the posterior density was above .50, suggesting a weak similarity effect. 

Are participants who are prone to one context effect also prone to another? In total, 

nine participants (19%) showed an RST value higher than .50 for all three context effects. On 

an individual level, the individual HDI95 for each of these participants did not exclude .50 for 

all three context effects, which is probably due to having too little statistical power on the 
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individual level. For example, if these nine participants are analyzed post hoc as a group of 

subjects, HDI95 would exclude .50 for all three effects. Figure 5 plots the RST across 

individual participants. The figure shows that the RST was positively correlated for the 

attraction and compromise triplets (r = .49, SD = .10), indicating that participants who showed 

the attraction effect also often showed the compromise effect. Interestingly, there was a strong 

negative correlation for the RST between the similarity and the attraction triplets (r = -.53, SD 

= .10) and between the similarity and the compromise triplets (r = -.58, SD = .15). This 

indicates that people who showed either the attraction or the compromise effect rarely showed 

the similarity effect. 

Model comparison. To compare the predictive accuracies of MDFT against RUMs, 

we estimated the free parameters of the models using maximum likelihood techniques similar 

to Study 1. Results indicated that the mean log-likelihood across participants was lowest for 

MDFT (μLL = -57.81), followed by the logit model (μLL = -66.49) and the probit model (μLL = 

-71.08). All three models predicted the observed choices better than a baseline model 

predicting random choices (μLL = -91.21). Comparing the log-likelihoods within each 

individual revealed that MDFT outperformed both the logit and the probit model for each of 

the 48 participants.  

Additional analyses based on the mean log-likelihood across participants and triplets 

revealed the highest difference between MDFT and the RUMs occurred for attraction triplets 

(MDFT: μLL = -0.61, logit: μLL = -0.73, probit: μLL = -0.80), followed by compromise triplets 

(MDFT: μLL = -0.74, logit: μLL = -0.86, probit: μLL = -0.90), and a weaker difference for 

similarity triplets (MDFT: μLL = -0.81, logit: μLL = -0.84, probit: μLL = -0.89). 

To test whether MDFT still outperforms the RUMs if the models’ complexities are 

taken into account, we calculated the relative model probabilities based on the BIC, similar to 

Study 1. This analysis revealed that the choice behavior of 31 participants (65%) was best 

described by MDFT, and 12 participants (25%) were best described by the logit model. The 
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remaining 5 participants (10%) were best described by the probit model. For a substantial 

number of participants, the obtained relative model probabilities indicated very strong 

evidence for MDFT. In contrast, for those participants who were best described by the logit 

model, the evidence was mostly weak. Figure 6 summarizes these results. 

To test whether the 13 participants for whom the relative model probabilities indicated 

very strong evidence for MDFT were more prone to context effects than the remaining 35 

participants, we contrasted the mean RSTs of the two groups. Results indicated that these 13 

participants had higher RSTs for the compromise triplets (68% vs. 53%, HDI95 .02–.26, mean: 

.14, 99% of the HDI > 0), but not for the attraction triplets (64% vs. 63%, HDI95 -.05–.08, 

mean: .02, 70% of the HDI > 0) or the similarity triplets (54% vs. 54%, HDI95 -.12–.11, mean: 

.01, 46% of the HDI > 0). 

As an alternative model selection criterion, we also compared the models using cross-

validation (Browne, 2000; Stone, 1974). As a first step of this analysis, we split the choice 

data of each participant into two parts, a calibration sample to fit the model parameters and a 

validation sample to test the model predictions. To create the validation sample, we randomly 

drew two attraction, two compromise, and two similarity triplets. The remaining data were 

used for the calibration sample. To ensure that the results were not influenced by this random 

selection, we repeated this procedure four times. Next, we compared the models’ log-

likelihoods for both the validation and the calibration set, averaged across the four samples. In 

all four samples, participants’ choices in the calibration set were best described by MDFT 

(μLL across samples = -52.86), followed by the probit model (μLL across samples = -60.49) 

and the logit model (μLL across samples = -61.27). More importantly, the results showed that 

MDFT also made the most accurate predictions for the validation sample (μLL across samples 

= -5.23), followed by the logit model (μLL across samples = -5.82), the probit model (μLL 

across samples = -5.90), and the baseline model (μLL across samples = -6.59). These results 

were also reproduced on the individual level, where most participants were most accurately 
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predicted by MDFT (mean across samples: 68%), followed by the probit (mean across 

samples: 20%) and logit (mean across samples: 12%) models.  

Besides allowing these quantitative model comparisons, the data on hand also provide 

the opportunity to test to what extent the models predict the observed correlations between the 

context effects. As a first step toward this analysis, we calculated the models’ predicted 

probabilities for each participant of choosing the target and competitor, across all attraction, 

compromise, and similarity triplets. Next, we derived the predicted relative choice share of 

the target (PRST) for each participant according to 










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In a third step, we calculated the correlations of the individual PRSTs between the 

context effects, separately for each model. Figure 7 plots these PRSTs for each model. As can 

be seen from the figure, only MDFT predicted a clear negative correlation between similarity 

and attraction triplets (logit model: r = -.09, SD = .01; probit model: r = -.14, SD = .01; 

MDFT: r = -.53, SD = .05) and both MDFT and the probit model accounted for the negative 

correlation between similarity and compromise triplets (logit model: r = -.09, SD = .01; probit 

model: r = -.38, SD = .03; MDFT: r = -.45, SD = .06). None of the models predicted a strong 

positive correlation between attraction and compromise triplets (logit model: r = .12, SD = 

.01; probit model: r = .17, SD = .01; MDFT: r = .02, SD = .01). 

Next, we compared the predicted PRST to the observed RST separately for the 

attraction, compromise, and similarity triplets. The results indicated high correlations for 

MDFT (attraction: r = .67, SD = .06; compromise: r = .81, SD = .12; similarity: r = .64, SD = 

.10), followed by the probit (attraction: r = .45, SD = .03; compromise: r = .48, SD = .06; 

similarity: r = .36, SD = .06), and logit (attraction: r = .49, SD = .04; compromise: r = .30, SD 

= .05; similarity: r = .35, SD = .06) models. 
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As in Study 1, we also compared the estimated attribute weights between the models. 

The correlations between attribute weights of MDFT and the probit model, between MDFT 

and the logit model, and between the probit and logit model ranged from .59 to .76, from .21 

to .39, and from .19 to .34, respectively (see the Supplemental Materials for the ranges of the 

estimated parameters). Thus, attribute weights obtained through MDFT were more similar to 

the probit than to the logit model. In general, all correlations were lower than those observed 

in Study 1.  

Discussion of Study 2 

In Study 2 we successfully elicited multiple context effects within single individuals. 

In theory, this provides a case in which MDFT should have an advantage over standard 

RUMs for predicting choices because MDFT can account for multiple context effects. In line 

with this proposition, taking model complexity into account, the decisions of most 

participants were best described (according to the BIC) and predicted (assessed by cross-

validation) by MDFT as compared to the logit and probit models. 

Correlation between context effects. Eliciting the attraction, the compromise, and the 

similarity effect simultaneously in a within-subject design allowed us to test for possible 

correlations between the three context effects. Interestingly, we observed that the attraction 

and compromise effects were positively correlated and that both were negatively correlated 

with the similarity effect. These correlations also provide a conjecture as to why it is difficult 

to elicit all three context effects within a single individual: If both the attraction and the 

compromise effect are negatively correlated with the similarity effect, then eliciting one of the 

first two effects also makes finding the similarity effect less likely, and vice versa.  

Our results also indicate that the compromise and similarity effect were not as strong 

as the attraction effect. We can think of two reasons for this difference. First, the added option 

for compromise choice triplets might not have been placed far enough from the other options 

in the attribute space to be perceived as an extreme option. If so, it could explain why the 
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target was chosen less frequently in this condition. Second, as outlined above, due to rounding 

half of the similarity choice triplets became attraction choice triplets and had to be excluded 

from the analysis, which in turn reduced the statistical power to detect similarity effects. The 

only other studies investigating multiple context effects within the same person did not report 

the correlations between the effects, which makes it hard to assess the relative magnitude of 

the correlations we found (Trueblood, Brown, & Heathcote, 2013; Tsetsos et al., 2012). 

Predicted correlations between context effects. The observed correlations are in 

accordance with the MDFT predictions that Roe and colleagues (2001) derived from a set of 

theoretically derived parameters. They predicted a negative correlation between the similarity 

effect with both the attraction and the compromise effect and a positive correlation between 

the attraction and the compromise effect, which provides further evidence for MDFT.  

Based on the estimated models’ parameters, only MDFT predicted a negative 

correlation between the attraction and the similarity effect. Both MDFT and the probit model 

predicted a negative correlation between the similarity and the compromise effect. These 

predictions might be misleading for the probit model. That is because even though the probit 

model cannot predict the single context effects (Busemeyer et al., 2007), it is nevertheless 

possible to find a correlation between context effects. For example, in the probit model the 

PRST for similarity and compromise choice triplets can be lower than .50 (i.e., indicating no 

context effect), but can still correlate for PRST values below .50. Besides, Figure 7 shows 

rather narrowly distributed PRST for the probit model as compared to the more widely 

distributed PRST for MDFT, which seems to be more in line with the observed RST (Figure 

5). This provides further evidence for MDFT. 

General Discussion 

The present work followed the idea that people make choices by comparing options 

with each other and thereby violate the principle of independent evaluations of options. To 

explain these interdependent evaluations, different theories have been proposed in the past 
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literature including the prominent multi-alternative decision field theory (Roe et al., 2001). 

The goal of our work was to show that MDFT (Roe et al., 2001) provides an accurate 

empirical description of interdependent preferences and thereby outcompetes standard RUMs, 

such as the logit and probit models. Even though these simple RUMs have been repeatedly 

criticized in the past (Busemeyer et al., 2007; Rieskamp et al., 2006), they still represent the 

standard approach for predicting choice behavior in economics, psychology, consumer 

research, and related fields (e.g., Train, 2003). At the same time, cognitive process models, 

such as MDFT, have been called for (e.g., Otter et al., 2008). Therefore an empirical test of 

MDFT against the RUMs appeared necessary. 

To make MDFT testable based on empirical grounds, we utilized a generalized 

distance function that yields the similarities between options within a choice set described on 

different attributes weights (Berkowitsch et al., in press). In addition to that, we also assumed 

that a decision is made when the preference state that develops over time converges to a 

constant value. Making this simplifying assumption reduces the computational effort for 

calculating the model's predicted choice probabilities for a large set of choice situations as it 

allows for closed-form representations of the model. However, with this simplification of the 

decision process MDFT loses its ability to predict decision times.  

Study 1 confirmed that MDFT can be successfully fitted to observed choice data, but 

in the context on hand it did not necessarily outperform the more parsimonious logit and 

probit models when model complexity is taken into account. Thus, when the goal is to predict 

the outcome in simple preferential choice situations such as those in Study 1, applying RUMs 

seems justified on pragmatic grounds, as they can be easily implemented and estimated. 

In Study 2, which used a within-subject experimental design, we showed that MDFT 

outperformed RUMs in situations where people’s choices were systematically influenced by 

the context in which the options were presented. Presumably, this is because MDFT can 

account for these context effects, whereas RUMs assume that options are evaluated 
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independently from each other. Note that nevertheless a quarter of the participants were still 

assigned to the logit model, suggesting that not all participants were sensitive to context 

effects. The experimental design of Study 2 further provided the opportunity to explore the 

correlation between different context effects. Toward a better understanding of these 

correlations, choice models need to be able to account for multiple context effects 

simultaneously and to describe how they emerge. Cognitive process models such as MDFT 

depict promising theories to predict and explain preferential choices and their underlying 

evaluation processes. 

When creating the choice set for Study 1, we excluded choice triplets with dominant 

options. Therefore, we did not expect attraction effects to occur in this study. Other than that, 

the choice tasks were quite similar between the two studies and thus we have no reason to 

believe that the cognitive processes that participants utilized were very different between the 

studies. Thus, the fact that the logit and the probit models fitted the data equally well as 

MDFT in Study 1 was probably due to the way we selected the choice options. However, to 

clearly show that the cognitive process underlying the choices in Study 1 were the same as in 

Study 2 requires further data that go beyond the scope of our experiment.  

Advantages of Process Models 

Although past research yields a considerable improvement of the simple RUMs so that 

some of their variants can account for systematic context effects (e.g., Kamenica, 2008; 

Kivetz, Netzer, & Srinivasan, 2004a, 2004b; Orhun, 2009; Rooderkerk, van Heerde, & 

Bijmolt, 2011), these models mostly remain silent about the cognitive process underlying 

decision making. At the same time, a growing body of literature inside and outside 

psychology promotes the application of cognitive process models to better understand and 

predict choice behavior (e.g., Chandukala et al., 2007; Otter et al. 2008; Reutskaja et al., 

2011). 
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In the present work, we focused on MDFT as one prominent sequential sampling 

model that applies to preferential choices. However, other sequential sampling models, such 

as the leaky competing accumulator model (LCA; Usher & McClelland, 2004) or the multi-

attribute linear ballistic accumulator model (MLBA; Trueblood, Brown, & Heathcote, 2013) 

can also account for context effects. The LCA (Usher & McClelland, 2004) in theory also 

predicts a positive correlation between the attraction and compromise effect, as the same 

mechanism (i.e., loss aversion) is responsible for producing the two effects (see also Tsetsos 

et al., 2010). Because the similarity effect is highest when loss aversion is absent, the LCA 

predicts negative correlations with the other two effects, which are also in line with our 

observations. We did not include a test of LCA or MLBA in comparison to MDFT, because 

as psychological process models they are conceptually similar and they are all in contrast to 

standard economic models that just focus on observed outcomes.  

In comparison to standard economic models, cognitive process models have additional 

advantages. For instance, multiple studies have shown that context effects vary over 

deliberation time (Dhar, Nowlis, & Sherman, 2000; Lin, Sun, Chuang, & Su, 2008; Pettibone, 

2012). These findings strengthen the relevance of process models, such as MDFT and LCA. 

Recently, these models have also been linked to neurological processes in the brain (e.g., 

Forstmann et al., 2010; Gluth, Rieskamp, & Büchel, 2012, 2013). Despite these advantages, 

so far comparisons between these models, for example, between MDFT and LCA, have 

mainly relied on theoretical arguments (Pettibone, 2012). Presumably, this is the case because 

it has proven somewhat difficult to actually fit these models to empirical data.  

To advance our understanding of the cognitive processes that govern preferential 

choices, it is important to compare these models on empirical grounds. Toward this goal, 

providing empirically testable versions of these models also allows putting them to practical 

use, for example, as a feasible replacement for RUMs that, despite their limitations, still 

represent the standard approach in many applied fields such as market research. Besides, 
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unlike with RUMs, the application of cognitive process models is not limited to preferential 

choice tasks; they have also been successfully applied to perceptual (Trueblood, Brown, 

Heathcote, & Busemeyer, 2013), inferential (Trueblood, 2012), and risky choice tasks 

(Tsetsos et al., 2012). 

Models like MDFT and the logit and probit models are not the end points of the 

complexity continuum as more complex as well as simpler models might exist. For example, 

Payne, Bettmann, and Johnson (1993) provide an overview of different strategies people 

could follow for making preferential choices, such as a simple lexicographic heuristic that 

focuses only on one single attribute. On the other hand, we applied a simplified version of 

MDFT by assuming infinite decision time, t → ∞. That means the fully specified version of 

MDFT (Roe et al., 2001) is more complex. The MLBA as an alternative sequential sampling 

model cannot easily be placed on this (one-dimensional) complexity continuum, as it 

additionally provides response time data. A different approach to compare the models’ 

complexities is to apply a Bayesian approach that weights the model’s possible predictions by 

its prior probability and additionally accounts for the functional form of the model parameters 

(e.g., Scheibehenne, Rieskamp, & Wagenmakers, 2013). As the attraction effect was 

particularly strong compared to the compromise and similarity effect, simpler models that 

only predict the attraction effect might have yielded comparable model fit to MDFT with less 

complexity.  

Practical and Policy Implications  

One of the reasons for the widespread use of RUMs such as the logit and probit 

models probably is their relative ease of implementation. Although the advantages of 

cognitive process models have been acknowledged, in applied contexts—such as market 

research—these models are rarely applied because so far, several model specifications have 

remained unclear (Otter et al., 2008). As our results show, cognitive process models can be 

readily applied to actual empirical data indicating that they can provide a valuable alternative 



  MAKING MDFT TESTABLE     87 
 

 

to RUMs to predict people’s preferences. In particular, the present work specified MDFT such 

that its parameters could be estimated from empirical data and choice behavior could be 

predicted. Because this specification came at the price of losing the ability to make 

predictions about decision time, future developments of MDFT should aim at further 

modifying the model so that all parameters can be estimated. 

In an applied setting, researchers might also be interested in the subjective importance 

weights that people assign to specific attributes. For instance, in a consumer context 

marketing companies want to infer the weights given to products’ attributes. In the medical 

domain, physicians may want to know the importance people attach to the different aspects of 

a treatment, such as the treatment’s success as compared to its side effects. In the educational 

domain, it is crucial to know how much importance teachers, parents, and pupils give to the 

topics taught at school. A feasible way to investigate these questions is by conducting choice 

studies and applying RUMs, such as the logit or probit model, to infer the importance of 

different aspects. However, given that decisions are systematically influenced by context 

effects, the estimated importance weights may be biased. In Study 1, MDFT and the RUMs 

highly agreed on the estimated attribute weights, providing evidence that they could be used 

to elicit the importance the participants gave to the different attributes. However, this 

agreement was much lower in Study 2. Here, the RUMs performed worse than MDFT in 

predicting the observed choices, so the estimated attribute weights of the RUMs in Study 2 

may not necessarily reflect participants’ “true” importance weights (for a discussion on 

estimating importance weights, see Marley, Flynn, & Louviere, 2008, and Marley & Pihlens, 

2012). 

Technically, RUMs can to some extent account for context effects by adjusting the 

attribute weights, which may lead to unreliable and biased results. At the same time, the 

interdependent evaluations of choice options and hence the occurrence of context effects is 

widespread: For instance, there is a large body of research on the influence of context effects 
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on hiring decisions (Aaker, 1991; Highhouse, 1996, 1997; Slaughter, 2007; Slaughter, 

Bagger, & Li, 2006; Slaughter & Highhouse, 2003; Slaughter, Kausel, & Quiñones, 2011; 

Slaughter, Sinar, & Highhouse, 1999; Tenbrunsel & Diekmann, 2002). Likewise, context 

effects have been reported for perceptual (Trueblood, Brown, Heathcote, & Busemeyer, 

2013), inferential (Trueblood, 2012), and risky choice tasks (Tsetsos et al., 2012). For a meta-

analysis of context effects for various consumer products, see Heath and Chatterjee (1995). 

Together, these studies illustrate that the subjective importance weights and the predicted 

choice proportions by RUMs might be less reliable when context effects are likely to occur. 

Our results indicate that it is in these situations where the application of cognitive models 

such as MDFT is probably most advantageous.
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Footnotes 

1 Technically, this requires the eigenvalues of the feedback matrix to be smaller than 1 

(Busemeyer & Diederich, 2002).  

2 Prior to calculating the correlations, the attribute weights of the logit model were 

standardized with respect to their standard deviations (Menard, 2004). 

3 Only correctly matched product pairs (i.e., the missing price of a lighter bike must 

be filled in as more expensive than the price of a heavier bike) were presented in the 

subsequent choice task. 

  



100     MAKING MDFT TESTABLE 
 

Table 1 

Products and Attributes Presented in Study 2 

Product Attribute 1 Attribute 2 

Color printer Printing speed in pages per minute Price in Swiss francs 

Digital camera Picture quality in megapixels Memory space in gigabytes 

Notebook computer Weight in kilograms Battery longevity in hours 

Racing bike Weight in kilograms Price in Swiss francs 

Vacuum cleaner Suction power in watts Price in Swiss francs 

Washing machine Water consumption in liters Life cycle in years 
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Figure 1. Model comparison of the relative model probabilities based on their Bayesian 

information criteria. Numbers in the bars indicate how many individuals fell into a specific 

level of evidence strength. The percentages indicate what proportions of participants were 

assigned to each model. 
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Figure 2. Example of a matching and a choice task for racing bikes. The price of Bike A was 

blank before participants matched the italic number (e.g., 4,000). Here, the choice task is 

intended to elicit an attraction effect (see also choice triplet ABD in Figure 3a). 

  

TARGET COMPETITOR Added option

Bike A Bike B Bike D

Weight 6.5 Kg 8.0 Kg 6.6 Kg

Price 4,000 CHF  3,000 CHF 4,100 CHF

Matching task

Choice task
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Figure 3. Illustrative example of the choice task, where either Option A (a) or Option B (b) is 

the target, depending on the position of the added option. For each participant, two matched 

options A and B were presented with one of the individually calculated decoys C, D, or S. 
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Figure 4. Observed choice shares across all participants’ choices for the target, the 

competitor, the added option, and the relative choice shares of the target for the attraction, 

compromise, and similarity choice triplets. The percentages of the first three columns within 

each category add up to 100% except for the similarity choice triplets (due to rounding). 

Absolute numbers are shown in parentheses. 
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Figure 5. Plot of the relative choice shares of the target for each participant. Within each 

panel, dots in the upper right quadrant indicate participants who are prone to both context 

effects, and dots in the upper left and lower right indicate participants who are prone to only 

one context effect. Dots in the lower left indicate participants who are not prone to either of 

the two context effects. 
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Figure 6. Model comparison of the relative model probabilities based on their Bayesian 

information criteria. Numbers in the bars indicate how many individuals fell into a specific 

level of evidence strength. The percentages indicate what proportions of participants were 

assigned to each model. 
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Figure 7. Comparison of the predicted relative choice shares of the target on an individual 

level across models and context effect. 
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Appendix A: Simplifying the Stopping Rule 

In its original form, MDFT provides two explanations of how a decision is reached: 

Either an internal stopping rule leads to a decision or an external stopping rule limits the 

decision process. The internal stopping rule assumes that a decision is made as soon as the 

accumulated preference state for one option reaches a threshold θ. However, if a too high θ is 

set, the threshold might never be reached, since the preference states might have converged to 

a stable value before reaching θ. On the other hand, setting θ too low can lead to preference 

states that have not yet converged, and further evidence would potentially yield different 

choice probabilities. In theory, one could keep track of the change in choice probabilities to 

stop the estimation process as soon as convergence is reached. This is computationally 

unsatisfying, though, because obtaining stable choice probabilities is cumbersome. As an 

alternative, one can assume an external stopping rule with unconstrained deliberation time 

(i.e., a very high t). However, the associated time-intensive simulations and the required 

computational effort to fit MDFT are still unsatisfying (Trueblood, Brown, & Heathcote, 

2013), as the preference state P needs to be iterated until t is reached for every set of tested 

parameters. A better way to think of decisions with no time constraints is to set t → ∞, which 

according to Roe et al. (2001) reduces the calculation of the mean preference state over time 

ξ(t) to 

    μξ 1 SI  (A1) 

Thus, instead of iterating for a very long time to calculate ξ(t) we can directly 

calculate ξ(∞). Deriving choice probabilities for t → ∞ further requires the variance–

covariance matrix of the preference state. Busemeyer and colleagues (2006) suggested a 

formula for Ω(∞); however, this solution is limited to cases where the variance–covariance 

matrix of V is a diagonal matrix, that is, I 2φΦ . In the next section, we develop a general 
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formula to directly calculate Ω(∞) for k options. This avoids time-consuming calculations of 

the variance–covariance matrix for each time point and it leads to stable choice predictions. 

The variance–covariance matrix at time t is calculated as 

  






1

0

t

j

jj
t Φ SSΩ . (A2) 

where Φ is the k × k variance–covariance matrix of V (see Roe et al., 2001, Appendix B). 

From complete induction follows 

Φtt  SS ΩΩ 1 . (A3) 

By combining Equations A2 and A3 we can calculate the change in the variance–

covariance matrix after one iteration (i.e., t + 1) by 

tttt Φ ΩΩΩΩ  SS1 . (A4) 

For the feedback matrix S with eigenvalues smaller than 1, the sequence of the 

matrices St for t → ∞ converges to a zero matrix. We can therefore neglect the term St after a 

certain (high enough) number of iterations, say, t0. That is, 

0
00

 jtjt ΩΩ  (A5) 

from which follows 

0000 10 tttt Φ ΩΩΩΩ   SS . (A6) 

This means that the covariance matrix of the preference state has converged and 

 ΩΩ
0t

. We can reorganize Equation A6 as 

    Φ SS ΩΩ . (A7) 

Now we solve Equation A7 for Ω(∞) to obtain a system of linear equations. This is 

achieved by the following steps. We first explicitly calculate   SS Ω . We next transform 

the k × k matrices   SS Ω  and Ω(∞) into the k2 × 1 vectors   SS Ω  and  Ω , 
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respectively, so we can search the k2 × k2 matrix Z, which multiplied by  Ω  is equivalent 

to , so that 

    ΩΩ ZSS . (A8) 

Restructuring Equation A7 according to Equation A8 leads to 

    Φ ΩΩ Z  (A9) 

where the k2 × 1 vector Φ  is the k × k transformed matrix Φ . Equation A9 can be solved for 

: 

  ΦI  1)( ZΩ . (A10) 

Finally, we retransform the k2 × 1 vector  Ω  back into the k × k matrix Ω(∞). Now 

we have an analytical solution for ξ(∞) and for Ω(∞), so that the choice probabilities for t → 

∞ can be directly derived. 

  

  SS Ω

 Ω
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Appendix B: Mathematical Formalization of the Generalized Distance Function 

In the following, we provide the mathematical formalization of the generalized 

distance function (described in detail in Berkowitsch et al., 2013). This generalized distance 

function is meant to describe the distance between options in the multiattribute space, 

distinguishes the preferential relationship between options, and accounts for individual 

differences by incorporating the subjective weights that individuals give to different attributes 

in the distance function.  

We define an importance weight vector W, which contains the individual weights of 

the n attributes and restricts the weights to sum to 1. Further, each indifference vector  

is an n-dimensional vector and can be calculated as 
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jiv , (B1) 

where 1 is at the (j + 1)th position.  

Because we want the n-dimensional dominance vector dv to be orthogonal to all n – 1 

indifference vectors, it fulfills  

1,,...10  njdvivj  (B2) 

which leads to the generalized form: 

  1
1




n
jjiv
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Now we can build the n × n basis B*, containing the n – 1 indifference vectors iv1 to 

ivn-1 and the dominance vector dv 

 dvivivivB nj
* ,..,,... 11  . . (B4) 

To standardize the lengths of the indifference vectors and the dominance vector to 1, 

each vector is divided by its Euclidean lengths liv and ldv, where  

1,...,1
2

 njl
jiv jiv  (B5) 

and 

2
dvdvl . (B6) 

Thus, we obtain new basis B, which is 
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dviviviv llll
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11  (B7) 

where the n × n matrix B contains the standardized indifference vectors and the standardized 

dominance vector. 

Next, we define the standard distance vector 
standdist  as the trajectory path between 

two points, expressed in standard unit vectors. To transform 
standdist  into the new distance 

vector 
transdist , which expresses the trajectory path by the previously introduced indifference 

vectors and by the dominance vector, make a change of basis: 

  1
1



n
jiv j

l



114     MAKING MDFT TESTABLE 
 

standtrans distBdist  1
. (B8) 

The first n – 1 entries of 
transdist  express the distance in units of each jiv , whereas the 

last entry of 
transdist  expresses the distance in units of dv . Now we need to calculate the 

Euclidean length D2 of 
transdist  and multiply the distance in the dominance direction by a 

parameter wd > 1. This assures that the distance in the dominance direction is weighted more 

strongly than the distance in the indifference directions. This is computed as follows:  

transtrans
2 distAdistD  '

 (B9) 

where A is a n × n diagonal matrix and is constructed in the following way: 


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nj

nj

if,

1,...,1if,1

wd
A jj,  (B10) 

This assures that only the difference in the dominance direction—the last column of 

transdist —is weighted by wd. By setting A to the identity matrix (i.e., wd = 1), one obtains the 

standard Euclidean norm. 
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Appendix C: Constraints on Model Parameters 

For the logit model we estimated an importance weight for each of the n attributes, 

denoted wi. Here, attribute weights were allowed to vary between 0 and ∞. For the probit 

model we estimated n – 1 attribute weights and the variance v of the normal distributed error 

component ε in the diagonal of the variance–covariance matrix.  Attribute weights were 

restricted to sum to 1 and the v was allowed to vary between 0 and 1,000. Finally, for MDFT 

we estimated the n – 1 attribute weights, restricted to sum to 1, the variance v of the normal 

distributed error component ε, restricted to values between 0 and 1,000, the sensitivity 

parameter φ1, restricted to vary between 0.01 and 1,000, and	the decay parameter φ2, 

restricted to values between 0 and 1. In Study 1, we fixed the weight parameter wd, which 

weights distances in the dominance direction relative to distances in the indifference direction, 

to a value of 12, following Hotaling et al. (2010). In Study 2, wd was estimated from the data. 

Here, the value range was restricted to between 1 and 50 (see the Supplemental Materials for 

the estimated ranges of all parameters). Prior to parameter estimation, we rescaled the range 

of the attributes to values between 0 and 1 and recoded all attributes such that higher numbers 

indicate higher values.  

To compute the likelihoods of the models we applied the multivariate normal 

distribution for MDFT and the probit model and the multivariate logistic distribution for the 

logit model and minimized the respective summed log-likelihoods for each participant. To 

search the best-fitting parameters we used maximum likelihood methods implemented in the 

R functions “nlminb” (package: stats) and “psoptim” (package: pso).  
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Supplemental Materials 

Ranges of the Estimated Parameters 

In the following Tables S1 to S7 we provide the ranges of the estimated parameters for 

all models in Studies 1 and 2. For the logit model we estimated the n weights wi for each 

attribute ݅, allowed to vary between 0 and ∞. The parameters used to estimate the probit 

model were the n – 1 weights wi for n – 1 attributes, which were restricted to sum to 1, and the 

variance v of the normal distributed error component ε in the diagonal of the variance–

covariance matrix, allowed to vary between 0 and 1,000. Finally, for the MDFT we estimated 

the n – 1 weights wi allocated to the n – 1 attributes, restricted to sum to 1, the variance v of 

the normal distributed error component ε, restricted to values between 0 and 1,000, the 

sensitivity parameter φ1, restricted to vary between 0.01 and 1,000, and	the decay parameter 

φ2, restricted to values between 0 and 1. In Study 1, we fixed the weight parameter wd, which 

weights distances in the dominance direction relative to distances in the indifference direction, 

to a value of 12, following Hotaling et al. (2010) and we estimated its value in Study 2, 

restricting values to between 1 and 50. 
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Table S1 

Study 1—Logit Model: Estimated Parameter Ranges of the Attribute Weights (w1-w5) 

Quantile w1 w2 w3 w4 w5 

Q0.25 1.31 0.55 1.46 0.24 0.59

Q0.50 2.14 1.09 2.86 1.01 0.92

Q0.75 3.61 1.70 4.84 3.01 1.64
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Table S2 

Study 1—Probit Model: Estimated Parameter Ranges of the Attribute Weights (w1-w5) and 

Variance (v) 

Quantile w1 w2 w3 w4 w5 v 

Q0.25 0.15 0.05 0.20 0.01 0.06 0.02

Q0.50 0.24 0.13 0.30 0.10 0.09 0.02

Q0.75 0.41 0.19 0.45 0.29 0.14 0.03
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Table S3 

Study 1—MDFT: Estimated Parameter Ranges of the Attribute Weights (w1-w5), Variance (v), 

Decay Parameter (φ2), and Sensitivity Parameter (φ1) 

Quantile w1 w2 w3 w4 w5 v φ2 φ1 

Q0.25 0.10 0.03 0.19 0.05 0.07 0.27 0.02 0.14

Q0.50 0.19 0.10 0.33 0.09 0.10 0.88 0.09 0.42

Q0.75 0.40 0.21 0.50 0.23 0.18 1.64 0.22 1.68



 
 

Table S4 

Study 2—Logit Model: Estimated Parameter Ranges of the Attribute Weights (w1-w2) 

 

 

  

Quantile 

Digital 

camera 

Color 

printer 

Notebook 

computer 
Racing bike 

Vacuum 

cleaner 

Washing 

machine 

w1 w2 w1 w2 w1 w2 w1 w2 w1 w2 w1 w2 

Q0.25 5.67 2.90 7.52 4.98 3.46 8.78 7.35 7.59 8.14 4.35 9.37 0.20 

Q0.50 10.80 17.52 12.49 11.15 8.41 15.31 14.12 14.48 19.59 13.52 24.00 8.46 

Q0.75 25.23 30.62 34.57 18.60 18.83 30.81 28.30 34.01 38.67 24.14 62.52 23.53
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Table S5 

Study 2—Probit Model: Estimated Parameter Ranges of the Attribute Weights (w1-w2) and Variance (v) 

Quantile 
Digital camera Color printer Notebook computer Racing bike Vacuum cleaner Washing machine 

w1 w2 v w1 w2 v w1 w2 v w1 w2 v w1 w2 v w1 w2 v 

Q0.25 0.33 0.04 0.00 0.37 0.20 0.00 0.00 0.58 0.00 0.27 0.24 0.00 0.19 0.11 0.00 0.41 0.05 0.00 

Q0.50 0.59 0.41 0.01 0.59 0.41 0.01 0.24 0.76 0.02 0.49 0.51 0.00 0.58 0.42 0.01 0.62 0.38 0.01 

Q0.75 0.96 0.67 0.08 0.80 0.63 0.21 0.42 1.00 0.40 0.76 0.73 0.04 0.89 0.81 0.19 0.95 0.59 0.69 
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Table S6 

Study 2—MDFT: Estimated Parameter Ranges of the Attribute Weights (w1-w2), Variance (v), Decay Parameter (φ2), Sensitivity Parameter (φ1), 

and Dominance Parameter wd 

Quantile 
Digital camera Color printer 

Notebook 
computer 

Racing bike Vacuum cleaner Washing machine 
φ2 φ1 wd 

w1 w2 v w1 w2 v w1 w2 v w1 w2 v w1 w2 v w1 w2 v 
Q0.25 0.30 0.05 0.01 0.46 0.26 0.01 0.12 0.48 0.02 0.33 0.36 0.03 0.39 0.27 0.03 0.53 0.06 0.01 0.05 28.68 1.09 

Q0.50 0.67 0.33 0.09 0.57 0.43 0.11 0.36 0.64 0.11 0.45 0.55 0.10 0.58 0.42 0.18 0.67 0.33 0.11 0.05 58.68 3.47 

Q0.75 0.95 0.70 1.16 0.74 0.54 0.47 0.52 0.88 3.30 0.64 0.67 1.84 0.73 0.61 0.51 0.94 0.47 0.56 0.06 93.20 11.85 
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Table S7 

Study 2—MDFT: Estimated Parameters of Selected Participants with RST > .50 and PRST > .50 Simultaneously for Attraction, Compromise, and 

Similarity Choice Triplets 

Participant 
Digital camera Color printer 

Notebook 
computer 

Racing bike Vacuum cleaner Washing machine 
φ2 φ1 wd 

w1 w2 v w1 w2 v w1 w2 v w1 w2 v w1 w2 v w1 w2 v 
3 0.40 0.60 0.01 0.52 0.48 0.11 0.45 0.55 0.28 0.34 0.66 0.00 0.40 0.60 0.08 0.55 0.45 0.10 0.05 120.58 9.19 

10 0.00 1.00 0.00 0.94 0.06 0.48 0.44 0.56 0.13 0.11 0.89 0.16 0.52 0.48 0.07 1.00 0.00 0.00 0.05 105.94 1.04 

38 1.00 0.00 0.00 1.00 0.00 0.00 0.36 0.64 0.02 0.62 0.38 0.20 0.73 0.27 0.10 0.40 0.60 0.14 0.05 71.01 1.43 
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Reducing the MDFT to a Probit Model 

This section shows how MDFT can be transformed into a probit model. Technically, 

this can be achieved by setting the feedback matrix and by omitting the variance–covariance 

matrix of the product-relevant attention weights. 

One of the main differences between MDFT and a probit model is the dynamic aspect 

of MDFT. To reduce MDFT to a static model, such that the preference state P remains 

constant over time, we set the feedback matrix S to a zero matrix. A zero feedback matrix 

indicates no previous memory of previous preference states and no competition between the 

options (IIA property). Technically, a zero matrix for S can be achieved by setting φ2 to 1 (no 

memory of the previous preference state) and φ1 → ∞. 

In a next step, we set the variance–covariance matrix of the product-relevant attributes 

Ψ to zero, such that only the variance–covariance matrix of the product-irrelevant attributes 

remains. Ψ is calculated within the variance–covariance matrix of the valence vector V. As 

described in Roe and colleagues (2001), the valence vector V consists of the valence produced 

by product-relevant attributes [CM1W1(t)] and the valence of the product-irrelevant attributes 

([CM2W2(t) = ε(t)] where C is a contrast matrix to compute the momentary advantage or 

disadvantage of each option relative to the average of the other options. M1 represents a J × n 

subjective evaluation matrix, where J are the number of options and n are the number of 

attributes describing option j. W1(t) is an n × 1 vector containing the attention weights of each 

attribute i at time point t. The variance–covariance matrix of V can be expressed as (Roe et 

al., 2001) 

       )()()()()( tCovtCovttCovtCov εCMWCMεWCMV 11111   

Φ ςCMΨCM 11
 (S1) 

where 

   ))()()(()(  11111 wWwWWΨ ttEtCov  (S2) 

is the variance–covariance matrix for the product-relevant weights and 
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    ))((diag)()()( tttEtCov εεεε ς  (S3) 

is the variance–covariance matrix of the product-irrelevant weights. If we assume that the 

attention shifts according to a Bernoulli process in an all-or-none manner from one attribute to 

another (see Appendix B of Roe et al., 2001), the probability of focusing on the product-

relevant attributes can be written as 

 )(tE 11 Ww  . (S4) 

Accordingly, Ψ reduces to 

1)(diag wwwΨ 11  . (S5) 

By setting Ψ to a zero matrix, we reduce the variance–covariance matrix of V to ς. To achieve 

this, we multiply Ψ by the scalar 0, which otherwise is set to 1. This turns 

  CMWCM 111 )(tCov  into a zero matrix. Thus, only the covariance of the product-irrelevant 

attributes ς remains. The assumption that the product-irrelevant attributes are uncorrelated 

with the product-relevant attributes and uncorrelated with each other implies that Cov[ɛ] is a 

diagonal matrix. Thus the variance–covariance matrix of the valence vector (V) can be 

rewritten as 

        )(diag0)( εεεWCMVV 11  CovCovCovtCov , (S6) 

which is the same as the variance–covariance matrix of the (independent) probit model.
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Abstract 

Past choices can influence subsequent choices, for instance, to show consistency or to 

compensate for mistakes. Many examples of such sequence effects have been reported in the 

literature, especially in moral decision making research. We also found sequence effects in an 

online employee selection experiment (N = 126). In this personnel selection task the choice of 

job candidates strongly depended on previously chosen candidates. To explain the cognitive 

processes underlying sequence effects, we propose a Dependent Sequential Sampling Model 

(DSSM). To incorporate the influence of previous choices, the DSSM builds on current 

Sequential Sampling Models (SSMs) and rests on three main assumptions. First, previous 

choices with little confidence are more likely to result in compensating behavior, whereas 

previous choices with high confidence are more likely to result in consistent behavior. 

Second, recent choices have a stronger impact on subsequent choices as compared to more 

remote choices. Third, whether compensating or consistent choice results from a previous 

choice varies individually. The empirical results and the suggested model illustrate how 

dependencies in decision making should be taking into account to predict people's choice 

behavior.  

 

 

   

Keywords: sequential sampling model, preferential choice, sequential decision making, 

employee selection 
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Imaging yourself standing in an elevator. You see a person running toward the closing 

doors. You would have enough time to press the “open” button. Would you? If you did, 

would you do it again for a second person that comes around the corner soon afterwards and 

again for a third person? Although you are not in a hurry, you might eventually think that you 

have been "good enough" and just let the doors close. Rather than making isolated, 

independent choices, previous choices often influence our subsequent choice. The goal of the 

present work is to illustrate dependencies in decision making and to explain the underlying 

cognitive process of these dependencies with a proposed sequential sampling model.  

Research on sequence effects provides many examples where previous choices 

influence subsequent choices. For example, Schwarz (2011) analyzed the referees’ penalty 

decisions for the German football league over the last 40 years (1963-2006). In matches with 

two penalty decisions, the team which was awarded with the first penalty was less likely to be 

awarded with second penalty as well. Such influence from previous choices is also prevalent 

for gambling decisions. According to the gambler’s fallacy people often think that a winning 

color will win with lower probability in the next trial (e.g., Ayton & Fischer, 2004; Clotfelter 

& Cook, 1993). In consequence, people often switch their bet to the other color. Or people, 

who imagined to have volunteered for a charitable act or to have donated money to a charity 

organization, were subsequently more likely to choose the more hedonic consumer good (e.g., 

designer jeans, luxury sunglasses; Khan & Dhar, 2006). Besides the prevalence in consumer 

choices, such sequence effects have been reported in many domains, such as, risky choice 

behavior (e.g., Thaler & Johnson, 1990; Novemsky & Dhar, 2005), categorization research 

(e.g., Stewart & Brown, 2004), food choices (Effron, Monin, & Miller, 2013), and moral 

decision making (e.g., Monin & Miller, 2001). 

Current cognitive models, such as reinforcement learning models, provide an approach 

to explain sequence effects (e.g. Kruschke, 1992, Gluck & Bower, 1988; Rieskamp & Otto, 

2006; Simão & Todd, 2002; Stewart, Brown, Chater, 2002; Stewart & Brown, 2004; Todd, 
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2007). They assume that based on feedback on task performance people learn and adapt their 

choice behavior. For example, according to the strategy selection learning theory feedback on 

the task performance reinforces correctly chosen strategies (Rieskamp & Otto, 2006). 

Similarly, Stewart et al. (2002) propose with their memory and contrast model that–among 

other factors–feedback on previous choices strongly influence subsequent choices. In their 

experiment they asked participant to indicate to which of two categories an acoustic tone 

belongs. They found that feedback on the correct classification of previous tones, strongly 

influenced their subsequent classification. However, sequence effects can also occur without 

learning and in situations without any feedback. For instance, substantial research in moral 

decision making illustrated sequence effects even in the absence of explicit feedback. In the 

following we will illustrate these effects.  

Sequence Effects: Previous Choices Influence Subsequent Choices 

Moral decision making research has shown that after a morally dubious choice people 

feel the urge to subsequently engage in a virtuous choice, which has been labeled as cleansing 

behavior (Tetlock, Kristel, Elson, & Lerner, 2000). Thereby, the act of cleansing serves as a 

mean to maintain a moral self-image and to reaffirm moral values (Sachdeva, Illiev, & Medin, 

2009; Tetlock et al., 2000). For example, participants who were asked to write down an 

unethical deed compared to an ethical deed, chose more frequently antiseptic wipe over a 

pencil (Zhong & Liljenquist, 2006, Study 3). Further, after describing an unethical deed, 

people who did not cleanse their hands with an antiseptic compared to those who did, were 

more likely to subsequently offer their help to a graduate student (Zhong & Liljenquist, 2006, 

Study 4). Zhong, Ku, Lount, and Murnighan (2010) showed that merely asking people to 

imagine a dubious choice, leads people to subsequently engage in more virtuous choices. 

Conversely, a virtuous or a moral choice can license a subsequent morally dubious choice 

(Monin & Miller, 2001). The virtuous choice affirms people’s moral identity and in 

consequence they feel licensed to subsequently act in a selfish way (Sachdeva et al., 2009). 
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For example, when people were given the opportunity to represent themselves as free from 

racial prejudice, they were more likely to hire a White man than a Black man in a subsequent 

choice task (Monin & Miller, 2001). Likewise, Effron, Miller, and Monin (2012) showed in 

an experiment that if participants could point to past immoral roads not taken, it "licensed" 

them to act in morally dubious ways later on. The authors argue that if people can establish 

“moral credentials” as being unprejudiced, they fear less being attributed as sexists or racists 

(Monin & Miller, 2001). For examples of licensing behavior in consumer choices see Khan 

and Dhar (2006) and for food choices see Effron, Monin, and Miller (2012). Both, licensing 

and cleansing behavior can be characterized as compensating choice behavior (Conway & 

Peetz, 2012; Jordan, Mullen, & Murnighan, 2011; Sachdeva et al., 2009): Either to 

compensate for a previous bad deed (i.e., cleansing) or for a previous good deed (i.e., 

licensing).  

In contrast, previous virtuous deeds can also motivate consistent choice behavior. For 

example, Gneezy, Imas, Nelson, Brown and Norton (2012, Experiment 2) reported that 

visitors of an amusement park who purchased a souvenir photo in the charity condition, were 

subsequently more likely to buy a present for others (i.e., a prosocial behavior) than for 

themselves (i.e., a selfish behavior). The authors proposed that people infer their own morality 

based on the costliness of their past behavior leading to consistent subsequent choices in the 

case of previous costly behavior. In a different study Zhang, Cornwell, and Higgins (2013) 

found prevention-focused individuals–individuals who seek to maintain the status quo–favor 

consistent choice behavior and were more likely to cheat in a second task after having cheated 

in a first task. 

These empirical findings on compensating and consistent choice behavior nicely 

illustrate the prevalence of sequence effects outside of performance tasks, yet they have two 

limitations. First, to elicit the sequence effects, researchers used different tasks within their 

experiments. For example, in the first task of the experiment by Monin and Miller (2001) 
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participants were asked to rate negative statements about women, before they had to indicate 

in a second task whether a job opening was better suited for one gender. Although it is 

important to know that sequence effect can occur across tasks, many of our daily duties 

involve repeated choices in a similar environment. A judge often pronounces multiples 

sentences a day, or a human resource manager has to choose repeatedly between multiple job 

candidates. Thus, it is important to examine whether sequence effects (i.e., compensating 

choice behavior) also occur in repeated choice tasks. Second, the proposed theories to predict 

and explaining compensating choice behavior have an exclusively verbal status that do not 

allow for quantitative predictions (for a verbal model on compensatory ethics see Zhong et a., 

2010). For testing competing theories against each other formulized computational models are 

advantageous (e.g., Lewandowsky & Farrell, 2011).  

The remaining of the paper is organized as follow. The next section addresses the first 

limitation, where we test whether compensating choice behavior occurs in a repeated choice 

task (i.e., job selection task). The findings will provide a basis to the second challenge, 

namely to provide a cognitive approach to model potential compensating and consistent 

choice behavior. This will be the focus of the subsequent section where we formalize a 

cognitive model following sequential sampling models. In the final section we discuss further 

applications and limitations of the model.  

Sequential Choice Experiment 

We conducted an experiment in which participants repeatedly choose between two job 

candidates, varying in gender. Previous research on job selection in a moral context found that 

only participants who could disagree with sexist or racist statements (e.g., “Men are more 

emotionally suited for politics than are most women”), subsequently indicated a (White) male 

to be better qualified for a job opening (e.g., Monin and Miller, 2001). In a recent study 

Effron et al. (2012) reported similar findings. Participants had to indicate which of two 

suspects was more likely to have committed a crime. If participants were given a "racist" 
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alternative (i.e., having a very unlikely Black suspect and a White suspect), they were more 

likely to subsequently indicate that a White person was more qualified for a job opening, than 

if this alternative was not present (i.e., having only White suspects). Whereas in these 

previous experiments the choice task followed a rating task, participants in our experiment 

were faced with repeated choice tasks. 

In hiring situations there is a standard social norm that women compared to men are 

discriminated and are hired less often, especially when being equally qualified as men. 

Therefore, repeatedly hiring a female candidate against the standard prejudice view will 

affirm one’s moral identity, and as a consequence people will feel licensed to make a 

subsequent choice that seems prejudiced (i.e., hiring a male candidate). Thus, if people were 

to apply such a “licensing strategy”, we should observe compensating choice behavior after 

they repeatedly hired a female candidate. Alternatively, people could subsequently hire a male 

candidate after repeatedly choosing female candidate as means of balancing the number of 

female and male candidates. In contrast to the licensing strategy, this “balancing strategy” 

predicts compensating choice behavior not only after repeatedly choosing female candidates, 

but also after repeatedly choosing male candidates (Dhar, Huber, & Khan, 2007; Dhar & 

Simonson, 1999; Huber, Goldsmith, Mogilner, 2008). In line with the balancing strategy is 

the suggested compensatory ethics model by Zhong et al. (2010). According to their model, 

people compensate a previous virtuous deed with a subsequent selfish deed (i.e., licensing 

behavior) and a previous selfish deed with a subsequent virtuous deed (i.e., cleansing 

behavior), following in the long-run an equilibrium approach. 

Thus, if we observe sequence effects, it is immanent for cognitive models to account 

for the influence of previous choices on subsequent choices, even if the choice situation does 

not provide explicit feedback. Note the main goal of this experiment is to test whether 

sequence effects are observed in a repeated choice task in the first place, rather than to 

exhaustively identify the different strategies people apply. 



 MODELING SEQUENCE EFFECTS USING A SSM    133 
 

 

Method 

Participants. 

We recruited participants living in the U.S. through amazon's Mechanical Turk 

(Amazon, 2013). To avoid inattentive participants or computer programs filling out the 

questions, we included an additional test page at the beginning that instructed participants to 

ignore the subsequent questions and to just type “I read the instructions” into a text box. Of 

the 147 (77%) participants who passed that screening, 126 (35% females) finished the 

experiment. On average the experiment took 6 minutes and participants received 0.30 USD 

for completing the task.  

Procedure and experimental design. 

Participants were presented with a hypothetical recruiting scenario and asked to 

repeatedly choose the most suitable candidate out of two job applicants. All candidates were 

described by the three attributes "leadership skills", "social competence", and "typing speed" 

(see Appendix for the exact values), of which the first two were described as important 

attributes, whereas the third was described as a less important attribute. The profile picture 

indicated the gender of the candidates. To make sure participants paid attention to the profile 

picture, they were instructed to also check candidates for a well-groomed appearance (which 

all of them had). 

Each participant made ten pairwise decisions in a row. The description of the task 

emphasized that the ten candidate pairs applied for ten different companies, thus stressing that 

each decision ought to be independent of the previous ones. The choice pairs were constructed 

such that one of the two candidates was clearly superior on the two most important attributes 

(i.e. leadership skills and social competence) in the first eight pairs (= dominating pairs), 

whereas the candidates in the last two pairs (i.e., the 9th and the 10th pair) were approximately 

equally well suited for the job (= non-dominating pairs; see Appendix for the exact values). 

The non-dominating pairs always consisted of a male and a female candidate, whereas the 
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gender of the candidates within the dominating pairs varied between the four between-

subjects conditions (see Table 1) outlined next.  

In the first female>male condition the dominating candidate was always female and 

the dominated candidate was always male. In the second male>female condition the 

dominating candidate was always male and the dominated candidate was always female. In 

the third female>female condition all candidates were female and in the fourth male>male 

condition all candidates were male. The only condition in which participants can affirm their 

moral identity and establish moral credentials is in the female>male condition, as it is the only 

condition in which participants are given the opportunity to hire a (dominating) female 

candidate over a (dominated) male candidate. Given that participants have previously chosen 

the dominating candidate, a licensing strategy predicts the choice share of the male candidate 

(CSM) in the subsequent non-dominating pairs to be highest in the female>male condition as 

compared to the other three conditions. On the other hand, if participants apply a balancing 

strategy, we should observe a higher CSM in the female>male condition and in the 

female>female condition as compared to the male>female condition and the male>male 

condition.  

The participants were randomly assigned to one of the four conditions. The attribute 

values describing the ten candidate pairs were the same for all conditions. To rule out order 

effects, we randomized the orders within the eight dominating pairs and the two non-

dominating pairs across participants. 

Results and Discussion: Choice Shares of the Candidate Pairs 

As shown in Figure 1, most participants across all four experimental conditions chose 

the dominating candidates in the first eight pairs, indicating that participants did pay attention 

to the provided information. To detect possible sequence effects, we first compared whether 

the CSM in the female>male condition was higher than the CSM in each condition for the 

non-dominating pairs. We tested these differences against 0, applying a Bayesian analysis. 
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Thereto, we contrasted their 95% highest density interval (HDI) representing the most 

credible posterior CSM values. For all conditions we used uniform priors (for details on the 

Bayesian model see Kruschke, 2011, Ch. 8.5). If the HDI95 is positive and excludes 0, we can 

infer that the CSM in the female>male condition is higher than the CSM in the other 

conditions. 

In line with our prediction, 70% of participants in the female>male condition chose to 

hire the male candidate for the 9th choice pair, as compared to only 40% in the male>female 

condition (HDI95 0.06 – 0.49; 99% of the HDI > 0), 33% in the female>female condition 

(HDI95 0.12 – 0.56; 100% of the HDI > 0), and 25%, in the male>male condition (HDI95 0.20 

– 0.63; 100% of the HDI > 0). The CRM in the female>female condition was not higher than 

in the male>female condition (HDI95 -0.29 – 0.16; 29% of the HDI > 0) than in the 

male>male condition (HDI95 -0.15 – 0.30; 75% of the HDI > 0). This is in line with previous 

research, which shows that only participants, who could establish moral credentials, were 

more likely to subsequently choose the male candidate (Monin & Miller, 2001). 

To test for possible sequence effects within the two non-dominating pairs, we 

compared the CSM of the 9th against the 10th choice pair across conditions. The previously 

observed choice pattern reversed for most conditions. In the female>male condition the CSM 

dropped to 33% (HDI95 0.12 – 0.56; 100% of the HDI < 0), whereas it increased in the 

female>female condition to 60% (HDI95 -0.48 – -0.02; 98% of the HDI < 0), and to 64% in 

the male>male condition (HDI95 HDI95 -0.59 – -0.13; 100% of the HDI < 0). Only for the 

male>female condition the CSM of the 10th choice pair was not different from the 9th choice 

pair (43%; HDI95 -0.24 – 0.20; 59% of the HDI < 0). These reversed choice patterns suggest 

that participants followed a licensing strategy for the first non-dominating pair and followed a 

balancing strategy for the second non-dominating pair (see also Zhong et al., 2010).  

From these results we can infer three important points: First, sequence effects occur in 

repeated choice tasks and not only across different tasks, indicating that people take previous 
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choices into account when facing a new similar decision. This is even the case when the 

consecutive choices should be independent. Remember, that we told our participants to select 

candidates for different companies, thus, stressing independent choices. Second, the observed 

compensating choice behavior is rather attributed to a licensing strategy than to a balancing 

strategy. This suggests that simply choosing a female candidate does not necessarily elicit 

compensating choice behavior. Only when the dominating female candidate was paired with a 

dominated male candidate, but not when paired with a female candidate, we observed 

compensating choice behavior. Third, whereas people prefer a licensing strategy in the short 

run, they appear to apply a balancing strategy in the long run. 

Together with previous findings, our results emphasize the importance to incorporate 

the history of our previous choices into choice models. However, so far, current theories that 

aim to explain these effects rely on verbal descriptions; more precise cognitive models that 

build on mathematical grounds are lacking.  

A cognitive Approach to model Sequence Effects 

Towards a cognitive model that accounts for the influence of previous choices, we 

propose the Dependent Sequential Sampling model (DSSM). The DSSM builds upon a 

broader class of sequential sampling models (SSMs), that aim to explain the underlying 

cognitive process of decision making (Busemeyer & Townsend, 1993; Ratcliff, 1978; 

Townsend & Ashby, 1983; Usher & McClelland, 2004; Vickers, 1970), outlined next.  

Sequential Sampling Models 

SSMs have become particularly popular in describing the cognitive process underlying 

decision making. They have been applied to explain decision process underlying perceptual, 

inferential, preferential and risky choices, to name a few (Berkowitsch, Scheibehenne, & 

Rieskamp, in press; Trueblood, 2012; Trueblood, Brown, Heathcote, & Busemeyer, 2013; 

Tsetsos, Chater, and Usher, 2012). SSMs assume that people accumulate evidence of 

preference for each available option (for suggested accumulation processes see Brown & 
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Heathcote, 2008; Ratcliff, 1978; Roe, Busemeyer, & Townsend, 2001; Usher & McClelland, 

2004). The preference of the option first to pass a specific threshold is chosen. These models 

further allow accounting for previous (good or bad) experiences with the options by allowing 

individual initial preferences for the options which is set to a constant value (i.e., usually to 0 

if a decision maker had no previous experience with the option). Because the model we 

propose in this paper strongly builds on the basic framework of SSMs, we start by introducing 

Multialternative Decision Field Theory (MDFT; Roe et al., 2001), a prominent SSM in more 

detail. 

MDFT assumes that preferences for each option under consideration are accumulated 

over time, whereas the preference state (denoted Pt) at any given point in time integrates all 

previous preferences states of that option. According to the model the attention given to 

attributes describing the options (e.g., leadership skills, socials skills) switches in an all-or-

nothing manner (Roe et al., 2001). People evaluate the momentary valences of the options by 

comparing the options’ focal attribute values (e.g., leadership skills performance) relative to 

each other and weight by the subjective importance w they assign to the attributes. These 

valences are then added to the options’ previous preference state underlying decay forming Pt 

(for the exact formula of this updating process see Roe et al.). 

Once the accumulated preference of one option passes a specific threshold ࣂ, this 

option (e.g., the female candidate) is chosen (internal stopping-rule). Alternatively, one might 

assume that decision makers accumulate evidence for a fixed amount of time and then choose 

the option that is most preferred at the end of the time frame (external stopping-rule). 

Similarly, it is also possible to assume that evidence is accumulated until the options’ 

preferences have converged to a stable state (converging stopping-rule; see Berkowitsch et al., 

2013).  

The preferences difference ∆ࡼ at the time of the decision can also be used as an 

indicator of the confidence in the decision (Lee & Dry, 2006; Vickers, 1979; Vickers & Lee, 
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1998), where smaller differences imply lower level of confidence. The initial preference ࢠ for 

each option reflects previous experience with the options. Figure 2 illustrates a possible 

accumulation process of MDFT when each options is equally likely to be chosen at the 

beginning (i.e., 0 = ࢠ). 

The other parameters of MDFT influence the preference accumulation process. These 

are, the variance v of the normal distributed error, the rate parameter φ1 at which similarity 

declines with distance between the options, the decay parameter φ2 and the dominance 

parameter wd, reinforcing distance in dominance direction. Because we do not focus on the 

accumulation process, these parameters will not be discussed any further (for details see 

Berkowitsch et al., 2013; Roe et al., 2001; Hotaling, Busemeyer, & Li, 2010).  

SSMs, such as the MDFT, provide no explicit theory that specify the influence of 

previous choices on present choices, but often assume that choices are made independent 

from each other. Whereas the assumption of independence might be reasonable for many 

choice situations, the examples above indicate that there are also many occasions in which 

previous choices exert a systematic influence on subsequent choices.  

In the following we explain how the SSMs can be extended to account for sequence 

effects. We first present a verbal description of the DSSM, followed by its mathematical 

formalization. Subsequently, we apply DSSM on our experimental data and compare it to 

MDFT which assumes independent choices. Finally, we discuss further applications of 

DSSM. 

DSSM: Incorporating previous Choices 

Previous choices can inform subsequent choices, thereby changing people's experience 

with the available options. From the perspective of SSMs, this influence could be modeled as 

a change in the initial preference ࢠ for subsequent choices. Thus, instead of setting ࢠ constant, 

we define ࢠ as a function of previous choices. To account for compensating and consistent 

choice behavior we propose three cognitive mechanisms: 
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First, we propose to adjust the initial preference state such that previous choices made 

with little confidence are more likely to result in compensating choice behavior, whereas 

previous choices that were made with high confidence are more likely to result in consistent 

choice behavior. Second, because human memory underlies decay recent as compared to 

more remote choices should have a stronger effect on present choices. A decay parameter 

accounts for individual differences in the decay process. Third, whereas for some individuals 

a previous choice might result in compensating choice behavior, for others the same choice 

might yield consistent or even reinforcing choice behavior. To account for these individual 

differences, we included a compensating-consistency parameter in the decay process. 

Thus, the change ∆ࢠ of the initial preference state ࢠ is determined by the previous 

levels of confidence, a decay function, and an individual compensating-consistency 

parameter. These three processes, and how DSSM incorporates them, are described in the 

following in more detail. 

Mathematical Formalization of DSSM 

The level of confidence ∆ࡼ௜ after the ith choice can be expressed as the difference 

between the preferences states of two options F (e.g., choosing the female candidate) and M 

(e.g., choosing the male candidate), whereas smaller differences imply lower level of 

confidence. Following MDFT (Roe et al. 2001), we assume that the preference states ࡼ௧ 

associated with the two options sum to 0. We will omit the subscript t for convenience and 

refer to ࡼ as the final preference state prior to a decision. The i-dimensional vector ∆ࣈ௜ 

contains the previous levels of confidence up to the ith choice: 

௜ࣈ∆ ൌ ቎

ଵࡼ∆
…ଶࡼ∆
௜ࡼ∆

቏ ൌ 	 ቎

ଵ,ிࡼ െ ଵ,ெࡼ
ଶ,ிࡼ െ …ଶ,ெࡼ
௜,ிࡼ െ ௜,ெࡼ

቏, ∀ i = 1, …, N, (1) 

where N is the total number of choices. Coded that way, choosing option F results in the ith 

choice in a positive ∆ࡼ௜, whereas choosing option M results in a negative ∆ࡼ௜.  
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The decay process is captured by an i-dimensional decay vector ࣋௜, indicating to what 

extent each previous ∆ࡼ௜ is taken into account when faced with a new decision. In line with 

past research on memory processes, we assume exponential decay (e.g., Brown, Neath, & 

Chater, 2007; Page & Norris, 1998; Shepard, 1987): 

࣋௜ ൌ ࣄ	 ∙ ,೔࢟ࢇࢉࢋࢊ∙	ࣅି݁	 ∀	݅	 ൌ 	1, … ,ܰ (2) 

The compensation-consistency parameter ࣄ	ሺെ∞ ൏ ࣄ ൏ ∞ሻ moderates the influence 

of the previous choices on the subsequent choice. Setting ࣄ ൐ 0 promotes compensating 

choice behavior, whereas setting ࣄ ൌ 0 promotes consistent choice behavior. Setting ࣄ ൏ 0 

reflects reinforcing choice behavior. A prominent example for reinforcing choice behavior in 

the literature is the foot-in-the-door-effect (Burger, 1999; Freedman & Frazer, 1966) 

according to which previous commitments to helping requests increases the likelihood of 

subsequent commitments.  

The decay parameter ࣅ	ሺ0 ൏ ࣅ ൏ ∞ሻ determines how quickly the decay vector ࣋௜ 

decreases from	ࣄ to 0. Higher values of ࣅ indicate stronger decay such that only the very last 

choices are taken into account. The decreasing decay values are captured by the i-dimensional 

vector ࢏࢟ࢇࢉࢋࢊ: 

࢏࢟ࢇࢉࢋࢊ ൌ 	െ ቎

1
2
⋮
݅

቏ ൅ ቎

݅
݅
⋮
݅

቏ ൌ ቎

െ1 ൅ ݅
െ2 ൅ ݅

⋮
െ݅ ൅ ݅

቏ ൌ ቎

െ1 ൅ ݅
െ2 ൅ ݅

⋮
0

቏; ∀	݅	 ൌ 	1, … , ܰ. (3) 

Along with the exponential function, ࢏࢟ࢇࢉࢋࢊ assures exponentially decreasing decay 

values toward 0, such that the very recent choice has the strongest influence (݁ିఒ∙ሺ଴ሻ ൌ 1) and 

more remote choices have a weaker influence (i.e., ݁ିఒ∙ሺ଴ሻ ൐ ⋯ ൐ ݁ିఒ∙ሺିଶା௜ሻ ൐ ݁ିఒ∙ሺିଵା௜ሻ	) 

on subsequent choices. The same process holds true for ࣄ ൏ 0, except that the decay values 

increase toward 0. 

Figure 3 illustrates this process of the decay vector ࣋௜ for hypothetical individuals 

after having made for sequential choices. The individual ࣋௜ contains the different levels of 



 MODELING SEQUENCE EFFECTS USING A SSM    141 
 

 

influence the previous choices exert on the subsequent 5th choice as a function of ࣅ and ࣄ. For 

example, ࣄ ൌ 1 and ࣅ ൌ 0.5 indicates a case in which all four previous choices influence the 

subsequent choice, whereas for  ࣄ ൌ 1 and ࣅ ൌ 2 the first two choices only have a marginal 

influence on the subsequent choice (see Figure 3A). Setting ࣄ ൌ 0 indicates a case for which 

independent choices are assumed (Figure 3C).  

Next, we combine the three cognitive mechanisms into one function to determine the 

change of the initial preference state ∆ࢠ௜ between the ith and the i + 1th choice. Because we 

assume that the influence of the previous levels of confidence is moderated by the decay 

process, ∆ࢠ௜ is: 

௜ࢠ∆ ൌ ൞
െ ቂ ଵ

೔ࣈ∆
ቃ
୘
∙ ࣋௜				݂݅	∆ࡼ௜ ൌ ௜,ிࡼ	 െ ௜,ெࡼ

൅ ቂ ଵ
೔ࣈ∆
ቃ
୘
∙ ࣋௜				݂݅	∆ࡼ௜ ൌ ௜,ெࡼ	 െ ௜,ிࡼ

 (4) 

∀ i = 1, …, N, 

where N is the total number of choices and the component-wise division of 1 by ∆ࣈ௜ assures 

that with decreasing level of confidence, compensating behavior becomes more likely. From 

Equation (4) follows that for ࣄ ൐ 0 and ∆ࡼ௜ ൌ ௜,ிࡼ	 െ  ௜,ெ, choosing option F over option Mࡼ

in the ith choice results in ∆ࢠ௜ ൏ 0 

Finally, to account for the influence of previous choices on the subsequent choice 

between options F and M, DSSM assumes that the initial preferences for the two options are 

updated according to the following rule:  

௜ାଵࢠ ൌ ቂ
௜ାଵ,ிࢠ
௜ାଵ,ெࢠ

ቃ ൌ ൤
௜,ிࢠ ൅ ௜ࢠ∆
௜,ெࢠ െ ௜ࢠ∆

൨ ൌ ௜ࢠ ൅ ௜ࢠ∆ ∙ ቂ
			1
െ1

ቃ (5) 

∀ i = 1, …, N; ࢠଵ ൌ 0, 

where N is the total number of choices. 

From Equations (4) and (5) follow that for ࣄ ൐ 0 and ∆ࡼ௜ ൌ ௜,ிࡼ	 െ  ௜,ெ, choosing option Fࡼ

over option M in the ith choice results in ∆ࢠ௜ ൏ 0 which leads to ࢠ௜ାଵ,ி ൏ ௜ା,ெࢠ ௜ାଵ,ி andࢠ ൐



142     MODELING SEQUENCE EFFECTS USING A SSM 
 

 ௜ାଵ,ெ. In other words choosing option F decreases the subsequent initial preference of optionࢠ

F and increases the subsequent initial preference of option M, if ࣄ is set to positive values 

(i.e., compensating choice behavior). Conversely, if instead an individual choses option M 

over option F, ࢠ௜ାଵ,ி ൐ ௜ାଵ,ெࢠ ௜ାଵ,ி andࢠ ൏  ௜ାଵ,ெ, thus increasing the subsequent initialࢠ

preference of option F and decrease the subsequent initial preference of option M. When 

setting ࣄ ൌ 0, then ࢠ௜ ൌ ௜ࢠ∆ ௜ାଵ becauseࢠ 	ൌ 0, indicating consistent or independent choice 

behavior, as it is the case for MDFT. Thus, MDFT is nested within DSSM. Finally when ࣄ is 

set to negative values and ∆ࡼ௜ ൌ ௜,ிࡼ	 െ  ௜,ெ, choosing option F increases the likelihood ofࡼ

choosing option F again and decreases the likelihood of subsequently choosing option M. 

Applying DSSM to the Experimental Data 

Can DSSM account for the observed sequence effects observed in the experimental 

data described above? The female>male condition indicated that, for most participants a 

preference reversal toward the male candidate occurred for the 9th choice pair. We simulated 

this choice pattern based on the actual attribute values of the ten job candidate pairs, using the 

DSSM and compared it to MDFT. For the data on hand, we applied an external stopping-rule, 

but other stopping-rules are applicable too. 

 In line with the instructions in the experiment, we assumed equal weights for 

leadership skills and social competence (wLS = wSC = .5) and assigned typing speed a weight 

of zero (wTS = 0). First, to simulate the decision makers who first chose the male candidate for 

the 9th choice pair and subsequently the female candidate in the 10th choice pair, we set ࣄ = 

.04 and 1 = ࣅ. The resulting choice patterns for DSSM and MDFT are shown in Figure 4. The 

difference between the two models becomes particularly clear for the 9th and 10th choice. 

Whereas MDFT assigns both job candidates the same preference states (Figure 4C), DSSM 

favors the male candidate in the 9th and the female candidate in the 10th candidate (Figure 

4A). If we instead assume an even stronger compensating behavior, we can increase the value 

of ࣄ, for example to 0.2 = ࣄ. Holding the other parameters constant DSSM now predicts that 
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the male candidate is preferred in both the 9th and 10th choice (Figure 4B). The lower ࣄ value 

in Figure 4A compared to 4B yields a lower level of confidence after the 9th choice, making a 

subsequent preference reversal in the 10th choice more likely. Notice that both choice patterns 

shown in Figures 4A and 4B cannot be predicted by MDFT (Figure 4C). 

General Discussion 

Rather than making independent choices, past research indicated that previous choices 

often influence subsequent choices. Such dependencies have been found in many domains 

including risky options (Camerer, 1989; Gilovich, Vallone, & Tversky, 1985), choices among 

foods (Dhar & Simonson, 1999), or moral actions (Monin & Miller, 2001; Tetlock et al., 

2000). Here, we further showed that sequence effects can also occur in an employee selection 

tasks. In particular, we showed that compensating choice behavior can also occur for repeated 

choice tasks. So far, current cognitive models of choice, including SSMs, cannot account for 

these sequential dependencies, as these choice situations neither provide any explicit feedback 

on the accuracy of the decision nor learning opportunities.  

The present work shows that DSSM can account for compensating, consistent, and 

reinforcing choice behavior in a choice environment not providing any feedback. Instead of 

setting the initial preference of an option constant over choices, DSSM assumes that initial 

preferences are updated based on our previous choices. The proposed updating function 

incorporates three cognitive mechanisms. First, the model assumes that lower level of 

confidence makes preference reversals more likely. On the other hand higher level of 

confidence motivates consistent choices behavior. Second, DSSM assumes a decay process 

and takes the number of previous choices, as well as their individual impacts on the 

subsequent choice into account. Third, whether compensating, consistent, or even reinforcing 

choice behavior result from previous choice is subject to the choice situation and the decision 

maker. These individual differences are captured by a compensating-consistency parameter in 

the decay process.  
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Besides DSSM’s ability to incorporate sequence effects, its capability to account for 

individual differences provides the advantage to predict a variety of empirical effects 

observed in the choice literature. For example, research on social influence suggests that 

people differ in their need for consistency (for a review see Guadagno & Cialdini, 2010). 

Since the mathematical sign of ࣄ either reflects compensating or consistent choice behavior, 

future research could correlate ࣄ with people’s measure of preference for consistency 

(Cialdini, Trost, & Newsome, 1995). Other scholars have identified the abstractness of 

sequential choices and the time span between sequential choices as possible moderators of 

compensating and consistent choice behavior (Conway & Peetz, 2012; Huber et al., 2008).  

DSSM can also be applied to predict reinforcing choice behavior observed in the 

literature. For example, according to the foot-in-the-door-effect, the likelihood to agree on a 

second bigger request increases after agreeing to smaller first request (Freedman & Frazer, 

1966). On the other hand repeated unethical decision making can become more likely after a 

first unethical decision. Zhang et al. (2013) found that people who are motivated to maintain a 

status quo (i.e., prevention focus) are more likely to cheat in a subsequent task after cheating 

in the initial task. Both of these choices behaviors could be captured by DSSM by setting 

ࣄ ൏ 0, increasing the likelihood of an individual to repeat a previous action (e.g., to help 

someone or to cheat) by increasing its subsequent initial preference. Again, it would be 

interesting to correlate ࣄ with the psychological processes associated with the foot-in-the-

door-effect or with measures of individuals’ prevention focus (Burger, 1999; Higgins, 1997). 

Finally, DSSM could be applied to account for the gambler’s fallacy, according to 

which people ascribe a winning number a lower probability of a subsequent win (Clotfelter & 

Cook, 1993) and its counterpart, the hot hand fallacy (e.g. Scheibehenne, Wilke, & Todd, 

2011). Although the consecutive spins of a roulette wheel are independent from each other, 

there is ample evidence showing that gamblers’ bets are often influenced by previous 

observations. Instead of assuming independence and thus assigning each outcome the same 
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initial preference, the initial preferences could be updated contingent on past outcomes 

according to the above described mechanisms.  

One limitation of our work is that we did not estimate the parameters of the model 

from the empirical data, but used simulations to show how DSSM can account for 

compensating and consistent choice behavior. To account for these sequence effects we 

introduced new parameters which raises the question whether increasing the model 

complexity is justified by a higher model fit. Thus, future work should test DSSM against 

other SSMs, such as MDFT. As the number of observed compensating choice behaviors 

increases the DSSM eventually outperforms the other SSMs. Future work could also extend 

DSSM to multiple choices and include a no-choice option. 

To define DSSM we made several assumptions on the model which future work 

should test empirically. First, we assumed that lower choice confidence increases a 

subsequent preference reversal (i.e., compensating choice behavior), whereas higher choice 

confidence increases consistent choice behavior. Future research could test these predictions 

by eliciting people's choice confidence. Second, we assumed that the influence of previous 

choices follows an exponential decay. Other scholars propose that decay processes follow 

rather a power-law (Anderson & Schooler, 1991; Donkin & Nosofsky, 2012; Wixted & 

Ebbesen, 1991). An empirical model comparison could test which of two versions of DSSM 

provides a better model fit, one version following an exponential decay, the other using a 

power-law. Third, DSSM assumes that ࢠ is updated whenever ࣄ ് 0. From this follows a 

testable prediction that if an individual applies an internal stopping-rule, the deliberation time 

 should decrease, as the required accumulated preference of an option to pass a specific ݐ

threshold ࣂ decreases. This prediction could be tested by assessing participants’ response 

times.  

To conclude, our empirical findings support the previous findings on sequence effects, 

that people are influenced by previous choices when faced with a new decision. Neglecting 
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this cognitive process can result in inaccurate predictions of people’s choice behavior. This 

emphasizes the importance to incorporate previous choices into cognitive choice models. We 

offered a solution to this proposing DSSM. To get back to the elevator example, people 

familiar with DSSM might no longer be irritated of closing elevator doors, as they will infer 

that the people inside the elevator must have previously pressed the “open” button rather 

often. 
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Table 1 

Overview of the four experimental conditions. 

Condition  Dominating pairs Non-dominating pairs 

  1th pair  2th pair  … 8th pair 9th pair  10th pair 

female>male  ♀ > ♂  ♀ > ♂  ♀ > ♂ ♀ > ♂ ♀ ≈ ♂  ♀ ≈ ♂ 

male>female  ♂ > ♀  ♂ > ♀  ♂ > ♀ ♂ > ♀ ♀ ≈ ♂  ♀ ≈ ♂ 

female>female  ♀ > ♀  ♀ > ♀  ♀ > ♀ ♀ > ♀ ♀ ≈ ♂  ♀ ≈ ♂ 

male>male  ♂ > ♂  ♂ > ♂  ♂ > ♂ ♂ > ♂ ♀ ≈ ♂  ♀ ≈ ♂ 



      
 

 

Figure 1. Mean choice shares of the dominating candidate (pairs 1-8) and the male candidate (pairs 9-10) across conditions. Error bars indicate the 

standard error of the mean. 

M
ea

n 
ch

oi
ce

 s
ha

re
 o

f t
he

 d
om

in
at

in
g 

ca
nd

id
at

e 
(in

 %
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Choice Pairs 1 to 8

96 %

86 %
91 %

96 %

C
ho

ic
e 

sh
ar

e 
of

 th
e 

m
al

e 
ca

nd
id

at
e 

(in
 %

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Choice Pair 9

70 %

40 %

33 %

25 %

C
ho

ic
e 

sh
ar

e 
of

 th
e 

m
al

e 
ca

nd
id

at
e 

(in
 %

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Choice Pair 10

33 %

43 %

60 %
64 %

♀  >  ♂ (N = 33)
♂  >  ♀ (N = 35)
♀  >  ♀ (N = 30)
♂  >  ♂ (N = 28)

154     M
O

D
E

L
IN

G
 S

E
Q

U
E

N
C

E
 E

F
F

E
T

S
 U

S
IN

G
 A

 S
S

M
 



 MODELING SEQUENCE EFFECTS USING A SSM    155 
 

 

 

Figure 2. Example of the preference accumulation process of MDFT, according to which an 

individual chooses the female over the male candidate. The dotted lines indicate different 

stopping-rules: internal stopping-rule (horizontally dotted line), external stopping rule 

(vertical dotted line).
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Figure 3. The decay vector ࣋௜ as a function of different parameter values of ࣅ and ࣄ after four 

sequential choices. The different lines indicate individual ࣋௜ of hypothetical individuals after 

having made four sequential choices. In both Figures 3A and B more recent choices (i.e., 4th 

choice) are assumed to exert a stronger influence on the subsequent 5th choice as compared to 

more remote choices (i.e., 1th choice), but with stronger influence in Figure 3A than Figure 

3B. Figure 3C provides an example in which sequential choices are assumed to be 

independent from each other (0 = ࣄ). 
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Figure 4. Simulated preference evolution based on the values of the female>male condition with a preference reversal after the 8th (Figures 4A and 

B) choice for DSSM, but not MDFT (Figure 4C) (Used parameter values for the models: wLS = .5, wSC = .5, wTS = 0, v = 1; ߮ଶ = .05; ߮ଵ =.46, ߢ஺ = 

.(wd = 12 ,1 = ߣ ,஼ = 0ߢ ,஻ = 0.2ߢ ,04.
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Appendix: Attribute Values used for the Dominating and Non-Dominating Job Pairs 

Dominating Pairs  Candidate Leadership  

Skills 

Social 

Competence

Typing  

Speed 

1 A 41 65 72 

 B 45 66 70 

2 A 79 75 41 

 B 82 76 42 

3 A 72 27 56 

 B 68 27 57 

4 A 50 50 44 

 B 54 51 48 

5 A 80 74 38 

 B 77 73 39 

6 A 39 35 41 

 B 43 36 43 

7 A 28 64 73 

 B 31 66 72 

8 A 48 71 80 

 B 47 70 78 

Non-Dominating Pairs     

1 A 52 41 39 

 B 50 43 41 

2 A 76 70 68 

 B 74 72 70 
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Note. The orders within the dominating and non-dominating pairs were randomized. The 

choice pair number indicates its position (1 to 8 for the dominating pairs; 9 to 10 for the non-

dominating pairs). The letter in boldface indicates the dominating candid 
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